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Abstract

Characterizing User Mobility in Wireless Networks

by

Bruno Astuto Arouche Nunes

In this work we study mobile wireless networks by looking at mobility management

and analysis of human mobility, focusing on the main goal of understanding human mobility and

applying our findings on developing new realistic mobility models for simulations. In our work,

we start by analyzing Wireless Local Area Networks (WLAN) and GPS traces that record mo-

bility in a variety of network environments. We observe that from a macroscopic level, human

mobility is symmetric. We also study the direction of movement which also exhibits symmetric

behavior in both real– as well as synthetic mobility. Moreover, motivated by the symmetric

behavior identified, we continued our investigation on real mobility characteristics, by focusing

on node spatial density in real applications. We show that human mobility exhibits “persistent”

behavior in terms of the spatial density distribution of the mobile nodes over time. By using

real mobility traces, we observe that the original non-homogeneous node spatial density distri-

bution, where some regions may be quite dense while others may be completely deserted, is

maintained at different instants of time.

We also show that mobility models that select the next node position based on the

position of other nodes, a la “preferential attachment”, do not preserve the original spatial node

density distribution and lead to behavior similar to random mobility as exemplified by the Ran-

dom Waypoint model. Based on these observations, we propose a simple mobility model that

preserves the desired spatial density distribution. We found that performance results expressed

by a number of network metrics also match closely results obtained under mobility governed by

real traces. We also Introduce a modeling framework to analyze spatial node density in mobile

networks under ”waypoint”-like mobility regimes. The proposed framework is based on a set

of first order ordinary differential equations (ODEs) that take as parameters (1) the probability

of going from one subregion of the mobility domain to another and (2) the rate at which a node

decides to leave a given subregion.

Since the social structure usually guides the choice of new destination in real human

mobility, we introduce a user mobility modeling framework that accounts for both the users’
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social structure as well as the geographic diversity of the region of interest. SAGA, or Socially–

and Geography-Aware mobility model, captures social features through the use of communities

which cluster users with similar features such as average time in a cell, average speed, and

pause time. SAGA accounts for geographic diversity by considering that different communities

exhibit different interests for different locales. Besides introducing SAGA, the contributions

of this work includes a model calibration approach based on formal statistical procedures to

extract social structures and geographical diversity from real traces and set SAGA’s parameters.
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Chapter 1

Introduction

Node mobility is a key factor in the design and performance evaluation of mobile networks and

their protocols and mobility characterization has attracted considerable attention from the net-

working research community. Evaluation studies of early mobile networks and their protocols

used most of the time “synthetic” mobility models such as random walk, Brownian motion, and

the random way-point (RWP) model [15], just to mention a few. The RWP, in particular, has

been one of the most used mobility models for evaluating mobile networks which motivated

several studies that scrutinized its behavior, identified a number of undesirable features [69],

as well as proposed variations to improve its behavior. Additionally, most network simulation

platforms, which have been extensively used in the study of mobile networks, include mobility

generators; i.e., they are able to generate mobility scenarios based on a specified mobility pat-

tern (or mobility model) and a set of parameters (e.g., average speed, pause time, etc). The end

result of these mobility generators is a sequence of positions for each node over the simulation

time.

More recently, motivated in part by the problems associated with the RWP and rec-

ognizing the importance of employing more realistic mobility scenarios when designing and

evaluating mobile networks, there has been considerable interest in using real mobility traces

and developing models that reflect real mobility. Thus, network researchers and practitioners

have been trying to use more realistic scenarios to drive the evaluation of wireless network pro-

tocols. This motivated initiatives such as the CRAWDAD [18] trace repository, which is an

example of an initiative to make real mobility traces widely available to network researchers.
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CRAWDAD stands for Community Resource for Archiving Wireless Data At Dartmouth, a

wireless network data resource for the research community. This is a NSF-funded initiative

to make real mobility, connectivity and traffic traces widely available to network researchers

and practitioners and is a public repository that houses a wide variety of mobility traces. This

archive has the capacity to store wireless trace data from many contributing locations, and staff

to develop better tools for collecting, anonymizing, and analyzing the data.

Traces such as the ones found in repositories like this can then be used to run trace-

driven simulations. However, even though initiatives like CRAWDAD have greatly increased

availability of real traces, the number and variety of publicly-available mobility traces are still

quite limited. Consequently, relying exclusively on traces to design and evaluate network pro-

tocols would not allow a broad enough exploration of the design space.

In this context, since relying on real traces is not yet possible, mobility models are an

indispensable tool in the design, testing, and evaluation of wireless networks and their protocols.

This is the case for infrastructure-based networks (e.g., wireless LANs or WLANs), but even

more so in infrastructure-less networks, a.k.a., wireless, self-organizing networks (WSONs)

which include wireless mobile ad-hoc networks (MANETs), wireless sensor networks (WSNs)

and disruption-tolerant networks (DTNs). In these networks, unlike their infrastructure-based

counterparts where only the end user node is mobile, every node may have unlimited mobility.

As an indication of the importance of mobility models to the study of wireless network proto-

cols, most well-known network simulators include “mobility generators”, which, following a

pre-specified mobility regime, determine the position of network nodes over time during simu-

lation runs. Synthetic mobility generators have been extensively used in the study of wireless

networks [15].

To address this problem, a number of efforts have proposed mobility models based on

realistic mobility patterns [49]. Notable examples include [7, 8, 60, 31]. Alternate approaches

to developing realistic mobility generators try to use characteristics of real human mobility. For

example, some efforts employ “transition probabilities”, while others are based on maps of the

area being simulated [70].

More recent work focuses on the “scale-free” properties observed in many real net-

works like the Internet, the Web, and some social networks, to name a few. As mentioned in

the related work section, the seminal work of Barabási and Albert [3] proposes a model that
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generates scale-free networks, i.e., networks whose node degrees follow a power law distribu-

tion. One key concept underpinning the Barabási-Albert model is referred to as the preferential

attachment principle which states that “the more connected a node is, the more likely it is to

receive new links”. As described in Section 2 which discusses related work in more detail,

several recently proposed mobility models (e.g., [36, 37, 13, 47, 48, 41]), try to mimic real hu-

man mobility by following the preferential attachment principle: they define attraction points,

whose probabilities of attracting other nodes increase as more nodes congregate around them.

In this work we focus on understanding human mobility and applying our findings on

developing new realistic mobility models for simulations. We start by analyzing WLAN– and

GPS– traces that record mobility in a variety of network environments. We observe that from

a macroscopic level, human mobility is symmetric. We also study the direction of movement

which also exhibits symmetric behavior in both real– as well as synthetic mobility.

Moreover, motivated by the symmetric behavior identified, we continued our investi-

gation on real mobility characteristics, by focusing on node spatial density in real applications.

We show that mobility models that select the next node position based on the position of other

nodes, a la “preferential attachment”, do not preserve the original spatial node density distribu-

tion and lead to behavior similar to random mobility as exemplified by the Random Waypoint

model. We also show that this is an unwanted characteristic, since human mobility exhibits “per-

sistent” behavior in terms of the spatial density distribution of the mobile nodes over time. By

using real mobility traces, we observe that the original non-homogeneous node spatial density

distribution, where some regions may be quite dense while others may be completely deserted,

is maintained at different instants of time. To the best of our knowledge, this is the first time that

these phenomena have been reported. Based on these observations, we propose a simple mo-

bility model that preserves the desired spatial density distribution. We found that performance

results expressed by a number of network metrics also match closely results obtained under mo-

bility governed by real traces. We also compare our results to models whose steady-state do not

preserve original non-homogeneous density distribution and show that network performance

under such regimes deviates from performance under real trace mobility.

We continue our investigation to characterize and describe mobility through the spa-

tial density of mobile nodes, given its significant impact on fundamental network properties,

such as connectivity and capacity, as well as on core network functions, e.g., medium access

3



and routing. To date, only a few efforts have focused on modeling spatial density. Notable

examples include [25, 9, 50]. However, most previous work have been focusing exclusively on

the Random Waypoint (RWP) model [15]. In our work, we introduce an Ordinary Differen-

tial Equation (ODE) framework to mathematically model spatial node density under different

“waypoint”-based mobility regimes. More specifically, our model describes node density’s

steady-state behavior under waypoint-based mobility which is characterized by having nodes

probabilistically choose the next destination, or waypoint, based on some probability density

function. We validate our model by using it to describe the steady-state behavior of real user

mobility recorded by GPS traces in different scenarios and compare the results against the cor-

responding traces. Moreover, we present comparative results for steady-state spatial distribution

analysis of a number of synthetic waypoint mobility regimes.

More recently, alternate approaches to developing realistic mobility regimes rely on

social interactions between nodes to drive the selection of movement direction and destina-

tion [68, 72, 12, 27, 65, 21, 48]. These models usually construct a social network either using

outside information unrelated to the mobility trace, or on the basis of geographical collocation.

We take a completely different approach to modeling human mobility, by proposing a

framework that accounts for the social structure in the mobility traces through the inclusion of

communities and the use of the preferential attachment principles to account for the interaction

of nodes within and between communities. We thus refer to the proposed model as “socially-

inspired”. The proposed mobility modeling framework is also “geography-aware” as it accounts

for the heterogeneity of the different locales in the region of interest. These two features allow

our model to account for features observed in real life networks such as differential popularity,

transitivity and clustering. Moreover, our modeling framework applies formal statistical learn-

ing techniques to extract, from real mobility traces, both the nodes’ social structure as well as

the region’s geographical diversity for model calibration. We validate our work by applying it

to real mobility scenarios and comparing our results against real measurements. We show that

our model is able to preserve the desired non-uniform node spatial density, creating and main-

taining clusters and accounting for differential node popularity and transitivity; it thus solves

the problem exhibited by preferential attachment based mobility models.

The remainder of this document is organized as follows. Chapter 2 presents related

work relevant to our goals, where we first discuss the study and statistical analysis of real live

4



traces and later on present some pertinent work on mobility modeling itself. In Chapter 3 we

present our study on the symmetric behavior of human mobility. Further on, we discuss in

Chapter 4 the invariance of spatial node density in real networks, where we propose a mobil-

ity model called Intensity WayPoint (IWP), that is able to mimic this invariance, and compare

results on mobility and routing metrics to real traces and other synthetic models. We continue

our study on spatial node density in Chapter 5, presenting our ODE framework for such pur-

pose, validating it against real live traces and applying it to study node density in steady state in

waypoint-based mobility. We present in Chapter 6 an extended and more complete version of

the IWP model called SAGA, that is able to account for the social structure of mobile nodes dif-

ferential popularity and transitivity, while maintaining the desired node spatial density. Finally,

in Chapter 7 we present our final considerations.
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Chapter 2

Previous Work

Over the past decade, mobility characterization has attracted considerable attention from the

network research community. In this section, we briefly overview the efforts that are more

closely related to our work. We start by revising several previous work on statistical analysis of

real mobility traces and how researches have been using information from traces to build new

and more realistic models. Later on in the following section, we discuss several previous work

on mobility modeling itself focusing on research that is more closely related to our work.

2.1 Related Work on Analysis of Real Traces

Several empirical studies have focused on characterizing mobility behavior in WLANs.

For example, the work reported in [7] studies a campus WLAN trace and extracts statistics such

as the number of associations per time per AP as well as session duration. Their goal was to

generate input for capacity planning. The MIT WLAN trace was used in [8], where statistics on

traffic and AP associations were presented; the work also introduced important metrics such as

prevalence and persistence. The study reported in [60] explored the Stanford traces but focused

on traffic– and application-layer issues rather than mobility. Nonetheless, empirical distribu-

tions were derived for the number of users per AP and the maximum number of hand-offs per

AP. Campus WLAN usage was further studied in [31] using the Dartmouth traces. Some of

their findings include the fact that users tend to persist at a single location for longer and that

different applications had different mobility characteristics. Dartmouth’s, MIT’s, and two other

traces were studied further in [64] which presented ECDFs for time spent in each AP, number
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of associations per user, and percentage of APs visited. Moreover, metrics such as clustering

coefficient, degree of separation between nodes, and disconnection ratio were also reported.

Trace-driven approaches aimed at building realistic mobility models have been the

focus of many research efforts. In [33], a weighted waypoint model is proposed based on a

university campus mobile scenario containing 5 possible locations. The transition probabilities

were set based on a survey conducted on site, where people were asked about their mobility

patterns on campus. A transition matrix was built as a result of this survey; however, it did not

exhibit any symmetry. We believe this was the case because the transitions did not take into

consideration intermediate locations. In [70], a framework for building trace-driven mobility

models was proposed. It uses a map-based model where transition probabilities are computed

from route weights and depend on origin, destination, current and previous locations, all ex-

tracted from the Dartmouth trace. In a more recent study [47], a model where the next waypoint

depends on cell popularity and distance from current position is proposed.

2.2 Related Work on Mobility Modeling

There has been considerable work on trying to depart from random mobility models

towards more realistic ones applied to the evaluation of wireless networks and their protocols.

In this section, we do not try to present a complete survey of the state-of-the-art on realistic

mobility modeling; rather, our goal is to highlight some recent efforts that are more closely

related to our work and thus motivated it.

Some existing approaches use RWP mobility as a starting point, especially due to its

simplicity and ease of use and implementation. Another way to differentiate existing approaches

is in terms of the type of network environment they target, namely infrastructure-based and

infrastructure-less networks. An example of mobility model for infrastructure-based network,

more specifically WLANs, is the work described in [64] which captures mobility as nodes move

between access points. Parameters for the model are extracted from real WLAN traces. In [37],

Kalman Filters (KF) are used to extract paths taken by nodes as they move from a hotspot to

another in the Dartmouth campus. The waypoints in the path between hotspots are given by

the KF for the map of that specific scenario. Hotspot regions are identified using a Gaussian

distribution at each pause location, weighted by the time a node spends on each hotspot and then

averaged over all nodes. Our mobility model, IWP, tries to yield high fidelity to real mobility
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and can be applied to both types of networks.

As mentioned above, several efforts have focused on proposing variants of RWP mo-

bility. For instance, to avoid RWP’s “zig-zag” behavior, in [10], a model which avoids sudden

accelerations and sharp turns during direction changes has been proposed. Spatial node distri-

bution of the RWP model has been studied in [9], where analytical expressions of the expected

node distribution in one dimension have been derived as well as an approximation for the two-

dimensional case. Another study of node density has been presented in [55], where real traces

of vehicular mobility in a city have been used to find correlation between node density and

speed. A model called “heterogeneous random walk” has been proposed, and node clustering

under such mobility regime has been studied.

The scale-free properties of real networks were investigated in several studies. An

important milestone on the subject is the work by Barabási and Albert [3] where it has been

demonstrated that many real large networks are scale free, that is, the node degree in the network

graph follows a power law. The authors discuss the mechanism responsible for the emergence of

scale-free networks and argue that understanding this problem will require a shift from modeling

network topology to modeling “network assembly and evolution”. To this end, they define the

Barabási-Albert model based on growth and preferential attachment. Growth refers to the fact

that the number of nodes in the network increases over time, where a new node is placed with

m edges connecting it to other m nodes. Preferential attachment means that a node will choose

to connect to another node i with probability Π(ki) = ki∑
j
kj

based on the degree ki of node i

and any node j connected to node i.

Several mobility models have been inspired by the Barabási-Albert preferential at-

tachment principle. For example, in [13], a model based on preferential attachment has been

proposed, where the choice of going towards an attraction region is weighted proportionally to

the region’s popularity (i.e., the number of other nodes that chose it) and inversely proportional

to the distance to it. The work proposed in [41] is another example of a model that follows

Barabási-Albert’s growth and preferential attachment principles. The authors even show a fig-

ure where they present their initial (after growth) and steady-state spatial distribution. It is

possible to see how clusters dissipate and fade away over time. The same concept is also used

in [47] where nodes are also driven by identified social interactions. Authors validate their ap-

proach by means of showing the power-law exponential decay of inter-contact time among the
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formed communities and compare it with measurements in real traces.

Bettstetter et al. point out that random mobility leads to homogeneous node distribu-

tions. In [11], they propose a method that creates initial non-homogeneous node distributions

and in [25], a variant of RWP mobility that maintains the non-homogeneity of an original node

distribution.

Map based approaches are interesting in the sense that they limit a node’s roaming

area, which is what happens in reality (i.e., vehicles in roads, people walking in trails in a park,

campus streets and corridors in a conference or fair). For example, in [70], transitions between

different locations in a campus map are modeled. The map is represented by a graph and users

move between nodes of the graph, representing access points, buildings, and intersections in the

map.

More recent approaches focus on the aspects of social interaction between nodes.

Other examples of mobility modeling for social networks include the work in [28] and [48],

where node movement is influenced by the strength of social ties and the choice of an attraction

point is based on the history of visits of other nodes to that location.
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Chapter 3

On the Symmetry of User Mobility in

Wireless Networks

Motivated by the trend towards employing real mobility to design and evaluate wireless net-

works, we study different types of traces obtained by recording user mobility. Our goal is to

identify patterns, extract features, and define metrics to characterize the spatial behavior of

human mobility. As a result, we identify an interesting characteristic exhibited by human mo-

bility that, to the best of our knowledge, have not yet been revealed in previous studies. We

work with a number of real traces that record user mobility in infrastructure-based networked

environments (i.e., wireless LANs) as well as GPS positioning traces. We show that, from a

macroscopic level, human mobility is symmetric. In other words, the number of users that move

from point A to pointB approximates the number of users that go in the opposite direction, i.e.,

from B to A. We also show that this type of symmetry is more accentuated in synthetic mobil-

ity models, in particular, in random way-point mobility. Additionally, we study the direction of

movement which also exhibit symmetric behavior in both real– as well as synthetic mobility. In

order to quantify the degree of symmetry exhibited by a given mobility scenario, we define a

new metric we call coefficient of symmetry. Finally, we hope that this work will generate input

for the development of new and more realistic models, and that the new metrics presented here

will aid in the evaluation of these models.
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3.1 Mobility Traces

In this section we describe the mobility traces we used in our study. Here, we make a

distinction between different types of traces and define macro– and micro–mobility. In macro-

mobility traces, the resolution of node positions is coarser grained; this is the case of WLAN

traces or cell phone traces, where the exact position of a node is unknown and is instead rep-

resented by the position of the access point with which the node is associated (in WLANs) or

the cell in which the node is presently located (in cellular networks). In micro-mobility traces, a

node’s location is represented with finer grain resolution; this is the case of GPS traces, where

positioning information is given by latitude and longitude, and typically has a resolution of

meters.

We considered three types of mobility traces in our study, namely: infrastructure-

based scenarios (WLANs); ad-hoc scenarios (using GPS positioning), and synthetic scenarios

(using RWP mobility). Below we present the traces in these different categories in more detail.

3.1.1 WLAN Traces

Table 3.1 summarizes the WLAN traces in terms of number of users, number of Ac-

cess Points (APs), and duration of the trace. The first 3 WLAN traces were collected in uni-

versity campus environments: Dartmouth and Stanford, available at [18] and the MIT trace

[8].

Trace # users # APs Duration
Dartmouth 9480 623 1 year (2003)
Stanford 74 21 12 weeks
MIT 1366 173 1 day
Rio 120 17 1 week

Table 3.1: WLAN traces description.

Since our goal is to study human mobility in general, not only in the context of a

campus environment, we collected a fourth trace recording user mobility in a public WLAN

network deployed in an urban environment. The Rio trace was collected during the first week

of April 2010 recording user mobility in the Digital Orla Project [16] network deployed along

Ipanema Beach, Rio de Janeiro, Brazil. At the time the trace was collected, the network con-

sisted of 17 Cisco APs mounted on light poles along the beach’s boardwalk, providing network
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access in the boardwalk and nearby streets. The APs were configured to transmit a syslog mes-

sage every time a client associated or disassociated. The resulting trace reflects one week of

network usage; a total of 120 distinct clients who performed at least 1 transition between APs

were recorded. Clients use a variety of devices to connect to the network including laptops and

smart phones.

3.1.2 GPS Traces

The focus here was to study user mobility with finer-grained resolution. WLAN traces

represent “on-off” type behavior, where users connect to an AP, stay connected for a given pe-

riod of time, disconnects, stays disconnected for a period of time, reconnects again to some other

AP, and so on. GPS traces, represent mobility in a more continuous fashion where nodes roam

around a given area, and connection between nodes and an AP or another node is a function

of the distance between the nodes and the transmission range of their communication devices.

Table 6.2 summarizes the GPS traces we used in our study in terms of number of users, trace

duration, and the period between GPS samples.

Trace # users Duration Samples
Quinta 98 900 s 1 s
KAIST 78 5000 s 10 s

Table 3.2: Description of the GPS traces studied.

Quinta, refers to the “Quinta da Boa Vista Park” trace, presented in [6]. It is a GPS

trace collected at a park in the city of Rio de Janeiro, Brazil, that has many trees, lakes, caves

and trails, and holds the National Museum and the city Zoo. The KAIST trace, also available at

[18], on the other hand, is a GPS trace collected on a university campus environment.

3.1.3 Simulated Traces

Two synthetic traces were generated using the RWP mobility model. We tried to

simulate the two scenarios described by the traces in Section 6.4 using RWP mobility. Our goal

here is to compare characteristics of synthetic mobility against real mobility, especially when

the former is inspired by the latter. In our simulations, we set the velocity range in a way that the

average velocities would match the ones measured in the Quinta and KAIST traces. The same
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was done for average pause time and the dimensions of the area covered by the traces. Velocity

and pause time were chosen according to a uniform distribution whose average is computed as

described above 1. Table 5.2 summarizes the parameters used to generate the synthetic traces.

Parameter Quinta RWP KAIST RWP
Avg. Speed 1.2 m/s 0.72 m/s
Avg. Pause 3.6 s 17 s
Area 840 m X 840 m 5000 m X 5000 m
Duration 900 s 5000 s
# nodes 98 78

Table 3.3: Simulation parameters.

In order to study transitions we divided the area into square cells. We assumed 100

meters of range for a Wi-Fi device and set the cell to be the square inscribed in a 200 meters

diameter circle. That gives approximately a square cell of size 140 X 140 meters.

3.2 Dataset Analysis

In this section, we present the methodology we used to analyze the traces and the

results of our study. We start by defining the metrics and parameters employed in our analysis.

3.2.1 Definitions

Transition is the event caused when a node moves from one cell to another. When analyzing

the GPS traces, transitions are detected when nodes move between neighboring cells. In WLAN

traces, transitions happen between any cells.

Transition Matrix (TM) A is a square matrix of N x N elements where N is the total number

of cells in the system. Every element aij , denotes the number of transitions observed from cell i

to cell j. Since we do not consider transitions when nodes move within the same cell, the main

diagonal is zero.

Time-Aggregated Transition Matrix For a given window of time, we count how many transi-

tions were observed for a given user. The larger this window, the more we aggregate transitions

in time. The window can be sliding or fixed over time. If we choose a sliding window, we

define a window size W and a starting time instant, say t1,i, when the first transition for user i

1For more details on how these parameters are derived from real traces refer to [6].
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occurred. We then count how many transitions occurred from t1,i to t1,i + W . After that, the

beginning of the window slides to the time of the next transition, say t2,i and the transitions

between t2,i to t2,i+W are counted. This is done for all transitions for the duration of the trace.

In the case of a fixed-window, the trace is divided in slots of size W and we count the transi-

tions that happen inside every slot. We used the fixed-window approach to compute aggregated

transitions in the results presented below.

User-Aggregated Transition Matrix The TM can be computed for each user in the system

separately, called here individual transition matrix (iTM), or for a number of users n, an n-

aggregated transition matrix (n-aTM). For a time window of fixed size, user aggregation refers

to how many users we consider when computing the TM.

Symmetric Transition Matrix A is considered symmetric when aij ≈ aji, ∀i, j ∈ {1, ..., N}.
Direction Angle is the counter-clockwise angle formed between the X-axis (0◦) and the line

connecting two consecutive location samples in the trace.

3.2.2 Transition Symmetry

Figure 3.1 gives the aggregated TMs. Figures 3.1(a), 3.1(b), and 3.1(d) show the ag-

gregated TMs for the Rio, Stanford, and Dartmouth datasets, respectively. These TMs consider

transitions within 24 hours and aggregate all users for the duration of the trace according to

Table 3.1.

The aggregated TMs show a clear symmetry in relation to the main diagonal. One

might argue that the symmetric behavior could be a consequence of the ping-pong effect re-

ported in [70], commonly seen in WLAN traces. This phenomenon occurs when a mobile node

is in range of two or more APs, and because of the variation in signal strength, this node might

go back and forth associating and disassociating with the different APs in range. It is easy to

identify this behavior if the session time is in the order of seconds, but when the gap between

transitions is in the order of minutes, this task becomes non-trivial. In order to mitigate this

behavior, we filtered high frequency transitions, only accounting for transitions that happened

more than 1, 5, 10 and 15 minutes away from each other. As we increased the time gap, the

number of transitions per node decreased as expected. However, it did not affect the symmetric

behavior of the TM. For that reason, we set the ping-pong filter to 10 min for all the results
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(a) Rio Dataset
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Figure 3.1: Transition matrices for the WLAN traces.
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Figure 3.2: Transition matrix built for a network of 3 APs, after two users make 3 transitions each in
opposite directions.

presented here.

In order to further explore the reasons for the TMs’ symmetric behavior, we consid-

ered clusters of APs such that if a transition occurred between APs in the same cluster, either

due to node movement or the ping-pong effect, that would not count as a transition. In other

words, only transitions between clusters were considered. We use AP clustering in the Dart-

mouth trace, which was the one with the largest number of APs. A map of the Dartmouth

campus was used to decide how to cluster the APs: we used the known locations of the APs

to overlay them on the map; we then clustered the APs according to proximity and area of

coverage (instead of using clusters of similar size and number of APs). The Dartmouth TM

represented in Figure 3.1(d) is a result of organizing the campus APs in 30 clusters. Evidently,

symmetry persisted even after filtering out high frequency transitions and using AP clusters.

The explanation for the symmetric behavior is illustrated in Figure 3.2. If user1 takes

the path from AP2 to AP1 to AP3 and user2 goes from AP2 to AP3 to AP1, then the resulting

transition matrix is symmetric. The more we aggregate users and/or the longer we observe their

movement, the higher is the chance of observing movement in opposite directions.

In order to understand and be able to quantify symmetry as we observe user mobility

collectively and over time, we define a metric called coefficient of symmetry, α, where 0 ≤ α ≤
1, as defined in Equation 3.1:

α=
1

T

N−1∑
i=1

N∑
j=i+1

|aij − aji| (3.1)

where T is the total number of transitions in matrix A. Thus, the closer α is to 0, the

higher the symmetry. α = 1 means that A does not have any transitions in symmetric positions.

This metric can also be seen as the percentage of transitions happening in symmetric positions.
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For example, if α = 0.2, it means that 80% of the transitions are in symmetric positions. α can

be computed for each node individually, or for the entire network from a TM aggregated over

all users.

Figure 3.3 shows α for all 4 WLAN traces studied, varying the number of aggre-

gated users and aggregating transitions in time for 3 different window sizes: 24–, 12–, and 6

hours. The X-axis is how many users were aggregated to compute α, and users are ordered in

decreasing order, according to their individual α (computed using their iTM).

For the traces with larger number of users, when we decrease the aggregation time

window, the TM becomes less symmetric (i.e., α increases), as we can observe from the Dart-

mouth TM (Figure 3.3(d)). This behavior is not as evident in the MIT trace (Figure 3.3(c)).

This is due to the fact that all the APs are in the same building which greatly contributes to

the ping-pong effect, making it much harder to filter. Therefore, decreasing the aggregation

window does not affect the results as much. This happens because users’ transitions, in this

case, occur with great frequency, always falling inside the minimum window used (6 hours). To

confirm this hypothesis we used an additional window of 30 minutes for the MIT dataset. Only

then we were able to notice the difference, as the 30 minutes curve went over the other curves

as we aggregated more users.

In the case of the traces with fewer users, time aggregation appears to have an oppo-

site effect on the symmetry, as we can see in Figures 3.3(a) and 3.3(b). The smaller the time

window is, the less transitions are accounted in the TM. In the case of those two traces, there

is a preference for a few specific APs (more popular APs appear as the spikes in the TMs on

Figures 3.1(a) and 3.1(b)). The transitions not accounted for due to the smaller time window

are more likely to be taken from the most popular APs, what would decrease the difference

amongst the cells in the matrix. This would increase the overall symmetric pattern, contributing

to a lower α and making the α curve converge faster to lower values as we aggregate more

users.

In Figure 3.4 we plot the coefficient of symmetry, α, for the GPS and RWP traces.

For the RWP traces, we plot the average aggregated α for 15 different random seeds. The first

interesting observation is that α for the synthetic traces is similar to α for the corresponding real

traces. The differences are due to the fact that in real environments, users tend to favor some

areas (e.g., they walk on roads), limiting the degree of freedom of their movement. On the other
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(a) Rio Dataset

(b) Stanford Dataset

(c) MIT Dataset

(d) Dartmouth Dataset

Figure 3.3: Metric of symmetry α for different number of aggregated users, under different time aggre-
gation windows for (a) Rio, (b) Stanford, (c) MIT and (d) Dartmouth datasets.
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Figure 3.4: α per number of aggregated users, under a 24h aggregation window.

hand, for the synthetic traces, users tend to disperse more uniformly increasing the chances

of the number of transitions between a cell and its neighbors to be similar for every cell. For

the KAIST trace, in particular, we notice that nodes tend to concentrate even more than in the

Quinta trace, visiting less cells overall. That explains KAIST’s higher symmetry, even with less

users. This limited number of visited cells, in the KAIST trace, increases the relation user/cells

increasing the chances of random transitions falling in symmetric positions.

3.2.3 Direction Angle Symmetry

Direction of movement provides additional information on the spatial behavior of

human mobility. Figure 3.5 shows the distribution of direction angles which represent relative

frequency of directions users take when moving as reported in the GPS– and synthetic traces.

The bin size used in these plots is 1◦. We observe a symmetric–, close to uniform distribution

of direction angles for both of the synthetic traces (Figures 3.5(b) and 3.5(d)), where it is not

possible to identify any significant preference for a given direction.

If instead of looking at transitions, we look at the direction nodes take when mov-

ing inside the network area, the distribution of angles taken by the aggregated nodes are also

symmetric. Figure 5 shows this symmetry and the interesting patterns that arise when plotting

the PDF of the angles users take while moving, weighted by the duration of the movement in

each direction. The bin size used in this plots is 1◦. This results show the symmetric, close to

uniform distribution of the synthetic traces (Figures 3.5(b) and 3.5(d)), where it is not possible

to identify any significant preference for a given direction.

For the KAIST trace, in Figure 3.5(c), it is possible to notice the concentration of

points over a symmetric shape, like a circle. Despite some few outliers, it is also not possible

to identify any significant preferred angle. That is not true for the Quinta trace in Figure 3.5(a).

19



(a) Quinta Dataset (b) Quinta RWP Dataset

(c) KAIST Dataset (d) KAIST RWP Dataset

Figure 3.5: Distribution of direction angles for (a) Quinta, (b) Quinta RWP, (c) KAIST and (d) KAIST
RWP datasets.

This trace has a peculiar symmetric shape with respect to 180 degrees, for the direction nodes

take. This can be explained by considering the physical terrain and the fact that users mostly

move only along roads and tracks which limit the possible movement directions.

The KAIST trace, on the other hand, was collected on a much larger area which

corresponds to the KAIST campus, with several roads and pathways. Because it was derived

from the real KAIST trace, the KAIST RWP trace also presents this characteristic. This is what

is shown in Figure 3.6 which plots the Empirical Cumulative Distribution Function (ECDF)

of the direction angles for the GPS– and synthetic traces. We observe that the KAIST RWP

trace is able to reflect closely the statistical properties of the trajectory angle. The differences

between Quinta and Quinta RWP traces are mainly due to movement restrictions (obstacles and
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Figure 3.6: ECDF of the direction for GPS and RWP traces.

paths).

3.3 Discussion

Despite the large body of work that focus on studying real traces, to the best of our

knowledge, our work is the first to observe and quantify spatial symmetry in user mobility in

terms of cell transitions and angle of movement. The only other work that briefly alludes to

direction angle symmetry is [37].

Using maps, social interaction,“hot spots”, and other factors that limit and/or influ-

ence user mobility (e.g., what is the next destination) are effective strategies to “bias” synthetic

mobility models in order to obtain behavior that is closer to reality. Along those lines, the

proposed TM can be used to identify the “popularity” of the different regions of the network

(including, e.g., hot spots) and based on this information specify the probability distributions

used by nodes to select their next destination in synthetic mobility models.

Another interesting application of our results is the use of the direction angle symme-

try as a way to compare mobility traces. The distributions of direction angles in Figures 3.5(a)

and (b) show very different behavior when comparing the synthetic trace against the real one.

By using strategies to approximate synthetic mobility models to real mobility, direction angle

symmetry can be used to quantify how close the resulting models get to real mobility, and

thus how effective these “approximation” strategies are. We are currently going a step further

and trying to draw a transitive relationship between direction angle symmetry, spatial mobility

behavior, and performance of core networking functions such as routing and forwarding.
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Mobility or location prediction is yet another area in which our results can find inter-

esting applications. For example, in [59], a Markovian predictor is used to predict user location

based on a given mobility trace (in the paper, the Dartmouth trace was used). It was observed

that for nodes that did not have enough historical information recorded in the trace, the perfor-

mance of the predictor was not adequate. To mitigate this problem, we could use the coefficient

of symmetry, α, of a given node to artificially “re-create” the node’s past historical information.

3.4 Conclusions

We so far have explored the spatial behavior of human mobility through a variety

of mobility traces collected in different network environments. As a result, we identify char-

acteristics exhibited by human mobility that, to the best of our knowledge, have not yet been

revealed in previous studies. We used a number of real traces that record user mobility in

wireless LANs as well as GPS traces. Additionally, we also investigated synthetic mobility, in

particular, through traces generated using the RWP model. We show that, from a macroscopic

level, human mobility is symmetric. In other words, the number of users that move from point

A to point B approximates the number of users that go in the opposite direction. We also show

that this type of symmetry is more evident in synthetic models such as RWP. Additionally, we

study the direction of movement which also exhibit symmetric behavior in both real– as well as

synthetic mobility. In order to quantify the degree of symmetry exhibited by a given mobility

scenario, we define a new metric we call coefficient of symmetry. We conclude by discussing

the implications of our results in different areas of mobile networking.

In the next chapter we extend our study on human spatial behavior and, motivated by

our findings about symmetric mobility, we focus on node spatial density. We theorize that the

symmetric behavior of transitions may influence node density. We then present a study on node

density in the following.
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Chapter 4

On the Invariance of Spatial Node

Density for Realistic Mobility

Modeling

In this chapter we show that human mobility exhibits “persistent” behavior in terms of the

spatial density distribution of the mobile nodes over time. Using real mobility traces, we observe

that the original non-homogeneous node spatial density distribution, where some regions may

be quite dense while others may be completely deserted, is maintained at different instants of

time. We also show that mobility models that select the next node position based on the position

of other nodes, a la “preferential attachment”, do not preserve the original spatial node density

distribution and lead to behavior similar to random mobility as exemplified by the Random

Waypoint model. To the best of our knowledge, this is the first time that these phenomena have

been reported. Based on these observations, we propose a simple mobility model that preserves

the desired spatial density distribution. Moreover, when simulating the operation of a network

moving according to the proposed model, we found that performance results expressed by a

number of network metrics also match closely results obtained under mobility governed by real

traces. We also compare our results to models whose steady-state do not preserve the original

non-homogeneous density distribution and show that network performance under such regimes

deviates from performance under real trace mobility.
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4.1 Introduction

In Section 2.2 we briefly presented the concept of preferential attachment, introduced

by Barabási and Albert in their seminal work [3]. In this chapter we show that using the pref-

erential attachment principle for modeling human mobility leads to undesirable steady-state

behavior, which does not preserve the original spatial node density distribution and leads to

behavior similar to random mobility as exemplified by the Random Waypoint model.

Figure 4.1: Node spatial density distribution at different trace collection times for mobility in a city park.

Instead, real human mobility exhibits “persistent” density heterogeneity as exempli-

fied in Figure 4.1. This figure shows the spatial density distribution for one of the traces used

in our work, which was collected in the Quinta da Boa Vista Park in Rio de Janeiro, Brazil.

This distribution is defined as the percentage of cells containing ≥ k nodes. The 5 curves in the

plot refer to the initial distribution and distributions at instants 300, 500, 700, and 900 seconds,

which is the end of the trace collection interval. From the graph we observe that the density dis-

tribution does not vary much with time: the largest deviation from the initial distribution for any

value of k at any instant is 8.3%; the average deviation from the initial distribution measured in

all the instants for all values of k is 1.27%. Similar observations can be drawn from the other

traces used in our work as reported in Section 6.4. We should point out that, from a survey we

conducted on 82 papers published in various networking conferences between 1996 and 2010

which used some form of simulation study, only 57 papers listed simulation duration time. Out

of those, 21 papers used 900s, 12 papers used 500s, 4 used 600s, and 3 used 300s. All others

reported different times all lower than 300s. This means that the time windows we used here to
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study human mobility are representative of– and go beyond the simulation times used to study

wireless networks and their protocols.

Based on our observations of the persistent density distribution behavior in human

mobility, we then propose a simple, yet realistic model of human mobility called Intensity Way-

point, or IWP. Besides preserving, by design, the invariance of the node density distribution

over time, IWP is simple and easy to use and implement. We argue that these latter two features

of IWP are critical for its widespread use and adoption, vis-a-vis the RWP model. Another

important feature of IWP is its generality, i.e., it can be used to model mobility in any kind of

networking environment including Wireless LANs or ad hoc networks.

We evaluate IWP in two different ways: first, we investigate its ability to adhere

to the node density distribution invariance property. To this end, we define the node density

distribution metric (mentioned above) and use it to compare IWP against RWP and the Natural

Mobility Model [13], a representative of mobility models based on preferential attachment. In

this study, we use three GPS-based mobility traces collected in different scenarios, namely at a

park, a University campus, and a state fair. The traces were used to set the parameters of the

models as well as the baseline for the comparative study. The second part of the evaluation

focuses on studying the performance of core network functions, in this case routing, under IWP

mobility. The same traces described above were used as baseline to compare IWP against RWP

and the Natural Mobility Model. Our results show that, by preserving the original node density

heterogeneity, IWP is able to closely approximate real network behavior according to a number

of routing performance metrics.

In summary, to the best of our knowledge, this is the first time that the invariance of

the non-homogeneous spatial density distribution of human mobility has been observed. This

is also the first work to point out that mobility models based on the preferential attachment

principle does not preserve the original spatial node density distribution and lead to behavior

similar to random mobility, a la Random Waypoint model. Based on these observations, we

propose a simple model that preserves the desired spatial density distribution, as well as show

its impact on core network functions such as routing relative to real mobility traces, the RWP,

and a preferential-attachment based model.
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4.2 Intensity Waypoint Mobility

The main design principles guiding the proposed model are: (1) preserving the invari-

ance of the original node density distribution and consequently its inherent non-homogeneity,

(2) generality, i.e., applicability to different types of network scenarios, and (3) simplicity and

ease of use in order to facilitate the model’s adoption.

In our model, we divide the simulation area in equal sized squares, that we refer to

as cells. Each cell i ∈ {1..N}, where N is the total number of cells composing the simulation

area, is assigned an intensity µi,t at time t given by an Intensity Map (IM). The IM is a vector

composed of N elements, where each element has a value {µi,t ∈ R | µi,t ≥ 0} that indicates

how intense the activity in a cell is. We define the IM and how we build it in Section 4.5.

The probability pi,t that cell i is chosen as the next waypoint at time t is given by

Equation 4.1 below:

pi,t =
µi,t
N∑
j=1

µj,t

,∀i ∈ {1..N} (4.1)

The evolution of the spatial node density distribution over time is an important aspect

of the network, but as our results show, this distribution does not vary much with time. For that

reason, we make µi,t and pi,t time-independent; thus, pi,t = pi,t′ = pi.

We define a step function as in Equation 4.2. This function will allow us to set up the

attraction areas by simply setting the values of x0 to the physical limits of a given attraction area

or cell i: xi,min, xi,max, yi,min and yi,max. The cell’s area Ai is given by (xi,max − xi,min) ×
(yi,max − yi,min).

u(x− x0) =

 1 if x ≥ x0

0 if x < x0

(4.2)

Thus, the probability distribution of selecting the next destination (xd, yd) is defined

by Equation 4.3 as follows:
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f(xd,yd) =
1

N∑
i=1

piAi

[ N∑
i=1

pi

[
(4.3)

(
u(xd − xi,min)− u(xd − xi,max)

)
(
u(yd − yi,min)− u(yd − yi,max)

)]]
According to Equation 4.3, in order to select a node’s new destination, we need a

mechanism that allows us to differentiate the choice of the next way-point based on the intensity

of each cell. We turn to a Fitness Proportionate Selection-based scheme known as roulette-

wheel selection for that. This strategy is commonly used in genetic algorithms [54].

Based on the values of pi, a circular wheel is divided into N sectors, like a pie chart.

The center angle of the i-th sector is 2πpi, which makes the area of each sector proportional to

the probability pi. The roulette wheel selection strategy can then be described in two steps, every

time the next cell is to be selected. First, generate a random number n uniformly distributed,

where 0 ≤ n ≤ 1 and second, if p1 + p2 + . . . + pi ≤ n < p1 + p2 + . . . + pi+1, then cell i

is selected to be the next one visited by the node. This is equivalent to spinning the roulette and

having it stop at sector i. The bigger pi is, the bigger the sector and the bigger are the chances of

sector i being chosen. Once the new cell i is known a coordinate (x, y) is then uniformly chosen

inside of cell i, and xi,min ≤ x ≤ xi,max and yi,min ≤ y ≤ yi,max. Hence, the cumulative

probability qi of choosing a cell is given by Equation 4.4 .

qi =
i∑

j=1

pj ,∀i ∈ {1..N} (4.4)

The same mechanism described above can also be adopted for choosing nodes’ ve-

locity and pause time. In this case, instead of an IM we would use a velocity domain vector

V = {ν1, .., νnv , .., νNv} containing all the Nv instances νnv of nodes’ velocity measured in

the traces and a velocity intensity vector Fv = {f1, .., fnv , .., fNv} containing the frequency

fnv of all velocity instances νnv . Analogously, we would also have a pause time domain vector

P = {t1, .., tnp , .., tNp} containing all the Np instances tnp of nodes’ pause time and a pause

time intensity vector Fp = {f1, .., fnp , .., fNp} containing the frequency fnp of all pause time

instances tnp . The elements of V and P would identify the sectors of the roulette-wheel, where
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velocity and pause time wheels would haveNv andNp sectors respectively, and the elements of

Fv and Fp would determine the size of each sector. However, we wanted to investigate the for-

mation of clusters and the non-uniform nature of node density in real scenarios and its impacts

on networking. Thus, we focus on the intensity of attraction areas and use uniform distributions

to model node velocity and pause time.

4.3 Building the Intensity Map

Acknowledging the challenge in defining what are real mobility characteristics, we

approach this subject by extrapolating reality from the observation of real human mobility. To

that end, we extract node density characteristics form the traces and represent it in our model in

the Intensity Map, or IM. The IM can be viewed as a “density map”, i.e., a map of the region

over which nodes move showing the node density at each cell. In this section, we describe

how to build the IM from real traces. Note that once an initial IM is built for a specific mobil-

ity scenario, variants of that scenario can be generated by controlling the density distribution

reported in the trace-based IM. For example, if one wants to further intensify certain cells or

increase/decrease the number of “hotspots”, that can be easily accomplished by adjusting the

IM accordingly.

In this work, we use three GPS traces collected in scenarios that are quite diverse,

namely a park, a University campus, and a fair. These traces are presented in detail below. Then,

we describe how we extracted density information from the traces and use this information to

drive IWP mobility.

4.4 Real Traces

Table 4.1 summarizes the GPS traces in terms of number of users, duration of the

trace, and the GPS sampling period.

Trace # users Duration Samples
Quinta [6] 98 900s 1s
KAIST [56] 78 5000s 10s
Statefair [56] 19 8000s 10s

Table 4.1: Summary of the GPS traces studied.
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Quinta, refers to the “Quinta da Boa Vista Park” trace, first presented in [6]. It is a

GPS trace collected at a park in the city of Rio de Janeiro, Brazil. The park has many trees,

lakes, caves, and trails. It houses the National Museum of Natural History and the city Zoo.

The KAIST trace [56], on the other hand, is a GPS trace collected at a University campus

environment (KAIST) in Daejeon, South Korea. The Statefair trace, also available at [56], is

yet another mobility scenario showing daily GPS track logs collected from the NC State Fair

held in North Carolina, USA.

Given that the traces of some of the nodes presented some discontinuity, we selected

sections of the raw traces where no discontinuity occurred. We selected only nodes where we

could find a continuous sequence of GPS fixes that were as long as 900, 5000, and 8000 seconds

for the Quinta, KAIST, and Statefair traces, respectively. These were the total durations of the

traces.

4.5 Extracting Information from Traces

We extract from the traces the distributions of speed, pause time, and node density

by using the trace’s sampling period. For example, in the Quinta trace, the sampling period is

T = 1 seconds. A histogram was built with this information, for speed and pause time, giving

us the relative frequency at which each value occurs. We define the node’s speed as d
∆t where

d is the distance traveled between two consecutive entries in the GPS trace at times t1 and t2

and ∆t = t2 − t1. Pause time is defined as P = ∆t, if d < threshold, or zero otherwise.

The threshold is not zero here to account for GPS error. We set this threshold to be 2 meters

for KAIST and Statefair traces and 0.5 meter for the Quinta trace, due to jitter in GPS update

frequency.

To extract spatial node density, the area is divided into squared cells of 50 x 50 me-

ters. Using this particular cell size to generate the density map was decided empirically in our

experiments: it provided both adequate resolution as well as node clustering. An alternative

approach could be identifying specific attraction zones, as was done in [37]. This is one of the

topics of future work we plan to address. For this first version of IWP, a fixed size cell was used.

With the area divided into cells, we took a snapshot of the nodes’ spatial distribution

in the area being simulated every T seconds. The value of T = 10 was used since, for the size of

the cells and the speeds sampled from the traces, a node could not on average change between
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more than two cells during T . For every cell, at every interval T we counted the number of

nodes in each cell. We then averaged the number of nodes in each cell over the course of the

whole duration of the trace, giving us what we will call here, a Intensity Map (IM). The IM

gives the popularity of each cell, i.e., how intense is the node mobility activity in a cell, or in

other words, how interested nodes are in general in each cell.
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Figure 4.2: Cumulative cell selection distribution.

The cumulative probability of choosing a cell, given by Equation 4.4 can be visualized

in Figure 4.2 for Quinta and Statefair scenarios and for RWP (uniform) and IWP (set by the IM

extracted from the traces). The curves for the KAIST scenario are similar, but were omitted for

the sake of clarity of the plot.

We acknowledge that always relying on extracting the IM from available traces can

be somewhat constraining since there is no large and diverse enough set of publicly available

traces. In general, the ones that exist represent a limited set of scenarios such as University

or company campuses, parks, vehicles in city streets, conferences, etc. An alternative to using

real traces to extract the IM is to use a technique like the one introduced in [11]. In this work,

the authors propose a way to generate non-homogeneous spatial node distributions. Using such

a technique, one could generate an initial non-homogeneous placement of nodes, which then

could be used to generate the IM to feed our model by averaging the number of nodes in each

cell. The fact that this technique does not allow averaging density over time does not pose as

a big drawback: as we will show in Section 4.7, spatial node density distribution does not vary

much in time.

Our model not only manages to preserve a desired level of heterogeneity over time [25],

but allows for tuning the desired spatial density for evaluating network protocols under different

levels of node density, according to the researchers needs. In case the objective is to simulate
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some specific real scenario, information on trace sources and repositories can be found in [5]

and can be used to generate the IM as described here.

4.6 Evaluation Methodology

In this section, we describe how we investigate IWP’s behavior and evaluate its per-

formance. The baselines used for our comparative study are the random waypoint mobility

model, or RWP, and the natural mobility model. We then start by describing these two mobility

models.

4.6.1 RWP Mobility

In the RWP model, mobile nodes are initially placed in the area being simulated

according to a given distribution. Typically, a uniform distribution is used. Each node remains

in its position for a given period of time, called pause time P , uniformly chosen in the interval

[0, Pmax], where Pmax is a parameter whose value needs to be pre-specified. After this period,

the mobile node chooses a new destination (xd, yd) uniformly distributed in the simulation

area, and a velocity, also uniformly distributed in the interval [vmin, vmax], where both vmin

and vmax are pre-specified parameters. Once the destination is reached, the node pauses again

and chooses another destination and velocity, as described above.

4.6.2 Natural Mobility Model

We also compare IWP’s behavior and performance against a model that follows the

preferential attachment principle. As representative of this family of models we use the natural

mobility model, or simply Natural [13].

As discussed in Section 2, Natural is based on attraction points, where the attractive-

ness of each point is proportional to its popularity (i.e., number of nodes at or going towards

it) and inversely proportional to the distance to it. Thus, the probability Π(ai) that an node zk

chooses an attractor ai among all possible attractors is proportional to the portion of the total

attractiveness it carries: Π(ai) =
Aai,zk∑
j Aaj,zk

. The attractiveness of an attractor is then defined

as:

31



Aai,zk =
(1 +

∑
zj∈Z,zj 6=zk B(ai, zk))√

(Xai −Xzk)2 + (Yai − Yzk)2
(4.5)

where B(ai, zk) is a Bernoulli variable, with B = 1 if the individual zk is going

toward or staying at attractor ai and 0 otherwise, andX and Y are the coordinates of a node and

an attractor. In our implementation, we divided the simulation area in equally sized squares,

or cells, and consider each cell to be an attraction point. The coordinates (Xai , Yai) mark the

center of the i-th attraction point. Once the new destination is known, the node travels towards

it with a velocity uniformly distributed in the interval [vmin, vmax]. A pause time is randomly

selected once arriving at the destination before choosing another destination and beginning the

process again.

4.6.3 Simulation Setup

We ran two types of simulations: first, we used a modified version of the Scengen [62]

scenario simulator to generate traces according to RWP–, Natural–, and IWP mobility. With

those traces we generate the node density distribution results presented in Section 4.7.2. In the

second type of simulation, once the synthetic traces were generated, these and the GPS traces

were fed to the Qualnet network simulator [58] in order to evaluate their impact on core network

functions, like routing.

In the first type of experiment, three sets of synthetic traces were generated using

the RWP, Natural and IWP mobility models. The velocity range was set in a way that the

average velocities would match the ones measured in the GPS traces for Quinta, KAIST and

Statefair. In order to address the decaying velocity problem reported in [69], we followed

the recommendations mentioned in that work. To that end, the velocity range was set to be

± the standard deviation measured in the real traces around the measured average velocity.

Thus, the velocities were chosen uniformly in a range in which the lower limit was greater than

zero and where the mean matches the one measured in the real traces. This is not an optimum

solution and it is the simplest solution mentioned in [69], but since our focus is not on evaluating

the routing protocol itself and we rather want to compare the mobility models, we found that

solution suitable for these purposes.

Pause time was chosen uniformly in the range [0, Pmax], where the value of Pmax was

set to an appropriate value, in a way that the average pause time would match the one measured
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in the real traces. The same was done for the dimensions of the rectangular simulation area, set

to be the same as in the GPS traces. Moreover, in all simulation scenarios, Quinta, KAIST and

Statefair, we used the same initial positions found in their respective real traces for the same

number of users. For further discussions on the actual distributions for these traces’ mobility

parameters, please refer to [6, 56].

In the RWP simulations, the next destination (xd, yd) was chosen uniformly over the

simulated area. For the IWP simulations, the choice of (xd, yd) was given by Equation 4.3,

where the intensity values µ were measured from the real traces as described in Section 4.5. For

Natural, the probability of choosing a given cell is computed “on-the-fly”, based on the cell’s

attractiveness.

We of course do not attempt to simulate the real scenarios exactly with the RWP as

it is. It was an attempt to approach the simulated mobility patterns to the real scenarios so that

we could compare the simulation results driven by randomly generated mobility traces against

simulations over a real trace. The goal is to evaluate how far apart the results using the RWP

are form the ones using the real trace and how close we can get by using the proposed model.

Table 4.2 summarizes the simulation parameters.

Parameter Quinta KAIST Statefair
Avg. Speed (±σ)(m/s) 1.27(±0.16) 0.72(±0.68) 0.58(±0.12)
Avg. Pause (sec) 3.6 86 72
Area (meters x meters) 840x840 5000x5000 1260x1260
Duration (sec) 900 5000 8000
# nodes 98 78 19
# CBR flows 20 20 10

Table 4.2: Simulation parameters.

The traffic scenarios used in our second type of simulations are composed by 20 CBR

flows with randomly chosen source and destination pairs, for the Quinta and KAIST scenarios.

10 CBR flows were used in the Statefair simulations. Flows start at randomly chosen times and

stay active during the course of the whole simulation, at a rate of 4 packets per second. The

routing protocol used to compare the network metrics between the different mobility patterns

is the Ad-Hoc on-demand distance vector (AODV) protocol. The radio range was set to 150m,

for 802.11b data rate of 11.0 Mbps.

Results are reported here with a confidence interval of 90% and reflect 10 runs of

the simulations using the real GPS traces. Since we could not change the mobility for the
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simulations with the GPS traces, we varied the traffic scenarios by changing the source and

destination pairs of the flows in each of the 10 runs. The same traffic scenarios were used to

feed the RWP, Natural, and IWP simulations, but in these cases, we generated 5 mobility traces

with each model, giving a total of 10 × 5 = 50 simulation runs for each one of the synthetic

models.

4.7 Results

In this section we define our metrics and present our results for node spatial density

and network routing.

4.7.1 Spatial Node Density

In order to study spatial node density behavior, we define the following metric:

• Node density distribution: the percentage of cells containing ≥ k nodes.

Each graph in Figure 4.3 shows the density distribution for one of the traces and each

mobility model, namely IWP, RWP, and Natural. The curve labeled “Initial” shows the trace’s

density distribution at the beginning of the trace collection interval, while the curve labeled with

the trace’s name shows the distribution at the end of the trace collection interval, namely 900,

5000, and 8000 seconds for the Quinta, KAIST, and Statefair traces, respectively.

The data points shown for the RWP, Natural, and IWP models were averaged over 10

runs. The plots for the KAIST and Statefair traces are zoomed in to the region of interest.

In those two plots, the only point not shown is k = 0, where the percentage of cells containing

0 or more nodes P [k ≥ 0] is the same for every curve and it is, of course, equal to 100%.

From these plots we observe that IWP’s density distribution follows closely the dis-

tribution of the real trace, for all three traces. In the case of RWP, the majority of cells present

similar number of nodes, and no cells contain significantly greater concentration of nodes. This

is also the case for Natural. In the beginning of the simulation the initial distribution weighs on

the computation of the attractiveness of the cells, but as the simulation goes on, more and more

nodes may choose with small, but greater than zero probability, cells where there are no other

nodes present. Over time, this behavior spreads the nodes around different cells, leveling the

attractiveness of cells in general, approaching uniformity and RWP’s density distribution.
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Figure 4.3: Node Density Distribution.
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An important result here is to see how in real traces the spatial density distribution

does not change much over time preserving the original non-homogeneous density distribu-

tion. Moreover, using IWP, we are able to preserve the initial spatial distribution and its non-

homogeneity and thus yield very similar density distribution behavior when compared to the

real trace. That holds true for all the three trace scenarios studied.
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Figure 4.4: Density matrices for the Quinta scenario.

When looking at the plots of density over time for the IWP model in Figures 4.4(b),

4.5(b) and 4.6(b) it is possible to notice how nodes appear to form clusters in the same places

for the Quinta, KAIST and Statefair sites in Figures 4.4(a), 4.5(a) and 4.6(a), respectively.

However, it is also possible to notice in the IWP plots that, over time, these clusters are not as

concentrated as in the ones found in the real traces. The reason is that in the real trace, when

going from one point to the other, nodes take different paths, sometimes avoiding obstacles,
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Figure 4.5: Density matrices for the KAIST scenario.

while in the IWP they still choose a path which is a straight line between origin and destination.

Thus, despite of the similar concentrations in the same cells, over time this density is diluted

because nodes, during their paths to the destination, may enter cells that were never, or very few

times visited in the real trace.

In the same manner, when analyzing the plots of density over time for the RWP model

in Figures 4.4(c), 4.5(c) and 4.6(c) it is possible to notice how nodes appear to form clusters in

the same places for the Quinta, KAIST and Statefair sites in Figures 4.4(d), 4.5(d) and 4.6(d),

respectively, we can see how close they are to each other. This illustrates the deficiency of pref-

erential attachment based approaches and how close the density behavior of these approaches

can get to total randomness.
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Figure 4.6: Density matrices for the Statefair scenario.

4.7.2 Network Routing

The metrics used in our comparative study of network routing performance under the

IWP mobility regime are:

• Throughput: Total number of bits received at the destination divided by the time elapsed

between the reception of the first data packet and the reception of the last data packet.

This quantity is then averaged for all nodes.

• End-to-End Delay: Time elapsed between data transmission and reception then averaged

for all nodes.

• Delivery Ratio: Ratio between the total number of packets received by all nodes and the

total number of packets sent by all nodes.
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• Routing Overhead: Total number of routing control packets transmitted by all nodes

averaged over nodes.

Figures 4.7(a), 4.7(b), 4.7(c), and 4.7(d) show, respectively, throughput, delay, deliv-

ery ratio, and routing overhead over time for the Quinta scenario. Notice the clear discrepancy

between the real trace results and the RWP model. Also notice how the discrepancy widens

over time. Routing performance suffers under RWP mobility once it spreads the nodes ran-

domly over the simulation area. IWP, on the other hand, like the real trace, allows the formation

and preservation of clusters, which, in the case of this scenario, ensures close to 100% delivery

ratio.

In the case of Natural mobility model, specifically for the Quinta scenario, we notice

that routing performance for this model stays close to the real trace curves up until around

300 seconds. Before that time, the probabilities of choosing each cell are differentiated by the

initial non-uniform node positions, and the model is capable of maintaining some spatial node

aggregation. However, after this point, nodes that were starting to roam away choose new cells

where node concentration is not as high. As more and more nodes start to spread throughout the

simulation area, the probability of choosing a new cell starts approaching a uniform distribution.

This behavior causes the clusters to dissipate and the routing performance starts to diverge from

the real traces.

Figures 4.8 and 4.9 show routing performance metrics for the KAIST and Statefair

scenarios, respectively. Once again, as in the Quinta scenario, we can see the IWP curves

diverging from the RWP curves and approaching the real trace curves. In all the scenarios the

routing overhead for RWP and Natural is much greater than for IWP and the real traces. This is

mainly due to paths breaking caused by the random movement of RWP nodes and the increasing

randomness towards the end of the simulations for Natural. Also, delivery ratio for these two

scenarios is lower than for the Quinta scenario given the lower relative density caused by a

larger simulation area and increased average distance between nodes. Nonetheless, the negative

impact of a more sparse network in the case of KAIST and Statefair scenarios is greater for

RWP and Natural. For these two scenarios, we were not able to see similar behavior to the real

traces in the beginning of the simulations for Natural, as we saw in the Quinta scenario, due to

the larger and lower resolution time scale. Nonetheless, the way Natural diverges from the real

traces towards the end of the simulations remains.
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Figure 4.7: Network routing performance for the Quinta trace.
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Figure 4.8: Network routing performance for KAIST trace.
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Figure 4.9: Network routing performance for Statefair trace.
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Approaches like [36, 37, 13, 47, 48, 41], where the probability of choosing the new

destination changes over time depending on nodes’ positions, can present long transient phases

and a stead state similar to a completely random behavior such as observed when applying the

RWP model. We argue here that being able to set the spatial distribution in the begining of the

simulation and being able to control it is important, and the proposed approach allows it.

4.8 Conclusions

We investigated in this section the spatial density distribution properties of real mo-

bility using mobility traces collected in a diverse set of scenarios. More specifically, we chose

three scenarios where human mobility was registered using GPS tracking devices carried by

users as they move around a city park, a University campus, and a State Fair event. By defining

a metric called spatial density distribution, we showed that, for all three scenarios, the origi-

nal non-homogeneous node density distribution does not change over time. We also show that

mobility models that rely on computing the probability of choosing a node’s new destination

dependent on the position of the other nodes can exhibit long transient phases and a steady state

similar to completely random behavior as observed when applying the RWP model. To the best

of our knowledge, this is the first time that these observations have been reported.

Acknowledging the importance of preserving and being able to control node density

over time, we proposed a mobility model called Intensity Waypoint (IWP) that takes a density

map as a parameter and where the mobility description is as simple as in the RWP model. By

feeding the IWP model with a density map extracted from mobility traces, we were able to

match closely the density distribution generated by the IWP to the one generated by the real

traces, also preserving the original node density distribution. Moreover, when simulating the

operation of a network moving according to the proposed model, we found that performance

results expressed by a number of network metrics also match closely results obtained under

mobility governed by the real traces. We also compared our results to models whose steady-

state tend to random mobility and show that network performance under such regimes deviates

from performance under real trace mobility.

Other features of our model are its generality as well as the user’s ability to control

node density distribution in order to simulate specific scenarios. Our conjecture is that, given

the simplicity and ease of use of our approach, it has the potential of becoming adopted and
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make its way to be part of well-known network simulation platforms.

As directions of future work, we plan to investigate human mobility behavior over

extended periods of time as well as proving mathematically what we observed empirically, i.e.,

the steady-state behavior of preferential attachment based mobility models as well as IWP’s.
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Chapter 5

Modeling Spatial Node Density in

Waypoint Mobility

This chapter introduces a modeling framework to analyze spatial node density in mobile net-

works under ”waypoint”-like mobility regimes. The proposed framework is based on a set of

first order ordinary differential equations (ODEs) that take as parameters (1) the probability of

going from one subregion of the mobility domain to another and (2) the rate at which a node

decides to leave a given subregion.

We validate our model by using it to describe the steady-state behavior of real user

mobility recorded by GPS traces in different scenarios. To the best of our knowledge, this is the

first node density modeling framework generic enough that can be applied to any “waypoint”-

based mobility regime. As an example, we use our framework to model the well-known Ran-

dom Waypoint (RWP) mobility [15]. Our model confirms the well-known result showing that

node density’s steady-state behavior under RWP mobility tends to homogeneity. We also use

our framework to model mobility regimes based on the preferential attachment principle [3].

We show through the application of our proposed model that using preferential attachment to

model human mobility leads to undesirable steady-state behavior, where the original spatial

node density distribution is not preserved and exhibits behavior similar to random mobility a

la RWP regime. Finally, as an example application of our framework, we discuss using it to

generate steady-state node density distributions to prime mobile network simulations.
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5.1 Introduction

When designing and evaluating wireless networks and their protocols, user mobility

is a critical consideration. So much so that user mobility has inspired an extensive body of

work both in infrastructure-based networks (e.g., wireless LANs or WLANs), as well as in

infrastructure-less networks, a.k.a., wireless, self-organizing networks (WSONs). The latter

include wireless mobile ad-hoc networks (MANETs), wireless sensor networks (WSNs), and

disruption-tolerant networks (DTNs). Unlike their infrastructure-based counterparts where only

end user nodes are mobile, in infrastructure-less networks, every node may move and thus

mobility plays a considerable role in the performance of the network.

One way to characterize and describe mobility is through the spatial density of mobile

nodes. Spatial node density can be defined as the number of nodes located in a given unit

area and has significant impact on fundamental network properties, such as connectivity and

capacity, as well as on core network functions, e.g., medium access and routing. To date, only

a few efforts have focused on modeling spatial density. Notable examples include [25, 9, 50].

However, most previous work have been focusing exclusively on the Random Waypoint (RWP)

model [15].

In this work, we introduce an Ordinary Differential Equation (ODE) framework to

mathematically model spatial node density under different “waypoint”-based mobility regimes.

More specifically, our model describes node density’s steady-state behavior under waypoint-

based mobility which is characterized by having nodes probabilistically choose the next desti-

nation, or waypoint’, based on some probability density function. We contend that waypoint

mobility is one way to describe forms of human mobility. Therefore, we validate our model

by using it to describe the steady-state behavior of real user mobility recorded by GPS traces

in different scenarios and compare the results against the corresponding traces. Moreover, we

present comparative results for steady-state spatial distribution analysis of a number of synthetic

waypoint mobility regimes. To the best of our knowledge, this is the first node density modeling

framework generic enough that it can be applied to any waypoint-based mobility regime. As an

example, we use our framework to model the well-known RWP mobility regime. Our model

confirms the well-known result showing that node density’s steady-state behavior under RWP

mobility tends to homogeneity, as defined in [11]1.
1The use of the term “homogeneous node distribution” refers here to the fact that there is no significant concen-
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Figure 5.1: Node spatial density distribution at different trace collection times for mobility in a city park.

Furthermore, we also use our framework to model mobility regimes based on the

preferential attachment principle [3]. We show through the application of our proposed model

that using preferential attachment to model human mobility leads to undesirable steady-state

behavior. More specifically, our model shows that, at steady state, the original spatial node den-

sity distribution is not preserved and exhibits behavior similar to random mobility a la Random

Waypoint regime. This behavior has been observed empirically in [52]. Instead, real human

mobility exhibits “persistent” density heterogeneity as illustrated in Figure 5.1. This figure

shows the spatial density distribution for one of the traces used by us which was collected in the

Quinta da Boa Vista Park in Rio de Janeiro, Brazil.

This distribution is defined as the percentage of cells containing ≥ k nodes. The first

4 curves in the plot refer to the distributions at instants 300, 500, 700, and final (900 seconds),

which is the end of the trace collection interval. The two other curves correspond to the node

density distributions measured after 900 seconds of simulations of two synthetic waypoint-like

mobility regimes, namely RWP and Natural [13]. Each of these curves reflect the final node

distribution averaged over 10 runs of simulations. Both mobility models and the experiments

that generated these curves are discussed in detail in Section 5.5. The last curve shown in the

graph is the initial node distribution measured from the Quinta trace and also used as the initial

distribution in all simulation runs of both synthetic mobility regimes studied.

From Figure 5.1, we observe that the density distribution of the real trace does not

tration of nodes (clusters), and should not be mistaken with uniform distribution normally used to model the choice
of next destination, speed and pause time in random mobility models.
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vary much with time: the largest deviation from the initial distribution for any value of k at any

instant is 8.3%; the average deviation from the initial distribution measured in all the instants

for all values of k is 1.27%. Similar observations can be drawn from the other traces used in our

work as reported in Section 5.4.1. Moreover, we also observe a very different behavior when

applying either one of the synthetic regimes to the same scenario. They deviate significantly

from the initial conditions.

However, the most interesting observation here is the fact that using a preferential

attachment based regime such as Natural, does not preserve the original clustering of the nodes.

In fact, spatial density resulting from preferential-attachment based waypoint mobility “dete-

riorates”, at steady state, to behavior similar to random mobility. In Section 5.5, we present

more details on these results and apply our proposed model to study the steady-state behavior

of spatial density of these mobility regimes.

Overall, the contributions of our work are many-fold: (1) we introduce the first spatial

node density modeling framework for waypoint mobility regimes, (2) we validate our frame-

work by applying it to real user mobility traces as well as synthetic waypoint mobility regimes,

(3) we use our model to show analytically that the steady-state behavior of node density under

preferential-attachment based mobility does not preserve node density’s original distribution

and exhibits behavior similar to random mobility, and (4) as an example application of our

framework, we discuss using it to generate steady-state node density distributions to prime mo-

bile network simulations.

The remainder of this chapter is organized as follows. Section 5.2 places our work

in perspective by presenting related work in mobility modeling and characterization. Our ODE

model is presented in detail in Section 6.3, how its parameters are set, and our implementation.

Section 5.4 show the validation of our proposed framework towards modeling real human mo-

bility, while Section 5.5 presents the applications of our work on modeling spatial density of

synthetic waypoint mobility regimes. Finally, Section 6.7 concludes this topic.

5.2 Related Work

Mobility models are vital in the design, testing, and evaluation of wireless networks

and their protocols. As an indication of the importance of mobility models to the study of wire-

less network protocols, most well-known network simulators include “mobility generators”,
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which, following a pre-specified mobility regime, determine the position of network nodes over

time during simulation runs. Synthetic mobility generators have been extensively used in the

study of wireless networks [15]. A notable example is the Random-Waypoint Mobility (RWP)

regime.

Recently, however, network researchers and practitioners have been trying to use more

realistic scenarios to drive the evaluation of wireless network protocols. This motivated initia-

tives such as the CRAWDAD [18] trace repository, which makes real traces available to the

networking community. These traces can then be used to run trace-driven simulations. Even

though initiatives like CRAWDAD have greatly increased availability of real traces, relying ex-

clusively on traces to design and evaluate network protocols would not allow a broad enough

exploration of the design space.

To address this problem, a number of efforts have proposed mobility models based on

realistic mobility patterns [49]. Notable examples include [7, 8, 60, 31]. More recent work fo-

cuses on the “scale-free” properties observed in many real networks like the Internet, the Web,

and some social networks, to name a few. The seminal work of Barabási and Albert [3] proposes

a model that generates scale-free networks, i.e., networks whose node degrees follow a power

law distribution, and demonstrate that many real large networks are scale free, that is, the node

degree in the network graph follows a power law. The authors discuss the mechanism respon-

sible for the emergence of scale-free networks and argue that understanding this problem will

require a shift from modeling network topology to modeling “network assembly and evolution”.

To this end, they define the Barabási-Albert model based on growth and preferential attachment.

Growth refers to the fact that the number of nodes in the network increases over time, where a

new node is placed withm edges connecting it to otherm nodes. Preferential attachment means

that a node will choose to connect to another node i with probability Π(ki) = ki∑
j
kj

based on

the degree ki of node i and any node j connected to node i.

The work proposed in [41] is another example of a model that follows Barabási-

Albert’s growth and preferential attachment principles. The authors even show a figure where

they present their initial (after growth) and steady-state spatial distribution. It is possible to

see how clusters dissipate and fade away over time. The same concept is also used in [47]

where nodes are also driven by identified social interactions. Authors validate their approach

by means of showing the power-law exponential decay of inter-contact time among the formed
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communities and compare it with measurements in real traces.

We apply our proposed model in the evaluation of an example of a mobility regime

that uses preferential attachment and use it to demonstrate that approaches that take advantage

of this principle lead to a node spatial density in stationary regime similar to a total random

approach, like the Random Waypoint.

In this work, the main focus is over spatial node density. Most previous work on

modeling node spatial density have been focusing on the RWP model, rather then trying to

characterize it in real applications. In [9], for example, analytical expressions are derived for

the spatial density distribution that results from using the RWP model on simulations. One-

dimensional case is analyzed and an approximation for the two-dimensional case is also given.

They also analyze the concept of attraction areas in a modified version of the RWP regime. One

other example of analytical work towards modeling steady-state behavior of the RWP can be

found in [50]. In that work, authors derive stationary analytical expressions for node density

and node velocity.

The proposed first order ODE framework described here differs from previous work

on modeling spatial distribution, first in its nature, the fact that it uses ODEs as a tool for

studying density distributions (never used before). Secondly, also by the fact that our approach

is the first that is generic enough that can be applied in any mobility regime that bases its

behavior on a waypoint-like movement. By waypoint-like movement we mean, “pause - choose

the next destination following some given probability distribution - move to next destination in a

straight line and constant speed - repeat”. It is yet, capable of faithfully replicate the stead-state

behavior of spatial distributions in real scenarios, as we show through our results, validating our

model against real live traces.

ODEs are a powerful tool that have been used on modeling in many areas in network-

ing. To mention just a couple, in [71] authors use a ODE framework to derive a set of equations

that model the performance of epidemic routing in a DTN environment, and in [20] an ODE

model for performance analysis of a self-limiting epidemic forwarding mechanism is proposed.

Moreover, in [23] Partial Differential Equations (PDEs) are used to model spatial

node density of the RWP and Random Direction mobility regimes. They present an analysis

of the transient behavior of the spatial density under these two mobility regimes. While this

work focus on the RWP and Random Direction mobility, our approach is generic enough that
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can be used to study any waypoint-based mobility regime (including random approaches and

preferential-attachment based ones). The work described in [29], proposes a Markovian based

mobility model with the purpose of forming and dissolving clusters of nodes. They analyze an-

alytically the node spatial distribution, presenting results, specifically for their mobility model.

5.3 Proposed Model and Framework

Our objective is to model the spatial node density of a mobile network. We assume

a waypoint-based mobility pattern, where nodes stay in a given location i for a given period

of time and choose to leave i towards another location j with probability pij . Once the node

arrives at j, the process restarts.

5.3.1 ODE Framework

Assume a mobile network composed of m mobile nodes, where all nodes are capable

of moving around inside a delimited area a. Now assume this area is divided into equally sized

square subareas of size l × l, defined here as cells. The mobile nodes can then choose to move

from cell to cell with a given probability. Let X(t) be the stochastic process that determines

which cell a mobile node chooses at time t. We can write then pij = P{X(t) = i |X(t+ γ) =

j}, as the transition probability, which is the probability that a node in cell i, at time t, is going

to choose to go to cell j at time (t+ γ), after some time step γ.

Thus, we are interested in the average number of nodes in each cell i, represented

by the component Ni(t) ∀i ∈ {1, ..., n} of the state vector N(t) ∈ Rn×1, where n is the total

number of cells for the desired scenario.

The variation in the number of nodes at each cell Ṅi(t) = dNi(t)
dt is simply the dif-

ference between nodes arriving in cell i and the ones departing from the same cell at time t, as

expressed in Equation 5.1.

Ṅi(t) = λ0 +
∑
j

pjiµjNj(t)︸ ︷︷ ︸
Arriving at cell i

−
(∑

j

pijµiNi(t) + µ0Ni(t)
)

︸ ︷︷ ︸
Departing from cell i

, (5.1)

where λ0 is the rate at which new nodes arrive in cell i from outside the system and µ0

the rate at which nodes decide to get disconnected and leave the system, given that they are at
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cell i. Also, µi is the rate at which nodes decide to leave cell i towards another cell, which allow

us to write µij = pijµi as the rate at which nodes in cell i decide to leave this cell towards cell

j. We can also define the arrival rate in cell i as the sum of the departing rates of all nodes going

from cell j to cell i, over all possible values of j, including j = i, since we allow transitions

from a cell to another position in itself. The arrival rate is given by Equation 5.2.

λi =
∑
j

pjiµj . (5.2)

5.3.2 Parameters Choice, Discussion and Simplifications

In reality we observe that nodes prefer some cells over others and some transitions

over others. The probability of choosing a destination and the rate at which nodes depart from

that destination depends on how popular that destination is and what are the nodes’ interests in

each destination. For example, nodes moving around on a campus environment may go very

often from the cafeteria to the classroom, but not so often from the cafeteria to the library. This

means that pcafeteria,classroom > pcafeteria,library. Moreover, since people might tend to stay inside

the library for longer than in the cafeteria, the relationship between the departure rate from this

two locations might be such as µcafeteria > µlibrary.

In order to simplify our model, more specifically the choice of the parameters (de-

parture rates and transition probabilities), we define the rate µi as the inverse of the average

time spent by the nodes in cell i. We also considered the transition probabilities independent of

where the transition originated. This means that the probability of going from cell j to cell i is

the same probability of simply choosing cell i as the next destination for all j. We then make

pji = P{X(t) = j | X(t+ γ) = i} = P{X(t+ γ) = i} = pi.

Moreover, in order to validate our model we have chosen to extract the model param-

eters from— and compare our results with— real live GPS traces, where the number of nodes

in the system remains constant during the whole duration of the trace. For that reason, in the

results we present in Section 5.4.3 we used a slightly simplified version of our model, where

λ0 = µ0 = 0. Equation 5.3 gives this version of our ODE model.
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Ṅi(t) =
∑
j

piµjNj(t)︸ ︷︷ ︸
Arriving at cell i

−
∑
j

pjµiNi(t)︸ ︷︷ ︸
Departing from cell i

, (5.3)

5.3.3 Implementation

In this section we present a vectorized version of Equation 5.3, so that we could

implement it on MATLAB [45]. We used a 4th order Runge-Kutta ODE solver, native to the

platform, to do so.

We start by defining a matrix A ∈ Rn×n as a parameter matrix given by A = P ×M .

P ∈ Rn×1 is a column vector containing in every ith position the probability pi of a node

choosing cell i as the next destination, and M ∈ R1×n a row vector containing in every ith

position the rate µi at which nodes choose to leave cell i. The components of matrixA, resulting

from this multiplication are aij = piµj .

Thus, it is possible to write Equation 5.3 for Ṅ(t) ∈ Rn×1 in its equivalent vectorized

form as follows:

Ṅ(t) = A×N(t)︸ ︷︷ ︸
Arriving

−
(

(AT × ~1) ·N(t)
)

︸ ︷︷ ︸
Departing

, (5.4)

where AT is the transpose of matrix A, that we multiply by ~1 ∈ Rn×1, a column

vector of ones, to give us a resulting n× 1 column vector in which every component i represents

the summation of all the components of the ith row of matrix AT . After that, we perform a

component wise multiplication with the state vector N(t), which gives us the number of nodes

departing from a given cell. That represents the second summation in the right-handed side of

Equation 5.3.

5.4 Spatial Node Density of Human Mobility

We validate our model using real mobility traces; in other words, we show how the

model can be applied to describe the steady-state behavior of spatial node density associated

with human mobility. Three real GPS traces were used in our validation. These traces were

53



collected in scenarios that are quite diverse, namely a city park, a university campus, and a state

fair. We describe these traces in detail below as well as how we use information from the traces

to estimate the parameters of our ODE framework.

5.4.1 Mobility Traces

Table 5.1 summarizes the GPS traces in terms of number of users, duration of the

trace, and GPS sampling period.

Trace # users Duration Samples
Quinta [6] 98 900s 1s
KAIST [56] 78 5000s 10s
Statefair [56] 19 8000s 10s

Table 5.1: Summary of the GPS traces studied.

Quinta, refers to the “Quinta da Boa Vista Park” trace, first presented in [6]. It is a

GPS trace collected at a park in the city of Rio de Janeiro, Brazil. The park has many trees,

lakes, caves, and trails. It houses the National Museum of Natural History and the city Zoo. The

KAIST trace [56], on the other hand, is a GPS trace collected at the KAIST University campus

in Daejeon, South Korea. The Statefair trace, also available at [56], is yet another mobility

scenario showing daily GPS track logs collected from the NC State Fair held in North Carolina,

USA.

5.4.2 Parameter Estimation

We extract from the traces the distributions of speed, pause time, and node density.

We use the trace’s sampling period, e.g., for example, in the Quinta trace, the sampling period

is T = 1 seconds. Node speed is defined as d
∆t where d is the distance traveled between two

consecutive entries in the GPS trace at times t1 and t2 and ∆t = t2 − t1. Pause time is defined

as P = ∆t, if d < threshold, or zero otherwise. The threshold is used to account for GPS error.

We set this threshold to be 2 meters for KAIST and Statefair traces and 0.5 meter for the Quinta

trace, due to jitter in GPS update frequency.

To extract spatial node density, the area covered in the trace is divided into squared

cells of 140 x 140 meters. The choice of cell size was based on empirical observations, i.e.,

we picked a cell size that provided both adequate resolution as well as clustering. An alternate

approach could be based on identifying “attraction zones”, as was done in [37]. This is one
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of the topics of future work we plan to address. At the limit, i.e., where the cell is either

infinitesimal (lower limit) or the size of the whole area (upper limit), all the traces and synthetic

mobility regimes would have the same relative spatial density, namely one or zero nodes per

cell for the lower limit and all the nodes in the same (unique) cell for the upper limit.

After dividing the area into cells, we took a snapshot of the number of nodes at every

cell every T seconds. The value of T = 10 was used since, for the size of the cells and the

speeds sampled from the traces, a node could not on average change between more than two

cells during T . For every cell, at every interval T we counted the number of nodes in each cell.

We then averaged the number of nodes in each cell over the course of the whole duration of

the trace. The result is what we refer to as Intensity Map (IM) which we use to estimate the

probability a node will choose a given cell as its next destination.

In the case of real mobility, e.g., as described by GPS traces, we set the probabilities

of choosing a given cell, pi of our ODE model to be the normalized value of the IM for cell i,

such that pi = IM(i)∑
j IM(j) , where IM(i) is the intensity in cell i.

The rate µi, as mentioned before, is computed as the inverse of the average time spent

by the nodes in cell i. This time has two components. The time spent by the node moving

towards or from a given point in the cell, and the time spent in pause at this point, which reflect

both main basic parameters of human mobility, speed and pause time. This two components

were empirically measured from the GPS traces and used to compute µi.

5.4.3 Results

As highlighted in previous sections, the goal of our model is to describe the steady-

state behavior of spatial node density in waypoint-like mobility regimes in which: (1) a node

chooses its next destination following some given probability distribution, (2) moves to that

destination, (3) pauses for some time, and (4) repeats from step (1).

Spatial node density is defined as the percentage of cells containing ≥ k nodes. It

can also be expressed as the probability of finding a cell containing ≥ k nodes. It describes the

degree of “clustering” exhibited by mobility regimes and can be used to evaluate how close to

reality a given synthetic mobility regime is as far as its ability to mimic the degree of clustering

exhibited by real mobility.

We followed the guidelines presented in Section 5.4.2 to estimate the parameters of
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Figure 5.2: Initial and final spatial node density distribution for the Quinta trace, and the respective
steady-state density distribution using the proposed ODE framework.
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Figure 5.3: Initial and final spatial node density distribution for the KAIST trace, and the respective
steady-state density distribution using the proposed ODE framework.

our model for each of the traces studied. Figures 5.2, 5.3 and 5.4 plot spatial node density in the

Quinta, KAIST, and Statefair scenarios, respectively. Each figure shows three curves plotting

the spatial density: (1) at the beginning of the trace, (2) at the end of the trace, i.e., at 900

seconds for the Quinta Trace, 500 seconds for KAIST, and 8000 seconds for the Statefair, and

(3) by applying our ODE framework. Note that the plots for the KAIST and Statefair traces

are zoomed into the region of interest. In those two plots, the only point not shown is k = 0,

where the percentage of cells containing 0 or more nodes P [k ≥ 0] is the same for every curve

and it is, of course, equal to 100%.

The largest deviation of our ODE model from the final density distribution measured

from the traces, for any value of k at any instant is 5.36%, 0.58% and 7.52%; the average

deviation from the initial distribution measured in all the instants for all values of k is 1.45%,

0.06% and 2.02% for the Quinta, KAIST and Statefair traces respectively.
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Figure 5.4: Initial and final spatial node density distribution for the Quinta trace, and the respective
steady-state density distribution using the proposed ODE framework.

5.5 Node Density in Synthetic Waypoint Mobility

Here we show our framework’s ability to closely describe the steady-state behavior

of spatial node density resulting from synthetic waypoint-like mobility. We apply our model

to two different regimes, namely Random Waypoint (RWP) [15] and the Natural [13] mobility.

We start by briefly describing these two mobility regimes and then present the setup we used to

generate mobility traces under them. Subsequently, we explain how we estimated the param-

eters for the model and present results comparing spatial node density distributions resulting

from the synthetic mobility regimes and our model.

5.5.1 RWP Mobility

Random Waypoint (RWP) mobility, an example of waypoint-like mobility regime,

has been widely used in the study of multi-hop ad-hoc wireless networks (MANETs). Under

RWP mobility, mobile nodes are initially placed in the area being simulated according to a given

distribution. Typically, a uniform distribution is used. Each node remains in its position for a

given period of time, called pause time P uniformly chosen in the interval [0, Pmax], where

Pmax is a pre-specified parameter. After this period, the mobile node chooses a new destina-

tion uniformly distributed in the simulation area, and a velocity, also uniformly distributed in

the interval [vmin, vmax], where both vmin and vmax are pre-specified parameters. Once the

destination is reached, the node pauses again and chooses another destination and velocity, as

described above.
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5.5.2 The Natural Mobility Regime

We also compare our results against mobility regimes that follow the preferential

attachment principle. As representative of this family of mobility regimes, we use the Natural

mobility model, or simply Natural [13].

As discussed in Section 5.2, Natural is based on attraction points, where the attrac-

tiveness of each point is proportional to the attractor’s popularity given by the number of nodes

at or going towards it and inversely proportional to the distance to it. Thus, the probability Π(ai)

that a node zk chooses an attractor ai among all possible attractors is proportional to the portion

of the total attractiveness it carries: Π(ai) =
Aai,zk∑
j Aaj,zk

. The attractiveness of an attractor is

then defined as:

Aai,zk =
(1 +

∑
zj∈Z,zj 6=zk B(ai, zk))√

(Xai −Xzk)2 + (Yai − Yzk)2
(5.5)

where B(ai, zk) is a Bernoulli variable, with B = 1 if the individual zk is going

toward or staying at attractor ai and 0 otherwise, andX and Y are the coordinates of a node and

an attractor. In our implementation, we divided the simulation area in equally sized squares,

or cells, and consider each cell to be an attraction point. The coordinates (Xai , Yai) mark the

center of the i-th attraction point. Once the new destination is known, the node travels towards

it with a velocity uniformly distributed in the interval [vmin, vmax]. A pause time is randomly

selected once arriving at the destination before choosing another destination and beginning the

process again.

5.5.3 Generating Synthetic Waypoint Mobility Traces

Using a modified version of the Scengen [62] scenario simulator we generated mo-

bility traces according to the RWP and the Natural mobility regimes. We setup the simulations

trying to mimic the three real scenarios described here, for Quinta, KAIST and Statefair. Three

sets of synthetic traces were generated using the RWP and Natural mobility models. The ve-

locity range was set in a way that the average velocities would match the ones measured in the

GPS traces.

In order to address the decaying velocity problem reported in [69], we followed the

recommendations mentioned in that work. The velocity range was thus set to be ± the standard
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deviation measured in the real traces around the measured average velocity. Thus, the velocities

were chosen uniformly in a range in which the lower limit was greater than zero and where the

mean matches the one measured in the real traces. This is the simplest though not the optimal

solution mentioned in [69]. However, since the focus of our work is not network performance

evaluation itself, we found this solution to be suitable for our purposes.

Pause time was chosen uniformly in the range [0, Pmax], where the value of Pmax was

set to an appropriate value, in a way that the average pause time would match the one measured

in the real traces. The same was done for the dimensions of the rectangular simulation area,

set to be the same as in the GPS traces. Moreover, in all simulation scenarios, we used the

same initial positions found in the respective real traces for the same number of users. For

further discussions on the actual distributions for these traces’ mobility parameters, please refer

to [6, 56].

When applying the ODE framework to describe spatial density behavior in synthetic

mobility, pi follows the probability distribution particular to the specific mobility regime used.

For example, in RWP mobility, pi is the same for every value of i, since the probability of

choosing the next waypoint follows a uniform distribution. For Natural, the probability of

choosing a given cell is computed “on-the-fly”, based on the cell’s attractiveness, defined by

Equation 6.4.

The rate µi is computed as the inverse of the average time spent by the nodes in cell

i. This time has two components. The time spent by the node moving towards or from a given

point in the cell, and the time spent in pause at this point. This two components were empirically

measured from long simulations (105 seconds), using the same parameters for each scenario,

and used to compute µi. A more generic approach to determine the value of this parameters for

a given generic scenario is the subject of our future work.

Reported simulation results on density, comparing our ODE framework with simu-

lated traces, reflect 10 runs of the simulations using each mobility regime at each scenario.

Table 5.2 summarizes the simulation parameters.

5.5.4 Results

Figures 5.5 and 5.6 show the results for spatial node density distribution at the Quinta

scenario, for the RWP and Natural mobility regimes respectively. The plots show three curves
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Parameter Quinta KAIST Statefair
Avg. Speed (±σ)(m/s) 1.27(±0.16) 0.72(±0.68) 0.58(±0.12)
Avg. Pause (sec) 4.61 86.00 7.20
Area (meters x meters) 840x840 5000x5000 1260x1260
Duration (sec) 900 5000 8000
# nodes 98 78 19

Table 5.2: Simulation parameters.

corresponding to: 1) the initial density distribution taken from the trace and used to feed all the

simulations for both mobility models, 2) the steady-state density distribution using the proposed

ODE framework applied to the RWP and Natural mobility regimes, and 3) the final density

distribution measured and averaged at the end of the simulations for the synthetic mobility

regimes.

The first obvious observation analyzing these plots is that the synthetic mobility

regimes are unable to follow the long tail behavior of the density metric presented by the dis-

tribution measured in the real traces. Moreover, as we demonstrated in the previous section,

the presented ODE model is able to follow this long tail characteristic when applying the pa-

rameters extracted from the real traces. In the case of the synthetic models, when applying the

exit rate and probability of choosing the next cell, characteristic to each mobility regime, the

proposed framework now behaves as the synthetic models do and is able to describe density

distribution curves very similar to the RWP-like regimes studied.

Figures 5.7 and 5.8 show the results for spatial node density distributions at the

KAIST scenario, for the RWP and Natural mobility regimes respectively. Similar results can

be observed in Figures 5.9 and 5.10 for the Statefair scenario. Once again, the plots for the

KAIST and Statefair traces are zoomed in to the region of interest.

These show not only the flexibility of the proposed ODE framework and that it is able

to describe the steady-state behavior of the density distribution of real and synthetic (RWP-like)

mobility, but it also show the accuracy of the proposed approach.

5.5.5 Application

In addition to its applications in the study of the steady-state behavior of spatial node

density of waypoint-like mobility regimes, we find another very interesting application of our

framework. Recall that the output of our model is a vector where each position contains the ex-
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Figure 5.5: Initial spatial node density distribution for the Quinta trace, simulated final density dis-
tribution using the RWP mobility regime and the respective steady-state density distribution using the
proposed ODE framework applied to the RWP mobility regime.
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Figure 5.6: Initial spatial node density distribution for the Quinta trace, simulated final density distri-
bution using the Natural mobility regime and the respective steady-state density distribution using the
proposed ODE framework applied to the Natural mobility regime.
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Figure 5.7: Initial spatial node density distribution for the KAIST trace, simulated final density dis-
tribution using the RWP mobility regime and the respective steady-state density distribution using the
proposed ODE framework applied to the RWP mobility regime.
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Figure 5.8: Initial spatial node density distribution for the KAIST trace, simulated final density distri-
bution using the Natural mobility regime and the respective steady-state density distribution using the
proposed ODE framework applied to the Natural mobility regime.
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Figure 5.9: Initial spatial node density distribution for the Statefair trace, simulated final density dis-
tribution using the RWP mobility regime and the respective steady-state density distribution using the
proposed ODE framework applied to the RWP mobility regime.
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Figure 5.10: Initial spatial node density distribution for the Statefair trace, simulated final density dis-
tribution using the Natural mobility regime and the respective steady-state density distribution using the
proposed ODE framework applied to the Natural mobility regime.
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Figure 5.11: RWP simulation using initial density conditions from the trace (solid lines), and simulation
using the output of the ODE framework as the initial density conditions (dashed lines).

pected number of nodes encountered in the cell corresponding to that position. This vector pro-

vides node density distribution at steady-state. Consequently, we can interpret the normalized

value in each cell as the probability of placing a node in that cell. In other words, the normalized

output vector can be seen as the steady-state spatial distribution for the waypoint-based mobility

regime of interest. In this context, following the steady-state distribution given by our model,

it is possible to use a Fitness Proportionate Selection scheme, such as the Roulette-Wheel de-

scribed in [52] and commonly used in genetic algorithms [54] to perform initial node placement

when setting up wireless network simulations.

Figure 5.11 illustrates this usage of our model. The solid lines in this plot reflect one

simulation of the RWP regime in the Quinta scenario at instants 0 seconds (initial placement

using the initial positions from the Quinta trace), 50, 500, 700 and 1500 seconds of simulation.

It is possible to see how the solid lines “move away” from the initial conditions and converge

to the steady-state. Another simulation with the same seed and parameters was run, using the

initial node placement given by the normalized output of the ODE framework. The dashed lines

correspond to this initial distribution, and the measured final distribution at 1500 seconds of the

same simulation run. As we can see, these two curves are very similar, showing that the output

of our model gives an accurate steady-state distribution for the studied mobility regime, where

the final distribution measured at the end of the simulation does not deviate form the initial

placement provided by the ODE model. These two curves (the dashed ones) are a very close
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match also to the final distribution of the simulation that uses the trace’s initial node placement

(solid line at 1500 seconds). Density results of simulations using the Natural mobility regime

were also generated, with the exact same parameters and scenario. The same behavior was

observed.

In conclusion, the main advantages of using the output of our framework for ini-

tial node placement in wireless network simulations are two-fold. First, as illustrated by Fig-

ure 5.11, by defining what the steady-state node density distribution is, the model saves con-

siderable simulation time, which is the time it takes to get to the steady-state behavior. For

instance, in the case of the RWP simulation, for this particular scenario, steady state is achieved

after 700 seconds, since the 700 seconds curve and the 1500 second are almost indistinguish-

able. Second, this result is important, once it is very difficult to determine when a model is

going to reach a steady state, since this time varies from scenario to scenario and according

to the mobility model and parameters used. Using our ODE model’s output to establish what

the steady-state behavior is constitutes a technique that is much more scientifically sound than

figuring out when steady state is achieved by inspecting the mobility model’s behavior over

time.

5.6 Conclusions

We investigated the spatial density properties of waypoint-like mobility, which can

describe some instances of human mobility. To this end, we developed an Ordinary Differen-

tial Equations (ODEs) framework to model spatial node density. With our model, it is possi-

ble to study the steady-state behavior of node density for waypoint-based mobility regimes as

well as real mobility described by GPS traces. We validate our approach by comparing its re-

sults against GPS traces, and present steady-state spatial distribution for two synthetic mobility

regimes in three different scenarios. To the best of our knowledge, this is the first approach to

spatial node density modeling that is generic enough that can be applied to any waypoint-like

mobility regime.

We also use the proposed model to show the inability of mobility regimes that apply

the preferential attachment principle to maintain node clusters and preserve the desired node

density distribution. In the case of these type of mobility models, we show that in steady-state,

their density distribution approaches the distribution of a totally random mobility regime, such
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as the RWP mobility model.

We conclude by discussing how our modeling framework can be applied to derive

spatial density steady-state conditions. The resulting distribution can then be used to perform

initial node placement when setting up mobile network simulations.
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Chapter 6

Accounting for Social Structure in

Mobility Modeling

In the previous chapters we studied node spatial density and proposed a simple mobility model

capable of forming and maintaining clusters of nodes, the IWP mobility model. However, IWP

can only account for clustering (i.e., the tendency of individuals to form communities beyond

what can be explained by transitivity) and is not able to account for differential popularity,

where a specific node cannot choose to stay connected for a prolonged period of time with

another node. It also fails to represent transitivity (i.e., two individuals that have a tie to a

third one are more likely to be tied together). Those are important characteristics that should

be present and accounted during the simulations, and the chosen mobility regime should be

capable of representing them.

For these reasons, in this chapter, we introduce a user mobility modeling framework

that accounts for both the users’ social structure as well as the geographic diversity of the re-

gion of interest. SAGA, or Socially– and Geography-Aware mobility model, captures social

features through the use of communities which cluster users with similar features such as aver-

age time in a cell, average speed, and pause time. SAGA accounts for geographic diversity by

considering that different communities exhibit different interests for different locales; therefore,

different communities are attracted to certain physical locations with different intensities. Be-

sides introducing SAGA, the contributions of this work include: a model calibration approach

based on formal statistical procedures to extract social structures and geographical diversity
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from real traces and set SAGA’s parameters; and validation of SAGA by applying it to real mo-

bility traces. Our experimental results show that, when compared to existing mobility regimes

such as Random-Waypoint and Preferential-Attachment based mobility, SAGA is able to pre-

serve the desired non-uniform node spatial density present in real user mobility, creating and

maintaining clusters and accounting for differential node popularity and transitivity.

6.1 Introduction

Mobility models are an indispensable tool in the design and evaluation of wireless

networks and their protocols. Therefore, defining realistic mobility models is critical when

simulating applications and protocols for mobile networked environments. This is the case of

infrastructure-based networks (e.g., wireless LANs or WLANs), but even more so in the case

of infrastructure-less networks, a.k.a., wireless, self-organizing networks (WSONs), which in-

clude wireless mobile ad-hoc networks (MANETs), wireless sensor networks (WSNs), and

disruption-tolerant networks (DTNs). In these networks, unlike their infrastructure-based coun-

terparts where only the end user node is mobile, every node may have unlimited mobility. In-

deed, most network simulators include “mobility generators”, which, following a pre-specified

mobility regime, determine the position of network nodes over time during simulation runs.

These synthetic mobility generators have been extensively used in the study of wireless net-

works [15].

An example of a widely used synthetic mobility model is the Random Waypoint

(RWP) mobility regime. However, RWP mobility has been known to exhibit some undesirable

properties. For example, Bettstetter et al. [11] show that random mobility leads to “homoge-

neous” steady-state spatial node distribution 1. This means that if there were any spatial density

heterogeneity, or node clustering, in the initial spatial distribution of the nodes, random mobility

does not preserve it.

To address the problem of unrealistic mobility regimes, a number of models that are

based on real traces and mobility patterns have been proposed; notable examples include [49, 7,

8, 60, 31]. Additionally, several efforts have focused on the “scale-free” properties observed in

many real networks such as the Internet, the Web, and some social networks, to name a few. In
1The use of the term “homogeneous node distribution” refers to the definition of homogeneity as given in [11]

and reflects the fact that there is no significant concentration of nodes (clusters).
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particular, the seminal work of Barabási and Albert [3] proposes a model that generates scale-

free networks, i.e., networks whose node degrees follow a power law distribution. One key

concept underpinning the Barabási-Albert model is the preferential attachment principle which

states that “the more connected a node is, the more likely it is to receive new links”. Several

recently proposed mobility models (e.g., [36, 37, 13, 47, 48, 41]) try to mimic real human

mobility by following the preferential attachment principle. This is done by defining attraction

points, whose probabilities of attracting other nodes increase as more nodes congregate around

them.

In our previous work, we have shown that using the preferential attachment princi-

ple to model human mobility leads to undesirable long-term behavior [52]. More specifically,

preferential attachment based mobility regimes do not preserve the original spatial node den-

sity distribution and lead to steady-state behavior similar to random mobility as exemplified

by the Random Waypoint model. Instead, real human mobility exhibits “persistent” density

heterogeneity as shown in [52].

More recently, alternate approaches to developing realistic mobility regimes rely on

social interactions between nodes to drive the selection of movement direction and destina-

tion [68, 72, 12, 27, 65, 21, 48]. These models usually construct a social network either using

outside information unrelated to the mobility trace, or on the basis of geographical collocation.

As will become clear in the remainder of this chapter, we take a completely different approach

to modeling human mobility.

Our proposed framework accounts for the social structure in the data through the

inclusion of communities and the use of the preferential attachment principles to account for

the interaction of nodes within and between communities. We thus refer to our models as

“socially-inspired”. The proposed mobility modeling framework is also “geography-aware”

as it accounts for the heterogeneity of the different locales in the region of interest. These

two features allow our model to account for features observed in real life networks such as

differential popularity, transitivity and clustering. Moreover, our modeling framework applies

formal statistical learning techniques to extract, from real mobility traces, both the nodes’ social

structure as well as the region’s geographical diversity for model calibration.

Overall, the contributions of our work are four-fold: (1) we introduce a novel mobility

modeling framework that is both socially-inspired and geography-aware, (2) we propose an effi-
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cient method to extract social structures and geographical diversity from real traces to calibrate

and set the model’s parameters based on formal statistical procedures, (3) we validate our work

by applying it to real mobility scenarios and comparing our results against real measurements,

(4) we show that our model is able to preserve the desired non-uniform node spatial density, cre-

ating and maintaining clusters and accounting for differential node popularity and transitivity;

it thus solves the problem exhibited by preferential attachment based mobility models.

The remainder of this chapter is organized as follows. Section 6.2 places our work in

perspective by presenting related work in mobility modeling and characterization. We present

our mobility modeling framework in detail in Section 6.3. Section 6.4 we present the GPS

traces used for model calibration and validation, while Section 6.5 describes how we calibrate

our model parameters . Section 6.6 presents the validation of our work towards modeling real

human mobility. Finally, Section 6.7 concludes the chapter with a discussion of future work.

6.2 Related Work

Motivated by the growing need to evaluate mobile networks and their protocols under

realistic conditions, there has been considerable work in trying to depart from random– towards

more realistic mobility models. In this section, we do not attempt to present an exhaustive

survey of the state-of-the-art in mobility modeling but, rather, highlight efforts that are more

closely related to our work on socially-inspired mobility modeling.

The scale-free properties of real networks were investigated in several studies. As

pointed out in Section 6.1, an important milestone on the subject is the work by Barabási and

Albert [3] which demonstrated that many real large networks are scale free, that is, the node

degree in the network graph follows a power law. Several mobility models have been inspired

by the Barabási-Albert preferential attachment principle. For example, in [13], a model based

on preferential attachment has been proposed, where the choice of going towards an attraction

region is weighted proportionally to the region’s popularity (i.e., the number of other nodes

that chose it) and inversely proportional to the distance to it. The work proposed in [41] is

another example of a model that follows Barabási-Albert’s growth and preferential attachment

principles. The same concept is also used in [47] where nodes are also driven by identified

social interactions, following homofilly by attributes.

More recent approaches try to account for social interaction between nodes. Some
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examples of mobility modeling for social networks include the work in [28] and [48]. In these

models, node movement is influenced by the strength of social ties and the choice of an attrac-

tion point is based on the history of visits of other nodes to that location.

The model proposed in [21] defines a set of locations called anchors; dictated by an

anchor association function, nodes are associated with specific anchors at specific times during

the simulation. Also, nodes are associated with each other by another function that determines

their social acquaintances. These values change over time given that, e.g., coworkers are likely

to meet during working hours and family members more likely to meet during free time. They

also define the concepts of attraction and repulsion, and evaluate their approach comparing the

trace generated by their approach against the social graph used to feed the model.

Two basic behaviors, namely socialize and isolate are defined in [12]. The strength of

social interactions are represented by an acquaintance matrix and its complement, the alienness

matrix. Then, these are used as input to define the attraction and repulsion forces acting on each

node, which define the node’s direction while moving, as well as its acceleration and velocity.

The work in [72] also computes acting forces of attraction and repulsion over the nodes that are

given by a social interaction matrix. Here, in addition to the social forces between nodes, they

also take into account the forces exerted by locations (attraction points).

In [65] authors also use the notion of communities and incorporate assortative/dissortative

behavior, that is given by an Attractor Matrix. This matrix describes the attributes of each node,

such as gender, age and field of work, for example; these attributes are matched through an

Attribute Matching Matrix. Nodes then move through communities looking for communities

where they find other nodes that are a better match to their attributes.

Another mobility model based on the formation of communities is introduced in [68].

It builds a k-clique overlapping community structure which satisfies the common statistical

features observed from real social networks. Functions that describe the attraction of a node to

a group and a location are defined and these graph connections change over time based on the

defined overlapping graph.

The social mobility regimes presented here construct a social network using outside

information unrelated to the mobility itself, such as a “social trace” (a priori description of

the relationship between nodes or its attributes). Our proposed framework accounts for the

social structure in the data through the inclusion of communities and the use of the preferential
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attachment principles to account for the interaction of nodes within and between communities.

Our proposal also accounts for the heterogeneity of the different locales in the region of interest.

These two features allow our model to account for features observed in real life networks such as

differential popularity, transitivity and clustering. Moreover, our modeling framework applies

formal statistical learning techniques to extract, from real mobility traces, both the nodes’ social

structure as well as the region’s geographical diversity for model calibration.

6.3 Socially- And Geography-Aware (SAGA) Mobility Model

Our model, SAGA for Socially- And Geography-Aware mobility model, captures

both social interactions among individuals, as well as the geographical diversity of the region of

interest. At the social level, our model captures transitivity in the relationship among subjects

and could easily be adapted to capture homophily by attributes, i.e., the tendency of individuals

with similar or completely opposite features to have a higher probability of being linked [27].

As described in detail below, SAGA captures these features through the use of communities

or clusters. SAGA also accounts for geographical diversity: it considers that different node

communities do not have the same interests and thus are “attracted” to certain locales more than

others. For example, in a University campus, students are “attracted” to the library, classrooms,

or cafeteria in a different way than faculty or staff are. Similarly, it is often the case that students

and faculty spend time together in the same physical location (e.g., classrooms). However, it

is not as common for staff members and students to be collocated the same way as faculty and

students tend to be.

We now proceed to provide a more detailed description of SAGA. We use a waypoint-

based mobility regime in which: (1) a node chooses its next destination following some given

probability distribution, then (2) moves to that destination at a randomly chosen speed uniformly

distributed between [Vmin,Vmax], (3) pauses for some time, and (4) repeats from step (1).

In our model, the area of interest is divided in equally sized squares, or cells. Every

mobile node independently chooses as their next destination a cell i ∈ {1, . . . , I}, where I is the

total number of cells in the simulation area according to pi,k,t, the probability that destination i

is chosen by a node belonging to community k at time t. Here pi,k,t is constructed on the basis

of the intensity {µi,k,t ∈ R | µi,k,t > 0}, which represents the attractiveness of destination i

to community k at time t. In other words, µi,k,t captures geographic diversity in terms of the
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different levels of interests each community has in particular regions at different points in time,

along with the preferences of individuals to being in the same locations with members of the

same or other communities.

We employ a set of community indicators ξ1, ..., ξn, ..., ξN for each user n at all points

in time, where N is the total number of users. Community indicator ξn indicates which com-

munity user n belongs to. Also, Pr(ξn = k) = wk is the probability that user n belongs to

community k, where
∑K

k=1wk = 1 and K is the total number of communities that exist in

the user population. In other words, wk defines the portion of the population that belongs to

community k. We can now write pi,k,t, the probability that a node n, belonging to community

k, chooses cell i as its next destination at time t as:

pi,k,t =
µi,k,t∑I
j=1 µj,k,t

for all i, j ∈ {1, . . . , I}. (6.1)

where the intensity µi,k,t of destination i towards nodes belonging to community k at time t is

defined as:

µi,k,t = exp

{
ci,k +

K∑
l=1

θk,l log(1 + ai,l,t−1)

}
(6.2)

In Equation 6.2, ci,k ∈ R is a constant that reflects the intrinsic attraction that cell i

exerts on members of community k, independent of the number of other nodes present in the

cell. On the other hand, ai,l,t−1 is the total number of nodes in cell i that belong to community

l at time t− 1 and can be written as:

ai,l,t−1 =
N∑
m=1

1{m∈Ni,t−1}, (6.3)

where Ni,t−1 is the set of nodes currently present or going towards a location inside

cell i at time t − 1 and 1{m∈Ni,t} is an indicator function equal to 1 if node m belongs to the

set Ni,t (m ∈ Ni,t) or 0 otherwise. Finally, θk,l = θl,k expresses the affinity between nodes

in community k and l. Positive values θk,l imply that nodes belonging to community k are

attracted to nodes belonging to community l (and vice-versa). On the other hand, negative

values imply that nodes belonging to community k are repelled by those in community l.

Note that we express µi,k,t as an exponential in (6.2) rather than the more traditional

linear structure for the intensity. We do it for two reasons. Firstly, the exponential transforma-

tion automatically ensures that intensities are positives without any need to impose constrains
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in the space of parameters, and allows for both assortative and dissortative patterns of behavior.

Secondly, the representation agrees with the structure of a multivariate logistic regression model

(see Section 6.5.2), which simplifies the estimation of parameters from the data.

Table 6.1 summarizes SAGA’s parameters.

Param. Description
N,I, K Numb. of nodes, cells and communities respectively.
ai,l,t−1 Numb. of nodes in cell i belonging to community l at

time t− 1.
θk,l Affinity between nodes from communities k and l.
ci,k Intrinsic attraction of node n towards cell i.
Ni,t−1 Set of nodes present or going to cell i at time t− 1.
pi,k,t Prob. that node n, from community k, chooses cell i at

time t.
µi,k,t Intensity of nodes from community k towards cell i at

time t.

Table 6.1: Summary of SAGA parameters: The methodology used to extract these parameters from real
traces is described in Sections 6.5.1 and 6.5.2

Collecting the affinity parameters into a symmetric affinity matrix Θ, as illustrated

in Table 6.4, facilitates identifying different association patterns, such as: (1) total assortative

behavior, when nodes only interact with other nodes from the same community, (2) total dissor-

tative behavior, where nodes only interact with other nodes from different communities, or (3)

an arbitrary association pattern.

6.4 Real Traces

Table 6.2 summarizes the GPS traces we use in our analysis.

Parameter Quinta Statefair
Avg. Speed (±σ)(m/s) 1.27(±0.16) 0.58(±0.12)
Avg. Pause (±σ)(sec) 4.61(±1.60) 7.20(±6.18)
Area (meters x meters) 840x840 1260x1260
Duration (sec) 900 8000
Sampling frequency (sec) 1 30
# nodes 98 19
# communities (size) 5(13,27,17,12,29) 2(10,9)

Table 6.2: Summary of the GPS traces we use to calibrate and validate SAGA.

Quinta, refers to the “Quinta da Boa Vista Park” trace, first presented in [6]. It is a

GPS trace collected at a park in the city of Rio de Janeiro, Brazil. The park has many trees,

lakes, caves, and trails. It houses the National Museum of Natural History and the city Zoo.

The Statefair trace [56] corresponds to daily GPS track logs collected at the NC State Fair held
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in North Carolina, USA.

The information in table 6.2 reflects the speed and pause time measured from the

traces and averaged over all nodes, at every sample, during the duration of the trace. The last

line in the table show the sizes of the communities identified in the traces, after applying our

community identification method. This method is described in the following section.

6.5 Model Calibration

One of the contributions of the SAGA mobility modeling framework is its calibration

from real mobility traces using formal, yet simple, statistical learning techniques. In this section

we describe our model calibration approach in detail.

6.5.1 Community Identification

Communities of nodes, which are represented by the indicators ξ1, ξ2, . . . , ξN , are

identified using the complete-linkage agglomerative hierarchical clustering technique (see for

example [19]). Each node is characterized through a vector of features that includes average

time spent in each cell, average node speed, and pause time. We are then able to build a matrix

MN×(I+2) with the mobility features extracted from the trace. This matrix has N rows (one

row per node) and I+2 columns (one column per cell, plus the last two columns for the average

speed and pause time measured).

Since we measure dissimilarities among nodes using Euclidean distances, we work

with the logit transformation of the average time spent on each cell. In addition, to deal with

issues associated with zero counts for some cells, we add a single pseudo count to each cell

before applying any transformation. The number of clusters is selected using the Bayesian

Information Criteria (BIC), as discussed in [22]. The BIC associated with a vector of clustering

indicators ξ = (ξ1, ξ2, . . . , ξN ) is computed as

BIC(ξ) = loglik(ξ)− 1

2
K log(N)

where loglik(ξ) is the logarithm of the likelihood associated with a Gaussian finite mixture

model where observations are clustered according to ξ, K represents the number of distinct

communities in ξ, and N is the total number of nodes. BIC is computed for different models
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and number of clusters, and the one with the largest BIC is selected. All computations were

carried out using the package mclust in the statistical software R [1]; sample code for our

model calibration approach is available at [2].

6.5.2 Extracting Model Parameters from Traces

Once communities are identified using the approach described in the previous section,

a multivariate logit model [63] is used to estimate the geographical preference parameters ci,k

and the affinity matrix Θ = [θk,l]. More specifically, let yn,t = i if node n is in cell i at time t.

A multivariate logit model assumes that

log

{
Pr(yn,t = i)

Pr(yn,t = 1)

}
= ci,ξn +

K∑
l=1

θξn,l log(1 + ai,l,t−1)

or, equivalently,

Pr(yn,t = i) ∝ exp

{
ci,ξn +

K∑
l=1

θξn,l log(1 + ai,l,t−1)

}
,

where, for identifiability, and without any loss of generality, we set c1,k = 0. Hence, the logit

model agrees with the structure of the intensity in (6.2).

Computations were carried out using the package mlogit in the statistical software

R. This package uses a Fisher scoring algorithm, which is a variant of the Newton method, to

find the maximum likelihood estimates for the parameters of the model along with their stan-

dard errors. As before, sample code is available at [2]. To reduce the computational burden

associated with fitting these models, we exploit the conditional independence assumption un-

derlying this model and subsample some of the traces. This subsampling has minimal effect on

the results as discussed in more detail in Section 6.6.

6.5.3 Other Considerations

We constructed our model using the logarithm of the number of nodes on each cell

to measure preferential attachment. This is at odds with the choices made by previous authors,

who have preferred the use of linear terms. Our choice was motivated by a formal model

comparison among the class of models based on the Bayesian information criteria (BIC). More
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generally, it should be possible to estimate the functional form of the preferential attachment

using nonparametric techniques. This avenue will be explored elsewhere.

Selection of cell sizes is another important issue for our model. In our examples

we have selected the sizes in a mostly ad hoc manner. However, since our model implicitly

assumes that the mobility model follows a non-homogeneous Poisson process, the problem

of selecting the cell sizes is similar to the problem of selecting bandwidths in kernel density

estimate problem, which can be used through the use of generalized cross-validation procedures.

6.6 Validation and Experimental

Results

In this section we validate SAGA in two case studies corresponding to the traces de-

scribed in the previous section, namely the Quinta and Statefair traces. We show how SAGA

manages to capture the community structure and geography diversity of the traces. As base-

line for our comparison, we also use two other mobility regimes, namely Random Waypoint

(RWP) [15] and Natural [13]. We start by briefly describing the RWP and Natural mobility;

then we present the setup we used to generate mobility traces under these regimes using the

Scengen [62] simulation tool.

6.6.1 Baseline Mobility Regimes

6.6.1.1 RWP Mobility

Random Waypoint (RWP) mobility has been widely used in the study of multi-hop

ad-hoc wireless networks (MANETs). Under RWP mobility, mobile nodes are initially placed

in the area being simulated according to a given distribution (typically, a uniform distribution).

Each node remains in its position for a given period of time, called pause time P uniformly

chosen in the interval [0, Pmax], where Pmax is a pre-specified parameter. After this period,

the mobile node chooses a new destination uniformly distributed in the simulation area, and a

velocity, also uniformly distributed in the interval [vmin, vmax], where both vmin and vmax are

pre-specified parameters. Once the destination is reached, the node pauses again and chooses

another destination and velocity, as described above.
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6.6.1.2 The Natural Mobility Regime

We also compare our results against mobility regimes that follow the preferential

attachment principle. As representative of this family of mobility regimes, we use the Natural

mobility model, or simply Natural [13].

As discussed in Section 6.2, Natural is based on attraction points, where the attrac-

tiveness of each point is proportional to the attractor’s popularity given by the number of nodes

at or going towards it and inversely proportional to the distance to it. Thus, the probability Π(ai)

that a node zk chooses an attractor ai among all possible attractors is proportional to the portion

of the total attractiveness it carries: Π(ai) =
Aai,zk∑
j Aaj,zk

. The attractiveness of an attractor is

then defined as:

Aai,zk =
(1 +

∑
zj∈Z,zj 6=zk B(ai, zk))√

(Xai −Xzk)2 + (Yai − Yzk)2
(6.4)

where B(ai, zk) is an indicator variable, with B = 1 if the individual zk is going toward or

staying at attractor ai and 0 otherwise, and X and Y are the coordinates of a node and an

attractor. In our implementation, we divided the simulation area in equally sized squares, or

cells, and consider each cell to be an attraction point. The coordinates (Xai , Yai) mark the

center of the i-th attraction point. Once the new destination is known, the node travels towards

it with a velocity uniformly distributed in the interval [vmin, vmax]. A pause time is randomly

selected once arriving at the destination before choosing another destination and beginning the

process again.

6.6.2 Case Study: Quinta

We capture the social structure of the subjects present in the Quinta trace by applying

the community identification method described in Section 6.5.1. As a result, we identify 5

distinct communities of sizes 13, 27, 17, 12, and 29 nodes. Figure 6.6.2 shows the average

intensity over time associated with each of these communities as well as the average intensity

associated with the whole population. In addition, Table 6.3 shows the average speed and

average pause time for each community, along with 95% confidence intervals. Note that, for

the most part, communities are well separated by the predilection of their members for different

geographical regions. The exception are communities 3 and 4, whose members seem to prefer

very similar locations. However, it is very clear that members of these two communities have
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(a) Community 1 (29 nodes) (b) Community 2 (12 nodes)

(c) Community 3 (17 nodes) (d) Community 4 (27 nodes)

(e) Community 5 (13 nodes) (f) All Nodes (98 nodes)

Figure 6.1: Average intensity over time for the user communities in the Quinta trace (from 6.1(a) to
6.1(e)) and overall intensity for all nodes from all communities (6.1(f)).
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different speeds and pause times.

Community Speed (m/s) Pause Time (sec)
1 1.124 (1.117, 1.132) 3.316 (2.303, 4.330)
2 1.453 (1.444, 1.462) 2.365 (1.356, 3.375)
3 1.028 (1.017, 1.038) 5.951 (1.974, 9.928)
4 1.139 (1.132, 1.146) 2.036 (1.432, 2.640)
5 1.103 (1.092, 1.114) 4.320 (3.092, 5.548)

Table 6.3: Speed and pause times for user communities in the Quinta trace.

Due to the high computational burden associated with fitting multivariate logit mod-

els when both the number of cells and the number of observations is large, we computed our

estimates based on a subsample of the original 900 seconds available for inference. This is well

justified in this case because of the Markovian structure of the model. To assess the robustness

of the procedure we consider various subsample rates (every other second, every five seconds,

and every ten seconds). The point estimators were very similar in every case; all the results

reported below are based on a subsample of 450 data points generated by retaining every other

second of the original trace.

Table 6.4 presents the estimates of the affinity parameters generated by the multi-

variate logit model, along with 95% confidence intervals. Note that there is evidence of both

assortative and disassortative communities. Also, the confidence intervals suggests that a few

affinity parameters are indistinguishable from 0 (e.g., θ2,3), but the majority are clearly statisti-

cally significant.

As previously pointed out, we use the spatial density of mobile nodes to characterize

and describe their mobility. In other words, rather than focusing on individual nodes, we are

interested in characterizing how node mobility affects the behavior of the network as a whole.

In the case of spatial node density, it directly affects fundamental network properties, such as

connectivity and capacity, and thus has considerable impact on core network functions, e.g.,

medium access and routing. Spatial node density can be defined as the number of nodes located

in a given unit area. In order to study node’s spatial density behavior, we define the node density

distribution as the percentage of cells containing more than n nodes.

Figure 6.2 shows the spatial node density distribution for the Quinta trace along with

density distributions associated with SAGA, RWP, and Natural mobility regimes. The curve
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Θ 1 2 3 4 5
1 -0.138 0.299 -0.135 0.369 -0.072

(-0.258,-0.012) (0.239,0.363) (-0.21,-0.071) (0.307,0.495) (-0.123,-0.008)

2 -0.411 -0.004 0.425 0.151
(-0.479,-0.341) (-0.061,0.039) (0.357,0.497) (0.110,0.205)

3 0.183 0.494 0.339
(0.113,0.269) (0.417,0.561) (0.284,0.374)

4 0.512 0.452
(0.405,0.657) (0.393,0.518)

5 -0.077
(-0.133,-0.022)

Table 6.4: Affinity parameters associated with the five communities identified by our clustering algo-
rithm. Since the matrix is symmetric, only its upper triangular part is presented.

labeled “Initial” shows the trace’s density distribution at the beginning of the trace collection

interval, while the curve labeled “Quinta” shows the distribution at the end of the trace collec-

tion interval. The same initial distribution collected from the trace and shown in this figure was

used in all the simulations to feed the initial node’s placement, leveling the initial conditions

in the simulations for all the studied mobility regimes. Data points for the RWP, Natural, and

SAGA mobility regimes were averaged over 10 runs.

Note that SAGA’s density distribution follows closely the distribution of the real trace.

In the case of RWP, the majority of cells present similar number of nodes, and no cells contain

significantly higher concentration of nodes. This is also the behavior observed for Natural which

can be explained as follows: in the beginning of the simulation the initial distribution weighs

on the computation of the attractiveness of the cells, but as the simulation proceeds more and

more nodes may choose, with small, but greater than zero probability, cells where there are no

other nodes present. Over time, this behavior spreads the nodes around different cells, leveling

the attractiveness of cells in general, approaching uniformity and RWP’s density distribution.

SAGA, on the other hand, is able to maintain the original spatial node density.

Next we consider the average intensities over time, which are presented in Figure

6.3. These plots denote the average percentage of time, nodes choose to be in each cell. More

specifically, Figure 6.3(a) shows the average intensity for Quinta and demonstrates that nodes

have a strong preference for some areas of the park, which is partially driven by its geographic

characteristics (e.g., the presence of a lake in the top right corner of the park). Note that SAGA
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Figure 6.2: Initial and final spatial node density distribution for the Quinta trace compared with the node
density distribution of RWP, Natural, and SAGA.

(Figure 6.3(b) is capable of preserving this observed spatial preferences, while both RWP (Fig-

ure 6.3(c)) and Natural (Figure 6.3(d)) tend to converge towards a homogeneous distribution

over the whole region, which is clearly suboptimal in this context.

Another way to validate SAGA is through a collocation matrix, which represents the

average amount of time that any pair of nodes spend in the same cell. Figure 6.4 presents

the collocation matrices for the Quinta trace, as well as RWP, Natural, and SAGA. Note that

Quinta’s collocation matrix exhibits a pattern that matches the community structure we identi-

fied in Section 6.5.1 quite well. More specifically, note that members of communities 3 and 4

tend to have high collocation. However, members of communities 1, 2, and 5 have fairly low

collocation with other members of their same community. In this case, these patterns agree with

the structure of the affinity matrix, but this is not necessarily the case in general (for example,

see our analysis of the Statefair trace in the following subsection). Our model replicates this

structure fairly well, while RWP and Natural (which treat all nodes identically) exhibit uniform

collocation matrices.

6.6.3 Case study: Statefair

Similarly to the Quinta trace, we use the method described in Section 6.5.1 to capture

the social structure of the subjects present in the Statefair trace. In this trace, we identify 2

distinct communities of sizes 9 and 10 nodes. Figure 6.6.3 shows the average intensity over
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(a) Quinta Trace (b) SAGA

(c) RWP (d) Natural

Figure 6.3: Density over time for the Quinta scenario.
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(a) Quinta Trace Collocation Matrix (b) SAGA Collocation Matrix

(c) RWP Collocation Matrix (d) Natural Collocation Matrix

Figure 6.4: Collocation matrices for the Quinta scenario.

83



(a) Community 1 (9 nodes) (b) Community 2 (10 nodes)

(c) All Nodes (19 nodes)

Figure 6.5: Average intensity over time for the user communities in the Statefair trace (6.5(a) and 6.5(b))
and overall intensity for all nodes from all communities (6.5(c)).

time associated with each of these communities as well as the average intensity associated with

the whole user population. In addition, Table 6.5 shows the average speed and average pause

time for each community, along with 95% confidence intervals. Like in the Quinta trace, we

manage to clearly differentiate one community from the other and show how members of each

community favor different geographical regions. In this case study, not only their preferred

location are very distinct for each community, but also their speeds and pause times.

Community Speed (m/s) Pause Time (sec)
1 0.606 (0.596, 0.616) 4.663 (1.259, 8.066)
2 0.435 (0.426, 0.444) 8.574 (0.077, 17.071)

Table 6.5: Speed and pause times for user communities in the statefair trace.
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The Statefair trace is longer but was sampled at a lower frequency than Quinta. Hence,

in this scenario, we were able to use the totality of the measurements (267 samples) in the trace.

and there was no need for subsampling due to the lower sampling frequency in this trace (30

seconds).

Table 6.6 presents the estimates of the affinity parameters generated by the multivari-

ate logit model, along with 95% confidence intervals. Different from our first case study, in this

scenario there is only evidence of assortative behavior between the two communities.

Θ 1 2
1 0.386 0.716

(0.223, 0.551) (0.634, 0.799)

2 0.907
(0.811, 1.004)

Table 6.6: Affinity parameters associated with the two communities identified by our clustering algo-
rithm.

Figure 6.6 shows the spatial node density distribution metric, as defined above, for the

Statefair trace. This figure also shows the density distributions associated with SAGA, RWP,

and Natural mobility. Once again, we show that the clustering behavior observed in real live

traces is preserved by SAGA. This is in contrast with the preferential attachment based mobility

regime, which, by accounting only for the number of nodes in a given location and disregarding

social interactions and geographical preferences, leads to undesirable homogeneous node spatial

density in steady state. Such steady-state behavior approaches the behavior observed in random

mobility regimes as exemplified by the RWP.

We now consider the average intensities over time, which are presented in Figure 6.7.

As also observed in the Quinta scenario, the average intensity measured for the Statefair sce-

nario, as shown in Figure 6.7(a), presents some concentration of nodes in certain areas. Fig-

ure 6.7(b) shows that SAGA is capable of preserving the spatial preferences observed in the

real trace, while both RWP (Figure 6.7(c)) and Natural (Figure 6.7(d)) tend to degrade towards

a homogeneous distribution.

Figure 6.8 presents the collocation matrices for the Statefair trace, as well as SAGA.

In the case of RWP and Natural, the collocation matrices for the Statefair scenario look very

similar to those presented in our first case study, where it is not possible to see any collocation
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Figure 6.6: Initial and final spatial node density distribution for the Statefair trace compared with the
node density distribution of RWP, Natural, and SAGA.

(a) Statefair Trace (b) SAGA

(c) RWP (d) Natural

Figure 6.7: Density over time for the Statefair scenario.
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(a) Statefair Collocation Matrix (b) SAGA Collocation Matrix

Figure 6.8: Collocation matrices for the Statefair scenario.

of pairs of nodes for more than 10% of the time. For that reason, and due to space constrains, we

do not show these plots. The collocation matrices for the trace and SAGA exhibit a pattern that

matches the community structure we identified in Section 6.5.1 quite well. More specifically,

note that members of communities 1 and 2 tend to have high colocation, among nodes in their

own community, but we also observe nodes from different communities with a higher degree

of collocation. This is consistent with the fact that these are highly assortative communities, as

described by their affinity matrices (Table 6.6). structure fairly well, while RWP and Natural

(which treat all nodes identically) exhibit uniform collocation matrices.

6.7 Conclusion

In this work, we introduced a novel mobility model that accounts for both the so-

cial structure exhibited by the user population as well as the geographic diversity of the region

of interest. We call our model SAGA for Socially– And Geography-Aware mobility model.

SAGA captures social features through the use of communities which group users with similar

features such as average time in a cell, average speed, and pause time. Acknowledging the im-

portance of preserving– and being able to control node density over time, SAGA also accounts

for geographic diversity by considering that different communities exhibit different interests

for different locales. Besides introducing SAGA, the contributions of this work include: a

model calibration approach based on formal statistical procedures to extract social structures
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and geographical diversity from real traces and set SAGA’s parameters. We validate our work

by comparing SAGA with two real mobility traces and two other mobility regimes, namely

Random Waypoint and Natural, the latter representing preferential-attachment based mobility

models. We show how to extract social structures and the geographical diversity exhibited

by real traces. Moreover, our experimental results demonstrate that, when compared to exist-

ing mobility regimes, SAGA is able to preserve the desired non-uniform node spatial density

present in real user mobility, creating and maintaining clusters and accounting for differential

node popularity and transitivity.
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Chapter 7

Conclusion

In this work we have explored the spatial behavior of human mobility through through the

analysis of a variety of mobility traces collected in different network environments. As a result,

we identify characteristics exhibited by human mobility that, to the best of our knowledge, have

not yet been revealed in previous studies. We used a number of real traces that record user

mobility in wireless LANs as well as GPS traces. We show that, from a macroscopic level,

human mobility is symmetric. In other words, the number of users that move from point A to

point B approximates the number of users that go in the opposite direction. Additionally, we

study the direction of movement which also exhibit symmetric behavior in both real– as well as

synthetic mobility.

Motivated by the preliminary findings on the symmetry of human mobility we started

to investigate the spatial density distribution properties of real mobility using mobility traces

collected in a diverse set of scenarios. More specifically, we chose three scenarios where human

mobility was registered using GPS tracking devices carried by users as they move around a

city park, a University campus, and a State Fair event. By defining a metric called spatial

density distribution, we showed that, for all three scenarios, the original non-homogeneous node

density distribution does not change over time. We also show that mobility models that rely on

computing the probability of choosing a node’s new destination dependent on the position of the

other nodes can exhibit long transient phases and a steady state similar to completely random

behavior as observed when applying the RWP model. To the best of our knowledge, this is the

first time that these observations have been reported.
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Acknowledging the importance of preserving and being able to control node density

over time, we proposed a mobility model called Intensity Waypoint (IWP) that takes a density

map as a parameter and where the mobility description is as simple as in the RWP model. By

feeding the IWP model with a density map extracted from mobility traces, we were able to

match closely the density distribution generated by the IWP to the one generated by the real

traces, also preserving the original node density distribution. Moreover, when simulating the

operation of a network moving according to the proposed model, we found that performance

results expressed by a number of network metrics also match closely results obtained under

mobility governed by the real traces. We also compared our results to models whose steady-

state tend to random mobility and show that network performance under such regimes deviates

from performance under real trace mobility.

In order to study the spatial behavior in steady-state, we proposed a framework of first

order ordinary differential equations and solved it numerically to find the steady-state spatial

node density of generic waypoint-like mobility regimes. We validate our approach by compar-

ing its results against GPS traces, and present steady-state spatial distribution for two synthetic

mobility regimes in three different scenarios. We also use the proposed model to show the

inability of mobility regimes that apply the preferential attachment principle to maintain node

clusters and preserve the desired node density distribution. In the case of these type of mobility

models, we show that in steady-state, their density distribution approaches the distribution of a

totally random mobility regime, such as the RWP mobility model.

Finally, we looked into the social aspects of mobility. With our model IWP, we suc-

cessfully managed to maintain node clustering. However, IWP still fails to implement a sce-

nario where two given specific nodes want to communicate with each other and decide to meet

or spend more time together. We then introduce a novel mobility model that accounts for both

the social structure exhibited by the user population as well as the geographic diversity of the

region of interest. We call our model SAGA for Socially– And Geography-Aware mobility

model. SAGA captures social features through the use of communities which group users with

similar features such as average time in a cell, average speed, and pause time. Besides intro-

ducing SAGA, the contributions of this work include: a model calibration approach based on

formal statistical procedures to extract social structures and geographical diversity from real

traces and set SAGA’s parameters. We validate our work by comparing SAGA with two real
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mobility traces and two other mobility regimes, namely Random Waypoint and Natural. We

show how to extract social structures and the geographical diversity exhibited by real traces,

preserving the desired non-uniform node spatial density present in real user mobility, creating

and maintaining clusters and accounting for differential node popularity and transitivity.
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