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LDPC-Coded MIMO Systems With Unknown Block
Fading Channels: Soft MIMO Detector Design,

Channel Estimation, and Code Optimization
Jun Zheng, Student Member, IEEE, and Bhaskar D. Rao, Fellow, IEEE

Abstract—This paper considers the design of a practical
low-density parity check (LDPC)-coded multiple-input mul-
tiple-output (MIMO) system composed of transmit and
receive antennas operating in a flat-fading environment where
channel state information (CSI) is assumed to be unavailable
both to the transmitter and the receiver. A soft iterative receiver
structure is developed, which consists of three main blocks: a soft
MIMO detector and two LDPC component soft decoders. We
first propose at the component level several soft-input soft-output
MIMO detectors whose performances are much better than
the conventional minimal mean square error (MMSE)-based
detectors. In particular, one optimal soft MIMO detector and
two simplified suboptimal detectors are developed that do not
require an explicit channel estimate and offer an effective tradeoff
between complexity and performance. In addition, a modified
expectation maximization (EM)-based MIMO detector is devel-
oped that completely removes positive feedback between input
and output extrinsic information and provides much better
performance compared with the direct EM-based detector that
has strong correlations especially in fast-fading channels. At the
structural level, the LDPC-coded MIMO receiver is constructed
in an unconventional manner where the soft MIMO detector and
LDPC variable node decoder form one super soft-decoding unit,
and the LDPC check node decoder forms the other component of
the iterative decoding scheme. By exploiting the proposed receiver
structure, tractable extrinsic information transfer functions of the
component soft decoders are obtained, which further lead to a
simple and efficient LDPC code degree profile optimization algo-
rithm with proven global optimality and guaranteed convergence
from any initialization. Finally, numerical and simulation results
are provided to confirm the advantages of the proposed design
approach for the coded MIMO system.

Index Terms—Degree profile optimization, EM estimator,
extrinsic information transfer (EXIT)-chart, iterative re-
ceiver structure, joint channel estimation and data detection,
LDPC-coded multple-input multiple-output (MIMO) system,
soft-input soft-output MIMO detector.
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I. INTRODUCTION

COMMUNICATION systems using multiple antennas
at both the transmitter and the receiver have recently

received increased attention due to their ability to provide great
capacity increases in a wireless fading environment [1], [2].
However, multiple-input multiple-output (MIMO) capacity
analysis and system design is often based on the assumption
that the fading channel coefficient between each transmit and
receive antenna pair is perfectly known at the receiver. This is
not a realistic assumption for most practical communication
systems especially in fast-fading channels.

For communication systems with unknown channel state
information (CSI) at both ends, conventional receivers usually
have a two-phase structure, data-aided channel estimation using
the preset training symbols followed by coherent data detection
by treating the estimated channel as the actual channel coef-
ficients. Due to the importance of channel estimator, which
directly determines estimation quality and hence the overall
system performance, various MIMO channel estimation al-
gorithms have been studied [3]–[5]. However, conventional
channel estimators form estimates based only on the training
symbols, thereby failing to make use of the channel informa-
tion contained in the received data symbols. Consequently, the
two-phase model limits the performance and can not approach
the MIMO channel capacity (or the maximum achievable
information rate), especially in a fast-fading environment (with
small channel coherence time). Possible solutions to the above
problem include use of blind source signal separation algo-
rithms [6]–[8], MIMO differential modulation [9]–[11], and
unitary space–time modulation (USTM) [12]–[18]. However,
none of these schemes can approach the noncoherent MIMO
capacity limit due to their suboptimal code structure, and in the
later case, USTM, only asymptotic (or the diversity) optimality
is achieved in high-SNR regimes and the approach suffers from
exponential decoding complexity.

In order to achieve better spectral efficiency than the conven-
tional data-aided estimation algorithm that uses large number of
training symbols for accurate channel estimation, the so-called
code-aided joint channel estimation and data detection algo-
rithms have recently received much attention. By treating the
unknown channel as unobserved (or missing) data, maximum-
likelihood (ML) sequence estimation of the coded data frames
using the expectation maximization (EM) algorithm was pro-
posed by Georghiades [19] and Kaleh [20] over single-input
single-output fading channels and extended to MIMO channels
by Cozzo and Hughes [21]. Alternatively, several recent publi-
cations [22]–[24] have developed EM-based algorithms that can
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iteratively improve the channel estimate based on the soft ex-
trinsic information from the outer soft decoder, and the schemes
work well in an iterative receiver structure.

In this paper, we focus on the design of practical low-den-
sity parity check (LDPC)-coded MIMO systems employing a
soft iterative receiver structure consisting of three soft decoding
component blocks: a soft MIMO detector and two soft LDPC
component decoders (variable node and check node decoders).
At the component level, we first propose a soft optimal MIMO
detector, which can generate soft log-likelihood ratio (LLR) of
each coded bit under the condition of unknown channel state
information at the receiver (CSIR) without forming any explicit
channel estimate. Based on the proposed soft optimal detector,
we develop two simplified suboptimal MIMO detectors with
polynomial and log polynomial decoding complexities. In ad-
dition, motivated by the EM-based detection algorithm in [24],
we also propose in the MIMO context a modified EM-based de-
tector that completely removes the positive feedback between
the input and output extrinsic information and provides much
better performance compared to the direct EM-based detector
that has strong correlations. By analyzing the mutual informa-
tion transfer characteristic [25] of the proposed soft MIMO de-
tectors, the system performance of different MIMO detection
algorithms are analyzed and compared under various channel
conditions. At the structural level, inspired by the turbo iter-
ative principle [26], the LDPC-coded MIMO receiver is con-
structed in an unconventional manner where the soft MIMO de-
tector and LDPC variable node decoder form one super soft-de-
coding unit and the LDPC check node decoder forms the other
component of the iterative decoding scheme. Utilizing the pro-
posed receiver structure, tractable extrinsic information transfer
functions of the component soft decoders are obtained, which
lead to a simple and efficient LDPC code degree profile op-
timization algorithm. This algorithm is shown to have global
optimality and guaranteed convergence from any initialization,
and is an improvement over the suboptimal manual curve fitting
technique proposed in [27]. Numerical and simulation results
of the LDPC-coded MIMO system using the optimized degree
profile further confirm the advantages of the proposed design
approach for the coded MIMO system.

The rest of the paper is organized as follows. Section II de-
scribes the LDPC-coded MIMO system structure as well as
the unknown block fading channel model. Section III proposes
several different soft MIMO detectors that can be used as the
building blocks for the turbo iterative MIMO receivers. In Sec-
tion IV, the receiver design of the coded MIMO systems is ad-
dressed in detail, which includes the overall receiver structure
in Section IV-A, the extrinsic mutual information transfer char-
acteristic analysis in Section IV-B, and the LDPC code degree
profile optimization algorithm in Section IV-C. In Section V, the
simulation results of the LDPC-coded MIMO system under var-
ious channel conditions are presented. Finally, conclusions are
drawn in Section VI.

II. SYSTEM MODEL

A. MIMO Transmitter Structure

We consider a MIMO system with transmit antennas and
receive antennas signaling through a frequency flat-fading

channel with independent channel propagation coefficient

Fig. 1. Transmitter model of LDPC-coded MIMO systems.

Fig. 2. Transmitted symbol structure of the coded MIMO system.

between each transmit and receive antenna pair. As illus-
trated in Fig. 1, a block of binary information bits denoted

is first encoded by an outer LDPC encoder
with code rate into a codeword
of length . The codeword is further segmented into
consecutive sub-blocks of length . Each sub-block is
then encoded by the inner space–time encoder into a coherent
space–time subframe . This encoder is composed of an
interleaver, modulator, serial-to-parallel converter, and a pilot
insertion operator. The symbol structure of each subframe
is illustrated in Fig. 2, where the first symbols are training
pilots, followed by data symbols. For the sake of
simplicity, we only consider the case where both the number of
pilot symbols and the number of data symbols

are multiples of the transmit antenna
number . We further denote the average signal to noise
ratio (SNR) of pilot symbols by and data symbols by .
Hence, the transmitted signal can be partitioned into two
submatrices: training followed by data, which is represented as

(1)

where are the fixed pilot symbols sent over
time intervals, and are the information bearing
data symbols sent over transmission intervals. Each element
of the transmitted data signal is a member of a finite com-
plex alphabet of size . One entire MIMO codeword
consists of complex symbols, which are transmitted
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Fig. 3. Conventional receiver structure of LDPC-coded MIMO systems.

from transmit antennas and across consecutive coherent
subframes of length symbols.

It is assumed that the fading coefficient matrix remains
static within each coherent sub-block and varies independently
from one sub-block to another. Hence, the signal model can be
written as

(2)

where is a received complex signal matrix, is a
transmitted complex signal matrix, is an com-

plex channel matrix, and is a matrix of additive noise
matrix. Both matrices and are assumed to have indepen-
dent complex Gaussian entries with zero mean and unit vari-
ance. We also assume that the entries of the transmitted signal
matrix have, on average, the following power constraint:

(3)

where is the average signal to noise ratio at each receive an-
tenna. Conservation of time and energy leads to the following
constraints:

(4)

Due to the insignificant capacity gain resulting from using op-
timal power allocation between training and data symbols as re-
ported in [28], [29], equal power allocation is assumed in this
paper, with

(5)

B. MIMO Receiver Structure

The MIMO receiver decodes the transmitted information bits
based on received signal matrices without knowing

any instantaneous channel state information . The
channel statistical distribution is assumed to be known
both to the receiver and to the transmitter throughout the paper.
We know that even with ideal CSI, the optimal decoding algo-
rithm for this system has an exponential complexity. Hence,
the near-optimal iterative receiver structure based on turbo
principle [26] becomes a promising alternative.

As a standard iterative decoding procedure, the structure of
the LDPC-coded MIMO receiver is demonstrated in Fig. 3. It
consists of two important components, an inner soft-input soft-
output MIMO detector (or MIMO demodulator) and an outer
soft LDPC decoder, which form a bipartite graph structure [30].
Soft LLR of each transmitted bit is passed forward and back-
ward between these two soft decoders with increasing accuracy
as the number of the iterations increase. At each iteration, the
MIMO detector forms soft extrinsic information of each coded

bit based on the received symbols and the a priori in-
formation coming from the soft LDPC decoder through proper
interleaving, and serves as the a priori information for the LDPC
decoder in the next iteration. Convergence is reached after cer-
tain number of the iterations and decoded bits are hence ob-
tained.

Notice that the LDPC decoder in Fig. 3 is itself composed of
two component soft decoders (variable node decoder and check
node decoder), and the entire MIMO receiver can be viewed
as a complicated graph code structure. Therefore, any bipartite
separation other than the conventional structure can lead to an
alternative iterative decoder. We utilize in Section IV-A an un-
conventional MIMO receiver structure, which combines the soft
MIMO detector and LDPC variable node decoder together as a
super component soft-decoder. The proposed receiver structure
has great design advantages that can easily lead to an efficient
LDPC code degree profile optimization algorithm as shown in
Section IV-C.

III. SOFT-INPUT SOFT-OUTPUT MIMO DETECTOR

As described in Section II-B, the soft-input soft-output
MIMO detector is an important decoding component of the
MIMO receiver, and plays an important role in determining
the performance of the entire coded MIMO system. Regular
communication systems with unknown channel state informa-
tion typically employ a two-stage decoding procedure, which
consists of channel estimation followed by coherent decoding
based on the estimated channel parameters. However, conven-
tional channel estimators perform estimation based only on
the training pilots, thereby failing to make use of the channel
information contained in the data symbols. Due to the mismatch
between the actual and estimated channel, system performance
suffers severe degradation especially in a communication envi-
ronment with low signal to noise ratio, or limited training pilots
in fast-fading channels.

In this section, several better MIMO detectors which include
the soft MIMO detector, EM-based MIMO detector, as well
as their modified versions are proposed that offer an effective
tradeoff between detection complexity and performance. The
MIMO detection algorithms proposed in this section are block-
based in the sense that the data detections are performed within
each coherent fading block. By considering the channel coeffi-
cient correlations between adjacent coherent blocks, one could
achieve even better performance by performing data detection
on several adjacent coherent blocks together. In this case, the
data detection algorithm has higher computational complexity
and depends heavily on the correlations of the fading channel,
and is beyond the scope of this paper. Therefore, for simplicity,
it is reasonable to use a block fading channel model in this sit-
uation and the performance penalty of the simple block-based
MIMO detection algorithm would be small by properly tuning
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the channel coherence time according to the actual channel
correlations.

For the sake of simplicity, subscript (or time index) , de-
noting the coherent block, is dropped in this section while de-
scribing the block-wise soft MIMO detection algorithms. To be
specific, we denote , , and
as the transmitted signal, channel matrix, and received signal
in each coherent block, respectively. Furthermore, submatrices

, , , and have the following structures, i.e.,

(6)

where , , , and represent complex row vectors
of size .Similarly, the binary subcodeword that maps
to the transmitted signal can also be decomposed into

(7)

where is binary set {0,1} and each row represents the cor-
responding binary information that maps to .

A. Optimal Soft MIMO Detector

First, according to the channel model (2), the conditional
probability density of the received signal matrix given the
transmitted signal matrix is given by [31]

(8)

It is evident from the above transitional probability that the un-
known MIMO channel is actually a memoryless vector channel
and hence the optimal MIMO detector does not necessarily need
to form a specific channel estimate.

In order to obtain the a posteriori probability of each coded
bit, the a priori probability of the input signal matrix is first
calculated as

(9)
where each element of matrix is a member of a complex
alphabet of size , and corresponding to LDPC-
coded bits. Therefore, the LLR of each LDPC-coded bit is given
by

(10)

where , , and is
the set of for which the bit of the LDPC-coded
sub-block is “ 1” (“ 1”). Finally, by subtracting the input a
priori information from the obtained a posteriori LLR, the soft
extrinsic information of each coded bit is obtained as

(11)

where , given by the following form:

is the a priori information of the coded bit from the last iter-
ation. Notice that there is no channel estimation stage in the soft
MIMO detector described above, and therefore the proposed
detection algorithm does not depend on the unknown channel
state but only on its underlying statistical distribution. Fur-
thermore, the optimality of the proposed soft MIMO detection
algorithm is restricted within the component level and does not
depend on the overall receiver structure of the coded-MIMO
system.

B. Suboptimal Soft MIMO Detector

The optimal soft MIMO detection algorithm proposed in Sec-
tion III-A provides the optimal extrinsic LLR values of each
coded bit. However, the summation in both the numerator and
the denominator of (10) consists of items, with

increasing linearly with number of data slots
(or coherence time ). It has an unaffordable exponential com-
plexity for practical communication systems, especially when
the coherence time is large. Hence, we propose a suboptimal
MIMO detector in this section with complexity increasing lin-
early with .

Notice that the optimal extrinsic LLR value of bit de-
pends on the input a priori information as well as the channel
observations of the entire coherent block. Taking another point
of view, the obtained extrinsic LLR is a combination of all the
input information through the utilization of the proposed al-
gorithm (10) in an implicit manner. Therefore, instead of per-
forming soft MIMO detection in one operation, we can extract
partial extrinsic information by processing only two rows of the
data matrix at a time, and then combining different partial
extrinsic information to form the final extrinsic LLR. As illus-
trated in (the right side of) Fig. 4, in order to combine informa-
tion from coded rows and , we first perform the op-
timal MIMO detection algorithm on the following reduced size
subcoherent block

(12)
Therefore, the partial extrinsic LLR value of bit

obtained from the a priori information of row , , and
channel observation is given by

(13)

where

and is the set of for which bit is “ 1”
(“ 1”). By the same reasoning, partial extrinsic information of
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Fig. 4. Suboptimal soft MIMO detector structure.

bit , related to (and contained in) the a priori information of
and channel observations and can also be obtained

by performing optimal detection on the following subcoherent
block

(14)

with the corresponding extrinsic LLR value given by

(15)

where

Having obtained extrinsic information and
- , one can obtain by the following substraction:

(16)

the extrinsic information of bit extracted solely from the
channel observation and the a priori information of .
In contrast to the situation of perfect channel state informa-
tion at the receiver where only depends on the a
priori knowledge of and observation , a nonzero ex-
trinsic information of can be obtained from the a priori
knowledge of and observation (with ) in an
unknown MIMO fading environment. An intuitive explanation
of the above difference can be made by viewing as par-
tially fixed pilots based on the input a priori information. There-
fore, better channel knowledge is learned (although no explicit
channel estimation exists), which translates into a better a pos-
teriori probability of . Hence, a nonzero partial extrinsic in-
formation solely from the a priori probability of and the
channel observation is obtained.

Due to the assumption that the input a priori information of
different bits are independent, all the partial extrinsic informa-
tion - and - can be viewed as being
close to independent. As illustrated in (the left-hand side of)

Fig. 4, the final output extrinsic information is ob-
tained by summing all the independent partial extrinsic infor-
mation obtained from different coded rows and pilot obser-
vations, i.e.,

(17)

where

A summation of terms is required to extract
the partial extrinsic information in (13) and

terms for - in (15). Therefore, in order
to obtain the output soft extrinsic LLR values, a total number
of terms of probability
summation is required for each coded bit, as opposed to

terms in the original optimal soft MIMO detector.
Furthermore, the proposed suboptimal soft MIMO detection al-
gorithm can be easily generalized by extracting partial extrinsic
information through combining more than two ( in general)
rows of the subcodeword together. By choosing different
combination size of , a group of suboptimal MIMO
detectors can be constructed which offer a varying degree of
detection complexity to system performance tradeoff.

C. Suboptimal Butterfly Soft MIMO Detector

Motivated by the fast Fourier transform (FFT) algorithm, we
can further reduce the complexity of the soft MIMO detector
to terms of summation per
coded bit by using a suboptimal butterfly MIMO detector struc-
ture as illustrated in Fig. 5. It is first assumed that the number
of the data slots , a power of 2. If not, we can appro-
priately zero-pad the transmitted signal matrix . As demon-
strated in (the left part of) Fig. 5, the suboptimal butterfly detec-
tion algorithm obtains the extrinsic information through a mul-
tilevel structure similar to the fast Fourier transform, where the
extrinsic information is accumulated from level to level. Specif-
ically, if the partial extrinsic LLR value of coded bit at the

level is - , then the extrinsic LLR value of the
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Fig. 5. Suboptimal soft MIMO detector using butterfly structure.

level can be updated by the following form, which is
illustrated in (the right part of) of Fig. 5:

(18)
where the second term - of (18) represents the ad-
ditional partial extrinsic information obtained from the informa-
tion of coded bits , with subcodeword row index given by

if
if

(19)

Similar to the extraction algorithm provided in (16),

- is given by the following form:

(20)

where - is given by (15), and partial extrinsic in-
formation is obtained by performing optimal soft
MIMO detection on the subcoherent block and
with modified input a priori information, i.e.,

(21)

Furthermore, the modified a priori probability in
(21) is a combination of the a priori probability of and
as well as the level extrinsic information of , which can
be represented as

(22)

where is given by

(23)

Therefore, - can be viewed as the partial extrinsic
information obtained solely from the a priori information of ,
channel observation , and its extrinsic information at the
level.

Starting from the initial condition - , the ex-
trinsic information - of each coded bit is accumu-
lated at each level by absorbing additional partial extrinsic in-
formation through the subcoherent block combining process. As
illustrated in (the middle part of) Fig. 5, the final soft extrinsic
LLR value of each coded bit is formed by combining the ex-
trinsic LLR information at the (lowest) level with the ex-
trinsic information obtained from pilot observations, which is
given by

(24)

where and satisfies

Note that both the suboptimal structure in Section III-B as
well as the suboptimal butterfly MIMO detector in the previous
subsection are modifications of the optimal soft MIMO detec-
tion algorithm provided in Section III-A. The two suboptimal
MIMO detection algorithms provided in Section III-B and III-C
have the following structural differences. First, the suboptimal
MIMO detector in Section III-B forms extrinsic information
through a linear combining structure, where there are a total of

partial extrinsic information terms (each corresponding
to the partial extrinsic LLR obtained from other rows ); each
term is computed by performing optimal detection on the subco-
herent block given by (13)–(16). On the other hand, the subop-
timal butterfly MIMO detector in Section III-C performs data
detection by employing a multilevel structure, where the ex-
trinsic information is distributed at succeeding levels until all
the input a priori information and the channel observations are
combined and exchanged between all different rows.

D. Modified EM-Based MIMO Detector

The soft MIMO detector and its two suboptimal modifi-
cations proposed in previous sections perform data detection
without forming any specific channel estimate. However,
forming a channel estimation followed by coherent MIMO
detection is in some cases a promising alternative especially
when there are enough training pilots. Besides, the estimated
channel state information can be easily fed back to the
transmitter for better power allocation and spectral shaping of
the channel coding.

Recently, a lot of attention has been focused on turbo MAP
EM estimators, which can take into account not only the
training pilots but also the a priori information of the coded
bits from the outer soft LDPC decoder. As reported in [23]
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and [24], the proposed turbo EM estimator provides better
performance than the conventional minimal mean square error
(MMSE)-based channel estimator and works well in an itera-
tive decoding algorithm, especially when is large. However,
there exists positive feedback between the input and output soft
LLR values which can cause severe performance degradation
of the coded MIMO system. Therefore, we propose in this
section a modified EM-based MIMO detector that avoids posi-
tive feedback and results in better performance than the direct
EM-based detection algorithm. Mutual information transfer
characteristic of the modified EM-based detector as well as the
corresponding simulation results provided in Sections IV and
V further confirm our claims of superiority of the new detector.

To start with the detection algorithm, let us first look at the
conventional MAP EM estimator, whose objective is to find the
channel estimation that maximizes a posteriori probability

(25)

which is intractable by direct maximization. Hence, by taking
the transmitted data signal matrix (or ) as the unobserved
(or missing) data, the following iterative expectation maximiza-
tion (EM) algorithm (similar to [23]) is applied.

• E-step:

(26)

After some manipulations, we have the following concise
form:

(27)

where is given by

(28)

and is given by

(29)

The a posteriori probability is given
by

(30)

with and given as

(31)

where is given by

(32)

• M-step:

(33)

After some manipulations, the updated channel estimation
is obtained as

(34)

• Initialization:
We use the conventional MMSE channel estimator for

initialization, which is given by

(35)

Since the EM iteration is embedded within the large itera-
tive decoding loop of the soft MIMO receiver, we can also
take the estimated channel from the last decoding iter-
ation as an EM initialization. Compared with the simple
MMSE estimator, the obtained estimation from the last
decoding iteration (through an EM algorithm) provides a
better initialization since additional a priori information
of the coded bits is used. Therefore, by using the alterna-
tive initialization, EM algorithm is able to begin at a better
starting point and hence results in smaller number of EM
iterations.

Maximum a posteriori channel estimation is obtained when
the MAP EM algorithm converge to after certain number of
iterations. Hence, the soft extrinsic information of each coded
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bit is provided by taking as the true channel coefficients
followed by coherent MIMO detection:

(36)

where

is the set of for which bit is “ 1” (“ 1”),

and probabilities and are given by (31)
and (32), respectively.

It is well known that short girth in the LDPC Tanner graph is
one of the major performance bottleneck for short length LDPC
code design [32], [33], where positive feedback of the itera-
tive LLR values generated by the existing short length loops
directly affects the iterative message passing algorithm. Simi-
larly, positive feedback caused by the correlations between input
and output extrinsic information of the MIMO detector will also
cause severe system performance degradation. Therefore, con-
siderable effort has been made in various detection algorithms to
avoid the same information from counting twice, or to avoid the
output extrinsic LLR values from containing any input a priori
information.

Unfortunately, if we study the conventional direct EM-based
soft MIMO detection algorithm carefully, we will find that the
estimated channel coefficient does depend on the a priori in-
formation of the entire subcodeword . To be specific, channel
estimation can be represented as a function given by

(37)

where - is the a priori information
matrix with each element equal to the a priori LLR value

. Therefore, the extrinsic information obtained by
(36) contains the input a priori information through , in
a sense that depends on , even though
the a priori LLR value is already subtracted from the log
a posteriori value as demonstrated by the second term. In
order to eliminate input-output correlations introduced by the
direct cannel estimation , which is a function of ,
we propose a modified EM channel estimation algorithm that
uses only part of the a priori information (a subset of matrix

- ) of the subcodeword . If we denote as a subset of
that includes , the partial a priori information

matrix can be formed by the following weighting operation:

(38)

where the selecting vector of size is given by

if
if

(39)

The modified channel estimation is hence obtained by applying
the same APP EM algorithm by using - as the input
a priori information matrix instead, i.e.,

(40)

The modified estimation can therefore be used to perform
coherent detections for coded rows with index

(41)

Let us further assume that the entire set can be
decomposed into the following disjoint sets with the same size,
i.e.,

(42)
Instead of having only one EM estimation in the direct
EM-based detector, separate EM estimations are to
be completed during one entire soft decoding iteration in the
modified EM-based detector. Note that and
correspond to special cases: has the maximum de-
tection complexity, but takes into account all available a priori
information from the outer soft decoder, while on the other
hand corresponds to the case of conventional direct
EM-based detection algorithm. For a short complexity anal-
ysis, we know that within each EM estimation, there are total

summation operations, where
is the average number of iterations required by the convergence
of the EM algorithm. Therefore, the average number of the
summations for each coded bit in the modified EM-based
MIMO detector is

(43)

The EM channel estimation algorithms proposed in this sec-
tion can make full use of the soft a priori information of the
coded bits from the outer LDPC decoder, and hence provide
better (and more accurate) channel estimations. From another
point of view, the MAP EM estimator is generally equivalent to
extending the pilot structure to the entire transmitted signal ma-
trix . Instead of limiting the pilots to , the receiver treats

as partially fixed pilots as well especially when the LLR
ratios are getting significantly improved as a result of the mes-
sages being updated constantly through the iterations.

Finally, a brief comparison of the pilots size required by the
different MIMO detection algorithms is as follow. First, we note
that the proposed optimal soft MIMO detector as well as its two
suboptimal modifications are able to provide soft data detections
with arbitrary number of pilot symbols and only need a small
number of pilots in order to remove detection ambiguity (in the
first decoding iteration). The modified EM-based detector only
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Fig. 6. Conventional receiver structure of LDPC-coded MIMO systems.

Fig. 7. New receiver structure of LDPC-coded MIMO systems.

requires a small number of pilots for the initializa-
tion of the EM estimation. Therefore, these four soft MIMO de-
tection algorithms provide a wide range of trade-offs between
complexity and performance and can work in different MIMO
fading environments and support various training sizes.

IV. DESIGN OF LDPC-CODED MIMO SYSTEMS

Conventionally, the coded MIMO receiver is obtained by con-
necting the inner soft MIMO detector and the outer LDPC de-
coder to form one large iterative decoding loop. As evident from
Fig. 6, the overall MIMO receiver actually consists of two iter-
ative decoding loops. In the outer loop, the soft MIMO detector
forms extrinsic information of each coded bit based on
the received signal as well as the input a priori knowl-
edge from the LDPC decoder, and serves as the input a priori
information for the LDPC decoder in the next iteration. The soft
LDPC decoder has an inner iterative decoding loop that is com-
posed of a variable node decoder, a check node decoder, and
two connecting edge interleavers. The soft extrinsic informa-
tion, which describes the uncertainty of each coded bit, is itera-
tively exchanged in the outer loop between the MIMO detector
and LDPC decoder as well as in the inner loop between variable
node and check node decoders inside the LDPC decoder.

A. Receiver Structure of the LDPC-Coded MIMO Systems

In this paper, we structure the MIMO receiver differently by
combining the soft MIMO detector and LDPC variable node de-
coder as a super soft-decoder, a form also utilized in [27]. As

illustrated in Fig. 7, the decoding loop is formed by exchanging
extrinsic information between the super decoder and the LDPC
check node decoder iteratively. Compared with the conventional
iterative MIMO receiver [named as bit-interleaved coded mod-
ulation with iterative decoding (BICM-ID) algorithm] shown
in Fig. 6, the new receiver structure has two advantages. First,
the proposed receiver structure has only one iterative decoding
loop and hence achieves smaller decoding complexity compared
to the two iterative loops (inner LDPC decoder loop and outer
“MIMO detector LDPC decoder” loop) in the conventional
BICM-ID structure. Second, the proposed structure has the ad-
vantage of enabling the extrinsic information transfer character-
istic function of the soft component decoders to have tractable
forms. By fully exploiting the closed-form extrinsic information
transfer (EXIT) functions, a simple and efficient LDPC code
degree profile optimization algorithm with proven global opti-
mality and guaranteed convergence is proposed in Section IV-C,
which is superior to the suboptimal manual curve fitting tech-
nique [25], [27].

B. Analysis of Extrinsic Information Transfer Characteristics

In order to understand as well as design the iterative decoding
systems having bipartite graph structures, we use the extrinsic
information transfer characteristic of the soft MIMO detector
and LDPC decoder, which was proposed by Brink in [25], to
analyze the convergence behavior of the iterative decoding
schemes of the coded MIMO system.

1) Brief Introduction on EXIT-Chart: We briefly describe
in this section the EXIT-chart technique proposed in [25]. For
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Fig. 8. Decoding trajectory of a regular (3,6) LDPC-coded MIMO system
with optimal soft MIMO detector over a 2 � 2 unknown MIMO channel with
coherence time T = 6, training length T = 2, and signal-to-noise ratio
� = 4 dB.

readers who are familiar with the topic, please skip to Sec-
tion IV-B-2) directly. The EXIT function is used to the describe
the input-output (a priori information versus extrinsic informa-
tion) relations of the soft component decoders from an informa-
tion theoretical perspective. Taking the component soft decoders
in Fig. 7 as an example, the corresponding EXIT functions of
the super soft-decoder and LDPC check node decoder can be
described by the following mapping (also depicted in Fig. 7 ac-
cordingly):

(44)

where represents the mutual information between the
coded bit and the input a priori information of the super soft-
decoder, and , , as well as are similarly
defined. According to the iterative decoding structure, where
the output extrinsic information from one component decoder is
treated as a priori input to the other one, the mutual information
between the extrinsic LLR values and the coded bits is updated
through the following evolution:

(45)

with index indicating the decoding iteration and the ini-
tialization is given by . As an example, we demon-
strate in Fig. 8 the EXIT functions and (with and
axis flipped) of the component soft decoders as well as the de-
coding trajectory of an LDPC-coded MIMO system. The 2 2
MIMO system considered has BPSK modulation, uses optimal
soft MIMO detector at the receiver, and transmits over a fading
channel with coherence time , training number ,
and signal to noise ratio 4 dB. The outer LDPC code is a

regular (3,6) code with codeword length . We can ob-
serve from Fig. 8 that, as long as the EXIT chart curve is
above curve (with the and axis flipped), i.e.,

(46)

the decoding trajectory is able to make its zigzag way until
reaching the successful decoding point (1,1). Therefore, it can
serve as a convergence criterion of the iterative decoding algo-
rithm for the LDPC code design purpose.

2) EXIT Characteristic of the Soft MIMO De-
tector: According to the results provided in [25] and [27], the
extrinsic mutual information between the transmitted
bit and the output LLR values , which measures the
information contents of the output extrinsic LLR values, can
be represented as

(47)

where distribution is obtained through Monte
Carlo simulation (histogram measurements) by setting the
system SNR equal to and the input a priori LLR values con-
ditioned on the transmitted bit have a Gaussian distribution
given by

(48)

Therefore, the extrinsic mutual information depends
both on the system SNR and the noise variance level of the
input a priori information. By viewing as an index parameter,
the EXIT function of the soft MIMO detector is given by the
following form:

(49)
where function is given by (equivalent to
[27, App., eq. (24)]),

(50)

Furthermore, input mutual information of the soft
MIMO detector is related to mutual information
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through the following equation for a variable node of degree
:

(51)

3) EXIT Characteristics of the LDPC Variable Node and
Check Node Decoders: Following the same reasoning as given
in [27], the extrinsic mutual information transfer characteristic
of a variable node of degree is given by the following form:

(52)

According to the duality properties [34] of the EXIT curves be-
tween single parity check codes and repetition codes over binary
erasure channels, the mutual information transfer characteristic
of a degree check node over binary input Gaussian output
channels can be well approximated as

(53)

C. LDPC Code Optimization

Following the methodology given in [25] and [27], the EXIT
functions of the super MIMO soft-decoder (combination of the
LDPC variable node decoder and soft MIMO detector) can be
obtained as

(54)

where is the fraction of the variable nodes having edge degree
, and is the number of different variable node degrees.

Similarly according to (53), the check nodes of the LDPC code
have a transfer characteristic given by the following form:

(55)

where is the fraction of the check nodes having edge degree
, and is the number of different check node degrees.

Following the successful decoding (convergence) criterion
provided in [25], the degree profile optimization problem can
be reduced to the following maximization problem by taking
the LDPC code rate as the objective

(56)

under linear constraints given by

(57)

Utilizing the closed-form EXIT functions of the component soft
decoders given by (54) and (55), we propose an efficient LDPC
code degree profile optimization algorithm in the following,
which is composed of two simple linear optimization steps.

• Variable node degree profile optimization:
For a fixed check node degree profile from the

iteration, the optimal variable node degree profile
is given by

(58)

under the constraints

(59)

where is a set of specified constraint
points, and is the total number of constraints on the
curve.

• Check node degree profile optimization:
For a fixed variable node degree profile from

the iteration, the optimal check node degree
profile is given by

(60)

under the constraints

(61)

where and are similarly defined as before.
• Initialization:

In general, we can start with any feasible degree pro-
files. Based on our experience from numerical simula-
tions, we find that it is always a good choice to start with
a regular check node degree .

If we stack the LDPC code degree profile into a super
vector . We can see that the ob-
jective given in (56) is a concave function with respect to

and that all the constraints given in (57) are linear. Hence, the
above degree optimization problem has only one unique optimal
solution. Due to the nondecreasing property of the proposed it-
erative maximization algorithm, it is guaranteed to converge to
the global maximum solution from any initialization point.
Therefore, in contrast to the suboptimal manual curving fitting
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Fig. 9. Extrinsic information transfer characteristic of the EM-based MIMO
detectors over a 2 � 2 unknown MIMO channel with training length T = 2

and signal-to-noise ratio � = 4 dB.

technique proposed in [27], the above iterative LDPC optimiza-
tion algorithm provides much better performance and can serve
as an efficient tool for coded MIMO system design.

V. NUMERICAL AND SIMULATION RESULTS

A. Elimination of Positive Feedback in EM-Based MIMO
Detectors

We demonstrate in Fig. 9 the extrinsic information transfer
functions of the EM-based and modified EM-based soft MIMO
detectors over an unknown 2 2 MIMO channel with co-
herence time interval 6 and 18, training length ,
and signal to noise ratio 4 dB. Binary phase-shift-keying
(BPSK) modulation is assumed for all the simulation results
in this section unless explicitly mentioned. For comparison
purpose, the mutual information transfer characteristics of the
simple MMSE-based MIMO detector and detector with ideal
CSIR are also included in the plot.

We can observe from the plot that for direct EM-based
MIMO detector, output extrinsic mutual information is
even greater than that of the detector with ideal CSIR in high

ranges, which directly indicates the existing positive
feedback between the input and output extrinsic information.
Such strong correlations between the output extrinsic infor-
mation and the input a priori information
will cause a severe performance degradation as verified by the
simulations results provided in Section V-D. As expected, the
modified EM-based MIMO detectors successfully eliminate
the correlation and achieve significant performance gain com-
pared to the simple MMSE-based detector especially when the
coherence time interval is large.

B. EXIT Function Comparison Between Different
Soft MIMO Detectors

As reported in [34], the area below the transfer function
well approximates the maximum

achievable rate of the outer LDPC encoder. Hence, the extrinsic

Fig. 10. Comparison of the extrinsic information transfer characteristic of
different MIMO detectors in a 2 � 2 unknown MIMO system with coherence
time T = 6, training length T = 2, and signal-to-noise ratio � = 4 dB.

information transfer characteristic can be easily used to
compare and evaluate the performance of different soft MIMO
detectors. We demonstrate in Fig. 10 the extrinsic information
transfer functions of different MIMO detectors described in
Section III under the same 2 2 unknown MIMO channel with
coherence time , training length , and system
SNR 4 dB. For comparison purpose again, the mutual
information transfer characteristics of the simple MMSE-based
MIMO detector and detector with ideal CSIR are also included.
As can be observed from the plot, all four soft MIMO detectors
have comparable performance in a small coherence time
channel environment, i.e., . All of them achieve signif-
icant performance gain over the simple MMSE-based detector
but are far away from the MIMO detector with ideal CSIR.

Furthermore, although the optimal soft MIMO detector is the
best among all MIMO detectors under the same channel con-
dition, it is not always affordable for practical communications
systems due to its complexity especially when the coherence
time is large. Therefore, suboptimal soft MIMO detectors as
well as the EM-based detectors turn out to be promising alterna-
tives for their excellent trade-offs between complexity and per-
formance over moderate to slow fading channels. As illustrated
in Fig. 11, the extrinsic information transfer functions of these
suboptimal MIMO detectors are compared over the same 2 2
unknown MIMO channel with large coherence time 18. In
this case (with large ), the modified EM-based MIMO detector
outperforms other suboptimal detectors and tends to approach
the performance of the MIMO detector with ideal CSIR.

C. LDPC Code Degree Profile Optimization

The analysis of the mutual information transfer character-
istic provided in Section IV-B not only enables us to analyze
the system performance, but also provides a powerful design
approach for the LDPC code optimization. We demonstrate in
Fig. 12 the EXIT-chart curves of a 2 2 regular (3,6) LDPC-
coded MIMO system with codeword length . The sim-
ulation is carried out over an unknown fading channel with co-
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Fig. 11. Comparison of the extrinsic information transfer characteristic of
different MIMO detectors in a 2 � 2 unknown MIMO system with coherence
time T = 18, training length T = 2, and signal-to-noise ratio � = 4 dB.

Fig. 12. EXIT-chart curve of a 2 � 2 regular (3,6) LDPC-coded MIMO
system over a unknown fading channel with coherence time T = 6, and
training number T = 2 using optimal soft MIMO detectors, under different
signal-to-noise ratios � = �2, 0, 2.2, 4, 6, 8 dB.

herence time 6 and training number , using op-
timal soft MIMO detectors, and under several different system
SNRs. From the plot, we can observe that 2.2 dB is the minimal
SNR that can avoid curve intersection and hence leads to suc-
cessful decoding, which is further confirmed by the cliff region
shown in the real simulation result of Fig. 14. We also illustrate
in Fig. 13 the EXIT-chart curves for the optimized LDPC-coded
MIMO system with outer code rate and code-
word length under the same system settings. It can be
observed from the plot that after applying LDPC code optimiza-
tion, the two mutual information transfer functions match each
other perfectly (almost fall on top of each other), and achieve
about 0.9-dB gain in performance.

Fig. 13. EXIT-chart curve of a 2 � 2 optimized LDPC-coded MIMO
system over a unknown fading channel with coherence time T = 6, and
training number T = 2 using optimal soft MIMO detectors, under different
signal-to-noise ratios � = �2, 0, 1.3, 4, 6, 8 dB.

Fig. 14. Probability of bit error of a 2 � 2 regular (3,6) LDPC-coded MIMO
system over a unknown fading channel with coherence time T = 6 and training
number T = 2 using several different soft MIMO detectors.

D. Overall Coded MIMO System Performance

We demonstrate in Fig. 14 the bit error rate of an LDPC-coded
MIMO system over unknown fading channels. For the sake of
simulation simplicity, we consider a small 2 2 MIMO system
over a relatively fast unknown fading channel with coherence
time . According to the noncoherent MIMO capacity
analysis provided in [28] and [29], the number of training sym-
bols is set equal to the number of transmit antennas , in a
sense to maximize the system capacity (or mutual information
rate). The outer LDPC code is a regular (3,6) code with code rate

, and codeword length . By taking into ac-
count the pilots cost, the overall system coding rate is

bits per transmission. We can observe from Fig. 14 that



ZHENG AND RAO: LDPC-CODED MIMO SYSTEMS WITH UNKNOWN BLOCK FADING CHANNELS 1517

Fig. 15. Probability of bit error of a 2 � 2 optimized LDPC-coded MIMO
system over a unknown fading channel with coherence time T = 6 and training
number T = 2 using several different soft MIMO detectors.

over 1.5-dB performance gain can be achieved by using op-
timal soft MIMO detectors than the simple MMSE-based de-
tector. The two suboptimal MIMO detectors as well as the modi-
fied EM-based soft MIMO detector also provide significant per-
formance gain, and at the same time maintain affordable de-
coding complexity. On the other hand, due to the existing posi-
tive feedback, the direct EM-based MIMO detector has a 2-dB
performance degradation compared to the modified EM-based
detector and performs even worse than the simple MMSE-based
detector.

Using the optimization algorithm provided in Section IV-C,
the optimal LDPC code degree profiles (with outer code rate

and codeword length ) for the coded
MIMO system using the different soft MIMO detection algo-
rithms are obtained and used in the overall performance simu-
lation. We consider the same 2 2 coded MIMO system used
in Fig. 14 that transmits over the same unknown fading channel
with coherence time 6 and pilot number for simu-
lations. The probability of bit error of the LDPC-coded MIMO
system with optimized LDPC code degree profile is shown in
Fig. 15. Compared with Fig. 14, we can achieve about 0.6-dB
performance gain by using the optimized LDPC degree profile
as opposed to the simple regular (3,6) LDPC code. Additional
simulation results, not shown here, indicate that an even more
significant performance gain can be achieved by the proposed
LDPC code optimization approach if higher modulation format
[such as quadrature phase-shift keying (QPSK) or 16-QAM] is
used, or if the coherence time interval is larger. Under these
channel conditions, the extrinsic information transfer functions
(54) and (55) of a regular LDPC-coded MIMO system are very
dissimilar to each other and this emphasizes the importance of
the proposed curve fitting technique.

VI. CONCLUSION

In this paper, we developed a practical LDPC-coded MIMO
system over a flat-fading wireless environment with channel

state information unavailable both at the transmitter and the re-
ceiver. We first proposed several soft-input soft-output MIMO
detectors, including one optimal soft MIMO detector, two sub-
optimal soft detectors, and a modified EM-based MIMO de-
tector, whose performances are much better than the conven-
tional MMSE-based detectors and offer an effective tradeoff be-
tween complexity and performance. By analyzing the extrinsic
information transfer characteristic of the soft MIMO detectors,
performance of the coded MIMO system using different MIMO
detection algorithms are analyzed and compared under various
channel conditions. Motivated by the turbo iterative principle,
the LDPC-coded MIMO receiver is constructed in an uncon-
ventional manner where the soft MIMO detector and LDPC
variable node decoder form one super soft-decoding unit, and
the LDPC check node decoder forms the other component of
the iterative decoding scheme. The proposed receiver structure
has lower decoding complexity and further leads to tractable
EXIT functions of the component soft decoders. Based on the
obtained closed-form EXIT functions, a simple and efficient
LDPC code degree profile optimization algorithm is developed
with proven global optimality and guaranteed convergence from
any initialization. Finally, numerical and simulation results of
the LDPC-coded MIMO system using the optimized degree pro-
file further confirm the advantage of using the proposed design
approach for the coded MIMO system.
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