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ABSTRACT OF THE DISSERTATION 

 
Understanding Spatiotemporal Boundary Formation: Processes, Models, and Scope 

by 

Gennady Erlikhman 

 

Doctor of Philosophy in Cognitive Psychology 

University of California, Los Angeles, 2014 

Professor Philip J. Kellman, Chair 

 
Often, differences in luminance, color, texture, and depth can help us determine object 

boundaries. However, when two surfaces have similar textures, as in the case of camouflage, or 

under dim lighting conditions, object segmentation can be difficult. In such cases, motion leading 

to the gradual accretion and deletion of texture information on a farther surface by a nearer one 

can be used to define the nearer object’s boundary. It has been demonstrated that accretion and 

deletion is but one of a general class of texture element transformations that can give rise to the 

perception of illusory contours, global form, and global motion. This general process is called 

spatiotemporal boundary formation or SBF. 

In the first chapter, I demonstrate two novel properties of SBF. First, SBF can be seen 

when element transformations are displacements in random directions. Second, global forms can 

be seen even when SBF-defined objects are rotating, expanding or contracting, accelerating, or 

smoothly deforming from frame to frame. I consider a two-stage model of SBF that can account 

for the perception of illusory contours and global form. In the first stage, oriented edge fragments 

are extracted locally from the sequential transformation of at least three elements in a small 
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spatiotemporal neighborhood. In the second stage, these fragments are integrated and missing 

regions are interpolated by the same processes that govern spatiotemporal interpolation between 

contrast-defined edges.  

Chapter 2 tests the first stage of this model. I created a display in which small circular 

elements were arranged in a sawtooth pattern and disappear and reappear one at a time in 

sequence. The resulting percept was not of apparent motion, but of an illusory bar that occluded 

elements one at a time. Using both subjective and objective methods, I identified the spatial and 

temporal parameters under which SBF occurs. The experiments provide support for models of 

SBF that begin with extraction of local edge fragments and identify minimal conditions required 

for this process.  

In the final chapter, I implemented the first stage of the SBF model and used it to predict 

edge orientations of SBF-defined edges. Model and human performance were compared in an 

orientation discrimination task as a function of element density, number of element 

transformation, and frame duration. The ideal observer model was able to perfectly predict edge 

orientation while human performance was suboptimal. I considered several constraints and 

sources of noise that could contribute to differences between human and ideal performance. In a 

second experiment, I measured the sensitivity to spatial and temporal display properties that may 

have acted as sources of noise. A model that incorporated these constraints and sources of noise 

was able to model human performance very closely with no additional free parameters. The 

behavioral and modeling work provide the first empirical evidence in support of the two-stage 

model of SBF.  
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Chapter 1: Non-Rigid Illusory Contours and Global Shape Transformations 

Defined by Spatiotemporal Boundary Formation 

 
Abstract 

Spatiotemporal boundary formation (SBF) is the perception of form, global motion, and 

continuous boundaries from relations of discrete changes in local texture elements (Shipley & 

Kellman, 1994). In two experiments, small, circular texture elements underwent small 

displacements whenever an edge of an invisible (virtual) object passed over them. Unlike 

previous studies that examined only rigidly translating objects, we tested virtual objects whose 

properties changed continuously. Experiment 1 tested rigid objects that changed in orientation, 

scale, and velocity. Experiment 2 tested displays that transformed non-rigidly across a series of 

virtual object shapes. Results showed that robust SBF occurred for all of the rigid 

transformations tested, as well as for non-rigid virtual objects, producing the perception of 

continuously bounded, smoothly deforming shapes. These novel illusions involve perhaps the 

most extreme cases of visual perception of continuous boundaries and shape from minimal 

information. They show that SBF encompasses a wider range of illusory phenomena than 

previously understood, and they present substantial challenges for existing models of SBF.   

Introduction 

How do we perceive the boundaries of objects? This is, first of all, a question of what 

information is available in the optical input to the eyes. Often, objects differ from their 

backgrounds or other objects in surface characteristics; these differences produce discontinuities 

in luminance, color, or texture in their retinal projections. In ordinary environments (as opposed 

to pictures), there also tend to be depth discontinuities at object boundaries. These are manifest 

optically in stereoscopic disparities at boundaries as well as through changes in relative motion 
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of points along a boundary during object or observer motion.  

In many situations, however, discontinuities in these stimulus properties are insufficient 

to reveal the complete boundaries of objects. Most pervasive are cases of occlusion, in which 

parts of an object’s boundaries do not project to the eye due to a nearer, interposed object. 

Likewise, under conditions of camouflage, object surface properties may closely match 

properties of the background. Perception of complete objects in such cases depends on 

interpolation processes, as have been investigated in the perception of partially occluded and 

illusory contours and objects (e.g., Kanizsa, 1979; Michotte et al, 1954; Kellman, Garrigan & 

Shipley, 2005; for a review, see Shipley & Kellman, 2000). Experiments and models in this area 

have revealed a great deal about how the visual system goes beyond local visual information and 

uses spatial and temporal relations among physically specified edges to determine the occurrence 

and positions of interpolated edges. 

These processes are used pervasively to overcome complex patterns of occlusion in in 

ordinary environments; yet perceiving object boundaries can be even more difficult. Suppose 

that no oriented edge fragments are visible. This can occur in camouflage, or more frequently, 

under dark viewing conditions, where a few sparse elements or features may be all that can be 

detected from the surfaces of objects or backgrounds. Gibson, Kaplan, Reynolds & Wheeler 

(1969) showed that even under such impoverished circumstances, objects with continuous 

boundaries can be perceived. Under conditions of relative motion of objects and observers, an 

object and its background undergo accretion and deletion of texture elements (Kaplan, 1969; 

Gibson, Kaplan, Reynolds & Wheeler, 1969). Accretion and deletion of even sparse texture 

elements on a farther surface by a nearer one can give rise to the perception of continuous 

boundaries, shape, and the relative depth of the two surfaces (Anderson & Cortese, 1989; 



Braunstein, Andersen, & Riefer, 1982; Gibson, Kaplan, Reynolds, & Wheeler, 1969; Kaplan, 

1969; Ono, Rogers, Ohmi, & Ono, 1989; Rogers & Graham, 1983; Yonas, Craton, & Thomspon, 

1987).  

Shipley & Kellman (1993, 1994, 1997) revisited accretion and deletion of texture and 

showed that it is just one example of transformations that can serve as the input to a more general 

process, which they called spatiotemporal boundary formation

the crucial information for boundaries and shape in accretion and deletion is not the gradual 

covering or uncovering of texture elements, but the fact that those events are encoded as abrupt 

transformations (spatiotemporal discontinuities

idea is correct, then transformations of other properties of local elements should also be capable 

of producing visual perception of continuous contours, shape, and relative motion. Their 

experiments revealed that discrete appearance and disappearance of texture elements, not just 

gradual covering or uncovering, produced SBF. Color change also produces SBF. Moreover, a 

whole range of ecologically bizarre transformations, including orientation change, position 

change (local element motion), and form change (of elements) also produce SBF. Figure 

shows an example of SBF displays. All element transformations were unitary and discrete, 

meaning that they occurred instantaneously with no partial covering of the texture
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Braunstein, Andersen, & Riefer, 1982; Gibson, Kaplan, Reynolds, & Wheeler, 1969; Kaplan, 
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Kellman (1993, 1994, 1997) revisited accretion and deletion of texture and 

showed that it is just one example of transformations that can serve as the input to a more general 

spatiotemporal boundary formation (SBF). They hypothe

the crucial information for boundaries and shape in accretion and deletion is not the gradual 

covering or uncovering of texture elements, but the fact that those events are encoded as abrupt 

spatiotemporal discontinuities) in local visible elements. If this more general 

idea is correct, then transformations of other properties of local elements should also be capable 

of producing visual perception of continuous contours, shape, and relative motion. Their 

discrete appearance and disappearance of texture elements, not just 

gradual covering or uncovering, produced SBF. Color change also produces SBF. Moreover, a 

whole range of ecologically bizarre transformations, including orientation change, position 

e (local element motion), and form change (of elements) also produce SBF. Figure 

shows an example of SBF displays. All element transformations were unitary and discrete, 

meaning that they occurred instantaneously with no partial covering of the texture

Braunstein, Andersen, & Riefer, 1982; Gibson, Kaplan, Reynolds, & Wheeler, 1969; Kaplan, 

1969; Ono, Rogers, Ohmi, & Ono, 1989; Rogers & Graham, 1983; Yonas, Craton, & Thomspon, 

Kellman (1993, 1994, 1997) revisited accretion and deletion of texture and 

showed that it is just one example of transformations that can serve as the input to a more general 

(SBF). They hypothesized that 

the crucial information for boundaries and shape in accretion and deletion is not the gradual 

covering or uncovering of texture elements, but the fact that those events are encoded as abrupt 

cal visible elements. If this more general 

idea is correct, then transformations of other properties of local elements should also be capable 

of producing visual perception of continuous contours, shape, and relative motion. Their 

discrete appearance and disappearance of texture elements, not just 

gradual covering or uncovering, produced SBF. Color change also produces SBF. Moreover, a 

whole range of ecologically bizarre transformations, including orientation change, position 

e (local element motion), and form change (of elements) also produce SBF. Figure 1.1 

shows an example of SBF displays. All element transformations were unitary and discrete, 

meaning that they occurred instantaneously with no partial covering of the texture elements. 

 



4 

Figure 1.1. An example of three frames from a typical SBF display. The virtual object, a square, 
is indicated by the dashed line. Elements inside the object boundary are white, indicating that 
they share some surface property (e.g., color, orientation, shape), while those outside are black, 
having a different value for that property (e.g. red circles inside the boundary and green outside). 
As the virtual object moves, elements entering the boundary of the square become white and 
those exiting become black. Figure adapted from Figure 2 on p. 5 of Shipley T. F. & Kellman, P. 
J., (1994) Spatiotemporal boundary formation: Boundary, form, and motion perception from 
transformations of surface elements. Journal of Experimental Psychology: General, 123(1), pp. 
3-20. 

 
As indicated in Figure 1.1, SBF occurs for both unidirectional and bidirectional 

transformations. In unidirectional displays, elements entering a specified virtual region all 

change their feature values in the same way. For example, in a unidirectional color change 

display, a virtual region moves among an array of white dots against a black background. Dots 

change from white to blue upon entering the virtual region and change back from blue to white 

upon exiting. Unidirectional color change displays have been extensively studied by Cicerone, 

Hoffman and colleagues, with an emphasis on perceived color spreading within such displays 

(Cicerone, Hoffman, Gowdy, & Kim, 1995; Cicerone & Hoffman, 1997; Fidopiastis et al., 2000; 

Miyahara & Cicerone, 1997; see also, Cicchini & Spillman, 2013; Gephstein & Kubovy, 2000). 

One feature of such displays is that in static views, a region corresponding to the virtual region 

(albeit with unclear boundaries) can be segregated from the background. In bidirectional 

displays, all texture elements are randomly assigned one of two feature values, so no such region 

is visible in any static view. Elements switch values when entering or exiting the virtual region. 

In a bidirectional color display, an array containing blue and white dots would be given, and 

when the virtual region passes over dots, the white dots turn blue and the blue dots turn white. 

Bidirectional displays also support SBF, producing the perception of continuous contours, 

complete shape, and global motion, but with no color spreading. The lack of uniform color 

across elements within the perceived shape’s boundaries appears to prevent perceptual surface 
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formation. In SBF displays of this sort, ring-like objects with an empty interior region are seen. 

Besides homogeneous color, it appears that common motion of interior elements can also 

produce perception of a surface (Shipley & Kellman, 1994), as in classical accretion-deletion 

displays.  

Ecology and SBF 
 

Some transformations that produce SBF could arise from physical events involving real 

objects and surfaces. Ignoring for the moment the distinction between discrete and gradual 

element changes, both element disappearance and color change are ecologically natural events. 

As recognized in the pioneering work of Gibson, Kaplan, Reynolds & Wheeler (1969), relative 

motion between an opaque object and a textured background surface will lead to disappearance 

(covering) and reappearance of texture elements. Shipley & Kellman (1994) noticed that 

accretion-deletion displays are also consistent with an alternative, ecologically plausible 

interpretation. In a display with white visible elements and black surround, the white dots could 

be holes in a black surface, allowing visibility through the holes of a more distant white surface. 

The element change of disappearance in such a display could be occlusion of the white surface 

by a moving black object situated behind the front black surface and in front of the more distant 

white surface. This alternative physical arrangement, and the occasional appearance of SBF 

displays as containing an occluded object, has been discussed by Cicerone and Hoffman (1997) 

in the context of unidirectional color changes (color from motion). It corresponds to a similar 

parallel between ordinary partly occluded objects and illusory objects, which has been described 

previously (Kellman & Shipley, 1991). The reversibility of common illusory figures displays has 

been one of several bases for theories positing a common mechanism underlying illusory and 

occluded contour perception (Shipley & Kellman, 1992; see Kellman, Yin & Shipley, 1998 or 
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Kellman, Garrigan & Shipley, 2005 for more detailed discussion). Unidirectional color change 

displays (e.g., when elements change from white to blue upon entering the virtual region) are 

also ecologically plausible.1 They could occur as modal completion if a blue, translucent filter, 

having the shape of the virtual region, passed in front of the array of elements. An ecologically 

plausible amodal version would occur under the circumstances described earlier for element 

disappearance, except that here a blue object, rather than a black one, is seen through holes. 

In contrast to unidirectional color change, most element changes that support SBF could 

not arise ecologically from relative motion of an object and its background. For example, Shipley 

& Kellman (1994) showed that SBF is produced when an array consists of small horizontally and 

vertically oriented rectangles, and the element changes consisted of orientation changes, such 

that a moving virtual region cause vertical elements turn to horizontal and vice versa. Likewise, 

bidirectional color changes are not consistent with any surface moving over a background nor 

with an amodal version, in which a moving form is seen through apertures. Most relevant to the 

current studies is the fact that SBF can be produced from local element displacements (Shipley & 

Kellman, 1993, 1994). This is perhaps the most remarkable element transformation that evokes 

SBF, because the local motions used as the element transformation bear no relation to the global 

motion of the form that is seen. The form and global motion are resultants or spatial and 

temporal relations of element transformations, as in other SBF cases; the fact that the elements 

themselves move are incidental (see Movie 1.1 for an example). One might think that these local 

motions would degrade the information about shape in SBF displays, but this does not appear to 

be the case. 

                                                        
1 Note that element disappearance is also an example of unidirectional color change; it is a special case in 

which the element changes to the background color.  
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Unlike kinetic or static illusory contours, or partly occluded contours, in SBF displays, no 

visible oriented contour fragments are required to produce contour and object perception. In fact, 

SBF occurs even in sparse displays, in which elements occupy as little as 1% or less of the total 

surface area. For these reasons, along with the fact that SBF occurs under many conditions that 

are ecologically bizarre, SBF might be considered the most extreme case of perceptual illusion in 

the construction of contours and objects. Perceived contours and shape are even more illusory 

than typical illusory contours, because so much is created from so little. Of course, as with most 

illusions, SBF may be seen as a byproduct of the mechanisms by which the visual system copes 

with the need to recover objects from information that is fragmented in space and time (Shipley 

& Kellman, 1994). 

The aperture problem in SBF 
 

In SBF, the only information available that can be used to recover moving contours are 

the positions and relative timing of abrupt element transformations. This presents a seemingly 

impossible version of the aperture problem. In the classic version (Wallach, 1935; Adelson & 

Movshon, 1982; Nakayama & Silverman, 1998a, 1998b; Shimojo, Silverman, & Nakayama, 

1989), when an object’s boundaries are seen through many small apertures, the visual system 

must determine the combined velocity structure of many spatially discrete, oriented contour 

segments whose global velocity is ambiguous. For each edge segment, its orientation and 

orthogonal motion velocity is available within the aperture. In SBF, the apertures are local 

elements that change discretely in some property. Unlike classic apertures, these changes by 

themselves do not produce any perception of a moving edge fragment. Moreover, a moving edge 

fragment in a classical aperture provides clear orientation information and constrains the 

directions of its movement to a 180 degree range. Individual element changes in SBF provide no 



8 

orientation information and no usable global motion information. Depending on the 

transformation used to produce SBF, there may indeed local orientation changes (when 

orientation change is used) or local motions (when element displacement is used), but these 

events not only provide zero information about a larger form and moving contours, they provide 

what would appear to be contradictory information. This more extreme version of the aperture 

problem in SBF has been referred to as the “point-aperture problem” (Prophet, Hoffman, & 

Cicerone, 2001).  

One proposed solution relies on an intersection of constraints (Kellman, Erlikhman, 

Mansolf, Fillinich, & Iancu, 2013; Shipley & Kellman, 1994, 1997). Successive transformations 

of texture elements produce velocity signals that are determined by the spatial and temporal 

separation between transformation events. The velocity, orientation, and global motion direction 

of a region boundary are constrained by these signals. For example, consider several one-

dimensional strips of evenly spaced texture elements at different orientations relative to the 

region boundary. Element transformations will be slowest along the strip that is orthogonal to the 

boundary, revealing the boundaries orientation. Given transformations along two strips (i.e., 

transformation of three non-collinear elements), both the velocity of the boundary and the local 

orientation can be recovered (see Shipley & Kellman, 1994, 1997 for details). 

As in the case of the typical aperture problem, this model produces a coherent output only 

when several constraints are met. The texture element transformations are assumed to come from 

1) a single, rigid entity that is 2) moving at a constant velocity. It is also assumed that the 

boundary can be decomposed into piecewise linear segments for which the orientation and 

velocity can be determined locally and independently. Such a model has been successfully 
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implemented for bar-like shapes whose boundaries have a single orientation and velocity along 

their length (Erlikhman et al. 2013). 

 Previous work has considered these constraints only in the case of unchanging shapes. 

Strong versions of the constraints underlying prior models would seem to imply that SBF should 

not occur for transforming shapes. For example, if a shape rotates, local edge orientations change 

continuously. If a shape scales, it also changes the local orientation of curved contours. If global 

motion of a shape accelerates, the assumption of constant velocity is violated. The models rely 

on the fact that fixed edge orientations and velocities produce specific spatiotemporal patterns of 

texture element transformations (which elements change and at what rate). If the pattern is 

constantly changing between element transformation events because edge orientation and 

velocity are changing, it would pose problems for current models in terms of recovering 

orientation and velocity of local edge fragments. In short, existing versions of SBF models, on 

the simplest account of their underlying assumptions, would work for a limited class of objects. 

Not coincidentally, these correspond to the objects that have been used in prior studies: rigid 

shapes moving with unchanging orientation and constant velocity. 

Here we explore whether these limitations on SBF or its models may be arbitrary. In the 

real world, object motions are not limited to translation at constant velocity; objects rotate, 

accelerate, and scale (at least retinally). When objects rotate in depth, the retinal projection of 

their boundaries transform non-rigidly. In structure-from-motion (SFM) displays, we can readily 

see these as well as other non-rigid motions, such as the deformation of elastic objects or 

biological motion, even in sparse dot displays (e.g., Jain & Zaidi, 2011). Does SBF work with 

shapes of objects whose boundaries are changing in orientation or size be recovered? If illusory 

boundaries can be seen for SBF-defined objects that rotate, scale, transform non-rigidly, this may 
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force a reexamination of models of SBF. Perception of shape and illusory contours under these 

conditions would also provide the most spectacular versions of this class of visual illusion. 

Moving, deforming illusory contours would be seen between stationary texture elements in the 

absence of all local orientation and motion information. 

We report two surprising visual illusions involving spatiotemporal boundary formation. 

In Experiment 1, SBF-defined illusory figures are seen that rotate, scale, and change velocity. 

Even though the displays contain only sparse texture elements such that no contour or shape 

information is available on any given frame, robust global form and motion is seen. In 

Experiment 2, observers were able to see non-rigid illusory contours produced by continuously 

deforming SBF-defined illusory figures. The displays demonstrate a new, easy way to create 

non-rigid illusory contours of arbitrary complexity. 

 
Experiment 1 

 Experiment 1 used object transformations of rotation, scaling, and acceleration to test 

core assumptions about SBF. SBF is thought to arise from the integration of local motion signals 

across space and time. Shipley & Kellman (1997) distinguished form-precedes-motion models 

from motion-precedes-form models and found evidence for the latter in SBF. Their results 

suggested that pairs of discrete element changes proximate in space and time provide the input to 

SBF. If viewed in isolation, such pairs of element changes would produce perception of nearest 

neighbor apparent motion (Ullman, 1979), but in SBF, they do not result in perception of such 

motion (between two element changes). Rather, when two or more vectors produced by pairs of 

element changes are present within a certain spatiotemporal window, these are integrated to 

produce moving oriented contour fragments. At a higher level, perception of object shape and 

continuous boundaries in SBF appears to depend on spatiotemporal interpolation processes that 
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connect the edge fragments. Spatiotemporal contour interpolation, which has been studied in 

other contexts, relies on the updating of position information of contour segments that have 

disappeared based on a representation of their orientation and velocity. This persistence and 

positional updating of previously seen contour fragments in a temporary visual store allows such 

fragments to be integrated with contour segments that appear at a later time (Palmer, Shipley, & 

Kellman, 2006; Palmer & Kellman, 2014).  

 Existing models of SBF assume that local edge orientation and velocity are fixed within 

the integration window (Shipley & Kellman, 1994, 1997). Both the initial formation of edge 

fragments, and most, but not all, studies of spatiotemporal interpolation between edge fragments, 

have used contours with fixed orientations and velocities, and, as this would imply, rigid shapes 

of unchanging size and orientation. Experiment 1 tested whether SBF operates when these 

parameters change.  

A secondary goal of the experiment was to determine whether element transformations 

consisting of motions in random directions could support SBF (see Figure 1.2). In previous 

work, consistent element motions (displacement in a uniform direction of all elements upon 

entering the virtual object) produced SBF (Shipley & Kellman, 1993, 1994). Preliminary work in 

our laboratory suggested that random element motion (consistent in extent but random in 

direction) could also support SBF, but no prior work has used these in SBF experiments. 

 
Figure 1.2. Example of the element transformation used in Experiments 1 and 2. The dashed 
region defines a “virtual object” which is not seen by the observer. As the virtual object moves, 
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elements that enter or leave the boundary of the virtual object are displaced in a random 
direction. 

 
A virtue of using small, random element displacements as the inducing events in SBF 

displays is that no static view contains any information about a possible global shape in the 

display. Accurate shape perception in displays based on this transformation necessarily reflects 

the integrative SBF process that constructs global shape and continuous contours from series of 

element transformations integrated over time (Shipley & Kellman, 1994). 

As in earlier research on SBF, we used a forced-choice shape identification paradigm. 

The paradigm is an objective performance method, in that there was an objectively correct 

answer (which virtual object was used in the display) on each trial. In the absence of global 

shape produced by SBF in displays such as those used here, consistently accurate shape 

perception is not possible (Shipley & Kellman, 1993). 

Materials and Methods  

Participants 
 
 Subjects were 16 undergraduate students (3 male, mean age: 19, range: 18-21) from the 

University of California, Los Angeles. All participants reported having normal or corrected-to-

normal vision. Subjects received course credit for participating. Experiments were approved and 

conducted under the guidelines of the UCLA IRB. All subjects provided informed consent to 

participate. 

Apparatus 

 
All displays were created and displayed using the MATLAB programming language and 

the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). Stimuli were presented on a Viewsonic 

G250 CRT monitor, which was powered by a MacPro 4 with a 2.66 GHz Quad-Core Intel Xeon 
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processor and an NVidia GeForce GT120 graphics card. The monitor was set to a resolution of 

1024x768 pixels and a refresh rate of 60 Hz. 

Displays 

 
Small red circles (diameter = 11.9 arcmin) were shown on a black background that filled 

the screen (40 cm x 30 cm; 25.06 deg x 18.92 deg). The total number of elements was either 200, 

400, 600, or 1200. Elements were pseudo-randomly arranged by creating 100 equally sized 

regions and placing an equal number of elements in a random position within each region (see 

Shipley & Kellman, 1994). This minimized overlap between elements and ensured a nearly 

uniform distribution of elements across the display thereby also avoiding large, empty regions. 

The four element quantities corresponded to element densities of 0.42, 0.84, 1.27, and 2.53 

elements per square degree of visual angle respectively. Elements covered 1.28%, 2.56%, 3.83%, 

or 7.67% of the pixels in the display area. 

We defined ten virtual objects or “pseudosurfaces” similar to those used in Shipley and 

Kellman (1993)2. They are depicted in Figure 1.3. We will refer to these as virtual objects or 

virtual regions, while noting that they were referred to as “pseudosurfaces” in earlier work. 

Either label is intended to convey that the shapes are not physical entities; any static frame of the 

display is seen to contain only a field of undifferentiated texture elements. The shapes had 

varying degrees of symmetry and regularity. The virtual objects were on average 5.6 degrees of 

visual angle in height and width, within a range of 4.36 to 6.45 degrees in either dimension. 

When a virtual object came into contact with an element, the element was displaced by 10 pixels 

(14.9 arcmin) in a random direction (see Figure 1.2). The displacements were large enough to be 

                                                        
2 In the original stimulus set, two of the “random” shapes (corresponding to the bottom row in Figure 1.2) were 
rotated or mirror reflections of one shape. Because shapes rotated in some conditions in this experiment, we 
generated new shapes that were complex and shared several features with other shapes, but were not confusable 
when rotated. 
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readily detectible (Shaffer & Wallach, 1966; Shipley & Kellman, 1993). When the element’s 

original position was no longer within the boundary of the virtual objects, the element returned to 

that position. An element was defined as inside the virtual object if its center was on or inside of 

the virtual object boundary. On average, 1.74, 3.44, 5.27, and 10.51 elements transformed from 

frame-to-frame for each of the four element quantities respectively. An example of a scaling and 

rotating shape is shown in Movie 1.2.  

 
Figure 1.3. Ten shapes used in Experiments 1 and 2. The top four shapes are familiar, regular, 
and have multiple axes of symmetry. The second row contain shapes that are more unusual, but 
still symmetrical. The final row contains asymmetrical shapes. All shapes have approximately 
the same horizontal and vertical extent. They are modeled after the shapes used in Shipley & 
Kellman (1994). Throughout the text we refer to them as circle, triangle, square, hexagon, tri-
leaf, butterfly, four-leaf, rand1, rand2, and rand3 starting from the top-left and going to the 
bottom-right. 
 
 Virtual objects traveled on a circular path centered on the middle of the screen, with a 

radius of 4.97 degrees of visual angle. The path was divided into 360 equidistant positions and 

the virtual object visited them sequentially. The virtual object traveled at a rate of four positions 

every frame (0.35 degrees per frame) and each frame was shown for 32.2 ms. A trial was 

complete when the virtual object made one complete circuit of the path. The starting position 

along the path was randomized across trials. A trial lasted 3 seconds. 
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 As virtual objects traveled along the path, they underwent one of four possible 

transformations: scaling, rotation, rotation and scaling, or acceleration. In the scaling and rotation 

and scaling conditions, virtual objects increased or decreased in size at a rate of 1% per frame. 

The maximum size of a virtual object was 9.92 degrees and the minimum size was 2.49 degrees 

in any dimension. Upon reaching the size limit, scaling direction reversed. Initial scaling 

direction (shrinking or growing) was randomized across trials. If the virtual object was rotating, 

it rotated at a rate of 3 degrees per frame in the clockwise direction. Starting orientation of the 

shape was always upright. In the scaling and rotation condition, both of the transformations were 

applied simultaneously. In the acceleration condition, on each frame, there was a 30% 

probability of the velocity increasing, a 30% probability of the velocity decreasing and a 40% of 

the velocity remaining constant. Velocity changes affected which of the 360 positions along the 

path the virtual object would visit. Minimum velocity was the two positions per frame (compared 

to a base velocity of four) and maximum velocity was seven positions per frame. Constantly 

increasing velocity for the duration of the movie resulted in a final speed that too fast to follow 

and caused the trial to terminate very quickly. 

Design 

 
 On each trial, participants performed a forced choice selection of the shape in the 

displays from among a fixed set of 10 alternatives. The four texture element quantities, the four 

shape transformation conditions, and the ten shapes were counterbalanced in a 4 x 4 x 10 design. 

Each trial was repeated twice, resulting in a total of 320 trials. Trial order was randomized. Prior 

to the experimental trials, there were 10 practice trials. Each practice trial had the highest density 

of elements and no shape transformation. Each of the ten shapes was shown once, in random 

order. The entire experiment lasted approximately 40 minutes. 
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Procedure 

 
Subjects sat in a dark room at a distance of 90 cm from the computer monitor, with the 

only illumination coming from the monitor. They were given verbal and written instructions 

explaining that they were going to see a black screen with red dots in which an illusory shape 

would appear to move. Their task was to identify the shape that they had seen out of a set of ten 

possible shapes. Subjects then began the practice trials. At the start of each trial, a white fixation 

cross appeared in the middle of a black screen for 1 second. Then, the cross disappeared and the 

red texture elements were shown. The virtual object began to move as soon as the elements 

appeared. Once the object completed a full path around the screen, a new display with an image 

of the ten shapes was shown. Subjects made a response by clicking on one of the ten shapes with 

the mouse. A red, rectangular box appeared around the answer choice for 1.5 seconds to indicate 

the subject’s response. For practice trials, feedback was provided by showing a green, 

rectangular, box around the correct choice. If the subject had selected the correct response, the 

green box surrounded the red one. In addition, the word “Correct” or “Incorrect” appeared in the 

top-left corner of the screen. Subjects had unlimited time to make a response. Once the practice 

trials were over, a message appeared on the screen, instructing subjects that the practice trials 

were over and that they would no longer receive any feedback.  

Results 

 
Mean accuracy data for Experiment 1 are shown in Figure 1.4. Highly accurate shape 

perception was possible under some of the conditions of the experiment, especially at the highest 

element density, and all conditions appeared to exceed chance accuracy. These observations 

were confirmed by the analyses. Accuracy data were collapsed across shapes and submitted to a 

4 x 4 within-subjects ANOVA. There was a main effect of transformation type (F(3,45)=90.18, 
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p<0.001, η2
p = 0.86), with highest accuracy for scaling shapes, followed by scaling and rotating 

shapes, rotating shapes, and accelerating shapes across most element quantities. There was a 

main effect of number of elements (F(3,45)=349.36, p<0.001, η2
p = 0.959), with accuracy 

improving with an increasing number of elements. There was also a significant interaction 

(F(9,135)=2.70, p=0.006, η2
p = 0.15).  

 

 
Figure 1.4. Average accuracy data from Experiment 1 as a function of number of texture 
elements in the display. Data are averaged across subjects and shapes. All transformation 
conditions were within-subject. Error bars indicate 95% confidence intervals. The gray, dashed 
line indicates chance performance (10%).  

 
The highest accuracy was observed for the scaling condition with the largest element 

quantity (88.13%). Performance for this shape transformation at this number of elements was 

greater than all of the other transformation conditions (rotation: 65.31%, t(15)=6.80, p<0.0001 ; 

scaling + rotation: 80.31%, t(15)=2.74, p=0.015 ; acceleration: 72.19%, t(15)=5.08, p<0.001). 

For the lowest number of elements tested (200), performance in all conditions was above chance 
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(10%) (scaling: 34.69%, t(15)=9.64, p<0.0001 ; rotation: 18.12%, t(15)=3.64, p<0.005 ; rotation 

+ scaling: 28.13%, t(15)=7.15, p<0.0001 ; acceleration: 18.12%, t(15)=5.17, p<0.001). 

Discussion 

 
 The results of Experiment 1 show that boundaries and accurate shape can be perceived 

from SBF displays in which the virtual objects change orientation, scale and velocity. Moreover, 

these illusory figures were seen despite the transformations being displacements of individual 

texture elements in random directions, thereby producing incoherent local motion signals. 

Accurate perception of shape and the subjective appearance of continuous illusory contours 

bounding shapes illustrates the extreme nature of interpolation processes in SBF. Texture 

element transformations were spatiotemporally quite sparse in this study. For the 200, 400, 600 

and 1200 element displays, there were on average about 1.6, 3.2, 5 and 10 element 

transformations per frame, respectively. These were spread along an average boundary length of 

the shapes of 17.6 degrees of visual angle. Shapes and illusory contours perceived in SBF, 

including the transforming shapes in this study, represent perhaps the most extreme illusion 

among illusory contours, in terms of spatial support. Even when a number of accumulated frames 

are considered together, there amount of total boundary specified by local stimulus information 

is a very small percentage. Displays perceived in SBF represent, in an important sense, the most 

perceived boundaries and shape perceived from the least stimulus input. 

It is surprising that transforming virtual objects produced such robust SBF, given that 

changing orientation of edges in a neighborhood, changing stimulus velocity, and the changing 

size of virtual objects should all complicate recovery of the local edge fragments hypothesized to 

give rise to SBF. Transforming virtual objects create two confounding problems for an 

intersection of constraints solution to this aperture problem. First, in between successive 
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transformations of local texture elements, the edges that caused those transformations are 

changing not only in their position, but also in their orientation and velocity. Since several 

transformation events are needed constrain the orientation and velocity of an edge, it is unclear 

how the visual system can relate two or more events caused by, essentially, two different edges. 

Second, once local edge segments are recovered, they must be interpolated since they are 

recovered piecemeal, in different positions along the virtual object boundary and at different 

times. We return to these issues in the General Discussion. 

Shape identification was affected predictably by the manipulation of element quantity, 

improving as a function of the number of elements. Performance was best for scaling and the 

combination of scaling and rotation shape transformations. Accuracy may have been better in 

those conditions because as objects become larger, more texture element transformation events 

occur along the virtual object boundary. For the highest density, there were, on average, 4.64 

transformations per frame when a virtual object reached its smallest size (compared to an 

average 10.51 transformations per frame for rotating objects that did not change size) and 18.68 

transformations per frame when the virtual object reached was largest. However, this increase in 

element changes scales directly with figure size, such that the number of element changes per 

unit of perimeter remains constant. Perhaps a more plausible account of improved performance 

with larger sized objects is that size may make differences between similar shapes larger and 

more discriminable. For example, at the highest density in the scaling condition, circles were 

never confused for hexagons or vice versa, but they were confused 17 times across all subjects at 

that element density when the objects were rotating without scaling.  

The pattern of results in this experiment, with element position changes in random 

directions, was similar to experiments in which element transformations were position shifts in 
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only one or two directions and when virtual objects were rigid and not transforming (Shipley & 

Kellman, 1993, 1994). In those studies, performance also increased as a function of element 

quantity. Since different numbers of elements were used across studies, converting the 

independent variable to element density per degree of visual angle allows a standard metric for 

comparison. We take up these comparisons after considering the results of Experiment 2 below. 

 

Experiment 2 

The results of Experiment 1 suggest that shapes that rotate, scale, and accelerate can be 

accurately perceived in SBF. In Experiment 2, we further examined what kinds of global shape 

transformations are supported by SBF. Changes in orientation, scale, and velocity are rigid 

transformations of the virtual object. Perhaps non-rigid transformations can also be perceived. In 

these displays, virtual objects smoothly morphed from one of the ten shapes used in Experiment 

1 into another. Morphing continued from shape to shape until all shapes were seen. Subjects 

were instructed to look for a target shape (say, the triangle) in the morphing sequence and to 

indicate when they saw that shape (see Movie 1.3).  

 If non-rigid illusory contours are seen in these displays, this presents a much more 

confounding problem for spatiotemporal interpolation. In addition to the difficulty in matching 

texture element transformation events with contours that are changing in position and 

orientation, the visual system must now deal with changes in contour curvature as the shape is 

morphing. Supposing that local edge segments can be somehow recovered even though the 

curvature of those segments changes in between transformation events, the segments must then 

be interpolated. While it has been demonstrated that contour fragments that change in orientation 

under occlusion can be interpolated with visible ones, it is not known whether contours 
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segments, real or illusory, can undergo changes in curvature while not visible and still be 

interpolated with other contour segments that are later revealed.  

Materials and Methods 

Participants 

 
 The participant group was composed of 12 University of California, Los Angeles 

undergraduate students (10 female, mean age = 22.75). All participants reported having either 

normal or corrected-to-normal vision. Participants were awarded course credit for their 

participation. Experiments were approved and conducted under the guidelines of the UCLA IRB. 

All subjects provided informed consent to participate. 

Displays and Apparatus 

 
Since the lowest element densities in Experiment 1 made shape identification difficult 

when the shape was not changing, higher element quantities were used to ensure that 

performance was not at floor. The three element quantities used were 529, 900, and 1600. In 

order to accommodate the larger number of elements on the screen, texture element diameter was 

reduced to 7 arcmin for a viewing distance of 134.5 cm. The element quantities corresponded to 

densities of 2.46, 4.18, and 7.43 elements per square degree of visual angle. Elements covered 

2.62%, 4.47%, and 7.95% of the total display area. 

The same shapes were used as in the first experiment. Average virtual object diameter 

was 4.45 degrees. The smallest size was 3.35 degrees and largest was 5.03 degrees. On average, 

there were 3.8, 6.47, and 11.47 element transformations per frame for each of the three element 

quantities respectively. As in Experiment 1, the virtual object traveled along a circular centered 

on the middle of the display. The radius of the path was 3.33 degrees. The path was divided into 

120 equidistant positions. The distance between each position was 0.17 degrees. The virtual 
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object visited one position per frame. Each frame lasted for 33.2 ms. It took an object 4 seconds 

to make a full revolution. Starting position along the path was randomized across trials.  

On each trial, the virtual object began as one of the ten shapes and smoothly morphed 

from one shape to another until it had become each of the ten shapes once. Shape morphing was 

performed by selecting 120 equally spaced points along the contour of each shape to use as 

reference points. A morphing algorithm generated 99 intermediate shapes between every pairing 

of shapes by creating matches between the nearest contour points of the two shapes and 

interpolating intermediate locations. In total, there were 90 such morphing sequences, one 

between each pair of shapes. The first and last steps of the morphing sequence were the original, 

un-morphed shapes. Each intermediate morphing step therefore reflected the relative proportion 

of the two shapes that were being morphed. For example, on the 31st step in the morphing 

sequence between shape A and B, the shape was 69% shape A and 31% shape B. The entire 

transformation sequence from one shape to another took approximately 3.3 seconds.  

The transformation sequences on each trial involved nine transformations between the ten 

shapes. The order of shapes in the transformation sequence was randomized on each trial with 

the constraint that the first and last shapes could not be the target shape. Each trial lasted a 

maximum of 30 seconds. Each shape served as the target shape twice for each density, resulting 

in a total of 60 trials. Trial order was randomized. As in Experiment 1, there were 10 practice 

trials to help familiarize the participants with the task. Each of the ten shapes was the target for 

one of the practice trials. The highest density backgrounds were used for all practice trials. The 

entire experiment lasted approximately 30 minutes. 

Design and Procedure 
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Participants were informed that the purpose of the study was to examine the perception of 

changing visual illusions. The stimulus was described as a morphing shape that would result 

from a pattern of flickering dots on the screen. At the beginning of each trial, the participant was 

presented with a target shape selected from one of the ten possible shapes. After a key press, the 

textured background appeared and the animation began. The participant was instructed to press a 

key when they believed the virtual object on the screen most closely resembled the target shape. 

The display was terminated immediately once the participant pressed the key. If no response was 

given during the course of the animation sequence, the trial was repeated (same target shape), but 

with a different shape transformation sequence. Subjects were instructed to try to make a 

response on the second or third viewing of a trial, and to avoid repeating a trial more often.  

The first ten trials of the experiment were practice trials at the highest density. Each of 

the ten shapes was the target shape on one of the ten trials. Feedback was provided on the screen 

after every practice trial (“Correct” or “Incorrect”). Once the practice trials were over, the subject 

was informed via instructions on the screen that they would no longer receive feedback and that 

the number of texture elements would vary across trials.  

Dependent Measures and Data Analysis 

 
A response was scored as correct if it was made while the virtual object on the screen was 

a morph of 50% or more of the target shape. This occurred as one shape morphed into the target 

shape or as the target shape began morphing into another. Since each frame corresponded to a 

1% morphing of the virtual object, the range within which a response was scored as correct was 

50 frames on either side of the frame that contained a 100% morph of target shape. 

The exact frame on which a response was recorded presumably includes time for 

response initiation and execution (i.e., response time). We applied a correction to account for the 
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delay between when a relevant perceptual event caused an observer to initiate a response and 

when a subsequent key press was recorded. For example, a response time correction that 

corresponded to 30 frames would mean that if an observer initiated a response when the virtual 

object was a 50% morph of the target shape, then the recorded response would occur 30 frames 

later, when the object was an 80% morph. Likewise, a recorded response when the object was a 

60% morph of the target shape would actually correspond to a response initiation 30 frames 

earlier, when the object was only a 30% morph.  

We defined the frame that contained the 100% morph of the target shape as the target 

frame, the frame on which a key press was recorded as the response frame, and the frame on 

which the response was initiated as the decision frame. The response time was defined as the 

difference between the response frame and the decision frame. Applying a response time 

correction shifted the center of the window within which a response was considered correct 

forward in time. With no correction, the window would be centered on the target frame and 

would span 50 frames on either side. A 30-frame correction would shift the window forward by 

30 frames so that correct responses would be those response frames that occur between 20 

frames before or 80 frames after the target frame.  

We considered all integer response time corrections between 0 and 50 frames. For each 

correction, we determined the window within which responses were correct and computed the 

average accuracy across all subjects and conditions. The response time correction that resulted in 

highest average accuracy was 12-15 frames (all times in that range produced the same accuracy). 

Those numbers of frames corresponded to times of 398.4 - 498 ms, which roughly agree with 

response times from object priming studies (Vorberg, Mattler, Heinecke, Schmidt, & 

Schwarzbach 2003), recognition memory (Sternberg, 1969), and RSVP paradigms (Botella, 



1992). The difference in average accuracy with and without the correction was less than 1% and 

all subsequent analyses were no different whether the corre

Results 

 
Mean accuracy data for Experiment 2 are shown in Figure 

successful shape identification occurred well above chance performance throughout, reaching 

very high accuracies at the highest element density. Accuracy data were collapsed a

and submitted to a one-way, within

density (F(2,22)=19.38, p<0.001, 

revealed that accuracy at the highest density was greater t

medium: t(11)=2.55, p=0.027 ; high vs. low: 

medium density was greater than at lowest density (medium vs. low: 

These and the results that follow we

correction. 

Figure 1.5. Average accuracy data from Experiment 2 as a function of number of texture 
elements in the display. Data are averaged across subjects and shapes. Error bars indicate 95% 
confidence intervals. The dotted gray bar indicates chance performance (10%). 
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1992). The difference in average accuracy with and without the correction was less than 1% and 

all subsequent analyses were no different whether the correction was applied or not.
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Accuracy data were also examined separately for each shape across the three element 

quantities (Figure 1.6). Data were collapsed across subjects since each target shape was repeated 

only twice per subject. Low, medium, and high in the figure legend correspond to the three 

element quantities (529, 900, and 1600 elements). Identification accuracy was perfect for 

triangles and hexagons for the largest element quantities and exceeded 90% for squares, the 

quad-leaf shape, and the shape Rand3. Worst performance for any element quantity was for the 

shape Rand1 (25%). Worst performance at the largest quantity was for shape Rand2 (41.67%). 

Chance performance was 10%. Sensitivity (d’) for each shape is shown in Figure 1.7. False 

alarms were counted as those trials in which a subject responded with any shape other than the 

target shape. As with accuracy, sensitivity was computed from data collected from all subjects. 

Sensitivity was highest for triangles (4.65), squares (3.82), and hexagons (4.68) for the highest 

density, and was relatively high for circles (3.15), quad-leaf (3.11), and Rand3 (3.35). Sensitivity 

decreased with decreasing element density. 



Figure 1.6. Shape identification accuracy in Experiment 2 separated by shape and element 
quantity (low = 529, medium = 900, and high = 1600 elements) and collapsed across subjects. 
The dashed gray line indicates chance performance. Shape names correspond to the shapes 
shown in Figure 1.2 starting at the top
top-to-bottom.  
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Shape identification accuracy in Experiment 2 separated by shape and element 
= 900, and high = 1600 elements) and collapsed across subjects. 

The dashed gray line indicates chance performance. Shape names correspond to the shapes 
2 starting at the top-left corner of the figure and proceeding le

 
Shape identification accuracy in Experiment 2 separated by shape and element 

= 900, and high = 1600 elements) and collapsed across subjects. 
The dashed gray line indicates chance performance. Shape names correspond to the shapes 

left corner of the figure and proceeding left-to-right and 
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Figure 1.7. Shape identification sensitivity (d’) in Experiment 2 separated by shape and density 
(low = 529, medium = 900, and high = 1600 elements) and collapsed across subjects.  

 
A secondary analysis examined the degree to which the virtual object on the screen 

resembled the target shape on the decision frame (response time corrected). Recall that subjects 

were instructed to respond as close as possible to the target frame (the frame containing the 

100% morph of the target shape). Looking only at trials in which subjects made a correct 

response, the number of frames between the target frame and the decision frame is a measure of 

the extent to which the virtual object resembled the target shape. Because there were 100 frames 

between the target shape and the subsequent shape in the transformation sequence, a decision on 

the 16th frame after the target frame would indicate that the shape on the screen was an 84% 

(100-16) morph of the target shape. Likewise, a decision 16 frames before the target frame 

would also contain an 84% morph of the virtual object. Results were not significantly different if 

the response time correct was not applied.  

Figure 1.8 shows the percentage of target shape on the decision frame (response frame - 

15 frames) averaged across subjects as a function of element quantity. A one-way, within 

subjects ANOVA found a significant main effect of density (F(2,22) = 5.65, p=0.010, η2
p=0.34). 

Post hoc, between-density comparisons revealed that the percentage of target shape on the 

decision frame for the highest density (84.96% target shape) was significantly greater than the 

percentage for the lowest density (79.31%; t(11)=3.17, p=0.009). No other differences were 

significant. As before, these results were the same when the response time correction was not 

applied. 



Figure 1.8. Percentage of morph between target shape and another shape when subjects initiated 
a response (response time corrected, see text) as a function of element quantity. Subjects were 
instructed to make a response when the figure on the screen matched as closely as possible the 
target shape. Values closer to 100% indicate greater response precision. Data are shown for 
correct trials only. 

We further explored the data by distinguishing between decisions tha

target frame and those that came after. The data are shown in Figure 

ANOVA found a significant main effect of decision time (before vs. after), (

p=0.010, η2
p=0.50) and of element quantity (

a significant interaction (F(2,20)=4.52, 

percentage of target shape before and after the target frame revealed a difference for displays that 

contained the largest number of elements (

differences for the two other element quantities. 
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a response (response time corrected, see text) as a function of element quantity. Subjects were 
response when the figure on the screen matched as closely as possible the 

target shape. Values closer to 100% indicate greater response precision. Data are shown for 

 
We further explored the data by distinguishing between decisions that came before the 

target frame and those that came after. The data are shown in Figure 1.9. A 2 x 3, within

ANOVA found a significant main effect of decision time (before vs. after), (F(1,10)=10.20, 
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rgest number of elements (t(11)=4.17, p=0.002). There were no significant 

differences for the two other element quantities.  

Percentage of morph between target shape and another shape when subjects initiated 
a response (response time corrected, see text) as a function of element quantity. Subjects were 

response when the figure on the screen matched as closely as possible the 
target shape. Values closer to 100% indicate greater response precision. Data are shown for 

t came before the 
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=0.52). There was also 
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percentage of target shape before and after the target frame revealed a difference for displays that 

=0.002). There were no significant 



Figure 1.9. Percentage of morph between target shape and another shape separated by whether 
the response came before or after the
(response time corrected, see text). Data are for correct trials only

Discussion 

 
The results of Experiment 2 demonstrate that illusory contours can be accurately 

perceived in SBF displays even when thos

Experiment 1, this has two implications for the visual processes involved in perceiving 

boundaries in these displays. First, local boundary segments can change not only in orientation 

and velocity, but also in curvature in between the texture element transformation events that 

define them. Second, interpolation between boundary segments occurs even when one segment 

continues to deform but is now invisible. Since events do not occur continuously along the entire 

boundary of the virtual object, they reveal only parts of the boundary at any given time. As 

transformation events reveal parts of the boundary, those newly visible regions interpolate with 

previously seen but now invisible ones. This process suggests a form 

encodes constructed edge fragments as well as their continuing trajectories and deformation, 

allowing such information to be preserved and updated for combination with later appearing 

information (c.f. Palmer, Kellman & Shipley, 2006
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Percentage of morph between target shape and another shape separated by whether 

the response came before or after the frame on which the pure target shape was presented 
(response time corrected, see text). Data are for correct trials only. 
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object morphing from frame-to-frame, the boundary is deforming non-rigidly. If the visual 

system encodes an orientation, velocity, and curvature of a boundary segment at one moment as 

fixed values, those features may not align with a segment recovered at a later time. We return to 

this possibility in the General Discussion. 

Comparing the two experiments, the best performance (across all shapes) in Experiment 

2 (79.58%) was within the range of best performances from the four conditions in Experiment 1 

(65.31% - 88.13%). However, element density had to be doubled to 4.18 elements per square 

degree of visual angle before this level of performance was achieved. One reason for this 

difference could be because virtual objects were smaller in Experiment 2 (average diameter of 

4.45 deg) than in Experiment 1 (diameter 5.6 deg). Because element size was smaller in 

Experiment 2, the total number of element transformations per frame was similar for the two 

largest densities in each experiment (12.85 in Experiment 1 and 11.47 in Experiment 2). 

Alternatively, a greater element density may have been needed in Experiment 2 to reach 

comparable performance because the task was harder. Responses were marked as correct only if 

they fell within 1.66 seconds of the target frame, whereas there was no response time limit in 

Experiment 1. In addition, some intermediate morphing stages may have appeared to be similar 

to other shapes. For example, morphing between a square and a circle may have resulted in 

intermediate morphs that resembled hexagons.  

With the results of Experiment 2 in hand, we compared shape identification accuracy 

with the transforming and non-rigid virtual objects in Experiments 1 and 2 with shape 

identification accuracy in earlier work. Shipley & Kellman (1994, Experiment 3) used rigid, non-

transforming shapes and local motion as the element transformation in a 10-AFC task. There 

were some differences from the present experiments. As mentioned earlier, we used a somewhat 
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revised set of figure choices here. Moreover, we used random directions of element motion, 

whereas the earlier study used consistent vertical displacements. The virtual objects used in the 

current experiment were also larger (4.45 degrees of visual of angle in diameter vs. 2 degrees). 

Although comparisons are inexact, they may be informative with regard to the primary purpose 

of the present work: to determine whether SBF occurs robustly for transforming shapes. The data 

are clear in showing the SBF occurs with transforming objects, but if SBF occurs from 

transforming objects but is notably weaker than in non-transforming shapes at comparable 

element densities, it would suggest that changing orientation, shape, or velocity do impact the 

recovery of shape in SBF.  

Figure 1.10 plots the data from the two current experiments along with the earlier 

experiment with all conditions being displayed in terms of element density (elements/deg2). As 

can be seen, performance at comparable densities for deforming shapes in Experiment 2 was 

comparable to that of rigid, non-transforming shapes in Experiment 3 of Shipley & Kellman 

(1994). The four densities used in Shipley and Kellman (1994) were 1.61, 3.21, 6.42, and 12.85 

elements per degree of visual angle. (Performance was not significantly different for the two 

largest densities and density did not exceed 6.42 in the current experiment, so accuracy for only 

the first three densities is shown.) The densities used in the present Experiment 2 were 2.46, 

4.18, and 7.43 elements per square degree of visual angle. 



Figure 1.10. Average shape identification accuracy from Experiments 1 (black, red, green, and 
blue lines) and 2 (purple line, “non
are reproduced data from Experiment 3 from Shipley and Kellman (1994) in gr

Figure 1.10 also plots the results of the transforming, rigid shapes of Experiment 1 as a 

function of element density. Remarkably, all of these conditions produced 

identification performance than occurred with non

densities used in our Experiment 1 were 0.42, 0.84, 1.27, and 2.53 elements per square degree of 

visual angle.  

For all comparable element densities, accuracy was higher in the current experiment with 

transforming but rigid shapes tha

densities were three times larger than those used in the current study, identification performance 

for non-transforming virtual objects reached 80%, while identification accuracy for scaling 

virtual objects reached 88%. This difference may be because virtual objects in the current study 

were more than twice as large (average diameter = 5.6 deg) as those used previously (2.0 deg). 

That larger shapes produce better shape identification is not entire intui
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Average shape identification accuracy from Experiments 1 (black, red, green, and 
blue lines) and 2 (purple line, “non-rigid”) plotted as a function of element density. Also plotted 
are reproduced data from Experiment 3 from Shipley and Kellman (1994) in gray. 
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same density, the number of element changes in a unit of time per unit of perimeter remains 

constant for a large and small display of the same shape. Also, larger shapes would tend involve 

more of the retina outside of the fovea, with some attendant loss of visual acuity. It may, 

however, be the case that larger shapes make clearer a shape’s parts and relations. We noted in 

the discussion of Experiment 1 that best performance observed in that study occurred in the 

scaling conditions, which included presentation of the largest shapes in the experiment. As 

suggested there, the exact reason for better performance with larger shapes in SBF is not entirely 

clear, but one plausible hypothesis is that larger visual angles allow better definition and 

discrimination of shape parts, resulting in improved discrimination. 

It is clear from the data that identification accuracy varied depending on shape 

complexity and confusability (Figure 1.6). Sensitivity was greatest for triangles, squares, 

hexagons, quad-leafs, and shape Rand3 than for other shapes (Figure 1.7). Shape Rand2 

appeared to be difficult to identify irrespective of the number of elements. For the lowest and 

intermediate element quantities, sensitivity was lowest for the shapes tri-leaf, butterfly, quad-

leaf, Rand1 and Rand2. These shapes share in common regions of high curvature. Such regions 

require more proximal events to clearly specify the boundary. For a long, low curvature segment 

of a boundary, two edge fragments that are far apart would still be relatable (Kellman & Shipley, 

1991). For high curvature regions, the segments would need to be from relatively nearby 

positions on the boundary to be relatable. Sparse texture displays would yield few recovered 

boundary segments.  

In addition to improving accuracy, element density (or quantity, as these covaried in this 

study) was directly proportional to response precision. Subjects tended to respond on frames 

closer to the target frame (the one which contained the target shape) as texture element quantity 
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increased (Figure 1.8). Since the task instructions specified that subjects should respond as close 

as possible to the target frame, responses frames that contained shapes more closely morphed to 

the target shapes can be interpreted as more precise responses. Precision may have improved as a 

function of element quantity because subjects could more readily predict when the morphing 

sequence was approaching the target shape, or it could have improved because once the target 

frame was reached, subjects were quicker to identify the shape and respond. In order to 

distinguish between these two possibilities, data were split by whether responses came before or 

after the target frame (Figure 1.9). Responses after the target frame did not depend on element 

quantity. However, the more elements there were on the screen, the more precisely subjects 

could anticipate when the target frame was approaching.  

 
General Discussion 

 
Spatiotemporal boundary formation is known to produce form, continuous boundaries, 

and global motion from discrete transformations of sparse textural elements. The use of spatially 

separated, sequential changes in small, sparse elements to produce these perceptual outcomes 

comprises an amazing spatiotemporal integration capacity of the visual system. SBF occurs 

despite a lack of information that can define contours or surfaces in a single, static view or even 

across many frames. Within frames, in the displays used here, there are no differences between 

figure and ground in luminance, texture, or depth in any frame. Moreover, in terms of motion 

perception, every local stimulus event in the displays used here is fully accounted for as a single 

dot traveling a short distance in some direction. Indeed, viewed singly, that is the appearance of 

each element transformation. In terms of the literal stimulus events (discrete changes in local 

elements, with no local or momentary information for continuous boundaries or surfaces), SBF 

represents a startling illusion.  



36 

As with many illusions, SBF presents dual implications regarding the utility and function 

of perceptual processes. The events most likely to trigger SBF in real world situations are 

motions of objects that are poorly specified, either because of matching object and background 

surfaces (camouflage) or because an object is seen through multiple apertures. In these 

situations, SBF recovers whole objects accurately from minute bits of information spread across 

time. As Gibson, Kaplan et al. suggested in describing accretion and deletion of texture elements 

(the best known case of SBF), transformations produced by relative motion of objects and 

surfaces carry important information deeply rooted in the optics of opaque objects, depth order, 

and motion. In the ways we are most likely to encounter SBF in ordinary viewing environments, 

SBF is a highly ecological and sophisticated mechanism for detecting what is really occurring in 

the environment. 

But as with the processes underlying many other illusions, SBF turns out to accomplish 

its ecologically relevant tasks by means of mechanisms that in other cases produce ecologically 

impertinent outcomes. Accretion and deletion is a fact about ecological optics, but when we ask 

how the visual system accesses that fact, it turns out to use discrete changes in local elements – 

virtually any detectable discrete changes. This is both more and less than the original idea that 

the visual system detects accretion and deletion. It is much more because virtually any element 

transformation can provide an input into SBF, even ecologically bizarre ones such as orientation 

change or local displacement of an element. It is less than accretion and deletion because 

elements need not be gradually covered nor must there be any array of texture elements that 

move together (as will always be present during relative motion in accretion and deletion 

displays). 
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When non-ecological element transformations are used, illusory contours and shapes are 

perceived that cannot arise from any known physics (apart from CRT displays and clever 

programmers). When for example, white and blue texture elements on a black background 

switch values upon entering or leaving a defined, moving, virtual region, the array of changes 

could not be caused by any moving translucent filter nor any movement of an object seen 

through apertures in an occluder. The fact of a bizarre illusion, here as in other illusion contexts, 

lays bare the functioning of the visual processes involved. The visual processing that apprehends 

objects passing in front of each other from sparse information also puts together illusory shapes 

from abrupt changes of other kinds, such as the objects formed from local, random direction 

element displacements in the experiments here. 

In Experiment 1, we found that the orientations, sizes, and velocities of virtual object 

boundaries can change between successive transformation events and still be continuously seen. 

In Experiment 2, SBF was also found to support changes in boundary curvature, giving rise to 

robust percepts of non-rigid, illusory contours. Both experiments used displays in which 

boundaries were perceived without accompanying filling-in or surface completion suggesting 

that the two processes are separable and can be studied independently. The methods described 

can be readily adapted to generate dynamic, non-rigid, illusory contours with arbitrary form and 

complexity. 

Implications for models of SBF 

 
Perception of continuous boundaries and shape in SBF appears to depend on two 

processing stages. The first is to recover local edge segments from sparse texture transformation 

events and the second is to interpolate (connect) these segments to produce a representation of 

continuous contours and object shape. We consider each problem in turn. 
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The recovery of edges from transformation events is a difficult version of the aperture 

problem. Typically, local edge orientations and velocities are available in many small apertures, 

and the problem is to determine how they are connected and the global motion signal. In SBF, 

there is no local orientation information available since the apertures are points. The difficulty is 

compounded by the fact that in the displays used in these experiments, texture element 

transformations were element displacements in random directions, generating irrelevant and 

incoherent local apparent motion signals that were completely independent from the global 

motion of the virtual object. The relevant information for defining the virtual object boundary 

was solely the position and timing of transformation events. Despite these difficulties, it is 

possible to solve this point-aperture problem by assuming that contour segments of the virtual 

object boundary are rigid, moving at a constant velocity and not changing their orientation.  

Experiments 1 and 2 demonstrated that contours can change in these properties and still 

support the perception of global shape and motion. Does this invalidate existing models? The 

answer is that models may need to be modified but that the underlying concepts may survive. 

Theoretically, a local edge orientation in SBF can be recovered from three non-collinear element 

transformations in some local neighborhood (Shipley & Kellman, 1997). The aperture problem 

in SBF may get solved many times, relatively quickly, and in relatively small regions. Thus, an 

object may not have to be rigid or otherwise unchanging for initial edge segments to be 

constructed. 

If the texture is sufficiently dense, the aperture problem can be solved multiple times in a 

small spatiotemporal window, resulting in several oriented edge representations over time. These 

will be small illusory contour segments. Straight or curved apparent motion might then be seen 

between successively recovered illusory segments that are proximal in space and time. In effect, 
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once the aperture problem is solved for a local segment, the problem becomes a matter of 

detecting correspondences between sequentially recovered segments. There is no reason to 

suspect that this would be any different for real or illusory contours: whatever the solution to the 

correspondence problem that allows the matching of real, contours across success frames can be 

applied to rotating illusory contours in SBF.  

Difficulty will arise when texture displays are very sparse. In order to solve the aperture 

problem, multiple transformation events are needed; if the contour transforms too much between 

the events, then the solution might not be correct. This could explain why SBF deteriorates with 

decreasing element density.  

Once the aperture problem is solved locally in order to recover a segment of the 

boundary, these boundary segments must be interpolated to produce a representation of the 

global shape. Since element transformation events are spatiotemporally sparse, boundary 

segments are recovered piecemeal, in different regions and times. This leads to the second level 

of processing in SBF: interpolation connecting basic contour fragments that have been formed. 

Because these do not appear simultaneously or in register spatially, the visual system therefore 

needs a way of encoding recovered segments, and storing and updating their representations to 

be interpolated with segments that are recovered at a later time. Such spatiotemporal 

interpolation has been found with real edge fragments in rigidly translating (Palmer, Shipley, & 

Kellman, 2006; Palmer & Kellman, 2014) and rotating, luminance-defined edges (Kellman & 

Cohen, 1984), but not yet for illusory contours and not for non-rigidly deforming shapes. 

According to models of spatiotemporal interpolation, when a part of an object becomes 

occluded, a visual, iconic representation of that surface continuous to persist for a brief time 

(Palmer, Shipley, & Kellman, 2006). That icon is an encoding of the position, orientation, and 
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velocity of the surface contours. If another part of the object is revealed (appears from 

occlusion), the visual system interpolates the relatable contours of the visual icon with those of 

the newly revealed object part. Interpolation is possible because the representation of the position 

of the occluded segment (the visual icon) is updated under occlusion (for a short time).  

The visual system faces the same problem in SBF displays: since the aperture problem is 

solved locally for different areas along the virtual object boundary, edges are not recovered all at 

once. It is as if parts of the boundary become disoccluded whenever the problem is solved, and 

are occluded otherwise. The visual system must then interpolate between recovered edge 

segments that are visible only for short periods of time. One possibility is that the representation 

of occluded edges is very flexible and capable of both first and second order deformations. For 

rotating shapes, for example, when transformations along one part of the virtual object boundary 

reveal an edge segment, the representation of the position and orientation of that segment 

continue to change even when there are no further transformations to support its perception. 

When the aperture problem is then solved again in a nearby position, the resulting segment is 

interpolated with the shifted and rotated representation of the past segment if the two are 

relatable. A second possibility is that the representation of the segment remains fixed in terms of 

orientation and curvature at the moment of occlusion. A snapshot is taken, and it can only be 

minimally manipulated. When the next segment is recovered, the two segments must fall within 

the range of relatability (Kellman & Shipley, 1991) in order to be interpolated. Further studies 

are needed to distinguish between these two possibilities. 

The present studies show that SBF encompasses a wider range of illusory phenomena 

than previously realized. Scaling and rotating, even accelerating rigid shapes can be recovered in 

SBF. Even more remarkable, deforming shapes can be perceived, and recognition of a shape is 
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possible even when it is part of a rapidly changing series of shapes. These phenomena clearly 

expand the envelope beyond what previous models anticipate or explain. Although we sketched 

an outline of how more advanced models might encompass these perceptual illusions, the current 

results raise more questions than they answer, and further research will be required to achieve a 

detailed understanding of these amazing phenomena in which the visual system does so much 

with so little. 
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Chapter 2: Recovery of Local Edge Fragments Initiates Spatiotemporal Boundary 

Formation 
 
Abstract 

Spatiotemporal boundary formation (SBF) is the perception of illusory boundaries, global 

form, and global motion from spatially and temporally sparse transformations of texture 

elements (Shipley & Kellman, 1993a, 1994). It has been theorized that the positions and times of 

texture element transformations can be used to extract the orientation of local edge fragments, 

which form the basic shape units in SBF. To test this theory, we created a novel display 

consisting of a sawtooth arrangement of circular elements that disappeared and reappeared 

sequentially, one at a time. Within the appropriate display settings, the resulting percept was not 

of apparent motion between elements, but of a larger oriented edge fragment that traveled 

laterally across the display. Experiment 1 identified the spatial and temporal intervals within 

which SBF occurred using a contour clarity rating task. Experiment 2 extended and refined the 

temporal limits using an objective performance task, in which the perceived widths of moving 

bars in SBF could be compared to the virtual objects used to generate the visible element 

changes. The two experiments, using perceptual reports and accuracy in size perception, 

converged in revealing highly constrained spatial and temporal parameters under which SBF 

occurs. The experiments provide clear support for models of SBF that begin with extraction of 

local edge fragments and identify minimal conditions required for this process.  

Introduction 

Spatiotemporal boundary formation (SBF) is the perception of continuous contours, 

global form, and global motion from the sequential transformation of sparse texture elements 
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(Shipley & Kellman, 1993a, 1994). SBF is perhaps the most extreme case in which the visual 

system constructs contours and objects from fragmentary input, as it requires no oriented edge 

fragments and produces complete perceived boundaries with little stimulus support. For 

example, the concept of support ratio (the ratio of illusory or occluded edge length to total edge 

length) has been shown to predict interpolation strength of edge fragments for occluded and 

illusory contours (Banton & Levi, 1992; Shipley & Kellman, 1992). Roughly speaking, robust 

contour interpolation occurs with support ratios of .5 or greater, and noticeable interpolation may 

still be present at support ratios of .2 or .3. In typical examples of SBF, with widely spaced, 

small background elements, support ratio would be very close to zero, yet robust perception of 

continuous contours and clear overall shape are present (Shipley & Kellman, 1994). 

Functionally, SBF may exist as a visual mechanism for apprehending objects under conditions of 

minimal information, as when the surface properties of two objects are similar or difficult to 

discriminate, or when an object is viewed under complex occlusion situations (e.g., through 

foliage), or under dim viewing conditions when surface features are difficult to resolve. 

 How are shapes seen in SBF? One hypothesis is that SBF first defines local edge 

fragments from transformations of texture elements (e.g. occlusion) that occur closely together in 

space and time. These edges fragments, once created, connect across gaps to form concrete 

objects. Shipley & Kellman (1994, 1997) have proposed a model of how edge orientation can be 

computed from the positions of elements, the distances between them, and the temporal interval 

between their transformations. If the model is accurate, it should be possible to create displays in 

which only a single, illusory edge fragment is seen, and its perception should be constrained by 

the spatial and temporal intervals between texture element transformations. In this paper, we 

describe a novel display that comprises or approaches the minimal conditions for the occurrence 
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of SBF.  The display can be parametrically varied to find the range of spatiotemporal texture 

element transformation intervals that support SBF under these minimal conditions. The present 

experiments provide more precise information relevant to modeling SBF than has previously 

been available, and they also allow for a more ready comparison of SBF to other, well-

characterized visual phenomena in which elements transform successively, such as apparent 

motion. 

Surprisingly, relatively little is known about spatiotemporal constraints on SBF. Prior 

work has exclusively focused on two-dimensional virtual shapes that travel in an array of 

randomly arranged elements (Shipley & Kellman, 1993a, 1993b, 1994, 1997; Cunningham, 

Shipley & Kellman, 1998; Fidopiastis et al. 2000). As a result, the spatial and temporal 

properties of the displays, in particular, inter-element distance and the time between element 

transformations are highly variable depending on both the shape and the distribution of elements. 

In a typical display, small, uniform texture elements, usually circles, are distributed randomly in 

a large area (Figure 2.1). A virtual object is specified that moves across the texture field. The 

object is virtual in the sense that its boundaries are not defined by luminance differences with the 

background. As the virtual object moves, elements that were previously inside the boundary may 

now be outside and vice versa. For ease of description, we refer to this as elements exiting or 

entering the virtual object region, even though it is usually the region that is moving while the 

elements are stationary. Elements that move across the boundary change in one of their 

properties. For example, a red element inside the object boundary may become red when the 

boundary moves and no longer contains that element. This produces a pattern of element 

transformations along the boundary of the object as it moves across the display. Surprisingly, 

clear, continuous illusory contours are seen that correspond to the virtual object’s boundary. 
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These boundaries are seen even if fewer than one element on average transforms per frame and 

when elements cover only a small portion (e.g., 1.9 %) of the entire display area (Shipley & 

Kellman, 1994). When transformations are color changes, as in the example above, color 

spreading is also seen within the boundary of the object and the entire region may be perceived 

as a transparent surface moving in front of a textured background. This phenomenon has been 

studied separately under the name “color from motion” or “dynamic color spreading” (Cicerone, 

Hoffman, Gowdy, & Kim, 1995; Cicerone & Hoffman, 1997; Miyahara & Cicerone, 1997). 

However, illusory contours can be seen in the absence of color spreading. Shipley & Kellman 

(1994) showed that a wide range of local element transformations can support SBF, including 

changes in element position, shape, and orientation. A number of transformations they studied, 

including bidirectional color and orientation changes, and local element motion, provide no 

information in any static frame about an approximate region in which a form may reside. 

 

Figure 2.1. An example of three frames from a typical SBF display. The virtual object, a square, 
is indicated by the dashed line. Elements inside the object boundary are white, indicating that 
they share some surface property (e.g., color, orientation, shape), while those outside are black, 
having a different value for that property (e.g. red circles inside the boundary and green outside). 
As the virtual object moves, elements entering the boundary of the square become white and 
those exiting become black. Figure adapted from Figure 2 on p. 5 of Shipley T. F. & Kellman, P. 
J., (1994) Spatiotemporal boundary formation: Boundary, form, and motion perception from 
transformations of surface elements. Journal of Experimental Psychology: General, 123(1), pp. 
3-20. 
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The perception of illusory contours in these displays is known to depend on several 

factors. First, element transformations must be encoded as discontinuities or disruptions in the 

regular pattern of the textured background (Shipley & Kellman, 1993a). If changes are 

detectable, but small (e.g., displacement over a short distance), then no illusory shape is seen. At 

frame durations longer than 165 ms, illusory contours, global form, and global motion are no 

longer seen (Shipley & Kellman, 1994). One instead sees apparent motion between nearby 

transforming elements. However, because texture element transformations may occur in any 

region of the boundary from frame to frame, it is unclear from this result what the temporal 

integration limits are for local edge fragments (i.e., for spatially proximal texture elements that 

whose transformations define a local contour). Third, SBF also degrades with texture density. 

However, manipulating texture density confounds spatial and temporal distances between 

transformation events as well as the total number of transformations that occur. Density also 

interacts with contour complexity. Spatially sparse texture will result in fewer interactions with 

the virtual object border. Regions of high curvature that fall in between places on the border that 

interacted with an element have no way of being recovered. A study in which the arrangement of 

texture elements was not random, also found that boundaries were more clearly seen for higher 

densities in which there were smaller gaps between elements (Fidopiastis et al. 2000).    

SBF displays based on random arrangements of texture elements and regular or arbitrary 

two-dimensional virtual objects produce perception of continuous contours completely bounding 

a region, and clearly defining a shape. However, these displays make it difficult to isolate the 

effects of inter-element distance and inter-transformation time and to evaluate models of the 

process. We wondered what are the minimal conditions to elicit the key phenomenon in SBF – 

the construction of a contour. To that end, we created novel displays in which elements were 
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arranged in a sawtooth pattern and disappeared one at a time sequentially. This allowed us to 

independently manipulate the absolute spatial and temporal distances between element 

transformation events, to restrict the number of events that occurred per frame, and enabled us to 

identify the spatiotemporal limits within which integration occurs that leads to SBF.  

 
Experiment 1 

 
A display was created in which a sawtooth arrangement of dots was presented, and one 

dot at a time flashed off and then on again in sequence (Figure 2.2). What would we expect to 

perceive in such a display? For many spatial and temporal intervals, the laws governing apparent 

motion should cause us to see a single entity (a white dot or blob) moving along the sawtooth 

pattern (Wertheimer, 1912; Korte, 1915; Ekroll, Faul, & Golz, 2008). Indeed, this is exactly what 

is seen in Movie 1. In this movie, all elements are visible for fourteen frames (140 ms); one 

element disappears for four frames (40 ms); all elements are again visible for fourteen frames 

(140 ms), etc. These settings are well within the range when apparent or phi-motion should be 

seen (Wertheimer, 1912; Steinman, Pizlo, & Pizlo, 2000; Ekoll, Faul, & Golz, 2008).  

In a two-element apparent motion display, the temporal interval between the appearance 

of one element and the appearance of the next is the stimulus onset asynchrony (SOA), the time 

that an element is visible is the stimulus duration, and the interval during which no elements are 

visible is the interstimulus interval (ISI). Considering the first two elements in Figure 2.2, the 

SOA is the interval between the appearance of the first element and the appearance of the second 

(180 ms). The stimulus duration is length of time an element is visible before it disappears (140 

ms + 40 ms + 140 ms = 320 ms). Finally, since the elements are never invisible simultaneously, 

ISI is negative (-140 ms), indicating that the stimulus duration is longer than the SOA. The 

absolute value of the ISI therefore corresponds to the interval when all elements are visible. 



Figure 2.2. Four apparent motion frames in which elements disappear one at a time i
Consider the first two elements in the display as an apparent motion pair.
asynchrony (SOA) is the temporal interval between the appearance of the first element and the 
appearance of the second. Stimulus duration is the time one 
negative because there are no frames when both elements are invisible. 
 

A simpler way to characterize the display in terms of these intervals is to consider the 

disappearance of a black dot to be the appearance of a 

appearance of a white, invisible element at each element position is the stimulus relative to 

which all time intervals are measured (see Figure 

element is occluded becomes the stimulus or flash duration (f), the temporal interval between the 

appearances of white elements (flashes) becomes the ISI, and the total time between the 

disappearance of one element and the disappearance of the next is the SOA. This parametrization

is more intuitive in that it avoids negative values for ISI and captures the idea that an element 

transformation event is the stimulus of interest. 

Figure 2.3. A replotting of Figure 2.2, treating the white dot as a stimulus. SOA remains the 
same duration, but is now measured from the appearance of one dot until the appearance of the 
next. The stimulus duration is relabled as the flash duration, f, which is the duration that a white 
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apparent motion frames in which elements disappear one at a time i
Consider the first two elements in the display as an apparent motion pair. Stimulus onset 
asynchrony (SOA) is the temporal interval between the appearance of the first element and the 
appearance of the second. Stimulus duration is the time one of the two elements is visible. ISI is 
negative because there are no frames when both elements are invisible.  

A simpler way to characterize the display in terms of these intervals is to consider the 

disappearance of a black dot to be the appearance of a white dot in that position. In that case, the 

appearance of a white, invisible element at each element position is the stimulus relative to 

which all time intervals are measured (see Figure 2.3). Consequently, the duration that an 

es the stimulus or flash duration (f), the temporal interval between the 

appearances of white elements (flashes) becomes the ISI, and the total time between the 

disappearance of one element and the disappearance of the next is the SOA. This parametrization

is more intuitive in that it avoids negative values for ISI and captures the idea that an element 

transformation event is the stimulus of interest.  

A replotting of Figure 2.2, treating the white dot as a stimulus. SOA remains the 
ion, but is now measured from the appearance of one dot until the appearance of the 

next. The stimulus duration is relabled as the flash duration, f, which is the duration that a white 

apparent motion frames in which elements disappear one at a time in sequence. 
Stimulus onset 

asynchrony (SOA) is the temporal interval between the appearance of the first element and the 
of the two elements is visible. ISI is 

A simpler way to characterize the display in terms of these intervals is to consider the 

white dot in that position. In that case, the 

appearance of a white, invisible element at each element position is the stimulus relative to 

3). Consequently, the duration that an 

es the stimulus or flash duration (f), the temporal interval between the 

appearances of white elements (flashes) becomes the ISI, and the total time between the 

disappearance of one element and the disappearance of the next is the SOA. This parametrization 

is more intuitive in that it avoids negative values for ISI and captures the idea that an element 

 
A replotting of Figure 2.2, treating the white dot as a stimulus. SOA remains the 

ion, but is now measured from the appearance of one dot until the appearance of the 
next. The stimulus duration is relabled as the flash duration, f, which is the duration that a white 



dot is present. The ISI is the temporal interval between the disappeara
appearance of the next dot.  
 

We developed this display, however, not to examine local apparent motion, but to 

investigate the minimum conditions for SBF. As is typical in SBF, the local apparent motion 

correspondences (e.g., Ullman, 1979) are not what is seen; instead, groups of element changes 

support perception of a larger moving form or edge. Figure 

a good testbed for minimum conditions in SBF. Although the display has a perfectly valid 

physical description as a moving (white) dot that successively occludes each element (Figure

2.2 and 2.3), there is another descrip

virtual bar moves through the space such that it causes a change in each element it touches

(Figure 2.4). Movie 2.2 shows this effect with a vertical virtual edge and the element change of 

disappearance (and reappearance after the bar has passed). The only difference between Movie 

2.2 and Movie 2.1 is that the temporal interval that 

in Movie 2.2, from fourteen to two frames (140

both the SOA and ISI to 40 and -

the alternative formulation of the timing parameters, these values correspond to an SOA of 40 ms 

and an ISI of 20 ms.   

Figure 2.4. The same display as in Figures 2.2 and 2.3. Element disappearances (changes to 
white) are triggered by the passing of a virtual bar, indicated by the dashed rectangle.
 

Why is this a minimal SBF display? A collinear array of dots would be simpler. 
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dot is present. The ISI is the temporal interval between the disappearance of a white dot and the 

We developed this display, however, not to examine local apparent motion, but to 

investigate the minimum conditions for SBF. As is typical in SBF, the local apparent motion 

man, 1979) are not what is seen; instead, groups of element changes 

support perception of a larger moving form or edge. Figure 2.4 shows how this display is in fact 

a good testbed for minimum conditions in SBF. Although the display has a perfectly valid 

physical description as a moving (white) dot that successively occludes each element (Figure

), there is another description that characterizes this display as an SBF stimulus: a 

virtual bar moves through the space such that it causes a change in each element it touches

2 shows this effect with a vertical virtual edge and the element change of 

rance (and reappearance after the bar has passed). The only difference between Movie 

1 is that the temporal interval that all elements were visible has been shortened 

fourteen to two frames (140 to 20 ms). This change corresponds to shortening 

-20 ms respectively, while keeping stimulus duration fixed. In 

the alternative formulation of the timing parameters, these values correspond to an SOA of 40 ms 
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white) are triggered by the passing of a virtual bar, indicated by the dashed rectangle.
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white) are triggered by the passing of a virtual bar, indicated by the dashed rectangle. 

Why is this a minimal SBF display? A collinear array of dots would be simpler. 

important characteristic of SBF is that it does not occur for collinear arrays, and 

models of SBF become degenerate under this condition. The reasons involve an especially 
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difficult aperture problem that occurs in SBF (Shipley & Kellman, 1994, 1997; Prophet, 

Hoffman, & Cicerone, 2001). A simple summary is that SBF specifies an edge orientation as 

well as its motion from the spacing and timing of element changes. In a collinear array, the 

timing of element transformations will be identical for all edges regardless of virtual edge 

orientation. Only by adding a non-collinear element can orientation be determined from relative 

timing of flashes (Shipley & Kellman, 1997).  

Virtual object properties can easily be manipulated simply by changing the temporal 

features of these displays. For example, it is possible to create displays with moving bars of any 

orientation simply by changing the relative timing of element changes. An oriented edge will 

result in variable delays between element changes, with shorter intervals between elements that 

lie on paths parallel to the bar and longer intervals between changes of elements that lie on paths 

perpendicular to the bar. An example can be seen in Movie 3. In Experiment 2, we examine how 

changing the duration that an element is invisible can affect the perceived width of the illusory 

bar. 

The goal of Experiment 1 was to identify the spatial and temporal spacing parameters of 

texture element transformation events that support the perception of SBF in the displays 

described above. If there is a spatial integration limit, then the perception of illusory contours 

should deteriorate as distance increases for a fixed temporal interval between transformations. If 

there is a temporal integration limit, then, even for small inter-element distances, no illusory 

contours would be seen provided a sufficiently long interval between element transformations. 

The advantage of the current displays is that these parameters can be easily controlled and 

manipulated independently simply by changing inter-element spacing and change duration (i.e. 

occlusion or flash duration). Using a vertical bar for a virtual object and a sawtooth pattern with 
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fixed inter-element distances ensured that the distance and timing between each event (not just 

between each element) was constant within a display.  

In Experiment 1, we used a subjective rating method. This method allowed us to 

determine as directly as possible the conditions under which participants actually perceived a 

moving, oriented edge. It also allowed us to sample a wide variety of spacing and timing 

parameters. We collected subjective contour clarity ratings for a variety of spacing and timing 

parameters and found that there is indeed an orderly pattern of spatial and temporal limits within 

which an illusory bar was visible. In Experiment 2, we followed up these results using an 

objective performance method, both to validate the perceptual reports of Experiment 1 as well as 

to explore when SBF under minimal conditions has measurable effects on performance on a task 

with an objectively correct answer. 

Method 

 

Participants 

 
Subjects were eight research assistants or graduate students (one of whom was one of the 

authors, GE) who volunteered for the study (5 female; mean age: 25.38). All subjects reported 

having normal or corrected-to-normal vision. All subjects except for the author were naïve to the 

purposes of the study. 

Design 

 
 Two properties of the displays were manipulated independently: inter-element distance 

(seven levels) and the ISI, the interval between the reappearance of one element and the 

disappearance of the next (13 levels). All combinations of the 7 inter-element distances and 13 

temporal intervals were tested, resulting in 91 unique displays. Each display was presented 5 
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times, for a total of 455 trials. Subjects provided contour clarity ratings on a scale of 1-5 for each 

display. 

Stimulus and Apparatus 

  
All displays were created and displayed using the MATLAB programming language and 

the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). Stimuli were presented on a Viewsonic 

G250 CRT monitor, which was powered by a MacPro 4 with a 2.66 GHz Quad-Core Intel Xeon 

processor and an NVidia GeForce GT120 graphics card. The monitor was set to a resolution of 

1024x768 pixels and a refresh rate of 100 Hz.  

 Displays consisted of black dots (diameter = 7.9 arcmin) on a white background (13.42 x 

10.08 degrees of visual angle) arranged in a sawtooth pattern with five dots per cycle. The dots 

were centered on the screen vertically and spanned its entire width. The vertical and horizontal 

distances between each pair of points (measured from their centers) were equal and varied from 

0.2 to 0.8 degrees of visual angle in steps of 0.1. These values correspond to Euclidean distances 

between element centers of 0.28, 0.42, 0.57, 0.71, 0.85, 0.99, and 1.13 degrees respectively. The 

number of dots needed to span the width of the screen varied with separation: 68, 45, 34, 27, 23, 

20, and 17, for each of the 7 inter-element separations. 

 Dots flashed (i.e., disappeared and then reappeared) in sequence, beginning with the left-

most dot and continuing, one at a time, from left-to-right. Once the right-most dot flashed, the 

pattern reversed, with flashes going from right-to-left. Displays lasted until the subject made a 

response. The flash duration (i.e., time each dot was invisible) was 20 ms. The inter-stimulus 

interval, or ISI was defined as the time between the reappearance of one dot and the 

disappearance of the next. ISI varied from 0 to 120 ms in steps of 10 ms. An ISI of 0 describes 

the case in which once an element reappears, the next one disappears on the same frame, i.e., 
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there are no frames on which all elements are simultaneously visible. The ISI can therefore be 

thought of as the duration of the interval during which all elements are visible. Displays were 

made with all combinations of inter-element distances and ISIs. Trial order was randomized.  

Procedure 

 
Subjects sat at a distance of 170 cm from the computer monitor with their heads 

stabilized by a chin rest. The only illumination in the room came from the monitor. Subjects 

were instructed that they would see several movies containing a sawtooth pattern of black of dots 

on a white screen and in which one dot would flash at a time. They were told that if they tracked 

the flashing pattern laterally, they would sometimes see a moving illusory bar and that their task 

was to judge the clarity of the bar. They were then shown an example movie in which a bar was 

easily discernable and told that this movie corresponded to a high clarity rating (a five on a 1-5 

scale). They were then shown a movie in which no bar was seen as an example of a low clarity 

rating stimulus (a one). Subjects were instructed to track the flashing sequence and not maintain 

fixation. Subjects provided a clarity rating on a scale from 1 to 5, 1 indicating poor illusory 

contour clarity and 5 indicated maximal contour clarity. Text at the top of every display 

reminded subjects that 1 indicated poorest clarity and 5 best clarity. Displays lasted until a 

response was made. After providing a rating, a blank, white screen was shown for 500 ms and 

then the next trial began immediately. A break was provided every 50 trials. The entire 

experiment lasted 30-40 minutes.  

Results 

 



Figure 2.5. Illusory contour clarity ratings for Experiment 1, averaged across subjects. Ratings 
were on an integer scale of 1 to 5. 
interval (ISI) corresponds to the duration that all elements were visible on the screen in between 
flashes. The seven curves represent different inter
(circles) to 1.13 degrees (inverted triangles
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Illusory contour clarity ratings for Experiment 1, averaged across subjects. Ratings 

were on an integer scale of 1 to 5. Bars indicate the standard error of the mean. 
interval (ISI) corresponds to the duration that all elements were visible on the screen in between 
flashes. The seven curves represent different inter-element separations from 0.28 degrees 

inverted triangles).  

The results are displayed in Figure 2.5. Contour clarity ratings were averaged across 

subjects and are displayed as separate curves for each inter-element separation as a function of 

to a 7x13 within-subjects ANOVA. There was a significant main 

element separation (F(6,42)=30.69, p<0.001, ηp
2=0.81, Greenhouse
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(72,504)=17.71, p<0.001, ηp
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separations. Beyond 80 ms, ratings were flat at 1 for all separations. For ISIs between 

ms, ratings decreased as a function of distance, with low average ratings (< 2) for inter
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ms, ratings decreased as a function of distance, with low average ratings (< 2) for inter-element 

ure 2.5) regardless 

unction of ISI. However, for several of the 
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element separations such as 0.71 and 0.85 degrees (star and square symbols in Figure 2.5), it 

appears as though ratings first increased from 0 to 20 ISI before decreasing. Post hoc paired t-

tests found no difference between ratings at 0 ISI and 20 ISI for either element separation. 

Discussion 

 
 The experiment revealed spatial and temporal integration limits for SBF. Transformation 

events had to occur within 1 degree of each other and within 60-80 ms in order to produce a 

percept of an illusory bar. Illusory contour strength was graded, decreasing gradually as a 

function of both inter-element separation and ISI. 

 Past experiments with SBF had found that illusory shape perception degrades as SOA 

increases up to 165 ms, beyond which only apparent motion between elements is seen with no 

corresponding global form or illusory contours (Shipley & Kellman, 1993b, 1994). Shipley & 

Kellman (1994) showed that performance on an objective shape identification task improved 

monotonically with the number of frames shown within a temporal window of about 165 ms and 

that integration of information did not occur beyond that temporal interval. However, these 

findings are not directly comparable to those considered here. First, the earlier work varied SOA 

but, unlike the present experiment, used a fixed ISI of zero. Second, the 165 ms limit 

encompasses a number of processes that must occur in order to see complete shapes: the 

extraction of local edge orientations, the recovery of a sufficient number of such fragments to 

provide information around an entire 2D shape, and some persistence of these fragments over 

time to enable spatiotemporal interpolation (Palmer, Kellman & Shipley, 2006). Only the first 

process is relevant to the current study. Third, although some elements changed every frame as 

the object moved (on average, 5.44 elements at the highest densities tested in their study), the 

event positions may have corresponded to different contour fragments. It is unclear how much 
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time was needed for three non-collinear elements to transform in any local region of the object 

boundary.  

 The present experiment allowed us to examine the dynamics of the creation of a single 

oriented edge fragment. The sawtooth displays are somewhat unique in allowing measurements 

of the conditions that specifically restrict the extraction of edges in SBF. Further work is needed 

to determine how many edge fragments are used to construct a complete object representation 

and how those edges are integrated. 

 It is important to note that the results of Experiment 1 also support the general idea that 

the most basic process in SBF is extraction of local oriented edge fragments. Possible theories of 

SBF that could be based on defining 2D regions and progressively gaining evidence about their 

shapes (Prophet et al., 2001) would not apply to these displays (see also Shipley & Kellman, 

1997). 

Experiment 2 

 
In Experiment 1, the flash duration was held constant while ISI varied. For a fixed flash 

duration, increasing the ISI also increases the SOA by an identical amount (SOA = flash duration 

+ ISI). It is therefore impossible to determine whether the limiting factor is ISI or SOA. It is also 

unknown whether flash duration has an independent effect. Experiment 2 was designed to decide 

whether SOA or ISI is the temporal constraint on SBF.  

It was found that illusory contours were not visible for ISIs greater than 60-80 ms and 

SOAs greater than 80-100 ms with a fixed flash duration of 20 ms. For this experiment, SOA 

was held constant at 80 ms while ISI varied from 0 to 60 ms. If SBF is determined by SOA, then 

illusory contours should be very weak or not seen at all as was found in Experiment 1. On the 
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other hand, if SBF is determined by ISI, then illusory contours should be seen for all but the 

longest ISI.  

These temporal properties of the sawtooth stimulus affect more than just contour clarity. 

Because we began from an apparent motion display, it is easy to forget that flash duration, ISI, 

and SOA are actually determined by the properties of the virtual bar, namely its width and 

velocity. It is possible to look at these displays from a functional vantage point, in terms of a 

mechanism allowing the visual system to recover edges and objects from sparse information 

(Shipley & Kellman, 1994). The bar causes elements to disappear and reappear as it passes over 

them. It is possible to write an expression relating bar width and velocity to these temporal 

parameters. Assuming that the bar is traveling at a constant velocity in the rightward direction, 

its speed can be determined from the time it takes to travel between two elements, i.e., the time 

between the disappearance of one element and the disappearance of the next, or SOA. 

v =
h

SOA
      (1) 

 
Here, v is the object velocity and h is the horizontal separation between elements. Since SOA is 

defined as the sum of ISI and flash duration, any of these temporal terms can be substituted by a 

combination of the other two. The time that an element is occluded (the flash duration) is the 

time it takes for the bar to completely pass by the element. Given that elements disappeared and 

reappeared discretely with no gradual covering or uncovering, we treated the moment of element 

disappearance and reappearance as the point when the bar’s edge reached (disappearance) or 

passed (reappearance) the midpoint of the element. The distance that the bar travels during the 

flash duration is therefore its width: 

     w = v* f        (2) 
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Substituting v from equation (1) into equation (2) yields an expression for bar width solely in 

terms of the spatial and temporal properties of the display: 

w =
h* f

SOA
       (3) 

Note that these calculations are only possible because the virtual bar is vertical and translating 

laterally across the display. As a result, ISI, SOA, and frame duration are the same for all 

elements in the display.  

Since displays are created by setting the temporal parameters, it is possible to determine 

the objective width and velocity of the virtual bar used to generate the displays. If SBF serves to 

recover edge and object information from sets of sparse element changes, then an illusory bar, 

when perceived, might have a perceived width corresponding to that of the virtual object. 

Changes in the temporal parameters might have predictable effects on the properties of the 

perceived bar. For example, holding the horizontal separation between elements and SOA 

constant while increasing flash duration, would increase bar width while holding bar velocity 

constant. The forward reasoning is more intuitive: given a constant velocity, wider bars will 

occlude elements longer, resulting in a longer flash duration.  

 If the visual system interprets the sequence of changes as caused by a moving bar, it 

should be possible to affect the perceived bar properties simply by changing temporal settings. 

This affords the opportunity to create an objective measure of SBF in sawtooth displays. If an 

illusory bar is seen, observers should be able to accurately estimate bar width. This estimated 

value can be compared to the objective width as determined by the temporal settings. If 

observers are seeing an illusory bar, then the perceived and objective widths should be in 

agreement. This should be possible, of course, only under the conditions where SBF occurs, and 

a bar is actually seen. Experiment 1 showed clear limits in the spatial and temporal parameters 
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that produce perception of a bar. Only under such conditions – where SBF produces perception 

of the object – would we expect participants to be able to recover accurately its width (c.f. 

Ghose, Liu, & Kellman, 2014). 

This observation motivated the control condition. It is possible that observers could 

perform the task solely by estimating the time that an element was invisible and inferring that 

this corresponded to a wider bar. Although unlikely because the subjects were naïve with respect 

to how displays were constructed, we tested them in a control condition with an SOA of 160 ms 

and the same flash durations as for the 80 ms SOA. This resulted in ISIs that were greater than 

80 ms, a value that Experiment 1 showed did not support SBF, regardless of whether the 

temporal integration window is constrained by ISI or SOA. If subjects were using a strategy 

based on matching flash duration to bar width, then they should perform equally well in the 

experimental and control conditions, as it would not matter whether timing parameters did or did 

not support SBF. In contrast, if subjects really were seeing the illusory bar and were basing their 

responses on its properties in the experimental condition, then we would expect poor 

performance, and possibly chance performance, in this control condition. 

Method 

 

Participants 

 
 Participants were four student volunteers and one of the authors (GE) (females: 3, mean 

age: 22). All reported having normal or corrected-to-normal vision. With the exception of the 

author, all subjects were naïve to the purposes of the experiment.  

 

Design  

 



63 

 Two properties of the displays used in Experiment 1 were manipulated independently: 

stimulus onset asynchrony (SOA), the temporal interval between the disappearance of one 

element and the disappearance of the next, and flash duration, the temporal interval during which 

an element was invisible. We designated two sets of stimulus parameters as the experimental and 

control conditions, respectively. Displays with short SOAs (80 ms) were used as the 

experimental condition and displays with long SOAs (160 ms) comprised the control condition. 

Seven flash durations were used from 20 to 80 ms in steps of 10 ms. This resulted in ISIs (SOA - 

flash duration) of 0-60 ms for the short SOA and 80-140 ms for the long SOA. All combinations 

of SOAs and flash durations were used to create 14 unique displays. Each display was presented 

20 times for a total of 280 trials. Equation (3) was evaluated for all SOAs and flash durations to 

compute the objective width of an illusory bar that would have produced those temporal 

intervals. Subjects performed a seven-alternative forced choice task by matching the perceived 

width of the illusory bar in the display to one of seven possible choices for each SOA.  

 

Stimulus and Apparatus 

 
 Apparatus, stimuli, and procedure were similar to that of Experiment 1 unless otherwise 

noted. Horizontal and vertical spacing between elements was fixed at 0.4 degrees, for which 

illusory contours were relatively clear in Experiment 1. Using equations (1) and (3), bar width 

and velocity were computed for each SOA and flash duration. The bar velocity for the short and 

long SOAs was 5 deg/s and 2.5 deg/s respectively. The bar widths were 0.1, 0.15, 0.2, 0.25, 0.3, 

0.35, and 0.4 degrees for each of the flash durations respectively for the short SOA, and 0.05, 

0.075, 0.1, 0.125, 0.15, 0.175, and 0.2 degrees for the long SOA. We refer to these computed 

widths as the true bar widths. Above the elements, seven black horizontal lines were drawn with 

widths corresponding to the seven true bar widths for each SOA. Lines were ordered from 



shortest to longest from left to right across the display

above it corresponding to an answer choice (1

longest. The answer choices were always present during a trial. All combinations of the SOAs 

and flash durations were tested. Trial order was randomized for each subject. 

Figure 2.6. Still image from Experiment 2.
a time. Subjects matched the perceived width of an illusory bar with one of seven possible 
choices shown above the sawtooth display.
 

Procedure 

 
 Subjects sat 170 cm away from the monitor with their head

Subjects were informed that they would be judging the width of an illusory bar and comparing it 

to one of several choices. They were also told that sometimes the bar would be difficult to see, 

and that they should make their b

They were then shown an example display with a readily seen illusory bar of intermediate width. 

Once subjects confirmed that they could see the bar, they initiated the experiment with a 

keypress. Trials began immediately. A trial would last until a subject made a response by 

pressing one of the numbered keys 1

was provided every 50 trials. The experiment lasted for 20

   

Results and Discussion 
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shortest to longest from left to right across the display (see Figure 2.6). Each line had a number 

above it corresponding to an answer choice (1-7), with 1 above the shortest line and

longest. The answer choices were always present during a trial. All combinations of the SOAs 

and flash durations were tested. Trial order was randomized for each subject.  

Still image from Experiment 2. Elements of the sawtooth pattern disappeared one at 
a time. Subjects matched the perceived width of an illusory bar with one of seven possible 
choices shown above the sawtooth display. 

Subjects sat 170 cm away from the monitor with their heads stabilized with a chinrest. 

Subjects were informed that they would be judging the width of an illusory bar and comparing it 

to one of several choices. They were also told that sometimes the bar would be difficult to see, 

and that they should make their best guess from amongst the answer choices if that was the case. 

They were then shown an example display with a readily seen illusory bar of intermediate width. 

Once subjects confirmed that they could see the bar, they initiated the experiment with a 

ss. Trials began immediately. A trial would last until a subject made a response by 

pressing one of the numbered keys 1-7 that corresponded to the seven response choices. A break 

was provided every 50 trials. The experiment lasted for 20-30 minutes. 

Each line had a number 

7), with 1 above the shortest line and 7 above the 

longest. The answer choices were always present during a trial. All combinations of the SOAs 

 
Elements of the sawtooth pattern disappeared one at 

a time. Subjects matched the perceived width of an illusory bar with one of seven possible 

s stabilized with a chinrest. 

Subjects were informed that they would be judging the width of an illusory bar and comparing it 

to one of several choices. They were also told that sometimes the bar would be difficult to see, 

est guess from amongst the answer choices if that was the case. 

They were then shown an example display with a readily seen illusory bar of intermediate width. 

Once subjects confirmed that they could see the bar, they initiated the experiment with a 

ss. Trials began immediately. A trial would last until a subject made a response by 

7 that corresponded to the seven response choices. A break 
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revealed a positive relationship between perceived and true bar width in the experimental 

condition: perceived width = 0.746 * true width + 0.025, R

subjects showed monotonically increasing bar width estimates for increasing virtual bar widths
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The results are shown in Figure 2.7. Average perceived bar width is shown for the 

SOA, blue points) and control condition (long SOAs

as a function of true bar width. The dashed, black line indicates when perceived width matches 

The data were averaged across subjects for each condition and fit with a linear model. 

The fitting results are shown as dashed, gray lines in Figure 2.7. A linear model fit the data 

onship between perceived and true bar width in the experimental 

condition: perceived width = 0.746 * true width + 0.025, R2 = 0.997. Evaluated individually, a

subjects showed monotonically increasing bar width estimates for increasing virtual bar widths

0.85). In contrast, there was no relationship between responses and 

in the control condition: perceived width = 0.065 * true width + 0.080, R

The slope of the regression line fit to the averaged data was not significantly different from zero 

= 0.07). Individual subject slopes were in the range of -0.01 to 0.19.  

 
 

Perceived illusory contour width as a function of true width averaged across all 
subjects. Width was computed from element flash duration and SOA (see text for details). Data 

. Average perceived bar width is shown for the 

long SOAs, red points) 

icates when perceived width matches 

The data were averaged across subjects for each condition and fit with a linear model. 

7. A linear model fit the data 

onship between perceived and true bar width in the experimental 

= 0.997. Evaluated individually, all 

subjects showed monotonically increasing bar width estimates for increasing virtual bar widths 

In contrast, there was no relationship between responses and 

in the control condition: perceived width = 0.065 * true width + 0.080, R2 = 0.518. 

s not significantly different from zero 

Perceived illusory contour width as a function of true width averaged across all 
sh duration and SOA (see text for details). Data 
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were split for short (circles) and long (triangles) SOAs. Error bars are standard errors of the 
mean. 
 

In Experiment 1, for the same inter-element spacing of 0.4 degrees and SOA of 80 ms 

(frame duration = 20 ms, ISI = 60 ms), contour clarity ratings were very low (1.6). Here, for the 

same SOA, but for ISIs between 0 and 60 ms, subjects were not only able to see illusory 

contours, but were also able to discriminate between different bar widths that differed only by 

0.05 degrees. Within this set of tested display parameters, the property that determines the 

temporal integration window for SBF appears to be ISI rather than SOA. It is possible that there 

is an additional constraint imposed by SOA. Holding ISI constant and increasing flash duration 

would produce long SOAs that would correspond to a very wide, slowly moving bars.  

 In the control (long SOA) condition, subjects gave similar responses regardless of 

specified bar width. In this condition, both the SOA and ISIs were outside the range that 

produced high contour clarity ratings in Experiment 1. We therefore expected that subjects 

would not see the illusory figures in these displays. If subjects were performing the task simply 

by matching flash duration to bar width without seeing any illusory figures, then they should 

have been able to do so for both the short and long SOAs since the same flash durations were 

used with both. However, subjects only matched bar width for the short SOA, when ISIs were 60 

ms or less. At least two subjects in the control condition selected the same bar width on nearly 

every control trial (one consistently selected the thinnest bar width, and the other consistently 

selected an intermediate width). The data suggest that there was no impression of bar width in 

the control displays, and subjects resorted to guessing strategies.  

Even if the displays produced different percepts, it is possible that subjects used the 

widths of the response choices as a cue. Because frame durations were the same for both SOAs, 

the bars for the longer SOA were half the width of those for the shorter SOA. As a result, the 
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difference between bar widths was also halved from 0.05 degrees to 0.025 degrees. No subject 

reported noticing the different response choices or a relationship between response choice and 

phenomenology. Poor performance for long SOAs may have also occurred because shorter bar 

widths are more difficult to see or because the smaller differences between bar widths made the 

task more difficult. There are several reasons why this was likely not the case. First, bar widths 

of 0.1, 0.15, and 0.2 degrees were tested for both SOAs and width estimates were closer to true 

widths in for shorter SOAs (e.g., bars of a 0.2 degree width were rated on average as having a 

width of 0.17 degrees in the short SOA condition, and a width of 0.09 degrees in the long SOA 

condition). Second, bias was smallest and accuracy was highest for narrower bars for the short 

SOA. Narrow bars in the short SOA condition were therefore perceived more clearly. If narrower 

bars were more accurately perceived, then responses should have been more accurate for the 

long SOA condition, in which bar widths were have the size of those used in the short SOA, but 

this was not observed.  

In the experimental condition, for wider bars, there was a tendency to underestimate bar 

width. Average perceived width for the widest bars (0.32 deg) was 80% of true width (0.4 deg). 

It is unclear from this experiment whether this bias is particular to the estimation of metric 

properties of illusory objects or whether it would also exist if subjects had to perform the task 

with real objects.    

An interesting observation is that subjects were able to discriminate between bars whose 

widths differed by less than half of an element’s diameter (0.13 degrees). In particular, perceived 

width was significantly different for bars with true widths of 0.1 and 0.15 degrees (t(4)=3.21, 

p=0.03, Cohen’s D=0.23). This suggests that SBF allows edges to be recovered at sub-element 

resolution. Note that all element changes in SBF are discrete (e.g., a dot was either fully present 
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or fully invisible on any frame, with no gradual covering or uncovering). No studies as yet have 

systematically investigated the effect of element size, and this could be a question for future 

research. 

 
General Discussion 

 
In this paper, we set out to identify the minimal conditions for spatiotemporal boundary 

formation (SBF). We sought the simplest conditions that might produce perception of a single 

oriented illusory edge fragment from the sequential transformation of texture elements. We 

hypothesized that these minimum conditions for SBF might be met or approximated by a novel 

display in which circles arranged in a sawtooth pattern disappeared and reappeared one at a time 

(Figure 2.2). Such a display would ordinarily produce perception of apparent motion between 

elements (Movie 2.1), but with different timing parameters, it produced SBF -- perception of a 

laterally translating, vertically oriented, illusory bar (Movie 2.2). The display structure allowed 

for precise and independent manipulation of the temporal and spatial intervals between element 

transformation events. As a result, values for those parameters that led to one or the other percept 

could be identified. 

Using subjective ratings of illusory contour clarity in Experiment 1, we found that the 

perception of a moving illusory contour decreased gradually as the separation between elements 

increased up to one degree of visual angle (Figure 2.5). For displays containing elements that 

were arranged farther apart illusory contours were no longer seen. Illusory contour clarity was 

also constrained by ISI, the temporal interval between element transformations. Clarity ratings 

gradually decreased with increasing ISI up to 60-80 ms. Displays in which ISIs were greater than 

80 ms appeared to be ineffective in producing SBF.  
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In Experiment 1, for all ISIs tested, the corresponding SOAs – the time between the 

transformation of one element and the next – were 20 ms longer than the ISIs. It was therefore 

unclear whether the limiting temporal factor was a 60-80 ms ISI or an 80-100 ms SOA. 

Experiment 2 was designed to distinguish between these two properties. The temporal and spatial 

properties of the displays were used to compute the width of an illusory bar that would have led 

to texture element transformations at those rates. A wider bar, for example, would take longer to 

pass over an element, resulting in a longer flash duration (time that the element is white or 

invisible). In an objective performance task, subjects matched perceived illusory bar width with 

the objective width computed from display parameters. When tested with an SOA of 80 ms, 

which yielded poor contour clarity ratings in Experiment 1, and varying ISIs from 0 to 60 ms, 

subjects were very accurate in estimating bar width (Figure 2.7). The results suggest that the 

temporal constraints at this SOA are strongly influenced by ISI, since an SOA that produced 

poor contour clarity ratings in Experiment 1 was able to yield accurate estimates of illusory bar 

width, as long as ISIs were short. A control condition with higher SOAs and ISIs verified that 

subjects were performing the task based on perceived illusory bar width, and not directly from 

temporal properties of the display that may have served as a response cue. The control condition 

yielded no evidence of SBF, as indexed by participants’ inability to detect bar width accurately. 

An important feature of these experiments is that they bring to bear both subjective and 

objective methods for evaluating illusory contour perception. Each has potential advantages and 

disadvantages. SBF is a perceptual phenomenon: what observers see matters. But whereas we 

assume that perceptual reports convey information about what is seen, they also potentially 

reflect many other factors, including variations in criteria or use of scales by participants, their 

understanding of instructions, and possibly their hypotheses about what the experimenter is 
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looking for. Objective paradigms, on the other hand, in which participants’ performance can be 

compared to an objectively correct answer, may more readily avoid some criterion issues, and 

can be more revealing about underlying mechanisms, but only if the task really depends on the 

relevant perceptual representations. If there are other strategies for succeeding at a task, all bets 

are off. In the present work, the concordance of the spatial and temporal parameters that produce 

clear perception of contours in Experiment 1 with the parameters that allow successful 

performance in Experiment 2 strongly supports the idea that the methods are converging on 

contour perception through SBF.  

Taken together, the experiments reveal several novel properties of SBF. SBF can arise in 

very simple displays with few elements arranged in a regular pattern and does not require the 

formation of a closed contour: A single edge fragment can be seen. Whether apparent motion or 

an illusory figure is seen is determined by the spatial and temporal intervals between texture 

element transformations (Experiment 1). These intervals are the spatial and temporal integration 

limits within which oriented edges can be extracted. The dimensions of the shape that is 

perceived can be determined by the spatial and temporal properties of the elements with which it 

interacts (Experiment 2).  

 

How are illusory contours and shapes seen in SBF? 

 
In these displays, illusory edge orientation and velocity were recovered from sequential 

transformations of elements. The spatial and temporal parameters governing the displays 

determined whether the percept was of apparent motion (Movie 2.1), a vertically oriented, 

moving illusory bar (Movie 2.2), or a tilted illusory bar (Movie 2.3 – here, the timing between 

element transformations varied). These results provide direct support for a class of models of 

SBF first proposed by Shipley and Kellman (1994, 1997) over two decades ago. They proved 
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formally that three, non-collinear texture element transformations where sufficient to define the 

local orientation of a contour fragment, and they theorized that two pairs of element 

transformations in some local region (involving as few as three element transformations) might 

be the mechanism producing perception of an oriented edge fragment and its current motion. On 

this view, locally generated edge fragments are the basic constituents of shape perception in 

SBF. Here, we have shown that SBF can indeed generate such local edge fragments from small 

numbers of element transformations, provided these events occur within particular spatial and 

temporal windows.  

These findings offer new insight about the perception of contours and objects from sparse 

texture element changes. Most previous work had exclusively looked at 2D virtual shapes in SBF 

(e.g., Shipley & Kellman, 1993; Cicerone, Gowdy & Kim, 1995; Cooke, Cunningham & 

Bulthoff, 2004; but see Chambeaud, Martin, & Barraza, 2014). The confirmation that SBF can 

occur for short edge fragments indicates that such fragments may indeed be recovered without 

more global shape information and that such fragments are the likely basic units in SBF. The 

clear spatial and temporal constraints on this process suggest modular mechanisms. In a separate 

paper, we consider how this computation is implemented neurally and suggest that filters for 

recovering motion energy from moving contrast-defined edges (Adelson & Bergen, 1985; van 

Santen & Sperling, 1984) may also function as edge filters when edge orientation is not given by 

static stimulus properties. On this hypothesis, motion energy filters have a dual function, one that 

is not readily discernible when stimulus orientation is explicitly given by contrast: they are also 

edge filters. Moreover, on this hypothesis, SBF is not an esoteric perceptual illusion, but is 

actually more indicative of basic processes implemented across the visual field for extraction of 

edges, motion, and the relationship of these. Of course, many details of this conjectured edge-
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motion duality in basic visual filtering remain to be worked out, including how a variety of 

aperture and cross-scale ambiguity problems get resolved. 

The spatial integration limits found in Experiment 1 constrain the maximum length of a 

single edge fragment. However, the experiments did not identify the minimal length that can be 

perceived. From causal observation, the height of the illusory bars in Experiment 1 was 

constrained by the height of the sawtooth pattern (i.e., the vertical separation between the 

element at a peak and trough). The smallest height of the sawtooth tested was 0.4 degrees of 

visual angle. In Experiment 2, illusory bar widths were resolvable at a sub-element level (smaller 

than 0.13 degrees); however, bar width may have more to do with the perception of an illusory 

surface than minimum length. It is also worth noting that minimum length may be constrained by 

element size: since three non-collinear elements are needed to be able to determine edge 

orientation, perhaps edge length is determine by the minimum distance that one of the elements 

needs to be shifted in order to appear as not being collinear with the other two. This distance may 

depend on element size. Other experiments have used SBF shapes with curved contours (e.g., 

Shipley & Kellman, 1994) and their illusory boundaries appear smooth, suggesting that 

minimum edge length is likely smaller than the values tested here. Further work is therefore 

needed to determine the minimum length of an illusory fragment that can be extracted. 

Once a fragment is extracted, it is related to other fragments and the missing boundary 

regions between fragments is interpolated. The orientations and velocities of several fragments 

can be used to determine the global motion direction of the set of fragments (Shipley & Kellman, 

1998). Contour interpolation of illusory edge fragments may be determined by the same 

geometric constraints of relatability that govern interpolation of real contours (Kellman & 

Shipley, 1991). Because several events need to occur before an edge can be extracted, these 
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fragments will never be available all at once. Rather, the visual system needs a method for 

maintaining a persisting representation of a fragment once extracted and updating its position 

relative to other fragments extracted at a later time. A model has been proposed for how such 

spatiotemporal interpolation may occur between visible contour fragments and occluded contour 

fragments that had been visible at a prior time (Palmer, Kellman, & Shipley, 2006). Global form 

in SBF would be constructed in the following manner: (1) local edge fragments recovered from 

sequences of element transformations within a small spatiotemporal window, (2) relatable 

contour fragments are interpolated to produce a coherent boundary, (3) the global motion of the 

completed object is recovered from the individual motions of the edge fragments.  

 
 

Perceptual postdiction 

  
An interesting property of the sawtooth displays is that when the illusory bar is seen, both 

its trailing and leading edge are visible. Given that elements disappear quantally and one at a 

time, this is actually quite surprising. Consider the displays used in Experiment 2. In order to 

determine bar width, an element must first reappear, since the width determines the duration that 

an element is invisible or occluded. However, the bar’s trailing edge is seen continuously, even 

while elements are still invisible and therefore before the width can be determined. This is a form 

of “postdiction” by which the visual system constructs a surface representation after the offset of 

a stimulus (Choi & Scholl, 2006; Kawabe 2011). Postdiction always occurs in apparent motion, 

in which an observer sees intermediate states when none exist. These intermediate states can be 

positions, as when an object appears to move between two locations, or can be more complex, as 

in the perception of intermediate shapes when a square and triangle are flashed alternatively 

(Kolers & von Grünau, 1976). Postdiction also occurs on an element-by-element scale in SBF in 
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that while no apparent motion is seen between elements, the magnitude of a velocity vector 

between two elements can only be determined after the second element has disappeared.  

It is additionally surprising that no apparent motion is seen since the displays, especially 

when ISIs are 0, which corresponds more closely to a regular apparent motion stimulus in which 

an element disappears on the same frame as the preceding element reappears. Correspondence 

models of apparent motion and first-order motion detectors would both predict that motion 

should be seen between elements (e.g., Ullman, 1979). However, a number of studies have found 

that form perception can alter or suppress motion perception (Bruno & Gerbino, 1991; 

Lorenceau & Alais, 2001; Petersik & McDill, 1981; Ramachandran & Anstis, 1986). The 

integration of local motion signals into a boundary may prevent them from being seen (Shipley 

& Kellman, 1997). In particular, when element transformation events can be interpreted as 

occlusions, apparent motion is suppressed (Ekroll & Borzikowsky, 2010; Holcombe, 2003; 

Sigman & Rock, 1974). Outside of the integration range, however, the percept reverts to inter-

element apparent motion. Since at least two non-collinear signals are needed to define an edge, 

inter-element apparent between the first two elements (the first motion signal), is suppressed 

only after the third element disappears and a second motion signal is generated. Although it has 

been theorized that three transformations are sufficient to determine the orientation of an edge 

that caused those transformations, subsequent studies are needed to determine the minimum 

number of successive element required. 

Conclusion 

  

 Using both subjective and objective methods, the experiments reported here provide 

strong evidence that the illusory global forms seen in spatiotemporal boundary formation begin 

with a more local process of extracting oriented edge fragments from small sets of local element 
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transformations. This process is constrained by both clear spatial and temporal properties, 

suggesting modular mechanisms for local edge recovery from sparse stimulus information. It is 

possible that this computation may be performed by detectors that have been previously 

characterized as motion energy filters; in the absence of oriented edge information in static 

views, these or related filters may be used to extract edge orientation. Further research will be 

needed to investigate whether this conjecture will prove to be useful in understanding the relation 

of SBF to basic visual mechanisms. 
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Chapter 3: Modeling Spatiotemporal Boundary Formation 

 
Abstract 

Transformations of widely separated visible elements, such as appearance/disappearance, 

color change, orientation change or motion, can give rise to robust percepts of continuous 

contours, shape, and global motion. Shipley and Kellman (1994) found that the well-known 

example of accretion and deletion of texture is only one of many element transformation types 

produces these effects and called the more general process spatiotemporal boundary formation 

(SBF). Efforts to model SBF have included formal proofs that orientations and motion direction 

of local edge fragments could be recovered from small sets of element changes (Shipley & 

Kellman, 1994, 1997), but little work has examined SBF in simplified situations, and no models 

have taken into account noise in human detection of the basic inputs to SBF. Accordingly, no 

model has been able to predict accurately human SBF performance. Here, we measured 

orientation discrimination thresholds for thin, oriented edges as a function of element density, 

display duration, and frame duration. Thresholds decreased with increasing density and display 

duration and increased as frame duration increased. We implemented an ideal observer version 

of the Shipley & Kellman (1997) model, and it exceeded human performance, predicting 

perfectly edge orientation on a trial-by-trial basis solely from element positions and the times of 

their transformations. In a second experiment, we measured human precision in detecting inputs 

to the model (distance, angular separation, and time between the transformations of pairs of 

elements). A model that added encoding imprecision for these parameters to the estimated from 

experiment 2 to the ideal observer closely fit human data from experiment 1 with no free 

parameters. 

Introduction 
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The boundaries of objects can indicated by many cues, some of the most common being 

discontinuities in luminance contrast, color, depth (Julesz, 1971) or texture (Kaplan, 1969; 

Julesz, 1975) at the object boundary. Other cues can come from dynamic information as objects 

or observers move in the world, such as a motion parallax and the accretion and deletion of 

texture (Braunstein, Andersen, & Riefer, 1982; Gibson, Kaplan, Reynolds, & Wheeler, 1969; 

Kaplan, 1969; Ono, Rogers, Ohmi, & Ono, 1989; Rogers & Graham, 1983; Yonas, Craton, & 

Thomspon, 1987). The boundaries of a textured surface may be undetectable if it is in front of a 

similarly textured surface. Once one of the surfaces begins to move, however, the elements of the 

farther surface are gradually occluded and revealed at the boundaries of the nearer surface. Such 

occlusions can result in the perception of illusory boundaries, surfaces, and global motion 

(Andersen & Cortese, 1989; Cicerone & Hoffman, 1997; Cicerone, Hoffman, Gowdy, & Kim, 

1995; Cunningham, Shipley, & Kellman, 1998a, 1998b; Fidopiastis, Hoffman, Prophet, & Singh, 

2000; Prazdny, 1986; Shipley & Kellman, 1993, 1994, 1997; Rovden, Baker, & Allman, 1988).   

As elements are accreted or deleted, they provide oriented contour information about the 

occluding boundary. Shipley and Kellman (1993, 1994) suggested that accretion and deletion of 

texture is a special case of a more general process. Sets of changes in some property of visible 

elements can produce perception of continuous illusory boundaries, global form, and global 

motion, a process they called spatiotemporal boundary formation (SBF). A wide variety of 

element transformations can produce similar perceptions of boundaries and surfaces, including 

discrete (i.e., all-at-once) element disappearance, as well as changes in orientation, shape, color, 

or position (Shipley & Kellman, 1993, 1994).  

How are global shapes seen in SBF?  It has been proposed that shape in SBF depends on 

two processing stages. First, information from element changes in certain small neighborhoods 



80 

produces local edge fragments having specific orientations. Second, these edge fragments 

connect across gaps according to well-known interpolation processes that operate in the 

perception of illusory and occluded contours (Kellman & Shipley, 1991; Kalar et al, 2010; 

Palmer, Kellman & Shipley, 2006; Shipley & Kellman, 1994; Erlikhman & Kellman, submitted). 

Whereas the second stage involves processes that are well-understood, the first has remained 

mysterious. Although Shipley & Kellman (1994) described mathematically minimum conditions 

for SBF (three non-collinear element transformations), little empirical research has examined 

SBF with single edges and relatively few elements. Virtually all previous studies of SBF have 

used closed objects with smooth contours as stimuli (although see Barraza & Chen, 2006). 

Recently, we demonstrated that oriented, illusory edge fragments can be recovered from 

extremely minimal displays in which elements are arranged in a jagged wave or sawtooth pattern 

and disappear and reappear sequentially, one at a time (Erlikhman & Kellman, submitted). These 

results support the two-level theory of SBF, specifically in implicating a process that recovers 

local oriented edge fragments. These local edge fragments are likely the basic units from which 

larger shapes are constructed in SBF. In this paper, we sought to develop a model of how such 

edges may be extracted. First, we describe how an SBF display is constructed and discuss several 

properties. Next, we consider and test an ideal observer model of how edges can be extracted in 

SBF displays. In the first experiment, we measured orientation discrimination thresholds for 

SBF-defined edges across a variety of display properties. Human sensitivity relative to the ideal 

observer model was suboptimal. We consider several constraints and noise factors that could 

have affected human performance. In a second experiment, we empirically measured noise to 

low-level features of the displays, such as element separation. A model that incorporated the 

constraints and the spatial and temporal noise parameters measured in the second experiment 



was able to accurately predict human performance in the first experiment across all tested display 

conditions.  

Spatiotemporal Boundary Formation (SBF)

  

Figure 3.1 shows an example of an SBF display. The d

boundary of a virtual object. The elements are always stationary and the virtual object moves 

across the display. As the object movies, elements that move across the boundary change in 

some property such as color. The c

percept is of a moving figure with crisp illusory boundaries. In uni

(Figure 3.1), elements inside the boundary of the object have the same value along some feature 

dimension (e.g., color) and those outside have a different one. In bi

elements are randomly assigned one of two values and switch to the other upon entering or 

exiting the boundary of the moving object. The clarity of the illusor

on element density, luminance differences between elements, the velocity of the occluding 

surface, and frame duration (Andersen & Cortese, 1989; Shipley & Kellman, 1994; Cicerone et 

al., 1995). 

Figure 3.1. Depiction of a square
elements. All elements inside the square region are in one state and all those outside are in 
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Spatiotemporal Boundary Formation (SBF) 

1 shows an example of an SBF display. The dotted line in Figure 

boundary of a virtual object. The elements are always stationary and the virtual object moves 

across the display. As the object movies, elements that move across the boundary change in 

some property such as color. The change is instantaneous and discrete (i.e., not gradual). The 
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1), elements inside the boundary of the object have the same value along some feature 

mension (e.g., color) and those outside have a different one. In bi-directional transformations, 

elements are randomly assigned one of two values and switch to the other upon entering or 

exiting the boundary of the moving object. The clarity of the illusory contour boundary depends 

on element density, luminance differences between elements, the velocity of the occluding 

surface, and frame duration (Andersen & Cortese, 1989; Shipley & Kellman, 1994; Cicerone et 
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“pseudosurface” moving over a field of circular black 
elements. All elements inside the square region are in one state and all those outside are in 
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another. Each individual frame contains a collection of white circles in an amorphous group. As 
the square moves (frames 2 and 3), elements entering and exiting the region change states. The 
resulting percept is of a moving, colored region with crisply defined illusory contours. Figure 
from Erlikhman & Kellman (submitted).  
 

There are many other cases in which the visual system is able to recover structure from 

sparse information. For example, gradual, dynamic occlusion of one surface by another can be 

used to create “kinetic illusory contours” (Andersen & Cortese, 1989; Bruno & Bertamni, 1990; 

Bruno & Gerbino, 1991; Kellman & Cohen, 1984; Stappers, 1989). In these displays, spatially 

disparate portions of a figure become visible one at a time as it moves in front of another surface. 

Regions of the figure that are never visible are interpolated and an illusory surface is perceived, 

despite many of the object’s regions never being visible simultaneously. Similarly, in multi-

aperture or slit-viewing displays, portions of an object’s surface are gradually revealed as the 

object moves behind many small apertures (Anstis & Atkinson 1967; Aydin, Herzon, & Ogmen 

2008; Mateeff, Popov, & Hohnsbein, 1993; Palmer, Shipley, & Kellman, 2006). In such 

displays, information about the object’s surfaces and boundaries are also only available 

sporadically, must be represented when occluded, and related to other, visible regions when they 

become available. 

Spatiotemporal boundary formation is an even more extreme case in terms of the paucity 

of available information for the construction of edges and surfaces. In SBF, the position of object 

boundaries is only revealed by their interaction with elements. Because elements transform all at 

once and are not gradually occluded, there is no oriented contour information at those locations. 

This creates a very difficult kind of aperture problem, what has been referred to as a “point 

aperture problem”, in which both the orientation and velocity of an edge are indeterminate 

(Shipley & Kellman, 1994, 1997; Prophet, Hoffman & Cicerone, 2001). In the traditional 

aperture problem, the task is to construct a velocity field from many local signals recovered from 
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the motion of oriented edge fragments. In the point aperture problem, there are no oriented edge 

fragments. The visual system must simultaneously recover both the orientation and the velocity 

of edge from spatially and temporally sparse and discrete element transformations. Next, we 

consider one proposed solution to this problem. 

Modeling SBF 

 

A model of SBF has been proposed for how local, oriented edge fragments can be 

extracted from the sequential transformation of elements (Shipley & Kellman, 1994, 1997). 

These illusory fragments may then be related and the regions between interpolated by the same 

processes that govern contour grouping and interpolation for real contours (i.e., relatability) 

resulting in a representation of a completed object contour (Kellman & Shipley, 1991; Palmer, 

Kellman, & Shipley, 2006). Erlikhman and Kellman (submitted) have provided evidence for the 

first stage of this process and have shown that single edges can indeed be recovered.  

A geometric proof of the point aperture problem is possible given the positions and times 

of three, non-collinear element transformations, the orientation of an edge that caused those 

transformations can be computed assuming a constant edge velocity and orientation (Shipley & 

Kellman, 1997). An intuition for the proof appears in Figure 3.2. Figure 3.2a depicts a sequence 

of element transformations for three elements (labeled 1, 2, and 3) caused by a moving edge. 

When two elements transform (in this case, disappear and reappear) in succession, a 

transformation vector, v12, is formed between them. The magnitude of the vector is determined 

by the spatial and temporal separation of the transformations. We use the term “transformation 

vector” in lieu of motion vector to emphasize that apparent motion is not seen between 

individual elements during SBF. The transformation of a third element defines a second 

transformation vector, v23, between the second and third elements. If the tails of these two 
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transformation vectors are placed on the same point (Figure 3.2b), then the orientation of the 

vector connecting their heads (v12 - v23) has the orientation of the illusory edge, provided that the 

edge was moving at a constant velocity and had a constant orientation between transformation 

events.  

 

Figure 3.2. A sequence of frames in which a moving edge successively transforms three 
elements (changing from black to white). (a). Three elements disappear, one at a time. v12 and v23 
are transformation vectors defined by the spatial and temporal separation between elements. (b). 
Transformation vectors v12 and v23 can be combined to define the orientation of the moving edge. 
Figure from Shipley, T. F. & Kellman, P. J. (1997). Spatio-temporal Boundary Formation: the 
Role of Local Motion Signals in Boundary Perception. Vision Research, 37(10), 1281-1293. 
 

The orientation of the illusory edge, θ, can be expressed with the following equation: 

1 23 23 12 12

23 23 12 12
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*cos *cos

v v

v v

ϕ ϕ
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−  −

=  
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    (1) 

Where φij is the angle formed between a horizontal line passing through element i and a line 

connecting element i to element j, and vij is the magnitude of the transformation vector between 

the two elements. vij can be computed from the distance between two elements (Aij) and the time 

between the transformations of those elements (∆Tij):  
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One interesting difference between this solution and the solution to the classical aperture 

problem in motion perception (Nakayama & Silverman, 1988a, 1998b; Shimojo, Silverman & 

Nakayama, 1989) is that the aperture problem only requires two frames from a motion sequence 

and two local velocity estimates from differently oriented edges along different regions of the 

object boundary. Edge orientations are given by contrast information. Here, only a single edge is 

being recovered, so all element transformation events are occurring along the length of an edge. 

Moreover, both the local edge orientation, as well as the edge’s motion, must be recovered from 

discrete element changes. At least three events, or three frames if one event occurs per frame, are 

needed in order to recover the edge orientation. Once edge orientation is recovered, the motion 

direction of the edge is itself ambiguous, i.e., there is an aperture problem for the recovered edge 

segment (Shipley & Kellman, 1994). This aperture problem for the global motion of the object 

can be solved if several edge segments along the object boundary are recovered. One of the 

surprising features of SBF is that the object boundary is continuously seen even though edge 

segments are recovered sporadically. In typical considerations of the aperture problem, contrast-

defined edges are always visible, and it is only a matter of integrating local motion signals that 

can be extracted from any pair of frames.  

The model makes several assumptions. First, at least three transformation events are 

needed. The orientation of the illusory edge is ambiguous for any two events because there are 

an infinite number of combinations of edge orientations and velocities that could cause the same 

temporal interval between two element transformations. Second, the three elements cannot be 

collinear. If they were, then φ23= φ12 and substituting into equation 1 leads to the equality  θ = φ, 

that is, that the estimated edge orientation is the same as the orientation of the line connecting all 
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three elements. Correct edge orientation cannot be recovered from a collinear triplet of elements 

for the same reason that orientation cannot be recovered from the transformations of only two 

elements, namely that many combinations of edge orientations and velocities could have caused 

the transformations. The collinearity restriction applies only to successive element 

transformations. Elements can be arranged in a regular grid and SBF would still occur 

(Fidopiastis et al., 2000), as long as the elements that transformed in sequence were not collinear. 

Third, the orientation and velocity of the moving edge are constant between transformation 

events. If velocity or orientation change between the first and second or second and third 

elements in a triplet, then the triplet can be treated as two independent pairs of elements, and the 

same problem in determining orientation for a pair of elements arises.  

Several findings support the hypothesis that motion-like signals, or vectors relating pairs 

of element transformations elements serve as the input to an edge extraction process. We refer to 

these signals as motion-like because actual local motion between element transformations are not 

perceived in SBF. If element transformations are color changes, the perception of illusory 

boundaries can be disrupted by the addition of spurious flickering or moving elements in other 

regions of the display (Shipley & Kellman, 1997). Continuously moving elements should be 

readily distinguishable from the stationary ones that that change color at the object boundary 

(when the object boundary passes across then), and might not be expected to have an effect on 

boundary formation. However, these spurious transformations greatly reduced contour clarity, 

suggesting that additional motion signals interfere with those used to construct edges. Contour 

clarity has also been found to depend on the relative contrast of elements. In particular, if 

element transformations are isoluminant color changes, illusory contour perception is greatly 

reduced (Cicerone, et al. 1995; Miyahara & Cicerone, 1997). First-order motion perception is 
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also known to be poor under isoluminance (Cropper 2005; Cropper & Derrington, 1994; 

Derrington & Henning, 1993). 

Experiment 1 

Despite mounting behavioral evidence in support of a basic edge-extraction process, 

using vectors relating element transformations, as an initial step to SBF, no working model that 

could take an SBF display as input and produce a local edge orientation as output has previously 

been implemented or tested. Doing so would require displays that focus more specifically on 

construction of a single orientation, whereas most prior work on SBF has used 2D shapes. As 

mentioned earlier, perception of shape and continuous illusory boundaries in such displays 

probably involves two stages of processing, the construction of local edge fragments and the 

connections of those fragments via spatiotemporal interpolation processes that connected 

oriented edge fragments across gaps (Palmer et al., 2006). Here, we focus on the first stage to 

evaluate models of it. We generated a display in which the SBF-defined shape was a single, thin, 

oriented bar that moved across a field of black, circular elements (Figure 3.3). Whenever the bar 

passed the midpoint of an element, that element disappeared (became white) all at once and 

remained invisible (white) for two frames at which point it reappeared (cf. Shipley & Kellman, 

1993, 1994, 1997). This resulted in a sequence of element transformations as the bar moved 

across the display. The sequence could then be broken down into triplets of events from which 

bar orientation could be computed using equation 1. All that is needed to determine edge 

orientation are the relative element positions and the temporal interval between their 

transformations. 



Figure 3.3. Illustration of stimuli used in Experiment 1. An invisible, 
laterally across a field of black elements on a white background. Whenever it passed the 
midpoint of an element, that element disappeared (became white; indicated by dashed circle in 
second panel) all at once. The element remained white 
(became black). The perception was of a moving, illusory, white bar.
 

Human orientation discrimination thresholds were measured as a function of several 

display parameters: element density, number of element transformatio

duration. These have previously been shown to affect the perception of illusory contours in SBF 

(Shipley & Kellman, 1994). If the model is correct, it should be able to accurately model 

performance under a variety of display settings an

human performance. The model described in equation 1 was used to 

trial by trial basis in simulated experimental trials. This enabled the computation of an 

orientation discrimination threshold for the model, which was directly compared to human data. 

We discuss the properties of the model after pre

Method 

Design 

 
 A between-subjects design was used to test the effects of three display properties on 

orientation discrimination of SBF
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Illustration of stimuli used in Experiment 1. An invisible, oriented bar moved 
laterally across a field of black elements on a white background. Whenever it passed the 
midpoint of an element, that element disappeared (became white; indicated by dashed circle in 
second panel) all at once. The element remained white for two frames and then reappeared 
(became black). The perception was of a moving, illusory, white bar. 

Human orientation discrimination thresholds were measured as a function of several 

display parameters: element density, number of element transformation events, and frame 

duration. These have previously been shown to affect the perception of illusory contours in SBF 

(Shipley & Kellman, 1994). If the model is correct, it should be able to accurately model 

performance under a variety of display settings and be affected by the same properties that affect 

human performance. The model described in equation 1 was used to predict edge orientation on a 

simulated experimental trials. This enabled the computation of an 

tion threshold for the model, which was directly compared to human data. 

We discuss the properties of the model after presenting the behavioral results. 

subjects design was used to test the effects of three display properties on 

rientation discrimination of SBF-defined edges. Displays varied in element density (number of 
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subjects design was used to test the effects of three display properties on 

defined edges. Displays varied in element density (number of 
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elements per square region), number of transformation events, or frame duration. Each group of 

subjects was exposed to only one of the three display manipulations. All subjects performed an 

edge orientation discrimination task, judging whether an SBF-defined edge was tilted clockwise 

or counterclockwise away from vertical. Orientation sensitivity was measured for six densities, 

six element quantities, and three frame durations. 

Participants 

 
 Subjects were 45 students from the University of California, Los Angeles, split into 

groups of 15 for each of the three experimental conditions. Subjects were compensated with 

course credit for participating. All reported having normal or corrected-to-normal vision. All 

subjects were naïve to the purposes of the experiments. 

Apparatus 

 
Stimuli were created and displayed using the MATLAB programming language and the 

Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). Stimuli were presented on a Viewsonic 

G250 CRT monitor, which was powered by a MacPro 4 with a 2.66 GHz Quad-Core Intel Xeon 

processor and an NVidia GeForce GT120 graphics card. The monitor was set to a resolution of 

1024x768 pixels and a refresh rate of 60 Hz. 

Stimulus 

 
 Displays contained black, circular elements with a diameter of 10 pixels (0.25 degrees of 

visual angle) on a white background. The elements were placed within a 614.4 pixel by 614.4 

pixel region (15.19° x 15.19°) centered on the computer monitor. The elements were pseudo-

randomly arranged by dividing the display area into a grid of equally sized regions and placing a 

single element at a random position within each region. This placement method ensured that 
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there were no large areas in the display that lacked elements and also prevented their overlap 

while preserving a somewhat uniform distribution over the entire display (cf. Shipley & 

Kellman, 1993, 1994). 

 A one-pixel-wide bar was specified that spanned the height of the display. On each 

frame, the bar moved laterally 5 pixels (0.125 deg/frame, 7.5 deg/sec). Whenever the bar passed 

the midpoint of an element, that element disappeared (became white) for two frames (33.2 ms) 

and the bar paused. After two frames, the element reappeared (became black) and the bar 

continued moving. Elements appeared and disappeared discretely without gradual occlusion. The 

resulting percept was of a horizontally translating, illusory bar. Whether the bar started on the 

left side of the display and moved right or vice versa was randomized across trials. The movie 

lasted until the bar reached the opposite end of the screen. The bar only traveled across the 

screen once, so each element transformed only one time. A new arrangement of elements was 

generated for every trial. 

On each trial, the bar was tilted clockwise or counterclockwise with respect to the 

vertical. The degree of tilt was set by an adaptive staircase procedure (Psi method (Kontsevish & 

Tyler, 1999) implemented in the Palamades Toolbox (Prins & Kingdom, 2009)) that was used to 

find the 75% orientation discrimination threshold. Whether the bar was rotated clockwise or 

counterclockwise was randomized across trials.  

Three properties of the displays were manipulated, element density (number of elements 

in the display area), number of transformation events, and frame duration. One property was 

manipulated at a time, resulting in three experimental conditions. In the density condition, 

element density was varied by drawing 9, 16, 25, 36, 49, or 64 elements in the display area. 

These quantities corresponded to densities of 0.04, 0.07, 0.11, 0.16, 0.21, and 0.28 elements per 
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squared degree visual angle. A separate staircase was used for each density to determine 

orientation discrimination thresholds. The six staircases were interleaved and terminated after 50 

trials.    

In the event number condition, element density was held constant at one element per 0.28 

square degrees of visual angle (the highest density in the density condition). Each display 

contained 64 elements. The trial lasted until the illusory bar came into contact with 9, 16, 25, 36, 

49, or 64 elements. Starting horizontal position and motion direction of the bar were randomized 

with the constraint that there would be enough elements in the direction of motion that would 

allow for the required number of element contacts. As with density, six interleaved staircases 

were used to determine orientation discrimination thresholds for each element quantity. 

In the temporal condition, 64 elements were placed with the highest density used from 

the density and event conditions. Frame durations were 16.7, 33.3, or 66.7 ms. Subjects were 

allowed to make a response at any point during the trial because at long frame durations the 

movies lasted for a long time. Three interleaved staircases were used, one for each frame 

duration. The shortest frame duration was the same frame duration that was used in the other 

conditions. As such, there was one display type that was identical in across all three conditions 

(64 elements, 64 events, 16.7 ms frame duration).  

Procedure 

 
Subjects sat in a dark room at a distance of 89.5 cm from the monitor. The only 

illumination came from the monitor. Subjects were instructed that they would be making 

orientation judgments about slanted edges and were shown examples of real edges that were 

tilted clockwise and counterclockwise. After each stimulus presentation, a response screen 

appeared asking whether the line was tilted clockwise or counterclockwise. Subjects made a 
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response by pressing a key on the keyboard. Before beginning experimental trials, subjects first 

performed 10 practice trials at the highest element density and quantity. Feedback was provided 

after each practice trial. Once complete, subjects were told that they would receive no further 

feedback and that in the rest of the experiment certain aspects of the displays would change such 

as the total number of elements, the display duration, or the speed of the illusory line. Short rest 

breaks were provided throughout the experiment every 100 trials. 

Results and discussion 

 
 Orientation discrimination thresholds for each of the three conditions are shown in Figure 

3.4 (black lines). The 75% correct orientation discrimination thresholds were computed for each 

subject for each condition and averaged across subjects. In the density condition, thresholds 

decreased as a function of density with the highest threshold of 19.08° for the lowest density and 

3.17° for the highest. In the element quantity condition, displays with 36 or more element 

transformations had similar thresholds: 3.54, 3.30, and 3.36° for 36, 49, and 64 transformations 

respectively. Displays with 16 or 25 element transformations had slightly higher thresholds at 

5.20° and 4.20° respectively. Displays with only nine element transformations had the highest 

thresholds, 8.8°. In the frame duration condition, average thresholds were similar for the two 

fastest durations, 3.90° and 3.66° respectively. However, sensitivity was worse for the longer, 

66.7 ms frame duration, at 5.70°. Displays with the highest density, largest number of element 

transformations, and shortest frame duration (64 elements, 64 events, frame duration = 16.7 ms) 

appeared in all three conditions. Thresholds were between 3 and 4 degrees across all conditions. 

 



 

Figure 3.4. Average orientation discrimination thresholds for three display conditions tested in 
Experiment 1. Thresholds are shown as a function of element density (a), number of events (b), 
and frame duration (c). Human performance data are shown in black. Bars in
confidence intervals. Ideal observer performance is shown in blue. 
 

For each condition, data were submitted to a within

the effect of the manipulated display property. Increasing density (Fig. 4(a), black 

decreased thresholds (Mauchly’s test: 

(a) 

(c) 

93 

 

 

. Average orientation discrimination thresholds for three display conditions tested in 
Experiment 1. Thresholds are shown as a function of element density (a), number of events (b), 
and frame duration (c). Human performance data are shown in black. Bars indicate the 95% 
confidence intervals. Ideal observer performance is shown in blue.  

For each condition, data were submitted to a within-subject, one-way ANOVA to test for 

the effect of the manipulated display property. Increasing density (Fig. 4(a), black 

decreased thresholds (Mauchly’s test: χ
2(14) = 43.85 p < 0.001, Greenhouse-Geisser 

(b) 

 

. Average orientation discrimination thresholds for three display conditions tested in 
Experiment 1. Thresholds are shown as a function of element density (a), number of events (b), 

dicate the 95% 

way ANOVA to test for 

the effect of the manipulated display property. Increasing density (Fig. 4(a), black line), 

Geisser ε = 0.37, 
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F(1.86, 26.06) = 87.77, MSE = 16.65, p < 0.001, η2
p = 0.86). Similarly, increasing the number of 

element transformations (Fig. 4(b), black line) decreased thresholds (Mauchly’s test: χ
2(14) = 

77.7, p < 0.001, Greenhouse-Geisser ε = 0.36, F(1.81, 27.13) = 10.08, MSE = 19.4, p=0.001, η2
p 

= 0.40). Increasing the inter-frame interval increased thresholds (F(2, 28) = 7.78, MSE = 2.37, p 

= 0.002, η2
p = 0.36) (Fig. 4(c), black lines). 

We performed post hoc, Bonferroni corrected, two-tailed, paired t-tests comparing the 

thresholds from the worst condition to the rest of the conditions. Performance in the density 

condition was worse in the lowest density condition compared to all others (all ps < 0.001). The 

threshold for the smallest number of transformations (9) was larger than for all other numbers 

except for 16 elements (all ps < 0.01).  In frame duration condition, there was no significant 

difference between the two shortest frame durations. However, sensitivity for the longest 

duration was worse than either of the shorter delays (16.7 vs. 33.3 ms: t(14)=3.88, p=0.0017 ; 

33.3 ms vs. 66.7 ms t(14)=3.42, p=0.0042). Performance for displays that had identical features 

for all three conditions was not significantly different across conditions (ps>0.05). 

The results replicated previous findings that element density and frame duration affect 

shape perception in SBF (Shipley & Kellman, 1994). It has also been shown that the virtual 

object may be a single edge or thin bar if the elements are arranged in a regular pattern with 

equal spacing and inter-element transformation times (Erlikhman & Kellman, submitted). Here, 

we demonstrate that single edges can be recovered even when elements are arranged randomly 

with varying transformation times. These findings lend support to the notion that edges are 

indeed extracted as a first step in constructing complex shape representations in SBF. One 

interesting finding was that in the event quantity condition, performance continued to increase as 

a function of the number of events up to approximately 25 events, after which performance 
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leveled off. An earlier study of SBF also found that performance in a shape identification task 

improved as a function of number of frames shown, but only up to five frames, after which 

performance was constant (Shipley & Kellman, 1993). The number of events needed to reach 

best performance might depend on the difficulty of the task, complexity of the shape, and 

distance that the object travels per frame.  

Ideal Observer Model 

 
The ideal observer model described by equation 1 was used to predict bar orientation on a 

trial-by-trial basis for each of the conditions in Experiment 1. On each trial, the relative distances 

(Aij), angular relationships (φij), and timing (∆Tij) of element transformations were recorded for 

all elements directly from the displays by simulating the motion of an illusory edge. The 

sequence of events was divided into triplets and edge orientation was computed for each triplet. 

From n elements each of which transformed once, n-2 triplets were created, each triplet 

providing an estimate of bar orientation, θ. All elements except for the first and last appeared in 

multiple triplets. The median of the orientation estimates in a single trial was used to generate a  

“clockwise” or “counterclockwise” response. If the median was 90°, one of the two responses 

was chosen randomly. The responses were then submitted to the same staircase procedure for 

each of the experimental conditions and display settings. This resulted in estimates of orientation 

discrimination sensitivity for the model that could be directly compared to human sensitivity 

measures. Importantly, while the model output was an orientation, the comparison to human data 

was at the level of discrimination thresholds.  

The model was able to predict edge orientation very accurately, producing orientation 

discrimination thresholds below one degree for all densities (blue line, Figure 3.4). However, in 

examining individual orientation estimates derived from a triplet, there was some deviation from 
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true orientation. Average orientation estimate error was 1.85° per triplet. When the median was 

taken across all orientation estimates computed from all triplets in a single trial, error was 0.37, 

0.28, 0.24, 0.20, 0.17, and 0.14° for the six element densities from smallest to largest 

respectively. Error was reduced for higher density displays because there were more triplets that 

contributed to the final estimate. The model’s performance may have been imperfect because the 

bar advanced in discrete steps of 5 pixels every 16.7 ms (i.e., every frame). This introduced error 

in the amount of time between element transformation events, which could only be in multiples 

of the frame rate. To test this explanation, a separate set of simulations was run for which the 

velocity of the bar was used to compute the time when an element should have transformed. 

Using these “true” times, average orientation estimate error was less than 0.1° per triplet. The 

model is therefore able, in principle, to perfectly determine edge orientation from three element 

transformation events. In all subsequent modeling, the timing correction was not applied because 

true bar velocity cannot be known a priori. Even without the correction, however, the model’s 

median orientation estimates differed little (less than 0.5°) from true orientation, and the final 

model thresholds were well below those of human observers, even for the highest density 

(3.17°). 

It is possible that simultaneous element transformation events could have affected both 

human and model performance. Simultaneous events could be used to perform the task perfectly: 

because the stimulus was a thin bar, simultaneous events could only have occurred if the 

orientation of the edge was the same as the angle between the event positions. Knowing the 

angle would therefore be sufficient to determine whether the edge was oriented clockwise or 

counterclockwise. Such a strategy would be particular to the displays used in this experiment. If 

the contour of the virtual object was curved or composed of more than a single edge, a straight 
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line connecting the positions of simultaneous events on different parts of the curve or on 

different edges would not correspond to the shape’s contour. Nevertheless, if observers 

discovered that they could use simultaneous events to do the task, then one might have expected 

performance to have been near-perfect, especially for higher densities which had the highest 

frequencies of simultaneous events on a per-trial basis. On average, there were 0.21, 0.74, 1.93, 

4.06, 7.56, and 12.73 simultaneous events per trial for each of the six element densities 

respectively. However, even at the highest density, average human thresholds were around 3.5°. 

If two simultaneous events over the course of a trial were sufficient to perform the task, we may 

have expected better performance. Furthermore, because the virtual edge spanned the height of 

the display, simultaneous events were often far apart. The average distance between 

simultaneous events for the highest density was 3.38°. Given that simultaneous events lasted for 

only 33.2 ms and that the elements were small, it would have been difficult for observers to 

detect them at all.  

As a further check, we also performed a control experiment (not reported here) in which 

only a single element disappeared on every frame. Subjects reported seeing an illusory edge and 

orientation discrimination thresholds were very similar to those found in Experiment 1. The 

model was also able to perfectly predict edge orientation in these displays. Human and model 

performance therefore did not depend on the presence of simultaneous transformation events to 

drive performance.  

Experiment 2 

Experiment 1 indicated that observers could very accurately discriminate between edge 

orientations of illusory edges defined by SBF and that their sensitivity depended on the spatial 

and temporal properties of the displays. Human performance, however, was far worse than the 

ideal observer model, especially for low density displays and displays with few transformation 
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events. One limitation on human performance could be spatial and temporal integration limits 

beyond which events cannot be combined to recover edge orientation. In sparse displays, edges 

may not be formed because elements are far apart from one another and the temporal intervals 

between their transformations are long. Similar integration limits exist, for example, in apparent 

motion, where the perception of motion between two alternatively flashing elements is 

constrained by the inter-element distance and the element flash timing (Wertheimer, 1912; Korte 

1915). Under minimal conditions, when few elements transform one at a time, perception of 

illusory contours is strongly degraded for inter-element distances greater than one degree of 

visual angle or inter-stimulus intervals greater than 80 ms (Erlikhman & Kellman, submitted). 

For dense displays with random arrangement of elements and large, extended objects similar to 

those used in Experiment 1, perception of SBF improves with the number of frames that can be 

fit into a 165 ms temporal window, with additional frames adding little or no additional benefit. 

In the event quantity condition in Experiment 1, performance improved with increasing number 

of events up to 25-36, beyond which there was no added benefit to sensitivity. This may reflect a 

maximum threshold on the number of events that can be usefully integrated. Additionally, both 

Experiment 1 and prior work demonstrate a gradual reduction in SBF perception as a function of 

the display’s spatial and temporal properties, suggesting an effect of noise. Inaccurate 

representations of the distance between elements, for example, would affect the computation of 

the inter-element velocity signal and ultimately the estimate of the bar’s orientation.   

There are several possible low-level sources of noise in these displays. Accurate 

representation of the edges position and velocity requires precise estimates of element positions 

and transformation times. The ideal observer model showed that even slight deviations from 

correct temporal values could cause a 1.8° error in the orientation estimate. Additional sources of 
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noise arise from imprecise measurement of inter-element position or the angular separation 

between elements. Temporal, spatial, and angular distances are the three variables in equation 1 

used to derive edge orientation. Experiment 2 was designed to empirically measure sensitivity to 

these quantities in SBF-like displays. Noisy measurement of low-level stimulus properties has 

previously been used to account for error in visual speed perception (Hürlimann, Kiper, & 

Carandini, 2002; Stocker & Simoncellli, 2006) and cue reliability of spatial and orientation 

signals in biological motion (Thurman & Lu, 2014). These low-level sources of noise may result 

in mis-estimation of edge orientation, resulting in poorer sensitivity. Including them in the model 

might be able to account for the suboptimal human performance.  

Method 

Participants 

 
 Subjects were 3 volunteers from the University of California, Los Angeles, and one of the 

authors, GE. All reported having normal or corrected-to-normal vision. Two of the subjects were 

experienced psychophysical observers. 

Design 

 A method of constant stimuli design was used to measure sensitivity to spatial, temporal, 

and angular separation between pairs of circular elements flashed successively for various 

distances, temporal intervals, and angles. Subjects performed a two-interval, forced choice task 

in which they selected the interval that contained the flashed pair of elements that were either 

closest together in space, closest together in time, or which formed the smallest angle relative to 

horizontal. Seven spatial distances from 20 to 140 pixels (0.5 to 3.5 degrees of visual angle) were 

used as references. Each reference was compared to 10 other distances to obtain points on a 

psychometric function. A similar procedure was used for six reference temporal intervals (50 to 
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300 ms) and five reference angular differences (15 to 75º). For each reference, a cumulative 

Gaussian function was fit to the data to obtain mean and standard deviation estimates. Spatial, 

temporal, and angular sensitivity data were collected between subjects.  

Stimuli 

 
 The apparatus was the same as that for Experiment 1. Stimuli consisted of a background 

array of 400 randomly placed white, circular elements (diameter = 0.25º) on a black background 

and two pairs of target elements which were identical to the background elements. All elements 

appeared within a 13.69º by 13.69º area centered on the middle of the screen. Each trial was 

composed of two intervals. In each interval, the elements of one pair flashed (disappeared) for 50 

ms and then reappeared one at a time. The positions and times of flashes defined the spatial, 

temporal, and angular relationship between elements in a pair. One pair of elements defined a 

reference distance, temporal interval, or angle, and the other a corresponding comparison value. 

In the spatial task, seven reference distances were used: 20, 40, 60, 80, 100, 120, and 140 

pixels (0.50, 1.00, 1.49, 1.99, 2.49, 2.98, and 3.48 degrees of visual angle, respectively). These 

were the Euclidean distances between elements in one of the target pairs. Comparison distances 

for the other pair were offset by between -50 and 50 pixels (-1.24º to 1.24º) from the reference 

distance. Ten comparison distances were used for each reference to cover a range of values to 

along the psychometric function. Whether target elements in the first and second interval were 

separated by the reference distance and comparison distance respectively or vice versa was 

randomized across trials. Each element pair was centered on a random position within the 

display area. The angle formed between the elements in a pair and the horizontal was 

randomized across trials, but was the same for both pairs of elements within a trial. 
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A similar pairing of reference and comparison was used for temporal and angular 

separations. For the temporal task, six reference durations were used: 50, 100, 150, 200, 250, and 

300 ms. Ten comparison durations were used for each reference, with offsets in the range of -180 

to 180 ms. For this task only, the monitor refresh rate was set to 100 Hz to allow intervals to 

occur in steps of 10 ms. For angular separation, five reference angles were used from 15º to 75º 

in steps of 15º. Ten comparison angles were used for each reference, with offsets in the range of 

-22º to 22º. For both temporal and angular tasks, elements within a pair were 3.75º apart. 

Element pairs in the temporal task appeared at random angular positions across trials, but the 

formed the same angle within a trial (across pairs). Each reference-comparison pair for each task 

was tested 20 times. Trial order was randomized.  

Before target elements in a pair flashed, a red outline of a square (7.45º by 7.45º) 

centered on the elements appeared for 300 ms. Pilot work had found that without this attentional 

cue, observers often missed the disappearance of one or both elements in a target pair. This 

attentional cue occurred at the beginning of each interval, before the first element of an element 

pair flashed. Even with the attentional cue, it was sometimes difficult to detect an element flash. 

In order to prevent guessing in such cases, subjects were allowed to press a key to repeat a trial. 

The same reference and comparison values were used, but a new display was generated with 

background and target elements appearing in new positions and with the interval order 

randomized.  

Procedure 

 
 Subjects sat at a distance of 89.5 cm from the monitor and had their heads stabilized by a 

chin-rest. Subjects were given verbal instructions that they would be making discrimination 

judgments between the spatial, temporal, or angular distances defined by the flashing of two dots 
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in a field of dots. A trial began with all elements, background and target, displayed on the screen. 

After 300 ms, the outline of a red, square appeared centered on the first target element pair. This 

marked the beginning of the first interval. The square remained on the screen for 300 ms and 

then disappeared. After a further 300 ms, the first element of the first element pair disappeared 

for 50 ms and reappeared. The second element in the pair then disappeared for 50 ms. In the 

temporal duration task, a pause was inserted after the reappearance of the first element and 

before the disappearance of the second. This pause defined the temporal interval about which 

subjects made a judgment. Once the second element reappeared, all elements remained on the 

screen for another 300 ms, at which point the second interval began. An attentional square was 

again shown for 300 ms and the second pair of elements flashed one at a time. After the last 

target element reappeared, the display remained on the screen for another 300 ms and was then 

replaced by a blank, black screen. White text instructed subjects to make a response by pressing 

one of two keys on the keyboard to indicate whether the first or second interval contained the 

pair of target elements that were farthest apart (spatial task), that flashed furthest apart in time 

(temporal task), or that formed the smallest angle with the horizontal (angular task). If subjects 

missed one or more target element flashes, they were instructed to press a third key to repeat a 

trial. Subjects were explicitly instructed not to repeat trials in which they were unsure of the 

answer, but saw all four target element flashes. Subjects were given a break every 100 trials. An 

illustration of a trial sequence is shown in Figure 3.5. The three noise conditions were run 

independently in separate sessions. Each session lasted approximately one and a half hours. 

 



Figure 3.5. An illustration of a trial in Experiment 2.
region of the display was cued in which element transformations would occur (first panel). An 
element within that region would disappear (second panel, indicated by dashed boundary) and 
reappear (third panel). A second element would disappear, also within the cued region (fourth 
panel). The two elements define a spatial, angular, and temporal value, which is compared to one 
in a subsequent interval (second row). 

Results and Discussion 

 
 For each reference-compari

and smallest angle responses was computed for each of the three tasks respectively. Cumulative 

normal distributions were fit to the data for each reference and for each subject separately using

non-linear least squares procedure and the mean and standard deviation of the functions were 

estimated. The standard deviation estimates appear in Tables 

the three tasks.  

Observer 0.5 deg 1 deg 1.5 deg
GE 0.16 0.18 0.24

RO 0.27 0.35 0.35

SC 0.20 0.20 0.19

YX 0.75 0.54 0.68

Avg. 0.35 0.32 0.36

Table 3.1. Standard deviation estimates for each subject in the spatial task for each of the seven 
reference distances. 
 
Observer 50 ms 100 ms 150 ms
GE 68.54 133.45 99.80

RO 48.28 27.8014 50.83

SC 116.63 61.89 67.92
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. An illustration of a trial in Experiment 2. Each row depicts one interval. A region of 
region of the display was cued in which element transformations would occur (first panel). An 
element within that region would disappear (second panel, indicated by dashed boundary) and 

second element would disappear, also within the cued region (fourth 
panel). The two elements define a spatial, angular, and temporal value, which is compared to one 
in a subsequent interval (second row).  

comparison pair the percentage of largest distance, longest duration, 

and smallest angle responses was computed for each of the three tasks respectively. Cumulative 

normal distributions were fit to the data for each reference and for each subject separately using

linear least squares procedure and the mean and standard deviation of the functions were 

estimated. The standard deviation estimates appear in Tables 3.1-3.3 for all subjec

1.5 deg 2 deg 2.5 deg 3 deg 3.5 deg 
0.24 0.26 0.44 0.33 0.47 

5 0.32 0.42 0.41 0.79 
9 0.29 0.25 0.37 0.35 
8 0.96 0.88 1.00 1.58 

0.36 0.46 0.50 0.53 0.80 

Standard deviation estimates for each subject in the spatial task for each of the seven 

150 ms 200 ms 250 ms 300 ms 
99.80 91.59 107.02 86.23 
50.83 51.53 69.63 62.15 
67.92 72.83 96.19 120.48 

 
Each row depicts one interval. A region of 

region of the display was cued in which element transformations would occur (first panel). An 
element within that region would disappear (second panel, indicated by dashed boundary) and 

second element would disappear, also within the cued region (fourth 
panel). The two elements define a spatial, angular, and temporal value, which is compared to one 

son pair the percentage of largest distance, longest duration, 

and smallest angle responses was computed for each of the three tasks respectively. Cumulative 

normal distributions were fit to the data for each reference and for each subject separately using a 

linear least squares procedure and the mean and standard deviation of the functions were 

3 for all subjects in each of 

Standard deviation estimates for each subject in the spatial task for each of the seven 



104 

YX 182.43 181.26 147.96 192.33 137.94 153.60 

Avg. 103.97 101.10 91.63 102.07 102.70 105.61 

Table 3.2. Standard deviation estimates for each subject in the temporal task for each of the six 
reference temporal durations. 
 
Observer 15º 30º 45º 60º 75º 
GE 6.96 7.94 12.85 9.27 7.87 
RO 7.89 13.51 9.88 14.31 10.23 
SC 6.14 6.41 8.17 12.13 6.610 
YX 5.45 14.84 20.58 19.33 13.46 
Avg. 6.61 10.67 12.87 13.76 9.54 

Table 3.3. Standard deviation estimates for each subject in the angular task for each of the five 
reference distances. 
 

Typically, empirical noise estimates are used to model one individual’s performance at a 

time because sensitivity varies from subject to subject. This can be seen, for example, in subject 

YX’s standard deviation estimates for distance sensitivity (Table 3.1), which are two to three 

times larger than those of the other subjects across all reference distances. However, as a first 

step, we sought to test as simple and general a model as possible. Standard deviation estimates 

were therefore averaged across all references and all subjects resulting in average estimates of 

0.47 degrees of visual angle, 101.18 ms, and 10.69º for spatial, temporal, and angular separation 

respectively. On the one hand, these average quantities may have overestimated the amount of 

noise and glossed over subtle differences as a function of reference value (e.g., increasing 

variability with increasing inter-element distance). On the other hand, average values may be 

more appropriate to apply to the data from Experiment 1, in which subjects were naïve observers 

who were not specifically instructed to pay attention to inter-event properties. Instead of 

examining subject-specific fits, we therefore used the average data from Experiment 2 to attempt 

to predict performance from a completely different group of subjects from Experiment 1.   

Model Results 
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The ideal observer model introduced in Experiment 1 was modified by adding two 

constraints and three sources of noise. The first constraint was on the number of integrated 

elements from which the final orientation estimate was derived. In the event quantity condition, 

additional elements beyond 25-36 did not affect sensitivity. We therefore restricted the number 

of elements to be integrated to 25. A sequence of 25 consecutive element transformations was 

sampled for each trial, and orientation estimates were derived only from triplets within that set of 

elements. The second constraint was temporal – triplets containing inter-event times greater than 

165 ms were excluded from the final set from which the average orientation was computed. 

Previous work using similar displays found that perception of SBF was greatly reduced beyond 

this limit (Shipley & Kellman, 1994).  

The average noise parameters estimated in Experiment 2 were applied by including 

additive noise to the spatial (A), temporal (∆T), and angular (φ) inter-element properties as 

indicated in equation 1. It was assumed that noise was normally distributed with a mean of zero 

and a standard deviation given by the noise estimates derived in Experiment 2. For spatial and 

temporal noise, truncated normal distributions were used to ensure that the sampled values were 

non-negative. Each condition in Experiment 1 was simulated ten times and the average of the 

threshold estimates from the ten simulations are shown in Figure 3.6.  

 



Figure 3.6. Data from Experiment 1 (black) replotted with model fits (blue) using noise 
parameter estimates from Experiment 2. Error bars are 95% confidence intervals. Model data 
reflect the average of 10 simulated experiment runs. 
 

Model performance was measured b

human data and the model fit. The overall fits were highly accurate across all conditions: element 

density RMSE = 3.42; event quantity RMSE = 0.89; frame duration RMSE = 0.83. As a 

comparison, for the density condition, we examined models that did not include the element 

(a) 

(c) 
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. Data from Experiment 1 (black) replotted with model fits (blue) using noise 
parameter estimates from Experiment 2. Error bars are 95% confidence intervals. Model data 
reflect the average of 10 simulated experiment runs.  

Model performance was measured by computing the root mean squared error between the 

human data and the model fit. The overall fits were highly accurate across all conditions: element 

density RMSE = 3.42; event quantity RMSE = 0.89; frame duration RMSE = 0.83. As a 

sity condition, we examined models that did not include the element 

(b) 

 

. Data from Experiment 1 (black) replotted with model fits (blue) using noise 
parameter estimates from Experiment 2. Error bars are 95% confidence intervals. Model data 

the root mean squared error between the 

human data and the model fit. The overall fits were highly accurate across all conditions: element 

density RMSE = 3.42; event quantity RMSE = 0.89; frame duration RMSE = 0.83. As a 

sity condition, we examined models that did not include the element 
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quantity and temporal constraints, as well as models that only included those constraints and 

added no noise. Both constraint-only and noise-only models provided worse fits to the data: 

constraint-only RMSE = 11.18; noise-only RMSE = 13.15.  

Increasing noise as a function of inter-element separation in Experiment 2 suggests that 

spatial noise may be multiplicative in nature rather than additive. A role for multiplicative 

computation has been suggested for looming signals (Gabbiani, Krapp, Koch, & Laurent, 2002), 

contrast-gain control (Albrecht & Geisler, 1991; Määttänen & Koenderink, 1991), and 

orientation selectivity (Beaudot & Mullen, 2005). To test whether multiplicative noise might 

better capture human performance, the distance data from Experiment 2 were log-transformed 

refit with a cumulative normal, and the standard deviation for each distance for each subject was 

computed. The average across all references and subjects was 0.30. The model was then rerun 

and compared to human data from Experiment 1. The multiplicative noise model was able to fit 

the density condition slightly better than the additive noise model (RMSE = 3.11), but was worse 

for the number of events (RMSE = 1.74) and frame duration (RMSE = 2.15) conditions.  

General Discussion 

 The current study provides new evidence in support of a model of spatiotemporal 

boundary formation (SBF) that extracts local, oriented edge fragments by solving the point 

aperture problem. We have recently demonstrated behaviorally that such edge fragments can 

indeed be recovered in minimal displays in which elements disappear and reappear one at a time, 

suggesting that they serve as the basic units from which global shapes are constructed in SBF 

(Erlikhman & Kellman, submitted). Although a model had been proposed for how such 

fragments may be recovered solely from the positions of elements and times of their 

transformations (i.e., by solving the point aperture problem), the model had not been 

implemented or applied to behavioral data (Shipley & Kellman, 1994, 1997). Here, we present 
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the first evidence that not only can such a model determine edge orientation given accurate input, 

but that it can also very precisely model human performance across a variety of conditions using 

only a few constraints and sources of noise. Importantly, this was possible without any parameter 

fitting. In addition, although the model made predictions about edge orientation on a trial-by-trial 

basis, the final comparison to human data was performed on orientation discrimination 

thresholds that were generated by a staircase procedure. It is all the more impressive that it was 

possible to fit these data with a mechanistic model. 

An ideal observer model demonstrated that edge orientation could be unambiguously 

determined from three, non-collinear element transformations. In Experiment 1, special displays 

were created in which only a single illusory edge was visible. It was possible to model human 

sensitivity to the edge’s orientation across a variety of display conditions known to affect 

perception of SBF by introducing two integration constraints and noise to the estimates of 

element positions and event timings. The two constraints were: (1) element transformations had 

to occur within 165 ms of each other, a cutoff beyond which illusory contours are not seen 

(Shipley & Kellman, 1994), and (2) orientation estimates were computed from a subset of 25 

events. In Experiment 1, orientation sensitivity was similar for displays containing 25 events or 

more. The amount of variability or noise in measuring inter-element distance, angular separation 

between elements, and the temporal interval between events (the three variables in model) were 

estimated on a separate group of subjects (Experiment 2) and their averages were used to predict 

performance in Experiment 1.  

There are several limitations to the model. First, it is assumed that the velocity and 

orientation of the illusory edge is constant. We have recently shown that SBF supports a wide 

range of transformations of the pseudosurface including scaling, rotation, acceleration, and non-
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rigid transformation (Erlikhman, Xing, & Kellman, in press). Second, the model only gives the 

orientation for a single edge. In displays with 2D shapes or curved edges, the model would need 

some spatial parameter that limits the integration of element transformations to small 

neighborhoods to allow for the extraction of edge information along all portions of the contour. 

For example, if the illusory figure is a circle, then there must be some way of keeping separate 

element transformations on opposite sides of the circle. Future work is needed to address these 

concerns. 

For a moving object, two frames from a motion sequence are sufficient to solve an 

aperture problem that occurs locally for each contour (e.g., Weiss, Simoncelli, & Adelson, 2002). 

Such a solution is impossible for the point aperture problem, particularly in SBF displays in 

which edges can be seen even when only a single element transforms from frame to frame 

(Erlikhman & Kellman, submitted). If a biological process instantiates the computation 

performed by the model, it must be integrating element transformation events over an extended 

region of space and period of time. This brings to mind a class of motion-energy models with 

spatiotemporal filters that are thought to reflect neural properties and which can detect moving, 

contrast-defined edges over time (Adelson & Bergen, 1985; Challinor & Mather, 2010; van 

Santen & Sperling, 1984). However, such models predict nearest-neighbor apparent motion 

between transforming elements. An alternative possibility is that a set of large, oriented motion 

filters that capture the transformation of several elements may be used to determine edge 

orientation. Evidence for the existence of such filters have been found in primates in V1 

(Maracar, Raiguel, Xiao, & Orban, 2000; Schmid, 2008), V2 (Lu et al, 2010; Chen et al., 2014) 

and MT (Marcar & Cowey, 1992; Marcar, et al., 1995). If an explanation in terms of these 

detectors is possible, then SBF is not simply an esoteric visual illusion, but is actually the result 
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of a fundamental visual process involved in the extraction of edges, motion, and their interaction. 

We are currently exploring the possibility of linking models of SBF to the known properties of 

oriented motion energy filters. 
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