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ABSTRACT OF THE DISSERTATION

Large Scale Human Activity Monitoring for Diverse
Subjects

by

Xiaoyu Xu
Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2013

Professor William J. Kaiser, Chair

Assurance of outcome is critical for patients that are afflicted with neurological disor-

ders (for example stroke that introduces hemiparetic gait) and motion is a critical indi-

cator of outcome. However outcome in the community environment is very difficult to

determine. Wearable sensing system, due to its low cost, energy efficient, non-intrusive

and applicable for large-scale development, is feasible for remote, continuous moni-

toring of motion and activities and thus provide outcome measures in the community.

Towards this goal, this thesis explores the following problems:

1. A precise motion classification system is introduced. It is applicable for diverse

subjects whose motion ability ranges from very disabled to very capable and

suitable for complicated community environment. Critical kinematic parameters

of motion is modeled, characterized and validated, which provides direct out-

come measures in the community. Those methods are applied to a large-scale

trial with stroke patients. The problems encountered in large-scale trial and the

corresponding engineering solutions are summarized.

2. For effective feedback provision, a PCA based visualization method is proposed,

where gait quality evolution path is shown. It also introduces a gait quality vector
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and in particular, a metric to measure uncertainty in gait.

3. The individualized motion classification model is extended into a population

based analysis. First an indexing method for data dimension reduction is pro-

posed. The indexing method expedites the processing speed and maintains least

critical information loss for motion analysis. Second, hierarchical clustering

method is employed to derive the primitive gait patterns from the stroke pop-

ulation. The developed techniques help scale the motion classification system for

big data.
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CHAPTER 1

Introduction

1.1 Motivations and Objective

Continued rapid progress in cost reduction, energy efficiency, and new data transport

architectures for body worn sensors enables remote monitoring of patient activity as

well as fitness assessment and feedback with critical focus and impact on successful

outcomes in healthcare. Monitoring systems, composed of both sensor and signal pro-

cessing systems seek to provide the capability to classify subject motion state and char-

acteristics.

Fitness advancement has been shown to be one of the most effective interventions

against disease and critical to the promotion of general health and wellness. At the

same time, fitness evaluation and development of appropriate intervention techniques

traditionally requires participation of experienced trainers or physician and expensive

equipment and dedicated instrumented exercise facilities. Furthermore, while critically

important in maintenance of health, fitness evaluation is not available to most individ-

uals due to cost and facility access. In this thesis, we also present automated low cost

system for fitness evaluation and promotion.

The remote, continuous monitoring of human motions are central to healthcare for

advancing neurological rehabilitation. It improves patient outcomes, facilitates patient-

health provider communication and reduces cost in healthcare. Monitoring system

progress has currently enabled classification of normal gait or abnormal gait within
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constrained laboratory operating conditions. However, monitoring of subjects in the

community (specifically in residential environments remote from the laboratory or ur-

ban outdoor environments) has introduced fundamental challenges that have not been

solved in the past. These challenges become profoundly more severe when monitoring

subjects suffering from impaired gait due to conditions including stroke and other neu-

rological disorders. In this thesis, we present a couple of novel algorithms and models

to solve this problem.

The following missions are aimed.

• Enable the first, accurate, validated, convenient technology for tracking human

motion in the community.

• Our technology will exploit the lowest cost and most ubiquitous wearable sensor

technology.

• To enable a large research community to exploit both technology and the accom-

panying tools, to advance the outcomes and technology.

• This research is unique as a result of both new algorithms and software system

architectures, specifically optimized for wearable motion sensors.

1.2 Background I: Motion Classification And Activity Recognition

System

Several motion capture and activity recognition technologies have been proposed pre-

viously.

Acoustic tracking systems use ultrasonic pulses and can determine position through

time-of-flight of the pulse. The transmitter and be either placed on a body segment

or fixed in the measurement volume. Sensors can be occluded and the accuracy is
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vulnerable to reflection of sound [Priyantha et al., 2000; Vlasic et al., 2007].

Mechanical systems utilize rigid or flexible goniometers or exoskeletons, which

are worn by the performer, to measure the joint angles directly. Those systems are

uncomfortable to wear and may potentially impede the motion. The cost of the system

is very high and make it hard for large-scale deployment[Met; Sha].

Magnetic systems utilize sensors placed on the body to measure magnetic fields,

which is generated by three perpendicular coils that emit a magnetic filed when a cur-

rent is applied. Even though human body is transparent to magnetic fields, magnetic

fields decrease in power rapidly as the distance from the generating source increases

and they can easily be disturbed by magnetic materials nearby [mot; Pol].

Optical motion capture system track reflective markers or light-emitting diodes

placed on the body. Exact 3D marker locations are computed from the images recorded

by the surrounding cameras using triangulation methods. The major disadvantages of

this approach are extreme cost and lack of portability [VIC; Opt]. Image-based systems,

which are markerless, use computer vision techniques to derive motion parameters from

video [Aggarwal and Ryoo, 2011]. The camera-based systems are not self-contained

and need cameras deployed in environment, besides both of these two methods will

suffer from privacy issues and are not feasible for large-scale deployment.

Resistive sensors, such as flex sensor and pressure sensors, supplement motion cap-

ture technologies. Resistive sensors have different resistance outputs when deformed or

pressed with different forces. Flex sensor measures joint angles, such as hand motion

(finger flexion), elbow flexion and knee flexion [Wang et al., 2011; Gibbs and Asada,

2005]. Pressure sensor can be utilized to measure locomotion dynamics by putting

within insole or mat [GAI]. Those sensors, constrained by their physical properties,

only apply to specific applications.
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1.3 Background II: Wearable Sensor Systems

The wearable sensor system is primarily composed of inertial sensor systems with com-

bination of other wearable sensing system discussed in section 1.2.

The inertial sensors include accelerometers, gyroscopes, magnetometers. Accelerom-

eter measures proper acceleration, which is the acceleration relative to a free fall; Gy-

roscope measures angular rate, which is the speed of rotation. Magnetometer measures

magnetic field.

Motion classification using wearable sensors has drawn interests of research for

over a decade. [Mathie et al., 2004] uses one trial-axial accelerometer mounted on waist

to classify activities and verifies results in controlled laboratory conditions. [Roeten-

berg et al., 2007] and [Schepers and Veltink, 2010] combines magnetic sensors and

inertial sensors and uses Kalman filter to detect body rotation and position, at a low

moving rate. In [Roetenberg et al., 2009] the author further deploys a biomechanical

model of joints and segments for human body by the same sensor setting. It provides

a graphic reconstruction of motion. [Vlasic et al., 2007] combines acoustic signal and

inertial sensors to reconstruct a variety range of motions with graphics and achieves

comparable performance with VICON system [VIC]. [Supej, 2010] combines inertial

sensors and GPS systems to measure skiing exercise.

Various algorithms are applied for activity classification. In [Mathie et al., 2004;

Bao and Intille, 2004; Maurer et al., 2006], they use decision tree as the classifier. And

in [Maurer et al., 2006; Bao and Intille, 2004], the author argues that decision tree

outperforms or at least equivalent to Naive Bayes classifier. However in [Dougherty

et al., 1995] the author argues that Naive Bayes outperforms in general classification

problem. [Liu et al., 2009] uses dynamic time warping to recognize human gestures.

[Ghasemzadeh et al., 2010] employs K-means to cluster different primitives and uses

gaussian mixture model to build activity transcript.
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[Mathie et al., 2004; Roetenberg et al., 2007; Ghasemzadeh et al., 2010] are per-

formed in controlled laboratory environments. [Roetenberg et al., 2007; Roetenberg

et al., 2009; Vlasic et al., 2007] have complicated system set up and carrying the sys-

tem can potentially impede natural activities. Besides, certain sensors such as gyro, are

not energy efficient and cannot provide effective continuous monitoring. Systems with

those sensors need frequent configuration and provide a barrier for large community

adoption. On the other hand, triaxial accelerometer is energy efficient and its ability in

motion characterization has been validated in previous work.

The reliability and validity of accelerometer based wearable devices have been

proved effective in characterizing post-stroke patients walking in [Saremi et al., 2006;

Dobkin et al., 2011b]. Wearable sensor monitoring have shown to be complementary

for performance evaluation and can be deployed for monitoring in the ambulatory com-

munity with feedback provided to the physicians and patients on a daily basis [Xu et al.,

2011; Wang et al., 2011].

1.4 Organization

The rest chapters of this dissertation are organized as follows: In chapter 2, I describe

a stepping based fitness evaluation system. In chapter 3, I describe individual behav-

ior classification by sensor fusion, which covers the signal processing systems for a

large scale clinical trial and the experience derived from deployment. In chapter 4, I

introduce a visualization method of motion quality evolution, where I introduce a gait

quality metric. In chapter 5, I extend the work of individualized classification into

population based analysis. In particular, I propose a method of indexing accelerometer

data, without critical information loss for motion analysis. Besides, I employ the hierar-

chical clustering algorithm to generate a library of primitive gait patterns for the stroke

patients community. Chapter 5 summarizes this thesis, and discusses about directions

5



that I can further extend this thesis.
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CHAPTER 2

StepFit: A Novel Fitness Evaluation System

2.1 Introduction

Physical activity and fitness promotion are central to the management and promotion

of health and wellness. There exist numerous studies [Warburton et al., 2006; Fox,

1999] showing the effects of the physical activity and fitness on prevention of chronic

diseases, premature death and improvement of mental well-being in the general popula-

tion. Despite these broad benefits, many members of the population follow a sedentary

lifestyle due to the constraints imposed by work and home life with little or no time

dedicated to physical activity and fitness promotion. This is partially related to the

costs associated with fitness assessment and advancement methods traditionally requir-

ing expert trainer participation, fitness center access, expensive equipment and time.

The StepFit system exploits recent advances in wearable sensing and computation

platforms to introduce low-cost systems for physiological monitoring, fitness assess-

ment and feedback. StepFit systems can adapt to a user’s schedule and can be deployed

at the preferred location, not requiring additional exercise equipment.

Heart rate (HR) temporal response to variation in physical activity level is critical

to fitness evaluation. Methods based on this principle have a rich set of applications

ranging from assisted health to athletic fitness enhancement. For example, researchers

of [Meersman, 1993] show higher HR variability (a metric of cardiac health) associated

with higher fitness levels. While [Cole et al., 2000] shows the usage of the HR after a
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maximal/submaximal exercise as a predictor of mortality.

This chapter describes StepFit - a low-cost, easy to set up, self-controlled and au-

tomated system for fitness evaluation, individualized physiological response modeling

and prediction. StepFit enables automation of a category of standard fitness evaluation

tests - step tests [Ryhming, 1954; McArdle et al., 1972; Hong et al., 2000; Shephard,

1966].

Step tests have been developed as a relatively simple alternative to measuring aer-

obic fitness requiring minimal available space or equipment. These now standard tests

are performed by the subject stepping onto and off a platform of selected height h with

a predetermined stepping frequency f over a period of a certain time t or until exhaus-

tion. For example, in the Harvard Step Test (HST) [Brouha et al., 1943], exhaustion

is defined as inability by the subject to maintain the selected stepping frequency for

15 consecutive seconds. Depending on the selected step test, the height of the bench,

h, can be selected anywhere between 6-20 inches, while f and t also vary. This en-

sures that an appropriate step test can be selected in accordance with subject’s fitness

condition, biomechanical and age characteristics. StepFit automates any type of the

step test, but in this chapter the HST [Brouha et al., 1943] is presented as an example.

The following are the parameters of the HST: h = 20 inches, t = 300 seconds, f = 0.5

steps/second. Please note that for simplicity, in this paper we will refer interchangeably

to the stepping frequency as the period during which the step occurs. These parameters,

of course, are reciprocally related.

StepFit system consists of an HR sensor, motion sensor and a computational plat-

form hosting algorithms for data aggregation, analysis and subject feedback. In addi-

tion to automation of the step tests, StepFit also models individual’s HR response to

each of the tests performed. The HR modeling in StepFit relies on using an exponential

hyperbolic sine function that was shown to be effective in several formally conducted

studies [Mizuo et al., 2000] where subjects performed constant workload activities. The
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individual HR modeling can be used to analyze response of the subject across a variety

of workloads (i.e. step frequencies) and predict individual’s physiological response in

the future.

The StepFit system advantages include:

1. Support for a variety of step tests adjusting to individuals with diverse biome-

chanical characteristics and age providing more accurate estimation of the aero-

bic fitness.

2. Automatic maintenance of the exact pace by generating a metronome like sound

beat for every step, and monitoring the stepping technique by notifying the user

in cases when actual stepping frequency is faster or lower.

3. Archival and processing of subject’s physiological parameters, such as heart rate

and motion.

4. Automated fitness score computation based on validated equation.

5. Modular design to support future automated recommendation development for

individualized step aerobic exercise regimen based on subject’s fitness perfor-

mance, age and biomechanical characteristics. This capability is currently under

development.

6. Unique capability for individualized HR modeling, prediction and assessment.

This also enables determination of the maximal workload that should be recom-

mended to the individual for fitness evaluation or exercise.

This chapter is structured as follows. Section 2.2 introduces the sensing platform,

system diagram and user interface. Section 2.3 presents the algorithm for HR modeling

and prediction, and addresses the signal processing module. Results are presented in

Section 2.4. Conclusions and future work are addressed in Section 2.5.
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2.2 System Overview

The StepFit system consists of the sensors (HR and motion), computation platform

(including either netbook or a mobile phone) for sensor data processing and audiovisual

user feedback, and a one height or adjustable height stepping platform.

2.2.1 Sensing Platform

Figure 2.1 shows the StepFit sensor system and experimental setup. Two types of

sensors are used in StepFit - heart rate (HR) and motion. As shown on Figure 2.1a,

HR monitoring system is based on the Polar chest strap [pol] and a Polar HR receiver

module [oem] attached to a MicroLEAP [Au et al., 2007]. MicroLEAP is a Bluetooth

enabled sensing platform with 8 ADC ports available for customized applications. Po-

lar HR receiver module is connected to MicroLEAP through one of the ADC ports.

Data from the chest strap is transmitted wirelessly to Polar HR receiver module using

the Polar protocol, and then relayed by MicroLEAP via its Bluetooth interface to the

computing platform (e.g. mobile phone or a laptop). The data from the HR chest strap

is sampled with a frequency of 200Hz and then averaged by the computational platform

at 1Hz, which provides the value of heart rate every second. This processing algorithm

suppresses inherent measurement noise and outliers.

Motion is monitored by a tri-axial accelerometer, depicted at the lower left corner

of Figure 2.1a. The tri-axial accelerometer sensor is connected to a second MicroLEAP

platform through a set of ADC ports and data is relayed via Bluetooth to the compu-

tation platform. Note that the motion sensing unit (MicroLEAP platform with a tri-

axial accelerometer) is developed on a flexible substrate, which makes it practical to be

worn unobtrusively around the ankles or, as shown on Figure 2.1b, attached to subject’s

shoes. The MicroLEAP samples accelerometer with 100Hz, however, from our exper-

imental results lower sampling frequencies, such as 40Hz, would also be adequate.
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Figure 2.1: StepFit sensor kit and experimental setup. (a) StepFit sensor kit including

a flexible substrate, compact volume motion sensor at lower left. (b) Subject during

fitness assessment by StepFit.

2.2.2 Harvard Step Test

As described in Section 2.1, StepFit is designed to automate each of the standard step

tests. As noted, this paper emphasizes the Harvard Step Test (HST) [Brouha et al.,

1943]. The HST is a simple-to-conduct and widely used test [Ryhming, 1954; Cul-

lumbine et al., 1950; Lopez-S. et al., 1974; Stephenson et al., 1990] for aerobic fitness

evaluation. The HST protocol calls for a subject to step on a 20-inch platform for 5

minutes or until exhaustion. Exhaustion is defined as not being able to maintain step

frequency continuously for 15 seconds. In the presented system, one step is defined

as alternating steps performed by the two feet in a complete cycle of ”up-up-down-

down”. In the rest of the paper step period represents the time required to complete

a step and step frequency, which is 1/step period, represents the number of steps per

second. Please note that when discussed in the context of exercise intensity, step period

and step frequency can be used interchangeably as reciprocally related.

In order to guarantee that subject follows the prescribed step frequency (exercise in-

tensity), a frequency monitor module is implemented. It automatically provides warn-
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(c) System flowchart

Figure 2.2: StepFit system block diagram

ings if the subject deviates from the target frequency and terminates the test if the

subject is unable to maintain stepping frequency for 15 seconds continuously (note that

this threshold is the same as reaching exhaustion).

2.2.3 System Diagram and User Interface

Figure 2.2 shows the StepFit Graphical User Interface (GUI) and the information flow

diagram in the system. The StepFit GUI and processing system is composed in Java

to ensure portability to fixed and mobile platforms including Android platforms. When

the StepFit application is executed, the GUI is displayed as shown on Figure 2.2a. This

interface enables a selection of computing modules on upper left, user inputted test

parameters on lower left and system real-time feedback on the right side panel. The

computing modules include:
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1. Step-test: Initiation of the HST routine.

2. Predict: Prediction of the individual’s HR response based on the inputted param-

eters and individualized HR model database.

3. Compare: Comparison between the predicted and actual HR models(computed

during the latest test).

The user inputted parameters include: STEP PERIOD - the target step period for

the selected test (note that this is a measure of exercise intensity and reciprocally related

to the step frequency); STEP DURATION - the predetermined duration of the selected

step test; MODEL FILE - the personal database profile that will be used for prediction

and also updated after every step test; BASAL HR - the basal heart rate derived by the

system automatically before every step test.

As mentioned above, the panel on the right side of the GUI is dedicated to real-

time feedback displaying current HR and motion information, guiding the user via

audio cues when the next step needs to be taken and provides warnings in case the

user performs the test incorrectly or is at the point of exertion.

StepFit information flow diagram is shown on Figure 2.2c. When StepFit appli-

cation is initiated and the sensor systems are turned on, the computing platform auto-

matically connects to the sensors via Bluetooth and generates appropriate sensor data

profiles. At this point the StepFit GUI is displayed and the system is ready to operate.

The user can then provide parameters, as described above, for the desired step test to

be performed or for the prediction/compare functionality of the system.

If the subject presses ”Step-test” button, the step test is initiated (e.g. Harvard Step

Test in the example of this paper). As shown on Figure 2.2c, basal or resting heart rate

(Bhr) is first recorded. Bhr is defined as an average value of individual’s heart rate that

does not vary significantly in time. Once the Bhr is determined, system initiates a step

test routine (HST routine ). Figure 2.2b shows a block diagram of the HST routine. The
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Figure 2.3: Signal processing of motion data in StepFit
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Figure 2.4: Curve fitting with different workloads in StepFit

HST routine records HR and monitors step frequency simultaneously. In parallel, the

computing platform initiates a metronome like audio signals and text outputs to assist

subject with correctly following the selected step frequency. Each sound or system

notification corresponds to 1/4 of a complete step cycle, i.e. steps performed by either

of the legs up or down.

If the step frequency deviates from the target value, a warning message is generated

on the screen and played via audio to assist the subject to speed up or slow down

their step rate. If the subject cannot adjust the step rate accordingly and the warnings

persist for 15 consecutive seconds, the test is terminated and the system assumes subject

reached exertion. Otherwise, the HST routine completes the test when the parameter

inputted in TEST DURATION is reached.

At the end of the HST routine the StepFit system models the individual HR response

to the exercise intensity of the test and computes the fitness score using the standard

HST model. The HR model (some examples are shown on Figure 2.4) and the fitness
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score (refer to Figure 2.5) are displayed for individualized feedback. Furthermore,

user’s database file is updated with the latest HR model.

If the subject presses ”Predict” button, then prediction routine is initiated. This

routine enables prediction of the HR response with changes in workloads (i.e. step

period or frequency), which is a valuable analytical tool in studying performance. Dur-

ing prediction phase, the system applies interpolation/extrapolation using parameters

of models archived in user’s database file. Due to space limitation, further discussion

of the prediction capability and corresponding results are not included in this paper.

If the subject presses ”Compare” button, validation of the prediction capability of

the system with the actual performance during the step test is performed. As can be

noted from Figure 2.2c, the system predicts the HR response using provided parameters

and then initiates a step test to collect the latest fitness data from the subject. Once

the step test completes, the statistics are displayed showing accuracy of the prediction

method. Note, however, that the accuracy of system prediction improves as the user’s

database increases the number of collected models.

2.3 Algorithm Design

2.3.1 Heart Rate Modeling

Given a constant workload, such as step frequency, the HR response was shown to be

accurately modeled with an exponential hyperbolic sine function [Mizuo et al., 2000].

This function can be defined by Eqn.2.1, where HR represents heart rate (in bpm) at

time t and Bhr represents basal heart rate (in bpm) before the exercise. The coefficients

in the equation (i.e. α, β and ω) do not have physiological meaning and vary with

different workloads and individual characteristics.
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HR = Bhr + α · e−β·t sinh(ω · t) (2.1)

The nonlinear HR curve fitting is realized by using the Levenberg-Marquardt mini-

mization routine [Press and Flannery, 1988].

2.3.2 Frequency Monitoring

As described above, the StepFit system provides automated warnings when the user

deviates from the selected constant workload (e.g. step frequency or period). This is

accomplished by processing motion sensor data and computing the exact step frequency

during the step test. In the presented system the frequency analysis is performed on the

dominant axis of the motion sensors.

The real-time data is stored in a temporary buffer and has a minimal length of L,

defined as L = 2 ∗ step period ∗ sample rate. The buffered data spans a time window

from the current motion sample to L previous samples. This guarantees that at least

two step cycles can be captured in the buffer. The minimal length setting is applied to

ensure that historical data will not dominate changes in current data.

Next, the offset is removed from the raw data, followed by a moving-average smooth-

ing filter. Smoothing removes coupled high frequency noise in the data. Finally, a

piece-wise local minimum function is employed to find local minima point [loc]. The

search piece however has to be carefully selected. It is closely correlated with the step-

ping frequency.

Figure 2.3a shows the raw stepping data with frequency of 0.5 steps/second (step

period of 2), Figure 2.3b shows this data after smoothing and Figure 2.3c shows the

selected local minima values.

Finally, adherence to the step frequency is determined as practical variations within

20% from the target. Deviations above or below then result in appropriate warning
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messages generated by the StepFit system.

Note that this approach was experimentally validated to be robust in practice. Fur-

thermore, due to its simplicity, these algorithms can be implemented in the micro-

processor of the MicroLEAP sensor nodes, if the computation platform has limited

capabilities or to reduce communication overhead between sensors and the platform.

2.3.3 Prediction Method

The prediction routine algorithm performs a search through the user’s HR model database

for a match using the step frequency parameter (exercise intensity). If such a match

is discovered, the database entry is used for prediction. Otherwise, interpolation and

extrapolation are employed relying on the user’s database models in the immediate

vicinity of the desired step frequency parameters.

2.4 Results

As described above, StepFit is a system that automates existing and well validated fit-

ness assessment (e.g. step tests) and HR modeling technique (for example, exponential

hyperbolic sine function). Therefore, this section presents several proof of concept

validation results that demonstrate functionality of the system.

2.4.1 HR vs Workload

Depending on individual user characteristics and selected workloads, the heart rate

response and the corresponding model will exhibit substantially different trajectories.

As shown on Figure 2.4, HR response to constant workload can be divided broadly into

3 categories associated with exercise intensity: heavy, medium and light. For each of

these exercise intensity categories, HR response has unique properties. As can be noted
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from Figure 2.4a, for a heavy workload, the HR response has a tendency to increase

after an initial sharping rising phase. For a medium workload, the HR response tends

to stabilize after the initial rising phase (refer to Figure 2.4b). Finally, for the light

workload, the curve tends to eventually decrease, as shown on Figure 2.4c. Important to

note that for individuals with diverse biomechanical characteristics, fitness level or age,

the stepping frequency correspondence to the 3 different classes of workloads may be

different. Therefore, focusing on individualized HR modeling and fitness optimization

is critical and can be determined by the StepFit system analysis.

Table 2.1 shows the HR modeling performed by StepFit for five subjects with 3

different workloads (step frequencies or step periods). Note that the diversity in the

model parameters, which accentuates the need for individualization.

Another proof of concept evaluation of StepFit was performed with an individual

subjected to a variety of different workloads. Table 2.2 shows the HR profiles for this

individual under different step frequencies (step periods). The residual, which shows

the accuracy of HR modeling, is relatively small, especially noting that HR deviations

within 10bpm are considered normal when comparing different sensors. This accentu-

ates the practical application of the exponential hyperbolic sine function to modeling

HR response during the step test. The residual is defined in Eqn.2.2, where N represents

the total number of points used for modeling, Cfit represents the fitted curve and Creal

represents the actual HR response during the test.

Residual =
1

N

N∑
i=1

[Cfit(i)− Creal(i)]2 (2.2)

2.4.2 Fitness Index

Once the subject completes the selected step test, the StepFit system computes the

fitness index score based on the standardized and validated measures of aerobic exercise

capacity and heart rate recovery. The score formulation is defined in Eqn.2.3 [Johnson
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Table 2.1: Multiple Subjects’ Profile Comparison

Subject Workload Bhr α β ω Residual

No.1

2s 78 940.3 0.009700 0.002400 10.37

4s 73 83.91 0.05180 0.05180 11.98

7s 79 65.37 0.03500 0.03270 6.507

No.2

2s 84 95.77 0.05810 0.06100 7.605

4s 92 55.63 0.09680 0.09610 9.795

7s 87 51.01 0.08550 0.08690 6.852

No.3

2s 65 75.43 0.1043 0.1077 12.91

4s 61 46.96 0.05100 0.05010 9.391

7s 58 48.05 0.03880 0.04030 9.702

No.4

2s 103 112.02 0.01440 0.01720 5.590

4s 88 91.53 0.04910 0.04940 7.396

7s 104 37.10 0.03530 0.04010 7.865

No.5

2s 75 130.5 0.01480 0.01520 4.204

4s 63 82.14 0.02450 0.02340 5.690

7s 84 29.18 0.06200 0.06250 6.4495

Table 2.2: A Subject’s Heart Rate Profile vs. Workloads

Step Period Bhr α β ω Duration Residual

2s 78 940.3 0.0097 0.0024 96 10.37

3s 67 144.7 0.0314 0.0343 120 13.92

4s 73 83.90 0.0518 0.0518 119 11.98

5s 71 86.97 0.044 0.0413 120 7.540

6s 78 68.77 0.0394 0.0390 120 5.681

7s 79 65.37 0.035 0.0327 120 6.507
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Figure 2.5: Fitness index generated by StepFit

Table 2.3: Fitness Index Table

Rating Fitness Index

Excellent >90

Good 80 to 89

High average 65 to 79

Low average 55 to 64

Poor <55

et al., 1942], where the Exercise Duration is either the selected duration of the test or

time to exhaustion, Recovery Beats are computed as the sum of heart beats 1 to 1.5

minutes after the test, plus the beats 2 to 2.5 minutes after the test, plus the beats 3 to

3.5 minutes after the test. For Harvard Step Test, the fitness index is only evaluated

with step period of 2 seconds (i.e. step frequency of 0.5).

Table.2.3 shows the standard fitness index values and the corresponding aerobic

ratings. Figure 2.5 shows the fitness index feedback generated by the StepFit system

for one of the subjects.

Fitness Index =
100× Exercise Duration

2× Recovery Beats
(2.3)
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2.5 Conclusion and Future Work

Fitness evaluation and promotion are critical measures for preventing disease and pro-

moting health and wellness on a large population scale at low cost. This chapter pre-

sented StepFit - an automated self-administered, low cost and convenient system for

fitness evaluation, heart rate response analysis and prediction. The StepFit system con-

sists of unobtrusive low cost HR and motion sensors, and a computational platform that

is used for data processing, archival and user feedback. The system automates step

tests (for example, the widely applied Harvard Step Test), which are standardized fit-

ness evaluation techniques that are extensively validated in diverse subject populations.

By introducing automation and networked data acquisition, StepFit directly resolves a

challenge in deployment of the step test that otherwise requires the presence of trained

personnel.

The StepFit system assists a user in performing the step test by automatically per-

forming the physiological data collection, ensuring the test duration and monitoring

the stepping technique by evaluating subject’s step frequency. The system also per-

forms accurate HR modeling based on the validated exponential hyperbolic sine func-

tion model. The HR models are archived in the individualized databases which can be

used for HR analysis and prediction of physiological response to changing workload

demands.

In our current and future work, we have partnered with the UCLA Exercise Physi-

ology Laboratory from the School of Medicine to augment the StepFit system with an

automated fitness prescription method. This method will individually determine exer-

cise intensity (step frequency), bench height and exercise duration based on the results

of the test, biomechanical characteristics of the individual, age, gender, preexisting

medical conditions and the desired fitness target.
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CHAPTER 3

Precise Classification of Individual Behavior by Sensor

Fusion

3.1 Introduction

Nationwide, more than 4 million stroke survivors are suffering from after-effects. The

average cost of care for a patient up to 90 days after the stroke incident is $15,000 and

16% is spent on rehabilitation and 14% is on physician [Association].

Continuous monitoring of human motion and behavior are central to healthcare for

advancing neurological rehabilitation, ensuring adherence to fitness promotion proto-

cols, enabling activity-based interventions for hypertension and many others. Most

importantly, the introduction of robust monitoring of complex subject motion can en-

able the first direct measurement and assurance of outcomes for treatment for patients

that have left the clinic and are now in residential or workplace environments where the

rehabilitation and treatment must continue effectively.

Due to recent advancements in low-power, energy efficient, non-intrusive, compact

motion sensing devices, the deployment of large scale wearable systems is now prac-

tical at low cost. As this thesis will describe, this can be combined with convenient

energy recharges, data acquisition and transport that has proven effective now at the na-

tional and international scale. A critical need exists for technology that harnesses time

and frequency domain signal processing technology and machine learning principles to

provide classification capability for complex motion. This is particularly important for
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characterization of subjects that are afflicted with neurological disorders (for example

stroke that introduces hemiparetic gait) or complex motion impairments resulting from

Parkinson’s disease and multiple sclerosis. Finally, it is essential to note that it is now

required to provide accurate classification of motion for individuals in the community

and outside of laboratory facilities.

3.2 WHSFT: Wireless Health Sensor Fusion Toolkit

3.2.1 The Software

Wireless health sensor fusion toolkit (WHSFT) is a modularized matlab software that

aims at general pattern recognition of time series data. It has a supervised learning

framework. It has extendible code structure for adding new features and classifiers.

Currently WHSFT support Nave Bayes and Decision Tree classifier.

The graphic interface is shown in figure 3.1.

WHSFT includes four parts: merging, labeling, training and testing. The merging

tool is in charge of concatenating data from multiple files and combining multiple sen-

sors data, as well as aligning time over multiple sensors. The labeling tool is in charge

of labeling different states in training. The training tool allows selection of preferred

classifier, selection of feature combinations and generating feature distribution of train-

ing. The testing tool generates classification result on testing data as well as confusion

matrix, based on training structure.

3.2.2 Classification Results from WHSFT

WHSFT is validated by both controlled laboratory experiment and community activity

classification. In the experiments, I use leave-one-out cross-validation method to check

the performance of WHSFT. The subjects wear triaxial accelerometer sensors on both

23



Figure 3.1: WHSFT graphical user interface

wrists and ankles.

3.2.2.1 Controlled Laboratory Validation

In controlled laboratory experiment, we collect data from normal subjects, including

both upper extremity activities and lower extremity activities. The activities include

walking, running, upstairs, downstairs, eating, reaching out, combing hair, cycling,

rest, etc. Those activities are performed purposefully and repetitively.

The classifier for this validationa is Naive Bayes classifier. And the sensing plat-

form is accelerometer based. Figure 3.2a shows the raw data and classification result

of locomotion, and figure 3.2b shows the raw data and classification result of upper

extremity activities. As mentioned earlier, WHSPFT is a general pattern recognition

software. So there is no limitations or requirements for the choice of activities/states. It

can be observed from the classification result that WHSFT can classify activities with
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a high accuracy, even activities done at different trials.

3.2.2.2 Ambulatory Daily Activities Classification

With the first step validated results got from controlled laboratory condition, we further

apply it to patients suffering from multiple sclerosis (MS). The sensing platform is ac-

celerometer based. And they are worn on both wrists and both ankles. We compare the

classification result with a standard user-annotated log. The user checks the activities

within the log and writes down the start and end time. Since we aim at characteriz-

ing the patients’ daily life, we have a bigger training set and it includes the following

activities.

• Dressing: Put on and take off a uniform outwear

• Feeding: Imitate feeding using a uniform spoon

• Picking: Stand and turn a circle, then pick up a penny on the floor

• Fetching: Take a book on a high shelf and put back

• Reaching: Reach a uniform cup placed remotely on a table

• Walking: Walk through the hall way

• Stand up and sit down: Walk a short distance and sit on the chair, then stand up

and walk out, then walk back and sit down

• Stair Ascent: climb up one floor of stair, guarded by doctors

• Stair Descent: climb down one floor of stair, guarded by doctors

The activities included in the printed activity log are

• Brushing teeth
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Figure 3.2: Classification results
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• Dressing/undressing

• Walking

• Climbing stairs

• Preparing mean

• Eating

• Washing dishes

• Sitting/watching TV/reading

• Computer/paperwork

• Light cleaning

• Vacuuming/heavy cleaning

• Driving

• Shopping

• Sleeping/napping

• Exercise (stretching(A), strengthening(B), cardio(C))

Figure 3.3 shows the classification result, the user annotated log file and raw data

for upper extremity activities and figure 3.4 shows the classification result and user-

annotated result for lower body activities.

When we plot the user-annotated information, for upper extremity activities, we

combine ”brushing teeth” and ”eating” into ”feeding-type”. And combining ”sitting/watching

TV/reading” and ”computer/paperwork” into writing type. The reason we do this is be-

cause due to brief duration of those activities and unrepetitive properties, it’s hard to
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get reliable frame-based features. So the classification result is derived largely by the

amplitude of the activity, rather than specific state. The figures indicate that the classi-

fication can indicate some information out of ambulatory daily life.

It can also be observed that the subject can skip a significant amount of information

in checking the log, and he can extend the duration of annotated activities for not being

conscious of that. It’s actually too much work for a subject to maintain the log infor-

mation and behaves as normal life. In order to solve this problem, we narrow down

the set of interested activities for lower body activities and describe activities of upper

extremity by their functionality.

3.3 Hybrid Gait Classification System

3.3.1 The Algorithm

Classification of gait for patients is a challenging task, due to the diversity of temporal

and spatial properties of gait traces. Figure 3.5 a shows an episode of gait from a

healthy subject with normal gait; b shows an episode of gait from a stroke patient

with hemiparetic gait. The signals from the normal subject are repetitive, consistent

and strong. However, signals from the patient are weak on the hemiparetic side and

have episodic irregular cycles, even on the less affected limb (it is right ankle in this

example). Diversity of gait not only exist among individuals, but also within an episode

of walking from the same subject. Besides,

The In order to solve challenges of diversity and volatile signals from patients, this

thesis introduces an individualized hybrid classification method. The gait classifica-

tion is accomplished with a novel hybrid approach based on a multi-tier combination

of Naive Bayes [Bishop, 2006] and Dynamic Time Warping [Sakoe and Chiba, 1990]

for subject state classification. In this thesis the results of the hybrid system classifica-

tion are presented and show a significant improvement in accuracy over either a purely
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Figure 3.3: Upper body activities classification. It includes raw accelerometer data,

annotated log record by patient and classification result
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Figure 3.4: Lower body activities classification. It includes raw accelerometer data,

annotated log record by patient and classification result
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(a) Normal Gait

(b) Hemiparetic Gait

Figure 3.5: Gait comparison between healthy subject and stroke subject

Naive Bayes or Dynamic Time Warping approach. These results are achieved by com-

bining the capabilities and output from both algorithms in such a way as to maximize

the confidence of classification and increasing classification accuracy.

The system belongs to a supervised learning category - it creates a model from the

test data based on collecting individualized templates and probabilistic activity state

parameters. The system can then apply this model to classify activity in a testing data

set. Note that classification approach of the described system is individualized to every

subject. Therefore, the system is effectively tuned to every individual.

In [Bao and Intille, 2004] authors argue that the best classifier for human activity is

a decision tree. Note, however, that in the system described in this thesis the detection

of the gait activity is identical to a one-step decision tree, therefore, the approach is as

effective.

Naive Bayes [Bishop, 2006] is a powerful probabilistic classifier operating under

assmuption of feature independence. Features can be thought of as statistically unique

31



elements of the sensor data, which are used to differentiate diverse classes or states. In

the presented system, classes/states are the different user activities of interest, such as

walking. In reality the independence assumption is either natural to a given problem or

independence can be achieved by data manipulation. The Naive Bayes formulation is

presented in Eqn.3.1, where C represents classes/states and F is a feature vector. When

the feature set is determined, p(F1...Fn)is a constant, p(C) is a prior, typically uni-

formly distributed, probability. The posterior probability p(C|F1...Fn) is determined

by the likelihood
∏n

i=1 p(Fi|C) (the trained model), as shown in Eqn.3.2.

p(C|F1...Fn) =
p(C)

∏n
i=1 p(Fi|C)

p(F1...Fn)
(3.1)

arg max
C

p(C|F1...Fn) = arg max
C

n∏
i=1

p(Fi|C) (3.2)

= arg max
C

∏
i

1

σi
e
− 1

2

(Fi−µi)
2

(σi)
2 (3.3)

In the system described in this paper, the distribution of class C is fit to a multi-

variate gaussian distribution with each feature serving as a random variable. Eqn.3.2

could be rewritten as Eqn.3.3. We can further modify Eqn.3.3 by taking the log from

both sides to obtain Eqn.3.4. This can be further simplified to yield Eqn.3.5 and

Eqn.3.6.

In Eqn.3.5 Λ represents diagonal covariance matrix for features and f is a feature

variable. Let Λ− 1
2 (f−µ) = y, then Eqn.3.5 can be written as Eqn.3.6. Since Λ− 1

2 (f−µ)

is a normal gaussian distribution, y2 is χ2 distribution with |F| degrees of freedom

(where |F| is the number of features).
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log p(C|F1...Fn) = log
∏ 1

σi
e
− 1

2

(Fi−µi)
2

(σi)
2 (3.4)

= −Σ log σi −
1

2
Σ

(Fi − µi)2

σ2
i

= −1

2
log det Λ− 1

2
(f − µ)TΛ−1(f − µ) (3.5)

= −1

2
log det Λ− 1

2
(y)2 (3.6)

It is now possible to determine a threshold by assuming that only 5% of the left

most distribution can be misclassified, which is determined empirically. The process

is derived in Eqn.3.7, Eqn.3.8, Eqn.3.9 and Eqn.3.10. In Eqn.3.10, F−1
F represents the

reverse χ2 distribution and the lower |F| represents the number of freedoms.

P (−1

2
log detΛ− 1

2
y2 > T ) = 0.95 (3.7)

P (y2 < −2Ti − log detΛ) = 0.95 (3.8)

−2T − log detΛ = F−1
F (0.95) (3.9)

T = −1

2
F−1
F (0.95)− 1

2
log detΛ (3.10)

The feature set for Naive Bayes classifier with application to detection of the ”walk-

ing” state includes: standard deviation of three axis, correlation between every two axes

and mean value of y axis (y axis is pointing downward to ground). This set was deter-

mined to be effective from empirical validation.

Dynamic time warping (DTW) is an algorithm to measure similarity between time

series. The algorithm will return a metric that summarizes the euclidean distance along

the warping path. Introduction of DTW is to leverage the effects of amplitude variance

and speed variance of the time series signal. Figure 3.6 shows two accelerometer traces

that correspond to a stride cycle of fast walk and slow walk.
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Figure 3.6: DTW result on walking cycles with different speed. The left figure is the

original signal and right figure is DTW aligned signal

The data is first analyzed by the DTW classifier for a coarse characterization. DTW

classifier takes a pre-saved, complete walking cycle from training data as a template.

The matching score is set relatively low in order to identify all of the potential walking

segments. Since the shape matching is cycle based, the processing window is set to a

value comparable to the length of the template, with 50% stepping overlap.

Next, the data is analyzed by the Naive Bayes (NB) classifier for a fine-grained

characterization. The NB classifier is described above and in the proposed implemen-

tation the processing window for the testing data was experimentally selected to be 4

seconds in order to include at least one cycle of activity. The processing window also

steps with 75% overlap to ensure data stability.

Results from DTW and NB classifiers are combined using Algorithm (1). Labels

from NB classifier are always assumed to be correct due to a high confidence of detec-

tion. If a consecutive label section returned from DTW is shorter than the processing

window of NB the labels are considered correct. If a consecutive label section from

DTW also matches with at least one high confidence label produced by NB, then the

complete label segment is counted as correctly classified. In all other situations the

classified output is ignored since a match between the outputs of the two algorithms

has not occurred.
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Algorithm 1 Combine Label from DTW and NB
Input: Label sections: {NBsection, DTWsection},

Output: Label positions L = zeros(1, len)

L = NBsection1

for t← 1 to len do

if DTWsection(i) ≤ NBwindow ∪ length(NBsection(i) == 1) ≥ 1 then2

L = DTWsection(i)3

3.3.2 Performance Evaluation

In collaboration with Dr. Bruce Dobkin (Neurology Department at the UCLA School of

Medicine), six subjects recovering from stroke were selected. Each subject developed

a hemiparetic gait in walking as a result of stroke. An appropriate UCLA IRB and the

subject consent approvals were obtained before the experiments. Subjects were in a

diverse age range from 42 to 74, with a standard deviation of 10.9. Four of the subjects

were males and two were females. Note that the described system is individualized,

therefore, a pool of 6 subjects is adequate for early system performance evaluation.

For training data collection each subject was asked to walk through a marked and

observed 50-foot section with three different safe speeds selected by subjects. Next, the

subjects were escorted by Dr. Dobkin to walk a predetermined distance with preferred

speed, but without observation by the engineering team. Dr. Dobkin, however, was

manually collecting the groundtruth data. This was called a blind test and reported

in this paper for speed computation validation. Finally, subjects were asked to wear

devices for a complete day, while they were released from the hospital.

The subjects returned the MDAWN devices after a day of usage in the community

or home. The data was uploaded and automatically analized by the classification sys-

tem. In order to obtain an accurate groundtruth measure for comparison of the results

an expert trained in recognizing human motion data from the raw accelerometer pro-
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Table 3.1: Performance Comparison Summary

classifiers accuracy% precision% recall%

Hierarchical 97.31±0.530 83.61±5.310 84.38±6.620

DTW 93.37±1.695 60.43±10.63 89.30±4.190

NB 93.73±1.760 87.28±9.907 37.75±20.60

files was asked to manually count all of the walking periods for every subject. Table

3.1 shows the classification accuracy comparison between the hierarchical system de-

scribed in this paper, pure DTW and NB. As can be noted from the table, the proposed

hierarchical approach outperforms both DTW and NB with higher accuracy and lower

standard deviation in classification.

Consider the results presented in the table - notice that the NB classifier achieves

high precision while DTW achieves high recall. This accentuates the benefit in com-

bining the two approaches, while mitigating shortcomings - NB classifier has a low

rate in false positives but high rate in false negatives, while DTW exhibits an opposite

behavior.

3.4 Kinematic Characterization of Gait

After identifying the activity sections, the next step is kinematic characterization of

gait. Kinematic parameters such as speed, cadence, stride length and swing ratio are

critical outcome measures and calculated at this stage. Figure 3.7 shows the graphic

interpretation of gait cycles. It depicts a complete stride cycle, starting with heal strik-

ing (when the foot contacts the ground) and ending with the next heal striking. Each

cycle begins at initial contact with a stance phase and proceeds through a swing phase

until the cycle ends with the limb’s next initial contact. The swing and stance phases

are separated by toe-off.
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Figure 3.7: Gait graphic interpretation [Cuccurullo, 2004]

The critical phases (such as swing and stance) and critical events (such as heal

striking and toe-off) can be found in accelerometer traces as well. Figure 3.8 shows

the stride segmentation of accelerometer signals. Sensor are worn on the inner side of

shank, two fingers above the ankle bone; x and z axes are on the horizontal plane, while

y axis is pointing downwards to ground. The accelerometer readings of the stance phase

accord with basic physics since no distinct fluctuations observed. When the first distinct

acceleration shows up, it corresponds to the event of toe off and enters the swing phase.

3.4.1 Peak Detection

In order to finely characterize motion kinematics, it is critical to first isolate each stride

unit. Peak detection is employed to stamp individual strides and thus provides bound-

ary information. A metric, defined as Pval =
√
x2 + y2, is introduced. It is signal

composition of x and z axes to represent data confidence. This variable magnifies a

unique sub phase defined as in swing, where absolute values of x and z achieve max-

imum, as shown in figure 3.8 at time 0.5s of left ankle signal, while suppresses other

phases within a stride. Peak positions are determined by a local maxima algorithm [loc]

with Pval and windowsize as inputs. windowsize is determined by adaptive thresh-

olds, according to the strength of Pval. Higher peak values usually represent higher
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Figure 3.8: Stride segmentation of accelerometer signal

speeds, in which case smaller window size is needed, and vice versa. Figure 3.9 shows

an example of peak detection from a normal subject.

Gait by nature is alternative. So consecutive heal striking of left leg provides the

boundaries for the right leg and vice versa. As can be validated by [Cuccurullo, 2004],

the walking cycle of left leg will affirmatively include a complete swing phase of the

right leg (however, not necessarily include the right leg stance period), for example in

figure 3.8. The algorithm switches the peaks between left leg and right leg as stride

boundary information.

For patients with hemiparesis, the metric Pval may not achieve maximum at the

pre-defined position from the impaired limb data and thus cannot provide reliable po-

sition for the boundary of the less-affected stride. Typically multiple local maxima are

found (caused by both swing and heal striking) by applying the peak detection purely.

According to the stride boundary of impaired limb derived by peak detection from the
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Figure 3.9: Peak detection for gait

less-affected limb, a local maxima array that belongs to the same stride is known. Since

heal striking happens after swing, the local maximum that is the end of local maxima

array is natural to be heal striking from the impaired limb. In this way, boundary for the

less-affected leg are derived. An alternative method, however, is to shift the peaks half

of the walking cycle period to get boundaries for the less-affected leg. This is based on

the alternating feature of gait.

Accuracy of peak detection is the basis for kinematic modeling. I inspect 524 strides

from 26 patients, including patients with diverse gait, from very capable to very dis-

abled. Of all, 6 peaks are mislabeled (5 false negatives and 1 false positive) and the

accuracy is 98.85%.

3.4.2 Orientation Correction

In SIRRACT setting, the sensor is mounted in the inner side of shank, two fingers

above the ankle bone [Xu et al., 2011]. When it is mounted properly and the subject is

vertically sedentary, the readings from x, y, z axes should be close to [0;−1; 0](x and

z axes are on the horizontal plane, while y axis is pointing downwards), as figure 3.10

a showed; we call this state sedentary state. In the case of inappropriate mounting,
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in sedentary state, the values are deviated and an example is shown in figure 3.10 b.

The sensor in this case can be modeled as rotated Euler angles [φ; θ;ψ](Here we don’t

consider translation).

We name the SIRRACT setting coordinate frame o0x0y0z0 and use it as a reference

frame; name the rotated coordinate frame o1x1y1z1. Let P represent an array of points

in space and it has coordinates P 0 in frame o0x0y0z0 and P 1 in o1x1y1z1. According

to homogeneous transformation, P 0 = R0
1 ∗ P 1. R is the rotation matrix that can be

factorized into Rz(ψ)Ry(θ)Rx(φ), which equals to:
cosθcosψ -cosφsinψ + sinφsinθcosψ sinφsinψ + cosφsinθcosψ

cosθsinψ cosφcosψ + sinφsinθsinψ -sinφcosψ + cosφsinθsinψ

-sinθ sinφcosθ cosφcosθ


Here we purposely avoid using Euler angles to express rotation matrix to solve the

problem for the following two reasons. First, P 0 and P 1 in this case will not necessarily

be from the same sensor due to remote sensor usage (the sensor might be misoriented

for all the data from this sensor). Within the sensor, there is inherent noise due to

MEMS technology and the noise distributions from different sensors are not indepen-

dent and identically distributed. So if we take P 0 from a different sensor, we need to

model the noise, which makes the problem very complicated. Second, the computation

will involve trigonometric function and computational complicated.

An alternative is to convert the above problem into a neat optimization problem

as expressed in equation 3.11 It’s called orthogonal procrustes problem [Gower and

Dijksterhuis, 2004] and has been solved by Peter Schonemann in 1964. The solution to

R is shown in equations 3.12 to 3.14.

R = arg min
Ω
‖ AΩ−B ‖F s.t. ΩTΩ = I (3.11)
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(c) Orientation corrected P 1

Figure 3.10: Visualization of P 0, P 1 and corrected P 1

M = P 0T ∗ P 1 (3.12)

(U,D, V ) = SVD(M) (3.13)

R = U ∗ V T (3.14)

In order to get the rotation matrix R, P 0 in this case is a vector of 100*3 from a

different sensor that is in sedentary state and P 1 is a vector of same length from the

misoriented sensor in sedentary state. Figure 3.10 visualizes the P 0 and P 1 vectors as

well as the corrected P 1 vector. Figure 3.11 shows and example of orientation corrected

data from an episode of walking event and peak detection result before and after sensor

orientation correction.

3.4.3 Speed, Stride Length, Cadence, Traversed Distance Modeling

3.4.3.1 Speed Modeling

The most critical component of kinematic modeling is to develop a speed estimation

model, since it is the basis of computing the other parameters.

During training, the subject is instructed to walk three different walking speeds for

a known and fixed length of distance. A speed vector V = [Vavg, Vfast, Vslow] could

be derived by v = s/t, where s (distance, equal to 50 feet) and t (time) are known
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Figure 3.11: Sensor data reorientation and peak detection result, with peaks shifted half

a phase

parameters. A time vector t = [tavg, tfast, tslow] is also derived from the walking sec-

tions, where t is the walking cycle period as shown in figure 3.8. A linear relationship

is hypothesized to exist between these two vectors and least squares method is applied

to derive the parameter set [p1, p2]. Given a new set of walking sections a step to step

speed (m/s) can be calculated as shown in equation 3.15, where t is walking cycle

period calculated from the raw data by peak detection.

Speed = p1× td+ p2 (3.15)

3.4.3.2 Stride Length, Cadence, Traversed Distance Modeling

Cadence is naturally reversely proportional to the walking cycle period t in figure 3.8.

Cadence is defined in equation 3.16 with a unit of steps per second. It count a sum-up

strides from both limbs.

Cadence =
2× 60

t(i)
(3.16)

Stride length(in meters) is defined as the distance traversed in a complete walking

cycle defined in figure 3.8 by one leg. Equal stride length is assumed unless the sub-

42



ject is turning around. Since turning only affects one or two steps this condition can

typically be ignored. Thus, equation 3.17 is derived as follows.

Stride Length =
Speed× 120

Cadence
(3.17)

Finally, combining equations 3.15 to 3.17, distance traversed can be expressed as

equation 3.18, where n represents the number of strides performed by one leg.

Distance =
n∑
i=1

stridelength =
n∑
i=1

(p1× t(i) + p2)× t(i) (3.18)

3.4.4 Kinematic Parameters Validation

A blind test was conducted to validate the kinematic parameters modeling. Dr. Bruce

Dobkin from neurology department of UCLA instructed 6 stroke patients to walk a dis-

tance and conceal the length. Figure 3.12 shows the groundtruth and the calculation.

The averaged error rate is within 10% and meets clinical need. Table 3.2 shows the de-

tailed statistics. Furthermore, in the data for single trip experiments, extra steps outside

the route boundary are possible and cannot be ruled out by the automated algorithm,

which contributes significantly to the error. For a double trip, the effect of outside steps

is attenuated due to the longer distance. Dr. Dobkin pointed out in [Dobkin et al.,

2011a] that ”A high correlation was found between stopwatch-measured outdoor walk-

ing speed and algorithm-calculated speed (Pearson coefficient, 0.98; P=0.001)”.

3.5 SIRRACT: Stroke Inpatient Rehabilitation Reinforcement of

Activity: An international MRCT Network

3.5.1 Introduction

SIRRACT is an international, multi-site, randomized controlled study with blinded out-

come measures. There are more than 13 sites, distributed in 11 countries and districts,
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Figure 3.12: Blind test visualization. It comapres performance of speed calculation

with groundtruth recorded by Dr. Dobkin

Table 3.2: Speed Validation Statistics

Subject Number A toB(ft) B to A(ft) Round Trip(ft) GT(ft) Error Rate for Single% Error Rate for Round Trip%

NO.1 67.51 81.75 66.35 11.83

NO.2 73.24 80.51 150.7 66.35 15.20 12.89

NO.3 68.60 70.64 70 1.457

NO.4 57.59 63.18 112.1 50 5.966 1.643

NO.5 74.71 68.74 121.6 66.75 7.480 8.918

NO.6 68.32 78.50 137.60 66.75 10.00 3.100
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Figure 3.13: SIRRACT sites global distribution

and more than 150 patients are involved. Figure 3.13 shows the global distribution of

SIRRACT sites. Subjects, who are mainly stroke patients accepting physical therapy

in rehabilitation unit, wear the motion sensors during their day time. The site manager

uploads data to UCLA WHI server (labeled as red start in figure 3.13) through a soft-

ware called MDAWN uploader. The system on UCLA WHI server will classify the

activity and provide feedback to site managers with kinematic information summaries.

Currently, the activity of concern is gait.

3.5.2 Running of SIRRACT

3.5.2.1 The hardware

The motion sensors used in SIRRACT is referred as Medical Daily Activity Wireless

Network (MDAWN) devices, shown on figure 3.14a. The sensing devices are manu-

factured by Gulf Coast Data Concepts(GCDC) [mda]. The MDAWN sensing platform

contains a three-axis accelerometer that can be tuned to record motion with magnitudes
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up to 6g on each axis. The devices operate in logging mode, storing the data on an

internal SD card. The sampling rate of the MDAWN devices can be selected anywhere

in the range from 10Hz to 320 Hz. The sampling rate of 40Hz was selected for the

presented experiments according with findings from [Bouten et al., 1997], stating that

the frequency of human behavior caused by voluntary muscular work is under 20 Hz.

Therefore, the selected sampling rate satisfies the Nyquist criterion. The devices have a

capability to maintain accurate clock, which enables timestamping of the archived data.

Finally, the devices use a USB interface for data upload, operation parameter modifica-

tion and charging. The on board rechargeable battery lasts 48 hours under continuous

sampling with the parameter setup used in our experiment.

Figure 3.14b shows a complete kit for deployment, consisting of a sensing plat-

form and a flexible attachment band that can be conveniently used to mount the system

around wrists or ankles. Velcro is used to attach the sensing platform to the flexible

band. The sensing module is mounted on ankles of subjects in the experiments pre-

sented in this paper, since the focus is on the walking activity characterization. The

system is nonintrusive due to the light weight (2 sensors and 2 bands weigh less than

50g in total) and small size of the device (comparable to a conventional USB flash

drive). As mentioned above, the MDAWN devices can be charged via the same USB

interface. During long term deployment campaigns, the MDAWN kits also include

USB hubs and AC power adapters to enable simultaneous recharge of multiple devices

from a computer or an AC wall outlet. Therefore, the described kit can operate for pe-

riods of over two weeks without technical intervention, which is convenient for home

environment usage and most applications.

3.5.2.2 Data Upload

Collected motion data is archived on on-board SD card. When data needs to be up-

loaded, MDAWN is plugged into the USB port of a computer and a software called
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Figure 3.14: Hardware platform and deployment kit in SIRRACT

”MDAWN uploader” is started. The destination of upload is hard coded as the UCLA

Wireless Health Institute server eawins38.

Figure 3.15 shows the user interface of the software. When ”Discover” button is

pressed, the software will begin to search for connected MDAWNs from USB port.

When ”Upload” button is pressed, the software will upload data files in each MDAWN

chronologically using SSH protocol. When ”Sync” button is pressed, the software will

write the current time on the computer to the internal clocks of connected MDAWNs.

In other words, the clock of connected MDAWNs are synchronized. When ”Close”

button is pressed, the software will exit.

3.5.2.3 The Procedure

The signal processing system of SIRRACT includes two steps, the automated training

and automated post processing. Figure 3.16 a shows the flowchart of training step and

figure 3.16 b shows the flowchart of postprocessing step.

In training module, the data is first analyzed by the preprocessing module. During

this stage it is important to ensure that the data from multiple sensor devices is aligned

in time, represents the same or known sensor orientation (so that the data can be inter-

preted in a similar manner) and has identical spatiotemporal resolution. Therefore, the
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Figure 3.15: MDAWN uploader interface

data files are merged according to the timestamp and any non-continous regions in the

merged data, which is accomplished by shifting the data points to the correct positions

within identical temporal windows and interpolating data whenever necessary. In this

paper the system assumes that there is no significant location or orientation uncertainty

in the sensor placement.

For the training data collection procedure, each subject is asked to walk a marked

distance of 50 feet with the speeds of ”average”, ”slow” and ”fast” - as perceived by

the subject. Please notice the limited amount of training data required (only 3 bouts

of 50 feet walking). Furthermore, note that the three different speeds are controlled

completely by the subject and do not have to be similar among all of the subjects. The

rationale for requiring three different speeds is to obtain gait variability characteris-

tics and capture corresponding templates in training data. In order to further automate

the training data collection process, a start and an end signatures are attached to each

walking section. A signature recognition algorithm is applied to delimit each walking

section, avoiding the tedious manual noting effort. The ”Start” signature consists of
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Figure 3.16: Signal processing system in SIRRACT
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Figure 3.17: A standard walking section. It has a start signature of 5-5-10 tappings with

1 second separated, and an end signature of being static more than 10 seconds

tapping the sensor with a predetermined sequence (e.g. five-five-ten times). The ”End”

signature consists of at least 10 seconds of relative immobility. This is performed by

simply requesting the subject to stay stationary for 10 seconds at the end of every train-

ing episode. Fig.3.17 shows an example of the standard walking section with a ”start”

and an ”end” signatures. The DTW algorithm is employed to match the start signa-

ture with a pre-saved template. The signature detection algorithm is applied separately

on the data from all three axis of the motion sensor and the returned results are com-

pared with an empirical value. In practice the developed signature detection algorithm

is remarkably robust including the cases when the ”tapping” template is recorded by a

different user. In cases when the automated system recognizes a different number of

training episodes than those declared to the system by the user, a manual intervention is

required. Note that this limited training needs to be performed periodically. Currently,

it is required to do training on a weekly basis.

Figure 3.18 shows the training procedure.

Post processing module is executed whenever the data marked as testing is uploaded

into the server. The data passes through the same preprocessing modules as in the train-

ing module. It next goes through a hybrid classification system to classify motion of

interest. After episodes of motion have been identified, it calculates kinematic infor-
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Figure 3.19: Post processing procedure

mation and generates summaries, which will be distributed to individual site.

Figure 3.19 shows the post processing procedure.

3.5.3 Large-scale Data Management System

The medical data entry system for SIRRACT is located at https://www.npistat.

org/sirract/Login.asp. Each site has their own account on the data entry sys-

tem. When a new patient is enrolled into SIRRACT study, the site manager will register

this patient with a new patient ID, record the demographic information and assign two
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MDAWNs to this patient ID . When the patient finishes the study, the site manager

will unregister this patient as well as the MDAWNs. The MDAWNs then can rotate for

other patient usage.

Due to IRB approval issues, the SIRRACT data entry system webpage is not hosted

by the UCLA Wireless Health Institute engineering team. However, we host a repli-

cate data management system that will sync data with the medical database every 10

minutes. The scheduler on UCLA WHI server will call the routine code for SIRRACT

when new data found.

3.5.4 Deployment, Lessons and Experience

We assign 3 sets of MDAWN pairs to each site for patient rotation and device replace-

ment. We keep the convention that the device’s serial number ending with odd is labeled

as ”left” and ending with even is labeled as ”right”. The package we mail to each site

includes 6 MDAWNs, 3 labeled as left and 3 labeled as right; one 10-port powered

USB hub; 6 reflexive bands; extra velcros for position adjustment as well as a printout

of ”MDAWN Upload and Maintenance Protocol” which specifies the basic steps of data

upload. For certain sites, we also mail a netbook with Windows7 installed to facilitate

data upload.

During running of SIRRACT, we noticed problems from IT systems, data upload,

sensor usage, outcome measure, classification performance, etc.

In IT system, we noticed the following problems

• The firewall of medical network has strict restrictions on data transport. We have

to talk to their IT people to allow SIRRACT data upload.

• The international network is unstable in some countries. We have to manually

retrieve data through file hosting service, such as dropbox.
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• The MDAWN devices can not be discovered by the uploader, which results in

data loss. There are a couple of possible reasons, such as broken devices, oper-

ating system compatibility (currently Windows OS is supported), USB ports are

occupied by OS at the time, etc. We specify a bunch of solutions in ”MDAWN

Upload and Maintenance Protocol” such as unplug the USB hub and plug in

again.

During data upload and sensor usage, we noticed the following problems.

• The start and end signal of signature in training is not executed properly.

People may tap on both sensors as a start signal, or wait a very long time between

tapping and walking, or there is no ending signal at all. We now have to disable

this function and turn into total manual delimitation for training.

• The devices are not synced properly.

Clocks in MDAWNs will drift overtime and make the motion data from left and

right ankles misaligned. We require the site managers to ”Sync” sensors when

uploading data on a daily basis. The ”Sync” button of the uploader is neglected

to be pressed frequently. Figure 3.20 shows two examples of clock drift. The

misalignment in figure 3.20 a makes the alternating activity of gait into a simul-

taneous movement. In figure 3.20 b, the clock drift is so severe that there is no

common sections from the two sensors and makes the movement uncorrelated.

This problem needs manual inspection and manual correction.

• The devices are not orientated properly on ankles.

The current system automatedly detects up-side down orientation issue since ini-

tially we believe the other misorientation problem is hard to happen due to sensor

attachment method in figure 3.14. However, in reality problem such as figure 3.11
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Figure 3.20: Data misalignment examples

happened. This problem is detected manually and corrected using method intro-

duced in section 3.4.2.

• The sensor is used in wrong position.

For example, the sensors used on left ankle and right ankle are switched or sensor

used for one patient is mistakenly used for another. This problem is very hard to

detect as well. For the first issue, it can be manually inspected if x axis and z axis

are in phase or out of phase. According to figure 3.8, x and z axes on left ankle

are out of phase while on right ankle are in phase. For the second issue, motion

correlation can be checked.

• The sensors are deleted from the system instead of being unregistered.

The negligence of deleting SN of sensors from the database system breaks the

link between raw data and patient ID. Data retrieval is impossible. The valu-

able motion data of particular subject is immersed in raw data files that is only

referenced by serial number.

I access the medical database of SIRRACT to get ground truth information for data

processing. The following issues about outcome measure are observed
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• The rehabilitation scales are not recorded properly.

For example, in one site, the patients’ FAC level at admission is 5, the highest,

and has various values which is below 5 when discharged. This issue happens for

more than half of patients on that site. The site admitted it was their error. How-

ever the experiment is inconvenient to reproduce and the valuable groundtruth

information is lost.

• The stop-watch recorded time length has a hard coded upper limit in the medical

database.

The upper limit is 140 seconds. However for very weak patients, the 50ft walk

can be beyond this limit. The nurse can only input 140s in the medical database

which is misleading.

The classification suffers from both type I error (false positive) and type II error

(false negatives). Figure 3.21 shows the example of false positives and false negatives.

In figure 3.21 a, it is observed that 16 seconds of gait (from 24874 to 24890) that

has been misclassified. The feature distribution falls into the training data’s distribution

of patient. This episode corresponds to the end of day and it is hypothesized that this

motion comes from the situation that the physician takes the sensor away from the pa-

tient and carry them back to office. The data is simultaneous if observed carefully, thus

there is high correlation among certain axes. I make use of this property to eliminate

similar sections.

In figure 3.21 b, a 10 seconds episode (from 3390 to 3400) is labeled as not being

gait. The transitional gait section as shown in this example is usually ignored by the

algorithm due to the fact that feature value among this section doesn’t fall into the train-

ing feature distribution (notice the gaps within this section). This is no good solution

based on the current algorithm, however, promising solutions proposed in chapter 5,

which makes use of gait pattern. It’s not as sensitive to the noncontinuous gait episode
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as the algorithm proposed in this chapter.

3.6 Discussion

Applications of low cost energy efficient technology and machine learning techniques

to monitoring and characterizing human activity and behavior will be critical in en-

abling many new systems that can improve the quality and breadth of delivery of health-

care, reduce healthcare costs by encouraging adherence to activity regimen providing

disease prevention methods. In order to meet the demands of these new applications,

however, human motion analysis should become automated, validated in community

trials and applied in free-living community conditions. These requirements are criti-

cal because 1) There is a profound difference between human motion analysis in the

laboratory and in the community and between normal subjects and patients with afflic-

tions and 2) There is a unique opportunity today to make a difference in the lives of

many patients seeking any help available in recovering from the diseases where activity

monitoring and promotion can undoubtedly make a difference.

This chapter presents a novel hybrid approach for human motion activity classifica-

tion. This approach is based on a multitiered combination of the Naive Bayes classifier

and the Dynamic Time Warping algorithm. In the approach presented in this chapter,

the outputs from the two algorithms are combined in such a way as to retain the high

confidence in the final classification result, while segmenting a large correctly identified

classification set.

This chapter also presented an approach for speed estimation in the classified ”walk-

ing” segments. It is important to note that some of the other gait parameters (cadence,

step length, swing ratio) can be computed from the speed estimate directly or using

similar analytical approaches.

In this chapter we have presented results from a group of 6 subjects engaged in
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Figure 3.21: False positive and false negative example in classification of SIRRACT

study. The black cross represents classification result in seconds; the upper part is from

left ankle and lower is from right ankle; the upper and lower and 8g separated to avoid

plot overlapping; rgb correspond to x y z axis.
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formal trials through neurological rehabilitation, exhibiting hemiparetic walking gait.

The focus of the motion analysis was on the walking activity segmentation and char-

acterization. The hierarchical approach clearly outperformed a purely Dynamic Time

Warping or Naive Bayes approach and shows the benefits of the layered design. Finally,

the speed computation was verified to be accurate (on average to within 10%).

This chapter extends capabilities of the algorithms presented in this chapter to serve

large communities and an expanded set of disorder conditions, the international, multi-

site study, SIRRACT. Detailed techniques such as motion sensing hardware, signal

processing system routine, data upload software and large scale data management sys-

tem are also introduced. We summarize the experience and lessons from SIRRACT.

We believe this is valuable for future large scale trials.

The future work is to employ methods to discover the internal structure of the di-

versified data. It will not require personalized training structure and will be more con-

venient to deploy.
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CHAPTER 4

Visualization: A Longitudinal Analysis

4.1 Introduction

The conventional assessment methods of post-stroke patients’ motor functions are con-

ducted through standard scale tests [str]. Such tests require patients to perform different

tasks typical for every-day motions when in the community. The performance of pa-

tients is then scored by a physician or a qualified personnel. These tests and methods,

however, suffer from the subjectiveness of physician’s judgement, minor changes in

specifics of the task performance or conditions in which the test is conducted.

The low-cost wearable sensing devices are prosperously developing and being de-

ployed in a variety of healthcare monitoring and assessment applications [Xu et al.,

2011]. Wearable sensor monitoring have shown to be complementary for performance

evaluation and can be deployed for monitoring in the community with feedback pro-

vided to the physicians and patients on a daily basis [Xu et al., 2011; Wang et al., 2011].

In this chapter, algorithms for detailed analysis of the motion (e.g. accelerometer)

data are presented, where variations in each stride of the subject during locomotion are

analyzed, providing a quantitative and qualitative description of post-stroke patient’s

walking. This paper has the following contributions: Firstly, an on-line methodology

for computing clinically relevant metrics and characteristics for subject lower body

mobility. Secondly, a metric vector, purely derived from the accelerometer data and

independent of sensor orientation. Thirdly, a visualization method that indicates motion
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quality evolution during and after patient rehabilitation based on a longitudinal data.

This enables physicians, patients and other interested parties to visualize the effects of

the rehabilitation and treatment.

4.2 The Evaluation Metric: A Quality Vector

The motion quality evaluation metric includes kinetic characteristics and motion vari-

ability. These metrics are independent of the orientation around the ankle placement

given an ankle band mounting method described in [Xu et al., 2011] and are feasible

for large scale experiment deployment. The hardware is an energy efficient platform

with tri-axial accelerometers [mda].

4.2.1 Kinematic Characteristics

Kinetic characteristics include walking speed, cadence, stride length, symmetry and

swing to stride ratio (SSR). Modeling of speed, cadence and stride length has been

elaborated in [Xu et al., 2011].

Symmetry is defined as a ratio of the impaired leg swing time over the normal leg

swing time [Patterson et al., 2010]. Figure 3.8 shows a stride segmentation from two

legs. SSR is defined as a ratio of the swing time over the complete walking cycle period

t shown in figure 3.8, which is a sum of swing and stance times.

The walking cycle is identified by a peak detection algorithm, which has been elab-

orated in section 3.4.1.

4.2.1.1 Stride Segmentation: An Adaptive Swing Matching

Within a stride that contains a complete swing phase, an adaptive matching algorithm

is applied to precisely identify its location.
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This algorithm first performs a search within the stride data S through all of its

sub strings to identify the one that has the smallest distance compared to the template,

shown in Eq.4.1. substring− represents the initial match result. The distance metric is

calculated by the Dynamic Time Warping [Sakoe and Chiba, 1978]. This provides an

estimate of the similarity between the stride substring and template. Motion data signal

warping caused by different walking speeds are adjusted accordingly.

Next, substring− is extended and shrank on both ends of the boundary indices and

the distance array is searched to find the minimal distance. The corresponding substring

is the final match.

substring− = arg min(Dist(stride, template)) (4.1)

substring = min(Dist,Distshrink,Distexpand) (4.2)

Algorithm 2 shows the process. The input is a data vector of a stride and a swing

phase template, that has been precomputed. Lines 1-7 show the initial matching pro-

cess. startind and endind in algorithm 2 are the start and end indices of the initial

match.

Lines 8-17 show the adaptive searching part of the algorithm, where lines 8-12 and

lines 13-17 expand and shrink the sub string length of stride S separately. Finally,

line 18 finds the minimum distance of the three distance vectors and line 19 obtains

the proper swing length by adjusting the startind and endind. Figure 4.1 shows an

example of expanded matching.

4.2.2 Variability

Variability is an important qualitative measurement of stroke patients’ walking func-

tionality [Oken et al., 2008]. We define an entropy parameter to characterize variability

and randomness in the walking data.

Algorithm 3 shows the process to calculate entropy. Input is a vector of stride

61



Algorithm 2 Adaptive Swing Phase Matching
Data: s, template

Result: swinglen

begin4

for n = 1 : len(s)− len+ 1 do5

d(n) = dtw(s(n : n+ len− 1), template)6

ind = findmin(d) startind = ind + 1 endind = startind + len(template)−7

1 startexpand = startind − 5 > 0?startind : 1 endexpand = endind + 5 <

len(s)?endind+ 5 : len(s) for n ∈ [startexpand : endexpand do

dexpand = dtw(s(n), template)8

startshrink = startind + 5 endshrink = endind − 5 for n ∈ [startshrink :9

endshrink do

dshrink = dtw(s(n), template)10

shiftind = findmin(d, dshink, dexpand) adjust startind and endind with11

shiftind return swinglen

end12
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Figure 4.1: Swing phase adaptive matching
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signals and a threshold value. The stride signals are automatedly delimited by method

proposed in 3.4.1. The output of the algorithm is the entropy value. In algorithm 3 lines

1-7 generate a lower-triangle distance matrix of the stride vector, that is, a distance

matrix for every two strides. Each item in the distance matrix is a measurement of

signal similarity between the two strides.

The distance matrix is then compared against the input threshold. The input thresh-

old is determined by the mean value of the distance matrix precomputed from a pop-

ulation of the healthy subjects. The algorithm then clusters the strides by their mutual

distance. That is, if D(i, j) < threshold, then stride i and stride j are defined as linked

and thus merged into the same cluster. Lines 11-14 show this process. The algorithm

stops looping when the number of clusters does not change.

After this step, the strides are merged into different clusters on the basis of their

similarity. Finally, the entropy value is calculated according to the definition. The

entropy is upper bounded by
∑ logn

n
and lower bounded by 0.

Figure 4.3 shows the link and merge example. The threshold in this example is 5.

After link and the initial step of merge, 17 clusters are generated. They are {1, 3, 5,

6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 18}, {2, 5, 9, 18}, {3, 7, 8, 9, 10, 15}, {4, 5, 9, 10,

15}, {5, 7, 8, 9, 11, 13, 14, 15, 17, 18}, {6, 8, 9, 10, 12, 13, 17}, {7, 8, 9, 11, 13, 14,

15, 18}, {8, 9, 10, 11, 12, 13, 15, 17}, {9, 10, 11, 12, 13, 15, 17, 18}, {10, 11, 12, 13,

15, 17, 18}, {11, 13, 14, 15, 17, 18}, {12, 17}, {13, 14, 15, 17, 18}, {14, 15, 17, 18},

{15, 17, 18}, {16}, {17, 18}. The merge step is repeated iteratively until the number of

clusters becomes stable. In this example, the final clusters are {1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 17, 18} and {16}. And the entropy value is calculated as 0.2146.

From this calculation, stride 16 is an outlier which is different from others. Raw data

evidence is shown in figure 4.2. The circled stride is 16. The profile of this stride is

clearly distinct from others.
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Figure 4.2: Raw data evidence for variability
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Figure 4.3: Link step and merge step
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Algorithm 3 Entropy Calculation
Data: S = (s1, s2..., si, ...sj),threshold

Result: Eval

begin13

for n = 1 : j do14

for m = 1 : j do15

if m ≥ n then continue else Dist(n,m) = dtw(sn, sm)16

for n=1:j do17

index{n}=find Dist(n, :) < threshold18

for index{i} ∈ index{1 : n} do19

if index{i}&index{j}! = 0 then merge index{i} and index{j}20

for n = 1 : len(merg cluster) do21

prob(n) = len(merg cluster(n))./len(S)22

Eval = −1 ∗ sum(prob. ∗ log(prob))23

end24
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4.3 Experiments

For the experimental evaluation of the proposed algorithms, 20 subjects have been re-

cruited. Nine of these subjects are healthy individuals with subject IDs 1-9, and the

other 11 are stroke patients with different severity of the condition and IDs of 11 to

17. An appropriate UCLA IRB and the subject consent approvals were obtained before

the experiments. Of the 11 stroke patients, seven have records for only one time eval-

uation and the other four have longitudinal records including evaluations of four and

more times over the period of several weeks. Those four patients are participants of the

SIRRACT [sir] project (with IDs 17 to 20). The experimental data includes 36 unique

data records and observations in total.

Each subject was instrumented with two tri-axial accelerometer devices referred as

MDAWN [mda], one around each ankle. Both MDAWNs of every patient are time

synchronized before the data collection and monitoring. Each subject is instructed by

the physician to walk with three different speeds (fast, average and slow) moderated by

the subjects themselves, traversing a distance of 33 to 50 feet.

The complete metric vector includes entropyleft, entropyright, symmetry, SSRleft,

SSRright, speed, cadence and stridelen, and is calculated for each subject. The kinetic

parameters are averaged during the test.

A matrix of 36 by 8 is generated (e.g. number of observations vs metric vector). In

order to provide effective visualization of the recovery evolution for these patients, the

matrix is subjected to the principal component analysis (PCA). Eight principle compo-

nents are generated and the first two explain 84.78% of the variance. The algorithm

then projects the observations onto the first two dominant principle components for the

data from the four longitudinal patients, as shown in Fig.4.4.

The green stars in the Figure represent the data cluster for the nine healthy subjects.

The red crosses represent the seven stroke patients that have only one-time record, and
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Figure 4.4: Patient gait evolution visualization

the corresponding cluster. These are the two control groups. The linked blue circles

in each figure (referred as anchor points in this thesis) represent the evolution route

of the individual patients from the moment they are first admitted to the hospital until

discharge with comparison to the control group data overlaid.

Figure 4.4a-d have different resolutions according to the performance of the pa-

tient. Patient ID17 and 18 are generally weaker, while patients ID19 and ID20 have

better performance initially. Thus, in the last two subfigures, the control group of the

nine stroke patients is not shown. In these cases the goal is to emphasize the distance

between the healthy control group and the patient recovery evolution route.
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4.4 Discussion

In this chapter, we explore the methods to derive metrics of variability, swing ratio,

swing stance time, speed, stride length and cadence from pure accelerometer data, and

decompose the signal to visualize the evolution process of patient recovery.

This method is not limited to stroke patients. It can be applied to other commu-

nities, such as patients with Parkinson’s or Multiple Sclerosis conditions. The metric

value itself provides a physician with the relevant information about the patient on a

frequent time basis (for example daily), and can alarm when abnormal events occur.

Furthermore, some of the metrics, for example entropy, can provide physician with

prognostic inference about a likely fall.

The visualization provides macroscopic view of the patient performance over a

longer period of time and can aid physicians to better understand recovery process.

The visualization also provides clustering based on the performance of the patients.

However, with limited observations, it is too early to draw conclusions. In the near

future, with more patients recruited to the SIRRACT [sir] project, the project is on

its way towards data analysis for a larger group of stroke patients. Besides, during

the evolution path, certain anchor points might represent pathological conditions. That

is, the patient is not marching towards expectation in a desirable way. It needs to be

inspected.

Currently the metrics employed in this chapter are all from motion sensors. It will

be valuable to combine the motion sensing metrics with physician evaluation scales and

derive a scoring system that will be applied to gait quality evaluation.
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CHAPTER 5

Scaling for Big Data

5.1 Introduction

Scalability is defined as the the ability of a system, network, or process, to handle grow-

ing amount of work in a capable manner or its ability to be enlarged to accommodate

that growth. However, following challenges are emerging associated with scaling for

continuous motion monitoring system.

• Frequent, noisy, error prone and storage demanding data is expected.

If sampled at 40HZ with MDAWN, 20 mins of data from 1 tri-axial accelerometer

sensor is 1MB. In SIRRACT setting, we assign two sensors to each user, on both

ankles. If a user uses the sensor 8 hours a day, the data size will be above 1GB

after 1 month. It will be a storage problem if a large population is supported by

continuous monitoring.

• Information fusion from multiple sources are needed, such as multiple sensors,

previously learned models, context, etc.

• New modeling techniques are required, such as robust estimation and classifica-

tion framework, advances in machine learning, data mining, modeling and visu-

alization

• Dynamic user models should be hypothesized, since the user’s gait might be un-

dergoing changes due to treatment or disease affection.
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The performance of scalability can be measured by two metrics: the accuracy of

processing and responding time, a.k.a transactions per second. Accuracy should not be

sacrificed by the growing amount of processing work. Besides, a reasonable processing

time is expected. In order to achieve these two goals, feasible methods include single

or combination of the following: added hardware, such as investing more servers, the

commercialized service cloud computing, and improved models and algorithms. In this

thesis, I concentrate on model and algorithm innovation.

5.2 High Speed Search and Analytics

5.2.1 SPR: An Indexing Algorithm

Data traces from accelerometers and other motion-sensing devices can be compressed

by means of symbolic representation, the Significant Point Representation algorithm

(SPR). In SPR, only the significant local maximum and local minimum points are iden-

tified. In our setting, we normalize the data into range of [−1 1] and use a binwidth =

0.2, which makes the alphabet size 10, that is, from a to j. This configuration demon-

strates good performance in gait characterization; however, the parameter combination

can be tuned to other values and fit other applications.

Algorithm 4 shows the procedure of SPR. Data is first normalized to the range of

[−1 1]. Then a convolution-based local maxima and local minima algorithm [loc] is

applied. The combination of all the local maxima and local minima are named local

significant points. Excessive points will be generated in this step. In order to get the

significant points, excessive points have to be removed from local significant points.

Significant points satisfy the criterion that the abutted points have a value difference

larger or equal to binwidth. Algorithm 5 shows the procedure to remove the excessive

points according to the input parameter binwidth. It iteratively eliminates excessive

points in each run (In the implementation, we keep the indices of to-be-deleted points
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into an array and subtract this array in the final operation).

Algorithm 4 Significant Point Representation
Input: Input data x ∈ Rn, bin width α

Result: Position of significant points y

begin25

/* normalize data to the range of [−1 1] */

x← (x−min(x))/(max(x)−min(x))∗2−1 /* find local maximal and26

minimal points; excessive points will be generated

*/

a = local max(x, 4)/* position of local maxima */27

b = local min(x, 4)/* position of local minima */28

localsigp = sort([a b]) /* remove excessive points */29

y = remove excessive p(α, localsigp, x)30

end31

The position of significant points in gait tend to correspond to different phases of a

gait cycle, for instance heel strike or leg swing [Salarian et al., 2004]. This formulation

can be validated by the timing analysis of gait phases during a stride in [Saremi et al.,

2006].

Figure 5.1 shows the accelerometer trace (blue line) of one axis of an accelerometer

that was worn during walking. The data for this trace is normalized to [−1 1]. The

trace includes three strides. The primary axis is oriented vertically, towards the ground.

According to [Saremi et al., 2006], the points that are labeled with number 1, 3, 5 are

toe-off, which is the start of a swing; the points that are labeled with number 2, 4, 6 are

heal-striking, which is the end of a swing. The rest of the stride is the stance phase. As a

reference, figure 3.7 shows the graphic illustration of phases in a gait cycle [Cuccurullo,

2004].

The red crosses in Fig 5.1 indicates the derived significant points after SPR algo-
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Algorithm 5 Remove Excessive Points
Input: Bin width α, position of local significant points p, input normalized signal s ∈

Rn

Result: Position of significant points y

begin32

δs = s(p)−s(p−1) x1 ← ∀t, s.t.|δs(t)| ≤ α x2 ← ∀t, s.t.|δs(t)| > α p2 = p(x2)33

while length(x1) ≥ 1 do

xr = [ ] c = [ ] for n = 1 : length(x1)− 1 do34

c = [c;x1(n)] if (x1(n)− x1(n+ 1)) 6= −1 then35

c = [c; c(end) + 1] v = s(p(c)) xk ← ∀t, s.t.|v(t)| = max(|v|) if36

length(xk) > 1 then

xk = xk(1)37

xr = [xr; c((1 · · · length(c)) \ xk)] c = [ ] continue38

if x1(n) − x1(n + 1)) ≡ −1 then c = [c; c(end) + 1] else c = [ ]39

c = [x1(end);x1(end) + 1] xk = find(|s(p(c))| ≡ max(|s(p(c))|)) if

length(xk) > 1 then

xk = xk(1)40

xr = [xr; c((1 · · · length(c)) \ xk)] y = p((1 · · · length(p)) \ xr) δs = s(y) −41

s(y − 1) x1 = find(|δs| <= α)

y ← y ∪ p242

end43
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Figure 5.1: An example of SPR

rithm is applied. It can be observed that by labeling the significant points in the trace,

stride segmentation occurs naturally and it accords with the validity analysis in [Saremi

et al., 2006] as well as the graphic illustration in figure 3.7. The swing phase of gait,

when the foot is swinging forwards, corresponds to the longest local minima pair. This

swing identification method will be used in the rest of this paper.

5.2.2 Gait Segmentation Evaluation

SPR based gait segmentation can apply to subjects with diverse gait patterns and dif-

ferent motor abilities. SIRRACT study [sir] provides a perfect subject pool to test the

performance of the algorithm in gait segmentation.

In SIRRACT, multiple rehabilitation measures are recorded, such as NIH Stroke

Scale [nih], functional ambulation category [fac], Barthel Index [O’Sullivan et al.,

2004], Stroke Impact Scale [sis], as well as walking speed during trainingXu et al.

[2011]. The test subjects are from SIRRACT site 1 and site 2 and 24 subjects are

included in total.

We use fac as a reference to cluster subjects with different physical activity abilities.

FAC level 0 represents Nonfunctional Ambulation and level 5 represents Ambulator
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Independent. The FAC levels provide a full coverage of patients’ physical activity

ability description. Content of FAC levels is listed below

Description: Staff-completed tick box of 5 broad categories of walking ability

Ranges from independent walking outside to non-functional walking Patients can be

rated on the following categories:

• 0: Patient cannot walk, or needs help from 2 or more persons

• 1: Patients needs firm continuous support from 1 person who helps carrying

weight and with balance

• 2: Patient needs continuous or intermittent support of one person to help with

balance and coordination.

• 3: Patient requires verbal supervision or stand-by help from one person without

physical contact

• 4: Patient can walk independently on level ground, but requires help on stairs,

slopes or uneven surfaces

• 5: Patient can walk independently anywhere

5.2.2.1 Gait Segmentation Examples

Figure 5.2 shows the raw data from patients with different FAC levels and the SPR

result on the y-axis. Please note that y-axis is pointing to ground. In each subfigure, the

upper plot is from left ankle and the lower plot is from right ankle. When right ankle’s

data is plotted, the value substracts 8 to avoid plotting overlapping.

From figure 5.2, it can be observed that the segmentation is very effective for pa-

tients with FAC level 2 to 5. For patient with FAC 1, the hemiparetic side is not seg-

mented properly due to temporally volatile movement within the stride.
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Figure 5.2: Subjects with different FAC levels and the SPR result on y-axis
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We use swing detection accuracy as an indicator to assess performance of gait seg-

mentation. This is intuitive, as swing phase is identified, the rest of a stride is stance

naturally.

5.2.2.2 Gait Segmentation Performance by SPR

The accuracy of gait segmentation is a layered result since we have two steps in the

procedure.

The first layer is peak detection accuracy rate. Over 524 strides, 6 peaks are misla-

beled, including 5 false negatives and 1 false positives. The accuracy for peak detection

is 98.85%.

The second layer is accuracy rate for SPR and ASM separately. The accuracy of

swing detection within one stride is defined in equation 5.1, where sGT and eGT repre-

sent ground truth start index and end index of swing within a stride; s and e represent

the start index and end index from SPR and ASM algorithm. For an episode of walking,

the overall accuracy is arithmetic average of individual accuracies. For subjects within

the same FAC level, we take arithmetic average of individuals to get the final accuracy

value.

accuracy =
min(eGT , e)−max(sGT , s)

max(eGT − sGT , e− s)
(5.1)

The swing detection accuracy rate by SPR and ASM is summarized in table 5.1.

It can be observed from talbe 5.1 that SPR outperforms ASM by both accuracy and

stability. Here we argue that the misses caused by SPR is due to subjects’ inability

to make a valid heal striking, that no clear local minima pair were observed within a

stride. The misses by ASM is due to the consistency between template and the testing

time series. It can be observed that the higher the quality of walking(the more consistent

the walking is), the better of the accuracy.
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mean std mean std mean std mean std mean std
Hemiparetic 0.7968 0.0000 0.7419 0.1339 0.9726 0.0365 0.9674 0.0557 1.0000 0.0000
Non-hemiparetic 1.0000 0.0000 0.9800 0.0282 0.9428 0.0627 0.9542 0.0570 0.9661 0.0741
Hemiparetic 0.8029 0.0000 0.7550 0.1524 0.8270 0.1109 0.7937 0.1186 0.8124 0.1134
Non-hemiparetic 0.8022 0.0000 0.7110 0.1891 0.7829 0.1089 0.8495 0.1178 0.8046 0.1145

SPR

ASM

FAC level1 FAC level2
(124 strides, 9 subjects)

FAC level 4 FAC level 5FAC level 3
Swing Phase Detection Accuracy

Methods (17 strides, 1 subject) (55 strides, 2 subjects) (222 strides, 7 subjects) (106 strides, 7 subjects)

Table 5.1: Swing phase detection accuracy summary
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Figure 5.3: Running time comparison between BF and SPR

5.2.3 High Speed Search Example

Running time of swing phase identification using two methods are compared, brute

force and SPR. Brute force method is adaptive swing matching. In asm, the algorithm

does a point to point distance calculation on raw data directly. In SPR, it operates on

top of the significant points. Figure 5.3 shows the running time.

SPR algorithm outperforms asm not only in accuracy but also in running time.

5.3 High Speed Search Principles

Clustering is of my interest after the work of individualized model because of the fol-

lowing reasons. First, we have data archived from diverse subjects by SIRRACT study.

It will be interesting to explore and summarize the diversity of gait in the database,

which sets the basis of scaling for large populations. Second, manual inspection and
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expert input for classification are inevitable. In SIRRACT study, the subject might

walk independently for training and then use assistive device for testing, which makes

the feature distribution in training deviates from the testing data. Besides, certain ac-

tivities can have same statistical feature distribution as the target motion and confuses

classifier(for example in figure 3.21 a). For the sake of accuracy in classification and

outcome measures, manual inspection is needed. Third, clustering is an unsupervised

learning method. It saves the work for inconvenient supervised learning modality. In

SIRRACT study, training is required on a weekly basis, which is tedious and error

prone.

In order to fulfil the above objectives, I have the following hypotheses

1. A finite number of gait patterns, the primitive patterns, exist in humans.

2. The SIRRACT database is representative to derive the primitive patterns.

The benefits foreseen from the clustering includes improving the classification ac-

curacy and exploration of correlation between primitive gait patterns and diseases.

5.3.1 Gait Pattern

The gait pattern is defined as the temporal envelope of a stride signal recurring in many

other subjects gait data. Gait pattern has two types of variances, the amplitude variance

and local warping variance. Amplitude variance means the amplitude of gait from the

same gait pattern can have varied signal strength. Local warping variance means the

time spent in different phases of the gait may vary for gaits in the same pattern.

Figure 5.6 shows 6 plots of individual gait from different subjects. Intuitively, gait

1 to 4 belong to the same cluster, since they all have the 6-point repetitive pattern in

gait, though variance exists in speed and amplitude. Gait 5 and gait 6 belong to separate

clusters, since their temporal spread is distinct from others.
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Figure 5.4: Gait pattern examples

The 6-point repetitive pattern starts from toe-off, spreads on entire swing phase and

ends on the start or middle of stance. Most gait in population follow this pattern, as

shown in section 5.3.2.3

5.3.2 Hierarchical Clustering

5.3.2.1 Clustering Introduction

In supervised learning, labeled training data is provided to learn the description of

classes, or feature distribution in our case, as discussed in section 3.3. This feature

distribution then will be applied to label new testing data. In clustering, however, the

task is to group unlabeled data into meaningful clusters so that data from the same clus-

ter are more similar compared with data from different clusters. It is an explorative
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method since usually no prior knowledge is available and least assumption should be

made about the data.

The widely applied clustering method include hierarchical clustering, mixture model

and K-means, and k-means is a simplified version of mixture model. The problem with

mixture model and k-means methods are they are sensitive to initialization. Take k-

means as an example, the final clustering result depends on the initial assignment of

cluster centers and cluster number. Besides, hierarchical clustering is more flexible,

since the dendrogram generated by hierarchical clustering can be broken at different

levels to generate different number of clusters. Thus hierarchical clustering method is

explored, particularly bottom up, agglomerative hierarchical clustering is employed in

the thesis.

In agglomerative hierarchical clustering, each single point is a cluster of its own.

Next most similar clusters are merged as a parent cluster. This is repeated until the

complete dataset has been merged into one cluster.

5.3.2.2 Similarity Measurement

In hierarchical clustering, it is the basis to first generate a distance matrix among data.

The most famous similarity measurement metric is euclidean distance defined as

d(xi, xj) = (
d∑

k=1

(xi,k − xj,k)2)1/2 = ||xi − xj||2 (5.2)

However, the conventional euclidean distance will not accommodate amplitude vari-

ance and local warping variance, as required in section 5.3.1. A local warping variance

example is shown in figure 3.6. Instead, I use the returned distance metric from dynamic

time warping algorithm, which sums up the euclidean distance along the warping path.

Given the data segment which includes many strides from the same subject, SPR

is first applied to derive an abbreviated representation of data. The task then is to first

find the recurring stride from the subject. The recurring stride is called instance in

80



!"#$%&'()&"*%$#+&,"#$%-(.""/(,#%/"0(& 12&

3%45&6+&78"&9$:;%#&9"%4,8&";:$;"+&9,%#$;:&<=4&>$:&0%5%&
•  & ?$:8&9@""0&9"%4,8&@4$;,$@#"9&

•  A;54=0(,B=;&=<&,#(95"4$;:&5=&";%>#"&9,%#$;:&<=4&#%4:"&@=@(#%B=;9&

?$"4%4,8$,%#&,#(95"4$;:&CD3EFGH&

G&

I&

GI& !& J& K&

GI&

!& 1&

J& L& L&

K& L& L& 1&

GI& !& JK&

GI&

!& 1&

JK& L& L&

G& I& !& J& K&

G&

I& 6&

!& 1& 1&

J& L& L& L&

K& L& L& L& 1&

J&

K&

G&

I&

!&

GI!& JK&

GI!&

JK& L&

G&

I&

!&

J&

K&

Figure 5.5: UPGMA based dendrogram generation

this thesis. Peculiar strides will be removed using the entropy method in section 4.2.2,

where I keep the cluster with the most strides and choose the first stride from that cluster

as instance for this subject.

After instances from all the subject are derived, a dtw based distance matrix is

generated among the instances. It is referred as the similarity matrix.

5.3.2.3 Dendrogram

Given the similarity matrix, the dendrogram is built up. I use UPGMA (unweighted

pair group method with arithmatic mean) to calculate distance between clusters. In UP-

GMA, distance between clusters is defined as the arithmatic average of the sub clusters.

Figure 5.5 shows an example of how to construct a dendrogram based on a similar-

ity matrix. The distance between cluster A,B and C is defined as (distance(A,C) +

distance(B,C))/2.

The data pool includes 371 data segments of gait, with an averaged length of 50

seconds. Wherein 351 data segments are from SIRRACT database and the rest 20 are

81



from healthy subjects with normal gait. The 351 data segments are derived in a way

that I sampled all patients data every 7 days.

As discussed before, one instance will be abstracted from a data segment and 371

instances will be generated in this case. ID 1 to 20 are from normal subjects and 21 to

371 are from patients. Those instances may or may not follow the same primitive gait

pattern.

Different dendrograms are generated by different number of instances to validate

the stability of the dendrogram structure. Figure 5.6 a to g shows the dendrogram struc-

tures trend by varying the number of instances and no major fluctuations are observed.

Note that figure 5.6 g is the generated dendrogram from all instances. By breaking

the dendrogram at different levels, different number of clusters will be generated. This

is very convenient since the resolution of clustering is under control.

By breaking the dendrogram in figure 5.6 at a distance 20, 12 clusters are generated

shown in figure 5.7. Different number of instances are under each cluster and they are

summarized below:

• Cluster 9: 1 instance

• Cluster 10: 2 instances

• Cluster 1: 344 instances

• Cluster 2: 7 instances

• Cluster 3: 5 instances

• Cluster 8: 4 instances

• Cluster 6: 3 instances

• Cluster 11: 1 instance

82



!"#$%&'%()*+,%-.,-%"*/012*

 1 12 19  7 20 30 18  5  6  9 10 11 21  3  4  8 23 13 24 22 17 25 26 27 28 16  2 14 29 15
2

4

6

8

10

12

14

16

18

20

22

(a) 50

!"#$%&'%()*+,%-.,-%"*/0112*

12 17  2 19  7 14  1  4  5  6 10 21 23  3 16 30 11 26 27 28  8 25  9 22 18 20 29 13 15 24

5

10

15

20

25

30

35

(b) 100!"#$%&'%()*+,%-.,-%"*/0123*

26 27  1  4 13 30 21 22  2  9  3 25 16  7  8 23  5  6 14 28 19 24 11 29 17 20 10 12 15 18

10

20

30

40

50

60

70

80

(c) 150

!"#$%&'%()*+,%-.,-%"*/0112*

 1  5  4 27 21 23  8  9  2 20  3 10 12 26 11 30 25  7 14 24 18 29 16 28  6 19 22 13 15 17

10

20

30

40

50

60

70

80

90

(d) 200!"#$%&'%()*+,%-.,-%"*/0123*

 6  7  1  2  3  8 25 20 26  9  5 12 19 16 18 10 22 23 24 29 14 21  4 17 11 30 13 27 28 15

10

20

30

40

50

60

70

80

90

(e) 250

!"#$%&'%()*+,%-.,-%"*/0112*

 1 18  2  6 17 29  3 26  4  7 25  5 28 16  9 13 27  8 11 19 20 21 14 10 15 30 24 22 23 12
10

20

30

40

50

60

70

80

90

(f) 300!"#$%&'%()*+,%-.,-%"*/0123*

 1  8  2  5 17 21 24 13  6 29  3  9 11 25  4 28 16 26  7 18 19 20 14 27 10 15 30 22 23 12
10

20

30

40

50

60

70

80

(g) 371

Figure 5.6: Gait pattern examples
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Figure 5.8: The scaling of gait patterns per dominant cluster

• Cluster 4: 1 instance

• Cluster 7: 1 instance

• Cluster 12: 1 instance

• Cluster 5: 1 instance

In each cluster, a representative gait pattern, which is recurring in instances under that

cluster, is shown in the left side of figure 5.7. They are the derived primitive gait

patterns referred in section 5.3.1. Particularly majority of instances are under cluster

1. The primitive gait pattern in cluster 1 is the widely observed 6-point pattern that

starts from toe off, spreads through the complete swing and ends at the start or middle

of instance. Please note the primitive gait pattern is repetitive and thus cyclic in data

segments. The primitive gait pattern shown under cluster 1 is 5 points shifted.

A log-linear relationship is found between number of instances and the number

of clusters. That is, by breaking the dendrogram at different levels, the number of

instances within the dominant cluster will grow exponentially. It supports scaling for
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big data, since the majority of the population will follow a validated gait pattern, and

manual inspection and expert input will be only needed for the rarely presented cases.

A refined gait pattern library can be gradually built up with increased size of population.

5.4 Discussion

In this chapter, I introduce the developed techniques of scaling the current system to

support a large population. Particularly, SPR, an indexing method that is specialized

in motion analysis is brought up. It enables data dimension reduction with least infor-

mation loss as well as automated gait segmentation. Primitive gait patterns from the

stroke population are derived, which is informative to stroke subject motion pathology.

Scaling to a large population is enabled by SPR and a refined primitive gait pattern

library.
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CHAPTER 6

Conclusion and Future Work

6.1 Dissertation Conclusion

Previous chapters of this thesis explore the means of motion sensing used as monitoring,

from constrained exercise to ambulatory daily activity, from individualized model to

population based analysis. Accelerometer based motion sensing is employed due to the

concern of battery life.

This thesis first presents StepFit: a fitness evaluation system using wearable sen-

sors. It is an automated self-administered, low cost and convenient system for fitness

evaluation, heart rate response analysis and prediction The motion sensing is in charge

of monitoring exercise intensity (step frequency). StepFit involves stepping, which is

a constrained and highly repetitive exercise and the system has minimum workload

intensity requirement, even if different subjects perform the exercise, the individual

difference will not affect the motion sensing part and thus the monitoring itself is easy

to achieve.

It then steps into the area of ambulatory activity monitoring for patients. Gait is

of particular interest. The signal from patients are generally irregular, non-consistent

and weak and it poses challenge in both classification and kinematic characterization.

We introduce hybrid classification and adaptive peak detection to leverage this prob-

lem. Besides, the gait data presents diversity among subjects, wherein individualized

classification model is desirable. We further introduce the technical details of the inter-
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national trial, the SIRRACT study. I also summarize the encountered problems in large

scale trial and the engineering solutions. During SIRRACT, longitudinal data through

continuous monitoring is archived. A method that visualizes patient’s gait evoluation

longitudinally is introduced. By comparing with a control group composed of normal

gaits, it provides a macroscopical and direct view of visualizing patient’s recovery path.

As the subject’s number in SIRRACT as well as diversity increase, the individu-

alized model cannot fully exhibit and utilize the recurring diversity type that has been

observed and processed. Besides, for a large population, the individualized model needs

complex user training thus hard to be adopted by large community and it’s expensive

in term of computing resources. Motivated by the above reasons, I first introduce SPR,

an indexing algorithm that will abbreviate data with reduced dimension and minimal

information loss. Further, I utilize hierarchical clustering to generate the recurring gait

patterns, referred as primitive gait patterns. This is informative for stroke community.

With gait data from different resources , a refined primitive gait library will be built up

to represent a large population.

6.2 Future Work

Based on the current research presented in this thesis, there are still many opportunities

not yet be investigated. In the following, we provide a short outline of future lines of

work which is built on the results of the present thesis.

1. Validate the classification result with the generated primitive gait patterns on SIR-

RACT and compare the performance with the method introduced in chapter 3.

2. Clean up and build an anonymous database of diverse subjects’ data, which in-

cludes raw data, classification, kinematic parameters, gait segmentation, the be-

longed gait pattern and rehabilitation evaluation. The database will be hosted by

UCLA Wireless Health Institute website and works as a featured benchmark for
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other researchers to validate their algorithms.

3. Extend the work of longitudinal analysis of SIRRACT study in chapter 4. First,

develop a scoring system that combines both kinematic parameters from motion

sensing and rehabilitation scale by physician evaluation. Second, incorporate all

the patients in SIRRACT into the longitudinal analysis.

4. Explore the possibility of using single sensor for classification, kinematic charac-

terization and energy expenditure calculation. It will facilitate community adop-

tion and open the possibility of large population usage.

5. Explore motion sensing and general time series analysis in other areas of health

monitoring, such as motion monitoring for hip replacement surgery complica-

tions, digestive monitoring with acoustic sensors, etc. Validate the scaling ratio-

nale introduced in chapter 5 in those areas.
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