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Dominating Biological Networks
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Abstract

Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform
function, and since protein-protein interaction (PPI) networks model these aggregations, one would expect to uncover new
biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in
disease has received attention. A debate remains open about whether network properties of ‘‘biologically central (BC)’’
genes (i.e., their protein products), such as those involved in aging, cancer, infectious diseases, or signaling and drug-
targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network. To
help resolve this debate, we design new network-based approaches and apply them to get new insight into biological
function and disease. We hypothesize that BC genes have a topologically central (TC) role in the human PPI network. We
propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of
proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we
use the notion of domination and find dominating sets (DSs) in the PPI network, i.e., sets of proteins such that every protein
is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between
different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing
methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the
network and correspond to its ‘‘spine’’ that connects all other network parts and can thus pass cellular signals efficiently
throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.
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Introduction

A network (or a graph) is a set of nodes (or vertices), and edges (or links)

between the nodes. Networks enable studying the properties of

complex systems that emerge from interactions among individual

parts. Hence, networks have been used to model and analyze

many real-world phenomena in numerous domains. Examples

include social, technological, transportation, information, finan-

cial, ecological, chemical, and biological systems. We focus on

molecular interaction networks, with the goal of understanding

complex cellular functioning by studying cells as inter-connected

systems rather than as a collection of individual constituents [1].

Nodes in these networks represent biomolecules, such as genes,

proteins, or metabolites, and edges connecting the nodes indicate

functional, physical, or chemical interactions between the

corresponding biomolecules. Since proteins execute the genetic

code and carry out most biological processes, we focus on protein-

protein interaction (PPI) networks. In these networks, nodes

correspond to proteins and undirected edges represent physical

interactions between them.

We have been witnessing the exponential growth of the

amounts of available PPI network data, along with the

development of computational approaches for studying and

modeling of these data. High-throughput screens for interaction

detection, such as yeast two-hybrid (Y2H) assays [2–8], affinity

purification coupled to mass spectrometry (AP/MS) [9–12],

genome-wide chromatin immunoprecipitation, correlated m-

RNA expression, and genetic (synthetic-lethal) and suppressor

networks [13,14], have yielded partial networks for many model

organisms [2–5,11–13] and humans [6,7], as well as for bacterial

[15–17] and viral [18–20] pathogens. Numerous biological

network datasets are now publicly available in several databases,

including Saccharomyces Genome Database (SGD) [21], the

Database of Interacting Proteins (DIP) [22], Human Protein

Reference Database (HPRD) [23], and the Biological General

Repository for Interaction Datasets (BioGRID) [24].

Proteins are essential macromolecules of life, and hence,

understanding their function and their role in disease is of

importance. Since proteins aggregate to perform a function

instead of acting in isolation, and since PPI networks model

interactions between proteins, analyzing PPI network topology is

expected to uncover new biology. Therefore, it is not surprising

that prediction of protein function [25–27] and the role of protein

networks in disease [1,28–32] from the topology of PPI networks

have received attention in the post-genomic era.

Nonetheless, there is still a debate about whether network

properties of ‘‘biologically central’’ genes or proteins, such as those

involved in aging, cancer and infectious diseases caused by
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bacterial or viral pathogens (e.g., HIV, herpesvirus, hepatitis, and

influenza), exhibit some ‘‘topological centrality’’ compared to the

rest of the proteins in the PPI network [1,28–31,33–35]. Many

approaches have focused on examining only simple topological

properties of these proteins, such as their direct neighborhoods in a

PPI network. For example, the key assumption of many studies is

that proteins that are direct neighbors are more likely to perform

the same function than those that are not [25,26], or that a

neighbor of a disease-causing gene is likely to cause either the same

or a similar disease [1,34]. Another example is the observed

correlation between a protein’s essentiality and its degree centrality

(the larger the degree of a node, the more ‘‘degree-central’’ the

node) in a PPI network of baker’s yeast [36]. However, the

controversy arose in the light of newer and more complete PPI

network data for which this correlation was not observed [37,38]

and it appears to hold only for literature-curated [39] and smaller

in scope Y2H PPI networks [3], possibly because these data sets

are biased towards essential proteins [38]. Also, degree alone

might be a weak measure of network topology, as it captures

limited network topology, i.e., only direct neighborhood of a node

[27,31,40]. A similar controversy arose when cancer genes were

initially shown to have greater connectivities and centralities

compared to non-cancer genes, indicating central roles of cancer

genes within the interactome [33], but it was later demonstrated

that most of disease genes do not show a tendency to code for

proteins that are hubs [29], although a recent study again reached

the conclusion that cancer proteins have different network

topologies, e.g., higher degrees, than ‘‘control’’ genes [35]. Apart

from this, general conclusions are that disease genes have high

connectivity and are centrally positioned within the PPI network

[1]. In addition, it has been suggested that aging genes tend to

have higher degrees than non-aging ones [41,42], as well as that

the majority of viral and bacterial pathogens show tendency to

interact with high-degree proteins, or with ‘‘bottleneck’’ proteins

that are central to many paths in the PPI network [43].

Measures of network topology that are more constraining than

degrees might help resolve these controversies. Hence, various

topological centrality concepts have been formulated. Examples

include the betweenness centrality [35], according to which nodes that

occur in many of the shortest paths in a network have high

centrality, and the subgraph centrality, which counts the number of

closed walks of different lengths in the network starting and ending

at the node in question and according to which nodes that

participate in a large number of such walks have high centrality

[44,45].

In addition, we have recently designed a graphlet-based

measure of network topology; graphlets are small induced subgraphs

of a large network [46,47]. As opposed to partial subgraphs (e.g.,

network motifs [48]), graphlets are induced, meaning that they

contain all edges between the nodes of the subgraph that are

present in the large network. This measure generalizes the degree

of a node that counts the number of edges that the node touches,

where an edge is the only 2-node subgraph, into the graphlet degree

vector (GDV) that counts the number of different graphlets that the

node touches, for all 2–5-node graphlets. Hence, GDV of a node

describes the topology of its up to 4-deep neighborhood. This is an

effective measure: going to distance of 4 around a node captures a

large portion of a network due to the small-world nature of many

real networks [49]. For this reason, and since the number of

graphlets on n nodes increases exponentially with n, we believe

that using larger graphlets would unnecessarily increase the

computational complexity of the method. We designed the

similarity measure between GDVs of different nodes, GDV-

similarity, to quantify the topological similarity of the extended

neighborhoods of two nodes. We used this constraining measure of

network topological similarity to demonstrate that: in PPI

networks, biological function of a protein and its local network

structure are closely related [27,50]; from topology of PPI

networks we can extract biological information that cannot always

be extracted from sequence and hence, topology could be used as

a complementary method to sequence-based methods for

homology detection [51]; topology around cancer and non-cancer

genes is different and can be used to successfully predict new

cancer genes in melanogenesis-related pathways [31,40]; purely

topological network alignments can be used to extract protein

function and species phylogeny [52,53].

This study
Here, we present novel network-based approaches applied

towards a deeper understanding of biological function and disease.

We aim to further study and understand currently poorly

described mechanisms by which ‘‘biologically central’’ genes

interact with each other and with other genes in the cell. We

define as biologically central (BC) the genes that belong to one of the

following four gene categories: aging (A) genes, cancer (C) genes,

HIV-interacting (HIV) genes, and pathogen-interacting (PI) genes.

Our hypothesis is that BC genes, i.e., their protein products

(henceforth, we use terms ‘‘gene’’ and ‘‘protein’’ interchangeably),

will have a topologically central role in the human PPI network.

We use two different concepts to define ‘‘topological centrality’’:

graphlet degree centrality and domination (defined below).

Previously, we defined GDV-similarity of nodes’ neighborhoods

that is independent of the densities of these neighborhoods: nodes

with identical GDVs have the maximum GDV-similarity,

regardless of whether they reside in dense or sparse neighbor-

hoods. Here, we propose a new centrality measure, graphlet degree

centrality (GDC), to measure the density and complexity of nodes’

neighborhoods by counting the number of different graphlets that

the node touches. According to GDC, nodes in dense and complex

4-deep neighborhoods will have higher centralities than nodes in

sparse 4-deep neighborhoods. GDC is a different and more

constraining measure of network topology than the degree

centrality (DC), as illustrated in Figure 1: GDC ranks highly a

low-degree gene if its 4-deep neighborhood is dense and gives a

low rank to a high-degree gene if its 4-deep neighborhood is sparse

(details are below). GDC is conceptually different than the

betweenness centrality (BWC), which does not measure topolog-

ical denseness at all. Subgraph centrality (SC) measures the

number of closed walks (which can be thought of as partial

subgraphs) that the node touches and it has been shown to be

more highly correlated with the lethality of proteins in the PPI

network of baker’s yeast than DC [44]. Unlike SC, GDC counts

induced subgraphs rather than partial ones and in a more rigorous

way: while SC counts an edge that a node touches many times, as

a 2-edge closed walk (going from node A to node B along edge AB

and returning from B to A along the same edge), as a 4-edge closed

walk (going from node A to node B and back to A twice), as a 6-

edge closed walk (going from A to B and back to A three times)

etc., GDC counts the edge only once and only as an edge, rather

than as different subgraph structures.

For each of the four centrality measures (DC, BWC, SC, and

GDC), we identify the most central genes (explained below) in the

human PPI network [28] and measure the enrichment of these genes

in BC genes (i.e., the percentage of the most central genes that are

BC genes), with the goal of finding the centrality measure that is

the most discriminative in uncovering BC genes; ideally, the most

discriminative measure would have all of the most central genes to

be BC genes. We find that: (1) enrichments in BC genes of the

Dominating Biological Networks
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most GDC-central genes are much higher than those of non-

GDC-central genes, (2) the observed enrichments in BC genes of

the most GDC-central genes are statistically significant, while

those of non-GDC-central genes are not, (3) BC genes that are

GDC-central have higher and statistically significant enrichments

in known drug targets than BC genes that are non-GDC-central,

and (4) GDC is at least as discriminative as the next best centrality

measure.

Second, we hypothesize that genes that are vital for normal

cellular functioning might correspond to the ‘‘spine’’ of the

network that connects all parts of the network. The field of

telecommunications and the domain of the efficient design of

routing protocols for wireless networks in particular, uses the

notion of a dominating set (DS) to find the most central set of nodes

in wireless networks that would be used for efficient data routing

and lead to bandwidth increase and energy savings; in wireless

networks, nodes correspond to computers and routers, and edges

correspond to links between them [54–57]. A dominating set of a

network is a set of nodes such that every node in the network is

either in the DS or is a direct neighbor of a node in the DS.

Hence, the nodes in the dominating set act as a ‘‘gateway’’ in the

network, since all nodes in the network are at most one step away

from them and the transfer of the information to all nodes can be

quick and cheap. The challenge is to identify a minimum order

DS, a DS of the minimum size (i.e., the minimum number of

nodes). This problem is NP-hard. Thus, approximate (heuristic)

algorithms are sought.

Given the topologically central role of nodes in a DS, we

hypothesize that a good DS algorithm might capture a set of

proteins in a PPI network that are involved in important biological

processes and mechanisms crucial for cell vitality, i.e., that DSs of

PPI networks might contain BC proteins and signaling pathways

(SPs). We test this by constructing a connected dominating set in

the human PPI network with an algorithm that is commonly used

in telecommunications [57]. We are interested in connected DSs

only since signaling pathways are connected. Other algorithms for

finding connected DSs are used in telecommunications as well

(e.g., [54,56,58,59]), but are not applicable to biological networks,

because they require nodes to be assigned meaningful numerical

IDs, e.g., IP addresses in computer networks; clearly, proteins in

PPI networks do not have numerically meaningful labels. Also,

several algorithms for finding disconnected (i.e., independent; see

Methods) DSs exist [60,61], but they are inappropriate for our

study for the above mentioned reasons. In addition to applying the

existing DS algorithm of Rai et al. [57], we design a new and

simpler DS algorithm that outperforms the algorithm of Rai et al.

on our data (explained below). Note that the main focus of this

study is not to create a state-of-the-art algorithm for finding DSs,

but instead, to demonstrate, as a proof of concept, that a DS of a

PPI network found by a very simple algorithm indeed captures

biologically vital proteins. Any further algorithmic improvements

are likely to yield more optimal DSs and hence improve the

biological results.

We apply DS algorithms to the human PPI network [28] and

measure the size of the resulting DSs, as well as their enrichments

in BC and SP genes. We find that: (1) the enrichments in BC and

SP genes of nodes of DSs are much higher than the enrichments of

nodes outside of DSs; (2) the enrichments in BC and SP genes of

nodes of DSs are statistically significant, while those of nodes

outside of DSs are not; and (3) BC and SP genes that are in DSs

have much higher and statistically significant enrichments in

known drug targets than BC and SP genes that are not in DSs.

Hence, we confirm our hypothesis that DSs capture biologically

vital proteins and also drug targets.

Furthermore, we demonstrate not only that each of the two

measures of topological centrality, GDC and DS, captures a

Figure 1. An illustration of the differences between DC and GDC. Left: Direct neighborhood of ZAP90, a cancer and HIV gene, in the human
PPI network [28]. Its degree is 48 and it is ranked as the top 187th gene with respect to DC. Right: Direct neighborhood of PRKACA, an HIV gene, in the
network. Its degree is 145 and it is ranked as the top 20th gene with respect to DC. Both proteins have the same GDC and are ranked as top 92nd

genes with respect to GDC. Hence, GDC rewards the ranking of a low-degree gene if its 4-deep neighborhood is dense (ZAP90) and penalizes the
ranking of a high-degree gene if its 4-deep neighborhood is sparse (PRKACA). (For the esthetics of the figure, we only show 1-deep neighborhoods.)
doi:10.1371/journal.pone.0023016.g001
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statistically significant biological signal, i.e., BC and drug target

genes (as described above), but also that the combination of the

two centralities is even more discriminative in capturing these

genes. To our knowledge, this is the first study that uses

dominating sets to analyze PPI networks.

Methods

Data sets
We analyze the human PPI network of Radivojac et al. that

contains 41,456 physical interactions between 9,141 proteins [28],

as well as the human PPI networks from BioGRID [24], that

contains 30,513 physical interactions between 8,581 proteins, and

from HPRD [23], that contains 36,811 physical interactions

between 9,449 proteins (we downloaded them in June 2010). Since

we obtained qualitatively similar results for all three networks, for

simplicity we report only on the PPI network of Radivojac et al.

[28]; we chose this network, since it has the largest number of

interactions.

As mentioned above, biologically central (BC) genes that we

analyze include: aging, cancer, HIV, and pathogen-interacting

genes. We obtained them from the following databases. Aging genes

(A) are human genes implicated in the process of aging that are

available from AnAge Databank - Human Ageing Genomic

Resources (http://genomics.senescence.info/) [62]. Cancer genes (C)

are human genes implicated in cancer that are available from:

Cancer Gene Database (http://ncicb.nci.nih.gov/projects/cgdcp),

Cancer Genome Project – the Cancer Gene Census (http://www.

sanger.ac.uk/genetics/CGP/Census/) [63], GeneCards (http://

www.genecards.org/) [64], Kyoto Encyclopedia of Genes and

Genomes (KEGG) (http://www.genome.jp/kegg/disease/) [65],

and Online Mendelian Inheritance in Man (OMIM) (http://www.

ncbi.nlm.nih.gov/sites/entrez?db = omim) [66]. HIV genes (HIV)

are human genes known to interact with genes of the HIV virus

[63] that are available from HIV-1-Human Protein Interaction

Database (http://www.ncbi.nlm.nih.gov/RefSeq/HIVInterac-

tions/) [67]. Finally, pathogen-interacting genes (PI) are human genes

known to interact with genes of pathogens [43]. The data are

downloaded in 2009 and 2010.

In the human PPI network, there are 2,101 BC genes in total, of

which 237 are aging genes, 887 are cancer genes, 1,132 are HIV

genes, and 500 are PI genes. Figure 2 illustrates the overlap of

different BC gene categories in the network. The overlap is low

and there are only 20 BC genes that are simultaneously aging,

cancer, HIV, and PI genes.

Signaling pathways (SPs) that we analyze include the human:

MAP kinase interactome [68], cancer and immune pathways from

NetPath [69], and all human signaling pathways from KEGG

[65]. The data are downloaded in November 2010. In the PPI

network, there are 2,253 SP genes, 911 of which are also BC

genes. Given that there is a total of 2,101 BC genes in the network,

the total number of BC and SP genes together is

2253z2101{911~3443.

The drug target data was downloaded from DrugBank [70].

Centrality measures
Related work. Several notions of node centrality have been

used in the past. Degree centrality (DC) of a node is the number of its

neighbors, i.e., its degree. Alternatively, DC can be normalized by

dividing the degree with n{1, where n is the number of nodes in

the network. Betweenness centrality (BWC) of a node is the sum, over

all node pairs i and j in the network, of the percentage of all

shortest paths between i and j in the network that go through the

node of interest. Subgraph centrality (SC) of a node is a weighted sum

of the numbers of all closed walks of different lengths in the

network starting and ending at the node. These closed walks are

related to partial subgraphs of a network, e.g., a closed walk with

four nodes can ‘‘go through’’ different subgraphs on four nodes,

such as along the same edge AB twice (as described above: from

node A to node B along edge AB, then back to A along the same

edge and then again from A to B and back to A along the same

edge), or along a 4-node cycle ABCD that includes edge AB (along

the ‘‘square’’ from node A to node B to node C to node D and

back to A; this is regardless of whether edges CA and DB that ‘‘go

along the diagonal of the square’’ exist) etc. The above mentioned

sum is weighted so that the contribution of the closed walks

decreases as the length of the walks increases, i.e., shorter walks

(smaller subgraphs) have higher weight.

Graphlet degree centrality. We introduce a new node

centrality measure as follows. Graphlets are small, connected,

induced, non-isomorphic subgraphs of a large network (Figure 3

A) [46,47]. Previously, we generalized the degree of a node, that

counted how many edges the node touched, into the graphlet degree

vector (GDV), that counted how many graphlets of a given type,

such as a triangle or a square, the node touched (Figure 3 B) [27].

In Figure 3 B, this is illustrated by a node being touched by an

edge (the leftmost illustration), a triangle (the middle illustration),

or a square (the rightmost illustration). More precisely, coordinates

of a GDV count how many times a node is touched by a particular

symmetry group (automorphism orbit, see [47] for details) within a

graphlet (Figure 3 B). Clearly, the degree of a node is the first

coordinate in GDV, since an edge is the only 2-node graphlet.

There is a total of 73 orbits in all 2–5-node graphlets. Thus, the

GDV of a node, describing its up to 4-deep neighborhood (i.e., 2–

5-node graphlets around it), has 73 coordinates [27]. An example

of a GDV of a node that contains all 73 orbits can be found in

[52].

We introduce a new node centrality measure, graphlet degree

centrality (GDC), which measures the density of the node’s extended

network neighborhood. Hence, nodes that reside in dense

extended network neighborhoods will have higher GDCs than

nodes that reside in sparse extended network neighborhoods. In

particular, we define GDC as follows. For a node v, we denote by

vi the ith coordinate of its GDV, i.e., vi is the number of times node

v touches an orbit i. Then, GDC of node v is computed as follows:

Figure 2. The overlap of BC genes from the four categories in
the human PPI network.
doi:10.1371/journal.pone.0023016.g002
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GDC(v)~
X72

i~0

wi|log(viz1),

where wi is the weight of orbit i that accounts for dependencies

between orbits, as in [27]; e.g., counts of orbit 3, a triangle, will

affect counts of all orbits that contain a triangle. Hence, for each

orbit, we count how many orbits affect it and assign a higher

weight wi (wi[½0,1�) to the orbits that are not affected by many

other orbits (see [27] for details). We use log in the formula

because the coordinates i and j of the GDV of node v can differ by

several orders of magnitude and we do not want the GDC to be

entirely dominated by orbits with very large values. We add 1 to vi

in the formula to prevent the logarithm function to go to infinity

for an orbit count of 0. Finally, we scale the value of the GDC(v)
to (0,1] by dividing it with the maximum GDC(u) over all nodes u
in the network.

Algorithms for finding dominating sets
Let G(V ,E) be a network, where V is the set of nodes of G and

E is the set of edges of G. A dominating set (DS) of graph G is a

subset S(V of the nodes such that for all nodes v[V , either v[S
or a neighbor u of v is in S. A dominating set is said to be minimal if

it contains no proper subset that is dominating and it is said to be

minimum if it is of the smallest cardinality. The cardinality of a

minimum dominating set of graph G, c(G), is called the domination

number of G. It has been shown that for graph G with jV j nodes:

q
jV j

1zdmax(G)
rƒc(G)ƒjV j{dmax(G), ð1Þ

where dmax (G) is the maximum node degree in G [60]. Identifying

a minimum DS is NP-hard, and hence, approximate (heuristic)

algorithms are sought.

Heuristic algorithms result in either an independent DS or a

connected DS. A subset P of V is said to be an independent set if no

two vertices in P are adjacent. A connected DS is a DS in which

each node is connected to at least one other node that is in the DS.

(Note that if a graph consists of several connected components, a

DS of such a graph would be connected within each component,

but disconnected across components.) In the context of biological

networks, we are interested in connected DSs.

First, we implement an existing algorithm by Rai et al. for

constructing a connected DS of graph G(V ,E) that is commonly

used in telecommunications [57]. We call this algorithm ‘‘DS-

RAI’’. It consists of three phases: (1) constructing an independent

DS named S, (2) finding a set of nodes C(V \S to connect nodes

in S by constructing the Steiner tree between the nodes in S, and

(3) pruning the DS defined on nodes S|C to reduce the number

of nodes in the DS. More specifically, the algorithm works as

follows. In phase 1, each node is colored white. A white node u
that is connected to most other white nodes is taken from V ,

colored black meaning that it is a ‘‘dominator,’’ and added to S.

All neighboring nodes of u are colored gray meaning that they are

‘‘dominatees’’ and added to V \S. Previous steps are repeated on

the remaining white nodes in V until all nodes of V are either

colored black and added to S, or colored gray and added to V \S.

In phase 2, a gray node from V \S that is connected to the largest

number of black nodes in S is selected, colored dark gray meaning

it is a ‘‘connector,’’ and added to C. The algorithm then checks

whether node set S|C is connected and if so, it stops; otherwise,

the algorithm selects the next gray node from V \S that is

connected to the largest number of black nodes in S and repeats

the entire process until node set S|C becomes connected. In

phase 3, ‘‘redundant’’ nodes are deleted from the connected DS

defined on S|C to reduce its size as follows. Let G½V ’� denote a

subgraph of G induced on a subset of nodes V ’(V . The

algorithm selects a node u with the minimum degree in G½S|C�
and checks whether the DS defined on S|C\fug remains a

Figure 3. Graphlets, automorphism orbits, and GDVs. (A) All 9 graphlets with 2, 3 and 4 nodes, denoted by G0 , G1,…,G8 ; they contain 15
topologically unique node types, called automorphism orbits, denoted by 0, 1, 2, …, 14. In a particular graphlet, nodes belonging to the same orbit
are of the same shade (see [47] for details). (B) An illustration of the GDV of node v; it is presented in the table for orbits 0 to 14: v is touched by 4
edges (orbit 0), end-nodes of 2 graphlets G1 (orbit 1), etc. The figure is taken from [53].
doi:10.1371/journal.pone.0023016.g003
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connected DS of G. If so, the node u is removed from S|C.

Otherwise, it remains in S|C. This is repeated for all nodes in

S|C, in the order of their increasing degrees. The node set

resulting from node removals from S|C in step 3 is the final DS

produced by DS-RAI algorithm. An illustration is presented in

Figure 4 A.

The algorithm breaks all ties uniformly at random. Interestingly,

the algorithm is robust to this randomness: we run the algorithm

on the human PPI network 30 times using different random seeds,

which results in 94.2% overlap between the resulting 30 DSs. The

average DS size over the 30 runs is 1,817+1 nodes, out of which

1,711 (i.e., 94.2%) appear in all of the 30 DSs. Hence, given that

such a large proportion of any DS is in all DSs, any DS is

representative of all of them. Therefore, we continue further

analyses of one of the DSs.

Next, we introduce a new, simple, one-step algorithm for

constructing a connected DS, that we call ‘‘DS-DC’’: it starts with

S~V , selects a node u with the minimum degree in G½S�, removes

u from S only if the DS defined on S\fug remains a connected DS

of G, and repeats the above steps for all nodes in S in order of their

increasing degrees. An illustration is presented in Figure 4 B.

Clearly, DS-DC is much simpler than DS-RAI. Also, as illustrated

in Figure 4, DS-DC results in a smaller DS than DS-RAI (the

same holds for real-world PPI networks, as demonstrated in

Section 0). Finally, we introduce a modification of DS-DC in

which nodes from S are visited in order of their increasing GDCs

instead of degrees, which we call ‘‘DS-GDC’’ algorithm.

Statistical significance of enrichments
For a given protein set X of size jX j, we measure its enrichment

in BC (and SP) genes. We compute the statistical significance (p-

value) of observing a given enrichment by measuring the

probability that the same enrichment would be observed in a

randomly chosen set of jX j proteins in the PPI network. This

probability is computed as follows by using the following notation:

the total number of proteins in the network is jV j; the number of

proteins in set X is jX j; the number of proteins in set X that are

BC (SP) genes is jf j; there are jF j proteins in the entire PPI

network that are BC (SP) genes. Then, the enrichment is jf j=jX j,
and the p-value, i.e., the probability of observing the same or

higher enrichment purely by chance, is obtained by using the

hypergeometric distribution formula for sampling without replace-

ment:

p{value~1{
Xjf j{1

i~0

jF j
i

� �
jV j{jF j
jX j{i

� �

jV j
jX j

� � : ð2Þ

Results and Discussion

GDC captures BC genes
For each of the four centralities (DC, BWC, SC, and GDC) and

each of the four categories of BC genes (A, C, HIV, and PI), we

find in the human PPI network the top k% of the most central

genes (k~1,2,3,:::,100%) and measure how many BC genes they

contain. For example, we measure how many cancer genes (C) are

in the top 1%, the top 2%, the top 3% etc. most central genes with

respect to each of the four centrality measures. We do the same for

aging (A), HIV, and PI genes. For a given centrality measure, BC

gene category, and k, we quantify the accuracy of the centrality

measure in capturing BC genes by computing precision and recall.

Precision can be seen as a measure of exactness: it is the

percentage of the top k% of the most central genes that are BC

genes. Recall can be seen as a measure of completeness: it is the

percentage of BC genes of the network that are in the top k% of

the most central genes. We need to determine a threshold for k
that results in the best combination of precision and recall. Since

when varying the values of k, every decrease in precision

corresponds to increase in recall, we choose as the threshold for

k the point where precision and recall cross (Figure 5). We do this

for each of the four centrality measures and each of the four BC

gene categories. If the threshold is found to be K , we denote as

‘‘central’’ those genes that are amongst the top K% of the most

central genes and as ‘‘non-central’’ all the remaining genes in the

network. We find that the thresholds are 3, 10, 12, and 6, for A, C,

HIV, and PI genes, respectively, for each of the four centrality

measures.

We compute the BC gene enrichments of central and non-

central genes. We find that with respect to GDC, enrichments in

each of the four BC gene categories are much higher for central

genes, ranging between 23.5% and 36.4%, than enrichments for

Figure 4. An illustration of DSs in a toy network. The DSs were
obtained by (A) DS-RAI and (B) DS-DC algorithms. The example in panel
A is taken from [57], and the authors describe the algorithm as follows.
In phase 1, nodes 1, 4, 8, 12, and 16 are colored black as members of an
independent DS. In phase 2, nodes 2, 9, and 11 are colored dark grey as
connectors that connect nodes in the independent DS resulting from
phase 1. In phase 3, the connected DS resulting from phase 2 is pruned
to reduce it size by removing node 16 from the DS (no other nodes can
be removed without violating the requirement of producing a
connected DS of the graph). In panel B, all nodes are initially in the
DS and then nodes are visited in order of their increasing degrees and
removed from the DS if the resulting DS is a valid connected DS of the
graph. That is, nodes are removed in the following order: 3, 16, 2, 4, 7,
10, 13, 14, 15, and 9. The resulting DS therefore contains the remaining
nodes: 1, 5, 6, 8, 11, and 12. Clearly, the DS produced by DS-DC (black
nodes in panel B) is smaller than the DS produced by DS-RAI (black and
dark grey nodes in panel A).
doi:10.1371/journal.pone.0023016.g004
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non-central genes, ranging between 1.6% and 9.5% (Figure 6 A).

These enrichments are statistically significant for central genes,

with p-valuesƒ10{11, while for non-central genes they are not,

with p-values~1 (see Methods). As expected, if we choose lower k,

e.g., 1%, precision is even higher (although recall is lower): out of

the top 1%~91 of the most GDC-central proteins in the network,

55% (i.e., 47 of them) are aging genes, 45% (i.e., 41 of them) are

cancer genes, 71.5% (i.e., 65 of them) are HIV genes, and 42.9%

(i.e., 39 of them) are PI genes (Figure 7).

Also, we measure the enrichment in drug targets of BC genes

(i.e., of each of the four BC gene categories: ‘‘A’’, ‘‘C’’, ‘‘HIV’’,

and ‘‘PI’’ defined above) that are GDC-central and of BC genes

that are non-GDC-central. We hypothesize that higher GDC of

nodes in the PPI network reflects their functional importance.

Proteins that are targeted by drugs are clearly functionally

important. Hence, we examine whether the sets of BC genes that

are GDC-central contain more drug targets than the sets of BC

genes that are non-GDC-central. Indeed, we find that enrichments

in drug targets are higher for BC genes that are GDC-central than

for BC genes that are non-GDC-central (Figure 6 B). Further-

more, these enrichments in drug targets are statistically significant

for GDC-central BC genes (with the exception of GDC-central

HIV genes), with p-valuesƒ0:047, while for non-GDC-central BC

genes they are not, with p-values§0:9 (see Methods).

In addition to the above demonstration that GDC captures

statistically significant biological signal, we compare its perfor-

mance against the performance of the three other centrality

measures (DC, BWC, and SC). We do so by determining which

measure is the most discriminative in the sense that it uncovers the

largest number of BC genes amongst the top K% of the most

central genes (K is computed as above) and hence results in the

highest enrichments. As shown in Figure 6 C, GDC is at least as

good as other centrality measures for all categories of BC genes,

except for cancer genes, for which SC has a slightly higher

enrichment, but GDC still outperforms DC and BC. GDC always

outperforms DC, confirming our hypothesis that GDC, as a more

constraining measure of network topology, could capture the

biological signal better. SC also outperforms DC for aging genes,

but interestingly not for HIV and PI genes. Hence, although GDC

and SC both capture deeper network topology than DC and are

conceptually similar in the sense that they both count a number of

subgraphs that a node participates in, unlike GDC, SC is not

always more discriminative than DC.

To evaluate whether GDC captures statistically significant

biological signal and outperforms other centrality measures

irrespective of the chosen thresholds k, for each centrality

measure, we compute the area under precision-recall curve

(AUPR) as the threshold is varied between 0% and 100% in

increments of 1%. The results obtained from AUPRs correspond-

ing to different centrality measures are mostly consistent with the

results obtained at selected thresholds where precision and recall

cross (described above): for HIV and PI genes, AUPRs for GDC

are the highest, followed by AUPRs for DC, SC, and BWC,

respectively; for A and C genes, AUPRs for SC are the highest,

followed by AUPRs for GDC, DC, and BWC, respectively.

Hence, as was the case for individual thresholds (see above), GDC

always outperforms DC, while SC outperforms DC only for A and

C genes. Hence, GDC is always more discriminative than DC,

while SC is not always more discriminative than DC, even though

SC captures a deeper network topology compared to DC. The

values of AUPRs for GDC are: 0.27 for A, 0.2 for C, 0.34 for HIV,

and 0.2 for PI genes. These somewhat law values are not

surprising, since in biological applications, the number of positive

examples (here, the known BC genes) is much smaller than the

number of negative examples (here, all proteins in the network that

are currently not known to be BC genes). Furthermore, we do not

know true negatives (genes that are true non-BC genes). Since we

expect that many currently unreported BC genes will turn out to

be BC genes in the future, AUPRs are likely to increase as this

happens. Moreover, the observed AUPRs are statistically

significant: we compute, at each value of recall, the probability

of observing a given precision and we find that the probabilities of

observing a given number of BC genes among k% of randomly

chosen genes are in the range 0:03{10{13 for k up to 90%

(clearly, for k close to 100%, results become statistically

insignificant, which is expected, since we choose as GDC-central

all genes in the network).

Dominating sets capture BC genes, signaling pathways,
and drug targets

We find DSs in the human PPI network by using the three DS

algorithms described above, DS-RAI, DS-DC, and DS-GC (see

Methods). We find that the overlap between the three resulting

DSs is large, containing 1,720 nodes, out of the total of 1,834

nodes in DS-RAI, 1,815 nodes in DS-DC, and 1,828 nodes in DS-

GC DSs (Figure 8). Both of our algorithms, DS-DC and DS-GDC,

produce smaller DSs than DS-RAI. Also, each of them produces a

DS that captures a huge portion of the DS produced by DS-RAI.

Using GDC to guide our algorithm does not seem to result in a

smaller DS then when we use DC and thus, we continue our

analysis on the DS created by DS-DC.

For the DS created by DS-DC algorithm and for its

complement (the set of proteins in the network that are not in

the DS, ‘‘non-DS’’), we calculate their enrichments in BC genes,

genes that are members of signaling pathways (SP), genes that are

in the union of BC and SP genes (‘‘BC or SP’’), and genes that are

both BC and SP genes (‘‘BC and SP’’). We find that the

enrichments are much higher for the DS than for non-DS (Figure 9

A). Furthermore, the enrichments for the DS are statistically

significant, with p-valuesƒ10{11, while for non-DS they are not,

with p-values~1 (see Methods).

Figure 5. Precision and recall for aging genes in the human PPI
network. They were computed for the top k% of the most GDC-central
genes (k~1,2,:::,100). Here, precision and recall cross at k~3.
doi:10.1371/journal.pone.0023016.g005
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Furthermore, we measure the enrichment in drug targets of BC

and SP genes (i.e., of gene categories ‘‘BC’’, ‘‘SP’’, ‘‘BC or SP’’,

and ‘‘BC and SP’’ defined above) that are in the DS, and of BC

and SP genes that are not in the DS. If our hypothesis that the

topological positioning of nodes in the DS indeed reflects their

functional importance is correct, then BC and SP genes that are in

the DS should contain more drug targets than BC and SP genes

that are not in the DS, since proteins that are targeted by drugs are

clearly important for normal cellular functioning. Indeed, we find

that enrichments in drug targets are much higher for BC and SP

genes that are in the DS than for BC and SP genes that are not in

the DS (Figure 9 B). Furthermore, these enrichments for the BC

and SP genes that are in the DS are statistically significant, with p-

valuesƒ10{4, while for SP and BC genes that are not in the DS

they are not, with p-values~0:9998 (see Methods).

Functional analysis of topologically central genes
For each category of BC genes (A, C, HIV, and PI genes), we

compute enrichment of GDC-central and non-GDC-central genes

in each of the Gene Ontology (GO) terms [71]. We consider all

GO terms belonging to each of the three GO categories:

molecular function (MF), biological process (BP), and cellular

component (CC). Of the total of 1,359 MF, 3,925 BP, and 736 CC

GO terms present in the human PPI network, 117 MF, 379 BP,

and 27 CC GO terms are statistically significantly enriched (see

Methods) in all 4 BC gene categories of GDC-central genes, while

4 MF, 10 BP, and 4 CC GO terms are statistically significantly

enriched in non-GDC-central genes. Interestingly, there is no

overlap between GO terms that are enriched in central genes and

GO terms that are enriched in non-central genes.

Similar results are obtained for central and non-central genes

with respect to membership in the dominating set (DS). DS-central

genes are statistically significantly enriched in 153 MF, 574 BP,

and 44 CC GO terms, while non-DS-central genes are statistically

significantly enriched in 7 MF, 7 BP, and 0 CC GO terms, with no

overlap between GO terms of central and non-central genes.

Hence, central genes appear to group by functions that are

different than functions of non-central genes. Biological functions

with the most significant enrichments that are present among all

groups of central genes (but none of which is present among any of

the groups of non-central genes) include many processes critical for

normal cellular functioning, such as: regulation of cell cycle,

Figure 7. The top 1% (i.e., 91) GDC-central genes. If a gene is an aging (‘‘A’’), cancer (‘‘C’’), HIV (‘‘HIV’’), or pathogen-interacting (‘‘PI’’) gene, there
is an ‘‘X’’ in the corresponding entry.
doi:10.1371/journal.pone.0023016.g007

Figure 6. The performance of GDC and its comparison with other centrality measures. (A) Enrichments in BC genes of the top k% of the
most GDC-central genes (denoted by ‘‘Central’’, blue bars) and all remaining genes (denoted by ‘‘Non-central’’, red bars) in the human PPI network.
(B) Enrichment in drug targets of BC genes that are GDC-central (‘‘Central’’) and BC genes that are non-GDC-central (‘‘Non-central’’). (C) Enrichments
in BC genes of the top k% of the most central genes in the human PPI network, with respect to the four centrality measures (DC, BWC, SC, and GDC),
broken into the four BC gene categories (aging (A), cancer (C), HIV (HIV), and pathogen-interacting (PI) genes). In all panels, the values of k where
precision and recall cross (as illustrated in Figure 5) are used; k equals 3, 10, 12, and 6, for A, C, HIV, and PI genes, respectively, for each of the four
centrality measures.
doi:10.1371/journal.pone.0023016.g006
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apoptosis, multicellular organism growth, telomere maintenance,

innate immune response, regulation of cell differentiation, signal

transduction, activity of many signaling pathway cascades (e.g.,

MAPK, I-kappaB kinase/NF-kappaB, EGFR, FGFR, IGFR,

androgen receptor, nerve growth factor receptor, T cell receptor,

toll-like receptor, etc.), phosphorylation, response to DNA

damage, blood coagulation, regulation of cell proliferation, T cell

activation and co-stimulation, response to tumor necrosis factor,

response to drug, interspecies interaction between organisms etc.

Implications
GDC captures the density and topological complexity of up to

4-deep network neighborhood around a node. Since we have

demonstrated significant enrichment of GDC-central proteins in

BC genes, this means that genes that are involved in key biological

processes occupy topologically complex and dense parts of the

human PPI network. Similarly, since we have demonstrated

significant enrichment of DSs in BC and SP genes, this indicates

that proteins that are vital for normal cellular functioning reside on

the ‘‘spine’’ of the network that dominates, i.e., connects, all other

parts of the network. Hence, the notion of network domination

seems to capture the topology required for passing cellular signals

efficiently throughout the network.

We hypothesize that GDC-central proteins and proteins in DSs

of PPI networks could represent potential candidates for therapeutic

intervention, since targeting GDC-central proteins with drugs

would have more significant impacts on the network than targeting

proteins that reside in sparse and non-complex network regions and

since the topology of a DS can enable quick propagation of drug

effects through the entire network. Indeed, we find that the

enrichment in drug targets of genes that are GDC-central or are in

the DS (this is the union of the set of genes that are GDC-central

and the set of genes that are in the DS) is 11.4% and it is statistically

significant, with p-value of 1:3|10{4. Furthermore, the enrich-

ment in drug targets of genes that are simultaneously GDC-central

and are in the DS (this is the intersection of the set of genes that are

GDC-central and the set of genes that are in the DS) is even higher,

it is 31.7%; this enrichment is also statistically significant, with p-

value of 0. Hence, not only that each of the two concepts of

topological centrality, GDC and DS, captures a statistically

significant percentage of drug targets, but also when the two

centralities are combined, the percentage of drug targets that they

capture is significant and even higher.

Concluding remarks
We propose a new centrality measure, graphlet degree centrality

(GDC), to simultaneously measure the density and complexity of a

node’s extended neighborhood by counting the number of

different graphlets that the node touches. We find that: (1) the

enrichments in BC genes are much higher for GDC-central genes

than for non-GDC-central genes; (2) the observed enrichments are

statistically significant for GDC-central genes, while for non-

GDC-central genes they are not; (3) BC genes that are GDC-

central have higher and statistically significant enrichments in

known drug targets than BC genes that are non-GDC-central; and

(4) GDC outperforms other centrality measures in the sense that it

uncovers the largest number of BC genes among the most central

genes and is thus the most discriminative centrality measure.

Given the topologically central role of nodes in a DS, we apply

to the human PPI network an existing DS algorithm that is

commonly used in telecommunications, with the hypothesis that a

DS might capture a set of proteins in a PPI network that are

involved in important biological processes and mechanisms crucial

for cell vitality. Also, we design a new and simpler DS algorithm

that outperforms the existing algorithm on our data. We

emphasize that our main focus is not to create a state-of-the-art

algorithm for finding DSs, but instead, to demonstrate, as a proof

of concept, that a DS of a PPI network found by a very simple

Figure 9. ‘‘Biological centrality’’ of the DS. (A) Enrichment in BC
and SP genes of the dominating set (‘‘DS’’) and its complement (‘‘non-
DS’’) in the human PPI network. (B) Enrichment in drug targets of BC
and SP genes that are in the dominating set (‘‘DS’’) and BC and SP genes
that are not in the dominating set (‘‘Non-DS’’).
doi:10.1371/journal.pone.0023016.g009

Figure 8. Overlap of the three DSs created by DS-RAI, DS-DC,
and DS-GDC algorithms applied to the human PPI network.
doi:10.1371/journal.pone.0023016.g008
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algorithm captures biologically vital proteins. Indeed, we find that:

(1) the enrichments in BC and SP genes are much higher for nodes

of DSs than for nodes outside of DSs; (2) the observed enrichments

are statistically significant for nodes of DSs, while for nodes outside

of DSs they are not; (3) BC and SP genes that are in DSs have

much higher and statistically significant enrichments in known

drug targets than BC and SP genes that are not in DSs; and (4)

GDC-central genes that are also in the DS contain the highest,

statistically significant percentage of drug targets.

These results imply that nodes in dense and complex

neighborhoods that dominate the network are vital for normal

cellular functioning and signaling. Hence, they might be targets for

new therapeutic exploitation. Further algorithmic improvements

would aid in more precise identification of these new targets.

Author Contributions

Conceived and designed the experiments: TM AB NP. Performed the

experiments: TM VM. Analyzed the data: TM VM NP. Wrote the paper:

TM NP.

References

1. Ideker T, Sharan R (2008) Protein networks in disease. Genome Research 18:
644–652.

2. Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, et al. (2000) Toward a protein-

protein interaction map of the budding yeast: A comprehensive system to
examine two-hybrid interactions in all possible combinations between the yeast

proteins. Proc Natl Acad Sci U S A 97: 1143–7.

3. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, et al. (2000) A

comprehensive analysis of protein-protein interactions in saccharomyces
cerevisiae. Nature 403: 623–627.

4. Li S, Armstrong C, Bertin N, Ge H, Milstein S, et al. (2004) A map of the
interactome network of the metazoan c. elegans. Science 303: 540–543.

5. Giot L, Bader J, Brouwer C, Chaudhuri A, Kuang B, et al. (2003) A protein

interaction map of drosophila melanogaster. Science 302: 1727–1736.

6. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck F, et al. (2005) A human

protein-protein interaction network: A resource for annotating the proteome.
Cell 122: 957–968.

7. Rual J, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, et al. (2005)

Towards a proteomescale map of the human protein-protein interaction

network. Nature 437: 1173–78.

8. Simonis N, Rual JF, Carvunis AR, Tasan M, Lemmens I, et al. (2009)
Empirically controlled mapping of the Caenorhabditis elegans protein-protein

interactome network. Nature Methods 6: 47–54.

9. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, et al. (2002)

Functional organization of the yeast proteome by systematic analysis of protein
complexes. Nature 415: 141–7.

10. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, et al. (2002) Systematic

identification of protein complexes in saccharomyces cerevisiae by mass

spectrometry. Nature 415: 180–3.

11. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, et al. (2006) Proteome
survey reveals modularity of the yeast cell machinery. Nature 440: 631–636.

12. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, et al. (2006) Global landscape

of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:

637–643.

13. Tong AHY, Lesage G, Bader GD, Ding H, Xu H, et al. (2004) Global mapping
of the yeast genetic interaction network. Science 303: 808–813.

14. Collins S, Schuldiner M, Krogan N, Weissman J (2006) A strategy for extracting
and analyzing large-scale quantitative epistatic interaction data. Genome

Biology 7: R63.

15. Rain JD, Selig L, De Reuse H, Battaglia V, Reverdy C, et al. (2001) The
protein-protein interaction map of helicobacter pylori. Nature 409: 211–215.

16. Parrish JR, Yu J, Liu G, Hines JA, Chan JE, et al. (2007) A proteome-wide
protein interaction map for campylobacter jejuni. Genome Biology 8: R130.

17. LaCount DJ, Vignali M, Chettier R, Phansalkar A, Bell R, et al. (2005) A

protein interaction network of the malaria parasite plasmodium falciparum.

Nature 438: 103–107.

18. Uetz P, Dong YA, Zeretzke C, Atzler C, Baiker A, et al. (2006) Herpesviral
protein networks and their interaction with the human proteome. Science 311:

239–242.

19. von Brunn A, Teepe C, Simpson JC, Pepperkok R, Friedel CC, et al. (2007)

Analysis of intraviral protein-protein interactions of the sars coronavirus
orfeome. PLoS ONE 2: e459.

20. Chatr-aryamontri A, Ceol A, Peluso D, Nardozza A, Panni S, et al. (2009)

Virusmint: a viral protein interaction database. Nucleic Acids Res 37:

D669–D673.

21. Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, et al. (1998) SGD:
Saccharomyces Genome Database. Nucleic acids research 26: 73–79.

22. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, et al. (2004) The

Database of Interacting Proteins: 2004 update. Nucleic Acids Research 32:

D449–51.

23. Peri S, Navarro JD, Kristiansen TZ, Amanchy R, Surendranath V, et al. (2004)
Human protein reference database as a discovery resource for proteomics.

Nucleic Acids Res 32 Database issue: D497–501.

24. Breitkreutz BJ, Stark C, Reguly T, Boucher L, et al. (2008) The BioGRID

Interaction Database: 2008 update. Nucleic Acids Research 36: D637–D640.

25. Sharan R, Ulitsky I, Ideker T (2007) Network-based prediction of protein
function. Molecular Systems Biology 3.

26. Schwikowski B, Fields S (2000) A network of protein-protein interactions in

yeast. Nature Biotechnology 18: 1257–1261.
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interaction network topology uncovers melanogenesis regulatory network

components within functional genomics datasets. BMC Systems Biology 4.

41. Promislow DE (2004) Protein networks, pleiotropy and the evolution of
senescence. Proc Biol Sci 1545: 1225–1234.

42. Ferrarini L, Bertelli L, Feala J, McCulloch AD, Paternostro G (2005) A more

efficient search strategy for aging genes based on connectivity. Bioinformatics 21:
338–348.

43. Dyer MD, Murali TM, Sobral BW (2008) The landscape of human proteins

interacting with viruses and other pathogens. PLoS Pathog 4: e32.

44. Estrada E, Rodrguez-Velazquez J (2005) Subgraph centrality in complex
networks. Phys Rev E 71: 056103.

45. Estrada E, Hatano N (2007) Statistical-mechanical approach to subgraph

centrality in complex networks. Chemical Physics Letters 439: 247–251.
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