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Abstract:  It is desirable to facilitate data communications among concurrent computation threads without 
incurring non-essential synchronizations in real-time computing systems.  An interaction mechanism, 
called the non-blocking writer (NBW) mechanism and invented by Kopetz, is useful in facilitating state 
message communication from a producer to a consumer thread in real-time applications.  A more widely 
applicable practical interaction mechanism called the non-blocking buffer (NBB) is presented here.  The 
NBB mechanism can be viewed as a significant extension of the NBW mechanism.  The NBB mechanism 
facilitates communication of event messages from a producer to a consumer without causing any party to 
experience blocking.  Therefore, its application scope includes all conceivable producer-consumer 
situations.  The NBB mechanism is not a replacement of but rather a companion to the NBW mechanism 
since the latter facilitates the most efficient state message communication.  The application of NBBs in 
building middleware supporting real-time objects is discussed as a demonstration of the utility of the NBB 
mechanism.  
 
Keywords:  concurrent programming, distributed computing, thread, synchronization, blocking, real time, 
NBW, buffer, NBB, monitor, object, TMO, middleware, TMOSM, producer, consumer.  
 

1.  Introduction 

It has been understood for a long time that the performance of a software system exploiting 
concurrency is impacted substantially by the approach used for facilitating interactions and 
synchronizations among concurrent computation threads [Dij65, Bri73, Kop97, Sil02].  In general, it is 
desirable to make cooperating concurrent threads to interact among themselves without involving non-
essential synchronizations.  Non-essential synchronizations can be easily found in operating systems (OSs), 
middleware, and concurrent computing application software of today.  They can be found not only in 
process-structured software systems but also object-oriented software systems.  This is largely because the 
designers did not have the incentives to optimize the performance of the software systems to the extent 
required in many real-time applications.   

Yet as research interests in real-time computing and the rate of developing new real-time computing 
applications started growing faster in 1990’s, the importance of software mechanisms facilitating safe and 
efficient interactions among concurrent computation threads started receiving a new level of recognition 
[And97, Ber93, Kim95, Kop89, Kop93, Kop97, Moc99, Pra94, Qaz93, Raj91, Raj95, Zha95].  Non-
essential synchronizations are highly undesirable in OSs, middleware, and application software used in 
many real-time applications.  The issue dealt with in this paper is the facilitation of data communications 
among real-time computation threads without incurring non-essential synchronizations.   

An interaction mechanism, called the non-blocking writer (NBW) mechanism, was invented by 
Kopetz [Kop93, Kop97].  It has been found useful in facilitating state message communication from a 
producer to a consumer thread in real-time applications.  Unlike conventional event messages each of 
which must be read by the receiver, the destination of each state message is a fixed memory location which 
is accessed by the receiver in a read-only fashion.  The memory location may be called a state message 
variable (SMV).  Thus each new state message results in updating the content of the corresponding 
memory location regardless of whether the reader read the previous content or not.  The NBW mechanism 
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was devised to enable the state message 
producer / carrier to update the state 
message variable without experiencing 
blocking.  The reader does not 
experience blocking either but may 
experience up to a small number of 
times its read operations turning into 
wastes.  Therefore, the application of 
the NBW mechanism was limited to 
state message communication.  For such 
applications, the NBW mechanism is 
practical and the most cost-effective 
approach to the knowledge of this 
author.   

In this paper, a more widely 
applicable practical interaction 
mechanism called the non-blocking 
buffer (NBB) is presented.  The NBB mechanism can be viewed as a major extension of the NBW 
mechanism.  The NBB mechanism facilitates communication of event messages from a producer to a 
consumer without causing any party to experience blocking.  Therefore, its application scope includes all 
conceivable producer-consumer situations.  Experiments involving application of this mechanism in 
building middleware as well as real-time application software confirmed the utility of the NBB mechanism.  

Therefore, the NBB mechanism is not only a major extension of the NBW mechanism but also a great 
companion to the latter since the latter can be used for state message communication while the former is 
used for event message communication.  It should also be noted that both NBW and NBB mechanisms are 
interaction mechanisms, more specifically, message communication mechanisms.  There are many 
situations where just efficient synchronizations of threads, not data communication, is required and use of 
message communication mechanisms for realizing such synchronization is not as efficient as use of 
established synchronization mechanisms.   

In the next section, the NBW mechanism is briefly reviewed and then the NBB mechanism is 
presented.  After discussing the case of a single producer and a single consumer, approaches for adapting 
the basic NBB mechanism for the cases of more complex interactions are discussed.  Then in Section 3, the 
value of the NBB mechanism in constructing efficient middleware supporting real-time distributed 
computing objects is discussed.  The paper concludes in Section 4.  

 
2.  The non-blocking buffer (NBB) mechanism 

2.1.  The non-blocking writer (NBW) mechanism  
The NBW scheme invented by Kopetz is depicted in Figure 1 [Kop93, Kop97].  The writer thread, 

WR, can write a state message into the state message variable StateMsgVar at any time without 
experiencing any blocking.  In addition to the state message variable, a counter named the update counter 
(UC) is used.  WR increments UC once before updating StateMsgVar and once after updating it.  
Therefore, UC contains an odd number only during the state-message-write operation and an even number 
at any other time.  Writing a new value into UC must be an atomic operation.  That is, the value of UC that 
can be read by the reader thread, RD, should always a valid odd number or a valid even number and never 
an undefined value.  If UC is of a single-word integer type, a basic read or write operation of the counter 
within a typical commercial computing platform (hardware + OS) is executed as an atomic operation 
without requiring any special OS mechanism.  

When RD reads the state message variable, it follows a protocol that may be called the double-
checking reader protocol.  Basically, after reading the content of StateMsgVar, typically through multiple 
machine cycles, and before completing the state-message-read procedure, the double-checking RD checks 

UC

Boolean Write (X)

• UC_old := UC; 
• UC := UC_old + 1; 
• Write StateMsg X 

into StateMsgVar;
• UC := UC_old + 2;

StateMsgVar

Init to 0

Start: 
• Repeat  UC_begin := UC  until

UC_begin is an even number; 
• Read StateMsg X in StateMsgVar;
• UC_end := UC;
• If UC_end ≠ UC_begin then goto

Start ;

Boolean Read (X)

Double-Checking Reader

Figure 1.  The Non-Blocking Writer (NBW) 
mechanism (adapted from [Kop97]) 
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if WR has updated either UC or UC and StateMsgVar since 
RD read StateMsgVar recently.  If so, the double-checking 
RD reads StateMsgVar again and performs the check again 
and this may be repeated until RD finds that its state-message-
read has been completed without any interference by the 
NBW, i.e., WR.  The number of read retries is bounded by a 
number not much larger than two as long as  
(1)  the time between state-message-write operations is 
significantly longer than the duration of a state-message-write 
or state-message-read operation, and  
(2)  RD is not preempted at a disproportionate rate while it is 
executing the state-message-read procedure.    

Therefore, for communication of state messages from 
WR to RD, the NBW mechanism facilitates the most efficient 
operation.  

2.2.  The basic structure and operations of the non-
blocking buffer (NBB) mechanism  

The NBB scheme is depicted in a highly abstract form in Figure 2.  An earlier framework of NBB was 
discussed in [Kim02a] but since then, the framework has been refined into a concrete optimized mechanism 
which is presented here.  The producer thread, PROD, owns the circular buffer.  It can write into the buffer 
at any time without experiencing any blocking and thus is a non-blocking writer of the buffer although this 
writer is completely different from the writer in the NBW mechanism.  In addition to the circular buffer, 
there are two counters, the update counter (UC) and the  acknowledgment counter (AC), also called the ack-
counter.   

PROD is a non-blocking writer for the update counter.  The value of the update counter is interpreted 
as a pointer to the next slot in the circular buffer to be used for accommodating a new data item.   

The consumer thread, CONS, is a non-blocking writer for the ack-counter.  The value of the ack-
counter is interpreted as a pointer to the next slot in the circular buffer to be used for reading a new data 
item.  As will be clarified later, the two counters are used in ways to ensure that PROD and CONS always 
access different slots in the circular buffer.  Therefore, PROD and CONS never run into collisions in 
accessing the same buffer slot.   

It turns out that there are practically no significant types of collisions between PROD and CONS in 
accessing counters either.  This is because as long as each counter is of a single-word integer type, a read or 
write operation of the counter is a trivially short atomic operation, especially in comparison to the time 
taken for accessing a buffer slot which may be large enough to accommodate a sizable message.   

Therefore, the only possible collisions between PROD and CONS occur either when the buffer is 
empty while CONS tries to read a data item or when the buffer is full while PROD tries to deposit a new 
data item.  These collisions are not due to the nature of interaction mechanisms.  They are rather due to our 
goal of supporting event message communications.  The NBB mechanism was devised along with the 
adoption of the software design style of making PROD to exit from NBB when the buffer is already full 
and then come back later to make a retry.  The application designer should ensure that CONS invokes the 
message-read operation at a frequency which is, on average, higher or equal to that at which PROD invokes 
the message-insert operation.  The purpose of having at least a certain minimal number of message-slots in 
an NBB is to allow PROD to generate temporary bursts of messages without experiencing any blocking.  

The actions taken by PROD to judge whether the buffer saturation remains or not involves one non-
blocking read of the ack-counter.  Similarly, CONS checks if the buffer remains empty or not and it does so 
in a manner not disturbing PROD in any way.  This means that the NBB mechanism provides a blocking-
free event-message buffer between PROD and CONS with practically negligible collision overhead 
incurred.  

Figure 3 depicts the details of the operation algorithms associated with the NBB mechanism.  PROD 

PROD CONS

No
n-

Blo
ck

ing
W

rit
er

U

A

U Update counter Ack-counterA

Read-Only

Figure 2.  A high-level view of the 
non-blocking buffer scheme  
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calls operation InsertItem to deposit item X into the circular buffer.  Between accessing the NBB, PROD 
maintains a record of the latest value of the update counter which it has produced.  By comparing this 
value, LastUC, against the current value of the ack-counter, PROD can tell if the circular buffer is full or 
not.  If the buffer is full, then PROC exits from the operation InsertItem and tries the operation later again 
as the application designer specified.   

The designer of a reliable real-time computing application should normally analyze the possible 
duration of the period of buffer saturation as well as the frequency of saturation occurrences [Kop97].   

The storing of a counter value needed in several steps during operation InsertItem must be an atomic 
operation as in the case of the NBW mechanism.  As mentioned before, as long as the counter is of a 
single-word integer type, then the atomicity requirement is met without the aid of any special OS 
mechanism.  Thus the operation InsertItem is trivially easy to implement.  

Since a circular buffer is used and the relationships between each counter and the corresponding buffer 
slot are unambiguous, there is no need to have an explicit operation for removing any data item from the 
buffer.  Once the content of a buffer slot is read by CONS, the buffer slot is treated as an empty one until 
PROD writes a new data item into it.   

CONS calls operation ReadItem to read item X from a slot in the circular buffer.  Between accessing 
the NBB, CONS maintains a record of the latest value of the ack-counter which it has produced.  By 
comparing this value, LastAC, against the current value of the update counter, CONS can tell if the circular 
buffer is empty or not.  If the buffer is empty, then CONS exits from the operation ReadItem and try the 
operation later again as the application designer specified.  The designer of a reliable real-time computing 
application should normally analyze the possible duration of the waiting period of CONS in the face of an 
empty buffer as well as the frequency of such waiting occurrences.  

The first step in operation ReadItem is to check the update counter.  The following cases may be 
encountered.  

0 Update Counter (UC)
Init to 0

Init to 0

Ack-Counter
(AC)

Boolean InsertItem (X, LastUC)

• TempoAC := AC; 
• If LastUC – buffer_size * 2 = TempoAC, buffer is full => Return FALSE  
• UC_old := UC; 
• UC := UC_old + 1;                      “write is atomic”
• Insert the item X into the slot pointed by (UC_old / 2) modulo buffer_size;
• UC := UC_old + 2;                      “write is atomic”
• LastUC := UC_old + 2;   Return TRUE; 

Boolean ReadItem (X,  LastAC,  WT)

• TempoUC := UC;  If TempoUC = LastAC,  buffer is empty => Return FALSE; 
• If TempoUC – LastAC = 1  then {   Repeat TempoUC := UC   until 

TempoUC is even   or   max_write_time (or max iterations) WT has elapsed; 
If WT has elapsed, Producer must have lost its execution resources while 
writing into NBB (e.g., time-slice expiration) => Buffer is practically empty => 
Return FALSE; } ;  

• Read the item X from the slot pointed to by (LastAC / 2) modulo buffer_size;
• AC_old := AC;           AC := AC_old + 2;           “write is atomic”
• LastAC := AC_old + 2;    Return TRUE; 

LastUC LastAC

Figure 3.  The Non-Blocking Buffer (NBB) 
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(Case 1)  The update counter points to the same buffer slot pointed by LastAC:  
In this case the buffer is empty and there is no sign of PROD being in the middle of writing into the 

buffer.  Therefore, CONS exits from the operation ReadItem and tries the operation later again as the 
application designer specified.   
(Case 2)  The value of the update counter is an odd number which is only one larger than LastAC:  

In this case PROD is in the middle of writing into the buffer slot next to the slot pointed by LastAC.  
Normally the operation by PROD of inserting a data item into a buffer slot is a quick operation and thus 
should not exceed the maximum-write-time WT, which is a reasonably small number representing the 
maximum execution time for InsertItem while the buffer is not full.  Thus it is worth for CONS to 
continuously check the update counter until either the update counter becomes an even number, in which 
case CONS can proceed to access the slot just filled by PROD and read the data item, or WT elapses.  

The situation where WT has elapsed while CONS is still checking the update counter arises only when 
PROD lost the necessary execution resources to another thread before PROD completes the InsertItem 
operation.  In this case, it is not effective for CONS to continuously check the update counter.  It is better 
for CONS to exit from the operation ReadItem and try the operation later again.  A frequently occurring 
situation where PROD loses its execution resources is the expiration of the time-slice given to PROD.  
(Case 3)  The value of the update counter is larger than LastAC by two or more:  

In this case, CONS can just proceed to access the slot pointed by LastAC and read the data item there, 
regardless of whether PROD is also inside the NBB or not.  

Again, implementing operation ReadItem is very easy.  Therefore, implementing the NBB mechanism 
on typical commercial computing platforms is as easy as implementing the NBW mechanism in spite of the 
greater application scope of the NBB.  

In short, the NBB mechanism has the following properties. 
Assumption 1:  Writing a new value into and reading from each of the two single-word integer counters in 

the NBB mechanism defined in Figure 2 are atomic operations.  
Property 1:  If Assumption 1 holds true, the buffer slot into which the producer thread is inserting a data 

item is always different from the buffer slot from which the consumer thread is reading / copying a 
data item at the same time.  

Property 2:  If Assumption 1 holds true, the producer thread never experiences any blocking or looping in 
accessing the counters and buffer slots due to the actions of the consumer thread.  

Property 3:  If Assumption 1 holds true, the producer thread detects the full-buffer condition without 
experiencing any blocking and exits from the NBB mechanism upon such detection.  

Property 4:  If Assumption 1 holds true and there is at least one fresh data item in the circular buffer, the 
consumer thread never experiences any blocking or looping in accessing the counters and a buffer slot 
due to the actions of the producer thread.    

Property 5:  If Assumption 1 holds true and the time between InsertItem operations is significantly longer 
than the duration of an InsertItem or ReadItem operation, the maximum execution time of a ReadItem 
operation by the consumer thread is bounded by maximum-write-time MT plus the time for reading 
the update counter once and comparing two integers twice.  
Proof:  Since an InsertItem operation involves an insertion of data item into a buffer slot, a read of 
each of the two counters, two updates of one counter, and a testing of the buffer saturation condition, 
MT cannot be smaller than the time for reading a data item from a buffer slot and making two updates 
of a counter.  

2.3.  Two-way interactions between two threads via NBBs  
If the relationship between two threads is symmetric, i.e., each thread functions as a producer as well 

as a consumer, two NBBs can be used between the two threads, each providing a one-way event-message 
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transfer path.  Figure 4 illustrates such two-way data paths 
between processes.   

2.4.  The case of multiple producers serving a single 
consumer 

The most straightforward approach to using the NBB 
mechanism to handle this case is to connect multiple producers 
and the single consumer via NBBs as depicted in Figure 5.  
Each producer owns a separate NBB connected to the 
consumer.  The consumer reads NBBs in a round-robin fashion.  
Thus no new blocking possibilities are introduced.  

Let us assume that we can use some other mechanism to 
make multiple producers to take InsertItem actions in such a 
coordinated manner that only one producer will take an 
InsertItem action at any given time.  Of course, such 
coordination may accompany occasional blocking or busy-wait 
looping of some producers.  Such coordination can be 
implemented by using known interaction mechanisms (e.g., shared lock, semaphore, or other mutual 
exclusion mechanisms) in a number of different ways.  Then a version of an NBB that can be shared by 
multiple producers can be obtained through a very simple revision of the operations depicted in Figure 2.  
Operation ReadItem needs no change.   

Operation InsertItem can be changed into the version in Figure 6.  Note that producer threads do not 
maintain LastUC’s,  the records of the latest values of the update counter which they have produced.  The 
reasons are as follows.  First, it is not possible to let multiple producers maintain LastUC's cooperatively 
without introducing high overhead.  Secondly, the purpose of using LastUC in Figure 3 was to enable the 
producer to determine without accessing the ack-counter AC, which is owned by the consumer, whether the 
buffer is full or not.  Therefore, the only additional work that the producer in Figure 6 must do before 
determining whether the buffer is full or not is to access AC.  The additional work does not represent a 
sizable portion of the typical execution time of InsertItem.   

2.5.  The case of a single producer serving multiple consumers  
In this case, use of multiple NBBs is inevitable.  First, let us consider the case where each message 

from the producer thread needs to be multicast to multiple consumer threads.  If we use just one NBB to 
connect the producer to multiple consumers, then there is the problem of 
maintaining the ack-counter.  Even though one can devise a revised 
complicated procedure for maintaining the ack-counter, such an 
approach is not as cost-effective as the approach of providing one 
dedicated NBB between the producer and each consumer.  

Next, let us consider the case where the producer needs to send a 
different message to each different consumer.  If we use just one NBB to 
connect the producer to multiple consumers, then there is the problem of 
facilitating a non-linear access to buffer slots by the consumers.  The 
resulting complexity does not seem worth it.  Again, the approach of 
providing one dedicated NBB between the producer and each consumer 
is judged to be more cost-effective.   

 
3.  Applications of the NBB mechanism to a middleware model 

supporting real-time distributed computing objects  

3.1.  Virtual machines and threads in the TMOSM model  
The NBB mechanism is valuable wherever the blocking costs 
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consumer from multiple 
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7 

associated with earlier developed interaction mechanisms such as critical sections and semaphore to the 
applications, are very high.  One important application area where we have performed some experiments 
and the NBB mechanism has turned out to be particularly valuable, is in the middleware supporting real-
time distributed computing objects.   

One such middleware architecture which we have formulated, experimented with, and discussed in 
literature in recent years is the TMOSM (TMO support middleware) architecture [Kim99, Kim00].  The 
real-time object model supported by TMOSM is a high-level real-time distributed computing object model 
called the Time-triggered Message-triggered Object (TMO) [Kim97, Kim00, Kim02a].  TMOSM has been 
found to be easily adaptable to most commercial hardware + kernel platforms, e.g., PCs or similar hardware 
with Windows XP, Windows CE, Linux, etc 
[Kim99, KimH02].   

As depicted in Figure 7, within TMOSM, 
the innermost core is a super-micro thread 
called the WTST (Watchdog Timer & 
Scheduler Thread).  It is a "super-thread" in 
that it runs at the highest possible priority 
level.  It is also a "micro-thread" in that it 
manages the scheduling / activation of all 
other threads in TMOSM.  Even those threads 
created by the node OS kernel before TMOSM 
starts are executed only if WTST allocates 
some time-slices to them.  Therefore, WTST is 
in control of the processor and memory 
resources with the cooperation of the node OS 
kernel.   

WTST leases processor and memory 
resources to three virtual machines (VMs) in a 
time-sliced and periodic manner.  Each VM 
can be viewed conceptually as being 
periodically activated to run for a time-slice.  
Each VM is responsible for a major part of the 
functions of TMOSM.  Each VM maintains a 
number of application threads.  In fact, 
whenever WTST assigns a time-slice to a VM, 

0 Update Counter (UC)
Init to 0

Init to 0

Ack-Counter
(AC)

Boolean InsertItem (X)

• TempoAC := AC;               TempoUC := UC; 
• If TempoUC – buffer_size * 2 = TempoAC, buffer is full => Return FALSE  
• UC_old := UC; 
• UC := UC_old + 1;                      “write is atomic”
• Insert the item X into the slot pointed by (UC_old / 2) modulo buffer_size;
• UC := UC_old + 2;                      “write is atomic”
• Return TRUE; 

Boolean ReadItem (X,  LastAC,  WT)

LastACExclusive
Access

No change

Figure 6.  NBB accessed by multiple producers, one at a time  

WTST

Hardware + OS Kernel

VMAT VATVCT

Deadline 
List 

CT1

NBB1

NBB2

CT2 MAT1 MAT2 MAT7 AT1 AT2

NBB4

NBB3

Figure 7.  Virtual machines and threads in TMOSM  
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the VM in turn passes the time-slice onto one of the application threads belonging to itself.  The component 
in each VM that handles this “time-slice relay” is the application thread scheduler.  For example, VM-A 
has the application-thread-scheduler VM-A-Scheduler.  The application thread scheduler is actually 
executed by WTST.  To be more precise, at the beginning of each time-slice, a timer-interrupt results in 
WTST being awakened.  WTST then determines which VM should get this new time-slice.  If VM-A is 
chosen, WTST executes VM-A-Scheduler and as a result, an application thread belonging to VM-A is 
activated to run for a time-slice as WTST enters into the event-waiting mode.  

The set of VMs is fixed at the TMOSM start time.  One iteration of the execution of a specified set of 
VMs is called a TMOSM cycle.  For example, one TMOSM cycle may be: VCT VMAT VAT VMAT.  
The following three VMs handle the core functions:  
(1)  VCT  (VM for Communication Threads):  The application threads maintained by this VM are those 
dedicated to handling the sending and receiving of middleware messages.  Middleware messages are 
exchanged through the communication network among the middleware instantiations running on different 
nodes to support interaction among real-time distributed computing objects, i.e., TMOs.  Therefore, these 
application threads are called communication threads and denoted as CTs in Figure 7.  A communication 
thread also distributes middleware messages coming through the network to their destination threads, 
typically belonging to another VM discussed below.  
(2)  VMAT (VM for Main Application Threads):  The application threads maintained by this VM are those 
dedicated to executing methods of TMOs with maximal exploitation of concurrency.  Those application 
threads are called main application threads and denoted as MATs in Figure 7.  Normally to each execution 
of a method of an application TMO is dedicated a main application thread.  In principle, TMO method 
executions may proceed concurrently whenever there are no data conflicts among the method executions.  
In every one of our prototype implementations of TMOSM, the application thread scheduler in VMAT uses 
a kind of a deadline-driven policy for choosing a main application thread to receive the next time-slice 
[Kim02b].  
(3)  VAT (VM for Auxiliary Threads):  This VM maintains a pool of threads which are called auxiliary 
threads and denoted as ATs in Figure 7.  Some auxiliary threads are designed to be devoted to controlling 
certain peripherals under orders from TMO methods (executed by main application threads).  Others wait 
for orders for executing certain application program-segments and such orders come from main application 
threads in execution of TMO methods.  Use of this VAT has been motivated partly by the consideration 
that it should be easier to analyze the temporal predictability of the application computations handled by 
each VM, i.e., those handled by VMAT and those by VAT, than to analyze the temporal predictability of 
the application computations when there is no VAT and thus VMAT alone handles the combined set of 
application computations.   

Also, WTST provides the services of checking for any deadline violations and if a violation is found, 
it provides an exception signal to the user.   

We believe that structuring of VMs as periodic VMs is a fundamentally sound approach which leads 
to easier analysis of the worst-cast time behavior of the middleware without incurring any significant 
performance drawback.   

3.2.  NBBs facilitating data exchanges between VMs  
There are some data variables shared by multiple VMs and more than one of the VMs function as 

writers.  In such cases, the NBB mechanism is not applicable.  However, there are many more places in 
TMOSM where one VM merely supplies data to the other VM.  Such a data passing needs to be facilitated 
by a shared data structure also.      

If a well established shared data structure such as the monitor object [Bri73, Sil02] is used to facilitate 
such a data passing, then the overhead is much greater than in the case of using an NBB.  In Figure 7, both 
CT1 and CT2 in VCT regularly supply data to MAT7 in VMAT.  The data passing path from CT1 to 
MAT7 consists of an NBB, NBB1, and the path from CT2 to MAT7 consists of NBB2 in the figure.   

Suppose that all NBBs are replaced by monitor objects, i.e., NBB1 by a monitor object MON1, NBB2 
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by MON2, etc.  Then, between CT1 and MAT7, only one of them can enter MON1 at any given time.  The 
other should be blocked at the entrance to the monitor object.  The same situation exists between CT2 and 
MAT7.  Consider the following scenario.  
Scenario S1:  
(1)  MAT7 is checking the variable inside MON1 while the variable contains no new data item and then the 
time-slice used by MAT7 (and VMAT) expires before MAT7 exits from MON1.   
(2)  Later when VCT and CT1 get a time-slice, CT1 tries to access the monitor object in order to deposit a 
new data item there.  CT1 will be blocked since MAT7 is already inside MON1 and has not released the 
monitor lock.   
(3)  When VMAT and MAT7 get a time-slice again, MAT7 will complete the rest of the monitor procedure 
for checking the content of the variable and exit from MON1 thereby unlocking it.   
(4)  Later when VCT and CT1 get a time-slice again, CT1 will receive a wakeup signal and enter MON1, 
deposit a data item there, and exit from MON1.   
(5)  At the end of this time-slice, VMAT and MAT7 may get a time-slice again and then MAT7 may revisit 
MON1 and succeed in getting the new data item.   

Therefore, CT1 wastes at least one full TMOSM cycle before it succeeds in depositing a new data item 
into MON1.  Especially, CT1 wastes the remainder of the time-slice once it gets blocked in step (2).  If 
CT1 is connected to another monitor object, say MON4, it could have wasted an additional substantial 
amount of time due to blocking at the entrance to MON4 before coming to step (2) above.  If CT1 had to 
check MON3 to get a new data item before coming to step (2) above in order to prepare a data item to pass 
on to MAT7, CT1 could have wasted at least two full TMOSM cycles before coming to (2) in the same 
manner as MAT7 experienced in the above scenario.  Also, if MAT7 in step (5) revisits MON1 after a 
considerable delay such that by that time CT1 has already revisited MON1 with the intention of depositing 
another data item but it lost its time-slice inside MON1, then MAT7 will have to be blocked at the entrance 
to MON1.   

Obviously, CT2 and MAT7 can experience similar scenarios in accomplishing a data passing through 
MON2.   

The above situation where the time-slice given to MAT7 expires while MAT7 is inside MON1 may be 
a low-frequency situation but it is not a negligible-frequency situation either.  With NBBs used as in Figure 
7, CT1 is highly likely to succeed in its first attempt to deposit a new data item into NBB1 since there is no 
blocking, even if MAT7 is inside NBB1 when its time-slice expires.  Then the next time VAMT and MAT7 
get a time-slice, MAT7 is highly likely to get the data item.  Thus CT1 does not waste any part of its time-
slice in a blocked mode.   

There is a possible deviation from the above scenario with NBBs.  CT1 may be inside NBB1 and its 
time-slice may expire before depositing a new data item into a buffer slot.  Thus at this time both threads, 
CT1 and MAT7 are inside NBB1 and none of them are active.  Then the next time VMAT and MAT7 get a 
time-slice, MAT7 will exit from NBB1.  MAT7 may revisit NBB1 to get a data item before the expiration 
of its time-slice.  MAT7 will find an empty NBB1 again in this case.  Therefore, only after VCT and CT1 
get another time-slice, a new data item will be deposited into a buffer slot in NBB1 and only after VMAT 
and MAT7 get another time-slice and revisit NBB1, MAT7 will get the data item.  However, CT1 wasted 
no part of its time-slice.  In contrast, CT1 in scenario S1 is blocked at the entrance of MON1 and sits idle 
for a full time-slice.  Even if CT1 had to check NBB3 to get a new data item and prepare a data item to  
pass on to MAT7 before coming to NBB1 in order to deposit the data item, CT1 does not waste any time 
due to blocking.  This is in sharp contrast to what can happen with the use of monitor objects as discussed 
above with scenario S1.  

Therefore, in the case of implementing TMOSM-like middleware, use of the NBB mechanism is 
significantly advantageous over the use of blocking-prone interaction mechanisms such as the monitor 
object.  
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4.  Conclusion 

In this paper, the non-blocking buffer (NBB) mechanism was presented.  It can be viewed as a major 
extension of the non-blocking writer (NBW) mechanism invented by Kopetz, which is useful in facilitating 
state message communication from a producer to a consumer thread in real-time applications.  The NBB 
mechanism facilitates communication of event messages from a producer to a consumer without causing 
any party to experience blocking.  Therefore, its application scope includes all conceivable producer-
consumer situations.  The NBB mechanism is not a replacement of but rather a great companion to the 
NBW mechanism since the latter facilitates the most efficient state message communication.  It is also a 
companion to other established synchronization mechanisms since there are many situations where just 
efficient synchronizations of threads, not data communication, is required.  

The application of NBBs in building middleware supporting real-time distributed computing objects 
was discussed to point out the compelling nature of the NBB mechanism in such situations.   Although 
some experiments have been conducted with the NBB mechanism, much further experimental studies are 
needed to obtain better understanding of the potentials of the mechanism.  Also, the impacts of using NBBs 
as interaction mechanisms on resource allocation techniques within operating systems and middleware are 
considered an important subject for future study.   
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