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Abstract-Virtual-Sensing, which is achieved through the 
disaggregation of composite power metering signals, is a solution 
towards achieving fine-grained smart power monitoring. In 
this work we discuss the challenging issues in Virtual-Sensing, 
introduce and ultimately combine the Hidden Markov Model 
and the Edge-based methods. T he resulting solution, based on a 
Multiple-hypothesis Sequential Probability Ratio Test, combines 
the advantages of the two methods and delivers significant 
improvement in disaggregation performance. A robust version 
of the test is also proposed to filter the impulse noise common in 
real-time monitoring of the plug-in loads power consumption. 

I. INTRODUCTION 

Buildings account for more than 40% of the total power 
consumption in the US, and can play a critical role in ad
dressing the current energy and climate issues [1]. Significant 
effort has been invested in this topic, from benchmarking, to 
control and monitoring. However, building energy usually de
pends greatly on occupant behavior, especially at fine-grained 
metering level, such as plug-in loads, user-controlled lighting, 
user-adjusted HVAC, for which the traditional commissioning 
system is far from enough [2]. 

So-called smart grid technology is proposed as a solution 
from an informatics perspective, which provides multi-scale 
monitoring of building power & environmental conditions, 
based on high-density Wireless Sensor Networks (WSNs) and 
efficient data processing methods [3]. Large-scale WSNs has 
been deployed with hundreds of terminal meters to provide 
long-term monitoring [4]. Demand-response application of 
plug-loads and personalized lighting systems has also been 
demonstrated, which shows the great potential of an inte
grated power control strategy in smart buildings, especially at 
fine-grained plug-in loads level [5]. Furthermore, fine-grained 
metering also provides important statistics to understand user 
behavior and the potential of smart living environment [4] [5]. 

Notwithstanding all the benefits, issues as cost, privacy 
and network stability arise as the system of fine-grained 
metering scales up to whole-building level. One solution is 
to develop power strip level metering as the ElectriSense 
line of products [6]. However, network burden and the cost 
problem still remain. Another scheme is to use fewer sensor 
nodes, and reconstruct the missing nodes through data mining 
techniques, which is equivalent to having virtual sensors at 
those nodes. We call this idea Virtual-Sensing (VS). VS 
reduces the number of sensors in the network, and can 
therefore address the cost, privacy and network issues. 

A common thread in VS is Load Disaggregation (LD). In 
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Fig. 1. Virtual-Sensing framework for load disaggregation 

LD, we decode the streams of individual appliances from a 
high-level composite power stream, as illustrated in Figure 1, 
therefore to create virtual monitoring at low-levels. As we 
monitor with sparsely instrumented nodes, network issue is 
alleviated and less intrusiveness is caused at the terminal 
users [7]. In this work, we will study various existing VS 
methods and discuss their performance, ultimately propos
ing a Multiple-Hypothesis Sequential Probability Ratio Test 
(MSPRT) that shows advantages over the existing methods. 

This paper is organized as follows. Section II formulates 
the problem. Section III presents the background. Section 
IV describes MSPRT in some detail. Section V outlines a 
complete VS method based on MSPRT, also proposing a 
robust enhancement to address typical power sensing noise. 
Finally, Section VI concludes the paper. 

II. PROBLEM FORMUL ATION 

Let Pt be the observed composite power signal time series 
from n appliances with t from 1 to T. Let St be the state 
vector of the n appliances at time t. Our task is to infer St 
from Pt. St is a vector of n binary variables, one for each 
appliance, i.e. St E {O, I} n, in which 0 stands for OFF state 
and 1 for ON state. There are in total 2n combinations of 
ON/OFF states. 

III. B ACKGROUND AND REL ATED WORK 

Typical solutions to this problem are either based on a 
Hidden Markov model, or on Edge-based model. In the next 
section, these approaches will be reviewed and compared. 

A. Hidden Markov Model (HMM) 

In a Hidden Markov Model (HMM) [8], the transition 
probability between previous state St-l and current state St is 
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given as IIst_1,st = Pr(StISt-I). The mean of the composite 
power signal is the outcome of the hidden state St and its 
spread is modeled as a Gaussian distribution. In order to infer 
the status of the individual appliance, we estimate the state at 
each step, based on Maximum Likelihood Estimation (MLE): 

St = argmaxPr(st = Slpl:T) (1) s 
Since the search space is 2n, there will be an exponential 
explosion W.r.t. n. However, if we assume that only one 
appliance is switching at each step, the incremental state 
search space from St-l to St is only n. This assumption 
is reasonable with manually switched devices and a fast 
power sampling rate in the order of 1 sec/sample. Equ. 
(1) can be solved by a Viterbi algorithm [8]. We note 
Ot(s) = Pr(st = SIPI:T) as the likelihood function and we 
use s' = wt(s) to store the most likely state at step t given 
that the state at t - 1 is s, then we have the relation: i: 

Ot(s) = mC;xOt-l(s')IIs',sPr(ptlst = s) (2) s 
Wt(s) = argmc;xOt-l(s')IIs',s (3) s 

The above problem is solved sequentially, as first estimate the 
state at the last step, and then backtrack for the best estimate 
at each step as St-l = wt(St). 

The HMM gives good results and has been used a lot 
in VS applications. Wang et al. [9] treated VS in a convex 
optimization framework using sparse constraints. [10] solved 
the HMM by the Extended Viterbi algorithm and considered 
only the major power consuming appliances. The sampling 
method is widely used to deal with the exponential explosion 
issue. In [11] [12] [13] [14], statistical inference of the joint 
distribution is based on Factorial HMM [15], though most of 
the sampling methods have computation issues. 

However, the standard HMM does not have a good way 
to handle the fact that states may stay unchanged for a wide 
range of time intervals. This is significant for our problem, 
since many appliances, such as a lamp or a monitor, will have 
very different timing characteristics, while HMM models the 
duration as a Geometric distribution [12]. Some extensions of 
HMM have been proposed to address this issue. In [16], the 
persistence of state (stickiness) is guaranteed by introducing a 
constraint on the Markov chain model. Whereas in [12], [13], 
a Hidden Semi-Markov Model is used to model duration 
statistics. However, in most cases, we need a long training 
period of time of this model, since ON/OFF of individual 
devices may not be that frequent. 

B. Edge-based Model 

An intuitive way to deal with duration modeling is to 
focus only on the ON/OFF edges, in an approach we will call 
the Edge-based model. Edge-based model applies a change 
detection algorithm to track the edges and trace the source 
based on statistical learning methods [17]. Usually, we track 
the mean and variance of the power stream over time using 
an exponential moving average filter as: 

1 t-d ( T- t) 
130 = d T� 

I 
PT exp ----::;-

2 1 2 T- t t-d () 
0'0 = d T�l 

(PT - 130) exp ----::;-

(4) 

(5) 

2 
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where w is the decay factor and d the window size. Then, 
we look at the deviation of the current data point w.r.t. the 
previous statistics [18]. Edge-based model originates from 
the early work on Non-Intrusive Appliance Load Monitoring 
(NIALM) [19]. A review can be found in [7]. Algorithms 
that are studied for NIALM include Linear Discriminant 
Classifier [20], Bayes classifier [21], Neural Network [22], 
etc. 

Around the edges, there are several transient features that 
can be extracted from the active power or the reactive power 
readings, the latter often having unique harmonic patterns 
when observed at high enough sampling rates [23]. Such 
high frequency transients can help distinguish between, for 
example of a coffee-maker and a chandelier, especially when 
focusing on their reactive power patterns. 

In general, high frequency sampling will also be useful 
in distinguishing between appliances, since larger data sets, 
aided by the Law of Large Numbers [18], will generally 
be better for discriminating among different patterns. The 
obvious tradeoff here is, of course, that higher sampling rates 
would typically imply higher instrumentation and computa
tional cost, and/or lower instrumentation and computational 
robustness. 

IV. MULTI-HYPOTHESIS SEQUENTIAL PROBABILITY 
RATIO TEST (MSPRT) 

As we discussed above, edge detection is inherently a 
hypothesis testing problem [18]: the null hypothesis is Ho 
(no change detected), and the alternative hypothesis is HI 
(change detected). Let T(x) be a test statistic so that if and 
only if T(x) > c that Ho is rejected. Next we discuss how 
this principle can be implemented in our problem. 

A. Neyman-Pearson (N-P) Test 

Let the probability density and parameter spaces be fo (x) 
and eo for Ho, and h (x) and el for HI. The N-P test ensures 
that the Uniformly Most Powerful test given certain False 
Positive (FP) Rate is achieved by using Probability Ratio 

T(x) = j�i�j as test statistic. The test result o(x) is: 

o() {I if T(x) > A i.e. reject Ho x = 
0 if T(x) < A i.e. do not reject Ho (6) 

where the value of A is determined from the constraint of 
FP Rate ex = Pr(T(x) > AIHo). The optimality of this test 
motivates us to cast the VS problem into this formulation. 
However, the power of the N-P test depends on the sample 
size of the input data x, which limits the performance of the 
test. 

B. Sequential Neyman-Pearson Test 

The sample size issue can be solved by the sequential 
version of the N-P Test, knows as the Sequential Probability 
Ratio Test (SPRT). In this framework, the likelihood function 
is incrementally updated after every new sample arrival [24], 
given xn = { Xl,'" , Xn}: 

L( n) = I h(xn) = L( n-l) + I h(Xn) 
(7) x og fo(xn) x og fo(Xn) 
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We reject Ho if L(xn) > 0: and reject HI if L(xn) < (3, 
where 0: and (3 are two constants. If 0: 2': L(xn) 2': (3, we 
continue to accept new samples till a decision can be made. 

SPRT simulates the way human makes decisions. One 
makes decision if one has enough confidence and will con
tinue to receive information if not. In SPRT, we do not 
need to pre-determine the size of the test. Instead, the size 
is adaptively determined based on the observations. Even 
better is that SPRT requires fewer samples than standard non
sequential N-P test given the same FP Rate constraint. The 
expected number of samples for certain FP rate 0: is given 
as [25] 

log( 0:) E( NIHo, HI);::::: D(folfd 
for Sequential (8) 

log( 0:) E( NIHo, HI) ;::::: C(folh) for Non-sequential (9) 

In which D(folfd is the Kullback-Leibler (K-L) distance 
and C(folh) the Chernoff distance. For Gaussian variable, 
the K-L distance is usually greater than Chernoff distance. 
Therefore, SPRT needs fewer samples to reach a decision. 

C. MSPRT 

Now we move on to multiple-hypothesis test. If we have 
one null hypothesis and k alternative hypotheses, from [18], 
we should compare one hypothesis with all the other choices. 
Suppose that the kt h hypothesis has a prior 7rb we can write 
the posterior probability of the kt h hypothesis as: 

k 7rk rr�=1 fk (Xi ) 
Pn = ",K rrn ( )  L-j=o 7rj i=1 fj X i 

(10) 

For computation purpose, we use its inverse as the test 
statistic. Decision is made towards the kt h hypothesis if the 
threshold corresponding to the kt h hypothesis, which is noted 
as Xb is exceeded. Otherwise, more data are sampled: 

F{"(k) = -i < Xk Pn 
(11) 

The algorithm works as in Figure 2(a), in which F{'(1) 
exceeds the threshold, whereas F{'(2) goes to the opposite 
direction. The threshold for the kt h hypothesis is calculated 

as Xk = 0: (Ok Lj ;; ) -1
, in which Ok = minj# D( iklfj) 

[2]. The number of samples we need to reach a decision is: 

n=inf{n2':1,F{"(k) <Xk,'v'k} (12) 

The second issue is to locate the edge efficiently. Usually, 
exact edge location is not known a priori. If we assume the 
edge is at time T.  Then, the accumulation of the probability 
ratio function in Equ. (12) will start from T,  and the number 
of sample N will be T dependent: 

N( T)  = inf{ t 2': 1, S;(k) < Ak, 'v'k} (13) 

As we have discussed before, the functions F;(k) will only 
move toward threshold when its hypothesis is the truth. Thus, 
if a guess is ahead of the true location, the function will 
move away from threshold for a while; whereas if the guess 
is behind the true location, the function will have a late hit to 
the threshold, as shown in Figure 2(b). Therefore, the exact 
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Fig. 2. Demonstration of MSPRT: (a) Log-likelihood function evolution; 
(b) Edge positioning 

location will be determined by the function that firstly hit the 
threshold, as: 

n = inf N( T)  (14) T 

For Gaussian distribution, the density decays very quickly for 
outliers. This is not preferable from a numerical standpoint. 
The log-likelihood function is more promising. Thus, the 
original formulation is modified as follows: 

N( T)  = in£{ F;(k) < Xk, 'v'k} t?:1 
� . { t !J(Xi ) Xk } 
� lilf max L log f (X ) < log -k ) 'v'k t?: 1 Jo;ik i=t-T k i 

� . { t !J(Xi ) Xk } 
� lilf L max log f (X ) < log -k ) 'v'k t?: 1 i=t-T Jo;ik k i 

(15) 

The first approximation is to relax the left side of the 
inequality and transform it into log-likelihood ratio, while 
the second puts the maximum inside the sum and takes 
the maximum at each step, hence will make the test robust 
to noisy data (i.e. "spikes" that frequently appear in power 
stream data). 

The MSPRT ongmates from the Edge-based model. 
However, by sequentially considering the density function, 
MSPRT borrows ideas from the probabilistic HMM and it 
appears that it combines some of their advantages. 

V. MSPRT VIRTUAL-SENSING 

The k-hypotheses in MSPRT can be used to test the status 
of k different appliances. By sequentially applying MSPRT to 
the power stream, we can find the right hypothesis, hence the 
right switching appliance. Thus, MSPRT can be used in VS 
applications. We will discuss this in this section, and compare 
MSPRT with the HMM and the Edge-based model. 

It is also worth noted that to use MSPRT in VS applica
tion, we need to know in advance the appliance profiles that 
connect to the sensor node. This is usually done by learning 
from a period of ground-truth data. Apart from that, MSPTR 
doesn' t ask for extra parameters than what we need for HMM 
and edge detection. For situation in which some appliance can 
have multiple states, the states can be still transformed into 
separate appliances, which is a similar problem as before. 
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Fig. 3. Impulse Noise in Measured Power Data 
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Fig. 4. Simulated power pattem for five devices 

A. Simulated Power Stream 

We use semi-simulated power stream in our analysis. 
Firstly, we collect a set of real data from measurement. 
Several meters have been deployed in 550 Cory Hall at UC 
Berkeley collecting power streams of plug-in loads, and some 
examples can be found in Figure 3(a). Each appliance has its 
characteristic profile, and some of them are non-stationary, 
which presents an additional challenge in data modeling. 
Moreover, some appliances, such as a laptop computer, have 
a non-stationary pattern, which can be addressed by data 
post-processing. Noise of the profile is also characterized in 
Figure 3(b), in which we see effects similar to mixture model. 
This kind of noise can be modeled by background Gaussian 
noise plus impulse noise, which will be discussed later. 

The data collected from measurement has limited stochas
ticity and we decide to add white Gaussian noise and/or 
impulse noise to introduce randomness. By tuning the noise 
parameters, we can benchmark the potential performance 
limit of different methods. We performed 50 Monte Carlo 
simulations at each setting of parameters. 

There are two evaluation criterions: One is the Detection 
Error Rate (DER), which is the gap between the detected and 
the true number of edges, i.e. DER = ndelect-n'rue

. Another ntr'U,e 
is Load Dis-aggregation Accuracy (LDA). Previously Prec = � (TP: true positive rate, FP: type I error) and Rec = 

TP�N (FN: type II error) are used to evaluate LDA. In this 

work we apply a more general term LDA = 2PrecxRec . So Prec+Rec ' 
the efficacy of the various methods will be judged in terms 
of achieving low absolute DER and high LDA values. 

In our simulation, we include one desktop computer, one 
computer monitor and one laptop computer, which are the 
most common appliance in an office building. We also include 
a water heater with a pump for water filtering. The patterns 
for the five appliances are shown in Figure 4. Note that non
stationary time series is also considered here, e.g. in the left 
figure. Non-stationarity definitely bring about extra challenge, 
and in this work, it is handled by considering the dynamic 
time series model. 
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Fig. 5. Monte Carlo Simulated LDA results for the five appliances as a 
function of Gaussian noise amplitude, under the three models 

B. Gaussian Additive Noise 

There are two groups of study in this section. In the first 
group we only consider Gaussian random noise, and the data 
is modeled as Pt = h( St) + Zt with h( St) being the state
dependent clean signal, and Zt being the Gaussian noise with 
variance 0'; . The impact of noise is investigated by tuning 0'; 
from 1 to 256, based on the measurements. The state duration 
is modeled as Gamma distributed [11], and we assume that 
at each step, at most one appliance switches. 

There are three methods under study in this section, the 
MSPRT, the HMM and the Edge-based model. The simula
tion results for the three methods summarized by showing 
the LDA in Figure 5, and the DER in Figure 6. 

In terms of LDA for the laptop and monitor, there is a 
drop in LDA above certain noise level for the Edge-based 
model. The reason is that for fixed sample detection, the 
expected number of samples needed is following Equ. (9). 
If this number is over the test sample size (which increases 
as the level of noise increases), then the changes could be 
missed. MSPRT adaptively learns the test samples size and 
HMM tunes itself by introducing state transitions. Thus, they 
do not have the abrupt drop in LDA, as in Figure 5, though 
MSPRT is slightly better. 

In terms of DER, MSPRT is the best since the state 
changes only after the edge detected and the sample size 
can be self-tuned. The edge-based model suffers a sudden 
increase of DER at high noise levels because it is non
sequential, whereas HMM is worse in DER compared to 
MSPRT since the state "stickiness" is not well modeled in 
HMM. 

C. Impulse Additive Noise 

In the second group, we study the impact of the impulse 
noise. Here, we model the data as Pt = h(St) + Zt + AWt, 
where Wt is the impulse noise term with variance O'� » 0'; , 
and A E 0,1 is a Bernoulli process that models the impulse 
noise probability. We investigate the impact of impulse noise 
by varying noise variance O'� as well as the Bernoulli process 
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probability Pr�A = 1). Based on our measured data, we set 
the range of CJ w from 502 to 1502, and set Pr( A = 1) to be 
from 0.02 to 0.5. We only focus on MSPRT and HMM here 
since they give better average performance_ 

The LDA and DER of MSPRT and HMM are shown in 
Figure 9 and Figure 10. They have similar performance in 
terms of LDA and, MSPRT, not surprisingly, has better DER 
than HMM. However, even for MSPRT, the DER goes beyond 
100% as impulse noise level increases_ 

It is well known that tests assuming a Gaussian dis
tribution are sensitive to outliers or impulses [18]_ In the 
presence of impulse noise, both MSPRT and HMM suffer 
from degradation caused by the outliers_ Therefore, it is 
necessary to introduce a robust model. This is found to be 
most convenient for MSPRT as described next 

D. Robust MSPRT 

There are several distributions that can model data sets 
that have either longer than Gaussian tails or are skewed. 
Examples include the student t-distribution or the Gamma 
distribution_ In this work, inspired by the Huber Robust Loss 
Function [26], we introduce a robust distribution that has 
quadratic decay in its main body and linear decay towards 
its tails. Assuming, without loss of generality, that the data 
is zero-centered and standardized (y = ..L): CTk 

logfk � _�2 
:n.{lyl � 0 - Iyl +f - �:n.{IYI > 0 (16) 

The normalization coefficient of fk can be obtained: 

C = 2CJk {J2; (<1>(�) - 0_5) + 2e-�e } (X CJk (17) 

In which <1>(0 is the cumulative density function (CDF) of 
the standard Normal Distribution. Thus, the log-likelihood 
function can be written similar to the Gaussian case (Yk(j ) = 
_X_ ) as log fj . CTk(j) h 

A demonstration of the Robust MSPRT (R-MSPRT) is 
shown in Figure 7. From Figure 7(a), we see that R-MSPRT 
is less sensitive to impulse noise_ However, from Figure 7(b), 
we show that R-MSPRT is at the same time less likely to 
detect true changes, though in normal setting_ R-MSPRT is 
responsive enough with respect to ON/OFF switches. 

The LDA and DER of the Robust MSPRT method are 
compared with the plain MSPRT and the HMM in Figures 
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Fig. 9. Monte Carlo simulated DER as a function of Bernouli noise 
probability showing the efficacy of the Robust noise model 

8-10, and we only focus on the first three appliances in Figure 
5. The R-MSPRT gives better LDA compared with the other 
two methods, and also shows much better DER, Actually, R
MSPRT has DER consistently below 5% and does not suffer 
much degradation as noise variance increases. This is due to 
the introduction of a noise which is robust to large deviation, 
It should be noted that R-MSPRT has similar computation 
complexity to the ordinary MSPRT. 
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E. Issues and Discussion 

A problem of R-MSPRT is that when the observed data 
is ambiguous, we might have to process a lot of samples to 
satisfy the confidence requirement. A decision can be made 
before we reach certain number of samples by a truncated 
SPRT [25], which could be subject for a future study. 

VI. CONCLUSION 

In this work, the Virtual-Sensing (VS), as a solution 
to fine-grained power load monitoring, is studied compre
hensively. The challenging issues in VS are discussed and 
two existing state-of-art methods are studied. A Multiple
Hypothesis based method called MSPRT is proposed, which 
combines the advantages of the two existing methods. 

Simulated power signals are used to evaluate the methods 
with better stochasticity, and LDA and DER are chosen as 
criterion. A comparative study is done in this context, in 
which MSPRT shows significant improvement in the disag
gregation performance w.r.t. the existing methods. Moreover, 
a robust version of MSPRT based on robust probability 
density function is proposed to filter out the impulse noise 
that is common in real-time plug-in loads monitoring, and 
demonstrates excellent performance compared with standard 
MSPRT and other existing methods. 

ACKNOWLEDGMENT 

This research is funded by the Republic of SingaporeaAZs 
National Research Foundation through a grant to the Berkeley 
Education Alliance for Research in Singapore (BEARS) for 
the Singapore-Berkeley Building Efficiency and Sustainabil
ity in the Tropics (SinBerBEST) Program. BEARS has been 
established by the University of California, Berkeley as a 
center for intellectual excellence in research and education 
in Singapore. 

REFERENCES 

[1] S. Chu and A. Majumdar, "Opportunities and challenges for a sustain
able energy future," nature, vol. 488, no. 7411, pp. 294-303, 2012. 

[2] W. Kastner et al., "Communication systems for building automation 
and control," Proceedings of the IEEE, vol. 93, no. 6, pp. 1178-1203, 
2005. 

[3] H. Karl and A. Willig, Protocols and architectures for wireless sensor 
networks. Wiley-Interscience, 2007. 

6 

790 

[4] S. Lanzisera et ai., "Data network equipment energy use and savings 
potential in buildings," Energy Efficiency, vol. 5, no. 2, pp. 149-162, 
2012. 

[5] T. Weng et ai., "Managing plug-loads for demand response within 
buildings," in Proceedings of the Third ACM Workshop on Embedded 
Sensing Systems for Energy-Efficiency in Buildings. ACM, 2011, pp. 
13-18. 

[6] S. Gupta et ai., "Electrisense: single-point sensing using emi for elec
trical event detection and classification in the home," in Proceedings 
of the 12th ACM international conference on Ubiquitous computing. 
ACM, 2010, pp. 139-148. 

[7] M. Zeifman and K. Roth, "Nonintrusive appliance load monitoring: 
Review and outlook," Consumer Electronics, IEEE Transactions on, 
vol. 57, no. 1, pp. 76-84, 2011. 

[8] Y. Ephraim and W. Roberts, "Revisiting autoregressive hidden markov 
modeling of speech signals," Signal Processing Letters, IEEE, vol. 12, 
no. 2, pp. 166-169, 2005. 

[9] Y. Wang et ai., "Tracking states of massive electrical appliances by 
lightweight metering and sequence decoding," in Proceedings of the 
Sixth International Workshop on Knowledge Discovery from Sensor 
Data. ACM, 2012, pp. 34-42. 

[10] O. Parson, S. Ghosh, M. Weal, and A. Rogers, "Nonintrusive load 
monitoring using prior models of general appliance types," in 26th 
AAAI Conference on Artificial Intelligence, 2012. 

[11] H. Kim, "Unsupervised disaggregation of low frequency power mea
surements," Ph.D. dissertation, University of Illinois, 2012. 

[12] J. Kolter and M. Johnson, "Redd: A public data set for energy 
disaggregation research," in Workshop on Data Mining Applications 
in Sustainability (SIGKDD), San Diego, CA, 2011. 

[13] J. Kolter and T. Jaakkola, "Approximate inference in additive factorial 
hmms with application to energy disaggregation," in International 
Conference on Artijicial Intelligence and Statistics, 2012. 

[14] M. Johnson and A. Willsky, "Bayesian nonparametric hidden semi
markov models," arXiv preprint arXiv:1203.J365, 2012. 

[15] Z. Ghahramani and M. Jordan, "Factorial hidden markov models," 
Machine learning, vol. 29, no. 2, pp. 245-273, 1997. 

[16] E. Fox et al., "An hdp-hmm for systems with state persistence," in 
Proc. International Conference on Machine Learning, vol. 2. IEEE 
Press Piscataway, NJ, 2008. 

[17] M. Basseville and l. Nikiforov, Detection of abrupt changes: theory 
and application. Prentice Hall Englewood Cliffs, NJ, 1993, vol. 104. 

[18] P. Bickel and K. Doksum, "Mathematical statistics, volume i," 2001. 

[19] G. Hart, "Nonintrusive appliance load monitoring," Proceedings of the 
IEEE, vol. 80, no. 12, pp. 1870-1891, 1992. 

[20] M. Dong et ai., "An event window based load monitoring technique 
for smart meters," Smart Grid, IEEE Transactions on, vol. 3, no. 2, 
pp. 787-796, 2012. 

[21] M. Durling et al., "Cognitive electric power meter," Feb. 18 2009, eP 
Patent 2,026,299. 

[22] J. Duan et ai., "Neural network approach for estimation of load 
composition," in Circuits and Systems, 2004. ISCAS'04. Proceedings 
of the 2004 International Symposium on, vol. 5. IEEE, 2004, pp. 
V-988. 

[23] J. Liang, S. Ng, G. Kendall, and J. Cheng, "Load signature studyaAt
part i: Basic concept, structure, and methodology," Power Delivery, 
IEEE Transactions on, vol. 25, no. 2, pp. 551-560, 2010. 

[24] c. Baum and V. Veeravalli, "A sequential procedure for multihypothe
sis testing," Information Theory, IEEE Transactions on, vol. 40, no. 6, 
1994. 

[25] H. Poor, "An introduction to signal detection and estimation," New 
York, Springer-Verlag, 1988,559 p., vol. 1, 1988. 

[26] P. Huber, Robust statistical procedures. SIAM, 1996, vol. 68. 




