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Abstract

Temperature-Dependent Electron Transport in Quantum Dot Photovoltaics

by

Derek J. Padilla

Quantum dot photovoltaics have attracted much interest from researchers in

recent years. They have the potential to address both costs and efficiencies of solar cells

while simultaneously demonstrating novel physics. Thin-film devices inherently require

less material than bulk crystalline silicon, and solution deposition removes the high

energy used in fabrication processes. The ease of bandgap tunability in quantum dots

through size control allows for simple graded bandgap structures, which is one method

of breaking beyond the Shockley-Queisser limit. Power output can also be increased

through the process of multiple exciton generation, whereby more than one electron

participates in conduction after the absorption of a single photon. In this disserta-

tion work, quantum dot photovoltaics are examined through a range of temperatures.

Exploring the current-voltage-temperature parameter space provides insight into the

dominant conduction mechanisms within these materials, which is largely not agreed

upon. Beginning with PbS quantum dots, changes in device structure are examined

by varying the capping ligand and nanoparticle size. This leads similar studies of new,

germanium quantum dot devices. Through this understanding, further optimization of

device structure can lead to enhanced device performance.
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Chapter 1

Introduction

In 1959, Richard Feynman gave a talk to the American Physical Society at

Caltech entitled There’s Plenty of Room at the Bottom. In it he foretold of future en-

gineering efforts taking advantage of the quantum properties of the small scale: “[A]s

we go down and fiddle around with the atoms down there, we are working with differ-

ent laws, and we can expect to do different things. We can use, not just circuits, but

some system involving the quantized energy levels” [1]. In the 50 years since his talk

laid the conceptual foundation for nanotechnology, we have seen many of his ideas re-

alized: layered semiconductor devices are manufactured with atomic-layer precision [2];

structures on the nanometer scale within layers are manufactured using electron beam

lithography with much higher resolution than photolithography due to the shorter elec-

tron wavelength [3]; microscopy has advanced to seeing individual atoms through the

use of scanning tunneling microscopes [4], with those same STMs being able to manip-

ulate individual atom placement as seen in Figure 1.1 where xenon atoms are arranged

1



on a nickel surface spelling out the name of the employer of the STM inventors [5].

The fundamental qualifier of nanotechnology is not so much the physical di-

mensions of the system being on the order of nanometers, but that physical properties of

these structures become sensitive to changes of scale, largely due to quantum mechanical

effects taking over from the classical, macroscopic properties. This occurs around the

nanometer scale in solids, which is on the order of the Bohr exciton radius. Beginning

with a bulk, three-dimensional solid, decreasing one dimension until there is a very thin

sheet yields a nanolayer, where the quantum confinement affects only one dimension.

Quantum confinement in two dimensions leaves a one-dimensional nanowire. And a

nanoparticle (NP) is the zero-dimensional result of quantum confinement in all three

directions.

This dissertation focuses on the application of semiconducting nanoparticles,

or quantum dots (QDs), to photovoltaic devices. By requiring less material than bulk

semiconducting crystals used in conventional solar cells, these devices have the ability

to reach a lower dollar-per-Watt figure once optimized. A fundamental understanding

of the basic electron transport mechanism is required to find potential pathways to im-

proved efficiencies in the devices. To this end, exploring the current-voltage-temperature

parameter space elucidates dominant conduction models and possible power losses in

the QD solar cells.

Much of the understanding of QD devices builds upon that of bulk semicon-

ductors and their devices. The presented content begins with a discussion of bulk

properties, which leads to modifications required for a more complete understanding of

2



Figure 1.1: Scanning tunneling microscope positions individual atoms to spell the name
of the inventors’ employer.
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QDs. Chapter 3 explores what happens when two different types of semiconductor are

put in contact, which leads to the semiconductor diode. The following chapter presents

the interaction of semiconductor devices with incident sunlight. The relevant proper-

ties of sunlight to solar cells and a brief exploration of current solar cell technologies

is followed by their relation to QD photovoltaics (PV). Experimental methods used in

the current study is given in chapter 5, with the results of these studies presented in

chapters 6 and 7.
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Chapter 2

Semiconductor Properties

Before examining quantum confinement effects in quantum dots, a discussion of

bulk properties of materials is necessary to understand semiconductors and basic device

physics. For photovoltaic (PV) devices, there are two classes of physical properties

that are of interest to researchers—electronic, and optical—both of which are largely

understood through the band structure of the materials.

2.1 Electronic Bands in Bulk Materials

A conceptual picture of band formation begins with two electrons in spatially-

separated quantum states of equal energy. As the electrons are brought closer together,

the states hybridize and split into two different energy levels due to their interaction.

When N such electrons are brought close to each other, the states split into N distinct

energy levels. When N is on the order of Avogadro’s number, these differences in energy

are so small that the states are considered to make up a continuous band of allowed

5



Figure 2.1: As the lattice constant for silicon decreases, bands of allowed energies are
created. Higher energy states split, potentially leaving a gap of forbidden energy values.

energies.

This band formation can be interpreted as a demonstration of the Pauli ex-

clusion principle in that forcing electrons into spatially overlapping states requires a

splitting of the energy levels since no two electrons can occupy the same quantum state.

In a solid, as the inter-atomic spacing, or lattice constant, decreases, the outer electron

states split into bands due to their significant spatial overlap. Lower-energy electron

states likely do not split since their interaction and spatial overlap is much smaller.

Two bands may broaden to the point of overlapping in energy, or remain energetically

separated leaving a gap of forbidden values for electron energy. Figure 2.1 demonstrates

this property for silicon. It is the formation of this energy gap that gives rise to the

incredibly large range of electrical conduction abilities across materials.

Even without a quantitative analysis, we can see how this simple band picture

affects conduction by considering the number of available electrons in a solid compared

to the number of available energy states. At low temperatures, electrons occupy the

6
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Figure 2.2: The filling of electron energy bands for different classifications of materials.

lowest energy state available to them and fill increasing energy states from there. In a

metal, the number of electrons is less than the number of states in the highest occupied

band allowing for easy conduction through the solid since there will always be a state to

move into with an applied electric field, as seen in Figure 2.2. The energy of the highest

occupied state is called the Fermi energy. An insulator has just enough states in a band

to be occupied completely by all valence electrons of the constituent atoms. This band is

therefore called the valence band. The next highest state exists across the band gap and

requires a significant excitation energy to reach the band to participate in conduction.

These higher energy states exist in the conduction band. The required excitation can

come from a very high applied field, the absorption of light, or thermal interactions with

crystal vibrations (phonons), however these require such high temperatures that it is

unlikely that any electrons will flow before significant electric field is present.

If the energy gap is small enough such that thermal vibrations allow for some of

the lower conduction band states to be occupied at moderate temperatures, the material

7



is called a semiconductor. The band gap is still present but typically is no higher than

several electron volts. Silicon, for example, has a band gap of 1.1 eV. These materials

exhibit conduction at moderately applied fields while at room temperature. The Fermi

energy for a pure insulator or semiconductor is one half of the band-gap energy.

The above description qualitatively explains the presence of energy bands in

a solid, however a more complete picture is obtained when considering the quantum

mechanical wavefunctions of electrons with the crystal’s atomic potential in addition

to including the spatially finite dimensions of a material sample. Several good intro-

ductory sources exist that derive electronic bands from periodic finite square wells (the

Kronig-Penny model) [6] and repeating delta functions [7]. A qualitative result of these

calculations is that energy gap sizes increase with increasing potential well strength,

which is realized in semiconductors made of smaller atoms, and compound semicon-

ductors [8]. These one-dimensional models provide simple dispersion relations between

electron energy and momentum p or wavenumber k, an example of which is shown in

Figure 2.3. The flat bands of Figure 2.2 are now given structure in momentum-space,

the differences of which lead to material classifications based on positions of the valence

and conduction bands.

If the top of the valence band corresponds to the same k-value of the bottom

of the conduction band, the material is said to have a direct gap (cf. Figure 2.4). If the

k values are different, it is an indirect gap. This distinction has implications for light

absorption and emission. For an incident photon of energy equal to the energy gap to

be absorbed, the total energy and momentum must be conserved. The electron absorbs

8



Figure 2.3: The E-k dispersion relationship shown for the solutions to a simple 1D
periodic potential presented in the reduced zone scheme.

the energy, transferring from the top of the valence to the bottom of the conduction

band. But for visible light, the photon doesn’t carry enough momentum to have it

be conserved (p=h/λ). The transition requires the excited electron to simultaneously

interact with a phonon to completed the absorption process, drastically decreasing the

probability of this occurring. Because of this, the absorption coefficient for indirect gap

semiconductors is much lower than direct gap materials.

Silicon is an example of an indirect gap semiconductor, and therefore single

crystalline Si solar cells require a much thicker absorbing layer than direct gap coun-

terparts (e.g. GaAs or CdTe) to ensure all incident light is absorbed. Figure 2.5 shows

the band structure of silicon. The top of the valence band is at the origin with the

energy gap Eg being offset along the <100> crystal momentum direction. There clearly

9
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Figure 2.4: The filling of bands including the k-space dependence.

exist several other bands deriving from the interplay between the electronic structure of

atomic silicon and the bulk crystal structure of the atoms existing as a diamond lattice.

In contrast to the indirect gap of silicon, the electronic band structure of CdTe is shown

in Figure 2.6. This direct band gap material has a gap size of 1.58 eV as is used in

many thin film photovoltaic applications.

2.2 Charge Carriers in Solids

As stated earlier, for the case of semiconductors, the highest occupied band

(at 0 K) is filled completely by electrons. As the temperature increases, electrons have a

non-zero probability of being thermally excited across the band gap into the conduction

band, where they freely move throughout the crystal. The empty state they leave behind

can itself transit through the crystal lattice acting as an effective positive charge carrier

called a hole. The two particles (electron and hole) are bound to one another through

the Coulomb interaction. The effective size of their bound state is called the Bohr

exciton radius. A significant challenge to developing effective photovoltaic devices is

10



Figure 2.5: Electronic band structure of silicon demonstrating the indirect band gap
energy of 1.1 eV.

separating these two charge carriers and extracting them out of the device at opposite

electrodes.

In a pure semiconducting material, each electron in the conduction band is

matched by a hole in the valence band. This is called an intrinsic semiconductor,

with Fermi energy at half the band gap. Electronic properties of materials depend

strongly on the concentration of electrons n and holes p within a sample. (For intrinsic

materials, ni = pi.) Therefore, being able to tune these parameters is of great value to

device engineering. This is done through the process of doping. Taking, for example,

a Group IV element like silicon with four valence electrons, and embed into the crystal

a Group V element like phosphorous with five valence electrons, and the extra valence

electrons are loosely bound to the bulk crystal’s atoms as seen in Figure 2.7. This

allows them to easily participate in conduction by introducing an available state near
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Figure 2.6: Electronic band structure of CdTe demonstrating the direct band gap energy
of 1.58 eV.

12



Figure 2.7: The doping of a silicon crystal by introducing phosphorus provides extra
electrons to participate in charge conduction.

the bottom of the conduction band called a donor state. The Group V atoms are donors.

This requires little excitation energy to be promoted and participate in conduction.

If instead of an element with one extra valence electron, we embed atoms of

a Group III element such as aluminum, which has one fewer valence electron. This

effectively introduces an empty electron state within the band gap near the top of the

valence band allowing electrons to easily be excited into this acceptor state due to the

doping from the acceptor atoms. This excitation leaves behind a hole that is able to

participate in conduction through the valence band.

2.3 Density of States

The doping of semiconductors changes the probabilities for charge carriers to

participate in conduction, and in order to quantify this probability we need the density

of states within the semiconductor as a function of electron energy. This density of
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states combined with the probability distribution of a state at a particular energy being

occupied will provide the overall density of charge carriers as a function of energy.

The possible energy states available in a quantum mechanical system derives

from the solutions to Shrödinger’s equation. The semiconducting crystal can be modeled

as a three-dimensional infinite square well of dimensions a, b, c, with V=0 inside and

V=∞ outside the boundaries. Modifications to take into account the periodic nature of

the crystal potential will be addressed at the end. With this simple crystal, the electrons

are essentially free particles whose wavefunction solves

− h̄2

2m
∇2Ψ(x, y, z) = EΨ(x, y, z), (2.1)

with Ψ=0 at the boundaries. The solution is a normalized product of sine functions of

quantized wavelengths given by

λx =
2a

nx
, (2.2)

with nx being a positive integer, and similar solutions for the y and z directions. The

energy eigenvalue solutions are given by

E =
h̄2π2

2m

[(
nx
a

)2

+

(
ny
b

)2

+

(
nz
c

)2
]
. (2.3)

If electrons are put into the crystal at absolute zero temperature, they begin

to fill states from the lowest energy upward. Each unique combination of (nx, ny, nz) is
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a quantum state to be occupied by two electrons.1 At typical energies E, the volume

in reciprocal lattice space that contains all accessible states is considered much larger

than the unit cell volume of 1/abc. This volume is an ellipsoid with semi-major axes

equal to

nx
a

=
ny
b

=
nz
c

=

√
2mE

h̄2π2
. (2.4)

Filling this volume with electrons whose energy is less than E, we find that the number

of states available is two times (counting spin) one eighth (positive octant only — n>0)

the volume of the ellipsoid divided by the volume of one state (the unit cell):

# of states =
2
(

1
8

) [
4
3π
(

2mE
h̄2π2

)3/2
]

1/abc
. (2.5)

If we divide this number of states that are occupied by electrons of energy less than

E by the volume of the box abc, we arrive at the number of electrons per unit volume

within the semiconductor:

n(E) = 2

(
1

8

)[
4

3
π

(
2mE

h̄2π2

)3/2
]
. (2.6)

Finally, the density of states for a given energy E is given by

N(E) =
dn

dE
=
π

2

(
2m

h̄2π2

)3/2

E1/2. (2.7)

1Each point can hold two electrons since they each can have spin equal to +1/2 or -1/2, which is
another valid quantum number to still satisfy the Pauli exclusion principle.
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This derivation began by assuming the semiconducting crystal is a potential

well with V=0 throughout, which yields a parabolic dispersion relationship. This was

implied in Equation 2.3 using k=2π/λ and the quantized wavelengths of the wavefunc-

tions. A more accurate picture includes the periodic potential of the crystal’s constituent

atoms. From this periodic potential, the E-k dispersion relationships for states near the

bottom of the conduction and top of the valence bands can be approximated by parabo-

las yielding the same E ∝ k2 relationship. A modification is required, however, taking

into account the curvature of this parabola being different than that of a free charge

carrier. This is done by replacing the mass with the effective mass of the charge carrier

given by

m∗ =
h̄2

d2E
dk2

. (2.8)

This change conceptually reflects the electron’s ability to respond to an electric field

through Newton’s second law. The mass m in the density of states equation also needs

to be replaced by the effective mass m∗:

N(E) =
dn

dE
=
π

2

(
2m∗

h̄2π2

)3/2

E1/2. (2.9)

With this density of states, we need to determine which of these states is being

occupied by electrons. This requires the use of Boltzmann statistics while considering

the interaction of a phonon promoting an electron to an empty state of higher energy.

This empty-state requirement is a result of the Pauli exclusion principle.
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Figure 2.8: The Fermi-Dirac distribution for three temperatures. At 0 K, the distribu-
tion is a step function. As temperature increases, the step changes into a gradual slope
with high energy tail of non-zero probability. The Fermi energy is defined as that which
has a 50% chance of being occupied.

The end result is called the Fermi-Dirac distribution given by

f(E) =
1

1 + exp
(
E−Ef

kT

) . (2.10)

The Fermi energy Ef appears, being defined as the energy at which there is a 50%

chance of the state being occupied. Figure 2.8 shows the Fermi distribution for several

temperatures T1 > T2 > 0 K. As temperatures increase, there is a higher probability

of states with high energy of being populated by electrons, as seen by the tail of the

distribution at larger E.

Using Equations 2.9 and 2.10, the density of electrons within the conduction

band can be determined:

n =

∫ ∞
Eg

N(E − Eg)f(E)dE, (2.11)
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where the top of the valence band is chosen to be E=0 and the bottom of the conduction

band is Eg above that. The upper limit is technically the highest energy level of the

conduction band, but in most cases, this is significantly higher than energies obtainable

by electrons and is therefore taken to be at infinity, which allows for analytical solutions

to the integral:

n0 = 2

(
2πm∗ekT

h2

)3/2

exp

(−(Ec − Ef )

kT

)
= Nc exp

(−(Ec − Ef )

kT

)
. (2.12)

This solution assumes that the Fermi level is much farther from the conduction band

edge than thermal energy kT . The prefactor Nc is the effective density of states near

the conduction band edge. A similar result is obtained for the concentration of holes in

the valence band:

p0 = 2

(
2πm∗hkT

h2

)3/2

exp

(−(Ef − Ev)
kT

)
= Nv exp

(−(Ef − Ev)
kT

)
. (2.13)

The charge density convolving the density of states and the Fermi-Dirac distribution is

shown in Figure 2.9.

These charge densities are valid for equilibrium conditions as denoted by the

subscript zero. That is, the device is at constant temperature, in the dark, with no

applied field. The equilibrium condition is compared to the steady state condition,

where a sample with constant current or constant generation of electron-hole pairs

(EHPs) being exactly balanced by recombination.
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Figure 2.9: The density of states as a function of energy combined with the Fermi-Dirac
distribution provides the density of electrons in the conduction band and holes in the
valence band.

For an intrinsic semiconductor ni = pi and setting Equation 2.12 equal to 2.13,

with Ev = 0 as our reference energy, we can find the Fermi level:

Ef =
Eg
2

+
kT

2
ln
Nv

Nc
. (2.14)

Typically, the second term is much smaller than Eg/2 and the Fermi energy lies in the

middle of the band gap.

The product of electron and hole concentration is given by

n0p0 = NcNv exp

(−Eg
kT

)
, (2.15)

and using the fact that ni = pi gives the intrinsic carrier concentration for a semicon-

ductor:

ni = pi =
√
NcNv exp

(−Eg
2kT

)
. (2.16)
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2.4 Extrinsic Materials

Using the discussion of semiconductor doping from Section 2.2, a quantitative

value for the difference in energy between conduction and valence band edges and the

Fermi energy can be determined from the above charge density equations. Typical

this is done assuming that the cell is warm enough that all donors or acceptors are

ionized, but not so warm that the intrinsic carriers are contributing significantly to the

total carrier concentration. At room temperature in most materials, these are indeed

valid assumptions leading to an approximately constant concentration of carriers. Upon

cooling, the concentration drops from this constant value but remains above the intrinsic

value since not all donors or acceptors may be ionized. These results are summarized

below.

• For n-type semiconductors:

n0 = Nd p0 =
n2
i

Nd
Ec − Ef = kT ln

Nc

n0
(2.17)

• For p-type semiconductors:

p0 = Na n0 =
n2
i

Na
Ef − Ev = kT ln

Nv

p0
(2.18)

2.5 Non-Equilibrium Conditions

The above description is valid for semiconductors (intrinsic or extrinsic) under

equilibrium conditions. If the semiconductor is illuminated or an electric field is applied,

this condition no longer holds and the charge carrier concentrations much therefore be
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modified.

2.5.1 Quasi-Fermi Energy Levels

Equations 2.12 and 2.13 can be rewritten with the material’s Fermi energy

being replaced by the quasi-Fermi energies Fn and Fp, which are different than each

other and differ from the original Fermi energy Ef . These result from excess electron-

hole pairs being generated under illumination or band tilting due to the applied field

affecting which states are likely to be occupied by a charge carrier. The quasi-Fermi

energy differences can be found from

n = Nc exp

[−(Ec − Fn)

kT

]
p = Nv exp

[−(Fp − Ev)
kT

]
. (2.19)

The charge densities n and p are adjusted from their equilibrium values through adding

a ∆n or ∆p from e.g. EHP generation rates and charge carrier lifetimes. Generally, for

n-type materials, Fn ∼ Ef while Fp decreases significantly towards the valence band.

Similarly for p-type materials, Fp ∼ Ef , with Fn increasing towards the conduction

band. This can be seen by considering the originally low concentration of minority

carriers in the equilibrium condition being increased by several orders of magnitude by

the EHP production.

The product of carrier concentrations is given by

np = NcNv exp

(
Fn − Fp − Eg

kT

)
= n0p0 exp

(
Fn − Fp
kT

)
, (2.20)
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which leads to the difference in quasi-Fermi energies being

Fn − Fp = kT ln

(
np

n0p0

)
. (2.21)

2.5.2 Applied Electric Fields: Carrier Drift

By connecting two electrodes across a semiconductor with a potential difference

V between them, an electric field is present causing charges to flow. Using Ohm’s law,

J = σE , (2.22)

and the definition of the current density,

J =
1

A
I =

1

A

dQ

dt
=

1

A

nqAdx

dt
= nqv, (2.23)

the relationship between drift velocity v and the applied electric field E is given by

E =
nqv

σ
. (2.24)

The drift velocity is limited by scattering of charge carriers off of phonons or lattice

impurities with a characteristic scattering time given by

τ =
vm∗

qE
=
µm∗

q
, (2.25)
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introducing the charge carrier mobility µ, which may differ between holes and electrons

requiring their respective effective mass to be used in Equation 2.25. This allows us

to rewrite the total drift current density as a combination of that due to electrons and

holes

Jdrift = Jn + Jp = qnµnE + qpµpE . (2.26)

In addition to examining the charge carriers’ motion arising from their re-

sponses to an applied field through the mobility and conductivity relations above, the

flat bands of the semiconductor in Figure 2.2 are tilted in the applied field providing

another visualization of charge transport. From the elementary relation between field

and potential given by,

E = −∇V, (2.27)

the presence of a constant applied field E leads to the tilting of the energy bands as

shown in Figure 2.10. The electrons and holes seek lower energy states moving towards

the electrodes creating the charge current. Note that the Fermi energy level does not

tilt since the material is still in thermodynamic equilibrium.

2.5.3 Optical Generation

In thermal equilibrium with carrier densities n0 and p0, each EHP created is

matched by a recombination. This is quantified by the thermal generation rate Gth and

recombination rate R being equal.

This equilibrium can be disturbed by illuminating the semiconductor with
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Figure 2.10: (a) Flat band diagram of intrinsic semiconductor with no applied field.
(b) After the application of electric field E , the bands tilt with slope equal to the field.
Electrons seek lower energy states and move in the opposite direction of the hole flow
creating current through the material.

photons of higher energy than the bandgap creating extra optically generated EHPs. For

incident photon flux f(λ) upon a surface with reflectance r(λ) and absorption coefficient

α(λ), the generation rate at a given depth below the surface x is

Gop(x) =

∫
(1− r(λ)) f(λ)α(λ)e−αxdλ. (2.28)

This indicates that most EHP generation occurs at the surface of the material and

exponentially decays as the depth increases. The band-gap dependence appears in the

α(λ) term where an abrupt increase in absorption at λ = hc/Eg occurs. For quantum

dot films, this is typically seen as an exciton peak in the absorption spectrum, which is

the manifestation of the high probability of an electron being excited from the highest

hole state 1S(h) within the quantum well to the lowest electron state 1S(e). This

generation rate Gop leads to a time-dependent excess carrier density δn(t) for electrons

and δp(t) for holes. Illuminating for much longer than a characteristic recombination
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time τn, the excess carrier density reaches a steady-state value ∆n. Similar terms exist

for hole density.

The recombination time is minority-carrier-limited since both an electron and

hole are required for recombination to occur. Minority carrier lifetime τ is a combination

of three recombination mechanism lifetimes: radiative, Auger, and Shockley-Read-Hall

(SRH) recombination. The total lifetime is the harmonic sum of each individual lifetime:

1

τ
=

1

τrad
+

1

τAug
+

1

τSRH
. (2.29)

Radiative recombination occurs when a conduction-band electron recombines with a

valence-band hole emitting a photon in the process—essentially the reverse of optical

absorption. Similarly, this is more likely to occur in direct band gap materials. Since

the photon’s energy will be close to the band gap energy it is weakly absorbed. Auger

recombination involves three particles: the band-to-band recombination of an EHP,

but instead of emitting a photon, the energy is transferred to another charge carrier

which thermally relaxes back to the band edge. SRH recombination occurs when an

electron, for example, becomes trapped in a mid-gap state and recombines with a hole

while trapped. This is more likely to occur in deep states rather than shallow since the

electron could easily be re-excited out of the trap if near the conduction band. These

traps occur in crystalline solids due to defects or surface states. All three processes

are schematically shown in Figure 2.11. The steady-state conditions are summarized as
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Figure 2.11: Three recombination mechanisms. The band-to-band or radiative, and
trap-assisted or SRH, processes involve two charge carriers, while Auger recombination
involves a third.

follows:

n = n0 + ∆n = n0 +Gopτn p = p0 + ∆p = p0 +Gopτp. (2.30)

2.5.4 Diffusion Current

With no applied electric field, the total drift current density is zero. However,

charge still flows through semiconductors due to diffusion processes. When a gradient

in charge density exists, charge carriers follow Fick’s first law of diffusion, which states

that particles diffuse from areas of high concentration to lower concentration. This flow

of charge carriers leads to a diffusion current density given by

Jdiff = qDn∇n− qDp∇p. (2.31)
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Dn and Dp are the diffusion coefficients for electrons and holes, respectively. This

diffusion will occur until a uniform charge density profile exists.

2.5.5 The Einstein Relation and Continuity Equations

If the semiconductor has a doping profile of, say, increasing acceptor states

such that the conduction and valence bands vary linearly across the sample in the x

direction, a diffusion current is present trying to equalize the charge density. This

unequal doping also establishes an internal electric field, which creates a drift current

from Equation 2.26. In equilibrium, these two currents will be equal and opposite to

each other, and, looking at holes only,

Jdiff,p = −Jdrift,p (2.32)

−qDp
dp(x)

dx
= −qp(x)µpE(x). (2.33)

Since p now depends on position x, and the only term in Equation 2.13 that changes

with position is Ev since, in equilibrium, the Fermi energy is constant,

−qDp
Nv

kT
exp

(−(Ef − Ev(x))

kT

)
dEv
dx

= −qµpNv exp

(−(Ef − Ev(x))

kT

)
1

q

dEv
dx

Dp

µp
=

kT

q
, (2.34)
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which is the well-known Einstein relation between the diffusion coefficient and carrier

mobility. For electrons, a similar derivation yields

Dn

µn
=
kT

q
. (2.35)

When not in equilibrium the total current density through the material is a

combination of electron and hole drift and diffusion current densities:

J = Jn + Jp (2.36)

= Jdiff,n + Jdrift,n + Jdiff,p + Jdrift,p (2.37)

= qDn∇n+ qnµnE − qDp∇p+ qpµpE . (2.38)

Any divergence of the current density from a point within the material is the result of

a difference in particle generation and recombination and a change in carrier density at

that point. This is shown in the continuity equation

∇ · J = −q(G−Rn −
∂n

∂t
) + q(G−Rp −

∂p

∂t
), (2.39)

where G is the generation rate of EHPs and

Rn =
pn − pn0

τp
=

∆pn
τp

(2.40)

Rp =
np − np0

τn
=

∆np
τn

(2.41)
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are the recombination rates in n- and p-type materials that depend on the minority

carrier lifetimes and concentrations respectively.

Considering the diffusion of charge carriers through a semiconductor in one

dimension under steady-state conditions (G=∂n/∂t=0) and combining Equations 2.39

and 2.41, the carrier steady-state diffusion equation for excess holes is given by

d2δp

dx2
=

δp

Dpτp
, (2.42)

and similarly for electrons,

d2δn

dx2
=

δn

Dnτn
. (2.43)

If excess carriers of time-independent concentration ∆p and ∆n exist at x=0, the above

differential equations each have exponential solutions of the form

δp = ∆p exp

(
−x√
Dpτp

)
= ∆p exp

(
−x
Lp

)
(2.44)

δn = ∆n exp

( −x√
Dnτn

)
= ∆n exp

(−x
Ln

)
(2.45)

which introduces the diffusion lengths for both holes and electrons:

L2
p = Dpτp L2

n = Dnτn. (2.46)
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2.6 Quantum Dots

The above discussion began with the density of states of bulk semiconductors.

When a semiconducting crystal is reduced in size to several nanometers in all dimensions

through a decrease in the number of atoms, this density of states loses its continuous

nature and begins to take on properties of the constituent atoms. Being quantum in

nature, the smaller crystals have discretized energy states rather than the continuous

bands of the bulk. The fundamental quantum property of these crystals arise from

treating the surface as a boundary to a quantum well. Solving the Shrödinger equation

for the well follows very similarly to Section 2.3 above for the bulk crystal, however, a

fundamental difference is the lack of nearby atoms to form the continuous bands of the

bulk.

2.6.1 Quantum Confinement

In bulk semiconductors, the EHPs generated thermally or optically are bound

states, which can travel through the crystal as a pseudo-atom called an exciton. This is

compared to the bound states of an electron and proton in a hydrogen atom, but since

the effective mass of the hole is dramatically less than that of a proton, the Bohr radius

is significantly affected. The exciton Bohr radius is given by

rB =
h̄2ε

q2

(
1

m∗e
+

1

m∗h

)
. (2.47)
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As dimensions of semiconductor crystals approach this length scale, quantum effects

begin to take hold and the energy required to create an EHP increases, i.e. the band

gap is increased. Materials with a large bulk Bohr exciton radius are typically good

candidates for strong quantum confinement effects in QDs. The shift in band gap from

the bulk value to that of the first excitonic transition for the QD of radius R is given

by [9]

∆Eg =
h̄2π2

2R2

(
1

m∗e
+

1

m∗h

)
− 1.8q2

εR
. (2.48)

The first term in Equation 2.48 is a modification of the particle-in-a-box energy for an

infinite quantum well of width R. This can be compared to Equation 2.3 when deriving

the energy states for the bulk crystal. The second term is an additional shift due to the

Coulombic interaction of the exciton bound pair. As R decreases, both terms increase

and the band gap shifts to larger values. This model does not hold for very small R

values, as it is based on a particle in V=0 potential well between the infinite walls of

th well. As R decreases, the discrepancy becomes significant and there is no longer a

parabolic dispersion relation [10].

A more accurate model begins not from a large well and decreasing in size,

but from a molecule with few atoms and building up, the general field of study being

molecular orbital theory. As stated in Section 2.1, discrete atomic states split when more

than one atom is clustered together. When chemically bound, the electron states of two

atoms hybridize to form a bonding and anti-bonding molecular orbitals. The bonding

orbital is of lower energy and is therefore initially occupied, while the anti-bonding
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orbital remains unoccupied. As more atoms make up the molecule, these bonding and

anti-bonding orbitals split in a similar way that atomic energy states split in the bulk to

form energy band formation. The bonding orbitals are called highest occupied molecular

orbital (HOMO) levels, while the empty anti-bonding orbitals are the lowest unoccupied

molecular orbital (LUMO) levels. These act as the molecular equivalent to the valence

and conduction bands in solids. The energy difference between the HOMO and LUMO

is the effective band gap of the molecule. For quantum dots, with atoms numbering in

the range of 102 to 105, molecular orbital theory cannot calculate exact energy states,

however it does work better for smaller QD calculations in contrast to the particle-

in-a-box model. Quantum dots can be considered an intermediate material between a

molecule and a crystal [11].

2.6.2 Optical Properties

Quantum dot energy gaps are characterized by the prominent first peak in

absorption spectra of solutions or thin films. An example is shown in Figure 2.12 for

PbS. The QD-size-dependence of the peak demonstrates the tunability of the energy

gap. The peak corresponds to the lowest energy electron transition. Schematically, this

is shown in Figure 2.13. These quantized states sit near the band edges, however, deeper

within the bands, the density of states approaches the continuity of the bulk material

leading to many more possible transitions [12]. This appears as the large increase in

absorption at higher energies. The labeling scheme for quantum dot is similar to that

of atomic states (principle and angular quantum numbers), but arise from the spherical
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Figure 2.12: (a) Absorption spectra of different sizes of quantum dots demonstrating
the size-dependence of the energy gap. (b) A sample absorption (solid) and photolumi-
nescence spectrum (dotted).

Bessel function and spherical harmonic solutions to a particle in a spherical well [13].

The lowest energy states for electrons and holes are 1Se and 1Sh respectively. The higher

angular momentum naming scheme P , D, etc. continues for higher excited electron and

hole states as well.

The tunability of QDs allows for a layered structure in solar cells, with large

band gaps in front, absorbing high energy photons and allowing lower energy light

through to lower levels. This grading of the bandgap allows for more efficient absorption

than a single bandgap material.
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Figure 2.13: Schematic diagram depicting electronic transitions within a quantum dot.
The effective bandgap energy is the energy difference between the highest hole state
1S(h) and lowest electron state 1S(e).
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Figure 2.14: Schematic representation of the MEG process.

2.6.3 Multiple Exciton Generation

One the most attractive properties of some quantum dots is their potential

to create more than one EHP for an incident photon. This is called multiple exciton

generation (MEG). The process is schematically shown in Figure 2.14. A high-energy

photon is absorbed, exciting an electron to a high-energy state. The electron then

relaxes to the 1Se QD state, transferring its energy to another electron in the valence

band creating a second EHP in the process. This has been proposed as a way to break

the Shockley-Queisser limit—the fundamental thermodynamic limit to single junction

solar cells.
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2.6.4 Surface States

Bulk semiconducting crystals have a very small surface-to-volume ratio, typi-

cally leading to surface states contributing much less to material properties than bulk

states. For quantum dots, this in not the case. Being comprised of such a small number

of atoms leads to ∼15% being on the surface of a quantum dot [14]. These atoms on the

surface are partially bound only to inner atoms, with outer electronic bonds unsatisfied,

the states of which often lie within the band gap [15]. These sites are good candidates

for trapping charge carriers, affecting performance within devices.

To ameliorate this problem, surface passivation of quantum dots is required.

This is a similar process used in hydrogenating amorphous silicon in thin film solar

cells. For QDs, often an organic ligand is bound to the surface of the dot, passivating

the bonds. The ligand also serves as a spacing agent within thin films in order to

preserve the quantum separation of the dots. In addition, it could functionalize the dot

for solubility within a solution [16].

2.6.5 Electron Transport Between QDs

Quantum dot charge transfer depends not only on the dots themselves, but

also the properties of their environment. Often, layers of QDs are considered a super

lattice of pseudo-atomic bound states. Their separation depends on the material they

are embedded within. Often this is an organic-ligand network, as discussed above. To

move from one QD to another, electrons must escape the binding energy of the well.

This can be done through thermal excitation, classical electrical repulsion, or quantum
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tunneling.

Quantum dots can be considered a quantum well. As EHPs are generated

upon light absorption, the charges are separated at the QD surface. Photon-electron

interactions can excite charge carriers enough to hop to neighboring QDs, eventually

reaching an electrode. This thermally activated hopping mechanism can be modeled

through the Frenkle-Poole emission J-V relationship given by

J ∝ V exp

(
A(B −

√
V )

kT

)
, (2.49)

where A and B are constants.

If charge builds up within an individual QD—enough to repel additional charge—

a space-charge steady state is established [17]. This limiting current is described by

J =
9εµV 2

8 L3 . (2.50)

This occurs when charge builds up near one electrode that is a distance L from another,

with material with dielectric constant ε between. µ is the carrier mobility within the

material.

A charge carrier within a QD can quantum-mechanically tunnel through the

surrounding material barrier into another QD leading to device current. This depends

on the energetic barrier height between QDs and the distance between dots. This can
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be seen in the quantum tunneling probability given by

|T |2 ∝ exp−2κL, (2.51)

where κ is quantum mechanical wavevector of the charge carrier:

κ =

√
2mU

h̄
. (2.52)

This tunneling probability can be modified if, instead of a flat potential barrier, the wells

are separated by a tilted barrier due to an electric field. This barrier would require less

energy to tunnel through since the depth varies with distance. This tunneling mech-

anism is called Fowler-Nordheim tunneling. Both tunneling processes lead to current

given by

J =
q
√
Ef/φ

4π2h̄(Ef + φ)
E2 exp

(
−4

3

√
2mφ3

h̄E

)
. (2.53)

Ef is the Fermi energy of the semiconductor and φ is the workfunction of the metal.

It is worth noting that tunneling processes are temperature-independent, in

theory. However, their current depends on barrier height and length. In solution-

processed QD films, this depends on the capping ligand length, which, in turn, could

contract and expand with varying temperature. Even though J-V equations don’t ex-

plicitly demonstrate a temperature dependence, the device current could change because

of material thermal properties.
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Chapter 3

Semiconductor Junctions

When a p-type semiconducting material of acceptor concentration Na is put in

contact with an n-type material with donor concentration Nd, the difference in charge

density on either side of the contact will cause charges to diffuse across the interface as

discussed above; electrons move into the p-type region, and holes into the n-type region.

This diffusion of charge carriers is in opposition to the drift current established

by the band bending that occurs due to the difference in Fermi energy levels in the two

materials. If the Fermi level is different in two materials in contact with each other,

charges will distribute themselves in such away to ensure that Ef is flat across the

boundary. With a flat Fermi level, the valence and/or conduction band must have a non-

zero gradient, leading to a built-in electric field. This is comparable to the conditions

of Section 2.5 above, where the field was due to an externally applied source. Here, the

difference in Fermi levels leads to a contact potential driving drift current across the

boundary. These drift and diffusion currents for and electrons is shown in Figure 3.1.
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Figure 3.1: When p- and n-type materials are put in contact, energy bands bend causing
the flow of charges due to drift and diffusion currents in the directions shown.

Very close to the interface, nearly all dopant atoms are ionized; electrons in

the n region move to fill in acceptor sites in the p region, leaving positive stationary ions

in the n region. This can also be seen as holes traveling into donor sites in the n region,

leaving negative ions on the p side of the junction. The level of depletion of dopants

decreases as you move away from the interface. This exists as a charge density gradient,

highest the interface and decreasing into neutral material far from the interface.

The gradient of charge carriers is often simplified to the case of fully ionized

donor and acceptors up to the fixed distance on either side of the interface, beyond

which the material is neutral. This depletion approximation can be used to build up

the build-in potential and field driving charges across the barrier from Gauss’s law.

From charge conservation and since the materials were neutral before placed in contact,
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the number of electrons that diffuse to fill acceptor states must equal the number of

holes moving into donor states. Due to the fact that the donor and acceptor number

density is fixed, and assuming both materials have the same cross-sectional area, the

only term that varies to meet this equality is the depletion width W0, which is different

in the n and p regions:

Q = qNaWp0A = qNdWn0A. (3.1)

As before, the subscript zero indicates these are equilibrium values for depletion depths

into the n and p regions.

Using Gauss’s Law, which relates the charge density to the divergence of the

electric field,

∇ · E =
ρ

ε0
, (3.2)

the constant charge density of the depletion approximation leads to a linear electric field

peaked at the interface and falling to zero at either end of the depletion width where

there exists zero net charge.

For the contact potential V0, the linear electric field is integrated through the

depletion region leading to the potential bands bending as discussed above:

V0 = −
∫ Wn0

Wp0

E · dx (3.3)

=
qNdWn0W0

2εε0
(3.4)

=
qNaWp0W0

2εε0
, (3.5)

41



with the full depletion width being

W0 = Wn0 +Wp0. (3.6)

Since the depletion widths in each region is related to the dopant density through

Equation 3.1, the contact potential can be rewritten in terms of densities and the total

width from Equation 3.6 as

V0 =
q

2εε0

NaNd

Na +Nd
W 2

0 , (3.7)

and the depletion with is therefore given by

W0 =

√
2εε0V0

q

(
1

Na
+

1

Nd

)
. (3.8)

The relation between charge density, electric field, and potential is shown in Figure 3.2.

3.1 Diode Behavior

The above discussion assumes equilibrium conditions with no applied field.

This led to the drift and diffusion currents canceling out. However, independently they

are non-zero and can be quite large. Surprisingly, this situation holds for both a reverse

(positive voltage terminal connected to the n-type side) and also a moderate forward

(positive voltage terminal connected to p-type side) bias [8]. This low-level injection

situation occurs when a small amount of net charge flows across the depletion region.
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Figure 3.2: A p-n junction under the depletion approximation, with charge density
extending to different depths on either side of the junction. The built-in electric field
and potential are shown, which lead to the contact potential V0.
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When the applied bias approaches the built-in potential, a large current will suddenly

begin to flow. This fast turn-on with a preferential direction gives diodes their desirable

qualities for use in circuits.

There exist two types of currents—drift from electric fields, and diffusion from

density gradients—for the two types of charge carriers—electrons and holes—in the

two types of materials—n-type where holes are the minority carries with density pn,

and p-type where electrons are the minority carriers with density np. Much of the

discussion of current flowing through a diode depends on the concentration of minority

carriers at the boundary of the depletion regions at x=−Wp and x=Wn, where x = 0

is the interface between p- and n-type materials (cf. Figure 3.2). The reason for this

dependence is seen by considering what happens when a reverse or small forward bias

is applied. At equilibrium, the p-type region is shifted up in potential compared to

the n-type in order to match Fermi levels across the junction. No current flows as

discussed in Section 2.5.5. A small reverse bias causes an electric field to oppose the

flow of majority carriers between the regions, but promotes the flow of minority carriers.

Any minority carriers near the depletion edges will be swept up by the field and cross

the boundary. The inherent low density of minority carriers means that this current

is small, and device polarity makes this current negative. When the reverse bias is

increased, the potential barrier only grows for majority carriers, but is stronger for

minority carriers. No additional current flows, however, because there are not additional

charges available to contribute to conduction. This constant current at negative bias is

the reverse saturation current J0. For very large reverse bias voltages, diode breakdown
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occurs and large, negative currents can flow in response to additional negative voltages.

At forward bias, majority carriers begin to be able to flow across the depletion

region due to the potential barrier being decreased. Holes from the p-type side enter the

oppositely-doped material where they become minority carriers. Here, they recombine

with the donor electrons with characteristic lifetimes τp. As the majority carriers are

depleted through this process, extra charge carriers from outside the semiconductor take

their places. This is the measured current flowing through the circuit.

3.1.1 Ideal Diode Equation

The dynamic equilibrium of non-zero drift and diffusion current canceling each

other out leads to a density of holes at Wn being

p(Wn) = pn exp

(
qV

kT

)
, (3.9)

which leaves the minority carrier concentration equal to the equilibrium value when zero

bias is applied, as expected, and exponentially increases a voltage increases. Similarly

for electrons,

n(−Wp) = np exp

(
qV

kT

)
. (3.10)

Looking at holes, this is in excess of the already-present minority carrier density

pn. Therefore, the change in minority carrier density at the depletion region boundaries
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due to an applied voltage is

∆pn = pn exp

(
qV

kT

)
− pn = pn

[
exp

(
qV

kT

)
− 1

]
. (3.11)

This shows that the minority carrier density at the boundary can go from nearly zero

to pn at large reverse bias, up to an exponentially large value for large positive V .

These relationships can be derived from energy levels as well. Since this is not

in equilibrium, the Fermi energy cannot be used. However, the quasi-Fermi energies from

Section 2.5.1 are valid. Using Equation 2.21 under the low-level injection assumptions

made above (n ∼ n0 on the n side),

Fn − Fp = kT ln

(
p

pn

)
, (3.12)

which gives the change in minority carrier density due to the difference in quasi-Fermi

levels as

∆pn = p− pn = pn

[
exp

(
Fn − Fp
kT

)
− 1

]
. (3.13)

This is similar to Equation 3.11 given that the external bias V is what caused the quasi-

Fermi levels to change, which is indeed the case. The above discussion similarly holds

for electrons in the p-type region.

To relate these carrier density changes to a diode current, the diffusion equation

for holes—Equation 2.42—is used with the boundary of the depletion region being x=0
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where the density is given by Equation 3.11. Solving

d2δp

dx2
=
δp

L2
p

(3.14)

again leads to exponential solutions. With this boundary condition, the change in

minority carrier density is given by

δp = pn

[
exp

(
qV

kT

)
− 1

]
exp

(
−xn
Ln

)
, (3.15)

where xn is the distance from edge of the depletion region in the n-type material. The

hole diffusion current density as a function of position is given by

Jp = qDp
dδp

dxn
= −qDp

Lp
pn

[
exp

(
qV

kT

)
− 1

]
exp

(
−xn
Ln

)
. (3.16)

Again, similar relationships hold for electron current in the p-type material.

Further from the depletion region boundaries, the current exponential decays.

This is due to more minority carriers having recombined in transit, which is also the

reason for the exponential decay of excess minority carrier concentrations. The total

amount of current drawn from external sources to replace the recombined majority

carriers on either side of the depletion region as discussed above is given by the maximum

current supplied at the boundaries of the depletion region (xn=xp=0). The total current
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density flowing through diode under an applied bias V is

J = Jp(xn = 0)− Jn(xp = 0) (3.17)

= q

(
Dn

Ln
np +

Dp

Lp
pn

)[
exp

(
qV

kT

)
− 1

]
(3.18)

= J0

[
exp

(
qV

kT

)
− 1

]
, (3.19)

where J0 is the reverse saturation current described earlier. Equation 3.19 is the ideal

diode equation, which ignores lossy effects such as recombination within the space-charge

region and bulk resistances.

3.2 Non-Ideal Diodes

When recombination in the depletion region is taken into account, the diode

equation must be modified to account for this loss in current. When forward bias

is applied, excess charges are present in this depletion region. However, the majority

carriers remain depleted. This combination leads to an increased chance of the transiting

excess charges recombining into trap states within the depletion region. Previously this

could be ignored in equilibrium because the density of majority carriers was so high

they essentially filled all the traps.

Looking at the rate of recombination—not direct electron-hole recombination

from Ec to Ev, but electron to traps or holes to traps, which are assumed to be deep in

the gap (Et ≈ Eg/2) since thermal fluctuations can empty shallow traps—and ignoring
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optical generation within the depletion region,

R = −dδp
dt

=
∆p

2τp
, (3.20)

where the extra factor of 1/2 for the recombination rate is due to half of the traps being

filled from the Fermi-Dirac distribution value at the mid-gap trap states.

The product of charge carriers are related to the quasi-Fermi energies on either

side of the depletion region, which, in turn, is related to the applied bias V by

δnδp = n0p0 exp

(
Fn − Fp
kT

)
= n2

i exp

(
qV

kT

)
. (3.21)

Excess electrons δn can be assumed to equal the excess holes δp if the quasi-Fermi

energies are symmetric about the interface. This leads to the recombination rates being

Rp =
ni
2τp

exp

(
qV

2kT

)
(3.22)

Rn =
ni
2τn

exp

(
qV

2kT

)
. (3.23)

The charges that recombine within the depletion region are replaced by external charges,

which affect the measured diode current, which was shown in Equation 3.19 to go

as exp(qV/kT ) at forward bias. This is modified through recombination currents by

adjusting the ideal diode equation to the form

J = J0

[
exp

(
qV

nkT

)
− 1

]
. (3.24)
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The factor n in the exponential is called the ideality factor, which can vary from 1 for

an ideal diode to 2 for heavy recombination.

Instead of recombination in the depletion region, if excess charges are generated

through optical absorption or thermal excitation of trap states, the reverse saturation

current J0 is no longer constant under reverse bias. This is due to the strong electric

fields within the depletion region sweeping the excess charges towards the neutral bulk

where they recombine. Thermal generation of carriers from trap states is seen as a
√
V

dependence of J0 due to the depletion width dependence shown in Equation 3.8; as W

expands, more traps are present in the depletion region.

3.3 Diode Interfaces

The above discussion assumed the p- and n-type material are made of the same

substance having the same band gap, the difference being the doping type only. This

diode is called a homojunction. Diode homojunctions can be made with opposite doping

types as well as a highly-doped material in contact with a lower doping but of the type

i.e. n+-n or p+-p junctions. These are called isotype homojunctions, in contrast to the

anisotype p-n junction as assumed above.

When the two materials have different band gaps, the diode is called a hetero-

junction, which can also be iso- or anisotype. Both the PbS and Ge devices discussed

herein are heterojunctions, with ITO being a large band gap semiconductor/insulator

compared to the relatively narrow gap of the quantum dots.
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Besides semiconductor-semiconductor interfaces, diodes can be made with semi-

conductors in contact with metal. The diode behavior arises from the mismatch of the

metal’s electron affinity and the semiconductor’s conduction band, leading to selective

charge separation. These contacts create Schottky diodes. The matching of electron

affinity and Ec or Ev of the semiconductor leads to an Ohmic contact, which is desirable

for efficient charge collection in solar cells.

3.4 Interface Transport

The transport of electrons between quantum dots was discussed in the previ-

ous chapter, with several models for electron transport provided. Much of the theory

translates into device interface transport, which can be seen from the QDs’ interaction

being a potential barrier that must be overcome, similar to what is encountered between

two different semiconductor materials.

For a heterojunction, there may be a sharp potential barrier at the interface,

which may be thermally overcome or tunneled through, similar to charge transfer be-

tween QDs. For such a barrier, the current density is given by

J =
(kT )2m∗q

2π2h̄3 exp

(
−qVb
kT

)[
exp

(
qV

kT

)
− 1

]
, (3.25)

where Vb is the barrier height the charge carrier must overcome. This can be compared

to the thermionic emission equation presented for QD charge transfer.

Building, again, from the QD charge transfer mechanisms discussed above, tun-
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neling transport can occur by charges quantum mechanically having non-zero probability

of existing in a classically-forbidden region of material. This probability is enhanced

when tunneling is allowed to be a multi-step process. This tunneling starts at, say,

the valence band for holes, tunneling to intermediate band states until finally reaching

the conduction band where it recombines. This multistep tunneling is temperature-

dependent [18] and given by

J = J0 exp(A× V ) = J00 exp(γ × T ) exp(A× V ), (3.26)

where J00 is a constant that depends on tunneling probability and γ is the temperature

dependence of the gap.

If instead of tunneling between gap states in a multi-step recombination pro-

cess, the tunneling leads to a midgap trap state where the carrier is captured then

emitted, th tunneling current can be modeled by [19]

J = J0 [exp(AV )− 1] = J00 exp(−Ea/kT ) [exp(AV )− 1] , (3.27)

where Ea is the activation energy and A is a constant. Both tunneling processes are

shown in Figure 3.3.
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Figure 3.3: Two types of tunneling current through the device interface.
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Chapter 4

Solar Cells

In moving from the properties of semiconductors and the junction devices they

compose, their reaction to illumination is presented. To begin, the properties of the solar

spectrum is discussed, leading to a solar cell’s potential efficiency under such illumina-

tion. A non-ideal model of a photovoltaic diode is presented with methods of quantifying

the ideality of devices. A brief overview of conventional solar cells commercially available

leads to how QD PV cells fit into current improvements in dollars-per-watt figures.

4.1 Solar Spectra

In order to compare solar cell efficiencies, standard reference spectra of incident

radiation are used. The four standards encountered in the literature are AM0, AM1.0,

AM1.5D, and AM1.5G. The “AM” stands for air-mass, with the number following

indicating the thickness of the atmosphere the solar radiation passes through to reach

the solar cell; the higher the number is above 1, the greater the deviation from the sun
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Figure 4.1: Schematic representation of path of incident sunlight for three solar spectra.
The air-mass value is given by 1/ cos θ, where θ is the incident angle of sunlight.

being directly overhead. Figure 4.1 shows a schematic representation of the incident

angle leading to these values. AM0 is the unimpeded spectrum directly from the sun.

This is encountered above the earth’s atmosphere and is therefore most often used for

cells that are to be deployed on satellites. AM1.0 is the spectrum that reaches the

earth’s surface from the directly-overhead sun after passing through the atmosphere.

Several wavelength bands are absorbed by constituent molecules e.g. water vapor and

CO2. The AM1.0 spectrum is the reference for cells to be used in equatorial regions.

A thickness of 1.5 times the atmosphere is taken as a general average experi-

enced by solar installations in highly populated latitudes. AM1.5D and AM1.5G, are

both what is incident after sunlight passes through this 1.5-atmosphere average. Their

difference lies in the inclusion or exclusion of albedo from the surroundings. AM1.5D
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Figure 4.2: Solar irradiance of three different spectra. The deep absorption bands in the
AM1.5 spectra are due to atmospheric molecules such as ozone, water vapor, or CO2.

is the direct spectrum (no albedo), while AM1.5G is the global spectrum, including the

light due to reflection off of surroundings. These two spectra are shown compared to the

AM0 spectrum in Figure 4.2. For use in power conversion efficiencies, AM1.5D corre-

sponds to 80 mW/cm2, while AM1.5G provides 100 mW/cm2 of radiation. This means

that a kilowatt of potential solar power is incident on each square meter—a Gigawatt

per square-kilometer!—under this illumination. The solar simulator used herein closely

matches the AM1.5G spectrum, and therefore 100 mW/cm2 was used in efficiency cal-

culations.
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4.2 An Ideal Solar Cell: The Shockley-Queisser Limit

As an introduction to the principles governing photovoltaic device operation,

an overview of the Shockley-Queisser Limit calculation is presented.

In 1961, William Shockley and Hans Queisser worked out the theoretical ef-

ficiency limit of a single photovoltaic absorbing layer to be ∼33% [20]. The Shockley

Queisser Limit (SQL) is based on the assumption that all photons with energy greater

than the bandgap are absorbed and generate EHPs, which are all collected at the elec-

trodes. If the the photon energy is greater than the band gap, the excess energy given to

charge carriers is thermally exchanged until the carrier reaches the band edge. The only

allowed loss mechanism is the spontaneous radiative recombination of EHPs resulting

from the detailed balance calculation.

Under the above assumptions, the power conversion efficiency of a solar cell of

absorbing material with energy gap Eg is given by

η =
Pout
Pin

=
max|J × V |∫∞

Eg
EΦsun(E)dE

, (4.1)

where Φsun is the incident solar radiation flux. For the SQL, the AM1.5G standard

spectrum is used.

The voltage V in Equation 4.1 is an externally applied bias, which, in the

presented experiments, is swept from -1 to +1 V. In commercial installations, the voltage

is held near that which provides the highest output through maximum power point

tracker (MPPT) systems.

57



The current density J in Equation 4.1 is difference between the short-circuit

current density Jsc and the recombination current density Jrec:

J(V ) = −Jsc + Jrec(V ). (4.2)

Current is negative at positive bias providing work done on an external load, rather

than the voltage driving the solar cell as is done in a typical diode. J-V curves are

plotted with the focus being on the behavior in the fourth quadrant.

Under the optimal conditions of the SQL calculation, Jsc is given by

Jsc = q

∫ ∞
0

A(E)Φinc(E)dE, (4.3)

where the absorption is a unit step function at the band-gap energy,

A(E) = Θ(E − Eg), (4.4)

and Φinc is the incident flux, which includes both solar radiation as well as photons

from radiative recombination:

Φinc = Φsun + Φrad. (4.5)

Combining the above equations leads to the maximum short-circuit current density for
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Figure 4.3: (a) The AM1.5G solar spectrum matched with a black body radiation curve
of 5800 K. For this spectrum, the maximum Jsc is shown in (b) as a function of Eg.
As Eg approaches 0, all photons are absorbed leading to maximum number of charge
carriers.

a material with band gap Eg being

Jsc = q

∫ ∞
Eg

Φsun + ΦraddE. (4.6)

The maximum Jsc from Equation 4.6 is show as a function of band gap energy Eg

in Figure 4.3 along side the AM1.5G solar spectrum as well as a 5800 K black body

radiation curve fit to the sun.

The recombination current density Jrec of Equation 4.2 above is due to the

loss from the radiative recombination of charge carriers in detailed balance with those

generated through absorption. The emissivity is related to the radiative black body

spectrum at a given temperature through the absorptance via Kirchhoff’s law [21]

Φem = A(E)Φrad, (4.7)
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and the recombination current density follows [22]

Jrad = q

∫ ∞
0

Φem exp

(
qV

kT

)
dE (4.8)

= q

∫ ∞
0

A(E)Φrad exp

(
qV

kT

)
dE (4.9)

= q

∫ ∞
Eg

Φrad exp

(
qV

kT

)
dE. (4.10)

The total current density from Equation 4.2 is then given by

J(V ) = −Jsc + Jrad (4.11)

= −q
∫ ∞
Eg

Φsun + ΦraddE + q

∫ ∞
Eg

Φrad(E) exp

(
eV

kT

)
dE (4.12)

= −q
∫ ∞
Eg

Φsun − Φrad

[
exp

(
qV

kT

)
− 1

]
dE. (4.13)

The term in brackets in Equation 4.13 follows the behavior of the ideal diode

equation from Section 3.1. Solving for the voltage when the current is zero gives the

open circuit voltage Voc:

Voc =
kT

q
ln

[∫∞
Eg

Φsun(E)dE∫∞
Eg

Φrad(E)dE
+ 1

]
(4.14)

=
kT

q
ln

(
Jsc
J0

+ 1

)
, (4.15)

where J0 is the saturation current density, again similar to that encountered in Sec-

tion 3.1.
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As seen in Equation 4.6, Jsc decreases with increasing band gap due to few

photons able to be absorbed at high Eg. However, Equation 4.15 shows an increase in

Voc with increasing band gap, which can be seen as the energy each charge carrier has

increasing with Eg after relaxing to the band edge. This is nearly linear as shown in

Figure 4.4(a) Both Jsc and Voc are the maximum values possible for J and V in Equa-

tion 4.1 above. However, their product is what matters for PCE, therefore their values

at the point of maximum power is less than Jsc and Voc, with P peaking somewhere in

between. Figure 4.4(b) shows the efficiency values of a range of band gap energies. The

peak is near 1.25 eV at ∼33%, which is known as the Shockley-Queisser limit to solar

cell efficiencies. It is quite remarkable that silicon—one of the most abundant elements

and being relatively easily to work with, due in large part to transistor research—has

a band gap of 1.1 eV—very close to the Shockley-Queisser peak. Silicon’s band gap

has a maximum efficiency of 29%. Breaking beyond the SQL requires modifications to

their assumptions. One way is increase the intensity of incoming solar flux Φsun. This

is the basis for solar concentrator systems. Another method is to use a multi-junction

cell design, which stacks layers of different band gaps with blue photons absorbed at the

front, allowing more red photons to pass through to deeper layers. Under 1000 suns of

illuminations single junction cells can reach 37% efficiency. Double junctions can reach

50% while triple junctions can be 56% efficient under these intense conditions [23].
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Figure 4.4: (a) The nearly linear dependence of Vocon Eg is counter to the Jsc-Eg rela-
tionship. (b) Together, the maximum efficiency is ∼33% when illuminated by AM1.5G
sunlight, which corresponds to a band gap near 1.2 eV.

4.3 Non-Ideal Solar Cells

As the previous chapter discussed ideal and non-ideal diodes, this chapter

moves from ideal solar cells into realistic, non-ideal behavior. This requires modifications

of the diode equations (ideal: Equation 3.19, and non-ideal: Equation 3.24).

A solar cell device contains intrinsic losses arising from recombination at the

p-n junction discussed previously, as well as extrinsic losses from poor absorption or inef-

ficient charge collection. The exact sources of loss are difficult to characterize, however,

general properties of performance are modeled by an equivalent diode circuit shown in

Figure 4.5.

The equations for diode current occurs in ID in the figure. The photogenerated

current is shown as IL an is in opposition to the diode current as discussed above with

sign conventions. The total current leading to an external load I is what is left after

parasitic losses through shunting pathways (Ish). Any voltage drops after the diode is
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Figure 4.5: Equivalent circuit for a non-ideal solar cell.

through a series resistance Rs. For the ideal solar cell, Rs = 0 Ω and Rsh =∞ Ω.

The modified solar cell diode equation including shunt and series resistances

and an intrinsically non-ideal diode is given by

J(V ) = J0

[
exp

(
q(V − JARs)

nkT

)
− 1

]
+
V − JARs

Rsh
− Jsc. (4.16)

A rough gauge of resistance values can be obtained from the slope of the J-V curve

at Voc and Jsc. The inverse of the slope at Jsc relates to Rsh. A flat line would be

zero slope leading to infinite resistance. At Voc, a vertical line would be infinite slope

indicating zero series resistance. Hegedus and Shafarman [24] give a detailed description

of methods for a more accurate determination of thin film device resistances as well as

other diode properties.

Beyond losses and idyllic diode behavior, several figures of merit, which have

already been alluded to, are used to compare devices efficacies as solar power converters.

The first is the photogenerated current under zero bias. This is the short-circuit current
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Figure 4.6: Effects of non-ideal conditions leading to poor device performance.

density Jsc. Under no illumination, there ideally will be no current flowing through the

diode at zero bias. However, when EHPs are optically generated, the depletion region’s

electric field should separate the charge carriers leading to current driven through an

external circuit. This additional carrier generation is a rough determinant of photo-

conversion ability.

The photogenerated current is opposed to the diode current at forward bias.

When the strengths of these two currents are equal and opposite, no net current will

flow: J=0. This is the open circuit condition for a solar cell. The voltage that this

occurs at is the open circuit voltage or Voc.

Ideally, these two concepts combined result from the diode equation of 3.19

with a constant negative current added on, dropping the sharp turn-on of the J-V

curve into the fourth quadrant. The output power is the product of the current and

voltage, as indicated in Equation 4.1. The power is zero at Jsc and Voc while nonzero in

between, meaning there exists a maximum. Pmax is found simply by multiplying I and

V and seeing where it peaks. The current and voltage at this point is Imax and Vmax

respectively. Figure 4.7 shows the relationship between Jsc, Voc, Jmax, and Vmax. The
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Figure 4.7: Current-voltage relationship for a solar cell under illumination demonstrat-
ing the fill factor at max power point.

maximum potential output power would be if Jmax=Jscand Vmax=Voc. In the figure,

this would be shown by the darker rectangle being the same size as the lighter rectangle.

All solar cells have their max power points less than Jsc×Voc. The fraction of the larger,

light gray rectangle that is filled by the darker max power point rectangle is called the

fill factor (FF ) given by

FF =
JmaxVmax
JscVoc

. (4.17)

From Equation 4.1, this means that the solar cell efficiency is given by

η =
JscVocFF

Pin
, (4.18)

where, again, Pin is the radiated power incident upon the solar cell.
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4.4 Photovoltaics in Practice

In 1839, at the age of 19, Alexandre Becquerel observed that an acidic solution

containing silver chloride connected to platinum electrodes produced a small current

when exposed to light [25]. It would be another 40 years until the first solid state PV

cell was created, which was less than 1% efficient [26], and another 70 years before a

more practical silicon cell was developed at Bell Labs from a p-n junction that reached

5% efficiency [27].

Today, most of the solar cells on the market are made from single-crystal silicon

junction devices with potential efficiencies over 24% [28]. As discussed above, silicon

is an indirect band gap material leading to weak absorption, which therefore requires

larger quantities to increase the thickness of the cells. Despite silicon’s high abundance,

and well-established industrial processing techniques, the costs remain high. But, as

the market grows, the price of PV continue to fall as seen in Figure 4.8.

Outside of market solutions to price reduction, there exist several methods to

bring down the cost-per-Watt for PV. First is to use a lower quality silicon. Typical

solar-grade c-Si requires a purity on the order of parts per million. This highly pure

silicon is grown in cylindrical ingots and cut into circular wafers with a wire saw, leaving

large amounts behind as saw dust. Polycrystalline silicon avoids some of these losses

and costs by casting several crystals together in a multicrystalline ingot. These cost

reduction methods come with a lower performance than the c-Si cells—around 17% [29].

Another path to lower costs is to decrease the amount of material required
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Figure 4.8: Trends in PV production mirroring that of costs over several decades.

to absorb incident radiation. This can be done through external modifications such as

anti-reflective coatings or by having back reflectors redirect the light back through the

material, essentially doubling the chance of a photon being absorbed by Si requiring

less material to absorb the same amount of light.

When silicon is not in its crystalline structure, the band properties change.

Amorphous silicon (a-Si) has a direct band gap, which increases its absorption abilities,

but at a higher energy of 1.7 eV. But the short-range order leaves many unsatisfied

bonds as trap sites for charge carriers, which essentially renders a-Si useless for PV de-

vices. This can be ameliorated through the passivation of surface states with hydrogen.

Hydrogenated amorphous silicon cells (a-Si:H) require as little as one micron to ab-

sorb nearly all incident light, and these films can be grown at much lower temperatures

than that required for crystalline Si leading to cheaper devices. Hydrogenated amor-

phous silicon suffers from degradation under illumination, called the Staebler-Wronski
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effect. The devices stabilize after an initial exposure to light, with the highest stabilized

efficiency being 13.4% achieved in a triple junction amorphous cell [30].

Beyond the nearly omnipresence of silicon, several other solar cell materials are

available commercially. In trying to reduce material costs, CdTe and Copper Indium

Gallium Selenide (CIGS) are direct band gap materials leading to cheap, thin film

devices in polycrystalline form. CdTe suffers from the toxicity of cadmium, which is

banned in several countries, and low abundance of tellurium in the earth’s crust. CIGS

devices also suffer from the abundance issue through indium and selenium. However

the much more abundant sulfur can be substituted for selenium in CIGS. The elemental

abundance by weight of several solar cell constituents [31] is shown in Table 4.1.

Element % Weight

Si 27.7
Al 8.1
P 0.1
S 0.05

Zn 0.01
Cu 0.007
Ga 0.002
Ge 0.0007
As 0.0005
Sb 0.0001
Cd 0.00002
In 0.00001
Se 0.000009
Te 0.0000002

Table 4.1: Abundance of several elements relevant to solar cell manufacturing, by weight
of Earth’s crust.

In addition to using cheaper materials to reduce the cost-per-watt metric,
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increasing the output of the cell for the same amount of material is a attempt to reach

that end. The highest efficiency single-junction cells are manufactured from gallium

arsenide, which are able to reach 26.4%. Since GaAs is so expensive, they are often

paired with solar concentrating optics, with lenses being cheaper than adding more

solar cell area. This approach suffers from the requirement that to focus the sunlight it

mush be at normal incidence onto the lens requiring much more expensive solar tracking

machines. GaAs can also be improved by making multi-junction cells as discussed above.

These two combined approaches have lead to the highest efficiency solar cells to date:

a triple-junction GaAs device under concentration with 44% efficiency. Since these

materials are so expensive, they are much lest common in terrestrial applications where

their benefit of requiring less area is not so much a limit to installations. However,

GaAs solar cells are often used in extraterrestrial applications where the figure of merit

is pounds-per-watt since the cost of launching one pound into orbit around the earth is

on the order of tens of thousands of dollars [32].

The trend of record research solar cell efficiencies for the different classes of

materials is shown in Figure 4.9, which is continually updated by the National Renewable

Energy Laboratory (NREL). The relatively new field of quantum dot photovoltaics is

shown in the lower-right corner of the figure and is discussed in the following section.
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Figure 4.9: The history of solar cell efficiency milestones. Quantum dot photovoltaics
is in the bottom-right of the figure.
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4.5 Quantum Dot Solar Cells

The optical properties of quantum dots were discussed in Section 2.6, which

leads to their tunable absorption spectra based on QD size. The tunability of band gaps

is analogous to dye-sensitized, or Grätzel, organic solar cell. This allows for potentially

simple multi-junction cell fabrication. QD cells are typically solution processed, requir-

ing much lower energy costs of fabrication. This is compared to the above materials,

which exhibit bulk properties requiring bulk amounts of the material to be used in solar

cells. This often means high temperatures and/or pressures in device fabrication, in

addition to relatively large amounts of the material. Requiring less material and lower

costs of manufacturing, together with the ease of graded bandgap layering through

tuned QDs, several QD materials exhibit the potential for multiple exciton generation.

This could lead to a much cheaper method of breaking the Shockley-Queisser limit than

expensive concentrators or bulk multi-junction fabrication.

4.5.1 PbS Quantum Dot PV

In bulk, PbS has a band gap of 0.41 eV. This can be tuned across the optical

spectrum as showed in Figure 2.12. The high tunability is due to the large Bohr exciton

radius of ∼18 nm. The empirical relationship between QD diameter and first absorption

peak energy is [33]

E = 0.41 + (0.0252d2 + 0.283d)−1. (4.19)
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The first report of colloidal quantum dot solar cells was made in 2005 [34], with im-

provements to device efficiency pushing to 7% in 2012 [35]. The first devices with more

than 1% PCE were Schottky cells [36–38], with ITO as the front contact and aluminum

forming the Schottky barrier to facilitate charge separation. PbS Schottky devices have

been able to reach 4.6% efficiency [39].

Beyond the Schottky devices, researchers presented working depleted hetero-

junction devices in 2010 [40], which improved upon charge separation. The following

year, band gap tuning was implemented in a tandem cell with two layers of different

sized QDs [41]—2 nm for visible light and 4 nm for IR—providing proof of concept for

quantum tuning of a graded band gap device. With the current state of single-junction

devices being 7% efficiency, further improvements are required before the possibility

of a multijunction cell with greater than 15% PCE is reached [42]. The Schottky and

heterojunction device schematics and band diagrams [43] are shown in Figure 4.10.

4.5.2 Germanium Quantum Dot PV

Germanium QD solar cells have not been fully realized outside of this lab as of

writing. One problem with Ge (and all Group IV elements) is the strong covalent bonds

requiring high temperatures to form crystals, compared to the II-VI and IV-VI QDs of

e.g. CdTe and PbS [44]. In the present research, this is overcome through microwave

synthesis of Ge ionic solutions, which have a larger absorption of microwaves and high

photon-phonon interaction [45].

As with CdTe, a drawback to PbS devices is the toxicity of constituent ma-
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Figure 4.10: Layering schematic and energy band diagrams for a Schottky and hetero-
junction PbS PV device.
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Figure 4.11: The tunability of Ge and Si absorption peak with quantum dot size.

terials, namely lead. This leads to a desire for the less toxic Group IV elements such

as Si and Ge for QD PV. Compared to silicon, Ge should be a better candidate due to

its more direct band gap (cf. Figure 2.1) and larger Bohr exciton radius leading to a

highly tunable band gap [46] as seen in Figure 4.11.
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Chapter 5

Methods

This chapter steps through the device fabrication process, leading to the work-

ing PV devices studied herein. In addition, the process of studying electronic properties

will be laid out, both room-temperature, and while in the cryostat.

5.1 Device Preparation

The device structure is a layered one, starting with a 1” by 1” glass slide,

which we receive pre-patterned with our front contact: a 150 nm layer of 10 mol.% tin

oxide in indium oxide (indium tin oxide, or ITO). The pattern allows for six 1 mm by

3 mm devices fabricated on each slide. ITO is highly transparent (88% at 550 nm) with

high conductivity—precisely what is required for a window layer of a PV device.

The ITO layer is jagged at the nanometer scale, with spikes pointing out from

the smooth glass, which may lead to shorts within the thin-film devices. A buffer layer

is therefore added to prevent the conducting layer from penetrating through the device.
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The buffer is a layer of TiOx sol-gel, applied before the solution of TiO2 nanoparticles.

To prepare the sol-gel, 375 µL of titanium ethoxide— Ti(OCH2CH3)4—is

added drop-wise into a highly acidic (pH < 1) solution of 5 mL ethyl alcohol, 125 µL

milli-Q water, and two drops of hydrochloric acid. The solution is capped with nitrogen

gas, sealed, and left to stir for at least 24 hours before use. The drop-wise addition

of titanium ethoxide ensures that TiO2 crystals do not precipitate out of the solution,

instead leaving a transparent sol-gel for our PV device applications.

The sol-gel precursor is applied to the ITO-printed slides via spin casting

40 µL at 1300 RPM, ensuring excess sol-gel is removed using ethanol-soaked cotton

swabs along the slide edges after spin cycle has finished. A final, dry cotton swab may

be used to ensure slide edges and back are fully clean. The sol-gel is then sintered to

strengthen the glassy conductive layer. Sintering begins with one hour on a 115◦C hot

plate, followed by 30 minutes in a 450◦C tube furnace. The resulting hardened surface

is the substrate for the subsequent TiO2 nanoparticle layer.

A layer of TiO2 nanoparticles ∼37 nm in size is used as the electron collector

in our PV devices. The nanoparticle solution of TiO2 in water and ethanol is purchased

from Solaronix. Again, 40 µL is spin cast, but at the slightly higher speed of 1500

RPM, followed by the same sintering treatment. This turns the milky solution into a

transparent layer for light to reach the absorber.
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5.1.1 PbS Device Fabrication

PbS nanoparticles are in a colloidal solution of hexane and chlorobenzene be-

fore being added to our devices. There are two methods of application: spin coating

and dipping. Both processes are performed in a nitrogen glovebox, as PbS quantum

dots are susceptible to air and water contamination. The spin coat process is done by

dropping ∼40 µL of CQD solution onto the TiO2 layers while the slide spins for 30

seconds. After each spin is finished, most of the moisture is evaporated off leaving the

PbS quantum dots. A clean cotton swab removes excess material from the edges as

before. This layering is repeated several times building up ∼150 nm of the absorbing

layer of PbS QDs.

For dip coating, a less dense colloidal solution is used. The slides are dipped

in PbS immediately followed by the ligand exchange solution. This is either 1,2-

ethanedithiol (EDT), 3-mercaptopropanoic acid (MPA), or 1,4-benzenedithiol (BDT)

solutions. Each dip is <1 second, after which the slide is allowed to dry as before, again

removing excess solution from the edges. After six dipping layers, rotating the slide

each time to ensure an isotropic thickness, the slide is ready for the final back electrode

layer to be added.

The hole collector on our devices is a thin ∼100 nm layer of gold that is evapo-

rated under high vacuum at a rate of 2 Å/s. Four devices are completed simultaneously,

with each device able to begin testing right away.

Devices are stored in a nitrogen-environment glovebox as long-term air ex-
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posure degrades device performance quickly, although brief (<5 minutes) exposure to

ambient air has shown to slightly improve performance.

5.1.2 Ge Device Fabrication

Ge devices largely follow the same procedures as for the PbS devices. These

are non-optimized, leaving room for improved performance.

The nanoparticles are synthesized in a solution of GeI2 and GeI4 in olylamine,

which is heated via microwaves [45]. The iodides are strong microwave absorbers leading

to effective heating, while olylamine bonds with the Ge2+ and Ge4+ ions capping the

nanoparticles. The larger the Ge4+/Ge2+ ratio is, the larger the nanoparticle, leading

to simple size control of quantum dots. Olylamine is far too large to facilitate efficient

charge transfer and a ligand exchange is performed on films used in PV devices. The

shorter hydrazine ligand leads to the working devices presented herein.

Besides the absorbing layer changing, the back metal contact is aluminum

instead of the gold used in PbS devices. This was chosen for good Ohmic qualities, with

the Al workfunction matching well to the HOMO level for efficient hole extraction.

5.2 Temperature Variations

To expand our understanding of the way in which electrons transport through

our devices, current-voltage measurements are carried out under a range of tempera-

tures. Our cryogen is liquid nitrogen, which enabled us to reach temperatures in our
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cryostat below 100 K.1 There are two methods of sweeping the sample’s temperature:

one is to actively heat the device using the ITC Temperature Controller’s resistive

heater, the other is to allow the cryostat to warm passively to room temperature. The

latter was necessary to minimize outside air contamination within the cryostat; as the

liquid nitrogen boiled into gas the over-pressure kept oxygen and water from entering.

Currently, the cryostat’s sample mount is affixed with Tygon tubing from a nitrogen De-

war, which continually flows nitrogen gas over the sample. A drawback to this approach

is that the N2 gas is warmer than the liquid but cooler than room temperature, which

means more aggressive thermal control is needed at the extremes of our temperature

range.

With a safe nitrogen gas environment for the devices, resistive heating elements

warm the sample, while cryogenic gas cools. Before entering the cryostat, however,

the devices are exposed to air when transferring from the glovebox. This results in

approximately five minutes of exposure. For PbS devices, this much exposure was shown

to slightly improve device performance [47]. The samples are affixed to the cryostat’s

sample holder via copper wire contacts with each metal electrode on the slide. In the

cryostat, a xenon light bulb is placed adjacent to the sample, which is a large source

of heat during J-V measurements. This can result in ∼5 K increase in temperature

during the -1 to 1 V sweeps. All recorded temperatures are the starting temperature

of the voltage sweep. The final temperature and temperature difference are included in

raw data collected by the IGOR program used.

1Liquid nitrogen boils at 77 K, but our devices sit above the liquid level, and imperfect thermal
isolation raises the sample’s environment above this temperature.
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To prepare the cryostat for use, the outer chamber is vacuumed for 2 hours to

approximately 50 mbar. This ensures a strong thermal isolation for the device while in

the cryostat. The Oxford Maglab cryostat was originally intended for use with liquid

helium to cool a superconducting magnet as well as samples, but the magnet is no longer

operational. The liquid nitrogen is held in the helium section within the cryostat to allow

for cryogenic nitrogen to enter the central sample chamber for cooling. Typically, helium

would be buffered from the outside by a layer of nitrogen, but this chamber remains

empty.

All electrical connections to the sample are made through the sample probe

which is inserted into the top of the cryostat. This includes device contacts 1 through

6, the ITO back contact, the RTD temperature sensor, and the light source power ca-

bles. The resistive temperature detector (RTD) is a calibrated piece of manganin whose

resistance is a known function of temperature. This is connected to a Keithley 2001 mul-

timeter which outputs the sample temperature. The RTD is necessary as the ITC 503

temperature monitor is spatially isolated from the sample to where there may be up

to a 40 K discrepancy in sample and cryostat temperature. Temperature settings are

given to the ITC 503 and a conversion must be made to ensure appropriate ranges for

sample temperature are met.

Typically, 5 K intervals of temperature are what separate each current-voltage

curve, with each step pre-programmed through a custom IGOR code. The ITC can

range from 77 K up to 400 K, however the sample’s temperature only reach from 100 K

up to ∼360 K. An additional hindrance on usable temperature ranges is the calibration
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of the light source. The xenon bulb’s spectrum is significantly more red than an AM1.5

spectrum and this changes with bulb temperature. Below 150 K, the spectrum is no

longer considered usable as the input photon energy diverges significantly from the

calibrated bulb intensity at room temperature to where the J-V data is not comparable.

Therefore, sample temperature ranges from 150 K to 360 K.

5.3 Capacitance-Voltage Measurements

One oft-used method of determining several device properties, including the

built-in potential, doping density, and depletion width, is capacitance-voltage or Mott-

Schottky measurements [48].

A simple picture of the capacitance of a semiconductor junction is the depletion

region’s width W being voltage-dependent. From a parallel-plate capacitor analogy

C =
εε0A

W
, (5.1)

with ε being the dielectric constant of the material within the parallel plates, A the area

of the plates that are separated by a distance W . Within a semiconductor junction,

applying a reverse-bias to the device, charge is separated and builds up at opposite

ends of the space-charge region, effectively creating two parallel plates of charge with

dielectric ε between them. To measure the capacitance a small AC source is applied on

top of a DC voltage which is swept through a range of voltages. The frequency response

of the impedance is measured, ideally providing the capacitance of the space-charge
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region. The DC-voltage-dependence of the capacitance via the depletion width leads to

a value for the charge carrier density as explained below.

To begin, a Schottky diode is considered, made from a p-type semiconductor

with a doping density Na, in contact with a metal. The diode is connected to a DC

voltage V with a small AC signal. When the AC voltage increases a small amount of

charge dQ builds up on the metal contact of the Schottky device. This charge originated

from the semiconductor and is given by

dQ = qANadW, (5.2)

which leads to a small increase in the depletion width dW . Plugging this into the

fundamental definition of capacitance gives

C =
dQ

dV
= qANa

dW

dV
, (5.3)

which assumes the doping density is constant over the distance dW . Solving for the

charge density at the space-charge region edge leads to

Na =
C

qAdW
dV

. (5.4)

Differentiation Equation 5.1 with respect to voltage

dC

dV
= εε0A

(
− 1

W 2

dW

dV

)
, (5.5)
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and solving for dW/dV gives

dW

dV
= − W 2

εε0A

dC

dV
= −εε0A

C2

dC

dV
, (5.6)

where Equation 5.1 was rearranged to write W in terms of C. Plugging this into

Equation 5.4,

Na = − C3

qεε0A2

1
dC
dV

, (5.7)

and using the relationship

d

dV

(
1

C2

)
= −2

1

C3

dC

dV
, (5.8)

the charge density is finally given by

Na =
2

qεε0A2

1
d(1/C2)
dV

. (5.9)

To use this relationship, the capacitance is measured as a function of DC voltage and

plotted on Mott-Schottky plot showing 1/C2 versus voltage. This should yield a linear

relationship with the slope to be used in Equation 5.9 above. This, along with the di-

electric constant and cross-sectional area between the electrodes will provide the charge

density of the material. Due to the area dependence of this relationship, the device area

should be known to a high degree of accuracy lest the error in the carrier concentration

becomes significant.

In addition to charge density, information about the potential barriers within
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the device can be extracted when the depletion width Equation 3.8 is used with the

capacitance given in Equation 5.1 with the bias voltage added to the contact potential

V0. To extract information from the Mott-Shottky plot described above, the capaci-

tance/voltage relationship is written

1

C2
=

2(V + Vb)

qεε0N(W )
. (5.10)

The contact potential V0 is changed to diffusion voltage barrier Vb, which differ by the

Fermi energy: qV0 − qVb = Ef . Typically, in c-Si devices, Ef is small enough that the

built-in potential and voltage barrier are approximately equal. For thin-film devices,

however, this is not the case as they my differ by as much as 0.8 V [24]. The linear

1/C2-V dependence of the Mott-Shottky plot will intercept at the diffusion potential

rather than the built-in potential as typically cited.

This derivation began by assuming a Shottky diode, which allowed for the

depletion width to exist only within the p-type semiconductor. This assumption is

nearly valid for p+-n and n+-p junctions as well, where charge conservation requires a

negligible extent of the space-charge region into the heavily doped side. For nearly equal

doping of p-n diodes, modifications must be made, but these are generally unreliable [48].

For an n-type semiconductor, the slope will change sign as does the reverse bias voltage

polarity, though the derivation similarly holds. It was also assumed that space-charge

region is fully depleted and all acceptor atoms are fully ionized.
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5.4 Current-Voltage Characterization

Device behavior is characterized under dark and illuminated conditions across

a range of temperatures as discussed above. The illuminated data provides PV figures

of merit (Jsc, Voc, FF, PCE Rs, and Rsh). Their response to temperature can eluci-

date information regarding energy or conduction processes. The open-circuit voltage is

that required to drive the diode current against the photocurrent. Therefore, an un-

derstanding of the dark current conduction mechanism could lead to improved Vocand

device efficiencies.

In the dark, PV cells are non-ideal diodes. Revisiting the non-ideal diode

equation, the current-voltage relationship may be written as

J(V ) = J0 [exp(A× V )− 1] , (5.11)

where J0 is the reverse saturation current discussed earlier, and A is an exponential

pre-factor, which is related to the ideality factor n. Both J0 and A may be dependent

upon temperature with the way in which they vary providing information on dominant

conduction mechanism of the device [49].

The reverse saturation is of the form

J0 = J00 exp

(
− qVb
nkT

)
, (5.12)

where Vb is the barrier height and n is 2 for recombination within the depletion region
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Figure 5.1: An example of a p-n hetero junction with p-type absorber layer. The band
bending results from the difference in doping concentrations leading to steep barrier
heights, which help prevent minority carrier recombination.

or 1 for tunneling or thermionic emission dominating conduction [50]. Figure 5.1 is an

example p-n heterojunction similar to that of the QD cells studied herein. The barrier

height for holes in the p-type absorber layer to reach the conduction band of the window

layer is due to band bending resulting from the heavily doped n-type material. In this

example qVb is equal to EGa − δp− δn−∆EC .

The exponential prefactor A may vary with temperature as well as J0. If

A ∼ q/nkT with n=1 thermionic emission is likely the dominant charge carrier due to

the Boltzmann-like dependence on carrier generation. Thermionic emission conduction

is characterized by J00=A∗∗T 2 where A∗∗ is the effective Richardson constant [51]. If n is

between 1 and 2, it is likely that recombination within the depletion region is dominating

charge transport as discussed in the non-ideal diode section above. Lastly, instead of
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a modified Boltzmann exponential dependence, A can be independent of temperature

which indicates that charges are tunneling through the barrier. The different models

for charge transport and their parametric variations are shown in Table 5.1.

Conduction Mech. J0 A n

Recombination exp(−qVb/2kT ) q/nkT ≤2
Tunneling exp(−qVb/kT ) Const. 6=Const.

Thermionic Emission exp(−qVb/kT ) q/kT 1

Table 5.1: Diode equation parameter variation with temperature.

The above concerns diode behavior not including photovoltaic performance.

To understand the solar cell properties, looking at devices while illuminated at various

temperatures provides further analytical techniques.

The total current of a solar cell under illumination is given by the difference

between dark diode current and light-generated current:

J(V ) = JD − JL (5.13)

= J0

[
exp

(
qV

nkT

)
− 1

]
− JL (5.14)

= J00 exp

(
− qVb
nkT

)[
exp

(
qV

nkT

)
− 1

]
− JL. (5.15)

The open-circuit voltage Voc is V required for no current to flow. This is often much

greater than the thermal voltage and therefore the 1 in the diode equation can be ig-

nored. Solving for V at J=0 provided the photocurrent is voltage-independent, meaning
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JL=Jsc,

Voc = Vb −
nkT

q
ln

(
J00

Jsc

)
. (5.16)

This is a convenient way to obtain the potential barrier Vb faced by charge carriers in a

device. Measuring Voc at a range of temperatures should yield a linear curve that can be

extrapolated to T=0K providing the built in potential barrier. Often, this energy barrier

is called the activation energy Ea, which includes other possibilities for recombination

e.g. in the bulk where Ea=Eg [21].

There are several ways to extract the ideality factor n from J-V data. From

dark curves, a fit should yield n under optimal conditions, but a more accurate way

is to look at Voc. It would seem from Equation 5.16 that the ideality factor can be

extracted from the slope of Voc(T ), however a better method to achieve this is to look

at Voc as a function of illumination intensity [52]. A semi-log plot of Voc versus incident

power should be linear with the slope being n times the thermal voltage kT/q. This can

be seen in Equation 5.16 from Jsc approximately being equal to JL, the light-induced

current density, which is proportional to the light intensity as described in Section 4.2.

5.5 Nanoparticle Surface Passivation

Bare nanoparticles have a large surface-to-volume ratio, leaving a significant

fraction of bonds dissatisfied. These act as trap states for charge carriers leading to poor

device performance. In order to remedy this, nanoparticles are capped with molecules

leading to stable, satisfied bonds. The choice of molecule clearly depends on its abil-
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ity to bond to the surface, but also beneficial functionalization properties can lead to

one choice being valued over others. For example, PbS QDs, when synthesized in the

hexane/chlorobenzene solution, are capped with oleic acid—a long hydrocarbon chain,

which is used to prevent the dots from congealing and losing their quantum isolation

properties while remaining colloidally suspended within the solution. However, for de-

vice operation, the oleic acid ligand is too long to facilitate charge transport upon

absorption. The molecule is therefore exchanged for a shorter capping or linker ligand.

In the presented PbS research, three different ligands are examined: 1,2-

ethanedithiol (EDT), 3-mercaptopropanoic acid (MPA), and 1,4-benzenedithiol (BDT).

EDT and BDT have thiol groups on either end of the chain, which could bond to two

QDs making it a potential linker ligand, however MPA, with only one thiol group, is

solely a capping ligand.

As discussed above, the tunneling rate for a fixed barrier is not temperature-

dependent. However, if the barrier width decrease, the probability of tunneling should

increase. Previous results on PbS QD PV devices demonstrated a dramatic increase

in Jsc upon cooling the devices through the freezing point of the capping ligand [53].

This was explained through the ligand contraction decreasing QD separation distances

leading to a smaller tunneling barrier. Figure 5.2 shows these previous results. By

changing the choice of ligand, a change in Jsc temperature variation should be observed.

The three capping ligands are shown with their melting temperatures in Table 5.2 along

with those used in Ge devices.

In Ge QD devices, the thiol bond is too weak to facilitate passivation. N-
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Ligand Melting Point (K) Structure

1,2-Ethanedithiol (EDT) 232 SH
HS

3-Mercaptopropanoic Acid (MPA) 291

1,4-Benzenedithiol (BDT) 370
SHHS

Hydrazine 275

Pyridine 232

Table 5.2: Melting points and chemical structures of capping ligands used in QD PV
devices.

Ge bonds, however, are stable in solution and amine ligands are used in devices. A

drawback is the hazardous nature of the capping ligand best suited for performance:

hydrazine, which is essentially rocket fuel. Pyridine ligands have also been proposed

but so far lead to poor performance.

The nanoparticles are synthesized in a solution of GeI2 and GeI4 in olylamine,

which is heated via microwaves [45]. The iodides are strong microwave absorbers leading

to effective heating, while olylamine bonds with the Ge2+ and Ge4+ ions capping the

nanoparticles. The larger the Ge4+/Ge2+ ratio is, the larger the nanoparticle, leading

to simple size control of quantum dots. Again, olylamine is far too large to facilitate

efficient charge transfer and a ligand exchange is performed on films used in PV devices.
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Figure 5.2: Short-circuit current density of PbS PV device demonstrating a sharp rise
near the freezing temperature of the EDT capping ligand.
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Chapter 6

PbS Quantum Dot Photovoltaic Devices

6.1 Introduction

Thin-film quantum dot (QD) photovoltaics provide the potential to create

high-efficiency devices while simultaneously achieving a low manufacturing cost due

to reduced material costs and less expensive processing. The observation of multiple-

exciton generation observed in PbS QD solutions at room temperature [54] motivates

further research into such devices. Although much effort is focused on improving device

performance through overall structure and QD properties, relatively few studies probe

the effects of temperature or capping ligands on the photovoltaic (PV) parameters [55–

58]. In solid-state applications, ligands are chosen to cap QDs based on their ability to

effectively transfer energy within nanostructures as well as preventing the aggregation

of nanoparticles. Thiols with short chains have demonstrated both properties, making

them ideal candidates for use in PV devices [59]. Previous results show that cooling the
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PbS QD devices through the melting point of the ligand improves performance greatly

through a six-fold increase in short-circuit current density (Jsc) at low temperatures [53].

This was attributed to the contraction of ligands, which increased the coupling between

QDs, allowing for higher current densities. In addition to the ligands’ thermal response

within devices, the current-voltage-temperature parameter space reveals information

regarding charge transport mechanisms.

Here, we present the effects of varying temperatures with three ligands used

in PbS QD photovoltaic devices: 1,2-ethanedithiol (EDT), 3-mercapopropionic acid

(MPA) and 1,4-benzenedithiol (BDT), by analyzing current density-voltage (J-V) curves

in dark and illuminated conditions. EDT, MPA and BDT were chosen based on their

widely varying melting points (232 K, 291 K and 370 K, respectively) and their com-

paratively higher open circuit voltage and short circuit currents compared to longer

chain ligands. We show that the increase in Jsc occurs upon cooling and varies with

the choice of capping ligand. In addition, MPA devices exhibit dramatically different

thermal responses, as seen in the fill factor (FF) and shunt resistance (Rsh) data.

6.2 Methods

The lead sulfide (PbS) quantum dots (QDs) were provided by Solexant and

the titanium oxide (TiO2) nanoparticles were purchased from Solaronix. The fabrica-

tion process follows the procedure published elsewhere [53] with the device structure

shown in the inset of Figure 6.1. All devices use 3.9 nm-diameter PbS quantum dots,
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which correspond to an exciton peak of 1003 nm and an optical energy gap of 1.24 eV.

Before the dipping process, the PbS QDs are submerged in a solution of chloroform and

hexane with oleic acid as the capping ligand. The ligand exchange replaces oleic acid

with the shorter ligands of EDT, MPA, or BDT for use in the devices (cf. Figure 6.2

inset). Current density-voltage (J-V) curves were taken from -1 to +1 V at varying

temperatures in an Oxford cryostat with a Keithley 2400 source meter used a xenon

light bulb next to the devices as the light source. The Xe bulb was chosen because

it came closest to matching the solar spectrum in the region of interest (1000 nm to

400 nm) and exhibited no changes in intensity with temperature over the temperature

region used in this study. The intensity was adjusted to match the Jsc of a commercial

Si device under AM1.5, 100-mW/cm2 illumination. After being fabricated in the nitro-

gen environment of the glove box, the devices were exposed to air for approximately

five minutes while being transferred into the cryostat. Previous results show that this

length of air exposure has a slightly positive effect on overall device performance [47].

While in the cryostat, nitrogen gas flowed across the devices. A RTD sensor placed next

to the sample recorded the device temperature. Samples are warmed from the lowest

temperature at a rate of ∼15 K/hr, followed by cooling at the same rate. For clarity,

only cooling data is shown, with no appreciable hysteresis existing between cooling and

warming data.
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Figure 6.1: The exponential pre-factor of each ligand device obtained through fitting
Eq. 6.1 to dark current-voltage data taken at different temperatures. Inset: Schematic
of the TiO2/PbS solar cell structure.
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Figure 6.2: Arrhenius plot of the saturation current density for each ligand showing the
negatively sloping linear behavior. Inset: The chemical structures of the three capping
ligands studied herein.
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6.3 Results

The transport mechanism of the devices was determined by fitting dark J-V

data to the non-ideal diode equation

J(V ) = J0[exp(A× V )− 1] (6.1)

where J0 is the saturation current density and A is the exponential pre-factor. Both

diode parameters in Equation 6.1, J0 and A can be temperature dependent, with the

transport mechanism being determined by the way in which they vary with tempera-

ture [18]. Figure 6.1 demonstrates the weak temperature dependence of A as plotted

against 1/kT . This, together with the negatively sloping linear behavior of J0 in the

Arrhenius plot of Figure 6.2, is characteristic evidence of tunneling transport [50].

Figure 6.3 shows dark and light current density versus voltage (J-V ) data for

an EDT device at a range of temperatures from 166 K to 324 K. The dark current

density at a positive bias of 1 V shows two orders of magnitude increase from low to

high temperatures, indicating that thermally excited charge carriers play an important

role in conduction as T increases [60]. There is no appreciable distinction between dark

J-V data from devices fabricated with the different ligands studied herein.

Under illumination, the ligand dependence of the devices is apparent in the

PV parameters’ temperature variations. Figure 6.4 shows the open-circuit voltage (Voc)

at a range of temperatures for devices using the three ligands. Voc is expected to vary

linearly with temperature [24]. However, a clear change in slope occurs when passing
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Figure 6.3: Current density-voltage data of an EDT device taken at 166, 190, 223, 260,
298 and 324 K. (a) Dark J-V measurements. (b) J-V measurements under illumination.
(Absolute temperatures are indicated on each J-V curve.)
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Figure 6.4: Open-circuit voltage dependence on temperature for three ligand devices.
Extrapolating the flatter, low-temperature region yields built-in potential values for
EDT, MPA and BDT devices (see text).

through room temperature for the EDT and MPA devices. BDT devices show the most

linear Voc-temperature dependence. The small change that does occur is seen at higher

temperatures than in the EDT and MPA devices.

Extrapolation of Voc-T data to 0 K provides the built-in potential (Vbi) of the

devices [24], which indicates the difference in quasi-Fermi voltages between the TiO2and

PbS layers. The Vbi for EDT, MPA and BDT devices are 0.59±0.02 V, 0.56±0.03 V

and 0.57±0.02 V respectively, indicating no significant ligand dependence of Vbi.

The shortcircuit current (Jsc) plotted as a function of temperature is shown in

Figure 6.5. As with Voc, both EDT and MPA exhibit a sharper change in Jsc than BDT.

Both parameters’ weaker dependence on temperature for BDT devices may be explained

by BDT’s more rigid structure. Comparing high-temperature to low-temperature Jsc val-
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Figure 6.5: The variation of short-circuit current density with temperature for the three
ligand devices. Vertical dashed lines show the melting point of each ligand.

ues, the absolute change is similar for both EDT and MPA, however MPA shows an

approximately eight-fold increase while EDT is closer to two-fold. BDT is relatively flat

through the temperature range, though the shallow increase upon warming from below

room temperature is consistent with previous results [61].

In FF-temperature data for the three ligand devices, both EDT and BDT are

relatively temperature-independent (around 25%), while MPA sharply rises above room

temperature from less than 20% to more than 35%. This is markedly different than

the ligand-dependence shown in both Jsc-and Voc-temperature data. The steep increase

in FF occurs with a simultaneous rise in shunt resistance for MPA devices, as seen in

Figure 6.6. Both of these together, however, do not lead to better device performance

at high temperatures, mainly due to the low Jsc and Voc values. This is demonstrated
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Figure 6.6: The shunt resistance dependence on temperature, showing MPA de-
vices’large increase above room temperature.

in Figure 6.7, showing J-V data for all three ligands at both 185 K and 315 K. The

large Rsh for the MPA device at a high temperature is clearly the poorest performing

J-V curve. It is also seen in Figure 6.7 that the device made with EDT demonstrates

the best EQE at low temperatures as well as a significant thermal shift compared to

MPA and, especially, BDT.

6.4 Discussion

The discrepancy between dark and light current densities’ response to cooling,

as seen in the decrease in positive-bias current density in Figure 6.3 and the increase in

Jsc in Figure 6.5, can be reconciled by considering the weaker role of deep trap states

under illumination. This can be verified by measuring an ideality factor of unity, indi-
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Figure 6.7: J-V characteristics for the photovoltaic devices fabricated with each of
the three different ligands measured in the cryostat under illumination at both low
temperature (185 K) and high temperature (315 K).
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cating a direct, band-to-band recombination mechanism dominating transport, rather

than recombination with charges in deep trap states. Attempting to obtain ideality

factors for the devices using the dark current density from Equation 6.1 yields nonunity

values across the temperature range, leading us to believe that deep trap states play

an important role in dark charge transport, which was previously seen to inhibit charge

transport in PbS devices [62]. However, when examining devices under illumination,

one may look at Voc variations with light intensity, which should follow a linear trend

on a semi-logarithmic plot, with the slope being the ideality factor in units of thermal

voltage [52]. We obtain a near unity ideality factor of 1.01 when using this technique,

indicating that deep traps no longer play a significant role under illumination, which

can be explained by the increased number of charge carriers filling the traps leaving

mainly direct recombination processes when illuminated [52].

Jsc dependence on temperature can partly be explained by the ligands freezing

upon cooling. Previous studies have shown that ligand contraction in CdSe NP films

lead to an order of magnitude decrease in transient times [63]. By varying the device

ligand, we are able to verify that the freezing of the ligand does play a role in the PV

properties of devices; however, not as clearly as this effect would suggest. With MPA’s

melting point being near room temperature (291 K), much higher than EDT at 232 K

and BDT’s being significantly higher than that at 370 K, we should observe Jsc peaks

at different temperatures based on which ligand is being used. This was not the case,

as seen in Figure 6.5, although BDT does display significantly different behavior. This

difference may be attributed to the presence of a stiff benzene ring rather than the loose
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carbon chains found in EDT and MPA (cf. Figure 6.2 inset). The stability of the ring

translates to much smaller changes in device performance upon cooling since the ligand

is less susceptible to temperature variations.

6.5 Conclusion

In summary, we have measured the effect of capping ligands in PbS NP ultra-

thin film photovoltaic devices at varying temperatures through current-voltage measure-

ments. Short-circuit current density and open- circuit voltage show similar variations

with temperature for EDT and MPA devices, both exhibiting an increase upon cooling

below room temperature. Jsc and Voc for BDT devices are relatively temperature in-

dependent, which we attribute to the stiffness of the benzene ring compared to linear

carbon chains. MPA devices demonstrate a sharp increase in fill factor and shunt re-

sistance upon warming through room temperature, however device performance is not

improved due to the poor fill factor of MPA devices at warmer temperatures. The in-

crease in dark current density upon warming is attributed to the significant role played

by trap states, while light current density decreasing with higher temperatures is caused

by the ligand contraction and saturation of trap states by the increased density of charge

carriers when illuminated. These results indicate that even higher performance should

be achievable through the careful selection of the coupling ligands.
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Chapter 7

Ge Quantum Dot Photovoltaic Devices

7.1 Introduction

We present our studies of germanium nanoparticle photovoltaic devices fabri-

cated in a layered structure via spin-coating of the colloidal Ge solution. These devices

provide potentially low-cost alternatives to conventional PV devices while requiring a

less energy-intensive fabrication process and lower toxicity materials. We previously ob-

served large forward-bias currents in Ge quantum dot solar cells. Here we demonstrate

the performance of recent devices which exhibit a non-zero photocurrent in conjunc-

tion with a significant open-circuit voltage. Through temperature-dependent current-

voltage measurements we extract the built-in potential and evidence for the dominant

electron conduction mechanism. These preliminary results provide insight into the de-

vice band structure, allowing for future exploration of device manufacturing parameter

space whereby modifications can further increase performance.
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7.2 Device Structure

The unoptimized device structure is based on that which provides our highest

quality PbS solar cells [53]. The layers are identical, switching PbS quantum dots for

Ge, with a different capping ligand.

Light enters the device through a glass slide, which is pre-patterned with a

transparent conducting oxide (TCO). Two TCOs are compared herein: fluorinated tin

oxide (FTO) and indium-doped tin oxide (ITO). A sol-gel layer of TiO2 acts as a buffer

between the pre-patterned TCO and the mesoporous nanoparticle layer of TiO2. This

is to prevent shorting caused by the sharp surface of the TCO layer, which is potentially

able to shunt through to the back contact. Both TiO2 layers are spun on from solution

and sintered in air at 450◦C. TiO2 is a large band gap semiconductor, transparent to

the optical spectrum, and therefore acts as the window layer in QD devices. It is well

understood to be a strong electrical conductor and is therefore acting as the n-type

layer of the p-n heterojunction.

Light is absorbed in the germanium quantum dot layer. The colloidal solution

of Germanium NPs capped with oleylamine is spun on or dip-coated in a nitrogen envi-

ronment, followed by a ligand exchange with hydrazine replacing the longer oleylamine

chains. This ligand exchange is necessary to allow shorter QD separation on the films,

enhancing electrical conduction.

Silver is thermally evaporated as the back contact. This metal is chosen for its

near matching with the HOMO level of Ge QDs, leading to a good Ohmic contact as
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Figure 7.1: The flat-band energy diagram of the Ge/TiO2 QD heterojunction pho-
tovoltaic device. Both transparent conducting oxides’ workfunctions are shown for
comparison.

an efficient hole collector. The flat band diagram for the complete Ge device is shown

in Figure 7.1 with a schematic view of the device presented in Figure 7.2.

Devices remain in an inert atmosphere until transfer into the cryostat, at which

point they are exposed to air for ∼5 minutes while in transit. The effects of this air

exposure are explored below.

7.3 Quantum Dot Synthesis

Germanium nanoparticles were synthesized via microwave heating of GeI2/GeI4

solutions, the ratio of which controlling nanoparticle size and thereby the peak absorp-
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Figure 7.2: A schematic view of the layered structure. Light enters from below, through
the glass, TCO, and window layers before reaching the active NP layer.

tion wavelength [45]. The quantum dots utilized herein are ∼4 nm in diameter corre-

sponding to an exciton peak of 1.1 eV photons [46]. This is near the Shockley-Queisser

peak photo-absorption band gap from an AM1.5 spectrum [21].

7.4 Transparent Conducting Oxide

Working devices were fabricated using two types of transparent conducting

oxides: indium tin oxide (ITO) and fluorine-doped tin oxide (FTO). A comparison

of both front-contact materials exhibit small differences on device parameters—FTO

yielding a slightly better Jsc while ITO provides slightly higher Voc values. Devices

fabricated with FTO offer a bit higher current densities in conjunction with an order

of magnitude improvement in rectification. The two TCOs effect on J-V data under

illumination are shown in Figure 7.3. Dark and light data is presented in the log plot of

Figure 7.4. Temperature-dependent current-voltage measurements herein utilize devices
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Figure 7.3: Current density-voltage curves for Ge devices under AM1.5G illumination
with two different transparent conducting oxides.

made with FTO as the front contact.

7.5 Temperature-Dependent Current-Voltage

As stated above, devices are exposed to air for ∼5 minutes between being

removed from the nitrogen environment of the glove box and being placed in the cryo-

stat. The cryostat uses an overpressure of nitrogen gas which flows across the device,

preventing ambient air from entering the central column and reaching the device.

Cryostat cooling is performed by liquid N2 and warmed by a resistive heater.

Temperature is monitored through a calibrated RTD sensor. Devices are illuminated
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Figure 7.4: Semilog plot of J-V data comparing the two TCOs in both dark and illu-
minated conditions.
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Figure 7.5: The open-circuit voltage at a range of temperatures for a Ge device. The
extrapolated linear trend intercepts T=0 at the barrier height as shown.

by a xenon bulb, which sits adjacent to the device while in the cryostat. The bulb loses

calibration below 150 K thereby limiting the lower temperature range.

While at a range of temperatures, full J-V curves are taken from -1 to +1 V.

This provides useful solar cell device figures of merit. Extrapolation of Voc to T=0 K

provides the barrier height which is 0.301±0.003 V for these devices. The Voc-T and

Jsc-T data are shown in Figures 7.5 and 7.6, respectively.

From the slope of J-V data at Jsc and Voc, the shunt and series resistances,

respectively, can be extracted, which are presented in Figure 7.7. The bifurcation of

series and shunt resistances corresponds to an increase in fill factor at lower temperatures

to >30%.
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Figure 7.6: The short-circuit current density for a Ge device as a function of
temperature.

Figure 7.7: The bifurcation of the series and shunt resistances in Ge devices, corre-
sponding to an increased fill factor at lower temperatures.
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Figure 7.8: Current-voltage data from a Ge device at the temperature extremes studied
herein. Both illuminated and dark dark data are shown for comparison.

Comparing the dark and light data at the high and low extremes of temper-

atures reached in the cryostat, clearly at the high T of 327 K the current density is

an order of magnitude stronger than at 151 K. This indicates that thermally activated

charge carriers are playing an important role. However, the lower dark current at low

temperatures leads to a high Voc. Both high and low, dark and light J-V data are

presented in the log plot of Figure 7.8.
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7.6 Air Exposure Analysis

Previous results with PbS QD devices indicated an improvement after brief

air exposure. In the present study, Ge devices are exposed to air while in transit from

the glovebox to the cryostat. In trying to separate performance degradation due to

temperature variations from those due to air exposure, a systematic study is presented.

Air exposure was performed under laboratory fluorescent lighting for the in-

dicated times. After each period, the device was placed back in the nitrogen glovebox

where it was measured using the solar simulator. In removing and replacing the device

in the glovebox, there is a brief exposure to vacuum while in the antechamber. This

was shown to not have an effect on performance.

The results of air exposure are shown in Figure 7.9. Devices exhibit a steep

initial decrease in performance after brief removal from inert glovebox environment.

Voc regains much of its original value over 24 hours of air exposure, however Jsc drops

dramatically over the same period.

Our previous PbS QD PV results indicate regenerative effect of soaking in

capping ligand solution. This was attributed to the dissociation of the ligand from

oxygen’s bond replacing that of the thiol ligand. However, the Ge device performance

degrades after a similar procedure, resoaking devices in hydrazine for 5 minutes. A

longer hydrazine soak provides no added benefit.
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Figure 7.9: Prolonged air exposure for Ge devices degrades device performance. After
an initial sharp Voc decline, much is recovered after a day’s exposure to air. A ligand
soak has a detrimental effect on device performance.

7.7 Electron Transport

In measuring J-V data at varying temperatures dark curves are fit to an non-

ideal diode equation given by

J(V ) = J0[exp(A× V )− 1], (7.1)

where J0(T ) is the reverse saturation current density and A(T ) is an exponential pre-

factor, which is similar to the ideality factor n. Both fitting parameters J0 and A can

be dependent upon temperature, the way in which suggesting the dominant transport

mechanism. Fitting is performed by least squares method. The results of the fitting are
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Figure 7.10: Diode fit parameters from Equation 7.1. The parameters’ temperature
dependence together indicate tunneling transport dominating electron conduction.

shown in Figure 7.10. The linear J0 behavior in an Arrhenius plot along with constant

A indicates tunneling transport through the device interface.

7.8 Conclusion

We have fabricated working germanium nanoparticle photovoltaic devices with

open-circuit voltages around 200 mV. Both ITO and FTO provide working contacts,

with benefits and drawbacks to both choices. Damage caused by air exposure is unable to

be recovered through ligand-solution soaking. Electron transport is dominated by tun-

neling transport. Despite low short-circuit current densities, these preliminary results

offer insight into band alignment factors—namely the TiO2/Ge barrier potential—that,
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once tuned, could provide higher photoconversion efficiencies.
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Chapter 8

Conclusion

As we reach the point where choices decide the quality of the next generation’s

environmental health, a new approach is needed to bring down the cost of photovoltaics

if it is to ever have a chance of significantly displacing carbon-burning alternatives. Even

with the recent drop in silicon solar module costs, more work is needed, especially with

an at least equally dramatic shift in natural gas prices. Quantum dot photovoltaics

could potentially provide a solutions. With much less material required, and lower

temperatures of device manufacturing, the front end costs are potentially much lower

than other technologies. In addition, multiple exciton generation and the simplicity of

graded band gaps fabrication could drive the efficiencies beyond the Shockley-Queisser

limit.

This dissertation attempted to answer fundamental questions of the electron

transport mechanisms within these QD PV devices. By understanding how the diode

behaves in the dark, PV parameters which are a result of basic diode performance
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could be further optimized. Furthermore, the way in which these parameters vary with

temperature allows a better understanding of device operation.

Temperature dependent electron transport is a valuable way to see through

the murky waters of disordered systems of these QD thin-film devices. Through fur-

ther studies that explore the vast parameter space of transport and optical properties,

eventually QD PV could find its place on future rooftops.
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