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A Mathematical Model for Infiltration Heat Recovery

C. R. Buchanan and M. H. Sherman1

Energy Performance of Buildings Group
Indoor Environment Department

Environmental Energy Technologies Division
Lawrence Berkeley National Laboratory

University of California

Abstract

Infiltration has traditionally been assumed to affect the energy load of a building by
an amount equal to the product of the infiltration flow rate and the sensible enthalpy
difference between inside and outside.  However, laboratory and simulation research has
indicated that heat transfer between the infiltrating air and walls may be substantial, reducing
the impact of infiltration.  In this paper, two- and three-dimensional CFD simulations are
used to study the fundamental physics of the infiltration heat recovery process and a simple
macro-scale mathematical model for the prediction of a heat recovery factor is developed.
CFD results were found to compare well (within about 10 percent) with limited published
laboratory data corresponding to one of the scenarios examined.  The model, based on the
steady-state one-dimensional convection-diffusion equation, provides a simple analytical
solution for the heat recovery factor and requires only three inputs: the infiltration rate, the U-
value for the building, and estimates of the effective areas for infiltration and exfiltration.
The most difficult aspect of using the model is estimation of the effective areas, which is
done here through comparison with the CFD results.  With proper input, the model gives
predictions that agree well with CFD results over a large range of infiltration rates.  Results
show that infiltration heat recovery can be a substantial effect and that the traditional method
may greatly over-predict the infiltration energy load, by 80-95 percent at low leakage rates
and by about 20 percent at high leakage rates.  This model for infiltration heat recovery could
easily be incorporated into whole-building energy analysis programs to help provide
improved predictions of the energy impact of infiltration.

                                                                
1 LBNL-44294: This work was supported by the Assistant Secretary for Energy Efficiency and Renewable
Energy, Office of Building Technology of the U.S. Department of Energy under contract no. DE-AC03-
76SF00098.
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Nomenclature

ai = dimensionless flow rate (-)
ao = dimensionless flow rate based on total building surface area (-)
A = building envelope total surface area (m2)
Ai = effective areas for heat recovery model (m2)
cp = specific heat capacity of air (1006 J/kg K)
cps = specific heat capacity of insulation solid component (1006 J/kg K)
cpw = specific heat capacity of wall sheathing (1200 J/kg K)
C1 , C2 , C3 = constants for heat recovery model variable area ratio expression (-)
e = external wall faces for conduction terms in model development
f1 = effective area ratio for infiltrating wall (-)
f2 = effective area ratio for exfiltrating wall (-)
g = gravity (9.81 m/s2)
k = air thermal conductivity (0.025 W/m K)
keff = effective thermal conductivity of insulation ( 0.025 W/m K)
ks = thermal conductivity of insulation solid component (0.041 W/m K)
kw = wall  sheathing thermal conductivity (0.13 W/m K)
L = wall thickness (m)
m = infiltration mass flow rate (kg/s)
p = air pressure (Pa)
Pe = Peclet number (-)
qo = heat energy conducted through wall in model (W/m2)
Q = actual total (conduction and convection) building energy load (W)
Qcond  = conduction energy flux through envelope in simplified model (W)
Qconv  = convection energy flux through envelope in simplified model (W)
Qinf  = actual energy load due to infiltration (W)
QinfC = conventional energy load due to infiltration (W)
Qo = pure conduction energy load with no infiltration (W)
 t = time (s)
T = temperature (K)
Ti = inside air temperature (298 K)
To = outside air temperature (274 K)
Ts = temperature of insulation solid component (K)
Tw = wall sheathing temperature (K)
u = air flow velocity (m/s)
U = wall U-value (W/m2)
x = distance co-ordinate (m)

α = insulation permeability (10-8 m2)
∆T = Ti – To (24 K)
ε = infiltration heat exchange effectiveness or heat recovery factor (-)
Γ = generic diffusion coefficient (kg/m s in this paper)
φ = mass fraction of air in wall insulation material (0.99)
µ = air viscosity (1.72x10-5 kg/m s)
ρ = air density (kg/m3)
ρs = density of insulation solid component (70 kg/m3)
ρw = wall sheathing density (544 kg/m3)
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τ = fluid stress tensor (N/m2)

1.  Introduction

Infiltration, accidental air leakage through building envelopes, is a common
phenomenon that affects both indoor air quality and building energy consumption. Infiltration
can contribute significantly to the overall heating or cooling load of a building, but the
magnitude of the effect depends on a host of factors, including environmental conditions,
building design and operation, and construction quality.  Claridge and Bhattacharyya (8) note
that a great deal of work has been devoted to the prediction and measurement of infiltration
rates in building systems, but little effort has been directed toward determining the actual
energy impact of infiltration.

Few studies regarding the energy issues of infiltration have been found in the
literature.  Based on field measurements taken at 50 residential buildings, Caffey (6)
concluded that up to 40 percent of the heating/cooling costs in the homes studied was due to
infiltration.  In another study of residential buildings, Persily (15) attributed about one-third
of the heating/cooling requirements to infiltration.  Sherman and Matson (16) examined
measured leakage data and found that a high fraction of the space conditioning load in U.S.
residential buildings was due to infiltration. The results of a recent study (14) of U.S. office
buildings performed by the National Institute of Standards and Technology (NIST) estimates
that air leakage accounts for about 15 percent of the heating load in office buildings
nationwide and about 1 or 2 percent of the cooling load.  By all measures, the impact of
infiltration can be sizeable and should therefore be considered in calculations of building
energy consumption.

)(infC oip TTmcQ −=      (1)

The conventional method of accounting for the extra load due to infiltration
(explained in Appendix 1) is to add a simple convective transport term of the form mcpT to
the energy balance for the building.  For single-zone building models the conventional
infiltration load, QinfC, shown in equation 1, is the product of the infiltrating air mass flow
rate, the specific heat capacity of air, and the temperature difference between inside and
outside.  This relation does not include the effects of moisture in the air and is strictly valid
only if the leaking air does not interact thermally with the building walls.  In reality, leaking
air exchanges heat with the walls as it enters and leaves the building, which changes the
thermal profile in the walls and warms or cools the infiltrating/exfiltrating air. This results in
different values for the conduction, infiltration, and total heat losses than are predicted by the
conventional method (see Appendix 1).  Some studies have shown that this effect could be
substantial suggesting that the conventional method over-predicts the energy impact of
infiltration (2,4,7,8,11).

An improved prediction of the energy load due to infiltration can be made by
introducing a correction factor, the infiltration heat exchange effectiveness, ε, or the heat
recovery factor (defined by equation 2), into the expression for the conventional load
(equation 1). In equation 2, Q is the actual total energy load of the building with infiltration
and Qo is the conduction load when there is no infiltration.  This heat recovery factor,
introduced by Claridge and Bhattacharyya (8), accounts for the thermal interaction between
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leaking air and building walls. The actual infiltration load, Qinf, is calculated using the heat
recovery factor as shown in equation 3 (detailed in Appendix 1).
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( ) ( ) Coip QTTmcQ infinf )1(1 εε −=−−=      (3)

At this point, basic information regarding the physical details of the problem (like
general air flow structure or important transport mechanisms) or the importance of certain
variables (like wall design, leakage path, bulk air temperature difference) is not available,
therefore, infiltration heat recovery is not well understood. The purpose of this study is to
investigate the heat transfer process between infiltrating air and room walls and determine its
effect on the energy load conventionally attributed to infiltration. A primary goal of this work
is to provide a foundation of knowledge about this process by which a fundamental
understanding can be developed and a direction for future work can be determined.  Another
goal is to determine the rough size of the infiltration heat recovery effect for a variety of
leakage scenarios.  If the effect is not sizeable, then there would be no point in further work.
A final goal is to develop a simplified mathematical model for calculation of the infiltration
heat recovery factor that is based on the important physics of the process.

In this paper, two- and three-dimensional computational fluid dynamics (CFD)
simulations are used to investigate the basic physics of the infiltration heat recovery process.
We choose to start with a fairly simple physical representation (only conduction and
convection are considered for transport) so that an understanding of the phenomenon can be
developed from first principles.  Additional processes, like turbulence or radiation, can be
added progressively if necessary.  Also, a one-dimensional mathematical model is developed
that can be used to determine the extent of heat transfer between leaking air and walls,
represented quantitatively as the infiltration heat recovery factor.  This macro-scale model,
based on the steady-state one-dimensional convection-diffusion equation, provides a simple
analytical relation for the heat recovery factor.  It requires only three inputs: the infiltration
rate, the U-value for the building, and estimates of the effective areas for infiltration and
exfiltration.  Predictions from the model are compared with results from detailed CFD
simulations and limited experimental results from the literature.

2.  General Problem Formulation

The cross-section of a hypothetical test room under a general infiltration scenario is
shown in figure 1. Small holes in the outer sheathing of the building envelope (plywood in
this study) allow air to leak into the wall cavity and flow through the wall from outside to
inside for the infiltrating wall and vice-versa for the exfiltrating wall.  The driving force for
leakage is a pressure differential due to wind and temperature differences between inside and
outside. Figure 1 shows the infiltration problem in its entirety, but in this study only a limited
portion of this environment (the walls and the airspace in the vicinity of the walls) is analyzed
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to help understand the infiltration heat recovery process.  As infiltration heat recovery is
largely a localized process this is all that is necessary.

Eight wall configurations, shown in figures 2 and 3, are examined under various
environmental conditions.  Wall geometries 1, 2, 5, and 8 have insulation in the full wall
cavity, while geometries 3 and 4 have empty wall cavities.  Walls 6 and 7 are special cases
with only half of the wall cavity insulated.  Walls 1, 3, 6, and 7 provide a long flow path for
infiltrating air that could potentially create a displacement flow in the wall cavity.  Walls 2, 4,
and 5 provide a short flow path for infiltrating air that could isolate air in the top and bottom
sections of the wall.  Wall 8 has the possibility for both long and short paths.  Leakage rates
through the wall are varied and the inside/outside temperature difference is fixed at 24 K for
most of the cases.  The influence of the inside/outside temperature difference is also
examined.

Figure 1: Cross-section of a hypothetical test room showing the general infiltration problem
(wall geometry 1 shown).  The infiltrating and exfiltrating walls have a conduction and

convection energy flux, but all other walls have only a conduction flux.

The example room shown in figure 1 could represent a row-house inner unit and is
composed of a ceiling, floor, front wall, and rear wall with no air leakage and an infiltrating
wall with a corresponding exfiltrating wall both with air leakage.  Heat conduction occurs
through all of the walls but the infiltrating and exfiltrating walls also have convective heat
transfer.

We believe the important physics of the infiltration heat recovery process occurs
largely within the wall structure and in the vicinity of the wall surfaces (i.e., a few
centimeters) and the results support this notion.  Since the purpose of this study is to
understand the important physics of heat recovery, it is only necessary to analyze this select
region.  It is not necessary to represent the details of the building interior or the entire
building envelope, therefore, the room interior is not represented and the building envelope is
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separated into non-interacting wall elements, which are examined individually.  Information
from the individual walls is added together to determine the overall impact for a complete
room system.  The leaking walls are both of the same geometry type and are matched by their
air leakage rates.  The bulk air flow within the room is not represented, but this should not be
a problem because, as Etheridge (9) notes, the internal room air flow has only a secondary
effect on infiltration.  The most important influences on infiltration are wind-induced
pressure differences and buoyancy of room air in the vicinity of the wall.   It is possible that
radiation has some effect on the heat recovery process, but this topic is not examined here.
The importance of radiation will be assessed in future work.

Figure 2: Wall geometries 1-4; 1 & 2 are insulated and 3 & 4 are empty.

Figure 3: Wall geometries 5-8; special cases.

3.  CFD Simulations

The purpose of this study is to investigate the potential heat transfer between
infiltrating air and room walls, quantify its extent through a heat recovery factor, and
determine how this process could affect the energy load conventionally attributed to
infiltration.  Previous studies have measured lump quantities experimentally (2,7,8) or
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simulated the system using simplified modeling, for example, a prescribed Nusselt number
for the air-wall heat transfer (11).   Despite prior research efforts, the fundamental details of
the process are still not known and, therefore, it is not well understood.

In the first part of this study, computational fluid dynamics (CFD) simulations are
used to examine the basic physics of the infiltration heat recovery process in detail.  The
individual contributions of conduction and convection to the total heating load are determined
without making fundamental simplifications as in previous work.   These components of the
total energy flux are used to calculate the infiltration heat recovery factor.

An advantage of CFD simulations over experimental studies is that details of the
system, like local flow patterns and thermal profiles, can be resolved helping to provide a
better overall understanding of the physics involved.  Also, many important aspects of the
problem that are often difficult to measure, like boundary conditions, material properties, and
flow paths, are prescribed and can be systematically varied with ease.  This makes
correlations between different variables, like leakage path length and heat recovery, much
easier.  Also, these simulations are quick and inexpensive compared to experiments and can
be used to help design experiments.  A disadvantage of such simulations is that it is difficult
to represent the complexity of the true system, especially the variations associated with
construction quality and material properties.  The systems here are idealized, having
homogeneous material properties and ideal construction.  However, the results should be
representative and of practical value with proper interpretation.

The walls are modeled as two- and three-dimensional systems in the CFD
simulations.  Flow and energy transport in the air are determined via the Navier-Stokes and
energy equations, equations 4-6, respectively.  A laminar representation is used for the flow,
and solutions show this to be a valid assumption, as the highest calculated Reynolds number
inside or near the wall is only about 2000, based on wall thickness.  It is possible that
turbulence could have some effect even at these moderately low Reynolds numbers, so this
will be examined in future work.  The plywood sheathing is represented as an impermeable,
solid material.  Energy transport within the sheathing is calculated via the conduction
equation, shown in equation 7.  Insulation, if present in the wall, is represented as a porous
material.  Air flow through the insulation is determined via Darcy’s Law, equation 8, a
common model for flow through porous media (5,11).  Energy transport through the
insulation is determined via a modified form of the energy equation, as given by equation 9.
In equation 9, an effective conductivity, given by equation 10, is used in the conduction flux
term and the thermal inertia of the solid component is included in the transient term.  A
fundamental assumption in the validity of equation 9 for this application is local thermal
equilibrium between the fluid and solid phases in the porous media.  This assumption and
other details of the wall modeling are discussed in Appendix 2.
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Thermal gradients in the system develop due to the difference between indoor and
outdoor conditions and give rise to natural convection.  As mentioned previously, it is
important to represent the effects of buoyancy on the flow to properly determine infiltration
rates and the heat flux at the wall due to boundary layer formation, so buoyancy is included in
these simulations.  A temperature-dependent empirical equation of state for the fluid density,
coupled with the body force term in the fluid momentum equation in the vertical direction
introduces the effects of buoyancy into the flow.

Simulations are performed for the eight wall geometries shown in figures 2 and 3
under various infiltration rates with a constant temperature difference of 24 K between inside
and outside.   Air leakage is achieved by imposing either velocity or pressure boundary
conditions at locations far enough from the wall construction to prevent local disturbances
from developing near the wall.  This requires there to be some amount of empty space on
either side of the wall.  An empty airspace of about twice the wall thickness is placed on
either side of the wall, which allows a natural convection boundary layer to develop.
Temperature boundary conditions are imposed upon the air on either side of the wall, not
upon the wall itself, meaning heat transfer through the wall structure is calculated entirely as
conjugate heat transfer, i.e., no assumptions are made about the heat transfer (see Appendix 2
for details).

Due to the complexity of the flow, it is not possible to achieve a converged solution,
based on the sum of the normalized residuals, using the steady-state equations.  Therefore,
the time-dependent equations are integrated in time until steady-state is reached.  The details
of the solution methodology are discussed in Appendix 2.   Comparison of results from two-
dimensional simulations using a coarse computational grid (33,000 nodes) and a fine grid
(140,000 nodes) for the same wall geometry show that the coarse grid is sufficient to provide
a grid-independent solution.  All two-dimensional results presented here are from converged
steady-state solutions using a 33,000-node grid.  In the three-dimensional simulations, a
different grid with approximately 100,000 nodes is used.  Grid-dependency tests are not
performed for the three-dimensional cases because the required computational resources are
not available.  However, it can be inferred from the corresponding two-dimensional cases that
this grid resolution should be roughly sufficient to provide some useful results.  Examination
of the two-dimensional results shows that about 5 to 10 grid points across the thermal and
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momentum boundary layers is enough to provide a grid independent solution.  In the three-
dimensional simulations, about 5 grid points are used across the boundary layers, which
appears to provide fairly good resolution.  Although the three-dimensional results look good
and are from converged solutions, it is not known if the solutions are grid independent.  This
should be kept in mind when examining the three-dimensional results.  All three-dimensional
results are from converged steady-state solutions using a grid with approximately 100,000
nodes.

4.  Results and Discussion

The main point of interest is the extra energy load introduced by infiltration because
this will allow calculation of the heat recovery factor.  This is determined by first calculating
the heat flux through the room walls with no air leakage, designated as Qo.  Then, the energy
flux is determined for the same wall types with air leakage.  The difference between the two
values is the infiltration-induced energy load.  The convection and conduction energy flux
across the external (outside) face of each wall is calculated for infiltrating and exfiltrating
configurations. Using the external building face for the system control volume boundary is an
arbitrary choice.  The interior face could be used as well, however, it is important from an
organizational standpoint that the energy accounting be performed at a consistent location.
Detailed results from the wall 1 configuration are shown in Appendix 3 to illustrate the trends
that occur in the flux components as the leakage rate varies.  Also, an example is worked in
Appendix 4 using the wall 1 results to illustrate how the heat recovery information can be
used and the potential increases in accuracy it could provide for building energy load
predictions.

4.1.  2D CFD Simulations

Figure 4 shows the heat recovery factor for wall geometries 1-4 determined from two-
dimensional CFD simulations.   The variable on the horizontal axis of the graph is the
dimensionless flow rate (ao), defined in equation 11.  It is the leakage rate non-
dimensionalized by the U-value of the building and the specific heat of air.  It was found to
be a useful independent variable when comparing the heat recovery for different cases
because it collapses the data showing the universal trends.  In all cases, the heat recovery
factor approaches a value of one at very low flow rates and decreases with increasing flow
rate.  Heat transfer is lower at high flow rates because there is less time for energy to be
transported from the walls to the infiltrating air resulting in lower heat recovery.

ii

p
i AU

mc
a =              (11)

Two distinct trends can be seen in figure 4.  One trend is that the walls with holes in a
high/low configuration, walls 1 and 3, have a significantly higher heat recovery factor than
the walls with holes that are straight through, but these straight through geometries still have
a significant heat recovery effect.  This is partly because the high/low configuration has a
longer leakage path and, for a given flow rate, the air remains within the wall cavity for a
longer period of time.  This allows for greater heat transfer and higher heat recovery
compared to the straight through case.
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The other trend is that data points for the high/low configurations fall roughly on a
single trend line, and the same is true for the straight through configurations.  That is,
insulated (1 & 2) and empty walls (3 & 4) with the same hole configuration have about the
same heat recovery when plotted against the chosen independent variable, ao.  This suggests a
universal behavior that may be applicable to all leakage scenarios.  Note that the insulated
and empty walls have different leakage rates for a given value of ao because their U-values
are different, but they have about the same heat recovery.  This indicates that the non-
dimensional flow rate, ao, is the proper independent variable to use when comparing different
cases.

The heat recovery factor is calculated for wall 5 using four different flow rates and is
compared to the data for wall 2 in figure 5.  The geometry of wall 5 is the same as wall 2,
except the hole in the sheathing continues all the way through the wall, including the
insulation, and the leaking air is separated from the insulation by a layer of the sheathing
material.  Interestingly, this change in geometry has little effect on the heat recovery. The
four points calculated for wall 5 fall essentially on the same trend line as the points for wall 2.
This suggests that the interior details of the leakage path do not have a great affect on the heat
recovery, just the overall hole geometry is important.
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Figure 4: Heat recovery factor determined from 2D CFD simulations for walls 1-4.  Solid
symbols show data for walls with a high/low hole configuration (1 and 3) and hollow

symbols show data for walls with a straight through hole configuration (2 and 4).  Notice the
two distinct trends—one for each hole configuration.
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Figure 5: Heat recovery factor determined from 2D CFD simulations for walls 2 and 5.  Both
walls have a straight through hole configuration but the details of the leakage path are

different-- see figures 2 and 3.  Both walls have about the same heat recovery.

The heat recovery factor is calculated for walls 6 and 7 using several different flow
rates and is compared to the data for wall 1 in figure 6.  The leakage path is the same for all
of the walls, a high/low hole configuration, but the layout of the insulation in the wall cavity
is different.   We thought that this might have some impact on the heat recovery, so these
special cases were investigated.  As figures 2 and 3 show, the insulation fills the entire cavity
of wall 1, while only half the cavity is filled with walls 6 and 7.  Wall 6 has insulation on the
right half of the cavity and wall 7 has insulation on the bottom half.  As figure 6 shows, this
change in the wall cavity insulation layout has no significant effect on the heat recovery.  The
points calculated for walls 1, 6, and 7 all fall on the same trend line.
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Figure 6: Heat recovery factor determined from 2D CFD simulations for walls 1, 6, and 7.
All walls have a high/low hole configuration but the layout of insulation in the wall cavity is

different for each case-- see figures 2 and 3.  The heat recovery factor for all the walls
follows a single trend line.
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Figure 7: Heat recovery factor determined from 2D CFD simulations for walls 2 and 8.  Both
walls have insulated wall cavities.  Wall 2 has a single straight through hole configuration

and wall 8 has two straight through holes-- see figures 2 and 3.
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The heat recovery data for walls 2 and 8 is shown in figure 7.  Wall 8 is similar to
wall 2, having two straight through holes, but is also similar to wall 1 with two high/low
holes.  The heat recovery for wall 8 is closer to that of wall 2, however, suggesting that this
configuration behaves more like two straight through holes than two high/low holes.

For values of ao less than one, the heat recovery factor for wall 8 shows strange
behavior, dropping sharply with small changes in flow rate and seemingly not approaching
one for no leakage.  This strange behavior is due to two-way flow occurring in one or both of
the walls caused by buoyancy induced pressures that act in different directions at different
holes.  For example, in a given wall air may flow into the room through the top hole and out
of the room through the bottom hole.  This allows multiple possibilities for flows at
individual holes for a given overall leakage rate or ao.  The result is that for a given overall
leakage rate there is not a unique heat recovery factor.  At larger leakage rates higher driving
pressures force the flow direction to be the same for both sets of holes and the data points for
wall 8 show the same trend as wall 2.  There is little interaction between the two sets of holes,
i.e., the high set and low set, because the insulation separating them provides a large flow
resistance.  A wall of this design may not need to be modeled in its entirety.  However,
preliminary studies of this wall with an empty cavity show that there is a significant amount
of interaction between the high and low holes, so this may not be a universal trait for all such
wall designs.  This wall geometry shows the potential complexity of real life situations and
deserves further investigation.

A final point of interest is the influence of the bulk air temperature difference (Ti – To)
on the heat recovery factor as it may not scale directly with this temperature difference. CFD
simulations were performed over a range of leakage rates to examine this possibility.  The
bulk air temperature difference was changed from 24 K to 12 K and –18 K for the insulated
wall with a high/low hole configuration (wall 1).  The heat recovery factors for these cases
are compared in figure 8 over the range of leakage rates.   All three cases, with the 24 K, 12
K, and –18 K difference, have essentially the same heat recovery values and trends.  It seems
that the heat recovery scales with the bulk air temperature difference, so this parameter can be
removed from the analysis.
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Figure 8: Heat recovery factor for wall 1 (insulated with a high/low hole configuration)
determined from 2D CFD simulations using bulk air temperature differences (Ti – To) of +24
K, +12 K and -18 K.  The bulk air temperature difference appears to have no affect on the
heat recovery.  Note the decreased range in the dimensionless flow rate.

4.2.  3D CFD Simulations

Three-dimensional simulations are performed for walls 1 and 2 and the results are
compared to those from two-dimensional simulations in figures 9 and 10.  In the 3D
simulations, the hole in the wall sheathing is roughly a square, while the hole in the 2D cases
corresponds to a long slit spanning the width of the wall.  In all other respects, the 2D and 3D
walls are geometrically the same.  This geometric discrepancy causes differences in the air
flow patterns in and around the wall, but it does not appear to have any significant effect on
the heat recovery.  The 3D simulations give nearly the same values and show almost the same
trends for the heat recovery factor for a given hole configuration as the 2D simulations.
Therefore, it may be sufficient to use 2D simulations to study a given wall geometry, which
would mean a large savings in time and effort compared to 3D simulations.
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Figure 9: Heat recovery factor determined from 2D and 3D CFD simulations for wall 1, an
insulated wall with a high/low hole configuration.  Heat recovery values are essentially the

same for both cases.
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Figure 10: Heat recovery factor determined from 2D and 3D CFD simulations for
wall 2, an insulated wall with a straight through hole configuration. Heat recovery values are

essentially the same for both cases.
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4.3.  Experimental Comparison of CFD Results

The only experimental data available for comparison is that of Claridge and
Bhattacharyya (8).  Unfortunately, their experiments do not correspond exactly to the work in
this study, some important details of the experiments are not given making direct
comparisons difficult, and leakage rates were varied only over a narrow range.  However, one
of their cases corresponds fairly well to one of ours and can be used for comparison.

The case of Claridge and Bhattacharyya with a diffuse inlet and outlet (inlet B4, outlet
A) is similar to walls 1 and 3 in this study (high/low hole configuration).  They calculated a
heat recovery factor of about 0.80 when ao is 0.05 and about 0.65 when ao is 0.25.  As figure
8 shows, CFD results for wall 1 give a heat recovery factor of 0.90 when ao is 0.05 and about
0.72 when ao is 0.25.  There are no CFD data available for wall 3 at these low flow rates, but
the trend is the same. Considering the rough nature of the comparison, the experimental and
CFD results show good agreement.  There is only about a 10 percent discrepancy in the heat
recovery factor at both points.  This suggests that the CFD results are qualitatively, and, most
likely, quantitatively accurate.  Also, this suggests that processes which occur naturally in the
experiment but that are not represented in the simulations (turbulence, radiation) may not
have a strong effect on the heat recovery.  The CFD technique can, therefore, be considered a
useful tool for study of the infiltration heat recovery process.  The CFD results should
provide a sound basis for comparison with our simplified infiltration heat recovery model.

5.  Development of the Simplified Infiltration Heat Recovery Model

The objective of the following work is to develop a simple macro-scale mathematical
model for the infiltration heat recovery factor, which is based on the important physics of the
process.   The model should provide a simple, yet accurate, means for calculating the heat
recovery factor, ε, under a variety of environmental conditions, building designs, and leakage
scenarios.  The starting point is the steady-state one-dimensional convection-diffusion
equation (17), shown in equation 12.  This simple representation is used because we believe it
includes the most important physical mechanisms and will help provide insight into the heat
recovery process more easily than a complex representation.  It is a simplified form of the
general transport equation, which appeared earlier in the CFD simulations as the Navier-
Stokes and energy equations (equations 5,6, and 9).  In this case, the transient and source
terms are not included and only one dimension is considered.

The immediate purpose of this model is to give a rough idea of the size of the
infiltration heat recovery effect, not incorporation into network codes for dynamic building
simulation.  If the effect is sizeable and the topic merits further investigation, additions can be
made to the model in future work, if necessary, to help provide more accurate, realistic results
and to make it suitable for use in network codes.
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5.1.  Convection-Diffusion Equation

The one-dimensional convection-diffusion equation below represents transport by
combined convection and diffusion in a steady flow varying in one spatial direction, i.e., a
one-dimensional flow.  This relation is valid for flows existing in three-dimensional space (all
real flows), but only those that vary in one direction, for example, a fully-developed pipe
flow.  In equation 12, φ represents any scalar flow variable, e.g., temperature or
concentration, and Γ is the diffusion coefficient for that variable.  An analytical solution is
given by equation 13 for the variable φ as a function of the length coordinate x for ρ, u, and Γ
constant and for prescribed boundary conditions and x = 0 and L.  The subscripts 0 and L
represent the bounds of the domain, i.e., the wall thickness, and the parameter Pe is the Peclet
number, given by equation 14.
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Taking φ to be temperature, equation 13 can be rearranged to provide a simple
relationship for the temperature at any location between the two bounds, as given by equation
15.  This relationship will provide the basis for the heat recovery model.  It is appropriate for
application to three-dimensional flows involving complex fluid/solid interactions because the
dominant physical processes of heat recovery (convection and diffusion) interact most
strongly when they are parallel to one another, i.e., thermal energy conducting through a
building envelope is affected most strongly by leaking air flowing parallel to the direction of
conduction.  We believe this characteristic feature will allow the phenomenon to be modeled
effectively using a single directional variable resulting in a one-dimensional model.  At this
point, Γ is left as a generic diffusion coefficient.  Later in the model development it will be
given a prescribed value, via input, so that it takes on an effective value to represent the
composite wall structure.

The next step is to apply equation 15 to a generic building envelope under arbitrary
conditions to determine the energy flux through the walls.  The external envelope of the
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building used for this analysis is shown in figure 11 along with the relevant variables.  This
simplified envelope represents the envelope shown in figure 1 with some changes to allow
development of the model.  The entire building envelope has been separated into two kinds of
sections, those that are affected by infiltration and those that are not.  Areas of the envelope
that are affected by leaking air are represented by A1 and A2 (infiltrating and exfiltrating,
respectively) and have both a convection and conduction energy flux.  These sections
represent parts of the wall in the vicinity of the leaking hole which undergo thermal changes
due to infiltration and could potentially represent the entire infiltrating or exfiltrating walls.
Areas that are not affected by leaking air are represented by A3 and A4 and have only
conduction heat transfer.  In the context of figure 1, these sections represent the floor, ceiling,
front and back walls, and possibly part of the infiltrating or exfiltrating walls.  Since the
analysis is one-dimensional, i.e., of a single spatial variable, only two building walls, those on
left and right, are needed for the model development.   In figure 11, there are no walls on the
top, bottom, front, and back because they have been incorporated into the left and right walls.
The dashed lines do not represent walls but just show that the left and right walls are
connected to form a closed system.  The external face of the walls on the left and right form
the control volume boundary of the system.

Areas of the envelope that are affected by leaking air are represented in the model as a
fluid with the composite properties the fluid/solid/porous wall system.  That is, the governing
equation used in the model to describe wall sections affected by infiltration, the convection-
diffusion equation, describes a fluid, but is used here to represent the composite wall system.
Sections of the wall that are not affected by leaking air are treated as a solid material and are
represented with the conduction equation.  The six individual flux components shown in
figure 11 will be used to determine the infiltration heat recovery factor.

An important implication of the modeling procedure is that details of the system that
affect the heat recovery (for example, boundary layers, thermal gradients in the wall,
construction details) are lumped and evenly distributed over the entire effective area.  The
influence of these details is incorporated into the model in an effective manner through
proper choice of the effective areas A1 and A2 (described later).  Once this is done it is
difficult, if not impossible, to make comparisons between the physics of the model and the
details of the real system that the model represents.  The purpose of the model is to provide
select quantitative information about the system, in this case the infiltration heat recovery
factor.  It cannot provide details about the system, like boundary layer information, which
have been lumped together in the modeling process.
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Figure 11: Energy flux through the simplified building envelope used in the model
development. Sections A1 and A2 are affected by leaking air and have both convection and
conduction terms.  Sections A3 and A4 are not affected and have only a conduction term.

The outer faces of the left and right walls form the system control volume boundary.

                       

Figure 12: Airflow and thermal profile in the infiltrating (left) and exfiltrating (right) walls,
sections A1 and A2, respectively. Air temperatures at the internal and external boundaries are
Ti and To, respectively.  There are no boundary layers shown in the diagram on the inner and
outer wall surfaces, but the influence of the boundary layer is incorporated into the model in

an effective manner through proper choice of the effective areas A1 and A2.
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5.2.  Convection Terms

The total energy flux through the building walls has two components, one due to
convection (Qconv) and another due to conduction (Qcond).  For this initial study, radiation will
not be included but may be considered in future work.  Each component will be determined
across the control volume boundary via equation 15.  There is a convective flux only through
the two “effective” areas A1 and A2.  These areas do not correspond to the physical area of a
hole in the envelope, but to the surface area of the envelope that is affected by infiltrating air.
Thus, they are “effective” areas.  The actual values for these effective areas, the only
parameters not directly input into the model, will be estimated through comparison with CFD
data.

12 convconvconv QQQ −=     (16)

)0()( =−== xTmcLxTmcQ ppconv     (17)

opopconv TmcTmcQ −=     (18)

0=convQ        (19)

The net convective energy flux across the effective areas, A1 and A2, is determined in
equations 16-19.  Equation 16 states that the net convective flux is the flux at the exfiltrating
wall minus the flux at the infiltrating wall, as shown in figure 11.  Note, in this analysis,
energy flow out of the building is considered positive.  The air temperatures and mass flow
rates at the control volume boundaries, i.e., the external face of the building envelope, are
used in equation 17.  The temperatures at the external boundaries, shown in figure 12, are by
definition the outside air temperature, as equation 18 reflects.  Conceptually, there are no
boundary layers at the wall surfaces, but their influence is incorporated into the model in an
effective manner through proper choice of the effective areas A1 and A2.  Finally, equation
19 gives the interesting result that the net convective flux across the chosen control volume
boundary is zero.  Therefore, the total effective energy flux due to infiltration in the effective
areas will be incorporated into the conduction terms.

5.3.  Conduction Terms

The total conductive energy flux across the control volume boundary is given by
equation 20.  It states that the flux is equal to the dot product of the temperature gradient at
the control volume boundary (the external wall faces, denoted by the subscript e) and an
outward-pointing normal vector multiplied by the active area and the wall thermal
conductivity summed over the entire boundary.  Note that the thermal conductivities in the
following equations are generic quantities whose values will be determined in an effective
manner for the entire wall construction.  Equation 21 gives the expanded form of equation 20
when applied to the building envelope shown in figure 11.  Note that the normal vectors for
envelope areas 1 and 3 point in the negative x-direction and those for areas 2 and 4 point in
the positive x-direction resulting in mixed signs for the terms in equation 21.



22

∑
=

•∇−=
4

1
,

)ˆ(
i

ieiicond nTAkQ       (20)

4,
44

3,
33

2,
22

1,
11

eeee
cond dx

dT
Ak

dx
dT

Ak
dx
dT

Ak
dx
dT

AkQ −+−=       (21)

The gradient terms in equation 21 are evaluated using the solution to the convection-
diffusion equation, given by equation 15.  First, the derivative of temperature is taken with
respect to the length coordinate x and is shown in equation 22.  Using the appropriate
boundary values, as shown in figure 12, the gradient terms are evaluated at the infiltrating
and exfiltrating walls (A1 and A2) and are given by equations 23 and 24, respectively.  This
leaves only terms for the inactive areas of the envelope, A3 and A4, to be evaluated.  Since
these areas are not affected by infiltrating air, their conductive flux and the gradient terms
remain constant.  The product of the gradient term and thermal conductivity in areas 3 and 4
of the envelope will be represented by a constant as given by equations 25 and 26,
respectively.  Finally, the evaluated terms shown in equations 23-26 are placed back into
equation 21 to give a new relation for the total conductive flux, equation 27.
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The definition for the heat recovery factor is restated in equation 28 with the total
energy flux separated into its convective and conductive components.  The term Qo represents
the total energy flux across the building envelope when there is no infiltration, i.e., pure
conduction.  For the envelope in this analysis, Qo is represented as the sum of four constant
terms as shown in equation 29.  Each term in equation 29 accounts for the conductive flux
across a particular section in the envelope.  Using equations 19, 27, and 29 the numerator in
equation 28 can be rewritten as shown in equation 30.
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At this point, the constant terms used to account for conduction through the envelope
will be examined.  In reality, heat conduction through a building wall is dependant on a host
of factors including construction details of the wall, thermal properties of the wall materials,
environmental conditions, and air flow in the vicinity of the wall.  However, these details
cannot be incorporated into this one-dimensional model, so a simplified approach is taken
following conventional practice in building energy simulation.  It is assumed that there is a
linear temperature profile through the wall and the heat flux obeys Fourier’s law for heat
conduction (13), equation 20.  With these assumptions, the conduction heat flux through the
wall with no infiltration, qo, is expressed in equations 31 and 32. 
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The information from equations 30-32 can be inserted into equation 28 to provide a
new relationship for the heat recovery factor, given by equation 33.  Note, this expression
shows that the heat recovery for the entire building envelope is dependent only on what
happens in the active areas.  Of course, a fundamental assumption of this model is that the
envelope can be divided into separate, non-interacting regions, some being affected by
infiltration and some not.  The heat recovery factor is a function of the wall thermal
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conductivity, active area, wall thickness, and Peclet number for both the infiltrating and
exfiltrating walls.
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5.4.  Introduction of a Dimensionless Flow Rate

The final step is to recast the Peclet number in terms of quantities that are meaningful
for this application.  This is an important part of the modeling process, which can be
considered a modeling step in itself.  Equation 34 shows the definition of the Peclet number.
The velocity, u, in equation 34 is replaced by the relation shown in equation 35 where m is
the mass flow rate of leaking air, ρ is the air density, and A is the active area.  Next, the
thermal conductivity, k, is replaced by the U-value for the wall via equation 36, which makes
use of the relation for conduction given by equation 31.  This step replaces the micro-scale
material property, k, with the macro-scale effective U-value for the composite wall system.
The Peclet number is transformed into a dimensionless flow rate, a, defined by Claridge and
Bhattacharyya (8), using effective values characteristic to the system as shown in equation
37.
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Using the relations in equations 33-37, a new expression is created for the heat
recovery factor and is given by equation 38.  Equation 38 shows that the heat recovery factor
is a function only of the dimensionless flow rate, ai, for the infiltrating and exfiltrating walls.
When presented in this form the symmetry between infiltration and exfiltration is apparent.  It
is assumed that in practice the leakage rate and the U-value can be measured or estimated.



25

That leaves only the effective area to be determined before the heat recovery factor can be
calculated.  This will be done here through comparison with CFD simulation results.
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5.5.  Area Ratios in the Heat Recovery Factor Equation

One last change will be made in the expression for the heat recovery factor, a
simplification for ease of use.  A value is determined for the non-dimensional flow rate for
the entire structure, denoted as ao, using the overall U-value and the total surface area of the
building, denoted as A, as shown in equation 39.  This is convenient because the UA value for
a building is a familiar quantity that can be measured or estimated.  Both a1 and a2 can now
be expressed in terms of ao and the unknown effective areas can be extracted into separate
parameters as area ratios weighted by the U-values, as equations 40 and 41 show.  The final
form of the expression for the heat recovery factor is given by equation 42.  It shows that the
heat recovery factor for a given building depends on the UA of the building and the
infiltration rate, which appear as ao, and the effective areas for infiltration and exfiltration,
which appear as the effective area ratios, f1 and f2.
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5.6.  Plots of the Heat Recovery Factor

Some plots of the heat recovery factor, calculated with equation 42, are shown in
figures 13 and 14.  These plots show the range of potential values for the heat recovery
factor.  The curves shown in figure 13 each have different values for the area ratios, as shown
in the legend, with the individual area ratios (f1 and f2) being equal for a given curve.  Note,
the maximum theoretical value possible for the sum of the area ratios is1.0, which
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corresponds to 100 percent of the building envelope being active in the infiltration process.
The curve with each ratio equal to 0.5 corresponds to this situation.  Figure 13 shows that the
heat recovery factor is high at small infiltration rates and drops as the infiltration rate
increases.   The transit time of air leaking through the wall decreases as the flow rate
increases, allowing less time for heat transfer to occur between the leaking air and wall
structure.  This reduces heat recovery.  Also, the plot shows that the heat recovery drops with
decreasing area ratios.  The  ratio corresponds to the fraction of the wall that interacts with
leaking air.  When only a small fraction of the envelope interacts with leaking air, its impact
is small and the resulting heat recovery is low, as the case with f = 0.025 shows.   When the
ratio is large, the heat recovery is higher.

Figure 14 shows the heat recovery factor curves for four cases.  Two of the cases have
equal values for the individual area ratios, f1 and f2, and are taken from figure 13.  The other
two have unequal values for the individual ratios, but the sum of the ratios is equal to that of
the corresponding curve with equal area ratios.  The top two curves in figure 14 have a total
effective area of 100 percent, and the bottom two curves have a total effective area of 20
percent.  Actual values used for the ratios are shown in the legend.  The same overall
behavior in the heat recovery factor is seen in all the curves.  However, at low infiltration
rates, there are small differences between curves that have the same total value for the area
ratios but different individual values.  In both comparisons, the cases with unequal ratios have
a lower heat recovery than the corresponding case with equal ratios.   These results indicate
that for a given leakage rate heat recovery is highest when the effective area is large and the
individual areas (infiltrating and exfiltrating) are equal.
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Figure 13: Heat recovery factor calculated with the simplified model using equal area
ratios (f1=f2=f).  Note that the heat recovery drops with decreasing area ratios and

increasing leakage rate.
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Figure 14: Heat recovery factor calculated with the simplified model using unequal
area ratios.  For a given sum of area ratios (f1+f2) the heat recovery is highest when

the individual ratios are equal.

5.4.  Comparison of Mathematical Model with CFD Results

Predictions of the heat recovery factor made with the mathematical model, equation
42, are now compared to values determined from CFD simulations.  In these comparisons,
the area ratios in the model, f1 and f2, are adjusted to provide the best overall agreement as
determined by a least-squares fit.  The ratios are given equal values here because the
infiltrating and exfiltrating walls used in the CFD simulations were symmetric.

Figure 15 shows heat recovery values for the walls with a high/low hole configuration
determined from 2D and 3D CFD simulations and the model. The value for the area ratio was
adjusted to give the best agreement, which, for this case, was found to be 0.33, or 33 percent
of the wall area.  The model predictions show fairly good agreement with CFD results, but do
not match exactly.  Better agreement would occur if the model predictions were slightly
lower at small leakage rates and slightly higher at large leakage rates.
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Figure 15: Heat recovery factor for walls with a high/low hole configuration
(insulated and empty wall cavities) determined from CFD simulations and the simplified

model (equation 42) using a constant area ratio (f=0.33).

Figure 16 shows heat recovery values for the walls with a straight through hole
configuration determined from 2D and 3D CFD simulations and the model.  For this case, the
best agreement was achieved with a value of 0.18 for the area ratio, or 18 percent of the wall
area.  Agreement is good, but, as before, agreement would be better if the model predictions
were slightly lower at small leakage rates and slightly higher at large leakage rates.
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Figure 16: Heat recovery factor for walls with a straight through hole configuration
(insulated and empty wall cavities) determined from CFD simulations and the analytical

model (equation 42) using a constant area ratio (f=0.18).

The results in figures 15 and 16 suggest that our simple model does not capture the
full physics of the problem.  While the trend is generally correct, the model predictions
decrease faster at high flow rates than the CFD data does.  Some of the CFD results suggest
that part of the heat recovery occurs in the thermal boundary layers on each side of the wall
and part occurs within the wall.  For example, cool infiltrating air falls along the inner surface
of the wall reducing the conductive heat loss.  Also, some of the air sucked into the leak from
the external boundary layer will be at a higher temperature (a smaller overall temperature
difference) and will mitigate the infiltration load.  This effect can be seen by looking at the air
flow velocity vectors from one of the two-dimensional CFD simulations shown in figure 17.
This effect would imply that even with no heat exchange within the wall itself there would be
some heat recovery.  We expect this effect (sucking in the thermal boundary layer) to be the
dominant mechanism for heat recovery at higher leakage rates.  Additionally, non-uniform air
flows within the wall could enhance this effect (e.g., through interaction with convective
cells).

We believe these effects contribute to heat recovery, but they are not explicitly
included in our model.  Therefore, we consider the possibility of a variable area ratio in
which the area is augmented to include the effects of the boundary layer and other convective
interactions. The variable area ratio model must meet certain physical constraints.  When
there is very little air leakage, the area ratio and the boundary layer effect should be small.
Also, there should be a positive definite increase in the magnitude of the area ratio with
increasing leakage to an asymptote that must never be greater than one.
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Figure 17.  Air flow velocity vectors from a two-dimensional CFD simulation of the
wall with a straight through leakage path (wall 2).  It shows how the external boundary layer

can be sucked into the leak and infiltrating air can be held near the interior wall surface.

To test the efficacy of a variable area ratio representation calculations are performed
to determine the ratio magnitude needed to make the analytical model predictions of the heat
recovery factor agree exactly with those determined from CFD.  This is done at every CFD
data point for empty and insulated walls with both high/low and straight through leakage
configurations.  Results for the high/low configuration are shown in figure 18 and results for
the straight through configuration are shown in figure 19.  In both cases, the area ratio starts
off small, close to zero, at low leakage rates, as expected.  As the leakage rate increases, the
area ratio increases and appears to level off at higher leakage rates. The area ratio for the
high/low configuration increases faster than that for the straight through and levels off at a
larger value.  Again, this is the expected behavior based on physical constraints. There are
some outlying points in figures 18 and 19, which correspond to the 3D data.  We are not
certain why these points are outlying from the general trend, but it could be due to numerical
error in the calculations related to insufficient grid resolution.  This analysis suggests that a
variable representation for the area ratio based on leakage rate could increase the accuracy of
the analytical model.  The exact mathematical form for this relation and the physical basis for
the form are now under investigation.
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Figure 18: Area ratio for walls with a high/low hole configuration (insulated and
empty wall cavities) determined by matching the analytical model (equation 42) predictions

to CFD heat recovery factors at individual CFD data points.
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Figure 19: Area ratio for walls with a straight through hole configuration (insulated
and empty wall cavities) determined by matching the analytical model (equation 42)

predictions to CFD heat recovery factor at individual CFD data points.
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6.  Conclusions

In this study, CFD simulations were used to examine the fundamental physics of the
infiltration heat recovery process.  Results were found to compare well (within about 10
percent) with limited published laboratory data corresponding to one of the leakage scenarios
examined.  Also, a simple, robust macro-scale mathematical model was developed that can
accurately predict the heat recovery factor for air infiltrating through building walls when
supplied with the proper input.  The required inputs are the building U-value, the leakage
rate, and an effective area for infiltration and exfiltration.  The effective areas were
determined here for specific leakage geometries through comparison with CFD data.  The
leakage geometries examined may be fundamental cases that can be combined to create most
other leakage scenarios.  Over the wide range of airflows considered, model predictions agree
fairly well with CFD data.  However, it appears that better agreement can be attained by
using a variable relation, based on leakage rate, for the effective area.  The exact
mathematical form for this relation and the physical basis for the form are now under
investigation.

These results show the potential importance of infiltration heat recovery.  The extent
of heat recovery was found to be dependent on the leakage path geometry, infiltration flow
rate, and wall construction.  In some cases with low infiltration rates and long leakage paths,
the heat recovery can be substantial, well over 80 percent.  In these cases, the classical
method would over-predict the extra heating load due to infiltration (see appendix 4 for a
detailed example).  According to these findings, under typical leakage conditions for most
residential buildings (ao ≤ 1) the heat recovery could be around 40 percent.  Even at
infiltration rates that would be considered very high for residential buildings (ao = 5) the heat
recovery is still sizeable at about 20 percent.  In this situation, the conventional prediction for
the infiltration load would be in error by 20 percent.

All possibilities have not been examined in this study, but it is clear that some
modification could be made to the conventional method for prediction of infiltration energy
loads to increase its accuracy.  The model for infiltration heat recovery presented in this paper
could easily be incorporated into whole-building energy analysis programs to provide
improved predictions for the energy impact of steady-state infiltration.  An important
implication of the modeling procedure is that details of the system that affect heat recovery
(for example, boundary layers, thermal gradients in the wall, construction details) are lumped
and evenly distributed over the entire effective area.  The influence of these details is
incorporated into the model in an effective manner through proper choice of the effective
areas.  Once this is done it is difficult, if not impossible, to make detailed comparisons
between the physics of the model and the reality that the model represents.  The purpose of
the model is to provide select quantitative macro-scale information about the system, in this
case the infiltration heat recovery factor.  It cannot provide detailed information about the
system, like boundary layer structure, which have been lumped together in the modeling
process.
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Appendix 1: Infiltration Basics

App.1.1: Energy flux through the building envelope

In this analysis two modes of energy transfer through the building envelope are
considered: conduction, mainly through the walls, and convection, via infiltrating air.  These
are shown graphically in Figure 1.App.  In reality, energy transport also occurs through
radiation, but we think infiltration has little impact on this load and vice versa.  This
hypothesis will be tested in future work.  Also, convective transport occurs via the HVAC
system intake and exhaust, but this has no direct effect on infiltration heat recovery so it will
not be considered here.  The infiltration load and conduction load interact strongly and,
therefore, are the most important quantities to study in order to understand the infiltration
heat recovery phenomenon.

Figure 1.App: Cross section of a generic building envelope showing the conventional
conduction and infiltration energy load terms. Qo is the conduction energy load with no

infiltration and mcp(Ti – To ) is the infiltration energy load, where Ti is the indoor air
temperature, To is the outdoor air temperature, and m is the leakage rate.  Air leaking into the

building is said to be infiltrating and air leaking out of the building exfiltrating.
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App.1.2: Conventional method of accounting for infiltration energy load

In the absence of infiltration through the building envelope, the energy load on the
building, not considering radiation and HVAC intake/exhaust, is that purely from conduction,
denoted as Qo.  When there is infiltration the conventional method of accounting for the extra
energy load, QinfC , is to add a simple convective term to the energy balance for the building
that is based on the leakage rate and the indoor and outdoor air temperatures.   The
conventional relationship used to calculate the total energy load with infiltration, denoted as
QC, is based on the system shown in figure 1.App and is given by equation 1.App.  This
relationship assumes there is no interaction (heat transfer, moisture deposition, etc.) between
the leaking air and building walls.

)(inf oipoCoC TTmcQQQQ −+=+=                (1.App)

App.1.3: Including Infiltration Heat Recovery in the conventional method

In reality, there is heat transfer between the building walls and leaking air as is enters
(infiltration) and exits (exfiltration) the building envelope.  The result is that the actual values
for the conduction, infiltration, and total loads are different from that predicted by equation
1.App. This case is shown graphically in figure 2.App. with the appropriate variables.  The
relationship for the actual total energy load is given by equation 2.App., in which Qo*, Qinf ,
and Q are the actual conduction, infiltration, and total loads, respectively.

)( 12

*

inf

* TTmcQQQQ poo −+=+=                    (2.App)

In the case of a warm inside and cool outside (Ti>To), heat transfer within and near
the surface of the building envelope walls would cause infiltrating air to enter the building at
a temperature greater than that outside and exfiltrating air to exit at a temperature less than
that inside.  The actual temperatures of infiltrating and exfiltrating air (T1 and T2,
respectively, taken at some consistent system boundary) are not known and are dependent on
a host of factors, but this implies that, in general, the infiltration energy load is less than that
predicted by the conventional method.  The effect on the conduction load is not known,
however.  Since the process is asymmetric in this study (conduction decreased by infiltration
and increased by exfiltration), it is thought that the net effect on the conduction load is small.
This suggests that the actual total energy load is less than that predicted by the conventional
method, i.e., Q<QC.  In reality, the infiltrating and exfiltrating leakage paths will most likely
not be completely symmetric and the actual effect on the conduction load will depend on the
leakage characteristics of the specific structure.  This topic will be explored in future work.

)()1( oipo TTmcQQ −−+= ε                (3.App)

In light of the situation, i.e., an unknown actual conduction load thought to be close to
the conduction load with no infiltration and a reduced infiltration load with unknown actual
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air temperatures, an obvious and simple method of accounting for the effect of infiltration
heat recovery is to insert a reduction factor into the conventional relationship for the total
building energy load, equation 1.App., so that it provides the actual total energy load.  The
reduction factor is multiplied by the infiltration term, since this term is known to be reduced
by heat recovery, and the conduction term is represented by the conduction load with no
infiltration.  Equation 3.App utilizes this accounting method to give the actual total energy
load.  The quantity ε in equation 3.App is called the infiltration heat recovery factor and
accounts for the net effect of heat transfer between leaking and building walls.  Note, the
values of the individual terms in equation 3.App probably do not accurately predict the actual
values but the sum total is correct if ε is properly chosen.  This is a convenient and useful
method because the parameters in equation 3.App (Qo, m, Ti, To) should all be known.  This
reduces the problem to simply determining ε, as compared to determining the actual values of
the individual terms, which could be very difficult.

Figure 2.App: Cross section of a generic building envelope showing the actual conduction
and infiltration energy load terms. Q*

o is the actual conduction energy load with infiltration
and mcp(T2 – T1 ) is the actual infiltration energy load, where T2 is the exfiltrating air
temperature, T1 is the infiltrating air temperature (taken at the system control volume

boundary), and m is the leakage rate.  Note that for Ti>To, in general T1>To due to warming
and T2<Ti due to cooling and the relation between Q*

o and Qo is unknown but they are
thought to be nearly equal in size.

Appendix 2: CFD Details

App. 2.1: Wall modeling and boundary conditions

In the CFD simulations, several mathematical equations are used within the
computational domain to represent different components of the leaking building wall system
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under investigation.  A schematic showing a cross-section of the system is given in figure
3.App. for a single wall (infiltrating or exfiltrating) with an insulated wall cavity.
This schematic illustrates how various equations and boundary conditions are combined
spatially to create the leaking building wall system.  Note, results from two or more walls are
added together to provide information for a complete room system.

The outer border of the system supplies boundary conditions (temperature, pressure,
velocity) for the simulation.  As figure 3.App shows, the left and right sides of the system
boundary are composed of a wall with zero flow velocity and fixed thermal boundary
conditions and an inlet or outlet with fixed thermal and pressure (or velocity) boundary
conditions.  The region within the boundary is comprised entirely of live cells (control
volumes).  Calculations are performed for each live cell using the appropriate governing
equations to determine numerical values for the relevant variables in that cell.  In cells that
represent air, the Navier-Stokes and energy equations (eq. 4-6) are the governing equations.
Cells that represent the wall sheathing are governed by the conduction equation (eq. 7).  Cells
that represent insulation are governed by Darcy’s Law and a modified energy equation (eq. 8-
9).  This information is shown graphically in figure 3.App.

Figure 3.App: Schematic of a leaking building wall cross-section showing the boundary
conditions and governing equations used in the CFD simulations.  The live control volumes

(those enclosed by the outer boundary) represent air, insulation, and the wall sheathing.  They
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are governed by the equations as shown in the figure.  The outer boundary is composed of a
wall supplying wall boundary conditions (zero flow velocity and a different fixed temperature
on each side of the leaking wall) with an inlet on one side of the leaking wall and an outlet on
the other.  The inlet and outlet supply thermal and pressure (or velocity) boundary conditions.

App. 2.2: Thermal equilibrium in the wall insulation

A fundamental assumption in using a single fluid dynamics equation (equation 8) to
represent energy transport in the wall insulation is local thermal equilibrium between the
fluid and solid phases (air and glass fibers) of the insulation.  If the two phases are not in
thermal equilibrium then two separate energy equations must be used, one for the fluid phase
and one for the solid phase.

In this section, an analysis is performed using a representative system to determine if
our air/insulation system is in thermal equilibrium.  In the representative system air flows into
a porous media (the insulation) at a velocity and temperature of U and Ta, respectively.  The
solid part of the porous media (glass fibers) maintains a constant temperature of Ts.  As air
flows into the porous media it exchanges heat with glass fibers and the air temperature
changes until it eventually reaches the glass fiber temperature.  At this point, they are in
thermal equilibrium.  For this analysis, we will consider the fluid and solid to be in
equilibrium when there is a temperature difference of 0.1 percent or less between the phases.
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In this analysis, a control mass of air is followed as it flows through the porous media.
The temperature of the air is calculated versus time, or correspondingly penetration distance
into the porous media, via equation 4.App.  Equation 4.App is merely a statement of the First
Law of Thermodynamics; the control mass enthalpy time rate of change (lhs) is equal to the
rate of heat transfer (rhs).  In equation 4.App, V is the control mass volume, h is the heat
transfer coefficient, As is the fiber surface area, and T is air temperature.

The heat transfer coefficient for cross-flow over a cylinder is used in these
calculations as this flow geometry most closely resembles our case (the glass fibers are
essentially circular cylinders).  Equations 5.App and 6.App give the relations used to
determine the heat transfer coefficient based on Reynolds number, Prandtl number, and fiber
diameter (D).  The control mass volume is arbitrarily set to 1 m3.  In our system, the
insulation is 99 percent air by volume and 1 percent glass fibers.  The fiber surface area is
determined from the volume fraction and by setting the fiber diameter to 10 microns (a
typical diameter for glass fiber insulation) and assuming the fibers are 1 meter in length.
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The time it takes incoming air to reach thermal equilibrium and the corresponding
penetration distance into the porous media are calculated with equations 4.App to 6.App.
The air temperature versus penetration distance into the porous media (insulation) is shown in
figure 4.App.  In this case, there is a nominal non-dimensional leakage rate (ao) of one
(corresponding to a flow velocity of about 0.08 m/s) and the bulk air and glass fiber
temperatures are 274 and 298 Kelvin, respectively.  The figure shows that as the air flows
deeper into the insulation its temperature increases and eventually reaches the glass
temperature at a distance of about 1.5x10-5 m.  The air reaches thermal equilibrium with the
glass fibers very quickly.  Compared to the smallest dimension of the wall insulation (0.1 m)
this distance is negligible.  Therefore, it is appropriate to use a single equation to represent
the energy transport in the wall insulation.
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Figure 4.App: Air and glass fiber temperature versus penetration distance into the insulation.
The glass fiber temperature is held constant at 298 K and the incoming air temperature is 274

K.  As the air flows deeper into the insulation its temperature increases and eventually
reaches the glass fiber temperature at a distance of about 1.5x10-5 m.

Further calculations are performed to determine the equilibrium distance for the
insulation at various flow rates and for another porous media, a packed bed composed of
spherical glass balls (2 cm dia.).  The non-dimensional flow rate is varied from about 0.25 to
2.25 to see how the equilibrium distance changes with flow velocity.  Figure 5.App shows
that the equilibrium distance increases almost linearly with flow rate.  Note that the vertical
scale showing distance is logarithmic.  Even at the highest leakage rates (around 2 in most
buildings) the equilibrium distance for the insulation would be very small compared to the
wall dimensions, so a single equation for energy transport in the porous media would be
appropriate.  The situation is different for the packed bed, however.  The equilibrium distance
for the packed bed is roughly three orders of magnitude higher than that for the insulation.
This is mainly due to the much lower surface area of the solid phase in the packed bed, which
results in less heat transfer.  In this case, the equilibrium distance is on the order of the wall
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thickness, so the air and solid phase would not have enough time to reach thermal
equilibrium.  Therefore, two equations would have to be used to represent energy transport in
the packed bed: one for the solid phase and one for the fluid phase.

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 1 2 3

dimensionless flow rate

eq
ui

lib
riu

m
 d

is
ta

nc
e 

(m
) 

 

fibers

packed bed

Figure 5.App: Equilibrium distance versus leakage rate for two different types of porous
material: glass fibers and a packed bed of glass spheres.  The glass fiber material (insulation)
has a much shorter equilibrium distance than the packed bed suggesting that a single equation
can be used for energy transport in the fibers, while two equations would have to be used for

energy transport in the packed bed.

Finally, a macro-scale analysis is performed to determine how the glass fiber and air
temperatures vary through the entire depth of a leaking wall.  This is a one-dimensional
analysis in which it is assumed that only the mode of heat transfer is from the glass fibers to
air.  In reality, this is not the case, but this analysis is good for illustrative purposes.
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The governing equations for the air/fiber system are shown in equations 7.App and
8.App.  Equation 7.App is the energy equation for air and 8.App is the energy equation for
glass fibers.  In the above equations, V is the leaking air velocity, A is the cross-sectional area
of air, h is the heat transfer coefficient (see equation 6.App), Asurf  is the glass fiber surface
area (determined earlier in this section), Ts is the fiber temperature, T is the air temperature, ks

is the glass thermal conductivity, As is the total cross-sectional area of glass fibers, and x is
the distance into the wall.  A simple analysis, in which the Peclet number (Pe = ρVLcp/k) is
calculated using characteristic values, shows that convection is the dominant mechanism for
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energy transport in the air.  This allows us to drop the conduction term in equation 7.App
(second-order term) in this analysis.

The governing equations are solved using standard techniques of ODE’s under the
following boundary conditions: T(0) = Tout, Ts(0) = Tout, and Ts(L) = Tin , where Tout is the
outside temperature (274 K) and Tin is the inside temperature (298 K).  The standard solution
for T and Ts is given below in equations 9.App and 10.App.  In the equations, C1, C2, and C3
are constants, r1, r2, and r3 are roots of the auxiliary equation, and λ is a ratio of certain
problem parameters, i.e., ρVAcp/hAsurf. The actual values for the constants, the roots, and λ
vary with the assigned parameter values in the equations.  Figure 6.App shows the air and
glass fiber temperatures through the wall for a given, characteristic set of parameter values.
The two curves essentially overlap, as the temperatures are nearly equal.  The same behavior
occurrs with all realistic variations in the parameters, indicating that the assumption of
thermal equilibrium between the air and glass fibers is valid.

xrxrxr eCeCeCxT 3211
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Figure 6.App: Air and glass fiber temperatures versus distance through the leaking wall for a
chosen set of system parameters.  There are two curves plotted, but only one is apparent

because the air and fiber temperatures are nearly identical.  This further supports the
assumption of thermal equilibrium between the air and glass fibers.
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App. 2.3: Solution Methodology

Although we want steady-state values for our analysis, it was not possible to achieve a
converged solution to the steady-state equations (i.e., no time dependent term).  The solution
either diverged or would not converge to the set limits when solving the steady-state
equations.  The convergence criteria are that the sum of the normalized residuals are less than
or equal to than 10-3 for the continuity and momentum equations and 10-6 for the energy
equation.  These are the standard convergence criteria suggested in the Fluent user guides.

In an attempt to achieve a converged solution, the transient equations were solved and
allowed to proceed in time until a steady-state solution was reached.  This would have
worked well, but it would have taken too long.  Using a time-step of 0.1 sec provided a
converged solution at each time step and proceeded nicely toward steady-state, but it would
have taken days to complete a single simulation.  To speed up the solution process, a method
was developed in which the time step was gradually increased from 0.1 sec to 60 sec and then
gradually decreased again to 0.1 sec.  The time step size was changed gradually because it
was found that sudden changes in the time step could result in divergence of the solution.  By
increasing the time step to a large size of 60 sec, the flow and thermal fields can develop
much more quickly (in wall clock time) which helps to reduce the overall simulation time.
Unfortunately, with the 60 sec time step the solution did not converge, so it was necessary to
reduce the time step back down to 0.1 sec to provide a converged solution for the final
results.  Since the solution process uses an iterative method, the final results at the end of the
simulation are all that really matters.  All of the previous values calculated during the solution
process, whether converged or not, can be considered improved initial guesses in the iterative
process that lead to the final solution.

One additional technique was used to speed up the solution process.  At several points
in the simulation, when the 60 sec time step was in use, the solution was stopped and the
equations were decoupled.  The continuity and momentum equations were turned off (the
flow field was frozen in time) and the energy equation was allowed to proceed in time until a
steady-state solution (based on the intermediate frozen flow field) was reached.  Then, the
continuity and momentum equations were turned back on and the solution proceeded with the
equations coupled.  After a certain number of time steps have passed, the equations were
decoupled again and the process repeated.  This helped speed up the solution because the
thermal field developed slowly, relative to the flow field, due to the insulating effects of the
wall.  In this way, the thermal field was allowed to jump ahead of the flow field and very
quickly reach an intermediate solution.  Then, once the flow equations were turned back on
the flow and thermal fields would interact and come back into equilibrium.

This entire method is a fairly common technique for speeding up solutions of complex
CFD problems and is discussed in the Fluent users guide (Fluent 4.4 user guide, Volume 3,
Chapter 16, pages 44-49).  The solution process used in this work is detailed below.

Solution Process:
1) Provide initial guess (initial conditions) for flow and thermal fields.  All velocities are set

to zero.  The left half of the domain is set to the inside temperature (or outside depending
on whether the wall is infiltrating or exfiltrating) and the right half is set to the outside
temperature (or inside temp.)

2) The solution is begun with a 0.1 sec time step and proceeds for 5 time steps.
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3) The time step size is changed to 1 sec and the solution proceeds for another 5 time steps.
4) The time step size is changed to 10 sec and the solution proceeds for another 5 time steps.
5) The time step size is changed to 60 sec and the solution proceeds for another 60 time

steps.
6) The flow equations are turned off and the energy equation is solved to steady-state using

the intermediate flow field.
7) The flow equations are turned back on and the solution proceeds for another 60 time steps

with a time step size of 60 sec.
8) Steps 6 and 7 are repeated twice.
9) The time step size is reduced to 10 sec and the solution proceeds for 20 time steps.
10) The flow equations are turned off and the energy equation is solved to steady-state using

the intermediate flow field.
11) The flow equations are turned back on and the solutions proceeds for another 20 time

steps.
12) Steps 10 and 11 are repeated once.
13) The time step is reduced to 1 sec and the solution proceeds for 60 time steps.
14) The flow equations are turned off and the energy equation is solved to steady-state using

the intermediate flow field.
15) The flow equations are turned back on.
16) The time step is reduced to 0.1 sec and the solution proceeds for 100 time steps.
17) The data is written to a file.

Appendix 3: Sample CFD Results: Energy Flux through Leaking Walls

In the framework of this study, a building envelope section with no air leakage has
only one component in the energy flux through the wall, pure conduction, denoted as Qo.  An
envelope section which experiences air leakage has two components in the energy flux, that
due to conduction (Q*

o) and that due to convection or infiltration (Qinf).  In calculation of the
heat recovery factor, the non-leaking elements subtract out of the equation (see equation 2),
so only the leaking walls need to be considered.  Therefore, in this study a complete room is
constructed by combining two leaking walls, one infiltrating and one exfiltrating.  This is
illustrated in figure 7.App.

The infiltrating and exfiltrating walls are simulated independently and the four flux
terms (two for each wall) are added together to determine the heat recovery factor for a given
leakage rate.  In each case, the conduction and convection flux component is determined at
the external (outside) face of the wall as shown in figure 7.App.
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Figure 7.App: Convection (Qinf) and conduction (Q*
o) energy flux components through

infiltrating (left) and exfiltrating (right) walls with a hi/low hole configuration (wall 1).  The
directions of leaking air (convection) and conduction are anti-parallel in the infiltrating case
and parallel in the exfiltrating case.  The control volume boundary is the external face of the

walls, i.e., the left face of the infiltrating wall and right face of the exfiltrating wall.

As the leakage rate varies, the conduction and convection flux components change in
both the infiltrating and exfiltrating walls.  The total energy flux through the boundary of the
room system changes, also.  This is because leaking air alters the thermal profiles in and near
the wall changing the overall heat transfer.  This is illustrated in figure 8.App using CFD
results from an infiltrating wall 1 configuration.  Figure 8.App shows that parts of the wall
that are far away from the holes in the sheathing (the middle section of the wall in this case)
have a nearly linear temperature profile through the wall.  This is similar to a wall with no
leakage.  Leaking air does not seem to have a significant effect in this region.  In the vicinity
of the holes, leaking air changes the thermal profiles in the wall and significantly impacts the
heat transfer through this region.
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Figure 8.App: Thermal profiles at various locations of an infiltrating wall with a hi/low hole
configuration (wall 1).  The wall outline is represented by the black line, the outside

temperature is cold (represented by blue), and the inside is warm (represented by red).  The
picture on the left shows thermal profiles in the middle section of the wall far away from

holes in the sheathing.  This section has essentially a linear temperature profile through the
wall just as a wall with no leakage does.  The profile here looks like that for a wall with pure
conduction.  The middle picture shows thermal profiles near the hole through which air leaks

from outside into the wall.  It is clear that the infiltrating air cools this region and
significantly alters the thermal profile in the wall.  The picture on the right shows thermal

profiles near the hole through which leaking flows from the wall cavity into the room.  The
leaking air also alters the thermal profiles in this region.

The conduction and convection components for the insulated wall with a hi/low hole
configuration (wall 1) are shown in figures 9.App and 10.App versus a non-dimensionalized
form of the leakage rate (ao).  Figure 9.App shows the flux components for an infiltrating
wall.  The conduction flux drops and the convection flux rises with increasing leakage rate.
In this case, the flow direction of leaking air (into the room) is opposite the direction of
conduction (out of the room)—see figures 1.App. and 7.App.  Recall, the indoor temperature
is greater than the outdoor temperature so energy conducts out of the room.  Leaking air in
the infiltrating wall opposes conduction, so as the leakage rate increases the conduction flux
decreases.  The convection flux scales almost linearly with the leakage rate.

The energy flux components for the exfiltrating wall are shown in figure 10.App.  In
this case, the flow direction of leaking air is the same as the direction of conduction, out of
the room.  Leaking air enhances the conduction flux and this component increases with
leakage rate.  Again, the convection flux scales almost linearly with the leakage rate.

These figures illustrate how the important physical mechanisms at work in a building
wall experiencing air infiltration (conduction and convection) affect one another and how
their relative contributions to the energy flux vary with leakage rate.  During infiltration the
two mechanisms oppose each another, and during exfiltration they enhance one another.  This
same behavior is seen in all leaking walls regardless of the construction details or the leakage
path geometry.  It is the coupled nature of the mechanisms that give rise to the phenomena of
infiltration heat recovery.  The heat recovery, however, is masked in the numbers and can
only be determined by adding together the flux components from both (all) of the walls and
performing the proper calculations.
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Figure 9.App: Convection and conduction energy flux components through an infiltrating
wall with a hi/low hole configuration (wall 1).  Leaking air opposes conduction, in this case,
so this component drops with increasing leakage rate.  The convection component increases

almost linearly with leakage rate.
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Figure 10.App: Convection and conduction energy flux components through an exfiltrating
wall with a hi/low hole configuration (wall 1).  Leaking air enhances conduction, in this case,
so this component grows with increasing leakage rate.  The convection component increases

almost linearly with leakage rate.
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Appendix 4: A Worked Example Using the Infiltration Heat Recovery Factor

In this section, sample calculations are performed to illustrate the impact of
infiltration heat recovery on building energy load predictions.  Heat recovery values from
CFD simulations of the wall 1 geometry (see figure 4) are used.  Infiltration and total energy
loads are calculated using the conventional method and an improved method which accounts
for heat recovery over the range of leakage rates to provide an idea of the error incurred by
not considering infiltration heat recovery.

In these calculations, a nominal value of 3000 W is used for the building conduction
load (Qo).  This should be reasonable for a moderate-sized residential building in fairly cold
weather.  The infiltration (QinfC and Qinf) and total (QC and Q) energy loads are calculated via
equations 1.App and 3.App.

The conventional and actual infiltration loads are plotted versus the non-
dimensionalized flow rate in figure 11.App.  The conventional load estimate increases
linearly with flow rate as it is merely the product of the leakage rate, the specific heat of air,
and the bulk air temperature difference.  The actual energy load is significantly less than the
conventional estimate and increases in a non-linear fashion.  This plot shows that heat
recovery acts to reduce the infiltration load.

The total building energy loads, conventional and actual, are shown in figure 12.App.
Again, the actual load is substantially lower than the conventional load.  The difference
between the two values is due to heat recovery.  The size of the difference is shown in figure
13.App.  This figure shows that the difference between the conventional total load and the
actual total load is small at low leakage rates and grows with increasing leakage rate reaching
a maximum difference of about 25 percent in this case.  At high leakage rates the error begins
to decrease because the heat recovery is small.  The percent difference indicates the error that
would be incurred in total building energy load predictions that do not include infiltration
heat recovery.
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Figure 11.App: Infiltration energy loads for the wall with a hi/low hole configuration (wall
1).  QinfC  is the conventional infiltration load, calculated as mcp∆T, and does not account for
heat recovery.  Qinf is the actual infiltration load, calculated as (1-ε) QinfC, and accounts for
heat recovery through the heat recovery factor ε.  The actual infiltration load is always less

than the conventional estimate because of heat recovery.
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Figure 12.App: Total energy loads (conduction plus infiltration) for the wall with a hi/low
hole configuration (wall 1).  QC  is the conventional total load and Q is the actual total load.
A constant set value of 3000 W is used for the conduction load.  Note that the actual total
load is always less than the conventional estimate because of infiltration heat recovery.



49

0

5

10

15

20

25

30

0 1 2 3 4 5

dimensionless flow rate

%
 d

iff
er

en
ce

Figure 13.App: Percent difference between the conventional and actual total energy load.
This is the error incurred by using the conventional estimate for the infiltration load.




