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ABSTRACT OF THE DISSERTATION

Parallel and Statistical Analysis and Modeling of Nanometer VLSI Systems

by

Xue-Xin Liu

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2013

Professor Sheldon X.-D. Tan, Chairperson

Electronic design automation (EDA) is an important part of the integrated circuit (IC)

industry, and has been evolving together with design and fabrication technologies. This

evolution is reflected in both the advent of new algorithms and the rapid upgrade of soft-

ware implementation. Innovative algorithms deliver accurate and reliable results in shorter

computation time, and thus saves human resource and R&D cost. Smartly designed soft-

ware can utilize hardware resources efficiently and improve computing performance.

However, EDA is now facing many complicated cases in current VLSI technology.

As integration scales to the sub-90 nm regime, the performance of ICs is becoming less

predictable. Different sources of variations are caused from manufacturing process and

these variations will finally end up with parametric yield loss. To deal with yield loss,

efficient algorithms are required to accurately predict the performance of a circuit at the

design stage. Unfortunately, given the high complexity of VLSI systems, software tools

with traditional algorithm and implementation suffer from the “curse of dimensionality”

problem. For instance, Monte Carlo (MC) method, which is the most trustworthy way
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to capture statistical information of a design, becomes inefficient as a large number of

samplings are needed for an accurate analysis of the variations of the circuit response.

Also, many verification tasks require transient simulation or frequency domain simulation

of the full-chip design in order to guarantee an optimized product. A typical power grid

circuit has a tremendous size of over billion nodes, and takes several days for traditional

transient simulation to calculate transient response. With chips getting smaller and more

complicated, the modeling and analysis will certainly become more difficult challenging.

In this thesis, we study the tough issues in statistical analysis such as Monte Carlo

method and performance bound analysis, as well as modeling and simulating large scale

circuit systems, such as power grid circuit and thermal circuit. Our algorithm and software

solutions are proposed to reduce the computation cost without hurting the accuracy. We

also take the benefits of modern multi-core and many-core computer architectures, such as

multi-core CPU and general purpose GPU (GPGPU), to gain speedup in our simulation.

Computational independency in MC simulation is exploited and hence we have developed

a GPU parallel Monte Carlo analysis based on symbolic technique. Our parallel MC of

circuit transfer functions has been verified using statistics extracted from classical MC, and

the proposed method is proved to be effective. We also study optimization based method

to derive the performance bounds as a non-Monte Carlo solution. The bounds from this

method are accurate without over-conservativeness.

To accelerate linear algebra operations in equation solving tasks, which are com-

mon in our power grid analysis, 3D IC thermal analysis, and RF and power converter simu-

lation, we apply GPU on fine-grained tasks in GMRES solver and attain impressive speedup
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over traditional CPU method. The management of different levels of GPU resources, such

as thread organization and memory assignment, are discussed so that the data intensive

feature of GPU can be fully rendered and its weakness like long memory access latency

be well hidden by its superb data throughput. All algorithms and implementations are

demonstrated with representative numerical experiments and thorough comparisons among

different methods and platforms.
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Chapter 1

Introduction

1.1 Circuit simulation in nanometer regime of VLSI

Current VLSI design and fabrication technologies have marched relentlessly into

nanometer scale. With the Moore’s Law still dominant in this industry, although challenged

more than ever, the term “deep sub-micron” used one decade ago are now fairly outdated.

The 45 nm integration has already become the mainstream technology, and 22 nm tran-

sistors are not new any longer. To continue the trend of Moore’s Law, more integration

capability is exploited from 3-dimensional structure in the chip. In a word, the IC industry

is still leading, and is expected to do so in the near future, the technology endeavor towards

making cheaper, smaller, more efficient, and more powerful electronics devices for us.

This success is made possible in part by the electronic design automation (EDA)

community, from both academia and industry parts. The SPICE circuit simulator is a

perfect model for the software solution in this area. Originated from a course project in UC

Berkeley in the early 1970s, it first evolved into a research tool in the university. Then it was
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adopted and commercialized by companies and became the forerunner of the whole EDA

area. Through the intensive research and development in the past several decades, SPICE

and its variants are now playing crucial parts in almost every EDA software vendor’s product

solutions. With the facilitation of EDA tools, the IC industry gains much more efficiency and

productivity than before. However, the state-of-the-art IC design also raises more tough

challenges to EDA algorithms and tools. The cutting edge IC technologies do not only

bring sophisticated specification and verification requirements to EDA methodologies, but

also introduce more difficult issues on the algorithm and computation level. For example,

the modeling and simulation of chip interconnection at the nanometer integration scale

need to consider the parasitic effects and process variations, which tend to increase the

computation complexity such as huge matrix size in the numerical analysis. Without novel

modeling and simulation algorithms, the analysis of a full chip design could take many days

to finish. In case several design modification cycles are involved, the total computation cost

is too prohibitive to meet the time to market demand. Therefore, new EDA algorithm and

implementation are always essential driving forces to make IC product competitive in this

industry’s evolution.

Among all the issues in EDA applications in nano-scale integration, variability

in IC design and fabrication is a critical challenge to the continued scaling and effective

utilization of CMOS technologies. While people at foundry part are doing their best to

minimize transistor variation through technology optimization, the designer and EDA tools

should also ensure robust product functionality and performance during their design phase.

Transistor mismatch is the primary obstacle to reach a high-yield rate for analog

2



designs in sub-90 nm technologies. For example, due to an inverse-square-root-law depen-

dence with the transistor area, the mismatch of CMOS devices nearly doubles for every

process generation less than 90 nm, and the 3-σ variation of drain currents reaches beyond

30% [1,2]. Since the traditional worst-case or corner-case based analyses are so pessimistic

that they sacrifice the speed, power, and area, the statistical approach [2–7] thereby be-

comes a trend to estimate the analog mismatch. Same as the process variation, there are

two types of mismatch. One is systematical or global spatial variation, and the other is

stochastic or local random variation. Analog circuit designers usually perform Monte Carlo

(MC) analysis to analyze the stochastic mismatch and predict the statistical functionality

of their designs. As MC analysis requires a large number of repeated circuit simulations, its

computational cost is expensive. Moreover, the pseudo-random generator in MC introduces

numerical noises that may lead to errors.

This thesis is motivated by the aforementioned two aspects: fast and scalable

computation and accurate and reliable results. We want to develop efficient and accurate

algorithm for circuit simulation and statistical analysis, while we obtain additional speedup

by digging out the parallelizable part underlying the algorithm, or by rearranging the al-

gorithm so that parallelizable part becomes outstanding. In this way, GPU platforms will

perform their marvelous data parallel power in our applications.

In the next section, we will review briefly the CUDA GPU computing platform,

where a majority of the researches in this thesis are done.

3



1.2 CUDA GPU architecture and programming

We stress at the beginning that most of the features of GPU, both advantages and

limitations, comes from the fundamental design philosophy of GPU chips — GPU dedicates

much more chip area to processing cores while its control logic and memory models are

simpler if compared to multi-core CPU. Therefore, to get the best performance, one should

use GPU on those numerically intensive tasks with simple control logic requirements. This

execution style is also called single-program, multiple-data (SPMD).

CUDA, short for Compute Unified Device Architecture, is the parallel program-

ming model for NVIDIA’s general-purpose GPUs. The architecture of a typical CUDA-

capable GPU is built around a scalable array of highly threaded streaming multiprocessors

(SM) and comes with the GPU card’s own DRAMs, referred to as global memory. Current

CUDA GPU cards have from 768 to 12,288 concurrently executing threads. Transparent

scaling across this wide range of available parallelism is a key design goal of both the GPU

architecture and the CUDA programming model [8]. Take the Tesla C2070 GPU for ex-

ample. Fig. 1.1 shows the C2070 GPU with 14 SMs interconnected with several external

DRAM partitions. Each of these 14 SMs has 32 streaming processors (SPs, or CUDA cores

called by NVIDIA), 4 special function units (SFU) for transcendental functions, one multi-

threaded instruction unit, and its own on-chip shared memory/L1 cache. The SM in C2070

can creates, manages, and executes up to 1,536 concurrent threads in hardware with zero

scheduling overhead. The structure of a streaming multiprocessor is shown in Fig. 1.2.

As the programming model of GPU, CUDA extends C into CUDA C and sup-

ports tasks such as threads calling and memory allocation, which make programmers able

4
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Figure 1.2: Diagram of a streaming multiprocessor in NVIDIA Tesla C2070. (SP is short
for streaming processor, L/S for load/store unit, and SFU for Special Function Unit.)
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to explore most of the capabilities of GPU parallelism. In CUDA programming model,

illustrated in Fig. 1.3, threads are organized into thread blocks; thread blocks are further

organized into grids. When a CUDA program on the host CPU invokes a kernel grid, the

compute work distribution (CWD) unit enumerates the blocks of the grid and begins dis-

tributing them to SMs with available execution capacity. The threads of a thread block

execute concurrently on one SM. As thread blocks terminate, the CWD unit launches new

blocks on the vacated multiprocessors.

Note that it is not correct, or at least not quite precise, to view a GPU core or

CUDA core as a freely controlled processing core equivalent to the ones in a multi-core CPU.

Although threads within a block will actually execute on multiple CUDA cores within the

SM, the number of thread blocks shall be understood as the analogy to “processor count”

in parallel algorithm analysis. It is at the thread block level or SM level where internal

communication is cheap and external communication becomes expensive. Therefore, fo-

cusing on the decomposition of work into a number of thread blocks with appropriate size

is the most important factor in tuning the performance. Developers can write programs

running millions of threads with thousands of blocks in parallel. This massive parallelism

forms the reason that programs with GPU acceleration can be much faster than their CPU

counterparts.

CUDA C programming language creates its extended keywords and built-in vari-

ables. For example, in order to distinguish the parallel threads in a kernel launch, two

index variable structures, blockIdx.{x,y,z} and threadIdx.{x,y,z}, are provided. They

assign unique coordinates, or say IDs, to all blocks and threads in the whole grid partition.

7



Therefore, programmers can easily map the data partition to parallel threads, and instruct

the specific thread to compute its own responsible data elements. Fig. 1.3 shows an exam-

ple of 2-dim blocks and 2-dim threads in a grid, the block ID and thread ID are indicated

by their row and column positions. This figure shows the two-level parallelism in CUDA

computing: Parallel SMs compute result blocks, and parallel threads in each block compute

result elements.

CUDA also assumes that both the host (CPU) and the device (GPU) maintain

their own separate memory spaces, referred to as host memory and device memory, respec-

tively. For every block of threads, the on-chip shared memory is accessible to all threads in

that same block, thus providing efficient cooperation and communication amongst threads

in a block. And the global memory, i.e., DRAMs on GPU card, is accessible to all threads

in all blocks. However, due the lack of large cache and the required time to refresh charges

on the DRAM, the latency of reading and writing data on global memory is long. To hide

this latency, it is particularly advantageous when a thread block can load a block of global

data into on-chip shared memory, process it with the parallel threads, and then write the

final result back out to global memory. Coalesced memory access is favored by GPU. When

threads of a warp access aligned and consecutive words in memory, the hardware is able

to group these accesses into aggregate transactions with the memory system, resulting in

substantially higher memory throughput. For instance, a warp of 32 threads gathering

from widely separated addresses will issue 32 requests to memory, while a warp reading 32

consecutive words will only issue 2 requests.

To achieve best efficiency, kernels should avoid execution divergence, where threads
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Figure 1.3: The programming model of CUDA. When Kernel 1 is launched on GPU, a
3-by-2 grid of 6 thread blocks is created, and each block in Kernel 1 is organized into a
5-by-3 array of threads.

within a warp follow different execution paths. Divergence between warps, however, intro-

duces no performance penalty. This means the programmer should minimize the conditional

switches in statements such as if-then-else.

One thing to mention is that for current GPUs, computations of double-precision

float number is still slower than single-precision ones due to the limit of ALUs. Thus, for

applications whose execution time is dominated by floating point computations, switching

from single-precision to double-precision will decrease performance remarkably. However,

this situation is being improved. Newer models of NVIDIA GPUs can provide much better

double-precision performance than before.
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1.3 Objectives and results of this thesis

The main objective of this thesis is to explore and improve circuit simulation

algorithms, such as Monte Carlo and transient analysis, and propose new implementations

on modern computing platforms. Efficient and reliable statistical analysis and parallel

methodology of very large scale integrated circuits will be presented through the researches.

The key contribution of these researches is the introduction and the exploration of several

novel techniques for statistical analysis and circuit simulation on both time domain and

frequency domain. The major achievements accomplished in this dissertation are as follows.

• Symbolic based statistical analysis with GPU. This work is based on a powerful

graph based symbolic technique. With the proposed new algorithms, we extend the

application of this technique to run parallel Monte Carlo simulation on GPU. Ex-

periments show that our GPU MC analysis brings 2–3× speedup over HSPICE MC

simulation. In another independent work, this same symbolic technique is used as a

fundamental stage where a novel performance bound analysis is built upon to obtain

statistical information.

• Fast parallel power grid simulation on heterogeneous CPU-GPU platforms.

To cope with the ever increasing size of power grid circuit, model order reduction tech-

nique is applied to generate a smaller system with tolerable approximation error. Then

GPU parallel computing is introduced in transient simulation of this reduced model

for speedup. The fine-grained thread level parallelization of GPU on the transient

simulation makes significant speedup on industrial benchmark circuits.
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• GPU based iterative GMRES solver in a variety of applications. Krylov

subspace based iterative GMRES solver is used in thermal simulation of 3D ICs.

For the thermal modeling and simulation of 3D IC with liquid cooling system, we

implement GPU GMRES solver suited to the characteristics of 3D IC’s equivalent

thermal circuit models. The computation intensive procedures in GMRES such as

subspace constructions are made parallel. With well chosen preconditioners, we gain

further speedup in the equation solving phase.

Variants of GPU GMRES are also applied to PSS shooting method for RF simulation

and envelope-following method for power converter simulation, in which a matrix-free

technique for subspace basis vector generation is used to avoid the cost incurred from

explicitly building the Jacobian matrix. We demonstrate the efficiency of our methods

by comparing both accuracy and acceleration in practical design examples.

1.4 Organization of the thesis

To carry out statistical analysis on circuits, Chapter 2 and Chapter 3 both start

from determinant decision diagram (DDD) based symbolic method, which generates the

expressions of circuit transfer functions in frequency domain. Chapter 2 describes a novel

data structure and computation algorithm for parallel DDD evaluation on GPU platforms,

and hence results in faster parallel Monte Carlo simulation. In contrary to this Monte Carlo

analysis, Chapter 3 deploys an optimization approach on symbolic expressions of transfer

functions, and calculates the lower and upper performance bounds of magnitude and phase

of the transfer function, which is called non Monte Carlo method. With this frequency
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domain performance bounds and a given time domain input stimulus signal, Chapter 3

further applies uncertainty region method and signal processing techniques to determine

time domain performance bounds of the output signal.

Chapter 4 to Chapter 7 focus on fast transient simulation of power grid circuits,

3D thermal circuit models, radio frequency/monolithic microwave circuits (RF/MM IC),

and power converter circuits. Various GPU features are used in these works. Chapter 4 first

reduces the order of power grid circuit, which is usually large and costs high computation

time and memory. Then the reduced system is transferred to GPU, where large number of

current sources in the grid can be evaluated independently in parallel and the linear algebra

operations such as triangular solves, matrix-vector multiplications, and vector additions can

also be accelerated by GPU fine-grained parallelism.

Chapter 5 first describes the background of state-of-the-art modeling of 3D IC

with liquid cooling system, and then derives the thermal circuit model for this thermal

system. To accelerate the solving of large equations in the transient simulation, GPU based

GMRES iterative solver is applied. We also investigate good preconditioners for GMRES

in order to accelerate the iterative solver. Various parts in the solver are made parallel on

GPU and the programming details are talked about in this chapter.

Chapter 6 uses a modified GMRES solver in shooting problem for steady state

analysis of RF/MM circuits. A core problem related to shooting analysis is the solving of

a Newton update equation. The benefit of using this modified GMRES as solver of New-

ton update is the capability to calculate Krylov subspace independently. Hence, parallel

GPU thread blocks work on these subspaces simultaneously. The mathematics and formu-

12



lation of the shooting problem is provided, and detailed GPU algorithm implementation is

also discussed. With a similar Newton update problem in the envelope-following method,

Chapter 7 develops a tool for the simulation of power converter circuits by using GPU GM-

RES solver and Gear-2 integration scheme, both of whom help deliver speedup and ensure

accuracy.

Finally, Chapter 8 concludes the thesis with brief summaries of the works, and

gives proposal for some future works.
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Chapter 2

DDD based Monte Carlo analysis

on GPU

This chapter shows a new parallel statistical analysis method for large analog

circuits using determinant decision diagram (DDD) based graph technique based on GPU

platforms. DDD-based symbolic analysis technique enables exact symbolic analysis of vary

large analog circuits. But we show that DDD-based graph analysis is very amenable for

massively threaded based parallel computing based on GPU platforms. We design novel

data structures to represent the DDD graphs in the GPUs to enable fast memory access

of massive parallel threads for computing the numerical values of DDD graphs. The new

method is inspired by inherent data parallelism and simple data independence in the DDD-

based numerical evaluation process. Experimental results show that the new evaluation

algorithm can achieve about one to two order of magnitudes speedup over the serial CPU

based evaluations and 2–3 times speedup over numerical SPICE-based simulation method
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on some large analog circuits.

2.1 Introduction

It is well known that analog and mixed-signal circuits are very sensitive to the pro-

cess variations as transistor matching and regularities are required. This situation becomes

worse as technology continues to scale to 90 nm and below owing to the increasing process-

induced variability [9,10]. For example, due to an inverse-square-root-law dependence with

the transistor area, the mismatch of CMOS devices escalates by two times for each process

generation less than 90 nm [1, 2]. To consider the impacts of process variations on circuit

performance, Monte Carlo based statistical approaches are the most reliable solutions to

this problem. But the prohibitive computational cost of Monte Carlo method prevents it

from solving large analog circuits.

Modern computer architecture has shifted towards designs that employ multiple

processor cores on a chip, so called multi-core processor [11,12]. GPUs are one of the most

powerful many-core computing systems in mass-market use. For instance, NVIDIA Tesla

T10 chips have a peak performance of over 1 TFLOPS versus about 80–100 GFLOPS of

Intel i5 series Quad-core CPUs [13]. In addition to the primary use of GPUs in accelerating

graphics rendering operations, there has been considerable interest in exploiting GPUs for

general purpose computation (GPGPU) [14]. Accordingly, the introduction of new parallel

programming interfaces for general purpose computations, such as Computer Unified Device

Architecture (CUDA) [15], Stream SDK [16] and OpenCL [17], has made GPUs powerful

and attractive for developing high-performance tools of solving practical engineering prob-
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lems. Parallelization on GPU platforms is an emerging strategy to improve the efficiency of

Monte Carlo based statistical analysis method. But traditional numerical simulators such

as SPICE are based on LU decomposition, and are difficult to be parallelized on GPUs due

to irregular memory access and huge memory-intensive operations.

Graph-based symbolic technique is a viable tool for calculating the behavior or

characteristic of analog circuits [18]. The introduction of determinant decision diagrams

based symbolic analysis technique (DDD) allows exact symbolic analysis of much larger

analog circuits than all the other existing approaches [19,20]. Furthermore, with hierarchical

symbolic representations [21,22], exact symbolic analysis via DDD graphs essentially allows

the analysis of arbitrary large analog circuits. Once the small-signal characteristics of

circuits are presented by DDDs, evaluation of DDDs, whose CPU time is proportional to

the size of DDDs, will give exact numerical values. One important observation is that the

DDD-based simulation is very amenable for parallel computing as the main computation

is distributed to each DDD node (via graph traversals) and the data dependency is very

simple due to the simple binary graph structure.

In this chapter, we develop efficient parallel graph-based simulation technique

based on GPU computing platforms for Monte Carlo based statistical analysis of analog

circuits. We design novel data structures to represent the DDD graphs in the GPUs to

enable fast memory access of massive parallel threads for computing the numerical val-

ues of DDD graphs. The new method is inspired by inherent data parallelism and simple

data independence in the DDD-based numerical evaluation process. Experimental results

show that the new evaluation algorithm can achieve about one to two orders of magnitudes

16



speedup over the serial CPU based evaluations of analog circuits and 2–3 times speedup

over numerical SPICE-based simulation method on some large analog circuits. Besides, the

proposed parallel techniques can be used for the parallelization of many decision diagrams

based applications, such as logic synthesis, optimization and formal verifications, which are

based on binary decision diagrams (BDDs) and its variants [23, 24].

Section 2.2 outlines DDD-based symbolic analysis techniques. Then, we introduce

the flow of the proposed GPU Monte Carlo simulation. Section 2.4 describes the proposed

GPU parallel algorithm, followed by several numerical examples in section 2.5. Last, Section

2.6 makes a summary.

2.2 DDD symbolic analysis

In this section, we first provide a brief overview of determinant decision diagrams

(DDDs) [19] and its application to symbolic analysis.

The DDD technique uses directed binary graphs to represent a determinant. The

paths in the graph represent those product terms in the determinant. Since the number

of paths in a graph can be much larger than the number of nodes, DDD representation

enables symbolic analysis of much larger analog circuits than before [19]. The concept of

DDD representation is briefly reviewed as follows. The determinant of a matrix can be

expressed as the symbolic product terms from the subset of all elements in the matrix. For
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example, consider the following matrix determinant.

det(M) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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∣

a b 0 0
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= adgj − adhi− aefj − bcgj + cbih (2.1)

We can express each element using a node in a diagram and each product term using a

path going through four nodes. For every node, it has a value of itself and a sign attached

to it. The sign of each product term is decided by multiplying the sign of every node in

the corresponding path. When the matrix M is a circuit matrix (such as modified nodal

analysis (MNA) matrix), the value for each node represents the RLC value for the element

in the MNA matrix. The diagram for the above matrix is shown in Fig. 2.1.

A DDD is a signed, rooted, directed acyclic graph with two terminal nodes, namely

the 0-terminal node and the 1-terminal node. Each non-terminal DDD node is labeled by a

symbol in the determinant denoted by ai (a to j in Fig. 2.1), and a positive or negative sign

denoted by s(ai). It originates two outgoing edges, called 1-edge and 0-edge. Each node ai

represents a symbolic expression D(ai) defined recursively as follows:

D(ai) = ai · s(ai) ·Dai
+ Dai

, (2.2)

where Dai
and Dai

represent, respectively, the symbolic expressions of the nodes pointed

by the 1-edge and 0-edge of ai. The 1-terminal node represents expression 1, whereas

the 0-terminal node represents expression 0. For example, node h (in Fig. 2.1) represents

expression h, and node i represents expression −ih, and node g represents expression gj−ih.

We also say that a DDD node g represents an expression defined the DDD sub-graph rooted

18



Figure 2.1: DDD representation for matrix M.

at g. For each node, there are two values, vself and vtree. In (2.2), vself represents the value

of the element itself, which is Dai
; while the vtree represents the value of the whole tree (or

sub-tree), which is D(ai).

A 1-path in a DDD corresponds with a product term in the original DDD, which

is defined as a path from the root node (a in our example) to the 1-terminal including

all symbols and signs of the nodes that originate all the 1-edges along the 1-path. In our

example, there exist five 1-paths representing five product terms: adgj, adhi, aefj, bcgj,

and cbih. The root node represents the sum of these product terms. Size of a DDD is the

number of DDD nodes, denoted by |DDD|.

Once a DDD has been constructed, its numerical values of the determinant it

represents can be computed by performing the depth-first type search of the graph and
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performing (2.2) at each node, whose time complexity is linear function of the size of the

graphs (its number of nodes). The computing step is called the evaluation of D, where D

is a DDD root. With proper node ordering and hierarchical approaches, DDD can be very

efficient to compute transfer functions of large analog circuits [19, 22].

Now we use a circuit example to illustrate the idea of DDD. A simple RC filter

circuit is shown in Fig. 2.2. Its MNA formulation can be written as Y · v = i, where Y is

the MNA matrix, i.e.,
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,

i = [I(s), 0, 0]T is the right-hand side vector of current stimulus, and the vector of nodal

voltages to be solved is v = [v1(s), v2(s), v3(s)]
T.

We view each entry in the circuit matrix as a distinct symbol, and rewrite its

system determinant in the left part of Fig. 2.3. Then its DDD representation is shown in

the right part.

1 R2 R3

C2 C3R1 C1

2 3

I

Figure 2.2: A RC filter circuit.
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Figure 2.3: A matrix determinant and its DDD representation.

2.3 Parallel evaluation of DDD

In this section, we first provide an overview of our graph-based GPU-based parallel

statistical analysis before the detailed explanation.

As mentioned before, in DDD-based analysis, computing numerical value of the

determinant of the DDD essentially boils down to the depth-first traversal of the graph.

The data dependency is very simple: a node can be evaluated only after its children are

evaluated. Such dependency implies the parallelism where all the nodes satisfying this

constraint can be evaluated at the same time. Also, in statistical frequency analysis of

analog circuits, evaluation of a DDD node at different frequency points and different Monte

Carlo runs can be performed in parallel. We show that all those parallelism will be explored

by the new statistical analysis approach on GPU platforms.
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2.3.1 The overall algorithm flow

Fig. 2.4 gives the overall flow of our statistical method. The whole algorithm has

two main parts, the CPU part (host) and GPU part (device) as clearly marked in the figure.

CPU part mainly reads the netlist, generate the original DDD tree structures and builds

new continuous DDD vector array structure (for GPU) and outputs the final numerical

results. GPU part takes care of the main parallel DDD evaluation and communicates with

CPU. The new program reads input netlist containing variation information of the relevant

circuit devices. Then, the analyzer builds the MNA (modified nodal analysis) matrix and

DDD binary tree data structure [19] as shown in step ¬.

2.3.2 Continuous and levelized DDD structure

To prepare for the GPU computing, we need to build new data structures from the

original binary tree DDD structures. This will be done in the CPU as the construction only

needs to be performed once and traversal of original DDD linked trees is still sequential in

nature and will be difficult to handle in GPU, as labeled  in Fig. 4.2.

For GPU computing, the main challenge is to allow fast memory access by threads

or reduce memory traffic as much as possible by using shared memory (or texture memory)

within blocks so that GPU cores can be busy all the time. In GPU, fast global memory

access by threads can be done by coalesced memory access where a half warp (or a warp)

of threads (16 or 32 threads respectively) can read their data from the global memory in

one read access. Coalesced memory access requires that data are arranged continuously in

memory and consecutive with respective to involved thread indexes. As a result, we need
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Figure 2.4: The flow of GPU-based parallel Monte Carlo analysis.
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to remap the linked DDD trees into a memory-continuous data structure.

The second issue is that we do not need to perform the DDD node evaluation

for all the DDD nodes. Only those nodes whose children have been evaluated should be

computed by threads (one thread for one DDD node). This can be done by sorting the

DDD nodes by their level. Two DDD nodes have same level if they have the same number

of edges on their longest path to the 1-terminal. For instance, node g and node f has the

same level in Fig. 2.1. DDD nodes at the same level can be computed in parallel in GPU.

As we can see, the largest level of DDD nodes will be bounded by the numbers of non-zeros

in a determinant. But practically, number of level can be much less than the number of

non-zeroes. For instance, we have 6 levels in the DDD shown in Fig. 2.1 versus 10 nonzero

elements.

In the new DDD structure, all the DDD nodes at the same level will be put

in continuous and consecutive memories (mainly the vself and future vtree values) and be

assigned to threads (one DDD node per thread) at the same time (one kernel launch). The

level assignment can be done by simple depth-first traversal of the DDD graph. After this,

we can allow the continuous memory for all the DDD nodes for one level starting from the

lowest level until the highest level. We use the DDD example in Fig. 2.1 again to illustrate

the new data structure shown in Fig. 2.5. For each value associated with a DDD node

such as its value (vself), left child index, right child index, level index, sign (not shown), a

linear array will be generated based on the level indexes of DDD node. For example, node

b in Fig. 2.1 becomes the 7-th element in the vector, and the index of its children, g and

0-terminal, are 4 and −2 accordingly. Note that, by our definition, 1-terminal’s index is
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Figure 2.5: Levelized continuous storage of a DDD, and levelwise GPU evaluation of the
DDD in Fig. 2.1.

−1, and 0-terminal’s is −2. Those arrays then will be copied into GPU memory for future

DDD evaluation.

Fig. 2.5 also shows the execution pattern of GPU threads during DDD evaluation

where we start with the DDD nodes in the lowest level and continue one level at a time

until we hit the highest level. Since all nodes of the same level have been reorganized into

one continuous memory segment, the active GPU threads working on them can achieve

coalesced read/write access and also minimize the occurrence of branch divergence. As we

observed, consecutive and levelwise data format improves the performance of GPU by 2–3×

for large circuits.
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2.4 Parallel Monte Carlo analysis

2.4.1 Random number assignment to MNA elements and DDD nodes

For statistical analysis, we need to generate variations from devices into the ele-

ments of the determinant and then into the data in the continuous DDD data structure.

Due to MNA formulation, each device may appear 4 positions in a MNA matrix. Hence we

track and save the MNA stamp patterns of circuit devices, and also their locations in DDD,

during DDD construction. These data are transferred to GPU texture memory as texture

memory is read-only and can be accessed much faster than GPU global memory.

Next, in random number assignment, CURAND library is used to generate vari-

ations on nominal values of circuit parameters in GPU kernel function. Since one device

parameter may appear at 4 positions in the MNA matrix, we need to make sure that in

each MC run the variation of this parameter are reflected properly at the 4 corresponding

DDD nodes. This is done in Line 2 and Line 3 of the pseudo-code in Algorithm 1. The

variations introduced in our experiments are Gaussian random values, whose means and

deviations can be specified by users from input netlist.

Note that since we perform the frequency domain analysis, we need to evaluate

the MNA and DDD on all frequency points of interest. To enable coalesced memory access

to compute DDD values for many frequencies, as Line 5 and Line 9, the DDD continuous

structure will be further changed so that all frequency responses of the same element or node

reside in consecutive memory addresses. We observe that this frequency related calculation

is very suitable for intra-block GPU computing as all the threads in a block can share the

same DDD information (except for the frequency values).
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Algorithm 1 Parallel random value assignment for DDD nodes

1: for all Monte Carlo runs do // launch threads in grids

2: Assign random values to involved device parameters and stamp MNA elements.

3: Save each DDD node’s admittance, capacitance, and inductance components as

R[k] = {g, c, l}.

4: for all DDD nodes do // launch threads in grids

5: Load frequency values to f .

6: for all frequencies f [i] do // launch threads in a block

7: vself [i] = R[k].g + j · (R[k].c · f [i] + R[k].l/f [i])

8: end for

9: Save vself .

10: end for

11: end for
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In GPU, the threads are organized into blocks, and blocks are formed into grids.

For Tesla C2070, both the configurations of blocks and grids can have three dimensions,

and maximum size of each dimension of a grid is 65,535. C2070 allows each block to have as

many as 1024 threads. (This upper limit varies with different GPU families from NVIDIA.)

Threads in a block can communicate via shared or texture memory and can be explicitly

synchronized. In our problem, the dimension of the grid is set to NMC × |DDD|, i.e.,

the number of Monte Carlo runs times the number of DDD nodes (assume that it is less

than 64K) and each block of this grid contains TILE DIM threads, where TILE DIM is a

multiple of 16 to enable coalesced access on neighboring frequency responses and is also set

with consideration of available GPU resources per block. In practice, we set TILE DIM as

256. So we can allow each block to compute 256 frequency responses for one DDD node.

Notice that all the three FOR loops in Algorithm 1 will be replaced by massive thread

launches in parallel. The two outer loops are parallelized at grid level, and the innermost

loop is parallelized at block level. Hence, the DDD node values vself are computed for all

Monte Carlo runs and all frequency points in their respective blocks and threads (Line 7).

If number of frequency points is larger than TILE DIM, the innermost FOR loop will be

kept inside the kernel function. But instead of loop over each frequency point, we loop over

TILE DIM frequency points every time.

The number of Monte Carlo runs in each kernel launch is determined by the GPU

specification and the allocated resources, such as global memory, to each Monte Carlo cal-

culation. For a typical µA741 circuit whose DDD contains 6,205 nodes and 2,400 evaluated

frequency points, the Tesla C2070 can allow 20 Monte Carlo runs in parallel. In case more
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runs are required, the steps from ® through ± in Fig. 4.2 are repeated as many times as

needed.

2.4.2 Parallel frequency sweep of MC simulation

The evaluation of DDD is a process that computes the final numerical value of the

determinant it represents. This procedure is labeled with ¯ in Fig. 4.2. As we previously

discussed in Section 2.3.2, the data structure of DDD has been remapped to GPU friendly

continuous and consecutive arrays and are sorted by level to enhance efficiency of evaluation.

Algorithm 2 Parallel Monte Carlo evaluation of DDD

1: for level from Level-0 to top level do // CPU host iteration

2: for all Monte Carlo runs do // launch threads in grids

3: for all DDD nodes do // launch threads in grids

4: if node.level == level then

5: Load vself of the current node, and vtree of its children.

6: for all frequencies do // launch threads in a block

7: Evaluate vtree for the current node by Eq. (2.2) on all frequencies.

8: end for

9: Save current node’s vtree.

10: end if

11: end for

12: end for

13: end for

Similar to the GPU calculation of DDD node values mentioned in previous subsec-
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tion, we also launch independent blocks for different Monte Carlo runs and different DDD

nodes, and use each thread block to calculate values of each node’s vtree for all frequency

points, which is depicted in Fig. 2.6.

Algorithm 2 lists the main flow of this algorithm. To ensure that the nodes are

evaluated from bottom to top, the first FOR loop iterates the level index from 0 to the

maximum level in the DDD, and launches kernel function on the DDD nodes of the specific

level, one at a time. Note that we keep this FOR loop in CPU control, instead of moving it

inside the GPU kernel, in order to accomplish inter-block synchronization. This is necessary

because we deploy the evaluation of different nodes in different thread blocks, and, if there is

no synchronization, it is possible that a node of higher level gets evaluated before its children.

Moreover, CUDA only provides synchronization among threads in a block. The kernel has

to be finished if all blocks in the kernel grid are required to be synchronized. Therefore,

in our implementation, the index of current level is passed into the kernel function as an

argument, and the kernel will evaluate those thread blocks with the same level indicated by

the argument index.

The coalesced memory access to the node’s vself and its children’s vtree values are

also ensured in the load and save operations in Line 5 and Line 9. During the evaluation

of the current node on all frequencies, the k-th thread will work on the k-th frequency, and

all threads in a warp execute the same code path. Consequently, such a kernel launching

exhibits a highly data intensive pattern, and reduces global memory traffic at the same

time.
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2.5 Experimental results

To show the performance of the proposed GPU parallel Monte Carlo simulation,

we test the program on several industrial benchmark circuit netlists. For running time

comparisons, we also measure the time cost by the CPU version of DDD evaluation and

HSPICE.

All of our programs are implemented in C++, with NVIDIA CUDA for the GPU

computation part. All running time are sampled from a Linux server with a 2.4 GHz Intel

Xeon Quad-Core CPU, and 36 GBytes memory. The GPU card installed on this server

is Tesla C2070, which contains 448 cores running at 1.15 GHz and up to 5 GBytes global

memory.

Now let us investigate one typical example in detail. Fig. 2.7 shows the schematic of

a µA741 circuit. This bipolar opamp contains 26 transistors and 11 resistors. DC analysis is

first performed by SPICE to obtain the operation point, and then small-signal model, shown

in Fig. 2.8, is used for DDD symbolic analysis and numerical evaluation. The AC analysis

is performed with the variation of several circuit components for Monte Carlo simulation.

Several Monte Carlo samples of the magnitude response are plotted in Fig. 2.9. The 3-dB

bandwidth of all the statistics is calculated and shown in the histogram in Fig. 2.10. In

this example, the nominal 3-dB frequency is 1.2 kHz. As we can observe from Fig. 2.10,

the histogram of the bandwidth frequency is similar to the Gaussian distribution.

Next, we study the speedup and scalability of the GPU and CPU DDD based

Monte Carlo simulations. The measurements of time taken by both programs running on the

same RC tree circuit are shown in Table 2.1, where different snumber of Monte Carlo runs
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Figure 2.7: The circuit schematic of µA741

Figure 2.8: The small signal model for bipolar transistor

33



10
0

10
1

10
2

10
3

10
4

10
5

10
6

−20

0

20

40

60

80

Freq (Hz)

G
a
in

 (
d
B

)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

−100

−80

−60

−40

−20

0

Freq (Hz)

P
h
a
s
e
 (

d
e
g
re

e
)

Figure 2.9: The cluster of frequency responses of the tested µA741 circuit. Red curve is
the CPU golden result, blue curve is the GPU result, and all green curves are GPU MC
samples from the parallel computation.

850 900 950 1000 1050
0

10

20

30

40

Gain (V/V)

O
c
c
u
rr

e
n
c
e

Figure 2.10: Histogram diagram of the gain samples of µA741 at frequency 314 Hz.

34



Table 2.1: Performance comparison of CPU serial and GPU parallel DDD evaluation for
RC tree circuit with different MC runs.

# MC Runs GPU time (s) CPU time (s) Speedup

1 1.98 23.0 11
2 2.08 46.2 22
4 2.21 90.5 41
8 2.50 183.8 73
16 3.03 364.1 120
32 4.76 725.3 152
64 8.68 1442 166
128 17.42 2910 167

are tested. It is obvious that the speedup of GPU method over the CPU one is significant.

Also, when the number of Monte Carlo runs increases, GPU running time does not multiply

as fast as the CPU version does, provided that the GPU resources can accommodate parallel

execution of these Monte Carlo evaluations in one kernel launch. Hence, in this way, all

the GPU streaming multiprocessors are kept busy and the throughput is maximized, which

results in a striking speedup over the CPU serial version.

Last, we list the results of all benchmark tests in Table 2.2. The information of the

circuits and their DDD representation is also included in the same table. The 2nd column

and the 3rd column record number of interconnect nodes and number of devices in circuits.

Table 2.2: Performance comparison of Monte Carlo simulations using the proposed GPU
method, its CPU counterpart, and HSPICE.

circuit # cir. # cir. |DDD| # DDD GPU CPU HSPICE
name nodes devices prod. terms time (s) time (s) time (s)

bigtst 32 112 642 2.68× 107 19.7 3143 38.4
ccstest 9 35 109 260 0.80 108 2.5
rlctest 9 39 119 572 1.05 145 2.6
vcstst 12 46 121 536 0.73 104 3.8

ladder21 22 64 64 28657 2.10 365 5.1
ladder100 101 301 301 9.27× 1020 30.6 3965 42.5
rctree1 40 119 211 1.15× 108 5.55 928 11.3
rctree2 53 158 302 4.89× 1010 17.42 2910 46.1
µA741 23 89 6205 363914 59.1 6243 73.6
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In the 4th column, |DDD| stands for number of DDD nodes in the generated DDD graph,

which is equal to number of non-zero elements in the MNA matrix. The column “# DDD

prod. terms” lists number of product terms in the determinant. The last three columns

summarize the run-time of GPU parallel algorithm, serial algorithm and the HSPICE. The

number of Monte Carlo runs for all tests is set to 128. It is clear from this table that

the GPU-accelerated version outperforms its CPU counterpart, and also achieves 2–3 times

speedup over the commercial HSPICE on a variety of test circuits.

2.6 Summary

A new parallel statistical analysis method for large analog circuits using determi-

nant decision diagram (DDD) based graph technique is proposed. To make it amenable

for massively threaded based parallel computing GPU platforms, we designed novel data

structures to represent the DDD graphs in the GPUs to enable fast memory access of mas-

sive parallel threads for computing the numerical values of DDD graphs. The new method

is inspired by inherent data parallelism and simple data independence in the DDD-based

numerical evaluation process. Experimental results show that the new evaluation algorithm

can achieve about one to two order of magnitudes speedup over the serial CPU based eval-

uations and 2–3× speedup over numerical SPICE-based simulation method on some large

analog circuits.
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Chapter 3

Performance bound analysis of

analog circuits in frequency and

time domain considering process

variations

3.1 Introduction

Analog circuit designers usually perform a Monte Carlo (MC) analysis to analyze

the stochastic mismatch and predict the variational responses of their designs under faults.

As MC analysis requires a large number of repeated circuit simulations, its computational

cost is very expensive. Although some fast MC methods have been applied for statistical and

yield analysis recently [25,26], we remark that MC and its variants still remain the popular
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approaches for statistical analysis and optimization for analog/mixed-signal methods at

current stage. But more efficient statistical analysis techniques, especially non-Monte Carlo

methods, are still highly desirable. The work described in this chapter takes some initiative

efforts toward this direction. We do not aim to solve all the existing problems. Instead, we

try to look at the basic problem for statistical analysis — finding the performance bounds

of linear or linearized analog circuits for given variation parameters — which will lay the

foundation for future bound performance analysis for general nonlinear analog/mixed-signal

circuits.

Bound analysis or worse case analysis of analog circuits under parameter varia-

tions has been studied in the past for fault-driven testing and tolerance analysis of analog

circuits [27–29]. Among them, sensitivity analysis [30], sampling method [31], and inter-

val arithmetic based approaches [27–29, 32] have their advantages in well suited scenarios.

However, sensitivity based methods can’t give the worse case in general, the sampling based

method is limited to a few variables, and interval arithmetic methods have the notoriety

of overly pessimism. Recently, worst-case analysis of linearized analog circuits in frequency

domain has been proposed [32], where Kharitonov’s functions [33] were applied to obtain

the performance bounds in frequency domain, but no systematic method was proposed

to obtain variational transfer functions. Recently, authors in [34] applied an optimization

based method to compute the bounds. But still, no systematic method was proposed to

obtain variational performance objective functions from the circuit netlist.

This work proposes a new performance bound analysis of analog circuits con-

sidering the process variations. The new method employs several techniques to compute
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the response bounds of analog circuits in both frequency domain and time domain. The

overall algorithm consists of several steps. First, the new method models the variations

of component values as intervals measured from tested chips and manufacture processes.

Then, determinant decision diagram (DDD) based symbolic analysis is applied to derive

the exact symbolic transfer functions from linearized analog circuits. After this, we for-

mulate the bound problem into nonlinear constrained optimization problem, where the

objective functions are the magnitude or phase of the transfer function, subject to the

linear constraints, which are the ranges of process variation parameters. The nonlinear

constrained optimization problems are then solved by the active-set algorithm, which is a

general nonlinear optimization method. The optimization is solved on each frequency point

of interest. The maximum and minimum value returned by the optimization will compose

the lower and upper bounds of the frequency domain response. The important feature of

the proposed method is that the bounds computed in this way are very accurate without

the over-conservativeness issues, which are suffered by some existing approaches such as

internal or affine interval based methods. To compute the time domain bound, we pro-

pose generalized time domain bound analysis technique, or TIDBA, in which time domain

bounds for general signal inputs can be computed based on the given frequency domain re-

sponses. This represents a major improvement over the existing method [35]. Experimental

results from several analog benchmark circuits show that the proposed method gives the

correct bounds verified by the Monte Carlo analysis while it delivers one order of magnitude

speedup over the Monte Carlo method in both frequency and time domain bound analysis.

As an application of the bound analysis, we also show analog circuit yield analysis results.
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The rest of this chapter is organized as follows: Section 3.2 gives a review on

determinant decision diagram based symbolic generation of transfer functions. We present

our proposed frequency domain performance bound analysis method using nonlinear con-

strained optimization in Section 3.3. Then Section 3.4 introduces the proposed time domain

bound analysis technique. Section 3.5 shows the experimental results. Finally, Section 3.6

gives the summary.

3.2 Variational transfer functions due to process variations

This section shows the concept of variational transfer functions based on the sym-

bolic expressions generated by DDD, which is reviewed in Section 2.2 in Chapter 2.

In order to compute the symbolic coefficients of the transfer function in different

powers of s, the original DDD can be expanded to the s-expanded DDD [20]. Specifically,

to obtain the transfer function H(s), we can build the s-expanded DDD [20] as follows:

H(s, p1, . . . , pm) =

∑m
i=0 ai(p1, . . . , pm)si

∑n
j=0 bj(p1, . . . , pm)sj

(3.1)

where coefficients ai(p1, . . . , pm) and bj(p1, . . . , pm) are presented by each root in s-expanded

DDD graphs and p1, . . . , pm are m circuit variables. Notice that H(s, p1, . . . , pm) is a non-

linear function of pi, i = 1, . . . , m.

Here, we assume that each circuit parameter pi is a random variable with a range.

Let s = jω, instead of getting a nominal transfer function H(jω) = H0(ω)ejθ(ω), we will
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obtain a variational transfer function with bounded magnitude and phase regions, i.e.,

H0
l (ω) ≤ H0(ω) ≤ H0

u(ω), (3.2)

θl(ω) ≤ θ(ω) ≤ θu(ω). (3.3)

where H0
l (ω) and H0

u(ω) are the lower and upper bounds of the magnitude, and θl(ω) and

θu(ω) are the lower and upper bounds of phase.

3.3 Computation of frequency domain bounds

In this section, we first describe the performance bounds in the frequency domain

for a circuit under process variation, and then we propose the optimization based method

to compute the bounds, which is very general and accurate.

The evaluation of the transfer function gives a complex valued result, H(jω) =

H0(ω)ejθ(ω), where the magnitude H0(ω) = |H(jω)| and the phase angle θ(ω) = ∠H(jω)

are real values. The goal of our frequency response bound analysis is to derive the bounds

of magnitude and phase for H(jω), shown in the inequalities (3.2) and (3.3). Hence, in the

presence of process variation, the signal is also perturbed from its nominal behavior, and is

usually bounded between its minimum and maximum limits.

We start with a specific example to look at this problem. Fig. 3.1 shows the circuit

diagram of an RLC ladder circuit, where the three components are all in series with the

voltage source. In frequency domain, capacitors and inductors are analyzed as complex

impedances, and assuming the voltage on the capacitor is our observation, then the transfer
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Figure 3.1: An RLC ladder circuit.

function of this circuit is

H(jω, R, C, L) =
vout(jω)

vin(jω)
=

1
jωC

R + jωL + 1
jωC

. (3.4)

We assume in this example only capacitor and inductor are under process variation. For

their nominal parameters C = 1 µF and L = 1 µH, the magnitude and phase of its Bode

plot are drawn in as solid curves. Assume that the variation imposed on the resistor

and the capacitor is 20%, i.e., C ∈ [0.8, 1.2] µF and L ∈ [0.8, 1.2] µH. Then the resulted

frequency response performance bounds are deviated from the nominal counterparts, and

are plotted as dash curves in Fig. 3.2. In the same figure, we show three snapshots of the

transfer function at different frequency points. In each snapshot, both the value variations

of capacitor and inductor affect the magnitude H0(ω).

The second example is the simplified CMOS device model as shown in the left

part of Fig. 3.3, where the singular network elements like nullator and norator are used

to model the ideal voltage controlled current sources. Suppose we apply a Norton current

source, i.e, an ideal current source is with a parallel resistor gcur, onto the gate node G of

the MOS model, and observe the circuit output, shown in the right part of Fig. 3.3. The

exact symbolic transfer function with current source as input and observed voltage on drain
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Figure 3.2: Frequency response of the RLC circuit. Solid curve is the magnitude response
with nominal parameters, while the two dashed curves are lower and upper bounds due to
process variation. The three surfaces at top, with L and C as x-axis and y-axis accord-
ingly, and magnitude as z-axis, illustrate the variations of magnitude at three sampling
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node D as output is

H(jω) =
vD(jω)

is(jω)
=

gm − jωCgd

(jω)2CgsCgd + jω(Cgsgds + Cgd(gds + gm + gcur)) + gdsgcur
. (3.5)

Once we know the exact transfer function and variations of the parameters such as gm,

gds, Cgd, Cgs, one can find the bounds of H(s) easily as in the previous example. The

transfer function and its variation bounds are plotted in Fig. 3.4. In this example, we have

two variation parameters gds and gm. The variation spaces for the two variables at three

different frequencies are also shown on the top of the same figure, which show the searching

spaces at those frequency points for the two variables.

As we can see, to obtain the performance bounds of the analog circuit perfor-

mances, the first step is to obtain the exact symbolic transfer functions like Eq. (3.4) in

terms of all the variational circuit parameters. This will be done by the DDD-based exact

symbolic analysis method as mentioned in Section 3.2. We remark that one can also use

circuit simulator like SPICE to evaluate the performances for a given set of parameter val-

ues and frequency points. But the DDD method is relevant here because it can give closed

form expressions for a given circuit performances, which can lead to much faster evaluations

compared to numerical methods [19].

Secondly, once we obtain the exact symbolic transfer functions, we need to find a

systematic way to obtain the performance bounds given the bounds of variation parameters.

In this work, we formulate the bound computing problem into a nonlinear constrained

optimization problem. To obtain the two performance bounds for magnitude or phase at

one frequency point, two evaluation processes, or optimization runs, of the transfer function

are needed: one for H0(ω), and the other for θ(ω). The range of frequency sweep and number
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of frequency points are determined freely by the designer. We use the lower bound of the

magnitude response |H(jω)| at frequency ω for an example. The magnitude of the transfer

function, which can be evaluated from the available symbolic transfer function, is used as

the nonlinear objective function to be minimized:

minimize |(H(jω,x)|

subject to xlower ≤ x ≤ xupper,

(3.6)

where x = [p1, . . . , pm] represents the circuit parameter variable vector, which is subjected to

the optimization constraints [xlower,xupper]. In circuit design, these constraints are supplied

by foundries and cell library vendors. Hence, after (3.6) is solved by an optimization engine,

the lower bound of the magnitude response at ω, i.e., |Hl(jω)|, is returned and a parameter

set at which the minimum is attained will also be saved as a by-product. The iterative

search procedure in the constrained minimization is illustrated in Fig. 3.5.

The nonlinear optimization problem with simple upper and lower bounds given

in (3.6) can be efficiently solved by several methods such as active-set, interior point, and

trust region algorithms [36–38]. All those methods are iterative approaches starting with

an initial feasible solution. In this work, we use the active-set method [38], as it turns to

be the most robust nonlinear optimization method for our application. Active-set methods

are two-phase iterative methods that provide an estimate of the active set (active set is the

set of constraints that are satisfied with equality) at the solution. In the first phase, the

objective is ignored while a feasible point is found for the constraints. In the second phase,

the objective is minimized while feasibility is maintained. In the second phase, starting from

a feasible initial point x0, the method computes a sequence of feasible iterates {xk} such

that xk+1 = xk + αkpk and H(xk+1) ≤ H(xk) via methods like quadratic programming,
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where pk is a nonzero search direction and αk is a non-negative step length.

We remark that the active-set method is still a local optimization method, which

finds the local optimal solutions. It will be desirable to find the global optimal solution,

which can give true bounds of performance. But this goal may come with more or much

higher computing costs by performing many tries. The effort boils down to a trade-off be-

tween accuracy and costs in this problem. In our approach, we still perform one optimiza-

tion. Our experimental results show that by using reasonable initial guesses as mentioned

before, the proposed method gives very close bounds compared with Monte Carlo based

methods for the examples used.

Algorithm 3 Calculation of frequency response bounds via symbolic analysis and con-

strained optimization.

1: Read circuit netlist.

2: Set bounds on process variation affected parameters.

3: Generate symbolic expression of transfer functions.

4: for each ωi do

5: Run nonlinear constrained optimization (3.6) which uses transfer function as objective

to find magnitude and phase bounds on ωi.

6: end for

7: Save bound information for future statistical and yield analysis.

To further speedup the optimization, the initial point selection can be further

improved. Since the responses at two neighboring frequency points are usually close to each

other, the starting point x for frequency point ωi+1 can be set using the solution at the

previous frequency point ωi. Therefore, the initial guess points do not always have to be
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Point 1, i.e., the nominal value, in Fig. 3.5, and the previous frequency’s optimal point is

heuristically the best shortcut of initial guess at current frequency. This strategy tends to

reduce the time required by the optimization to search its minimal or maximal point in the

whole variable space, and thus speedup the calculation time of the bound analysis. Fig. 3.6

summarizes the flow of the performance bound calculation.

3.4 Time domain bound analysis

In the previous section, we have shown our frequency performance bound method

using symbolic analysis and constrained optimization. Based on the calculated frequency

performance bounds, we next develop our time domain bound analysis, or TIDBA, which

converts the frequency domain bounds to time-domain bounds for general input signals.

Our approach was inspired by [35], which determines time-domain performance bounds

of an uncertain system for impulse or step input signals. However, this method does not

give transient performance bounds in response to general input signals, which are required

by our analog circuit analysis. In the sequel, we first briefly review the work in [35] before

introducing our new approach. Note that the bounds of magnitude and phase of the transfer

function required by TIDBA can be generated by any existing frequency bound analysis

methods and not limited to the one we proposed in the previous section.

We first present the whole TIDBA algorithm flow, which is shown in Algorithm 4.

Then we explain each step in detail in the following sections. As can be seen from the flow,

the time domain response analysis requires the results such as transfer function bounds

from the procedures we studied in previous sections. After the first two steps, the bounds
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of magnitude and phase (angle) shown in the inequalities (3.2) and (3.3) are available. Then

TIDBA converts frequency-domain performance bounds into the time-domain performance

bounds by impulse signal based time-domain bound analysis and FFT/IFFT, which will be

the focus of this section.

Algorithm 4 The algorithm flow of the new time-domain performance bound analysis

method — TIDBA.
Input: circuit netlist with variable parameters; stimulus signal of the circuit.

Output: lower and upper bounds of the output signal in time-domain.

1: Compute the variational transfer function by graph-based symbolic method and affine

arithmetic method.

2: Compute the performance bounds of the variational transfer function by constrained-

nonlinear optimization method.

3: Compute the time-domain performance bounds by a new general-signal transient bound

analysis method.

3.4.1 Review of transient bound analysis driven by impulse signals

For the completeness of our presentation, we first present the transient bound

analysis with impulse signals. For a purely real signal x(t) in time domain, its Fourier

transform X(jω) = X0(ω) · ejφ(ω) in frequency domain holds the property of conjugate

symmetry, i.e.,

X(−jω) = X(jω)∗. (3.7)

It can be equivalently expressed by the even property of magnitude and the odd property of

phase: X(−ω) = X0(ω), and φ(−ω) = −φ(ω). It is not difficult to show that the transfer
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function of a physically realizable system also holds the conjugate symmetry property [39].

Since the spectrum of an impulse signal δ(t) is X(jω) = 1 everywhere, the spec-

trum of the system’s output signal is Y (jω) = X(jω)H(jω) = H(jω), and hence the impulse

response of the system in time domain is simply the inverse Fourier transform of H(jω),

y(t) =
1

2π

∫ ∞

−∞

H(jω)ejωt dω

=
1

2π

∫ ∞

−∞

H0(ω)ej(ωt+θ(ω)) dω, t > 0. (3.8)

Employing the even and odd properties of H(jω), (3.8) can be equivalently integrated from

ω = 0 to ∞,

y(t) =
1

π

∫ ∞

0
H0(ω)Re(ej(ωt+θ(ω))) dω

=
1

π

∫ ∞

0
H0(ω) cos(ωt + θ(ω)) dω, t > 0. (3.9)

A modification of this integral to discrete sum on sampled frequency points allows one to

calculate the approximate result of y(t) at each time point as

y(t) =
1

π

N−1∑

n=0

H0(ωn) cos(ωnt + θ(ωn))
︸ ︷︷ ︸

I(ωn)

∆ωn, t > 0. (3.10)

In the presence of process variation, the transfer function will be given in the bounded

form in (3.2) and (3.3). Therefore, to compute the lower and upper transient bounds yl(t)

and yu(t) for each time point t, the integrand body I(ωn) in (3.10) is calculated using the

following rules.

First, find the minimum and maximum values of cos(ωnt+θ(ωn)), where the phase

angle θ(ωn) can vary in the interval [θl(ωn), θu(ωn)]. Let Cmin(ωn) and Cmax(ωn) denote the
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two extreme values of the cosine function. Then, for yl(t), all I(ωn) shall be calculated as

I(ωn) =







H0
u(ωn)Cmin(ωn), Cmin(ωn) ≤ 0

H0
l (ωn)Cmin(ωn), Cmin(ωn) > 0,

(3.11)

and, for yu(t), the situation is simply reversed,

I(ωn) =







H0
l (ωn)Cmax(ωn), Cmax(ωn) ≤ 0

H0
u(ωn)Cmax(ωn), Cmax(ωn) > 0.

(3.12)

3.4.2 Proposed transient bound analysis with general input signal

For a general time domain signal x(t) in circuit analysis application, its frequency-

domain transform X(jω) can be calculated by fast Fourier transform, FFT. This requires

sampling points of the signal on a set of discretized time points. For example, with a

uniform sampling period Ts = 1/Fs, x(t) is sampled and stored as x(0), x(Ts), x(2Ts),. . . ,

x(NTs). For the sake of simplicity, we will omit the term Ts and denote the time point

indices by subscripts in the following descriptions. Thus the notation xn will stand for the

sampled value of signal x(t) at time t = nTs.

To achieve accurate results from FFT and IFFT, Nyquist sampling theorem re-

quires the sampling frequency Fs = 1/Ts to be at least twice of the bandwidth of signal [40].

Meanwhile, the total sampling duration T0 = TsN determines the resolution of the FFT

spectrum, i.e., the sampling interval of frequency domain is F0 = 1/T0. The longer T0 is,

the higher resolution we can get, and thus the more sampling points are needed.
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Given N sampling points, the FFT transform pair is

Xk =
N−1∑

n=0

xne−j 2π
N

nk, k = 0, 1, . . . , N − 1, and (3.13)

xn =
1

N

N−1∑

k=0

Xke
j 2π

N
nk, n = 0, 1, . . . , N − 1. (3.14)

In circuit analysis applications, because the input data xn are purely real, the

symmetry property mentioned previously still holds, though in a different form, XN−k =

X∗
k . This means that the right half in Xk is a conjugate swap of its left half without X0,

which is the zero-frequency component of the spectrum. The points in the left half, i.e., Xk

for k = 0, . . . , N/2, are the spectral points of frequencies f = kF0. Fig. 3.7 illustrates the

FFT series and its conjugate symmetry.

Based on this property of a real signal’s spectrum, the inverse discrete Fourier

transform can be calculated with the spectrum’s left half. Consequently, the equivalent

form of (3.14) becomes

xn =
1

N



X0 + 2

N/2
∑

k=1

Re(Xke
j 2π

N
nk)



 , n = 0, 1, . . . , N − 1. (3.15)

A remark is made that throughout this work the expression using only left half

is mainly for the convenience of mathematical analysis. In practice, full spectrum is con-

structed before the final converting to time domain, and thus IFFT is ready to be applied

for its efficiency.

Now it is the time to derive the time response bounds from the FFT series of signal

x(t) given the frequency bounds of the system H(jω). First we consider the system without

variation. After the FFT of xn as represented in (3.13), its spectrum Xk = |Xk|e
jφk is

multiplied with Hk = H(jωk), ωk = 2πkF0, to obtain the spectrum of output signal. Then,
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Figure 3.7: Conjugate symmetry between left half and right half of the FFT series Xk,
k = 0, . . . , N − 1.

we make a domain translation from frequency domain to time domain, which is similar

to (3.15). In this way, the output signal yn is obtained for the nominal designed system.

yn =
1

N



Y0 + 2

N/2
∑

k=1

Re
[

Yke
j 2π

N
nk

]





=
1

N



X0H
0(0) + 2

N/2
∑

k=1

Re
[

H0(ωk)e
jθ(ωk)Xke

j 2π
N

nk
]





=
1

N



X0H
0(0) + 2

N/2
∑

k=1

|Xk|H
0(ωk)Re

[

ej(φk+θ(ωk)+ 2π
N

nk)
]



 (3.16)

Now we consider the process variations. In this case, the minimum and maximum

values, similar to (3.11) and (3.12) for the impulse signals, have to be derived from Eq. (3.16)

in the bounded region of the system transfer function at every frequency point. Specifically,

the selection and combinations of H0(ω) and θ(ω) will depend on the sign of the real part

of the output spectrum, i.e., Re{ej(φk+θ(ωk)+ 2π
N

nk)}. Detailed analysis shows that there are

many combinations of extreme values of H0(ω) and θ(ω) depending on the locations of

φk + θ(ωk) + 2π
N nk in the complex plane, which are summarized in Table 3.1. Let’s walk

through one example illustrated in Fig. 3.8, where all possible values of θ(ωk) make the
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phase φk + θ(ωk) + 2π
N nk fall in the first quadrant, and thus their real parts are all positive.

Therefore, the selection of H0
l (ωk) and θu(ωk) will lead to the minimum of output value,

while H0
u(ωk) and θl(ωk) lead to the maximum one. In Fig. 3.8, these two combinations are

marked by black dots.

We remark that the range of allowed phase values [θl(ωk), θu(ωk)] affects the rules

for bound determination, as shown in Table 3.1. In this work, the maximum phase range is

restricted to be less than 90 degrees, i.e., θu(ωk)−θl(ωk) < π/2 rads. There are two reasons

for this restriction: 1) The restriction of 90 degrees accommodates most circuit transfer

function’s variation very well. 2) If much larger phase variation is detected at the frequency

domain, the variation is very likely to cause faults in the circuit. We stress that there is

no difficulty to generate new bound determination rules to handle phase range larger than

90 degrees.

With this assumption, the rules for time domain bound determination are sum-

marized in Table 3.1. For brevity, let Θl(ωk) = φk + θl(ωk) + 2π
N nk, and Θu(ωk) =

φk + θu(ωk) + 2π
N nk. If the range of Θ is not covered by the enumerated regions, a phase

shift of 2π can be applied to relocate its value within the listed ranges. In addition, the

“either Θl(ωk) or Θu(ωk)” in the first row and the fifth row in the table means one of them

will be selected: in the first row, the lower bound will happen at one of them which makes

cos(Θ) smaller; and in the fifth row, the upper bound will take place at the phase angle

making cos(Θ) larger.

Fig. 3.9 shows the implementation flow of the proposed general-signal transient

bound determination method. It starts from a time domain sampling of input signal x(t) and
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Figure 3.8: The magnification and rotation of input spectrum by the transfer function
bounds.

Table 3.1: Rules for time domain bound determination.

range of phase quad- sign of magnitude and phase combinations for
Θl(ωk) Θu(ωk) rants Re[ejΘ] lower bound upper bound

(−π/2, 0) (0, π/2) IV, I + H0
l (ωk)

either Θl(ωk) H0
u(ωk) Θ(ωk) = 0

or Θu(ωk)
(0, π/2) (0, π/2) I + H0

l (ωk) Θu(ωk) H0
u(ωk) Θl(ωk)

(0, π/2) (π/2, π) I, II +, − H0
u(ωk) Θu(ωk) H0

u(ωk) Θl(ωk)
(π/2, π) (π/2, π) II − H0

u(ωk) Θu(ωk) H0
l (ωk) Θl(ωk)

(π/2, π) (π, 3π/2) II, III − H0
u(ωk) Θ(ωk) = π H0

l (ωk)
either Θl(ωk)

or Θu(ωk)
(π, 3π/2) (π, 3π/2) III − H0

u(ωk) Θl(ωk) H0
l (ωk) Θu(ωk)

(π, 3π/2) (3π/2, 2π) III, IV +, − H0
u(ωk) Θl(ωk) H0

u(ωk) Θu(ωk)
(3π/2, 2π)(3π/2, 2π) IV + H0

l (ωk) Θl(ωk) H0
u(ωk) Θu(ωk)
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given system transfer function bounds in frequency domain. The FFT operation transforms

the input signal to its spectrum and then the proposed rules in Table 3.1 are applied

to determine the magnitude and phase combinations for lower and upper time domain

bounds at every frequency point in the left half of the spectrum. This process is marked

by the dashed line box, labeled “1” in Fig. 3.9. Next, frequency domain results, i.e.,

Y0, Y1, . . . , YN/2, either lower ones or upper ones, are used to construct a full N -length

series based on conjugate symmetry property. Last, IFFT is used to calculate the final

result of time domain bounds. This procedure is also marked by dashed line box, labeled

“2” in the figure.

3.5 Numerical results

In this section, we show experimental results of the proposed method on some

benchmark analog circuit netlists. Both frequency domain bounds and time domain bounds

are calculated by our new method. As an application, analog yield analysis is also performed

for two circuits based on the bound analysis results. This section is divided into two

subsections: the first one shows the frequency domain response bound results, while the

second one demonstrates those results of time domain response bounds.

For running time comparisons, we also measure the time cost by the commercial

HSPICE, which runs all the Monte Carlo simulations. All running times are obtained from

a Linux server with a 2.4 GHz Intel Xeon Quad-Core CPU, and 36 GBytes memory.
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Figure 3.9: The proposed general-signal transient bound determination method
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3.5.1 Frequency domain response bounds

The symbolic expressions of transfer functions are generated by the DDD symbolic

analysis tool [19], and the optimization based bound calculation are done in MATLAB.

The nonlinear constrained optimizations are solved by the fmincon function in MATLAB’s

Optimization Toolbox [41]. We explicitly select the active-set algorithm for fmincon for the

optimizations (we also tried other methods and found out that the active-set method is the

most robust and reliable method).

We first investigate the accuracy and efficiency of our method with typical circuit

examples. Fig. 3.10 shows the schematic of a CMOS operational amplifier circuit, which

contains 9 transistors. Its differential inputs are provided at the gate terminals of the

differential pair (M1 and M2), while the output is observed at the output node of the source

follower stage. DC analysis is first performed by HSPICE to obtain the operating point, and

then small-signal models of nonlinear devices, such as MOS transistors, are used for DDD

symbolic analysis and transfer function evaluation. For example, the original NMOS device

is replaced by the equivalent circuit model consisting of voltage controlled current source

(VCCS), gate-source capacitance (CGS), gate-drain capacitance (CGD), terminal resistance,

and so on, as shown in Fig. 3.3. In this MOS small signal model, we use singular network

elements like nullator and norator. The combination of these elements in the MOS model

behaves as an ideal VCCS. However, the properties of the nullator (who does not allow

current flowing through it and provides zero voltage difference between its two terminals,

i.e., the voltage values on nodes G and N are same) and the norator (who allows any

voltage across its two terminals and any current flowing through it) allow us to formulate
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Figure 3.10: The circuit schematic of the CMOS operational amplifier.

more compact equations than MNA [42].

Table 3.2 enumerates the experiment parameters and running time comparisons.

In the op-amp netlist, six variational parameters are introduced, including resistors, ca-

pacitors, and controlled sources inside the transistor model as local variations, and other

four parameters are modeled as global variations. The active filter example is modeled in a

similar way.

After the symbolic expressions of the op-amp’s transfer function are obtained, the

nominal frequency response can be evaluated straightforwardly using the specified parame-

ter values. The lower and upper bounds of the magnitude and phase are then obtained by

the aforementioned constrained optimization. Fig. 3.11 plots the nominal magnitude curve

along with its lower and upper bounds. On the same figure, we also plot the Monte Carlo

Table 3.2: Process variation setup in the benchmarks.

Circuit # Var. Variation
name param local global

CMOS op-amp 10 5% 10%

Active filter 7 5% 10%
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samples of the same circuits. It is obvious that our bounds include all possible variations,

and do not show much over-conservativeness. The result demonstrates the effectiveness of

the optimization-based method to find accurate bounds.

As an application of the proposed method, we apply the proposed method for

analog yield estimation. We illustrate this using the same op-amp. The yield estimation is

calculated using preset specification. One important specification of op-amp is open-loop

gain at a relatively low frequency. For the CMOS op-amp in Fig. 3.10, we set a requirement

that the accepted circuits should have its gain larger than 45 dB at frequency f = 1 kHz.

HSPICE Monte Carlo analysis gives the yield as 98.8%, and the histogram of all samples

is drawn in Fig. 3.12. Meanwhile, the predicted yield using the proposed method is 98.4%,

which is fairly close to that of the MC analysis. The detailed statistics of the comparison

are shown in Table 3.3. With the accurate calculation of performance bounds and the yield,

the presented method only takes 3.8 seconds. This is a 22× speedup over the Monte Carlo

method.

The proposed algorithm is also applied to a CMOS active filter [43] (circuit diagram

not shown here). Fig. 3.13 shows the magnitude bounds together with HSPICE Monte Carlo

results. The statistical data is listed in Table 3.4. A speedup of 13× is observed on this

example.

3.5.2 Time domain response bounds

Using the frequency domain bounds we calculated in the previous experiments, the

time domain bounds of the CMOS op-amp are obtained by the TIDBA method. Fig. 3.14

shows a spectrum of Monte Carlo pulse responses at the output node of the op-amp, and
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Figure 3.11: Monte Carlo simulations and magnitude bounds of op-amp circuit. The thick
dashed lines are lower and upper bounds, and the thin solid lines are Monte Carlo results.
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Figure 3.12: The histogram of gain distribution of the CMOS op-amp at frequency f =
1 kHz. (5000 times Monte Carlo simulation.)

Table 3.3: Statistical information of the CMOS op-amp circuit. (Comparison with 5000
times Monte Carlo.)

CMOS op-amp

Runtime (seconds) MC 85.2
proposed 3.8

Mean value (µ) MC 45.8
Unit: dB proposed 45.8

Std. value (σ) MC 0.214
Unit: dB proposed 0.214

Yield rate MC 98.8%
proposed 98.4%

Table 3.4: Statistical information of the CMOS filter. (Comparison with 5000 times Monte
Carlo.)

CMOS Filter

Runtime (seconds) MC 100.4
proposed 8.2

Mean value (µ) MC 26.83
Unit: dB proposed 26.81

Std. value (σ) MC 0.389
Unit: dB proposed 0.384

Yield rate MC 82.7%
proposed 84.2%
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Figure 3.13: Monte Carlo simulations and magnitude bounds of active filter. The thick
dashed lines are lower and upper bounds, and the thin solid lines are Monte Carlo results.

64



the bounds generated from TIDBA are overlaid onto the same figure as thicker curves.

We simulated the active filter with a pulse waveform as input, and the resulting

output waveforms are plotted as dot-dashed curves in Fig. 3.15. Due to the process variation

of the filter, it can be observed that the output waveforms are deviated from its nominal

benchmark. Detailed plots of the up ramp and down ramp are shown in Fig. 3.15(b) and

Fig. 3.15(c). The time domain performance bounds, computed by TIDBA, are plotted as

solid curves. An input signal composed of several sinusoidal waves is also used to test this

filter. The circuit’s possible minimum and maximum values in time domain and the TIDBA

bounds are plotted in Fig. 3.16.

We notice that the bounds given by TIDBA may not be able to converge to the

steady state of the response, for example, after 0.06 seconds in Fig. 3.15(a), which should

be zero. This is due to the loss of dependence between magnitude and phase when we apply

the frequency response bounds (3.2) and (3.3). However, for many steady states, which

are known to be zero, even with variations in parameters, we can ignore the bounds given

by the proposed method. Another way to mitigate this problem is to directly compute

time-domain bounds using the optimization based approaches, which will be investigated

in our future works.

Table 3.5 summarizes the experiment parameters and running time comparisons.

In the op-amp netlist, six variation parameters are introduced, including resistors, capaci-

tors, and controlled sources inside the transistor model as local variations, and four other

parameters are modeled as global variations. The active filter example is modeled in a

similar way. We make these variation parameters Gaussian random and run a 10,000 times
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Figure 3.14: Time domain response of CMOS op-amp with pulse input. The two thicker
curves are the lower and upper bounds from TIDBA, while the thinner lines are output
waveforms from Monte Carlo simulation affected by variations.

Monte Carlo simulations in HSPICE. A total number of 6,400 time domain samplings of

input stimulus are fed into FFT. The running time measurements of the Monte Carlo and

our method are also listed in the table. The maximum speedup of TIDBA over Monte Carlo

simulation can be 38×.

3.6 Summary

We have proposed a new performance bound analysis algorithm of analog circuits

considering process variations in both time and frequency domains. The new method applies

Table 3.5: Performance comparison of TIDBA against the Monte Carlo method

Circuit CPU time speed
name MC (10, 000) TIDBA up

Op-amp 362.9 s 11.2 s 32×

Filter 459.7 s 12.1 s 38×
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Figure 3.15: Time domain response of the active filter with pulse wave input. The two solid
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possible output waveforms from Monte Carlo simulation affected by variations.
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a graph-based analysis technique to derive the symbolic transfer functions of linearized

analog circuits. Then the problem of finding frequency response bounds was formulated

into a nonlinear constrained optimization problem, where the cost functions are magnitude

and phase of the transfer function subject to the linear constraints, which are the upper

and lower bounds of process variation parameters. The bounds calculated in this way are

accurate and show no over-conservativeness suffered by the previous approaches. Based on

the frequency response bounds, we further proposed an algorithm to compute time domain

response bounds for any arbitrary input signals. Experimental results from several analog

benchmark circuits show that the proposed method gives the correct bounds verified by

Monte Carlo analysis while it delivers one order of magnitude speedup over Monte Carlo

method in both frequency and time domain bound analysis. We also showed analog circuit

yield analysis as an application of the bound analysis technique.

Currently the proposed method can only work on linear or linearized analog cir-

cuits. We are working on the performance bound analysis for general nonlinear circuits. For

many circuits where time domain analysis are mainly performed, directly time-domain based

bound analysis using optimization method will be more desirable and will be investigated

in the future.
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Chapter 4

MOR and GPU based power grid

simulation

This chapter presents a new transient analysis method for general linear dynamic

networks, such as on-chip power grid networks, using heterogeneous computing system with

both GPU and multi-core CPU, which is the popular parallel computing solution nowadays.

The new algorithm, called ETBR-GPU, first reduces the circuit complexity in frequency

domain before the transient simulation is run on the reduced models. Such reduction based

simulation technique is very amenable for parallelization on the hybrid GPU and multi-core

CPU platforms, where coarse-grained task-level parallelism and fine-grained lightweight

thread-level parallelism can be both exploited. ETBR-GPU first performs sampling-like

reduction on the original circuit system where the frequency domain responses at different

frequency samples can be calculated in parallel on multi-core CPU. After the reduction,

the reduced circuit matrices, which are dense but well suitable for GPU’s data parallel
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computing, are simulated on GPU. The proposed method is very general, since it can

analyze any linear networks with complicated structures and macro-models, and it does not

assume any structure properties in order to build problem-specific preconditioners, as many

iterative solvers do. Experimental results are given to show the efficiency of our tool.

4.1 Introduction

The verification of today’s large linear global networks such as on-chip large power

grid networks is very challenging for chip designers. Fast verification of voltage drops and

other noises on power delivery networks is critical for final design closure. As the VLSI

technology proceeds into the sub-65 nm scale, one challenging job of power grid network

design is to predict and ensure a reliable on-chip power delivery. Since the power grid

network usually comes with a huge size, its simulation and verification take a lot of time, and

sometimes even make the analysis completely failed. This situation is further deteriorated

as technology continues to scale down for several reasons. Firstly, the continued scale-down

results in decreased interconnect width and thus higher interconnect resistance in a power

supply network. Secondly, increased device density leads to increased supply current density

on a chip. And thirdly, a higher clock frequency gives rise to more significant inductance

effect. At the same time, supply voltage is lowered for power consideration, which results

in a decreased noise margin for signal transition, and makes transistor more vulnerable to

supply voltage degradation. Hence, efficient verification of power integrity becomes crucial

for final design closure [44].

Intensive studies have been carried out to seek for efficient analysis of large power
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grid networks in the past decade. Various algorithms have been proposed to improve scal-

ability in computing time and to reduce memory footprints [45–50]. But most of those

techniques are based on the homogeneous single-core architectures. Since the introduc-

tion of multi-core architectures, hardware designs are going through a renaissance. The

leap from single-core to multi-core or many-core technologies has permanently altered the

course of computing. Among them, GPU is one of the most powerful many-core computing

systems arousing interests and input from both research and industry community. Several

GPU-accelerated power grid analysis methods have been proposed recently [51–53]. A ge-

ometrical multi-grid algorithm based on hybrid GPU-CPU platforms was proposed in [51]

to solve irregular power grid structures. In the work of [52], a 2D Poisson solver, which

has closed form solutions computed by GPU-based FFT routine, was proposed for solving

2D structured power grids. But the algorithm may not be suitable for solving power grid

networks with irregular structures. The work in [53] proposed to apply GPU-accelerated

multi-grid method as the preconditioner for the Krylov subspace based iterative solver to

handle more general power grid structures. However, the proposed iterative method is still

very sensitive to the circuit structures as some assumptions about topologies are made (such

as degree of a node). For power grid networks with heavy inductive effects and with other

linear compact models, like high speed links and connectors for interface, the proposed

method may not work well.

In our tool ETBR-GPU, we propose a new transient analysis method for general

linear dynamic networks based on hybrid GPU and multi-core CPU platforms, which are

the popular parallel computing system. We use on-chip power grid networks as the driving
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problem to illustrate the effectiveness of the proposed method. ETBR-GPU, first reduces

the circuit complexity in frequency domain before the transient simulation of the reduced

circuits. Direct solvers, like sparse LU factorization, are used so that it can solve for any

linear networks without dependency on problem-specific preconditioners as required by most

of the iterative solvers. As a result, the parallelism and data independency in ETBR-GPU

are exploited in a different way.

We show that ETBR-GPU has coarse-grained task-level and fine-grained lightweight

thread-level parallelisms, each of them can be exploited by exploring the strengths of the

GPU and CPU architectures. ETBR-GPU first performs sampling-like reduction on the

original circuit matrices where the frequency domain responses at different frequency points

have been calculated in parallel on multi-core CPU at the task level. After the reduction,

the reduced circuit matrices, which are dense but well suitable for GPU platform computing,

are simulated on GPU platforms at fine-grained thread level. ETBR-GPU especially favors

transient simulation with long simulation periods as frequency-domain reduction related

costs is almost independent of simulation time steps. Experimental results show that the

new method can achieve about one or two orders of magnitude speedup when compared

to the general LU-based simulation method on some recently published IBM power grid

benchmark circuits [54].

This chapter is organized as follows. Section 4.2.1 and 4.2.2 describe the power

grid simulation and the extended truncated balanced reduction techniques to reduce the

original power grid system into a much smaller model. In Section 4.3, we introduce the

flow of the proposed ETBR-GPU simulation of power grid networks with implementation
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details. Experiment results are demonstrated in section 4.4. Section 4.5 summarizes the

work.

4.2 Background

4.2.1 The problem of power grid simulation

An on-chip power grid network can be modeled as RC or RLC networks with known

time-variant current sources, which can be obtained by gate-level logic simulations of the

circuits. A typical power grid model contains several million nodes, and up to hundreds

of thousands of input current sources. There are some nodes with known voltages in the

grid, and are modeled as nodes connected with DC voltage sources. For C4 power grids,

the known voltage nodes can be internal nodes inside the power grid. Fig. 4.1 shows an

RLC power grid model.

Given the current source vector u(t), the node voltages can be obtained by solving

the differential equation, which is formulated by modified nodal analysis (MNA),

Gx(t) + C
dx(t)

dt
= Bu(t), (4.1)

where G ∈ R
n×n is the conductance matrix, C ∈ R

n×n is the matrix resulting from charge

storage elements, B ∈ R
n×m is the input selector matrix, x(t) ∈ R

n is the vector of time-

varying node voltages and branch currents of inductors and voltage sources, and u(t) ∈ R
m

is the vector of independent power sources.

Suppose the backward Euler method is applied to the integration of this dynamical

system, the transient behavior of this power grid can be solved step by step from a given
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Figure 4.1: An RLC model of power grid network.

initial condition x(0) using

(G +
1

h
C)x(t + h) =

1

h
Cx(t) + Bu(t + h), (4.2)

where h is the time step length. If a fixed time step h is chosen, then the left-hand side

matrix, G + 1
hC, will remain the same along all time steps. Hence, its LU factors can be

factorized only once and reused for the triangular solves in the following time steps.

Though power grids are used as our examples for ETBR-GPU tool, we remark

that our tool is not limited to solve power grid problems, but can be applied to any linear

dynamic networks.

4.2.2 Review of reduction-based simulation methods

Model order reduction is usually used to reduce the circuit system complexity, so

that simulation can be carried out on the reduced system to boost efficiency. Existing ap-

proaches mainly consist of two categories: Krylov subspace based methods, like EKS/IKES

methods [46,49], and (fast) truncated balanced realization based method, like (ETBR) [50].
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We in this work use ETBR method because it is more amenable for parallel computing as

each frequency domain response can be computed independently, if compared to sequential

computing of the Krylov subspace moments in EKS.

Algorithm 5 Extended truncated balanced realization (ETBR) method

Input: MNA matrices of the linear system, G, C, B, input source u(t), and reduced order

(number of samples), q

Output: Reduced system matrices Ĝ, Ĉ, B̂

1: Convert all the input signals u(t) into u(s) using FFT.

2: Select q frequency points s1, s2, . . . , sq over the frequency range.

3: Compute zk = (skC + G)−1Bu(sk). // Parallel multithread

4: Form the matrix Z = [z1, z2, . . . , zq].

5: Perform SVD on Z, such that Z = VSUT.

6: Ĝ = VTGV, Ĉ = VTCV, and B̂ = VTB,

The ETBR method we employed in this work is summarized in Algorithm 5. After

the algorithm, the original system in Eq. (4.1) is reduced to

Ĝx̂(t) + Ĉ
d

dt
x̂(t) = B̂u(t), (4.3)

and this reduced system can be simulated in time domain more efficiently. To retrieve the

original waveforms, a left multiplication of the basis matrix V on the reduced circuit state

x̂(t) is required, i.e., x(t) ≃ Vx̂(t). Note that as congruence transformation is used for

the reduction process with orthogonal columns in the projection matrix (using Arnoldi-like

process), the reduced system is guaranteed to be stable. As far as simulation is concerned,

this is good enough. If all the observable ports are also the current source nodes, i.e.,
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y(t) = BTx(t), where y(t) is the voltage vector at all observable ports, then the reduced

system is passive.

We observe that for the ETBR algorithm, computing zk, shown in Line 3, can be

easily parallelized as each zk can solved independently. Solving zk using direct sparse solvers

however is challenging to parallelization in GPU as memory access of sparse matrices are

difficult to be optimized. As a result, zk will be computed on multi-core CPU platforms.

After the reduction, the reduced system matrices are dense, whose simulation is better

performed on GPU than CPU. NVIDIA has released good linear algebra libraries, i.e.,

CUBLAS [55], for dense matrices, such as LU triangular solve on GPU platforms.

4.3 The proposed ETBR-GPU method

In this section, we first provide the flow of our heterogeneous ETBR-GPU method,

which does MOR on multi-core CPU and calculates the transient simulation of reduced

system on GPU. Then we discuss the implementation of our GPU program.

4.3.1 The overall algorithm flow

As mentioned before, to cope with the large scale linear system model, ETBR is

first applied to produce the reduced system. Once the reduced system matrices are ready,

they are transferred to GPU global memory for transient simulation. Meanwhile, the input

stimulus information is also transferred to GPU memory, so the input source interpolation

and evaluation of u(t) can be run in parallel. This is important as there are a huge number

of input current sources and their numerical interpolation takes significant amount of time.
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Fortunately, u(t) can be computed independently at different time t, although the transient

time steps have to be calculated one by one in a sequential way. As we will show below, we

can compute all vectors of u(t) very efficiently by harvesting the massive data parallel power

of GPU. Also on GPU side, backward Euler equation’s left-hand side matrix is formed and

factorized in to LU factors, which are saved for repeated use in all time steps. The overall

flow of our new method is shown in Fig. 4.2, which has two main parts, the CPU part

(host) and GPU part (device) as clearly marked in the figure. The CPU part mainly reads

and parses the netlist, run ETBR of multi-core parallelism to generate the reduced system,

while the GPU part takes care of the input source evaluation and LU triangular solves of

transient integration equations, which are the most time-consuming parts.

4.3.2 Parallel input source interpolation on GPU

In transient simulation, current sources attached onto the power grid need to be

evaluated or interpolated repeatedly at all time steps. Typically, the time varying current

sources are modeled as general piecewise linear waveforms, and hence, for each time step,

the contribution of each source to the input vector u(t) has to be interpolated using the two

neighboring wave points of time t. Though linear interpolation is a simple operation with

low cost, the computing efforts for interpolation of all the sources, usually in the order of

the total number of nodes in the network, is a significant port of the total simulation time.

Since the elements of u(t), contributed from different sources and at different time

steps, are independently calculated, this task can be easily accelerated by parallel GPU

computing. In our proposed simulator, a parallel GPU kernel will launch a multiple of

thread blocks to evaluate the sources. Each thread block is responsible for interpolating
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Figure 4.2: The flow of GPU accelerated ETBR based power grid analysis.
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one specific source, and the threads inside the block calculate the source’s values at a group

of, say, 256, time steps. Fig. 4.3 illustrates the thread organization for parallel source

interpolation. Note that there can be many concurrent blocks working on the same source,

but at different time step groups.

Algorithm 6 GPU Parallel evaluation of input sources for transient power grid analysis

1: Configure grid and block dimensions of the GPU kernel according to number of sources

and number of time steps.

2: for all sources do // launch threads in grids

3: Specify the block index for corresponding input source.

4: Read piecewise linear (PWL) or pulse waveform parameters into shared memory.

5: for all time steps do // threads in each block calculate values for the same source

6: Calculate the time t handled by each thread.

7: Use t to judge the location in a PWL or pulse.

8: Linear interpolate PWL or pulse to get source value.

9: Save value element to u(t).

10: end for

11: end for

For GPU computing, the main challenge is to allow fast memory access by threads

or reduce memory traffic by reuse via shared memory (or texture memory) within blocks.

In this way, GPU cores can be busy all the time without waiting for memory access. In

GPU, fast global memory access by threads can be done by coalesced memory access, where

a half warp (or a warp) of threads (16 or 32 threads respectively) can read their data from

the global memory in one read access. Coalesced memory access requires the data to be
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Figure 4.3: ETBR-GPU flow and GPU-accelerated current source evaluation.

arranged continuously in memory and consecutive with respective to the involved thread

indices. As a result, for the parallel source evaluation, we need to align the values of one

source at all time steps in one row. Hence, once all Ncur sources and all M time steps are

evaluated, we obtain a matrix U of dimension Ncur-by-M . In this way, the i-th column

of U is exactly the input vector u(t) when t = i · h, and can be used in computing the

right-hand side of transient simulation.

This process of memory allocation and parallel interpolation of sources is demon-

strated in Fig. 4.3.

4.3.3 Solving transient steps on GPU

ETBR is based on model order reduction technique to reduce the circuit complex-

ity. As a result, the reduced system matrices are dense due to the nature of the projection
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based reduction. Solving dense matrices is very expensive for traditional single-core or even

multi-core CPU architecture. However, dense matrix solving is very amenable for GPU

computing as dense matrices based LU factorization and triangular factor solvers on GPU

platforms have been well studied and implemented in CUBLAS (for triangular matrices

solvers) [55] and in MAGMA library [56] due to more regular memory access patterns and

simple data dependency of dense or full matrices. For instance, for LU factorization using

right-looking method with look-ahead techniques, the row exchanging can be done very

efficient in the row-major format as coalescent memory access can be explored.

To calculate the reduced state variables x̂ at the transient time steps, the backward

Euler equation are solved by reusing the saved LU factors of Ĝ+ 1
hĈ. Since a fixed transient

step length h is used, the LU factors, or the lower and upper triangular matrices will not

change. Once they are ready in GPU global memory, there is no need to update them as the

transient steps move on. Each time step just call CUBLAS triangular solve functions, trsv,

to calculate the forward substitution and backward elimination, as shown in Algorithm 7.

Algorithm 7 GPU transient iteration with LU triangular solves

1: X̂← B̂U

2: for i = 1 to M do

3: x̂i ← (Ĉ/h)x̂i−1 + x̂i. // cuBLAS

4: Permutation. x̂i ← Px̂i // Customized GPU kernel function

5: x̂i ← L−1x̂i. // cuBLAS

6: x̂i ← U−1x̂i. // cuBLAS

7: end for
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4.4 Numerical results

The ETBR-GPU tool is implemented in C programming language. The GPU

part of the proposed new method is incorporated into the main program with CUDA C

programming interface.

The accuracy and efficiency of the program are tested on several benchmark cir-

cuits, including two industrial benchmark power grid network circuits from IBM [54]. To

put our new simulator’s performance into a right perspective, we compare ETBR-GPU

with the multi-core CPU version of ETBR and a standard LU-based method based on

UMFPACK [57], which are both implemented in C. We remark that we do not compare

ETBR-GPU with any iterative solvers as most of existing iterative solvers are highly tuned

to specific problems and are not general enough for commonplace linear dynamic systems.

On the other hand, ETBR or ETBR-GPU is a general simulator for linear dynamic systems

and it does not assume or exploit any structures of the given systems. As a result, it will

be fair to compare ETBR-GPU with the general LU-based simulator.

The computer running these programs is a Linux server with two-sockets, and each

socket hosts one Intel 2.4 GHz Xeon Quad-Core CPU chip. As a result, there are 16 threads

from the 8 cores on the server. The host side has a total of 36 GBytes memory available for

the two quad-core CPUs. Meanwhile, the GPU card installed on this server is Tesla C2070

containing 448 cores running at 1.15 GHz and up to 5 GBytes global memory.

We have 5 benchmark circuits with complexities ranging from the order of 104 to

106 nodes. All of them are RLC circuits and two of them come from IBM as mentioned

before. Fig. 4.4 shows the simulation results of an IBM benchmark, imbpg1t. It is a voltage
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waveform at node n0_2679_17913. The errors of transient waveforms using ETBR reduced

models are shown in Fig. 4.5, which shows about 5% maximum relative error.

Next, we study the speedup of the ETBR-GPU over ETBR and LU-based general

simulators. The statistics are shown in Table 4.1, where TLU is the time for LU-based

method, TETBR is the CPU time for reduction only. TCPU is the time for transient simula-

tion of reduced systems on CPU and TGPU is the time for transient simulation of reduced

systems on GPU. Column-12 is the speedup of the transient simulation (only) of GPU over

CPU. Column-13 is the speedup of total time of ETBR-GPU over LU-based method. And

Column-14 is the ETBR-GPU speedup over the CPU-only ETBR simulation.

We have several observations. First, for the first three power grid circuits, ETBR

does not need high order to achieve a good accuracy as switching speeds of currents are not

very high. The ETBR-GPU speedup over LU is quite impressive (can be 100×), although

ETBR-GPU does not significantly faster than ETBR as the gain from the simulation of the

reduce matrices are not significant due to the small sizes of the reduce matrices. Secondly,

for two IBM power grid benchmarks, ibmpg1t and ibmpg2t, high order reduced models are

used as the currents are switching faster. In this case, transient simulation of the reduced

models becomes more expensive as the reduced matrices become larger. But ETBR-GPU

can still deliver 10× speedup over the LU-based method as the GPU dense matrix solvers

are much more efficient than CPU as the speedup in Column-12 shows. We also observe the

with longer simulation time, we have better speedups for the two IBM cases. The reason is

that in this case, GPU portion of the computing will grow more dominant in terms of total

computing costs and GPU raw powers are better unleashed. The speedup of ETBR-GPU
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Figure 4.4: Transient waveforms of standard LU and ETBR-GPU at one port node of
ibmpg1t.
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order 48.
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over LU will be up-bounded by the speedup numbers in Column-12 in theory in this case,

which can be 100× as shown in the table.

4.5 Summary

A new transient analysis method, ETBR-GPU, has been discussed for general lin-

ear dynamic networks, such as on-chip power grid networks, using heterogeneous computing

systems with both GPU and multi-core CPU. The new algorithm is a reduction based simu-

lation technique and is very amenable for parallelization on the hybrid multi-core CPU and

GPU platforms, where coarse-grained task-level and fine-grained lightweight thread-level

parallelism can be both exploited. The proposed method can analyze any linear networks

with complicated structures and macro-models. It especially favors transient simulation

with long simulation periods as reduction costs in frequency domain is less sensitive to the

simulation time. Experimental results show that the new method can achieve about one

or two orders of magnitudes speedup when compared to the general LU-based simulation

method on some recently published IBM power grid benchmark circuits.
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Chapter 5

Parallel thermal analysis of 3D ICs

on GPU-CPU platforms

Cooling related thermal-induced reliability problems are considered as the major

hurdles for the emerging through silicon vias (TSV) based 3D integrated circuits (3D ICs)

due to increased power density and elevated thermal resistances for the added embedded

layers. Advanced cooling techniques such as integrated inter-tier liquid cooling may be

required to resolve the demanding cooling problems. Fast and accurate thermal analysis

techniques are crucial for designing 3D ICs and associated packages to find well traded-off

cooling solutions.

In this chapter, an efficient parallel finite difference based thermal simulation al-

gorithm for 3D-ICs using GMRES solver on CPU-GPU platforms is studied. First, unlike

existing fast thermal analysis methods where macro-modeling was used, the new method

starts from the basic physics heat equations to model 3D-ICs with inter-tier liquid cooling
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micro-channels and directly solves the resulting partial differential equations. Second, we

implement a new GMRES solver to computing the resulting thermal systems using GPU

parallel acceleration. We also explore different preconditioners (implicit and explicit) and

study their performances on thermal circuits and other types of matrices. Experimental

results show the proposed GPU GMRES solver can deliver order of magnitudes speedup

over the parallel LU solver and up to 4× speedup over CPU GMRES solver for both DC and

transient thermal analyses on a number of thermal circuits and other published problems.

5.1 Introduction

Three-dimensional integrated circuit technology is viewed as a necessary driving

force to maintain the trend described by Moore’s Law [58,59]. The 3D stacked integration

based on TSV connection technique enables heterogeneous integration of processor cores,

memories, and analog devices, and overcomes the barriers in interconnect scaling. However,

it also introduces new challenges. The greatest technological challenge for 3D ICs is heat

control and removal from within a 3D IC, particularly in the embedded layers. As a result,

cooling and thermal problems has received much research attention.

To remove the excessive heat in 3D chips, traditional fan-based cooling techniques

are not sufficient due to their limited heat removal capabilities [60]. Active cooling tech-

niques, such as embedded micro-channel cooling, are promising alternatives. Micro-channel

based liquid cooling can remove up to 200–400 W/cm2 and has the potential to reach

1000 W/cm2 [61,62]. To design efficient package and 3D IC structures with advanced cool-

ing solutions, an accurate and fast detailed transient thermal analysis is required [63,64].
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Traditional thermal analysis solves the partial thermal diffusion equation directly

using numerical approaches such as finite difference method, finite element method, and

computational fluid dynamics. This process is computationally intensive, especially for

large-scale 3D ICs, as it requires solving a large number of linear equations arising from

equivalent thermal circuit models.

To significantly improve the simulation efficiency, exploiting the parallelism of the

simulation algorithms on multi-core and many-core computing platforms becomes a viable

solution. The GPU family is among the most powerful many-core computing systems in

mass-market use. Currently, GPUs or GPU-clusters can easily deliver tera-scale computing,

which was only available on super computers in the past, for solving many scientific and

engineering problems. To date, dense linear algebra support on the GPU is well developed,

with its own BLAS implementation [55], but sparse linear algebra support is still limited.

In [64], a CPU based sparse LU solver was used to simulate the linear systems. However,

sparse LU solvers have complicated data dependency compared to dense matrix solvers,

and its implementation is considered to be difficult on today’s high performance GPUs

(although they are some recent efforts on this direction [65]).

On the other hand, iterative solvers such as generalized minimum residual method

(GMRES) [66], which depends on matrix-vector multiplications and other matrix oper-

ations, are more amicable for parallelization, especially on GPU platforms. And when

combined with a parallel-friendly preconditioner for better convergence, GMRES can be

significantly faster than a sparse LU solver especially for large problems. Also practically,

today’s high performance GPU is seen as collaborator and accelerator for multi-core CPU.
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GPU works in tandem with CPU on same computing node connected by high-speed link like

PCI-Express (PCIe) buses. Since some computing tasks, like graph based operations and

small matrix operations with low computing density or low compute-to-load ratio, are not

suitable for GPU computing, parallel programs have to leverage both multi-core CPU and

GPU to achieve the best performance. How to partition the computing tasks and reduce

the data traffic among CPU and GPU becomes a critical issue for GPU based heterogeneous

computing and programming.

In this chapter, we propose an efficient GPU-accelerated GMRES iterative solver

for finite difference thermal analysis of 3D ICs on GPU-CPU platforms. This chapter is

organized as follows. Section 5.2 first reviews 3D ICs with integrated liquid cooling struc-

ture and their features from a computing perspective, and our physics based modeling for

3D ICs with integrated micro-channels is introduced. Section 5.3 describes the proposed

GPU-GMRES parallel algorithm and discussions of two GPU-friendly preconditioners. We

carefully partition the computing tasks among CPU and GPU in GMRES to boost the

performance. We also explore different types of preconditioners and investigate their per-

formances on our applications in section 5.4. The work is summarized by Section 5.5.

5.2 Finite difference model of 3D ICs with micro-channels

5.2.1 3D-ICs with integrated inter-tier micro-channels

Fig. 5.1 and Fig. 5.2 show a 3D system consisting of a number of stacked layers

(with cores, L2 caches, crossbar, memory controllers, buffers, etc.) and micro-channels built

in-between the vertically stacked layers for liquid cooling. Forced inter-layer convective
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cooling with water is applied [67], and the micro-channels are distributed uniformly, and

fluid flows through all channels at the same flow rate, which can be dynamically altered at

runtime by water pump controller.

Laminate liquid flows in the micro-channels make the resulting heat equations

more complicated as heat is removed by both heat sinks and laminate liquid flows via

convection effect. To mitigate this problem, some simple models were proposed as an add-

on to existing thermal models for packages and chips at the cost of the accuracy. In [64,68],

liquid cooling effects are modeled by RC networks with simplified voltage-controlled current

sources to model the dominant convective heat flow (in flow direction). In [69], a simple

resistor model is proposed for the liquid cooling micro-channels. Instead, we consider both

conductive heat flow in the solid (chips and package) and the convective heat flow in the

coolant flow are considered, and directly solve the resulting partial differential equations

without any approximation using finite different method.

3D Stack

Processor layer

Memory layer

Analog circuit layer

Memory

circuits

Liquid

flow

Channel

Figure 5.1: 3D stacked IC with inter-tier liquid cooling.
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Figure 5.2: Interlayer cooling for 3D IC packages.
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Figure 5.3: Energy conservation for a control volume.
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y

z

(i)

(j)

(k)

Figure 5.4: Meshed chip cell with coolant channel.
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5.2.2 The proposed thermal model

We develop a thermal model for 3D stacked ICs with embedded micro-channels

and heat sinks from the basic heat equations. Using energy conservation in a control volume

as shown in Fig. 5.3, the heat transfer equation of incompressible material can be written

as the following equation according to [70],

d

dt

∫

R
ρû dx = −

∫

S
(ρĥ)~u · ~ndS −

∫

S
(−k∇T ) · ~ndS +

∫

R
q̇ dR, (5.1)

where R is the control volume, S is its surface, ~n is normal to the surface, ρ is the density

of the material, û is the specific internal energy, ĥ is the convection coefficient, ~u is the

flow rate, k is the thermal conductivity of the material, T is the temperature, and q̇ is the

volumetric rate of the heat generation inside R. By applying Gauss’ theorem to Eq. (5.1)

and using du = cp dT , the general form of heat equation can be written as

ρcp
∂T

∂t
= −ρcp~u · ∇T + k∇2T + q̇, (5.2)

where cp is the specific heat. Applying finite difference method and assuming the channel

is along x-axis, as illustrated in Fig. 5.4, the discretized form of Eq. (5.2) is

ρcp
dT

dt
=

kxx

∆x2
(Ti+1,j,k − 2Ti,j,k + Ti−1,j,k) +

kyy

∆y2
(Ti,j+1,k − 2Ti,j,k + Ti,j−1,k)

+
kzz

∆z2
(Ti,j,k+1 − 2Ti,j,k + Ti,j,k−1) + uxx

ρcp

2∆x
(Ti+1,j,k − Ti−1,j,k) + g(~v, t), (5.3)

where Ti,j,k is the temperature of element with index (i, j, k) in the meshed grid, kxx, kyy,

and kzz are thermal conductivities along x, y, and z axes, respectively, uxx is the flow rate

in x direction, g(~v, t) is the heat generation in volume ∆v = ∆x∆y∆z. Therefore, Eq. (5.3)

models the thermal behavior of 3D IC stack as a thermal circuit, and it can be rearranged
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into ordinary differential equation very similar to MNA form,

GT(t) + C
dT(t)

dt
= BU(t) (5.4)

where G and C are the coefficient matrices that represent thermal conductance and ca-

pacitance, B is the input position matrix of the heat sources, T(t) is the vector of on-chip

temperature values, and U(t) is the vector of input power sources.

At the four sidewalls of the channel, i.e., side = {top/bottom/left/right}, the

boundary conductance is calculate as gside = hsideS. This equation is used to model the

heat exchange from the channel sidewall to the coolant as shown in Fig. 5.6, where hside

is the convection coefficient at the sidewall of micro-channel [71] and S is the area of the

convective surface.

Notice that in micro-channels, each cell has the term

Ic = ρCpuxx
Ti+1,j,k − Ti−1,j,k

2∆x
, (5.5)

which represents the convective heat transfer along the flow direction and is the dominant

term, if compared to all the other conductive terms in Eq. (5.3). The conductive heat flow

linearly depends on the temperature difference between the two boundaries of the cell along

the flow direction. As a result, they can be viewed as temperature-controlled heat sources,

or voltage controlled current sources in circuits. Since we have the controlled sources, the

resulting G matrix is no longer symmetric. For cells in solids (chips or packages), the flow

rate ~uxx is 0 and thus there is no convection term.

Note that our model is different from the simplified circuit model proposed in [69]

which uses very small thermal resistors Rf in coolant flow direction to model the convective
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Figure 5.5: A view of 3D IC stack. BL
denotes the bounding layer between two
dies, and TIM denotes the thermal inter-
face material.
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Figure 5.6: Model of heat transfer be-
tween coolant and the sidewall of the
channel.
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Figure 5.7: (a) Coolant flow inside a channel; (b) Modeling heat convection in the direction
of the channel using thermal resistor Rf ; (c) Modeling heat convection in the direction of
the channel using current sources Ic derived from the energy equation.
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heat exchange, as shown in Fig. 5.7(b). We in this work uses the heat-controlled temperature

flow (voltage-controlled current sources) naturally derived from the energy equation (5.3)

to model the heat convection in the direction of the channel without macro-modeling based

approximations. This is also in contrast with the macro-models in [64,68].

Without loss of generality, the example we used in our testing case is a stack

structure shown in Fig. 5.5. It consists of 2 active layers and has a heat sink on the top.

Micro-channels are embedded in the active silicon layers. The geometrical and material

properties of the test stack are listed in Table 5.1. Inside the channels we assume the

coolant flows to move at a constant rate.

5.3 Parallel GMRES solver on GPU-CPU platform

5.3.1 Relevant previous arts

Recently there have been several works published on GPU based circuit analysis

and simulation. In [51] a multi-grid solver is used for DC analysis of power grids, while [72]

used multi-grid as a preconditioner for the conjugate gradient method for DC analysis

of power distribution networks. The same team also applied their multi-grid/conjugate

Table 5.1: Geometrical and material information of the 3D structure.

layers geometry (mm) material

die 8× 8× 1 silicon
thermal interface matreiral (TIM) 8× 8× 0.25 indium

bounding layer (BL) 8× 8× 0.25 silicon nitride
heat spreader 8× 8× 0.5 copper
heat sink base 8× 8× 0.5 aluminum
heat sink fin 8× 8× 3 aluminum
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gradient solver to the same thermal problem addressed in our work by using a purely

resistance based symmetric model [69]. While this model has the benefit of being symmetric,

it is unclear how to control the flow rate through micro-channels by adjusting the resistor

values. Instead, we base our work on the model proposed in [64], which allows specific rates

of flow through the micro-channels by modeling convection along the micro-channels as a

controlled current source.

There are also several papers implementing GMRES on GPU. In [73], GMRES with

a block ILU preconditioner is parallelized on GPU. However, it only makes a small part of

GMRES parallel, leaving many operations in serial. A more thorough GPU implementation

of GMRES is proposed in [74], but it uses an inefficient sparse matrix format [75] and does

not mention what precision was used for testing, making comparison difficult. The most

recent paper [76] measures precision by comparing their GPU GMRES to a customized

CPU based solver, rather than to a validated solver, leaving open a question about the

actual accuracy of their implementation.

Since we will propose our GPU GMRES as a fast solver to the thermal problem,

it is beneficial to quickly review the basics of GMRES. This name is short for generalized

minimum residual method, an iterative method for solving large-scale systems of linear

equations (Ax = b), where A is sparse in our case. Algorithm 8 shows the standard

Krylov subspace based GMRES method with left preconditioning [77], which uses projection

method to form the m-th order Krylov subspace [66,77], e.g.,

Km = span(r0,MAr0, (MA)2r0, . . . , (MA)m−1r0), (5.6)

where r0 = b−Ax0 is the initial residual, and M is the preconditioner. After orthogonal-
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ization and normalization, the orthonormal basis of this subspace is Vm. To generate the

Krylov subspace in GMRES, Arnoldi iteration is employed to form the Vm. Each Arnoldi

iteration generates a new basis vector and is appended to the previous Krylov subspace ba-

sis Kj to obtain the augmented subspace Kj+1. The Arnoldi iteration also creates an upper

Hessenberg matrix H̃m used to check the solution at the current iteration. As a result, the

approximated solution x becomes the linear combination of xm = x0 + Vmym, where ym

is calculated in Line 12 of Algorithm 8.

5.3.2 Parallelization on GPU-CPU platforms

To parallelize the GMRES solver, we need to identify several computation inten-

sive steps in Algorithm 8. There exist many GPU-friendly operations in GMRES, such as

vector addition (axpy), 2-norm of vectors (nrm2), and sparse matrix-vector (SpMV) multi-

plication (csrmv). Based on the examples we focus on, we have noticed that SpMV takes

up to 50% of the overall runtime to build the Krylov subspace shown in Eq. (5.6). A

lot of efforts have been made already to parallelize these routines in generic parallel algo-

rithms for dense matrix and vector operations (CUBLAS) and sparse matrix computations

(CUSPARSE) [55].

We remark that not all computing steps in GMRES are suitable for GPU platforms.

GPU is powerful, but only when finding its niche with high computing density with small

number of data communication traffics. GPU parallelization should be viewed as the CPU-

GPU collaboration, where GPU serves as co-processor for CPU such that GPU-friendly

computing steps are identified and put into GPUs. In this collaboration, the consideration

of memory transfers and communication costs between GPU and CPU is also nontrivial as
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Algorithm 8 GMRES with Left Preconditioning

Input: A ∈ R
n×n, b ∈ R

n, x0 ∈ R
n (initial guess), M ∈ R

n×n (preconditioner), m (restart)

Output: x ∈ R
n: Ax ≃ b

1: r0 = M(b−Ax0)

2: β = ‖r0‖2, w = r0/β

3: for j = 1 to m do // Arnoldi iteration

4: w = MAvj

5: for i = 1 to j do // Orthogonalization

6: hi,j = wT
i vj

7: w = w − hi,jvi

8: end for

9: hj+1,j = ‖w‖2, vj+1 = w/hj+1,j

10: end for

11: Vm = [v1, . . . ,vm], H̃m = {hi,j}1≤i≤j+1, 1≤j≤m

12: ym = argmin
y
‖βe1 − H̃my‖2, xm = x0 + Vmym

13: if tolerance satisfied then

14: Return

15: else

16: x0 = xm and go to Line 1

17: end if
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we will see later. As a result, the algorithms are actually implemented on the GPU-CPU

platform, which is well illustrated in our proposed GPU-GMRES algorithm.

GPU computing is typically limited by the data transfer bandwidth as GPU favors

computationally intensive algorithms [13]. Hence, how to wisely partition the data between

CPU memory (host side) and GPU memory (device side) to minimize data traffic is crucial

to the overall computing performance. In the sequel, we make some detailed analysis first

for GMRES in Algorithm 8. Although GMRES tends to converge quickly for most circuit

examples, i.e., the iteration number m≪ n, the space needed to store the subspace Vm with

a size of n-by-m, i.e., m column vectors with n-length, is still big. Therefore, transferring

the memory of the subspace vectors between CPU memory and GPU memory is not an

efficient choice. In addition, every newly generated matrix-vector product needs to be

orthogonalized with respect to all its previous basis vectors in the Arnoldi processes. To

utilize the data intensive capability of GPU, we keep all the vectors of vm in GPU global

memory, thus allows GPU to handle those operations, such as axpy, dot, and nrm2, in

parallel.

On the other hand, it is better to keep the Hessenberg matrix H̃, where interme-

diate results of the orthogonalization are stored, at CPU host side. This comes with the

following reasons. First, its size is (m + 1)-by-m at most, rather small if compared with

circuit matrices and Krylov basis vectors. Besides, it is also necessary to triangularize H̃

and check the residual in each iteration so the GMRES can return the approximate solution

as soon as the residual is below a preset tolerance. Hence, in light of the sequential nature

of the triangularization, the small size of Hessenberg matrix, and the frequent inspection of
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Figure 5.8: The proposed GPU-accelerated parallel preconditioned GMRES solver. We also
show the partitioning of the major computing tasks between CPU and GPU here.
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values by the host, it is preferable to allocate H̃ in host memory. As shown in Algorithm 8,

the memory copy from device to host is called each time when Arnoldi iteration generates

a new vector and the orthogonalization produces a new vector h, which is the j +1 column

of H̃, and is transferred to the CPU, where a least square minimization (a series of Givens

rotations, in fact) is performed to see if the desired tolerance of residual is met. Our ob-

servation shows that the data transfer and subsequent CPU based computation takes less

than 5% of the total run time.

Fig. 5.8 illustrates the computation flow, the partitions of the major computing

steps and the memory accesses between CPU and GPU during the operations we mentioned

above.

5.3.3 GPU-friendly implementation of preconditioners

One important aspect of the iterative solver is the preconditioner. Preconditioners

increase the rate of convergence and thus reduce the number of iterations. A well chosen

preconditioner will potentially make GMRES much faster than the one without precondi-

tioner. In this section, we discuss the preconditioner for GPU GMRES.

Most existing preconditioners can be broadly classified as being either explicit

or implicit [78]. A preconditioner is implicit if its application within each step of the

chosen iterative method requires the solution of a linear system (csrsv). With implicit

preconditioner, we choose a non-singular matrix M where M ≈ A, and M should satisfy

the requirement that solving a system with matrix M is easier than solving the original

system of A. In contrast, for explicit preconditioner, the approximate inverse form of A is

calculated first and will be known to iteration solvers. Hence, the preconditioning operations
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become one or more matrix-vector products (csrmv).

Implicit preconditioners have been intensively studied and they have been success-

fully employed in a number of applications. However, during recently years, an increasing

amount of interest has been shifted to explicit preconditioners [78, 79]. There are several

reasons for this shift. In the first place, the preconditioning operations of implicit pre-

conditioners, i.e., solving of the linear system M, are serial in nature and difficult to be

parallelized. Although sophisticated parallel strategies have been adopted, only limited

speedup is gained [74]. Another drawback of implicit preconditioners is the possibility of

breakdowns during the incomplete factorization process. The breakdown cannot even be

avoided even if pivoting is applied [80,81]. With the evolution of the architectures in modern

computers, csrsv during implicit preconditioning have been found to be the bottleneck lim-

iting the performance. On the other hand, explicit preconditioning operations, i.e., csrmv,

can be parallelized easily and efficiently, which is favorable for modern computers. However,

the convergency rate of explicit preconditioners is usually slower if compared with implicit

ones. To find out which type of preconditioners is suitable for our thermal simulation, we

will study the performance of both implicit and explicit preconditioners in this chapter.

The most widely used implicit preconditioner is based on incomplete LU (ILU)

decomposition. For ILU preconditioner, M = L̃Ũ, where L̃ and Ũ are sparse triangular

matrices which approximate the L and U factors of A respectively, i.e., A ≈ L̃Ũ. Applying

ILU preconditioner requires two triangular solves and as mentioned earlier, its serial nature

limits the performance of parallel machines. For ILU preconditioners, the more fill-ins in

L̃ and Ũ, the more similar are the preconditioner M and the original matrix A, and hence
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better convergence GMRES will have. However, this does not simply result in speedup.

When parallelizing the csrsv of L̃ and Ũ matrices, the techniques based on level-scheduling

are needed [82]. The denser the triangular matrix is, the more dependency it requires, which

will severely degrade the performance. Therefore, we adopt the strategy of ILU0 with the

fewest fill-ins. Hence, we can use the non-zero pattern of A as the symbolic structure to

guide the incomplete factorization in parallel [83].

We use the approximate inverse (AINV) preconditioners with tolerance dropping

in [78,81] as our explicit preconditioner. The norm value of ‖I−MA‖ is used to define the

similarity of M and A−1. Normally, the matrix norm is taken as the Frobenius norm or its

weighted variants [79, 81],

‖I−MA‖2F =
n∑

i=1

‖ei −Ami‖ (5.7)

where ei is the i-th unit vector and mi is the i-th column of M. With AINV preconditioner,

we approximate the inverse of the original matrix A with three matrices [79]:

A−1 ≈ ZD−1WT, (5.8)

where Z and W are two unit upper triangular matrices, D is a diagonal matrix. Z and

W are similar to U−1 and L−1 triangular parts in LDU decomposition of A = LDU

respectively. They can be directly obtained by means of a bi-conjugation process [81]. If we

define Ml = WT and Mr = ZD−1, the preconditioning operations are two matrix-vector

product of Ml and Mr respectively, which is easily to be parallelized. For our program,

we first compute the preconditioner M in CPU, and then transfer it to GPU for parallel

computation of preconditioned GMRES.
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5.4 Numerical results

The proposed algorithm has been implemented in C and CUDA C for GPU pro-

gramming. Our GPU card is Tesla C2070 GPU card with 448 cores running at 1.15 GHz

with 5 GB of global memory. It has a double precision floating point peak performance of

515 GFLOPS and 1.03 TFLOPS single precision peak performance.

Although the CPU results were tested on a quad-core Xeon E5620 machine at

2.00 GHz with 28 GBytes memory. For a thorough comparison, serial GMRES on CPU,

a parallel LU solver (SuperLU MT), and parallel GMRES on CPU-GPU platform with

preconditioners are compared for the full thermal simulation on a number of packages.

SuperLU MT is a commonly preferred and publicly available parallel LU solver [84].

Our test cases consist of five thermal circuit models generated with our proposed

physics based thermal modeling method. To demonstrate the practicability and generality

of our solver, two circuit examples from the UFL Matrix Collection [85] and four 3D-ICE test

cases with package systems [64] are also included in our experiments. These general circuit

and thermal circuit examples have varied sizes and density ratios of the sparse patterns.

More information on these examples can be found in Table 5.2, where “dim” is the size,

i.e., number of rows and number of columns of the matrix, “nnz” is the number of nonzero

elements in the matrix, and “density” is the ratio defined as nnz/(dim · dim), which is

a measure of the fullness of a sparse matrix. A typical sparsity pattern of our proposed

thermal circuit model is plotted in Fig. 5.9, which is saved from example “therm5”.
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Figure 5.9: Sparsity pattern of thermal circuit model from example “therm5”.

Table 5.2: Statistics for thermal circuits. “dim” stands for number of rows and number
of columns of the square matrix. “nnz” is the number of nonzero elements, and density is
calculated as nnz/(dim · dim).

circuit name dim nnz density

G2 circuit (UFL) 150,102 438,388 1.94e−5
G3 circuit (UFL) 1,585,478 4,623,152 1.83e−6

mc2rm (3D-ICE) 20,000 109,000 2.72e−4
mc4rm (3D-ICE) 50,250 329,140 1.30e−4
pf2rm (3D-ICE) 20,000 104,100 2.60e−4
solid (3D-ICE) 10,000 44,600 4.46e−4

therm1 57,344 390,144 1.18e−4
therm2 114,688 783,872 5.96e−5
therm3 147,456 1,004,032 4.61e−5
therm4 172,032 1,174,528 3.97e−5
therm5 262,144 1,795,840 2.61e−5
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Table 5.3: Comparison of solvers on Ax = b. For the last five examples from our thermal
modeling method, steady state equations for the 3D IC thermal profile are used. SuperLU
deploys 4 CPU threads in LU factorization. Run time in seconds. On some examples,
GMRES fails to converge without preconditioner or with diagonal preconditioner, thus the
run time data is not available and is not shown in the table.

1 2 3 4 5 6 7 8

circuit SuperLU GMRES speedup

name fact. sol. precond CPU GPU C2
C4+C6

C2
C6

G2 0.8 0.03

NON 0 8.9 2.2 0.4× 0.4×
DIAG 0.003 0.3 0.04 19× 20×
ILU0 0.7 0.03 0.06 1× 13×
AINV 4.1 0.4 0.1 0.2× 8×

G3 30.7 1.9

NON 0 211 16.5 2× 2×
DIAG 0.02 7.0 .024 697× 1023×
ILU0 7.5 0.8 0.14 4× 219×
AINV 42 8.4 0.68 0.7× 45×

mc2rm 0.33 0.01
ILU0 0.14 0.11 0.15 1.2× 2×
AINV 0.18 0.14 0.15 1× 2×

mc4rm 1.63 0.05
ILU0 0.3 0.5 0.4 2× 4×
AINV 5.0 0.5 0.2 0.3× 8×

pf2rm 0.3 0.009
ILU0 0.12 0.10 0.13 1× 2×
AINV 1.8 0.13 0.12 .2× 3×

solid 0.03 0.002

NON 0 0.17 0.35 0.1× 0.1×
DIAG 0.001 0.08 0.15 0.2× 0.2×
ILU0 0.06 0.05 0.12 0.2× 0.2×
AINV 0.5 0.06 0.11 .05× 0.3×

therm1 16.0 0.15
ILU0 0.36 1.17 0.73 15× 22×
AINV 3.02 1.18 0.63 4× 25×

therm2 78.4 0.42
ILU0 0.72 3.88 1.56 35× 50×
AINV 5.28 5.51 1.59 11× 49×

therm3 99.6 0.52
ILU0 0.9 5.42 1.82 37× 55×
AINV 6.5 6.3 2.0 12× 50×

therm4 177.2 0.7
ILU0 1.1 3.37 1.29 74× 137×
AINV 7.4 10.4 2.51 18× 70×

therm5 554.1 1.45
ILU0 1.62 8.53 2.12 148× 261×
AINV 11.9 17.0 3.34 36× 165×
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5.4.1 Comparison in matrix solving

The performance of GMRES solver with preconditioners is summarized in Ta-

ble 5.3, where the basic statistics information of circuit examples is described in Table 5.2.

For comparison, the same equation Ax = b is solved by (1) direct LU method, i.e., LU

factorization and triangular solves, (2) GMRES solver using only CPU, and (3) the pro-

posed GMRES solver with GPU parallel computation. The LU method is provided by Su-

perLU MT, which runs on our server with 4 threads for the factorization routine psgstrf.

The GMRES solvers in both CPU and GPU versions can take parameters such as restart

number, maximum iteration number, and residual tolerance. In our experiments, these

three parameters are set as 32, 106, and 10−6, accordingly.

Note that we also test three different preconditioners, such as diagonal (DIAG),

incomplete LU (ILU0), and approximate inverse (AINV) in GMRES implementations. Time

spent on preconditioner constructions and GMRES solving with preconditioners are all

recorded in Table 5.3. As can be observed by the run time measurements, GMRES performs

better with the help of preconditioner. Especially for the large matrices, GMRES without

preconditioner or with a insufficient preconditioner fails to converge within the given limit

of maximum iteration number. These unconverged cases are not shown in the table.

In general, as the problem sizes become larger, GPU GMRES will show more

speedup over SuperLU MT. Table 5.3 shows that the speedup ranges from one to two

orders of magnitudes. ILU0 preconditioner usually gives better performance over AINV.

Compared to the CPU version of preconditioned GMRES, GPU GMRES delivers about

2–4× speedup for large cases. With larger thermal circuits, more speedups can be expected
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as indicated by the table.

Further comments can be made on ILU0 and AINV preconditioners. Both of them

show better robustness than the simple DIAG preconditioner, and they succeed on all the

demonstrated examples. Their robustness comes from the better knowledge obtained from

matrix A during the preconditioner construction phase. The AINV preconditioner is more

expensive than ILU0, since it approximates A−1 and tends to have more non-zero elements

than the ILU0 preconditioner, which approximates A. This increased cost of AINV is

reflected in both the construction phase and the GMRES iteration phase, as can be seen

from Table 5.3.

We have also noticed that for small examples, the GMRES solver does not beat

the direct LU method, such as in the example “solid” extracted from 3D-ICE. This is due

to the nature of iterative solver and also the characteristic of GPU computing. For small

matrices, iterative solvers could have a relatively higher overhead than a direct solver, and

this results in longer running time. Meanwhile, CUDA GPU prefers large data throughput

to hide data access latency, and it hurts the performance when working on small examples.

However, GPU GMRES outperforms SuperLU MT as soon as the size of test case grows.

It is noteworthy that we use single-precision floating-point representation, i.e., 32

bits, for real numbers in all the calculations. This implementation comes from two reasons.

One is because NVIDIA’s current generation GPUs support single precision better than

double precision, in terms of speed and memory space. The other reason, which is also

from the perspective of our application here, is that thermal simulation results, such as

temperatures, do not require very high precision. We have compared our single-precision
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results with double-precision ones, and the temperature difference between the two is at

most 0.1 degree, which is acceptable to most thermal analysis. We will further justify this

claim of using single-precision by a temperature waveform comparison in the following part.

5.4.2 Comparison in transient thermal analysis

We now perform the comparison in the transient thermal simulation. As we have

seen from Table 5.3, GMRES does not converge to accurate solution without precondi-

tioner or with a diagonal preconditioner. Hence, for the transient simulation, we will only

show the runtime measurements for GMRES with incomplete LU and approximate inverse

preconditioners.

The construction of preconditioner is a one-time task for the whole transient sim-

ulation. This is because the left-hand side matrix A does not change on the transient time

steps. Hence, the preconditioner M only needs to be calculated once and repeatedly used

for several thousand times. So its computing costs can be easily amortized over the later

transient computing tasks. As a result, for implicit preconditioner M, we still compute it

in the CPU as incomplete LU decomposition is difficult to be parallelized in GPU. We then

compare the performance of ILU0 and AINV preconditioners on both CPU and GPU in

Table 5.4. The transient temperature response of example “therm5” is shown in Fig. 5.10.

Both CPU GMRES and GPU GMRES solvers deliver satisfactory results if compared to

the SuperLU waveforms.

All time measurements consider every procedure except the initial file reading of

the data (G, C, and B matrices) into memory. We can make some observations based

on Table 5.4. Firstly, GMRES algorithm is very efficient for transient thermal simulation.
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Figure 5.10: Temperature waveform of the 3D IC model “therm5”. Solid curve is the
result of SuperLU, dashed curve is from CPU GMRES, and dash-dotted curve is from GPU
GMRES.

Normally, for transient simulation, direct methods are more efficient than the iterative

counterpart because the factorization of the original matrix only needs to be performed

for one time. After that, every step only needs to perform the backward and forward

substitutions, also called triangular solves, whose computational complexities are much

lower than the LU factorization. However, for our transient thermal simulation, the right-

hand side b does not change significantly within a few time steps and usually the new xt

is quite close to its previous state xt−1. By setting the initial value of each i-th step to be

the solution of the previous step, the number of iteration need for each step is fairly small.

As we can see from the results for SuperLU and serial GMRES, the serial iterative solver

even outperforms the parallel direct solver for some large cases.

Secondly, for GMRES preconditioners on CPU, implicit preconditioners such as
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ILU are significantly better than explicit ones such as AINV. However, for preconditioers on

GPU, explicit preconditioners have better scalability due to their parallellism nature. We

can see that the speedup of the proposed GPU GMRES can be two orders of magnitudes

over parallel LU. Again, if compared to the CPU version of preconditioned GMRES, the

GPU one can deliver 2–4× speedup for large cases in transient analysis.

Fig. 5.11 shows the thermal profile of the 3D circuit with two active layers, liquid

cooling micro-channels, and heat sink with the convective interface. The flow rate inside

micro-channels is fast enough to remove heat instantaneously. Thus, the temperature distri-

bution inside micro-channels is almost constant (difference is 0.005 ◦C) as Fig. 5.12 shows.

5.5 Summary

An efficient finite difference based full-chip simulation method on CPU-GPU plat-

form for 3D ICs with liquid cooling is proposed. Unlike existing fast thermal analysis

methods, our new method starts from the basic heat equations to model 3D ICs with inter-

tier liquid cooling micro-channels, and directly solves the resulting PDE using iterative

GMRES solver. To speed up the analysis process, we further developed a preconditioned

GPU-accelerated GMRES solver. We also studied different preconditioners for GPU plat-

forms and compared their performances. Experimental results showed that the proposed

method can lead to order of magnitudes speedup over the parallel LU based solver and up

to 4× speedup over CPU GMRES for both DC and transient thermal analyses on a number

of thermal circuits and other published problems.
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Table 5.4: Comparison of solvers in transient analysis of our 3D IC thermal models. Su-
perLU deploys 4 CPU threads in LU factorization. Time measurements in Column 2 are
the sums of LU factorization times and triangular solve times. Runtime in seconds.

1 2 3 4 5 6

circuit superLU GMRES Speedup
name fact.+sol. precond CPU GPU (C2/C5)

therm1 254.1
ILU0 55.5 34.3 7×
AINV 100.2 45.8 6×

therm2 829.8
ILU0 154.3 69.5 12×
AINV 274.2 76.0 11×

therm3 1081.7
ILU0 203.6 75.9 14×
AINV 357.2 87.4 12×

therm4 1561.8
ILU0 93.4 39.6 40×
AINV 804.4 209.2 8×

therm5 3463.1
ILU0 154.6 54.9 63×
AINV 1374.7 227.3 15×

degC

Figure 5.11: Temperature profile of the 3D IC with two active layers.
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degC

Figure 5.12: Temperature profile inside the coolant channels.
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Chapter 6

GPU parallel shooting algorithm

for RF/MM ICs

This chapter presents a new shooting-Newton method with GPU-accelerated pe-

riodic Arnoldi shooting solver, called GAPAS, for fast periodic steady state analysis of

RF/MM ICs. The new method first explores the periodic structure of state matrix by using

periodic Arnoldi algorithm, which is a variant of GMRES solver, only a little different from

the one in Section 5.3. We show that the resulting implementation of the solver is amenable

for GPU parallel computing. CUDA GPU’s features, such as coalesced memory access and

overlapping transfers with computation, are utilized to further boost the efficiency of our

GAPAS. Experimental results from several industrial examples show that when compared

to the state-of-the-art implicit GMRES method under the same accuracy, the GPU based

shooting-Newton method can bring up to 8 times speedup.
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6.1 Introduction

Recent advances in radio-frequency and monolithic microwave integrated circuits

(RF/MM IC) operating at 60 GHz [86–89] can provide much higher data rate than today’s

mobile devices for future smart mobile applications. However, the design of RF/MM-IC

front-end circuits at this scale is very challenging [90–96]. At the scale of 60 GHz, all active

and passive devices are closely coupled and the resulting post-layout circuit model has a

drastically increased complexity. Moreover, in order to follow the high-frequency carrier

signal, traditional transient analysis requires using small time steps and hence results in a

long simulation time.

The analysis of RF/MM-IC systems is notoriously difficult for speedup as accu-

racy cannot be compromised due to high precision requirement. Worse, its design com-

plexity increases significantly, since all active and passive devices are no longer separated

but coupled. There are three approaches to numerically find the periodic steady state

(PSS) solutions [90–95]: finite difference time domain (FDTD) method, harmonic balance

(HB) method, and shooting-Newton method. The shooting-Newton method has a better

convergence for strongly nonlinear circuits because the underlying transient analysis has

an adaptive time step control. However, it involves a Jacobian (sensitivity matrix), which

is usually a large-scale dense matrix. GMRES solver with the use of a standard Krylov

subspace [66, 97] and an implicit matrix formulation [93] partially alleviates the high com-

putational cost.

To further improve the efficiency of shooting-Newton algorithm, one needs to ex-

plore the massive parallelism in today’s muti-core and many-core computing platforms.
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GPU parallel computing has been explored recently in many design automation algo-

rithms [98] such as Boolean satisfiability checking, statistical timing analysis, fault sim-

ulation, and so on. Within the past several years, a number of GPU-based parallel circuit

simulation techniques have been proposed. They include on-chip power grid analysis meth-

ods [52, 99, 100], logic simulation [101], and general SPICE simulation [98, 102], where only

the device model evaluation has been parallelized on GPUs. However, the shooting based

RF/MW simulation methods have not been explored on GPU platforms yet.

We propose a GPU accelerated periodic Arnoldi shooting method, GAPAS, for

fast periodic steady analysis of RF/MM-IC systems. Instead of simply parallelizing the

traditional shooting-Newton method, we first explore the periodic structure of the state

matrix and the corresponding structured Krylov subspace for better parallelization imple-

mentation. Since most RF/MM ICs are with periodic inputs and can be characterized as

a periodic steady state (PSS) problem, the state matrix generally shows a periodic-block-

matrix structure, or periodic structure, which will be shown to be amenable for parallel

computing solutions such as GPU. Secondly, we parallelize the periodic Arnoldi based GM-

RES solver in the shooting-Newton method on the latest NVIDIA Tesla GPU platform. We

explore the host/device collaboration, coalesced memory access, and overlapping of mem-

ory transfer and GPU kernel computing, to further boost the efficiency of our method. We

remark that the existing study in [103] has an initial exploration of the structured Krylov

subspace and its parallelization. However, it did not identify the periodic structured Krylov

subspace during the shooting-Newton process. This will be discussed later and we further

demonstrate the GPU implementation on this parallelism friendly formulation.

118



Section 6.2 reviews the background of the periodic steady state analysis and

shooting-Newton method. Then, we discuss non-structured Krylov subspace based conven-

tional GMRES algorithm with the matrix-free basis generation technique as our baseline.

Next, Section 6.3 presents our GAPAS algorithm. GAPAS’ better data independence for

parallelization is discussed, and the implementation issues, such as how to explore the coa-

lesced memory access and memory copy/kernel execution overlapping, for efficiency boost

on GPU platforms are talked about in Section 6.4. Numerical experimental results are

demonstrated in Section 6.5, and Section 6.6 closes the chapter.

6.2 Background

In this section, we first review the mathematical description of periodic steady

state (PSS) analysis and its solution by shooting-Newton method. Then we discuss the

conventional GMRES algorithm based on traditional non-structured Krylov subspace with

the matrix-free method.

6.2.1 Review of the shooting-based PSS analysis methods

First, terminology and definitions are given to develop the problem. In general,

the time domain response of a nonlinear RF/MM integrated circuit can be obtained by

solving its differential algebra equation (DAE) shown below,

f(x(t), t) =
d

dt
q(x(t)) + j(x(t)) + u(t) = 0, (6.1)

where x(t) : R → R
N is the state variable vector including nodal voltages and possibly

several branch currents, j(·) is a function that maps the state variable vector to a vector of
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N entries most of which are sums of resistive currents at a node, q(·) is a function which

maps the state variable vector to a vector of N entries that are mostly sums of capacitive

charges or inductive fluxes at a node, and u(t) is for an external periodic source which

functions as a stimulus input.

Definition 1 The circuit has a periodic solution of period T , if x(t0) = x(t0 + T ) for all

t0 ∈ R.

However, it is neither practical nor necessary to verify or enforce this constraint on all

t0 ∈ R. In a circuit DAE whose nonlinearities satisfy smoothness conditions and whose

input is periodic with period T , finding a periodic solution is equivalent to solving a two

point boundary constraint

x(T ) = x(0). (6.2)

A solution x(0) from the above equation is referred to as the periodic steady state (PSS),

since it has the property that if the circuit is in the state x(0) at t = 0, then the state x(t)

simulated from this initial condition will be periodic of T .

Definition 2 A state transition function φT (x(t0), t0) is the solution of Eq. (6.1) at t0+T ,

starting from a guessed initial state x(t0) at t0, or

x(t0 + T ) = φT (x(t0), t0). (6.3)

Using the state transition function, boundary constraint in Eq. (6.2) is reformulated as

φT (x(0), 0) = x(0) (6.4)

for one period with t0 = 0.
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Definition 3 Shooting sensitivity matrix, also called shooting Jacobian, can be defined as

JφT
(x(0), 0) =

dx(T )

dx(0)
=

dφT (x(0), 0)

dx(0)
. (6.5)

As discussed next, JφT
works as the derivative in the shooting-Newton method. In each

shooting cycle [0, T ], the Jacobian matrix records the sensitivity of the final state x(T )

according to the perturbation of initial state x(0). It provides information for the solver to

determine how much update is needed on the initial state x(0) for the next shooting cycle,

in order that the difference between the initial state and the final state will be reduced in the

next cycle. This shooting update operation is also described mathematically in Eq. (6.6).

With a number of shooting iterations, the difference will converge to zero, i.e., the PSS

criterion x(T ) = x(0) is attained. For simplicity, x(0) will be denoted as x0, and x(T ) as

xT , in the remaining parts of this chapter.

To solve for the periodic steady state x0 from the two point boundary condition

in Eq. (6.4) in nonlinear form, Newton iteration is deployed. With the definitions of state

transition function and shooting sensitivity, it is very straightforward to have the following

Newton iteration,

xk
0 = xk−1

0 +
[

I− JφT
(xk−1

0 , 0)
]−1[

φT (xk−1
0 , 0)− xk−1

0

]

, (6.6)

where I is the identity matrix and k is the index of Newton iteration. Such a method is

called shooting-Newton algorithm [90,92,93,95].

Specifically, JφT
is obtained by the following manner. One first integrates the DAE

of Eq. (6.1) in one period T using a chosen integration scheme. Here, the backward Euler

method is applied. Given xj−1 as a known state variable at current time step, backward
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Euler method solves the following equation to calculate the state variable xj at the next

time step,

1

hj
[q(xj)− q(xj−1)] + j(xj) + uj = 0, (6.7)

where hj is the j-th time step length, i.e., hj = tj − tj−1, in the time discretization of one

period [0, T ] into M time steps, 0 = t0 < t1 < t2 < · · · < tM = T .

Again, Eq. (6.7) is nonlinear and needs linearization to solve for xj . Assume that

the linearization is converged at l-th transient Newton iteration, and bears the form

[

G(xl−1
j ) +

1

hj
C(xl−1

j )

]

(xl
j − xl−1

j ) = −
1

hj

(

q(xl−1
j )− q(xj−1)

)

− j(xl−1
j )− uj , (6.8)

where G(xl−1
j ) = dj(xl−1

j )/ dx is called conductance matrix, and C(xl−1
j ) = dq(xl−1

j )/ dx

is called capacitance matrix. They are obtained after the linearization of device models

each time in transient Newton iteration. For simplicity, we will use Gj and Cj to represent

the conductance and capacitance matrices after the linearization converged at the j-th time

step. Note that both the solving of backward Euler equations in Eq. (6.7) and transient

Newton iterations for linearization on each time step in Eq. (6.8) are also required by

standard transient analysis in SPICE at all discretized time steps.

With these conductance matrices and capacitance matrices available, it is the time

to see how to calculate the sensitivity matrix, or shooting Jacobian, for shooting-Newton

update equation. Recognizing that the backward Euler equation is the key to relate state

variables xj−1 and xj at two consecutive time steps, a differentiation of Eq. (6.7) with

respect to the initial condition x0 generates the following relation

[

Gj +
1

hj
Cj

]
dxj

dx0
=

Cj−1

hj

dxj−1

dx0
. (6.9)
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When this is applied recursively following the chain rule for all time steps in one period,

one can eventually obtain the shooting Jacobian by

JφT
=

M∏

j=1

[

Gj +
1

hj
Cj

]−1 1

hj
Cj−1. (6.10)

Note that as the transient analysis is first applied, the matrices Gj + Cj/hj , j = 1, . . . , M ,

are already available and are stored as LU-factorized sparse matrices. Therefore, if the

shooting-Newton equation is to be solved with an explicitly formed sensitivity matrix using

direct LU method, the computational cost is mainly from the O(n3M) backward and for-

ward substitutions in forming the dense JφT
, and the O(n3) of the direct LU factorization

of the matrix in Eq. (6.6).

6.2.2 Traditional GMRES and matrix-free GMRES

Since the shooting Jacobian matrix in the PSS shooting-Newton update equation

is dense, the computational cost of its solving by LU factorization is expensive for large

RF/MM ICs. Hence, to reduce the cost when solving the shooting-Newton update equation,

iterative solver like GMRES can be applied. The GMRES method is an iterative method

for solving a system of large scale linear equations Ax = b, where, in PSS problem, the

left-hand side dense matrix and the right-hand side vector are

A = I− JφT
(xk−1

0 , 0), and b = φT (xk−1
0 , 0)− xk−1

0 ,

from the shooting-Newton update in Eq. (6.6).

One can apply the GMRES solver mentioned in Section 5.3 and Algorithm 8 to

solve the PSS solution. The only exception here is that we don’t have preconditioner as we
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had in the thermal simulation. This is because preconditioner requires knowledge of the

left-hand side matrix A, which is not explicitly formed in our shooting method due to the

use of a more efficient matrix-free method we are going to talk about next. Therefore, all

the occurrences of preconditioner M in Algorithm 8 and its underlying Krylov subspace

can be assumed to be identity matrix I.

Algorithm 9 Matrix-free “matrix”-vector multiplication to replace Av in Line 4 in Algo-

rithm 8.
Input: Previous basis vi and prefactorized matrices of (6.11)

Output: Implicitly calculated w, equal to Avi

1: w = vi

2: for j = 1 : M do // M is the number of time steps in one signal cycle.

3: w =
(

Gj + 1
hj

Cj

)−1
1
hj

Cj−1w

4: end for

5: w = vi −w

To further reduce the computational cost, one needs to avoid the explicit formu-

lation of matrix A, since forming A involves O(n3M) floating point operations and multi-

plying Avi needs another O(n2) operations for each Arnoldi iteration. The work in [93,95]

introduced a matrix-free approach to directly calculate the matrix-vector products (MVP)

Avi without forming A. This is realized in Algorithm 9. This matrix-free method calcu-

lates the product of JφT
vi instead of Avi by iteratively reusing the pre-factored matrices

of all circuit Jacobians

Gj +
1

hj
Cj , j = 1, . . . , M. (6.11)
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Here, the shift of I to form A from JφT
can be easily corrected when updating vi, as is

done in Line 5 in Algorithm 9.

However, as discussed in the later part of this chapter, neither the standard GM-

RES procedure in Algorithm 8 nor the matrix-free GMRES discussed here takes into con-

sideration the periodic structure of the matrix for the PSS RF problem. As we show in the

next section, the exploration of the periodic structure of the state matrix can reveal more

data independency for more efficient parallelization as shown in [104].

6.3 GMRES with periodic structured Krylov subspace

Based on the observation that the Krylov subspace of a periodic system usually

contains a periodic-block-matrix structure (or periodic structure), we first introduce a new

shooting-Newton method to utilize the periodic Arnoldi method. We show that if one

can identify the periodic structure of the Krylov subspace, we can have more efficient

parallelization of the resulting algorithm.

6.3.1 Periodic Krylov subspaces

Note that the RF/MM IC system with periodic inputs is in fact a periodic system.

Hence, the associated Krylov subspace would also exhibit a periodic structure. As such, it

inspires us to exploit the structure-preserved Krylov subspace method during the GMRES

iteration.

Let’s first identify the structure of the underlying Krylov subspace. For time steps

j = 1, . . . , M , defining Aj = [Gj + 1
hj

Cj ]
−1 1

hj
Cj−1, the shooting-Jacobian JφT

in Eq. (6.10)
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becomes

JφT
= AMAM−1 · · ·A1. (6.12)

We emphasize again that the definition of Aj is only for mathematical explanation. In

practice, Aj is never formed explicitly, because it is inefficient and unnecessary.

In the following, we show that the multiplied product JφT
has an identical invariant

subspace as the following periodic block-structured matrix

J =















0 A1

A2
. . .

. . .

AM 0















, (6.13)

which has a periodic structured Krylov subspace.

Definition 4 The periodic structured m-order Krylov subspace Vm of J is defined through

the following periodic Arnoldi decomposition

JVm = Vm+1Hm, (6.14)

where

Vm = Vm
1 ⊕Vm

2 · · · ⊕Vm
M , (6.15)

and

Hm =















0 Hm
1

Hm
2

. . .

. . .

Hm
M 0















. (6.16)
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Note that ⊕ denotes the direct sum operation of matrices: given A ∈ R
m×n and B ∈ R

p×q,

A⊕B is a (m + p)× (n + q) matrix with A and B in the diagonal,

A⊕B =







A

B







.

In Eq. (6.14), Vm
j ∈ R

n×m matrices are subspace bases on the corresponding time

steps, and Hm
j ∈ R

(m+1)×m matrices are the Hessenberg matrices which relate Aj and Vm
j

by the Arnoldi decomposition in a cyclic fashion, i.e.,

AjV
m
j⊖1 = Vm+1

j Hm
j , (6.17)

where the symbol ⊖ reflects the scheme of cyclic subspace construction: The operation j⊖1

returns the same integer value as j − 1 does, if j > 1. If j = 1, j ⊖ 1 gives the maximum

integer in the range of the cycle, and in the current case for time step indices 0, 1, . . . , M ,

it gives M .

Clearly, the periodic Krylov subspace of J characterized by Vm and Hm is com-

posed of block matrices Vm
j and Hm

j , j = 1, . . . , M . It was proved in [105] that the periodic

system with a periodic block structured matrix J , characterized by Vm and Hm, has an

identical Krylov subspace with the periodic system with a multiplied-product matrix JφT
,

characterized by Vm
j and Hm

j , j = 1, . . . , M .

In the following subsection, we present a periodic Arnoldi Algorithm, which can

provide all Vm
j and Hm

j , and then, using the Arnoldi decomposition, a least squares problem

is formulated and solved to construct the approximate solution in the Krylov subspaces Vm
j .

This approximate solution will play as an initial state for the next shooting cycle.
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The primary observation we have here is to illustrate that the underlying Krylov

subspace of shooting-Newton implicitly possesses the periodic structure as shown in Eq. (6.13).

Consequently, using the periodic Arnoldi shooting (PAS) solver, the subspace at each time

step is calculated from each Aj and right-hand side bj , j = 1, . . . , p, which preserves the

periodic structure in Eq. (6.13).

Take m = 4 and p = 3 for example [103], in the traditional GMRES, the solution

is

x4 ∈ span(











b1

b2

b3











,











A1b3

A2b1

A3b2











,











A1A3b2

A2A1b3

A3A2b1











,











A1A3A2b1

A2A1A3b2

A3A2A1b3











),

while the p-periodic-block-structured method has the solution

x4 =











x4
1

x4
2

x4
3











∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x4
1∈K

4
1 =span(b1,A1b3,A1A3b2,A1A3A2b1)

x4
2∈K

4
2 =span(b2,A2b1,A2A1b3,A2A1A3b2)

x4
3∈K

4
3 =span(b3,A3b2,A3A2b1,A3A2A1b3)

.

Their differences can be clearly illustrated by Fig. 6.1. The independency of Krylov

subspaces constructed on different time step segments is obviously revealed. In the sequel,

we further show that such a structured subspace can also lead to a number of structured

operations, which can be easily mapped on the parallel GPU platform.

6.3.2 GMRES with periodic Krylov subspaces

In practice, the simulation takes a lot of time steps to obtain accurate result in

one signal cycle. This will generate a total number of M Krylov subspaces in the cyclic

structured GMRES, which cost a high memory overhead. To reduce this M -cyclic system,
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(b) Krylov subspace in p-cyclic GMRES.

Figure 6.1: The comparison of standard Krylov subspace and p-periodic-block-structured
Krylov subspace. Order m = 4, and p = 3 time steps.

[103] proposed block Gaussian elimination to derive a p-cyclic system, where p≪M . The

time point indices (1, . . . , M) in one cycle are partitioned as

(1, 2, · · · , q1
︸ ︷︷ ︸

Part 1

, q1 + 1, · · · , q2
︸ ︷︷ ︸

Part 2

, · · · , qp−1 + 1, · · · , qp
︸ ︷︷ ︸

Part p

),

where qp = M , and the selection of qj , j = 1, . . . , p, usually makes a uniform partition

of the whole cycle, which makes the number of time steps in each segment the same, i.e.,

close to M/p. This partition will separate the total M time steps into p segments, where p

Krylov subspaces are to be computed by Arnoldi iteration. We follow the reduction scheme

as described in [103], with only changes to employ matrix-free basis vector computation

inspired by [93]. Our algorithm is summarized in Algorithm 10. The krylov subspaces

constructed inside this algorithm still satisfy the relationship stated in Eq. (6.17), except

that the number of blocks is reduced from M to p, and hence the definition of j ⊖ 1 is
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changed to

j ⊖ 1 =







j − 1, if j = 2, . . . , p,

p, if j = 1.

(6.18)

We call the procedure in Algorithm 10 as periodic Arnoldi shooting (PAS) based

GMRES. In this algorithm, the subscript j denotes the index of the periodic blocks, j =

1, . . . , p, and the superscript i denotes the index of the order of the Krylov subspace, i =

1, . . . , m. The key procedure of PAS GMRES is the periodic Arnoldi iteration, between

Line 9 and Line 18, which generates the periodic Krylov subspace, i.e., the block matrices

Vm
j and Hm

j , j = 1, . . . , p, as shown in Eq. (6.15) and Eq. (6.16).

By employing the Arnoldi decomposition in Eq. (6.14), the generated subspace

bases Vm
j and Hessenberg matrices Hm

j from Algorithm 10 are used to determine the

approximate shooting solution x. Similar to the traditional GMRES, the coefficient y of

the linear combination of subspace basis vectors is solved in a least squares problem, where

the left-hand side matrix is constructed from Hessenberg matrices Hm
j , i.e.,















Ĩ −Hm
1

−Hm
2 Ĩ

. . .
. . .

−Hm
p Ĩ





























y1

y2

...

yp















≃















δ1e1

δ2e1

...

δpe1















, (6.19)

with Ĩ =







Im×m

0







. Then, after the solving completed, each yj ∈ R
m is used to calculate

the shooting result at the j-th block, xj = Vm
j yj .

Similar to the concept of matrix-free in Algorithm 9, the product of Ajv̂j is di-

rectly calculated by using sparse matrix Cj in the MVP and using pre-factorized sparse
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Algorithm 10 GPU accelerated periodic Arnoldi method

Input: Sparse LU factors of matrices Gj + 1
hj

Cj , capacitance matrices Cj ,

vectors bj , and step length hj , j = 1, . . . , p.

Output: Updated shooting result, x = [x1, · · · ,xp].

1: for j = 1 to p do // parallel in GPU

2: v̂j = [Gqj−1+1 + 1
hqj−1+1

Cqj−1+1]
−1bqj−1+1

3: for k = qj−1 + 2 to qj do

4: v̂j = [Gk + 1
hk

Ck]
−1 1

hk
Ck−1v̂j + bk

5: end for

6: [v1
j , dummy] = orth(v̂j , [ ])

7: V1
j = [v1

j ], and δj = 〈v1
j ,bj〉 // First basis vector.

8: end for

9: for i = 1 to m do // Arnoldi iteration: serial loop

10: for j = 1 to p do // parallel in GPU

11: v̂j = vi
j⊖1 // ⊖ is defined in Eq. (6.18).

12: for k = qj−1 + 2 to qj do

13: v̂j = [Gk + 1
hk

Ck]
−1 1

hk
Ck−1v̂j

14: end for

15: [vi+1
j ,Hj(1 : i + 1, i)] = orth(v̂j ,V

i
j)

16: Vi+1
j =

[

Vi
j vi+1

j

]

// New basis vector.

17: end for

18: end for

19: Solve least squares problem in Eq. (6.19), and then calculate the shooting result x
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LU factors of Gj + Cj/hj in triangular solves, shown in Line 3 to Line 5 and Line 12 to

Line 14 in Algorithm 10. Then, these newly computed vectors go through a series of orthog-

onalization with respect to their predecessors in the corresponding subspaces. Householder

orthogonalization is applied for its better accuracy and quality of orthogonality.

However, different from standard GMRES and matrix-free GMRES, the periodic

structure of the generated Krylov subspace is preserved in Algorithm 10, because each

orthonormalized base vi
j is constructed separately for each Aj . In contrast, the bases of

the Krylov subspace in Algorithm 8 and Algorithm 9 are generated for the overall JφT
=

ApAp−1 · · ·A1. As a result, the periodic structure of the underlying Krylov subspace is

destroyed.

6.3.3 More independent tasks for better parallelization

In this subsection, we show that the p-cyclic GMRES algorithm is more suitable for

parallelization than the traditional GMRES method in the context of the shooting method.

To map an algorithm onto a parallel one, we first identify the parallelizable parts

or independent computing parts, especially the most expensive elements, in the sequential

algorithm. At one Arnoldi iteration in Algorithm 10, the p Krylov subspaces are indepen-

dently calculated. For each of these subspaces, to generate a new basis vector, there would

be approximately M/p matrix-vector multiplications, sparse LU triangular solves, where M

is the total number of time points in one signal cycle. As the subspaces grow larger, the

orthogonalization step also needs BLAS level-1 operations. Even though matrix-free formu-

lation is applied, the new basis vector generation still requires M/p forward eliminations and

backward substitutions (two triangular solves) with the saved sparse LU factors, which is
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still the most computation intensive task. Furthermore, to complete the m-th order Krylov

subspaces at all time steps, this Arnoldi iteration is repeated for m times. Therefore, the

most time consuming step in the whole algorithm is the Arnoldi iteration. Fortunately, in

the new algorithm, the calculation of subspaces at different time steps become independent

and the p-cyclic Arnoldi iterations can be mapped to many independent threads in GPU,

which is clearly better than the traditional non-structured Arnoldi method where these

subspaces have to be computed sequentially.

The complexity and convergence of a periodic Arnoldi method is similar to the

standard Arnoldi method. The least square problem in Line 19 has a reduced size which is

much smaller than the scale of the original circuit problem. Hence, its solving is compara-

tively inexpensive and a common LAPACK routine, gels, can accomplish the job efficiently

on CPU.

6.4 Parallelism strategy on GPUs for p-cyclic GMRES method

In this section, we will present the implementation details of our GPU accelerated

PAS method, GAPAS, such as thread organization, memory allocation and access, and

latency hiding.

A brief illustration of shooting-Newton process is drawn in Fig. 6.2, where the

shooting iteration is on top of one period simulation of traditional transient analysis, and

the shooting update calculation on GPU part is shown at the end of each period’s simulation.

The good virtue of p-cyclic GMRES is its parallel subspace construction, which

is run on GPU in this work. A total number of p parallel tasks can be dispatched to
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parallel GPU computing platforms simultaneously. In addition, the change of p does not

affect GPU scheduling, since NVIDIA CUDA GPU parallel architecture allows flexible

resource allocation, such as mapping an arbitrary number of GPU cores to a parallel thread

block, which works on an independent part of data in the p-cyclic GMRES. The launch

of parallel GPU threads and blocks can be configured during running time, and different

thread blocks are scheduled independently on the GPU streaming multi-processors. This

is called transparent scalability, where hardware is free to schedule thread blocks on any

processor [106].

In order to fully unleash the massive parallel power of CUDA GPU architecture,

several key issues have to be considered in order to make the shooting process cater the

appetite of GPU: (1) good thread block configuration with the goal to balance resource per

block and thus keep all streaming multiprocessors busy; (2) optimizing thread organization

to enable coalesced memory access; and (3) concurrent launching of kernel execution and

memory copy, in order to hide data transfer latency. We will explore those key issues in our

GPU implementation of the new algorithm as shown below.

We begin our discussion from the parallelism strategy on GPU platforms for the

major computing elements in the Arnoldi iteration shown in Algorithm 10. First, the sparse

matrix-vector product Cjv̂j can be parallelized both on block level and thread level, since

the multiplication of the matrix and the old basis vector can be carried out independently

in different thread blocks for different blockIdx. Furthermore, inside the blocks of the

same blockIdx, different rows will be computed in parallel by multiple threads, which

is similar to [107]. Next, the resulted product vectors go through the sparse triangular
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Figure 6.2: The flow of shooting-Newton update with p-cyclic GMRES solver on GPU side.
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solving steps with the pre-stored LU factors. Though the forward elimination and back

substitution are inherently sequential at the first glance, there is still much parallelism

suitable for GPU, especially for the sparse circuit matrices, where the dependencies on

previously obtained elements of solution are not as dominant as they are in dense matrix

cases [82]. Lastly, the newly generated vectors must be orthogonalized with respect to their

predecessors in corresponding subspaces. This orthonormalization process can be highly

parallelized, because only vectors are involved here and all operations belong to the BLAS

level-1 category. Due to their data parallel nature and fairly regular memory access pattern,

GPU usually can almost attain its peak performance.

6.4.1 Task and data assignments between CPU and GPU

GPU computation can accelerate both the traditional GMRES and our PAS GM-

RES. For traditional GMRES, one observation is that tremendous amount of matrix vector

multiplications (MVMs), which are very amenable for GPU, are employed in GMRES. To

implement such a common MVM operation on GPU, we notice that memory bandwidth

is a critical part of performance bottleneck and must be considered when programming

applications for GPU computing. Using the same strategy in Section 5.3.2, the coefficient

matrix A should be transferred to GPU memory once and used repeatedly during Arnoldi

iteration.

Specifically, once the initial transfer of the left-hand side matrix A, right-hand side

vector b, and initial guess x0 are finished, the only time a memory transfer is made in the

main loop of the GMRES implementation is when building the Hessenberg matrix during

the orthonormalization process. During this step, the (i + 1)-th column of H is transferred
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back to the CPU side, from which a least square minimization is performed to see if the

desired tolerance of our residual has been met. Therefore, all matrix-vector, vector-vector,

and scalar-vector operations are performed without any unnecessary data transfers. All of

these operations are implemented with the well optimized CUDA implementation of Basic

Linear Algebra Subprograms (CUBLAS).

For PAS GMRES, GPU parallel computation can also be applied to the overall

Arnoldi iteration for p-cyclic Krylov subspace construction, since the generation of new

basis vectors in their corresponding Krylov subspaces is highly parallel. This can be easily

observed by inspecting the for-loop in Algorithm 10. In a serial CPU computation, it iterates

through all the p time step segments, in order to carry out the matrix-vector multiplication,

vector orthogonalization, and save basis vectors and Hessenberg matrices. However, the

computation of basis vector inside each subspace for different time step segments j = 1, . . . , p

are independent. Therefore the for-loop between Line 10 and Line 17 are implemented in

parallel on GPU in our parallel version, as illustrated in Fig. 6.4. Although the for-loop at

the beginning of the algorithm is a one-time job and it consumes only a small fraction of

the whole computation time, it is also implemented in parallel since the kernel functions

in this loop, e.g., triangular solve and Householder orthogonalization, can be reused by the

aforementioned parallel part in the Arnoldi iteration.

Before the GPU kernel functions (functions run in GPU multiprocessors) work on

the parallel Arnoldi process, device memory allocation are required for subspace bases Vm
j

with size of N -by-m per time step segment, Hessenberg matrices Hm
j with size of (m + 1)-

by-m per time step, and other necessary workspace for intermediate results, for all indices
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j = 1, . . . , p. This is shown in Fig. 6.5, where memory blocks for different time steps are

marked by different colors, and the assigned GPU kernels for each time step will read from

and write into their corresponding memory blocks. After the overall Arnoldi process is

completed, Hessenberg matrices are used to solve a least squares problem on CPU to finally

assemble the approximate solution in the span of the Krylov subspaces.

6.4.2 Optimization of memory accesses in subspace construction

Now let us go through the details of the GPU kernel functions for the parallel

Krylov subspace construction. The first kernel of our interest is the one which carries out

the matrix-vector multiplication, since p-cyclic GMRES, like all its siblings in the family of

Krylov subspace methods, relies on matrix-vector multiplication to generate the new basis

vector. Note that in our matrix-free technique, the matrix-vector multiplication actually

comprises several sequential steps: (1) sparse matrix-vector product, i.e., w = 1
hi

Cjv, and

then, (2) sparse triangular solve of w = [Gj + 1
hj

Cj ]
−1w, where the circuit Jacobian is

expressed by its sparse LU factors such as Lj , Uj , and some pivoting information.

Since the new basis vectors generated on different time step segments are calculated

independently, the steps such as sparse matrix vector multiplication, triangular solve, and

orthogonalization of the basis on different time steps are mapped onto separate GPU blocks

in the kernel invoking.

The cyclic Krylov method is reflected in the vector copy operation, v̂i
j = vi

j⊖1,

which is a prerequisite step in the beginning of each loop. The symbol ⊖ is defined in

Eq. (6.18). In the i-th iteration of the Arnoldi process, the new basis vector vi+1
j of the

j-th block is generated using vi
j⊖1, i.e., the most recent basis vector of the (j ⊖ 1)-th
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Figure 6.3: Parallel p-cyclic basis vector copy using GPU thread blocks. (Line 11 in Algo-
rithm 10)

block. In CUDA GPU devices, when the base address of global memory access inquired

by the threads of a half warp is aligned to memory segment boundary and the threads

access memory in a consecutive way (neighbor thread accesses neighbor data), the number

of memory transactions is minimized and thus performance is optimized. Accordingly, our

allocation and storage of all the Krylov basis vectors at all time step segments (blocks) have

taken care of this issue, hence the vector copy can be carried out in a coalesced fashion.

To be more specifically, we enumerate p thread blocks in the GPU kernel, and the j-th

thread block will accomplish the job of copying vi
j⊖1 to v̂i

j . Inside each block, coalesced

memory read and write are achieved: the k-th thread accesses the k-th element in both of

the vectors.

The next step is calculation of AjCjv̂j/hj using the saved sparse matrices of Cj

and LU factors of Aj . We further remark the application of MVM to the calculation of new

basis vector. Same as the matrix-free GMRES method, we also use the pre-factorized LU
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matrices from the linearization process of device models, since these matrices are required by

SPICE on each time step. Therefore, once they are available, we save them into compressed

row major form (CSR) sparse matrix. Hence, it accelerates periodic structured GMRES

when using GPU MVM to generate the new vector. To enable the optimized global memory

coalesced accesses to the CSR matrices of Cj and LU factors, zeros are padded to make the

number of entries in each row a multiple of half warp size.

It has been shown in [103] that the Krylov subspace construction, i.e., the for-loop

from i = 1 to m, is the most expensive part of Algorithm 10. However, it does not take much

effort to find out that its loop body, i.e., the inner for-loop which calculates subspaces at all

the p time step segments and their corresponding blocks, can be mapped to p parallel GPU

thread blocks, so that each thread block computes new basis vector and orthogonalization

at one time step and different thread blocks work independently. It is noteworthy that

although the operation in Line 11 requires the result from previous iteration and the j-th

block needs the result of the (j ⊖ 1)-th block, it can be efficiently implemented in parallel

with coalesced global memory access. Synchronization are necessary to ensure all the p

blocks have written the data to global memory before a memory read starts in the new

iteration. This operation is illustrated in Fig. 6.3.

In GAPAS, solving the least squares problem in Eq. (6.19) is done in CPU as

we have to check the results from p parallel blocks to determine the convergence of the

algorithm. As a result, memory transfer from device to host is necessary. A simple way to

perform this memory transfer would be copying the whole m-th order Hessenberg matrices

after all the Arnoldi iterations completed. However, there is a better way to do this. We
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propose a scheme to take the advantage of CUDA GPU’s capability of copying the memory

concurrently with kernel execution. This means the most recently generated columns Hj(1:

i + 1, i) are scheduled to be sent to host memory asynchronously, while the GPU kernel is

calculating the new basis vector in the (i + 1)-th Arnoldi iteration. Therefore, the memory

copy time is well overlapped by the running time of kernel execution. The only prerequisite

special to concurrent memory copy is the allocation of page-locked host memory. We notice

that this kind of memory is a scarce resource and should not be overused. However, the

memory size required to store all the Hessenberg matrices is typically not big, and the

computers severs can accommodate them on page-locked memory.

Once the kernels for Krylov subspace construction are finished on all m-order

subspaces and all matrices of H are copied to host memory, the least squares problem is

formulated and solved by LAPACK routine gels on CPU.

6.5 Numerical experiments

The proposed periodic Arnoldi shooting method, PAS-GMRES, is implemented

in C within SPICE, and its GPU parallel version, GAPAS, is also programmed into the

same simulator with CUDA C. We do admit that preconditioners are beneficial to iterative

solvers such as GMRES. However, there is no preconditioner used here in any one of these

iterative solvers. This is because the choice and setup of a preconditioner usually requires

the knowledge of the matrix, whose explicit form is not available in the matrix-free GMRES.

We list some of the parameters used in the GMRES solvers as follows. (1) The maximum

number of iterations is set to 6000. In practice, any large number could be used. However, if
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Figure 6.4: CPU-GPU collaboration inside a shooting cycle.

Figure 6.5: Parallel computation of Krylov-subspaces on GPU.
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the residual under observation does not improve very much, or the solver stalls and fails to

converge, the solving process can be manually terminated. (2) The tolerance of convergence

tol is set to 10−6, which means the relative residual of the result, i.e., ‖b −Axk‖/‖b‖, is

required to be less than tol. (3) The restart number is set to 32. This number is usually

chosen with a small value, so that it restricts the Krylov subspace’s size, and thus keeps

storage cost under a limit.

The GPU card we use for all the experiments is NVIDIA’s Tesla C2070 (with

ECC on), which is based on the Fermi architecture for true double precision support. It

contains 14 multiprocessors (32 cores per multiprocessor, and totally 448 cores) and works

in a 1.15 GHz clock rate with 5 GB global memory and 144 GB/sec memory bandwidth.

For the CPU part, the server has a Quad-Core Intel E5504 CPU and 24 GB memory.

The explicit GMRES with the non-structured Krylov subspace, and the matrix-

free GMRES with the non-structured Krylov subspace, are implemented for the comparison.

The non-structured Krylov subspace is directly adapted from the template in [108], with

a few modifications to comply with SPICE data structures. The matrix-free GMRES is

implemented exactly following the procedure described in [93,95], and is called MF-GMRES

in the following. The GMRES iteration tolerance is set as 10−6 for voltage nodes. We

compare the accuracy and runtime with a scalability study using six industrial analog/RF

examples, including a BJT mixer, a CMOS low noise amplifier (LNA), a CMOS frequency

multiplier, a CMOS ring oscillator, a CMOS switch cap, and a CMOS DC converter. The

circuit diagrams of the mixer and oscillator are given in Fig. 6.6 and Fig. 6.7. We increase

the complexity by adding extracted parasitic extraction, i.e., the substrate mesh.
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Table 6.1 summarizes the simulation results for all examples. The different circuit

sizes, i.e. number of equations in MNA form, are shown next to the circuit names. The table

also records the running time of direct LU method, explicit GMRES method, matrix-free

GMRES method, and periodic structured Arnoldi based GMRES, in the four categories

labeled 1 to 4 on the top of the table. Specifically, there are two time measurements in

Category-4, since the proposed PAS methods are implemented both in CPU program and

GPU parallel form, to show the GPU speedup over its serial counterpart.

We first show that GAPAS’ efficiency on GPU. We can observe from Table 6.1

that, due to the optimized implementation of MVM and the use of the structured PAS, the

performance of shooting-GMRES can be further improved in parallel implementation. Due

to the limited number of testing benches, we generally observe over ten times speedup gain

is obtained for GAPAS in comparison with its CPU version, the PAS-GMRES method. The

performance improvement is improved for larger sized circuits. For example, 8.3× speedup

is observed for a post-layout ring oscillator circuit with 1152 states. We expect that the

new GAPAS solver to yield even larger speedups with much bigger sized circuits.

Second, PAS-GMRES is better than the traditional MF-GRMES in term of run-

ning time given the same accuracy, as can be judged from Table 6.1. Also note that the

explicit formulation of matrix in GMRES leads to the similar runtime to direct LU, since

the cost of forming the matrix A explicitly will dominate the whole computation in both

cases. On the other hand, the direct calculation of matrix-vector product with reusing the

pre-factorized sparse LUs leads to a significant speedup in MF-GMRES and PAS-GMRES.

As demonstrated in Algorithm 10 earlier, the two computationally intensive parts
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Figure 6.6: A double-balanced BJT mixer.
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Figure 6.7: A CMOS ring oscillator.
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Table 6.2: Selection of the partition number p can affect the performance of the parallel
solver. The measurement in this table is taken from the DC-converter example, with p
changed to show the difference. There are totally M = 400 time steps in one signal cycle,
which are separated into p partitions.

partition parallel part sequential part total
number Arnoldi iteration time least squares time time

p (seconds) (seconds) (seconds)

25 4.08 0.01 4.10
50 2.24 0.04 2.28
66 1.71 0.07 1.78
80 1.46 0.11 1.57
100 1.23 0.19 1.42
200 1.22 1.09 2.31
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in GAPAS are the Arnoldi iteration and the least squares problem. With parallel implemen-

tation, the Arnoldi iterations on p independent Krylov subspaces are run simultaneously

on GPU. However, the least squares problem, whose size grows as p increases, is still a

sequential one in its nature. Therefore, the partition number p must be chosen in a way

that the GPU resources are utilized to their maximum capacity, and at the same time the

resulted least squares problem is not too big to solve. Table 6.2 makes a comparison using

different partition number p. It is observable that as more parallel Arnoldi iterations are

deployed on GPU, the time spending on this part of the algorithm is reduced since the GPU

cores are fully populated and maximum throughput is attained. However, simply tuning

the program to accelerate this part does not result in an optimal performance. This is

because the solver also needs to solve the least squares problem after the Arnoldi iteration.

And the bigger the partition number p is, the bigger the size of the least squares problem,

which ends up with a longer solving time. Table 6.2 suggests that p = 100 is the best choice

which reconciles well the two contradicting procedures. Note that the time measurements

here only take into account the pure CPU or GPU execution time. All other expenses are

not included, since we want to emphasize the importance of GPU task balance. The time

measurements in Table 6.1 include all time spent in the solver, such as memory allocation

and copy and other flow control overheads. The time of host/device memory copy is one

concern in GPU program, but the saved computation time from the GPU parallel kernel

execution has already paid the cost of memory copy, as judged by our experiments.

We show details of three examples with a further waveform accuracy comparison.

The first example is a CMOS ring oscillator, which contains 1152 states and its operation
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frequency is 1.6 GHz. Fig. 6.8 demonstrates the waveforms at the oscillator’s output node,

and both the MF-GMRES and the proposed PAS-GMRES attain to the same accuracy. The

second example is a BJT mixer with 1024 states and a carrier input frequency of 1 GHz.

Fig. 6.9 shows two periodic steady states at two nodes, generated by the MF-GMRES and

PAS-GMRES at the same tolerance, respectively. Clearly, the two converged waveforms are

identical to each other.

In Fig. 6.11, we further study the running time scalability by increasing the size of

parasitic extraction. The example used is a CMOS DC converter with switching frequency

of 1 MHz. The circuit complexity is increased from 200 to 1600 states. The running time

is measured for both serial PAS-GMRES on CPU and parallel GAPAS on GPU under the

same error tolerance. For a medium sized circuit containing about one thousand states,

GAPAS has a smaller running time, less than a quarter of the CPU counterpart. We note

that the benchmark circuits used here may not be large enough if compared to some huge

circuits in post-silicon verification. This is partly due to the memory limitation of current

GPU cards. With future releases of more advance GPU cards, we expect to test larger

examples.

6.6 Summary

A structured shooting algorithm that can fully exploit parallelism in periodic

steady state (PSS) analysis has been discussed. Our new algorithm, GAPAS, first explores

a periodic structure of the state matrix by using a periodic Arnoldi algorithm for computing

the resulting structured Krylov subspace in GMRES solver. We showed that the resulting
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Figure 6.11: The running time scalability comparison for a CMOS DC converter with
increased sizes of parasitic. The red line is the scale of running time of the CPU serial
version of PAS GMRES, and the blue line is the scale of running time of our GPU parallel
GAPAS.

periodic Arnoldi shooting method is friendly to be adapted to parallel computing like GPU.

Secondly, we parallelized the periodic Arnoldi based GMRES solver in the shooting-Newton

method on the latest NVIDIA Tesla GPU platform. We explored the coalesced memory

access and overlapping memory transfer with computing to further boost the efficiency of

the GAPAS method. Experiment results on a number of radio frequency and microwave

circuits have showed that GAPAS can lead up to 8× runtime speedup over its sequential

CPU version.
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Chapter 7

GPU envelope-following method

for power converter simulation

In this chapter, we will propose a new envelope-following parallel transient analysis

method for general switching power converters. Similar to shooting problem in Chapter 6,

there is a Newton update in envelope-following algorithm, and its solving is also the most

computational expensive one in the flow. We employ GMRES for this task, and apply the

matrix-free Krylov basis generation technique, which was previously used for RF simulation.

The GMRES is implemented on GPU for its data parallel feature. In addition, our new

method uses a more robust integration scheme, Gear-2, to compute the sensitivity matrix

instead of traditional integration methods. Experimental results from several integrated on-

chip power converters show that the proposed GPU envelope-following algorithm leads to

about 10× speedup compared to its CPU counterpart, and 100× faster than the traditional

envelope-following methods while still keeps the similar accuracy.
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7.1 Introduction

Over the past decades, power electronics and especially switching power converters

have seen a surge of new trends and novel applications — from the growing significance of

pulse-width modulation (PWM) rectifiers and multi-level inverters to their widespread use

in renewable (like solar and wind) energy systems, smart grids and emerging electric and

hybrid vehicles [109].

This requires more efficient simulation techniques for power electronics to meet the

new application and demanding design constraints. To facilitate the design of typical power

electronics circuits, many special-purpose simulation algorithms and tools were developed.

Among them is the envelope-following method [110–112], which is able to calculate the

slowly changing contour, or envelope, of a carrier waveform with a much higher switching

frequency. This is the case for switching power converters, which have fast switching currents

to convert powers from one voltage level to another. In these switching power converters, it

is the envelope, which is the power voltage delivered, not the fast switching waves in every

cycle, that is of interest to designers. As shown in Fig. 7.1(a), the solid line is the waveform

of the output node in a Buck converter [113], the dots are the simulation points of SPICE,

and the appended dash line is the envelope.

Obviously, traditional SPICE will incur an extraordinarily high simulation time

for this task, since it has to integrate the circuit’s differential equation with many time

points in every clock cycle to get the carrier waveform. However, we don’t care about

the accurate details of this waveform, since its envelope suffices our appetite. For switch-

ing power converters, the waveform of the carrier in consequent cycles does not change

153



clock cycle T

jump k periods

envelopetransient
points
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(b) The envelope changes in a slow time scale.

Figure 7.1: Transient envelope-following analysis. (Both two figures reflect backward-Euler
style envelope-following.)
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much, envelope-following method is an approximation analysis method, which skips over

several cycles (the dash line in Fig. 7.1(b)), the so called envelope step, without simulating

them, and then carries out a correction, which usually contains a sensitivity-based Newton

iteration or shooting until convergence, in order to begin the next envelope step.

Also, iterative GMRES solver is typically used in the envelope-following method

to compute the solution of Newton update due to its efficiency compared to direct LU

method. However, as the Jacobian matrix or the sensitivity matrix in the equation to be

solved is dense, explicit computing of the Jacobian is a very expensive process. Matrix-free

GMRES proposed in [93] for RF shooting simulation can be used here to ameliorate the

situation, as we did in Chapter 6. Motivated by the data parallel power of modern GPU,

we propose a new parallel envelope-following method for the transient analysis of switching

power converter circuits. The main contributions in his work include: (1) Parallelization

of the Newton update, which is the most time consuming step, in the envelope-following

method, on GPU platforms. (2) Development of the new GMRES solver using matrix-

free Jacobian-vector multiplication and the Gear-2 integration for sensitivity based Newton

update equation.

Next, the basic algorithm of envelope-following will be briefly reviewed and Newton

update equation is derived in Section 7.2. Then Section 7.3 presents the CPU paralleliza-

tion of matrix-free GMRES with Gear-2 integration. Numerical examples are shown in

Section 7.4, and finally, this chapter is summarized in Section 7.5.
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7.2 Review of envelope-following method

In transient analysis, a nonlinear circuit’s behavior can be represented by a coupled

set of nonlinear first-order differential algebraic equations (DAE) of the form

d

dt
q(x(t)) + f(x(t)) = b(t), (7.1)

where x(t) ∈ R
N is the vector of circuit variables, usually comprising node voltages and

possibly branch currents, f(·) is a nonlinear function that maps x(t) to a vector of N entries

most of which are sums of resistive currents at a node, q(·) maps x(t) to a vector of N

entries of capacitor charges or inductor fluxes, and b(t) contains the input source values.

For many power electronics circuits, the input switching signal is known and is periodic

with clock period T , or called signal cycle.

Assume the time inside one period T has been discretised into M time steps,

0 = t0 < t1 < t2 < · · · < tM = T , and the i-th step length is hi = ti − ti−1. In practice,

the discretisation is non-uniform to control truncation error and convergence. Then, given

an initial condition x(0) at t = 0, numerical integration is applied to find the time domain

solution of circuit state x(t) at each time step till t = T .

For those circuits whose carrier waveforms vary slowly in a large number of periods,

the envelope-following method only integrates the DAE in several selected periods and then

jumps over to a new time point. By repeating this “simulate and skip” action, envelope-

following method attains its efficiency compared to conventional transient analysis, but still

can accurately obtain the slow varying envelope.

For example, if the clock period is T , and the suitable jump interval for the envelope

is k periods, then the envelope step is kT . Suppose the state at time t = mT is known
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as x(mT ), the goal of envelope-following is to obtain the state at the next envelope step,

x((m+k)T ). Therefore, envelope-following will lead to significant saving in simulation time

if envelope steps are much larger than the clock period, i.e., k is much bigger than one.

To estimate x((m+k)T ), a forward-Euler style jumping relies only on x(mT ) and

x((m− 1)T ), i.e.,

x((m + k)T ) = x(mT ) + k [x(mT )− x((m− 1)T )] .

However, this approach is inefficient due to its restriction on envelope step k, since larger k

usually causes instability. Instead, backward-Euler jumping,

x((m + k)T )− x(mT ) = k [x((m + k)T )− x((m + k − 1)T )] ,

allows larger envelope steps. Here x((m + k− 1)T ) is the unknown variable to be solved by

Newton iteration, and x((m+ k)T ) is dependent on x((m+ k− 1)T ) in each iteration. The

Newton update equation in each iteration is thus expressed as

∆x((m + k − 1)T ) = A−1
[
(k − 1)xj((m + k)T )− kxj((m + k − 1)T ) + x(mT )

]
, (7.2)

where the Jacobian matrix A is computed as a combination of circuit sensitivity matrix and

identity matrix, as

A = (k − 1)
dx((m + k)T )

dx((m + k − 1)T )
− kI = (k − 1)J− kI. (7.3)

In each Newton iteration, x((m+k−1)T ) is used as initial condition to calculate x((m+k)T )

by integrating the DAE in one clock period. Meanwhile, the conductance matrix Gi =

df(x(ti))/ dx(ti) and the capacitance matrix Ci = dq(x(ti))/ dx(ti) at each time step are

used to derive the sensitivity matrix J = dx((m + k)T )/ dx((m + k − 1)T ).
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Different integration rules can be applied to the computation of sensitivity ma-

trix. It can be easily derived that, if the DAE is integrated with backward-Euler rule, the

sensitivity is

J =
dxM

dx0
=

M∏

i=1

(
1

hi
Ci + Gi

)−1 1

hi
Ci−1.

In short, the envelope-following method is fundamentally a boosted version of

traditional transient analysis, with certain skips over several periods and a Newton iteration

to update or correct the errors brought by the skips, as is exhibited by Fig. 7.2.

7.3 New parallel envelope-following method

In this section, we explain how to efficiently use matrix-free GMRES to solve the

Newton update problem with implicit sensitivity calculation, i.e., the steps enclosed by the

double dashed block in Fig. 7.2. Then implementation issues of GPU acceleration will be

discussed in detail. Finally, the Gear-2 integration is briefly introduced.

7.3.1 GMRES Solver for Newton update equation

Both the 3D IC thermal simulation and shooting method in previous chapters used

GMRES solver. (Refer to Section 5.3 and Section 6.2.2.) Again, as matrix-free technique

does not explicitly formulate a coefficient matrix, we cannot build preconditioner either

here. Hence, all the appearances of preconditioner matrix M mentioned in Algorithm 8 are

assumed to be identity matrix in the envelope-following case.

At a first glance, the cost of using GMRES directly to solve the Newton update in

Eq. (7.2) seems to come mainly from two parts: the formulation of the sensitivity matrix
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save time steps hi,

matrices Ci, and

the LU factors of Ji

t = t + hi

update x((m + k − 1)T )
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solve Newton update equation
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compute sensitivity matrix

converged ?
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yes
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t < (m + k)T ?

for x(t)

integrate DAE

Figure 7.2: The flow of envelope-following method.
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J = dxM/ dx0 in Eq. (7.9) in Section 7.3.2, and the Arnoldi iteration, especially the matrix-

vector multiplication and the orthonormal basis construction (Line 4 through Line 9 in

Algorithm 8). In fact, only the matrix-vector product is required in GMRES. Based on

this reason, the work in [93] introduces an efficient matrix-free algorithm in the shooting-

Newton method, where the equation solving part also involves with a sensitivity matrix. The

matrix-free method does not take an explicit matrix as input, but directly passes the saved

capacitance matrices Ci and the LU factorizations of Ji, i = 0, . . . , M , into the Arnoldi

iteration for Krylov subspace generation. Therefore, it avoids the cost of forming the dense

sensitivity matrix. Briefly speaking, Line 4 will be replaced by a procedure without explict

A, and we will talk about the flow of matrix-free generation of new basis vectors in later

sections.

There exist many GPU-friendly computing operations in GMRES, such as the

vector addition (axpy), 2-norm of vector (nrm2), and sparse matrix-vector multiplication

(csrmv), which have been parallelized in the CUDA Basic Linear Algebra Subroutine Li-

brary (CUBLAS) and the CUDA Sparse Linear Algebra Library (CUSPARSE) [55].

GPU programming is typically limited by the data transfer bandwidth as GPU

favors computationally intensive algorithms [13]. So how to efficiently transfer the data

and wisely partition the data between CPU memory and GPU memory is crucial for GPU

programming. For these issues, we still use the same strategy mentioned in Section 5.3.2,

and the flow of GPU GMRES solver is similar to Fig. 5.8.

As noted in Section 7.2, envelope-following method requires the matrices gathered

from all time steps in a period in order to solve a Newton update. At each time step,
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SPICE has to linearize device models, stamp matrix elements, and solve circuit equations

in its inner Newton iteration. When convergence is attained, circuit states are saved and

then next time step begins. This is also the time when we store the needed matrices for

envelope-following computation. Since these data are involved in the calculation of Gear-

2 sensitivity matrix in the generation of Krylov subspace vectors in Algorithm 11, it is

desirable that all of these matrices are transferred to GPU for its data parallel capability.

To efficient transfer those large data, we explores asynchronous memory copy be-

tween host and device in the recent GPUs (Fermi architecture), so that the copying overlaps

with the host’s computing of the next time step’s circuit state. The implementation of asyn-

chronous matrices copy includes two parts: allocating page-locked memory, also known as

pinned memory, where we save matrices for one time step, and using asynchronous mem-

ory transfer to copy these data to GPU memory. While it is known that page-locked host

memory is a scarce resource and should not be overused, the demand of memory size of the

data generated at one time step can be generously accommodated by today’s mainstream

server configurations.

7.3.2 Gear-2 based sensitivity calculation

The Gear-2 integration method is a backward differentiation formula (BDF), which

approximates the derivative of a function using information from past few steps. Gear-2

method has been shown to be more suitable for many practical problems such as stiff

problems where circuit behavior is affected by different time constants (fast ones with large

poles and slow ones with small poles) [30]. Switching power converters and RF systems are

typically stiff systems as waveforms changing in two different time scales are involved.
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Given the DAE in Eq. (7.1), at the i-th time step, Gear-2 approximates the deriva-

tive dq(x(t))/ dt by a two-step backward finite difference,

dq(x(ti))

dt
=

1

hi

[
q(x(ti))− αi

1q(x(ti−1))− αi
2q(x(ti−2))

]
,

where the coefficients α’s are chosen to satisfy Gear’s backward differentiation formula [114].

For uniformly discretised time steps, the index i in hi, αi
1 and αi

2 can be omitted.

For the first step t1, only the initial condition at t0 is available. Therefore backward-

Euler is used, i.e.,

1

h1
[q(x1)− q(x0)] + f(x1) = b1. (7.4)

Since x0 directly affects the solution of x1, the sensitivity matrix up to now is

dx1

dx0
=

[
1

h1
C1 + G1

]−1 C0

h1
= J−1

1

C0

h1
. (7.5)

Let Ji denote Ci/hi+Gi in the remaining of this chapter. In addition, the LU factorizations

of Ji are already calculated since they are used to solve the circuit state at each time step

before we calculate the sensitivity.

Next, for the solution at t2, with the previous two steps information available,

Gear-2 integration can be applied,

1

h2
[q(x2)− α1q(x1)− α2q(x0)] + f(x2) = b2. (7.6)

In view of the sensitivity of x2 with respect to the changes of x0, Eq. (7.6) indicates that

x2’s perturbation can be traced back to x0 along two paths: x2 is directly affected by x0,

and x2 is also affected indirectly by x0 via x1. That is,

dx2

dx0
=

∂x2

∂x1

dx1

dx0
+

∂x2

∂x0
,
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where the two partial derivatives are

∂x2

∂x1
= J−1

2

α1

h2
C1,

∂x2

∂x0
= J−1

2

α2

h2
C0,

and dx1/ dx0 is calculated previously in Eq. (7.5). Thus, the sensitivity matrix deduced

from Eq. (7.6) is

dx2

dx0
= J−1

2

α1

h2
C1 · J

−1
1

C0

h1
+ J−1

2

α2

h2
C0. (7.7)

Likewise, for t3, apply the Gear-2 integration formula to DAE (7.1),

1

h3
[q(x3)− α1q(x2)− α2q(x1)] + f(x3) = b3, (7.8)

and the chain rule for sensitivity is

dx3

dx0
=

∂x3

∂x2

dx2

dx0
+

∂x3

∂x1

dx1

dx0
= J−1

3

[
α1

h3
C2

dx2

dx0
+

α2

h3
C1

dx1

dx0

]

,

where both dx2/ dx0 and dx1/ dx0 are ready from the previous two time steps t1 and t2

in Eqs. (7.7) and (7.5). Follow this chain rule in the aforementioned recursive style, the

sensitivity matrix for Gear-2 integration is computed along the remaining time steps up to

the M -th step,

J =
dxM

dx0
= J−1

M

[
α1

hM
CM−1

dxM−1

dx0
+

α2

hM
CM−2

dxM−2

dx0

]

. (7.9)

Note that as matrix-free GMRES method is applied, which only requires matrix-vector

multiplication and no explicit J is required, as explained in Algorithm 11.

With matrix-free method, the matrix-vector multiplication (Line 4 of Algorithm 8

in Section 5.3) is replaced by the iteration shown in Algorithm 11, which calculates the

multiplication product of the Gear-2 sensitivity we encounter in envelope-following and a
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Algorithm 11 Gear-2 style matrix-free method to replace Av in Line 4 in Algorithm 8.

Input: input vector v, time step lengths hi, saved Ci matrices and LU factors of Ji.

Output: matrix-vector product r, such that r = Av.

1: Solve J1p2 = h−1
1 C0v for p2

2: Solve J2p1 = h−1
2 (α1C1p2 + α2C0v) for p1

3: for i = 3 . . . M do // All remaining time steps

4: Solve Jip0 = α1h
−1
i Ci−1p1 + α2h

−1
i Ci−2p2 for p0

5: p2 = p1

6: p1 = p0

7: end for

8: r = (k − 1)p0 − kv

basis vector in the Krylov subspace. It is noticeable that the scaling and shift of J in

A = (k − 1)J− kI as described in Eq. (7.3) is taken into consideration by Line 8.

For the matrix-free generation of new basis vectors, it is straightforward to apply

CUBLAS and CUSPARSE routines, and some customized GPU kernel functions to im-

plement Algorithm 11 with the stored LU matrices of Ji and Ci mentioned earlier. For

example, in Line 4, as the iteration index i traverses all the M time points, sparse matrix-

vector multiplication csrmv is first called to calculate Ci−1p1 and Ci−2p2. And after the

two vector results are combined by axpy of CUBLAS, p0 is solved for by trsv, since as we

noted before, Ji is already in LU factorization form when transient simulation at time step

ti finished.
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7.4 Experimental results

All the experiments have been carried out on a server which has an Intel Xeon

quad-core CPU with 2.0 GHz clock speed, and 24 GBytes memory. The GPU card mounted

on this server is NVIDIA Tesla C2070, which contains 448 cores (14 MPs × 32 cores per

MP) running at 1.30 GHz and has 4 GBytes on-chip memory.

The envelope-following method is implemented by following the algorithm men-

tioned in [115], and together with our proposed Gear-2 sensitivity matrix computation, the

whole program is built upon an open-source SPICE, implemented in C [116]. To solve the

Newton update equation, different methods are used to compare the computation time, such

as direct LU, GMRES with explicitly formed matrix, and GMRES with implicit matrix-

vector multiplication (matrix-free). Moreover, the matrix-free GMRES is also incorporated

to the same SPICE simulator using CUDA C, as described in Section 7.3.

We use several integrated on-chip converters as simulation examples to measure

running time and speedup. They include a Buck converter, a quasi-resonant flyback con-

verter (shown in Fig. 7.3), and two boost converters. Each converter is directly integrated

Cf

Lk

Lm

N : 1

power/ground
mesh

Figure 7.3: Diagram of a zero-voltage quasi-resonant flyback converter.
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Figure 7.4: Illustration of power/ground network model.
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Figure 7.5: Flyback converter solution calculated by envelope-following. The red curve is
traditional SPICE simulation result, and the back curve is the envelope-following output
with simulation points marked.
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Figure 7.6: Buck converter solution calculated by envelope-following.

with on-chip power grid networks, since the performance of converters should be studied

with their loads and we can easily observe the waveforms at different nodes in a power grid

(see Fig. 7.4 for a simplified power grid structure).

Fig. 7.5 and Fig. 7.6 show the waveforms at output nodes of the resonant flyback

converter and the Buck converter. Note that on the envelope curve, the darker dots in

separated segments indicate the real simulation points were calculated in those cycles, and

the segments without dots are the envelope jumps where no simulation were done. It can be

verified that the proposed Gear-2 envelope-following method produces an envelope matching

the original waveform well.

Table 7.1: CPU and GPU time comparisons (in seconds) for solving Newton update equation
with the proposed Gear-2 sensitivity.

Circuit Nodes Direct Explicit Implicit GMRES
LU GMRES CPU GPU X

Buck 910 423.8 420.3 36.8 3.9 9.4×
Flyback 941 462.4 459.6 64.5 7.4 8.7×
Boost-1 976 695.1 687.7 73.2 6.2 11.8×
Boost-2 1093 729.5 720.8 71.0 8.5 9.9×
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For comparison of running time spent in solving Newton update equation, Table 7.1

lists the time cost by direct method, explicit GMRES, matrix-free GMRES, and GPU

matrix-free GMRES. All methods carry out the Gear-2 based envelope-following method,

but they handle the sensitivity and equation solving in different implementation steps. It is

obvious that as long as sensitivity matrix is explicitly formed, in direct method and explicit

GMRES, the cost is much higher than implicit methods. When matrix-free technique

is applied to generate matrix-vector products implicitly, the computation cost is greatly

reduced. Thus, for the same example, implicit GMRES would be one order of magnitude

faster than explicit GMRES. Furthermore, our GPU parallel implementation of implicit

GMRES makes this method even faster, with a further 10× speedup.

7.5 Summary

A new envelope-following method for transient analysis of switching power con-

verters has been introduced. First, the computationally expensive step, the solving of

Newton update equation, has been parallelized on CUDA-enabled GPU platforms with it-

erative GMRES solver to boost performance of the analysis method. To further speed up

the GMRES solving for Newton update equation, we have employed the matrix-free Krylov

basis generation technique. The proposed method also applies the more robust Gear-2 in-

tegration to compute the sensitivity matrix. Experimental results from several integrated

on-chip power converters have shown that the proposed GPU envelope-following algorithm

can lead to about 10× speedup compared to its CPU counterpart, and 100× faster than

the traditional envelope-following methods while still keeps the similar accuracy.
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Chapter 8

Conclusion

This chapter concludes the whole thesis. It summarizes the research contributions

for statistical analysis and parallel computing techniques we proposed for nano-scale VLSI

design in the previous chapters.

8.1 Summary of research contributions

Monte Carlo and non-Monte Carlo analysis based on symbolic tech-

nique. In Chapter 2 and Chapter 3, we focused on statistical analysis of integrated cir-

cuits. Specifically, the Monte Carlo analysis in Chapter 2 is accelerated using parallel GPU

platforms. This new work is based on a graph based symbolic technique, called DDD. Once

the DDD of a circuit is constructed, its structure can be reused repeatedly with only the

process variation affected parameters modified. The parallel evaluations of Monte Carlo

take advantage of this fact and can result in speedup. Several procedures have been made

on new data structures of levelized DDD, so that it is more friendly to GPU computing.
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This so called levelization is done by first traversing the constructed DDD diagram so that

the dependency between the nodes on different levels is known and then saving the node in-

formation in a vector-like data structure where nodes on same level are stored sequentially.

In this way, the new vector structures allow GPU threads to access memory and compute

the value in a coalesced fashion and minimize the branch divergence. The configuration of

GPU thread blocks and kernel settings is also investigated to fully unleash the GPU parallel

power.

In Chapter 3, still starting from DDD, we endeavor the other research direction in

statistical analysis, named the non-Monte Carlo method. We generate the frequency domain

performance bounds of the transfer function of a circuit using DDD symbolic expression.

The bounds are calculated as a result of nonlinear constrained optimization. Furthermore,

using the frequency domain bounds, we proposed a method to compute the time domain

performance bound of the output in response to a given input signal. Experiments are run

to show the accuracy and efficiency of our method.

Fast power grid simulation with CPU-GPU parallel computing. A new

transient analysis method has been discussed in Chapter 4 for general linear dynamic net-

works, such as on-chip power grid networks, using hybrid GPU and multi-core platforms.

The new algorithm, ETBR-GPU, is a reduction based simulation technique and is very

amenable for parallelization on the hybrid multi-core CPU and GPU platforms, where

coarse-grained task level and fine-grained lightweight thread level parallelism can be both

exploited. A truncated balance reduction is carried out to generate the reduced model,

whose construction employs parallel frequency domain sampling on multi-core CPU. Then
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the reduced system is transferred to GPU. GPU accelerates both the linear algebra op-

erations and parallel current source evaluation. We have given detailed descriptions on

the implementation such as GPU thread and kernel configurations for best performance

consideration. The proposed method can analyze any linear networks with complicated

structures and macro-models. It especially favors transient simulation with long simula-

tion periods as reduction costs in frequency domain is less sensitive to the simulation time.

Experimental results show that the new method can achieve about one or two orders of

magnitudes speedup when compared to the general LU-based simulation method on some

recently published IBM power grid benchmark circuits.

GPU accelerated iterative solvers applied in a variety of EDA applica-

tions. In Chapter 5, Chapter 6, and Chapter 7, we conducted several researches all around

one central topic — solving efficient linear equation in circuit simulation. The linear equa-

tion system, such as Ax = b, is a natural part of applications in many EDA programs.

At the huge dimension of current IC models, the linear equation system is so large that

direct solvers such as LU costs long time to compute it. Instead, iterative solvers are more

preferred since it converges to a solution close enough to the exact solution and its com-

putation cost is much cheaper than direct methods. We did some research using a popular

iterative solver, GMRES, to incorporate our innovations.

In Chapter 5, an efficient finite difference based full-chip simulation algorithm for

3D-ICs with liquid cooling based on CPU-GPU platform is proposed. Unlike existing fast

thermal analysis methods, the new method starts from the basic heat equations to model

3D-ICs with inter-tier liquid cooling micro-channels, and directly solves the resulting PDE
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using iterative GMRES solver. To speed up the analysis process, we further developed a

preconditioned GPU-accelerated GMRES solver. We also studied different preconditioners

for GPU platforms and compared their performances. Experimental results showed that

the proposed solver can lead to order of magnitudes speedup over the parallel LU based

solver and up to 4× speedup over CPU-GMRES solver for both DC and transient thermal

analyses on a number of thermal circuits and other published problems.

In Chapter 6, shooting method is investigated for periodic steady state analysis.

This simulation algorithm is to obtain the steady state of a radio frequency circuit without

running transient simulation over a lot of signal cycles. To reduce the computation cost,

a matrix-free technique of subspace basis vector generation is employed. This saving is a

result of the virtue of GMRES, which only requires the product of matrix-vector multipli-

cation, but does not require the explicit form of the matrix. We also adopt the p-cyclic

subspace construction method, which allows parallel computation of multiple Krylov sub-

spaces to further accelerate the GMRES. We have presented adequate explanation on the

GPU implementation of our new solver.

In Chapter 7, GMRES solver is adapted to support a modified transient integration

scheme — Gear-2 integration, such that better integration accuracy is attained for envelope

following method in the simulation of power converters, where high frequency signals are

carried by slow changing signals and traditional simulation method is ineffective. GPU

implementation is applied for better speedup.
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8.2 Future research topics

Innovations in both EDA algorithms and GPU techniques keep emerging at a

breathtaking fast speed. We the people in this community welcome the new solutions

and actively involve with them. The works discussed in this thesis may appear to be less

innovative or even outdated in the near future. However, we believe their values will not fade

in the aforementioned applications. For example, during our wrapping up of this thesis, the

ILU0 preconditioner we talked in Chapter 5 has been included in 5.0 version of NVIDIA’s

CUSPARSE Library [117]. The function interface in this library takes the sparse coefficient

matrix A in the equation Ax = b as input, and after the computation, the components of

its ILU0 preconditioner, in terms of lower and upper triangular factors, are returned. The

incorporation of this function into such a widely distributed library proves and confirms our

vision for this specific area.

Our passion in the research and exploration of faster and effective computation

solutions will never decrease. Here, in the end of this thesis, we do forecast some of our

future works.

GPU computation with hierarchical symbolic technique. The DDD based

analysis in Chapter 2 is processed on the whole circuit netlist. While we have shown speedup

of our GPU accelerated MC simulation using DDD, the speedup can be further improved

by using hierarchical DDD technique. This technique partition the big circuit into proper

subsets where DDDs are built locally and independently. Therefore, it gives us another level

of parallel computation. We plan to send the evaluation jobs of these sub-DDDs to GPU

for better run-time scalability. With the assistance of multiple-GPU support, independent
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DDD evaluations can be dispatched to a number of GPU cards, who are all mounted on

the same host server, and collect the results after they finishes their corresponding parts.

We expect to handle huge sized circuit at an eminently fast speed.

GPU accelerated power grid simulation with partitioning algorithms.

Parasitic extraction in power grid interconnection models is growing faster in nano-scale

integration, and we have encountered large test cases, such as the IBM benchmarks [54] we

saw in Chapter 4. To allow efficient transient simulation of these tough examples, a power

grid should be divided into smaller partitions. A well designed partitioning algorithm, such

as domain decomposition, minimizes the dependency between the partitioned parts, so that

simulation can be done separately in each part and the final merged result remains accurate

enough for most specification requirements.

More robust GMRES solver for equation solving in EDA problems.

In the last several chapters, we investigated the Krylov subspace based GMRES solver

exhaustively. We have seen that a good preconditioner will greatly facilitate the solving

of equations. However, the preconditioners in Chapter 5 are still not optimal and we

have plans to implement better ones. For instance, we noticed recently that the simple

ILU0 preconditioner in thermal analysis does not work well and even fails for power grid

benchmarks. We have ruled out the cause of these malfunctions, and it is because the

ILU0 preconditioner we used does not use pivoting and permutations. In addition, thermal

circuit models are relatively easier since their matrices are diagonal dominant, which is

not the case in power grid circuits. The more complicated matrix structure in power grid

examples directly results in difficult convergence properties, which ILU0 cannot handle
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swiftly because it does not have fill-in elements. Instead, we are currently developing ILU

with fill-ins and permutations, and our initial results are satisfactory on all the industrial

power grid benchmarks. We will also study more types of suitable GMRES preconditioners

besides ILU family.

As new GPU architectures come to market, the related programming and im-

plementation strategies are also updated. This can be observed from the ever changing

configurations and interfaces in NVIDIA CUDA SDK. Our efforts are needed to catch up

this trend in order that these new proposals deliver attractive results.
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