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Recursive Parameter Estimation
of Thermostatically Controlled Loads

via Unscented Kalman Filter

Eric M. Burger, Scott J. Moura

Abstract— For thermostatically controlled loads (TCLs) to
perform demand response services in real-time markets, online
methods for parameter estimation are needed. As the physical
characteristics of a TCL change (e.g. the contents of a refriger-
ator or the occupancy of a conditioned room), it is necessary to
update the parameters of the TCL model. Otherwise, the TCL
will be incapable of accurately predicting its potential energy
demand, thereby decreasing the reliability of a TCL aggregation
to perform demand response. In this paper, we investigate the
potential of various unscented Kalman filter (UKF) algorithm
variations to recursively identify a TCL model that is non-
linear in the parameters. Experimental results demonstrate the
parameter estimation of two residential refrigerators.

I. INTRODUCTION

A. Background and Motivation

Large populations of thermostatically controlled loads
(TCLs) hold great potential for performing ancillary services
in power systems. The advantages of responsive TCLs over
large storage technologies include: (i) they are already well-
established technologies; (ii) they are spatially distributed
around the power system; (iii) they employ simple and
fast local actuation; (iv) they are unimpaired by the outage
of individuals in the population; and (v) they - on the
aggregate - can produce a quasi-continuous response despite
the discrete nature of the individual controls [1][2][3].

Because TCLs are controlled according to a temperature
setpoint and deadband range, customers are generally indif-
ferent to precisely when electricity is consumed. The inherent
flexibility of TCLs, such as refrigerators and electric water
heaters, makes them promising candidates for provisioning
power system services. In fact, direct load control (DLC) and
demand response (DR) programs are increasingly controlling
TCLs, among other electric loads, to improve power grid
stability [4][5].

B. Relevant Literature

Past literature on the modelling and control of TCL
populations has focused on the development of aggregation
methods with centralized control. Malhame and Chong’s
study [6] is among the first reports to use stochastic analysis
to develop an aggregate model of a TCL population. The
coupled Fokker-Planck equations, derived in [6], define the
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aggregate behavior of a homogeneous population. More re-
cently, [7] develops a diffusion-advection partial differential
equation (PDE) model and parameter identification scheme
for an aggregated population of heterogeneous TCLs. In [8],
the authors present a deterministic hybrid PDE-based model
for heterogeneous TCL populations, analyze its stability
properties, and derive a power reference tracking control law.

In [9], the author uses a linearized Fokker-Planck model to
describe the aggregated behavior of a TCL population. Direct
control is achieved by broadcasting a single time-varying
setpoint temperature offset signal to every agent. Numerical
results demonstrate how small perturbations to the setpoint
can enable TCLs to perform wind generation following. The
work in [10] builds upon [9] by proposing a sliding mode
control algorithm for direct control of air conditioning loads.
A “state bin” modelling framework is used to describe local
states (On/Off) in a discrete temperature-related manner.

In [11], the authors employ a linear time-invariant (LTI)
representation of a TCL population. As in [10], a “state bin”
modelling framework is used and the aggregate probability
mass is allowed to move through these bins. A Markov
Chain-based approach is used to predict the evolution of the
TCL population. In [3], the authors propose a proportional
controller which, at each time step, broadcasts a switching
probability, η, to all the TCLs in the population. If η < 0,
all TCLs that are on must switch off with a probability of η
and if η > 0, TCLs that are off switch on with a probability
of η.

Recent trends in the field of convex optimization, in
particular the introduction of the alternating direction method
of multipliers (ADMM), have enabled researchers to pur-
sue distributed methods of load control [1][12][13][14][15].
Therefore, rather than using an aggregation model with
centralized control, individual TCLs can coordinate amongst
each other to drive the population towards a shared global
objective. Because the TCL population is not centrally mod-
eled, a distributed control method is more robust to the loss of
agents or to changes in system characteristics. Also, because
the individual TCLs are locally optimizing their individual
behavior, the central agent requires less information about
each TCL’s individual characteristics.

However, by controlling TCLs in a distributed manner, it is
necessary for every agent in the population to model its own
behavior and to predict its energy demand. TCLs with poorly
fit models will undermine the ability of the population to
accurately perform ancillary services. Given that most TCLs



experience regular changes to their physical characteristics
(e.g. the contents of a refrigerator, the flow through a
water heater, or the occupancy of a conditioned room), a
linear time-invariant model is likely to prove inadequate.
Also, for TCLs like radiant heaters and air conditioners,
it is not possible for the manufacturer to predetermine the
physical characteristics of the spaces that will be conditioned.
Therefore, to improve the performance of distributed TCL
control methods, it is necessary to employ recursive or on-
line parameter estimation algorithms to fit and continuously
update each TCL’s model.

C. Main Contributions

This manuscript contributes to the development of recur-
sive parameter estimation algorithms for TCLs by investi-
gating various unscented Kalman filters for the estimation
of a TCL model that is non-linear in the parameters. We
present four closely related filter methods (single, joint, dual,
and triple) employing both the standard Kalman filter (KF),
and unscented Kalman filter (UKF) algorithms. Specifically,
we consider: (i) a single filter approach in which one UKF
estimates the TCL parameters; (ii) a joint filter approach
in which one UKF simultaneously estimates both the pa-
rameters and the state; (iii) a dual filter approach in which
one UKF estimates the parameters and one KF estimates
the state; and (iv) a triple filter approach in which one
UKF estimates the parameters, one KF estimates the state,
and another KF estimates the model inputs. Finally, we
present experimental parameter estimation results using real
temperature data from two residential refrigerators.

D. Paper Outline

This paper is organized as follows. Section II discusses
the TCL model and Section III overviews the parameter
estimation problem. Sections IV and V provide background
for the standard Kalman filter (KF) and the unscented
Kalman filter (UKF), respectively. Section VI formulates four
filter methods for recursive parameter estimation of a TCL.
Section VII provides numerical examples of our proposed
algorithms. Finally, Section VII summarizes key results.

II. TCL MODEL

In this paper, a TCL is modeled using the hybrid state
discrete time model [1][9][16][17]

T k+1 = θ1T
k + (1− θ1)(T k∞ + θ2m

k) + θ3 (1a)

mk+1 =





1 if T k > Tset + δ
2

0 if T k < Tset − δ
2

mk otherwise
(1b)

where state variables T k ∈ R and mk ∈ {0, 1} denote the
temperature of the conditioned mass and the discrete state (on
or off) of the mechanical system, respectively. Additionally,
k ∈ Z denotes the integer-valued time step, T k∞ ∈ R the
ambient temperature (◦C), Tset ∈ R the temperature setpoint
(◦C), and δ ∈ R the temperature deadband width (◦C).

In this paper, we will define the time elapsed between each
time step as h = 1/60 (hours). The parameter θ1 represents

the thermal characteristics of the conditioned mass as defined
by θ1 = exp(−h/RC) where C is the thermal capacitance
(kWh/◦C) and R is the thermal resistance (◦C/kW), θ2 the
energy transfer to or from the mass due to the systems
operation as defined by θ2 = RP where P is the rate
of energy transfer (kW), and θ3 an additive noise process
accounting for energy gain or loss not directly modeled. The
sign conventions in (1) assume that the TCL is providing a
cooling load and that P (and thus θ2) is negative.

As noted in [9][17], the discrete time model implicitly
assumes that all changes in mechanical state occur on the
time steps of the simulation. In this paper, we will assume
that this behavior reflects the programming of the systems
being modeled. In other words, we will assume that the TCLs
have a thermostat sampling frequency of 1/h Hz or once per
minute.

III. PARAMETER ESTIMATION BACKGROUND

A fundamental machine learning problem involves the
identification of a nonlinear mapping

yk = G(xk, θ) (2)

where variable xk ∈ RX is the input, yk ∈ RY is the output,
and the nonlinear map G is parameterized by θ ∈ RΘ.
Additionally, k denotes the integer-valued time step and X ,
Y , and Θ are the number of inputs, outputs, and parameters,
respectively.

A. Batch Parameter Estimation

Learning can be performed in a batch manner by pro-
ducing estimates of the parameters θ̂ given a training set of
observed inputs and desired outputs, {x, y}. The goal of a
parameter estimation algorithm is to minimize some function
of the error between the desired and estimated outputs as
given by ek = yk −G(xk, θ̂).

B. Recursive Parameter Estimation

The parameter estimation problem can be expressed in
a recursive form using a discrete-time state-space model
representation

θk = θk−1 + nk (3a)

yk = G(xk, θk) + ek (3b)

where θk represents the parameter estimates at time step k
and nk ∈ RΘ corresponds to the parameter update noise
(i.e. change in parameter values). The goal of a recursive
parameter estimation algorithm is to produce θ̂k so as to
minimize some function of the error ek.

IV. KALMAN FILTER BACKGROUND

The Kalman filter (KF) is a recursive estimator for linear
models such as the discrete-time state-space model

xk = Axk−1 +Buk + vk (4a)

yk = Cxk +Duk + wk (4b)

where variable xk ∈ RX is the state of the system, uk ∈ RU

is the known exogenous input, and yk ∈ RY is the observed
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Fig. 1: Kalman Filter Diagram

measurement signal. The state transition model is given by
A ∈ RX×X and the control-input model by B ∈ RX×U .
The process noise vk ∈ RX has covariance Qv ∈ RX×X ,
vk ∼ N(0, Qv). The observation model is given by C ∈
RY×X and the feedthrough model by D ∈ RY×U . The
measurement noise wk ∈ RY has covariance Qw ∈ RY×Y ,
wk ∼ N(0, Qw). The variances of vk and wk (i.e. diagonal
elements of Qv and Qw, respectively) must be known in
order to implement a Kalman filter.

The Kalman filter (KF) algorithm consists of a prediction
step and an update/correction step. The KF will model xk

as a Gaussian random variable (GRV) with estimated mean
x̂k ∈ RX and covariance Qkx ∈ RX×X . To provide clarity, it
is helpful to expand the k notation to distinguish between the
state estimates produced before and after the KF correction
step. Therefore, at each time step k, the predicted (a priori)
state estimate, denoted as x̂k|k−1, is the mean estimate
of xk given measurements y0, . . . , yk−1. The corrected (a
posterior) state estimate, x̂k|k, is the mean estimate of xk

given measurements y0, . . . , yk. To reiterate, throughout this
paper, the uncorrected predictions (a priori) are denoted
by k|k − 1 or k + 1|k whereas the corrected predictions (a
posterior) are denoted by k|k, k − 1|k − 1, or k + 1|k + 1.

The KF prediction step is given by

x̂k|k−1 = Ax̂k−1|k−1 +Buk (5a)

Qk|k−1
x = AQk−1|k−1

x AT +Qv (5b)

and the update/correction step by

ŷk = Cx̂k|k−1 +Duk (6a)

Qy = CQk|k−1
x CT +Qw (6b)

K = Qk|k−1
x CTQ−1

y (7a)

rk = yk − ŷk (7b)

x̂k|k = x̂k|k−1 +Krk (7c)

Qk|kx = Qk|k−1
x −KQyKT (7d)

Figure 1 illustrates the KF algorithm. The block TD repre-
sents a time delay (commonly denoted in controls literature

by z−1 or 1/z, the Z-transform of the delay operator). To
simplify notation in this paper, we will express the Kalman
filter algorithm with the following 3 operator expressions

[
x̂k|k−1

Q
k|k−1
x

]
= KFx

([
A
B

]
,

[
x̂k−1|k−1

Q
k−1|k−1
x

]
, uk, Qv

)
(8a)

[
ŷk

Qky

]
= KFy

([
C
D

]
,

[
x̂k|k−1

Q
k|k−1
x

]
, uk, Qw

)
(8b)



x̂k|k

Q
k|k
x

rk


 = KFc

([
x̂k|k−1

Q
k|k−1
x

]
,

[
ŷk

Qky

]
, C, yk

)
(8c)

where (8a) corresponds to (5a-5b), (8b) to (6a-6b), and (8c)
to (7a-7d).

V. UNSCENTED KALMAN FILTER BACKGROUND

The UKF is an extension to the standard Kalman filter that
utilizes a deterministic sampling approach known as the un-
scented transform (UT) to characterize states which undergo
a nonlinear transformation. The UKF builds on the intuition
that it is easier to approximate a probability distribution than
to approximate an arbitrary nonlinear transformation [18].

Like the Kalman filter, the UKF includes a prediction
step and an update/correction step. However, with the UKF,
a state distribution is approximated by a Gaussian random
variable (GRV) and specified using a minimal set of sample,
or sigma, points around the mean. These sigma points are
selected such that they capture the true mean and covariance
of the GRV. When propagated through a nonlinear transform,
the sigma points accurately capture the a posterior mean and
covariance of the estimated state.

In other words, rather than simply passing the previous
state estimate x̂k−1 through a nonlinear transform to produce
a predicted state estimate x̂k, the UKF transforms the set
of sigma points. The predicted state estimate x̂k is then
recovered as a weighted mean of the transformed points.
With the UT, approximations of Gaussian states are accurate
to the third order for any nonlinearities [19]. For non-
Gaussian states, approximations are accurate to at least the
second-order for any nonlinearities.



In this paper, we employ the UKF algorithm as presented
by Wan and van der Merwe [19][20][21] and summarized
in the following section. Specifically, see Tables 7.3.1 and
7.3.2 in [20] for the algorithm employed in this work. We
direct the reader to [18] for the original presentation of the
UT and UKF. A discussion of dual estimation can be found
in [19][21].

In the following subsections, we summarize the UKF
algorithm as presented by Wan and van der Merwe [20].

A. Sigma Points and Unscented Transform

To detail the UKF algorithm, we begin by describing the
generation of sigma points and the execution of the unscented
transform (UT). Consider a random variable s ∈ RL with
mean s̄ ∈ RL and covariance Qs ∈ RL×L that is propagated
through a nonlinear function f such that z = f(s) where
z ∈ RZ . To calculate the statistics of z, we form a matrix
S ∈ RL×(2L+1) consisting of 2L+ 1 sigma points Si given
by

S0 = s̄

Si = s̄+
(√

(L+ λ)Qs

)
i
, i = 1, . . . , L

Si+L = s̄−
(√

(L+ λ)Qs

)
i
, i = 1, . . . , L

(9)

where
(√

(L+ λ)Qs

)
i

is the ith column of the matrix

square root of (L + λ)Qs and λ = α2(L + κ) − L is a
scaling parameter. Constant α determines the spread of the
sigma points (usually 10−4 ≤ α ≤ 1) and constant κ is a
secondary scaling parameter (usually κ = 0 or 3− L).

The sigma points are propagated through the nonlinear
function

Zi = f(Si) i = 0, . . . , 2L (10)

and the mean and covariance of z are approximated as a
weighted mean and covariance of the a posterior sigma points

z̄ ≈
2L∑

i=0

Wm,iZi (11)

Qz ≈
2L∑

i=0

Wc,i(Zi − z̄)(Zi − z̄)T (12)

with weights Wm, corresponding to the a posterior mean of
the sigma points, given by

Wm,0 = λ/(L+ λ)

Wm,i = λ/(2(L+ λ)), i = 1, . . . , 2L
(13)

and weightsWc, corresponding to the a posterior covariance
of the sigma points, given by

Wc,0 = λ/(L+ λ) + (1− α+ β)

Wc,i =Wm,i, i = 1, . . . , 2L
(14)

where constant β incorporates prior knowledge of the distri-
bution of s (for Gaussian distributions, β = 2 is optimal).

To simplify notation, we will denote the generation of
sigma points and the execution of the unscented transform
((9)-(12)) with the following operator expressions

S = UTs(s̄, Qs) (15a)
Zi = f(Si) i = 0, . . . , 2L (15b)
z̄ = UTm(Z) (15c)

Qz = UTc(Z) (15d)

where (15a) corresponds to (9), (15c) to (11), and (15d) to
(12).

B. Unscented Kalman Filter Algorithm

The unscented Kalman filter (UKF) is a straightforward
application of the UT to recursive estimation. To present
the UKF algorithm, we will consider the state estimation of
a discrete-time nonlinear dynamic system with non-additive
noise given by the state-space model

xk = F (xk−1, uk, vk) (16a)

yk = H(xk, uk, wk) (16b)

where variable xk ∈ RX is the state of the system, uk ∈ RU

is the known exogenous input, and yk ∈ RY is the observed
measurement signal. Function F is the transition model and
the process noise vk ∈ RX has covariance Qv ∈ RX×X ,
vk ∼ N(0, Qv). Function H is the observation model and the
measurement noise wk ∈ RY has covariance Qw ∈ RY×Y ,
wk ∼ N(0, Qw).

The UKF will model xk as a GRV with estimated mean
x̂k and covariance Qkx. At each time step k, the UKF
will generate sigma points for the previous state estimate,
x̂k−1|k−1. For systems with non-additive noise, the state
estimate and covariance is augmented with the process and
measurement noise, as given by

s̄k−1 =



x̂k−1|k−1

v̄k

w̄k


 (17a)

Qk−1
s =



Q
k−1|k−1
x 0 0

0 Qv 0
0 0 Qw


 (17b)

where v̄k and w̄k are the mean of the process and mea-
surement noises, respectively. In other words, if Gaussian,
v̄k ∈ {0}X and w̄k ∈ {0}Y . The dimensionality of s̄ is
therefore L = 2X + Y .

Next, the UKF will generate the sigma points. Because
we are using the augmented state, we will introduce Sx, Sv ,
and Sw, the sigma points associated with the state estimate,
process noise, and measurement noise, respectively.

Sk−1 = UTs(s̄
k−1, Qk−1

s ) (18a)

Sk−1
x,j = Sk−1

j j = 0, . . . , X − 1 (18b)

Sk−1
v,j = Sk−1

j j = X, . . . , 2X − 1 (18c)

Sk−1
w,j = Sk−1

j j = 2X, . . . , 2X + Y − 1 (18d)
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Fig. 2: Additive Unscented Kalman Filter Diagram

where j refers to the rows of the L by 2L+ 1 matrix S.
In the prediction step, the UKF will propagate the sigma

points through the process model and generate the a priori
sigma points X k|k−1

i , state estimate x̂k|k−1, and covariance
Q
k|k−1
x as follows,

X k|k−1
i = F (Sk−1

x,i , u
k,Sk−1

v,i ) i = 0, . . . , 2L (19a)

x̂k|k−1 = UTm(X k|k−1) (19b)

Qk|k−1
x = UTc(X k|k−1) (19c)

In the correction step, the UKF will propagate the a priori
sigma points through the measurement model to generate the
measurement sigma points Yki , estimate ŷk, and covariance
Qy as follows,

Yki = H(X k|k−1
i , uk,Sk−1

w,i ) i = 0, . . . , 2L (20a)

ŷk = UTm(Yk) (20b)

Qy = UTc(Yk) (20c)

These are used to calculate the cross-covariance Qxy , the
Kalman gain K, and the observation error rk. Finally, the
state estimate and covariance are corrected, producing the a
posterior estimate x̂k|k and covariance Qk|kx .

Qxy =

2L∑

i=0

Wc,i(X k|k−1
i − x̂k|k−1)(Yki − ŷk)T (21a)

K = QxyQ
−1
y (21b)

rk = yk − ŷk (21c)

x̂k|k = x̂k|k−1 +Krk (21d)

Qk|kx = Qk|k−1
x −KQyKT (21e)

where rk ∈ R is the error between the measurement yk and
the estimate ŷk at time step k.

To simplify notation in this paper, we will express the non-
additive unscented Kalman filter algorithm with augmented

state using the following 4 operator expressions


Sk−1
x

Sk−1
v

Sk−1
w


 = UKFs

([
x̂k−1|k−1

Q
k−1|k−1
x

]
,

[
v̄k

Qv

]
,

[
w̄k

Qw

])
(22a)



x̂k|k−1

Q
k|k−1
x

X k|k−1


 = UKFx

(
F,Sk−1

x , uk,Sk−1
v

)
(22b)



ŷk

Qky
Yk


 = UKFy(H,X k|k−1, uk,Sk−1

w ) (22c)



x̂k|k

Q
k|k
x

rk


 = UKFc





x̂k|k−1

Q
k|k−1
x

X k|k−1


 ,



ŷk

Qky
Yk


 , yk


 (22d)

where (22a) corresponds to (17-18), (22b) to (19), (22c) to
(20), and (22d) to (21).

C. Additive Unscented Kalman Filter

Consider the discrete-time nonlinear dynamic system with
additive noise,

xk = F (xk−1, uk) + vk (23a)

yk = H(xk, uk) + wk (23b)

In this (very common) case, the UKF algorithm can
be simplified. Specifically, s̄k−1 = x̂k−1|k−1, Qk−1

s =

Q
k−1|k−1
x , and there are no sigma points for the process

and measurement noise. This reduces the computational
complexity of each iteration of the UKF from O((2X+Y )3)
to O(X3) where X is the dimensionality of the state space
and Y the dimensionality of the observation space. The
complete additive UKF algorithm for model (23) is therefore,

Sk−1
x = UTs(x̂

k−1|k−1, Qk−1|k−1
x ) (24a)

X k|k−1
i = F (Sk−1

x,i , u
k) i = 0, . . . , 2X (24b)

x̂k|k−1 = UTm(X k|k−1) (24c)



Qk|k−1
x = UTc(X k|k−1) +Qv (24d)

Yki = H(X k|k−1
i , uk) i = 0, . . . , 2X (24e)

ŷk = UTm(Yk) (24f)

Qy = UTc(Yk) +Qw (24g)

Qxy =

2L∑

i=0

Wc,i(X k|k−1
i − x̂k|k−1)(Yki − ŷk)T (24h)

K = QxyQ
−1
y (24i)

rk = yk − ŷk (24j)

x̂k|k = x̂k|k−1 +Krk (24k)

Qk|kx = Qk|k−1
x −KQyKT (24l)

Figure 2 illustrates the additive UKF algorithm. The block
TD represents a time delay (commonly denoted in controls
literature by z−1 or 1/z, the Z-transform of the delay
operator). To simplify notation in this paper, we will express
the additive unscented Kalman filter algorithm using the
following 4 operator expressions

[
Sk−1
x

]
= UKF+

s

([
x̂k−1|k−1

Q
k−1|k−1
x

])
(25a)



x̂k|k−1

Q
k|k−1
x

X k|k−1


 = UKF+

x

(
F,Sk−1

x , uk, Qv
)

(25b)



ŷk

Qky
Yk


 = UKF+

y (H,X k|k−1, uk, Qw) (25c)



x̂k|k

Q
k|k
x

rk


 = UKF+

c





x̂k|k−1

Q
k|k−1
x

X k|k−1


 ,



ŷk

Qky
Yk


 , yk


 (25d)

where (25a) corresponds to (24a), (25b) to (24b-24d), (25c)
to (24e-24g), and (25d) to (24h-24l).

VI. RECURSIVE TCL PARAMETER ESTIMATION

In this section, we will present 4 closely related ap-
proaches for parameter estimation of a thermostatically con-
trolled load (TCL) using the Kalman filter (KF) algorithm
in (8) and unscented Kalman filter (UKF) algorithm in (25).
In this paper, we will consider: (i) a single filter approach
in which one UKF is used to estimate the parameters θk;
(ii) a joint filter approach in which one UKF simultaneously
estimates both θk and T k; (iii) a dual filter approach in which
one UKF estimates the parameters θk and one KF estimates
the state T k; and (iv) a triple filter approach in which we
use one UKF to estimate θk, one KF to estimate T k, and
another KF to estimate the inputs, T k∞ and mk.

In each case, we define the function G according to the
TCL model (1)

T k+1 = θk1T
k +

[
1− θk1 1− θk1θk2 θk3

]


T k∞
mk

1




= G(T k, T k∞,m
k, θk)

(26)

Parameter
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TD



T k

T k
∞
mk




T k+1

θ̂k

Fig. 3: Single Filter Method Diagram

A. Single Filter Parameter Estimation

Using the function G given in (26), the TCL recursive
parameter estimation problem can be expressed with the
state-space model

θk = θk−1 + nk (27a)

yk = G(T k, T k∞,m
k, θk) + vk + wk (27b)

where (27b) combines (26) with observation model yk =
T k+1 + wk.

Figure 3 illustrates the single filter method. The block
TD represents a time delay (commonly denoted 1/z, the Z-
transform of the delay operator). By employing the additive
UKF algorithm in (25) with the T k+1 observation as yk, we
can produce θ̂k, an estimate of the model parameters at time
step k. Note that in the single filter case, θ corresponds to
x, the variable being estimated, and G to H , the observation
model. Additionally, the transition model F is given by
F (xk−1, uk) = xk−1 and T k, T k∞, and mk are effectively
uk, control and feed-through inputs at time step k.

Parameter
UKF

TD

[
T k
∞
mk

]
T k+1

[
θ̂k

T̂ k+1

]

Fig. 4: Joint Filter Method Diagram

B. Joint Filter State and Parameter Estimation

For system identification, it is often necessary to simul-
taneous perform state and parameter estimation from noisy
observations [19]. There are two basic approaches, joint and
dual estimation. In the joint estimation method, state and
parameter estimation can be performed simultaneously with
a single filter by estimating the state-space model

[
θk

T k+1

]
=

[
θk−1

G(T k, T k∞,m
k, θk−1)

]
+

[
nk

vk

]
(28a)

yk = T k+1 + wk (28b)

Figure 4 illustrates the joint filter method where the block
TD represents a time delay. Just as in the single filter



method, we employ the additive UKF algorithm in (25)
with the T k+1 observation as yk to recursively estimate
the model. However, in the joint filter method, we produce
estimates of both the state and the parameters (T̂ k+1 and θ̂k,
respectively).

State KF

TD

Parameter
UKF

TD

T̂ k+1

[
T k
∞
mk

]

T k+1

θ̂k

Fig. 5: Dual Filter Method Diagram

C. Dual Filter State and Parameter Estimation

In the dual estimation method, a separate state-space
representation is used for the states and parameters. For a
TCL, the state model is given by

T k+1 = G(T k, T k∞,m
k, θk) + vk (29a)

yk = T k+1 + wk (29b)

and the parameter model by (27).
Figure 5 illustrates the dual filter method where the block

TD represents a time delay. Because the function G is linear
in the states, we can estimate the state model (29) using
the KF algorithm in (8) with the T k+1 observation as yk to
produce T̂ k+1. Again, the parameter model (27) is estimated
using the additive UKF algorithm in (25). We tie the two
filters together by using the estimated state of one filter as the
control input and/or observation in another filter. Specifically,
for the state filter, we use the previous parameter estimate
θ̂k−1 in the transition model. For the parameter filter, we use
the previous estimate T̂ k as input in the observation model
and the current estimate T̂ k+1 as the observation yk (rather
than the T k and T k+1 observations, respectively).

D. Triple Filter Input, State, and Parameter Estimation

Lastly, we consider an estimation approach in which
separate filters are used to estimate the inputs, states, and
parameters. For simplicity, we will refer to this as the triple

Input KF

TD

State KF

TD

Parameter
UKF

TD



T k+1

T k
∞
mk




[
T̂ k
∞
m̂k

]

T̂ k+1

T k+1

θ̂k

Fig. 6: Triple Filter Method Diagram

filter approach. The input model is given by
[
T k∞
mk

]
=

[
T k−1
∞

mk−1

]
+

[
pk1
pk2

]
(30a)

yk =



G(T k, T k∞,m

k, θk−1)
T k∞
mk


+



vk + wk

qk1
qk2


 (30b)

where p ∈ R2 and q ∈ R2 are process and measurement
noises, respectively, associated with the inputs T∞ and m.
Again, the state model is given by (29) and the parameter
model by (27).

Figure 6 illustrates the triple filter method where the
block TD represents a time delay. The input model (30)
is estimated using the KF algorithm in (8) with the T k+1,
T k∞, and mk observations as yk to produce T̂ k∞ and m̂k. To
tie the three models together, the input estimates T̂ k∞ and
m̂k are used in the transition model of the state filter and
the observation model of the parameter filter. The previous
parameter estimate θ̂k−1 is used in the observation model
of the input filter and the transition model of the state filter.
Lastly, the state estimate T̂ k is used in the observation model
of the input and parameter filters and T̂ k+1 serves as the
observation yk in the parameter filter.

VII. TCL ESTIMATION EXPERIMENTAL RESULTS

In this section, we present parameter estimation results
for TCL1, a 500W residential refrigerator, and TCL2, a
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Fig. 7: Single Filter Parameter Estimation
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Fig. 8: Joint Filter Parameter Estimation

100W mini-fridge. Each TCL is instrumented with two
DS18B20 digital temperature sensors to measure the ambient
temperature T∞ and internal refrigerator temperature T . The
sensors have a −55◦C to +125◦C temperature range and a
±0.5◦C accuracy from −10◦C to +85◦C. A current sensor
is used to measure the state (on or off) of the compressor, m.
Measurements were taken at 1 minute intervals for a period
of 7 days. In this study, the temperature of the freezer is
neither measured nor modeled.

TCL1 is observed under typical operating conditions for
a residential refrigerator. Therefore, the door is opened ran-
domly and the contents of the refrigerator change regularly.
By contrast, TCL2 is empty except for 18 liters of water,
which compose the thermal mass being conditioned by the
unit. The door of TCL2 remains closed for the duration of
the study.

For both TCLs, we have implemented four parameter
estimation methods using the standard and unscented Kalman
filters: single filter, joint filter, dual filter, and triple filter.
The final parameter estimates θ̂f are presented in Table
I. Normally, for system identification, we would seek to

measure the performance of each algorithm by first learning
the parameters using a training dataset and then testing the
parameters using a separate validation dataset. However, an
advantage of recursive parameter estimation is that we can
continuously improve the parameter estimates and potentially
adapt to changes in the mechanical system. Therefore, for
the single, dual, joint, and triple filter methods, we represent
the performance as the root mean squared error (RMSE)
over the last 300 time steps (i.e 5 hours). We will denote
this moving window RMSE as RMSE300. To measure the
parameter estimation error, we employ the residual error rk

of the parameter filter for each of the four methods.

Figure 7 presents the parameter estimation results using
the single filter method. The top subplots show the parameter
estimates θ̂k produced by the parameter filter at each time
step k. For each parameter, the center line is the mean or
expected value of the estimate and the top and bottom lines
illustrate the variance relative to the mean. Eventually all
parameter estimates converge and the variances decrease.
The bottom subplots depict the residual error rk. As shown,
the parameter estimation for TCL1 converges in about 1500
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Fig. 9: Dual Filter Parameter Estimation
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Fig. 10: Dual Filter Temperature State Estimate

TCL1 TCL2

θ̂f1 θ̂f2 θ̂f3 θ̂f1 θ̂f2 θ̂f3

Single 0.998 -50.329 0.004 0.987 -36.193 -0.141

Joint 0.997 -49.762 0.005 0.985 -37.277 -0.159

Dual 0.998 -50.872 0.004 0.988 -36.822 -0.133

Triple 0.997 -52.268 0.005 0.986 -37.141 -0.153

TABLE I: Final Parameter Estimates for TCL1 and TCL2

time steps while TCL2 converges in about 3000 time steps.
Figure 8 presents the parameter estimation results using

the joint filter method and Fig. 9 for the dual filter method.
Again, the top subplots show the parameter estimates θ̂k.
The bottom subplots depict the residual error rk. The state
estimates T̂ k are presented in the center subplots. Both
TCLs exhibit similar convergence characteristics compared
to the single filter method. Upon convergence, the difference
between the measured temperature T and estimated temper-
ature T̂ becomes negligible. A sample of the temperature
estimates produced by the dual filter are shown in Fig. 10.

As shown in Table I, the differences in the final TCL1

and TCL2 parameter estimates for the single, joint, and dual
filters are small enough to be considered negligible. Thus,
with respect to parameter estimation, the joint and dual filters
show little to no advantage over the single filter method.
In other words, filtering the temperature measurement T
does not appear to significantly improve the performance
of our parameter estimation algorithm. Considering that
we are estimating the parameters of two residential-sized
refrigerators, this is not a surprising outcome. For a larger
or noisier TCL, the joint and dual filters may yield a greater
advantage, but for the TCLs used in this study, the estimation
of T is simply unnecessary.

Figure 11 presents the parameter estimation results using
the triple filter method. In addition to the parameter estimate
θ̂k, state estimate T̂ k, and parameter filter residual error
rk, the figure displays the compressor state estimates m̂k.
The input filters also produce ambient temperature estimates
T̂ k∞. However, due to the negligible difference between the
ambient temperature observations and estimates, we have
excluded the results from this manuscript.
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Fig. 11: Triple Filter Parameter Estimation
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Fig. 12: Triple Filter Compressor State Estimate

A sample of the compressor state estimates are plotted
in Fig. 12. As shown in Fig. 12, the estimated compressor
states m̂k resemble a first-order system response rather than
the discrete on/off state mk given by the TCL model (1). One
could argue that m̂k better represents the thermodynamics of
a TCL like the refrigerators used in this study. Specifically,
while the compressor may instantaneously turn on or off
(providing a step input), it takes some amount of time
for the refrigeration cycle to start or stop removing heat
(resulting in a first-order response). We could elect to model
the refrigeration cycle as a first-order linear time-invariant
system and to estimate the system parameters, however using
the triple filter method to estimate mk is a simple way to
achieve a comparable result.

The moving window root mean square error (RMSE)
results for each filter method are presented in Figure 13.
As stated previously, the RMSE300 at each time step is a
measure of the RMSE over the last 300 time steps (i.e 5
hours). In this way, the RMSE300 is a function of the pa-

rameter filter’s residual error rk but provides a clearer means
of comparing the performance of each filter method. As
shown in Figure 13, the triple filter is the slowest to converge
but performs slightly better than the other methods. The
single and joint filter performances are comparable in TCL1

whereas the joint method has the worst performance for
TCL2. Overall, each filter method succeeds in performing
parameter estimation and converges to comparable values.
After convergence, the differences in the RMSE300 values
are small enough to be considered negligible, suggesting
that the refrigerators studied in this paper are relatively low
noise systems. The same results are not to be expected of
larger or noisier TCLs. Nonetheless, this manuscript presents
a compiled collection of filtering methods for online learning
of TCLs.

Utilizing a recursive system identification technique pro-
vides the added benefit of allowing the parameter estimates
to adapt to changes in the system. To illustrate this point, we
removed the 18 liters of water from TCL2 at roughly time
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Fig. 14: TCL2 Adaptive Parameter Estimation

step k = 8000, thereby reducing the thermal capacitance
of the system. Figure 14 illustrates how the single UKF
method responded to this change by increasing both θ̂1

and θ̂3. According to the TCL model (1), we expect that
decreasing the capacitance in the TCL increases θ̂1, which
represents the thermal characteristics of the conditioned mass
(θ1 = exp(−h/RC)). As stated previously, θ̂3 represents a
noise process accounting for energy gain or loss that is not
directly modeled. The parameter estimates converge to new
values within about 1000 time steps, thus demonstrating the
real-time estimation feature of the algorithms studied here.

VIII. CONCLUSIONS

This paper examines online parameter estimation of ther-
mostatically controlled loads (TCLs). The specific context
is modeling and distributed control of aggregated loads for
power system services, such as load following and frequency
regulation. In this paper, we briefly discuss the Kalman filter

(KF) and unscented Kalman filter (UKF) algorithms. Next,
we present four filter methods (single, joint, dual, and triple)
for recursively estimating the parameters of a discrete-time
thermostatically controlled load (TCL) model. Finally, we
present experimental results using real temperature data from
a 500W and a 100W residential refrigerator. For each of the
four filter methods, the algorithm successfully converges to
comparable parameter estimates and adapts to changing TCL
characteristics.
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