
UC Irvine
UC Irvine Previously Published Works

Title
A non-blocking buffer mechanism for real-time event message communication

Permalink
https://escholarship.org/uc/item/7t71d3gr

Journal
Real-Time Systems, 32(3)

ISSN
0922-6443

Author
Kim, KHK

Publication Date
2006-03-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7t71d3gr
https://escholarship.org
http://www.cdlib.org/

1

A Non-Blocking Buffer Mechanism

for Real-Time Event Message Communicatoin

K. H. (Kane) Kim
University of California

Irvine, CA, USA
http://dream.eng.uci.edu

Abstract: It is desirable to facilitate data communications among concurrent computation threads without
incurring non-essential synchronizations in real-time computing systems. An interaction mechanism,
called the non-blocking writer (NBW) mechanism and invented by Kopetz, is useful in facilitating state
message communication from a producer to a consumer thread in real-time applications. A more widely
applicable practical interaction mechanism called the non-blocking buffer (NBB) is presented here. The
NBB mechanism can be viewed as a significant extension of the NBW mechanism. The NBB mechanism
facilitates communication of event messages from a producer to a consumer without causing any party to
experience blocking. Therefore, its application scope includes all conceivable producer-consumer
situations. The NBB mechanism is not a replacement of but rather a companion to the NBW mechanism
since the latter facilitates the most efficient state message communication. The application of NBBs in
building middleware supporting real-time objects is discussed as a demonstration of the utility of the NBB
mechanism.

Keywords: concurrent programming, distributed computing, thread, synchronization, blocking, real time,
NBW, buffer, NBB, monitor, object, TMO, middleware, TMOSM, producer, consumer.

1. Introduction

It has been understood for a long time that the performance of a software system exploiting
concurrency is impacted substantially by the approach used for facilitating interactions and
synchronizations among concurrent computation threads [Dij65, Bri73, Kop97, Sil02]. In general, it is
desirable to make cooperating concurrent threads to interact among themselves without involving non-
essential synchronizations. Non-essential synchronizations can be easily found in operating systems (OSs),
middleware, and concurrent computing application software of today. They can be found not only in
process-structured software systems but also object-oriented software systems. This is largely because the
designers did not have the incentives to optimize the performance of the software systems to the extent
required in many real-time applications.

Yet as research interests in real-time computing and the rate of developing new real-time computing
applications started growing faster in 1990’s, the importance of software mechanisms facilitating safe and
efficient interactions among concurrent computation threads started receiving a new level of recognition
[And97, Ber93, Kim95, Kop89, Kop93, Kop97, Moc99, Pra94, Qaz93, Raj91, Raj95, Zha95]. Non-
essential synchronizations are highly undesirable in OSs, middleware, and application software used in
many real-time applications. The issue dealt with in this paper is the facilitation of data communications
among real-time computation threads without incurring non-essential synchronizations.

An interaction mechanism, called the non-blocking writer (NBW) mechanism, was invented by
Kopetz [Kop93, Kop97]. It has been found useful in facilitating state message communication from a
producer to a consumer thread in real-time applications. Unlike conventional event messages each of
which must be read by the receiver, the destination of each state message is a fixed memory location which
is accessed by the receiver in a read-only fashion. The memory location may be called a state message
variable (SMV). Thus each new state message results in updating the content of the corresponding
memory location regardless of whether the reader read the previous content or not. The NBW mechanism

2

was devised to enable the state message
producer / carrier to update the state
message variable without experiencing
blocking. The reader does not
experience blocking either but may
experience up to a small number of
times its read operations turning into
wastes. Therefore, the application of
the NBW mechanism was limited to
state message communication. For such
applications, the NBW mechanism is
practical and the most cost-effective
approach to the knowledge of this
author.

In this paper, a more widely
applicable practical interaction
mechanism called the non-blocking
buffer (NBB) is presented. The NBB mechanism can be viewed as a major extension of the NBW
mechanism. The NBB mechanism facilitates communication of event messages from a producer to a
consumer without causing any party to experience blocking. Therefore, its application scope includes all
conceivable producer-consumer situations. Experiments involving application of this mechanism in
building middleware as well as real-time application software confirmed the utility of the NBB mechanism.

Therefore, the NBB mechanism is not only a major extension of the NBW mechanism but also a great
companion to the latter since the latter can be used for state message communication while the former is
used for event message communication. It should also be noted that both NBW and NBB mechanisms are
interaction mechanisms, more specifically, message communication mechanisms. There are many
situations where just efficient synchronizations of threads, not data communication, is required and use of
message communication mechanisms for realizing such synchronization is not as efficient as use of
established synchronization mechanisms.

In the next section, the NBW mechanism is briefly reviewed and then the NBB mechanism is
presented. After discussing the case of a single producer and a single consumer, approaches for adapting
the basic NBB mechanism for the cases of more complex interactions are discussed. Then in Section 3, the
value of the NBB mechanism in constructing efficient middleware supporting real-time distributed
computing objects is discussed. The paper concludes in Section 4.

2. The non-blocking buffer (NBB) mechanism

2.1. The non-blocking writer (NBW) mechanism
The NBW scheme invented by Kopetz is depicted in Figure 1 [Kop93, Kop97]. The writer thread,

WR, can write a state message into the state message variable StateMsgVar at any time without
experiencing any blocking. In addition to the state message variable, a counter named the update counter
(UC) is used. WR increments UC once before updating StateMsgVar and once after updating it.
Therefore, UC contains an odd number only during the state-message-write operation and an even number
at any other time. Writing a new value into UC must be an atomic operation. That is, the value of UC that
can be read by the reader thread, RD, should always a valid odd number or a valid even number and never
an undefined value. If UC is of a single-word integer type, a basic read or write operation of the counter
within a typical commercial computing platform (hardware + OS) is executed as an atomic operation
without requiring any special OS mechanism.

When RD reads the state message variable, it follows a protocol that may be called the double-
checking reader protocol. Basically, after reading the content of StateMsgVar, typically through multiple
machine cycles, and before completing the state-message-read procedure, the double-checking RD checks

UC

Boolean Write (X)

• UC_old := UC;
• UC := UC_old + 1;
• Write StateMsg X

into StateMsgVar;
• UC := UC_old + 2;

StateMsgVar

Init to 0

Start:
• Repeat UC_begin := UC until

UC_begin is an even number;
• Read StateMsg X in StateMsgVar;
• UC_end := UC;
• If UC_end ≠ UC_begin then goto

Start ;

Boolean Read (X)

Double-Checking Reader

Figure 1. The Non-Blocking Writer (NBW)
mechanism (adapted from [Kop97])

3

if WR has updated either UC or UC and StateMsgVar since
RD read StateMsgVar recently. If so, the double-checking
RD reads StateMsgVar again and performs the check again
and this may be repeated until RD finds that its state-message-
read has been completed without any interference by the
NBW, i.e., WR. The number of read retries is bounded by a
number not much larger than two as long as
(1) the time between state-message-write operations is
significantly longer than the duration of a state-message-write
or state-message-read operation, and
(2) RD is not preempted at a disproportionate rate while it is
executing the state-message-read procedure.

Therefore, for communication of state messages from
WR to RD, the NBW mechanism facilitates the most efficient
operation.

2.2. The basic structure and operations of the non-
blocking buffer (NBB) mechanism

The NBB scheme is depicted in a highly abstract form in Figure 2. An earlier framework of NBB was
discussed in [Kim02a] but since then, the framework has been refined into a concrete optimized mechanism
which is presented here. The producer thread, PROD, owns the circular buffer. It can write into the buffer
at any time without experiencing any blocking and thus is a non-blocking writer of the buffer although this
writer is completely different from the writer in the NBW mechanism. In addition to the circular buffer,
there are two counters, the update counter (UC) and the acknowledgment counter (AC), also called the ack-
counter.

PROD is a non-blocking writer for the update counter. The value of the update counter is interpreted
as a pointer to the next slot in the circular buffer to be used for accommodating a new data item.

The consumer thread, CONS, is a non-blocking writer for the ack-counter. The value of the ack-
counter is interpreted as a pointer to the next slot in the circular buffer to be used for reading a new data
item. As will be clarified later, the two counters are used in ways to ensure that PROD and CONS always
access different slots in the circular buffer. Therefore, PROD and CONS never run into collisions in
accessing the same buffer slot.

It turns out that there are practically no significant types of collisions between PROD and CONS in
accessing counters either. This is because as long as each counter is of a single-word integer type, a read or
write operation of the counter is a trivially short atomic operation, especially in comparison to the time
taken for accessing a buffer slot which may be large enough to accommodate a sizable message.

Therefore, the only possible collisions between PROD and CONS occur either when the buffer is
empty while CONS tries to read a data item or when the buffer is full while PROD tries to deposit a new
data item. These collisions are not due to the nature of interaction mechanisms. They are rather due to our
goal of supporting event message communications. The NBB mechanism was devised along with the
adoption of the software design style of making PROD to exit from NBB when the buffer is already full
and then come back later to make a retry. The application designer should ensure that CONS invokes the
message-read operation at a frequency which is, on average, higher or equal to that at which PROD invokes
the message-insert operation. The purpose of having at least a certain minimal number of message-slots in
an NBB is to allow PROD to generate temporary bursts of messages without experiencing any blocking.

The actions taken by PROD to judge whether the buffer saturation remains or not involves one non-
blocking read of the ack-counter. Similarly, CONS checks if the buffer remains empty or not and it does so
in a manner not disturbing PROD in any way. This means that the NBB mechanism provides a blocking-
free event-message buffer between PROD and CONS with practically negligible collision overhead
incurred.

Figure 3 depicts the details of the operation algorithms associated with the NBB mechanism. PROD

PROD CONS

No
n-

Blo
ck

ing
W

rit
er

U

A

U Update counter Ack-counterA

Read-Only

Figure 2. A high-level view of the
non-blocking buffer scheme

4

calls operation InsertItem to deposit item X into the circular buffer. Between accessing the NBB, PROD
maintains a record of the latest value of the update counter which it has produced. By comparing this
value, LastUC, against the current value of the ack-counter, PROD can tell if the circular buffer is full or
not. If the buffer is full, then PROC exits from the operation InsertItem and tries the operation later again
as the application designer specified.

The designer of a reliable real-time computing application should normally analyze the possible
duration of the period of buffer saturation as well as the frequency of saturation occurrences [Kop97].

The storing of a counter value needed in several steps during operation InsertItem must be an atomic
operation as in the case of the NBW mechanism. As mentioned before, as long as the counter is of a
single-word integer type, then the atomicity requirement is met without the aid of any special OS
mechanism. Thus the operation InsertItem is trivially easy to implement.

Since a circular buffer is used and the relationships between each counter and the corresponding buffer
slot are unambiguous, there is no need to have an explicit operation for removing any data item from the
buffer. Once the content of a buffer slot is read by CONS, the buffer slot is treated as an empty one until
PROD writes a new data item into it.

CONS calls operation ReadItem to read item X from a slot in the circular buffer. Between accessing
the NBB, CONS maintains a record of the latest value of the ack-counter which it has produced. By
comparing this value, LastAC, against the current value of the update counter, CONS can tell if the circular
buffer is empty or not. If the buffer is empty, then CONS exits from the operation ReadItem and try the
operation later again as the application designer specified. The designer of a reliable real-time computing
application should normally analyze the possible duration of the waiting period of CONS in the face of an
empty buffer as well as the frequency of such waiting occurrences.

The first step in operation ReadItem is to check the update counter. The following cases may be
encountered.

0 Update Counter (UC)
Init to 0

Init to 0

Ack-Counter
(AC)

Boolean InsertItem (X, LastUC)

• TempoAC := AC;
• If LastUC – buffer_size * 2 = TempoAC, buffer is full => Return FALSE
• UC_old := UC;
• UC := UC_old + 1; “write is atomic”
• Insert the item X into the slot pointed by (UC_old / 2) modulo buffer_size;
• UC := UC_old + 2; “write is atomic”
• LastUC := UC_old + 2; Return TRUE;

Boolean ReadItem (X, LastAC, WT)

• TempoUC := UC; If TempoUC = LastAC, buffer is empty => Return FALSE;
• If TempoUC – LastAC = 1 then { Repeat TempoUC := UC until

TempoUC is even or max_write_time (or max iterations) WT has elapsed;
If WT has elapsed, Producer must have lost its execution resources while
writing into NBB (e.g., time-slice expiration) => Buffer is practically empty =>
Return FALSE; } ;

• Read the item X from the slot pointed to by (LastAC / 2) modulo buffer_size;
• AC_old := AC; AC := AC_old + 2; “write is atomic”
• LastAC := AC_old + 2; Return TRUE;

LastUC LastAC

Figure 3. The Non-Blocking Buffer (NBB)

5

(Case 1) The update counter points to the same buffer slot pointed by LastAC:
In this case the buffer is empty and there is no sign of PROD being in the middle of writing into the

buffer. Therefore, CONS exits from the operation ReadItem and tries the operation later again as the
application designer specified.
(Case 2) The value of the update counter is an odd number which is only one larger than LastAC:

In this case PROD is in the middle of writing into the buffer slot next to the slot pointed by LastAC.
Normally the operation by PROD of inserting a data item into a buffer slot is a quick operation and thus
should not exceed the maximum-write-time WT, which is a reasonably small number representing the
maximum execution time for InsertItem while the buffer is not full. Thus it is worth for CONS to
continuously check the update counter until either the update counter becomes an even number, in which
case CONS can proceed to access the slot just filled by PROD and read the data item, or WT elapses.

The situation where WT has elapsed while CONS is still checking the update counter arises only when
PROD lost the necessary execution resources to another thread before PROD completes the InsertItem
operation. In this case, it is not effective for CONS to continuously check the update counter. It is better
for CONS to exit from the operation ReadItem and try the operation later again. A frequently occurring
situation where PROD loses its execution resources is the expiration of the time-slice given to PROD.
(Case 3) The value of the update counter is larger than LastAC by two or more:

In this case, CONS can just proceed to access the slot pointed by LastAC and read the data item there,
regardless of whether PROD is also inside the NBB or not.

Again, implementing operation ReadItem is very easy. Therefore, implementing the NBB mechanism
on typical commercial computing platforms is as easy as implementing the NBW mechanism in spite of the
greater application scope of the NBB.

In short, the NBB mechanism has the following properties.
Assumption 1: Writing a new value into and reading from each of the two single-word integer counters in

the NBB mechanism defined in Figure 2 are atomic operations.
Property 1: If Assumption 1 holds true, the buffer slot into which the producer thread is inserting a data

item is always different from the buffer slot from which the consumer thread is reading / copying a
data item at the same time.

Property 2: If Assumption 1 holds true, the producer thread never experiences any blocking or looping in
accessing the counters and buffer slots due to the actions of the consumer thread.

Property 3: If Assumption 1 holds true, the producer thread detects the full-buffer condition without
experiencing any blocking and exits from the NBB mechanism upon such detection.

Property 4: If Assumption 1 holds true and there is at least one fresh data item in the circular buffer, the
consumer thread never experiences any blocking or looping in accessing the counters and a buffer slot
due to the actions of the producer thread.

Property 5: If Assumption 1 holds true and the time between InsertItem operations is significantly longer
than the duration of an InsertItem or ReadItem operation, the maximum execution time of a ReadItem
operation by the consumer thread is bounded by maximum-write-time MT plus the time for reading
the update counter once and comparing two integers twice.
Proof: Since an InsertItem operation involves an insertion of data item into a buffer slot, a read of
each of the two counters, two updates of one counter, and a testing of the buffer saturation condition,
MT cannot be smaller than the time for reading a data item from a buffer slot and making two updates
of a counter.

2.3. Two-way interactions between two threads via NBBs
If the relationship between two threads is symmetric, i.e., each thread functions as a producer as well

as a consumer, two NBBs can be used between the two threads, each providing a one-way event-message

6

transfer path. Figure 4 illustrates such two-way data paths
between processes.

2.4. The case of multiple producers serving a single
consumer

The most straightforward approach to using the NBB
mechanism to handle this case is to connect multiple producers
and the single consumer via NBBs as depicted in Figure 5.
Each producer owns a separate NBB connected to the
consumer. The consumer reads NBBs in a round-robin fashion.
Thus no new blocking possibilities are introduced.

Let us assume that we can use some other mechanism to
make multiple producers to take InsertItem actions in such a
coordinated manner that only one producer will take an
InsertItem action at any given time. Of course, such
coordination may accompany occasional blocking or busy-wait
looping of some producers. Such coordination can be
implemented by using known interaction mechanisms (e.g., shared lock, semaphore, or other mutual
exclusion mechanisms) in a number of different ways. Then a version of an NBB that can be shared by
multiple producers can be obtained through a very simple revision of the operations depicted in Figure 2.
Operation ReadItem needs no change.

Operation InsertItem can be changed into the version in Figure 6. Note that producer threads do not
maintain LastUC’s, the records of the latest values of the update counter which they have produced. The
reasons are as follows. First, it is not possible to let multiple producers maintain LastUC's cooperatively
without introducing high overhead. Secondly, the purpose of using LastUC in Figure 3 was to enable the
producer to determine without accessing the ack-counter AC, which is owned by the consumer, whether the
buffer is full or not. Therefore, the only additional work that the producer in Figure 6 must do before
determining whether the buffer is full or not is to access AC. The additional work does not represent a
sizable portion of the typical execution time of InsertItem.

2.5. The case of a single producer serving multiple consumers
In this case, use of multiple NBBs is inevitable. First, let us consider the case where each message

from the producer thread needs to be multicast to multiple consumer threads. If we use just one NBB to
connect the producer to multiple consumers, then there is the problem of
maintaining the ack-counter. Even though one can devise a revised
complicated procedure for maintaining the ack-counter, such an
approach is not as cost-effective as the approach of providing one
dedicated NBB between the producer and each consumer.

Next, let us consider the case where the producer needs to send a
different message to each different consumer. If we use just one NBB to
connect the producer to multiple consumers, then there is the problem of
facilitating a non-linear access to buffer slots by the consumers. The
resulting complexity does not seem worth it. Again, the approach of
providing one dedicated NBB between the producer and each consumer
is judged to be more cost-effective.

3. Applications of the NBB mechanism to a middleware model

supporting real-time distributed computing objects

3.1. Virtual machines and threads in the TMOSM model
The NBB mechanism is valuable wherever the blocking costs

A-H A-M A-L

B-LB-MB-H

NBB
U
A
U
A

U
A
U
A

U
A
U
A

U
A
U
A

U
A
U
A

U
A
U
A

U
A
U
A

U
A
U
A

U
A
U
A

U
A
U
A

Figure 4. Symmetric connections
via NBBs between threads

PROD1

CONS

U
A
U
A

U
A
U
A

U
A
U
A

PROD2 PROD3

Figure 5. NBB connections to a
consumer from multiple
producers

7

associated with earlier developed interaction mechanisms such as critical sections and semaphore to the
applications, are very high. One important application area where we have performed some experiments
and the NBB mechanism has turned out to be particularly valuable, is in the middleware supporting real-
time distributed computing objects.

One such middleware architecture which we have formulated, experimented with, and discussed in
literature in recent years is the TMOSM (TMO support middleware) architecture [Kim99, Kim00]. The
real-time object model supported by TMOSM is a high-level real-time distributed computing object model
called the Time-triggered Message-triggered Object (TMO) [Kim97, Kim00, Kim02a]. TMOSM has been
found to be easily adaptable to most commercial hardware + kernel platforms, e.g., PCs or similar hardware
with Windows XP, Windows CE, Linux, etc
[Kim99, KimH02].

As depicted in Figure 7, within TMOSM,
the innermost core is a super-micro thread
called the WTST (Watchdog Timer &
Scheduler Thread). It is a "super-thread" in
that it runs at the highest possible priority
level. It is also a "micro-thread" in that it
manages the scheduling / activation of all
other threads in TMOSM. Even those threads
created by the node OS kernel before TMOSM
starts are executed only if WTST allocates
some time-slices to them. Therefore, WTST is
in control of the processor and memory
resources with the cooperation of the node OS
kernel.

WTST leases processor and memory
resources to three virtual machines (VMs) in a
time-sliced and periodic manner. Each VM
can be viewed conceptually as being
periodically activated to run for a time-slice.
Each VM is responsible for a major part of the
functions of TMOSM. Each VM maintains a
number of application threads. In fact,
whenever WTST assigns a time-slice to a VM,

0 Update Counter (UC)
Init to 0

Init to 0

Ack-Counter
(AC)

Boolean InsertItem (X)

• TempoAC := AC; TempoUC := UC;
• If TempoUC – buffer_size * 2 = TempoAC, buffer is full => Return FALSE
• UC_old := UC;
• UC := UC_old + 1; “write is atomic”
• Insert the item X into the slot pointed by (UC_old / 2) modulo buffer_size;
• UC := UC_old + 2; “write is atomic”
• Return TRUE;

Boolean ReadItem (X, LastAC, WT)

LastACExclusive
Access

No change

Figure 6. NBB accessed by multiple producers, one at a time

WTST

Hardware + OS Kernel

VMAT VATVCT

Deadline
List

CT1

NBB1

NBB2

CT2 MAT1 MAT2 MAT7 AT1 AT2

NBB4

NBB3

Figure 7. Virtual machines and threads in TMOSM

8

the VM in turn passes the time-slice onto one of the application threads belonging to itself. The component
in each VM that handles this “time-slice relay” is the application thread scheduler. For example, VM-A
has the application-thread-scheduler VM-A-Scheduler. The application thread scheduler is actually
executed by WTST. To be more precise, at the beginning of each time-slice, a timer-interrupt results in
WTST being awakened. WTST then determines which VM should get this new time-slice. If VM-A is
chosen, WTST executes VM-A-Scheduler and as a result, an application thread belonging to VM-A is
activated to run for a time-slice as WTST enters into the event-waiting mode.

The set of VMs is fixed at the TMOSM start time. One iteration of the execution of a specified set of
VMs is called a TMOSM cycle. For example, one TMOSM cycle may be: VCT VMAT VAT VMAT.
The following three VMs handle the core functions:
(1) VCT (VM for Communication Threads): The application threads maintained by this VM are those
dedicated to handling the sending and receiving of middleware messages. Middleware messages are
exchanged through the communication network among the middleware instantiations running on different
nodes to support interaction among real-time distributed computing objects, i.e., TMOs. Therefore, these
application threads are called communication threads and denoted as CTs in Figure 7. A communication
thread also distributes middleware messages coming through the network to their destination threads,
typically belonging to another VM discussed below.
(2) VMAT (VM for Main Application Threads): The application threads maintained by this VM are those
dedicated to executing methods of TMOs with maximal exploitation of concurrency. Those application
threads are called main application threads and denoted as MATs in Figure 7. Normally to each execution
of a method of an application TMO is dedicated a main application thread. In principle, TMO method
executions may proceed concurrently whenever there are no data conflicts among the method executions.
In every one of our prototype implementations of TMOSM, the application thread scheduler in VMAT uses
a kind of a deadline-driven policy for choosing a main application thread to receive the next time-slice
[Kim02b].
(3) VAT (VM for Auxiliary Threads): This VM maintains a pool of threads which are called auxiliary
threads and denoted as ATs in Figure 7. Some auxiliary threads are designed to be devoted to controlling
certain peripherals under orders from TMO methods (executed by main application threads). Others wait
for orders for executing certain application program-segments and such orders come from main application
threads in execution of TMO methods. Use of this VAT has been motivated partly by the consideration
that it should be easier to analyze the temporal predictability of the application computations handled by
each VM, i.e., those handled by VMAT and those by VAT, than to analyze the temporal predictability of
the application computations when there is no VAT and thus VMAT alone handles the combined set of
application computations.

Also, WTST provides the services of checking for any deadline violations and if a violation is found,
it provides an exception signal to the user.

We believe that structuring of VMs as periodic VMs is a fundamentally sound approach which leads
to easier analysis of the worst-cast time behavior of the middleware without incurring any significant
performance drawback.

3.2. NBBs facilitating data exchanges between VMs
There are some data variables shared by multiple VMs and more than one of the VMs function as

writers. In such cases, the NBB mechanism is not applicable. However, there are many more places in
TMOSM where one VM merely supplies data to the other VM. Such a data passing needs to be facilitated
by a shared data structure also.

If a well established shared data structure such as the monitor object [Bri73, Sil02] is used to facilitate
such a data passing, then the overhead is much greater than in the case of using an NBB. In Figure 7, both
CT1 and CT2 in VCT regularly supply data to MAT7 in VMAT. The data passing path from CT1 to
MAT7 consists of an NBB, NBB1, and the path from CT2 to MAT7 consists of NBB2 in the figure.

Suppose that all NBBs are replaced by monitor objects, i.e., NBB1 by a monitor object MON1, NBB2

9

by MON2, etc. Then, between CT1 and MAT7, only one of them can enter MON1 at any given time. The
other should be blocked at the entrance to the monitor object. The same situation exists between CT2 and
MAT7. Consider the following scenario.
Scenario S1:
(1) MAT7 is checking the variable inside MON1 while the variable contains no new data item and then the
time-slice used by MAT7 (and VMAT) expires before MAT7 exits from MON1.
(2) Later when VCT and CT1 get a time-slice, CT1 tries to access the monitor object in order to deposit a
new data item there. CT1 will be blocked since MAT7 is already inside MON1 and has not released the
monitor lock.
(3) When VMAT and MAT7 get a time-slice again, MAT7 will complete the rest of the monitor procedure
for checking the content of the variable and exit from MON1 thereby unlocking it.
(4) Later when VCT and CT1 get a time-slice again, CT1 will receive a wakeup signal and enter MON1,
deposit a data item there, and exit from MON1.
(5) At the end of this time-slice, VMAT and MAT7 may get a time-slice again and then MAT7 may revisit
MON1 and succeed in getting the new data item.

Therefore, CT1 wastes at least one full TMOSM cycle before it succeeds in depositing a new data item
into MON1. Especially, CT1 wastes the remainder of the time-slice once it gets blocked in step (2). If
CT1 is connected to another monitor object, say MON4, it could have wasted an additional substantial
amount of time due to blocking at the entrance to MON4 before coming to step (2) above. If CT1 had to
check MON3 to get a new data item before coming to step (2) above in order to prepare a data item to pass
on to MAT7, CT1 could have wasted at least two full TMOSM cycles before coming to (2) in the same
manner as MAT7 experienced in the above scenario. Also, if MAT7 in step (5) revisits MON1 after a
considerable delay such that by that time CT1 has already revisited MON1 with the intention of depositing
another data item but it lost its time-slice inside MON1, then MAT7 will have to be blocked at the entrance
to MON1.

Obviously, CT2 and MAT7 can experience similar scenarios in accomplishing a data passing through
MON2.

The above situation where the time-slice given to MAT7 expires while MAT7 is inside MON1 may be
a low-frequency situation but it is not a negligible-frequency situation either. With NBBs used as in Figure
7, CT1 is highly likely to succeed in its first attempt to deposit a new data item into NBB1 since there is no
blocking, even if MAT7 is inside NBB1 when its time-slice expires. Then the next time VAMT and MAT7
get a time-slice, MAT7 is highly likely to get the data item. Thus CT1 does not waste any part of its time-
slice in a blocked mode.

There is a possible deviation from the above scenario with NBBs. CT1 may be inside NBB1 and its
time-slice may expire before depositing a new data item into a buffer slot. Thus at this time both threads,
CT1 and MAT7 are inside NBB1 and none of them are active. Then the next time VMAT and MAT7 get a
time-slice, MAT7 will exit from NBB1. MAT7 may revisit NBB1 to get a data item before the expiration
of its time-slice. MAT7 will find an empty NBB1 again in this case. Therefore, only after VCT and CT1
get another time-slice, a new data item will be deposited into a buffer slot in NBB1 and only after VMAT
and MAT7 get another time-slice and revisit NBB1, MAT7 will get the data item. However, CT1 wasted
no part of its time-slice. In contrast, CT1 in scenario S1 is blocked at the entrance of MON1 and sits idle
for a full time-slice. Even if CT1 had to check NBB3 to get a new data item and prepare a data item to
pass on to MAT7 before coming to NBB1 in order to deposit the data item, CT1 does not waste any time
due to blocking. This is in sharp contrast to what can happen with the use of monitor objects as discussed
above with scenario S1.

Therefore, in the case of implementing TMOSM-like middleware, use of the NBB mechanism is
significantly advantageous over the use of blocking-prone interaction mechanisms such as the monitor
object.

10

4. Conclusion

In this paper, the non-blocking buffer (NBB) mechanism was presented. It can be viewed as a major
extension of the non-blocking writer (NBW) mechanism invented by Kopetz, which is useful in facilitating
state message communication from a producer to a consumer thread in real-time applications. The NBB
mechanism facilitates communication of event messages from a producer to a consumer without causing
any party to experience blocking. Therefore, its application scope includes all conceivable producer-
consumer situations. The NBB mechanism is not a replacement of but rather a great companion to the
NBW mechanism since the latter facilitates the most efficient state message communication. It is also a
companion to other established synchronization mechanisms since there are many situations where just
efficient synchronizations of threads, not data communication, is required.

The application of NBBs in building middleware supporting real-time distributed computing objects
was discussed to point out the compelling nature of the NBB mechanism in such situations. Although
some experiments have been conducted with the NBB mechanism, much further experimental studies are
needed to obtain better understanding of the potentials of the mechanism. Also, the impacts of using NBBs
as interaction mechanisms on resource allocation techniques within operating systems and middleware are
considered an important subject for future study.
Acknowledgment: The research work reported here was supported in part by the NSF under Grant
Numbers 02-04050 (NGS) and 03-26606 (ITR) and under Cooperative Agreement ANI-0225642 to the
University of California, San Diego for "The OptIPuter", and in part by SKKU. No part of this paper
represents the views and opinions of any of the sponsors mentioned above.

References

[And97] Anderson, J.H., Jain, R., and Ramamurthy, S., "Wait-free object sharing schemes for real- time
uniprocessors and multiprocessors", Proc. 18th IEEE Real-Time Systems Symp., 1997, pp.111-122.
[Ber93] Bershad, B., "Practical considerations for non-blocking concurrent objects", Proc. IEEE Int'al
Conf. on Distributed Computing Systems, 1993, pp. 264–273.
[Bri73] Brinch Hansen, P., 'Operating System Principles', Prentice-Hall, Englewood Cliffs, NJ, 1973.
[Dij65] Disjkstra, E.W., "Communicating Sequential Processes", Tech. Rept. EWD-123, Tech. Univ. of
Eindhoven, the Netherlands; published as a chapter in F. Genuys, ed., 'Programming Languages',
Academic Press, London, England, 1968, pp. 43-112.
[Kim95] Kim, K.H.(Kane), Mori, K., and Nakanishi, H., "Realization of Autonomous Decentralized
Computing with the RTO.k Object Structuring Scheme and the HU-DF Inter-Process-Group
Communication Scheme", Proc. ISADS '95 (IEEE Computer Society's 2nd Int'l Symp. on Autonomous
Decentralized Systems), April 1995, Phoenix, AZ, pp.305-312.
[Kim97] Kim, K.H., "Object Structures for Real-Time Systems and Simulators", IEEE Computer, August
1997, pp.62-70.
[Kim99] Kim, K.H., Ishida, M., and Liu, J., "An Efficient Middleware Architecture Supporting Time-
Triggered Message-Triggered Objects and an NT-based Implementation", Proc. ISORC '99 (IEEE CS 2nd
Int'l Symp. on Object-oriented Real-time distributed Computing), May 1999, pp.54-63.
[Kim00] Kim, K.H., "APIs for Real-Time Distributed Object Programming", IEEE Computer, June 2000,
pp.72-80.
[Kim02a] Kim, K.H., "Commanding and Reactive Control of Peripherals in the TMO Programming
Scheme", Proc. ISORC ’02 (5th IEEE CS Int'l Symp. on Object-Oriented Real-time Distributed
Computing), Crystal City, VA, April 2002, pp.448-456.
[Kim02b] Kim, K.H., and Liu, J.Q., "Going Beyond Deadline-Driven Low-level Scheduling in Distributed
Real-Time Computing Systems", in B. Kleinjohann et al. eds., 'Design and Analysis of Distributed
Embedded Systems' (Proc. IFIP 17th World Computer Congress, TC10 Stream, Montreal, Aug 2002),
Kluwer, pp.205-215.
[KimH02] Kim, H.J, et al., "TMO-Linux: A linux-based Real-time Operating Systems Supporting

11

Execution of TMOs", Proc. 5th IEEE CS Int'l Symp. on Object-Oriented Real-time Distributed Computing
(ISORC ’02), Washington D.C., April 2002, pp. 288-294.
[Kop89] Kopetz, H., and et al, "Distributed fault-tolerant real-time systems: the Mars approach", IEEE
Micro, Vol.9, No.1, 1989, pp.25–40.
[Kop93] Kopetz, H., and Reisinger, J., "NBW: A Non-Blocking Write Protocol for Task Communication
in Real-Time Systems", Proc. IEEE CS 1993 Real-Time Systems Symp., Dec. 1993, pp.131-137.
[Kop97] Kopetz, H., 'Real-Time Systems: Design Principles for Distributed Embedded Applications',
Kluwer Academic Publishers, ISBN: 0-7923-9894-7, Boston, 1997.
[Liu73] C.L. Liu and J.W. Layland. "Scheduling algorithms for multiprogramming in a hard real-time
environment", J. ACM, 20(1):46-61, Jan. 1973, pp.46-61.
[Moc99] Mock, M.; and Nett, E.; "Real-time communication in autonomous robot systems", Proc. Fourth
Int'l Symp. on Autonomous Decentralized Systems (ISADS), March 1999, pp.34 - 41.
[Pra94] Prakash, S., Lee, Y.-H., and Johnson, T., "A non-blocking algorithm for shared queues using
compare-and-swap", IEEE Trans. on Computers, Vol.43, No.5, 1994, pp.548–559.
[Qaz93] Qazi, N.U., Woo, M., and Ghafoor, A., "A synchronization and communication model for
distributed multimedia objects", Proc. first ACM int'l conf. on Multimedia, Anaheim, CA, Sept. 1993, pp.
147 - 155.
[Raj91] Rajkumar, R., 'Synchronization in real-time systems - a priority inheritance approach', Kluwer
Academic Publishers, 1991.
[Raj95] Rajkumar, R., Gagliardi, M., and Sha, L., "The real-time publisher/subscriber inter-process
communication model for distributed real-time systems: design and implementation", Proc. Real-Time
Technology and Applications Symp., May 1995, pp.66 - 75.
[Sil02] Silberschatz, A., Galvin, P.B., and Gagne, G., 'Operating System Concepts', 6th ed., John Wiley &
Sons, Inc., 2002.
[Zha90] Zhao, W.; Stankovic, J.A.; and Ramamritham, K.; "A window protocol for transmission of time-
constrained messages", IEEE Trans. on Computers, Vol.39 , No.9, Sept. 1990, pp.1186 - 1203.

