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Earthquake locations are fundamental to studies of earthquake physics, fault orientations and Earth’s

deformation. Improving earthquake location accuracy has been an important goal branch in seismology

for the past few decades. In this dissertation, I consider several methods to improve both relative and

absolute earthquake locations. Chapter 2 is devoted to the comparison of different relative earthquake lo-

cation techniques based on synthetic data, including the double-difference and source-specific station term

(SSST) method. The shrinking box SSST algorithm not only provides similar improvements in relative

earthquake locations compared to other techniques, but also improves absolute location accuracy com-

pared to the simple SSST method. Chapter 4 describes and documents the COMPLOC software package

for implementing the shrinking box SSST algorithm. Chapter 3 shows how absolute locations for quarry

seismicity can be obtained by using remote sensing data, which is useful in providing absolute reference

locations for three-dimensional velocity inversions and to constrain the shallow crustal structure in simul-

taneous earthquake location and velocity inversions. Chapter 5 presents and tests a method to estimate

local Vp/Vs ratios for compact similar earthquake clusters using the precise P - and S- differential times

obtained using waveform cross-correlation. Chapter 6 describes a new three-dimensional seismic veloc-

ity model for southern California obtained using the “composite event method” applied to the SIMULPS

tomographic inversion algorithm. Based on this velocity model and waveform cross-correlation, Chap-

ter 7 describes how a new earthquake location catalog is obtained for about 450,000 southern California

earthquakes between 1981 and 2005.
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Chapter 1

Introduction

1.1 Overview

Earthquake locations are fundamental for studies of earthquake physics, fault orientations and Earth’s

deformation. Improving earthquake location accuracy has been an important and challenging goal in

seismology for the past few decades.

Standard location methods are based on Geiger’s method (Geiger, 1912) and became more practical

with the development of modern computers. The basic methodology is essentially unchanged from the

classic papers of Bolt (1960), Flinn (1965) and Engdahl and Gunst (1966). The nonlinear earthquake

location problem can be linearized using iterative methods if the starting locations are perturbed slightly

from the true locations. The predicted arrival times for a starting location (hypocenter and origin time)

are calculated for each receiver using a fixed (usually one-dimensional) velocity model. The arrival time

residuals (observed time minus predicted time) can be related to the hypocenter perturbations so that

the event location can be updated until some program termination criteria are satisfied (e.g., reaching a

specified level of data misfit or data misfit change, perturbation step size, or reaching a set maximum

number of iterations). Classical methods locate each event separately using one-dimensional velocity

models. But due to inaccuracies and limitations in the velocity model, the locations are often biased (see

Figure 1.1).

Several algorithms have been developed to reduce the effect of errors in the travel time model by

locating many events at the same time. These include joint hypocenter determination (e.g., Douglas,

1
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1967; Frohlich, 1979), the hypocentroidal decomposition method (Jordan and Sverdrup, 1981), and more

recently, the source-specific station term (SSST) method (Richards-Dinger and Shearer, 2000; Lin and

Shearer, 2005) and the double-difference (DD) method (Waldhauser and Ellsworth, 2000). These meth-

ods attempt to correct for correlated effects on travel times caused by three-dimensional velocity structure

by explicitly or implicitly solving for station corrections from arrival time residuals. Significant improve-

ments in relative locations can be achieved by these methods, especially by the SSST and DD methods

for distributed seismicity.

slow fastfault

true 
locations

computed 
locations

Figure 1.1. Cartoon illustrating how earthquake locations derived from a 1-D velocity model can be
biased by lateral velocity heterogeneities.

Although relative location accuracy can be improved by the SSST and DD methods, the absolute

earthquake locations are not changed much. Since the 1980s, tomography methods have been used to

improve absolute locations for local events by accounting for crustal-scale three-dimensional velocity

structure (e.g., Thurber, 1983, 1992; Thurber and Eberhart-Phillips, 1999; Zhang and Thurber, 2003).

This is typically done by simultaneously solving for the three-dimensional velocity structure and earth-

quake locations for local events.

During the last 10 years, waveform cross-correlation has been an increasingly important tool for

improving relative locations among nearby events because of the great accuracy of differential times

(Nakamura, 1978; Got et al., 1994; Dodge et al., 1995; Nadeau et al., 1995; Gillard et al., 1996; Rubin
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et al., 1999; Waldhauser et al., 1999). Large earthquake location catalogs based on waveform cross-

correlation have been developed (e.g., Hauksson and Shearer, 2005; Shearer et al., 2005; Schaff and

Waldhauser, 2005).

Improved earthquake locations help to better delineate fault structures and characterize the spatial

and temporal characteristics of seismicity. High-resolution event catalogs in southern California have

recently been used to study the decay of aftershock density with distance (Felzer and Brodsky, 2006), ex-

plore the spatial relationship between aftershocks and mainshock rupture planes (Liu et al., 2003; Powers

and Jordan, 2005), analyze the fractal dimension of seismicity (Kagan, 2006), and assess the mechanisms

driving seismic swarms (Lohman and McGuire, 2006).

1.2 Thesis Organization

My Ph.D. research has considered several aspects of improvements in earthquake locations. The

major contents of this dissertation consist of six chapters, from Chapter 2 to Chapter 7. In Chapter 2,

I compare different relative earthquake location techniques based on synthetic data that simulate most

of the statistical properties of real data. Chapter 3 shows how to obtain absolute locations for quarry

seismicity by using remote sensing data. Chapter 4 describes the COMPLOC software package for the

source-specific station term location method with phase data only. Chapter 5 presents a method to estimate

local Vp/Vs ratios for compact similar earthquake clusters using the precise P - and S- differential times

obtained using waveform cross-correlation. Chapter 6 is devoted to a new three-dimensional seismic

velocity model for southern California. Chapter 7 demonstrates how a new earthquake location catalog

is obtained for about 450,000 southern California earthquakes between 1981 and 2005 based on the new

three-dimensional velocity model, waveform cross-correlation and cluster analysis. Finally, Chapter 8

addresses the conclusions of the thesis and suggestions for future research.
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Chapter 2

Tests of Relative Earthquake Location Techniques Using Synthetic
Data

Abstract. We compare three relative earthquake location techniques using tests on synthetic data that

simulate many of the statistical properties of real travel time data. The methods are (1) the hypocentroidal

decomposition method of Jordan and Sverdrup (1981), (2) the source-specific station term method (SSST)

of Richards-Dinger and Shearer (2000), and (3) the modified double-difference method (DD) of Wald-

hauser and Ellsworth (2000). We generate a set of synthetic earthquakes, stations and arrival time picks

in half-space velocity models. We simulate the effect of travel time variations caused by random picking

errors, station terms, and general three-dimensional velocity structure. We implement the algorithms with

a common linearized approach and solve the systems using a conjugate gradient method. We constrain

the mean location shift to be zero for the hypocentroidal decomposition and double-difference locations.

For a single compact cluster of events, these three methods yield very similar improvements in relative

location accuracy. For distributed seismicity, the DD and SSST algorithms both provide improved relative

locations of comparable accuracy. We also present a new location technique, termed the shrinking box

SSST method, which provides some improvement in absolute location accuracy compared to the SSST

method. In our implementation of these algorithms, the SSST method runs significantly faster than the

DD method.

6
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2.1 Introduction

The classic problem of locating earthquakes using arrival time data has recently been revitalized by

methods that can greatly improve the relative location accuracy among nearby events, even when the ar-

rival times are biased by the effects of three-dimensional velocity structure. These new methods include

the double-difference algorithm (Waldhauser and Ellsworth, 2000, 2002) and source-specific station terms

(Richards-Dinger and Shearer, 2000). Both of these techniques represent generalizations to distributed

seismicity of methods that have previously been applied to isolated clusters of events, such as joint epicen-

ter determination, station terms, and master event locations (e.g., Douglas, 1967; Evernden, 1969; Lilwall

and Douglas, 1970; Frohlich, 1979; Jordan and Sverdrup, 1981; Smith, 1982; Pavlis and Booker, 1983;

Viret et al., 1984; Pujol, 1988). All of these methods attempt to correct for the systematic biases in arrival

times caused by three-dimensional velocity variations without actually solving for the velocity structure

itself. They are effective in reducing the relative errors among nearby events (for which the arrival time

perturbations are correlated) but typically do not significantly improve absolute location accuracy (which

requires knowledge of the true three-dimensional velocity structure).

Improvements in relative location accuracy obtained using these methods often produce a dramatic

sharpening of seismicity patterns, particularly when more accurate timing is obtained using waveform

cross-correlation (e.g., Rubin et al., 1999; Waldhauser et al., 1999; Waldhauser and Ellsworth, 2000;

Shearer, 2002). Evaluating the performance of these methods is complicated, however, by the fact that

the true earthquake locations are unknown. Here we generate synthetic data sets to compare four different

relative earthquake location techniques: (1) the hypocentroidal decomposition method of Jordan and

Sverdrup (1981), (2) the station term method (e.g., Frohlich, 1979), (3) the source-specific station term

method (SSST) of Richards-Dinger and Shearer (2000), and (4) the modified double-difference method

(DD) of Waldhauser and Ellsworth (2000). We also introduce a variation on the SSST method, which we

term “shrinking box” SSST, that has some advantages over the conventional SSST method.

Our comparisons in this study are restricted to arrival time data alone, i.e., we do not consider

waveform cross-correlation constraints. Our numerical experiments show that all of the methods give very
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close to the same result for the relative locations among nearby events, as should be expected from the

theory underlying the methods. However, there are significant differences in the computational efficiency

of the methods for large data sets and the shrinking box method appears to have a slight advantage over

the simple SSST method in terms of absolute location accuracy.

2.2 Linearized Earthquake Location

Although the general earthquake location problem is nonlinear, the mathematics become much easier

when we assume that perturbations to the locations are sufficiently small that a linear approximation is

valid. In practical earthquake location algorithms this is typically achieved with an iterative approach, in

which the location is assumed to be valid if the change in the location is very small at the final iteration.

In this section, we review some earthquake location techniques following the notation by Wolfe

(2002). We begin with an introduction to the multiple-event location problem. Multiple-event location

procedures are founded on the observation that the bias contaminating travel times from a set of nearby

earthquakes tends to be strongly correlated; in particular, the error introduced by incorrect assumptions

regarding Earth structure has a nearly constant value for arrival times measured at the same station (see

Figure 2.1a). Since path bias of this type dominates the sample standard deviations computed for single-

event locations (e.g., Freedman, 1967), the relative locations of events within a seismic cluster can be

improved by taking these correlations into account.

Suppose we have a set of p = 1, 2, ..., P earthquakes, with each earthquake constrained by Np ar-

rival-time observations. For simplicity we describe the situation in which P -wave phases alone are used

and the data are weighted equally, but the methods can be generalized to cases where S or other phases

are also included and the arrival times are assigned different weights. Given an initial location estimate

xp0 for an earthquake p, a linearized estimate for how the arrival time residuals respond to small changes

in the location may be written

Ap ∆xp + sp = ∆tp (2.1)

where ∆tp is a Np-component vector containing the arrival time residuals, Ap defines the matrix of size
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Np×4 containing the partial derivatives, calculated at the initial estimate xp0, ∆xp are the changes in

earthquake hypocentral parameters (4×1) which we wish to determine (typically these are dx, dy, dz, dt),

SLOW FAST

(a)

(c)

(b)

SLOW FAST

SLOW FAST SLOW

Figure 2.1. Cartoons illustrating how travel times and station terms are affected by three-dimensional
velocity structure and different source-receiver geometries. (a) A compact cluster of events. The ray
paths to each station pass through approximately the same velocity structure. In this case, a single travel-
time correction term at each station (static station terms) can account for the biasing effects of the three-
dimensional structure. (b) Distributed seismicity. Static station terms cannot fully account for general 3-D
structure. They may, however, provide an estimate of the biasing effect of the shallow velocity anomalies
below each of the stations. This can lead to some improvement in the locations, particularly when the
3-D variations at depth are small compared to the near-surface variations. (c) Distributed seismicity in
general 3-D structure. The travel-time corrections to each station vary as a function of source position
but are highly correlated among nearby events. Methods such as source-specific station terms (SSST) and
double-difference (DD) can be used to improve locations in this case.
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and sp is a Np-component vector of the path anomalies due to velocity heterogeneity along each of the

source-receiver ray paths. The new locations will be updated as xp =xp0 + ∆xp. When equation (2.1) is

applied to locate a single earthquake, sp is either set to zero or to predetermined values. We will term this

approach “single-event location,” meaning that no information is used from any other events.

In most cases we compute the partial derivatives with respect to a one-dimensional reference seismic

velocity model, although this is not required by the method. The path correction terms sp then represent

the biasing effects of the unmodeled three-dimensional structure or other errors in the velocity model.

Considering all P earthquakes as one linearized system, we may combine the individual single event

location equations (2.1) into

A∆X + S = ∆T (2.2)

in which the locations are updated as X = X0 + ∆X. In this case, we define MT as the total number of

unknown location parameters (4P ) and NT as the total number of arrival time observations. ∆X is an

MT×1 vector in which the individual ∆xp vectors are strung end-to-end, and S and ∆T are NT×1 vec-

tors with sp and ∆tp strung end-to-end, respectively. A is an NT×MT matrix, containing the individual

partial derivative Ap matrices along its diagonal, i.e.,

A1 0 . 0

0 A2 . 0

. . .

. . .

0 . . AP





∆x1

∆x2

.

∆xP


+



s1

s2

.

.

sP


=



∆t1

∆t2

.

.

∆tP



As written, this equation permits the trivial solution ∆X = 0 and S = ∆T, in which the individual path

anomaly correction terms are set to the travel time residuals for each source-receiver ray path. Meaningful

solutions are only possible if we apply constraints to the correction terms to reduce the number of free

parameters. These constraints typically assume that the correction terms are correlated for nearby ray
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paths. The simplest form of these constraints is to assume that the earthquakes are in a compact enough

cluster that the path anomaly to each seismic station is constant.

In this case if KT is the number of stations providing observations for the set of events, then the full

correction terms vector S can be expressed as

S = Bs (2.3)

where s is a KT×1 vector that contains the terms at each station and B is the NT×KT matrix that assigns

one of these KT terms to each of the NT travel time residuals:

Bij =

{
1 when ∆Ti is from station j

0 otherwise
(2.4)

and (2.2) becomes

A∆X + Bs = ∆T (2.5)

We will term the s values the “static” station terms to indicate that they have fixed values for each

station regardless of the event location. In contrast, the “source-specific” station terms (SSST) that we will

later consider have different values for different source locations. It is important to note at this point that

(2.5) does not have a unique least squares solution for ∆X and s because their projections onto the data

space are not linearly independent. The most obvious nonuniqueness is the tradeoff between the event

origin time part of ∆X and the station terms; any constant time could be added to one and subtracted

from the other. This ambiguity can be removed fairly easily by imposing additional constraints on s, for

example, by forcing the mean station term to zero.

However, there are also tradeoffs between the x, y, z locations of the events and the values of s.

For example, north-south shifts in the absolute event locations can be accommodated by adding times to

station terms to the north of the event cluster and subtracting times from the station terms to the south.

This tradeoff between the station terms and the locations is complete if the partial derivatives are identical

for all of the events (i.e., the same reference location xp0 is used) (Jordan and Sverdrup, 1981; Pavlis and
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Hokanson, 1985). In this case the absolute location of the event cluster is unconstrained, provided no

additional constraints are imposed on s. When the partial derivative matrices differ among the events, in

principle this tradeoff is broken and absolute location information can be obtained. However, in practice

the system remains very ill-conditioned and absolute locations are not significantly constrained until the

event separation becomes quite large (at which point the static station term approximation is probably no

longer valid because the path anomalies to each station will vary between events).

The improvement in location accuracy obtained by using (2.5) is found in the relative locations

among the events in the cluster. One might ask why this is achieved given that the path anomalies are the

same for all of the events and could be expected to have a similar biasing effect on all of the event loca-

tions. The improvement occurs largely because of the fact that arrival times for the events are not always

recorded by the same set of stations and thus are biased by the path anomalies by differing amounts. In

addition, least squares solutions will tend to weight the largest residuals the most and thus the solutions

may be dominated by the small set of stations with the largest station terms.

In the following sections, we will show how different techniques improve relative locations.

2.2.1 Hypocentroidal Decomposition (JS)

This method was introduced by Jordan and Sverdrup (1981) (hereinafter referred to as JS) and in-

volves projecting out the part of the problem that is sensitive to the static station terms. In this case we

define the NT×NT projection operator QJS:

QJS ≡ INT −BB† (2.6)

where B† is the generalized inverse of B calculated by singular value decomposition (SVD).

Define wk to be the number of earthquakes recorded by station k and wk(i) to be the number of

earthquakes recorded by the station recording [∆T]i. Then

[QJS]ij = δij −
1

wk(i)
∆ij (2.7)

where δij is the Kronecker delta function and ∆ij = 1 if [∆T]i and [∆T]j are from same station, and
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zero otherwise.

QJS transforms ∆T into ∆T minus the travel time residual averages at each station. In the static

station term case, all of the terms are equal to these averages, and thus QJSB = 0 and (2.5) becomes

QJSA∆X = QJS∆T (2.8)

The least squares solution to this equation can be obtained as

∆X = (QJSA)†QJS∆T (2.9)

Thus the new locations can be obtained without solving explicitly for the station terms. Note that

stations that only record one earthquake will not contribute to this solution because the average residual in

this case will always equal the residual itself; these stations can simply be deleted from the system prior

to any calculation.

Further insight into this method may be obtained by decomposing the set of location perturbations

{∆xp; p = 1, 2, · · · , P} into two parts:

∆xp = ∆x0 + δxp (2.10)

where

∆x0 ≡ P−1
P∑

p=1

∆xp (2.11)

and

P∑
p=1

δxp = 0 (2.12)

x0+∆x0 is called the hypocentroid, the average absolute location of the earthquakes, and the {δxp} are

called the cluster vectors, which only define the relative locations of the earthquakes, of the event group.

Consequently,

∆X = ∆X0 + δX (2.13)
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The method of Jordan and Sverdrup (1981) was developed to study groups of shallow teleseismic

earthquakes over limited regions. In this situation, the partial derivatives do not vary much with earth-

quake location, so in the Jordan and Sverdrup method, the partial derivatives in A for all earthquakes are

set to an identical reference point. In this special case, it can be proved that QJSA∆X0 = 0 (Wolfe,

2002), so that only improved relative locations can be obtained. In practice, events within a cluster are

located first using single event location. The mean cluster location is then fixed as the reference location

(the hypocentroid) for the cluster and the method solves for the perturbations to this location. For clusters

with large numbers of events, considerable computation will be involved in the singular value decompo-

sition of the NT×MT matrix QJSA∆X. In these cases, we have found that iterative matrix inversion

techniques such as the conjugate gradient method are effective in speeding the calculations.

2.2.2 Static Station Terms (ST)

One of the simplest and most widely applied relative location approaches is the station term method,

which solves iteratively for a custom set of station-timing corrections (e.g., Frohlich, 1979; see also Pujol,

1988). Equation (2.5), A∆X + Bs = ∆T, can be written

A1 0 . 0

0 A2 . 0

. . .

. . .

0 . . AP





∆x1

∆x2

.

∆xP



+



0 1 . 0

0 0 . 1

. . .

. . .

1 0 . 0





s1

s2

.

sP


=



∆t1

∆t2

.

.

∆tP


(2.14)

This is a coupled set of equations for the location parameters, ∆X, and the station terms, s. We solve
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this iteratively by alternatively solving for each vector, while leaving the other vector fixed. In the first

step the station corrections are held fixed (either set to zero or to values obtained elsewhere) and we solve

for ∆X using

A∆X = ∆T−Bs (2.15)

The events are located with respect to a corrected set of arrival times. Because there is no coupling

between the event locations at this step, each event can be located separately from the other events. Next,

we solve for a new set of station terms using

Bs = ∆T−A∆X (2.16)

Notice that the right hand side is simply the arrival time residuals; the least squares solution for s will set

each station term to the mean residual of all of the events for the station. The process is then repeated until

a stable set of locations and station terms is obtained. In Appendix A., we demonstrate that this algorithm

should converge. In practice, we have found in most cases that convergence is rapid and that no more than

5 to 10 iterations are necessary.

The method is much faster than hypocentroidal decomposition because there is no need to use the

full A matrix in the calculations. The approach is also quite flexible because the station term calculation

is performed separately from the event location calculation, so that any desired location method can

be used, including standard or preexisting algorithms. However, the nonuniqueness inherent in these

equations between the mean cluster location and the station terms still exists. In practice, the mean cluster

location is largely determined at the first iteration for the event locations.

Finally, we note that the static station term method can be applied even when the events are not in

a compact cluster (Figure 2.1b). In this case, the station terms will only be weakly correlated among

different events at the same station because the source-receiver ray paths will sample different parts of

the three-dimensional velocity structure. However, the method may nonetheless yield some improvement

in location accuracy because differences in the shallow velocity structure beneath each station will be

accounted for by the station terms. In this case, more accurate absolute event locations are possible,
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depending upon the details of the three-dimensional velocity structure that is biasing the times, azimuthal

coverage and relative sizes of the velocity perturbations.

2.2.3 Source-Specific Station Terms (SSST)

Static station terms work best when the differences between the actual travel times in the Earth and

those in the assumed velocity model to each station are the same for all events. When the seismicity

covers a large region containing significant lateral velocity heterogeneity (e.g., Figure 2.1c), neither the

hypocentroidal decomposition method nor the static station term method is likely to work very well. In

this case, a generalization of the station term approach, termed the source-specific station term (SSST)

method by Richards-Dinger and Shearer (2000) can be applied. In this method, the location and station

term calculations are again performed alternatively and the solution is obtained iteratively, but the station

terms no longer consist of a single value at each station; rather, each station will have a station correction

function which will vary as a function of source position.

For static station terms, we simply calculate the station term for each station as the mean of the

residuals at that station from all events. For source-specific station terms (SSSTs), we calculate a separate

correction for each source-receiver pair at the given station using the residuals from nearby events. In

this case, there is a different value of the station term vector S for every value of the residual vector ∆T;

these values are a smoothed version of the event-specific residual field for each station. This smoothing

over adjacent events can be done in a number of different ways. Richards-Dinger and Shearer (2000)

smoothed over a fixed number of neighboring events using a natural neighbor tesselation.

Here we will implement the SSST approach by selecting the nearby events that are located within

a sphere of specified radius rmax around the target event. The station term for the target event is then

computed as the mean residual of these events. Note that different results will be obtained depending

upon the size of the cutoff distance. If rmax is set to a large enough distance, then the SSST method will

give the same result as the static station term method. However, if rmax is set to a very small distance,

the number of events may not be sufficient to obtain a reliable estimate of the true station term. Thus
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selection of the cutoff distance is a key factor in application of the SSST method.

The SSST method shares some of the advantages of the static station term technique. The event

location part of the calculation is separate from the station term calculation and can be performed quickly

using any desired single-event location method. Computing the station terms at each iteration is also a

simple calculation; the most numerically taxing part of this is identifying the events within the cutoff

radius for each target event. In practice, convergence to a stable set of locations and station terms re-

quires only a few iterations (although we have not derived a formal proof of convergence for the SSST

algorithm). Note that in theory, the ST and SSST methods should yield the same locations for a single

compact cluster that is smaller than the applied SSST cutoff distance rmax.

When Richards-Dinger and Shearer (2000) applied the SSST method to locate southern California

earthquakes, they obtained their initial locations using the static station term method, and then used these

station terms as a starting point for the SSST calculation. In this way, they achieved some improvement in

the absolute locations of the events before focusing on the relative locations among closely spaced events.

A generalization of this approach is to continuously shrink the SSST cutoff distance rmax between the

first and final iteration. In other words, we start the cutoff distance with a large value to include all the

events from which we calculate station terms, then decrease it to some specified minimum distance to

calculate station terms using only the closest events. We will show later that this method seems to give

the best results on our synthetic data sets.

2.2.4 Double-Difference (DD)

The double-difference location algorithm (Waldhauser and Ellsworth, 2000, 2002) allows the si-

multaneous relocation of distributed events by minimizing residual differences for pairs of earthquakes

without explicitly solving for station corrections.

The single-event location problem for the kth observation of earthquake i can be written as

∂tik
∂x

∆xi + si
k = ∆tik (2.17)

where si
k is the path anomaly correction between event i and station k. Thus we can express the time
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difference between the residuals at the same station for two events i and j as

∂tik
∂x

∆xi + si
k −

∂tjk
∂x

∆xj − sj
k = drij

k (2.18)

where drij
k is the residual between observed and calculated differential travel times between these two

events, i.e.,

drij
k = (tik − tjk)obs − (tik − tjk)cal (2.19)

If the events are close to each other, then their path corrections are likely to be similar, and so making

the approximation si
k = sj

k, the path anomalies cancel and we have simply

∂tik
∂x

∆xi −
∂tjk
∂x

∆xj = drij
k (2.20)

After combining these equations from all event pairs for a station, and for all stations, we obtain a system

of linear equations of the form

G∆X = d (2.21)

where G defines a matrix of size MDD×MT (MDD is the number of double-difference observations)

containing partial derivatives, ∆X is a vector containing the changes in hypocentral parameters that we

wish to determine, and d is the data vector containing the double-difference times.

Equivalently, this can be written as

QDDA∆X = QDD∆T (2.22)

where

QDDA = G (2.23)

and

QDD∆T = d (2.24)
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QDD is the double-difference operator combining differences of earthquake arrival times recorded

at a given station k, ∆tik −∆tjk (for i 6= j and i < j), and has the form:

1 . . −1 . . . . 0

1 . . . . . −1 . .

. . . . . . . . .

0 . . . . 1 . . −1


(2.25)

with each row containing only two nonzero terms, 1 and -1.

The double-difference approach permits different types of differential arrival time data and choices

in terms of selection and weighting of these data. One of the advantages of DD is that it is easy to

incorporate dt results obtained from waveform cross correlation. DD can also be applied to phase data

alone by selecting dt pairs from the individual arrival time picks. For small data sets consisting of a single

isolated cluster it is practical to use all available event pairs. For large numbers of events or distributed

seismicity, it makes sense to restrict the event pairs to those within some specified maximum separation

distance. The algorithm released by Waldhauser (2001) allows the user to select this separation distance,

as well as weight the differential times by distance and include absolute arrival time data if desired.

To facilitate comparisons with the other methods, we wrote our own version of the double-difference

algorithm. We do not use damping in any of the methods we test. Since the distance weighting of

Waldhauser and Ellsworth should only work when damping is employed (Wolfe, 2002), we do not apply

distance weighting in our location tests. We do, however, include an event separation distance cutoff.

Thus, QDD does not combine all possible differences of arrival times recorded by the same station,

instead, we only consider the events in a sphere centered on the targeted event with the radius set to

the cutoff distance, as discussed previously for the SSST algorithm. Our DD method uses only these

differential times to refine the locations; the absolute pick times are used to obtain the initial locations but

are not used in the DD algorithm itself.
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2.3 Synthetic Data Tests

We perform all our synthetic tests in a 64×64×32 km uniform half-space with a P wave velocity

of 6 km/s and a P -to-S velocity ratio of 1.73. We generate 20 random station locations on the surface

of the half-space and a set of specified earthquake locations. Although more realistic structures with

slower near-surface velocities may result in downgoing ray paths from the source, our model provides

reasonably approximate ray paths for the 9−11 km deep events that we model. To simulate the irregular

pick availability of real earthquake data, for each event we generate P picks with 0.67 probability and

S picks with 0.5 probability. Thus each synthetic event is recorded by a different set of stations with an

average of 13 P picks and 10 S picks per event.

The linear location system is solved by minimizing the L2 norm of the travel time residuals using

a conjugate gradient algorithm. We compute 100 conjugate gradient iterations, although in most cases

the solution converges much more quickly, depending on the data set and the starting conditions. For

the SSST method, we used 100 conjugate gradient iterations at each location step, and found that 5 to

10 iterations for the station term calculation was sufficient. We begin all of the methods with linearized

single event location to obtain a set of starting locations that are typically shifted somewhat from the true

locations, depending upon the perturbations applied to the travel time picks. We will consider two forms

of errors in the locations. Absolute location error is the difference between the computed location and the

true location. Relative error is the difference between the computed and actual relative locations of two

nearby events. Thus the concept of relative location error only makes sense for nearby events.

We start our relocation with single event location, for which the starting locations are some random

locations shifted from the true locations. Then the new locations from the single event location method

are input as the starting locations for the three targeted techniques. The hypocentroidal decomposition

method does not improve the mean location of the whole cluster, but the relocations significantly depend

on the starting locations. We choose the mean location of the starting cluster as the common reference

point and the partial derivatives are fixed to this point. We constrain both JS and DD methods to have no

mean location shift relative to this reference point during relocation because we found that even a small
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amount of random picking error can produce unstable results for the DD algorithm if this constraint is not

applied. It is likely that this constraint would be unnecessary if we used absolute pick times as well as

relative times in our implementation of the DD method.

2.3.1 Single Isolated Cluster Tests

In principle, all of the location techniques should yield similar relative locations for a compact event

cluster. Our first test is to locate 27 events in a compact 2×2×2km cube with the center at 10 km depth.

We apply a cutoff distance for the DD and SSST algorithms that is large enough to cover all the events

in the cube; in this case the static station term and SSST methods are equivalent. Figure 2.2 shows the

distributions of the stations and events from one random realization of the station positions.

0 16 32 48 64

64

48

32

16

0

X (km)

)
mk( 

Y

Figure 2.2. Map view of 20 random station locations (triangles) and 27 specified true event locations
(dots) in a 2×2×2 km grid at 10 km depth (each dot represents locations at 9, 10 and 11 km depth).

We add two types of noise to the theoretical travel times: (1) Gaussian distributed station terms with

zero mean and 0.3 s standard deviation (SD) for P picks (scaled by 1.73 for S picks), which are constants

for all events recorded by a given station; (2) Gaussian distributed random picking errors with zero mean

and 0.01 s standard deviation for P picks and 0.02 s for S picks. Random picking errors introduce

location errors that cannot be improved with any of the methods discussed here. Since the focus of our
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study is on the relative location improvement that can be achieved by accounting for the station terms, we

assign small values to the random pick errors in order to enhance the improvements that we will achieve.

However, it is important to include at least some random picking error because otherwise the algorithms

might achieve improvements in absolute location accuracy that are unlikely to be obtained with real data.

Figure 2.3 shows the location results of one random realization of our synthetic data. As we expect,

the single event location method produces quite large errors in both absolute and relative locations. These

locations are equivalent to the standard (catalog) locations for real data. The shift in the mean cluster

location (which dominates the absolute location errors for the JS, DD and SSST methods), results from

the random station terms and the finite number of stations. The size and direction of this shift vary among

the different random realizations of the synthetic data. The location map views and cross sections for

this example clearly indicate that all three techniques, JS, DD and SSST, yield similar improvements in

relative location accuracy. Furthermore, JS and DD provide almost the same absolute locations, while

SSST relocations are a little different from those of JS and DD. This is mainly due to the constraint on

the JS and DD methods that the mean location shift is zero during relocation.

We note that in principle, this constraint on the mean location shift is not required for the JS and

DD methods and it might be possible in some circumstances to improve the absolute location accuracy

by relaxing this requirement. In practice, however, we found that if even a very small amount of random

picking error is present in the synthetic data, the absolute locations for the DD method sometimes become

very unstable and unreliable unless the zero mean location shift constraint is applied.

We estimate the relocation errors from 60 random realizations of the synthetic data. In Table 2.1,

we show the root-mean-squares (RMS) of both absolute and relative location errors. The relative location

errors are calculated for each event relative to all the other events in the cube. As expected, all three meth-

ods (JS, DD and SSST) show improvement in location accuracy compared to the single event locations.

Although some improvement is achieved in the absolute location accuracy (by reducing the scatter in the

locations, not from any significant shift in the mean cluster location), the most dramatic improvement is

in the relative location accuracy, where the relative errors in horizontal position are reduced from 1.1 km
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Top View Cross Section

     

Single Event

(a) (b)

(c) (d)

(e) (f)

(g) (h)

JS

DD

SSST
2 km

Figure 2.3. Comparison of different location methods for a single compact cluster of 27 events from one
random realization. Dots are true locations and crosses are computed locations. (a) Single event location
top view. (b) Single event location cross section. (c) JS location top view. (d) JS location cross section.
(e) DD location top view. (f) DD location cross section. (g) SSST location top view. (h) SSST location
cross section. In each case, the middle (middle layer for top view and middle standing surface for cross
section) nine events are shown, not the full 27.
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to about 70 m. As is typically the case with real data, the horizontal location accuracy is much better than

the vertical location accuracy.

Table 2.1. Single cluster location results comparison. We show absolute and
relative location RMS errors from 60 random realizations. For a given event,
the relative locations are with respect to all the other events in the cluster. (aNo
mean location shift during relocation.)

RMS of Absolute Error RMS of Relative Error
Method Horizontal, km Vertical, km Horizontal, km Vertical, km
Single Event 1.55 2.26 1.14 2.41
JSa 1.10 1.54 0.07 0.34
DDa 1.10 1.54 0.07 0.34
SSST 0.91 1.69 0.06 0.36

2.3.2 Three-Dimensional Velocity Model Tests

It is not surprising that all three techniques provide similar improvements in relative location accu-

racy for a compact cluster. The advantage of the SSST and DD methods is that they can also be applied

to distributed seismicity. In this case, the events are far enough apart that the travel time perturbations

cannot be assumed constant for each station. To generate realistic synthetic data for distributed events, we

compute travel-time differences resulting from an isotropic three-dimensional velocity model with ran-

dom P velocity variations of 0.3 km/s RMS using a k−1.8 power law. S velocity variations are scaled as

3 times the P variations. We sum the travel-time anomalies along each source-station ray path to generate

realistic spatial correlations in the travel-time anomalies. We sum the anomalies along the straight-line

ray paths that would exist in the unperturbed half space. The three-dimensional (3-D) ray tracing would

be more realistic, but our approximate approach is probably adequate to generate spatially correlated sta-

tion terms of sufficient accuracy to address the relative location problem that is the focus of this paper.

Figure 2.4 is an example of the isotropic 3-D velocity model, and Figure 2.5 shows the resulting station

term field for a specific station location.

As before, for each realization we generate 20 randomly located stations on the surface. We include

549 events in three layers of 183 events in the pattern shown in Figure 2.6. Events in each line of earth-
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Figure 2.4. A random three-dimensional P velocity model relative to a constant velocity of 6 km/s,
generated using a k−1.8 power law.
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Figure 2.5. Source-specific station terms for the station shown as the triangle, corresponding to the
random 3-D velocity model in Figure 2.4.
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quakes are separated by 1 km. The three layers are located at depths of 9, 10 and 11 km. Picks for each

event to each station are again generated with 0.67 probability for P and 0.5 probability for S. We apply a

cutoff distance of 8 km for the DD and SSST methods. In most cases, this results in about 50 neighboring

events in average for each target event in the calculations. For the shrinking box SSST method, we use a

starting cutoff distance large enough to include all the events and then decrease the distance by a constant

fractional change with each iteration to the final cutoff of 8 km.

X (km)

)
mk( 

Y
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48
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16

0

Figure 2.6. Earthquake locations and 20 random station locations for the distributed seismicity test of the
location methods. Each dot represents earthquakes at 9, 10 and 11 km depth in this top view.

Figure 2.7 and Figure 2.8 are the map views and cross sections of the relocation results of one

random realization of the station locations and the 3-D velocity model. Notice the scatter in the single

event locations compared to those of the other three methods. The difference between absolute and

relative location errors is apparent in these plots. The reduced scatter in the relative locations sharpens

the alignment of the events in each line, but the lines are still displaced from their true locations.

Table 2.2 compares the location accuracy of the different methods, as measured by the RMS of ab-

solute and relative location errors from 60 random realizations. The relative location errors are calculated

for each event relative to a set of nearby events that are within a range of 2 km both in horizontal distance

and in depth. As in the single event cluster test, the methods improve the absolute location accuracy only
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Figure 2.7. Comparison of different location methods for one random realization of the three-dimensional
velocity structure shown in Figure 2.4. Black dots are true locations, and red dots are computed locations,
and triangles are stations. (a) Single event location. (b) DD location. (c) SSST location. (d) Shrinking
box SSST location. In each case, the middle 183 events are shown, not the full 549.
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Figure 2.8. Cross-section comparison of different location methods for one random realization of the
three-dimensional velocity structure shown in Figure 2.4. Black dots are true locations, and red dots are
computed locations. (a) Single event location. (b) DD location. (c) SSST location. (d) Shrinking box
SSST location. In each case, the diagonal 147 events are shown, not the full 549.
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slightly but significantly improve the relative location accuracy. There are greater errors in the vertical

direction than in the horizontal direction. Finally, the shrinking box SSST method produces a slight, but

noticeable improvement in absolute location accuracy compared to the other methods. We do not com-

pletely understand why the shrinking box method provides this advantage; it seems to respond to some of

the longer wavelength structure in the source-specific station term field that is not included in the DD or

SSST methods when a fixed event separation distance is applied. We performed some experiments to see

if methods that apply a distance weighting function to the SSST smoothing operator (i.e., weighting the

nearby events more, the distant events less, with the weight a smooth function of distance rather than a

simple cutoff at a fixed distance). However, we were not able to achieve results as good as the shrinking

box method with this approach. We also performed some experiments in implementing the shrinking box

approach to the DD method by reducing the range cutoff with increasing iteration number. We obtained

some improvements in relative location accuracy, but the absolute locations were not as good as those

given by the shrinking box SSST method.

Table 2.2 also lists a measure of the computation time for the different methods, relative to single

event location. In our implementation, the SSST technique is significantly faster than the DD method.

This is because the SSST event locations at each iteration are still performed separately, so the run time

scales approximately as the number of iterations (the station term calculation at each iteration is very fast

compared to the location part of the calculation). In contrast, in the DD approach the location of every

event is linked to the locations of all of the other events. This significantly increases the computation time

even when the conjugate gradient method is used to solve the linear system. However, these results should

be considered approximate because run times often depend upon specific details of program construction.

Many networks do not produce as many S picks as we used in our synthetic experiments. To test

the performance of the algorithms under these conditions, we also perform experiments using synthetic

data that only contained P picks. Although the relocations are not as good as those obtained with both P

and S picks, especially in depth, we still come to the same conclusion that DD and SSST produce quite

similar relocation results and that the shrinking box SSST method is slightly better than the conventional
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SSST.

2.4 Discussion

The advantage of our synthetic tests over real earthquake data sets is that the true event locations

are known so that it is possible to directly measure the location errors. Although it is not possible to

simulate every feature that may exist in real data, we have attempted to include the main factors that

affect event locations, including random picking errors, incomplete and irregular pick distributions, station

terms, and general three-dimensional velocity structure. We have focused on methods (JS, DD and SSST)

that attempt to improve the relative location accuracy among nearby events by taking advantage of the

correlated travel anomalies from these events to each station. Despite differences in how the methods

work, they are all solving the same underlying problem. Indeed, it is possible to demonstrate that station

term algorithms provide a least squares iterative solution to the same equations that are used in the JS and

DD methods. Thus it is reassuring that all of the methods achieve comparable results when applied to

identical synthetic data sets.

The DD and SSST methods can be used for large numbers of distributed earthquakes. An advantage

of the DD algorithm is that a documented program has been released to the seismology community (Wald-

hauser, 2001). This code also can incorporate differential time measurements provided by waveform cross

correlation, a feature that is not included in our study, which uses only arrival time picks. In principle,

our synthetic tests could be adopted to include waveform cross-correlation data by including differential

times of greater accuracy than the individual picks. This will be a goal of our future work, as well as

experimenting with the effects of some of the adjustable parameters in the DD and SSST algorithms.
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2.6 Appendix A. Convergence of Static Station Term Method

Here we demonstrate the convergence of the static station term method. Equation (2.5) gives the

linearized location problem for a set of p = 1, 2, · · · , P earthquakes recorded by KT stations:

A∆X + Bs = ∆T

where ∆T is a NT vector containing the arrival time residuals, A defines a NT×MT matrix containing

the partial derivatives which are calculated at a set of initial location estimates, ∆X is a MT vector

containing the changes in hypocentral parameters we wish to determine (MT = 4×P ), and s is a KT

vector containing static station terms, each of which is a constant for all events recorded by a given

station. B is a NT×KT matrix that selects the correct station term for each arrival time, i.e.,

[
Bp

]
ij

=

{
1 when

[
∆tp

]
i

is from station j

0 otherwise

This is a coupled set of equations for the unknowns ∆X and s, which may be solved iteratively by

first solving for the locations ∆X while holding the station terms s fixed, then solving for the station terms

s while holding the locations ∆X fixed, etc. This method has been applied for many years in seismology

and was described by Frohlich (1979). Here we show that this method is equivalent to a power series,

which should converge to the least squares solution for ∆X and s.

For the first iteration, we begin with zero station terms:

s1 = 0

then we solve the single event location problem starting with the initial guess of the hypocenter parameters

and data,

A∆X1 = ∆T
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∆X1 = A†∆T

but since the data cannot be fit perfectly even with the adjusted locations, we will obtain a new set of

travel time residuals R1. The next step is to solve for the station terms from the new locations.

R1 = ∆T−A∆X1

= ∆T−AA†∆T

=
(
INT

−AA†)∆T

s2 = B†R1

= B† (
INT

−AA†)∆T

∆T2 = ∆T−Bs2

= ∆T−BB† (
INT

−AA†)∆T

=
[
INT

−BB† + (BB†)(AA†)
]
∆T

where R1 is a travel-time residual vector and dagger means generalized inverse.

We continue with the second iteration as follows:

A∆X2 = ∆T2

∆X2 = A†∆T2

= A†[INT
−BB† + (BB†)(AA†)

]
∆T

R2 = ∆T2 −A∆X2

= ∆T2 −AA†∆T2

=
(
INT

−AA†)∆T
2

=
(
INT

−AA†) [
INT

−BB† + (BB†)(AA†)
]
∆T
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s3 = B†R2

= B† (
INT

−AA†)∆T
2

= B† (
INT

−AA†) [
INT

−BB† + (BB†)(AA†)
]
∆T

∆T3 = ∆T2 −Bs3

= ∆T2 −BB† (
INT

−AA†)∆T
2

=
[
INT

−BB† + (BB†)(AA†)
]
∆T

2

=
[
INT

−BB† + (BB†)(AA†)
]2

∆T

This can be generalized to the k + 1 iteration (k ≥ 0):

∆Xk+1 = A†∆Tk+1

= A†[INT
−BB† + (BB†)(AA†)

]k
∆T

sk+2 = B†Rk+1

= B† (
INT

−AA†)
·
[
INT

−BB† + (BB†)(AA†)
]k

∆T

So far, we have shown the changes in hypocentral parameters ∆Xk and station terms sk can be

expressed as vector sequences. To show that these sequences are convergent, we use the equivalence

between least squares fitting and orthogonal projection. Our problem can be defined as follows: we have

a data space T and two model spaces, MU and MV, the space of the location vectors and the space of

the station term vectors. The linear function ΦU : MU → T gives the data vector produced by each

location vector, and ΦV : MV → T gives the data vector produced by each station terms vector. Let

U = ΦU(MU) and V = ΦV(MV).

If t is the observed data vector (i.e., ∆T in our previous notation), then our iteration scheme proceeds
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as follows. First, we set the initial station term contribution to the data vector to zero:

v1 = 0

u1 = PU(t− v1) = PU(t)

v2 = PV(t− u1) = PV(t)−PVPU(t)

...

vk+1 = PV(t− uk)

uk+1 = PU(t− vk+1)

where PU is the orthogonal projector of T onto U and PV is the orthogonal projector of T onto V. Note

that PU = AA† and PV = BB† in our previous notation. Then for k ≥ 1,

uk+1 = PU

[
t−PV(t− uk)

]
= PU(t)−PUPV(t) + PUPV(uk)

= ǔ + PUPV(uk)

=
[
I + PUPV + · · ·+ (PUPV)k−1

]
ǔ + PUPV(u1)

where ǔ = PU(t)−PUPV(t)

vk+1 = PV

[
t−PU(t− vk)

]
= PV(t)−PVPU(t) + PVPU(vk)

= v2 + PVPU(vk)

=
[
I + PVPU + · · ·+ (PVPU)k−1

]
v2

They will converge if ||PVPU|| < 1 and ||PUPV|| < 1. In finite-dimensional spaces, these

inequalities hold whenever U ∩V = {0}. However, in our case there is a nonuniqueness problem in

that part of the data vector produced by the model can come from either the location vector or the station

term vector. For example, a constant time added to the data vector could correspond to a change in the

earthquake origin times or a change in the station terms. For this reason, in general U ∩V 6= {0}.
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In this case, let W = U ∩ V, U = Ũ + W, and V = Ṽ + W, where Ũ ⊥ W and Ṽ ⊥ W.

We then have Ũ ∩ Ṽ={0}. We can write t= ũ + ṽ + w + t̃ , with ũ ∈ Ũ, ṽ ∈ Ṽ, w ∈ W, and

t̃ ∈
(
Ũ + Ṽ + W

)⊥
.

Some remarks are:

Ũ ∩V = U ∩ Ṽ={0}

PU = PeU + PW

PV = PeV + PW

PeUPW = PWPeU = 0

PeVPW = PWPeV = 0

PUPV = PeUPeV + PW

PVPU = PeVPeU + PW

For the station terms vector we have

v2 = PV(t)−PVPU(t)

=
[
PeV(t) + PW(t)

]
−

[
PeVPeU(t) + PW(t)

]
= PeV(t)−PeVPeU(t)

and for k ≥ 1

vk+1 = v2 + PVPU(vk)

= v2 + PeVPeU(vk) + PW(vk)

Clearly v2 ∈ Ṽ, and if vk ∈ Ṽ (k ≥ 2), then PW(vk) = 0, so vk+1 ∈ Ṽ. Thus, by induction, vk ∈ Ṽ

for all k, PW(vk) = 0, and for k ≥ 1

vk+1 = v2 + PeVPeU(vk) + PW(vk)

= v2 + PeVPeU(vk)

=
[
IeV + PeVPeU + · · ·+

(
PeVPeU)k−1

]
(v2)
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Since Ũ ∩ Ṽ = {0}, ||PeVPeU|| < 1, so this series converges.

For the location vector, we have

uk+1 = PU(t− vk+1)

Since {v1,v2, . . .} converges and PU is continuous, then {u1,u2, . . .} also converges.

Our proof for convergence is limited to the least squares (L2 norm) solution of the static station

term case described in the text. It can be shown that the proof fails for all non-Euclidian norms, but we

do not know whether the result itself fails. We have found in practice (for both real and synthetic data)

that convergence is quite rapid, typically being achieved in five iterations or less. We have also noticed

that this iterative method seems to work for L1 norm locations algorithms as well, although we have not

found a formal proof of convergence. Finally, this approach forms the basis for the SSST algorithm,

which, although more complicated than static station terms, also achieves convergence in a small number

of iterations in our tests on synthetic data. The SSST algorithm applied by Richards-Dinger and Shearer

(2000) to the southern California seismic catalog used a grid-search L1 norm approach and achieved a

reasonably stable result after 10 iterations.
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Chapter 3

Obtaining Absolute Locations for Quarry Seismicity Using Remote
Sensing Data

Abstract. We obtain absolute locations for 19 clusters of mining-induced seismicity in southern Cali-

fornia by identifying quarries using remote sensing data, including optical imagery and differential digital

elevation models. These seismicity clusters contain 16,574 events from the Southern California Seismic

Network from 1984 to 2002, which are flagged as quarry blasts but without any ground-truth location

constraints. Using georeferenced airphotos and satellite radar topography data, we identify the likely

sources of these events as quarries that are clearly visible within 1 to 2 km of the seismically determined

locations. We then shift the clusters to align with the airphoto images, obtaining an estimated absolute

location accuracy of ∼200 m for the cluster centroids. The improved locations of these explosions should

be helpful for constraining regional 3D velocity models.

39
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3.1 Introduction

Because of the trade-off between earthquake locations and velocity structure in the tomography

problem, controlled sources are often used in velocity inversions to provide absolute reference locations

for 3D velocity models and to constrain the shallow crustal structure. Ideally these are calibration shots of

known locations and origin times. Quarry blasts are also sometimes used, however, which typically have

known locations but unknown origin times. When included in the location algorithms, the hypocentral

parameters of these controlled sources (locations and/or origin times) are fixed.

Absolute location information is typically available for only a fraction of the artificial sources lo-

cated by local and regional networks. For example, the Southern California Seismic Network (SCSN)

lists 23,748 events from 1984 to 2002 as shots or quarry blasts, but only 77 of these have true location

information (E. Hauksson, personal comm., 2005). Here, we demonstrate with SCSN events how remote

sensing data (air or satellite photos and digital elevation maps) can be used to determine the absolute

locations of quarry seismicity clusters to about 200 m accuracy. The results produce a check on catalog

location accuracy as well as new constraints for the tomography problem.

3.2 Method

We use as our starting point the SHLK location catalog (Shearer et al., 2003, 2005), which contains

precise relative relocations for more than 340,000 southern California earthquakes that occurred between

1984 and 2002, as computed by the source-specific station term, waveform cross-correlation, and cluster

analysis methods. The relative location errors are estimated from the internal consistency of differential

locations between individual event pairs and are often as small as tens of meters. Because of imprecise

knowledge of the 3D velocity structure, however, the absolute locations of seismicity clusters are much

worse constrained, with location errors as large as a few kilometers.

The SCSN flags 23,748 events as quarry blasts in southern California between 1984 and 2002 (see

Figure 3.1). As noted by Agnew (1990), Richards-Dinger and Shearer (2000), and Wiemer and Baer

(2000), artificial seismicity can also be identified using comparisons of daytime versus nighttime seismic
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Figure 3.1. Map view of the 23,478 quarry blasts flagged by the Southern California Seismic Network
(SCSN) between 1984 and 2002 in southern California plotted at their SHLK catalog locations. The red
dots represent the seismicity clusters that we are able to relocate using airphoto or satellite images. Also
shown are the numbers used to identify the respective clusters in our study. Gray lines denote active
Quaternary faults.
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activity. However, we find that the quarry blast list from the SCSN catalog is more complete than that

derived from a simple analysis of the diurnal seismicity patterns. We therefore use the SCSN-defined

blast data in this study. The red dots in Figure 3.1 represent the 16,574 events that we are able to relocate.

For other events, we could not find suitable airphoto images or identify unambiguous source locations. In

many cases, the corresponding events represent distributed explosions associated with road construction

or military bombing ranges.

We estimate the true locations of the quarry blasts from airphoto images provided by AirPhoto

USA (available at http://terraserver.com/). AirPhoto USA’s catalog consists of recent, true-color, high-

resolution aerial photography of many regions in the United States. The resolution of the images used in

this study is typically 8 m but can be as small as 0.6 m. Figure 3.2 illustrates our method as applied to

cluster 11 in Figure 3.1. Figure 3.2a is a closeup of the cluster events as seismically located in the SHLK

catalog. Figure 3.2b shows the corresponding airphoto image in the same coordinate frame. The ground

resolution of this image is 8 m. The disturbed terrain near the top right corner shows a quarry that is the

obvious source of seismicity, but the quarry location is about 0.8 km southwest of the seismicity cluster.

To verify that the quarry is indeed the source of seismic activity, we have analyzed changes in the

Earth’s topography using digital elevation model (DEM) data from the National Elevation Dataset (NED,

http://ned.usgs.gov) and the Shuttle Radar Topography Mission (SRTM) (Farr and Kobrick, 2000). The

SRTM data were collected in 2000, whereas the NED data represent a compilation from various measure-

ments conducted between 1925 and 1999. The vertical accuracy of both DEMs is of the order of 10 m.

Therefore a systematic difference between the two DEMs that exceeds 10 m is indicative of changes in

the surface elevation that occurred between the acquisition dates of the respective DEMs. Figure 3.2c

shows a differential DEM for the same area as in Figure 3.2a and b. White regions in Figure 3.2c denote

areas where the elevation has decreased by more than 20 m, presumably because of ground excavation.

The location of the area of a decrease in surface elevation agrees with the quarry location inferred from

the optical imagery (Figure 3.2b). The horizontal resolution of the digital topography data is 30 m. Our

approach is to use the airphoto images to locate probable quarries and differential DEM to confirm that
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Figure 3.2. Details of relocation method for cluster 11 in Figure 3.1. (a) The starting SHLK seismicity
clusters. (b) The airphoto image corresponding to the clusters in (a). (c) The differential DEM data plot
for the same area. Positive changes (red) represent topography increases and negative changes (blue)
represent topography decreases. The most extreme changes are shown in black and white. The white
spots are likely quarries, confirming their locations as shown in (b). (d) The shifted clusters together
with the airphoto image. The arrow shows the mislocation vector from the estimated true locations to the
starting SHLK locations.
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these features are associated with the removal of a significant volume of material. The remote sensing

data alone cannot determine when the quarries were active, but it seems likely that the observed events

(flagged in the SCSN catalog as quarry blasts) are caused by explosions at these sites.

Next, we compare Figure 3.2a and b and shift the entire seismicity cluster to align with the imaged

quarry as shown in Figure 3.2d. The blue arrow gives the mislocation vector for the cluster, the location

shift from our estimated true location to the SHLK location. Note that this is opposite to the direction

that we shift the SHLK cluster to align with the quarry image. Notice that the ∼1 km width of the quarry

indicates that most of the scatter shown in the SHLK locations is real; this is consistent with the relative

event location accuracy among nearby events being much better than the absolute location accuracy of the

entire cluster. There is some subjectivity in determining the best shift of the seismicity clusters; in general,

we attempt to visually align the cluster centroid with the center of the quarry shown in the airphoto but

in some cases irregularities in the quarry shape provide a better alignment method. Further refinements

might be possible by studying the time evolution of the quarries by examining airphotos at different dates

and comparing them with the seismic results, but we do not attempt this here.

Notice that several smaller quarries are visible to the southwest of the main quarry, one of which is

associated with its own seismicity cloud. In this case, the alignment obtained for the main quarry appears

to also roughly align the secondary quarry, so we do not perform a separate alignment of the secondary

quarry. This is again consistent with the much smaller relative relocation error, even between different

clusters, compared with absolute location error for the SHLK catalog. In other cases, however, nearby

quarries appear to have significantly different mislocation vectors, even when the quarries are only a few

kilometers apart. Thus, we perform separate alignments for the cluster pairs 2–3, 4–5, 16–17, and 18–19.

Additional examples of our method are included in Figure 3.3 and Figure 3.4 for clusters 3 and 5

(see Figure 3.1), respectively. In these examples, secondary quarries visible in the same images are used

to separately locate clusters 2 and 4 in Figure 3.1. Figure 3.5 presents all 19 clusters that we relocated

using the optical images in our study. The arrows show the directions of the mislocation vectors with the

size proportional to the distance from the true locations (red dots) to the initial SHLK locations (black
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Figure 3.3. Application of relocation method for cluster 3. Notation is the same as in Figure 3.2. There
is a small cluster on the left side of (d) with the mislocation vector, which is cluster 2 in Figure 3.5. These
two clusters are relocated separately because the mislocation vectors are different. (For more details,
please refer to the text.)
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Figure 3.4. Application of relocation method for cluster 5. Notation is the same as in Figure 3.2.
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dots). Figure 3.6 shows the mislocation vectors mapped onto the quarry locations. Note that the scale for

the arrow length is increased compared with the map scale to make the arrows visible. The location errors

for all the clusters in our study are less than 2.1 km, with most errors being less than 1 km. This implies

that the absolute horizontal location error of the SHLK catalog is generally less than 1 km but can be as

much as 2 km. Depth errors can also be evaluated because the SCSN restricts the quarry blasts to be at the

surface, whereas the SHLK locations for all event types are allowed to have nonzero depths. The SHLK

catalog median depths for the mining-induced clusters in this study range from 0.7 to 3.6 km, with most

between 1.2 and 2.4 km. This implies that the SHLK catalog depth errors for shallow events are greater

than their horizontal errors, but, in general, are less than 2.5 km.

3.3 Discussion

These results provide additional ground-truth events that can be used to test the accuracy of the cat-

alog locations and remove some of the trade-offs between the event locations and 3D velocity structure

in tomographic inversions. The bias in seismically located quarry blasts compared with their true loca-

tions exhibits some spatial coherence. For example, clusters 2 to 7 are all biased northwest of their true

locations, whereas clusters 1 and 8 are biased eastward of their true locations. Additional information on

the location bias is provided by the controlled-source data. Figure 3.7 shows that the controlled-source

mislocation vectors are generally consistent with the new mislocation vectors obtained in this study; they

typically have a magnitude of 1 to 2 km and roughly agree in direction among nearby clusters.

Significant variability occurs in the results, however, even among clusters separated by only a few

kilometers, implying that the near-surface velocity structure is a substantial contributor to the location

error. Thus, direct removal of location bias by using calibration events of known location is guaranteed to

work well only when the calibration event is quite close to the target events. Even with our new results, the

calibration event coverage is too sparse to provide reliable mislocation bias estimates for many regions.

Details of the mislocation bias will also be hard to completely resolve with 3D velocity inversions because

of their limited spatial resolution compared with the length scale of the variations shown in Figure 3.7.
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Figure 3.5. The 19 quarry blast clusters examined in our study. The black dots represent the starting
SHLK catalog locations, and the red dots represent the improved (shifted) locations. The arrows show
the mislocation vectors with the size proportional to the distance from the estimated true locations to the
starting SHLK locations. The magnitude of the location changes for all the clusters in our study is less
than 2.1 km, implying that the absolute location errors in the SHLK catalog are roughly 1 to 2 km.
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Figure 3.6. The locations of the 19 quarry blast clusters in southern California used in our study. The
arrows show the mislocation vectors with the size proportional to the distance from the estimated true
locations to the starting SHLK locations. Note the difference between the arrow scale and the map scale.
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Figure 3.7. The locations of both the 19 quarry seismicity clusters used in our study (blue arrows) and
some controlled sources with known locations (red arrows). The arrows show the mislocation vectors with
the size proportional to the distance from the estimated true locations to the starting SHLK locations. Note
the difference between the arrow scale and the map scale.
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Despite these limitations, our new results represent a substantial improvement over existing controlled-

source information for southern California and should help to provide better constrained tomography

models and absolute earthquake locations. Note that most of the quarries that we study are active opera-

tions, for which detailed information could probably be obtained by contacting the quarry operators. The

advantage of our approach is that quarry locations can be obtained directly from freely available remote

sensing data sets, without the need for any other research, correspondence, or site visits.
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Chapter 4

The COMPLOC Earthquake Location Package

4.1 Introduction

This article describes the programs included in the COMPLOC computer program package that are

designed to apply the source-specific station term (SSST) method to solve for local earthquake locations

using P - and S-wave phase data. These programs can greatly improve the relative location accuracy

of nearby events by applying empirical corrections for the biasing effects of three-dimensional velocity

structure. They have been tested on data from both the Southern California Seismic Network (SCSN) and

Northern California Seismic Network (NCSN).

The SSST method (Richards-Dinger and Shearer, 2000; Lin and Shearer, 2005) works by assigning

each station a travel-time correction that varies as a function of source position. This approach provides

relative location accuracy comparable to master event or hypocentroidal decomposition (Jordan and Sver-

drup, 1981) methods within compact event clusters, but is applicable to distributed seismicity. It has

some similarities to the double-difference algorithm (Waldhauser and Ellsworth, 2000, 2002) and can be

shown to give comparable results in tests on synthetic data (Lin and Shearer, 2005). However, the SSST

approach has computational advantages for big data sets because the location and station term parts of

the computation are separate so that large matrix inversions are not necessary. In addition, our imple-

mentation of SSST provides the option to use L1-norm misfit measures, which are more robust than least

squares in the case of occasional timing errors or bad phase picks.

We implement the SSST approach by selecting nearby events located within a sphere of specified
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radius rmax around the target event. The station term for the target event is then computed as the median

(or mean) residual of these events. Different results will be obtained depending upon the size of the cutoff

distance rmax. If rmax is set to a large enough distance, then the SSST method will give the same result

as the static station term method (in which there is only a single timing correction term for each station).

However, if rmax is set to a very small distance, the number of events may not be sufficient to obtain

a reliable estimate of the true station term. Thus selection of the cutoff distance is a key factor in the

application of the SSST method.

When Richards-Dinger and Shearer (2000) applied an SSST algorithm to locate southern California

earthquakes, they obtained their initial locations using the static station term method and then used these

station terms as a starting point for the SSST calculation. In this way, they achieved some improvement

in the absolute locations of the events before focusing on the relative locations among closely spaced

events. A generalization of this approach, adopted in COMPLOC, is to continuously shrink the SSST

cutoff distance rmax between the first and final iterations. In other words, we start the cutoff distance with

a large value to include all the events from which we calculate station terms, then decrease it to some

specified minimum distance to calculate station terms using only the closest events.

More details about the shrinking-box SSST algorithm are contained in Lin and Shearer (2005). The

method was also used to relocate 340,000 southern California earthquakes by Shearer et al. (2005), a study

that went on to relocate events within similar event clusters using waveform cross-correlation times. The

COMPLOC package does not include an option to use differential times from waveform cross-correlation,

but we hope to add this in a future release.

This paper will describe the programs in COMPLOC, which is available as a UNIX tar file at

http://igpphome.ucsd.edu/∼glin/COMPLOC . We also will present plots of some of the example data

sets contained in the package.
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4.2 Program Descriptions

COMPLOC is a Fortran77 computer program package for relocating earthquakes. The program has

been tested on both MAC and Sun systems, but it is made available without warranty.

Before beginning the location process, it is necessary to have the following:

1. A one-dimensional velocity versus depth model for the region;

2. A list of station names, their locations and station timing corrections, if available;

3. P and/or S phase pick data and initial locations for the events to be located.

4.2.1 vzfillin

vzfillin.f is a utility program that reads (z, vp, vs) model files and resamples them at any desired finer

depth interval. This is done with linear interpolation of parameters between depth points so that models

with velocity gradients are easily included. It also permits generation of S velocities that are a specified

fraction of the P velocities.

4.2.2 deptable

deptable.f is a Fortran77 program that computes tables of travel time, ray angle, ray parameter, and

vertical slowness at the source as a function of source depth and source-receiver distance. It can be

used for both local and global seismic models because an earth-flattening transformation is applied to

the velocity model prior to the ray tracing. The output tables are designed to be read with the GET TTS

subroutine in the main program. deptable.f will give results only for source depths that correspond to a

specified depth in the input model file. If necessary, the vzfillin.f program should be used to resample the

input model to a finer depth sampling before running deptable.f. The maximum depth input can be used if

a reflected phase, such as PmP or PcP , is desired. Source depths either can be specified exactly or as a

range of equally spaced depths. All of these depths must correspond to a line in the input velocity model.

The minimum ray parameter is always set to zero so that vertically traveling rays from events at

depth are included. The maximum value is set to the reciprocal of the surface velocity in the model.
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Unless speed is important, a large number of rays should be used, up to a maximum of 40,000 rays. If

desired, the ray table output file gives the surface-to-surface distance and time results for all values of the

ray parameter. This may be useful in some cases for debugging and other purposes.

The ray angle and slowness tables are not used by COMPLOC but are included for use in focal

mechanism or other studies that require the ray takeoff angle at the source. The output ray angles at the

source are from vertical: 0◦ is upgoing vertical, 90◦ is horizontal, 135◦ is downgoing at a 45◦ angle,

etc. The output values of ray parameters are negative for upgoing rays from the source and positive for

downgoing rays from the source.

The program only outputs the first-arriving branches of triplicated phases. Because Pn and Sn are

so weak in most local earthquake data sets, these phases can be suppressed by giving a suitable value for

the minimum ray parameter at long range. This results in tables that include Pg out to ranges beyond

the Pg/Pn crossover distance. The results are only approximate for layer cake (constant velocity layer)

models because the results are interpolated between adjacent values of ray parameter p. However, when

a large number of rays are used, the inaccuracies are relatively small.

4.2.3 getstlist

getstlist.f converts the station lists from the SCSN and NCSN web sites into the format needed by

comploc.f, which consists of station names, their locations and station corrections (if available).

For example:

CI BAR EHZ 32.68005 -116.67215 496.0 0.00 0.00

where CI is the network identification, BAR is the station name, EHZ is the component, 32.68005 is

the station latitude, -116.67215 is the station longitude, 496.0 is the station elevation in meters, and 0.00

and 0.00 are the P and S timing corrections (if available). This is a fixed column format; users must put

everything in the correct columns. comploc.f uses only the network identifications and station names to

identify and locate stations.
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4.2.4 phase2bed3

We recommend converting the phase data file from the network into our binary BED3 format, which

is much faster to read than ASCII phase formats, especially for large data sets. We provide phase2bed3.f,

which is a Fortran77 program that can convert SCSN STP phase data and NCSN HYPOINVERSE phase

data into the BED3 format.

4.2.5 comploc

comploc.f is the Fortran77 program that implements the source-specific location method. Before

running comploc.f, the P and S travel time table files, the station location file, and the phase pick file

must be available.

First, the program asks for the required input file names. The phase data are permitted in one of the

three different formats: (1) our binary BED3 format, (2) SCSN STP format, and (3) HYPOINVERSE for-

mat. Five different output formats for the locations are permitted: (1) SCSN format, (2) HYPOINVERSE

format, (3) NCEDC readable format, (4) HYPO71 format, and (5) our own special format.

The distance cutoff permits rejection of phase data from stations beyond a maximum distance (km)

from the event. Often data at longer distances are less reliable due to Pg/Pn ambiguities or defects in

the velocity model. We have generally used a 100-km cutoff for our California location work. Comparing

results using different distance cutoffs is a good test of the velocity model. If the event depths change

significantly when a 50-km cutoff is used compared with a 100-km cutoff, then the mid- to lower- crustal

velocities in the model likely are too fast or too slow. A clue that this may be happening is when a main-

shock locates at a different depth from its aftershocks; larger events typically have phase picks extending

to larger distances than smaller events.

A minimum number of phase picks is required in order to locate an event. Obviously at least four

picks are required to solve for (x, y, z, t). We recommend setting this to five or more. Larger numbers

will restrict the locations to only the better-recorded events. A lat/lon window option permits locating a

geographic subset of your dataset. Units are decimal degrees, with negative numbers for west longitudes,
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i.e., California is at −120◦ longitude.

If desired, the locations can be fixed to their starting locations. Normally, this option should not be

used as it does not produce new locations. The fixed location kluge option permits keeping the location

fixed at the (x, y, z) location given in the phase file. The program will then only vary the origin time of

the events to achieve the best fit. This option can be useful to compute station terms for a given set of

locations with respect to a particular 1-D velocity model. For example, if one has locations available from

a joint-hypocenter velocity (JHV) inversion that are believed to be accurate, this option can be used to

compute a set of station terms that will yield similar absolute locations using the comploc.f program for a

1-D model (this will require a separate run of comploc.f using the station terms as input). The advantage

is that additional events (not in the JHV catalog) can be located and the SSST method should improve the

relative location accuracy of all of the events.

The starting reference depth is the center point for the grid search method. If a fixed depth is used,

then another input line is required to specify the depth. In general the locations are not sensitive to the

starting depth, but we have found some dependence for a small fraction of the events, which apparently

have complicated misfit functions with multiple local minima. A good starting depth for most crustal

seismicity is 10 km, because the grid search method starts with a box of ±10 km.

For testing purposes, the user can locate fewer than the total number of events by specifying a

maximum number of events to locate, or specifying a random fraction of the total events to locate. For

example, entering 0.1 for the random fraction would cause the program to randomly select 10% of the

input events.

The user can select either the L1- or L2-norm for the residual misfit function. We have found that the

L1-norm gives somewhat better results for real data, presumably because of its robustness with respect

to outliers. The program works by performing a number of iterations of event location and station term

calculations. There are two types of station terms. Static station terms are a single number for each station

and phase (P or S). They are computed as the mean (or median in the case of the L1-norm option), of

the residuals for each station. The source-specific station terms (SSST) are specific to each event and
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are computed by smoothing the residuals over adjacent events. The best results generally are obtained

by first solving for static station terms and then solving for source-specific station terms using a residual

smoothing box that decreases in size with each iteration. The program permits the user to vary the number

of iterations used at each step and the size of the smoothing box for the SSST calculation.

An example data set from the Vallecitos Valley region of California (see Figures 3 and 4 from Shearer

et al. 2005) also is included with the package. Because of the number of required inputs, we recommend

always running comploc.f using a UNIX script, which is included as a “do” file in the example. In Figure

4.1 and 4.2, we show the map-view and cross section of the different locations for the Vallecitos Valley

region from COMPLOC. Figure 4.1a and 4.2a are the SCSN catalog locations. Figure 4.1b and 4.2b are

the single event locations when we set the number of iterations for both the static station terms and the

source-specific station terms to zero. Figure 4.1c and 4.2c are the static station term locations where the

number of iterations for the source-specific station terms is zero and the station term for each station is a

constant. Figure 4.1d and 4.2d are the shrinking box location where we shrink the size of the smoothing

box from 20 km at the first iteration to 8 km at the last iteration. The locations are slightly better than the

static station term locations, although because this example is for a compact cluster, most of the location

improvement compared to the single event locations is seen using the static station terms alone. When

the method is applied to more distributed seismicity, the static station term locations are significantly less

accurate than the SSST locations.

In the cross-section location plot, some events are stuck at 6 km even in the shrinking box location.

This is probably due to the linear interpolation we use to compute travel times, which may result in slight

second-order discontinuities (i.e., changes in slope) at points in our travel-time tables. It is possible that

higher-order interpolation algorithms could solve this problem (Richards-Dinger and Shearer, 2000).

The recommended user sequence for our COMPLOC package is:

1. Create vz model and run vzfillin.f to resample to 1-km (or 0.5-km) depth intervals;

2. Run deptable.f to create the tables necessary for comploc.f;
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Figure 4.1. Map view of the relocated seismicity near Vallecitos Valley, comparing: (a) SCSN catalog
locations, (b) single event locations, (c) static station term locations, and (d) shrinking box SSST locations.
The line AB shows the cross section for Figure 4.2.
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Figure 4.2. Cross-sections of the relocated seismicity along the profile AB (shown in Figure 4.1) near
Vallecitos Valley, comparing: (a) SCSN catalog locations, (b) single event locations, (c) static station term
locations, and (d) shrinking box SSST locations.
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3. Use phase2bed3.f to convert phase pick data to BED3 format;

4. Run comploc.f to compute locations.

4.3 Summary

The advantages of COMPLOC include:

1. The grid search approach allows application of more-robust norms than least squares, which are

less sensitive to gross picking or timing errors.

2. The input 1-D velocity model is parameterized in terms of continuous gradients between depth

points rather than being restricted to “layer cake” models with constant velocity layers.

3. Large data sets can be rapidly input using the binary BED3 option. However, ASCII STP and

HYPOINVERSE phase formats also are supported.

4. The shrinking-box source-specific station term (SSST) method (Lin and Shearer, 2005) greatly

improves the relative location accuracy among nearby events. It achieves results comparable to the

double-difference method but runs faster for large data sets.

The limitations of COMPLOC include:

1. Starting location estimates must be provided.

2. The current release does not permit use of waveform cross-correlation differential times.

The initial and future releases of the COMPLOC package are available at:

http://igpphome.ucsd.edu/∼glin/COMPLOC
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Chapter 5

Estimating Local Vp/Vs Ratios Within Similar Earthquake Clusters

Abstract. We develop and test a method to estimate local Vp/Vs ratios for compact similar earthquake

clusters using the precise P and S differential times obtained using waveform cross-correlation. We

demonstrate how our technique works using synthetic data and evaluate likely errors arising from near-

source takeoff angle differences between P and S waves. We use a robust misfit function method to

compute Vp/Vs ratios for both synthetic data sets and several similar event clusters in southern California,

and use a bootstrap resampling approach to estimate standard errors for real data. Our technique has

higher resolution for near-source Vp/Vs ratios than typical tomographic inversion methods and provides

constraints on near-fault rock properties.
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5.1 Introduction

Recently, waveform cross-correlation has become an increasingly important tool for improving rela-

tive earthquake locations, characterizing event similarity and studying earthquake source properties (e.g.,

Nakamura, 1978; Poupinet et al., 1984; Got et al., 1994; Dodge et al., 1995; Nadeau et al., 1995; Gillard

et al., 1996; Shearer, 1997, 1998; Rubin et al., 1999; Waldhauser et al., 1999; Astiz et al., 2000; Astiz and

Shearer, 2000; Shearer, 2002; Shearer et al., 2003; Hauksson and Shearer, 2005; Schaff and Waldhauser,

2005; Shearer et al., 2005). Relative earthquake locations have been remarkably improved by using the

very precise differential travel times obtained from waveform cross-correlation, which can often be mea-

sured to millisecond precision for similar events, allowing relative earthquake location to be precise to a

few meters. In most of these studies, the relative locations are obtained by using a fixed seismic velocity

model, although recently the differential times have also been used to constrain tomographic inversions

(Zhang and Thurber, 2003).

Here we show that when both P - and S-wave differential times are available, it is possible to estimate

the local P -to-S velocity ratio within individual similar event clusters in addition to improving the relative

locations among the events. Phillips et al. (1992) presented a similar technique for microearthquake

cluster structure studies but have not yet published the details of their method. We demonstrate that in

many cases reasonable Vp/Vs estimates can be obtained even given uncertainties in the P - and S- takeoff

angles. Finally, we use a robust fitting method to handle the outliers that are often present in real data

and apply bootstrap resampling to evaluate likely errors. We test our approach on both synthetic data and

waveform cross-correlation data for similar event clusters in southern California.

5.2 Theory

We begin by considering an idealized example of a single pair of events and then systematically add

the complexities associated with more realistic geometries.
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5.2.1 Obtaining the Vp/Vs Ratio for a Single Pair of Events

Consider a pair of nearby events, event 1 and event 2, recorded at n stations. If the event separation

is small enough compared with the source-receiver distances, the differential P -wave travel time δT i
p

between these two events at station i can be expressed as

δT i
p = T i

p2
− T i

p1
=

δlip
Vp

(5.1)

where T i
p2

and T i
p1

are the source-receiver travel times for events 2 and 1, respectively, δlip is the difference

in the ray-path distances between the two events, and Vp is the local P -wave velocity (see Figure 5.1).

Note that because of source-receiver reciprocity this travel-time difference is identical with that resulting

from a source at the station generating a wavefront that is recorded at the two event locations. We assume

that the events are sufficiently close together that the seismic velocity is locally constant and that the

P - reciprocal wavefront from each station may be approximated as planar. Because the stations are in

different directions, the δlip values will vary among the stations.

Figure 5.1. The ray geometry for a pair of events recorded by a distant station.
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Under similar assumptions, the differential S travel time may be expressed as

δT i
s = T i

s2
− T i

s1
=

δlis
Vs

(5.2)

Provided that the P - and S- ray paths are coincident (we will discuss this assumption in greater detail in

a later section), then δlip = δlis and

Vp

Vs
=

δT i
s

δT i
p

(5.3)

and we could estimate the local Vp/Vs ratio near the events separately from the δT i
s and δT i

p times.

Given a number of different stations, the (δT i
p, δT

i
s) points (i = 1, 2, 3, ..., n) should all lie on the δTs =

(Vp/Vs)δTp line.

However, we do not normally measure the travel times, T , because we do not know the event origin

times. Instead, we measure the arrival times, t. Let δt0 be the difference in origin times between these

two events, that is,

δt0 = t02 − t01 (5.4)

where t02 is the origin time of event 2 and t01 is the origin time of event 1. Then for station i, tip1
=

t01 + T i
p1

, tip2
= t02 + T i

p2
, and

tip2
− tip1

= (t02 + T i
p2

)− (t01 + T i
p1

) (5.5)

= (t02 − t01) + (T i
p2
− T i

p1
) (5.6)

and we have δtip = δt0 + δT i
p or δT i

p = δtip − δt0. Similarly for the S-waves we have δT i
s = δtis − δt0,

and thus

Vp

Vs
=

δtis − δt0
δtip − δt0

(5.7)

The effect of the difference in origin times, δt0, is to shift the (δT i
p, δT

i
s) points in both coordinates by

δt0 or along a 45◦ line. Figure 5.2 shows the relation between (δtip, δt
i
s) and (δT i

p, δT
i
s).

Equation (5.7) can be rewritten in the slope-intercept form

δtis = (
Vp

Vs
)δtip + δt0(1−

Vp

Vs
) (5.8)



68

and we see that the (δtip, δt
i
s) points are on a line with slope Vp/Vs and y intercept δt0(1−Vp/Vs) (shown

in Figure 5.2). Notice that the δt0(1− Vp/Vs) term does not contain additional constraints on the Vp/Vs

ratio because δt0 is not known a priori. Thus, the (δtp, δts) points for a single pair of events recorded by

many stations should form a line with a slope that provides the Vp/Vs ratio and a y intercept that gives

the differential origin time. If noise or picking errors are present, then some kind of fitting procedure will

be necessary to determine the best-fitting slope and estimate the Vp/Vs ratio. Note that this method can

only be used to solve for local Vp/Vs ratios, not the absolute P - or S-wave velocity, unless δlip or δlis is

independently known (e.g., Fitch, 1975). In general, these event separation distances and the overall size

of an event cluster trade off with the local P or S velocity. However, in principle the Vp/Vs ratio can be

recovered even without accurate event locations as we demonstrate here.

Figure 5.2. The filled circles show the differential P and S travel times and the open circles indicate the
differential P and S arrival times, which are shifted δt0 in both coordinates from the P and S travel-time
line. The slopes of both lines are the local Vp/Vs ratio. The travel-time line passes through the origin
(0, 0), and the arrival-time line has a y intercept of δt0(1− Vp/Vs).
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Next, we use synthetic data to illustrate the technique. We perform our synthetic tests in a 64× 64×

32 km uniform half-space with a P -wave velocity of 6 km/s and a Vp/Vs ratio of 1.732. We generate a

single pair of events separated by 0.2 km with their center at 10 km depth and 20 random station locations

on the surface of the half-space. We compute the differential times from this event pair to all 20 stations

and use these differential times to estimate the local Vp/Vs ratio. For simplicity, we do not add any noise

for this example. Figure 5.3 shows the synthetic differential times, which, as expected define a line of

slope 1.732.

Figure 5.3. P differential arrival times versus S differential arrival times for a single pair of events
recorded by 20 random stations on the surface. The straight line passing through the points is the best-
fitting line from our iterative total least-squares method. The slope of the line is 1.732, which is the true
Vp/Vs ratio in our test.

5.2.2 Vp/Vs Ratio for a Cluster of Events

For a single pair of events, equation (5.8) works directly because the y intercept, δt0(1− Vp/Vs), is

a constant for all the records. But for different pairs of events, it is not appropriate to use equation (5.8)

because the differential origin times are not the same. In other words, for all pairs of events in a compact

cluster, assuming they all have the same local Vp/Vs ratios, if we plot all the (δtp, δts) points on one

single plot, they will lie on different straight lines parallel to each other at slope Vp/Vs, but with different
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y intercepts.

Figure 5.4. Event and station distributions for the 27 synthetic events in a cube and 20 stations on the
surface. The small dot in the middle of the half-space is the cube of events, which is hard to distinguish
because the size of the cube is 0.2×0.2×0.2 km. The triangles are the stations.

This is illustrated in another synthetic example. In this case, we continue using a uniform half-

space model with a P -wave velocity of 6 km/s and a Vp/Vs ratio of 1.732. We generate 20 random

station locations on the surface of the half-space and 27 events with random origin times in a compact

0.2×0.2×0.2 km cube with the center at 10 km depth. Figure 5.4 shows the event and station distributions

for this test. We compute all possible differential times from each pair of events to the 20 stations (at this

stage we still do not include any noise). Figure 5.5a shows the (δtp, δts) points for different pairs of

events. For plotting purposes, we only plot the points with absolute values less than 0.05 s. These points

are on different lines parallel to each other at the slopes of the true Vp/Vs ratio (1.732) for the cube, but

different y intercepts, which are due to the differing differential origin times between event pairs.

To estimate the local Vp/Vs ratio for the compact cube using the differential times from all available

event pairs, we can use equation (5.8) to write a series of equations for each station that records the pair

of events 1 and 2:

δt1s = (
Vp

Vs
)δt1p + δt0(1−

Vp

Vs
) for station 1 (5.9)

δt2s = (
Vp

Vs
)δt2p + δt0(1−

Vp

Vs
) for station 2 (5.10)

...

δtns = (
Vp

Vs
)δtnp + δt0(1−

Vp

Vs
) for station n (5.11)
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Figure 5.5. (a) P differential arrival times δtp versus S differential arrival times δts for different pairs
of events in a compact cluster. These points are on different lines parallel to each other, with the same
slope as the true Vp/Vs ratio for the cluster, but with different y intercepts, which are due to the varying
differential origin times. (b) Demeaned δtp versus demeaned δts in (a). These points align on a straight
line at slope Vp/Vs and through the origin (0, 0). (c) Demeaned δtp versus δts for 27 synthetic events
using the uniform half-space velocity model. We add Gaussian distributed picking errors in both P and S
differential times and also uniform distributed errors in P times to simulate the outliers in real data. The
slope of the best-fitting straight line is 1.730, which is very close to the true Vp/Vs ratio for the cube.
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If we sum these equations and divide by the number of stations n, we then have

¯δts = (
Vp

Vs
) ¯δtp + δt0(1−

Vp

Vs
) (5.12)

where ¯δts and ¯δtp are the mean values of the differential S and P times from all the stations.

Subtracting (5.12) from (5.8), we obtain

(δtis − ¯δts) = (
Vp

Vs
)(δtip − ¯δtp) (5.13)

δ̂t
i

s = (
Vp

Vs
)δ̂t

i

p (5.14)

where δ̂t
i

s and δ̂t
i

p are the demeaned differential S- and P - arrival times. In this way we can estimate the

Vp/Vs ratio using the δ̂tp and δ̂ts vectors from all event pairs in the compact cluster. Because equation

(5.14) is not a function of differential origin times, if we assume all pairs of events are in a compact

cluster, all the (δ̂tp, δ̂ts) points in the cluster should align on a straight line at slope Vp/Vs and through

the origin (0, 0), as shown in Figure 5.5b. This makes it possible to fit all of the points simultaneously for

the best-fitting Vp/Vs ratio for the entire cluster.

5.2.3 Fitting Method for Noisy Data

In the preceding synthetic examples we have not included any noise, so the data points directly define

the line that gives the Vp/Vs ratio. However, real data will have some degree of error, which will require

the use of a fitting method to compute the best-fitting line. In addition, our differential time data often

have obvious outliers — extreme values that would severely bias any conventional least-square approach.

We thus apply a more robust method, which measures distance using the L2 norm for data misfits below

some specified value, dmax (which in general will depend on the observations), and an L1 norm for larger

values. This hybrid l1− l2 error measure was proposed by Huber (1973) and can be used to compute what

we will term the robust mean of a distribution. For data with outliers, we use the robust mean to demean

the differential S- and P - arrival times for each station as described previously.

In the classical least-squares (LS) line-fitting approach, one of the two measurements is assumed

to be exact and free of error and a regression is performed to find the best-fitting line to the second
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measurement. For example, if the the data are given as (x, y) pairs and the error is assumed to be entirely

in y, then we find the slope and y intercept that minimize the sum of the squares of the vertical (y)

distances between the line and the data. In our case, however, we likely have errors in both the δtis and

δtip values. If the x and y errors are assumed equal, then the optimal solution is given by the line with the

minimum perpendicular distance to each point. Least-squares solutions to this problem are described in,

for example, Jefferys (1981), Press et al. (1992), and Van Huffel (1997). In the case of unequal x and y

errors, the problem can be rescaled to be equivalent to the equal error case. To account for outliers in our

differential time measurements, we modify this method to be more robust. We perform a grid search for

lines of different slopes, computing the best-fitting y intercept for each line from the robust mean of the

perpendicular distances to each data point, after first scaling the δtis values so that their expected variance

matches that of the δtip values.

As we will discuss subsequently, biases resulting from angular differences in the local P - and S- ray

paths near the events will cause errors in the δts points to be R times greater than the errors in the δtp

points, where R is the Vp/Vs ratio. We thus multiply the data δts values by 1/R so that their expected

error is similar in size to the δtp error. Note, however, that any desired rescaling could be applied at

this point if the relative variance of δtp and δts measurements is known a priori. Because our method is

solving for R, an iterative method is necessary. We assume a starting value for R, find the best-fitting line,

and then replace R with its updated value (R=R×slope ) for the next iteration. This iterative algorithm

converges after several (3 to 5) iterations, and the final R value is our estimate for the Vp/Vs ratio. For

our synthetic tests with noise, we use 1.0 as an initial value for R to test the robustness of our method;

but for real data, 1.732 would be a more reasonable starting value for the Vp/Vs ratio, and is used in our

analysis of waveform cross-correlation results.

To test our fitting method, we generate a synthetic data set for the 27 events in a cube and 20 sta-

tions on the surface using the same uniform half-space velocity model in the previous example. We add

Gaussian distributed noise with zero mean and a standard deviation of 5 msec, which is comparable to

the size of the scatter in real cross-correlation data, for the P differential times and scaled by 1.732 (the
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true Vp/Vs ratio) for the S differential times. To simulate the outliers in real data, we also add uniform

distributed noise in 1% of the P differential times. To show that our iterative method works correctly

even if the initial R estimate is incorrect, we assume R = 1 in the first iteration. We test different initial

values for R (between 0.1 and 10) in our study and find they all converge to the same Vp/Vs ratio for this

synthetic example. Figure 5.5c shows the resulting data points and our Vp/Vs ratio estimate of 1.730. If

we used the classical least-squares approach rather than our robust method, the estimated Vp/Vs ratio is

1.583. If the errors in the δtp and δts points are assumed to be equal, then the robust total least-squares

result is biased and we obtain a Vp/Vs ratio of 1.784 for this example.

5.2.4 Effect of Different Takeoff Angles for P and S

So far we have been assuming that the P and S waves are coincident so that they have the same

takeoff angles. Now we consider the possible errors that may result if the P - and S- takeoff angles are

different. This might be caused by depth-varying Vp/Vs differences or by local Vp/Vs variations near the

source pair.

First, let us consider the effect that ray-path deviations will have on our δtp and δts measurements.

The ray-angle geometry at the event pair is shown in Figure 5.6. Let âp be the P -ray unit direction vector,

âs be the S-ray unit direction vector, 2ε be the angle between âp and âs, and ê be the unit direction vector

from event 1 to event 2. Without loss of generality we may assume that âp and âs are in the x-z plane

and symmetric about the z-axis. We can then write

âp = (− sin ε, 0, cos ε) (5.15a)

âs = (sin ε, 0, cos ε) (5.15b)

ê = (sin θ cos φ, sin θ sinφ, cos θ) (5.15c)

where the event vector ê has an arbitrary orientation defined by the polar angle θ and the azimuthal angle
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Figure 5.6. The spherical coordinate system that we use to show the bias in δtp and δts due to ray path
deviations.

φ. Let βp be the angle between âp and ê, and βs be the angle between âs and ê. We then have

cos βp = âp · ê = − sin ε sin θ cos φ + cos ε cos θ (5.16a)

cos βs = âs · ê = sin ε sin θ cos φ + cos ε cos θ (5.16b)

We can express the differential P and S travel times as

δtp = (âp · e)/Vp = (‖e‖ âp · ê)/Vp = (‖e‖ cos βp)/Vp (5.17a)

δts = (âs · e)/Vs = (‖e‖ âs · ê)/Vs = (‖e‖ cos βs)/Vs (5.17b)

where ‖e‖ is the distance between event 1 and event 2 (i.e., e =‖e‖ ê). Thus, each (δtp, δts) point can

be written as

(δtp, δts) = ‖e‖
(

cos βp

Vp
,
cos βs

Vs

)
= ‖e‖

(
cos ε cos θ

Vp
− sin ε sin θ cos φ

Vp
,
cos ε cos θ

Vs
+

sin ε sin θ cos φ

Vs

)
(5.18)
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When the P and S-ray paths are coincident (i.e., ε = 0), then the slope of the (δtp, δts) points is equal

to Vp/Vs ratio. When ε is small but nonzero, then cos ε ≈ 1, so that δtp and δts are biased from their

ε = 0 values by (sin ε sin θ cos φ)/Vp and (sin ε sin θ cos φ)/Vs, respectively. Thus, we see that the bias

introduced into the δts differential times by ray-path deviations will be a factor Vp/Vs times larger than

the bias in the δtp times.

Figure 5.7. The velocity model that we use to test the effect of different P - and S-wave takeoff angles.

To show the effect of different P - and S-wave takeoff angles, we generate a velocity model in which

both Vp and Vs increase, but the Vp/Vs ratio decreases with depth (see Figure 5.7). At 10 km source

depth and 30 km epicentral distance, the P -takeoff angle at the source is 80.13◦ (from vertical) and the

S-takeoff angle is 85.03◦. We use the depth-varying velocity model to generate differential times for a

single pair of events separated by 0.2 km at 10 km depth with the event separation vector perpendicular

to the surface, and recorded by 20 random stations at the surface. The epicentral distances range between

5 km and 38 km, most of which are about 30 km. In Figure 5.8, we plot (δtp, δts) points for this pair of
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events. For the purpose of this test, we do not add any random noise to the differential times. The true

local Vp/Vs ratio at the center of the events is 1.697, whereas the estimated slope is 1.830. The points are

biased from the true straight line because the takeoff angles for P and S from each station are different.

Figure 5.8. δtp versus δts for a single pair of events recorded by 20 stations at the surface using the
depth-varying velocity model of Figure 5.7. The estimated slope is 1.830, shown by the solid line, while
the true local Vp/Vs ratio is 1.697, shown by the dashed line.

The bias in the estimated Vp/Vs ratio will vary depending on the orientation of the event pair with

respect to the incoming rays. To illustrate this, we use the same depth-varying velocity model and station

distribution, but rotate the relative location vector of the pair of events every 5◦ uniformly in three-

dimensions while keeping the center of the events fixed. In this way, the P - and S-takeoff angles from

each station to the pair of events change in all possible directions. We then use the (δtp, δts) points from

all these rotated pairs of events to estimate the slope.

Figure 5.9 shows all these points from the rotated event pairs and the best-fitting straight line. The

slope of the best-fitting line is 1.697, which is the true Vp/Vs ratio at the center of the events. Thus,

although P - versus S-takeoff angle differences will bias results for individual event pairs, this bias will

tend to average out when a large number of random event orientations are present. This can be seen from

symmetry considerations in Figure 5.6 and equation (5.18); for every ê1 vector with a positive Vp/Vs
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bias, there will also exist a corresponding ê2 vector with negative bias at φ2 = φ1 + π.

Figure 5.9. δtp versus δts for the same station distribution and velocity model used in Figure 5.8. In this
case, we rotate the pair of events every 5◦ uniformly in three-dimensions so that the ray paths from the
stations change in all possible directions. For plotting purposes, we only plot a random 5% of the points.
The estimated slope is 1.697, which is the true Vp/Vs ratio at the cluster depth.

For real data it is not possible to do the three-dimensional rotations. However, if an event cluster

is small and contains event pairs of varying orientations and the station distribution is good enough, the

ray paths for all the events in the cluster may form a random distribution of directions, as in the three-

dimensional rotations, so that the local Vp/Vs ratio may be accurately recorded. To show this, we generate

the synthetic differential times for the 27 events in the cube and 20 stations in the previous section using

the same depth-varying velocity model. The Vp/Vs ratio at the center of the cube is 1.697. The event and

station distributions are shown in Figure 5.4. The (δtp, δts) points for this small cube are shown in Figure

5.10. The slope of the best-fitting straight line is 1.697, which is the true Vp/Vs ratio at the center of the

cube.

However, it should be recognized that the bias may not be completely removed in the case of event

clusters with a more limited distribution of events. For example, if the 27 events in this synthetic example

are restricted to a horizontal plane, then the Vp/Vs ratio estimate is 1.716. If the events are located within
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a vertical plane, then the computed Vp/Vs ratio will vary between 1.677 and 1.689, depending on the

azimuth of the plane. This suggests that the most accurate results for real data clusters will be obtained

for clusters with a three-dimensional distribution of events.

Figure 5.10. δtp versus δts for 27 synthetic events using the velocity model shown in Figure 5.7. The
slope of the best-fitting straight line is 1.697, which is the true Vp/Vs ratio for the cube.

As a final test of our Vp/Vs ratio estimate approach, we generate a synthetic data set for the 27 events

in a cube and 20 stations on the surface using the same depth-varying velocity model in the previous

example. We add Gaussian distributed noise with zero mean and standard deviations of 5 msec for the P

differential times and scaled by 1.697 (the true Vp/Vs ratio) for the S differential times. To simulate the

outliers in real data, we also add uniform distributed noise in 5% of the P differential times. Our Vp/Vs

ratio estimate for this cube is 1.692 (shown in Figure 5.11), very close to the true value of 1.697. Note

that the outliers in our test are very strong, which would significantly bias the ratio estimate if we used

simple least-squares rather than our robust approach. The Vp/Vs ratio estimate from simple least-squares

is 1.243 for this example. If the errors in the δtp and δts points are assumed to be equal, then the robust

total least-squares result is biased and we obtain a Vp/Vs ratio of 1.752.
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Figure 5.11. δtp versus δts for 27 synthetic events using the velocity model shown in Figure 5.7. We add
Gaussian distributed picking errors in both P and S differential times and also uniform distributed errors
in P times to simulate the outliers in real data. The slope of the best-fitting straight line is 1.692, which is
very close to the true Vp/Vs ratio for the cube.

5.3 Examples for Southern California Earthquake Clusters

We apply this Vp/Vs ratio estimate method to differential times from waveform cross-correlation for

two similar event clusters in southern California taken from Shearer et al. (2005). To estimate the Vp/Vs

ratio for each event cluster accurately, we use event pairs with at least five differential P -S times and

require more than 100 differential P -S time pairs for the entire cluster.

5.3.1 Estimating Standard Errors

For real data, the event and station distributions may not be as good as in our synthetic data, so it

is desirable to estimate standard errors in our Vp/Vs ratios. Since the true values are unknown, certain

assumptions are necessary to obtain error estimates. The classical least-squares method can be used to

compute error ellipses based upon χ2 misfit criteria and is optimal for the case of uncorrelated Gaussian

random errors. These methods are not easily generalized to other model norms, such as the robust least-

squares method that is used here. As an alternative, we have applied a bootstrap approach (Efron and

Gong, 1983; Efron and Tibshirani, 1991), in which each pair of suitable differential P and S times in



81

the same cluster may be sampled multiple times or not sampled at all. This process is repeated for

100 subsamples for each cluster and we estimate the standard deviation of these 100 subsamples as the

standard error of the Vp/Vs ratio. However, note that these formal statistical uncertainties (which can

be quite small when the number of data points is large) represent a minimum error because they do

not include the possible biases resulting from P and S takeoff angle differences in nonisotropic event

distributions.

5.3.2 Vp/Vs Ratio Estimates Using Waveform Cross-Correlation Results

Here we present two examples of Vp/Vs ratio estimates using the waveform cross-correlation results

for clusters in southern California taken from Shearer et al. (2005). Figure 5.12 shows the 7265 demeaned

(δtp, δts) points for cluster 99 (in the POLY5 subset of events) in southern California from Shearer et al.

(2005). The centroid of this cluster is at (33.511◦N, -116.555◦E, 10.1 km). The slope of the best-fitting

straight line is 1.782 and the standard deviation of our Vp/Vs ratio estimate from bootstrap resampling is

0.006. Figure 5.13 shows the 5520 demeaned (δtp, δts) points for cluster 427 in POLY5. The centroid

of this cluster is at (33.478◦N, -116.495◦E, 10.5 km). The resolved Vp/Vs ratio for this cluster is 1.713

and the standard deviation from bootstrap resampling is 0.010. In principle, these observed Vp/Vs ratios

could be used to constrain the lithology of the rock in the source regions. As noted by Tatham (1982),

laboratory and well-log data suggest a Vp/Vs ratio near 1.8 for dolomite and in the range of 1.6 to 1.75 for

sandstones. However, the presence of cracks and the degree of pore fluid saturation can also be important

factors in determining the Vp/Vs ratio.

5.4 Discussion

In general, variations in Vp/Vs ratios may be determined by using tomographic methods. However,

the resolution of local Vp/Vs ratios from tomography is usually limited due to the coarse grid sizes,

although Zhang and Thurber (2005) showed that the adaptive mesh tomography scheme has the ability

to resolve the velocity structure near the source region. In this study, we develop a method to estimate



82

Figure 5.12. Demeaned δtp versus δts for the 74 events in cluster 99 from the SHLK catalog (Shearer
et al., 2005). The slope of the best-fitting straight line is 1.782±0.006.

Figure 5.13. Demeaned δtp versus δts for the 81 events in cluster 427 from the SHLK catalog (Shearer
et al., 2005). The slope of the best-fitting straight line is 1.713±0.010.
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local Vp/Vs ratios for event clusters by using precise differential times derived from the waveform cross-

correlation technique. Our method is simple to execute and does not require much computer power. The

uncertainty is typically small since the precision of differential times from waveform cross-correlation can

be as small as a millisecond and the Vp/Vs ratio can be recovered even without accurate event locations.

For real data, the l1 − l2 misfit measure is useful to reduce the effects of outliers. Due to possible

differences in P - and S-wave takeoff angles, the estimated Vp/Vs ratios could be biased from their true

values. However, as shown in our synthetic data tests, if the seismic ray coverage for a cluster of events is

good enough, the true Vp/Vs ratio can still be recovered. We find that the resolved Vp/Vs ratios are very

sensitive to the differential times, especially at short hypocentral distances where the P and S arrivals

are very close to each other. In this case, the S waveforms should be windowed very carefully, because

otherwise the Vp/Vs ratios will likely be underestimated because part of the P wavetrain may be included

in the S-wave cross-correlation.

In this study, we assume that the scale length of changes in Vp/Vs ratios is greater than the size of

the similar event clusters. Our method could be biased if there are significant variations in the Vp/Vs ratio

within the cluster, although given a good distribution of events we should still obtain a reasonable value

for the average Vp/Vs ratio. It is possible that spatial and/or temporal variations in Vp/Vs ratios could

be identified by analyzing subsets of similar event clusters, but we do not attempt this here. Given re-

cent applications of waveform cross-correlation to large earthquake catalogs (e.g., Hauksson and Shearer,

2005; Schaff and Waldhauser, 2005), widespread computation of near-source Vp/Vs ratios appears prac-

tical and should provide a useful complement to tomographic methods. In addition, these local Vp/Vs

measurements should permit computing more accurate relative locations of events within each similar

event cluster. We will defer discussing details of how this can be done to a later study.
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Chapter 6

A 3-D Crustal Seismic Velocity Model for Southern California from
a Composite Event Method

Abstract. We present a new crustal seismic velocity model for southern California derived from P and

S arrival times from local earthquakes and explosions. To reduce the volume of data and ensure a more

uniform source distribution, we compute “composite event” picks for 2597 distributed master events that

include pick information for other events within spheres of 2 km radius. The approach reduces random

picking error and maximizes the number of S-wave picks. To constrain absolute event locations and

shallow velocity structure, we also use times from controlled sources, including both refraction shots and

quarries. We implement the SIMULPS tomography algorithm to obtain 3-D Vp and Vp/Vs structure and

hypocenter locations of the composite events. Our new velocity model in general agrees with previous

studies, resolving low velocity features at shallow depths in the basins and some high velocity features in

the mid-crust. Using our velocity model and 3-D ray tracing, we relocate about 450,000 earthquakes from

1981 to 2005. We observe a weak correlation between seismic velocities and earthquake occurrence, with

shallow earthquakes mostly occurring in high P velocity regions and mid-crustal earthquakes occurring

in low P velocity regions. In addition, most seismicity occurs in regions with relatively low Vp/Vs ratios,

although aftershock sequences following large earthquakes are often an exception to this pattern.

86
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6.1 Introduction

Local Earthquake Tomography or LET (Thurber, 1993) has been widely used to obtain high resolu-

tion crustal images while simultaneously improving earthquake locations (Thurber, 1983). The resulting

models are useful in resolving the geological structure of the crust, performing path and site effect studies,

and computing strong ground motion simulations. In addition, the relocated hypocenters provide added

information on crustal structure and tectonics. Most studies have used ray theoretical methods to model

P and S arrival time data because of the proven effectiveness of this approach, although in principle

additional information is contained in other parts of the seismic waveforms.

We apply LET to southern California P - and S-wave arrival time data from local earthquakes and

explosions in order to derive a new crustal velocity model and improve absolute earthquake locations by

correcting for the biasing effects of 3-D structure. To reduce the volume of data used in the tomographic

inversions while preserving as much of the information in the original picks as possible, we apply a tech-

nique we term the “composite event” method. We simultaneously solve for the locations of the composite

events and the velocity structure in our study area using Thurber’s SIMULPS algorithm (Thurber, 1983,

1993; Eberhart-Phillips, 1990; Evans et al., 1994). Our velocity model is similar to models from previous

studies but also has some new features. The model can be used as a starting point for structural studies,

earthquake locations, and ground motion calculations.

6.2 Data and Processing

Our initial data are the phase arrival times of P and S waves from 452,943 events, consisting of

local events, regional events and quarry blasts, from 1981 to 2005 recorded at 783 stations in southern

California and picked by the network operators. Figure 6.1 shows the station locations in our study area.

6.2.1 1-D Relocation

To obtain initial locations for these events, we apply the shrinking box source-specific station term

(SSST) earthquake location method (Richards-Dinger and Shearer, 2000; Lin and Shearer, 2005) to the
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Figure 6.1. Locations of the 783 stations used in the study area.

452,943 catalog events using a 1-D velocity model that was used for the SHLK catalog presented by

Shearer et al. (2005). To avoid Pg/Pn and Sg/Sn ambiguities, we use only arrivals with source-receiver

ranges of 100 km or less. We minimize the robust least squares (Lin and Shearer, 2007) of the arrival time

residuals to relocate the events with at least five picks. The distance cutoff for the station term calculation

is reduced gradually during the iterations from 100 km to 8 km. This implements the shrinking box SSST

method described in Lin and Shearer (2005). Figure 6.2 shows the relocated 428,871 events. Although the

absolute location accuracy of this initial catalog is limited by the use of a 1-D model, the relative location

accuracy is sufficient for us to use these locations to examine residual statistics and for the “composite

event” calculations that we describe below.

6.2.2 Error Estimates

Before we start the tomographic inversions, we estimate the random picking errors and the scale-

length of 3-D heterogeneity in our study area by analyzing differential residuals for pairs of events
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Figure 6.2. Locations of the 428,871 1-D relocated events using only the arrival time data in southern
California from 1981 to 2005.

recorded at the same station. For a given pair of events, event i and event j, we compute the differential

arrival time residual at a common station k after relocation as

drij = ri − rj (6.1a)

= (T o
i − T p

i − t0i)− (T o
j − T p

j − t0j) (6.1b)

where T o
i and T o

j are the observed arrival times for event i and j, T p
i and T p

j are the predicted travel times

from the 1-D velocity model, and t0i and t0j are the origin times of the events after relocation. Figure

6.3 shows the median absolute deviation (MAD) of the differential residuals as a function of event sepa-

ration distance. By plotting how differential residual variance changes as a function of event separation

distance, it is possible to characterize random picking error compared to the correlated signals caused

by 3-D velocity structure (e.g., Gudmundsson et al., 1990). In addition, these plots provide constraints

on the scale-length of the heterogeneity and the appropriate distances to use in smoothing residuals for

computing source-specific station terms. In principle, as the event separation distance shrinks to zero, the



90

Figure 6.3. Differential residual MAD (Median Absolute Deviation) for P picks (blue) and S picks (red)
as a function of event separation distance for: (a) single event location residuals, (b) static station term
location residuals, and (c) shrinking box SSST location residuals. The dashed curves in (c) are the sums
of the differential residuals and the source specific station terms, for P and S, respectively.
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differential residual will reflect random picking error alone. However, this is true only if the locations

and origin times are perfectly accurate. In Figure 6.3 the smallest differential residuals are achieved for

the source-specific station term locations, consistent with random individual picking errors of 0.02 s for

P (blue curve) and 0.03 s for S (red curve). The differential residuals show minimal growth with event

separation in (c), indicating the effectiveness of the source-specific station terms in canceling the effects

of 3-D structure. The dashed curves in (c) show the results when the SSSTs are added to the residu-

als; as expected the residuals grow significantly with event separation, and behave very similarly to the

single event location residuals. Figure 6.3 also shows that the differential residual MAD increases with

event separation distance, which implies that there exists some small-scale heterogeneity. This will be

considered in the tomographic inversions presented below.

6.3 Composite Event Method

In principle, we would like to use all available events and pick information in tomographic inver-

sions, but this is computationally intensive. To reduce the volume of data, as well as to make the event

distribution more uniform, it is common to select a spatially diverse set of master events (e.g., Hauksson,

2000). However, this approach often discards the vast majority of the available picks. Here we present an

approach, which we term the “composite event” method, that attempts to preserve as much of the original

pick information as possible. The idea is similar to the summary ray method of Dziewonski (1984) and

the grid optimization approach of Spakman and Bijwaard (2001). We exploit the fact that closely spaced

events will have highly correlated residuals in which random picking error dominates, whereas residual

decorrelation caused by 3-D structure will occur mainly at much larger event separation distances.

We use the 1-D shrinking box SSST locations for this method, since they provide good relative

earthquake locations. Figure 6.4 shows how our composite event algorithm works. The triangles are the

stations and the small squares are the target events. Composite events are derived from the residuals for

all events within a radius of r1 of the target event. The number of composite events is limited by requiring

them to be separated from each other by a radius, r2. We select the first target event as the one from our
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Figure 6.4. A cartoon showing how our composite event algorithm works. The triangles are the stations.
The squares represent the target events and stars are the nearby events around the targeted composite event
in a given radius r1, which provide additional travel time information for the composite events. The dots
are the events excluded from consideration as future composite events after we choose each composite
event. See text for more details.

entire data set that has the greatest number of contributing picks from all the nearby events, shown by the

stars in Figure 6.4 in the sphere with radius r1 centered at the target event. The location of the composite

event is the centroid of all the events in the sphere r1. Arrival time picks for the composite event to each

station that recorded any events within the sphere r1 are the robust mean (Lin and Shearer, 2007) of the

arrival time residuals from the individual events added to the calculated travel time from the composite

event location to the station, using the same 1-D velocity model used to locate the events and compute the

residuals.

This process results in composite event picks that preserve the pick information of the contributing

events, and which are relatively insensitive to the assumed 1-D velocity model. Next, the events within the

sphere with radius r2 centered at this event, shown by the dots, are flagged so that they will not be treated

as candidates for additional composite events. The second target event is the one among all the remaining

events that has the greatest number of contributing picks from all the nearby events in the sphere with

radius r1, then again the events within the sphere with radius r2 centered at this event are flagged, and so
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on.

The total number of composite events depends on the size of r2, and the number of contributing picks

on the size of r1. In our study, considering the computational requirements of our planned tomographic

inversions, the scale length of 3-D heterogeneity in our study area, and the desired composite event

distribution, we use 2 km for r1, 6 km for r2 and constrain each composite event to have more than

20 picks with at least 5 S-picks. This results in 2,597 composite events consisting of 110,913 composite

P picks and 54,303 composite S picks, while the number of total contributing P picks is 2,293,728 and

S picks is 575,769. In other words, 0.6% of the total events—the 2,597 composite events—preserve most

of the information of 38% of the original picks (7.75 million picks). The composite events are shown in

Figure 6.5a by the dots.

We have found that the resulting composite event picks are not very sensitive to changes in the 1-D

velocity model used to compute the individual event locations and that their residuals are highly correlated

to the residual patterns from single events. In Figure 6.6, we show residual comparisons between single

events and composite events at common stations for 2 randomly chosen events. The patterns of both

P and S residual distributions are very similar between the single and composite events. This confirms

that the arrival time picks of our composite events carry the same information as the contributing events,

which we will solve for in our tomographic inversions. The advantage of using composite events rather

than single master events is that the random picking error is reduced by averaging picks from many nearby

events and that the maximum possible number of stations can be included for each event (i.e., generally

no single event has picks for all of the available stations). This is particularly valuable for maximizing

the number of S picks, which are picked relatively infrequently by the network operators and total only

about 26% of the number of P picks in the complete data set.

6.4 Controlled Sources

Because of the trade-off between earthquake locations and velocity structure in the tomography

problem, controlled sources are often used in velocity inversions to provide absolute reference locations



94

Figure 6.5. (a) The 2,597 composite events are shown by the dots. (b) The diamonds are the 15-km grid
points for our tomographic inversion. The red stars are the 19 quarries and the blue stars are the 36 shots,
which are used in the tomographic inversion to constrain absolute event locations and shallow velocity
structure.
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Figure 6.6. Arrival time residual comparison between single events and composite events. We show
residuals from both the catalog event and the composite event for 2 randomly chosen events at common
stations. The similar residual patterns confirm that the arrival time data of our composite events carry the
same information as the contributing events, which we will solve for in our tomographic inversions.
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for 3-D velocity models and to constrain the shallow crustal structure. Two types of controlled sources

are typically used: quarry blasts and shots. Quarry blasts are man-made explosions of known location

but unknown origin time, while shots also have known origin times. Our study also includes arrival times

from 36 shots recorded by the SCSN and 19 quarries (see Figure 6 in Lin et al., 2006). The phase data

for the 19 quarries are obtained using the composite event method from the pick information for 16,574

individual events flagged as quarry blasts by the SCSN. The controlled sources in our study are plotted as

the inverted triangles and stars in Figure 6.5b.

6.5 3-D Simultaneous Earthquake Locations and Tomography

6.5.1 Inversion Method

We apply the inversion method and computer algorithm SIMULPS developed by Thurber (1983,

1993) and Eberhart-Phillips (1990) (documentation provided by Evans et al., 1994). SIMULPS is a

damped-least-squares, full matrix inversion method intended for use with natural local earthquakes, with

(or without) controlled sources, in which P arrival times and S-P times are inverted for earthquake

locations, Vp, and Vp/Vs variations. The algorithm uses a combination of parameter separation (Pavlis

and Booker, 1980; Spencer and Gubbins, 1980) and damped least squares inversion to solve for the model

perturbations. The appropriate damping parameters are found using a data variance versus model variance

tradeoff analysis. The resolution matrix is computed in order to estimate the resolution of the model and

the uncertainties in the model parameters.

6.5.2 Velocity Model Parametization

We find that the resulting 3-D models depend significantly on the 1-D starting model. Our strategy to

reduce this dependence is to first use SIMULPS to derive a best-fitting 1-D model using our 1-D location

velocity model as a starting model (shown by the blue line in Figure 6.7), and then use the resulting 1-D

model (shown by the red line in Figure 6.7) as the starting model for the 3-D tomographic inversions. The

depths of the grid points are 0, 3, 6, 10, 15, 17, 22, and 31 km. The 17-km point is selected to permit
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a relatively sharp velocity increase to occur near 16 km, which has been observed in some studies (e.g.,

Hadley and Kanamori, 1977) and which may correspond to the transition to a lower crust of predominantly

mafic composition. The starting Vp/Vs ratio is 1.78, which is the average crustal Vp/Vs ratio in southern

California (Zhu and Kanamori, 2000). In order to test the sensitivity of the velocity model to the initial

Vp/Vs ratio, we also used 1.73 as the starting value of the Vp/Vs ratio and found that the model is very

similar to the one using 1.78 and fits the data almost the same. We start with the horizontally uniform

layered model (shown by the red line in Figure 6.7) to invert for a 3-D model using a 15-km horizontal

grid. While in principle the 6-km spacing among our composite events would permit resolving features

smaller than 15 km, we were limited by our available computer power to a 15-km grid spacing.

Figure 6.7. The P -velocity models as a function of depth: the 1-D starting model (blue line), the 3-D
starting model (red line) and the final model (black line).

6.5.3 Misfit versus Model Variance Tradeoff Curve

In order to choose an optimal damping parameter for Vp and the Vp/Vs ratio, we ran a series of single-

iteration inversions with a large range of damping values, and plotted data misfit versus model variance
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Figure 6.8. Tradeoff curve between data misfit and model variance for Vp/Vs while the SIMULPS damp-
ing parameter for Vp is held at 800.

Figure 6.9. Tradeoff curve between data misfit and model variance for Vp while the SIMULPS damping
parameter for Vp/Vs is held at 200.
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for these runs (e.g., Eberhart-Phillips, 1986, 1993). We chose damping for Vp with a tradeoff curve while

holding Vp/Vs damping fixed at a large value so that the effect of the S data would be as small as possible.

We found that the data misfit is not as sensitive as the model variance to the damping parameter. We chose

800 as the SIMULPS damping value for Vp, which produced a good compromise between data misfit and

model variance. Similarly, we chose damping for Vp/Vs while holding Vp damping fixed at 800. Figure

6.8 is the tradeoff curve for the Vp/Vs ratio. The value we use in our tomographic inversions is 200. In

order to verify that 800 is an appropriate damping value for Vp, we ran another series of single iterations

with a range of Vp damping values while keeping Vp/Vs damping as 200. Figure 6.9 shows this tradeoff

curve, in which 800 is above the minimum misfit level, which means we have selected a relatively smooth

model. But since the data variance is not very sensitive to the damping values, we prefer this conservative

choice of damping for Vp.

6.6 3-D Velocity Model Results

We performed our inversions in two different stages, both with and without station terms. To avoid

projecting resolvable shallow velocity structure into the station corrections, we solved for an initial model

without using station terms in 4 iterations of the SIMULPS algorithm. We used this model as a starting

point for 4 subsequent iterations in which we computed station terms with respect to the current 3-D model

to limit the influence of rapid near-surface velocity variations (i.e., too sharp to be modeled with our 15-

km grid and our damping parameters) on deeper parts of the model. Table 6.1 presents the parameters

used in our tomographic inversions. Figure 6.10 shows the histograms of arrival time residuals for the

composite events. The MAD residual value is reduced from 0.173 s for the 1-D starting model to 0.076 s

after simultaneous tomography and relocation.

Table 6.1. Parameters for our 3-D velocity models.

Grid Vp Vp/Vs Data Variance, s2 Model Variance, km/s2

km Damping Damping Initial Final Vp Vp/Vs

15 800.0 200.0 0.13732 0.04620 0.02904 0.00137
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Figure 6.10. Histogram of arrival time residuals for the composite events, showing results before and
after simultaneous location and tomography.

6.6.1 P Velocity Model

Figure 6.11 shows the Vp perturbations relative to the layer-averaged velocities in the first 6 layers.

The SIMULPS algorithm provides the resolution matrix, which gives an indication of how well-resolved

the velocity is at each gridpoint. The values of the resolution throughout the gridspace could be increased

by decreasing the damping parameter, but the velocity results may be less reliable. The black contours in

the mapviews enclose the resolved areas with the resolution diagonal element more than 0.1, while 1.0

represents the best resolution. The top two layers of our Vp model at 0 and 3 km depth have Vp changes

of relatively small spatial length, reflecting the near-surface geology such as bedrock outcrops and late

Quaternary sedimentary deposits. In particular, the velocities in these two layers are correlated with the

surface geological features. The basin areas, such as the southern San Joaquin Valley, the Ventura Basin,

the Los Angeles Basin and the Imperial Valley show low velocity anomalies, while the major mountain
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ranges, such as the Coast Ranges, the Transverse Ranges, the San Gabriel Mountains, and the Peninsular

Ranges show higher velocities. In the 6 km-depth layer, the velocity anomalies seen at the surface are still

visible but become less prominent. In the middle crust (10 km), some of the features seen at shallower

depths are reversed. For example, the Imperial Valley shows high velocity anomalies and the Transverse

Ranges are underlain by low velocity anomalies. In the lower crust (15 km and 17 km), although the

resolved areas are small, the Ventura Basin, the Los Angeles Basin, the Imperial Valley, and the southern

San Joaquin are dominated by high velocity anomalies, whereas the Transverse Ranges, the San Gabriel

Mountains and the San Bernardino Mountains all show low velocities. The Peninsular Ranges, however,

always show high velocity in each layer. Our Vp model is very similar to the one by Hauksson (2000)

except that the low velocity anomalies in the basin areas extend to depths of about 10 km in our model (in

particular, the Ventura Basin, the Los Angeles Basin, and the Imperial Valley), whereas the corresponding

anomalies are present to only about 5 or 6 km in the Hauksson (2000) model.

We present two kinds of cross-section profiles of our model. These profiles are shown in Figure 6.12.

One set is across the San Andreas fault from SW to NE shown by the straight lines marked with letters

(e.g., A, B, ... , H) and the other set is parallel to the San Andreas fault from NW to SE shown by the

numbers (e.g., 1, 2, ... , 6). Figure 6.12 also shows some geological features in our study area and the Vp

perturbations in the first layer in our model (same as Figure 6.11(a)).

The cross-sections of our P -velocity model for the profiles A, B, C, D, E, F, G and H are shown

in Figure 6.13. The values of distances decrease from the SW starting point to the NE ending point.

The black contours enclose our resolved area with the SIMULPS resolution diagonal element above 0.1.

We also plot the background seismicity within ±10 km of the profiles shown by the black dots. It is

apparent that the resolution is the best where earthquakes are well-distributed, and the resolution below

15 km depth is generally low except where there are deeper earthquakes. Again the correlations between

the velocities in the shallower layers of our model with the surface geological features are seen in these

cross-sections. Low velocity anomalies are pronounced in the basin regions, such as the Ventura Basin in

profile C, the Los Angeles Basin in D and the Imperial Valley in H, whereas relatively higher velocities
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Figure 6.11. P velocity perturbations relative to the average velocity in each layer after smoothing. The
black contours circle the area that we are able to resolve with the the SIMULPS resolution diagonal
element above 0.1.
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Figure 6.12. Some geological features in our study area and the depth profiles shown by the black straight
lines for the following cross-section views. The SW-NE direction profiles (shown by the letters, A, B,
C, D, E, F, G, and H) are across the San Andreas fault; and the NW-SE direction profiles (shown by the
numbers, 1, 2, 3, 4, 5, and 6) are parallel to the San Andreas fault. The Vp perturbations in the first layer
(0 km depth) are also shown in this figure.
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Figure 6.13. Cross-sections through our Vp model along the SW-NE profiles shown in Figure 6.12 by
the letters, including the background seismicity (black dots) within ±10 km distance of the profile line.
The black contours enclose the regions with the SIMULPS resolution diagonal element above 0.1. The
vertical exaggeration is 2. Abbreviations: CR, Coast Ranges; SAF, San Andreas Fault; SSJV, Southern
San Joaquin Valley; OV, Owens Valley; TR, Transverse Ranges; VB, Ventura Basin; GF, Garlock Fault;
LAB, Los Angeles Basin; PR, Peninsular Ranges; EF, Elsinore Fault; SJF, San Jacinto Fault.
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Figure 6.14. Cross-sections through our Vp model along the NW-SE profiles shown in Figure 6.12 by
the numbers, including the background seismicity (black dots) within 10 km distance of the profile line.
The black contours enclose the regions with the SIMULPS resolution diagonal element above 0.1. The
vertical exaggeration is 3. SGM is short for San Gabriel Mountains. Other geographical and fault names
are the same as in Figure 6.13.
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are seen at the mountain ranges, such as the Coast Ranges in A and the Pennisular Ranges in E, F, and

G. The very low velocities at depths to about 3 or 4 km are indicative of sediments. As shown in the

mapviews, velocities are relatively low in many of the basin areas to about 10 km depth. We tend to

image relatively fast regions in the deeper crust immediately below the lower velocity anomalies in the

shallower layers. Similar features are seen in the Hauksson (2000) model, except that the low velocity

anomalies only extend to about 5 or 6 km depth in that model. The Coso volcanic area in B is underlain by

low velocities to about 5 km depth and the Southern Sierra Nevada is imaged by relatively high velocities.

The Peninsular Ranges are always underlain by high velocities and the velocity increase with depth in the

nearby regions is much faster relative to other areas.

Figure 6.14 shows the cross-sections of our Vp model for the profiles 1, 2, 3, 4, 5 and 6 in Figure

6.12, which are parallel to the San Andreas fault direction from NW to SE. The numbers of the profiles

increase from the east side of the San Andreas fault to its west side and analogous features to those in

Figure 6.13 are seen. These patterns are also very similar to those in the Hauksson (2000) model, except

that the lowest velocity in the Imperial Valley occurs along profile 3 in our model, whereas it would be

along profile 4 in Hauksson’s model. This may be due to the different gridding scheme used in the two

models.

6.6.2 Vp/Vs Model

We plot absolute Vp/Vs ratios at each layer depth in Figure 6.15. Because of the even distribution

of our composite events and the constraints on the number of picks, the areal extent of our Vp/Vs model

is nearly as good as the Vp model. Again the well-resolved parts are enclosed by the 0.1 SIMULPS

resolution contours. Even though our SIMULPS damping parameter is 200, the Vp/Vs model has compa-

rable resolution to the Vp model, indicating that our composite event method has succeeded in obtaining

sufficient S picks over a large region.

The starting Vp/Vs model is 1.78, which is slightly higher than the common value, 1.73, for earth-

quake location studies in southern California. As we discussed in the previous section, this choice did not
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Figure 6.15. Absolute Vp/Vs values in each layer after smoothing. The black contours circle the area that
we are able to resolve with the SIMULPS resolution diagonal element above 0.1.
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Figure 6.16. Cross-sections through our Vp/Vs model along the SW-NE profiles shown in Figure 6.12
by the letters, including the background seismicity (black dots) within 10 km distance of the profile line.
The black contours enclose the regions with the SIMULPS resolution diagonal element above 0.1. The
vertical exaggeration is 2. The geographical and fault names are the same as in Figure 6.13.
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Figure 6.17. Cross-sections through our Vp/Vs model along the NW-SE profiles shown in Figure 6.12 by
the numbers, including the background seismicity (black dots) within 10 km distance of the profile line.
The black contours enclose the regions with the SIMULPS resolution diagonal element above 0.1. The
vertical exaggeration is 3. The geographical and fault names are the same as in Figure 6.14.
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affect our results. From the mapview in Figure 6.15, we observe both the short spatial length variations

at shallower depth and a slight decrease in average Vp/Vs compared to the starting model. The overall

Vp/Vs ratio in our model ranges from 1.2 to 2.3. Two grid points contain Vp/Vs ratios of about 1.2 (at 0

km depth in the Southern San Joaquin Valley region) and 1.3 (at 3 km depth in the Imperial Valley area),

which are physically unrealistic and are probably due to artifacts in our data or velocity inversions. All

the other grid points have Vp/Vs values above 1.4.

Our Vp/Vs model looks quite different than the Hauksson (2000) model, probably due to our higher

starting Vp/Vs value, larger damping parameters and different data sets. In the first two shallow layers

(0 and 3 km), we see relatively small-scale Vp/Vs anomalies. The basin areas, such as the Southern San

Joaquin Valley, the Ventura Basin, the Los Angeles Basin, and the Imperial Valley, are imaged by higher

anomalies in Vp/Vs values. With the corresponding lower P velocities in these regions, these features

are consistent with water-satured sediments. In contrast, the San Gabriel Mountains and the Peninsular

Ranges show low Vp/Vs values and high Vp anomalies. We do not see the higher Vp/Vs values around the

Peninsular Ranges and in Baja California seen in the Hauksson (2000) model. For the 6 and 10 km depth

layers, most parts of the well-resolved regions are underlain by lower Vp/Vs values of about 1.71, except

that some higher Vp/Vs values are seen in areas along the coast. The resolved areas in the deeper model

points (15 and 17 km) are small and have similar patterns as in the Vp model. In the Hauksson (2000)

model, many high Vp/Vs anomalies are seen below 6 km rather than at the shallower depths where they

often occur in our model. These differences are also seen in the cross-sections.

In Figure 6.16 and Figure 6.17, we plot the cross-sections of the Vp/Vs model, and see similar

features as in the mapview. Although the starting model is 1.78, the resolved areas show average Vp/Vs

around 1.73. The basin areas show very high Vp/Vs anomalies near the surface, such as the Ventura

Basin, the Los Angeles Basin and the Imperial Valley. We also observe high Vp/Vs blobs beneath some

basins in the lower crust, such as the Ventura Basin in profile C and 6, the Los Angeles Basin in D and

the Imperial Valley in H and 3. These may be due to the presence of mafic rocks or fluids.
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6.7 Seismicity and Velocity Structure

Figure 6.18 plots P velocity versus depth at the quake locations, compared to the median velocity

within the resolved regions of the 3-D model. Focusing first on the velocity model alone, note that

the size of the velocity perturbations generally decreases with depth. At shallow depths (< 8 km), the

low anomalies (associated with the sedimentary basins) are larger in magnitude than the high anomalies.

However, in the lower crust (> 14 km) the high velocity anomalies are larger in magnitude than the

low velocity anomalies. The median velocity at the earthquake locations generally tracks the median

velocity profile in the 3-D model. However, there are two depth ranges at which the median velocities

are significantly different. Between about 1 and 5 km depth, the earthquakes tend to occur more often in

rock with higher than average velocity, whereas between about 11 and 18 km, the earthquakes are more

likely to occur in slower than average crust. This pattern can also be seen in Figure 6.19 and Figure 6.20,

which map the velocity perturbations and the quake locations near 3 km and 15 km depth. Although there

are some exceptions (e.g., the shallow Northridge aftershocks), quakes between 2 and 4 km depth tend to

occur in the relatively fast hard rock between the sedimentary basins. In contrast, earthquakes between

14 and 16 km are relatively sparse in the highest P velocity parts of the model.

We also observe a correlation between earthquake occurence and lower Vp/Vs values in the mid-

crust, as shown in Figure 6.21, which plots the Vp/Vs ratio versus depth at the quake locations, compared

to the median value within the resolved regions of the 3-D model. The median Vp/Vs values in the model

stay at the starting value of 1.78 in the poorly resolved uppermost 3 km and below 17 km, but approach

1.73 in the best resolved depth range between about 6 and 12 km. At these depths, the earthquakes tend

to occur in regions with lower Vp/Vs, with median values of 1.70 to 1.71. There are very few earthquakes

in parts of the model with Vp/Vs above about 1.83, an observation similar to results for the 1989 Loma

Prieta rupture region (Thurber et al., 1995). We experimented with using different starting Vp/Vs values

for the tomographic inversion and found that the results within the well-resolved depths were relatively

insensitive to the starting model, and that the correlation of low Vp/Vs regions with seismicity is a robust

result. This correlation can be seen visually in Figure 6.22, which maps seismicity between 9 and 11 km
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Figure 6.18. P velocity versus depth. The dots are a random 10% of the entire earthquake set. The red
curve shows the median P velocity at the earthquake locations at 1 km depth intervals. For comparison,
the blue curve shows the median of the tomography model over all well-resolved grid points.
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Figure 6.19. Seismicity between 2 and 4 km depth, compared to P velocity perturbations at 3 km. Fast
regions are shown in blue and slow regions in red.
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Figure 6.20. Seismicity between 14 and 16 km depth, compared to P velocity perturbations at 15 km.
Fast regions are shown in blue and slow regions in red.
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Figure 6.21. Vp/Vs versus depth. The dots are a random 10% of the entire earthquake set, with green
indicating events from the 1994 Northridge aftershock sequence (see Figure 6.22). The red curve shows
the median Vp/Vs values at the earthquake locations at 1 km depth intervals. For comparison, the blue
curve shows the median of the tomography model over all well-resolved grid points.
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Figure 6.22. Seismicity between 9 and 11 km depth, compared to the Vp/Vs values at 10 km. High
Vp/Vs regions are shown in blue and low Vp/Vs regions in red. The 1994 Northridge aftershock sequence
is plotted in green.
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depth, compared to the Vp/Vs perturbations in the tomography model. The earthquakes tend to avoid the

regions with high Vp/Vs ratios, with the notable exception of the major aftershock sequences, such as that

following the 1994 Northridge earthquake (shown as the green points in Figure 6.21 and Figure 6.22).

An association of seismically active regions with low Vp/Vs ratios is somewhat surprising because

one might expect these regions to be more fractured and fluid filled than the surrounding crust, which

would tend to increase the Vp/Vs ratio. However, because the resolution of our tomography model is

very crude compared to the accuracy of the earthquake locations, it is possible that unresolved fine-scale

structure in Vp/Vs may be present near seismically active areas that would yield very different Vp/Vs

values near the earthquakes themselves. A promising way to study this possibility would be to directly

estimate local Vp/Vs ratios within similar event clusters (Lin and Shearer, 2007).

6.8 Discussion

The main features in our model, in particular the low velocities in the sedimentary basins, have been

seen in previous regional-scale tomographic models of the southern California crust (e.g. Magistrale et al.,

1992; Tanimoto and Prindle-Sheldrake, 2002; Zhou, 2004; Prindle-Sheldrake and Tanimoto, 2006). Our

inversion method and the resulting model are most similar to the study by Hauksson (2000). The two

models both resolve low velocity features at shallow depths in the basins and some high velocity features

in the mid-crust. However, the lower crust P velocities in our model are slow relative to the values in

Hauksson (2000). This is especially obvious in the cross-section plots (Figure 6.13 and Figure 6.14). Most

of the velocities in our model are below 7.0 km/s, while in Hauksson (2000) almost all the profiles show

high velocities (above 7.0 km/s) in the lower crust. These differences between the models may be a result

of the damping parameters used in the tomographic inversions. We used SIMULPS damping parameters

of 800 for the Vp model and 200 for the Vp/Vs model, which are higher than the values used in Hauksson

(2000) (150 for Vp and 15 for Vp/Vs). As discussed earlier, we used larger damping parameters because

we found the data misfit is not as sensitive as the model variance to the damping parameters. After we

analyzed the tradeoff curves between the data misfits and model variances for both Vp and Vp/Vs, we
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found that relatively smooth models fit the data almost as well as much rougher models.

Another difference between our model and the Hauksson (2000) model is the resolution. We plot

the resolution contours in both the map views and the cross-sections for our resolved regions with the

SIMULPS resolution diagonal element above 0.1. This resolution is relatively low with respect to the

0.3 resolution contour in Hauksson (2000). In theory, the resolution can be increased by decreasing the

damping parameters, but this may result in unreliable velocities. Considering the use of the composite

event method, which maximizes the number of available stations for each event, we believe that our

model is well-resolved. Different starting locations, initial velocity models and parameters used in the

tomographic inversions could also cause the differences.

In some parts of southern California, the seismicity and station coverage is good enough that much

higher resolution can be achieved in localized regions (e.g. Lees and Nicholson, 1993). The advantage of

our model is that it provides uniform resolution across most of southern California and can be used for

regional-scale analyses. Although we observe correlations between our model and some of the geological

features on the surface, our model generally has poor resolution at shallow depths. In particular, the model

overestimates the near-surface velocities in the sedimentary basins. For example, the slowest surface P

velocity in our model is 3.6 km/s for the San Fernando Valley and 3.7 km/s in the Imperial Valley, whereas

seismic refraction results (e.g. Lutter et al., 2004; Fuis et al., 1984) indicate surface velocities of 2.0 and

1.8 km/s, respectively. For earthquakes at depth, there is a tradeoff between the event origin times and

the travel-time increase caused by slow near-surface layers. This tradeoff is removed to some extent by

including the 36 calibration shots of known origin times in the inversion but we have too few of these

events to fully cover southern California. In addition, shots often do not produce measurable S waves.

We have 1349 P picks but only 19 S picks for the 36 shots. Thus, to obtain more accurate results

for the shallow features, it is desirable to incorporate direct constraints on the velocity structure from

other geophysical and geological data, an approach recently used by Magistrale et al. (2000) in southern

California. However, these limitations in our model should not have a significant effect on the resolution

of velocity anomalies at depth or for using the model to improve absolute earthquake locations.
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Chapter 7

Applying a 3D Velocity Model, Waveform Cross-Correlation, and
Cluster Analysis to Locate Southern California Seismicity from
1981 to 2005

Abstract. We compute high-precision earthquake locations using southern California pick and wave-

form data from 1981 to 2005. Our latest results are significantly improved compared to our previous

catalog (Shearer et al., 2005) by the following: (1) We locate events with respect to a new crustal P and

S velocity model using 3-D ray tracing, (2) We examine 6 more years of waveform data and compute

cross-correlation results for many more pairs than our last analysis, (3) We compute locations within sim-

ilar event clusters using a new method that applies a robust fitting method to obtain the best locations

satisfying all the differential time constraints from the waveform cross-correlation. These results build on

the relocated catalogs of Hauksson and Shearer (2005) and Shearer et al. (2005) and provide additional

insight regarding the fine-scale fault structure in southern California and the relationship between the San

Andreas Fault and nearby seismicity.

122



123

7.1 Introduction

Earthquake locations are fundamental parameters necessary for studies of earthquake physics and

faulting and to map and quantify Earth’s deformation. Studies of earthquake location improvements have

been an important branch in seismology for the past few decades. To improve absolute location accuracy,

we need knowledge of Earth’s three dimensional velocity structure. For local earthquakes, this is usually

done by simultaneously solving for a 3-D velocity model and earthquake locations (e.g., Thurber, 1983,

1992; Thurber and Eberhart-Phillips, 1999; Zhang and Thurber, 2003).

Recently, some techniques have been presented that are able to improve significantly the relative

location accuracy among nearby events, even when the arrival times are biased by the effects of three-

dimensional velocity structure (e.g., Richards-Dinger and Shearer, 2000; Waldhauser and Ellsworth,

2000; Nicholson et al., 2004; Lin and Shearer, 2005). Improvements in relative location accuracy ob-

tained using these methods often produce a dramatic sharpening of seismicity patterns. With the develop-

ment of modern computers, waveform cross-correlation has also been an increasingly important tool for

improving relative earthquake locations because of the great accuracy of differential times (Nakamura,

1978; Got et al., 1994; Dodge et al., 1995; Nadeau et al., 1995; Gillard et al., 1996; Rubin et al., 1999;

Waldhauser et al., 1999; Hauksson and Shearer, 2005; Shearer et al., 2005).

Improved earthquake locations help to improve resolution of fault structures and characterize the

spatial and temporal characteristics of seismicity. High-resolution event catalogs in southern California

have recently been used to study the decay of aftershock density with distance (Felzer and Brodsky,

2006), explore the spatial relationship between aftershocks and mainshock rupture planes (Liu et al.,

2003; Powers and Jordan, 2005), analyze the fractal dimension of seismicity (Kagan, 2006), and assess

the mechanisms driving seismic swarms (Lohman and McGuire, 2006).

In this study, we build on our previous work with waveform cross-correlation location in southern

California (Shearer, 1997, 1998; Astiz et al., 2000; Astiz and Shearer, 2000; Shearer, 2002; Shearer et al.,

2003; Hauksson and Shearer, 2005; Shearer et al., 2005) to process and relocate the complete southern

California earthquake catalog from 1981 to 2005. This results in 6 more years of data than the 1984–2002



124

SHLK catalog (Shearer et al., 2005). Although many of our methods are similar to our prior work, we

have made some changes and developed several new algorithms to handle the larger number of events in

the complete catalog. We now locate the events using a new 3-D P - and S- crustal velocity model for

southern California and a new robust least-squares method to relocate events within similar event clusters

using the waveform cross-correlation times. In addition, we include estimates of absolute and relative

location errors. Our complete location procedure is outlined in the flow chart of Figure 7.1 and will be

discussed in detail in the following sections.

Figure 7.1. A workflow chart of our location procedures in this study.

7.2 Locations from Phase Picks and a 3-D Velocity Model

To obtain accurate absolute starting locations for waveform cross-correlation relocation, we use the

new 3-D crustal P and S velocity models of Lin et al. (2007) to relocate all seismicity in southern Cali-

fornia from 1981 to 2005 while keeping the velocity model fixed. We use the 3-D ray tracing capability
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Figure 7.2. Locations of the 783 stations used in our study area.

of the SIMULPS algorithm (Thurber, 1983, 1993; Eberhart-Phillips, 1990; Evans et al., 1994) to compute

locations for all events with respect to the tomography model while iteratively adjusting the pick times

using a source-specific station term approach (Richards-Dinger and Shearer, 2000; Lin and Shearer, 2005)

to improve the relative locations among nearby events.

7.2.1 Data Sets

Our data for the initial event locations are the phase arrival times of P and S waves from 452,943

events, including local events, regional events and quarry blasts, recorded at the Southern California

Seismic Network (SCSN) stations and picked by the network operators. Figure 7.2 shows the station

locations in our study area. We require each event to have at least 5 observations (P and S−P picks) from

stations within a 150 km distance cutoff. This results in about 430,000 events to be relocated using 3-D

ray tracing. To refine the relative locations among closely spaced events, we combine the 3-D ray tracing

with the source-specific station term relative location method.
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7.2.2 Shrinking Box Source-Specific Station Term Method

The source-specific station term (SSST) method improves relative event locations among nearby

events using phase arrival times (Richards-Dinger and Shearer, 2000; Lin and Shearer, 2005). This

method attempts to correct for the systematic biases in arrival times caused by three-dimensional velocity

variations without actually solving for the velocity structure itself. The station corrections are calculated

for each source-receiver pair at a given station using the residuals from nearby events within a given

distance cutoff separately for P and S, so the station correction varies as a function of source position.

The station term part of the calculation is separate from the event location so the method can be applied

using any desired location technique. The shrinking box SSST is an extension of the simple SSST in that

it computes the SSST terms while continuously shrinking the cutoff distance between the first and final

iteration. For more details, please refer to Lin and Shearer (2005).

7.2.3 Combination of 3-D Ray Tracing with SSST

The crustal structure in the 3-D velocity model provides improved absolute hypocenter locations

by correcting for the biasing effects of large-scale velocity variations. However, the tomography model

is relatively smooth and cannot account for small-scale velocity structure that can also introduce bias

and scatter in event locations. Thus to further refine the event locations, we combine the shrinking box

SSST method and 3-D ray tracing in Thurber’s SIMULPS computer algorithm. Our strategy is to first

relocate all seismicity using the 3-D ray tracing, then compute SSSTs for each individual pick from the

travel-time residuals of nearby events. Next, we subtract the SSST terms from the arrival-time picks,

and repeat the 3-D relocations with the new travel-time data. We perform 6 iterations of 3-D location

and SSST computation. The distance cutoff for the station term calculation is reduced gradually during

the iterations from 100 km to 10 km. We find that this approach converges quickly to a stable set of

locations and station terms. Figure 7.3 shows the reduction of the travel-time residual median-absolute-

deviation (MAD) from the 430,000 events with iteration number in our SSST calculation. The MAD

of the residuals drops from 0.048 s to 0.029 s. For comparison, the root-mean-square (RMS) residual
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decreases from 0.16 to 0.12 s. The event locations at this point represent our best estimates based on

phase pick data alone without the further improvements that are possible using differential times from

waveform cross-correlation.

Figure 7.3. Reduction of traveltime residual MAD with iteration numbers of SSST calculations.

7.3 Waveform Cross-Correlation

The waveforms of nearby earthquakes recorded at the same station are often similar enough that

waveform cross-correlation can be used to obtain much more precise differential times than can be picked

on individual seismograms, in which case greatly improved relative locations among the events can be

computed. The waveform cross-correlation process in this study is similar to that described in Hauksson

and Shearer (2005) and Shearer et al. (2005).

7.3.1 Waveform Data Processing

We obtain waveform data from the SCSN, as archived at the Southern California Earthquake Data

Center (SCEDC) for all available local events, regional events and quarry blasts in southern California

from 1981 to 2005. We use the Seismic Transfer Program (STP) (www.data.scec.org/STP/stp.html) to

extract the waveforms in Seismic Analysis Code (SAC) format (www.llnl.gov/sac/). We obtain all com-

ponents (e.g., vertical, east, west) and channels (short-period, broadband, etc.) contained in the database
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archive. Our first step is to trim the seismograms to 60 s, starting 10 s before the theoretical P -arrival time.

We store the resulting time series using the event-based GFS format (G. Masters, personal comm., 2006)

within a year/month directory structure. Following these steps, the GFS files consume about 626 Gb on

an online Redundant Array of Independent Disks (RAID) system that provides rapid and random access

to the data. We then resample the data to a uniform 100-Hz sample rate (using a spline interpolation

method) and apply a bandpass filter between 1 and 10 Hz.

7.3.2 Waveform Cross-Correlaion Calculation

It is computationally infeasible to cross-correlate every event pair for all 450,000 events because the

size of the problem scales as n(n − 1)/2. Thus, we restrict the calculation to event pairs separated by

less than 2 km. However, to ensure a significant number of pairs even in regions of sparse seismicity, if

the number of events within 2 km of an event is less than 100, we add additional events defined using

a Delaunay tesselation (Richards-Dinger and Shearer, 2000) of our catalog until we have at least 100

neighboring events. We define the neighboring events using an event catalog based on 1-D locations

using the shrinking box SSST method (at this point we had not yet computed the locations based on the

3-D model). Although the absolute location accuracy of this initial catalog is limited by the use of a

1-D model (the model used in Shearer et al., 2005), the relative location accuracy is sufficient for us to

use these locations to identify similar event pairs. In total we compute cross-correlation functions for

all available station and components for over 94 million event pairs, about 7 times more pairs than we

computed previously for the SHLK catalog (Shearer et al., 2005).

We compute the cross-correlation functions separately for P and S waves, applying symmetric time

shifts of up to±1.5 s, using a spline interpolation method to achieve a nominal timing precision of 0.001 s

(1 ms). If catalog picks are available, we use a 1.5 s window around P and a 2.5 s window around S. If

picks are not available, we estimate arrival times from the earthquake location and a simple 1-D model,

using a 2-s P window and a 3-s S window. Our pick windows are designed to avoid including part of the

S wave in the P window or part of the P wave in the S window.
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Information is saved only for the 31 million event pairs with an average waveform correlation coeffi-

cient of 0.45 or greater and with at least 10 individual differential times with correlation coefficients of 0.6

or greater. The resulting correlation coefficients and time shifts contain information regarding the simi-

larity of events and their relative locations. In our previous study (Hauksson and Shearer, 2005; Shearer

et al., 2005), we used roughly the same criteria and obtained correlation information for about 3 million

pairs of events. The ten-fold increase in usable pairs reflects the greater number of pairs computed (6

more years of data and more pairs per target event) and an increased yield of correlated pairs (obtained

because a greater fraction of the pairs are separated by distances of less than 2 km). A variety of different

methods can be applied to analyze cross-correlation data. In this study, we apply a cluster analysis method

similar to that described in Shearer et al. (2005).

7.4 Similar-Event Cluster Analysis

The next step in our processing is to use the waveform cross-correlation results to identify clusters of

similar events. The output of the cross-correlation calculation contains information about the similarity

of selected pairs of events. Based on our experience, we adopted the criteria that the event pair must have

8 or more P or S measurements with correlation coefficients above 0.65 for stations within 80 km of the

events. There are often several measurements from different components of the same station. We remove

this redundancy before applying our selection criteria by favoring P measurements from the vertical

component and S measurements from the horizontal components, and then selecting the measurement

with the highest correlation. For those event pairs that exceed our similarity cutoff, we compute the mean

correlation coefficient of the individual P and S values to use as an overall measure of the similarity of

the pair. Next, we apply a cluster analysis approach (Hartigan, 1975) to identify groups of events that

are correlated with each other. Then we use the waveform cross-correlation times to relocate the 323,000

events in 3,676 similar event clusters with more than 5 events.
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7.5 Differential-Time Relocation Method

We use the differential times from the waveform cross-correlation to relocate events within each

similar event cluster in order to further improve the relative event locations. Here we describe a new

method for computing these locations, which has some advantages compared to the technique we applied

previously for the SHLK catalog (Shearer et al., 2005). The cartoons in Figure 7.4 show how our method

works. In this example, there are 10 events, shown by the red circles, in a similar event cluster centered

at the star in Figure 7.4a. Each event is linked with some, but not all, of the other events in the cluster

by differential times. The event number is sorted chronologically. We start with event 1, which is linked

with 7 other events in this example. We apply a grid-search algorithm to find the best location of event

1 (shown by the green circle) that minimizes the robust least-squares (Lin and Shearer, 2007) of the

differential-time residuals while keeping the locations of the 7 neighboring events fixed. The new fitting

method measures distance using the L2 norm for data misfits below some specified value, dmax (which

in general will depend on the observations), and the L1 norm for larger values. This hybrid l1 − l2 error

measure was proposed by Huber (1973) and is relatively insensitive to outliers in data, so we term it the

“robust least squares” method. This robustness is important because we want to use as many differential

times as possible, even at the risk of including some falsely correlated waveforms that produce large

residuals. We relocate other events in the cluster in the same way except that we use the updated locations

of the neighbors (see the relocation of event 2 in Figure 7.4b). After one iteration, all the event locations

in the cluster are updated to the green circles in Figure 7.4c. Usually the centroid of the relocated cluster

(the green star) is slightly different than the initial centroid (the red star). To stabilize the inversion and

because the differential times are only very weakly sensitive to the absolute cluster location, after each

iteration we shift the entire cluster so that the new centroid of the cluster is the same as the centroid of the

starting locations, shown in Figure 7.4d. Thus the absolute cluster locations remain constrained by the

locations based on the P and S picks and computed from ray tracing through the 3-D model. We repeat

this process with the updated locations for a few iterations and generally observe rapid convergence to

a stable set of locations (Figure 7.4e) that does not depend upon the initial event ordering. Using this
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method, we separately relocate each of the 3,676 similar event clusters in southern California.

For computational reasons, to compute the theoretical times for these differential locations, we use

a 1-D velocity model (Figure 7.5), which is the layer-averaged model from the new 3-D model in Lin

et al. (2007). However, because this 1-D model is used only for differential locations based on differential

times, most of the biasing effects of 3-D velocity structure are removed and we expect that very similar

results would be obtained using a 3-D model. To test the sensitivity of our differential locations to changes

in the velocity model, we computed results for some clusters using a different 1-D velocity model (that

of Shearer et al., 2005) and found only very small differences to the results presented here. The absolute

locations of each cluster, of course, remain fixed at the cluster centroids as determined by ray tracing

through our 3-D velocity model.

M ≥ 4 earthquakes generally do not cross-correlate well with smaller events because of their more

complicated waveforms and frequent clipping of their records. However, we found that often our auto-

mated processing method would assign these large events to a similar event cluster and relocate them

based on a small number of spurious cross-correlations with other events. We do not believe these lo-

cations are reliable and therefore we replaced the locations for the 896 local M ≥ 4 events in our final

catalog with their 3-D locations obtained using the shrinking box SSST method. It is possible that more

careful culling of the waveform data would allow these events to be relocated to greater accuracy but we

do not attempt this here.

7.6 Relocation Results

Figure 7.6 maps the final relocated seismicity for about 430,000 events from 1981 to 2005. Black

dots show similar event clusters relocated using cross-correlation data. The distribution of similar event

clusters is similar to those in Shearer et al. (2005). About 25% of events do not correlate within clusters

of at least 5 events and are plotted in color by year at their 3-D locations (24%) or 1-D locations (1%) if

the 3-D locations are not available. For comparison, about 60% of the events in the SHLK catalog are in

similar event clusters. According to Schaff and Waldhauser (2005), approximately 95% of the northern
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Figure 7.4. Cartoons showing our new differential time location method. (a) The red circles represent
the starting locations for the 10 events in a similar event cluster. The star is the centroid of the cluster.
After fitting the differential times between event 1 and the linked events, event 1 is shifted to the green
circle. (b) Relocation of event 2 using the new location of event 1 if they are correlated with each other.
(c) Distribution of the cluster after all the events are relocated shown by the green circles. Note the new
centroid of the cluster (the green star) is different than the starting centroid. (d) Shifted cluster location
centered at the starting centroid. (e) The final locations for this cluster after repeat (a)-(d) for a few
iterations.
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Figure 7.5. The P velocity model used for calculating theoretical travel times during cross-correlation
relocation.

California seismicity includes events that have cross-correlation coefficients greater that 0.7 with at least

one other event recorded at four or more stations. While the fraction of similar events depends to some

extent on the details of the waveform similarity criteria required to define similar-event pairs, it does

appear that southern California seismicity is less likely to occur in similar event clusters than northern

California seismicity.

7.7 Comparisons Between Location Catalogs

In this section, we compare locations of local events from six recent catalogs for southern Califor-

nia seismicity, including: (1) the standard catalog of 408,105 local events from 1981 to 2005 located

by the SCSN using a layered 1-D velocity model for southern California; (2) the Richards-Dinger and

Shearer (2000) catalog (referred as the RDS catalog) including 288,912 events from 1981 to 1998 re-

located using a 1-D gradient velocity model and the SSST method; (3) the Hauksson (2000) catalog

(referred as the HAUKSSON 3D catalog) including 342,112 events from 1981 to 2000 relocated using

a 3-D velocity model for southern California; (4) the Hauksson and Shearer (2005) catalog (referred as

the HAUKSSON DD catalog) including 327,430 events from 1984 to 2002 relocated using the double-

difference (DD) location method (Waldhauser and Ellsworth, 2000; Waldhauser, 2001) and waveform
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Figure 7.6. Map view of the relocated seismicity from 1981 to 2005 in our study. Black dots show similar
event clusters relocated using cross-correlation data. About 25% of events do not correlate and are plotted
in color by year at their 3-D locations or 1-D locations.
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cross-correlation based on the 3-D initial locations (Hauksson, 2000); (5) the SHLK catalog by Shearer

et al. (2005) including 316,020 events from 1984 to 2002 relocated using the 1-D SSST method, similar

event cluster analysis and waveform cross-correlation data; and (6) the new locations presented in this

study (referred as the LSH catalog ) including 399,521 events from 1981 to 2005 using cluster analysis,

waveform cross-correlation data and a new robust differential time location method based on 3-D starting

locations.

7.7.1 Depth Distribution

First, we compare histograms of depth distributions from the six catalogs in Figure 7.7. In the SCSN

catalog, there is a big peak at 6 km depth, which may be due to the velocity discontinuity at 6 km depth

in the layered velocity model. The RDS catalog was obtained based on a 1-D gradient velocity model

and a SSST relative location method. Due to the relatively fast near-surface velocity in this model, this

catalog has more events located between 0 and 3 km depth. For the HAUKSSON 3D catalog, because of

the simultaneous inversion of earthquake locations and velocity perturbations, the distribution of depths

is very smooth. Based on this catalog, the relative locations are refined by the double-difference location

method and waveform cross-correlation data in the HAUKSSON DD catalog. There is a small peak

in this catalog at 6 km depth, which might be due to the sharp change in the velocity slope at 6 km

depth in the 1-D velocity model (see Hauksson and Shearer (2005), Shearer et al. (2005)). There is

also a small drop at about 9 km, which might be caused by the inconsistency between the 3-D and 1-D

velocity models used for the 3-D and DD locations. The distribution of the SHLK catalog is similar to

the RDS catalog for depths more than 10 km and has fewer shallower events. Our new LSH location

catalog has depths similar to that of both HAUKSSON DD and SHLK. At shallow depths (< 6 km),

it is similar to the HAUKSSON DD, whereas deeper it is similar to SHLK. This is reasonable because

our new locations are based on a 3-D velocity model (as in the HAUKSSON DD), cluster analysis and

waveform cross-correlation (same as in the SHLK). However, the distribution in our new catalog is more

uniform, especially for shallower depths.
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Figure 7.7. Histograms of depth distributions for 6 different southern California seismicity catalogs.

7.7.2 The Imperial Valley Region

In our previous catalog (Shearer et al., 2005), we used a custom 1-D velocity model to obtain a more

accurate set of hypocenters for the Imperial Valley, due to the substantially different velocity structure in

this large sedimentary basin compared to the rest of southern California. In order to test the effectiveness

of our 3-D model in accounting for this anomalous structure, we compare both the epicenter and depth

distributions for this region from four catalogs. Figure 7.8 shows the map view of the seismicity for this

region from (a) the SCSN catalog; (b) the LSH catalog in this study; (c) the SHLK catalog using the

1-D model for southern California (see Figure 1(a) in Shearer et al. (2005)); and (d) the SHLK IMP 1.0

catalog using the 1-D model derived from refraction seismic experiments (see Figure 1(b) in Shearer et al.

(2005)). The red and green straight lines are the profiles for the cross-sections shown in Figure 7.9. In
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Figure 7.8, the relocated seismicity in (b), (c), and (d) is sharper than in the standard SCSN catalog. We

observe differences in absolute locations for some clusters in this region between the LSH catalog and the

SHLK and SHLK IMP 1.0 catalogs that are due to the 3-D ray-tracing; however, the relative locations

are very similar. The absolute locations in the new LSH catalog are preferred because only ray tracing

through a 3-D model can correctly account for the strong lateral velocity changes at the edges of the

Imperial Valley. The biases from different 1-D velocity models are likely to be strongest in depth. Figure

7.9 presents the cross-sections of the seismicity within 10 km of the profiles shown by the straight lines

in Figure 7.8. The relocated seismicity is much sharper than the SCSN catalog. The new locations and

those in the SHLK IMP 1.0 catalog appear more stable than those in the SHLK catalog and more tightly

clustered. Note the similarity between the new LSH catalog and the SHLK IMP 1.0 catalog, which

suggests that the 3-D velocity model produces reasonably unbiased absolute locations. We therefore do

not apply a separate velocity model for the Imperial Valley region in our new study.

7.8 Location Error Estimates

Our new locations produce a dramatic sharpening of seismicity features compared to standard cata-

logs and a significant sharpening of some features compared to our previous SHLK catalog. Presumably

this sharpening indicates decreased location errors because there is nothing intrinsic to our algorithms

that should cause linear seismicity alignments. However, it is desirable to compute quantitative estimates

of likely location errors for individual events. In order to do this, we estimate the absolute and relative

location errors separately.

7.8.1 Absolute Location Errors

The SIMULPS algorithm (Evans et al., 1994) provides the hypocenter error ellipse. It computes

the errors as the largest of the horizontal and vertical projections of the principal standard errors for

each single event. Because we keep the absolute location of each similar event cluster fixed during the

waveform cross-correlation relocation, we use the hypocenter errors from the output of the 3-D relocation
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Figure 7.8. Epicenter distributions for the Imperial Valley region from (a) the SCSN catalog; (b) the new
LSH catalog in this study; (c) the SHLK catalog using the 1-D model for southern California (see Figure
1(a) in Shearer et al. (2005)); (d) the SHLK IMP 1.0 catalog using the 1-D model derived from refraction
seismic experiments (see Figure 1(b) in Shearer et al. (2005)). The red and green straight lines are the
profiles for the cross-sections shown in Figure 7.9.
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Figure 7.9. Cross-sections of the seismicity within 10 km of the profiles shown in Figure 7.8 in the four
location catalogs.
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to provide estimates of the absolute location errors in our catalog. The absolute location error in horizontal

and vertical is given for each single event. We plot histograms of the hypocenter errors for the 430,000

events in Figure 7.10. The MAD of the horizontal errors is 0.1 km, and 0.2 km for the vertical errors. (The

RMS of the horizontal errors is 0.5 km, and 1.1 km for the vertical errors.) These should be considered

minimum errors because they represent the formal statistical errors in the solution and do not fully account

for the possibility of errors in the velocity model or other systematic biases.

Figure 7.10. Histograms of absolute hypocenter errors from the SIMULPS results for the 430,000 relo-
cated events. The MAD is 0.1 km for the horizontal errors and 0.2 km for the vertical errors.

We also used the 3-D velocity model to independently relocate the hypocenters and origin times of

the 36 shots with known locations and origin times used in Lin et al. (2007) . Figure 7.11 shows the

location errors for these shots. Except for 3 of the 36 events, all events have epicenter errors less than

1.5 km, with most errors less than 1.0 km. The 3 exceptional events have epicenter errors of about 2.8 km.

For the vertical location errors, 30 are less than 3.0 km, and with most are less than 2.0 km. The others are

about 6.0 km. For the 36 shots used here, the number of P picks is 1,349, but the the number of S picks

is only 19. Considering this aspect and also the rapid velocity variations in the near surface, the absolute
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Figure 7.11. Location errors for the 36 shots used in the tomographic inversions and relocated in the new
3-D velocity model.

location errors from these shots can be treated as the maximum likely errors in our location catalog.

7.8.2 Relative Location Errors

Within each similar event cluster, we apply a grid-search algorithm using the robust least-squares

method to relocate all the events. Because we do not use the L2 norm, it is not possible to compute

error ellipses based upon the χ2 misfit criteria of the classical least-squares method. As an alternative,

we have applied a bootstrap approach (Efron and Gong, 1983; Efron and Tibshirani, 1991), in which the

differential times for each event are randomly resampled (individual times may be sampled multiple times

or not sampled at all). This process is repeated for 20 subsamples for each event and we relocate each

event using the resampled differential times. We estimate the standard deviations of these 20 subsamples
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as the standard errors of the relative locations for each event. However, it should be noted that these

formal statistical uncertainties can be quite small when the number of data points is large. Again, we

plot the histograms of the relative errors in both horizontal and vertical locations from 323,000 cross-

correlation relocated events in Figure 7.12. The MAD is 10 m for the relative horizontal location error

and 21 m for the vertical location error. More accurate individual error estimates could be obtained by

performing more than 20 bootstrap resamplings (limited computing time prevented us doing this), but the

overall statistical properties of the estimated errors over many events should be reliably obtained even

with a limited number of resamplings. It is possible that a faster method of estimating relative location

errors could be obtained by more direct methods, such as studying the size and shape of the individual

event misfit functions, but we do not attempt this here.

In general, our estimated absolute location errors are similar to the HAUKSSON 3D catalog and the

relative location errors are comparable to the SHLK catalog.

Figure 7.12. Histograms of relative location errors from bootstrap resampling for the 323,000 cross-
correlation relocated events.
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7.9 Discussion

Our new catalog is available through the Southern California Earthquake Data Center and we an-

ticipate that it will be useful to a variety of researchers studying seismicity and tectonics in southern

California. In particular our improved locations should help to resolve details of fine-scale fault structure

in regions of active seismicity. One important question is the exact relationship between small earth-

quakes and major faults (e.g., Hauksson et al., 2006). Is the seismicity near these faults actually on the

fault surface or on nearby subsidiary faults? A comprehensive study of this question is beyond the scope

of this paper. However, we will highlight results from our catalog for two portions of the San Andreas

Fault (SAF).

In general there is sparse seismicity on the SAF in southern California, particularly when compared

to the linear seismicity features that characterize the SAF in central California. However, there are two

regions where groups of earthquakes are close to the SAF and aligned roughly parallel to the fault. One

of these is between Palmdale and Wrightwood along the northern side of the San Gabriel Mountains.

Figure 7.13 shows a map view and cross-sections of earthquake locations in the western part of this

region, where the seismicity is densest. Focal mechanisms are plotted from the quality 1 and 2 solutions

of J. Hardebeck (2005, http://www.data.scec.org/research/socal focal JLH.html; see also Hardebeck and

Shearer, 2003). The bulk of the seismicity is located several kilometers south of the surface expression

of the SAF, a much larger difference than our estimated location errors. The orientation of the SAF

at depth is not known but is often assumed to be vertical (Community Fault Model, updated January

2004, by Shaw et al., http://structure.harvard.edu/cfm, also see Plesch et al., 2002). The mechanisms

are mainly reverse, oblique and right-lateral strike slip, with relatively few mechanisms matching exactly

the expected motion along the SAF. In cross-section the seismicity often appears to roughly align on

southwest dipping planes. The focal mechanisms for cross-sections AB and CD are consistent with

reverse faulting on these planes. The seismicity is more complex in cross-section EF where the events are

closer to the SAF surface trace. Earthquakes located south of the fault deepen to the southwest but have

mainly vertical, strike-slip mechanisms. It is possible that these events are located on strike-slip faults
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Figure 7.13. Seismicity near the San Andreas Fault (SAF) north of the San Gabriel Mountains, shown
in map view and the labeled cross-sections. Focal mechanisms are from the Hardebeck 2005 catalog
(see text). The dashed lines show the vertical projection of the known surface trace of the SAF; the true
position of the fault at depth is uncertain.
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parallel to the SAF or even on the SAF itself if the fault dips slightly to the southwest at depth. However,

there is also a concentration of seismicity at 6 km depth just north of the SAF, which contains reverse

faulting mechanisms of varying orientation.

The second region is northeast of the Salton Sea along the southernmost section of the SAF and is

plotted in Figure 7.14. The seismicity is located 3 to 5 km to the northeast of the surface trace of the

SAF, a separation that greatly exceeds any likely errors in our locations. Most of the earthquakes are

between 6 and 11 km deep and roughly align on northeast dipping planes whose surface projection is

close to the SAF. High-quality focal mechanisms are sparse in this region but the majority suggest right-

lateral strike-slip motion, oriented parallel to the SAF. An exception is a concentration of seismicity in

cross-section CD, which contains 3 normal faulting mechanisms. However, the bulk of the seismicity

could be occurring on the SAF if it dips about 60 degrees to the northeast. This geometry could also help

explain geodetic data for this area, which indicate that the maximum shear strain is displaced about 7 km

northeast of the surface trace of the SAF (Fialko, 2006).

Our new earthquake locations are often sufficiently precise within similar event clusters that seis-

micity planes can be identified at relatively small scales (typical examples are from 0.5 to 2 km across).

This resolution should permit much more detailed mapping of fault geometries than has previously been

possible using catalogs derived from more standard earthquake location methods, at least for those faults

currently illuminated by seismicity. The orientations of these planes can also help resolve the ambiguity

between the primary and auxiliary planes in focal mechanism solutions (Shearer et al., 2003).

7.10 Conclusions

We present high-precision earthquake locations for southern California from 1981 to 2005 computed

using waveform cross-correlation with a new robust least-squares method. We examine 6 more years of

data and many more cross-correlated event pairs in this study relative to our previous catalog. We use a

new 3-D velocity model to improve absolute location accuracy and apply a new differential time relocation

method that is very robust to outliers in the data. The location error estimates provide information on the
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Figure 7.14. Seismicity near the San Andreas Fault (SAF) north of the Salton Sea, shown in map view
and the labeled cross-sections. Focal mechanisms are from the Hardebeck 2005 catalog (see text). The
labeled line shows the known surface trace of the SAF; the true position of the fault at depth is uncertain.
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location quality for individual events and the overall dataset. These results build on our earlier relocation

work and provide additional insight regarding the fine-scale seismicity structure in southern California.

Our catalog is available through the Southern California Earthquake Data Center. Ultimately our goal is

to implement these methods into routine network practice so that future events can be located quickly to

the same accuracy as the complete catalog.
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Chapter 8

Conclusions

8.1 Summary of Main Results

In this dissertation, I have considered several aspects of improvements in earthquake locations. A

few important accomplishments and conclusions of this study can be summarized as follows:

• I compared three relative earthquake location techniques based on synthetic data. The source-

specific station term (SSST) location method provides improved relative locations of comparable

accuracy to other methods (e.g., the Double-Difference location method, Waldhauser and Ellsworth,

2000; Waldhauser, 2001) for both single compact event clusters and distributed seismicity. A new

method — the shrinking box SSST method — is also introduced, which not only provides similar

improvements in relative earthquake locations with other techniques, but also improves absolute

location accuracy compared to the simple SSST method. The advantage of our method is that

the event location part of the calculation is separate from the station term calculation and can be

performed quickly using any desired single event location method.

• Controlled sources are often applied in simultaneous earthquake location and velocity inversions

to provide absolute reference locations for three-dimensional velocity models and to constrain the

shallow crustal structure. I have shown that absolute locations to about ∼100 m accuracy can be

obtained for quarry seismicity by using remote sensing data . This can provide additional ground

truth locations to add to the existing calibration shot data. The 19 relocated quarry blasts obtained

by this method are used in our three-dimensional velocity model study for southern California in

151
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Chapter 6.

• We released the COMPLOC software package to the community and provide documentation in

Chapter 4. This location package allows users to greatly improve relative event locations using

the SSST location algorithm with phase data. However, the current release does not permit use of

waveform cross-correlation differential times.

• The Vp/Vs method in Chapter 5 was developed and tested to estimate local Vp/Vs ratios for compact

similar earthquake clusters using the precise P - and S- differential times obtained using waveform

cross-correlation. Our technique has higher resolution for near-source Vp/Vs ratios than typical to-

mographic inversion methods, provides constraints on near-fault rock properties and helps improve

relative earthquake locations.

• A new three-dimensional seismic velocity model for southern California is developed using the

“composite event method” applied to Thurber’s SIMULPS algorithm. The advantage of using

composite events rather than single master events is that the random picking error is reduced by

averaging picks from many nearby events and that the maximum possible number of stations can

be included for each event. Our velocity model is similar to models from previous studies but also

has some new features. The model can be used as a starting point for structural studies, earthquake

locations, and ground motion calculations.

• Based on the three-dimensional velocity model in Chapter 6, waveform cross-correlation and clus-

ter analysis, we obtain a new earthquake location catalog for about 450,000 southern California

earthquakes between 1981 and 2005. Our new catalog is available through the Southern California

Earthquake Data Center and we anticipate that it will be useful to a variety of researchers studying

seismicity and tectonics in southern California. In particular our improved locations should help to

resolve details of fine-scale fault structure in regions of active seismicity.
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8.2 Suggestions for Future Research

My Ph.D. research focuses on improving earthquake locations in southern California, but the tech-

niques can be applied elsewhere in the world. It will be useful to extend these studies to other areas and

test their applicabilities.

The SSST location method can greatly improve relative earthquake locations. The COMPLOC lo-

cation package of the SSST algorithm is helpful for researchers to relocate events with only phase data.

However, this package does not provide location error estimates and does not include differential times

from waveform cross-correlation. The parameters that are often used to stabilize the location process,

such as damping and weighting, are also not used in the package. This has the advantage of simplifying

the program and might not be necessary due to the use of more robust statistical methods (e.g., L1 norm

or our robust least-squares method) than the classical least-squares approach. However, these should be

considered in the next available release.

Our Vp/Vs estimate technique provides higher resolution of Vp/Vs ratios in source regions than to-

mographic inversions because of the high accuracy of differential times from waveform cross-correlation.

It would be good to check the consistency of the ratios from this study with the tomographic results and

with the real rock properties. It is likely that more accurate Vp/Vs ratios will stabilize the location process

and improve relative locations. The current waveform cross-correlation locations were obtained using a

fixed seismic velocity model. It will be interesting to apply the Vp/Vs ratios recovered from this technique

to the location process to see how they affect earthquake locations.

Seismic structure studies are important in both local and regional scales to help us better understand

Earth structure. My current use of a three-dimensional velocity model is mainly to improve absolute

earthquake locations, but the model should also be helpful in other studies, such as resolving the geolog-

ical structure of the crust, performing path and site effect studies, and computing strong ground motion

simulations. It will be instructive to relate the velocity models with the relevant geological structures and

other associated studies. It is also surprising to find the association of seismically active regions with low

Vp/Vs ratios. However, it is possible that unresolved fine-scale structure in Vp/Vs may be present near
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seismically active areas that would yield very different Vp/Vs values near the earthquakes themselves due

to the crude resolution of our tomography model compared to the accuracy of the earthquake locations.

A promising way to study this possibility would be to directly estimate local Vp/Vs ratios within similar

event clusters using the method in Chapter 5.

The current LSH location catalog for southern California seismicity provides both absolute and rela-

tive location errors. The bootstrap approach is a useful but inefficient way to estimate the relative location

errors in each cluster, because this is equivalent to relocating the whole catalog several times. The reason

we used the bootstrap approach is that it is difficult to apply the classical χ2 misfit criteria to our robust

least-squares method (or any other non-least-squares method). It would be desirable to develop a system-

atically efficient method to estimate both absolute and relative location errors. Considering the ongoing

seismicity in southern California and the need for accurate locations in research on recent earthquakes, it

will be very helpful to work out a routine so that future events can be located quickly to the same accuracy

as the complete catalog.
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