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A New Framework for Loop-Free On-Demand Routing Using Destination
Sequence Numbers ∗

J.J. Garcia-Luna-Aceves Hari Rangarajan
Department of Computer Engineering

University of California
Santa Cruz, CA 95064, U.S.A.

Email: {jj, hari}@cse.ucsc.edu

Abstract

A generalized framework for loop-free routing based
entirely on destination sequence numbers is presented.
The framework eliminates the counting-to-infinity problem
found in AODV and other on-demand routing protocols
based on destination sequence numbers. The Sequence-
Number Window Routing (SWR) protocol is presented as
an example of this framework. SWR is compared via sim-
ulations with DSR, AODV and OLSR using networks of 50
and 100 mobile nodes; the results indicate that SWR is as
efficient as AODV, without incurring counting to infinity.

1 Introduction

Several routing protocols have been proposed to date
for wireless networks. Pro-active protocols for MANET
like the Optimized Link State Routing (OLSR) [1] main-
tain routes to every possible destination in the network, and
can incur temporary loops. On-demand protocols like the
Adhoc On-demand Distance Vector (AODV) [8], Dynamic
Source Routing (DSR) [4], and the Labeled Distance Rout-
ing (LDR) protocol [2] establish routes to only those desti-
nations for which there is traffic, and attempt to ensure loop
freedom at every instant to limit control overhead. To avoid
routing table loops, on-demand routing protocols use source
routing, sequence numbers, or nodal synchronization.

DSR establishes a loop-free route to a destination by car-
rying the path traversed in the route request and the reverse
path is then used to source route data packets. On a link
failure, reliable error updates have to be sent to the source,
so that a new route can be searched. Furthermore, we have
recently shown [6] how path information can be used to at-
tain loop-free routing, without the need for the header of a

∗This work was funded in part by the Baskin Chair of Computer Engi-
neering at UCSC.

data packet to specify a source route.

AODV maintains loop freedom with the use of per-
destination sequence numbers. The sequence number car-
ried in a route request elicits route replies with an equal or
higher sequence number. On a link failure, a node increases
its sequence number for a destination and invalidates the
route. The key limitation with AODV’s approach to desti-
nation sequence numbers is that it prevents responses from
nodes that are closer to the destination but have an older
sequence number, even if they have a valid loop-free path
to the destination. Consequently, the likelihood that the
destination itself must resolve a route request is very high,
because the destination is the only node that can increase
its own sequence number. LDR [2] overcomes this limita-
tion of AODV by using distances as an additional invariant.
Nodes towards the destination are ordered by their shortest
known distance. The destination sequence number is used
simply as a ”reset” of such distances. Although LDR per-
forms much better than AODV [2], it requires the addition
of an extra invariant to the destination sequence number.

We present a new framework for the development of
routing protocols that can attain loop freedom safely based
solely on destination sequence numbers, even when nodes
are allowed to delete such sequence numbers at any time.
Section 2 shows how deleting destination sequence num-
bers can lead to counting-to-infinity behavior in such proto-
cols as AODV and LDR. Section 3 describes a new frame-
work for on-demand routing using solely destination-based
sequence numbers. The novelty of our framework is that it
treats destination sequence numbers as a finite label space,
rather than the traditional notion of absolute timestamps.
Another contribution in this work is the introduction of se-
quence number windows as a technique for realizing the
progressive ordering of sequence numbers when establish-
ing paths to a destination. This allows more intermediate
nodes to resolve route requests, given that nodes closer to
the destination have higher sequence numbers than nodes
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farther away. Section 4 introduces the Sequence-number
Window Routing (SWR) protocol as an example of the new
framework. Nodes in SWR adopt sequence numbers for a
destination in a non-decreasing order along each path to the
destination within a window of sequence numbers whose
range is controlled by the destination. To handle node fail-
ures, reboots, and nodes ”forgetting” about destination se-
quence numbers in a safe manner, SWR forces the destina-
tion to reply to a route request relayed or originated by a
node that has no route entry for the destination. In such a
case, the destination issues a reply incrementing its own se-
quence number to a value greater than the upper bound of
the previous sequence-number window. Each node propa-
gating a valid route reply adopts a sequence number within
the new window in a way that sequence numbers are always
non-decreasing along any path to the destination. This al-
lows destination sequence numbers within a window to be
recycled along paths, before the destination is forced to re-
solve a route request by incrementing its sequence number
again. Section 5 provides an example of how SWR oper-
ates. Section 6 analyzes the correctness of SWR. Section 7
compares the performance of SWR against two on-demand
protocols (AODV, DSR) and a proactive link state protocol
(OLSR). Section 8 provides our concluding remarks.

2 Counting to Infinity in AODV

In the rest of this paper, snA
D denotes the sequence num-

ber stored at node A for destination D, dAD denotes the dis-
tance from node A to destination D, lcAB denotes the cost of
the link from node A to neighbor B, and rtAD denotes the
state of the routing-table entry for destination D at node A

(either null (φ), valid or invalid).
The AODV RFC [8] recommends that nodes delete in-

valid route entries after a finite time equal to the maximum
elapsed time after which a node can still send data pack-
ets to the next-hop specified in the routing table, called the
DELETE PERIOD. However, as we show, the condition
is not safe.

A directed acyclic successor graph is shown in Fig. 1(a)
for destination D. We assume that all nodes run AODV cor-
rectly and have data for D at some point in time. The dotted
node R between node C and node X is used to indicate a
set of one or more nodes that could be along the path. All
nodes are assumed to have sn1

D as the destination sequence
number for D in their routing tables. We consider path P=
{Y,X, {R}, C,B,A} and we trace one of many sequences
of events that can cause counting to infinity for destination
D. Assume that link e1 fails, which results in node D being
isolated from the connected component consisting of nodes
A,B,C,{R},X and Y . Now A detects the unreachability
of D within a finite time through either a link-layer notifi-
cation or HELLO messages. Node A invalidates the route

to D, increments its sequence number for destination D to
sn2

D (hence, sn2
D > sn1

D), and sends a route error (RERR)
to node B, which may not be delivered. This sequence of
events is represented in Fig. 1(b).

After the above sequence of events, node A searches for
a new route to D with sn2

D as the required sequence num-
ber. However, destination D is unreachable and none of the
other nodes can satisfy the request, because their sequence
numbers equal sn1

D. In our scenario, node B eventually in-
validates its route entry for destination D, given that node
A sends RERRs to B every time it receives a data packet
for the invalid route to D.

Let t1 be the time after which node A receives no data
packets from B, node A deletes the invalid route for D with
sn2

D at time tdelA
D

= t1 + DELETE PERIOD. Node B

invalidates its route entry for destination D at a time t >

t1, and notifies C of the unreachability of D proceeding in
the same fashion as the RERR exchange between A and B.
This results in C invalidating its routing entry for D. The
nodes along path P learn about the unreachability of node
D as the RERRs are propagated.

Let ty be the time when Y invalidates its routing entry
for D. At any time t′ < ty, any route search for destination
D with a sequence number snD > sn1

D cannot be answered
by any node in the network.

At a time treqA
D

> tdelA
D

, node A sends a RREQ with
an invalid sequence number for D. If at time trepY

D

< ty
node Y receives the RREQ, then it sends a RREP for D

with a sequence number sn1
D, which can now be used by

node A to create a routing entry for destination D with
sn1

D. This results in the formation of an undirected cycle,
which is shown in Fig. 1(c). Similarly, once the DELETE

PERIOD elapses, node B deletes its invalid entry for D
after attempting to find a route with sequence number sn2

D.
A RREQ for D by node B with an invalid sequence number
can then be answered by node A with sn1

D. This effect cas-
cades to other nodes along the path, and counting to infinity
occurs in this connected component. The route lifetimes at
each node can be kept alive by the constant flow of data
packets for D that either originate locally at the node or are
forwarded along the undirected cycle.

The above is an example of a basic problem that can be
summarized as follows: A node A along a path P to des-
tination D should never delete its invalid route table entry
for D before guaranteeing that all its upstream nodes along
path P have invalidated their active route entries for D.

Of course, temporary looping can occur in AODV and
any other protocol using the same destination-based se-
quence numbering approach, given that counting-to-infinity
can happen. In practice, counting to infinity in AODV can
be avoided by waiting “long enough” before deleting invalid
routes or rejoining normal operation after reboots. How-
ever, as the network size and its diameter change, what
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Figure 1. AODV Count-to-infinity example

“long enough” means must also change. Given that intern-
odal coordination spanning multiple hops incurs too much
overhead and that very long waiting periods are undesir-
able for protocol efficiency, a more elegant solution to the
counting-to-infinity problem is desirable, which we present
in the next section.

3 Framework for Loop-Free On-demand
Routing Using Sequence Numbers

In the past, loop-free routing approaches based on des-
tination sequence numbers have relied on the premise that
a sequence number serves the purpose of time-stamping an
update, and thus accepting the update for a destination with
the latest sequence number maintains loop-freedom. Adopt-
ing this approach, the following sufficient condition for
loop-free routing using destination sequence numbers has
been used in AODV and other protocols in the past [8], [7].

Sequence Number Condition (SNC): Node A can make
node B its successor for destination D after processing an
input event if (snA

D < snB
D) or (snA

D = snB
D ∧ dAD > dBD).

If no neighbor satisfies one of the above conditions, then
node A must keep its current successor if it has any.

The proof that SNC can be used to enforce loop freedom
is presented in [7] under the implicit assumption that nodes
never ”forget” the last sequence numbers they learn for a
given destination.

Rather than considering sequence numbers as time-
stamps, we model the sequence numbers of a destination
as a finite label space from [0, . . . , 2n−1] in which n is the
number of bits allocated for storing the sequence number.
By doing so, the problem of maintaining loop-freedom us-
ing sequence numbers reduces to a case of assigning desti-
nation sequence numbers as labels for a destination at each
node along the successor path. Following this approach,
we augment SNC with the following new condition that al-
lows nodes to label themselves with a sequence number for
a destination without creating loops.

Sequence Label Condition (SLC): Let PSA
D denote the

set of neighbors of A that use it as next hop to D. When
A makes B its successor for destination D after process-
ing an input event that satisfies snA

D < snB
D, node A can

assign (label) itself a destination sequence number that sat-
isfies MAX(snj

D ) < snA
D ≤ snB

D, ∀j ∈ PSA
D .

Theorem 1 Using SNC for choosing successors and SLC
for updating sequence numbers at nodes for destination D

cannot create loops if no node ever forgets the largest se-
quence number it learns for a destination.

Proof: The proof follows from the fact that SNC is suf-
ficient to enforce loop freedom by showing that snni

D ≤
sn

ni−1

D for i ∈ {2, k} along any successor path P =
{nk, . . . , n1}.

For path P to exist at a given time t, it must be true
that all nodes in P have a successor. According to SNC,
node ni can make ni−1 as its successor for destination D

if snni

D < sn
ni−1

D or snni

D = sn
ni−1

D ∧ dni

D < d
ni−1

D .
Consider first the case in which snni

D < sn
ni−1

D . If node
ni+1
D uses ni

D as its successor to destination D when ni

makes ni−1 its successor for the same destination, then it
follows from SNC that snni+1

D ≤ snni

D . Hence,node ni can
set snni+1

D < snni

D ≤ sn
ni−1

D according to SLC, which
does not violate the ordering of sequence numbers along
path P . In the second case, if node ni sets snni

D = sn
ni−1

D ,
the sequence-number ordering is not affected either.

As stated, SLC allows nodes to assign themselves a des-
tination sequence number smaller than the latest destina-
tion sequence number received in an update. However, this
requires synchronization with neighbor nodes to determine
the current set of predecessors (neighbors using the node as
sucessor) and their destination sequence numbers. Unfortu-
nately, this synchronization incurs additional signaling.

To avoid any synchronization, a node can update itself to
the latest destination sequence number reported in a control
message, which is the approach adopted in AODV. How-
ever, this results in the destination node being the only one
that can resolve most RREQs. For example, Fig. 2 (a) shows
a five-node network topology. Node A has an invalid route
to E with a sequence number snA

E = 10. Destination E

has a sequence number snE
E = 100. Node A trying to es-

tablish a route to E sends a route request (RREQ) that is
answered by the destination E, and the route reply (RREP)
carries snrep

E = 100. Nodes B,C, and D along A’s succes-
sor path update their destination sequence numbers for E to
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100. Now, if at a later time if node B crashes and an al-
ternate path through node Z exists as shown in Fig. 2 (b).
Node A attempts to re-establish its route to E. Node A’s
RREQ carries a increased sequence number snreq

E = 101,
which prevents any of the nodes along the path ZCD from
replying, even though nodes C and D have a loop-free ac-
tive route. Eventually, the request reaches the destination
E, which now responds with a increased sequence number
snE

E = 101 and the successor path ZCD from A to E is
established.

By allowing a progressive ordering of the sequence num-
bers, it is possible to expedite route recovery and reduce
control overhead. We introduce the Sequence Number Win-
dow (SNW) as a tool to achieve this type of ordering. A
sequence number window along any path to a destination D

is formed by a set of nodes {nk, . . . , n1} such that snnk

D <

snn1

D and (snni

D ≤ snnk

D ∧ snni

D < snn1

D ),∀i ∈ {k − 1, 2}.
Fig. 3 (a) illustrates a sequence number window between

node A and E ranging from [10, ..., 100] assuming a ini-
tial configuration where nodes B,C, and D have no route
for E. Nodes label themselves with sequence numbers less
than the latest known sequence number, which amounts to
distributing the sequence numbers inside the window while
maintaining the ordering. Fig. 3 (b) illustrates the bene-

fits of distributing sequence numbers inside a window com-
pared to AODV’s approach. As in the previous example,
node B fails, and node A obtains a response from node C

when it attempts to obtain a new path to E, because A’s in-
creased sequence number in the request snreq

E = 11 can be
satisfied by node C. With on-demand routing protocols that
resort to expanding ring searches, this scheme enables more
nodes with active routes to E to respond.

In large MANETs, it is possible for nodes to forget pre-
viously known sequence numbers for a destination (e.g.,
after rebooting or by deleting old invalid routing-table en-
tries). From Theorem 1, it follows that looping can occur
only if nodes adopt new successors without knowing a prior
sequence number for the destination. To ensure the safe
use of an SNW or destination-based sequence numbers, our
framework requires that any RREQ relayed or originated
by a node without a valid sequence number for the destina-
tion be answered by the destination. The example shown
in Fig. 3 with the added constraint for safety remains un-
changed if node Z has a destination sequence number for E
lying in the range (10 ≤ sn < 60); however, if Z has no
state for E, then the request must be answered only by the
destination.

Based on the above approach to destination sequence
numbering, the following rules for loop-free on-demand
routing can be defined based on the facts that (a) each node
stores a sequence number for every active destination, and
(b) nodes invalidating their route to a destination retain the
sequence number. We assume a generic control message
framework consisting of route request (RREQ), route reply
(RREP), and route error (RERR) messages similar to that
of other on-demand routing protocols. The routing-table
entry at node A for destination D includes the current se-
quence number (snA

D), the current route cost (dAD), and the
successor (sAD). If no routing entry exists at node A for
destination D, then the current sequence number is consid-
ered unknown (i.e., snA

D = −1). The superscripts req and
rep are used for variables included in a RREQ and RREP,
respectively. The parameter reset denotes, if the RREQ re-
quires the destination to reply or if the RREP was originated
by the destination.

ASC: (Accept Sequence number Condition). When node A

receives a RREP from node B for destination D, then
node A sets sAD ← B if (snA

D < sn
rep
D ) or (snA

D =
sn

rep
D ) ∧ (dAD > d

rep
D ). If snA

D = −1, then node A

should accept a RREP only if resetrepD = 1 (i.e., generated
by the destination).

SSC: (Start Sequence number Condition). Node I can issue a
RREP responding to a RREQ for destination D if I has an
active route to D, snI

D > sn
req
D , and reset

req
D = 0. If node

I = D, then it must set resetrepD = 1, if resetreqD = 1.

MSC: (Maximum Sequence number Condition). If node A

relays a RREP for destination D, it sets sn
rep
D ← snA

D .
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The relayed RREP must not change the value of reset
rep
D .

Node A relays a RREQ for destination D only if A has
not previously processed this RREQ and sets msn

req
D =

max{msn
req
D , snA

D}. If snA
D = −1 or resetreqD = 1; then,

in the relayed request, it sets resetreqD = 1.

USC: (Update Sequence number Condition). If node A must
change sAD, then it sets dAD ←∞ and node A sends a RREQ
carrying snA

D .

RSC: (Reset Sequence number Condition). If node A has no
route entry for D (i.e., snA

D = −1), then a RREQ originated
must have reset

req
D = 1.

A RREQ travels a loop-free path and is relayed (MSC)
with the maximum of the destination sequence number of
the nodes. The RREQ can be answered by a node that
has a higher sequence number than the maximum sequence
number carried in the RREQ (SSC) or by the destination
if the RREQ was originated or relayed by a node that had
no sequence number for D (RSC). After a route failure, a
node attempts to reestablish a new path (USC). USC allows
the destination to be the only node that can modify its se-
quence number. Nodes invalidating their routes on receiv-
ing a RERR are not required to update to the destination
sequence number in the RERR. RSC is a safety condition
that handles nodes that cannot be ordered on the basis of se-
quence numbers; and MSC as a special case handles nodes
relaying RREQs with no sequence number state. With the
above safety conditions, route entries storing destination se-
quence numbers can be purged safely, without causing any
loops.

USC and SSC differ from AODV, which forces nodes
invalidating their routes to increase the destination sequence
number, and nodes reply to a route request only if they have
a higher sequence number.

4 SWR

SWR augments the rules of our basic framework with a
condition for detecting the boundary of windows.

WBC: (Window Boundary Condition). If node A receives a
RREQ for destination D and snA

D > sn
req
D then node A sets

the window count wc ← 1, otherwise sets wc ← wc + 1.
Node A caches wc for this RREQ and relays a RREQ with
the cached wc.

WBC allows nodes relaying a RREQ to determine dis-
tributedly the start and end of sequence number windows,
and the number of hops spanned by the window. A window
count of one indicates the beginning of a new window and
signals the end of a previous sequence number window (ex-
cept at the source, where the window can only begin). The
window count indicates the number of nodes over which the
current sequence number window is being built.

4.1 Information Stored and Exchanged

The routing table at node A maintains the following pa-
rameters for every destination D: the successor (sAD), se-
quence number (snA

D), the distance (hop count) to the des-
tination (dAD), lifetime of route, and the state of route en-
try (rtAD). If no entry for destination D exists, then it
is considered equivalent to an unknown sequence number
(snA

D = −1).
A RREQ consists of the tuple {dst, src, rreqid,

msndst, wcdst, f lags}. The field src denotes the identifier
of the source that is seeking a path to the destination (dst),
rreqid along with the source (src) represents a unique iden-
tifier for a RREQ generated for a destination, msndst is the
maximum of the destination sequence numbers along the
path traversed by this RREQ, flags carries control bits, and
wcdst is the window count used to infer about the current se-
quence number window. One control bit used is the ’reset’
bit that is set when the RREQ must be answered only by the
destination.

A RREP consists of the tuple {dst, sndst, src, rreqid,

ddst, ttl, f lags}. The field ttl states the lifetime of the
route at the node relaying the RREP, rreqid is carried in the
RREP to forward it along the reverse path to the source us-
ing information cached for the RREQ (src, rreqid), sndst

is the destination sequence number stored at the relaying
hop, ddst is the distance to the destination at the relaying
hop, and flags contains the ’reset’ bit, which may be set if
the destination originates the RREP.

The RERR is the tuple {orig, unreachdests}, where
orig denotes the node originating the route errors, and
unreachdests is the list of destinations that are not reach-
able at orig.

A node relaying a RREQ caches the tuple {msndst,

wcdst, revHop, resetdst}, where revHop is the identifier
for the node that sent the request, and is used to relay
a RREP received for this (src, rreqid) pair along the re-
verse path. Cached entries are maintained for a period of
time that is long enough, so that all RREPs for the RREQ
(src, rreqid) will be received with high probability.

4.2 Initiating a RREQ

Node A is said to be active in a route computation for
destination D (i.e., the RREQ) when it initiates a RREQ for
the destination, and the RREQ is uniquely identified by the
pair (A, IDA). A node relaying a RREQ (A, IDA) origi-
nated by another node is said to be engaged in the RREQ.
A node that is not active or engaged in a route computation
for destination D is said to be passive for that destination.

At any given time, a node can be the origin of at most
one RREQ for the same destination. The RREQ (A, IDA)
terminates when either node A attains a feasible sequence
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number for destination D or the timer for its RREQ expires.
If node A is active or engaged for destination D and re-

ceives data packets for the destination, it buffers those data
packets. If node A is passive for destination D and requires
a route for destination D, it sets IDA ← incremented re-
quest counter, reqid ← IDA, msn ← snA

D, wc ← 1, and
RREQ timer← (2.ttl.latency) (where ttl is the time-to-live
of the broadcast flood and latency is the estimated per-hop
latency of the network). If snA

D = −1, then reset = 1.
Node A then issues RREQ {D, A, reqid = IDA, msn,

wc, reset}.
If node A receives no RREP after the expiry of its timer

for RREQ (A, IDA) for destination D, it sends a new
RREQ with an increased ttl. If node A does not receive
a RREP for destination D after a number of attempts, a fail-
ure is reported to the upper layer. The number of hops that a
RREQ can traverse is controlled externally from the RREQ
by means of the TTL field of the IP packet in which a RREQ
is encapsulated, or by other means.

4.3 Relaying RREQs

When node B receives a RREQ {D, A, rreqid =
IDA, msn

req
D , wc

req
D , reset} from node I , it first deter-

mines its own status for (A, IDA). If B is active (i.e., B =
A) or engaged (i.e., B has cached the RREQ (A, IDA))
in the computation (A, IDA), it silently drops the RREQ.
Otherwise, node B is passive. In this case, if SSC is sat-
isfied (i.e., snB

D > msn
req
D and reset = 0), then node

B issues a RREP (Section 4.4). Else, if SSC is not sat-
isfied, node B becomes engaged and relays a new RREQ
req′ with the following parameter values: msn

req′

D ←

max{snB
D, msn

req
D }, if snB

D > sn
req
D then wcreq

′

← 1

else wcreq
′

← wcreq +1, if snA
D = −1 then reset

req′

D ← 1

else resetreq
′

D ← reset
req
D .

A node may be engaged in multiple RREQs for the same
destination, but relays a RREQ from the same origin only
once by caching the tuple {msn

req
D , wcreq

′

, I, reset
req
D }

for a given RREQ (A, IDA) it forwards.

4.4 Initiating and Processing RREPs

When node I processes a RREQ {D, A, rreqid = IDA,

msn
req
D , wc

req
D , reset} and SSC is satisfied (i.e., snI

D >

msn
req
D , rtAD = valid, and reset = 0), it issues a RREP

{D,sn
rep
D , A, IDA, d

rep
D ,ttl,reset}with sn

rep
D ← snI

D and
d
rep
D ← dID. At the destination (I = D), if resetreqD = 1,

then D sets snD
D ← snD

D + 1; otherwise, if snD
D ≤ sn

rep
D

then D sets, snD
D ← sn

req
D + dstSeqInc. If resetreqD = 1,

then D issues RREP with reset = 1. Section 4.6 addresses
how the value for dstSeqInc is chosen.

If node A receives a RREP {D, src = A, rreqid =
IDA, sn

rep
D , ttl, d

rep
D ,reset}, it determines if it is the

source src of the RREQ that caused the RREP. If so, it
proceeds as Section 4.5 describes. If A 6= S, then after
updating its routing table as per Section 4.5, the RREP is
relayed along the reverse hop revHop, which is retrieved
from the cache entry (A, IDA) ; the RREP is relayed with
sn

rep
D ← snI

D; drepD ← dAD.

4.5 Adding, Updating, and Maintaining Routes

Node A updates its routing information when it receives
a RREP {D, A,IDA, sn

rep
D , ttl, d

rep
D ,reset} from neighbor

B. If snA
D = −1 and reset

rep
D = 0, or resetrep(A,IDA) = 1

and reset
rep
D = 0, or if SNC is not satisfied, then the RREP

is dropped silently. Node A calculates snadj
D , retrieving the

values of msn
rep

(A,IDA) and wc
rep

(A,IDA) from the cache for
the relayed RREQ (A, IDA).

sn
adj
D = sn

rep
D − b

sn
rep
D −msn

rep

(A,IDA)

wc
rep

(A,IDA) + 1
c (1)

Node A updates its routing table entry for D according
to its current state(rtAD) as follows:

Case (a): If rtAD = φ ∨ reset
rep

(A,IDA) = 1, then

snA
D ← sn

rep
D (2)

For cases (b) and (c), resetrep(A,IDA) must be 0.

Case (b): if rtAD = invalid ∧ sn
rep
D > snA

D,

sn
A
D ←

�
sn

adj
D if msn

rep

(A,IDA) ≥ snA
D

snA
D + 1 otherwise

(3)

Case (c): if rtAD = valid,

sn
A
D ← ���

��
sn

adj
D if msn

rep

(A,IDA) ≥ snA
D ∧ sn

rep
D > snA

D

snA
D if msn

rep

(A,IDA) < snA
D ∧

dAD > d
rep
D + lcAB ∧ sn

rep
D ≥ snA

D

(4)

If the route reply was used to update the routing table se-
quence number entry, then node A sets sAD ← B; dAD ←
d
rep
D + lcAB.

SWR handles link failures, and route lifetimes in the
same way as AODV. However, a route table entry for a des-
tination can be purged at any time. RERRs do not carry the
destination sequence number in SWR.

4.6 Destination Sequence Numbers

To handle reboots and node failures, SWR uses a 64-
bit destination sequence number based on a real-time clock
which ensures that RREPs issued by the destination have
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a non-decreasing sequence number. Additionally, after
a reboot, a node will lose its cached state and the last-
used flooding identifier for the RREQs. Hence, the flood-
ing identifier (rreqid) carried in the RREQs must also be
based on a real-time clock, because old flooding identifiers
will not be relayed by nodes which previously processed a
(src, rreqid). The rreqid can be truncated to a 32-bit inte-
ger, provided it will not wrap-around during for the time an
old (src, rreqid) might still be present in the network.

A RREQ that cannot be answered by any intermediate
node will eventually reach the destination for a sequence
number reset. AODV resets the destination sequence num-
ber with a higher sequence number than the one carried in
the RREQ. To avoid the destination being the only node
that can answer, SWR resets the destination sequence num-
ber by a parameter dstSeqInc. A linear-increment scheme
with a pre-configured dstSeqInc parameter should suffice
for most network configurations. However, performance
can be improved by using adaptive increment schemes
which derive dstSeqInc as a function of the prevailing net-
work conditions (i.e., number of RREQs received within a
time interval).

4.7 Reverse Routes

A RREQ generated by a source can be considered as a
RREP in the reverse direction. However, SNWs cannot be
used for setting up routes in the reverse direction, because
of the lack of window boundaries. Hence, SWR uses an
optimization to use SNWs. If nodeA receives a RREQ from
B and has no valid route towards the source S of the RREQ,
node A performs the following steps: creates a new route
entry for the source S, sets sAS ← B, sets the lifetime of the
route equal to the reverse route lifetime, and flags the route
entry with a special bit indicating that it is an invalid reverse
route. When node A has a flagged reverse route to S needs
to send data packets to that destination, it sends a unicast
RREQ to sAS . This RREQ is forwarded on a hop-by-hop
basis along a path of nodes with invalid reverse routes to S,
and a RREP can be generated by either a node satisfying
SSC or the destination. A unicast RREQ follows the same
rules as a broadcast RREQ.

5 SWR Example

Fig.4 shows a directed acyclic successor graph (DASG)
for destination D for a six-node network at time t1. Initially
at time t0, the routes are not established, the destination D

has a un-initialized sequence number (0); and other nodes in
the network do not possess any knowledge about D. Node
A initiates a route request req for destinationD with param-
eters (D,A,rreqid = IDA,sn

A
D = −1,wc = 1,reset = 1).

Node B upon receiving the route request (A, IDA), caches
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Figure 4. SWR operation - Example

the tuple (msn
req
D = −1,wc = 2,revHop = A, reset =

1), and relays a new RREQ req with (D,A,rreqid,sn
req
D =

−1,wc = 2,reset = 1). Similarly, node C relays the
RREQ. Note that there is no significance for wc, when a
reset is requested.

A route reply rep is generated by node D upon receipt
of the RREQ by D. Node D increments its destination se-
quence number by just one, because it is performing a re-
set. The RREP (D,A,IDA,sn

rep
D = 1,reset = 1) is ac-

cepted by node C as it satisfies ASC . By Eq. 2, node C sets
sCD ← D; snC

D ← 1; and relays the RREP along the cached
reverse hop. Similarly, since the RREP carries reset = 1,
nodes A and B have to update their destination sequence
numbers to one. Now, all nodes possess knowledge of D’s
sequence number. The above additional steps are necessary
to ensure the correctness of the protocol. To illustrate the
use of SNWs, assume that the nodes expire their route life-
time; they have marked their route entry for D as invalid.

Now, assume node A starts another RREQ
(D,A, ID′

A, sn
A
D = 1, wc = 1, reset = 0). Nodes

B and C relay the RREQ after increasing the wc to two
and three, respectively. Node D, on receiving the RREQ,
now increments its sequence number to 101, using a linear
increment (say dstSeqInc = 100). Node C accepts the
RREP because it satisfies ASC, adds a new routing table
entry for destination D, sets sCD ← D, and calculates a
sequence number of 76 for destination D using Eq. 3 (i.e.,
101 − b (101−1)

3+1 c). Similary, node B and node A update
their routing tables to setup an entry for destination D with
sequence numbers, 51 and 26, respectively, using Eq.3.
At time t1, there is a progressive ordering of destination
sequence numbers from node A to destination D.
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After a similar sequence of events, assume that nodes E
and F have set their destination sequence number for D to
34 and 70, respectively, at some time t < t1. At time t2 >

t1, link e2 fails. Node E detects a link failure and sends the
RREQ (D,E,IDE ,msn

req
D = 34,wc = 1) which evokes

a response from C which satisfies SSC. Node E activates
routing entry for D after processing the reply and updating
snE

D ← 35 as per Eq. 3. Fig. 4(b) shows the state of the
network.

Let node B detect the failure of link e1 and sends the
RREQ (D,B,IDB ,msn

req
D = 51,wc = 1) at a later time

t3 > t2. Node E does not satisfy SSC and relays a new
RREQ (D,B,IDB , msn

req
D = 51,wc = 2). Note that there

is a window between B and C spanning node E. Node C

responds to the RREQ with a RREP carrying sn
rep
D = 76,

because SSC is satisfied. Node E processes the RREP and
sets snE

D ← 68 as per Eq. 4, which amounts to redistribut-
ing sequence numbers in the window between B and C.
Node B re-establishes a route to D after updating its route
entry to set snB

D ← 52 and sBD ← E. In this case, we
assume that node B is performing a localized route repair,
without which node A would have received a RERR from
B and initiated a route search for D. Fig. 4(c) shows the
directed acyclic successor graph at time t3.

This example illustrates that the progressive ordering of
sequence numbers allows SWR to recover quickly from
route failures. AODV operating in this scenario would have
required a sequence number reset from the destination.

6. Analysis

For SWR to be loop-free, it must be true that any suc-
cessor path to a destination must have monotonically non-
decreasing sequence numbers, even when nodes forget their
sequence numbers for a destination, and loop-freedom fol-
lows directly from the SNC proof of loop-freedom [7].

Theorem 2 If a node updates its routing table as per Sec-
tion 4.5, then the sequence number towards a destination at
a node is a non-decreasing function of time, even if nodes
lose their sequence-number state.

Proof: The route entry for destination D at node A can be
in one of the three states when it must update its routing-
table entry after receiving a RREP rep: (i) no information,
(ii) invalid , or (iii) valid.

In case (i), the route entry does not exist (snA
D = −1),

and the RREP will be accepted only if reset = 1. Since
the destination sequence number is incremented by atleast
1 when a RREQ with reset = 1 is answered, the RREP
must carry a sequence number which must be higher than
any previously known to node ni; and it updates itself to
sn

rep
D .

For the other cases, we first derive the range of snadj
D cal-

culated from Eq.1 when msn
rep

(src,rreqid) ≥ snA
D, assuming

sn
rep
D > snA

D. Say sn
rep

(src,rreqid) = snA
D + α and sn

rep
D =

snA
D+β, whereα, β are integers such thatα ≥ 0 and β > 0.

Then from Eq.1 , we have snadj
D = snA

D+β−bβ−α
λ
c, where

λ = wc
rep

(src,rreqid)+1 > 1, and β > α. Therefore , we have
the inequality

snA
D ≤ msn

rep

(src,rreqid) < sn
adj
D ≤ sn

rep
D (5)

In case (ii), from Eq. 3, either snA
D is set to sn

adj
D or

incremented by one (snA
D + 1), and the sequence number

only increases in both cases. In case (iii), from Eq. 4, the
sequence number (snA

D) increases to the new adjusted value
(snadj

D ), or remains the same when the distance gets shorter.
If on the other hand, reset =1 in the cache, and the node

falls under any of the above three cases: The update fol-
lows Eq.2 which ensures that the node updates to a higher
sequence number, using the same argument as in case (i).

Hence the sequence number for the destination is non-
decreasing when the node accepts and updates its routing
table as per Section 4.5.

Theorem 3 At any instant, SWR is loop-free.

Proof: The proof for loop-freedom of SWR follows directly
from Theorem 1 and 2, because ASC is equivalent to SNC,
provided that we can show that SLC is satisfied when route-
table entries are updated.

Consider a node ni having a route to destination D.
The predecessor of ni, denoted by ni−1, can make ni its
next hop towards D only if SNC is satisfied. Now, node
ni−1 cannot increase its sequence number without receiv-
ing a new update from ni. From Theorem 2, node ni

can only increase or maintain the same sequence number
(path is of shorter cost which is not a SLC case) when it
switches to a new successor, which means that SLC is satis-
fied, i.e., snni

D > snni−1
D , on a sequence number update.

At a later time, node ni might relay another RREP to a
new predecessor mi, but following the same argument it
can only increase its sequence number before relaying the
RREP, which ensures that snni

D > snni−1
D , or if node ni−1

increases its sequence number, without receiving any new
update from node ni, it can only do so because it switched
to another successor.

To prove the correct termination of SWR, we first show
that any source is able to establish a route to a destination
within a finite time if there is a physical path between the
source and the destination, assuming that the network is sta-
ble and error-free after an arbitrary sequence of topology
changes. The proof is similar to the convergence proof of
LDR considering only sequence numbers [2](Theorem 5,
pp.60).
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We give only an outline of the proof: Let source A issue
a RREQ req which traverses a path, P = {n1, n2, ..., ni},
before reaching the destination or a node that satisfies SSC.
The RREP issued will have a sequence number greater than
msn

req
D , which will satisfy ASC along the entire path and

at A. If A or a node along path P requested a reset, then
the RREP will carry reset = 1, which will satisfy any such
node. Because the RREP is now relayed along the reverse
path, the RREP must satisfy ASC, given that the relaying
nodes after updating their routing tables follow MSC, and
the RREP at the relaying node has sn

rep
D > msn

req

(A,IDA)
acording to Eq. 5. When the RREP traverses the reverse
path, if it does not satisfy ASC at a node, then the node
learned a route with a higher sequence number and the new
RREP generated will still satisfy ASC at the nodes along the
reverse path to the source. In any case, the RREP forwarded
along the reverse path will satisfy all the nodes and hence
the source will be able to establish a successor path in finite
time due to finite time for message exchanges.

Next, we show that all nodes invalidate their routing ta-
ble entries for the destination in the presence of link fail-
ures and node reboots/state loss that disconnect some nodes
from a destination. Following the default RERR rules,
the RERRs should eventually propagate upstream along the
acyclic successor graph in finite time. During this time, we
argue that nodes cannot keep learning newer routes from
upstream nodes, which can lead to count-to-infinity behav-
ior. When nodes reboot or lose state, only RREPs with
reset = 1 can be used to update their route entries, which is
not possible in a partitioned network and hence these nodes
can never learn a new route. On link failures or otherwise,
nodes with valid sequence number entries can learn routes
from a node that has a higher sequence number than the
one in the request. However, because only the destination
can reset (increase) its destination sequence number, within
a finite time all nodes should have the highest destination
sequence number entry and future route searches cannot be
answered by any node in this partition. Assuming a finite
probability that RERR messages will eventually be deliv-
ered, all nodes will invalidate their route entries for the des-
tination.

7 Performance

We present results for SWR over varying loads and mo-
bility. The protocols used for comparison are two on de-
mand protocols DSR and AODV, which reflect the state of
the art in on-demand routing, and OLSR which is a pro-
active link state protocol. Simulations are run in Qualnet
3.5.2. The parameters are set as in [9].

Simulations are performed on two scenarios, (i) a 50-
node network with terrain dimensions of 1500m x 300m,
and (ii) a 100-node network with terrain dimensions of

2200m x 600m. Traffic loads are CBR sources with a data
packet size of 512 bytes. Load is varied by using 10 flows
(at 4 packets per second) and 30 flows (at 4 packets per
second). The MAC layer used is 802.11 with a transmis-
sion range of 275m and throughput 2 Mbps. The simula-
tion is run for 900 seconds. Node velocity is set between
1 m/s and 20 m/s. Flows have a mean length of 100 sec-
onds, distributed exponentially. Each combination (num-
ber of nodes, traffic flows, scenario, routing protocol and
pause time) is repeated for nine trials using different ran-
dom seeds.

We present four metrics. Delivery ratio is the ratio of
the packets delivered per client/server CBR flow. Latency is
the end to end delay measured for the data packets reaching
the server from the client. Network load is the total number
of control packets (RREQ, RREP, RERR, Hello, TC etc) di-
vided by the received data packets. Data hops is the number
of hops traversed by each data packet (including initiating
and forwarding) divided by the total received packets in the
network. This metric takes into account packets dropped
due to forwarding along incorrect paths. A larger value for
the data-hops metric indicates that more data packets tra-
verse more hops without reaching the destination necessar-
ily.

Tables 1, and 2 summarize the results of the different
metrics by averaging over all pause times for the 50-node
and 100 -node networks. The columns show the mean value
and 95% confidence interval. Fig. 5 shows the delivery ra-
tio for a 100-node network with 30-flows. Confidence in-
tervals(95%) are shown with vertical bars in the graphs.

SWR has a very consistent performance across all sce-
narios and outperforms other protocols in most cases. In
the highest load scenario (100 nodes, 30-flows), SWR has
the highest packet delivery (0.6952 ± 0.04), and the low-
est latency (0.9211±0.17). The exception is at high flows,
low mobility scenarios where OLSR seems to do better.
The latency of SWR is more than that of AODV in the
10-flow scenarios; but that is due to the overhead incurred
by the additional mechanisms for correctness of the proto-
col. In the 100-node, 30-flow scenarios, we believe that
AODV suffers from convergence problems as indicated
by the poor confidence intervals obtained for the control
overhead(18.29±13.06). The performance of DSR suffers
from stale caches, as indicated by its low packet delivery
and high latency; and using cached source routes avoids
route requests floods, characterized by the low control over-
heads. OLSR performs well in the low mobility scenarios;
but, on the whole, is affected by poor performance in the
high-mobility scenarios.

The data hops metric provides a measure of the accuracy
of the routes used for forwarding. SWR, AODV and OLSR
have statistically equivalent data hops across all scenarios,
except in the scenario with 30 flows and 100 nodes where
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Table 1. Performance average over all pause times for 50 nodes network for 10-flows and 30-flows
Flows 10 30 10 30 10 30 10 30

Protocol Delivery Ratio Latency (sec) Net Load Data Hops
SWR 0.995±0.001 0.826±0.046 0.020±0.002 0.658±0.250 0.338±0.080 2.858±0.871 2.582±0.180 2.818±0.283
AODV 0.994±0.002 0.765±0.0553 0.016±0.003 1.010±0.356 0.270±0.066 4.423±1.289 2.576±0.179 2.951±0.324
DSR 0.940±0.027 0.683±0.059 0.041±0.047 4.760±1.073 0.220±0.095 0.410±0.140 2.677±0.185 3.625±0.308
OLSR 0.887±0.040 0.798±0.034 0.012±0.001 0.883±0.311 1.937±0.220 0.713±0.069 2.456±0.175 2.478±0.161

Table 2. Performance average over all pause times for 100 nodes network for 10-flows and 30-flows
Flows 10 30 10 30 10 30 10 30

Protocol Delivery Ratio Latency (sec) Net Load Data Hops
SWR 0.989±0.004 0.695±0.045 0.053±0.010 0.921±0.174 1.423±0.402 10.027±1.800 3.757±0.317 4.368±0.353
AODV 0.988±0.004 0.608±0.051 0.036±0.009 1.455±0.385 0.897±0.236 18.298±13.069 3.744±0.293 4.751±0.434
DSR 0.876±0.050 0.618±0.049 0.099±0.057 5.125±0.782 0.859±0.353 1.243±0.405 4.257±0.317 6.141±0.499
OLSR 0.821±0.063 0.612±0.041 0.022±0.002 3.371±0.532 11.795±1.575 5.423±0.669 3.583±0.256 4.014±0.277

DSR incurs max data hops. The data hops metric reflects
the number of hops traversed by each data packet whether or
not it is delivered. SWR’s data hops in correlation with the
packet delivery ratio shows the high accuracy of the active
routes.
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8 Conclusion

We extended the loop-free conditions for destination se-
quence number based protocols to allow nodes to treat se-
quence numbers as labels instead of absolute timestamps.
We introduced a generic framework for on-demand proto-
cols based on destination sequence number based protocols
that is safe even when nodes are allowed to forget previ-
ously learned sequence numbers. We presented the Se-
quence Window Routing (SWR) protocol which adds se-
quence number windows to the framework and progres-
sively labels the sequence numbers towards a destination.
This novel scheme maintains loop-free routes while at the
same time reducing control overhead and latency for setting
up routes improving overall packet delivery. Simulation

results show that SWR provides comparable performance
than that of AODV while eliminating counting-to-infinity
and looping problems when nodes can forget the sequence
numbers to destinations.
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