Title

Evaluation of a multiple integral of Tefera via properties of the exponential distribution

Permalink

https://escholarship.org/uc/item/7vc3x82f

Journal

Electronic Journal of Combinatorics, 15(1 \#N29)

ISSN

1077-8926

Author

Yu, Yaming

Publication Date

2008-07-28

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Evaluation of a Multiple Integral of Tefera via Properties of the Exponential Distribution

Yaming Yu
Department of Statistics
University of California Irvine 92697, USA
yamingy@uci.edu

Submitted: Jul 12, 2008; Accepted: Jul 21, 2008; Published: Jul 28, 2008
Mathematics Subject Classification: 26B12, 05A19, 60E05

Abstract

An interesting integral originally obtained by Tefera ("A multiple integral evaluation inspired by the multi-WZ method," Electron. J. Combin., 1999, \#N2) via the WZ method is proved using calculus and basic probability. General recursions for a class of such integrals are derived and associated combinatorial identities are mentioned.

1 Background

The integral in question reads

$$
\begin{equation*}
\int_{[0, \infty)^{k}}\left(e_{2}(\mathbf{x})\right)^{m}\left(e_{1}(\mathbf{x})\right)^{n} e^{-e_{1}(\mathbf{x})} d \mathbf{x}=\frac{m!(2 m+n+k-1)!(k / 2)_{m}}{(2 m+k-1)!}\left(\frac{2(k-1)}{k}\right)^{m} T_{k}(m) \tag{1}
\end{equation*}
$$

where k is a positive integer, m and n are nonnegative integers, $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right), e_{1}(\mathbf{x})=$ $\sum_{i=1}^{k} x_{i}, e_{2}(\mathbf{x})=\sum_{1 \leq i<j \leq k} x_{i} x_{j},(y)_{m}=\prod_{i=0}^{m-1}(y+i)$, and $T_{k}(m)$ is defined recursively by

$$
\begin{equation*}
T_{k}(m)-T_{k}(m-1)=\frac{(k(k-2))^{m}((k-1) / 2)_{m}}{(k-1)^{2 m}(k / 2)_{m}} T_{k-1}(m), \quad m \geq 1, k \geq 2 \tag{2}
\end{equation*}
$$

and

$$
\begin{aligned}
T_{1}(m)=0, & m \geq 0 \\
T_{k}(0)=1, & k \geq 2
\end{aligned}
$$

Note that we are using an uncommon convention $0^{0}=0$ for the case $m=n=0, k=1$.
In [1], Tefera gave a computer-aided evaluation of (1), demonstrating the power of the WZ [2] method. It was also mentioned that a non-WZ proof would be desirable, especially if it is short. This note aims to provide such a proof.

2 A short proof

This is done in two steps - the first does away with the integer n using properties of the exponential distribution, while the second builds a recursion using integration by parts. In this section we denote the left hand side of (1) by $I(n, m, k)$.

Proposition 1. For $n \geq 1$ we have $I(n, m, k)=(2 m+n+k-1) I(n-1, m, k)$.
Proof. Let Z_{1}, \ldots, Z_{k} be independent random variables each having a standard exponential distribution, i.e., the common probability density is $p(z)=e^{-z}, z>0$. Denoting $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{k}\right)$ we have

$$
\begin{aligned}
I(n, m, k) & =E\left(e_{2}(\mathbf{Z})\right)^{m}\left(e_{1}(\mathbf{Z})\right)^{n} \\
& =E\left(e_{1}(\mathbf{Z})\right)^{2 m+n}\left(\frac{e_{2}(\mathbf{Z})}{\left(e_{1}(\mathbf{Z})\right)^{2}}\right)^{m} \\
& =E\left(e_{1}(\mathbf{Z})\right)^{2 m+n} E\left(\frac{e_{2}(\mathbf{Z})}{\left(e_{1}(\mathbf{Z})\right)^{2}}\right)^{m} \\
& =\frac{(2 m+n+k-1)!}{(k-1)!} E\left(\frac{e_{2}(\mathbf{Z})}{\left(e_{1}(\mathbf{Z})\right)^{2}}\right)^{m}
\end{aligned}
$$

where we have used two properties of the exponential distribution: (i) $e_{1}(\mathbf{Z})$ is independent of $\left(Z_{1}, \ldots, Z_{k}\right) / e_{1}(\mathbf{Z})$ and hence independent of $e_{2}(\mathbf{Z}) /\left(e_{1}(\mathbf{Z})\right)^{2}$, and (ii) $e_{1}(\mathbf{Z})$ has a gamma distribution $\operatorname{Gam}(k, 1)$ whose j th moment is $(j+k-1)!/(k-1)$!. The claim readily follows.
Proposition 2. For $k \geq 2$ and $m \geq 1$ we have

$$
\begin{equation*}
I(0, m, k)=I(0, m, k-1)+\frac{m(k-1)(k+2(m-1))}{k} I(0, m-1, k) . \tag{3}
\end{equation*}
$$

Proof. Denote $\mathbf{x}_{-1}=\left(x_{2}, \ldots, x_{k}\right)$. Using integration by parts and exploiting the symmetry we obtain

$$
\begin{aligned}
I(0, m, k) & =\iint\left(e_{2}(\mathbf{x})\right)^{m} e^{-e_{1}(\mathbf{x})} d x_{1} d \mathbf{x}_{-1} \\
& =\int-\left.e^{-e_{1}(\mathbf{x})}\left(e_{2}(\mathbf{x})\right)^{m}\right|_{x_{1}=0} ^{\infty} d \mathbf{x}_{-1}+\iint m e^{-e_{1}(\mathbf{x})}\left(e_{2}(\mathbf{x})\right)^{m-1} e_{1}\left(\mathbf{x}_{-1}\right) d x_{1} d \mathbf{x}_{-1} \\
& =\int e^{-e_{1}\left(\mathbf{x}_{-1}\right)}\left(e_{2}\left(\mathbf{x}_{-1}\right)\right)^{m} d \mathbf{x}_{-1}+\frac{m(k-1)}{k} \int e^{-e_{1}(\mathbf{x})}\left(e_{2}(\mathbf{x})\right)^{m-1} e_{1}(\mathbf{x}) d \mathbf{x} \\
& =I(0, m, k-1)+\frac{m(k-1)}{k} I(1, m-1, k)
\end{aligned}
$$

where the limits of integration are omitted to save space. The claim now follows by Proposition 1.

To finish the proof of (1), we note that (i) by Proposition 1 it suffices to prove (1) for $n=0$, (ii) if we denote the right hand side of (1) by $J(n, m, k)$, then based on (2), after simple algebra $J(0, m, k)$ satisfies the recursion (3) as $I(0, m, k)$ does, and (iii) the boundary values of $I(0, m, k)$ and $J(0, m, k)$ match, i.e., $I(0, m, 1)=J(0, m, 1)=0$ for $m \geq 0$ and $I(0,0, k)=J(0,0, k)=1$ for $k \geq 2$. Thus $I(n, m, k) \equiv J(n, m, k)$.

3 General recursions

This argument applies to a general class of integrals involving elementary symmetric functions. Specifically, let $e_{j}(\mathbf{x})=\sum_{1 \leq i_{1}<\ldots<i_{j} \leq k} x_{i_{1}} \ldots x_{i_{j}}, j=1, \ldots, k$, and consider the integral

$$
\begin{equation*}
I_{k}\left(n_{1}, \ldots, n_{k}\right)=\int_{[0, \infty)^{k}} e^{-e_{1}(\mathbf{x})} \prod_{j=1}^{k}\left(e_{j}(\mathbf{x})\right)^{n_{j}} d \mathbf{x} \tag{4}
\end{equation*}
$$

for $n_{j} \geq 0,1 \leq j \leq k, k \geq 1$. Relation (1) corresponds to $n_{1}=n, n_{2}=m$ and $n_{3}=\ldots=n_{k}=0$. The following recursions are obtained by trivial modifications in the proofs of Propositions 1 and 2.

Proposition 3. For $n_{1} \geq 1$ we have

$$
I_{k}\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\left(k-1+\sum_{j=1}^{k} j n_{j}\right) I_{k}\left(n_{1}-1, n_{2}, \ldots, n_{k}\right)
$$

Proposition 4. For $k \geq 2$ we have

$$
\begin{aligned}
I_{k}\left(0, n_{2}, \ldots, n_{k}\right)= & \delta_{k} I_{k-1}\left(0, n_{2}, \ldots, n_{k-1}\right) \\
& +n_{2} \frac{k-1}{k}\left(k+2\left(n_{2}-1\right)+\sum_{j=3}^{k} j n_{j}\right) I_{k}\left(0, n_{2}-1, n_{3}, \ldots, n_{k}\right) \\
& +\sum_{j=3}^{k} n_{j} \frac{k-j+1}{k} I_{k}\left(0, \ldots, n_{j-1}+1, n_{j}-1, n_{j+1}, \ldots, n_{k}\right)
\end{aligned}
$$

where $\delta_{k}=1$ if $n_{k}=0$ and $\delta_{k}=0$ if $n_{k}>0$.
Note that $I_{k}\left(n_{1}, \ldots, n_{k}\right)$ is given an arbitrary value if some $n_{j}<0$; this does not affect the recursion in Proposition 4.

Together with the boundary condition $I_{k}(0, \ldots, 0)=1, k \geq 1$, Propositions 3 and 4 determine $I_{k}\left(n_{1}, \ldots, n_{k}\right)$ for all $k \geq 1$ and $n_{j} \geq 0,1 \leq j \leq k$. It is doubtful whether these recursions are solvable in a simpler form. At any rate, we may calculate $I_{k}\left(0, n_{2}, \ldots, n_{k}\right), k \geq 2$, by building up a table of $I_{l}\left(0, m_{2}, \ldots, m_{l}\right)$ for values of l and m_{i} 's that satisfy $l \leq k, \sum_{j=2}^{l} m_{j} \leq \sum_{j=2}^{k} n_{j}$, and $m_{k} \leq n_{k}$ if $l=k$; this range can be further restricted if the largest j for which $n_{j} \neq 0$ is less than k. We omit the details but include some values of $I_{3}\left(0, n_{2}, n_{3}\right)$ calculated this way in Table 1.

It is reassuring to see that Table 1 contains only integer entries. This is not obvious from Proposition 4 but is so from (4), after expanding the product $\prod_{j=1}^{k}\left(e_{j}(\mathbf{x})\right)^{n_{j}}$ inside the integral. Alternatively, $I_{k}\left(n_{1}, \ldots, n_{k}\right)$ is a sum of products of various moments of the standard exponential distribution, and these moments are all integers.

Table 1: Values of $I_{3}\left(0, n_{2}, n_{3}\right)$ for $n_{2}+n_{3} \leq 4$.

$n_{2} \backslash n_{3}$	0	1	2	3	4
0	1	1	8	216	13824
1	3	12	216	10368	
2	24	252	8640		
3	372	8208			
4	9504				

4 Associated combinatorial identities

It would be interesting to know whether there exists a direct combinatorial interpretation of $I_{k}\left(n_{1}, \ldots, n_{k}\right)$ as defined by (4). In this direction we mention two associated binomial sum identities.

Let Z_{1}, Z_{2}, \ldots, be independent standard exponential random variables. For $n, m \geq 0$ we have

$$
\begin{aligned}
I_{2}(n, m) & =E\left(Z_{1}+Z_{2}\right)^{n}\left(Z_{1} Z_{2}\right)^{m} \\
& =\sum_{k=0}^{n} E\binom{n}{k} Z_{1}^{k+m} Z_{2}^{n-k+m} \\
& =\sum_{k=0}^{n}\binom{n}{k}(k+m)!(n-k+m)!
\end{aligned}
$$

On the other hand, (1) gives

$$
I_{2}(n, m)=\frac{(2 m+n+1)!}{(2 m+1)!}(m!)^{2}
$$

Thus we obtain a familiar looking identity

$$
\begin{equation*}
\binom{2 m+n+1}{n}=\sum_{k=0}^{n}\binom{k+m}{m}\binom{n-k+m}{m}, \quad m, n \geq 0 \tag{5}
\end{equation*}
$$

Another instance of (1) is

$$
I_{3}(0, m, 0)=\frac{(2 m+1)!}{3^{m}} \sum_{k=0}^{m} \frac{3^{k}(k!)^{2}}{(2 k+1)!}, \quad m \geq 0
$$

We also have

$$
\begin{aligned}
I_{3}(0, m, 0) & =E\left(Z_{1} Z_{2}+Z_{1} Z_{3}+Z_{2} Z_{3}\right)^{m} \\
& =\sum_{0 \leq i, 0 \leq j, i+j \leq m} E \frac{m!}{i!j!(m-i-j)!}\left(Z_{1} Z_{2}\right)^{i}\left(Z_{1} Z_{3}\right)^{j}\left(Z_{2} Z_{3}\right)^{m-i-j} \\
& =\sum_{0 \leq i, 0 \leq j, i+j \leq m} \frac{m!(i+j)!(m-j)!(m-i)!}{i!j!(m-i-j)!}
\end{aligned}
$$

and after rewriting we get a less familiar but interesting identity

$$
\begin{equation*}
\frac{(2 m+1)!}{3^{m}(m!)^{2}} \sum_{k=0}^{m} \frac{3^{k}(k!)^{2}}{(2 k+1)!}=\sum_{0 \leq i, 0 \leq j, i+j \leq m}\binom{m-j}{i}\binom{m-i}{j}\binom{m}{i+j}^{-1}, \quad m \geq 0 . \tag{6}
\end{equation*}
$$

Of course, (5) and (6) can be derived via alternative methods, for example the WZ method; the purpose of presenting them is mainly to draw attention to the potential of $I_{k}\left(n_{1}, \ldots, n_{k}\right)$ as combinatorial entities.

References

[1] A. Tefera, A multiple integral evaluation inspired by the multi-WZ method, Electron. J. Combin. 6 (1999), \#N2.
[2] H.S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and "q") multisum/integral identities, Invent. Math. 108 (1992), 575-633.

