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High blood pressure (BP) is more prevalent and contributes to more severe manifestations of cardiovascular disease (CVD) in African

Americans than in any other United States ethnic group. Several small African-ancestry (AA) BP genome-wide association studies

(GWASs) have been published, but their findings have failed to replicate to date. We report on a large AA BP GWAS meta-analysis

that includes 29,378 individuals from 19 discovery cohorts and subsequent replication in additional samples of AA (n ¼ 10,386), Euro-

pean ancestry (EA) (n ¼ 69,395), and East Asian ancestry (n ¼ 19,601). Five loci (EVX1-HOXA, ULK4, RSPO3, PLEKHG1, and SOX6)

reached genome-wide significance (p < 1.0 3 10�8) for either systolic or diastolic BP in a transethnic meta-analysis after correction

for multiple testing. Three of these BP loci (EVX1-HOXA, RSPO3, and PLEKHG1) lack previous associations with BP. We also identified

one independent signal in a known BP locus (SOX6) and provide evidence for fine mapping in four additional validated BP loci. We also

demonstrate that validated EA BP GWAS loci, considered jointly, show significant effects in AA samples. Consequently, these findings

suggest that BP loci might have universal effects across studied populations, demonstrating that multiethnic samples are an essential

component in identifying, fine mapping, and understanding their trait variability.
Hypertension (HTN [MIM 145500]) disproportionally

affects African Americans, who generally have higher

mean blood pressure (BP) and an earlier age of HTN diag-

nosis than other United States ethnicities.1–3 Increased

severity of HTN contributes to a greater risk of stroke,

coronary heart disease, and end-stage renal disease in

AfricanAmericans than inUnited States European-ancestry

(EA) individuals.4,5 Several factors are known to be associ-

ated with HTN risk, and they include genetic susceptibility

and behavioral factors such as lifestyle, diet, and

obesity,6–10 which vary across racial and ethnic groups.

Several BP genome-wide association studies (GWASs) in

EA individuals have been reported,11–13 including the

International Consortium for Blood Pressure (ICBP)

GWAS, which identified 28 loci with a combined genetic

effect explaining 0.9% of BP variability.11 BP GWASs

performed in African-ancestry (AA) individuals, however,

have involved relatively smaller sample sizes14,15 and to

date have failed to identify replicable loci. In contrast,

admixture-mapping analysis has successfully identified

NPR3 (MIM 108962) as a BP-associated locus in AA

individuals;16 this region has also been identified in EA

individuals and East Asians.11,17,18 Unfortunately, there

have only been limited large-scale BP GWASs in African

Americans, despite their higher risk of HTN and greater

burden from BP disease. This communication reports find-

ings from a large GWAS of 29,378 AA subjects for BP traits.
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The overall study design is presented in Figure 1. We per-

formed a meta-analyses of 19 studies (n ¼ 29,378 subjects)

from the Continental Origins and Genetic Epidemiology

Network (COGENT) GWAS of AA samples for BP traits

(Table 1). All individuals were at least 20 years old and

were from 18 United States African American cohorts

and a study from Yoruba, Nigeria. For individuals reporting

use of antihypertensive medications, BP was imputed by

the addition of 10 and 5 mmHg for systolic BP (SBP) and

diastolic BP (DBP), respectively. Outliers defined as >4

SDs from the mean were excluded. Each study received

institutional-review-board approval of its consent proce-

dures, examination and surveillance components, data

security measures, and DNA collection and use for genetic

research. All participants in each study gave written

informed consent for their participation in the study and

genetic research.

After stringent quality control of genotyped and

imputed data (Table S1, available online), ~2.42 million

SNPs were available for analyses. Prespecified analyses of

SBP, DBP, and clinically treated HTN were performed for

each cohort according to standardized protocols. SNP asso-

ciations for SBP or DBP were assessed by linear regression

or the generalized linear mixed-effects model for family

data19 under the assumption of an additive model and

after adjustment for age,2 body mass index, and gender.

Each study also adjusted for the first ten principal
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Figure 1. Overview of GWAS Meta-analysis for the COGENT
Discovery and Replication Cohorts
components20,21 in regression analysis. For HTN, we used

logistic regression models and adjusted the covariates

appropriately. The genomic-control inflation factors

showed little evidence of residual confounding by ancestry

(lGC 0.97–1.12), indicating that population structure was

well controlled in each cohort (Table S2). For each trait

(SBP, DBP, and HTN), we combined results across studies

by using the inverse-variance-weighted meta-analysis

method. The quantile-quantile and Manhattan plots for

discovery analyses are shown in Figure S1. In these

analyses, only one SNP (rs11041530) located 10 kb down-

stream of cytochrome b5 reductase 2 (CYB5R2 [MIM

608342]) reached genome-wide significance for SBP (p ¼
4.0 3 10�8) (Table 2).

In addition to including CYB5R2, we carried forward all

SNPs with p < 1.0 3 10�5 for SBP or DBP from the

COGENT discovery AA analyses for replication in each of

three replication samples: EA, AA, and Asian. We first

attempted replication in the EA ICBP data,11 which have

the largest replication sample size. There were 45 indepen-

dent SNPs with p < 1.0 3 10�5 for at least one trait (Table

S3, pairwise r2 < 0.076 in AA samples). Two SNPs mono-

morphic in HapMap CEU (Utah residents with ancestry

from northern and western Europe from the CEPH collec-

tion) data were excluded from further analysis (Table S3).

Among the 43 independent SNPs evaluated, we calculated

the expected number of SNPs in EA ICBP samples across a

range of significance levels under the assumption that the

number of variants observed in the ICBP samples follows a

binomial distribution when none of these variants are

associated with BP. We observed significant enrichment

of BP-associated SNPs in the EA ICBP samples across the

range of significance levels (the largest p < 2.2 3 10�7,

Table S4). After correction for multiple testing (Bonferroni

cutoff p ¼ 5.8 3 10�4 for two traits and 43 independent

SNPs), six additional SNPs in six BP loci reached the signif-

icance threshold for SBP or DBP; these SNPs were located

on chromosomes 3, 6, 7, and 11 (Table 2). However,

rs11041530 (CYB5R2), which reached genome-wide signif-

icance in the COGENT discovery AA samples, did not repli-
The American
cate in ICBP samples after adjustment for multiple tests

(p ¼ 0.029).

We then carried these six SNPs and rs11041530 forward

for further replication in additional AA (n ¼ 10,386) and

East Asian (n ¼ 19,601) samples. The characteristics of

the AA replication sample are shown in Table 1. Power

estimates for AA samples are described in Table S5. Three

SNPs (rs13209747, rs17428471, and rs1401454) across

three independent loci replicated in AA samples (Bonfer-

roni cutoff p¼ 0.0037 for 14 tests, i.e., two traits and seven

SNPs, Table 2). Three SNPs (rs13209747, rs17080102 and

rs6924906) were also significantly associated with BP traits

in East Asians (p < 0.0037, Table 2). However, the beta es-

timate of rs6924906 was the opposite of the COGENT AA

beta estimate, and this SNP association was not considered

to be replicated (Table 2).

We next conducted transethnic meta-analyses by

combining discovery AA samples and replication samples

from all three ethnicities. In these analyses, in five inde-

pendent loci we identified five SNPs associated with BP

traits at p < 1.67 3 10�8; they included rs1717027,

rs13209747, rs17080102, rs17428471, and rs1401454,

which are consistent with the replication analyses of AA

and East Asian samples. The threshold p ¼ 1.67 3 10�8,

which represents the genome-wide significance after

correction for the three traits (SBP, DBP, and HTN) we

analyzed, is relatively conservative because of the correla-

tion among the BP traits. Two SNPs, rs6924906 and

rs11041530, did not reach genome-wide significance and

might indicate false-positive findings.

Three of the five SNPs in the identified loci lack previous

associations with BP. SNP rs13209747 is located near

R-spondin family member 3 (RSPO3 [MIM 610574]) in

chromosomal region 6q22 (p ¼ 2.56 3 10�10 for SBP

and 2.43 3 10�11 for DBP) (Table 2). rs17080102 is an

intronic SNP in pleckstrin-homology-domain-containing,

family G (with RhoGef domain) member 1 (PLEKHG1) in

chromosomal region 6q25.1 (p ¼ 4.75 3 10�8 for SBP

and 1.90 3 10�11 for DBP) (Table 2). Previous admixture-

mapping studies have suggested evidence of local

association with HTN at the 6q22–25 region in AA

populations.16,22,23 RSPO3 activates the Wnt/beta-

catenin signaling pathway, and variants therein are asso-

ciated with blood urea nitrogen (a kidney trait) in

East Asians,24 waist-to-hip ratio, and bone mineral

density.25,26 Studies of knockout mice have shown that

RSPO3 is required for Vegf expression and endothelial

cell proliferation.27

The third BP variant, rs17428471, is located at 7p15–

14, which contains several homeobox genes (EVX1-

HOXA locus [MIM 142996 and MIM 142955], transethnic

meta-analysis p ¼ 2.1 3 10�12 for SBP and p ¼ 1.6 3 10�9

for DBP) (Table 2). Linkage disequilibrium (LD) in

COGENT AA samples at 7p15–14 suggested three LD

blocks represented by three independent SNPs—

rs17428471, rs17471520, and rs11564022—with maxi-

mum pairwise r2 ¼ 0.04. The three SNPs showed evidence
Journal of Human Genetics 93, 545–554, September 5, 2013 547



Table 1. Descriptive Characteristics of the AA Studies

Study
Total
Subjects

Age in Years
(Mean 5 SD)

No. of
Males (%)

BMI
(Mean 5 SD)

No. with
HTN (%)

SBP in mmHg
(Mean 5 SD)

DBP in mmHg
(Mean 5 SD)

Hypertensive
Medication (%)

BioVu 942 44.3 5 16.5 269 (28.6) 32.2 5 10.0 673 (67.1) 131.4 5 21.1 79.3 5 12.6 57.3

ARIC 2,511 53.3 5 5.8 1,045 (36.9) 29.7 5 6.0 1,612 (58.7) 128.3 5 20.8 79.7 5 12.1 44.0

CARDIA 833 24.4 5 3.8 366 (38.6) 25.4 5 6.1 210 (25.2) 116.9 5 16.4 76.9 5 12.1 13.0

CFS 489 45.7 5 16.2 213 (40.9) 34.3 5 9.7 209 (44.6) 128.2 5 16.0 76.5 5 10.7 38.9

JHS 2,017 50.0 5 12.2 213 (39.3) 32.3 5 7.8 1,193 (56.5) 124.9 5 18.0 80.0 5 10.6 46.3

MESA 1,623 62.2 5 10.1 745 (45.3) 30.2 5 5.9 1,019 (62.0) 131.4 5 21.7 74.5 5 10.2 50.5

CHS 815 72.7 5 5.7 305 (37.4) 28.5 5 5.5 598 (73.4) 148.1 5 23.9 78.3 5 11.6 62.7

GeneSTAR 1,132 46.5 5 12.3 432 (38.2) 32.0 5 7.8 613 (54.2) 127.7 5 19.7 80.7 5 11.4 37.9

GENOA 996 56.4 5 11.1 295 (29.6) 31.1 5 6.8 688 (69.1) 135.6 5 22.5 78.3 5 12.3 56.9

HANDLS 950 48.5 5 9.0 424 (44.6) 29.9 5 8.0 437 (46.0) 126.3 5 19.8 75.4 5 12.1 35.5

Health ABC 1,139 73.4 5 2.9 488 (42.8) 28.6 5 5.4 871 (76.8) 138.7 5 21.4 72.5 5 11.3 62.7

HyperGEN 1,252 45.2 5 13.3 407 (32.5) 32.5 5 7.8 780 (54.2) 134.4 5 23.5 76.5 5 12.0 37.7

Maywood-Loyola 743 42.3 5 7.8 467 (62.9) 26.7 5 7.7 158 (21.3) 120.6 5 19.9 77.0 5 13.4 0.7

Nigeria-Loyola 1,188 47.8 5 15.5 510 (42.9) 23.3 5 5.1 443 (37.3) 127.9 5 26.4 77.8 5 14.9 3.8

Mt. Sinai Study 873 59.3 5 12.5 364 (41.7) 30.7 5 7.8 803 (92.0) 134.2 5 19.6 76.7 5 10.5 88.3

WHI-SHARe 8,094 61.6 5 7.0 0 (0.0) 31.0 5 6.4 4,780 (59.0) 132.2 5 17.9 78.1 5 9.4 46.2

HUFS 1,017 48.4 5 13.2 419 (41.2) 30.5 5 8.3 509 (50.0) 131.3 5 21.9 81.4 5 13.3 13.3

BHS 368 37.6 5 4.9 142 (38.6) 31.4 5 8.7 105 (28.5) 125.8 5 19.5 83.7 5 13.0 16.2

SIGNET 2,396 63. 5 5 8.6 870 (36.3) 31.5 5 6.9 585 (24.4) 137.3 5 18.8 81.4 5 10.8 71.4

AA Replication Cohorts

JUPITER 1,688 66.4 5 8.1 850 (50.3) 28.2 5 7.3 1,067 (63.7) 140.7 5 17.7 84.3 5 9.4 53.3

Ghana 3,420 43.0 5 13.6 1,452 (42.5) 24.7 5 5.0 784 (22.9) 127.3 5 19.9 76.8 5 12.0 0.0

FBPP-AXIOM 872 48.9 5 13.1 372 (42.6) 31.1 5 7.0 604 (69.2) 128.8 5 21.6 74.6 5 11.9 65.4

HRS 1,337 66.5 5 10.2 483 (36.1) 30.5 5 6.5 1,073 (80.3) 137.3 5 23.2 82.2 5 13.0 66.9

Mt. Sinai IPM Biobank
Program

3,057 50.2 5 14.7 1,018 (33.3) 30.7 5 8.2 1,999 (65.4) 136.0 5 23.0 80.0 5 21.0 65.2

The Seychelles
TANDEM

483 48.1 5 13.6 203 (42.0) 27.8 5 5.4 310 (64.2) 135.6 5 22.6 84.5 5 12.5 44.3

The Seychelles Heart
Study III

906 44.9 5 11.2 401 (44.3) 27.2 5 5.7 396 (43.7) 129.5 5 20.0 84.2 5 12.3 27.9

Characteristics of studies contributing to the COGENT BP meta-analyses. Abbreviations are as follows: BMI, body mass index; BioVU, DNA databank of Vanderbilt
University; ARIC, Atherosclerosis Risk in Communities; CARDIA, Coronary Artery Risk Development in Young Adults; CFS, Cleveland Family Study; JHS, Jackson
Heart Study; MESA, Multi-Ethnic Study of Atherosclerosis; CHS, Cardiovascular Health Study; GeneSTAR, Genetic Study of Atherosclerosis Risk; GENOA, Genetic
Epidemiology Network of Arteriopathy; HANDLS, The Healthy Aging in Neighborhoods of Diversity across the Life Span study; Health ABC, Health, Aging, and
Body Composition study; HyperGEN, Hypertension Genetic Epidemiology Network; Maywood-Loyola, Maywood study at Loyola University Medical Center;
Nigeria-Loyola, Nigeria study at Loyola University Medical Center; Mt. Sinai Study, Mount Sinai, New York City, USA, study; WHI-SHARe, Women’s Health Initia-
tive SNP Health Association Resource; HUFS, Howard University Family Study; BHS, Bogalusa Heart Study; SIGNET, Sea Islands Genetic Network; JUPITER, Justi-
fication for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin; Ghana, Ghana study at Vanderbilt University; FBPP-AXIOM, Family Blood
Pressure Program-AXIOM; HRS, Health and Retirement Study; and Mt. Sinai IPM Biobank, Mount Sinai Institute for Personalized Medicine Biobank Program.
of association with BP. We then performed conditional

analysis by including the three SNPs in linear regression

models by using the summary statistics28 and observed

little change in significance (Table S6). These results are

consistent with the regional SBP, DBP, and HTN plots,

where three independent SNPs are present (Figures 2A–

2C). Two of these SNPs replicated in additional AA

samples for SBP (p ¼ 0.011 for rs11564022 and p ¼
548 The American Journal of Human Genetics 93, 545–554, Septemb
1.4 3 10�4 for rs17428471). rs17428471 also replicated

in EA ICBP samples for both SBP and DBP (p < 2.8 3

10�5). This variant was not associated with BP traits in

East Asians, although the allele is of lower frequency in

Asians (minor allele frequency < 0.05). rs17428471 also

reached genome-wide significance in transethnic meta-

analyses (p ¼ 2.1 3 10�12 and no evidence of heterogene-

ity between ancestry samples) (Table 2 and Table S7).
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Table 2. Meta-analyses of COGENT Discovery AA Samples and Replication in EA, East Asian, and Additional AA Data Sets

Chr SNP Gene

Effect
Allele/
Other
Allele

Discovery COGENT Transethnic Replication
Transethnic
Meta-
analysis pb,c

Effect Allele
Frequency Trait Beta (SE) COGENT pa EA ICBP pa AA pa East Asian pa

6 rs13209747 RSPO3 T/C 0.19 SBP 0.85 (0.21) 5.9 3 10�5 5.4 3 10�4 5.0 3 10�4 2.6 3 10�3 2.6 3 10�10

DBP 0.56 (0.12) 8.8 3 10�6 1.5 3 10�3 2.2 3 10�2 1.2 3 10�4 2.4 3 10�11

6 rs17080102 PLEKHG1 C/G 0.1 SBP �1.02 (0.25) 3.4 3 10�5 9.2 3 10�4 2.3 3 10�1 3.4 3 10�2 4.8 3 10�8

DBP �0.74 (0.15) 5.4 3 10�7 1.5 3 10�4 4.1 3 10�1 8.5 3 10�4 1.9 3 10�11

6 rs6924906 C6orf37
(FAM46A)

T/C 0.71 SBP �0.41 (0.17) 1.7 3 10�2 5.6 3 10�4 4.7 3 10�1 2.0 3 10�3 6.2 3 10�5

DBP �0.51 (0.10) 5.6 3 10�7 4.9 3 10�2 9.8 3 10�1 8.8 3 10�3 5.5 3 10�7

7 rs17428471 EVX1-HOXA T/G 0.14 SBP 1.20 (0.24) 4.0 3 10�7 8.0 3 10�6 1.4 3 10�4 3.4 3 10�1 2.1 3 10�12

DBP 0.61 (0.14) 1.2 3 10�5 2.8 3 10�5 1.1 3 10�2 4.4 3 10�1 1.6 3 10�9

3 rs1717027 ULK4d T/C 0.64 SBP 0.18 (0.16) 2.6 3 10�1 5.0 3 10�1 6.0 3 10�1 5.6 3 10�1 3.0 3 10�1

DBP 0.49 (0.10) 5.1 3 10�7 2.5 3 10�7 2.2 3 10�2 1.5 3 10�1 4.6 3 10�13

11 rs1401454 SOX6d T/C 0.46 SBP 0.55 (0.16) 5.7 3 10�4 2.2 3 10�4 9.7 3 10�4 6.7 3 10�1 9.5 3 10�7

DBP 0.45 (0.10) 2.1 3 10�6 3.1 3 10�5 5.0 3 10�3 5.5 3 10�1 5.1 3 10�10

11 rs11041530 CYB5R2 C/G 0.11 SBP �1.35 (0.25) 4.0 3 10�8 0.029 8.0 3 10�1 9.3 3 10�1 5.6 3 10�6

DBP �0.54 (0.15) 2.6 3 10�4 0.119 6.5 3 10�1 6.6 3 10�1 7.6 3 10�4

Boldface indicates genome-wide significance after correction for the number of SNPs and traits. The following abbreviation is used: Chr, chromosome.
aSignificant thresholds: COGENT discovery, p < 5.0 3 10�8; replication in ICBP, p ¼ 5.8 3 10�4; further replication in AA and East Asians, p ¼ 0.0037.
bFinal significant variants were defined with the significance threshold of p < 1.67 3 10�8 after adjustment for the three traits.
cp values were combined for the analysis of the ICBP meta-analysis of EA samples. The replication sample size and power for each SNP in the AA studies are
presented in Table S5.
dThese genes were reported by Ehret et al.11 and Johnson et al.18
The fourth variant identified, rs1401454 in SOX6 (tran-

scription factor SRY-Box6 [MIM 607257]) (Table 2 and

Figure 2D), replicated in the additional AA samples. This

SNP is 151 kb from rs2014408, a SNP which was previously

reported in a GWAS of mean arterial pressure18 in EA

individuals, but the two SNPs are in low LD (r2 % 0.08 in

our AA data). Furthermore, rs1401454 is 652 kb away

from PLEKHA7 (MIM 612686) rs381815, a BP-associated

SNP reported in EA samples,11 and LD between these

SNPs was weak in our data (r2 % 0.05). rs2014408 and

rs381815 were only nominally associated with DBP in

COGENT discovery AA samples (p ¼ 0.05 and 0.02, respec-

tively). We then performed conditional analysis for DBP in

the COGENT AA cohorts by including rs2014408 and

rs381815 as covariates in linear regression models by using

the summary-statistic method. The association between

rs1401454 and DBP was largely unchanged (Table S8),

suggesting that rs1401454 is independent of the two

reported SNPs identified in EA subjects.

The fifth identified variant, rs1717027, is located in

ULK4 (p ¼ 4.6 3 10�13 in the transethnic DBP meta-

analysis) (Table 2). This locus was previously reported to

be associated with DBP in EA individuals.12 rs1717027 is

in strong LD with two nonsynonymous SNPs (nsSNPs)

(rs1716975 and rs2272007, pairwise r2 > 0.93 in HapMap

YRI [Yoruba in Ibadan, Nigeria]). Another ULK4 nsSNP,

rs3774372, previously reported to be associated with

DBP11 (Figure 2E), was not associated with BP traits in
The American
our AA samples (p ¼ 0.75), nor was it in LD with

rs1717027, rs1716975, or rs2272007 (all pairwise r2 <

0.14 in COGENT AA subjects). We phased haplotypes by

using these four SNPs and observed two common haplo-

types in the HapMap CEU sample and evidence of a histor-

ical recombination event in a haplotype in AA samples

(Figure 2F). Both the recombinant haplotype and one orig-

inal haplotype (blue haplotype in Figure 2F) in AA popula-

tions have similar effects on DBP, suggesting that

rs3774372 or variants that are in LD with it are unlikely

to be the causal variant(s). Because rs1716975 and

rs2272007 are in strong LD in the AA population, further

conditional fine mapping would be uninformative.

Because of the high correlation among BP traits, we also

examined evidence of SNP associations with SBP, DBP, and

HTN in COGENT GWAS samples by using a ‘‘sign flipping’’

multitrait test, based on available summary statistics. In

brief, let bSBPij and sSBPij ; bDBP
ij and sDBP

ij ; and bHTN
ij and sHTN

ij

be the estimated regression coefficients and SEs for SBP,

DBP, and HTN, respectively, for the ith SNP and the jth

cohort, where i ¼ 1, 2, ., 2,415,958 and j ¼ 1, 2, ., 19.

Let pSBP
i ; pDBP

i ; and pHTN
i be the meta-analysis p values of

the ith SNP for the three traits. We used Fisher’s method

for combining p values to summarize the total associa-

tion evidence of the ith SNP for each trait, i.e.,

xi ¼ �logðpSBP
i pDBP

i pHTN
i Þ. Because no original genotype

and phenotype information is available for the cohorts,

we were not able to evaluate the distribution of xi under
Journal of Human Genetics 93, 545–554, September 5, 2013 549



Figure 2. Regional Interrogation of the EVX1-HOXA, SOX6, and ULK4 Loci
(A–C) Associations between SBP, DBP, and HTN and homeobox genes on chromosome 7. Note the three independent SNPs (purple
diamonds) in this region with multiple homeobox genes and EVX1 (Table 2). SNP rs17428471 is located in the middle peak.
(D) Association between DBP and SOX6 on chromosome 11. p values of rs1401454 in both COGENT and all combined AA samples
are shown.

(legend continued on next page)
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the null hypothesis by a conventional permutation

approach, i.e., by permuting the original phenotypes while

holding the genotypes constant. Instead, we randomly

flipped the sign of regression coefficients. To preserve the

correlations among the three traits, as well as the LD pat-

terns among SNPs, we flipped the signs of regression coef-

ficients simultaneously for one cohort and three traits. We

performed this procedure 10,000 times. That is, at the kth

time for the jth cohort, we generated uj ¼ 1 or �1 with

equal probability and let ujb
SBP
ij ; ujb

DBP
ij ; and ujb

HTN
ij be

the estimated regression coefficients. We then performed

an inverse-variance-weighted meta-analysis by using the

flipped regression coefficients and the original SEs

to calculate p
SBPðkÞ
i ; p

DBPðkÞ
i ; and p

HTNðkÞ
i and hence x

ðkÞ
i ¼

�logðpSBPðkÞ
i p

DBPðkÞ
i p

HTNðkÞ
i Þ. We recorded xðkÞ ¼ maxiðxðkÞi Þ,

where k ¼ 1, 2, ., 10,000, which is the empirical distribu-

tion of the most extreme summary statistic, genome-wide,

under the null hypothesis that a SNP is not associated with

any of the three traits. For the ith SNP, we computed the

genome-wide p value as ð1þP
kIðxi < xðkÞÞÞ=10; 001. Any

SNP with p < 0.05 was considered genome-wide signifi-

cant. Our simulations suggested that this method has valid

type I error and is more powerful than a single SNP analysis

(data not shown). With the ‘‘sign flipping’’ test, SNP

rs17428471 reached genome-wide significance (p ¼
0.002), suggesting that this variant contributes to SBP,

DBP, and HTN traits. These findings also provide further

evidence of a role for the EVX1-HOXA locus for BP traits.

We also assessed whether BP loci previously identified in

EA subjects have a broad role across ancestries. We tested

the 29 ICBP-reported BP-associated SNPs from EA individ-

uals;11 three loci were significantly associated with BP in

COGENT AA individuals (Table S9, p < 0.00086), and ten

additional loci showed nominal replication (p < 0.05).

We then examined the correlations between effect sizes

and log10(p values) and the 29 EA-derived SNPs in our

AA and East Asian samples. Although the p values were

generally weakly correlated across different ancestries,

the effect sizes were strongly correlated (Figure 3), suggest-

ing consistent contribution of these common variants to

BP across ancestries.

To fine map the genomic regions of reported ICBP vari-

ants, we further examined the 500 kb surrounding region

at each of the loci in the COGENT AA samples. In four

loci, we noted more significant SNPs than the ICBP index

(published) SNPs identified in EA individuals. The index

SNPs were not significant when conditioned on the most

significant SNPs in the COGENT sample (Table S10 and
(E) Association between DBP and ULK4 on chromosome 3. One arrow
of association in COGENT samples. The most significant SNP is rs17
(F) Haplotype analysis of coding variants rs3774372, rs1716975, rs1
haplotypes. The arrow points to a historical recombination breakpo
The best model fitting the National Heart, Lung, and Blood Institute C
(CTTT and TTTT), indicating that SNP rs3774372 reported in ICBP11

In (A)–(E), the x axes show chromosomal positions, the left y axes sho
across the region.

The American
Figures S2–S5). We calculated the sizes of LD blocks sur-

rounding the most significant SNPs in the COGENT AA

sample and observed shorter LD blocks. Therefore, in this

data set, AA samples provided further fine mapping of

these signals within these BP-associated loci.

We then estimated composite genetic-risk scores, as

defined by ICBP, and observed highly significant associa-

tions for both SBP and DBP in the COGENT AA sample

(p ¼ 1.5 3 10�10 for SBP and p ¼ 1.3 3 10�7 for DBP). A

composite genetic-risk score using the five variants identi-

fied in this study accounted for 0.44% and 0.54% of the

variability of SBP and DBP, respectively. The addition of

these SNPs to the known variants from ICBP in the com-

posite genetic-risk score substantially improved the ex-

plained variability to 0.80% and 1.42% for SBP and DBP,

respectively. These findings provide evidence that many

common variants at BP loci have broad effects across EA,

AA, and East Asian populations rather than being popula-

tion specific.

By examining a large number of genome-wide gene-

expression data sets primarily from EA populations with

significant index SNPs or proxies in high LD (r2 > 0.8 in

HapMap CEU and YRI),29 we identified two loci as expres-

sion quantitative trait loci (eQTL). The BP-associated SOX6

index signal (rs1401454) was also independently associ-

ated with gene-expression levels of SOX6 in liver

tissue in two studies (p < 5.8 3 10�54 and p < 1.0 3

10�16).30,31 The strongest eQTL SNP for SOX6 in each

data set was rs1401454, indicating strong concordance

between the BP and expression association signals. Several

correlated SNPs at 3p22.1, including the index SNP

rs1717027, were associated with gene-expression levels

of both ULK4 and CTNNB1 (MIM 116806) in multiple

tissues, including blood cells, adipose tissue, and brain

tissue (ULK4 strongest p ¼ 1.0 3 10�19 in the prefrontal

cortex, CTNNB1 strongest p ¼ 3.8 3 10�56 in the pre-

frontal cortex).

Pathway analyses applied to the genes (EVX1-HOXA,

SOX6, RSPO3, PLEKHG1, and ULK4) with Ingenuity

Pathway Analysis identified five canonical pathways (Fig-

ures S6A and S6B, p < 0.05), including nitric oxide

signaling, which influences many processes related to BP,

such as effects on vessel caliber (vasodilation), endothelial

function, and cardiac contraction32 (Table S11). The genes

identified in this study (EVX1, SOX6, and HOXA family

genes) were present in a network connecting with

CTNNB1, which is also a gene identified in expression

analysis. CTNNB1 is a key player in Wnt signaling

pathway.33
points to the ICBP SNP rs3774372, which does not show evidence
17027.
717027, and rs2272007 in ULK4. The red and blue lines indicate
int observed in AA, but not in EA (HapMap CEU), populations.
andidate-gene Association Resource (‘‘CARe’’) data is TCCC versus
is unlikely to be a causal variant.
w the p values, and the right y axes show the recombination rates
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Figure 3. Pairwise Scatter Plots of the Effect Sizes of the 21 ICBP-Reported Variants among the COGENT, ICBP, South Asian, and East
Asian Data Sets
The figure is plotted on the basis of the variants after exclusion of eightmonomorphic variants in HapMapCHB (HanChinese in Beijing,
China) and JPT (Japanese in Tokyo, Japan) samples. The Pearson correlation coefficients and the corresponding p values are r¼ 0.72 and
p ¼ 8.6 3 10�11 (A), r ¼ 0.69 and p ¼ 2.1 3 10�9 (B), r ¼ 0.64 and p ¼ 8.6 3 10�7 (C), r ¼ 0.76 and p ¼ 1.4 3 10�13 (D), r ¼ 0.8 and p ¼
3.2 3 10�17 (E), and r ¼ 0.7 and p ¼ 3.2 3 10�10 (F). We observed that the effect sizes are highly correlated across the different ethnic
populations. These results strongly suggest that many common variants consistently contribute to BP variation across ethnicities,
although replication is challenging because of variation in LD, sample size, and allele frequency.
We further investigated the functional significance of

the SNP signals in our association analysis by using the

publically available ENCODE Project Consortium

resources.34–36 We primarily used RegulomeDB and

HaploReg for functional annotation of our COGENT BP

findings.35,36 The rs17428471 variant in HOXA3 was

observed to be in a Pax-4 motif. rs11564022 (HOXA3) is

in perfect LD with rs11564023, which is in a DNase site

(in NB4 cells) and marked by a number of histone

marks and PEBP, Osf2, and Evi-1 motifs. rs17080102

resides in a DNase hypersensitive site marked by

H3K27Ac and is in a region shown to bind c-Fos,

GATA-2, and Pol2. Furthermore, this variant is in perfect

LD with rs17080069, located in a DNase hypersensitive

site that demonstrates binding to a number of cardiovas-

cular regulators, including ESR1, TCF4, and NR3C1

(glucocorticoid receptor).
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We then evaluated the evidence of recent positive selec-

tion near the BP signals identified in our association anal-

ysis by using several statistical techniques and the BioVU

GWAS data, as well as population reference data sets

(HapMap Phase III and the Human Genome Diversity

Project). We compared adjusted allele frequencies among

the BioVU African Americans and HapMap Phase III LWK

(Luhya in Webuye, Kenya) and YRI individuals by using

the method Treeselect37 and detected genome-wide-signif-

icant evidence of local differentiation between East and

West African populations at nsSNP rs2301721 (p ¼
6.73 3 10�9) in homeobox A7 (HOXA7) in the chromo-

some 7 region near our SBP signal at EVX1. We detected

modest signatures of recent positive selection in the region

of EVX1-HOXA (near HOXA7) by using a number of con-

ventional metrics38–40 (Figures S7–S13). Similar signatures

of selection have been previously noted in East Asian
er 5, 2013



populations at the ALDH2 locus, where an ethnicity-

specific association with BP traits was also observed.17

These observations are consistent with the notion that

BP-regulation mechanisms have been subjected to natural

selection during human history.41

In summary, using AA samples and transethnic meta-

analyses, we identified three BP loci (EVX1-HOXA,

RSPO3, and PLEKHG1) and one independent SNP in a

known BP locus (SOX6) and further fine mapped four

previously identified loci. Overall, we observed that com-

mon variants discovered in EA subjects also have broad

effects in our AA data sets. Cumulatively, these analyses

signify that a largely common set of genes regulate BP

across the studied human populations.
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