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THE ATTENUATED RADON TRANSFORM: THEORY AND APPLICATION
IN MEDICINE AND BIOLOGY
Grant Theodore Gullberg

ABSTRACT

A detailed analysis is given of the properties of the attenuated
Radon transform and of how increases in photon attenuation influence
the numerical accuracy and computation efficiency of iterative and
convolution algorithms used to determine its inversion. The practical
applications for this work involve quantitative assessment of the dis-
tribution of injected radiopharmaceuticals and radionuclides in man and
animals for basic physiological and biochemical studies as well as
clinical studies in nuclear medicine. The theorems and numerical
results presented are applicable to other fields in which computed tomo-
graphy is used to reconstruct information about an internal source of
unknown strength using projection data wherein the source strength,
position and intervening attenuation are unknown. This problem is
mathematically and practically quite different from the well known
methods in transmission computed tomography (TCT) where both the source
strength and source position are known and only the attenuation is
unknown.

A mathematical structure is developed using fuﬁctiOﬂ theory and
the theory of linear operators on Hilbert spaces which leans itself

to better understanding the spectral properties of the attenuated
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Radon transform. A generalization of the single angle projection opera-

tor for the attenuated Radon transform gives an N-fold projection opera-
A 2 N

61*Xu961) ®...8L (Q9N9Xu98N) where

s alx,y) is the maximum of the attenuation

tor which maps LZ(QQE) into LZ(Q
Q is a bounded open set in IRZ

factors a(xgysaxsinei+ycoseise) for N angles, Q, 1is the eiwsi?houette

%

of Q, and iusei is the attenuated Radon transform of the characteristic
function y with support Q.

The continuous attenuated Radon transform reduces to a matrix
operator for discrete angular and ]aterai-sampiiﬂg, and the reconstruc-
tion problem reduces to a system of linear equations. For the situa-
tion of variable attenuation coefficient frequently found in nuclear
medicine applications of imaging the heart and chest, the procedure
developed in this thesis involves iterative techniques of performing
the generalized inverse. Simulations indicate that the iterative

2014y (pu=.18 cmgi) cross-sectional

1

algorithms adequately converge for

images of the heart but increasing attenuation above p = .18 cm = for

a 30 cm object decreases the rate of convergence, so that at u = .60 cmsi
the result does not converge within an acceptable error criterion after
30 iterations. Errors which are the result of using TCT to calculate
the attenuation coefficients increase the errors in the emission
reconstruction. The percent root-mean-square uncertainty of computed
tomograms of a distributed source in a 20 cm diameter region with

1 cannot be better than 9.8% even with infinite statistics

p= 15 em
if the attenuation coefficients are determined using an incident trans-

mission beam of 1000 photons per projection ray (4.2 x 106 total photons).
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For constant attenuation coefficient less than .15 cm;!g con-
volution methods can reliably reconstruct a 30 cm object with .5 cm
~ resolution. The convolution method of reconstruction is appealing
because of its computational efficiency and because it requires very
Tittle computer memory. The convolvers are determined 1) by a least-
squares fit of the attenuated back-projection of the convolver to a
desired point response function; 2) by a power series expansion which
gives an analytical expression of the convolution function; 3) by
defining window functions which filter the projections in frequency
space. However, for high attenuation coefficients or for the situation
where there is variable attenuation such és reconstruction of distribu-
tion of isotopes in the heart, iterative techniques developed in this

thesis give the best results.
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SYMBOLS AND DEFINITIONS

Emission computed tomography
Transmission computed tomography
The attenuated Radon transform
Position vector in RZ

The concentration distribution of the radio-
nuclide in counts/Area

The distribution of tqe linear attenuation coef-
ficients in (length)~!

Single-photon projections at lateral sampling &
and angle 8,

The unit directional vector along which projec-
tion are sampled

The unit directional vector along which projec-
tion line integrals are integrated

The inner product between the vectors X and 6.
Dirac delta function
The Radon transform

Transmission and unattenuated emission projection
data at lateral sampling £ and angle 6

The back-projection operator

Fourier transform operator

Inverse Fourier transform

The one-dimensional Fourier transform of p(£&,0)
Frequency space filter |

Window function

A subset in Rx [0,2r)

Real space convolution function
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Estimate of f
The number of transmitted photons in TCT
The number of incident photons in TCT

The photoelectric linear attenuation coefficient
in (length)-1

The coherent 1inear attenuation coefficient in
(length)-1

The Compt?n linear attenuation coefficient in
(Tength)

The pair pro?uct1on linear attenuation coefficient
in (Tength)

Positron projections at lateral sampling £ and

angle ©

The attenuation function for the attenuated Radon
transform

The modified attenuated Radon transform

Modified projections at lateral sampling £ and
angle ©

Orthogonal complement of S

The closure of S

Range space of the attenuated Radon transform
Null space of the attenuated Radon transform

The adgoant opergter of the operator
A :L2 (IR W) Rx [0,27).w)

The generalized inverse of the attenuated Radon
transform

The inner product with respect to the weight
function W in the Hilbert space of concentration
functions defined on Q C R

The inner product with respect to the weight
function w in the Hilbert space of projection
functions defined on € € Rx [0,27)
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LZ(QSW) - The space of square integrable functions with
respect to the weight function W defined on
G R, T.oes I Ip0xoy) |2 Wxoy)dxdy < o
RZ
LZ(ESW) - The space of square integrable functions with

respect to the weight function w_defined on
€ c Rx [0,2n) i.e., [f [o(£,0)]2 w(g,8)dede < =
C

K{x'sy'[xsy) - Kernel of the Fredholm integral of the first
kind for the operator ASAU

I(g,0lg',0") - Kernel of the Fredholm integral of the first
kind for the operatorvAuAﬁ

(wi9¢igxi) - Singular system for the operator A, composed of
eigenfunctions of AyAj and AjA, corresponding to
the eigenvalue X4

Alp,u38,0} - The attenuated Radon transform of p for the
attenuation distribution u calculated at £ and ©
(A p)(&,0) - The attenuated Radon transform of p evaluated
H at £ and ©
Bu - The attenuated back-projection operator
BU - The modified attenuated back-projection operator
(A 6p)(g) - The attenuated Radon transform of p for a fixed
Hs angle 6 evaluated at &, i.e., (Au P (E) =
(Aup)(ése) ’
A o= (A 0, A Dseeosh p) - The N-fold projection operator
HaN u’ei u’62 “’ON which maps the function p into the
N-tuple of single angle projections
L1(R25a) ' - The space of functions such that p € L](iRzga) if
and only if [ |p(x,y)| a(x,y,-xsind+ycos6,0)dxdy < =
IR2
HAUH = sup HAupH - The norm of the operator Ap
loll <1
* ' - 2,2 2
Au 0 - The adjoint of the operator Au e.L (R®) > L°(R)
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Lol (RSa)» LU(R)
Characteristic function for some § Q.B229 i.e.,
x(x,y) = 1 1Ff (x.y) € 9, 0 otherwise

The adjoint of the operator A :L1(R

The attenuated Radon transform of x, i.e.,
X = A, X

i

Multiplication operator, (Mfg)(xgy)
2

fFx,¥)g(x,y)
A subset of R

The 6-silhouette of @, O, = {(X,8)] X € Q)

8

The intersection of the line &+sind-ycose = 0
and the set Q

The projection operator: Ruse = M(ie)mi Auge

. . % =
The adjoint operator: Ruge MXBG

For a fixed 0 and weight function a, the space
of square integrabie functions defined on Q, i.e.,
ff lo(x XsY,=X5in0+ycos0,0)dxdy < o

For a fixed 6 and weight function Xu g the space
of square integrable functions definéd on

G C R, iee.s [f [ole NP %y 6(E)E < =

f2g

- Projection operator which for any p € LZ(Qsa)

maps L2(Q,a) onto the subspace p+N(RU e)

N-tuple of real valued functions defined on R

The adjoint of the operator A :LZ(IRZ) >

oN
L2(R)o. ...® LAR)

~i“gj () h, (g )d& - The inner product for the space
R

LE(R) = LA(R)@....® LY(R)
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A(x,y) = max {a(xlﬁwxsin6i+ycosei56i)}

i=1,N

- The maximum of the attenuation functions for the

angles 81 i=1,..N
Run®™ R o Ry g 00emooRy g o)

- The N-fold projection operator which maps the
function p into the N-tuple of single angle
projections.

* . Ry 2,
RusN - The adjoint of the operator RUQNGL (an)-*LN(xH)
G (£,0) - The 1integral of the attenuation coefficients

H between the central axis and «
a(X,Y:£,0) - The attenuation function for the modified

attenuated Radon transform

*

Au - The adjoint of the operator AU:LZ(RZSW)%»LZ(@gw)
K - Kernel of the Fredholm integral of the first kind
for the operator A*A
MU
1 - Kernel of the Fredholm integral of the first kind
for the operator A A*
(S
Tn - Tchebycheff polynomial of the first kind
Un - Tchebycheff polynomial of the second kind
H - Hermite polynomial
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The convolution function for constant attenuation:
Rectangular pixels in RZ
Characteristic function with support Dij

The attenuated Radon transform of Xij i.e.,
S55 7 A D5 00x)uboy)s €03

The modified attenuated Radon transform of Xij»
i.e., 445 = A{xij(xsy)su(xay); £,0}

The discrete matrix operator for the attenuated
Radon transform

The discrete matrix operator for the modified
attenuated Radon transform

The transpose of the matrix operator A
The generalized inverse of the matrix operator A

The trace of the matrix A equal to the sum of the
diagonal elements.

Matrix of projection samples for the attenuated
Radon transform

Matrix of projection samples for the modified
Radon transform

The Teast-squares function

Mean value function for the random field p

The variance of the random field p at X

The autocorrelation function for the random field p

The autocovariance function for the random field p
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field
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1. INTRODUCTION

The inversion of the attenuated Radon transform has the important
application in single-photon emission computed tomography (ECT) of
quantitating the three-dimensional distribution of gamma emitting
radiopharmaceuticals in the body. ECT is a field of nuclear medicine
which uses radiopharmaceutical distribution data collected using scintil-
Tation detectors at different angles to reconstruct cross-sectional
images of the internal organs of the body. The application of ECT gives
the physician a more accurate way of seéing inside the human body and
permits a noninvasive pfocedure for studying function of biological
processes in health and disease. The instrumentation and strategies
of ECT are divided into two major categories =- 1) single-photon counting
using either multiple detector arrays or scintillation cameras for

99m 131

the detection of radionuclides such as Tc, and I; and 2) coinci-

dence detection of annihilation photons from positron emitting radio-

e 13 750w The reconstruction procedures used

nuclides such as " 'C, “N, and
with single-photon counting techniques invert the attenuated Radon
transform by various methods (Budinger and Gullberg, 1977).

The major impetus for emission computed tomography is to use the
various radiopharmaceuticals to make quantitative measurements of in
vivo biochemical and hemodynamic functions. This is in contrast to
x-vay transmission computed tomography (TCT) which has as its major
emphasis the anatomic description of the cross section of body organs.
The major difference Ties in the fact that ECT seeks to describe the

Tocation and intensity of sources of emitted photons in an attenuating
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medium whereas TCT seeks to determine the density distribution of the
attenuating medium (Fig. 1.1). Not only does the biological objective
of ECT differ from TCT; but single-photon ECT as exemplified by the
attenuated Radon transform differs from both TCT and positron ECT in
the mathematical procedures required to reconstruct the cross-sectional
images. Methods for inverting the attenuated Radon transform present
a mathematical challenge. However, iterative and convolution methods
can be developed which adequately quantitate the distribution of
single-photon radiopharmaceuticals which are useful in depicting non-
invasively the spatial and temporal distribution of biological processes
in healthy and diseased tissue.

Tomography (which comes from the Greek work "tomo" meaning slice)
is the process of imaging a single plane through an object. In the
past tomographic images in diagnostic radiology and nuclear medicine
were produced by employing the principles of Tongitudinal tomography
which utilizes optical devices to obtain an image of a plane parallel
to the face of the detector (Anger, 1973; Anger, 1974). Today the term
computerized tomography usually refers to transaxial tomography which
uses digital computers and mathematical algorithms to give an image
of a plane perpendicular to the face of the detector.

The first clinically useful x-ray TCT machine was invented by G. N,
Hounsfield of EMI, Ltd. in 1970. Since that time x=ray TCT has made a
major impact on diagnostic radiological procedures. Even before the EMI
scanner, the principles'of ECT were worked out by Kuhl and Edwards (1963).

However, the clinical application of ECT has lagged far behind x-ray
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Figure 1.1. The basic physical difference between TCT and ECT is that
both the source and the attenuation functions are unknown

in ECT, whereas only the attenuation function is unknown
in TCT.



TCT primarily due to the attenuation problem which has made it difficult
to quantitate the distribution of radiopharmaceuticals. In the last
10 years, researchers have investigated different ways of reconstructing
radiopharmaceutical distributions by developing new instruments and
algorithms for inverting the attenuated Radon transform. These advances
are reviewed in (Ter-Pogossian, 1977, Phelphs, 1977; Brownell, Correia,
and Zamenhof, 1978; Budinger, Gullberg, and Huesman, 1979).

The methods of three-dimensional reconstruction are not unique
to transmission and emission computed tomography but are used in many
other disciplines. These disciplines include radioastronomy (Bracewell
and Riddle, 1967; Weiler and Seielstad, 1972), electron microscopy
(KTug and Crowther, 1972), nondestructive testing, holographic
interferometry (Sweeney and Vest, 1973), and zeumatography (Lauterbur,
19735 Singer, 1978). Much of the current activity is directed toward
digital reconstruction because of its flexibility. However analog
methods using optical and acoustic devices are also applied to the
reconstruction problem. There are mathematical similarities among
reconstruction problems in these varied disciplines. However emission
computed tomography especially single-photon imaging offers some of the
most difficult mathematics of all the disciplines due to the attenuation
problem. The attenuation problem also occurs in zeugmatography which
reconstructs the strength of magnetic resonance signals using the
techniques of nuclear magnetic resonance (NMR).

To illustrate the cdncepts of single-photon emission computed

tomography, consider the example of a physician who is trying to detect



small lesions in a patient's Tiver. The patient is injected with a
radiopharmaceutical such as gngC sulfur colloid which Tocalizes by
phagocytosis in the Kupffer cells of the Tiver and other cells of the
reticuloendothelial system which involves organs such as the Tiver,
spleen, lymph nodes and bone marrow. In the liver the 99mTc sulfur
colloid is phagocytized only by healthy Kupffer cells (Sheppard, et al.,
1951; Dobson and Jones, 1952; Root, et al., 1954) and cancer invasion
results in a failure of the diseased area to concentrate the colloidial
particles.

A gamma scintillation camera (Anger, 1966a; Anger, 1966b; Anger,
1972) s used to detect those photons emitted by the radionuclide
gngCQ The scintillation camera consists of a crystal which converts
the high energy gamma photons into light, and photomultiplier tubes
which convert the Tight scintillation into an electronic signal. By
electronic circuitry these electrical signals are used to display an
image on an oscilloscope or are converted from analog to digital signals
and stored in a computer for display as a digital image.

The images show an intensity directly proportional to the con-
centration of the radiopharmaceutical. Therefore a neoplastic Tesion
in the Tiver would show up on the images as a Tow intensity region
surrounded by higher intensity from the normally functioning tissue.
Since the image from the scintillation camera represents the projection
of the Tiver, oVeriying and underlying tissues, and other organs such
as the spleen; small lesions will be obliterated by the projection of

these surrounding tissues onto the image plane.



In order to visualize the liver better, it is necessary to obtain
images at different angles in which the internal organs appear in dif-
ferent relationships to one another. If the information from a cross-
section of body through the Tiver is projected onto a plane perpendicular
to an axis of rotation (Fig. 1.2) a single one-dimensional line is
recorded on the gamma camera image. Taking this line for each angle
and digitally processing the data, the desired two-dimensional cross
section is reconstructed. To obtain a full three-dimensional picture
the various cross-sections can be stacked. This procedure of three-
dimensional reconstruction separates the overlying and underlying tissue
and allows the physician to quantitate the spatial distribution of the
sulfur colloid sequestered by the liver. The lesions such as the one
shown in Fig. 1.2 can be detected with better quantitation, better
resolution and greater contrast than is possible with any of the
projected images.

The reconstruction of the cross-sectional image is complicated
by the attenuation of the emitting photons. The scintillation detector
can only detect those unattenuated photons projected along rays inter-
secting the camera face. The degree with which these photons are
attenuated will depend upon the energy of the emitted photons and the
density of the tissue interposed between the emitting source and the
detector. For example, of the 140 keV photons emitted from gngc
radionuclides, 78% will be absorbed in passing through 10 cm of tissue.

Therefore only 22% of the photons emitted will actually be recorded.



Figure 1.2.

Section view A-A

XBL7812-12398

ITlustration of a transverse section through the liver

and spleen as one would view it looking from the feet
toward the head. The anterior and left lateral views

show the projected image of the Tesion shown in the
transverse section.



This presents a difficult problem for quantitating the actual distri-
bution in any cross-sectional image.

If mathematical algorithms appropriate for TCT are applied to
projection data obtained from a scintillation camera using a homogeneous

99mTc9 the results of the

distribution of a radionuclide such as

reconstruction will show a concentration which appears to be less in

the center than at the edges (column of images shown on the left in

Fig. 1.3). However by knowing the attenuation distribution, the effects

of attenuation can be corrected, givingva true guantitative measure

of the radionuclide concentration as can be seen from the column of

images on the right in Fig. 1.3. The definition of the attenuated Radon

transform for this study depends upon a knowledge of the distribution of

attenuation coefficients. It is therefore the inversion of this trans-

form which properly quantitates the radiopharmaceutical concentration.
The attenuated Radon transform mathematically describes the

relationship between the number of photons emitted from radionuclide

distributed in a transverse section of the body and the number of

photons projected onto a scintillation detector. If we let o(x,y)

denote the concentration of the radiopharmaceutical in counts/area at

the point X = (x,y), then the attenuated Radon transform is the

mapping AU:Q - where the projection py(gae) at the angle 06 and

Tateral sampling £ is given by

DY(EJB) = fp(ﬁ) ex}vé—' j U(Q’)6(5“&'59))d§<'§6(£“<§99>)d§9
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where 9 = (-sin®, cosd) and Q% = (cosB, sin®). In the case that u=0
everywhere the attenuated Radon transform reduces to the Radon transform
defined by Radon (1917). Therefore the attenuated Radon transform is
a generalization of the classical Radon transform. To define the
attenuated Radon transform, the distribution of attenuation coefficients
u in units of (‘leaqg'th)m:i for the cross section is required. In some
situations this distribution can be assumed to be constant but for
precise measurements requires the use of TCT.

To compensate for the attenuation effects the distribution of the
attenuation coefficients must be determined by TCT using an external
transmission source with the same energy as the emitted photon of the

radiopharmaceutical (140 keV for 99

Mre in the example above). The inten-
sity of the transmitted beam is measured at different angles. These data
are compared to the incident beam intensity and the result gives a meas-
ure of the attenuation of the photons for the tissue between the source
and the detector. The distribution of attenuation coefficients is re-
constructed for the same cross sections as those for the radiopharmaceuti-
cal cross-sectional images. With the a priori information about the dis-
tribution of the attenuating medium, ECT can describe the location and
intensity of the source of emitted photons by inverting the attenuated
Radon transform.

This thesis presents an analysis of the attenuated Radon transform
and the implication of its properties relative to reconstruction
algorithms used to invert the attenuated Radon transform. The work

presented differs from previous work in the literature (Hsieh and Wee,

1976; Chang, 1978; Tretiak and Metz, 1979; Bellini et.al., 1979 a, b;



~11-

Natterer, 1978) in that the attenuated Radon transform is defined for
arbitrary distributions of attenuation coefficients. Included is an
iterative reconstruction algorithm which uses a transmission reconstruc-
tion to correct for attenuation and is able to reliabily reconstruct
projection data of an internal radiopharmaceutical source which has
been attenuated by any arbitrary attenuation distribution. For this
algorithm, the propagation of errors is simulated for various trans-
mission and emission statistics and is evaluated based on the spectral
properties of the attenuated Radon transform. In the case of constant
attenuation methods are given for obtaining convolvers and frequency
space filters which accurately reconstruct projection data attenuated
by a constant attenuation coefficient. The accuracy and efficiency

of the reconstruction algorithms are shown to be a function of the
attenuation coefficient. In most cases this functional relationship
s such that as the attenuation coefficient increases then the recon-
struction errors increase.

Following this introduction chapter 2 presents the concepts of emis-
sion computed tomography which includes a discussion about the theory of
computed tomography, the aspects of transmission computed tomography,
and the principles of emission computed tomography - in particular an
explanation describing the differences between single-photon and positron
emission computed tomography. Included is a discussion about the theory
of exponential absorption of radiation which assumes a linear attenuation
coefficient that depends on the atomic number of the absorbing material

and the energy of the emitted photon. This is the premise upon which all
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the mathematical theory is built for both ECT and TCT. The chapter con-
cludes with a discussion of the history of the advances in single-
photon ECT both in instrumentation and mathematical algorithm develop-
ment.

Chapter 3 develops the properties of the attenuated Radon transform
and of a modified transform which is independent of detector geometry.
The theory of Tinear operators operating on Hilbert spaces, the
definition of a generalized inverse, and the singular value decom-
position of compact operators are described in order to develop a
mathematical structure for the analysis of the mathematical properties
of the attenuated Radon transform. Throughout it is assumed that the
attenuation distribution is known a priori which enables one to define
Tinear operators for both constant and variable attenuation coefficients.
The chapter concludes with a discussion of the special properties that
the modified attenuated Radon has in the case of constant attenuation
coefficient. 1In particular these properties include inversion rela-
tionships.

Chapter 4 describes iterative methods for inversion of the attenuated
Radon transform for arbitrary attenuation distributions. The discussion
begins with a description of the basis functions which are characteristic
functions with support over rectangular regions that approximate the pic-
ture function for the cross-sectional image. The attenuated Radon trans-
form of these basis functions leads to a discrete matrix representation
of the attenuated Radon transform for discrete angular and tateral sam-

pling. At the present the size of the matrix is too large for a practical
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evaluation of its inverse by a digital computer and thus iterative
methods must be utilized. The spectral properties of these operators
are considered. Then the statistical aspects of emission computed tomo-
graphy are analyzed by reconstructing simulated projection data for
various transmission and emission statistics. The reconstruction of
attenuated data is complicated by not only statistical fluctuations
in the emission data but also statistical fluctuations in the trans-
mission data which amplify the errors in the emission reconstruction.
Chapter 5 investigates convolution algorithms which are
applicable for inverting the attenuated Radon transform in the case
of constant attenuation coefficient. The investigation into convolution
methods is motivated by the computational speed of the algorithm. A
method is described whereby optimum convolvers can be evaluated by
fitting the attenuated back-projection of the convolver to a desired
point spread function by either least-squares or series expansion
methods. The reconstructed cross-sectional image is expected to closely
represent the convolution of the true image with this point spread
function. Filters used in TCT are shown to be applicable for ECT in
the case of constant attenuation by modifying a window function. The
chapter concludes with an investigation of the statistical aspects of
the convolution algorithm for various attenuation coefficients represent-
ative of actual coefficients of radionuclides used in single-photon

ECT.
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2. EMISSION COMPUTED TOMOGRAPHY IN NUCLEAR MEDICINE

2.1 Introduction

Nuclear medicine is a discipline involved in measuring biological
change as well as the anatomical distribution of these physiological
and biochemical changes using injected radiopharmaceuticals (Wagner,
1968, 1978). Over 50 years ago Hevesy used radionuclides to trace
biological function in animals and man (Hevesy, 1962). With the
development of the Anger camera (Anger, 1966a, 1966b) brain scanning,
kidney scans, liver scans, etc. have become routine clinical diagnostic

procedures. The development of positron emitters by Tobias, Lawrence
and colleagues (1945) for physiological studies and the development
of the Anger positron camera in 1963 (Anger, 1973, 1974) gave a method
for depth discrimination of biological changes in organs and body
tissue. The recent development of positron and single-photon emission
computed tomographic systems give even better spatial and contrast
resolution for depth discrimination which is able to quantitate any
where in the body the biological changes in healthy and diseased tissue
(Phelphs, 1977).

The attenuated Radon transform embodies the concepts of single-
photon emission computed tomography (ECT) of which transmission computed
tomography (TCT) s an important enity. The attenuated Radon transform

is the mapping Au:p > pY of the cross-sectional radiocactivity concen-

tration p into the projections p given by
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where Q% = (-sin®, cosd) and Q% = (cos@, sind). This transform is a
mathematical description which quantitates the physical process of mea-
suring photons projected onto a detector perpendicular to the cross
section and parallel to the axis of rotation. The measured photons are
those photons which have been emitted from a radionuclide source located
within the body and which have not been attenuated by body tissue
between the source and detector.

In order to define the attenuated Radon transform given by Eq. (1.1)
for a particular medium, the distribution of attenuation coefficients u
in the exponential factor must be known. The exponential factor assumes
that the diminution in counts is based on an exponential Taw of radiation
absorption. 1In both ECT and TCT the measured quantities are number of
photons. The total number of photons measured are not equal to the total
number of photons emftted by the source due to the attenuation of photons
by body material. In TCT this absorption of radiation is used to measure
the differences in attenuation density of body tissues: whereas in ECT
the absorption eliminates from the projections the useful information
about the internal source intensity. Thus the attenuated Radon transform
includes an exponential factor which represents a measure of the prob-
ability that each source photon will reach the detector unattenuated.

The evaluation of the attenuation coefficient distribution u
requires the use of TCT and a thorough understanding of its concepts.
The mathematical equations and algorithms used in single-photon
computed tomography are an extension of the basic concepts of computed

tomography used in TCT. Therefore in the following sections we review
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the mathematical concepts of computed tomography, the principles of TCT
and then describe emission computed tomography including the difference

between single photon and positron emission computed tomography.

2.2 The Theory of Computed Tomography

Computed tomography is the process of reconstructing transverse
sections of photon attenuation coefficients in transmission computed
tomography or concentration of radioactivity in emission computed
tomography from projections measured from external detectors. The
application of computed tomography to nuclear medicine is not unique
but is applied to many other fields such as radiology, radioastronomy,
electron microscopy, zeumatography and others. For a review of the
principles of computed tomography and its applications see (Gordon and
Herman, 1974; and Brooks and DiChiro, 1976).

2.2.1 Projections

For the purpose of this introductory discussion f(x,y) will denote
the distribution of either emitter concentration or attenuation coef-
ficients for the transverse section. The function f(x,y) cannot be
measured directly but is measured by external detectors. These external
measurements are called projections and they are parameterized with an
angle © and a lateral sampling £. As shown in Fig. 2.1 the projections
p(£,8) in conventional TCT or positron ECT are line integrals of f(x,y)

given by

p(&,6) fJ{Ebf(xsy) S(&+ xsind - ycose) dxdy (2.1)
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Figure 2.1.

XBL787-3371

Parallel-beam geometry for data collected at the
projection angle 6. The projection data p(£,6)
represent line integrals for the lines

E+xsin@-ycosd = 0, where £ is the projected distance
measured from the center of rotation along a flat
detector.
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where § denotes the Dirac delta function. These projections satisfy
the relationship p(&,0) = p(-&, 6+ 7).

The concept of projections are not restricted to two or three
dimensions but can be extended to n-dimensional Fuclidean spaces where
projections are integrals over (n-1)-dimensional hyperplanes (Gel'fand,
Graev, and Vilenkin, 1966). For our purpose we will only be concerned
with the two-dimensional case.

2.2.2 Radons's Inversion Formula

The Radon transform is the mapping ® which takes the function f
into the function p defined by Eq. (2.1). The inverse of this integral
operator is due to Radon (1917) who gave an inversion formula which we

will write as

f(r,0) =~ 5

21

dg
e - (2.2)

A derivation of Eq. (292) is given by Deans (1977). One sees from

Eq. (2.2) that the reconstruction of f(x,y) at the point (x,y) depends

on all possible line integrals of f(x,y) and not just the line integrals

which pass through the point (x,y). In the three-dimensional case and

in general the n-dimensional case of odd dimension the inversion formula

is more local and depends only on the integrals of f over hyperplanes

which pass through X and over hyperplanes infinitesimally close to

these (Gel'fand, Graev, and Vilenkin, 1966). A discussion of the Radon

transform and its inverse is also given by Ludwig (1966) and Deans (1978).
Note that the integral over & in Eq. (2.2) is a convolution of the

partial derivative of the projections p(£,0) with respect to ¢ and the
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function 1/&, evaluated at the point rsin(¢-0). If we let qg(£,0)

denote this convolution, i.e.

q(2.8) =~ [ap(£,0)/2E] * (1/8) (2.3)

27
then we can rewrite Eq. (2.2) as

il
f(x,y) = &EQ q(rsin(¢-6), 0) do. (2.4)
0
Some practical considerations such as singularities, numerical stability,
and computional speed do not make Eq. (2.4) a good method for reconstruc-
ting f(x,y). However there are other algorithms which overcome the

difficulties presented by Eq. (2.4).

2.2.3 Back-Projection

The operation in Eq. (2.4) maps the function g into the function
f. This is called the back-projection operation which is symbolized
as f(x,y) = B®B{g(£,0)}. The early reconstruction methods of Kuhl (1963
and 1968) and others used this operation to obtain an estimate of the
internal structure by back-projecting the measured projections p(&,0)
instead of the modified projections q given above. This process gives an
estimate of the density at a point equal to the summation of the pro-
jection values of all line integrals that pass through the point. The
result gives a blurred image which one can show is equal to the true

2 -1/2.

density convolved with (x =+y2) :

b(x.y) = Bp(£.0)} = Flxy) * T‘f—)m o (2.5)

(x"+y



-20-

2.2.4 Back-Projection of Filtered Projection Algorithm

Taking the Fourier transform of the convolution in Eq. (2.3) allows

us to rewrite Eq. (2.2) as

F(x,y) = IR| B(R,0) e 2R sTn(9-0) oo (2.6)

2

where ??TZBp(gge)/aaj =i 21 R p(R,0) and ?Ei[?/g] = -im sgn R (see
p. 130 and p. 183 Bracewell, 1965). The application of this equation
to real data can only operate on data samples of finite length. With

this motivation, we can replace |R| with

F(R) = |R] w(R) (2.

™~
~
e

and obtain an estimate of f:

j E(R) P(R,0) e é™ RrSTN(9-0) gpgg . (2.8)
o

The window function w can be selected based on spatial and contrast
resolution requirements.

The back-projection of the filtered projection algorithm digitally
implements Eq. (2.8) by performing the following sequence of operations:
Fourier transform the projection data; multiply the complex values of the
Fourier transform by a filter function; inverse Fourier transform these
modified frequencies; and back-project the modified projection data

(Huesman et al., 1977). These algorithm operations are symbolized as:

TG M AN (2.9)
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This method of reconstructing f is appealing since it lends itself
to easily changing the noise propagation vs. resolution properties of
the window function. One can improve resolution by changing the shape of
the windew function, but the noise amplification will increase.
Alternatively, one can suppress noise; however this noise suppression
will come at the cost of resolution.

2.2.5 Convolution Algorithm

Due to the convolution theorem Eq. (2.8) is equivalent to con-

volving the projections p with a convolution function in real space:

[ c{rsin(¢-0)-&) p(&,0) d&do . (2.10)

The convolution algorithm first convolves the projection data with a
convolver and then back-projects the modified projection data. These

algorithm operations are symbolized by the equation
F=®ic*p}. (2.11)

The convolution functions which are commonly used in reconstruction
tomography were developed by Bracewell and Riddle (1967), Ramachandran
and Lakshminarayanan (1971), and Shepp and Logan (1974). The convolu-
tion algorithm is now used in most commercial x-ray scanners and positron
emission tomographic systems because of its computational efficiency
and because it requires very little computer memory.

2.2.6 Filter of the Back-Projection Algorithm

The filter of the back-projection algorithm reconstructs f by
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deconvolving the true image f from the back-projected image b given by
Eq. (2.5) (Bates and Peters, 1971). The algorithm performs the following
sequence of operations: back-project the projection data; Fourier
transform the two-dimensional back-projection image; multiply the two-
dimensionally distributed Fourier coefficients by a filter function; and
perform the two-dimensional inverse Fourier transform (Huesman et al.,

1977). These algorithm operations are symbolized by the equation
~ "“1 ',\, .
f =9, CFBMN (2.12)

where T is the filter function given in Eq. (2.7). The derivation of

the algorithm is based on the convolution theorem and the fact that

AL ??;T(Rm1) (see definition of Hankel transform and tables, pp 244-250,
Bracewell, 1965).

2.2.7 Iterative Algorithms

The algorithms previously discussed gave analytical expressions for
the density function in terms of integral equations which assumed a
continuous angular and lateral sampling of projections. The digital
implemantation of these algorithms use either the fast Fourier transform
or a finite convolution algorithm and numerically calculate the integrals
. over angle using the trapezoidal method. For finite projection samples

another approach is to represent Eq. (2.1) as a system of linear equations
Ff =P (2.13)

where F is the matrix projection operator, f is a vector of unknown
densities, and P is a vector of projection samples. The solution to

Eq. (2.13) is
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f=F0p (2.14)

where FO is the generalized inverse of F (Ben-Israel and Greville, 1974).
For most reconstruction problems F has dimensions greater than 4096x4096
for which it is impractical to solve the generalized inverse by a

digital computer. Therefore iterative methods such as ART (Gordon,
Bender, and Herman, 1970) and gradient or conjugate gradient techniques

(Huesman et al., 1977) are used to solve Eq. (2.13).

2.3 TransmissiOﬂvComputed Tomography

Transmission computed tomography (TCT) computes the spatial distri-
bution of the linear attenuation coefficients from data obtained by
passing an externally generated source of photons through the subject.
X-ray TCT instruments such as the EMI scanner use an external x-ray
tube which rotates around the patient (Fig. 2.2). The transmission data
in single-photon ECT is obtained with an external gamma-ray emitting
point source with the same energy as the internal emitting radionuclide.
The newer single-photon ECT machines such as the Humongotron (Keyes
et al., 1977) have the gamma-ray point source mounted to the rotating
gantry. The Donner Ring positron ECT device (Derenzo et al., 1977)
uses a ring of positron emitters distributed around the patient as the
transmission source.

The photons that pass through the body arebmeasured by an opposing

detector. The intensity 1(£,0) of the transmitted beam is equal to

1(£,0) = Io(gse) exp[i{ﬁbu(xsy) S§{(E+x sine -y cosd) dxdy] (2.15)
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Figure 2.2. Transmission computed tomography. The source
radiation such as x-rays pass through the subject
along rays satisfying &+xsin6-ycose = 0.
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where u(x,y) is the distribution of attenuation coefficients and IO
is the incident beam intensity. The function u{x,y) S(&+xsin6-ycoso)
is interpreted as a line of density u(x,y) on the ray defined by the
equation £+xsind-ycose = 0 (Fig. 2.2). The projection p(£,6) of
attenuation coefficients is related to the incident beam intensity Io

and the transmitted beam intensity I by the relation

p(£,0) = aiog[l(zge)/lo(égﬁ)j :@EQﬁau(x,y)&(£+xs1"ne=ycose)dxdy° (2.16)

The transverse section representing the distribution of photon linear
attenuation coefficients is reconstructed from the projections p(&,0)
using one of the algorithms described in the previous sections.

2.3.1 The Exponential Absorption of Radiation

When x-rays or gamma rays pass through an absorbing medium such
as body tissue, interactions occur between the photon and an electron
by four distinct mechanisms known as the photoelectric process, the
Compton process, coherent scattering, and pair production (Johns and
Cunningham, 1974). The rate of change per distance of the total |
number of unscattered photons as a consequence of these four mechanisms

is represented mathematically as

a‘zz “UI (217)
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where ¢ is the linear dimension of the path being traversed by the
photons, I is the total number of unscattered photons at ¢, and p is
the Tinear attenuation coefficient. In essence Eq. (2.17) states that
the infintesimal change in the number of unscattered photons as it
passes through the absorption medium is negatively proportional to

the number of unscattered photons reaching that point {or distance or
depth). The negative sign implies that the number of photons I(z)
decreases as the Tineaf path length increases.

The solution of the differential equation given by Eq. (2.17) is
I(z) = Ioe"“("f‘@o) (2.18)

where 10 is the number of photons at ¢ = Co The dimension of the
attenuation coefficient p is inverse distance. As photons pass through
body tissue the linear attenuation coefficient will vary due to the
variation in the composition of the biological material, i.e. Tungs,

bone, blood, etc. This changes Eq. (2.18) to

(2.19)

It is this variation which is measured by TCT.

2.3.2 The Linear Attenuation Coefficient

The Tinear attenuation coefficient u can be converted to either

the mass, electronic or atomic attenuation coefficients by dividing u

by the mass density p(gm/cmS)s electron density Pe (e1ectrons/cm3)s

or atomic density pa(atoms/cmS) of the material to give units of cmz/gm9
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cmz/e1ectron5 or cmz/atom5 respectively. The values for these
coefficients often expressed in barns (1 barn = 10“24cm2) can be found
in tables (see Hubbell and Berger, 1966; Johns and Cunningham, 1974).
Since these coefficients are in units of cmz/gm or cmz/e1ectron or
cmz/atom5 they are often called cross sections.

From a geometric point of view the terms cross section can be
thought of as the cross-sectional area of atoms or electrons seen by
a photon as it passes through the tissue. This is truly an over
simplification because for different types of interactions the cross-
sectional area varies. One might say that for different interactions
the atoms or electrons have differing cross-sectional force fields.

It is more accurate to think of the cross section as a measure of the
probability the photon will interact with the material. For example it
can be shown from Eq. (2.17) that if a flux of N photons/cmz/sec
interacts with a target of tissue containing Pa e?ectrons/cm3 then the
number of interactions per target (i.e. number of interactions per cm3)
in time t is Npet x (electronic cross section).

The linear attenuation coefficient is obtained from the mass,
electronic, or atomic cross section by multiplying by the density in
gm/cmgs e1ectr0ns/cm33 or atoms/cm3 as appropriate. Thus the linear
attenuation coefficient has units of inverse distance and is a measure
of the fraction of photons removed from the beam per length of absorber.
However it does not tell how photon energy is absorbed. Instead the
linear attenuation coefficient is the sum of the photoelectric (1),

coherent (o_ ), Compton (o), and pair production (m) attenuation

coh
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coefficients all in units of inverse Tength. Each one of these
coefficients is a measure of a physical process by which photons can

set electrons in motion.

2.3.2.1 The Photoelectric Absorption Process

The photoelectric process involves a photon colliding with an atom
and ejecting an electron either from the K, L, M, or N shells of the
atom and absorbing the total photon energy. The probability of
ejecting an electron is maximum if the photon has Jjust enough energy
to overcome the binding energy of the electron and knock it from its
shell. The photoelectric absorption in tissue is most important at
Tow energy representing the most probable mechanism for photon loss

for energies less than 50 keV.

2.3.2.2 Coherent Scattering

Coherent scattering involves unbound electrons or virtually
unbound electrons such as those in the outer shell of the atom which
have binding energies of only a few electron volts. If we consider
a photon as an electromagnetic wave, then as this wave comes near
an electron it sets the electron vibrating which causes it to radiate
energy at the same frequency as the incident wave. This process is
called coherent scattering. The scatfered photon has the same energy

and same wave Tength as the dincident photon.
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2.3.2.3 Compton Scattering

In contrast to coherent scattering, Compton scattering is a process
where the incoming photon gives up some of its energy to the electron
in accordance with the conservation of energy and momentum. Even
though Compton and coherent scattering do not absorb the photon totally,
these processes are considered in the total linear attenuation coeffi-
cient. Any well collimated detector will not see many of these scat-
tered photons and if detected the detector electronics will usually
reject the photon because it has lost enough energy to no longer be
within the selected energy window.

The Compton process depends on the number of electrons per gram
and thus with the exception of hydrogen (which has twice the electrons
per gram then any other material) the absorption per gram by the Compton
process is nearly the same for all materials. The Compton cross section
decreases with an increase in energy. The overall fraction of the
energy scattered is large for low energy photons and is small for
high energy photons. For photon energies from 100 keV to 10 MeV, Compton
scattering is much more important in soft tissue than either coherent,
photoelectric or pair production.

2.3.2.4 Pair Production

The process of pair production involves photons with energies
greater than 1.02 Mev. When a photon with this energy comes near the
nucleus of the atom it may become a positron and an electron pair.
The positron and electron have the same mass of 511 keV. Thus by the

conservation of energy and momentum, photon energies of less than
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1.02 Mev cannot experience pair production.

2.3.2.5 The Total Linear Attenuation Coefficient in Bone and Tissue

The total 1inear attenuation coefficient u is the sum of the
photoelectric (1), coherent (dcoh)g Compton (o), and pair production

(m) attenuation coefficients:

w=T+ Teoh + 04+ T, (2.20)

At Tow Z materials found in biological tissues and at energies emitted
by radioactive tracers, coherent scattering fs negligible and is not
considered. Also most radiopharmaceuticals used in single-photon ECT
have radioactive nuclei which release photons of energies less than
1.02 MeV therefore for these energies the pair production cross section
is zero. Thus the primary processes experienced by ECT are Compton

scattering and photoelectric absorption which reduces Eq. (2.20) to
u=T+0. (2.21)

Fig. 2.3 gives a plot of the photoelectric and Compton attenuation
coefficients for water as a function of energy. For energies less than
27 keV, photoelectric is the primary absorption process and Compton

is for energies greater than 27 keV.

Figure 2.4 compares the plot of the cross section (cmz/gm) and
Tinear attenuation coefficient for bone with that of water (= soft
tissue). For energies where photoelectric is‘the primary process
(<27 keV), bone will absorb almost 5 times as much energy gram for gram
as soft tissue. This means that at these energies the atomic number

of the material is the determining factor for photon attenuation. At
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Figure 2.3. Photoelectric (t) and Compton (o) linear attenuation
' coefficients (cm1) for water as a function of energy.
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Figure 2.4. MMass attenuation coefficient u/p (cmz/gm) and linear
attenuation coefficient p (cm~!) for bone and water.
The density of water = 1.00 gm/cm3 and the density of
bone = 1.83 gm/cm3.
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energies from 200 keV to 2 Mev Compton absorption is the primary process
suggesting that electron density is the determining factor. Since most
materials except for H2 have nearly the same number of electrons per
gram, bone and soft tissue will absorb the same amount of energy gram
for gram for these higher energy photons.

2.4 Emission Computed Tomography

Emission computed tomography uses two basic types of radionuclides;

M. 13 82

those which are positron emitters such as N, 1503

99m

C,
73116

Rb and those

which are gamma emitters such as Tc and Some radionuclides

can be both positron and gamma emitters whereby each radionuclide has

a certain probability of either distintegrating by emitting a positron
or a gamma ray. A comparison of positron and single-photon ECT is given
in (Budinger, Derenzo, et al., 1977).

The decay process for a positron emitter involves radionuclides
which are neutron deficient relative to the number of protrons. In such
cases a protron is converted to a neutron with the loss of a positive
charge with the same mass as an electron. This positive charge called a
positron and also referred to as an antielectron is ejected from the
nucleus and within millimeters annihilates with an electron producing two
photons each having an energy of 511 keV and traveling away from each
other at an angle of 180°.

The decay processes which lead to the re?eése of single photons are
isomeric transition, electron capture, and beta emission. Isomeric
transition occurs when the atomic nucleus falls to a state of lower

energy. For some nuclei this occurs rapidly with a very short half-1ife,

whereas others such as 99mTc remain in a metastable state with a half-1ife
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of 6 hours before falling to a state of lower energy with the release
of a photon. In the electron capture process the nucleus makes use of
the deeply penetrating orbital s electrons of the K shel] of the atom
and converts the electron and protron into a neutron. Energy in the
form of characteristic x-rays are released when electrons cascade down
from outer atomic shells to fill the gap left by the converted electron
from the K shell. 1In most cases, after electron capture the nuclides
are in an excited state and decay to a more stable state with the
release of a photon. The third decay process occurs when a neutron in
the nucleus is converted to a protron and this conversion process
releases an electron. The emitted electron is known as a B particle.
As 1in the case of electron capture the nucleus is usually in an excited
state and decays to a stable state with the release of a photon,

2.4.1 Positron Emission Computed Tomography

Detection schemes as shown in Fig. 2.5 use the two photons obtained
from the annihilation of an electron and a positron so that events are
recorded if two opposing detectors detect both photons in coincidence,
T.e. within a certain time interval (=~ 10“8 sec). The probability that
both photons will not be attenuated by the tissue interposed between

the annihilation and the detector is

4 D»
0
Probability of both = exp{ f u(;,gse)dc}xexp{mf u(z.£,0)dc}
photons escaping D
1 Co
Dy
. exp{f u(z.2,0)dz) (2.22)

Dy
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Figure 2.5. Positron emission computed tomography. At the
rotation angle 9 and lateral sampling £, the detectors
Dy and Dy will detect those annihilations whose photons
travel apart along the line E+xsinf-ycos@ =0.
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where u is the distribution of attenuation coefficients. This is the
same probability for every possible positron annihilation that may

occur along the ray path imaged by the two detectors D1 and D2 at the
same rotation angle 6 and lateral sampling distance £. The projection

pyy(gae) of these annihilations along this ray path is
(i 0) = expl[- ﬁgjg S(E+xsind - ycose) dxdy]

Jfagp X,y) S(& + xsing - ycose)dxdy (2.23)

where p(x,y) is the concentration of positron emitter. Therefore, each
projection value is the line integral of the positron concentration
distribution multiplied by an exponential attenuation factor determined
from the 1ine integral of attenuation coefficients over the total ray
path. These data are easily modified for attenuation effects giving

the corrected projection data

p(.6) = expLf fulx,y) 6(g+xsine - ycose) dxdylp, (£,6)
jgﬁa S(&€ + xsin® - ycosd)dxdy . (2.24)

2.4.2 Single-Photon Emission Computed Tomography

The attenuation compensation needed for single-photon emission
computed tomography is not a simple multiplicative correction of the
observed projection data as in the case of positron emission tomography
(Eq. 2.24). The atomic decay processes which produce gamma radiation
do not allow the advantage of coincidence detection to easily compensate

for attenuation. Instead the physics requires one to model the detection
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of single photons with a more difficult mathematical equation.

A scintillation detector illustrated in Fig. 2.6 is used to measure
the photons released by radioactive nuclei. The projections for a
particular transverse section represent photons which have been released
by radioactive nuclei that lie in the transverse section perpendicular
to the detector. The photons measured are only those photons which are
released within a solid angle subtended by the detector and which
are not attenuated by one of the processes discussed previously. Each
nucleus which lies along the line &+xsin®-ycos6 = 0 has a different
probability of being detected dependent on the body material inter-
posed between the nucleus and the detector.

For single photon emitters, the probability of detecting an event
is not independent of position of the emitting radionuclide along the
ray path as it is for positron emitters. Instead the probability that

the photon will reach the detector is

D
Probability of photon = exp-és Jf p(gse)dc§ (2.25)
escaping c
0

where %o is the position where the radionuclide decays, D is the

detector coordinate, and u is the distribution of attenuation coeffi-

cients which is a function of tissue density and photon energy. The

probability therefore depends on the tissue distfﬁbuted between the

radionuclide and the detector, and on the energy of the emitted photon.
The projection by(gﬁe) (Fig. 2.6) for single-photon emission

tomography is given by Eq. (1.1). Expanding the dot products
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Figure 2.6.

Detector —=

XBL7812-12396

Single-photon emission computed tomography. At the
rotation angle 6 and lateral sampling £, the detector
will see those photons which travel along the line
E+xsinb-ycos6 = 0 and are not attenuated by body tissue.
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in the delta function gives an equivalent expression

b, (£,8) zgfp(xsy)a(xgygise) §(g+xsnd - ycoso)dxdy (2.26)

where
detector

a(x,y,£,6) = expl- @}*d;* u(x',y')s(g+x'sine - y'cosp)dx'dy'] .
Xy

A single-photon projection is the summation of isotope concentration

at the points (x,y) modified by an exponential e where z is the line
integral of attenuation coefficients from the point (x,y) to the
detector. The single-photon emission reconstruction problem is more
difficult than either transmission or positron emission tomography.

The influence of the term a(x,y,&,8) depends on the distribution of
attenuation coefficients, which unfortunately has such large values

for all energies used in nuclear medicine that the reconstructed images
are seriously affected using the computed tomography algorithms discussed
in Section 2.2 without compensating for attenuation.

2.4.2.1 Examples of Reconstructing Single-Photon Data Without
Compensating for Attenuation

Straightforward mathematical methods used to reconstruct x-ray
transmission and positron emission modified projection data yield poor
quality images in single-photon ECT because of the attenuation of the
gamma radiation in the tissue. This can be seen from Fig. 2.7, where a
phantom disc of 23 cm diameter and constant attenuation is used to
illustrate the effect of reconstructing transverse sections without

compensating for attenuation. The data were generated from computer
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simulations for gamma rays of a few MeV (u =0.05) and compared to those
for gamma rays of 511 keV (u ~ 0.10) and 140 keV (u ~ 0.15). The images
in the lower row show the serious artifact that results for the usual
isotopes used in nuclear medicine if attenuation is not taken into

account. For example, with an attenuation coefficient of 0.15 cm’;I for

a gngc source in the center of a brain, only 18 out of 100 photons are
detected compared to 86 out of 100 photons detected from 1 cm beneath
the scalp. Thus for a truly quantitative reconstruction of gamma
emitter concentration, compensation for attenuation must be employed.

As a numerical example, we can calculate the projections py(gge)
for a disc (transverse section through a sphere) containing a homo-

geneous emitter concentration p and a constant attenuation coefficient

u. The functions p(x,y), and u(x,y) of Eq. (2.26) are defined by the

equations
C, XZ . y2 < "’02
p{x,y) = é (2.27)
0, otherwise
", XZ " y2 < POZ
p(xsy) = é (2.28)
0, otherwise

Substituting these expressions into Eq. (2.26) we see that the
problem is reduced to determining the attenuation factor e—u% where £
is the distance between the point (x,y) and the boundary of the disc

(Fig. 2.8). Thus, for =0, the weight function a(x,y,&,0 = 0) becomes

7

seen from Fig. 2.8. Also, for a disc, the attenuated Radon transform

expl-u2(x,y,£,0)] where 2(x,y,&,0) is just -x + as can be
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For a circular disc with constant attenuation and
constant emitter concentration, the attenuation
factor a(x,y,£,0) reduces to e=H% where % is the
length of the line segment between the point (x,y)
and the edge of the circular disc.
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is independent of 0 because of circular symmetry. Thus Eq. (2.26)

reduces to
pY(E) (2.29)
Integration of Eq. (2.29) gives
.C ¢C f ol 22
pY(E) o7 expl-2u (2.30)

This 1is the case for constant attenuation coefficient u. To compare
this to the case where there is no significant attenuation (u > 0)

the projections are simply

p,(£) = (2.31)
These two functions, Egs. (2.30) and (2.31), are shown for pu = 0.15 cm$1
and r_ = 20 cm. in Fig. 2.9.
For no attenuation the reconstruction is given by Radon's
inversion formula:
ore) = E%Z. J ) Sl STRls oI (2.32)
0

where p(r,¢) is the true distribution in polar coordinates and p(&,6)
is the projection function. For circular symmetry, this reduces to

the inverse of the Abel transform:
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DISC OF UNIFORM ACTIVITY:
C =30 EVENTS —

Attenuation %
(p= 0.15 cm™) \
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The projection value for a disc with attenuation u=0.15
and emitter concentration C = 30 results in a diminution
at the center by a factor of 3.16.
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dg
: (2.33)
22172

The operation of Eq. (2.33) on the projection function in Eq. (2.31)
gives C for points in the domain of p, as expected. However, for

attenuated projection data, Eq. (2.30), Abel's inversion formula gives

2n+l
T 5 é u2n2 (r 27" - %w 1 2.02) 2 ésrgra
L n=0 ((n!) L(2n+1)1]
p(r) = (2.34)
éog otherwise

Equation (2.34) is plotted in Fig. 2.10 for various attenuation
coefficients showing the reconstructed profiles of a 23 cm disc when
attenuation is ignored.

2.4.2.2 Development of Instrumentation for Single-Photon ECT

Single-photon ECT was pioneered by Kuhl and Edwards who began to
develop the principles of emission computed tomography as early as the
late 1950's, with the eventual development of the MARK I scanner (Kuhl
and Edwards, 1963). The MARK I uses a single detector which moves back
and forth in a linear fashion at each projection angle. The concept
of this type of rectilinear scanner is shown schematically in Fig. 2.11A.
Kuhl first used analog reconstruction methods which gave a back pro-
jection showing a blurred tomogram. Subsequently the system was
modified with the introduction of a computer applied correction which

enabled it to yield quantitative data.
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Concentration

o 23cm

XBL785=3190

Figure 2.10. The profiles of a 23 cm disc reconstructed using Radon's

inversion formula from data attenuated for various attenua-
tion coefficients.
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In 1964 the MARK II was developed which used two opposing detectors
to scan simultaneously and thus increase sensitivity (Kuhl and Edwards,
1964). Kuhl's early work primarily emphasized the sectional scanning
of the brain (Kuhl et al., 1966 a,b). With the development of the MARK
IIT scanner he was able to further improve sensitivity by using four
detectors which rectilinearly and simultaneously scanned the brain
(Kuhl and Edwards, 1970).

Besides Kuhl other researchers have developed rectilinear scanners
for single-photon ECT. These include Todd-Pokropek and Keeling (see
Todd-Pokropek, 1971; Keeling, 1971), Myers and co-workers (1972),
Bowley and co-workers (1973), and Tanaka and co-workers (1974).

The sensitivity was improved in the rectilinear scanners with the
addition of multiple detectors as in the design of Genna and co-workers
(1976) who used multiple detectors in a curved array. An illustration
of a rectilinear scanner with multiple detectors is shown in Fig. 2.11B.
The MARK IIT system was also improved upon by Kuhl and co-workers (1976)
with the development of the MARK IV system which is a four sided
arrangement of 32 independent detectors which rotates continuously
as a unit (Fig. 2.11C). A similar multiple detector arrangement is
being developed by Union Carbide.

Studies done at Donner Lab with single-photon ECT began by rotating
patients in front of an Anger camera as shown in Fig. 2.12 (Budinger
and Gullberg, 1974). The cross-sectional images of radiopharmaceutical
distributions were reconstructed using an iterative method due to

Goitein (1971). Compensation for photon attenuation was accompTished
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TRANSMISSION SCAN

Point source lle="""__ __

EMISSION SCAN

XBL789- 3568

Figure 2.12. Single-photon ECT was done at Donner by rotating the
patient in front of an Anger camera. The transmission
scan used a 10-20 mCi point source of gamma emitter
placed approximately 3.5 m from the camera. For the
emission scan the radiopharmaceutical was injected into
the patient.
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by using the attenuation factors that were evaluated from the distribu-
tion of attenuation coefficients reconstructed from a transmission
study. The advantage of the Anger camera over the rectilinear scanners
of Kuh1 and other researchers is that projection data for multiple
sections can be collected at one time.

A system more appropriate for patient studies is shown in Fig. 2.11D
where an area detector such as the Anger camera is rotated around the
patient using a cantilever structure. Such a system called the
Humongotron, was developed by Keyes and co-workers (1977) for imaging
the whole body. Similar but smaller systems for imaging the brain were
developed by Searle (Jaszczak et al., 1977) and by Selo (Societa
Electronica Lobarda) in Milan, Italy. These systems have the advantage
of collecting projection data for multiple transverse sections simul-
taneously without patient movement. However the devices must rotate
to obtain angular sampling. This requires more time for total data
collection than multiple detector systems positioned around the patient.
Therefore these rotating Anger camera systems are not suited for
dynamic biological studies such as measuring coronary blood flow.
Searle is improving the angular sampling by producing a new system
which will consist of two directly opposing large field of view
scintillation cameras and will be designed for whole body studies
(Phelps, 1977).
2.4.2.3 Development of Algorithms for Single-Photon ECT

The early scanners of Kuhl used basically the back-projection or

simple superposition to reconstruct the cross-sectional image (Kuhl



and Edwards, 1968). This method of reconstruction was later improved
upon by using an orthogonal tangent correction method (Kuhl et al.,
1973). The MARK’IV system (Kuhl et al., 1976) reconstructs the trans-
verse section image as it rotates using an iterative technique similar
to ART (Gordon et al., 1970). At the end of the study a single cor-
rection for attenuation and detector response is appiied based on the
assumption that the results of scanning the head can be related directly
to the results of scanning a cylinder of radioactive water,

The attenuated Radon transform for variable attenuation coefficients
was first described in (Budinger and Gullberg, 1977). Various methods
for inverting the attenuated Radon transform have been researched and
discussed in the literature; these include iterative Teast-squares
methods, which use TCT to . determine the attenuation coefficients
(Budinger and Gullberg, 1974), iterative convolution methods (Walters,
Simon, etal., 1976), attenuation compensation methods which preprocess
the projection data (Kay and Keys, 1975; and Budinger and Gullberg,
1977), correction of each reconstructed pixel value by a mean
attenuation factor determined by using the sum of atteﬂuation along
all rays through the pixel divided by the number of rays (Chang, 1978),
and a special iterative method applied in Fourier space to compensate
for both attenuation and the spacially variant point spread function
of the imaging system (Hsieh and Wee, 1976).

Direct inversion relationships have been developed for the case’

when the attenuation distribution is constant. Bellini and co-workers
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(1979 a,b) have developed an inversion formula which involves modifying
the Fourier transform of the projection data in such a way that the
modification represents the Fourier transform of unattenuated data.
Tretiak and co-workers (1978, 1979) have developed a back-projection of
filtered projection method which gives a reconstructed image that is
equal to the true image convolved with a desired pdint spread function.
This point spread function determines the spatial resolution and noise
amplification of the filter applied to the projection data. Natterer
(1978) has developed an inversion formuia which is accurate up to O(ua)o
This formula is derived by applying Cauchy's theorem to a Fourier
projection theorem derived for a constant attenuation coefficient.

The remainer of this thesis will investigate the properties of the
attenuated Radon transform and its relationship to efficient and
reliable reconstruction algorithms. We will concentrate on iterative
methods and an extension of the back-projection of filtered projection
algorithm as is appropriate for an attenuating medium with a constant

attenuation coefficient.
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3. PROPERTIES FOR ATTENUATED RADON TRANSFORMS

3.1 Introduction

In this chapter we will develop the properties of two basic types
of attenuated transforms. The attenuated Radon transform (Auzp~%py)

is that given by Egq. (1.1) -

p. (£,0) :jo(% exp | - g u(R') (g-<x",00)dx' | 6(&-(X,00)d% , (1.1)

(%05 = (%65

where p is the concentration of the emitter and py(gge) are the projec-
tions. The projections py(g,e) can be modified in such a way that we
can define a new transform (Auip*>p) which is independent of detector

geometry -

py(%;s@) =

When the attenuation coefficignt is constant, explicit inverse equations
can be developed for this modified transform.

These two transforms -- the attenuated Radon transform and the
modified attenuated Radon transform -- assume that the attenuation
distribution u is known a priori. A transform which does not assume
a priori knowledge about the attenuation distribution is given by
A:{p,u) ~ pY which maps the ordered pair of functions (p,u) - p and u
are allowed to vary - into the projection function pY defined by

Eq. (1.7). This transform is not Tinear due to the exponential
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attenuation factor in the integral equation. Methods for inverting
this nonlinear transform have been investigated by us but with very
little success. Presently Censor and co-workers (1979) are pursuing
this using algebraic reconstruction techniques. This thesis will con-
cern itself only with the case where the attenuation distribution u
is assumed to be known or has been determined by an experiment. For
this case we have denoted the attenuated Radon transform as Au and
the modified attenuated Radon transform as_Aue

The work presented in this chapter differs from previous work in the
Titerature (Tretiak and Metz, 1979; Bellini et al., 1979 a,b: Natterer,
1978) in that the attenuated Radon transform is defined for arbitrary
distributions of attenuation coefficients. This chapter deals first
with the attenuated Radon transform for arbitrary attenuation distri-
bution, then shows how one can obtain from this operator the modified
attenuated Radon transform. After the properties of the modified
transform are discussed it is then shown how the modified attenuated
Radon transform in the case of constant attenuation coefficient
reduces to the attenuation transform discussed by Tretiak and Delaney
(1978), Natterer (1978), Tretiak and Metz (1979), Bellini and co-workers
(1979%a and b). The results presented for the case of constant attenua-
tion represent contributions from these authors along with some new
results derived from the general theory of the modified attenuated

Radon transform as it applies to the case of constant attenuation.
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3.1 Introduction

In this chapter we will develop the properties of two basic types
of attenuated transforms. The attenuated Radon transform (Au:p=%py)

is that given by Eg. (1.1) -

P (6:0) = [ol

where p is the concentration of the emitter and py(gse) are the projec-
tions. The projections py(gge) can be modified in such a way that we

can define a new transform (Au:ps*p) which is independent of detector

geometry -

0< (R*,55) <<%,

When the attenuaﬁion coefficient is constant, explicit inverse equatfons
can be developed for this modified transform.

These two transforms -- the attenuated Radon transform and the
modified attenuated Radon transform -- assume that the attenuation
distribution p is known a priori. A transform which does not assume
a priori knowledge about the attenuation distribution is given by
A:(p,u) ~ pY which maps the ordered pair of functions (p,u) - p and u
are allowed to vary - into the projection function pY defined by

Eq. (1.1). This transform is not linear due to the exponential
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attenuation factor in the integral equation. Methods for inverting
this nonlinear transform have been investigated by us but with very
little success. Presently Censor and co-workers (1979) are pursuing
this using algebraic reconstruction techniques. This thesis will con-
cern itself only with the case where the attenuation distribution u

is assumed to be known or has been determined by an experiment. For
this case we have denoted the attenuated Radon transform as Au and

the modified attenuated Radon transform as_AU,

The work presented in this chapter differs from previous work in the
Titerature (Tretiak and Metz, 1979; Bellini et al., 1979 a,b; Natterer,
1978) 1in that the attenuated Radon transform is defined for arbitrary
distributions of attenuation coefficients. This chapter deals first
with the attenuated Radon transform for arbitrary attenuation distri-
bution, then shows how one can obtain from this operator the modified
attenuated Radon transform. After the properties of the modified
transform are discussed it is then shown how the modified attenuated
Radon transform in the case of constant attenuation coefficient
reduces to the attenuation transform discussed by Tretiak and Delaney
(1978), Natterer (1978), Tretiak and Metz (1979), Bellini and co-workers
(1979a and b),' The results presented for the case of constant attenua-
tion represent contributions from these authors along with some new
results derived from the general theory of the modified attenuated

Radon transform as it applies to the case of constant attenuation.
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3.2 The Attenuated Radon Transform Operating on a Hilbert Space

Hilbert space theory (Halmos, 1951) contains the mathematical
structure which enables us to describe geometrical concepts such as
orthogonality. The objects of greatest interest in connection with
Hilbert spaces are the linear transformations of which the attenuated
Radon transform is one example. Hilbert spaces have a natural
correspondence with their dual space (the space of all linear functionals
defined on the Hilbert space) so that the Hilbert space and its dual
can be considered as equivalent (Simmons, 1963, Chapter 10). This
structure leads to the concept of the adjoint of the operator from which
the generalized inverse of the attenuated Radon transform can be
described and formulated as the generalized inverse of the self-adjoint
operator equal to thg composition of the attenuatéd Radon transform
and its adjoint (Kammerer and Nashed, 1972).

For a Hilbert space X and a submanifold S, S"L denotes the
orthogonal complement of S and S is the closure of S. As illustrated
in Fig. 3.1, the Tinear operator Au maps the Hilbert space X of con-
centration functions p into the Hilbert space Y of projection functions
pyg where the range and the null space of the linear operator AU is
denoted as R(Au) and N(Au)’ respectively. In reconstruction tomography,
the null space of Au has been given the term "the space of invisible
functions" (Hamaker and Solmon, 1978).

The adjoint operator of Aus denoted by A:, maps the Hilbert space
Y into X and is defined such that (p, AZ p) = [Au 0,p] where (+,¢)

and [+,°] are the inner products in the Hilbert space X and Y,



Figure 3.1.
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The attenuated Radon transform maps the Hilbert space
X into the Hilbert space Y with range and null space
denoted as R(A,) and N(A,), respectively. The adjoint
transform A¥ maps the H?%bert space Y into the Hilbert
space X witﬁ range and null space denoted as R(A*) and
N(A:)g respectively. H
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respectively. One particular Hilbert space which we will consider is

the Hilbert space LZ(Q9W) which represents the space of real valued

functions p defined on the set O C RZ (p:~+R) which are square

integrable with respect to the weight function W(i.e. [f lp(x,y)}z X
W(x,y) dxdy < «). The attenuated Radon transform maps this Hilbert
space into the Hilbert space LZ(Esw) of functions p defined on the

set € € Rx [0,2n) (p:C ~ R) which are square integrable with respect
to the weight function w(i.e. [/ }p(é,e)lz w(&,0) d&do < »), If
"2,

Q= RZ then we will denote X as L“(R",W

2

The inner product for

L7(Q,W) is defined to be (pgp'>Q W [T o(x,y) o' (x,y) W(x,y)dxdy and
> Q

“the inner product for LZ(@,W) is defined to be [psg]E . [ p(£,0) x
’ ¢
9(£,0) w(£,6)