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ABSTRACT OF THE DISSERTATION

Effective Design and Analysis of Systems Genetics Studies

by

Hyun Min Kang
Doctor of Philosophy in Computer Science

University of California San Diego, 2009

Professor Pavel Pevzner, Chair
Professor Eleazar Eskin, Co-Chair

Systems genetics studies for unraveling genetic basis of complex traits have
been one of the most propitious research area with the advance of high-throughput
biotechnologies. This thesis presents several computational and statistical challenges
in effective design and analysis of systems genetics studies and present novel method-
ological advances and corresponding results in several specific contexts of systems
genetics studies.

First, I present an extensive haplotype analysis on a recently collected cat-
alogue of genetic variation among inbred mouse strains, which revealed the contri-
bution from ancestral subspecies, haplotype block structure, and complex history of
each genomic segments among the inbred mouse strains. In addition, I accurately
imputed the uncollected genotypes in the resource by developing a novel and effi-
cient genotype imputation method which adaptively learns parameters from data
using an Expectaion-Maximuzation (EM) algorithm. Our method is demonstrated
to outperform previous methods in both mouse and human data.

Statistical analyses in systems genetics studies are often confounded by un-
modeled factors such as heterogeneous sample structure. Recent studies suggested
that mixed models correct for the sample structure in association mapping, but
the available methods suffer from substantial computational cost to be applied in
genome-wide association mapping. I developed the Efficient Mixed Model Associ-
ation (EMMA), which takes advantage of the invariant structure of eigenvectors in
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applying mixed models for association mapping, which substantially increase the
computational efficiency in several orders of magintude. Our method was shown
to successfully reduce inflated false positives in in silico genome-wide association
mapping of inbred mouse strains involving hundreds of thousands of markers. I fur-
ther extend EMMA to accommodate even larger scale of genome-wide association
mapping in humans, typically involving several thousands or more individuals, and
demonstrate that the method consistently eliminates the significant over-dispersion
of test statistics across multiple human data sets. The method has been further em-
ployed in correcting for a different type of confounding effects in expression studies.
I developed a novel mixed-model method that corrects for the spurious associations
and trans-regulatory bands caused by systematic confounding effects using inter-
sample correlation of expression measurements.

Finally, in the design of association studies using inbred strains, I propose
a novel trait mapping strategy using hybrid mouse diversity panel (HMDP). By
integrating classical inbreds and multiple sets of recombinant inbreds while precisely
accounting for the sample structure using high-density markers with EMMA, the
proposed design is shown to much more powerfully and precisely identify previously
known associations than previous approaches.

xix



Chapter 1

Introduction

The advent of high throughput biotechnology such as sequencing or expression
technologies has greatly impacted on many areas in bioscience by enabling us to tackle
the problems that had been extremely difficult to address with conventional methods.
The availability of extensive resource of genomic, transcriptomic, proteomic, and
metabolic data motivated the area of systems biology which aims to systematically
understand the complex interaction in biological system, under the philosophy of
reductionism[111, 90].

Among various types of high-throughput biological data, array-based geno-
typing platforms and gene expression platforms have been most popularly used in
the past several years[135, 78, 181]. These genotyping and expression arrays provide
genome-wide profiles of DNA and mRNA variations respectively, and it is impor-
tant to understand the relationship between these elements first in order to further
understand the complex interaction within the biological system. Using the genetic
segregants of budding yeast, Brem et al. [27] carried out genome-wide linkage anal-
ysis of expression patterns to reveal the relationship between the DNA variation and
mRNA variation. These approaches have been further followed up in many other
organisms including human, with a name of “genetical genomics”[98].

One of the main goal of genetic analysis of high-throughput data is to under-
stand the genetic basis of complex traits related to human disease. Direct mapping
of these traits with DNA or mRNA variation has also been extensively studied.
For example, genome-wide association studies (GWAS) have been popular in the
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past few years resulting in many identified association between DNA variants and
disease phenotypes[223, 143, 13]. Differential expression analysis between different
disease outcomes or environmental conditions have been actively studied for several
years[208, 190].

Systems genetics is referred to as systems biology involving populations[188,
101]. This is a broader sense than the genetical genomics. Additional high through-
put data, phenotypes, and external data such as protein-protein interaction network
may be combined in systems genetics studies[228]. Figure 1.1 represent the goal of
systems genetics studies. Because comprehensive understanding of the whole system
is extremely difficult, current instances of systems genetics studies involves only a
few of these layers. For example, genetical genomics studies involves the analysis
of the first two layers, and the differential expression analysis involved the mRNA
and the phenotype layer. GWAS aims to understand the relationship between DNA
and phenotypes. But even such a simple type of analysis confronts many statistical
and computational challenges to accurately identify genetic effects due to such as the
complex structure of genetic variation, lack of mapping resolution in linkage analysis,
heterogeneous sample structure, and technical confounding effects.

In this thesis, I addresses several specific statistical and computational chal-
lenges for effective design and analysis of systems genetics studies with proposed
solutions. Here I outline specific problems and novel contribution to solve the prob-
lems.

In order to perform a systems genetics study effectively, it is important to
first understand the structure of genetic variation, which causes the genetic differ-
ence between individuals. Of the 3 billion nucleotides of human genome, only a
small fraction of nucleotide sequences differ between individuals. The most common
type of individual DNA variation is SNP (Single Nucleotide Polymorphism), which
represents a variation of a single nucleotide at a particular genomic position mainly
due to a single point mutation[114, 36]. Through a substantial collaborative effort,
it has been reported that there are at least 3.1 million common SNPs in human, and
the total number of SNPs are estimated to be greater than 10 million[93]. These
single nucleotide changes typically show local correlation structure within a genomic
segment because physically close SNPs tend to be correlated due to linkage disequi-
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Figure 1.1: A conceptual diagram of systems genetics studies[56]
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librium (LD) induced by the high likelihood of linkage between the two loci during
recombination. While the structure of human genetic variation has been relatively
well understood, the genetic variation in other model organisms such as laboratory
mouse, which has a significant implication for human disease trait mapping, has not
been comprehensively studied until recently.

Chapter 2 presents the structure of genetic variation among commonly used
laboratory mouse strains. I present the analysis of mouse HapMap resource profiled
genetic variations among 94 common laboratory mouse. These strains are complexly
related with each other because of the heterogeneous contribution from ancestral
subspecies, recent population bottleneck, and complex history of hybridization and
inbreeding. Understanding the genetic variation structure among the strains at a
haplotype level is a very important problem for a comprehensive understanding of
genetic variation structure of inbred mouse. By combining the mouse HapMap re-
souce and the recently collected resequencing-based resource spanning over 8 million
SNPs [67], I performed an extensive haplotype analysis which revealed the contribu-
tion from each ancestral subspecies per strain, and the patterns of shared segments
between each pair of strains, the haplotype block structure among classical inbred
mouse strains. These results provide a valuable resource for understanding a detailed
history of each genomic segment among the strains. Our results demonstrate that
classical inbred strains have a limited genetic diversity due to recent population bot-
tleneck, enabling us to accurately impute the uncollected genotypes using a small set
of tag SNPs, comparably to the accuracy of current genotyping technologies. Our
analysis also provides detailed genetic relationship among the strains and provide
implications for high-resolution association mapping.

Understanding the local correlation structure of genetic variation is very im-
portant in the design and analysis of systems genetics studies especially when in-
terpreting a genetic effect associated with a DNA variation at a particular genomic
locus. In family-based or segregants-based linkage studies where the local correlation
structure are clearly explained by shared segments during recombination, a fraction
of genome segment can be interpreted to be ’linked’ to the observed phenotypes,
meaning one or more of the variants within the segment are significantly associated
with the phenotype traits[113, 178]. On the other hand, population-based associa-
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tion studies rely on the linkage disequilibrium (LD) between a causal variant and
the nearby markers typically collected by genotyping array to identify ’association’
between a marker and a phenotype[22]. By leveraging the local correlation structure,
it is also possible to understand the haplotype structure[82, 87] or accurately impute
the genotypes at uncollected markers from higher density of reference genotypes[132].

Chapter 3 describes a novel method to impute uncollected genotypes using
a high-density reference panel. Standard high-throughput genotyping technologies
capture only a fraction of the total genetic variation. Recent efforts have shown
that it is possible to “impute” with high accuracy the genotypes of SNPs that are
not collected in the study provided that they are present in a reference panel which
contains both SNPs collected in the study as well as other SNPs. I introduce a novel
hidden Markov Model (HMM) based technique to solve the imputation problem that
addresses several shortcomings of existing methods. First, our method is adaptive in
the sense that it estimates the HMM parameters from the observed genotype data
using an exact EM algorithm rather than using predefined parameters as other meth-
ods do. The adaptivity of our method is especially important for the inbred mouse
imputation problem described in Chapter 2 where the parameters for recombination
and mutation are not well known. Compared to previous methods, our method is
up to ten times more accurate on model organisms such as mouse. Second, our algo-
rithm scales in memory usage in the number of collected markers as opposed to the
number of known SNPs by utilizing silent states. This issue is very relevant due to
the size of the reference data sets currently being generated. I compare our method
over mouse and human data sets to existing methods and show that each has either
comparable or better performance and much lower memory usage.

In genome-wide association studies to identify associations between genetic
variants and disease outcomes or other complex traits, undocumented sample struc-
ture among the individuals have been demonstrated to increase false positives and
false negatives in association mapping [30, 170]. This sample structure are previously
examined in two extreme forms: population structure or cryptic relatedness[50, 211,
170]. Each of these method only partially captures the confounding effects from the
complex sample structure, and recently it has been demonstrated that linear mixed
model accounts for sample structure in model organisms association mapping where
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the confounding effect from sample structure is known to be complex and substan-
tial, but the substantial amount of computational cost impeded the application of to
large-scale genome-wide association mapping.

In Chapter 4, I present an Efficient Mixed Model Association (EMMA) method
that accounts for sample structure with thousands of times higher computational effi-
ciency than previous methods. Our method takes advantage of the specific nature of
the optimization problem in applying mixed models for association mapping, which
allows us to substantially increase computational speed and reliability of the results
with guaranteed convergence properties and global optimization. In particular, the
method reduces the time complexity of each iteration of maximum likelihood (ML) or
restricted maximum likelihood (REML) from cubic to linear complexity, enabling us
to perform genome-wide association mapping in a feasible amount of time. EMMA is
shown to robustly correct for inflation of false positives in in silico whole genome as-
sociation mapping of inbred mouse strains involving hundreds of thousands of SNPs.

In the Chapter 5, I extend the EMMA algorithm to accommodate even larger
scale of genome-wide association mapping in humans, typically involving several
thousands or more individuals. Our method takes advantage of the fact that each
loci involved in human disease has a relatively small effect, which allows our method
to scale to large samples by only estimating the variance component once during a
genome wide scan. Using the Northern Finland Birth Cohort (NFBC66) and Well-
come Trust Case Control Consortium (WTCCC) data sets, we demonstrate that our
method consistently eliminates the significant over-dispersion of test statistics that
have not been fully resolved by principal component analysis across 17 quantitative
and dichotomous phenotypes.

In the genetic analysis of expression data, additional types of systematic con-
founding effects induces spurious signals and confound the expression quantitative
trait loci (eQTL) mapping. Many previous studies suggested that thousands of
genes are trans-regulated by a small number of genomic regions called “regulatory
hotspots”, resulting in “trans-regulatory bands” in an eQTL map. As several recent
studies have demonstrated, technical confounding factors such as batch effects can
complicate eQTL analysis by causing many spurious associations including spurious
regulatory hotspots. Yet little is understood about how these technical confounding
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factors affect eQTL analyses and how to correct for these factors.
In Chapter 6, through an analysis of datasets with biological replicates, I

demonstrate that it is this inter-sample correlation structure inherent in expression
data that leads to spurious associations between genetic loci and a large number
of transcripts inducing spurious regulatory hotspots. I propose a statistical method
based on mixed models that corrects for the spurious associations caused by complex
inter-sample correlation of expression measurements in eQTL mapping. Due the the
computational advances of EMMA described in Chapter 4 and 5, we are able to effi-
ciently perform large-scale eQTL mapping accounting for the complex inter-sample
correlation structure using mixed models. Applying our Inter-sample Correlation
Emended (ICE) eQTL mapping method to mouse, yeast, and human identifies many
more cis associations while eliminating most of the spurious trans associations. The
concordances of cis and trans associations have consistently increased between dif-
ferent replicates, tissues, and populations; demonstrating the higher accuracy of our
method to identify real genetic effects.

These advances in statistical analysis in systems genetics studies can have a
great impact in systems genetics studies by enabling us to design a more flexible and
powerful study. For example, in the genetic studies of complex traits in mouse stud-
ies, due to the substantial amount of sample structure among inbred mouse strains,
linkage-based methods have been preferred over association-based methods[64]. One
of the major concern in the linkage-based studies have been the mapping resolution
to narrow down the region of the associated loci to the gene level. The current link-
age studies using F2 progeny or recombinant inbred (RI) strains have the ability to
map the associated loci only by tens or several megabases[64]. The power of linkage
studies using currently available RI strains is not sufficient to identify modest size of
effects explaining the 10% or less variance of phenotypes[39].

In Chapter 7, I present a new design of mouse association mapping by lever-
aging the ability to precisely account for the complex sample structure using high
density genotype markers. Using our Hybrid Mouse Diversity Panel (HMDP), it
is possible to combine the classical inbred strains and multiple recombinant inbred
strains and perform association mapping by precisely accounting for the pairwise
relatedness between the strains obtained from the high-density marker information
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described in Chapter 2 and 3, and applying the efficient mixed model approach pre-
sented in Chapter 4. HMDP achieves both high power and high resolution than any
of the currently available single mouse association data set. Our method increases
the trait mapping resolution by orders of magnitude while increasing the power of
association studies more than twice in most contexts of our power simulation stud-
ies. Our integrative approach has a great implication for a more powerful and precise
trait mapping in mouse genetic studies and other model organism genetics, and also
in human association mapping.



Chapter 2

A high-density haplotype resource
of 94 inbred mouse strains

2.1 Motivation

Phenotypic variation among inbred mouse strains exposed to a disease caus-
ing agent (be it genetic, infectious or environmental) provides potential insight into
human disease processes that often cannot be practically achieved through direct hu-
man studies. Indeed hundreds of phenotype measurements related to human diseases
are available for dozens of inbred strains[74] in common use over the last 50-100 years.
As with the direct study of chronic disease in humans, a key step towards determin-
ing the genetic underpinnings of this phenotypic variation is to develop a catalogue
of the genetic variation among inbred mouse strains and interpreting the structure of
variation patterns across the strains. Recent advances in high-throughput genotyp-
ing and DNA resequencing technologies are making it possible to rapidly uncover the
genetic variation maps of many model organisms[93, 121, 23, 193, 67]. A recent whole
genome resequencing study of 15 inbred mouse strains captured a significant fraction
of the genetic variation among a limited number of strains allowing researchers to
infer patterns of genetic variation and identify the ancestral origin of the genetic
variation[67, 232]. Yet, the availability and common experimental employment of
hundreds of inbred strains, including over 190 stocks available from the Jackson
Laboratory, motivates the need of a high-density variation map for a larger set of
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strains.

2.2 Results

2.2.1 The mouse HapMap resource

We have assembled a dense set of genotypes for a total of 138,980 unique
biallelic single nucleotide polymorphisms (SNPs) in 94 inbred mouse strains, at an
average spacing of 20kb on chromosomes 1-19 and X. We selected the most commonly
used inbred laboratory strains - especially targeting priority strains from the Mouse
Phenome Database[74] - and 19 wild-derived strains both as reference out-groups and
to help identify ancestry of genomic segments. Our dataset is a composite of 121,433
SNPs discovered and genotyped at the Broad Institute by comparing data from the
two inbred mouse genome sequencing projects[146, 145], with additional discovery in
a wild-derived strain in regions of low marker density; 7,570 SNPs covering physical
gaps in the Broad Institute map revealed by examining data from the concurrent
NIEHS/Perlegen effort to resequence 15 inbred strains[67] and also genotyped at the
Broad Institute; and 13,094 SNPs discovered and genotyped at the Wellcome Trust
Center for Human Genetics (WTCHG) that could be mapped to Build 37 of the
mouse genome.

To evaluate the quality of these resources, we examined SNPs typed in com-
mon by Broad and WTCHG as well as compared each resource to the genotypes of
strains produced from the NIEHS/Perlegen sequence data. SNPs overlapping be-
tween the Broad and WTCHG sets demonstrate a discordance rate of 0.00058, while
SNPs overlapping WTCHG and NIEHS/Perlegen sequence-based genotypes demon-
strate a discordance of 0.00688. The extremely high concordance of the Broad and
WTCHG data and significantly higher accuracy than the array-based sequence geno-
types are unsurprising; the Broad and WTCHG utilized established SNP genotyping
techniques and need only distinguish between two homozygous genotype classes. An
interesting disparity in discordance rate is observed between Perlegen and WTCHG
genotypes. When the WTCHG genotype is the reference strain allele (C57BL/6J)
the disparity with Perlegen genotype is 0.00335 and is 0.0106 otherwise. This is
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Figure 2.1: Classification of 94 strains used in the mouse HapMap projects based
on the availability in other resources, including 8.27 million NIEHS/Perlegen
resequencing-based SNPs, WTCHG SNPs, and additional gap-filling SNPs.
(C57BL/6J is not included in the 15 resequenced strains, but it is the reference
strain that has been fully resequenced)

consistent with the variant discovery strategy employed by Perlegen, which empha-
sized low false positive variant discovery at the expense of a higher false negative
rate[93, 67]. Figure 2.1 and Table 2.1 summarizes the genotype resources for each of
the 94 strains.

Table 2.1: List of strains used in mouse HapMap projects and the availability in
other resources ∗C57BL/6J is not included in the 15 resequenced strain, but it is the
reference strain that has been fully sequenced (Continued to next page)

Strain Perlegen WTCHG Additional Wild-derived
name resequenced genotyped gap-filling or classical
129P2/OlaHsD X X X IN

(Continuted to next page)
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Table 2.1: (Continued from previous page) List of strains used in mouse HapMap
projects and the availability in other resources ∗C57BL/6J is not included in the 15
resequenced strain, but it is the reference strain that has been fully sequenced

Strain Perlegen WTCHG Additional Wild-derived
name resequenced genotyped gap-filling or classical
129S1/SvImJ O O X IN
129S2/SvHsd X X X IN
129S4/SvJae X X X IN
129S6/SvEv X O X IN
129T2/SvEms X X O IN
129X1/SvJ X O O IN
A/J O O X IN
AKR/J O O X IN
B6A6ESlineRegeneron X X X IN
BALB/cByJ O O X IN
BALB/cJ X O X IN
BPH/2J X O O IN
BPL/1J X O O IN
BPN/3J X O O IN
BTBRT<+>tf/J O O X IN
BUB/BnJ X O O IN
C2T1ESlineNagy X X X IN
C3H/HeJ O O X IN
C3HeB/FeJ X O X IN
C57BL/10J X O X IN
C57BL/6ByJ X X X IN
C57BL/6J O∗ O X IN
C57BL/6JBomTac X X X IN
C57BL/6JCrl X X X IN
C57BL/6JOlaHsd X X X IN
C57BL/6NCrl X X X IN
C57BL/6NHsd X X X IN

(Continuted to next page)
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Table 2.1: (Continued from previous page) List of strains used in mouse HapMap
projects and the availability in other resources ∗C57BL/6J is not included in the 15
resequenced strain, but it is the reference strain that has been fully sequenced

Strain Perlegen WTCHG Additional Wild-derived
name resequenced genotyped gap-filling or classical
C57BL/6NJ X X X IN
C57BL/6NNIH X X X IN
C57BL/6NTac X X X IN
C57BLKS/J X X O IN
C57BR/cdJ X O O IN
C57L/J X O O IN
C58/J X O O IN
CALB/RkJ X O X WI
CAST/EiJ O O X WI
CBA/J X O O IN
CE/J X O O IN
CZECHII/EiJ X X O WI
DBA/1J X O O IN
DBA/2J O O X IN
DDK/Pas X X X IN
DDY/JclSidSeyFrkJ X O O IN
EL/SuzSeyFrkJ X O X IN
FVB/NJ O O X IN
Fline X X X IN
HTG/GoSfSnJ X X X IN
I/LnJ X O O IN
ILS X O X IN
IS/CamRkJ X O X WI
ISS X O X IN
JF1/Ms X X O WI
KK/HlJ O O X IN
LEWES/EiJ X O X WI

(Continuted to next page)
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Table 2.1: (Continued from previous page) List of strains used in mouse HapMap
projects and the availability in other resources ∗C57BL/6J is not included in the 15
resequenced strain, but it is the reference strain that has been fully sequenced

Strain Perlegen WTCHG Additional Wild-derived
name resequenced genotyped gap-filling or classical
LG/J X O O IN
LP/J X O O IN
Lline X X X IN
MA/MyJ X O O IN
MAI/Pas X X X WI
MOLF/EiJ O O X WI
MOLG/DnJ X X O WI
MRL/MpJ X O O IN
MSM/Ms X O O WI
NOD/LtJ O O X IN
NON/LtJ X O O IN
NOR/LtJ X O X IN
NZB/B1NJ X X O IN
NZL/LtJ X X O IN
NZO/HlLtJ X O O IN
NZW/LacJ O O X IN
O20 X X X IN
P/J X O X IN
PERA/EiJ X O O WI
PERC/EiJ X O O WI
PL/J X O O IN
PWD/PhJ O X X WI
PWK/PhJ X O O WI
Qsi5 X X X IN
RBA/DnJ X O O HY
RF/J X O X IN
RIIIS/J X O O IN

(Continuted to next page)
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Table 2.1: (Continued from previous page) List of strains used in mouse HapMap
projects and the availability in other resources ∗C57BL/6J is not included in the 15
resequenced strain, but it is the reference strain that has been fully sequenced

Strain Perlegen WTCHG Additional Wild-derived
name resequenced genotyped gap-filling or classical
SEA/GnJ X O O IN
SEG/Pas X X X WI
SJL/J X O O IN
SKIVE/EiJ X O X WI
SM/J X O O IN
SOD1/EiJ X X O HY
SPRET/EiJ X O O WI
ST/bJ X O X IN
SWR/J X O O IN
TALLYHO/JngJ X X O IN
WSB/EiJ O O X WI
ZALENDE/EiJ X O X WI

2.2.2 Haplotype structure among the strains

Using these genotype resources, we are able to examine the fine-level haplo-
type structure among the strains. For example, a comparison of the six 129 strains
shows that they share the vast majority of their genomic segments, but that there
are several noticeable differences. In particular, there is a large disparity between
129P2/OlaHsD and 129X1/SvJ from 35Mb to 100Mb on chromosome 7, and there
are also differences specific to 129S6/SvEv on chromosomes 3, 5, and 12. Similarly,
comparisons between the fifteen C57 strains revealed significant discrepancies be-
tween C57BL/6J and the other C57 strains. We also identified that some strains ap-
pear to result from recent hybridizations between two or more strains. We observed
that HTG/GoSfSnJ shares more than 99.9% of genome with either BALB/cByJ
or C57BL/6J, and that NOR/LtJ shares more than 99.9% segments with either
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Figure 2.2: A histogram of the fractions of genome covered by shared segments
with one of the 12 classical inbred strains, over 78 non-resequenced mouse HapMap
strains. The classical inbred strains are colored in blue, the hybrid strains in red,
and the wild-derived strains in green

NOD/LtJ or C57BLKS/J, confirming the annotated genealogical history[200]. We
also observed that two strains (RBA/DnJ and SOD/EiJ) are âĂİhybridâĂİ strains
with genetic content from both classical inbred and wild-derived strains. When com-
paring the fraction of genome shared by any of the 12 classical inbred resequenced
strains, there is a clear difference between rates of sharing with the wider set of clas-
sical inbred strains (97% of the genome on average and 81% minimum) and with the
wild-derived strains (28% on average, 56% maximum) (Figure 2.2).

We allocated ancestry of local genomic regions to one of the four “founder”
strains using the methods described previously for resequencing data[67]. For each of
the remaining 90 strains, we identified the fractions of genomic regions unequivocally
close to domesticus, musculus, castaneus, and molossinus strains. On average these
ancestral strains contribute 32.3%, 9.19%, 4.52%, and 11.8%, respectively. 42.2% of
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observed total genomic regions are ambiguous for ancestry, meaning either that the
ancestry is not precisely represented by any of the four founder strains (37.3%), or
else that two or more ancestral sub-species share haplotypes in these regions (4.86%).
The fractions of regions identified as having domesticus or unknown ancestry differ
from previous studies[67] due to the sparser resolution of the SNP map, and the SNP
ascertainment bias inherent in both current and former datasets. All of the classical
inbred strains and hybrid strains share predominantly domesticus ancestry, while the
wild-derived strains are divided into four groups corresponding to their respective
ancestral subspecies.

To investigate the average sizes of shared haplotype segments among strains,
we identified common (low SNP density) and divergent (high SNP density) ancestral
segments across the genome for each pair of inbred strains using a hidden Markov
model[67]. Among the 4371 possible pair-wise comparisons of the 94 strains, an
average of 32.5% of the genomic regions are shared between any pair of strains
(Figure 2.3). The average number of shared ancestral segments genome-wide is 280
per comparison, which is about one segment per 10Mb. On average, there are 176
segments longer than 1Mb covering 28.8% of the genome, and 39 segments longer
than 5Mb covering 15.6% of the genome - reflective of the tight recent co-ancestry
of these strains. Given a cross between any of the two parental strains, it is possible
to estimate the genomic region excluded from mapping variations associated with
phenotype traits due to the shared segments between them. For example, among
BXD recombinant-inbred strains, 48.6% of genomic regions are excluded for the
mapping.

To ascertain whether intervening genotypes might be successfully imputed
from the resequencing data, we counted how many distinct haplotypic segments
exist for each genomic region and compared this with the numbers derived from
the resequencing data by combining the shared segment analysis using hierarchical
clustering. The average number of distinct segments within any region is estimated
to be 4.70 over 73 classical inbred strains. This limited diversity likely reflects recent
bottlenecks, where a limited number of chromosomes from the founder strains gave
rise to the modern inbred strains[67, 213, 68]. Among the 12 resequenced classical
inbred strains, an average of 3.46 ancestral segments were identified. Like the analysis
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Figure 2.3: A histogram of the fractions of shared genomic segments between each
of 4371 pairs between the 94 strains
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of shared segments, these results suggest that most of the genetic variation existing
among the classical inbred strains can be explained by the variation present in the
resequenced strains.

2.2.3 Integrating NIEHS/Perlegen resequencing and HapMap

data

Now confident that we could identify segment ancestry by reference to the 16
resequenced strains, we proceeded to impute genotypes for the 8.27 million NIEHS/
Perlegen SNPs on the 78 genotyped strains using a hidden Markov model that learns
genome wide transition and mutation parameters using Expectation-Maximization
(EM) algorithm[47]. We were able to call the majority of SNPs (79.2%) with high
confidence (posterior probability > 0.98), when genotypes were successfully called
from the all 16 resequenced strains (see Table 2.2, top panel for details). We found
that confidence scores vary greatly, with 11 wild-derived strains having no high-
confidence imputed genotypes because their estimated mutation rates were very high.
In contrast, all 9 strains with the C57BL/6 prefix have more than 99.7% of high-
confidence call rate, due to their genetic proximity to the reference strain C57BL/6J.
We were also able to impute genotypes missing in the 16 resequenced strains, but
only 17.2% of these with high confidence due to poor probe quality resulting in
unreliable data (Table 2.2, bottom panel).

We estimated the accuracy of our imputed genotypes in two different ways.
First, we used a leave-one-out cross-validation approach to impute genotypes for each
of the 16 resequenced strains using the remainder. When considering the SNPs with
complete data in the resequenced strains, the average leave-one-out imputation error
over the 12 classical inbred resequenced strains was 1.59%, dropping to 0.27% when
only high confidence genotypes were used (Table 2.3). We found that these rates
varied substantially between the 12 classical inbred strains (range 0.60% - 2.67%;
high-confidence genotype error range 0.10% - 0.57%). The call rate of high confidence
genotypes also varied, ranging from 84.6% to 97.0%. These errors increase when
considering the four wild-derived strains, with total imputation error ranging from
10.9% to 33.4%. These error differences likely reflect the divergent ancestry of the
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Table 2.2: Classification of imputed genotypes that are untyped or experimentally
missing. The fraction of imputed genotypes in each category is shown within a
parenthesis

Category NIEHS/Perlegen High Medium Low All
SNP quality confidence confidence confidence confidence

Untyped Fully 235,728,507 48,532,073 13,431,178 297,691,758
8 million resequenced (36.7%) (7.57%) (2.09%) (46.4%)
NIEHS/Perlegen Mostly 137,628,908 34,464,866 21,237,494 193,331,268
genotypes resequenced (21.5%) (5.37%) (3.31%) (30.2%)
over 78 Poorly 72,753,547 25,350,239 52,284,738 150,388,524
non-resequenced resequenced (11.3%) (3.95%) (8.15%) (23.4%)
strains Total 446,110,962 108,347,178 86,953,410 641,411,550

(69.5%) (16.9%) (13.6%) (100%)
Experimentally Mostly 1,109,113 959,986 1,316,561 3,384,660
missing resequenced (7.58%) (6.56%) (9.00%) (23.1%)
NIEHS/Perlegen Poorly 1,407,303 1,753,637 8,077,233 11,238,223
genotypes resequenced (9.62%) (12.0%) (55.2%) (76.9%)
over 16 Total 2,516,416 2,712,673 9,393,794 14,622,883
strains (17.2%) (18.6%) (64.2%) (100%)
Mouse HapMap Total 744,725 263,196 257,847 1,265,768
missing genotypes (58.8%) (20.8%) (20.4%) (100%)

Grand 449,372,103 111,323,047 96,605,051 657,300,201
total (68.4%) (16.9%) (14.7%) (100%)

imputed strains, as the marker set remains biased towards the strains used for SNP
discovery. Next, we estimated accuracy by comparing our imputed genotypes to data
previously generated by the WTCHG on 47 of the 78 genotyped strains, and found
a total error rate of 4.86% (2.26% when excluding the 11 wild-derived and hybrid
strains). Restricting to the 71.7% of the imputed genotypes called at high confidence
genotypes reduces this error to 0.37%, more than ten times smaller than recently
published results for this marker subset using a different method[200]. As in the
previous error estimate, the imputation error again differs greatly by strain, ranging
from 0.065% to 20.9% (0.019% to 4.41% for high confidence imputed genotypes).

In summary, we were able to impute 657,300,201 genotypes across 8.27 million
markers in 94 inbred strains, including 14,622,883 experimentally missing genotypes
in the resequencing strains and 1,265,768 genotypes missing in the combined genotype
sets. This creates a near-comprehensive snapshot of variation in commonly available
mouse strains.
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Table 2.3: Leave-one-out imputation error rates of 12 resequenced classical inbred
strains using mouse HapMap SNPs, WTCHG SNPs, and gap-filling Perlegen SNPs.
The fraction of imputed genotypes in each category is shown within a parenthesis.

SNP quality High Medium Low Total
confidence confidence confidence

Fully 0.27% 6.40% 19.0% 1.59%
resequenced (46.1%) (2.79%) (2.73%) (51.7%)
Mostly 0.40% 3.94% 16.1% 2.26%
resequenced (25.3%) (3.50%) (2.98%) (31.8%)
Poorly 0.76% 4.95% 15.8% 5.18%
resequenced (9.59%) (2.62%) (4.29%) (16.5%)
Total 0.38% 4.74% 16.8% 2.40%

(81.1%) (8.91%) (10.0%) (100%)

Table 2.4: Total number of imputed genotypes of 16 resequenced strains missing in
NIEHS/Perlegen SNPs, mouse HapMap SNPs, WTCHG SNPs, and the gap-filling
NIEHS/Perlegen SNPs, in addition to the estimation of imputation errors using
leave-one-out cross-validation

Strain # imputed # high-confidence Overall High-confidence
name genotypes genotypes imputation error imputation error
129S1/SvImJ 923,959 245,792 0.02505 0.00379
A/J 797,363 164,028 0.01473 0.00195
AKR/J 899,745 213,076 0.01976 0.00288
BALB/cByJ 856,126 225,381 0.01172 0.00211
BTBRT+tf/J 905,104 270,244 0.02092 0.00430
C3H/HeJ 987,508 282,717 0.01181 0.00289
C57BL/6J 14 0 0.03854 0.00369
CAST/EiJ 1,257,795 0 0.34073 N/A
DBA/2J 956,054 272,074 0.01874 0.00341
FVB/NJ 914,948 208,107 0.02886 0.00395
KK/HlJ 908,091 211,090 0.03628 0.00674
MOLF/EiJ 1,226,418 0 0.15148 N/A
NOD/LtJ 929,392 224,838 0.02584 0.00379
NZW/LacJ 905,125 214,152 0.03395 0.00542
PWD/PhJ 1,312,167 0 0.16713 N/A
WSB/EiJ 943,362 5,665 0.13027 N/A
Total (or Avg.) 14,733,063 2,542,320 0.06156 0.00367
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Table 2.5: Total number of imputed genotypes missing in NIEHS/Perlegen SNPs,
mouse HapMap SNPs, WTCHG SNPs, and the gap-filling NIEHS/Perlegen SNPs,
in addition to the coverage of shared segments and the imputation errors over 78
non-resequenced strains

Strain # imputed % Miscoverage of Imputation error
name genotypes shared segments using WTCHG SNPs

overall high-confidence 16 strains 12 strains overall high-confidence
129P2/OlaHsD 8,245,441 7,230,952 0.00059 0.00059 0.00335 0.00094
129S2/SvHsd 8,244,722 7,307,195 0.00000 0.00000
129S4/SvJae 8,245,906 7,314,437 0.00000 0.00000
129S6/SvEv 8,234,178 7,223,744 0.00000 0.00000
129T2/SvEms 8,243,699 7,224,079 0.00000 0.00000
129X1/SvJ 8,225,454 7,140,392 0.00059 0.00059 0.00602 0.00104
B6A6ESlineRegeneron 8,245,745 8,230,951 0.00000 0.00000
BALB/cJ 8,235,566 7,184,094 0.00000 0.00000 0.02036 0.00019
BPH/2J 8,228,527 6,977,701 0.00000 0.00000 0.01104 0.00187
BPL/1J 8,232,603 6,906,869 0.00117 0.00117 0.01430 0.00286
BPN/3J 8,237,827 6,900,403 0.00351 0.00351 0.01548 0.00250
BUB/BnJ 8,226,291 6,305,478 0.01992 0.01992 0.02731 0.00454
C2T1ESlineNagy 8,245,903 8,229,596 0.00000 0.00000
C3HeB/FeJ 8,233,065 7,207,943 0.00000 0.00000 0.00065 0.00037
C57BL/10J 8,233,995 7,948,029 0.00000 0.00000 0.00964 0.00597
C57BL/6ByJ 8,247,008 8,231,062 0.00000 0.00000
C57BL/6JBomTac 8,248,037 8,239,698 0.00000 0.00000
C57BL/6JCrl 8,243,609 8,237,257 0.00000 0.00000
C57BL/6JOlaHsd 8,244,352 8,236,971 0.00000 0.00000
C57BL/6NCrl 8,244,887 8,229,351 0.00000 0.00000
C57BL/6NHsd 8,244,020 8,227,807 0.00000 0.00000
C57BL/6NJ 8,244,963 8,230,202 0.00000 0.00000
C57BL/6NNIH 8,244,167 8,229,485 0.00000 0.00000
C57BL/6NTac 8,245,953 8,229,946 0.00000 0.00000
C57BLKS/J 8,236,725 7,723,976 0.00000 0.00000
C57BR/cdJ 8,226,716 6,965,038 0.04277 0.09080 0.02635 0.00428
C57L/J 8,227,549 6,916,320 0.04277 0.09080 0.02599 0.00459
C58/J 8,225,696 6,862,822 0.05214 0.11834 0.02523 0.00490
CALB/RkJ 8,244,873 0 0.39602 0.56298 0.13004 N/A
CBA/J 8,227,287 6,945,743 0.00000 0.00000 0.01009 0.00251
CE/J 8,228,150 5,251,341 0.13064 0.19215 0.06007 0.00749
CZECHII/EiJ 8,246,104 0 0.00293 0.78617
DBA/1J 8,226,067 7,027,623 0.00000 0.00000 0.00787 0.00201
DDK/Pas 8,244,842 6,053,745 0.08436 0.08494
DDY/JclSidSeyFrkJ 8,236,772 6,303,940 0.06503 0.06503 0.02930 0.00333
EL/SuzSeyFrkJ 8,235,603 6,258,752 0.03866 0.03866 0.02807 0.00482
Fline 8,250,432 5,967,688 0.04218 0.04218
HTG/GoSfSnJ 8,245,769 7,297,844 0.00000 0.00000
I/LnJ 8,227,162 6,046,611 0.07967 0.10486 0.03574 0.00429
ILS 8,233,633 6,890,084 0.00000 0.00000 0.01324 0.00148

(Continued to the next page)



23

Table 2.5: (Continued from previous page) Total number of imputed genotypes miss-
ing in NIEHS/Perlegen SNPs, mouse HapMap SNPs, WTCHG SNPs, and the gap-
filling NIEHS/Perlegen SNPs, in addition to the coverage of shared segments and
the imputation errors over 78 non-resequenced strains

Strain # imputed % Miscoverage of Imputation error
name genotypes shared segments using WTCHG SNPs

overall high-confidence 16 strains 12 strains overall high-confidence
IS/CamRkJ 8,236,630 0 0.26889 0.47686 0.14918 N/A
ISS 8,233,475 6,867,012 0.00996 0.00996 0.01806 0.00282
JF1/Ms 8,246,764 5,444,331 0.00000 0.78676
LEWES/EiJ 8,235,345 977,677 0.21324 0.44757 0.16626 0.00919
LG/J 8,227,062 6,128,027 0.00996 0.00996 0.03319 0.00534
LP/J 8,226,598 7,029,170 0.00059 0.00059 0.00806 0.00182
Lline 8,249,621 5,957,733 0.08260 0.08260
MA/MyJ 8,226,967 6,300,478 0.04511 0.06503 0.03063 0.00495
MAI/Pas 8,253,960 0 0.00059 0.79262
MOLG/DnJ 8,244,056 6,351,851 0.00000 0.87756
MRL/MpJ 8,230,636 6,454,050 0.01054 0.01054 0.02311 0.00397
MSM/Ms 8,238,358 5,577,646 0.00059 0.78676 0.04643 0.01150
NON/LtJ 8,229,599 6,349,568 0.05858 0.05858 0.02463 0.00334
NOR/LtJ 8,242,454 7,316,242 0.00000 0.00000 0.00241 0.00038
NZB/B1NJ 8,239,399 5,965,759 0.09315 0.09315
NZL/LtJ 8,246,177 6,081,332 0.10076 0.10896
NZO/HlLtJ 8,234,925 6,156,349 0.11013 0.11775 0.03378 0.00537
O20 8,247,518 5,736,937 0.09022 0.10076
P/J 8,239,416 6,119,956 0.00000 0.00000 0.03595 0.00588
PERA/EiJ 8,231,368 0 0.42004 0.64968 0.14189 N/A
PERC/EiJ 8,229,729 0 0.40949 0.59930 0.20895 N/A
PL/J 8,225,812 6,415,946 0.05858 0.05858 0.02221 0.00411
PWK/PhJ 8,242,952 6,370,734 0.00000 0.78735 0.16018 0.04412
Qsi5 8,246,243 6,202,186 0.00879 0.00879
RBA/DnJ 8,229,526 2,318,943 0.17047 0.28881 0.11836 0.00834
RF/J 8,239,999 6,532,284 0.00000 0.00000 0.02189 0.00373
RIIIS/J 8,226,755 5,802,294 0.02636 0.02636 0.04037 0.00483
SEA/GnJ 8,227,130 6,637,917 0.00410 0.00410 0.02021 0.00285
SEG/Pas 8,267,796 0 0.51787 1.00000
SJL/J 8,226,610 6,344,651 0.01875 0.01875 0.02377 0.00350
SKIVE/EiJ 8,242,754 0 0.00293 0.79262 0.10861 N/A
SM/J 8,235,831 5,511,067 0.01465 0.03281 0.05459 0.00757
SOD1/EiJ 8,241,898 0 0.20152 0.27651
SPRET/EiJ 8,254,823 0 0.40773 1.00000 0.15051 N/A
ST/bJ 8,233,413 6,021,016 0.04159 0.04159 0.03758 0.00670
SWR/J 8,226,433 6,051,249 0.02695 0.02695 0.03176 0.00454
TALLYHO/JngJ 8,238,580 5,872,209 0.02519 0.05682
ZALENDE/EiJ 8,241,228 0 0.29525 0.48975 0.18275 N/A
Total (or Avg.) 642,567,138 446,829,783 0.06087 0.16907 0.04859 0.00374
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Table 2.6: Imputation error rates of 47 inbred strains genotyped only in WTCHG
SNPs, using mouse HapMap SNPs, and gap-filling Perlegen SNPs. The fraction of
imputed genotypes in each category is shown within a parenthesis

SNP quality High confidence Medium confidence Low confidence Total
36 classical 0.35% 9.63% 29.7% 2.25%
inbreds (88.9%) (6.74%) (4.37%) (100%)
All 47 0.37% 8.85% 27.0% 4.86%
strains (71.7%) (16.7%) (11.5%) (100%)

2.2.4 Effects of larger resources

To estimate the cost-effectiveness of expanding this resource, we evaluated
the potential imputation coverage made possible by either increasing the number of
resequenced strains or the number of SNPs in the HapMap.

To determine the effect of using a larger number of resequenced strains, we
assumed that the 62 WTCHG strains were all resequenced, and estimated the impu-
tation accuracy of imputing the WTCHG genotypes from the mouse HapMap SNPs
and the gap-filling SNPs, using the leave-one-out cross-validation for each of the 62
strains. Because each strain targeted for imputation now has 61 instead of 16 ref-
erence strains, the imputation accuracy is expected to be high. Overall, the errors
are reduced from 4.86% to 2.45%, and the errors in the 36 classical inbred strains
are reduced from 2.25% to 0.96%. In contrast, the accuracy in the high-confidence
genotypes of the classical inbred strains is reduced from 0.35% to 0.16%. More im-
portantly, high-confidence call rate was increased from 88.9% to 95.6% for the 36
classical inbred strains, and from 71.7% to 84.9% for all 47 strains. Several strains
such as MRL/MpJ, C57L/J, C57BR/cdJ, PERA/EiJ and PWK/EiJ showed a sub-
stantial improvement in imputation accuracy when a larger set of reference strains
was used, while many other wild-derived strains still retained imputation errors of
greater than 10%.

Since the resequencing of more strains is expected to increase the imputation
coverage significantly, we prioritized the strains that might be targeted for resequenc-
ing to improve the coverage, based on our analysis of the shared segments. To do
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Table 2.7: Leave-one-out imputation error rates of 12 resequenced classical inbred
strains using mouse HapMap SNPs only, and combining mouse HapMap SNPs and
gap-filling NIEHS/Perlegen SNPs. The fraction of imputed genotypes in each cate-
gory is shown within a parenthesis

Category NIEHS/Perlegen High Medium Low All
SNP quality confidence confidence confidence confidence
Fully 0.33% 7.18% 21.3% 1.66%
resequenced (46.3%) (3.08%) (2.25%) (51.7%)

Mouse Mostly 0.47% 4.16% 16.8% 2.35%
HapMap resequenced (25.0%) (4.09%) (2.73%) (31.8%)
SNPs Poorly 0.87% 4.21% 15.7% 5.31%
only resequenced (9.35%) (2.85%) (4.29%) (16.5%)

Total 0.44% 4.74% 16.8% 2.48%
(80.7%) (8.91%) (10.0%) (100%)

Fully 0.27% 5.82% 18.9% 1.63%
Mouse resequenced (45.6%) (3.14%) (2.85%) (51.7%)
HapMap Mostly 0.39% 3.79% 16.2% 2.30%
SNPs resequenced (25.0%) (3.77%) (3.04%) (31.8%)
+ Poorly 0.76% 3.97% 15.8% 5.23%
gap-filling resequenced (9.35%) (2.71%) (4.32%) (16.5%)
SNPs Total 0.37% 4.50% 16.8% 2.44%

(80.2%) (9.62%) (10.0%) (100%)

this, we picked the strain that maximized the additional genomic coverage of shared
segments with the other strains given the coverage by the resequenced reference
strains. This procedure is repeated greedily to select the next target of reference
strain given the previous set of reference strains. To increase the coverage including
the wild-derived strains, many wild-derived strains are prioritized for resequencing.
When considering only classical inbred strains, the strains with relatively higher
imputation errors tend to be prioritized (Table 2.8).

Next, we estimated the effectiveness of imputation when different numbers of
mouse HapMap SNPs are collected. To do this, we selected a range of sparse subsets
(10,000 to 1,000,000 markers) of the NIEHS/Perlegen SNPs with complete data in the
resequenced strains and estimated the imputation errors for each of 12 resequenced
classical inbred strains using leave-one-out cross-validation. As expected, accuracy
increased proportionally to subset size. Selecting a 100,000 SNP subset gave an
overall imputation error of 1.36% (high-confidence genotype error 0.36% with 93.8%
call rate). This is comparable to the imputation accuracy using the current mouse
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Table 2.8: Top 10 strains greedily targeted for resequencing in addition to 16 re-
sequenced strains in order to improve the genomic coverage over mouse HapMap
strains.

All 94 strains 73 classical inbred strains
Strain name Coverage increase (avg) Strain name Coverage increase (avg.)
PERC/EiJ 0.012039 NZL/LtJ 0.004697
ZALENDE/EiJ 0.006353 P/J 0.003432
SPRET/EiJ 0.004942 DDK/Pas 0.002914
IS/CamRkJ 0.002984 LG/J 0.002070
NZL/LtJ 0.002416 C57/L 0.001928
LEWES/EiJ 0.001931 SJL/J 0.001574
P/J 0.001624 O20 0.001359
DDK/Pas 0.001354 RIIIS/J 0.001184
C57/L 0.001013 I/LnJ 0.000985
LG/J 0.000919 SM/J 0.000789

HapMap SNPs. We note that the current size of the HapMap SNP is well powered to
capture the majority of variation at low error rates and high confidence. (Figure 2.4).
A several-fold increase in SNP map density to 1,000,000 markers further optimizes
these rates, and as current genotyping platforms can accommodate this number of
assays this would be a viable design for the next generation mouse HapMap.

2.2.5 Trait mapping with the mouse HapMap resource

This detailed picture of haplotype diversity in the mouse allows us to map
traits in the inbred strains by correlating genomic ancestry to trait measurements,
rather than generating de novo experimental crosses. This in silico association map-
ping has two advantages: it allows us to capture the full spectrum of diversity in the
inbred strains rather than a subset used as progenitors of an experimental cross; and
phenotypic noise can be minimized by performing replicates on genetically identical
individuals. In particular, this approach should complement traditional QTL link-
age mapping (often successful at locating large chromosomal segments) by providing
a higher resolution, association-based component and indeed has already yielded
several positive results[166, 124, 32].

The high degree of relatedness between strains described above introduces a
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Figure 2.4: Estimated imputation accuracy and coverage over fully-resequenced
NIEHS/Perlegen SNPs across 12 classical inbred strains with various sizes of ran-
domly selected SNP sets
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systematic bias in association mapping in silico: an inflation of test statistics leading
to false positive associations, caused by population structure and genetic related-
ness among the strains[103, 235, 240, 8]. For example, among the 180 phenotypes
deposited in the Mouse Phenome Database at the Jackson Laboratory (MPD) with
more than 30 distinct strains, 59% (106) of them have more than 50% of the inter-
strain phenotypic variance explained by population structure and genetic relatedness
measured using a variance component test. (Figure 2.5). At an FDR level of 0.05,
51% (91) of them are significantly associated with population structure. We and
others have shown that these issues can effectively be corrected using linear mixed
models[103, 235, 240]. We have therefore developed a corrected association database
in conjunction with the MPD, in which we find 71/180 phenotypes collected in more
than 30 strains have at least one significant association (p < 1×10−6). Among them,
11 (6.1%) phenotypes showed significant associations across more than 20 different
genomic regions, which may indicate residual bias from other sources generating false
positives. This may be compared to 24 (13%) phenotypes showing association with-
out population structure correction to more than 20 different genomic regions, while
the total number of phenotypes with significant associations is similar (Figure 2.6).
When comparing the “inflation factor” suggested by Genomic Control between dif-
ferent statistical tests, t-test showed much higher overall inflation (λ = 2.08± 1.29)
compared to the linear mixed model (λ = 1.15 ± 0.18) over the 180 MPD pheno-
types, confirming the overly inflated false positive rates with the conventional t-test.
(Figure 2.7)

2.3 Discussion

We have described the high-density genotype resource for 94 inbred mouse
strains. Our genotype data is available at http://www.mousehapmap.org. In
addition, we have established a website http://mouse.cs.ucla.edu/ at which
researchers can download genotype data, and access a genome browser which al-
lows the visualization of the haplotype and shared segment analyses. The website
also supports inbred association mapping and includes association results using the
genotypes and all collected phenotype data in the Mouse Phenome Database.
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Figure 2.5: Distribution of fraction of phenotypic variation explained by population
structure among the strains over 180 quantitative phenotypes deposited in the Mouse
Phenome Database (MPD) with 30 or more strains
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Figure 2.6: Number of phenotypes with multiple genomic regions with significant
associations illustrating the degree of inflated false positives, over 180 quantitative
phenotypes deposited in the Mouse Phenome Database (MPD) with 30 or more
strains

Figure 2.7: Comparison of genomic control “inflation factors” between t-test and
linear mixed model across 180 MPD phenotypes
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2.4 Methods

Array Design The mouse HapMap chips consist of two Affymetrix genotyping
arrays with 20 or 36 PM/MM probe-pairs. SNPs were selected to as evenly spaced
as possible across the NCBI build 33, and mapped to NCBI build 37. Genotypes
were called with Affymetrix DM algorithm, and the genotypes with low confidence
genotypes or with conflicting calls between replicated samples or any discovery strain
were called as missing.

Analysis of shared segments The mapping with four founder strains was per-
formed with a hidden Markov model with four reference strains with additional state
for unknown reference, learning the parameters from the genotype data using EM
algorithm as described in the imputation method. A hidden Markov model with two
states representing common and divergent regions was constructed for each pair-
wise comparison, with recombination parameter θ = 10−8 and mutational parameter
µ = 0.03, estimated from the distribution of maximum likelihood parameters using
EM algorithm among all 4371 comparisons. The fraction of genome with shared
segments was computed as the fraction of genome wide SNPs with the probability
of shared segments greater than 0.9. The number of distinct ancestral segments at
a genomic position was computed by taking all the pairwise probabilities of shared
segments, and by performing hierarchical clustering with a median agglomeration
method by taking the pairwise probabilities as elements of a similarity matrix.

Imputation of missing genotypes A hidden Markov model was constructed, for
each strain targeted for imputation, with 16+1 states per SNP representing each of
16 resequenced reference strains and a state representing equivocal reference strain,
similar to previously suggested method. Unlike the previous methods[132, 186], the
maximum-likelihood parameters of genome wide mutation and recombination pa-
rameters were learned from the data using EM algorithm and forward-backward al-
gorithm, independently for each strain. For leave-one-out imputation for experimen-
tally missing genotypes in the resequenced strains, 15+1 states were used excluding
the target strain for imputation.

In-silico association mapping We downloaded the individual phenotype mea-
surements of Mouse Phenome Database (MPD) from Jackson Laboratory, and se-
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lected 696 quantitative phenotypes containing phenotype measurements in at least
10 strains, and having at least 10 distinct values of phenotypes with the maximum
occurrence of 20 per each value to filter out the categorical phenotypes and survival
data. We applied EMMA (Efficient Mixed Model Association)[103] as an imple-
mentation of linear mixed models to correct for population structure and genetic
relatedness, using the kinship matrix generated as a genotype similarity matrix. The
variance component was based on REML (Restricted Maximum Likelihood) esti-
mate, and a standard F test was performed as previously suggested[235, 240]. The
FDR significance level was estimated using the q-value R package[196]. The males
and females were mapped for association separately. The Genomic Control inflation
factor was computed by taking the median p-value and computing the corresponding
chi-square statistic divided by 0.455[50]

Chapter 2 is currently in submission for publication for the material. Andrew
Kirby, Hyun Min Kang, Claire M. Wade, Chris J. Cotsapas, Emrah Kostem, Buhm
Han, Manuel Rivas, Molly A. Bogue, Kelly A. Frazer, Frank M. Johnson, Erica J.
Beilharz, David R. Cox, Eleazar Eskin, and Mark J. Daly, “A high-density haplotype
resource of 94 inbred mouse strains”. The dissertation author and Andrew Kirby are
the primary investigators and authors of this paper.



Chapter 3

An adaptive and memory efficient
algorithm for genotype imputation

3.1 Motivation

Recent advances in high-throughput genotyping technologies are helping to
uncover the genetic basis of complex phenotypes in human[223], mouse[67], rat[193],
dog[104], arabidopsis[23], and many other model organisms. While the vast majority
of positions in a genome are identical among individuals in a population, a significant
portion of positions differ. Many of these positions are single nucleotide polymor-
phisms (SNPs). In a typical association study that attempts to identify variation
involved in a trait, variation information (e.g. SNP genotypes), is collected from a
set of individuals and the trait is measured in each individual. Each SNP is then
correlated (or associated) with the trait. Any statistically significant associations are
reported as possible causal variation with respect to the trait [179, 45].

Genotyping arrays, such as those developed by Affymetrix and Illumina si-
multaneously probe hundreds of thousands of marker SNPs in an individual’s genome
[135, 78]. While this is a significant amount of information, it is only a fraction of
the millions of SNPs and other genetic variation in the population. Only complete
resequencing of individual genomes will guarantee collecting all variation in a study.
However, resequencing still remains prohibitively expensive. Array based genotyping
is currently the most practical cost-effective method for collecting large amounts of

33
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variation information on a set of individuals. Although only a subset of individual
genetic variation is collected by a genotyping array, due to the correlation structure
of variation in the genome, SNPs on the array can serve as proxies for SNPs which
are not collected [49, 41]. This property is called linkage disequilibrium (LD), and it
greatly extends the coverage of the array since a causal SNP need not be collected,
but only strongly correlated with one of the collected markers on the array[237].
However, if the causal variants are not in LD with one of the SNPs included on the
array then the study will not be able to discover the association. Thus, increasing
the number of collected SNPs in the study increases the study’s power to identify
casual variation and is of fundamental importance.

Recently, several studies have proposed methods to increase the ability of
a study to identify associations at SNPs which are not collected by “imputing” or
predicting the genotypes of SNPs that are not contained in the study data set.
These methods work by using a reference sample, such as the HapMap [67] for
humans, which has genotyped millions of SNPs at great cost and effort. These
reference samples contain both SNPs which are collected in the study as well as other
SNPs. An imputation method uses the correlation patterns between the collected
and uncollected SNPs inferred from the reference sample to make predictions of the
uncollected SNPs in the study sample. This problem is effectively a missing data
problem in which partial data is observed in the study and complete data is observed
in the reference sample.

Consider the example shown in Figure 3.1, there is a set of reference individ-
uals shown on top and a study individual shown on the bottom. In the reference
set all the SNPs are genotyped in all five individuals. In the study individual, some
of the SNPs are uncollected and denoted by a “?”. The goal of imputation is to re-
solve the genotypes of the uncollected SNPs by using the overlap of the typed SNPs
between the reference set and the study set. Our method selects the most likely ref-
erence individual for each marker (both collected and uncollected). The path in bold
shown in Figure 3.1 denotes that the sequence of SNP values in target individual is
composed of pieces of the three reference individuals along the six collected and four
uncollected markers.

Multiple techniques have been successfully employed to solve the imputation
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Figure 3.1: An example of the imputation problem. The five reference individuals
are genotyped on all ten SNPs, while the study individual is genotyped on only six
SNPs. The goal of imputation is to resolve the genotypes of the uncollected SNPs.

problem, and Hidden Markov models (HMMs) have been amongst the most popular,
and have been used in several studies in both human and mouse. However, each of
these existing HMM techniques fails to address at least one of several important prob-
lems. IMPUTE[132] applies a standard population genetics model of recombination
and mutation using a set of reference haplotypes. The transitional and mutational
parameters of the HMM are predefined for each reference population, so the method
is not adaptive to different populations or different organisms. For example, using
IMPUTE on mouse genotypes will result in largely inaccurate estimates of uncol-
lected SNPs. Moreover, it has memory requirements that grow linearly in the size
of the reference data set, which may become prohibitively large as more SNPs are
discovered. On the other hand, MACH[88, 151] allows us to learn parameters of an
HMM from the observed genotypes. However, in order to learn parameters easily, it
uses a much simpler transitional model which does not utilize the continuous-time
Markov chain model of recombination in population genetics[108]. Moreover, since
the transitional parameters are estimated per each marker interval separately, MACH
requires a large number of samples to be simultaneously imputed for an accurate pa-
rameter estimation. For inbred mouse imputation, the problem differs from human
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because the reference data sets have dramatically different linkage properties from
human and do not have heterozygous genotypes. Recently, a fastPHASE[186] like
method recently employed HMMs to solve the imputation problem in mouse heuris-
tically using a predefined sets of clusters with Dirichlet prior distribution and Viterbi
training method[200]. Although this recent method did impute many of the SNPs
in the mouse, the average imputation error was 10.4% and 4.4% for high-confidence
genotypes, which is higher than the error rates in most of the human imputation
studies.

In this chapter, we propose EMINIM (Expectation-Maximized INtegrative
IMputation), an adaptive genotype imputation method that learns HMM param-
eters with the standard population genetics model of recombination and mutation
using Expectation-Maximization (EM) algorithm. Our method is motivated by the
fact that the previous methods may not be applied to model organisms such as
inbred mouse strains due to the predefined parameters being inappropriate or the
small number of strains in the reference sample (in this case only 16). Our method
utilizes various types of silent states in the HMM to estimate the EM parameters, to
increase memory-efficiency, to impute genotypes at collected SNPs, and to obtain a
leave-one-snp-out estimate of imputation accuracies. Our method is also more mem-
ory efficient allowing much larger data sets to be imputed. In addition, we provide
an extensive implementation detail of our method that improves accuracy and com-
putational efficiency in addition to the core statistical model, in order to facilitate
further progress in the area of genotype imputation.

We applied our method to the imputation of 8.27 million SNPs that have
been discovered from a resequencing of 15 inbred mouse strains, based on the 138,980
SNPs collected from the mouse HapMap project over 94 inbred strains. Imputation
in mouse strains differs from human imputation because the reference datasets have
drastically different linkage properties. Using a leave one out procedure, we mea-
sured the error rate of our method and compared to the recently published mouse
imputation paper [200]. Our method’s overall error rate is less than half the error
rate of the previous method, and for high confidence genotypes our error rate is ten
time smaller.

Next, we applied our method to the imputation of human HapMap SNPs
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from the Wellcome Trust Case-Control Consortium (WTCCC) genotypes. Our re-
sults show that our method consistently achieves similar or better imputation accu-
racy over different populations than other state-of-the-art methods without requir-
ing predefined parameters for each population. Our method also shows a significant
increase of memory-efficiency which can be an important technical issue when im-
puting genotypes of a dense SNP sets over a large number of reference samples. For
example, on a recent study EMINIM used only 508 MB of memory to impute chro-
mosome 22 while IMPUTE required 6.6 GB. This problem will become even more
severe on larger chromosomes and data sets. Our method is publicly available at
http://genetics.cs.ucla.edu/eminim.

3.2 Materials and methods

3.2.1 The imputation problem.

In this section we formalize the problem of imputing missing genotype data
in an individual using a reference population. The terms and definitions described
here will be used throughout the text. We classify the imputation problem into
two categories - haploid (or inbred) imputation and diploid imputation. Suppose
that we genotype m SNP markers on an individual (target individual) and wish to
determine the genotypes of additional “uncollected” SNPs. We will employ a set
of reference haplotype that are genotyped on the m collected markers as well as an
additional set of uncollected SNPs. In diploid model, we assume that each reference
individuals is already phased into two reference haplotypes. The allele of the i-th
reference haplotype at the t-th marker is represented as Gi,t ∈ {0, 1, 2}, where 0
represents a missing reference genotype and 1,2 represents two alleles of biallelic
SNP marker. Let n be the number of reference haplotype collected at m markers in
the target individual. Let d = {d1, d2, · · · , dm−1} be the physical or genetic distance
between consecutive markers. In the target individual, the genotype at the t-th
marker is represented as gt ∈ {1, 2} in haploid model, and gt ∈ {{1, 1}, {1, 2}, {2, 2}}
in diploid model, where 1 and 2 represents two alleles of the biallelic SNP marker.

In our model, we assume that in each region, the target individual has sim-
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ilar haplotypes to the reference haplotypes. The goal of imputation can then be
rephrased as assigning one (haploid model) or a pair of (diploid model) the n refer-
ence haplotypes to each of the m markers. From these assignments, we will assign
the individual SNP genotype values to each uncollected SNP in the target individual
by using the alleles of the assigned reference haplotypes at the nearby markers. We
employ a hidden Markov model (HMM) to assign the reference haplotypes to the
markers of the target individual. We describe the details of the HMMs used to solve
the different cases of the imputation problem.

3.2.2 Imputation algorithm for haploid model

Hidden Markov Model for imputation In the following section we describe the
algorithm for performing imputation for haploid or inbred organisms. In this case,
the reference haplotypes (or individuals) are called reference strains and we assume
that we do not observe any genotypes where an individual has both alleles 1 and 2
of the SNP (i.e. no heterozygous genotypes).

The goal is then to assign one of the n reference strains to each of the m
markers described in the previous section. To accomplish this we use an HMM like
that shown in Figure 3.2. For each of the m markers there are n states corresponding
to each of the reference strains. From each state there are n edges (with the exception
of the states representing the final marker) directed towards the n states for the next
marker. The edges corresponding to a change in the reference strain are called
transitions or a recombination. Each state can also emit one of the two possible
alleles for that marker. Emitting an allele that does not match the target strain is
called a mutation.

Let St ∈ {1, 2, · · · , n} be the reference strain assigned to the target strain at
marker t ∈ {0, 1, · · · ,m−1}. Since some of genomic segments may not be represented
by any of the reference strains, we introduce another reference strain consisting of
only missing genotypes to represent the unknown reference state. We let the ini-
tial probability that marker S0 is assigned to strain i be Pr(S0 = i) = πi, with
π = {π1, · · · , πn}. Similar to many other methods designed for genotype imputation
and haplotype phasing[132, 186], our HMM relies on a typical Markov chain model
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Figure 3.2: An example of the hidden Markov model for the imputation problem

of population genetics based on neutral Wright-Fisher model[108]. We use two pa-
rameters µ, and θ to be the mutation and recombination parameters, and use the
standard distributions for computing the probability of transitioning between states
pn(x) = (1− e−x)/n and qn(x) = pn(x) + e−x based on the continuous-time Markov
process. Figure 3.2 shows how the these probabilities correspond to the edges in the
HMM. The transition probabilities are computed from the recombination parameter
and the distance between markers as follows.

Pr(St = j|St−1 = i, θ) =

 qn(−θdt) i = j

pn(−θdt) i 6= j
(3.1)

The probability of an observed genotype given a state is computed from the
mutation parameter and the allele observed at the reference strain at the state. If
the reference strain has missing genotype at the marker, then the probabilities are
equally assigned between the alleles. Figure 3.2 shows examples of matching and
mutated genotypes in the emission states of the HMM.
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Pr(gt|St, µ) =


1− µ gt = GSt,t > 0
µ gt 6= GSt,t > 0
0.5 GSt,t = 0

(3.2)

We assume a uniform distribution of initial state probabilities, π1 = · · · =
πn = 1/n, and learn the mutation and transition parameters from the data using the
EM algorithm presented below.

EM algorithm for learning maximum-likelihood parameters Many of the
previous methods suggested for HMM-based imputation of missing genotypes use
either predefined transitional parameters[132] or Viterbi training which may not
converge to a local maximum[200]. Other methods estimate the transition proba-
bilities per marker interval independently to avoid the computational complexity in
constraining the transition parameters consistently across different states[186, 151].

In the genotype imputation of inbred mouse strains, independent uncon-
strained estimation of parameters at each marker is prone to inherent bias and inac-
curacy because of two reasons. First, the total number of target strains is small, so
estimating parameters per marker independently may be highly inaccurate. Second,
these strains have complex genetic relationship, so the transitional and mutational
parameters vary greatly across different strains. We constrain the parameters to be
equal over the genome, but allows different transition and mutation parameters for
each strain. Instead of the simple Viterbi training algorithm, we present an EM
algorithm based on the exact conditional probabilities obtained from the forward-
backward algorithm.

Let us denoteX−t = (X1, · · · , Xt) andX+
t = (Xt+1, · · · , Xm) as observed data,

and λ = (π, µ, θ) be the initial, mutational, and transitional parameters of the hidden
Markov model. The forward-backward algorithm estimates αt(i) = Pr(X−t , St = i|λ)
and βt(i) = Pr(X+

t |St = i, λ) using dynamic programming.
Let X = (g,G). The EM algorithm starts with initial parameters (µ0, θ0). At

the E-step of r-th iteration, Pr(St|X,λr) are computed from the forward-backward
algorithm. Let S = {S0, · · · , Sm−1}. At the M-step, the expected likelihood function
can be written as follows.
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Q(µ, θ) =
∑
S

Pr(S|X,λr) log Pr(g, S|λ) (3.3)

=
m−1∑
t=1

∑
(St,St−1)

log Pr(St|St−1, θ) Pr(St, St−1|X,λr)

+
m−1∑
t=0

∑
St

log Pr(gt|St, µ) Pr(St|X,λr)− logn

The expectation-maximized parameters used for the next round of E-step can
be obtained as follows.

µr+1 =
∑m
t=1

∑
St I(gt 6= Gi,t) Pr(St|X,λr)∑m

t=1
∑
St I(Gi,t > 0) Pr(St|X,λr)

(3.4)

θr+1 = arg max
θ

m−1∑
t=1

∑
(St,St−1)

log Pr(St|St−1, θ) Pr(St, St−1|X,λr)
 (3.5)

= arg maxF (θ) (3.6)

In order to estimate the joint probability Pr(St, St−1|X,λr), we introduce a
silent state Jt between St−1 and St with the following transition probabilities which
keeps Pr(St|St−1) unchanged.

Pr(Jt = (i, b)|St−1 = i, θ) =

 qn(−θdt) b = 0
(n− 1)pn(−θdt) b = 1

(3.7)

Pr(St = j|Jt = (i, b), θ) =

 1 b = 0, i = j

1/(n− 1) b = 1, i 6= j
(3.8)

The probabilities of the other transitions are set to zero. In general, the
marginal probabilities of these silent states can be computed, in the following way.
Let L be a silent state connecting St−1 and St preserving the transition probability of
Pr(St|St−1, λ) = ∑

L Pr(St|L, λ) Pr(L|St−1, λ) unchanged. The forward and backward
probability of any silent state L are defined as α(L) = ∑

St−1 αt−1(St−1) Pr(L|St−1)
and β(L) = ∑

St βt(j) Pr(St|L) Pr(Xt|St). Then the objective function of M-step
transitional parameter becomes
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F (θ) =
m−1∑
t=1

[
log qn(−θdt)

n∑
i=1

Pr(Jt = (i, 0)|X,λr) + log pn(−θdt)
n∑
i=1

Pr(Jt = (i, 1)|X,λr)
]

(3.9)

This function can be numerically optimized using a Newton-Raphson algo-
rithm.

Imputation of uncollected genotypes Let ht be the number of ’uncollected
SNPs’ that need to be imputed between marker (t − 1) and t. An uncollected
SNP is represented as (t, s), where t ∈ {1, 2, · · · ,m − 1} and s ∈ {1, · · · , ht}. Let
Tt,s ∈ {1, · · · , n} be the state at an uncollected SNP (t, s).

We again modify the HMM by adding a silent state Tt,s to the original HMM.
The transition probabilities between St−1, T(t,s), and St is defined in the same way
to to Equation 3.1 based on the distance between them. Let Hi,t,s ∈ {0, 1, 2} be the
genotypes of i-th reference strain at the uncollected SNP (t, s). Then distribution of
the imputed genotype zt,s at the uncollected SNP is estimated as follows.

Pr(zt,s|X,λ) =


(1− µ)

∑n
i=1 I(Hi,t,s = zt,s)pt,s(i)

+µ
∑n
i=1 I(Hi,t,s 6= zt,s)pt,s(i)

zt,s > 0

∑n
i=1 I(Hi,t,s = 0)pt,s(i) zt,s = 0

(3.10)

where pt,s(i) denotes the marginal probability of state i at the uncollected SNP (t, s).
When estimating leave-one-snp-out imputation accuracy, the same imputation meth-
ods are applied by pretending marker t has a silent state by ignoring the observed
genotype.

Improving computation time complexity A standard HMM implementation
requires squared time complexity with respect to the number of individuals. It is
possible to reduce the time complexity to be linear in the number of states, by
leveraging the fact that the transition probabilities are uniform over different states.
When t > 1, αt(i) follows that
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αt(St) = [exp(−θdt)αt−1(St) + pn(−θdt)
n∑
x=1

αt−1(x)] Pr(Xt|St) (3.11)

This can be computed in a constant time if ∑n
j=1 αt−1(x) are precomputed,

so the computation of αt(St) over all states can be performed in linear time. In a
similar way, the computation of βt(St) and the computation over silent states are
linear to the number of states.

3.2.3 Extension to unphased genotypes (diploid model)

When imputing human genotype data, the reference individuals are typically
provided as phased haplotypes across a dense set of SNPs, and a number of unphased
genotypes of a target individual are provided as a subset of SNPs. In this case, the
state at each collected marker Zt = (i, j) represents the combined states of each
haplotype. Here we assume there are no missing alleles in the reference haplotypes
because they are phased. However, missing alleles can also be handled in a similar
way presented as in the haploid model. Their initial state probabilities are defined as
Pr(Z0 = (i, j)) = πij = 1/n2, and the transition probabilities are defined as follows.

Pr(Zt = (i, j)|Zt−1 = (k, l), θ) =


qn(−θdt)2 i = k , j = l

pn(−θdt)qn(−θdt) i = k ⊕ j = l

pn(−θdt)2 i 6= k , j 6= l

(3.12)

where ⊕ denotes exclusive OR operator. Let Zt = (Zt,0, Zt,1) be the individual states
of each chromosome, then the imputed genotype (gt,0|Zt,0, G,gt,1|Zt,1, G) indepen-
dently follows the mutational distribution in the inbred imputation.

The observed genotype gt = {gt,0, gt,1} ∈ {{1, 1}, {1, 2}, {2, 2}} represent
one of homozygous base alleles, heterozygous alleles, or homozygous mutant alle-
les. Based on these probability models, an HMM can be constructed with n2 states
for each collected marker.

Let bt be the number of state changes between marker t − 1 and t. In order
to estimate EM parameters, we introduce a silent state Jt connecting Zt−1 and Zt,
with the following transition probabilities.
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Pr(Jt = (k, l, bt)|Zt−1 = (i, j)) =


qn(−θdt)2 k = i, l = j, bt = 0
2(n− 1)pn(−θdt)qn(−θdt) k = i, l = j, bt = 1
(n− 1)2pn(−θdt)2 k = i, l = j, bt = 2

(3.13)

Pr(Zt = (i, j)|Jt = (k, l, b)) =


1 k = i, l = j, bt = 0
1/(2n− 2) (k = i⊕ l = j), bt = 1
1/(n− 1)2 k 6= i, l 6= j, bt = 2

(3.14)

From the expectation maximized parameters in the M-step it follows that

µr+1 = 1
m

m−1∑
t=0

∑
Zt

η(gt, GZt,0,t, GZt,1,t) Pr(Zt|X,λr) (3.15)

θr+1 = arg max
θ

m−1∑
t=1

∑
(Zt,Zt−1)

log Pr(Zt|Zt−1, θ) Pr(Zt, Zt−1|X,λr)
 (3.16)

= arg max
θ
G(θ) (3.17)

where η(g, h1, h2) is the number of mismatched alleles between genotype g and
{h1, h2}. G(θ) can be rewritten to be numerically optimized using a Newton-Raphson
algorithm as follows.

m∑
t=1

[2 log qn(−θdt) Pr(bt = 0|X,λr) + log (pn(−θdt)qn(−θdt)) Pr(bt = 1|X,λr)

+2 log(pn(−θdt)) Pr(bt = 2|X,λr)] (3.18)

Similar to the inbred case, each uncollected genotypes is imputed without increasing
memory by adding a silent state. For example, αt(Zt) can be computed in a linear
time with the number of states if we precompute ∑n

x=1 αt(Zt,b, x) for each Zt,b and∑n
x=1

∑n
y=1 αt(x, y) in order to increase the computational complexity.
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3.3 Results

3.3.1 Genotype imputation of 94 inbred mouse strains

A recent NIEHS/Perlegen mouse resequencing project identified 8.27 million
SNPs among 16 inbred mouse strains[67]. The Broad mouse HapMap project col-
lected genotypes over 94 strains at 138,980 SNPs, which is only 1.7% of the number
of SNPs identified in the resequencing project. We can achieve high imputation ac-
curacy even with such a small fraction of the SNPs because of the very long regions
of linkage disequilibrium.

We evaluated the accuracy of our genotype imputation method through leave-
one-out analysis. For each of 16 resequenced strains, we ran our EMINIM algorithm
to impute the genotypes at NIEHS/Perlegen SNPs using the mouse HapMap geno-
types and the NIEHS/Perlegen SNPs of the rest 15 strains. Singleton SNPs poly-
morphic only in the target strain were removed in the evaluation of accuracy since
they are not able to be imputed using the rest of strains. The leave-one-strain-out
validation provides a conservative estimate of the genome wide imputation accuracy
of a unresequenced strain using 16 resequenced strains.

The overall average imputation error over 12 classical strains is 2.40%. We
classified the imputed genotypes into the ’high-confidence’ category if the posterior
probability is greater than 0.98, and ’medium-confidence’ in between 0.8 and 0.98.
When considering only high-confidence imputed genotypes after discarding 18.9%
of low and medium confidence genotypes, the average imputation error significantly
reduces to 0.37%. When including wild-derived strains, the imputation error signifi-
cantly increases. The average imputation error between four wild-derived strains was
19.2%, each of them ranging from 13.0% (WSB/EiJ) to 34.0% (CAST/EiJ). None
of the wild-derived strains have high-confidence imputed genotypes due to high esti-
mates of mutation rates.

Unlike previous imputation methods based on hidden Markov models, we
introduce an additional state to account for genomic regions that are not explained
by any of the reference strain. We compared this model to one without an additional
state, by computing imputation accuracy using leave-one-strain-out cross-validation.
The results over 12 classical inbred strains show that the overall imputation error
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Table 3.1: Imputation error rates of inbred mouse strains. First two rows (LOOCV)
use leave-one-strain-out estimation using 15 reference strains and 138,980 combined
SNPs of the target strain across 12 classical inbred strains. The unknown reference
strain is used in the first but not in the second. Last two rows uses WTCHG
genotypes as validation set, and impute those genotypes in 47 WTCHG strains not
included in the reference strains. The fraction of imputed genotypes in each category
is shown within a parenthesis
.

Confidence cutoff high (> 0.98) high + medium (> 0.8) all (≥ 0)
LOOCV with unknown reference 0.37% (81%) 0.81% (90%) 2.40% (100%)

LOOCV without unknown reference 0.52% (76%) 1.24% (93%) 2.46% (100%)
36 non-wild WTCHG strains 0.35% (89%) 1.00% (96%) 2.25% (100%)

all 47 WTCHG strains 0.37% (72%) 1.98% (89%) 4.86% (100%)

increased from 2.40% to 2.46%. More notably, the average imputation errors in
high confidence category increased from 0.37% to 0.52%, and the coverage of high-
confidence category reduced from 81.1% to 75.7%. This suggests that our model with
additional state for unknown reference strains significantly affects the imputation
accuracy probably because some genomic segments are not well characterized by any
of the 16 reference strains.

Next, we evaluated the imputation accuracy by comparing the genotypes
typed for 78 non-resequenced strains. We used the Wellcome Trust genotypes as a
validation set and evaluated how accurately our method can impute the genotypes
in the validation set using the 16 resequenced strains as reference strains. 62 strains
out of 94 strains were genotyped by Wellcome Trust, and 47 of them were not in-
cluded in the 16 reference strains. A total of 493,033 genotypes in the validation set
were evaluated for imputation accuracy, and the overall imputation error was 4.86%.
353,704 (71.7%) genotypes fall into high-confidence genotypes, and the imputation
errors on these high-confidence genotypes are 0.37%. It should be noted that our
imputation errors for high-confidence category is more than ten times smaller than
the recently published results which used a different imputation method at a similar
level of call-rate[200]. Their imputation errors at high-confidence genotypes were re-
ported to be 4.4% with 69.5% call rate. When excluding eleven wild-derived strains
the average error reduced to 2.26%, which is slightly lower than what we observed
in 12 classical inbred strains with leave-one-strain-out cross-validation. Among the
rest of 36 non-wild strains, 344,747 (88.9%) genotypes out of 387,817 fall into the
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high-confidence category with an average imputation error of 0.35%, suggesting a
high coverage of the mouse HapMap SNP sets with high imputation accuracy.

3.3.2 Imputation of HapMap SNPs in WTCCC samples

We applied EMINIM to impute the uncollected HapMap SNPs of the 1,376
WTCCC control samples. We compared the imputation accuracy and memory effi-
ciency with other published methods to demonstrate the robustness of our method.
Our evaluation of chromosome 22 can be extrapolated to the estimate the perfor-
mance of each method on a genome-wide scale.

First, we evaluated the accuracy of our method by randomly choosing 25%
of SNPs out of the collected SNPs and imputing them from the rest of the collected
SNPs. We varied the initial HMM transitional parameters of each method and ob-
served the changes of the imputation accuracy to compare the adaptivity of the
methods against the bias of the initial parameter. While IMPUTE shows a consider-
able change of imputation accuracy based on the transitional parameters, EMINIM
shows almost the same accuracy regardless of the initial values of HMM parameters,
because the optimal parameters are learned from the genotype and haplotype data
using EM algorithm. The accuracy table consistently shows that our method has a
higher accuracy than the previous methods (Table 3.2). The imputation accuracy
of MACH was outperformed by EMINIM and IMPUTE. Since MACH does not use
genetic map as input, we ran EMINIM using physical map instead of genetic map to
compare their performance in the absence of genetic map, and EMINIM still showed
a higher accuracy.

Next, we compared the memory efficiency between different algorithms. Since
each imputation method requires a significantly large amount of memory to impute
a large genomic region, the memory efficiency is an important issue when practically
using the methods. The methods requiring too large amount of memory need to
partition the chromosome into smaller segments at the expense of increased error
rates and redundant computation. While IMPUTE requires 6.6GB of memory space,
to impute all the polymorphic HapMap SNPs in chromosome 22, EMINIM requires
only 508MB of memory, and MACH used 502MB of memory. This is mainly due
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Table 3.2: Estimated error rates of each imputation method with different transition
parameters across different confidence cutoffs. θ = 3.8 is suggested by Marchini et.
al.[132], and different parameters are applied to demonstrate the effect of the initial
parameters. The values in parenthesis represents the fraction of imputed genotypes
with confidence above the threshold. Note that MACH does not provide the posterior
probability at genotype level

confidence cutoff > 0.9 > 0.8 > 0.7 all
EMINIM (θ0 = 3.8) 1.23% (81%) 2.09% (87%) 3.07% (91%) 6.57% (100%)
EMINIM (θ0 = 0.38) 1.23% (81%) 2.09% (87%) 3.07% (91%) 6.57% (100%)
EMINIM (θ0 = 0.038) 1.23% (81%) 2.09% (87%) 3.07% (91%) 6.57% (100%)
IMPUTE (θ = 3.8) 1.35% (81%) 2.25% (87%) 3.21% (91%) 6.61% (100%)
IMPUTE (θ = 0.38) 2.79% (87%) 4.00% (91%) 5.04% (94%) 7.52% (100%)
IMPUTE (θ = 0.038) 3.97% (88%) 5.19% (92%) 6.16% (95%) 8.23% (100%)
EMINIM (physical map) 1.50% (79%) 2.62% (86%) 3.78% (91%) 7.29% (100%)
MACH N/A N/A N/A 7.69% (100%)

to the fact that IMPUTE consumes memory space for each uncollected SNP while
EMINIM requires memory space only for collected SNPs using a silent state when
imputing each uncollected SNP. Such a difference may be substantial in a larger
chromosome such as chromosome 1 which has more than five times as many SNPs
as chromosome 22. In this case, EMINIM is expected to use 2.5GB of memory while
IMPUTE may require 33GB of memory space. Such a difference may be more crucial
as the number of reference samples increases. The overall CPU time of EMINIM was
4.7 hours with Intel Xeon E5320 Processor, which was faster than IMPUTE 0.5.0
(6.5 hours) and MACH 1.0 (7.2 hours with only 10 rounds), despite the fact that
EMINIM runs HMM multiple times per individuals to estimate the EM parameters.

3.4 Conclusion

We have proposed an adaptive and memory efficient imputation method EMI-
NIM. Our method adaptively learns HMM parameters using an exact EM algorithm.
As a result, both in the human and inbred mouse strain imputation problems, our
method is shown to outperform previous imputation methods specifically designed
for each organism. In addition, the memory requirement of our method is indepen-
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dent of the number of uncollected SNPs by utilizing silent states, which significantly
increase the scalability and computational efficiency of our method to genome-wide
imputation.

Chapter 3 was published in Proceedings of the 13th Annual Conference on
Research in Computational Biology (RECOMB-2009), Tuscon, Arizona, May 18-21,
2009. Hyun Min Kang, Noah Zaitlen, Buhm Han, and Eleazar Eskin, “An adaptive
and efficient algorithm for genotype imputation”. The dissertation author was the
primary investigator and author of this paper.



Chapter 4

Efficient control of population
structure in model organism
association mapping

4.1 Motivation

With the recent development of high-throughput genotyping technologies, ge-
netic variation in many model organisms such as mice, Arabidopsis, and maize are
being discovered on a genome-wide scale[166, 97, 65]. Genome-wide association map-
ping in model organisms has great potential to identify risk factors for complex traits
related to human diseases. Although straight inference from model organisms to hu-
man traits may not always apply, model organism association mapping is potentially
more powerful than human association mapping because it is possible to reduce the
effect of environmental factors by replicating phenotype measurements in genetically
identical organisms[17]. In addition, it is often easier and more cost effective to verify
associated signals via in vivo and/or in vitro experiments in model organisms than
in human subjects. Moreover, many ongoing genotyping and phenotyping projects
in model organisms such as the Mouse Phenome Database (MPD)[74] and Mouse
HapMap projects (http://www.mousehapmap.org) provide publicly available
resources to perform in-slico mapping of complex traits in model organisms[162].

However, genetic association studies in inbred model organisms are confronted

50
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by the problem of inflated false positive rates due to population structure and genetic
relatedness among inbred strains often caused by the complex genealogical history
of most model organisms strains. Applying conventional statistical tests of indepen-
dence between a genetic marker and a phenotype is prone to spurious associations
because the marker and the phenotype are likely to be correlated via population
structure which violates the independence assumption under the null hypothesis.
Recent association or linkage mapping studies in model organisms attempt to avoid
inflated false positive rates by designing the studies using recombinant inbred lines
generated from a handful number of parental strains[243, 29]. However, these stud-
ies are limited by the variation present in the parental strains and have long regions
between recombinations due to relatively few generations between the recombinant
inbred strains and the parental strains. Traditional QTL mapping using F2 or back-
cross suffers from the same problem in the fine-resolution mapping in addition to the
problem of expensive genotyping cost[17, 64].

An alternative approach to reduce the inflation of false positives is to apply
a statistical test that corrects for the bias due to population structure or genetic re-
latedness. The most widely used methods to reduce such bias in human association
mapping are Genomic Control[50], Structured Association[170], and EIGENSTRAT
which uses principal component analysis for population stratification[168, 158]. How-
ever, these methods are inadequate in the case of model organism association map-
ping. Genomic Control suffers from weak power when the effect of population struc-
ture is large as in model organisms. Structured Association or EIGENSTRAT, which
assume a handful number of ancestral populations and admixture, only partially
captures the multiple levels of population structure and genetic relatedness in model
organisms[8, 235, 240]. Recently, it is suggested that linear mixed model can ef-
fectively correct for population structure in the association mapping of quantitative
traits[235]. Linear mixed models incorporate pairwise genetic relatedness between
every pair of individuals in the statistical model directly, reflecting that the pheno-
types of two genetically similar subjects are more likely to be correlated than are
genetically dissimilar ones. Applications of mixed models to association mapping in
maize, Arabidopsis, and potato panels demonstrate that mixed models obtain fewer
false positives and higher power than previous methods including Genomic Control,
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Structured Association, and EIGENSTRAT[235, 240].
Although mixed models can effectively capture statistical confounding due

to population structure, the currently available implementations have several limi-
tations in the context of model organism association mapping. First, the variance
component numerically estimated by Nelder-Mead simplex algorithm[147, 73, 141],
EM algorithm, and Newton-Raphson algorithm[122, 72, 99]. only provide locally
optimal solution, which may cause the statistical inferences based on these estimates
to be inaccurate. Second, the computational cost of the numerical optimization pro-
cedure is substantial, requiring a large number of computationally expensive matrix
operations at each iteration. Computational considerations are important when a
large number of SNPs are to be tested. For example, the association mapping with
maize panels consisting of hundreds of SNPs over hundreds of strains takes hours
for a single run with currently available implementations such as TASSEL[235] or
SAS[92]. If one million SNPs were available for genome-wide analysis with the same
number of strains, a single run of association mapping with mixed model would take
several months of CPU time. Third, when inferring the genetic variance component
referred to as the kinship matrix, the importance of a mathematically correct form of
kinship matrix estimation is often overlooked. For example, Yu et. al.[235] proposed
to infer kinship matrix using SPAGeDi software, setting negative kinship coefficients
to zero. However, such a kinship matrix may not be positive semidefinite and thus
not be a valid form of variance component. Using a non-positive semidefinite kinship
matrix generates noncontinuous search space for optimization and may disrupt the
convergence[92].

In this chapter, we propose a new method, Efficient Mixed Model Association
(EMMA), which corrects for population structure and genetic relatedness in model
organism association mapping. Our method takes advantage of the specific nature of
the optimization problem in applying mixed models for association mapping, which
allows us to substantially increase computational speed by several orders of mag-
nitude and improve the reliability of results by achieving near global optimization.
Standard iterative methods for estimating variance components imputes unessen-
tial parameters such as individual random effects in BLUP(Best Linear Unbiased
Prediction)[86]. Our method improves the efficiency of the mixed model method
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by enabling us to perform statistical tests without BLUP estimation, reducing the
number of dimensions that need to be numerically optimized to one. Our method’s
efficiency is further increased by avoiding redundant computationally expensive ma-
trix operation at each iteration in the computation of likelihood function by leverag-
ing spectral decomposition, reducing the computational cost of each iteration from
cubic to linear complexity. Our method is related to a similar technique developed
in a different context of linear mixed model, for simulating null distribution of like-
lihood ratio test statistics efficiently when testing for the significance of a variance
component[43]. Due to substantially decreased computational cost of each iteration,
it is possible to converge global optimum of the likelihood in variance component
estimation with high confidence by combining grid search and Newton-Raphson al-
gorithm even though the likelihood function may not be convex.

We discuss how to design the kinship matrix accounting for genetic relatedness
while guaranteeing convergence in the optimization procedure. We show that simple
genetic similarity matrix with appropriate handling of missing genotypes guarantees
convergence in optimization. Our results are consistent with other studies[240], sug-
gesting that these simpler kinship matrices reduce the false positive rate as effectively
as or more effectively than the kinship matrices generated by previous methods[235].
We suggest another method called phylogenetic control based on the assumption that
a phylogenetic tree is a good approximation of the genealogical history of an inbred
model organism. In such cases, the phylogenetic tree may be used as a confounding
factor, correcting for complex genetic relatedness between strains. We show that
phylogenetic control can be formulated into a linear mixed model, and present an
algorithm for inferring the phylogenetic kinship matrix. We show that the kinship
matrix is always positive semidefinite and its optimal variance components are unique
regardless of the choice of root.

One of the important questions in the design of model organism association
mapping studies is estimating the study power for any specific set of inbred strains.
We performed a simulation study of the power of our EMMA method to identify
causal SNPs both on a genome-wide scale and within a smaller region such as a
QTL interval. Our results show that with a limited number of genetically diverse
strains, such as the currently available panel of inbred mice, it is possible to identify
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causal loci with a genome-wide significance only if the locus explains a large portion
of phenotypic variance. However, with more strains, the power of these association
studies increases dramatically. Our analysis of statistical power in model organism
association mapping demonstrates the dramatic increase in power using multiple
measurements of phenotypes from multiple animals for each strain. Study designs
that do not replicate phenotype measurements and analysis methods that do not
take individual measurements into account suffer a significant decrease in statistical
power.

We applied our EMMA method to association mappings of various inbred
model organisms. First, we verified that EMMA gives almost identical results to
other widely used implementations using the maize panel datasets[235]. In terms
of computational time, EMMA is shown to be orders of magnitude faster than the
previous methods while performing global optimization. Second, we performed a
genome-wide association mapping of Arabidopsis flowering time phenotypes. Our
results are consistent to the recently published results[240], reducing most of in-
flated false positives. Finally, we used our EMMA method to perform a whole
genome association mapping study of inbred mouse strains. We analyzed nearly
140,000 mouse HapMap SNPs over 48 strains and three quantitative phenotypes,
liver weight, body weight, and saccharin preference, with QTLs identified by previ-
ous studies. We identified significant associations for the three phenotypes while our
results show a significant reduction in the inflation of false positives. Interestingly,
many of the significantly associated SNPs fall into the known QTLs, suggesting the
results are likely to be true associations. The implementation of our method via R
package, as well as the mouse association results are are publicly available online at
http://mouse.cs.ucla.edu/emma.

4.2 Materials and methods

4.2.1 Genotypes and phenotypes

Genotypes, phenotypes, SPAGeDi-based kinship matrix, and the STRUC-
TURE outputs from 277 maize strains across 553 SNPs as described in [235] are
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downloaded from Ed Buckler’s lab web site(http://www.maizegenetics.net).
The Arabidopsis genotypes, phenotypes, and the output from STRUCTURE were
obtained from the published datasets[8, 150]. The 13,416 non-singleton SNPs with
no more than 10% of genotype calls missing, were tested for association after imput-
ing the missing alleles using HAP[82]. The flowering time phenotypes over 95 strains
were log-transformed to fit to a normal distribution.

For inbred mouse association mapping, the BROAD mouse HapMap SNP
sets were obtained from the Mouse HapMap web site. The 106,040 SNPs which have
no more than 10% of genotype calls missing were tested after imputing the missing
alleles. The initial body weight(MPD10305) and liver weight phenotypes(MPD2907)
were downloaded from Jackson Laboratory MPD[74]. They consist of 374 and 308
phenotype measurements over 38 and 34 strains, respectively. The saccharin prefer-
ence phenotypes consist of 280 phenotype measurements in 24 strains[176].

4.2.2 Efficient mixed model association (EMMA)

Suppose that n measurements of a phenotype are collected across t inbred
strains. A linear mixed model in model organism association mapping is typically
expressed as the following equation.

y = Xβ + Zu + e (4.1)

where y is a n × 1 vector of observed phenotypes, X is are n × q matrix of
fixed effects including mean, SNPs and other confounding variables. β is q×1 vector
representing coefficients of the fixed effects. Z is n × t incidence matrix mapping
each observed phenotype to one of t inbred strains. u is the random effect of the
mixed model with Var(u) = σ2

gK where K is the t× t kinship matrix inferred from
genotypes as described in the following section, and e is a n × n matrix of residual
effect such that Var(e) = σ2

eI. The overall phenotypic variance-covariance matrix
can be represented as V = σ2

gZKZ
′ + σ2

eI.
Instead of solving mixed model equations by obtaining the best linear unbi-

ased prediction (BLUP) of random effects u via Henderson’s iterative procedure, we
directly estimate the variance components σg and σe maximizing the full likelihood or
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restricted likelihood which is defined as full likelihood with the fixed effects integrated
out[48]. The restricted likelihood avoids a downward bias of maximum likelihood es-
timates of variance components by taking into account the loss in degrees of freedom
associated with fixed effects. Under the null hypothesis, the full log-likelihood and
restricted log-likelihood function can be formulated as follows[222].

lF (y; β, σ, δ) = 1
2

[
−n log(2πσ2)− log |H| − 1

σ2 (y−Xβ)′H−1(y−Xβ)
]

(4.2)

lR(y;σ, δ) = lF (y; β̂, σ2, δ) + 1
2
[
q log(2πσ2) + log |X ′X| − log |X ′H−1X|

]
(4.3)

where σ = σg and H = σ−1V = ZKZ ′ + δI is a function of δ, defined as
δ = σ2

e/σ
2
g .

The full likelihood function is maximized when β is β̂ = (X ′H−1X)−1X ′H−1y,
and optimal σ2 is σ̂F 2 = R/n for lF for lF and σ̂R2 = R/(n− q) for lR for lR, where
R = (y−Xβ̂)′H−1(y−Xβ̂) is a function of δ as well.

Using spectral decomposition, it is possible to find ξi and λs such that

H = ZKZ ′ + δI = UFdiag(ξ1 + δ, · · · , ξn + δ)U ′F (4.4)

SHS = S(ZKZ ′ + δI)S = [UR WR]diag(λ1 + δ, · · · , λn−q + δ, 0, · · · , 0)[UR WR]′

= URdiag(λ1 + δ, · · · , λn−q + δ)U ′R (4.5)

where S = I − X(X ′X)−1X ′ , UF is n × n, UR is n × (n − q) eigenvector
matrix corresponding to the non-zero eigenvalues. WR is n × q eigenvector matrix
corresponding to zero eigenvalues[157]. Note that UR is independent of δ. Let U ′Ry =
[η1 η2 · · · ηn−q]′, then finding ML or REML estimates is equivalent to optimizing the
following functions with respect to δ.

fF (δ) = lF (y; β̂, σ̂, δ) = 1
2

[
n log n

2π − n− n log
(n−q∑
s=1

η2
s

λs + δ

)
−

n∑
i=1

log(ξi + δ)
]
(4.6)

fR(δ) = lR(y; σ̂, δ) (4.7)

= 1
2

[
(n− q) log n− q2π − (n− q)− (n− q) log

(n−q∑
s=1

η2
s

λs + δ

)
−

n−q∑
s=1

log(λs + δ)
]
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(See Section 4.2.7 for the mathematical details) The derivatives of these func-
tions follows that

f ′F (δ) = n

2 ·
∑
s η

2
s/(λs + δ)2∑

s η2
s/(λs + δ) −

1
2
∑
i

1
ξi + δ

(4.8)

f ′R(δ) = n− q
2 ·

∑
s η

2
s/(λs + δ)2∑

s η2
s/(λs + δ) −

1
2
∑
s

1
λs + δ

(4.9)

The suggested procedure in computing likelihood and its derivatives involves
only linear time vector operation at each iteration once the spectral decomposition is
computed. The time complexity of the method is O(n3 + rn) where r is the number
of iterations required. The time complexity of standard EM or Newton-Raphson
algorithms is O(rn3), and the actual ratio of the running time is much bigger than
r because the existing methods typically requires a large number of matrix mul-
tiplications and inverses at each iteration while EMMA computes spectral decom-
position only once. Since the computational cost of each iteration has decreased
dramatically, instead of obtaining locally optimal solution during the numerical op-
timization, it is now computationally feasible to perform grid search combining with
Newton-Raphson algorithm in a single dimensional parameter space of δ, which is
the ratio of environmental random effect to genetic background effect, to optimize
the likelihood globally with high confidence.

Furthermore, when a large number of multiple measurements are phenotyped
per strain, i.e. n� t, the execution time can be further reduced using the fact that
the nonnegative eigenvalues of ZKZ ′ and SZKZ ′S are the same as those of KZ ′Z
and KZ ′SZ, respectively. Combining this fact with a simple modification of Gram-
Schmidt process greatly reduces the execution time of eigenvalue decomposition,
reducing the time complexity into O(t3 + n2t+ rn).

In the application of our EMMA method to the various datasets presented
in this chapter, the δ ranged from 10−5 (almost pure population structure effect)
to 105 (almost pure environmental or residual effect), and are divided evenly into
100 regions in logarithm scale to compute the derivatives of likelihood functions.
The global ML or REML is searched for by applying the Newton-Raphson algorithm
to all the intervals where the signs of derivatives change, and taking the optimal δ
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amongst all of the stationary points and endpoints. Since the derivatives of both the
full and restricted likelihood function are continuous with positive semidefinite kin-
ship matrices suggested in the following sections, such an optimization technique has
guaranteed convergence properties as long as the kinship matrix is positive semidef-
inite. In the following two sections, we describe different methods to infer a kinship
matrix K, based on either genetic similarity matrix or phylogenetic tree.

4.2.3 Similarity-based kinship matrix

A number of methods for inferring kinship matrix from a large number of
molecular markers have been suggested, including simple identical by state (IBS)
allele sharing matrix, allele-frequency weighted IBS matrix Lynch[127], Maximum-
likelihood kinship matrix[203], and Monte Carlo simulation-based matrix[215]. Com-
parisons of different kinship matrices for explaining genetic differentiation among
populations shows similar results but small quantitative difference[149]. Recent stud-
ies on the association mapping of Arabidopsis thaliana in structure population shows
that a simple IBS allele sharing matrix effectively corrects for confounding from
population structure, even better than more sophisticated methods[240]. Although
recently suggested estimator of pairwise relatedness have some desirable statistical
properties than simple IBS allele sharing matrix[207], they are not guaranteed to
be positive semidefinite and thus may disrupt the convergence is the estimation of
variance components.

Here we show that a simple IBS allele sharing matrix based on the assump-
tion of each SNP or haplotype inducing same level of small random changes on the
phenotype guarantees positive semidefiniteness and convergence if missing alleles are
handled appropriately.

Let li,j,h ∈ {0, 1} be a binary variable which has a value of one only when
the genotype (or haplotype) allele at j-th locus in i-th strain is h ∈ 1, · · · , |Hj|
where |Hj| is the total number of alleles at j-th locus. Let xh,j be random variables
independently sampled from N(0, σ2), then the genetic background effect ui of strain
i can be modeled as an accumulation of small random effects as follows, assuming
that xh,j denote the random genetic effect caused by allele h at j-th locus.
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ui =
∑
j

Hj∑
h=1

li,j,hxh,j (4.10)

Let |H| = max(|Hj|), and let Lh be the matrix whose element at (i, j) is li,j,h,
then the overall genetic background effect u is expressed in the following form.

u =
|H|∑
h=1

Lhxh (4.11)

Assuming that each xh,j follows a normal distribution with zero mean and
variance of σ2 independently, the variance-covariance matrix of u becomes Var(u) =
σ2∑

h LhL
′
h. Since its (i0, i1)-th element ∑h

∑
j li0,j,hli1,j,h represent the number of

shared IBS alleles between the i0-th and i1-th strains directly, Var(u) is equivalent
to the IBS allele sharing kinship matrix with a scaling factor. It is obvious from
the equation 4.11, that the kinship matrix is positive semidefinite. When missing
genotypes exists, we estimate li,j,h to be the square root of the probability of the
SNP or haplotype allele at j-th locus having the allele h. This is so that the random
effect for each allele is assigned probabilistically. When haplotype similarity matrix
is used, the haplotype window size resulting in the largest ML estimates is selected
as optimal window size. In the Arabidopsis and mouse association mapping results
of this chapter, the optimal haplotype window size is set to five in both cases.

4.2.4 Phylogenetic control

Evolutionary biologists have tried modeling inter-specific phenotype distribu-
tion using various phylogenetic comparative methods (PCMs)[133]. The correlation
structure between phenotypes can be effectively captured with phylogenetic trees,
and PCMs have been applied to evolutionary analysis of quantitative traits such as
gene-expression[154, 76], or, very recently, to the association mapping of dichoto-
mous phenotypes[19]. Felsentein’s independent contrast (FIC) method [58] models
the correlation between phenotypes under the assumption of Brownian motion of
phenotypic change along the phylogeny due to random genetic drift. Since random
genetic drift occurs within a species as well, in cases where the phylogenetic tree is
a good approximation of genealogical history, it is reasonable to apply PCMs such
as the FIC method in modeling the phenotypic variation in model organisms.
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We followed the Felsenstein’s assumption of Brownian phenotypic changes
along the phylogeny. Under this assumption, the branch length between any two
nodes is proportional to the phylogenetic covariance of phenotypes. Let T be a
phylogenetic tree with t leafs and m edges, and let z ∈ Rm be random variables
independently sampled from N(0, σ2

g). At each branch i whose length is bi, we
represent the amount of random phenotypic changes along the branch as

√
bizi. Let

Ψi denote the set of branches connecting to a leaf node i from the root. Then the
amount of phenotypic changes due to genetic drift is equivalent to ∑e∈Ψi

√
beze. If

Xβ is the ancestral mean at an arbitrarily chosen root node, then the phenotype
values at the leaf nodes are expressed in the following form,

y = Xβ + ZEz + e (4.12)

where E is an t ×m matrix whose (i, j)-th element is
√
bj if branch j exists

in the path from the root to the leaf node i, and zero otherwise. The kinship matrix
of random effect u = Ez is K = EE ′, and is proportional to its covariance. If the
root of the phylogenetic tree changes, E is changed into E + 1tcT , with 1t a vector
of ones and another vector c. However, the restricted likelihood does not change
because SZ1t = 0 always holds.

In the experiments, we adjusted the genetic distance matrix using the F84
model [110, 59] from the genome-wide genotypes, and inferred the phylogenetic tree
with the Fitch-Margoliash and least-squared distance method[62].

4.2.5 Statistical tests and multiple hypothesis testing

Once the ML or REML variance component V̂ = σ̂g
2K + σ̂e

2I is estimated,
a general F-statistic testing the null hypothesis Mβ = 0 for an arbitrary full-rank
p× q matrix M can be constructed as suggested in [235, 106]

F = (Mβ̂)′(M(X ′V̂ −1X)−1M ′)−1(Mβ̂)
p

(4.13)

with p numerator degrees of freedom and n− q denominator degrees of free-
dom. The Satterthwaite degree of freedom may also be computed avoiding compu-
tationally intensive matrix operations.
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Likelihood ratio test can also be performed based on the estimated variance
components under different fixed effects. The statistic asymptotically follows χ2

p

distribution unless the estimated variation component meets boundary of parame-
ter space. The genetic variance component explained by a SNP can be computed
by comparing σ2

g under H0 and H1, otherwise a conventional way to compute the
explained variance can be used.

When a large number of correlated SNPs are tested, Bonferroni correction
may lead to too conservative Type I error control, and permutation tests can be
used alternatively. In this case, the computational cost becomes even much larger
but it can be reduced by reusing the spectral decomposition results for different set
of permuted phenotypes. Since UF , UR is independent of y, it can be reused and only
U ′Ry = [η1, η2, · · · , ηn−q] has to be computed again in order to compute the full or
restricted likelihood in linear time at each iteration. Thus, the computational cost
for a cubic-time spectral decomposition at each permutation can be substituted by a
square-time matrix-vector multiplication, reducing the overall time complexity from
O(t3 + n2t+ rn) to O(n2 + rn).

In our results presented in the following sections, we applied the F-test with p-
values computed from the asymptotic F distribution. The variance components are
estimated via REML. The likelihood ratio test is also performed when comparing
the different statistical methods. In this case, ML estimation is used with the full
likelihood function described above.

4.2.6 Simulation studies

We performed two simulation studies for analyzing the statistical power of
EMMA. First simulation is similar to those from other mixed model studies[235, 240].
A fixed effect based on a randomly chosen causal SNP across the genome with minor
allele frequency greater than 10% is added to the existing phenotypes, and the statis-
tical power is computed at the causal SNP. At each fixed effect, the simulation study
was performed 1000 times to estimate the average power. The variance explained by
a SNP is computed assuming that average minor allele frequency of the causal SNP
is 0.3.
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Next, we generated simulated phenotypes sampled from multivariate normal
distribution with the kinship matrix as covariance using mvrnorm function in R
MASS package. A random noise vector is added according to the contribution of
genetic background to phenotypes, h2

g. If h2
g is the fraction of variance due to genetic

background excluding the SNP effect, then the covariance of the simulated data is
simulated as Var(y) = (nh2

g/tr(S0ZKZ
′S0))K + (1 − h2

g)I) where S0 = I − 11′/n.
Similar to the first simulation study, a fixed effect based on a randomly chosen causal
SNP is added to the simulated phenotypes and the average power is computed from
1000 times of independent simulations.

4.2.7 Derivation of restricted likelihood and derivatives

A derivation of Equation 4.6 and 4.7 from Equation 4.2 and 4.3 is presented in
[157, 84]. However, its derivation is not straightforward, and it needs to be clarified
how exactly it is related to spectral decomposition. Here we describe a more detailed
description of obtaining Equation 4.6 and 4.7.

Plugging in the optimal parameters β̂ and σ̂F = R/n in Equation 4.2, it
follows that

fF (δ) = lF (y; β̂, σ̂, δ) = 1
2

[
−n log 2πR

n
− log |H| − n

]
(4.14)

From Equation 4.4, it is straightforward that log |H| = ∑n
i=1 log(ξ + δ). And

R can be rewritten as follows

R = (y−Xβ̂)′H−1(y−Xβ̂) (4.15)

= y′(I −X(X ′H−1X)−1X ′H−1)′H−1(I −X(X ′H−1X)−1X ′H−1)y (4.16)

= y′P ′H−1Py (4.17)

It is straightforward to show that

(SHS)(P ′H−1P )(SHS) = SHS (4.18)

(P ′H−1P )(SHS)(P ′H−1P ) = P ′H−1P (4.19)
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using the fact PS = S and SP = S. Consequently,

P ′H−1P = (SHS)+ = URdiag
[
(λs + δ)−1

]
U ′R (4.20)

where (·)+ denotes the pseudoinverse of a matrix. Therefore, it follows that

R = y′(P ′H−1P )y (4.21)

= (U ′Ry)′diag
[
(λs + δ)−1

]
(U ′Ry) (4.22)

=
n−q∑
s=1

η2
s

λs + δ
(4.23)

From Equation 4.14 and 4.23, it follows that

fF (δ) = 1
2

[
n log n

2πe − n log
(n−q∑
s=1

η2
s

λs + δ

)
−

n∑
i=1

log(ξi + δ)
]

(4.24)

The restricted likelihood of y is equivalent to computing the likelihood of Ay
where S = AA′ and A′A = I[84, 157].

(SHS)(SHS)+ = (SHS)(P ′H−1P ) = SHP ′H−1P = SP = S (4.25)

On the other hand,

(SHS)(SHS)+ = (URdiag(λs + δ)U ′R)
(
URdiag

[
(λs + δ)−1

]
U ′R
)

= URU
′
R (4.26)

Accordingly, URU ′R = S and U ′RUR = I hold, and the restricted likelihood of
y is equivalent to the likelihood of U ′Ry ∼ N(0, σ2diag(λs + δ)). By plugging in σ̂2

R

to σ2, it immediately follows that

fR(δ) = 1
2

[
(n− q) log n− q2πe − (n− q) log

(n−q∑
s=1

η2
s

λs + δ

)
−

n−q∑
s=1

log(λs + δ)
]

(4.27)
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4.3 Results

4.3.1 Comparison with previous methods

We applied our EMMA method to the same maize panel data consisting of
553 SNPs and three phenotypes across 277 diverse inbred lines[65] analyzed with the
unified mixed model [235]. The kinship matrix is inferred by SPAGeDi software[83],
setting all negative coefficients to zero. The population structure coefficients are
estimated from STRUCTURE[169] using 89 microsatellite loci for three subpopula-
tions. Figure 4.1(a) shows the comparison of the p-values obtained from the previous
unified mixed model (Structured Association (SA) + Mixed Model (MM) method)
with those from EMMA for flowering time phenotypes. They are almost identical,
differing only due to the differences in the numerical optimization procedure for the
estimation of variance components.

While both the SAS and TASSEL implementations of mixed model [235] take
nearly 2 hours for a single run over these datasets with Intel 2.8GHz Dual Core
CPU, the execution time of our mixed model implementation is nearly hundred
times faster, taking only 90 seconds. The results of our method are more reliable
because we find the global REML estimate with guaranteed convergence properties.
Previous implementations iteratively search for local optima with unknown conver-
gence properties. Possibly due to the instability of the convergence properties, the
TASSEL implementation could not compute p-values for several loci in the maize
panel analysis.

Since the kinship matrix inferred from SPAGeDi software is not positive
semidefinite, we explore other ways to estimate the variance components due to
genetic background. We use a genotype similarity matrix and a phylogenetic control
matrix which guarantee positive semidefiniteness. Haplotype similarity matrices are
not applicable to this dataset due to sparse genotype density. We compared the
goodness-of-fit of these kinship matrices in addition to the SPAGeDi-based kinship
matrix over three maize phenotypes using Bayesian Information Criterion (BIC),
which provides a measure of how well each model fits the data. Adjusting for the
sample size and the number of free parameters, Table 4.1 shows that the goodness-
of-fits of the three kinship matrices based on maximum likelihood estimates are com-
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Figure 4.1: (a) Direct comparison of p-values between the SAS implementation of
unified mixed model[235] and our method, computed from 553 SNPs of maize panel
data and the flowering time phenotype. All p-values are extremely highly correlated,
implying that two methods are almost identical in terms of accuracy. (b) Cumulative
distribution of p-values across different models. Under the assumption that the SNPs
are unlinked and there few true SNP association, the observed p-values are expected
to be close to the cumulative p-values. A large deviation from the expectation implies
that the statistical test may cause spurious associations. Simple is a simple t-test,
SA is Structured Association, and MM is F test mixed model with specified kinship
matrix
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Table 4.1: Goodness of fit of different models and kinship matrices in explaining
phenotypic variation of maize quantitative traits. Comparison of Maximum Likeli-
hood (ML) and Bayesian Information Criterion (BIC) of each model with different
kinship matrices for maize quantitative traits. The model with the smaller BIC is
preferred. ’Simple’ denotes simple linear model without adjustment for population
effect. SA is the model using the output from STRUCTURE as covariates. MM is
mixed model with different kinship matrices. The descriptions of kinship matrices
are the same as in Figure 4.1

Method Kinship Matrix Flowering Time Ear Height Ear Diameter
-2*(ML) BIC -2*(ML) BIC -2*(ML) BIC

Simple N/A 1632.8 1643.9 2296.0 2307.1 1282.6 1293.5
MM SPAGeDi 1524.3 1541.0 2237.7 2254.3 1254.2 1270.5
MM Genotype Similarity 1527.5 1544.2 2243.1 2259.8 1266.6 1282.9
MM Phylogenetic Control 1521.6 1538.6 2227.3 2243.9 1248.9 1265.2
SA N/A 1525.7 1547.9 2248.9 2271.1 1276.9 1298.7
SA+MM SPAGeDi 1494.9 1522.7 2220.3 2248.1 1253.6 1280.8
SA+MM Genotype Similarity 1500.9 1528.7 2227.1 2254.9 1266.5 1293.7
SA+MM Phylogenetic Control 1491.6 1519.4 2213.2 2241.0 1248.2 1275.4

parable, while all of them were significantly better than not using a mixed model.
The cumulative p-value distribution seen in Figure 4.1(b) show that the sim-

ple genotype similarity matrix corrects for genetic relatedness slightly better than
the other two kinship matrices. There is a better reduction of false positive rates,
especially within the region of small p-values. Since the simpler kinship matrices
show comparable or better goodness-of-fit and false positive reduction results while
guaranteeing positive semidefiniteness, we apply only these simple kinship matrices
in the following sections.

We also applied our EMMAmethod to perform genome-wide association map-
ping of flowering time phenotype in which statistically significant associations are
reported in previous studies. The cumulative distribution of p-values across 13,416
non singleton SNPs across 95 strains obtained from EMMA is shown in Figure 4.2(a).
The cumulative distribution of p-values with haplotype similarity matrix nearly fol-
lows the expected distribution, implying that mixed models significantly outperform
Structured Association in eliminating the inflation of false positives for this dataset.
Phylogenetic control reduces a large portion of inflated false positives, but residual
inflation is still observed. Structured Association and simple linear regression showed
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Figure 4.2: Genome-wide cumulative distribution of observed p-values between (a)
13,416 Arabidopsis SNPs and flowering time phenotypes across 95 strains using
various models. (b) 106,040 Mouse HapMap SNPs and three phenotypes, body
weight(374 measurements over 38 strains), liver weight(304 measurements over 34
strains), and saccharin preference (280 measurements across 24 strains). S or Simple
is a simple t-test, SA is Structure Association, and MM is F test with mixed model
with specified kinship matrix. SA+MM is the unified mixed model using the output
of STRUCTURE as additional fixed effects

much larger inflation of false positives, consistent to the previous studies. The pre-
viously known FRI gene was found to be significant at a nominal p-value p = 10−5

across different kinship matrices. Our independent analysis are consistent to the
more extensive results of Arabidopsis association mapping recently published[240].

4.3.2 High resolution henome-wide association mapping in

inbred mouse strains

We performed a high resolution genome-wide association mapping study us-
ing our mixed model method over inbred mouse strains. We used the Broad Mouse
HapMap SNPs, containing nearly 140,000 SNPs expected to cover most of genetic
variation among 48 inbred strains. For phenotypes, we used initial body weight
and liver weight phenotypes downloaded from Jackson Laboratory Mouse Phenome
Database[74]. In addition, we used a saccharin preference phenotype where statis-
tically significant associations were identified in a previous study[176]. Among 48
genotyped strains, 38, 34, and 24 strains had phenotype values available for body
weight, liver weight, and saccharin preference, respectively. Each phenotype has on
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average 10 multiple measurements across different individual mice per strain
The cumulative distributions of observed p-values in Figure 4.2 shows that,

without correcting for population structure, the rate of false positives are very high.
In particular, the body weight phenotype has a substantial inflation of false positives.
When our mixed model is used, the inflation of the statistics are significantly reduced
in all three phenotypes.

Figure 4.3 shows genome-wide association signals for the three phenotypes.
Comparing Figure 4.3(a) and 4.3(b), it is obvious that, without correcting for pop-
ulation structure, many false positives are observed at a genome-wide level of sig-
nificance due to inflated p-values. Without correcting for population structure, we
were able to identify nearly 6000 SNPs at a nominal p-value of 10−6, and 283 SNPs
with p-values less than 10−10. However, none of them are significant after applying
the mixed model. This strongly supports that most of the significant associations
without correcting for population structure are indeed false positives. Interestingly,
although the strongest signals for the body weight with the mixed model are not
genome-wide significant, they are concentrated in the region around 114Mb in chro-
mosome 8. This region almost exactly falls into the LOD peak of a previously known
body weight QTL Bwq3[7]. The p-value of most significant locus is 3.8× 10−6 with
F test. explaining 49% of the overall phenotypic variance and 39% of the pheno-
typic variation due to genetic variance component. Although it is slightly below the
genome-wide significance threshold with conservative Bonferroni correction, if utiliz-
ing the results from previous QTL studies, the locus can be declared as significant
over the region of known body weight QTLs.

For the liver weight phenotype, we identified a genome-wide significant asso-
ciation around the region of 34.5Mb in chromosome 2. This falls into a previously
known liver weight QTL Lvrq1[182]. The region also contains many potentially rel-
evant QTLs such as organ weight (Orgwq2[116]), spleen weight (Sp1q1[182]), heart
weight (Hrtq1[182]), lean body mass (Lbm1[134]). The pointwise p-value of the
most significant SNP was 1.2 × 10−9, which explains 59% of the genetic variance
component. When comparing the genome-wide p-values between simple t-test and
mixed models in Figure 4.3(c) and 4.3(d), we observe that the inflation of p-values
is reduced, but the signals are even more significant around the significant SNP at
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(a) Body weight association signals with t-test

(b) Body weight association signals with Mixed Model

(c) Liver weight association signals with t-test

(d) Liver weight association signals with Mixed Model

(e) Saccharin Preference association signals with Mixed Model

Figure 4.3: Genome-wide scans for association with initial body weight, liver weight,
and saccharin preference using simple t-test and F test with mixed models, based on
a kinship inferred from haplotype similarities
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chromosome 2. This demonstrates that mixed model association mapping can, not
only reduce the inflated false positives, but also reveal significant associations that
have remained unidentified using conventional statistical methods in the case when
the associated SNP is not highly correlated with population structure.

For the saccharin preference phenotype, we were able to identify a SNP 30kb
away from the Tas1r3 gene that is perfectly correlated with the SNP previously
reported to have significant association with the phenotype [176]. It explains 51% of
the genetic variance component, and the p-value is 1.0 × 10−5. The SNP is neither
genome-wide significant nor the most significant. We believe this is due to the limited
power of the study with small number of strains.

4.3.3 Power of inbred association mapping

We evaluated the statistical power of association mapping of inbred model
organisms in two different ways. First, we simulated an additive effect of causal
SNP over the existing phenotypes for mouse, Arabidopsis, and maize strains, similar
to previous studies. Such simulation studies evaluate the SNP effect on the power
maintaining the existing correlation structure of phenotypes. However, they do not
allow to change the effect of the genetic background or the number of multiple mea-
surements, and no random variable other than the SNP is involved in the power
simulation. As an alternative model driven method for simulation studies, we gener-
ated simulated phenotypes randomly sampled from multivariate normal distribution
with various effects of population structure on the phenotypic variation. A SNP
effect is simulated on the randomly generated samples, and the statistical power is
evaluated. In this way, we can not only change the SNP effect in the simulation
studies but also the effect of genetic background on the phenotypes as well as the
number of replicated measurements. We believe that our simulation analysis provide
a more extensive understanding of the statistical power of association mapping with
model organisms based on mixed models.

Figure 4.4 shows the statistical power with respect to the additive SNP effect
on the Arabidopsis and maize flowering time phenotypes and three inbred mouse
phenotypes used in this chapter. The maize panel dataset consisting of 277 strains
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Figure 4.4: Comparisons of the genome-wide power of the EMMA method applied
to inbred mouse association for real phenotypes with additional SNP effect.

have high statistical power, achieving 80% with SNP effect explaining 5% of pheno-
typic variation. Genome-wide significance can also be achieved with high power with
10% of SNP effects. For Arabidopsis dataset consisting of 95 strains, the statistical
power is decreased, and roughly twice the SNP effect would be needed compared
to the maize panales in order to achieve the same statistical power. For the inbred
mouse phenotypes, genome-wide power is achievable only when the SNP explains a
very large portion of phenotypic variance. In our results, the plausible significant
associations explained more than 35% of the phenotypic variance. The power to
achieve genome-wide power is largely dependent on the number of available strains.
Table 4.2 summarize the most plausible associations in these three phenotypes.

Next, we performed simulation studies by sampling phenotypes from multi-
variate normal distribution based on the kinship matrix of 48 inbred mouse strains
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with different effect of genetic background due to population structure. We observed
a significant increase of power when multiple measurements are used. Figure 4.5(a)
shows the effect of multiple measurements on the statistical power when the variance
from the genetic component and the residual component are the same. It suggests
that using just a single measurement per strain may result in a significant decrease in
power. Even though multiple measurements are used, if only the phenotypic mean is
used in the analysis and the individual measurements are not taken into account, the
statistical power would decrease significantly. Comparing Figure 4.5(b) with 4.5(a)
clearly shows the advantage of using individual measurements over the phenotypic
mean in the statistical analysis. It shows that the statistical power may be differ
up to by a factor of two between the two methods. Other mixed model association
mapping studies use only the mean values in their analysis, not fully utilizing the
potential strength of statistical power with individual measurements.

Figure 4.5(c) shows that a large relative effect from genetic background re-
duces the statistical power. As the genetic background contributes larger portion of
phenotypic variance, the within-strain variance becomes relatively smaller than the
between-strain variance, and this limits contribution of multiple measurements to
the statistical power[17]. For example, in an extreme case, when h2

g = 1, the residual
variance is zero and the replicated measurement does not increase the power since
there is no variability of phenotype allowed within the strains.

Figure 4.5(d) shows more clearly the effect of genetic background and multiple
measurements at a glance. When a SNP explains a fairly large fraction (17%) of
phenotypic variance, the genome-wide significance level can be achieved with high
power only when the phenotype has very small effect of population structure and the
number of replicates is large enough. As the effect from genetic background becomes
larger, the advantage of using multiple measurements decrease significantly.

4.4 Discussion

In this chapter, we proposed an efficient statistical method to perform associa-
tion mapping with structured samples based on linear mixed model. Our results with
maize and Arabidopsis panel show that EMMA robustly reduces the inflated false
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Figure 4.5: Comparisons of the genome-wide power of the EMMA method applied
to inbred mouse association for simulated phenotypes with various SNP effect, ge-
netic background effect, and the number of multiple measurements. The significance
threshold is p = 10−5. t is the number of multiple measurements per strain, and
h2
g is the fraction of the variance explained by genetic background among overall

phenotypic variance when SNP effect is not added. (a) With h2
g = 0.5, varying β

and t. (b) Same as (a) using mean phenotype value per strain instead of individual
measurements. (c) With 10 multiple measurements per strain, varying β and h2

g (d)
With β = σ, varying t and h2

g. The effect of population structure is varied by chang-
ing the ratio of two variance components, and number of multiple measurements are
simulated with (a) ten measurements and (b) single measurement per strain.
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positives under structured population similar to currently available mixed model im-
plementations. The accuracy and stability of the numerical optimization in EMMA
is greater than others due to global optimization of likelihood function and guar-
anteed convergence properties with smaller search space. Our presentation of the
EMMA method is focused on a particular case of a mixed model where two variance
components are involved because this is the typical model which previous studies
assume, and it is straightforward to correct population structure via one kinship
matrix inferred from genome-wide markers.

The computational efficiency of EMMA is orders of magnitude greater than
other widely used implementations. When multiple measurement per strain is used
across different individuals, the relative efficiency is further increased. This is of a
great importance when the computational cost may be a bottleneck in the statis-
tical analysis of high-throughput data such as genome-wide gene expressions. For
example, the single run of genome-wide association mapping of mouse body weight
phenotypes with multiple measurements would take up to a month of CPU time with
other implementations, while EMMA takes only a single CPU hour. When hundreds
and thousands of phenotypes be available such as in the analysis of eQTL data, the
computational cost of previous implementations is prohibitive even with high per-
formance computing. It should be noted that there are other techniques developed
for improving computational efficiency of the numerical estimation in a more general
context of linear mixed models such as average information REML[72], but these
techniques would not provide us with the same improvements on the efficiency of
each iterative procedure.

Our results of inbred mouse association mapping show the potential and lim-
itations of genome-wide inbred mouse association studies. It is remarkable that we
were able to identify significant associations at a genome-wide level without inflation
of false positives, under the limited statistical power of the method. Although there
is a possibility that residual confounding still remains with mixed model association,
we believe that the most significant SNP associated with liver weight is likely to be a
true positive because it explains a large portion of phenotypic variations between the
strains beyond genetic background effect so that the conservative Bonferroni adjusted
p-value still remains significant. The SNP associated with body weight looks also
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plausible, but it could possibly due to residual confounding that is not completely
captured by a kinship matrix. Likewise, other significant associations can possibly
be due to residual confounding not captured by kinship matrix, so the identified
associations must be verified through independent analysis.

In a more general context of association mapping which require the use of
multiple variance components, the computational advantage of EMMA are not ap-
plicable since EMMA can only effectively solve a model with one correlated variance
component. For example, when allowing heterozygous alleles for outbred individu-
als, the full model typically takes both additive and dominant variance components
in the linear mixed model[127, 9]. Likewise, if strain-specific environmental random
effects or other additional random effects are to be considered, multiple variance
components need to be used. In such cases where EMMA is not directly applicable,
computational bottlenecks may be the biggest obstacles in analyzing large amounts
of data. EMMA can still be applied in this case if a reasonable approximation is
combined with other standard mixed model methods taking multiple variance com-
ponents. Under null hypothesis, it is possible estimate the ratio between multiple
variance components using full model, and EMMA can be applied under alternative
hypothesis assuming that the ratio between variance components is preserved. Since
variance component estimation under null hypothesis needs to be done once across
a larger number of alternative hypotheses for each marker, such an approximation
procedure provides a large amount of computational efficiency essentially equivalent
to EMMA with one variance component. Although the approximated test may lose
statistical power slightly, the false positive rates would not be inflated.

There have been several genome-wide association mapping studies with inbred
mouse strains. To the best of our knowledge, our results are the first whole genome
association mapping of inbred mice that takes the genetic relatedness into account
via a statistical method supported by asymptotic theory. Previous studies either
do not take the population structure into account[32], or apply heuristics to reduce
the confounding effect from population structure. For example, the weighted version
of F statistic[166] does not follow the asymptotic null distribution. Redefining the
significance level based on empirical null distribution given heritibility parameter[124]
or weighted permuation[137] only rescales the p-values similar to Genomic Control,
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and will suffer from a lack of power as the genetic background effect becomes larger.
Our power simulation studies provide assistance to the design of the associ-

ation study under the effect of population structure. Multiple factors are involved
in determining the the condition of identifying a loci, and it cannot be simply rep-
resented by a single value such as phenotypic variance explained by the SNP. Our
results show the importance of multiple measurements of phenotypes from multi-
ple animals for each strain, and of directly using the individual measurements in
the statistics for association mapping. Taking individual measurements into account
within the association mapping is much more computationally intensive EMMA pro-
vides a method for efficiently handling individual measurements. In addition, our
results also demonstrate the effect of genetic background on the statistical power.
As the population structure explains larger phenotypic variance, the power using
multiple measurements becomes lower.

Our results show that phylogenetic control can control for population struc-
ture as effectively as the linear mixed model based on genetic similarity matrix in
some datasets despite the limited ability of the model to represent complex genetic
relatedness. Since genetic similarity matrices are better models accounting for re-
combination and hybridization, and also are easier to compute, phylogenetic control
is not preferred in association mapping in model organisms. However, it is possible
to compute the likelihood of phylogenetic control model in linear time[58], and this
may be useful when a very large number of individuals are to be tested.

Chapter 4 was published in Genetics, Volume 178, pp 1709-23, 2008. Hyun
Min Kang, Noah A. Zaitlen, Claire M. Wade, Andrew Kirby, David Heckerman,
Mark J. Daly, and Eleazar Eskin, “Efficient control of population structure in model
organism association mapping”. The dissertation author was the primary investigator
and author of this paper.



Chapter 5

Accounting for sample structure in
large scale genome-wide
association studies using a
variance component model

5.1 Motivation

Genomewide association studies (GWAS) have played a prominent role in
mapping efforts in recent years. They rely on high density genotyping to identify
polymorphisms whose alleles are correlated with disease status or quantitative trait
levels. While family based designs are possible and in some cases desirable[18], a
large portion of current GWAS are conducted using a population sample. Ideally,
these would be unrelated individuals that share the same population background; in
practicality, however, it is not easy to thoroughly control these variables at the sam-
pling stage. The term “population stratification” is used to indicate the situation
where the subjects are unknowingly sampled from different populations. “Hidden
relatedness” or “cryptic relatedness” indicates the possibility that some of the in-
dividuals in the sample may be related, unknowingly to the investigators and the
subjects[211, 221].

The effect of ignoring either of these departures from the ideal design has been

78
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well documented[148, 85]. While sampling entirely unrelated individuals may be dif-
ficult or impossible, the genotype data provides valuable information on the sample
structure that can be used to inform the analysis. For example, Pritchard et al.[170]
suggest investigating the presence of sub-populations on the basis of genotype data,
and to subsequently carry out association tests within the identified strata. To elim-
inate the effects of hidden relatedness, instead, one can estimate the proportion of
genes identical by descent between any pair of individuals in the sample and exclude
from the analysis those that appear strongly related[223]. Conducting association
tests within strata can be effective when the sample under study is really composed
by a set of separate populations, and the exclusion of a few “closely” related individ-
uals is certainly efficient when these represent a very small percentage of the study
subjects. Population stratification and hidden relatedness, however, constitute just
two extreme manifestations of what we will call “sample structure.” It is then impor-
tant to develop methodologies that allow one to account for generic departures from
the assumption of independent individuals. Devlin and Roeder[50] and Bacanu et
al.[12] develop the genomic control approach: the distribution of test statistics from
the single marker analysis is used to estimate the “inflation factor,” λ, with which
the test-statistics are subsequently rescaled, constraining the risk of false positives.
This is a very practical approach, the authors illustrate its validity under a number
of hypothesis, and the literature has uniformly adopted the use of λ to quantify the
effects of possible structure on the association tests. Price et al. and Patterson et
al.[168, 158] illustrate how principal components of the genotypes can be used to
detect and describe sample structure in a continuous fashion. This authors suggest
including the main principal components as covariates in association models. The
intuition is that these principal components capture high level sample structure such
as spatial structure and ancestral population structure. This approach, supported by
Novembre and Stephens[152], can be quite effective, even though it is somewhat lack-
ing in interpretability. Thus, today’s association studies apply a set of heterogeneous
strategies, first identifying close relatives to remove the effects of cryptic relatedness,
then applying principal components to correct for large scale sample structure, and
finally estimating the residual inflation factors to quantify the remaining effects of
sample structure. Since the applied techniques are designed for these extreme mani-
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festation of sample structure, it is not surprising that, even after applying techniques
to correct for both hidden relatedness and population structure, a significant amount
of residual inflation is likely to remain due to forms of sample structure not captured
by the above methods.

We are motivated by the analysis of genomewide association data for quan-
titative phenotypes in a Finnish cohort[184]. During the past year, approximately
5000 individuals from the 1966 Northern Finnish birth cohort (NFBC66)[175] have
been genotyped with the Illumina 370K array and this dataset has been used to in-
vestigate the genetic underpinnings of a number of quantitative phenotypes. Sabatti
et al.[184] describe in detail the results of genome wide association studies involv-
ing 4763 individuals from NFBC66 for triglycerides, cholesterol, glucose, C-reactive
protein, insulin plasma levels, body mass index, and blood pressure (systolic and
diastolic); this same sample has been used in meta-analysis by Aulchenko et al.[11]
for lipid levels, Prokopenko et al.[171] for glucose, Willer[226] for body weight; as
well as in candidate gene investigations for temperament traits[153] and height [191].
Indeed, the availability of rich phenotypic information makes the use of this cohort
data particularly attractive. Another reason this sample is appealing to geneticists is
the fact that it is obtained from a homogeneous population isolate, which is expected
to minimize genetic heterogeneity, increasing the chances of mapping genes under-
lying traits of interest[209]. However, a detailed study[96] of the genomewide high
density genotype of a subset of NFBC66, together with other samples from Finland
and Sweden, revealed the presence of substantial population structure that could
influence the results of association studies. The genomewide association studies that
have used NFBC66 all adopt some methodology to correct for population structure,
but to date we are still lacking an extensive analysis of the actual impact of the
detected population structure in NFBC66 on association results and a comparison
of the effectiveness of different methodologies to correct for the noted structure.

Using a newly obtained larger sample (5337 individuals), and the additional
phenotype of height, we here explore these questions in detail. To account for sample
structure that can reflect both the presence of somewhat distinct sub-populations as
well as hidden relatedness across individuals, we explore a methodology that relies on
the use of the polygenic model[61] and its application to association mapping[155].
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Unlike this classical setting, however, we do not assume the degree of relatedness
among the individuals in the sample to be known a priori, but we roughly estimate
it from the genotype data. A similar approach has been used successfully in animal
models[235, 240, 103]. Capitalizing on the characteristics of quantitative traits in hu-
mans, we make a few simplifying assumptions that allow us to dramatically increase
the speed of computations, making our approach readily applicable to genomewide
association studies for quantitative traits with tens of thousands of samples. In
addition, we extend our method to case-control studies and demonstrate its robust-
ness using the Wellcome Trust Case Control Consortium (WTCCC) data over seven
common complex diseases.

5.2 Materials and methods

5.2.1 Variance component model to account for sample struc-

ture

In his polygenic model, Fisher[61] describes a trait T as the result of an en-
vironmental component and a large number of different genetic factors, each with
possibly an additive and dominant effect. He also considers the possibility of inter-
actions between these factors (epistasis). We consider here the simplest form of this
model where genetic factors act independently and additively. Let Zik be the contri-
bution of factor k to person i, then we assume that the phenotype can be modeled
as

yi =
M∑
k=1

Zik + εi, E(εi) = 0, Cov(εi, εj) = 0 if i 6= j (5.1)

Note that in model (5.1), and throughout the chapter, there are no other relevant
variables besides the genetic factors. This is purely a convenience assumption, to
simplify notation.

With model (5.1) Fisher was able to explain the correlation between relatives
and to estimate the proportion of the total trait variance due to genetic factors (her-
itability). Let the vector Y = {yi, . . . , yn} contain the phenotypes of the individuals
in a pedigree; then assuming that the environmental components are uncorrelated,
the variance covariance structure of Y depends on the amount of genes shared among
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subjects. In absence of dominance effects, we have

Var(Y ) = 2σ2
aΦ + σ2

eI, (5.2)

where Φ is the matrix of kinship coefficients between each pair of individuals in the
pedigree. An analysis of variance with random effects leads to the estimates of σ2

a

and σ2
e , and in turn to the evaluation of heritability h2 = σ2

a/(σ2
a + σ2

e).
In linkage studies, this decomposition of variance is carried one step further.

By tracking the transmission of marker genes in the vicinity of locus k, one can cal-
culate the conditional kinship coefficients (Φk, probabilities that two genes sampled
from two individuals at locus k are IBD), and decompose the variance Var(Y ) to
emphasize the contribution of the k-th locus

Var(Y ) = 2σ2
akΦk + 2Φσ2

a + σ2
eI. (5.3)

To investigate the contribution of locus k to the phenotype, one tests the null hy-
pothesis that σ2

ak = 0. The values of the variance parameters are estimated with
maximum likelihood procedures[115].

In association studies, based on a much denser set of genotypes, we aim to
associate the phenotypes directly to the alleles at marker loci; in other words we are
aiming to estimate fixed effects. Assuming additive effects only, model (5.1) can be
translated to the following regression framework:

yi = β0 +
M∑
k=1

βkXik + εi, (5.4)

with Var(ε) = σ2
eI, and Xk the individuals’ minor allele counts at locus k (for all

markers are considered biallelic). Let the n× p matrix X contain allele counts on a
p << M set of markers, and let β a p× 1 vector of corresponding coefficients. Our
goal is to identify which elements in the vector β are different from 0.

While model (5.4) is fundamentally a multivariate one, association studies are
typically carried out by testing the hypothesis H0 : βk = 0, for each of the M loci,
one locus at the time, on the basis of model

yi = β0 + βkXik + ηi. (5.5)

With respect to model (5.4), model (5.5) is misspecified: relevant regressors are
omitted, or, in other words, we ignore the polygenic background of the trait.
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The appropriate statistical methods to make inference on βk in (5.5) depends
on the nature of the sample. If the n individuals are related, with known degree of
relatedness, the variance covariance of ηi in model (5.5) can be described as in (5.2).
That is, the effect of the genotype at locus k can be modeled as a main effect, while
the relationships among all individuals are taken into account by means of variance
components of random polygenic effects[155]. This model is sometimes referred to
as a “mixed effect” model.

If the n individuals are unrelated and there is no dependence across the geno-
types, so that the ηi are i.i.d. (independently and identically distributed), a simple
linear regression would make appropriate inference. Unfortunately, these conditions
are not easily met. Firstly, because of linkage disequilibrium, Xk corresponding to
markers with close genomic position are correlated. More significantly, neither the
homogeneity of population background nor the level of relatedness are easily con-
trolled in the sampling stage. If the n individuals in the sample belong to distinct
populations, or are (albeit distantly) related, one can expect a substantial correla-
tion between the rows and columns of X. This translates to bias in the estimate
of βk from model (5.5) and in a distribution for β̂k that is different from what is
assumed in standard linear regression (i.e. the ηi in (5.5) are not i.i.d.). [Note that it
is reasonable to assume that environmental exposure would vary across populations
and family group, introducing further confounding]. In this context, the suggestion
of Price et al.[168] of including principal components of the genotypes in the model
can be understood as an attempt to include in (5.5) proxies of the missing variables.
Similarly, approaches which remove closely related individuals can be understood as
an attempt to bring the ηi closer towards i.i.d.

With the advent of dense, genomewide genotype data, it has become possible
to estimate the degree of relationship between independently ascertained subjects[127,
55, 203] in the absence of genealogical information. With an estimated kinship matrix
one can in principle use variance component techniques in linear mixed models (as
in Ober et al.[155]) to analyze population samples. This approach has been indeed
successfully adopted in Yu et al.[235] and Zhao et al.[240] in the analysis of small
structured samples of model organisms. Its application to the analysis of human as-
sociation samples has been hindered by the increased computational costs associated
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with large sample sizes and number of genotypes. Kang et al.[103] propose a more
efficient variance component estimation procedure that allows the authors to ana-
lyze a mouse dataset including hundreds of thousands of SNPs. Unfortunately, its
straightforward application to human studies that include thousands of individuals
is still computationally too costly.

The experience accumulated in the first couple of years of genomewide associ-
ation studies suggest that some shortcuts may be possible. Human quantitative trait
association studies so far, appear to fully vindicate Fisher’s polygenic model, with
each of the loci involved responsible for a very small portion of the variance[128];
if the contribution of each SNP to the total trait variance is almost ignorable, the
variance components for ηi in (5.5) may not need to be estimated separately for each
SNP. Instead, one might estimate the values σ2

a and σ2
e from a variance decompo-

sition model as in (5.2), keep them fixed, and then estimate the parameter βk in
model (5.5) using a generalized least squares (GLS) procedure. Additionally, it ap-
pears that using the simple identity by state (IBS) between individual, rather then
the more laboriously constructed kinship coefficients, may be sufficient, and in some
cases more appropriate, to model the dependency in the sample. Zhao et al.[240]
observe this phenomena in Arabidopsis and suggest that while IBD is preferable to
describe recent relatedness, IBS may be more apt to describe very distant relation-
ships between individuals, that indeed blend into population level differences. Along
these lines, Kang et. al[103] precisely reflect the polygenic background under the
assumption that each SNP is equally likely to contribute to the quantitative trait at
a very small level.

On the basis of these observations, we employed the following procedure to
analyze human population samples in association studies for quantitative traits. Let
n be the sample size, p the total number of genotyped SNPs, and Y the vector of
observed phenotypes

1. Use the genotype data to calculate the n × n matrix Ŝ of identity by state
between individuals, and normalize Ŝ to have sample variance 1 using a Gower’s
centered matrix[136].
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ŜN = Ŝ

Tr(PŜP )
(5.6)

where P = I − 11′/n and 1 is vector of ones.

2. Use a variance component model to estimate the restricted maximum likelihood
(REML) parameters (or alternatively, maximum likelihood parameter) of σa
and σe in:

Var(Y ) = σ2
aŜN + σ2

eI (5.7)

Test the hypothesis H0 : σ2
a = 0. If the null hypothesis is rejected, proceed to

step 3; otherwise use ordinary least square (OLS).

3. Use GLS to estimate the effects βk

yi = β0 + βkXik + ηi Var(η) = V ∝ σ̂2
aŜN + σ̂2

eI. (5.8)

The above model can be easily extended to have additional confounding vari-
ables by substituting β0 for a multi-column matrix containing the confounding vari-
ables such as sex and age. Note that these additional confounding variables should
be included in the procedure of REML estimation of the variance component param-
eters. For the variance component estimation procedure in step 2, we use EMMA
(Efficient Mixed Model Association)[103]. We term our method as EMMAX (EMMA
eXpedited), because our method dramatically reduces the computational cost com-
pared to the original EMMA by avoiding the repetitive variance component estima-
tion procedure per marker.

5.2.2 Estimating marker specific inflation factor

Devlin and Roeder[50] showed that, under some condition, one can expect
the variance of the test statistics to be inflated by a constant across the genome.
Bacanu et al.[12] extended these results to quantitative trait association mapping.
Voight and Pritchard[211] developed a formal model of cryptic relatedness based on
the coalescent theory. Typically, one expects a constant inflation across the genome
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when the sample structure is entirely due to cryptic relatedness. However, with a
more complex genealogical relationship among individuals, it is not clear how the
inflation of test statistics will behave. For example, each SNP may have different
level of inflation due to differential effects from ancestry or age differences among
the SNPs[129, 177, 14]. Indeed, alternative approaches to account for population
structure such as Structured Association[170] or principal component analysis[168],
lead to different correction for each marker. Model (5.8) gives us the opportunity to
quantify the amount of inflation due to population structure on each specific marker,
allowing us to shed some light on the discussion above.

Assuming that model (5.5) is true with V = Var(η) and marker k has no effect
on the phenotype, we define the inflation factor for marker k as the ratio between
the expectation of the F statistics calculated from OLS for a model that includes k,
to the expectation of the F statistics for the same model calculated from GLS. In
fact, we do not compute this ratio explicitly, but simply provide an approximation.
If one considers that as n −→ ∞, the expectation of the GLS F statistics under
arbitrary V , as long as V is non singular, converges to 1; hence we simply need an
approximation for the numerator of the ratio.

Specifically, let us assume, to simplify notation, that Y and Xk are centered
to have zero sample mean so that β̂0 = 0 holds. In such a case, V = Var(η) has to be
centered to VC = PV P where P = I −11′/n. In addition, for convenience purposes,
we standardize Xk to satisfy XT

k Xk = n − 1, where n is the number of individuals.
Then the F-test statistic based on OLS becomes

FOLS = ((X ′kXk)−1X ′kY )2(X ′kXk)(n− 2)
Y ′(I −Xk(X ′kXk)−1X ′k)Y

(5.9)

= (X ′kY )2(n− 2)
nY ′Y − (X ′kY )2 . (5.10)

If V = σ2I, then FOLS follows a F-distribution with (1, n − 2) degree of
freedom. Then if n is large, FOLS asymptotically converges to chi-square distribution
with 1 degree of freedom. While the distribution of FOLS is difficult to calculate when
V has off-diagonal elements, the expected values of numerator and denominator
in FOLS are relatively easy to compute. The expectation of denominator becomes
nTr(VC)−X ′kVCXk, and the expectation of numerator becomes (n− 2)X ′kVCXk.
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We can then take as operational definition of the marker specific inflation
factor ζk at marker k,

ζk = (n− 2)X ′kVCXk

(n− 1)Tr(VC)− (X ′kVCXk)
(5.11)

≈ X ′kVCXk

Tr(VC) (5.12)

Note that when V = σ2I, then ζk = 1 holds regardless of the values of Xk. Let
ŜC = PŜNP . When we take for V the specific form assumed in (5.8), we can further
simplify the expression above:

ζk = (n− 2)X ′k(σ2
aŜC + σ2

eP )Xk

(n− 1)Tr(σ2
aŜC + σ2

eP )− (X ′k(σ2
aŜC + σ2

eP )Xk)

= σ2
a(n− 1)X ′kŜCXk + σ2

e(n− 1)(n− 2)
σ2
a

[
(n− 1)2 −X ′kŜCXk

]
+ σ2

e(n− 1)(n− 2)

≈ σ2
aX
′
kŜCXk/(n− 1) + σ2

e

σ2
a + σ2

e

= h2
aX
′
kŜCXk/(n− 1) + (1− h2

a) (5.13)

where h2
a = σ2

a/(σ2
a + σ2

e).
We are now in the position to discuss the meaning and implication of the

marker specific inflation factors we defined. The introduced marker-specific inflation
factors essentially estimate the effect of misspecification of variance component by
using OLS in the place of GLS. From expression (5.13) it is clear that the amount of
inflation at any given marker depends on the level of correlation between the marker
genotypes and the GLS variance-covariance matrix. This validates the common
intuition that cryptic population structure may affect differently tests at different
markers. It also rationalizes the the direction of this variability. Expression (5.13)
also clarifies how the same level of sample structure will affect differently the associ-
ation tests for different phenotypes. The inflation will be stronger the higher is the
ratio of σ2

a to σ2
e , while for a trait that does not follow the polygenic model σ2

a = 0,
no amount of population structure will have any impact on the association tests.
Finally, it is useful to recall that the inflation factors ζk, while marker specific, are
calculated independently of the observed association between marker and phenotype,
being based on expectations of test statistics under the null model.
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More generally, if multiple confounding variables need to be accounted for in
addition the to intercept under the null model, Equation (5.10) can be rewritten in
a general form of F statistic to get the expectation of numerator and denominator.
Such a procedure is asymptotically equivalent to centering an arbitrary variance
component V to VC = (I − G(G′G)−1G)V (I − G(G′G)−1G), given a non-singular
matrix of confounding variables G that includes the intercept. In this case, the SNP
vector Xk also needs to be regressed out with respected to G, and (n−2) in Equation
(5.10) needs to be replaced with (n− q− 1), where q is the number of columns in G.

This method can also be extended for estimating the effect of misspecified
variance component or errors in the variance component estimation. Before running
GLS, let U = σ̂a

2ŜN + σ̂e
2I be the estimated variance component when V is the true

variance component. Assuming that Y and Xk are centered, the F test statistics for
GLS is

FGLS = ((X ′kU−1
C Xk)−1X ′kU

−1
C Y )2(X ′kU−1

C Xk)(n− 2)
Y ′(U−1

C − U−1
C Xk(X ′kU−1

C Xk)−1X ′kU
−1
C )Y

(5.14)

= (X ′kU−1
C Y )2(n− 2)

(X ′kU−1
C Xk)Y ′U−1

C Y − (X ′kU−1
C Y )2 (5.15)

The ratio between expected numerator and denominator provides the inflation
factor with misspecified variance component.

ζk = X ′kU
−1
C VCU

−1
C Xk(n− 2)

(XkU
−1
C Xk)Tr(U−1

C VC)−X ′kU−1
C VCU

−1
C Xk

(5.16)

≈ (n− 1)X ′kU−1
C VCU

−1
C Xk

(XkU
−1
C Xk)Tr(U−1

C VC)
(5.17)

5.2.3 Accounting for large effect sizes at some SNPs

The accuracy of EMMAX depends on the assumption that the effect of each
SNP on the phenotype is so small to be ignorable for the purpose of estimating σ2

a

and σ2
e in model (5.8). When few SNPs have relatively large effects, this assumption

is ungrounded, and the strategy described so far impractical. This is the case, for
example, of several common diseases that are known to be associated with certain
HLA alleles with relative risks of 4 or greater[44].
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In fact, it is possible to use EMMAX even in this context, provided that one
prior conditions on the effects of the known associated SNPs. Specifically, one can
regress out the effects of the implicated SNPs from the original phenotype and use
the residuals of this regression as a new phenotype for analysis. It is crucial, then,
to decide on the effect of which SNPs one should condition upon.

If we know a priori the identity of associated loci with strong effect, such as the
MHC region in the above example, the choice will be obvious. Alternatively, we may
condition on the effects of SNPs with highly significant p-values. It is important
to use a very stringent significance threshold at this level, to avoid loss of power.
Recommended values are p < 10−10 or p < 10−15 for typical sample sizes (2000 ∼
10000). Note that this conditioning procedure is really recommended only if (1)
there are a few genomic regions or sets of loci which largely explain the phenotypic
variance, and (2) significant over-dispersion or under-dispersion of test statistics is
observed after applying EMMAX.

5.2.4 Application to case control datasets

Although EMMAX was developed with quantitative traits in mind, it can also
be adapted to the analysis of case-control datasets. Since the case-control pheno-
types do not follow a normal distribution, applying a generalized linear mixed model
using logit or probit link function is preferable to a linear mixed model. However,
the computational cost of a generalized linear model with a correlated variance com-
ponent is much higher, and currently available algorithms can not handle thousands
of individuals simultaneously[138].

When the hypothesis of additive model appears reasonable (as it is the case
when we do not have prior information on mode of inheritance), the Armitage trend
test (Armitage, 2005) can be used to test for the presence of a genetic effect. (See,
for example, Devlin and Roeder[50] and note the equivalence of an Armitage test
to a score test in logistic regression for H0 : β = 0[1]). The Armitage test can be
described as testing the significance of the slope coefficient in a linear regression of
a 0-1 variable representing case/control status on the additively coded genotypes.
Armitage[10] suggested using a χ2

1 test that is slightly different from the square
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of a standard t test in linear regression. The statistic proposed by Armitage is
χ2

0 = β2/var(β), but instead of estimating the variance of the error terms using
the residuals from the regression, we estimate it using the variance of the response
variable. Therefore χ2

0 is equal to the square of the correlation between the response
and the genotype variables, multiplied by the number of samples.

Despite this suggestion, Armitage indicated that the standard t statistic may
be preferable, especially to construct confidence intervals. Therefore, it seems that
one can carry out tests in the spirit of Armitage simply using a standard linear
regression framework with a 0-1 quantitative response variable representing the case
control status. Adopting this approach, we can immediately translate the problem
to the methodology suggested for quantitative traits.

5.2.5 Genotype and phenotype data

We analyzed two datasets: one that contains measurements on quantitative
traits (NFBC66), and one on disease statuses (WTCCC).

Genotype data were available for 5,544 Finnish subjects from NFBC66, all
with genotyping completeness >95%. Subjects were excluded from further analysis
because they had withdrawn consent (15), had discrepancy between reported sex and
sex determined from the X chromosome (13), were sample duplications (2), were too
related to another subject (66), or had no phenotype data, leaving 5,337 subjects for
analysis. For the relatedness criterion, all pairs of subjects with probability of IBD
> 20% were identified, and one subject from each such pair was included in further
analyses. In most cases, the subject with the most non-missing phenotype data was
chosen for analysis. If the two subjects had an equal amount of missing phenotype
data, the subject with the most non-missing genotype data was used.

Using these 5,337 subjects, the 339,017 SNP markers were examined for Hardy
Weinberg Equilibrium (HWE, exact test), genotyping completeness, and minor allele
frequency (MAF). Markers were excluded for HWE p-value< 0.0001 (3932), geno-
typing completeness < 95% (67) and MAF < 1% (7667), leaving 328401 markers for
analysis (some SNP markers failed quality checks on more than one criterion).

We focused on the analysis of 10 phenotypes: triglycerides (TG), low density
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lipoprotein (LDL), high density lipoprotein (HDL), glucose (GLU), C-reactive pro-
tein (CRP), insulin plasma levels (INS), body mass index (BMI), systolic (SBP) and
diastolic (DBP) blood pressure, and height. The first 9 phenotypes were adjusted
for sex, pregnancy status and use of oral contraceptive, as described in Sabatti et
al.[184]. Height was adjusted for sex only.

The NFBC66 database contains information on the birth locations of sub-
jects and their parents. This can be used to derive ancestry information. Sabatti et
al.[184] describe how 6 distinct linguistic/geographical groups can be identified in the
Northern provinces of Finland. Given the patterns of internal migrations and their
variation over time, we can assign individuals in NFBC66 to one one these groups
when both parents were born in a municipality within the same group. Approxi-
mately 50% of the sample can be assigned this way and these individuals are used
to compare the results of population stratification analysis based on genotypes.

We also obtained the genotypes of the Wellcome Trust Case Control Consor-
tium (WTCCC) subjects collected for the study of seven common disease[223]. We
applied the same quality control criteria as suggested in the original paper. We also
excluded the SNPs that the original studies excluded in their analysis. A total of
404,862 SNPs were considered after the quality control across 2,938 shared controls
and 13,241 case individuals across seven diseases.

5.3 Results

5.3.1 NFBC66

Revisiting principal component analysis

To investigate the nature of the possible structure in the sample, we used
PCA analysis of the genotype matrix and analysis of the IBS matrix from NFBC66
samples[168]. In Sabatti et al.[184] it was shown how the first two coordinates iden-
tified by multidimensional scaling analysis of the IBS matrix correlate well with
geographical location of the linguistic groups. The first two principal components
in the current sample correlate well with latitude and longitude of parental birth
places for the subset of individuals with known ancestry (Figure 5.1). Indeed, we
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Figure 5.1: Scatter plots of loading for the first two principal components vs Latitude
and Longitude. Only individuals of known ancestry are included in the plot. Lati-
tude and longitude are defined as the average latitude and longitude of the parents
birthplaces. Different colors indicate different linguistic/geographic subgroups.

noted that PCA analysis of genotypes and classical MDS of the IBS matrix lead to
very similar results. The first 5 principal components separate to varying degree the
linguistic/geographic groups (Figure 5.2).

It is also of interest to investigate how the phenotype varies across the lin-
guistic/geographic groups. Four phenotypes show significant variability across the
different groups (LDL, HDL, GLU, SBP). After including the first two principal
components, there is no significant variability in LDL and SBP across the different
groups, GLU does not show significant variability after accounting for multiple com-
parison, while HDL is still significantly variable (in both cases there is only one group
that appears different, Eastern Lapland, comprising 90 individuals in total). Despite
the clear correlation between geographical region of origin and the first two principal
components (or principal coordinates of the IBS matrix), clustering analysis of the
IBS matrix failed to identify separate subgroups. This suggests that an analysis of
the data using the structured association approach may not be appropriate.
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Figure 5.2: Scatterplot of the first 5 principal components for individuals of known
ancestry. The different linguistic/geographic subgroups are color-coded.
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Figure 5.3: QQ plot of p-values from the association tests for LDL. On the left hand
side, we focus on the 3000 most significant p-values and to increase readability, we
plot -Log10(p-values). The shaded area represent pointwise 95% confidence intervals
calculated assuming independence across tests and relying on a Beta approximation
of the order statistics. On the right hand side, we present the p-value distribution
in its original scale.

Association analysis and attempts to correct for population structure

When performing a simple uncorrected association test for each of the 9 phe-
notypes originally examined in [184], the following estimates of the genomic control
parameters λ were observed: BMI 1.036, CRP 1.012, DBP 1.033, GLU 1.045, HDL
1.054, INS 1.026, LDL 1.093, SBP 1.063, TG 1.024. These values are all higher
than the ones obtained with the smaller sample size in Sabatti et al.[184], and higher
then what one would expect in a sample with no structure in our population. The
additional phenotype of height, led to the highest λ value, 1.19. For reference note
that conservative estimate of the 95% confidence interval of the inflation factor is
between 0.992 and 1.008, assuming independence between the markers. Figure 5.3
presents the QQ plot of the p-values for association tests with LDL, the trait which
exhibits the highest λ amongst our original traits.

As hidden relatedness is a possible cause of inflated genomic control param-
eters, we re-ran the analysis, after excluding a larger number of possibly related
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Table 5.1: Comparison of genomic control inflation factor obtained with different
models; ES stands for EIGENSTRAT.

Phenotypes uncorrected IBD > 0.1 excluded ES (100 PCs) EMMAX
BMI 1.036 1.028 1.024 1.001
CRP 1.012 1.020 1.020 0.994
DBP 1.033 1.025 1.029 1.010
GLU 1.045 1.025 1.030 1.009
HDL 1.054 1.041 1.037 1.003
INS 1.026 1.026 1.015 1.005
LDL 1.093 1.089 1.040 1.002
SBP 1.063 1.054 1.021 1.004
TG 1.024 1.021 1.018 0.999
HEIGHT 1.193 1.152 1.080 1.002

subjects (genomewide percentage of alleles identical by descent > 10% was taken as
a cut-off, and 709 additional individuals were excluded). This resulted in a slight
reduction of λ for some phenotypes (Table 5.1).

Following the suggestion of Price et al.[168], we explored the effect of including
a variable number of principal components in the association tests. Including 2 or 5
PCA has a considerable effect on the λ values, however, augmenting the number of
principal components beyond this point, does not result in a substantial decrease in
the genomic control parameter (Figure 5.4). It is often suggested that only principal
components having predictive power on the phenotype should be included in the
regression. Table 5.2 reports the principal components, for each phenotype, that
have a t-test p-value <0.005 as predictors for each of the phenotypes and the results
of their inclusion in the association tests are reported in Figure 5.4.

Analysis with EMMAX

Unlike a traditional variance component model which uses IBD coefficients
estimated from the pedigree[155], our suggested method uses an IBS matrix to cap-
ture the relatedness between the individuals. Yu et al.[235] suggested estimating IBD
coefficients from multi-locus genotypes, but Zhao et al. and Kang et al.[240, 103]
demonstrated that a simple IBS matrix more robustly corrects for the over-dispersion
than the estimated IBD matrix from structured model organism samples. However,
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Figure 5.4: Illustration of how the genomic control parameters for 10 traits change
as the number of principal components used for adjustment changes.
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Table 5.2: Principal components that result associated with each of the considered
phenotypes

Phenotype Significant PC
BMI PC23, PC50, PC83
CRP none
DBP none
GLU PC1, PC23
HDL PC10, PC39, PC41
INS PC9, PC11
LDL PC2, PC3, PC4, PC5
SPB PC1, PC4
TG PC17, PC87
HEIGHT PC1, PC2, PC4,PC6, PC7, PC24, PC25, PC50, PC67, PC80, PC85

the effectiveness of IBS matrix has not been comprehensively examined in a large-
scale human association mapping studies, where the genetic diversity among the
samples is significantly smaller than those among the strains of model organisms.
For this reason we present our results in detail.

We first compared the IBS coefficients with the estimated IBD coefficients
obtained by PLINK[172, 142] across genome-wide markers of NFBC66 subjects. The
pairwise plot of these two estimates shown in Figure 5.5A suggest that these two
estimates are highly correlated when the IBD estimates are positive. However, when
IBD estimates are zero, as is the case for 64% of the pairs of individuals, the IBS
estimates still show a considerable amount of variation. In fact, the variance of
IBS estimates amongst the individuals with zero IBD estimates is even larger than
those with non-zero IBD estimates (Figure 5.5B). It is possible that the variability
in the IBS estimates among pairs of individual with IBD=0 is simply due to random
noise, and the IBD estimates better reflect the true underlying sample structure.
To explore the validity of this hypothesis, we partitioned the genome-wide markers
into two disjoint sets and we re-estimated IBS between the pairs of individuals with
IBD=0, using each of these sets. These IBS estimates are highly correlated (Figure
5.5C,D), which suggests that the IBS values are not due to random noise, but reflect
true underlying differences in genetic similarities.

While we relied on PLINK to estimate IBD, we would like to point out that
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Figure 5.5: Comparisons between (A) the IBS coefficients and IBD estimates com-
puted by PLINK (B) The distribution of IBS coefficients in (A) when the IBD esti-
mates are zero, or positive (C) Two different IBS coefficient by randomly partitioning
the SNPs into two different sets when IBS estimates are zero (D) and when IBS es-
timates are positive
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Table 5.3: P-values for test of the null hypothesis σa = 0 for all traits; ratio of the
estimates σ2

a/(σ2
a + σ2

e), and heritability estimates from Kosrae population[125]. ∗
Lowe et al. collected fasting plasma glucose, which is a different variant of glucose
measurement from the one collected in NFBC66 subjects.

Phenotype P-value for σ2
a = 0 σ2

a/(σ2
a + σ2

e)
h2 from

Lowe et al.[125]
BMI 2.3× 10−6 0.293 0.473
CRP 7.2× 10−3 0.156 0.245
DBP 2.7× 10−4 0.193 0.289
GLU 1.1× 10−5 0.252 0.188∗
HDL 4.6× 10−11 0.388 0.391
INS 9.7× 10−4 0.204 N/A
LDL 8.8× 10−18 0.454 0.414
SBP 6.1× 10−8 0.281 0.243
TG 1.2× 10−8 0.191 0.274
HEIGHT 1.5× 10−49 0.782 0.790

there exist more sophisticated algorithms for relatedness estimation, with direct ap-
plication to association mapping [139, 15, 37]. It remains true that the IBS matrix
has the additional practical advantage to be positive definite, which makes it trivial
to use it to estimate σ2

a and σ2
e .

Relying then on the estimated IBS matrix, we then explored the strategy de-
scribed in the method section. The values of σ̂2

a and σ̂2
e estimated for each phenotype

are reported in Table 5.3, together with the p-value for an F test for the hypothesis
H0 : σ2

a = 0, and the heritability estimate for the traits obtained from the recent
studies using an isolated population from the island of Kosrae[125]. One important
observation is that the relative value σ̂2

a/(σ̂2
a + σ̂2

e), changes with phenotype, consis-
tent with the observation that ignoring dependence between the individuals in the
sample has different effects for each trait. The attentive reader would have noted
that the ratio σ̂2

a/(σ̂2
a + σ̂2

e) closely resembles the one used in defining heritability,
as it provides an estimates of phenotypic variance explained by the normalized IBS
matrix ŜN . It is important to note how step 1 of our methodology, however, it is
not directly interchangeable with the heritability of the trait; the IBS matrix does
not correspond exactly to the kinship coefficients, and, most importantly, our sample
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Table 5.4: For the traits that lead to the identification of at least one locus, we com-
pare the most significant p-value obtained running EMMAX with the corresponding
value obtained using EMMA.

phenotype SNP EMMAX EMMA Diff Ratio
CRP rs2794520 3.98× 10−23 3.95× 10−23 2.33× 10−25 1.01
GLU rs560887 5.73× 10−12 5.33× 10−12 3.96× 10−13 1.07
HDL rs3764261 6.11× 10−33 6.08× 10−33 3.14× 10−35 1.01
LDL rs646776 1.21× 10−14 1.19× 10−14 1.57× 10−16 1.01
SBP rs782602 3.54× 10−7 3.44× 10−7 1.02× 10−8 1.03
TG rs1260326 1.32× 10−10 1.36× 10−10 -3.96× 10−12 0.971
HEIGHT rs6719545 4.53× 10−7 4.46× 10−7 7.34× 10−9 1.02

may not contain sufficiently related individuals. Nonetheless, these values are quite
concordant with the previous heritability estimates.

Using the estimated σ̂a and σ̂e we proceeded with a generalized least square
estimates of the βk and test statistics. The genomic control parameters we obtain
are much lower than both the original ones and the ones from regression analysis
including 100 PCs (Table 5.1) using EIGENSTRAT[168]. Figure 5.6 provides a
graphical illustration, using QQ plots of the different p-values distributions from
these three tests.

Because EMMAX does not re-estimate the σ2
a and σ2

e for each SNP, one may
suspect, that the significance of SNPs contributing to the trait may be reduced. To
assess the seriousness of this concern, we run the original EMMA which uses a full
mixed effect model on the SNPs that achieved a p-value lower than 5× 10−7. These
SNPs are the ones for which we are more likely to see a substantial difference between
the results of a mixed effects model and GLS. Overall, as expected, the p-values from
the full mixed effect model tend to be more significant then the p-value from the GLS
model (Figure 5.7 and Table 5.4). However, the magnitude of this difference is very
limited, as shown by examining the logarithm of their ratios.

While the p-value distribution, and the λ values, are quite different in the
simple analysis and EMMAX, these two approaches do not diverge substantially
in terms of loci declared to be genomewide significant. The distribution across the
genome of p-values from the uncorrected screen with p-values obtained from EMMAX
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Figure 5.6: QQ-plots on the log10 scale of the association p-values obtained for nine
traits according to there different models. In black, results from the unadjusted
analysis; in blue results from the analysis conducted using 100 PC, and in red results
from EMMAX.
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Figure 5.7: We compare the values of p-value obtained running EMMAX with the
corresponding value obtained using EMMA for the SNPs whose p-value under EM-
MAX was smaller than 5× 10−7.

shows clear agreement between the identified locations (Figure 5.8). In fact, in
general, adopting the a threshold of 5 × 10−7 on the p-value, EMMAX and the
uncorrected analysis lead to the identification of the same loci; however, some of
these loci do not meet this significance threshold when we apply the genomic control
correction.

Unlike genomic control, the EMMAX model alters the rank of the statistics
of SNPs. This is especially important in light of the fact that many follow up and
multi-stage design studies take the approach of genotyping all SNPs exceeding some
predefined threshold[53, 202, 2]. We examine the extent to which the adoption of
the EMMAX model changes the ranking with respect to the use of simple linear
regression and regression that includes PCAs. We took the top k markers, from the
results of EMMAX, the uncorrected method, and PCA, for k between 10 and 10000.
For each of these sets we calculated the number of SNPs shared between the lists
and the fraction of these shared SNPs relative to the number of unique SNPs in both
lists. We also identified the ranks in the uncorrected and PCA analyses in the top
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Figure 5.8: From top to bottom, the plots present the association p-values for LDL
obtained with three methods: the uncorrected analysis, the genomic control cor-
rection, and EMMAX. Genomic position is on the x-axis (Chromosome number is
indicated at the bottom of the plot). The negative of log10 of the association p-value
is on the y-axis. Only p-values lower then 10−2 are displayed. The horizontal red
line corresponds to a p-value of 5× 10−7. Blue vertical lines indicate position of loci
recently identified in GWAS.
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Table 5.5: Comparison of top 2000 hits obtained with EMMAX, PCA, and uncor-
rected analysis. The numbers in second to fourth column represents the proportion
of shared SNPs between each pair of analysis, when selecting top 2,000 SNPs in each
analysis.

Phenotype t-test vs t-test vs PCA vss t-test λEMMAX PCA EMMAX
CRP 0.877 0.629 0.665 1.012
TG 0.854 0.599 0.642 1.026
INS 0.833 0.547 0.602 1.033
DBP 0.853 0.621 0.644 1.045
BMI 0.788 0.553 0.603 1.036
GLU 0.769 0.524 0.584 1.045
HDL 0.706 0.500 0.582 1.054
SBP 0.692 0.472 0.589 1.063
LDL 0.616 0.476 0.610 1.093
HEIGHT 0.448 0.384 0.498 1.193

2000 EMMAX hits. Results demonstrate that a great portion of top associated SNPs
agrees between these methods, but a considerable amount of discordance is also ob-
served (Table 5.5 and Figure 5.9). In general, EMMAX results become similar to
uncorrected t-test when the effect from sample structure is small, but they becomes
more similar to PCA results as the effect from sample structure increases. Interest-
ingly, PCA method generally shows larger departure from uncorrected method than
EMMAX does. For example, when the over-dispersion of test statistics is relatively
negligible such as CRP, only 63% of top 2000 hits were concordant between PCA
and uncorrected t-test, while 88% were concordant between EMMAX and t-test. The
discordance becomes greater as larger over-dispersion of test statistics is observed,
but the concordance between PCA and EMMAX drops relatively slowly compared
to the other pairs, because of the increasing confounding effects from the sample
structure on the uncorrected t-test results.

Finally, we compared the estimated effects βk in the simple analysis and
EMMAX. Again, we focused on the set of “significant loci”, identified as those that
obtain a p-value lower then 5× 10−7 with the EMMAX analysis. Most estimates of
βk are very similar between the two methods (Figure 5.10) .
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Figure 5.9: Concordance of strongly associated SNPs between different methods
across 10 phenotypes with NFBC66 data
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Figure 5.10: Histogram of the percentage differences in β estimates for EMMAX
and uncorrected analysis. This is temporary, it exclude height for which we have not
re-run the comparison yet.

5.3.2 Application to WTCCC case-control data

We applied our method to the Wellcome Trust Case Control Consortium
(WTCCC) data. As described in the Materials and Methods section in more detail,
the case-control phenotypes are encoded as 0 and 1 and a linear model is used in the
spirit of Armitage’s test. We performed association mapping over the seven disease
phenotypes using various methods in the same setting to the original study. We
observed a very similar level of inflation factors λ to the original study when the test
statistics are uncorrected: bipolar disease (BD) 1.11, coronary artery disease (CAD)
1.06, Crohn’s disease (CD) 1.10, hypertension (HT) 1.06, rheumatoid arthritis (RA)
1.03, type 1 diabetes (T1D) 1.04, and type 2 diabetes (T2D) 1.07. Consistent with
our observations over the NFBC66 data, correcting for 100 principal components
only partially reduced the inflation factors (Table 5.6). When EMMAX is applied,
none of the phenotypes showed significant inflation of test statistics.

However, we noticed that two of the phenotypes, RA and T1D, show signif-
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Table 5.6: Comparison of genomic control inflation factor obtained with different
models in seven WTCCC phenotypes. ∗ represents the inflation factor when the
variance component parameters (σ̂2

a and σ̂2
e) are estimated by conditioning on the

large-sized SNP effects within the extended MHC region with p < 10−10

Phenotypes uncorrected ES with 100 PCs EMMAX
BD 1.105 1.071 0.998
CAD 1.063 1.048 1.006
CD 1.098 1.055 1.000
HT 1.055 1.051 0.997
RA 1.028 1.031 0.965 (0.991∗)
T1D 1.043 1.028 0.946 (1.011∗)
T2D 1.065 1.042 0.996

icant deflation of test statistics beyond the 95% confidence interval (λ = 0.965 for
RA, λ = 0.946 for T1D). At the same time, we noticed that the QQ plot of the test
statistics show much stronger associations than what we observed with metabolic
phenotypes (Figure 5.11). RA and T1D contained a large number of strong asso-
ciations, most of which are located at the MHC region of chromosome 6. Ninety
nine and 280 SNPs within the extended human MHC region[44] are strongly associ-
ated at p < 10−10, with RA and T1D respectively. The other five diseases showed
no significant SNPs in the same region. These SNPs account for 47% and 63% of
the phenotypic variance, respectively[223]. Such strong SNP effects may lead to an
inaccurate estimation of variance component, resulting in over-dispersion or under-
dispersion of test statistics. we re-estimated the variance component by conditioning
on these strong SNPs within the extended MHC region as described in the method
section. As a result, the genomic control λ became 0.991 for RA, and 1.011 for T1D.

5.3.3 Marker specific inflation factors

To illustrate the value and meaning of the marker specific inflation factors
defined in the method section, we calculated them wit reference to the 10 phenotypes
of the NFBC. Across all 10 NFBC phenotypes, the distribution of marker specific
inflation factors greatly vary (Figure 5.12A). The genomic control inflation factors
lambda from these phenotypes are quite concordant with the marker specific inflation
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Figure 5.11: QQ-plots on the log10 scale of the association p-values obtained for
seven disease phenotypes according to three different models. In black, results from
the unadjusted analysis; in blue results from the analysis conducted using 100 PC,
and in red results from EMMAX
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Figure 5.12: Distribution of the marker specific inflation factors from NFBC66 data
sets. (A) Box plots of the marker specific inflation factors across 10 phenotypes,
in addition to the genomic control inflation factor for each phenotypes. (B) The
distribution of marker specific inflation factors for height phenotype. (C) The p-
values of the height phenotype association when the estimated per-marker inflation
factors are less than 1.05 (30,679 SNPs) versus when they are (D) greater than 1.2
(18,204 SNPs).

factors. The distribution of marker specific inflation factors estimated from the
height phenotype showed mean 1.111, standard deviation of 0.087, and median value
of 1.098 (Figure 5.12B).

Recall that the inflation factors are estimated on the basis of correlation of
the genotypes with the IBS matrix, without reference to their association to the
phenotype. It is interesting, then, to explore the predictive power of marker specific
inflation factors for association p-values of uncorrected analysis. The distribution
of height association p-values for SNPs with inflation factor < 1.05 appears reason-
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ably close to uniform (Figure 5.12C), while the distribution of association p-values
for SNPs with inflation factor > 1.20 shows a clear excess of small p-values (Figure
5.12D). Given that SNPs with inflation factor > 1.20 are identified without consid-
eration of their possible association with the phenotype, one may safely assume that
this excess of small p-values is an over-dispersion effect.

These results underscore how applying the same deflation value to all test
statistics may be inappropriate, possibly reducing power and not sufficiently control-
ling for false positives. To further illustrate this point, we run a simple simulation
experiment assuming that the polygenic model at the basis of EMMAX (5.8), and
that none of the tested SNPs has a significant effect. Clearly, generating data under
this model puts our method at an advantage, but our goal here is not to illustrate its
superiority, but simply that under some circumstances uniformly deflating p-values
may be inappropriate.

We randomly simulated 100 sets of phenotypes solely from the polygenic back-
ground (i.e. βk = 0, σ2

e = 0), and examined the QQ plots before and after genomic
control. While the inflation is fairly well resolved in most of the SNPs after applying
genomic control, we observed a significant amount of fluctuation of the test statistics
at the tail of the distribution (Figure 5.13A,B). More than 20% of the phenotypes
showed inflation beyond the 95% confidence interval at the tail of the distribution,
and 5% showed deflation outside the confidence interval. On the other hand, when
EMMAX is used over the same sets of random phenotypes without applying genomic
control, the distribution of p-values closely follows the expected distribution (Figure
5.13C). This is because the SNPs with higher per-marker inflation factors tend to
have residual inflation after applying genomic control, which divides every test statis-
tic by a constant factor. When PCA is used, residual inflation was still observed,
consistent to previous results (Figure 5.13D). When PCA and genomic control is
combined, the inflation at the tail has been fairly well reduced, but it at least one
phenotype showed a noticeable departure from the expected distribution. (Figure
5.13E).

The results showing that a per-marker inflation factor greatly varies per SNP
have a considerable impact on the meta-analysis and multi-stage analysis. Many
current meta-analysis and multi-stage analysis combine the test statistics from after
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(a) t-test (b) t-test+GC (c) EMMAX

(d) PCA (e) PCA+GC

Figure 5.13: QQ plots of 100 randomly generated phenotypes under the variance
component model using a (a) t-test, (b) t-test after genomic control, (c) EMMAX,
(d) PCA with 100 PCs and (e) PCA after genomic control
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correcting for potential inflation using Genomic Control[238, 202, 2]. We evaluated
the concordance of marker specific inflation factors between different data sets. Since
WTCCC control samples consist of two sets of data, 1958 British Birth Cohort (58C)
and UK Blood Service Control (NBS)[223], we first compared the marker specific in-
flation factors between these data sets. It will be interesting to understand how
concordant these marker specific inflation factors are across different data sets that
are essentially collected from the same population. We observed a very strong cor-
relation (r = 0.95) of the expected per-marker inflation factors between the two
data sets (Figure 5.14A). We further compared the concordance of marker specific
inflation factors between the NFBC66 samples and WTCCC control samples. Since
these two data sets are genetically farther apart than between the two WTCCC con-
trol sets, we expect higher disconcordance of the marker specific inflation factors.
The discordance may further increase due to the fact that different genotyping array
platforms are used to collect the genotypes in different data sets. Nonetheless, when
we compared the marker specfic inflation factors of the 50,298 SNPs shared between
the two data sets (Figure 5.14B), we observed a strong correlation (r = 0.70), which
suggest that the marker specific inflation factors may be correlated across multiple
data sets in meta-analysis or multi-stage analysis. Because of this, the standard ap-
proaches may suffer from the accumulated residual confounding effect across multiple
studies, especially at the tail of the distribution, considering the simulation results
presented in the previous paragraph.

5.4 Discussion

We proposed an expedited mixed model approach for large human genome
wide association samples. Compared to principal component analysis, which iden-
tifies and corrects for population structure using the major axes of pairwise genetic
relatedness matrix, our method accounts for the entire relatedness matrix by means
of a linear mixed model, which has been demonstrated to be effective in model or-
ganism association mapping with complex sample structure. Compared to genomic
control, which only rescales the test statistics by a constant inflation factor across the
genome, our method alters the rank of marker associations through marker-specific
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Figure 5.14: Concordance of per-marker inflation factor (A) between two different
control sets (58C and NBS) in WTCCC data set, and (B) between NFBC66 samples
and WTCCC control samples using the 50,298 overlapping markers

correction for sample structure. Compared to the approach combining the above two
methods, our test statistics is mathematically more tractable. Our method achieves
much higher computational efficiency than previous mixed model methods by avoid-
ing separate variance component estimations across different markers. Our method
robustly corrects for over-dispersion of test statistics consistently across various quan-
titative and dichotomous phenotypes in NFBC66 and WTCCC data.

Accounting for marker specific effects from sample structure can be advanta-
geous over genomic control in reducing both false positives and false negatives. We
have demonstrated that the over-dispersion of test statistics may still exist at the
tail of distribution after applying genomic control through simulation studies. And
the over-dispersion may be exacerbated in meta-analysis or multi-stage analysis. It
was shown that the mixed model have higher statistical power than the genomic
control and PCA methods when the effect from sample structure is large such as in
model organisms[235, 103]. Although the gain in the power would be smaller for a
human population, the statistical power of our method is expected to be higher than
conventional methods, especially when the effect from sample structure is large.

Of course, our methodology is not the only one that leads to marker specific
correction. In particular, we have analyzed the result of including principal compo-
nents in the least squares association, and confirmed that it can be effective. This
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approach can successfully account for large-scale genetic difference due to a distinct
number of sub-populations. However, it is not designed to correct for cryptic relat-
edness. To make this point clear, let us consider an extreme example. To handle the
levels of familial relatedness typical of a sib-pair studies, we would need n/2 principal
components. Traditional variance component models, based on the kinship matrix,
can indeed deal with such familial relatedness. Our method can be viewed as an
extension of the variance component modes, to account for undocumented genetic
relationships amongst the study subjects, by leveraging the information from the
high-density genotypes. Kang et al.[102] presented an simulation study on eQTL
mapping using principal component analysis and a mixed model. They simulated
different types of confounding effects resembling the population structure effect be-
tween two different clusters of individuals, and familial relatedness effects between
pairs of individuals. The results show that principal components are only effective
in correcting for the former, while mixed models are effective in correcting for both
effects.

A number of recent studies have underscored the advantages of capitaliz-
ing on genetic similarity as measured by the IBS status of individuals across the
genome, or in specific genomic locations. For example, multimarker haplotype asso-
ciation tests can be constructed by taking into account the similarities between the
haplotypes[224, 187, 204, 205]. From another viewpoint, Guan et al.[77] proposed
using a similarity matrix to achieve a better matching of cases and controls prior to
testing. Adopting an approach very similar to the one proposed here, Zhao et. al[241]
applied the R package glmmPQL which uses a generalized linear mixed model with a
penalized quasi-likelihood to family-based study samples[28]. The results, however,
showed a significant level of under-dispersion of the test statistics. It is possible that
this unsatisfactory performance is due to the quasi-likelihood estimation procedure,
as we do not experience it with our data and algorithm.

The effective application of our method depends on the an appropriate esti-
mate of the variance components V = σ2

aŜN +σ2
eI. The IBS matrix appears to better

capture the long distance relationships that result on variations at the population
levels than IBD estimates. However, when the structure of the sample at hand is
better described in terms of fairly recent cryptic relatedness, methods based on the
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estimation of IBD may have an advantage. The example of RA in the WTCCC
dataset exemplifies the difficulties encountered by EMMAX when there are SNPs
strongly contributing to the phenotype. In such cases, one can carry out conditional
analysis, alleviating the problem. In principle, our approach is also suitable for as-
sociation mapping in a sample comprised of individuals from different populations
and with admixed background. In such cases, it is important to consider SNP as-
certainment bias in estimating the degree of relatedness between individuals. Since
many SNP probes in genotyping arrays are selected from European populations, the
IBS distance between two individuals may appear to be larger between unrelated
European samples than between unrelated individuals from other population. In
order to resolve the ascertainment bias, each SNP may be differently weighted when
computing the IBS similarity matrix. Kang et. al[103] presented a general frame-
work to compute the similarity matrix with different weight per marker. The effect
of ascertainment bias may be reduced if each marker is weighted by the number of
HapMap SNPs taggable by the marker. Different weighting schemes can be used to
account for heterogeneous genetic effects per marker or per genomic region.

Finally, while the analysis presented in this chapter relies on decomposing the
variance in two terms, V = σ2

aŜN + σ2
eI, it is straightforward to account for multi-

ple variance components to more precisely model heterogeneous relatedness matrix,
such as additive and dominant effects. In expression quantitative trait loci (eQTL)
mapping, for example, one may want to add additional variance components to ac-
count for technical bias using an additional variance component[102]. When multiple
variance components are involved, one would need to resort to algorithms as PROC
MIXED implemented in SAS, since EMMA is developed for two variance compo-
nents only; this would increase the running time of the first step of our procedure.
However, since the same variance components estimates will be used in GLS testing
across the genome, the the overall computational time should still be acceptable.

Chapter 5 is currently in submission for publication for the material. Hyun
Min Kang, Jae-hoon Sul, Susan Service, Noah Zaitlen, Sit-yee Kong, Nelson Freimer,
Chiara Sabatti, and Eleazar Eskin. “Accounting for sample structure in large scale
genome-wide association studies using a variance component model”. The disser-
tation author and Jae-hoon Sul are the primary investigators and authors of this
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paper.



Chapter 6

Accurate discovery of expression
quantitative trait loci under
confounding from spurious and
genuine regulatory hotspots

6.1 Motivation

Genome wide analysis of gene expression data in segregating populations has
been widely conducted to understand the genetic basis of regulation in many or-
ganisms including yeast[25], Arabidopsis[107], mouse[34, 29] and human[35, 198].
In order to understand the complex regulatory network, numerous statistical anal-
ysis methods have been proposed including clustering of co-regulated genes[236],
multipoint linkage analysis[195, 26], prediction of regulatory modules[117, 71], and
pathway enrichment analysis [199, 234].

Among these “genetical genomics” approaches, the most widely used statis-
tical analysis is expression quantitative trait loci (eQTL) mapping between genetic
variation and gene expression levels[27]. The goal of these studies is to identify as-
sociations between an individual genetic variation and the differential expression of
a gene that might help explain the transcriptional regulation of the gene. Many
recent studies have identified a large number of cis associations between eQTLs and

117
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the expression of genes in close proximity. They have also identified many more
trans associations between eQTLs and the expression of genes in other regions of the
genome[236, 34, 89]. An interesting observation consistent across multiple datasets
is that hundreds or even thousands of genes are trans-regulated by a small number of
genomic regions called “regulatory hotspots”[107, 34] and these associations appear
as “trans-regulatory bands” in eQTL plots regardless of the normalization method
used[89, 34, 29, 160, 229, 34].

Recent genetical genomics studies of yeast have provided much evidence sup-
porting the existence of global regulators that induce trans-regulatory bands[161, 66].
For mammalian expression datasets, although a large numbers of regulatory hotspots
have consistently been observed, the locations of these regulatory hotspots are in-
consistent between different datasets[89, 34, 160]. Simulation studies suggest that
spurious regulatory hotspots may be frequently observed in outbred populations[174,
46, 216].

Building on previous studies we examine two first-generation expression datasets
of recombinant inbred (RI) mice where their regulatory hotspots have been shown
to poorly replicate in previous studies[160]. Due to the high degree of systematic
confounding inherent in these datasets, it is particularly challenging to distinguish
true genetic effects from the spurious associations. The availability of biological
replicates in these datasets allows us to compare the level of true positives between
different methods. Two observations suggest that many trans-regulatory bands pre-
viously identified in these datasets correspond to “spurious” regulatory hotspots not
real genetic effects. First, the locations of regulatory hotspots are inconsistent across
disjoint sets of biologically replicated samples. Second, stronger trans-regulatory
bands frequently appear with randomly permuted SNPs. To understand the cause
of this phenomenon, we carefully examined these datasets and identified a surprising
pattern of inter-sample correlation where the pairwise correlations of expression ar-
rays between different strains are often stronger than between replicates of the same
strain.

Previous studies have shown that many factors contribute to the spurious cor-
relation between microarray samples including systematic bias from sources such as
technical variation in microarray manufacturing[38, 3], variations introduced during
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sample preparation such as the time postmortem a sample is collected, and varia-
tions introduced during expression measurements such as the batch of reagents used
or laboratory ozone levels[57, 24]. Such spurious inter-sample correlation are usu-
ally not completely resolved by randomized design of the experiment[38] or through
low-level normalization techniques[94, 233].

We suspect that when a SNP, by chance, segregates the strains in a manner
consistent with the inter-sample correlation, the p-values of associations between that
SNP and the transcripts are inflated leading to spurious associations and in extreme
cases, a “trans-regulatory band.” To verify this phenomenon, we constructed a set
of simulated data to intuitively show how complex inter-sample correlation structure
inherent in expression data leads to associations between genetic loci and a large
number of gene transcripts inducing spurious regulatory hotspots. When we generate
random expression data using the same inter-sample correlation structure found in
the recombinant inbred expression data, we observed exactly the same regulatory
hotspots.

Two types of computational approaches have previously been proposed to
reduce the effects of confounding factors in gene expression experiments. The first
type are methods that correct for known confounding factors, including ComBat[100],
which directly estimates the location and scale model parameters that represent the
batch effect using an empirical Bayes (EB) approach. The second type are methods
that correct for unknown confounding factors, including Surrogate Variable Analy-
sis (SVA)[118], which identifies, estimates and corrects for principal components of
expression heterogeneity.

We propose a statistical method that corrects for confounding effects induced
by complex inter-sample correlation of expression measurements in eQTL mapping
using a linear mixed model. Our Inter-sample Correlation Emended (ICE) eQTL
mapping directly incorporates the complex correlation structure into the statistical
model as a variance component accounting for random effects. Compared to Com-
Bat, our approach is not limited by prior knowledge of confounding factors and is
capable of capturing the complex correlation structure introduced by multiple known
and unknown effects. Compared to SVA which projects confounding effects onto sev-
eral distinct single dimensional vectors each treated as a fixed effect in the statistical
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model, our random effects model is not limited by the number of confounding vari-
ables because it does not explicitly infer and correct for each confounding variable.
Instead, our method only needs to estimate the total correlation between samples
and corrects for the cumulative effects over all confounding factors using the inter-
sample correlation structure. Furthermore, the statistical power of SVA decreases as
the number of confounding variables increases due to the loss of degrees of freedom
while our method always uses only one additional degree of freedom for the inter-
sample variance component. As a result, our method has the advantage that it is
able to correct for a mixture of strong and moderate confounding effects as shown
in our simulation studies while SVA is only able to correct for a number of strong
confounding factors.

To gain some intuition as to why our random effects model corrects for con-
founding factors, consider a pair of samples with a differing expression level for a
given gene and a marker SNP which segregates the pair of samples. If the remaining
gene expression values have similar expression values between the samples, intu-
itively this pair of samples provides more evidence that the SNP is associated with
the gene’s expression level than if the remaining gene expression values differ greatly
between the samples. In the later case, the expression difference of the gene between
the pair of samples is less informative given the large amount of global differences in
expression values between the samples, which may be due to a confounding factor
such as a batch effect.

We applied our statistical model to expression data from two mouse tissues
(hematopoetic stem cell and whole brain). In both cases, ICE eQTL mapping outper-
formed ComBat and SVA in eliminating the spurious trans-regulatory bands while
increasing the number of identified cis associations. The remaining trans associations
are more likely to be real genetic effects because they are concordant between tissues
and between replicates. In yeast, where global regulators have been previous identi-
fied, a separate permutation analysis showed that most of the regulatory hotspots are
likely to correspond to real genetic effects. Even though yeast regulatory hotspots
are likely to be genuine, they globally influence the expression levels and may seri-
ously confound the identification of gene-specific cis or trans associations[195, 118].
After applying ICE eQTL mapping to correct for the confounding effects from regu-
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latory hotspots, the number of cis associations almost doubled and the concordances
of cis and trans associations between disjoint subsets significantly improved. Fi-
nally in human lymphoblastoid cell lines, where other known batch effects have been
suggested[3], our analysis identified more real cis associations than methods that
explicitly correct for the batch effects. Our method is publicly available as an R
package at http://mouse.cs.ucla.edu/ice

6.2 Results

6.2.1 Spurious regulatory hotspots in recombinant inbred

mice

We analyzed the expression data from hematopoetic stem cells (HSC) and
whole brain tissue collected from BXD mice where prominent trans-regulatory bands
have previously been observed[34, 29]. However, most trans-regulatory bands found
in these first-generation mouse expression datasets do not overlap with trans-regulatory
bands from independent studies[130, 160]. We selected these datasets to evaluate and
correct for the systematic confounding effects for two reasons. First, the presence of
biological replicates allows us to quantify the level of systematic confounding effects
that are heavily imprinted in the datasets. Second, we demonstrate that even in
the presence of many complex systematic confounding effects, our method is able to
recover true genetic signals better than competing approaches.

We first examined the reproducibility of trans-regulatory bands between dif-
ferent sets of biological replicates. We defined a metric to quantify the strength of a
regulatory band allowing us to compare regulatory patterns between datasets. We
performed standard eQTL mapping using the t-test and defined the average log p-
values across all genes as the regulatory enrichment score. The resulting eQTL map
shows that this score correlates well with the prominence of a trans-regulatory band
(Figure 6.2a,6.2c). We created two disjoint subsets of expression experiments by
picking one of the replicates per strain and compared the enrichment scores between
them. Interestingly, the observed patterns of trans-regulatory bands are inconsis-
tent between the subsets (Figure 6.1a, 6.1b). The enrichment scores between the
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replicates are uncorrelated (Spearman r = −0.0067) in the BXD brain dataset. On
the other hand, the HSC dataset shows relatively high correlation of the enrichment
scores (Spearman r = 0.30) due to the batch effect shared between two groups of
strains.

Next, we examined whether regulatory hotspots are likely to be observed at
random SNPs by chance. If we observe stronger trans-regulatory bands with ran-
domly permuted SNP sets than the original trans-regulatory bands, then it suggests
that the original hotspots may not correspond to real genetic effects, but are rather
caused by co-regulation of a large number of transcripts[174, 216] or other systematic
confounding factors. Out of 1,000 random permutations, we observed hotspots with
higher enrichment scores than the strongest hotspot in the original dataset 890 and
643 times, corresponding to genome-wide adjusted p-values of 0.89 and 0.643, for
whole brain and HSC dataset, respectively. (Figure 6.1c, 6.1d). The inconsistencies
between biologically replicated samples and the occurrence of strong trans-regulatory
bands with permuted SNPs suggest that the observed trans-regulatory bands cor-
respond to spurious regulatory hotspots which do not correspond to real genetic
effects.

6.2.2 Inter-sample correlation as signatures of systematic

confounding effects

The question remains as to how systematic confounding effects cause spurious
regulatory hotspots. To gain intuition of this phenomenon, we examined the pair-
wise correlations between expression arrays or the inter-sample correlation structure.
After normalizing each gene’s expression levels across strains, we computed the cor-
relation between each strain pair and each replicate pair. The normalization ensures
that the correlation between truly unrelated strain pairs is expected to approach
zero, while the replicated pairs are likely to have higher correlation between them.
We observed that most of the inter-sample correlations in recombinant inbred mouse
strains do not correspond to real genetic effects. Correlation maps between intra
and inter strain replicates show that the diagonals are not pronounced, providing
striking evidence that replicated strain pairs are not correlated (Figure 6.3a,6.3b).
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Figure 6.1: Comparison of regulatory hotspots in BXD datasets (A) and (B) com-
pare the strength of trans-regulatory bands between replicated subsets, showing that
the hotspots are inconsistent between replicates. (C) and (D) compare between us-
ing permuted SNPs and using original SNPs, illustrating that even stronger trans-
regulatory bands are frequently observed using permuted SNPs. The horizontal axis
is the genomic positions of the markers in megabases, and the vertical axis is the
strength of regulatory hotspots quantified as the average log-p values at each marker
across all genes.
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(a) BXD whole brain, t-test (b) BXD whole brain, ICE

(c) BXD HSC, t-test (d) BXD HSC, ICE

Figure 6.2: (Continued to the next page)
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(e) Yeast, t-test (f) Yeast, ICE

Figure 6.2: Genome wide eQTL maps from (A,B) BXD recombinant inbred whole
brain dataset, (C,D) BXD recombinant inbred HSC dataset, and (E,F) yeast dataset,
using (A,C,E) standard t-test and (B,D,F) ICE eQTL mapping. The SNPs (hori-
zontal) and probes (vertical) are sorted according to genomic position, mapping each
pixel to the linkage between a marker and a gene. The color of each pixel represents
the strength of the linkage signal, with red being the strongest signal and white be-
ing the weakest. The yellow graph on top represents the strength of trans-regulatory
bands, quantified as the average log-p values at each SNP across all genes. There
are clear vertical trans-regulatory bands using the standard t-test to perform eQTL
mapping. Those bands are eliminated using ICE eQTL mapping. A total of 8,596
probes and 7,413 SNPs are mapped in the two mouse datasets, and 5,534 probes and
2,956 SNPs in the yeast dataset.
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Furthermore, the results show many unrelated strain pairs with much stronger cor-
relation than expected by chance. In the HSC correlation map, there is also a clear
division of two groups where members within a group are highly correlated. Upon
further analysis, we discovered that the expression measurements for the two groups
of individuals were collected in two batches three months apart.

In order to verify that the inter-sample correlation structure effectively cap-
tures the systematic confounding effects inducing spurious regulatory hotspots, we
created a simulated expression dataset preserving the inter-sample correlation struc-
ture. In this dataset, each SNP corresponds to one simulated transcript with cis-
regulatory effects accounting for 4% of the variance explained by the SNP. Standard
eQTL mapping with simulated data shows almost identical trans-regulatory bands as
the original data (Figure 6.10). The reason for this is that the SNPs which segregate
the strains in a manner consistent with the inter-sample correlation structure are
more likely to be associated with many expression transcripts. This result strongly
supports that most of the trans-regulatory bands are explained by the complex inter-
sample correlation structure inherent in expression data.

Furthermore, we evaluated how many transcripts are explained by the inter-
sample correlation structure using a variance component model (see Methods). At a
false discovery rate (FDR) of 0.05, we observed that 94.1% and 47.9% of the tran-
scripts are significantly associated with the correlation structure in the whole brain
and HSC datasets respectively. Since the HSC dataset has an obvious batch effect,
we also tested how many transcripts are differentially expressed between the two
batches using a t-test. At the FDR threshold of 0.05, only 20.0% of the transcripts
are differentially expressed. These results suggest that a significant portion of con-
founding effects in the HSC dataset are not captured by the known batch effect.
When applying SVA to test the significance of surrogates variables explaining the
expression levels, 88.7% and 40.9% of the transcripts were significantly associated
with the five and six identified surrogate variables of whole brain and HSC dataset,
respectively, demonstrating that inter-sample correlation captures more of the sys-
tematic confounding than what is captured by surrogate variables with fewer degrees
of freedom.
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(d) HapMap dataset (technical replicates)

Figure 6.3: Genome wide correlation coefficients were computed for each pair of samples
after standardizing each gene across the samples in (A) BXD RI whole brain and (B)
HSC datasets, (C) yeast dataset and (D) HapMap dataset. The x-axis represents one
subset of replicates and the y-axis represents the other. Each axis is ordered by strain
(mouse), segregant (yeast) or individual name (human). Each diagonal element represents
the strength of correlation between the replicated samples. Lower-triangular and upper-
triangular regions show the correlation coefficients among two disjoint subsets of replicated
samples.
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6.2.3 Inter-sample Correlation Emended (ICE) eQTL map-

ping

Motivated by our observation of inter-sample correlation, we propose a new
statistical method for identifying eQTLs based on a linear mixed model. Our method
first estimates the pairwise correlation between samples which can be accurately
estimated since there are thousands of probes in each sample. Instead of assuming
independent random variations of expression levels between samples, our method
assumes that a gene in pair of samples with globally correlated expression pattern
is more likely to have similar expression values than a gene in a pair of globally
uncorrelated samples. As a result, the variance component of expression levels at each
gene is estimated as a mixture of inter-sample correlation and independent errors.
A marker SNP is considered to be significantly associated with a transcript only if
it predicts the expression beyond the level suggested by the inter-sample correlation
(see Methods). Since spurious regulatory hotspots appear at marker SNPs consistent
with the inter-sample correlation structure, accounting for this correlation in the null
model significantly reduces these hotspots.

To demonstrate the effectiveness of our method, we first applied it to the sim-
ulated expression datasets presented in the previous section. Although the simulated
datasets contain only cis-acting eQTLs, traditional eQTL mapping identified both
the cis-acting band and spurious trans-regulatory bands (Figure 6.4a, 6.4c). The
ICE eQTL map shows no trans-regulatory bands and a much stronger cis-regulatory
band (Figure 6.4b, 6.4d). At a FDR level of 0.05, ICE eQTL mapping recovered 8.4%
of the simulated whole brain cis-acting eQTLs, which was more than an one hun-
dred fifty fold increase over the standard t-test and more than a three fold increase
over SVA. These results illustrate that our method not only eliminates suspicious
trans-regulatory bands but also has higher statistical power to recover real eQTLs
that might be masked by the correlation structure.

To better understand the relative performance of random effects models versus
fixed effects models on this problem, we analyzed our simulated data using the simple
t-test, SVA and ICE eQTL mapping. At a SNP effect explaining 5% of phenotypic
variations and a systematic confounding effect of 75%, we see that both the fixed
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(a) BXD whole brain, t-test (b) BXD whole brain, ICE

(c) BXD HSC, t-test (d) BXD HSC, ICE

Figure 6.4: Refer to next page for details.
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(e) Yeast, t-test (f) Yeast, ICE

Figure 6.4: Simulated expression datasets are generated preserving inter-sample cor-
relation structure of expressions, and traditional and ICE eQTL mapping is applied
to the datasets. Six eQTL maps are plotted from (A,B) BXD recombinant inbred
whole brain dataset, (C,D) BXD recombinant inbred HSC dataset, and (E,F) yeast
dataset, using (A,C,E) standard t-test and (B,D,F) ICE eQTL mapping. There are
almost identical pattern of regulatory hotspots observed in the original dataset with
standard t-test, and they are eliminated after applying ICE eQTL mapping. Each
SNP (horizontal) and probe (vertical) are sorted according to genomic positions,
mapping each pixel to the linkage between a marker and a gene. The color of each
pixel represents the strength of linkage signal. The yellow graph on the top repre-
sents the strength of trans-regulatory bands, quantified as the average log-p values at
each SNP across all the genes. A total of 7,413 probes and 7,413 SNPs are simulated
and mapped in two mouse datasets, and 2,956 probes and 2,956 SNPs in the yeast
dataset.
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effect model (SVA) and our random effects model (ICE eQTL) outperforms the
simple t-test in discovering true positives when the samples are correlated in two
batches (Figure 6.5d). When the samples are correlated within smaller groups of
size two, we see that ICE eQTL outperforms SVA and the simple t-test (Figure
6.5e). In the mixture of large group and small group effects, which we expect to
see in real datasets, we again see that ICE eQTL outperforms SVA and the simple
t-test (Figure 6.5f). Under complex systematic confounding effects, because the
fixed effects model requires a large number of confounding variables to completely
correct for the confounding, it loses many degrees of freedom and the estimation of
confounding variables becomes less accurate, resulting in the loss of statistical power.

It should be noted that ICE fundamentally differs from traditional mixed
model methods such as MANOVA in that it estimates the variance component di-
rectly from the expression data. By leveraging the massive number of probes, ICE
can accurately estimate the inter-sample correlation. Although we have used block-
structure variance components as examples of systematic confounding in the above
simulations, the estimated variance components typically have a much more complex
structure. On the other hand, MANOVA uses predefined variance components which
are usually block-structured to model random effects specific to groups of samples
such as batches, cages, cohorts, or strains, depending on the context of the statistical
analysis. Since these variance components are predefined, MANOVA can not correct
for unknown confounding factors.

We next applied ICE eQTL mapping to real whole brain and HSC expression
datasets from BXD RI mice. In both cases, ICE eQTL mapping eliminated the
trans-regulatory bands while enhancing the cis-regulatory bands (Figure 6.2b,6.2d).
The number of significant cis-acting eQTLs discovered increased dramatically. The
enrichment in cis-acting eQTLs serves as a good indicator of the statistical power
to identify differential expressions due to true genetic effects, even though some
of the cis-associations might be due to polymorphic SNPs residing in the probe
sequences[214]. For the whole brain dataset, ICE eQTL mapping identified nearly
three times as many genes with cis-acting eQTLs (120) as the t-test (43) and 52%
more than SVA (79) at a significance level of ten false positives per genome (Table
6.1, Figure 6.7). ICE eQTL mapping of the HSC dataset showed fewer significant
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Figure 6.5: Statistical power under systematic confounding from (A) large group
(batch) correlation, (B) small group (pairwise) correlation and (C) a combination of
batch and pairwise correlation structures in gene expression, using t-test, SVA, and
ICE eQTL mapping, presented in (D), (E), and (F), respectively. All the p-values in
the eQTL map are ranked and the fraction of true positives is plotted across different
quantile of the p-values. For example, in among top 0.1% of p-values in (D), 27% of
the signals are true positives with ICE-eQTL mapping, and 12% and 10% are true
positives with SVA and t-test
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(a) Large group correlation (b) Small group correlation (c) Mixed correlation

Figure 6.6: Different systematic confounding effects lead to different pattern of trans-
regulatory bands. (A) large group (batch) correlation, (B) small group (pairwise)
correlation and (C) a combination of pairwise and batch correlation structures. The
combination of pairwise and batch correlation effects result in an eQTL map similar
to those observed in real data sets.

eQTLs due to the reduced power of having a limited number of strains in the dataset.
Nevertheless, similar to the whole brain results, our method consistently identified
more genes with cis-acting eQTLs (23) than the t-test (19) and SVA (14). In this
case SVA was outperformed by the t-test because having a large number of surrogate
variables significantly reduced the degrees of freedom.

Similar to how the number of cis associations detected is a good measure of
increased power to identify true genetic effects, another measure is the concordance
of association between biologically replicated samples. We leveraged the replicated
samples of the BXD datasets to measure the concordances of cis and trans eQTLs
between replicates. After ordering the transcripts according to the strength of asso-
ciation for each replicated set, we plotted the concordances of cis and trans associ-
ations between the sets using CAT concordance plots[95]. In HSC and brain, both
cis and trans eQTLs between replicates are significantly more concordant with ICE
eQTL mapping (Figure 6.8a, 6.8b) than the t-test and SVA. Finally, we compared
the results between whole brain and HSC datasets to see if the trans-acting eQTLs
are replicable across different tissues. Previous studies have suggested that most
trans-regulatory elements are tissue-specific because they have not been replicated
in different tissues[34]. We postulate that most trans-regulatory elements were not
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Table 6.1: Number of genes with significant cis and trans eQTLs in three datasets
at different number of expected false positives. Total of 5,534 genes are tested in the
yeast dataset, and 8,596 genes are tested in two BXD mouse datasets.

Dataset type method E(false positives)
100 10 1

Yeast cis t-test 646 506 398
SVA 817 617 490
ICE 1118 935 757

trans t-test 1845 1067 738
SVA 612 293 167
ICE 539 363 263

BXD whole brain cis t-test 71 43 32
SVA 148 79 42
ICE 193 120 69

trans t-test 201 61 22
SVA 82 11 5
ICE 131 21 11

BXD HSC cis t-test 40 19 10
SVA 28 14 12
ICE 50 23 13

trans t-test 94 8 1
SVA 102 11 1
ICE 103 9 1
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Figure 6.7: Number of genes with significant cis-acting and trans-acting eQTLs
at various p-value thresholds in the (A) BXD whole brain dataset, (B) BXD HSC
dataset, (C) yeast dataset. The horizontal axis represents the genome wide p-values
of the most significant cis association or trans association for each gene, adjusted
by Bonferroni correction using the number of non-redundant SNPs. The vertical
axis represents the number of genes with significant associations at a given p-value
threshold. In all three datasets, ICE eQTL mapping outperformed traditional eQTL
mapping by consistently finding more cis associations at all p-value cutoffs. It also
consistently found more real trans associations at low p-value cutoffs while fewer
spurious trans associations at moderate p-value cutoffs in mouse.
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replicated across tissues in previous studies because they are spurious associations
caused by confounding factors. We ordered the transcripts based on the strength of
trans-acting eQTLs for each dataset, and computed the Spearman’s rank correlation
between the two datasets. The p-values of correlation obtained from the standard
t-test show a slightly negative correlation (r = −0.012), with a one-sided p-value of
0.857. However, the ICE eQTLs show much higher rank-concordance between the
tissues with a p-value of 1.1× 10−7 (r = 0.056). The CAT concordance plot[95] also
shows that ICE eQTL mapping results are significantly more concordant between
tissues (Figure 6.8c). This suggests that a significant fraction of real trans-acting
eQTLs are not tissue-specific, and many of the previously identified trans-acting
eQTLs did not replicate since they are largely confounded by spurious associations.

6.2.4 Some trans-regulatory bands in high quality datasets

are likely to correspond to real genetic effects

In the previous sections, we demonstrated the ability of ICE eQTL map-
ping to obtain reliable and consistent associations in first generation mouse datasets
that have been previously shown to have little reproducibility between indepen-
dent data sets[160]. Second generation datasets collected using better protocols
and newer expression chips such as Affymetrix M430v2 are of higher quality, result-
ing in much higher correlation between replicated samples than between unrelated
pairs. Nevertheless, not only do these studies still suffer from moderate levels of
inter-sample correlation between unrelated pairs (Figure 6.9), potentially genuine
regulatory hotspots globally affect the expression levels and may confound the iden-
tification of gene-specific cis or trans associations[195, 118]. In this section, we
analyze one of the classic genetical genomics dataset in yeast where global regula-
tors have been previously reported by several studies[161, 66, 27, 242]. Under the
confounding effects from such genuine regulatory hotspots, we demonstrate that ICE
eQTL mapping identifies more cis and trans associations that are consistent between
disjoint datasets.

Yeast expression profiles and genotypes were collected from 112 segregants de-
rived by crossing the lab isogeneic BY4716 strain with the wild RM11-1A isolate[27,
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Figure 6.8: Concordance of eQTLs between replicates, tissues, and populations.
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line. The ICE eQTL mapping shows higher concordance of both cis and trans eQTLs
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HSC dataset, (C) between whole brain and HSC of BXD datasets, (D) between
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Figure 6.9: Genome wide correlation coefficients were computed for each pair of
samples after standardizing each gene across the samples in BXD RI whole brain
datasets using M430v2 arrays (Williams RW, unpublished).The x-axis represents
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relation coefficients among two disjoint subsets of replicated samples, covering 30
biologically replicated strains. The diagonal is moderately pronounced suggesting
that these dataset is of higher quality than the previous dataset.
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25]. There are several differences between the yeast and the BXD RI datasets.
First, the technological differences between the cDNA arrays used for yeast and the
Affymetrix GeneChips used for mice may lead to very different patterns of systematic
bias. Second, having a larger number of strains increases the number of eQTLs ex-
pected at the same significance level due to increased power. Third, since biological
replicates are not available in the yeast dataset, it is difficult to determine whether
the appearance of regulatory hotspots is caused by a systematic bias or a real genetic
effect. Although the dye-swap results provide us with technical replicates, they are
not suitable for verifying real hotspots because a dye-swap pair tend to have much
stronger correlation than a pair of biological replicates due to smaller environmental
or sampling biases between replicates than between unrelated samples (Figure 6.3c).
This correlation may lead to the biased conclusion that most regulatory hotspots are
highly reproducible.

After applying traditional eQTL mapping, we observed strong trans-regulatory
bands, many of which are consistent with the inter-sample correlation structure (Fig-
ure 6.2e). However, unlike in the BXD recombinant inbred strains, several of the
bands remained significant after performing permutation analysis. Three genomic
regions in chromosome 2 (521 584kb), 14 (418 502kb), and 15 (171 193kb) had genome
wide significant p-values of less than 0.05 with the most significant p = 2 × 10−4.
This suggests that these trans-regulatory bands may be the result of real genetic
effects rather than confounding effects. Recently, linkage studies of small-molecule
drug response traits with the same set of yeast strains have shown that most of
the QTL hotspots of these traits fall into the same genomic region where the bands
occur[161]. Since the yeast dataset does not have biological replicates, we instead
randomly divided the 112 segregants into two disjoint sets to perform eQTL map-
pings separately. If the regulatory hotspots are not real genetic effects, it would be
unlikely that the same regulatory hotspot consistently appear between the disjoint
sets. However, most of hotspots between the sets coincide, suggesting that they
correspond to real genetic effects (Figure 6.10d).

We further tried to understand the biological importance of those significant
trans-regulatory bands in the yeast data. We listed all 61 genes within 10kb of the
significant regulatory hotspots and queried the set of genes in the Comprehensive



142

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 0  500  1000  1500  2000  2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X Y

Av
er

ag
e 

lo
g-

p 
va

lu
es

Genomic position in Mb

Chromosomes

BXD whole brain original dataset
BXD whole brain simulated dataset

Expected

(a) Simulated BXD whole brain dataset

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 0  500  1000  1500  2000  2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X Y

Av
er

ag
e 

lo
g-

p 
va

lu
es

Genomic position in Mb

Chromosomes

BXD HSC original dataset
BXD HSC simulated dataset

Expected

(b) Simulated BXD HSC dataset

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10  12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Av
er

ag
e 

lo
g-

p 
va

lu
es

Genomic position in Mb

Chromosomes

Yeast original dataset
Yeast simulated dataset

Expected

(c) Simulated yeast dataset

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 0  2  4  6  8  10  12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Av
er

ag
e 

lo
g-

p 
va

lu
es

Genomic position in Mb

Chromosomes

Yeast subset 1
Yeast subset 2

Expected

(d) Between disjoint subsets of yeast strains

Figure 6.10: Expression datasets were simulated preserving inter-sample correlation struc-
ture of expressions, and the regulatory hotspots computed from the simulated dataset were
compared to those from the original dataset, in (A) the BXD whole brain dataset (B) the
BXD HSC dataset, and (C) the yeast dataset. (D) is the comparison between disjoint
subsets of yeast strains, showing that regulatory hotspots are reproduced with indepen-
dent sets of samples. The simulated datasets almost perfectly reproduced the original
regulatory hotspots, suggesting that the inter-sample correlation is the primary source of
spurious regulatory hotspots. The horizontal axis is genomic positions of the markers in
megabases, and the vertical axis is the strength of regulatory hotspots quantified as the
average log-p values at each marker across all the genes. (See Figure 6.1).
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Yeast Genome Database (CYGD)[81, 180]. Interestingly, the three regions with
significant hotspots on chromosomes 2, 14 and 15, contain IRA1, RAS2, and IRA2,
respectively. It has been known that IRA1 and IRA2 genes negatively regulate the
RAS2 protein activation state from multiple studies[201, 42]. The probability of
three genes appearing in a random set of 61 genes is 1.3×10−6. There are also other
genes that encode small GTP-binding proteins of the RAS superfamily such as ARL1,
RHO2 and YPT53 near the significant regulatory hotspots. It is possible that the
variations in those regions may change the mRNA levels of a large number of genes
by perturbing the RAS GTP-binding signal transduction pathway. However, under
this interpretation, it is not certain why a portion of mRNA levels are up-regulated
while others are down-regulated by the same variant in those regulatory hotspots.
In addition, a recent study suggest that MKT1 is the causal regulator that may be
responsible for the regulatory hotspot in chromosome 14[242].

Even though many trans-regulatory bands in yeast are likely to be real ge-
netic effect, they globally influence the expression levels and may seriously confound
the identification of gene-specific cis or trans associations[195, 118], resulting in the
loss of power to identify real cis and trans associations. Correcting for the inter-
sample correlation induced by genuine regulatory hotspots may eliminate true trans-
regulatory bands, but also can reveal many true regulatory signals obscured by the
hotspots. We compared the power of different eQTL mapping methods at identifying
true genetic effects by randomly partitioning the dataset as described above. In each
partition, the transcripts are ordered by the strength of cis or trans associations,
and the concordance between the disjointly partitioned datasets are illustrated using
the CAT plot (Figure 6.8d). The results show that ICE eQTL mapping have higher
concordance than the t-test and SVA both for cis-acting and trans-acting eQTLs,
despite the loss of true regulatory hotspots.

We applied ICE eQTL mapping to the entire yeast dataset and observed that
the trans-regulatory bands are eliminated while the genes with significant cis as-
sociations is nearly doubled (Figure 6.2f, Table 6.1, Figure 6.7). The number of
genes with trans-acting eQTLs are significantly reduced using ICE eQTL mapping
due to eliminated regulatory bands, but many new trans-acting genes that have not
been identified by the t-test are discovered. For example, among the 363 significant
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(a) BXD whole brain, SVA (b) BXD HSC, SVA (c) Yeast, SVA

Figure 6.11: Genome wide eQTL maps from (A) BXD recombinant inbred whole
brain dataset, (B) BXD recombinant inbred HSC dataset, and (C) yeast dataset,
using Surrogate Variable Analysis[118]. The SNPs (horizontal) and probes (vertical)
are sorted according to genomic position, mapping each pixel to the linkage between
a marker and a gene. The color of each pixel represents the strength of the linkage
signal, with red being the strongest signal and white being the weakest. The yellow
graph on top represents the strength of trans-regulatory bands, quantified as the
average log-p values at each SNP across all genes. Unlike ICE eQTL mapping, some
vertical trans-regulatory bands remain using SVA. But even more problematic is
the elimination of cis-associations on chromosome 12 of the yeast data due to over
correction. A total of 8,596 probes and 7,413 SNPs are mapped in the two mouse
datasets, and 5,534 probes and 2,956 SNPs in the yeast dataset.

trans-acting genes identified by ICE eQTL mapping at the significance of ten false
positives per genome, 25% (89) of them are not identified by the t-test at the same
threshold. On the contrary, only 7% (35) of the 506 significant cis-associated genes
identified by the t-test are not identified by ICE eQTL mapping at the same signif-
icance level. ICE eQTL mapping outperforms SVA in discovering cis-acting eQTLs
across different significance thresholds. For trans-acting eQTLs, ICE identifies larger
number of eQTLs for conservative significance threshold of FDR less than 0.1, while
SVA identifies more eQTLs for higher thresholds. This may be due to the effects
from the moderate regulatory hotspots that have not been captured by surrogate
variables as appeared in Figure 6.11c. In this dataset, SVA appears to over correct
for the trans-regulatory bands and eliminated even the the cis-acting eQTLs in the
middle of chromosome 12. (Figure 6.11c).
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6.2.5 Correcting for confounding effects in human lympho-

blastoid cell line expression

Finally, we applied our method to a human genetical genomics study of the
HapMap individuals where the goal was to determine whether differentially expressed
genes between CEU and JPT+CHB populations are caused by allelic or population
differences. It is known that the HapMap expression experiments were conducted on
different dates for the CEU and JPT+CHB populations and the problems introduced
by this batch effect have recently been addressed [3]. While the original paper claimed
that 26% of genes are differentially expressed between European and Asian samples
at a genome wide Sidak-corrected p < 0.05, none of them were identified to be
significant after controlling for the year in which the sample was processed. In fact,
with respect to this batch effect, 28% of the genes were differentially expressed.

We applied ICE eQTL mapping to identify differentially expressed genes. Our
method is able to control for the inflated false positives of differentially expressed
genes without the prior knowledge of batch information. The p-value distribution
appears to be almost uniform (Figure 6.12). Spielman et. al. provided POMZP3 as
an example of a differentially expressed gene between the two populations to demon-
strate that not all of their findings were false positives[3]. The gene was associated
with a cis-regulatory SNP, whose allele frequency was significantly different between
the two populations. We examined how strongly the POMZP3 gene is differentially
expressed using three different methods. Without correcting for confounding effects,
the gene is significant at a p-value of 1.91 × 10−6. However, since numerous other
genes are identified to be significant, the strength of the signal is ranked only 943th
(23.4%) out of 4,030 genes. After explicitly correcting for the year of the experiment
using ComBat[100], the gene is no longer significant at a p-value of 0.309. However,
the signal is ranked relatively high, 434th (10.8%) out of 4,030 genes. After correcting
using SVA, it is ranked only 1992th (49.4%) with a p-value of 0.352. After correcting
for the inter-sample correlation pattern using our method, the gene is ranked 6th
(0.15%) at a p-value of 3.1× 10−4. Using the same approach, we examined the top 5
genes among the 11 genes reported as differentially expressed genes with concordant
cis-eQTLs between populations. Correcting for inter-sample correlation consistently
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outperformed the other methods at identifying those genes as differentially expressed
with higher ranks (Table 6.2).

We next performed ICE eQTL mapping and compared the cis associations
with those obtained from t-test based mapping and batch-corrected mapping. We
analyzed a total of 3942 genes within 500kb of at least one of the 2 million HapMap
SNPs. In both CEU and JPT+CHB populations, the number of genes with cis
associations increased significantly with our method (Figure 6.14a, 6.14b). eQTL
mapping performed after correcting for the known batch effect using ComBat did not
significantly outperform the t-test. Furthermore, the concordance of cis-acting genes
between populations significantly increased as well, suggesting that ICE association
mapping has higher power to identify real genetic effects (Figure 6.8e).

Finally, we applied our method to identify differentially expressed genes with
evidence of concordant cis-acting SNP between populations. We applied a more
stringent threshold than previous studies[3] by requiring the cis-acting SNP to have
a genome wide p-value of less than 2.5×10−8 in at least one population and a strong
p-value of less than 10−5 in the other after Bonferroni correction. In addition, we
required the minor allele frequency of the SNP to differ by at least 0.1, and the
strength of differential expression to be ranked in the top 10% of all genes. Using
these stringent criteria, only two genes are identified using the t-test, and three genes
are identified after explicitly correcting for the batch effect. On the other hand, ICE
association mapping successfully identified 10 differentially expressed genes including
four previously unreported (Table 6.3).

6.2.6 Comparison with previous methods

A key difference of ICE association mapping from the previous methods using
singular value decomposition[5, 118] is that previous methods project the systematic
confounding onto several distinct single dimensional vectors as fixed effects while ICE
association mapping directly incorporates the pairwise correlation as random effects
into the statistical model. For previously known confounding variables such as batch
effects, both methods can incorporate them as fixed effects in the statistical model.
While the singular value decomposition methods infers a number of confounding
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Figure 6.12: Differential expressions between two HapMap populations are tested
using three different methods: (A) t-test using the original uncorrected expressions,
(B) Batch correction by the year of experiment, (C) Surrogate Variable Analysis,
and (D) ICE association mapping. The horizontal axis represents the p-values of
differential expression for each gene using three different methods, and the vertical
axis is the frequency of each interval out of 4,030 genes.
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Figure 6.14: Number of genes with significant cis associations at various p-value
threshold for (A) European-derived and (B) Asian-derived populations among
HapMap samples. The standard t-test without correction, t-test after correcting for
the previously known batch effect (year of experiment), and ICE association map-
ping are compared. The horizontal axis represents the Bonferroni adjusted p-values
of the most significant cis association for each gene, and the vertical axis represents
the number of genes with significant associations at a given p-value threshold. In
both populations, ICE eQTL mapping outperformed traditional eQTL mapping by
consistently finding more cis associations at all p-value cutoffs. Batch corrected
eQTL mapping does not outperform traditional eQTL mapping.
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factors strongly affecting the variations in expression, those with relatively moderate
effects may remain uncorrected. Our mixed model approach ICE does not suffer from
this shortcoming since it does not explicitly infer a limited number of confounding
variables. Instead, the confounding effects from various unknown sources are assumed
to be intrinsically imprinted in the expression profiles, specifically as inter-sample
correlation.

The simulation results under various types of confounding effects we presented
above (Figure 6.5) are largely consistent with those seen with applying random mod-
els versus fixed models on the related problem of correcting for population structure
in association studies. Previous studies showed that the random effects model cor-
rects for the heterogeneous population structure better than a fixed effects model
based on principal component analysis such as EIGENSTRAT for model organisms
association mapping[235, 240, 103]. Although EIGENSTRAT can robustly correct
for population structure in human association mapping where an admixture model
assuming a small number of distinct ancestral populations accurately describes the
structure of the data[170, 168], in the model organism association mapping involving
multi-level population structure, such methods only partially capture the population
structure resulting in an inflated number of false positives[8]. Similarly, we see that
fixed effects models can effectively correct for inter-sample correlation where there’s
relatively simple confounding structure such as batch effects while the random ef-
fects model performs much better when we have more complex and multi-leveled
confounding structures we see in simulated and real data sets.

A second intuition why mixed models outperform SVD methods in this case is
that a large number of surrogate variables or eigengenes are required to capture the
complex expression heterogeneity, resulting in a significant increase in the degrees of
freedom which affects the statistical power. These effects can be substantial especially
for those datasets with a limited number of samples. For example, in the HSC dataset
containing only 22 strains, SVA was shown to be even less powerful than the t-test
in identifying cis-acting eQTLs.

Both approaches have potential risk of over correcting true genetic effects, es-
pecially for those trans-acting eQTLs corresponding to true regulatory hotspots. The
concordance plots between replicated and disjointly partitioned datasets consistently
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show that our ICE association mapping provides higher concordance than standard
t-test at identifying both cis-acting and trans-acting eQTLs, while SVA method con-
sistently shows lower concordance of trans-acting eQTLs than standard t-test (Figure
6.8). Although some genuine regulatory hotspots may have been eliminated using
ICE eQTL mapping particularly in the yeast dataset, we were able to identify some
of the regulatory hotspots as significant through the analysis of replicates and our
SNP permutation approach.

In terms of the computational cost, the running time of ICE association map-
ping is twice as fast as SVA using Efficient Mixed Model Association (EMMA)[103].

6.3 Discussion

We have proposed a novel statistical method, Inter-sample Correlation Emen-
ded (ICE) eQTL mapping which corrects for the systematic confounding effects in-
herent in expression datasets. Using the first-generation RI mouse expression dataset
where the problem of systematic confounding effects has already been documented,
we have demonstrated that most trans-regulatory bands in the dataset correspond
to spurious regulatory hotspots through the analysis of biological replicates and the
permutation analysis. Using simulated data that preserves the inter-sample expres-
sion correlation structure, we have shown that the inter-sample correlation effectively
characterize the systematic biases that are responsible for the spurious associations.
Using the same methods, we demonstrated that a number of trans-regulatory bands
in yeast correspond to genetic variation in global regulators.

From both differential expression analysis in human and association analysis
in recombinant inbred mice and yeast, we conclude that our method is more robust
at correcting for systematic confounding factors than previous methods including
an explicit batch correction method, ComBat[100] and an automated method that
corrects for unknown confounding factors, Surrogate Variable Analysis[118]. Not
only did ICE eQTL mapping identify more cis-acting eQTLs than both methods,
those identified cis-acting and trans-acting eQTLs also showed higher concordance
between replicated datasets (BXD RI strains), different tissues (BXD RI strains), and
disjoint subsets (yeast). These results suggest that our method has higher power to
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identify associations corresponding to real genetic effects.
Our results also highlight the importance of obtaining independent replicates

of expression measurements and the utility of these replicates for analyzing and vali-
dating eQTLs. We have shown that different strategies for obtaining replicates have
profound effects on the correlation structure between replicates. Technical repli-
cates obtained by either performing a dye-swap (Figure 6.3c) or running multiple
expression arrays in the same sample (Figure 6.3d) exhibit much higher correlation
between replicate pairs than full biological replicates (Figures 6.3a and 6.3b). We
suspect that confounding factors in the sample preparation are largely responsible
for the higher pairwise correlation observed among technical replicates reducing their
utility in analysis and validation. Preparing multiple samples from the same individ-
ual can help reduce the effect of these confounding factors. In many eQTL studies, it
is possible to independently measure expression from genetically identical individuals
which can further reduce the effects of these confounding factors.

6.4 Materials and methods

6.4.1 Gene expression data and genetic maps

We obtained the yeast expression dataset over 112 segregants across 6,216
probes from the GEO database with accession number GSE1990[25]. Each of them
has two replicates, and the values are represented as the log ratio between the ex-
pression and the average expression of the reference(BY) strains. 5,534 genes with
validated genomic annotations were mapped onto the genome to draw the genome
wide eQTL maps. For BXD RI datasets, we obtained the hematopoetic stem cell
(HSC) data from the GEO database with accession number GSE2031, and the whole
brain dataset by request from the authors. Both datasets use the Affymetrix U74Av2
GeneChip platform and contain 12,422 probes. 8,596 probes were mapped onto NCBI
build 34 version of the mouse genome using refSeq to draw the eQTL maps. The HSC
dataset contains the expression data over 22 strains with duplicates for each strain,
and the whole brain dataset contains 64 samples over 28 strains, varying one to four
measurements per strain. The second generation whole brain dataset using M430v2
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arrays downloaded from GeneNetwork (http://www.genenetwork.org) con-
tains expression profiles over 45102 probes across 30 BXD RI strains with up to 6
replicates per strain. Their expression values were normalized using RMA[94].

We obtained the human lymphoblastoid cell line expression data over the
HapMap individuals from the GEO database with accession number GSE5859 [192].
There are a total of 141 samples, 60 from CEU and 81 from JPT+CHB. Although
the Affymetrix Genome Focus Array contains 8,500 annotated genes, we focused on
the 4,030 that are expressed in lymphoblastoid cell lines defined the same way as
Spielman, et. al [192].

The genetic map of 2,956 SNPs of yeast segregants were obtained by request
from the authors. The BXD RI SNPs were obtained from the Wellcome Trust Center,
containing 13,270 SNPs over the genome, of which 7,413 SNPs are polymorphic
between the two parental strains. Sixty-one and 25 SNPs with minor allele frequency
less than 5% were discarded in the HSC and the whole brain datasets respectively.
A very small portion of heterogeneous alleles in the RI strains were assumed to have
additive effects, and the missing SNPs were not resolved. The genetic map for the
HapMap samples were obtained using release 22 of the human HapMap[93]. We
examined a total of 3942 genes that are within 500kb of at least one of the 2 million
HapMap SNPs.

6.4.2 Traditional eQTL mapping and genome wide eQTL

maps

Traditional eQTL mapping was performed by taking the average of expression
values of each strain and performing t-test between each marker SNP and each
transcript. The eQTL mapping using either of the replicates was performed in the
same way except that the samples were divided into two disjoint sets of expression
experiments by randomly picking one of the replicates. For the seven strains that
have only one measurement in the BXD whole brain dataset, they were included in
both sets. Missing SNPs or missing expression values were excluded in the test only
for the corresponding marker-transcript pair, and the p-value was obtained from the
asymptotic t-distribution.
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Genome-wide eQTL maps were plotted based on the relative genomic posi-
tions of each transcripts and marker SNPs. Since the previously suggested transcrip-
tome map[34] may create artificial horizontal bands due to non-uniform genomic
densities of the probes, we used an eQTL map based on the relative positions of
markers and probes, simply corresponding each marker-transcript association to one
pixel. The degree of redness of each pixel is proportional to the log p-values.

6.4.3 Explicit batch effect correction and Surrogate Variable

Analysis

We explicitly corrected for known batch effects using the ComBat R package
[100]. We used the default settings and the batch corrected expression levels were
used to perform traditional eQTL mapping using the t-test.

For surrogate variable analysis, we used SVA R package downloaded from
the author’s website, identifying surrogate variables ignoring the genotype data as
suggested [118]. The p-values are obtained using a linear model after correcting for
the surrogate variables.

6.4.4 Genome wide inter-sample correlation

An inter-sample correlation matrix from a expression dataset is generated as
follows. Let Y be am×n expression matrix with n arrays form genes, then the inter-
sample correlation matrix is generated as follows. Let µi, σi be the mean and standard
deviation of expression values of i-th genes, (Yi1, Yi2, · · · , Yin. Let Z be a m × n

matrix with each element Zij = (Yij−µi)/σi, then the inter-sample correlation matrix
defined as the covariance matrix of Z. It should be noted that we used the covariance
matrix K = Cov(Z) instead of the correlation matrix because the variances are not
homogeneous across the strains. Such heterogeneous distribution of variances can be
an additional source of systematic confounding but is not emphasized in the main
text for the sake of simplicity.

In order to visually compare the consistency between replicated pairs and un-
related pairs, we used the correlation matrix of Z for each replicated dataset because
the correlation matrix can be more intuitively to understood than the covariance
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matrix. Each diagonal element represents the pairwise correlation of a replicated
pair. In the upper-triangular region, the correlations between unrelated pairs in one
subset of replicates was computed and visualized. In the lower-triangular region, the
other subset was computed and visualized. The seven strains without replicates in
the BXD whole brain dataset were omitted in the heatmap visualization.

6.4.5 Simulation studies

The eQTL mapping with permuted SNPs was performed by permuting the
SNPs across the individuals, thereby preserving the correlation between each pair
of SNPs. For generating the simulated expression data preserving the genome wide
correlation pattern, we assumed the following generalized linear model.

y = αg + u (6.1)

where g represents SNPs encoded by 0 and 1, and u is a multivariate normal
random variable sampled from N(0, K). K = Cov(Z) is the inter-sample correlation
matrix defined in the previous section. α is set so that cis-regulatory effects account
for 4% of the phenotypic variation explained by each causal SNP. The number of
significant cis-eQTLs are counted using a conservative FDR estimate with π0 = 1,
considering only the SNP and simulated gene pair where the cis-regulatory effects
are simulated.

For the comparison of various systematic confounding effects, we simulated
expression datasets of 500 genes over 50 samples from three different inter-sample
correlation structure described in Figure 6.5, with 75% of phenotypic variations ex-
plained by the confounding effects using a multivariate normal distribution[103]. We
generated a random SNP of minor allele frequency of 0.3 for each gene, and added
a SNP effect explaining 5% of phenotypic variation. We performed eQTL mapping
using t-test, SVA, and ICE eQTL mapping for all 500 × 500 SNP-gene pairs, and
computed the true positive rates at each p-value cutoff.
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6.4.6 Variance component test

We applied the following variance component model to assess the statistical
significance of each association in the presence of genome wide correlation.

y = Xβ + u + e (6.2)

where X, β is the fixed effects of known confounding variables and their coef-
ficients, and u ∼ N(0, σ2

gK) and e ∼ N(0, σ2
eI) are random variables accounting for

unknown confounding and random errors. K = Cov(Z) is the inter-sample correla-
tion matrix and I is an identity matrix. σ2

g and σ2
e are coefficients of the two variance

components. Under the null hypothesis, σ2
g = 0 is assumed. Under the alternative

hypothesis, σ2
g > 0 is tested. Only the mean is used as the fixed effect in the analysis

above. The asymptotic null distribution of the likelihood ratio test statistic follows
a 1:1 mixture of χ2

0 and χ2
1 distributions[197]. Efficient Mixed Model Association

(EMMA) R package was applied for rapid estimation of variance components and
maximum likelihood to perform likelihood tests[103].

We used standard t-test to test for the known batch effect for the BXD HSC
dataset. When testing the significance of surrogate variables, a standard F test is
performed to assess the significance of all surrogate variables using a linear model.
In all tests above, FDR is conservatively estimated with π0 = 1.

6.4.7 ICE eQTL mapping

ICE QTL mapping models the expression levels as the following linear mixed
model:

y = Gα +Xβ + u + e (6.3)

where X, β are the fixed effects of known confounding variables and their
coefficients, and u and e are random variables accounting for unknown confounding
and random errors as described above. G represents the SNPs or other predictor
variables to be tested with the coefficients of α. EMMA is applied to test for the
significance of α using F test as previously suggested based on REML estimates of
variance component[235, 240, 103].
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We classified the eQTLs as cis-acting when the SNP and the probe are no
farther than 50kb for yeast, 5Mb for BXD mouse RI strains and 500kb for human.
Trans-acting eQTLs are stringently classified with the distance larger than 250kb for
yeast, and 50Mb for mouse. The number of expected false positives were computed
from 10 null randomized runs of each eQTL mapping setting π0 = 1, as suggested in
previous studies [196, 25].

6.4.8 Assessing the statistical significance of trans-regula-
tory bands

The statistical significance of a trans-regulatory band was quantified as the
average of log p-values across all probes. We performed 10,000 random permuta-
tions of the SNP set with family-wise error correction to evaluate the genome wide
corrected p-value of the strength of trans-regulatory bands.

Chapter 6 is published in Genetics, Volume 180, pp 1909-25, 2008. Hyun Min
Kang, Chun Ye, and Eleazar Eskin, “Accurate discovery of expression quantitative
trait loci under confounding from spurious and genuine regulatory hotspots”. The
dissertation author and Chun Ye were the primary investigators and authors of this
paper.



Chapter 7

A High Resolution Association
Mapping Panel for the Dissection
of Complex Traits in Mice

7.1 Motivation

Over the past few years, human complex trait genetic studies have been rev-
olutionized by the ability to carry out association studies on a genome-wide basis.
Such genome-wide association (GWA) studies have now been applied to numerous
complex traits and have resulted in the identification of hundreds of novel genes for
traits such as diabetes, cancer, and various inflammatory diseases[6, 131] previously
undetected in linkage studies. This success can be attributed to many factors in-
cluding technological developments in collection of high-throughput genotype data,
development of catalogues of common human variation such as the HapMap, and
development of methodologies for association studies[45]. These developments al-
lowed the human genetics community to leverage the increased power and resolution
of association studies as compared to linkage analyses. Despite these successes, the
fraction of the genetic component that is explained has been relatively modest for
most traits. Thus, for example, traits such as type 2 diabetes and lipoprotein lev-
els have relatively high heritabilites, in the range of 50%, and yet the many genes
discovered for these traits explain in aggregate less than 10% of the risk. This can

159
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likely be attributed to many factors which include that the effects of single loci
on a disease trait are very weak for common variation and GWA studies have low
power to detect rare variation involved in disease [40, 69]. In addition, environmental
factors likely are involved in disease and current GWA the lack power to examine
gene-by-environment interactions.

Mouse models have a several advantages over human studies along these lines.
In particular, complex traits in mouse strains have higher heritability and genetic
loci often have stronger effects on the trait compared to humans partially due to
their genetic history[120, 213, 230, 231]. In mouse studies, the environment can
more carefully controlled and measurements can be replicated in genetically identical
animals reducing the environmental effect on traits, thus increasing the portion of
the variability explained by genetic variation.

Mouse models have been used very effectively for the identification of genes
contributing to simple Mendelian traits, but unfortunately there have been few suc-
cesses for genes contributing to complex, multigenic traits. Traditional genetic anal-
ysis in mice involves crossing different inbred strains and mapping the traits of in-
terest using linkage analysis. An important problem has been the lack of resolution
in identifying the causal loci from the results of a linkage study. Linkage analysis of
a Mendelian trait is relatively straightforward since recombinant mice in the region
of interest can be identified and fine mapping achieved given enough backcross or
intercross progeny. In contrast, mapping of genes underlying complex traits results
in only statistical evidence for the effect of an allele at a particular locus. Fine map-
ping in such cases generally requires the construction of congenic strains in which the
region of interest from one strain is transferred onto the background of the second
strain by a series of crosses. This essentially “Mendelizes” the trait, allowing the
scoring of recombinations. But this as well frequently proves difficult because the
alleles contributing to complex traits generally exhibit the very subtle effects that
approach the levels of noise[4, 63], and several closely link genes may influence the
trait at a given locus.

Naturally, buoyed by the prospects and success of human association studies
having advantages over linkage studies, several groups have proposed mouse genome
wide association studies[166]. These initial pioneering studies demonstrated the po-
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tential of mouse genome wide association studies with their early successes, but have
also raised some challenges which include complex population stratification among
the mouse strains and concerns about the lack of power to detect loci with modest
effects. In fact, these two issues are intimately related. Population structure causes
an inflation of the association statistics both creating spurious associations as well
as artificially increasing the apparent strength of true association signals. The initial
mouse genome wide association studies reported a tremendous number of genome
wide significant signals some of which overlapped with known loci. This combined
with the knowledge that mouse strains have high heritability for traits suggested
that mouse association studies had sufficient statistical power. However, these ini-
tial studies did not adequately correct for population structure which when taken
into account, eliminates the vast majority of predicted associations. Thus the in-
ability to correct for population structure of the initial studies led them to severely
overestimate their statistical power.

Recent studies on the confounding effects from population structure and ge-
netic relatedness suggested that the complex pattern of sample structure can effec-
tively be captured and corrected for by means of linear mixed model[235, 240, 103],
and it has been demonstrated that both the false positive and false negative rates
considerably decrease when applying linear mixed model compared to principal com-
ponent analysis[168] and genomic control[50] that have been popularly used in human
association studies. The availability of Efficient Mixed Model Association (EMMA)
method enabled us to perform a large scale genome-wide association mapping be-
tween hundreds of thousands of SNPs and tens of thousands of phenotypes which
includes whole genome expression profiles. Using the same method, we were able to
perform simulations to measure power of mouse strain association studies under the
effect from sample structure, which led us to the conclusion that previous studies
which typically incorporated on the order of 30 strains are underpowered to detect
moderate loci involved in complex traits[32, 75, 137]. Our ability to perform simu-
lations which can accurately estimate statistical power allowed us to explore a wide
range of possible designs for mouse association studies. Through these simulations,
we observed that by incorporating permanent recombinant inbred strains which were
derived by inbreeding progeny from crosses of two different inbred strains, we are able
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to achieve power to detect loci which segregate the strains and have a moderate affect
on the trait. Building on this observation, we developed a combined set of inbred
strains, which we term the “Hybrid Mouse Diversity Panel” (HMDP) that includes
100 commercially available inbred strains consisting of 30 classical inbred strains and
3 sets of recombinant inbred strains.

We show in this report that this panel has sufficient power to map traits that
contribute to less than 5% of the overall variance. Importantly, the resolution of the
panel is, in some cases, two orders of magnitude better than that achievable using
linkage analysis of complex traits. Additional practical advantages of the approach
include the need for costly genotyping is eliminated since approximately 100 strains
have now been genotyped at over 135,000 SNPs. In addition, each strain is renewable
and, therefore, diverse molecular and phenotype data can be collected ad infinitum.
Both of these points highlight the significant advantages of an inbred panel over
other non-renewable populations which can be used for high resolution mapping, such
as heterogeneous or outbred stocks[64]. In addition to greatly increased ability to
narrowly map and identify genes for complex traits, this panel should be useful for the
analysis of gene-by-environment interactions where multiple individuals of the same
genotype need to be studied. Moreover, the fact that the data involving clinical traits,
expression traits, proteomic traits, and metabolomic traits is cumulative, makes this
resource ideal for systems biology.

7.2 Results

7.2.1 Design principles of mouse association studies

Our goal is to develop a panel of inbred mouse strains for performing asso-
ciation studies which have adequate statistical power and resolution for mapping of
complex traits. However, compared to human studies, estimating statistical power
in mouse association studies is more complex. Since humans are an outbred popula-
tion, a reasonably collected association study cohort can be assumed to be unrelated.
Under such assumptions, statistical power of association studies only depends on a
few factors including the effect size, the minor allele frequency, and the significance
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threshold. Due to the population structure of inbred mouse strains, statistical power
of mouse association studies is much more complicated and depends on many more
factors including phenotypic specific factors. These include not only the effect size
and significance threshold, but also the inter-strain relatedness, the distribution of
the causal SNP among the strains, and the background genetic effect. These latter
factors also affect inflation of association statistics due to population structure and
as expected the statistical power is intricately related to population structure.

We can leverage our ability to correct for population structure using EMMA to
estimate the statistical power of any strain set through simulation studies. The basic
idea behind a simulation study is that we generate simulated phenotypic data that
capture the genetic background effects. In this data, strains which are genetically
closer to each other are more likely to have more similar phenotype values than strains
which are further apart. We then pick a random SNP and modify the phenotype
values by assuming that the SNP affects the phenotype. We then apply EMMA to
see if we would detect the phenotype at a given significance threshold. Using this
approach, we can estimate the statistical power of a given set of strains.

7.2.2 Strain selection for the Hybrid Mouse Diversity Panel

While hundreds of inbred strains have been derived, a relatively small fraction
of these are useful for an association panel and we can use several intuitions to guide
our choices for the inbred strains. Certain strains, such as congenics and closely
related members of a family of strains (for example, many members of the C57BL
family) are minimally informative because of their largely identical genetic ancestry.
These strains are only informative for the small number of loci that differ and we
include only one representative of each of these strains in our panel. On the opposite
spectrum, “wild-derived” strains such as CAST, SPRET, and MOLF, are so widely
diverged from the classical inbred strains that they differ at many loci which are
not polymorphic among the classical inbred strains. These “wild-derived” strains
have dramatically different phenotypes, and much of the genetic contribution to this
difference stems from these loci. Since these loci are not polymorphic in the majority
of the strains, we have very little power to identify associations at these loci due to
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small minor allele frequencies. Moreover, including such a diverged set of strains
increases the size of polygenic background effect, possibly resulting in loss of power
in identifying the effect of a single locus. For these reasons, we do not include “wild-
derived” strains in our panel. Altogether, we selected for the panel 29 classical inbred
strains (Table 7.1). This panel is representative of previous mouse association studies
that were performed[166]. We carried out power calculations to estimate the level of
SNP effect that could be detected by the inbred panel under various conditions of
heritability and p-value cutoff (Figure 7.1 and Table 7.2). These analyses indicated
that 29 strains was not sufficient to detect typical loci for various complex traits in
mice, which generally explain less than 10 percent of the total trait variance and is
consistent with previous estimates[64].

Where our approach differs from previous approaches is that we additionally
include in the our panel 71 recombinant inbred (RI) strains (Table 7.1). These are
derived by crossing a pair of inbred parental strains and then deriving a set of inbred
progeny through brother-sister mating for 20 or more generations. These strains con-
sist of roughly 50% genetic contribution from each of the parental strains. Each allele
which is polymorphic among the parents is present in about 50% of the strains in the
RI set. Since the RI strains do not suffer from population structure due to the way
they were constructed, this genetic structure is maximally informative for detecting
associations at these polymorphic loci, yet provide additional power to detect loci
only polymorphic between the parental strains. The power can further increased by
combining multiple RI sets, considering that the complex genetic relatedness among
the strains are accounted by the availability of high-density markers. We select sev-
eral RI sets to cover a significant fraction of the SNPs in our panel. The RI strains
we selected were derived from crosses between C57BL/6J (B) and either DBA/2J
(D), A/J (A), or C3H/HeJ (H). RI substantially add to the overall power to detect
loci with small effects (Figure 7.1 and Table 7.2). Thus, for example, in this set of
inbred strains [the Hybrid Mouse Diversity Panel (HMDP)], we have approximately
80% power to detect SNPs that contribute to about 10% of the overall variance of
a complex trait, depending on the heritability of the trait and the number of mice
examined.
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(a) 0% genetic background (b) 25% genetic background

(c) 50% genetic background (d) 75% genetic background

(e) 100% genetic background

Figure 7.1: Power calculations. Estimated power when the SNP effect is 10%, and
genetic background effect is 30% with 5 replicates per strain. We estimated the
power for the 29 inbred strains, the individual RI panels (BXD, AXB/BXA, and
BXH) and the combined HMDP.
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Table 7.2: Statistical power of HMDP, RI and classical inbreds

SNP effect : 10% variance, 5 replicates per strain
averaged power across 107k SNPs
Strain sets HMDP BXD BXA BXH CI
h2
g = 0.00 0.945 0.209 0.191 0.022 0.101
h2
g = 0.25 0.725 0.174 0.158 0.025 0.083
h2
g = 0.50 0.315 0.090 0.080 0.024 0.033
h2
g = 0.75 0.116 0.040 0.035 0.017 0.010
h2
g = 1.00 0.053 0.022 0.020 0.010 0.004

SNP effect : 20% variance, 5 replicates per strain
averaged power across 107k SNPs
Strain sets HMDP BXD BXA BXH CI
h2
g = 0.00 0.999 0.465 0.452 0.079 0.315
h2
g = 0.25 0.984 0.399 0.378 0.077 0.254
h2
g = 0.50 0.779 0.242 0.217 0.063 0.115
h2
g = 0.75 0.435 0.123 0.106 0.037 0.041
h2
g = 1.00 0.227 0.066 0.059 0.022 0.017

7.2.3 Validating the statistical power of the HMDP through

mapping metabolic clinical traits

We phenotyped the HMDP strains, using 6 to 12 males per strain, for a variety
of metabolic traits, including total cholesterol, HDL cholesterol, free fatty acids, body
fat, and weight. For the association, we analyzed nearly 107,000 of the informative
mouse HapMap SNPs for associations with these quantitative phenotypes. Genetic
association studies in inbred model organisms, including inbred strains of mice, are
confronted by the problem of inflated false positive rates due to population structure
and genetic relatedness. Inbred strains of mice have a complex genealogical history
that results in a wide range of differences in the extent of genetic relatedness[67].
Conventional statistical tests of independence between a genetic marker and a phe-
notype are prone to spurious associations because the marker and the phenotype are
likely to be correlated due to population structure, which violates the independence
assumption under the null hypothesis. This population structure can result in false
positives unless corrected. We previously developed a new method, termed Efficient
Mixed Model Association (EMMA) which corrects for such population structure
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and genetic relatedness in model organism mapping[103]. We have used EMMA to
perform whole genome association mapping with the HMDP (see Methods). We
conservatively estimated using permutation analysis (see Methods) that a p-value of
4.1× 10−6 was significant at a genome wide level.

Due to our long interest in complex traits, such as those contributing to
metabolic syndrome and atherosclerosis, we focus on plasma lipids to demonstrate
the overall approach. Several of these coincide with loci previously identified us-
ing quantitative trait locus (QTL) linkage analysis (Table 7.2). Previous linkage
approaches in mice have identified over 50 QTL for plasma HDL levels[218]. We
compared our associations to those available from the Mouse Genome Informatics
database and we observed considerable overlap between our results in the HMDP and
this comprehensive list of HDL QTL. In each of these studies loci are identified based
on the individual variations between 2 strains of mice. In the current approach, using
100 strains, we are able to ’recover’ a significant portion of all previously reported
HDL QTL. The signals not replicated in the in the HMDP where either identified
using a wild-derived strain, fed an atherogenic diet or where found either in females
or a cross combining females and males.

To validate the association approach, we asked whether we could detect a pre-
viously identified common variation among inbred strains affecting HDL-cholesterol
levels. We have previously shown that variations of the apolipoprotein A2 (ApoA2)
gene locus affecting APOAII protein levels in the plasma occur commonly among in-
bred strains and that these significantly influence HDL-cholesterol levels[31, 51, 220].
We observed a total of 38 SNPs on distal chr. 1 associated with HDL-cholesterol
at p < 4.1 × 10−6 (Figure 7.2D). One of the peak SNPs in the region is located 50
kilobases upstream of the ApoA2 gene at 173.12 Mb. Surprisingly, the peak snp at
172.4 Mb, within an intron of the gene Nos1ap, is the peak HDL associated snp .
In contrast, linkage analysis of HDL cholesterol in one large cross (shown in Figure
7.2E), identified a very large region, containing approximately 300 genes associated
with HDL cholesterol. Thus, the resolution achieved in the association analysis is
more than two orders of magnitude better than that achieved by linkage analysis.

To better assess the contribution of each individual set of mice on the overall
performance of GWAS we performed EMMA on the inbred, combined RI panel and
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Figure 7.2: Detection of associations for plasma lipids in HMDP strains coincide
with a corresponding QTL in C57BL/6 x C3H/HeJ F2 crosses. (Continued on the
next page)
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Figure 7.2: Detection of associations for plasma lipids in HMDP strains coincide with
a corresponding QTL in C57BL/6 x C3H/HeJ F2 crosses. Panels A-C represent the
GWAS for total plasma cholesterol (B), and triglycerides (C), respectively. Lod
score curve for HDL cholesterol for chromosome 1, with a significant QTL present
at the distal region. The middle panels (D and E) compare association results with
linkage results for chromosome 1. Panel D is a plot of p-values for plasma HDL from
association testing of SNPs using 100 strains of the HMDP and panel E shows LOD
scores for plasma HDL from an F2 cross of C3H/HeJ and C57BL6/J. These results
demonstrate the power of the HMDP to detect associations for QTL observed in the
F2 cross, and also highlight the vastly improved resolution of association testing with
the MDP.
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the individual RI sets. The increase in positive signal in the RI set reflects the
reduced resolution of the RI panels. Due to the complex nature of the hMDP we
wanted to confirm the additional peaks on chr 1. Using the genotype for the peak
marker at the ApoA2 locus as a covariate in our EMMA analysis completely ablated
the remaining HDL signal on chr 1 This indicates that the additional peaks near
ApoA2 where likely due to the large LD block introduced by the inclusion of the
BXH RI panel in the HMDP. Below, using expression traits, we further consider this
issue of LD.

In addition to the apolipoprotein A2 locus, several other significant associa-
tions with plasma Lipoproteins were observed. Importantly, several of these loci were
previously identified by QTL analysis of various crosses of inbred strains of mice as
noted above[218]. In addition to the Apoa2 locus, there are at least two other signif-
icant loci on mouse chromosome 1 as well as loci on chromosomes 11, 18, 14, and 15
(summarized in Table 2). Of particular interest is the association on chromosome 15
at 58.6 MB for unesterified cholesterol. This corresponds to the same region, within 1
MB, as the novel plasma lipid genes, Trib1 and Nsmce2, recently identified in human
genome-wide association studies[225]. A considerable advantage of murine studies is
the availability of peripheral tissues for transcriptional, proteomic and matabolomic
profiling. For example, the expression of Trib 1 is under cis-regulation (p-value) and
is significantly correlated with Total cholesterol, Free fatty Acids, and VLDL/LDL
levels (need to include R values). Another novel human GWAS candidate recovered
with the current approach is for Amac1 the homologue of AMACL1[105]

7.2.4 Resolution of mouse association studies

An important criterion for the effectiveness of a mouse association panel is the
mapping resolution or the size of the region which we can detect as associated with a
trait. Due to many population bottlenecks in the history of the inbred mouse strains,
long regions of linkage disequilibrium are common throughout the mouse genome. RI
strains contain even longer regions of linkage disequilibrium since there are a limited
numbers of recombinations that occur when they are being derived. Intuitively, by
adding the classical inbred strains to the RI strains, we can improve the mapping
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Figure 7.3: Expression Traits Demonstrate high resolution of HMDP. Distance be-
tween peak cis-eSNPs and the transcription start site of the corresponding gene in
the HMDP. The majority of cis-eSNPs map within 500 kb of the transcription start
site of the corresponding gene

resolution over only using RI strains. The cis-eSNPs provide a convenient measure
for the overall resolution of the HMDP. Thus, it is reasonable to assume that the
majority of causal DNA variations contributing to cis-eSNPs would reside within 500
kb of the gene itself. Thus, the distance between the peak eSNP and the 5’ or 3’
end of the gene provides a measure of the accuracy of our association analysis. The
results, presented in Figure 7.3, indicate that the peak SNPs usually occur within
500 kb of either end of the gene. We also repeated this analysis using only data from
recombinant inbred mice or the combined HMDP using the top 1000 local eSNP and
as expected found a dramatic increase in the number of local eSNP mapping within
1Mb of the genes transcription start site with the HMDP, 80% in the HMDP vs.
18% in the BXD strains (Figure 7.3).
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7.2.5 Application of the HMDP by mapping metabolic clin-

ical traits

A major goal of the HMDP is to achieve high-confidence, high-resolution
genetic data contributing to complex phenotypes. Of particular interest are pheno-
types related to human disease, such as those contributing to metabolic syndrome
and atherosclerosis, and we focus on plasma lipids to demonstrate the overall ap-
proach. We phenotyped the HMDP strains, using 6 to 12 males per strain, for a
variety of metabolic traits, including total cholesterol, HDL cholesterol, free fatty
acids, and unesterified cholesterol. For the association, we analyzed nearly 107,000
of the informative mouse HapMap SNPs and we have used EMMA to perform whole
genome association mapping with these quantitative phenotypes with the HMDP.
We conservatively estimated using simulation analysis (see Methods) that a p-value
of 4.1× 10−6 was significant at a genome wide level.

The GWAS plots for plasma phenotypes are presented in Figure 7.2A-C and
a number of loci approaching or exceeding significance were observed. Figure 7.4
shows the dramatic reduction of p-value inflation following application of EMMA,
many of which are false positive signals due to a series of confounders discussed below
[159].

To validate the association approach, we asked whether we could detect a pre-
viously identified common variation among inbred strains affecting HDL-cholesterol
levels. We and others have previously shown that variations of the apolipoprotein A2
(ApoA2) gene locus affecting APOAII protein levels in the plasma occur commonly
among inbred strains and that these significantly influence HDL-cholesterol levels
[31, 51, 63, 218, 220] We observed a total of 38 SNPs on distal chr. 1 associated with
HDL-cholesterol at p < 4.1 × 10−6 (Figure 7.2D). One of the peak SNPs in the re-
gion is located 50 kilobases upstream of the ApoA2 gene at 173.12 Mb. Surprisingly,
the peak SNP at 172.4 Mb, within an intron of the gene Nos1ap, is the peak HDL
associated SNP . In contrast, linkage analysis of HDL cholesterol in one large cross,
identified a very large region, containing approximately 300 genes associated with
HDL cholesterol. Thus, the resolution achieved in the association analysis is more
than two orders of magnitude better than that achieved by linkage analysis.
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Figure 7.4: Correcting for population structure dramatically reduces false positives
in murine association studies Panel A is a histogram of uncorrected p-values for
plasma HDL and panel B is a histogram EMMA corrected p-values
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In addition to the apolipoprotein A2 locus, several other significant associa-
tions with plasma lipoproteins were observed. Previous linkage approaches in mice
have identified multiple QTL for plasma HDL levels[219]. We compared our asso-
ciations to those available from the Mouse Genome Informatics database and we
observed considerable overlap between our results in the HMDP and this compre-
hensive list of HDL QTL. In each of these studies loci were identified based on the
individual variations between 2 strains of mice. In the current approach, using 100
strains, we are able to ’recover’ a significant portion of all previously reported HDL
QTL. The signals not replicated in the HMDP where either identified using a wild-
derived strain, fed an atherogenic diet or were found either in females or a cross
combining females and males.

In addition to plasma HDL levels, we found significant associations for to-
tal cholesterol, triglycerides, free fatty acids and unesterified cholesterol. Several of
these are of particular interest because they demonstrate how murine studies com-
plement human associations. For example the signal on chromosome 15 at 58.6 MB
for unesterified cholesterol is within 1 MB of the novel human GWA plasma lipid
genes, Trib1 and Nsmce2[225]. A considerable advantage of murine studies is the
availability of peripheral tissues for transcriptional, proteomic and metabolomic pro-
filing. For example, the expression of Trib 1 in liver is under cis-regulation (1×10−5)
and is negatively correlated with total cholesterol (R = −0.27), HDL(R = −0.23),
free fatty acids(R = −0.36) and unesterified cholesterol (R = −0.30) levels. Con-
versely Nsmce2 is under distant regulation (1.6×10−6) and is also significantly corre-
lated with total cholesterol, HDL and unesterified cholesterol. Another novel human
GWAS candidate recovered with the current approach is for Amac1 the homologue
of AMACL1, which is candidate near the HDL and total cholesterol peak on chr
11. Unlike the Trib 1 locus, Amac1 does not have a cis-eQTL nor is its expression
correlated with plasma lipid traits.

7.2.6 Comparison to previous mouse association studies

The HMDP contains several large divergent cohorts of mice. In order to
comprehensively identify the genetic component of the association signal identified
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(a) BXA
!

(b) BXD

!

(c) BXH
!

(d) RI

!

(e) CI
!

(f) HMDP

Figure 7.5: Comparison of individual strain sets on phenotype association mapping
in the HMDP

for clinical traits we performed a series of mapping studies. We analyzed the inbred
and each individual RI sets independently. The classical inbred set simulates the
design of many of the original studies on inbred strains. Figure 7.5 shows the GWAS
for the HDL trait using only the 29 inbred strains. As we can see, no loci are reported
as significant after correcting for population structure. Figures 7.5 also shows the
association for each RI set. This simulates the design of an mouse association study
proposed by Williams et al[227]. In this case, several loci are associated, however they
show very poor resolution. These analysis highlight the lack of power or resolution
to map complex traits in either the classical inbred panels or the individual RI panels
of mice.
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7.3 Discussion

We have utilized a “hybrid” strategy for association mapping in mice that
combines classical inbred strains as well as RI strains. We specifically designed
this study population to address several key limitations of complex genetic map-
ping in mice: low resolution of linkage approaches, the high degree of false positive
signals found in murine association mapping and the critical need for permanent
resources for systems based approaches. In this strategy, the inbred strains pro-
vide mapping resolution while the RI strains provide power. Our results clearly
indicate that the approach is capable of mapping complex traits with high resolu-
tion. We have validated the approach by mapping both complex metabolic traits as
well as expression traits. The HMDP approach should be useful for gene discovery,
analysis of gene-by-environment interactions, and systems biology. An important
advantage of the approach is that the strains are commercially available to all in-
vestigators and that the data is cumulative. We have now established a database
(http://whap.cs.ucla.edu/emmaCorrectionServer/) that allows inves-
tigators to utilize our data in a straightforward manner.

A number of previous studies have utilized association analysis in mice in an
attempt to improve mapping resolution. Clearly, outbred, heterogeneous stocks of
mice can be used if corrected for population structure[63, 70, 206]. A major disad-
vantage of the approach is the cost of high-density genotyping and the fact that each
mouse is unique and thus can be studied for a limited number of phenotypes. Never-
theless, Valdar and colleagues[206] identified hundreds of significant associations for
97 typed traits with an average of 95% confidence interval of 2.8 Mb.

There have also been a number of studies that have exploited the mosaic
structure of common inbred mouse strains to perform association mapping [32, 75,
79, 80, 112, 119, 123, 124, 137, 144]. The methods have proved effective for localiz-
ing genes with large effects but not for genes with effect sizes less than 10%, as is
usually observed with complex traits[32, 63]. In addition, due to the lack of power,
population structure is a major problem that can produce false positives[32, 103].
Recently, previously identified susceptibility genes using murine association mapping
have failed to replicate in linkage studies designed to confirm these novel loci under-
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scoring the importance of developing methods designed to improve power and relia-
bility of murine association mapping. We believe that the methods used to develop
the HMDP address the limitations of these previous studies. Another limitation has
been the finding of sporadic correlations across the genome and is discussed below.

As a first test of the approach for mapping genes underlying complex traits,
we have typed eight mice for each strain in the HMDP for a variety of complex
metabolic traits. Relatively few genes contributing to common complex variations
in mice have been identified for reasons discussed in the Introduction. However, one
gene that has been shown in a number of studies to contribute to complex variation
is the apolipoprotein A2 gene on distal mouse chromosome 1[140, 173, 220]. We
showed that the resolution for mapping HDL cholesterol to the Apoa2 locus is more
than 2 orders of magnitude better than is achieved by linkage analysis in a cross
with over 300 progeny (Figure 7.6). In addition to Apoa2, we have identified a
number of additional loci contributing to metabolic traits. Importantly, many of
these correspond to previously mapped QTL loci for the corresponding traits. Some
also correspond to peak associations identified for these traits in human genome
wide association studies. For example, association was observed with Trib1 and
Nsmce2 locus on mouse chromosome 15, and Amac1 on mouse chromosome 11,
and the corresponding human loci were observed in a meta-analysis of genome-wide
association studies for lipid traits[225]. Interestingly, both Trib1 and Nsmce2 exhibit
cis-eSNPs in our study, consistent with their role in HDL and triglyceride metabolism
while Amac1 was under trans-regulation.

The strongest validation of the approach came from analysis of gene expres-
sion traits. A variety of âĂĲgenetical genomicâĂİ studies in humans, rats, mice, and
plants have shown that genetic variations influencing gene expression are very com-
mon in natural populations[54, 165, 167]. Trans-acting loci contributing to transcript
levels have proven difficult to validate due to the problem of multiple comparisons,
but cis-acting loci provide a relatively straightforward means of examining the power
and resolution of our MDP association approach. Although such loci have been com-
monly termed cis-acting since the peak linkage occurs very near the expressed gene,
a better term for these is âĂĲlocalâĂİ eQTL (or eSNPs) since there could be lo-
cal trans-regulation as well as cis-regulation[183]. We and others have previously



179

Chromosomal Location of the Gene

Ch
ro

m
os

om
al

 L
oc

at
io

n 
of

 th
e 

eS
N

P

!

Figure 7.6: Expression SNPs from HMDP. Panel A: Transcript levels in liver of
HMDP mice (3 RNA per strain) were profiled and significant associations are plotted
according to chromosomal position (X-axis) versus the location of the structural gene
(Y-axis). The strong diagonal line represents cis-eSNP, whereas the remainder are
trans-eSNP signals

validated the cis-acting of the loci by quantitating transcript levels derived from
each allele in heterozygous mice using coding polymorphisms[52]. Our data provide
much better resolution than previous studies of mammalian cis-eQTL. Using whole
genome expression array analysis in livers of the MDP strains, we identified over
2,200 cis-eQTL, comparable to the numbers identified in large crosses with hundreds
of rodents.

One potential problem with the use of our association approach is a level of
long-range LD. In particular, Paigen and colleagues have provided strong evidence of
functional LD both within blocks and also between regions of separate chromosomes
[164]. Thus, some association signals could represent such regions of distant LD. We
have addressed this concern by testing for the presence of LD between loci identified
for a given trait.

The identification of additional strains useful for our approach is important
especially to identify SNPs with low effect size contributing to complex phenotypes.
A very large set of RI strains, termed the Collaborative Cross, is being developed
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for the mapping and analysis of complex traits[39]. Unfortunately, that will not
be completed until about 2012, and it is not anticipated to be capable of gene-
level resolution[63]. Once even a subset of these strains are fully backcrossed to
homozygosity and genotyped, these mice would complement the methods developed
here and extend our approach.

Why is a mouse association resource important for the dissection of complex
diseases? While human studies have identified many genes involved in complex
diseases, these studies have important limitations. For example, there is limited
ability to carry out experimental validation, and limited access to tissues. In some
cases, due to linkage disequilibrium and distal regulatory elements, it is difficult
to definitively identify the susceptibility genes at loci associated with the disease.
Also, the genes are generally identified out of context, with limited information
about how they lead to disease. Finally, although many genes have been identified
in human association studies, the total amount of variance explained by the set
of known genes is a small fraction of the total variance. High resolution mapping
studies in mice should complement human association studies and also make possible
the development of co-expression networks allowing functional annotation of the
identified genes[126, 185].

This resource should also be valuable for examining gene-by-environment in-
teractions. Direct examination of such gene-by-environment interactions in human
populations is extremely difficult for several reasons. In particular, each human will
have experienced a different set of environmental exposures over his lifetime and these
would be almost impossible to quantitatively assess. The difficulty in understand-
ing gene-by-environment interactions may partially explain why human association
studies have only revealed a small fraction of the variance of complex traits. The
analysis of such interactions using genetic crosses between inbred strains of mice has
significant problems. While the power to detect linkage is very good, the loci identi-
fied tend to be very large and the identification of the underlying gene is extremely
difficult. In addition, analysis of inbred strains rather than progeny from genetic
crosses offers the following important advantages: 1) Multiple measurements can be
carried out on each strain, allowing the measurements to more accurately reflect the
true effect of the genetic factors. 2) Publicly available genotypes eliminate the need
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for individual researchers to genotype the animals independently. 3) The inbred
strains can be directly purchased from suppliers such as The Jackson Laboratory,
eliminating the need to breed the two generations of strains necessary to generate
a cross. 4) Inbred strains allow more flexibility in collecting phenotypes, since the
phenotypes can be studied in multiple phases of the study. 5) More tissues are ac-
cessible for expression and metabolomic analyses. For example, for some tissues in
mice, not enough of the tissue exists in a single animal to obtain enough of a sample
to reliably obtain expression proteomic, or metabolomic data. For inbred strains,
pooling is possible. 6) The mouse HMDP allows improved sharing of data in the
community. Since animals within an individual strain are genetically identical, phe-
notypes collected in different studies for different research groups may be combined
taking care to correct for any research group effects on the phenotype measurement.
7) There is the ability to measure effects for multiple interventions.

Finally, the MDP resource is ideal for systems-based approaches. Systems bi-
ology uses technologies such as gene expression, microarrays, and mass spectrometry
in combination with computational and statistical tools to address complex systems.
This necessitates analysis of many different components to allow an understanding
of their interactions. In this study, we have provided both clinical metabolic data
and liver expression data for the HMDP strains. In the future, other kinds of clinical
traits and expression data can be integrated with our datasets. Moreover, proteomic
and metabolomic analyses that require additional tissues can be performed on the
same set of inbred strains. The resulting extensive datasets can then be used to
model causal interactions and construct biologic networks.

7.4 Materials and methods

7.4.1 Animals

Male mice from the hybrid MDP panel were purchased from the Jackson Labs
(Bar Harbor, ME). Mice were between 6 and 10 weeks of age and to ensure adequate
acclimatization to a common environment the mice were aged until 16 weeks of age.
All mice were maintained on a chow diet (Ralston-Purina Co, St. Louis, Mo) until
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sacrifice at 16 weeks of age the mice. A complete list of strain included in the study
is listed in Table 7.1.

7.4.2 Phenotypes/ phenotyping protocols

Body composition

At 16 weeks of age whole body fat, fluids and lean tissue mass of isoflurane-
anaesthetised mice were determined using a Bruker Optics Minispec nuclear magnetic
resonance (NMR) analyzer (The Woodlands, TX, USA) according to the manufac-
turer’s recommendations.

Plasma measurements

Following a 16 hour fast. Mice were bled retro-orbitally under isoflurane
anaesthesia. Plasma lipids were determined as previously described[140]. Glucose
levels were determined using commercially available kits from Sigma (St Louis, MO,
USA). Insulin levels were measured using commercial ELISA kits from ALPCO Di-
agnostics. All measurements were performed in duplicate or triplicate according to
the manufacturer’s instructions.

Sacrifice

Mice were anethesized with isoflourane, cervically dislocated and the mass
of individual tissues depots (heart, kidney, retroperitoneal fat pad, epididymal fat
pad, subcutaneous fat pad, and omental fat pad) were determined by dissecting and
weighing each fat pad separately after the mice were euthanized.

7.4.3 Genotyping

Inbred strains were previously genotyped by the Broad Institute (Kirby et
al, submitted), and they are combined with the genotypes from Wellcome Trust
Center for Human Genetics (WTCHG). Genotypes of recombinant inbred strains at
the Broad SNPs were inferred from WTCHG genotypes by interpolating alleles at
polymorphic SNPs among parental strains, calling ambiguous genotypes missing. Of
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the 140,000 SNPs available at the Broad Institute, 107,145 were informative with
an allele frequency greater then 5% and where used for GWAS. To calculate the
linkage disequilibrium between markers (LD), we calculated the Pearson’s pair-wise
correlation coefficient between all pairs of markers for each chromosome. LD blocks
were defined as groups of SNPs with a R2 greater then 0.7. To determine the average
correlation between markers for each chromosome, we generated a distribution of
mean r2 values for all pairs of informative markers with allele frequency greater than
5% at various distances from each other, using increasing window sizes of 100kb
bins. We then took the mean for each window size using all 20 mouse chromosomes
to determine the average r2 for each window size across the genome. The average
correlation in chromosome 1 for markers 100kb apart is r2 = 0.7, for markers 1Mb
apart is r2 = 0.5.

7.4.4 RNA isolation and expression profiling

Initial profiling studies were performed on liver tissue. Flash frozen samples
were weighed and homogenized in Qiazol according to the manufacturerâĂŹs proto-
col. Following homogenization livers were isolated in RNeasy 96 columns (Qiagen)
using the manufacturers protocol. RNA integrity was confirmed using the Agilent
2100 Bioanalyzer (Agilent, Palo Alto, CA).

7.4.5 Gene expression analysis

Gene expression was measured on 3 mice from each stain in the HMDP using
affymetrix 430A microarray. The Microarray Suite 5.0 software (Affymetrix) was
used to analyze image data and make the absolute call for each measurement. The
array data were normalized with the Robust MultiarrayRMA method (RMA). Each
probeset was treated as an individual trait association analysis was performed and
corrected for using EMMA. Since EMMA is orders of magnitude faster than other
implementations commonly used, we were able to perform statistical analyses for all
pairs of transcripts and genome wide markers in a few hours using a cluster of 50
processors. Of the 107k SNPs in the MDP, those with less then 5% allele frequency
were removed from the analysis. We further characterized the eQTL into distal or
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local eQTL. We defined an eQTL as local if the peak association signal was within a
10Mb sliding window of the gene(s) physical location. We then calculated the average
distance between these cis eSNPs and transcription start site of the corresponding
gene(s) transcription start site.

7.4.6 Genome-wide association mapping accounting for pop-

ulation structure

We applied the following linear mixed model to account for the population
structure and genetic relatedness among strains in the genome-wide association map-
ping [103].

y = µ+ xβ + u+ e (7.1)

where µ represents mean, x represents SNP effect, u represents random ef-
fects due to genetic relatedness with Var(u) = σ2

gK and Var(e) = σ2
eI, where K

represents IBS (identity-by-descent) matrix across all genotypes. A restricted maxi-
mum likelihood (REML) estimate of σ2

g and σ2
e are computed using EMMA (Efficient

Mixed Model Association), and the association mapping is performed based on the
estimated variance component with a standard F test to test β 6= 0.

7.4.7 Estimation of power and mapping resolution

We evaluated the statistical power of the HMDP through simulation studies,
with various parameters including the variance explained by SNP, variance explained
by genetic background, and variance explained by random errors, and the number of
repeated measurement per strain. For the comparison of power with single RI set or
classical inbred only studies, we selected subset of the simulated phenotypes for each
RI or CI set and evaluated the power in the same way. Since there are 8 possibilities
of SNPs being polymorphic among three sets of RI strains, the putative causal SNPs
are categorized into 8 classes and power is evaluated for each class.

The mapping resolution is evaluated using the cis-acting eQTLs. In addition
to the eQTL mapping described above, we selected a subset of expression dataset
involving BXD strains only, and performed association mapping. We evaluated the
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mapping resolution using the top 1,000 probes with strongest cis-acting eSNPs as
the distance between the gene and the strongest cis-eSNPs. When multiple SNPs
are perfectly linked, the maximum distance is considered as the mapping resolution.

7.4.8 Genome-wide significance threshold

Genome-wide significance threshold in genome-wide association mapping is
determined by the family-wise error rate (FWER) as the probability of observing
one or more false positives across all SNPs per phenotype. Since the nearby SNPs
are highly correlated with each other, applying Bonferroni correction imposing in-
dependence assumption among SNPs will lead to overly conservative estimate of
significance threshold. Permutation test is a standard procedure to accurately ac-
count for multiple testing, but under the effect from population structure, permu-
tation will break the relationship between the phenotype and the population struc-
ture and may lead an anti-conservative estimate of significance threshold. We used
parametric bootstrapping to estimate the genome-wide threshold under various lev-
els of population structure effect. It has been previously shown that parametric
bootstrapping provide almost the same estimates of significance threshold[45]. We
confirmed it by comparing the genome-wide significance levels between permutation
and parametric bootstrapping where the phenotypes are simulated by multivariate
normal distribution. We ran 100 different sets of permutation test and parametric
bootstrapping of size 1,000, and observed that the mean and standard error of the
genome-wide significance threshold at FWER of 0.05 were 3.9 × 10−6 ± 0.3 × 10−6,
and 4.0×10−6±0.3×10−6, respectively. This is approximately an order of magnitude
larger than the significance threshold obtained by Bonferroni correction (4.6×10−7).
We also performed parametric bootstrapping under simulated the genetic back-
ground effect from population structure using EMMA. With 50% and 100% of
variance explained by genetic background, the thresholds were determined to be
1.6×10−6±0.2×10−6 and 1.7×10−6±0.2×10−6. The reduction in the significance
threshold compared to no genetic background effect is due to the fact that inter-
SNP correlation due to long-range LDs reduces when conditioning on the population
structure. Because LD spans longer for RI strains than classical inbreds only or the
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HMDP panels, the significance threshold for a subset of the strains can dramatically
differ. We used the parametric bootstrapping to estimate the significance threshold
for each set of RI strains and classical inbreds. The estimated genome-wide signif-
icance threshold was 7.5 × 10−5 ± 0.5 × 10−5 for BXD, 7.5 × 10−5 ± 0.4 × 10−5 for
AXB/BXA, and 1.1 × 10−4 ± 0.1 × 10−4 for BXH, and 1.7 × 10−6 ± 0.2 × 10−6 for
classical inbreds. We used these thresholds to estimate the genome-wide power of
each subset of strains in Figure 7.1 and Table 7.2

7.4.9 Validation of clinical and expression associations

We downloaded all available QTL studies for high density lipoproteins and
compared these QTL to our association results. We also compare eQTL and clin-
ical HDL QTL from 2 previously reported, independent crosses of C3H/HeJ and
C57BL6/J to our HMDP results to demonstrate the improved resolution of the
approach[217]

Chapter 7, is currently being prepared for submission for publication of the
material. Brian J. Bennett, Charles R. Farber, Luz Orozco, Hyun Min Kang, Anatole
Chanzalpour, Todd Kirchgessner, Peter Gargalovic, Lawrence W. Castellani, Emrah
Kostem, Nicholas Furlotte, Thomas A. Drake, Eleazar Eskin, and Aldons J. Lusis,
“A High Resolution Association Mapping Panel for the Dissection of Complex Traits
in Mice”. The dissertation author, Brian J. Bennett, Charles R. Farber, and Luz
Orozco are the primary investigators and authors of this paper.



Chapter 8

Conclusion and future work

8.1 Summary and conclusion

In this thesis, I first focused on understanding the structure of genetic vari-
ation among different organisms such as human and mouse. Understanding the
patterns of genetic variation within a population is one of the key steps for identi-
fying the genetic variants associated with complex traits. I presented an extensive
haplotype analysis of the mouse HapMap resource across 94 commonly used inbred
mouse strains, in conjunction with the resequencing-based resource containing 8.27
million SNPs among 15 common inbred strains[67]. I also developed an adaptive
and efficient algorithm that allows very accurate imputation of unobserved geno-
types from resequenced strains. The algorithm shows ten times smaller error than
the previous mouse imputation method, and it is also shown to be robust in human
genotype imputation.

I also presented statistical methods to account for confounding effects due
unmodeled factors to in association mapping and expression studies. In genome-wide
association mapping, it is widely known that the population structure and genetic
relatedness confounds the association mapping, significantly inflating false positive
rates. Such confounding effects are especially substantial in association mapping
among inbred mouse strains complexly related with each other, and it is known that
mixed models accounting for the entire genetic relatedness matrix as an additional
variance component robustly correct for the inflated false positives. However, mixed
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models were not efficient enough to be practically used for genome-wide association
studies. I presented an efficient mixed model association (EMMA) method that is
several thousand times more efficient than previous methods by leveraging a single
spectral decomposition to dramatically reduce the time complexity in the numerical
optimization procedure[103]. It is shown to robustly and efficiently correct for various
types of confounding effects due to heterogeneous population samples, from cryptic
relatedness among carefully stratified samples, to complex familial relatedness among
genetically isolated population. In the analysis of expression data, I demonstrated
that the technical confounding effects often result in inflation of spurious associations
or trans-regulatory bands, and the signature of the confounding effects are shown to
be effectively characterized by the inter-sample correlation matrix across all genes.
Across various types of expression data sets, I showed that mixed models robustly
account for the confounding effects when the inter-sample correlation is used as
a variance component[102]. As a result, the true positive rates in the expression
quantitative trait loci (eQTL) mapping significantly increased, and the concordance
between independent studies greatly improved.

Finally, I presented an effective design of systems genetics studies in model or-
ganism, mostly focusing on the mouse genetics. The association and linkage mapping
strategies in model organisms have a long history with strong theoretical background.
While linkage studies tend to provide more replicable results than association studies,
the mapping resolution usually spans more than several megabases which is not fine
enough to identify candidate genes. Relatively recent in-silico mapping approach
provides a higher mapping resolution using classical inbred strains, but the lack
of power and increased false positive rates have recently been a great concern. The
availability of near-complete genetic variation information across the common inbred
lines enables us to perform a high-powered and high-resolution mapping of complex
traits by combining multiple sets of recombinant inbred and classical inbred strains
and by precisely accounting for their genetic relatedness using mixed model. This
hybrid mouse diversity panel (HMDP) approach is shown to be effective in repli-
cating previously known quantitative loci with higher resolution, and the expression
studies based on the hybrid design also showed a great improvement both in power
and in mapping resolution.
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8.2 Future work

8.2.1 GWAS with unstratified populations

Large-scale genome-wide association studies (GWAS) have successfully identi-
fied many significant associations validated by previous studies or further replication
studies. At the same time, there are still ongoing statistical challenges to identify
associations with small effect size. Meta-analysis is shown to be a powerful ap-
proach to identify genetic variants with smaller effects. One of the challenges in
the meta-analysis is the accumulative effect from cryptic relatedness across multiple
data sets. The cryptic relatedness is referred to as the cause of over-dispersion of
the test statistics in GWAS due to subtle level of distant familial relationship or
population structure. Principal component analysis and Genomic Control has been
widely used for correcting for the over-dispersion, but our recent simulation studies
show that the fluctuations of test statistics at the end of distribution may be higher
than expected, and that some SNPs are more vulnerable to the fluctuations than
others. This phenomenon is more problematic in meta-analysis where the effects
of the marker-specific fluctuations are accumulated across multiple studies, result-
ing in increased false positive rates. Mixed models are shown to be more robust
against such fluctuations, and they can be used as an alternative method that is
more suitable for meta-analysis.

While current large-scale association studies spend a lager amount of effort
for avoiding population stratification issues, some of association study subjects are
sampled from a heterogeneous population such as admixed population or partially
inbred population with complex history among the founder individuals. Our recent
application of mixed models on an isolated founder population from the Pacific Island
of Kosrae suggests that the association mapping with heterogeneous population may
be generally possible with the availability of high-density genotype information, even
when the history of the population samples are unknown. This approach is readily
applicable to many ongoing association studies involving heterogeneous or admixed
populations. Moreover, multiple sets of association study samples with different
population background may be combined together in a genotype level rather than a
meta-analysis level so that the genetic relatedness between different groups may be
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accounted for more precisely.

8.2.2 Exploring multiple rare variants hypothesis

Although GWAS made a significant progress in identifying many novel associ-
ations, the overall phenotypic variance explained by the identified loci only explains
a small fraction of the heritability estimated from family-based linkage studies. It
has been suggested that such a big difference may be due to the assumption of
common-disease-common-variant (CDCV) hypothesis which early stage of GWAS
mainly relied on due to the technical limitation. Under CDCV hypothesis, it is
assumed that relatively small number of causal variants explain the disease risk.
However, recent studies on complex disease consistently suggest that the effect size
per each genetic variant is likely to be marginal, and polygenic effects involving a
large number of genes may more effective explain the genetic effect. Our results
of variance component test on Finnish birth cohort samples and Kosrae population
confirm that the entire genetic relatedness matrix largely explains the phenotypic
variation at a similar level suggested by linkage studies.

With the advance of high-throughput sequencing technologies, it is becom-
ing feasible to identify rare variants accounting for complex traits through various
methods such as homozygosity mapping. In addition, many studies are searching for
epistatic interactions between genes exhaustively or using multi-step approaches. My
interest lies in developing statistical methods for testing the multipoint effects of a
large set of genes or a large genomic region, where the variance component model can
serve as an effective tool. More specifically, current large-scale association study sam-
ples can be used for testing the effect of a particular genomic region in a similar way
to the traditional variance component tests by substituting the pedigree-based IBD
(Identity-by-descent) matrix to the relatedness estimates from high-density geno-
types. Similarly, a set of candidate genes can also be simultaneously tested using the
variance component test, which may shed a light on understanding the structure of
polygenic effects more systematically.
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8.2.3 Capturing unmodeled confounding effects inherent in

various high-throughput data

Current technologies for generating high-throughput biological data mainly
rely on array hybridization procedure across various data types such as genotypes,
CNVs (Copy Number Variations), gene expression, DNA methylation, and protein-
binding arrays. It is widely known that the array hybridization technologies may be
vulnerable to various types of systematic confounding effects such as bias in sample
preparation, ozone levels, batch effects, and plate effects. Although randomization
procedure greatly reduces the chances of confounding effects from such unmodeled
factors, it has been shown that the confounding effects can significantly increase
spurious signals with statistical tests with a large hypothesis space such as eQTL
mapping.

My recent study demonstrated that the signature of technical confounding ef-
fects can be very well characterized as global correlation structure across the probes
in expression studies, and mixed models are shown to be effective in correcting for
the spurious associations induced by the global correlation. This approach can be
extended to different types of array-based high-throughput data such as CNVs to
correct for plate effects or batch effects. In this case, an important statistical chal-
lenge would be to precisely extract only the signature of the technical bias from the
mixture of true biological effects and technical bias. CNV data sets can be a very
effective application because there are many probes that can be used as negative
controls, so the patterns of non-biological confounding effects can be captured by
the negative controls.

8.2.4 Challenges in sequence-based association mapping

High-throughput sequencing technologies are expected to drive the next gen-
eration genetics and genomics research by providing more accurate and comprehen-
sive profiling of genetic variation and other intermediate phenotypes such as gene
expression. Many sequence-based genotypes resources are currently being collected
in a large scale, and there are many known and unknown statistical and computa-
tional challenges to comprehensively understand the structure of genetic variation,
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to perform association mapping, and to identify genetic variants causally affecting
complex disease traits.

Haplotype assembly is one of the important and challenging problems in the
analysis of sequence-based genotype data. The development of longer read and
paired-end ditags enables us to accurately infer the haplotype phase. The haplo-
type assembly has been shown to be effective even in the individual genome level
when the read is very long, but the complexity of the problem significantly increases
with shorter reads at the size of current technologies. In such cases, combining infor-
mation from multiple individual genomes can considerably improve the accuracy of
the haplotype assembly, but more computationally efficient algorithms are required
in practice with minimum loss of accuracy. In addition, a systematic error model
accounting for heterogeneous nature of sequencing errors can also greatly improve
the accuracy of haplotype assembly.

Another important application with the availability of sequence-based geno-
type data is accurate genotype imputation with a large number of reference samples.
I developed an adaptive and efficient genotype imputation method that can esti-
mate the mutation and recombination parameters from the observed data using EM
(Expectation-Maximization) algorithm, which can account for the individual level
of difference. This approach can be combined with the imputation methods such as
MACH (MArkov Chain Haplotyping), which accounts for the per-marker difference
in the mutational and transitional parameters by leveraging a large number of geno-
typed samples. The combination of these two approaches is expected to provide us
with accurate genotype imputation accounting for both individual and marker level
differences of the parameters, which can be especially useful for imputation with
heterogeneous or admixed population.



Bibliography

[1] A. Agresti and J. Wiley. Categorical data analysis. Wiley New York, 1990.

[2] Shahana Ahmed, Gilles Thomas, Maya Ghoussaini, Catherine S. Healey, Man-
jeet K. Humphreys, Radka Platte, Jonathan Morrison, Melanie Maranian,
Karen A. Pooley, Robert Luben, Diana Eccles, D. Gareth Evans, Olivia
Fletcher, Nichola Johnson, Isabel Dos Santos Silva, Julian Peto, Michael R.
Stratton, Nazneen Rahman, Kevin Jacobs, Ross Prentice, Garnet L. Ander-
son, Aleksandar Rajkovic, J. David Curb, Regina G. Ziegler, Christine D.
Berg, Saundra S. Buys, Catherine A. McCarty, Heather Spencer Feigelson,
Eugenia E. Calle, Michael J. Thun, W. Ryan Diver, Stig Bojesen, BÃÿrge G.
Nordestgaard, Henrik Flyger, Thilo DÃűrk, Peter SchÃĳrmann, Peter Hille-
manns, Johann H. Karstens, Natalia V. Bogdanova, Natalia N. Antonenkova,
Iosif V. Zalutsky, Marina Bermisheva, Sardana Fedorova, Elza Khusnutdinova,
SEARCH, Daehee Kang, Keun-Young Y. Yoo, Dong Young Noh, Sei-Hyun H.
Ahn, Peter Devilee, Christi J. van Asperen, R. A. E. M. Tollenaar, Caroline
Seynaeve, Montserrat Garcia-Closas, Jolanta Lissowska, Louise Brinton, Beata
Peplonska, Heli Nevanlinna, Tuomas Heikkinen, Kristiina AittomÃďki, Carl
Blomqvist, John L. Hopper, Melissa C. Southey, Letitia Smith, Amanda B.
Spurdle, Marjanka K. Schmidt, Annegien Broeks, Richard R. van Hien, Sten
Cornelissen, Roger L. Milne, Gloria Ribas, Anna GonzÃąlez-Neira, Javier Ben-
itez, Rita K. Schmutzler, Barbara Burwinkel, Claus R. Bartram, Alfons Meindl,
Hiltrud Brauch, Christina Justenhoven, Ute Hamann, The GENICA Consor-
tium, Jenny Chang-Claude, Rebecca Hein, Shan Wang-Gohrke, Annika Lind-
blom, Sara Margolin, Arto Mannermaa, Veli-Matti M. Kosma, Vesa Kataja,
Janet E. Olson, Xianshu Wang, Zachary Fredericksen, Graham G. Giles, Gian-
luca Severi, Laura Baglietto, Dallas R. English, Susan E. Hankinson, David G.
Cox, Peter Kraft, Lars J. Vatten, Kristian Hveem, Merethe Kumle, Alice
Sigurdson, Michele Doody, Parveen Bhatti, Bruce H. Alexander, Maartje J.
Hooning, Ans M. W. van den Ouweland, Rogier A. Oldenburg, Mieke Schutte,
Per Hall, Kamila Czene, Jianjun Liu, Yuqing Li, Angela Cox, Graeme Elliott,
Ian Brock, Malcolm W. R. Reed, Chen-Yang Y. Shen, Jyh-Cherng C. Yu,
Giu-Cheng C. Hsu, Shou-Tung T. Chen, Hoda Anton-Culver, Argyrios Ziogas,
Irene L. Andrulis, Julia A. Knight, kConFab, Australian Ovarian Cancer Study
Group, Jonathan Beesley, Ellen L. Goode, Fergus Couch, Georgia Chenevix-

193



194

Trench, Robert N. Hoover, Bruce A. J. Ponder, David J. Hunter, Paul D. P.
Pharoah, Alison M. Dunning, Stephen J. Chanock, and Douglas F. Easton.
Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat
Genet, 3 2009.

[3] Joshua M. Akey, Shameek Biswas, Jeffrey T. Leek, and John D. Storey. On
the design and analysis of gene expression studies in human populations. Nat
Genet, 39(7):807–8; author reply 808–9, 7 2007.

[4] Hooman Allayee, Anatole Ghazalpour, and Aldons J. Lusis. Using mice
to dissect genetic factors in atherosclerosis. Arterioscler Thromb Vasc Biol,
23(9):1501–9, 9 2003.

[5] Orly Alter, Patrick O. Brown, and David Botstein. Generalized singular value
decomposition for comparative analysis of genome-scale expression data sets
of two different organisms. Proc Natl Acad Sci U S A, 100(6):3351–6, 3 2003.

[6] David Altshuler, Mark J. Daly, and Eric S. Lander. Genetic mapping in human
disease. Science, 322(5903):881–8, 11 2008.

[7] R. V. Anunciado, M. Nishimura, M. Mori, A. Ishikawa, S. Tanaka, F. Horio,
T. Ohno, and T. Namikawa. Quantitative trait loci for body weight in the
intercross between sm/j and a/j mice. Exp Anim, 50(4):319–24, 7 2001.

[8] MarÃŋa JosÃľ Aranzana, Sung Kim, Keyan Zhao, Erica Bakker, Matthew
Horton, Katrin Jakob, Clare Lister, John Molitor, Chikako Shindo, Chunlao
Tang, Christopher Toomajian, Brian Traw, Honggang Zheng, Joy Bergelson,
Caroline Dean, Paul Marjoram, and Magnus Nordborg. Genome-wide associ-
ation mapping in arabidopsis identifies previously known flowering time and
pathogen resistance genes. PLoS Genet, 1(5):e60, 11 2005.

[9] M. Arbelbide, J. Yu, and R. Bernardo. Power of mixed-model qtl mapping
from phenotypic, pedigree and marker data in self-pollinated crops. Theor
Appl Genet, 112(5):876–84, 3 2006.

[10] P. Armitage. Tests for linear trends in proportions and frequencies. Biometrics,
pages 375–386, 1955.

[11] Yurii S. Aulchenko, Samuli Ripatti, Ida Lindqvist, Dorret Boomsma, Iris M.
Heid, Peter P. Pramstaller, Brenda W. J. H. Penninx, A. Cecile J. W. Janssens,
James F. Wilson, Tim Spector, Nicholas G. Martin, Nancy L. Pedersen,
Kirsten Ohm Kyvik, Jaakko Kaprio, Albert Hofman, Nelson B. Freimer, Marjo-
Riitta R. Jarvelin, Ulf Gyllensten, Harry Campbell, Igor Rudan, Asa Jo-
hansson, Fabio Marroni, Caroline Hayward, Veronique Vitart, Inger Jonasson,
Cristian Pattaro, Alan Wright, Nick Hastie, Irene Pichler, Andrew A. Hicks,
Mario Falchi, Gonneke Willemsen, Jouke-Jan J. Hottenga, Eco J. C. de Geus,
Grant W. Montgomery, John Whitfield, Patrik Magnusson, Juha Saharinen,



195

Markus Perola, Kaisa Silander, Aaron Isaacs, Eric J. G. Sijbrands, Andre G.
Uitterlinden, Jacqueline C. M. Witteman, Ben A. Oostra, Paul Elliott, Aimo
Ruokonen, Chiara Sabatti, Christian Gieger, Thomas Meitinger, Florian Kro-
nenberg, Angela DÃűring, H-Erich E. Wichmann, Johannes H. Smit, Mark I.
McCarthy, Cornelia M. van Duijn, Leena Peltonen, and ENGAGE Consortium.
Loci influencing lipid levels and coronary heart disease risk in 16 european pop-
ulation cohorts. Nat Genet, 41(1):47–55, 1 2009.

[12] Silviu-Alin A. Bacanu, Bernie Devlin, and Kathryn Roeder. Association studies
for quantitative traits in structured populations. Genet Epidemiol, 22(1):78–93,
1 2002.

[13] Jeffrey C. Barrett, Sarah Hansoul, Dan L. Nicolae, Judy H. Cho, Richard H.
Duerr, John D. Rioux, Steven R. Brant, Mark S. Silverberg, Kent D. Tay-
lor, M. Michael Barmada, Alain Bitton, Themistocles Dassopoulos, Lisa Wu
Datta, Todd Green, Anne M. Griffiths, Emily O. Kistner, Michael T. Murtha,
Miguel D. Regueiro, Jerome I. Rotter, L. Philip Schumm, A. Hillary Steinhart,
Stephan R. Targan, Ramnik J. Xavier, NIDDK IBD Genetics Consortium, CÃľ-
cile Libioulle, Cynthia Sandor, Mark Lathrop, Jacques Belaiche, Olivier Dewit,
Ivo Gut, Simon Heath, Debby Laukens, Myriam Mni, Paul Rutgeerts, AndrÃľ
Van Gossum, Diana Zelenika, Denis Franchimont, Jean-Pierre P. Hugot, Mar-
tine de Vos, Severine Vermeire, Edouard Louis, Belgian-French IBD Consor-
tium, Wellcome Trust Case Control Consortium, Lon R. Cardon, Carl A. An-
derson, Hazel Drummond, Elaine Nimmo, Tariq Ahmad, Natalie J. Prescott,
Clive M. Onnie, Sheila A. Fisher, Jonathan Marchini, Jilur Ghori, Suzan-
nah Bumpstead, Rhian Gwilliam, Mark Tremelling, Panos Deloukas, John
Mansfield, Derek Jewell, Jack Satsangi, Christopher G. Mathew, Miles Parkes,
Michel Georges, and Mark J. Daly. Genome-wide association defines more than
30 distinct susceptibility loci for crohn’s disease. Nat Genet, 40(8):955–62, 8
2008.

[14] Marc Bauchet, Brian McEvoy, Laurel N. Pearson, Ellen E. Quillen, Tamara
Sarkisian, Kristine Hovhannesyan, Ranjan Deka, Daniel G. Bradley, and
Mark D. Shriver. Measuring european population stratification with microar-
ray genotype data. Am J Hum Genet, 80(5):948–56, 5 2007.

[15] Lara E. Bauman, Janet S. Sinsheimer, Eric M. Sobel, and Kenneth Lange.
Mixed effects models for quantitative trait loci mapping with inbred strains.
Genetics, 180(3):1743–61, 11 2008.

[16] J. A. Beck, S. Lloyd, M. Hafezparast, M. Lennon-Pierce, J. T. Eppig, M. F.
Festing, and E. M. Fisher. Genealogies of mouse inbred strains. Nat Genet,
24(1):23–5, 1 2000.

[17] J. K. Belknap. Effect of within-strain sample size on qtl detection and mapping
using recombinant inbred mouse strains. Behav Genet, 28(1):29–38, 1 1998.



196

[18] Lars Bertram, Christoph Lange, Kristina Mullin, Michele Parkinson, Monica
Hsiao, Meghan F. Hogan, Brit M. M. Schjeide, Basavaraj Hooli, Jason Di-
vito, Iuliana Ionita, Hongyu Jiang, Nan Laird, Thomas Moscarillo, Kari L.
Ohlsen, Kathryn Elliott, Xin Wang, Diane Hu-Lince, Marie Ryder, Amy Mur-
phy, Steven L. Wagner, Deborah Blacker, K. David Becker, and Rudolph E.
Tanzi. Genome-wide association analysis reveals putative alzheimer’s disease
susceptibility loci in addition to apoe. Am J Hum Genet, 83(5):623–32, 11
2008.

[19] Tanmoy Bhattacharya, Marcus Daniels, David Heckerman, Brian Foley, Nicole
Frahm, Carl Kadie, Jonathan Carlson, Karina Yusim, Ben McMahon, Brian
Gaschen, Simon Mallal, James I. Mullins, David C. Nickle, Joshua Herbeck,
Christine Rousseau, Gerald H. Learn, Toshiyuki Miura, Christian Brander,
Bruce Walker, and Bette Korber. Founder effects in the assessment of hiv
polymorphisms and hla allele associations. Science, 315(5818):1583–6, 3 2007.

[20] C. E. Bishop, P. Boursot, B. Baron, F. Bonhomme, and D. Hatat. Most clas-
sical mus musculus domesticus laboratory mouse strains carry a mus musculus
musculus y chromosome. Nature, 315(6014):70–2, 1985.

[21] F. Bonhomme, J. L. Guenet, B. Dod, K. Moriwaki, and G. Bulfield. The poly-
phyletic origin of laboratory inbred mice and their rate of evolution. Biological
Journal of the Linnean Society, 30(1):51–58, 1987.

[22] Ingrid B. Borecki and Michael A. Province. Linkage and association: basic
concepts. Adv Genet, 60:51–74, 2008.

[23] Justin O. Borevitz, Samuel P. Hazen, Todd P. Michael, Geoffrey P. Morris,
Ivan R. Baxter, Tina T. Hu, Huaming Chen, Jonathan D. Werner, Magnus
Nordborg, David E. Salt, Steve A. Kay, Joanne Chory, Detlef Weigel, Jonathan
D. G. Jones, and Joseph R. Ecker. Genome-wide patterns of single-feature poly-
morphism in arabidopsis thaliana. Proc Natl Acad Sci U S A, 104(29):12057–62,
7 2007.

[24] William S. Branham, Cathy D. Melvin, Tao Han, Varsha G. Desai, Carrie L.
Moland, Adam T. Scully, and James C. Fuscoe. Elimination of laboratory
ozone leads to a dramatic improvement in the reproducibility of microarray
gene expression measurements. BMC Biotechnol, 7:8, 2007.

[25] Rachel B. Brem and Leonid Kruglyak. The landscape of genetic complex-
ity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci U S A,
102(5):1572–7, 2 2005.

[26] Rachel B. Brem, John D. Storey, Jacqueline Whittle, and Leonid Kruglyak. Ge-
netic interactions between polymorphisms that affect gene expression in yeast.
Nature, 436(7051):701–3, 8 2005.



197

[27] Rachel B. Brem, GaÃńl Yvert, Rebecca Clinton, and Leonid Kruglyak. Ge-
netic dissection of transcriptional regulation in budding yeast. Science,
296(5568):752–5, 4 2002.

[28] N. E. Breslow and D. G. Clayton. Approximate inference in generalized linear
mixed models. Journal of the American Statistical Association, pages 9–25,
1993.

[29] Leonid Bystrykh, Ellen Weersing, Bert Dontje, Sue Sutton, Mathew T.
Pletcher, Tim Wiltshire, Andrew I. Su, Edo Vellenga, Jintao Wang, Ken-
neth F. Manly, Lu Lu, Elissa J. Chesler, Rudi Alberts, Ritsert C. Jansen,
Robert W. Williams, Michael P. Cooke, and Gerald de Haan. Uncovering reg-
ulatory pathways that affect hematopoietic stem cell function using ’genetical
genomics’. Nat Genet, 37(3):225–32, 3 2005.

[30] Catarina D. Campbell, Elizabeth L. Ogburn, Kathryn L. Lunetta, Helen N.
Lyon, Matthew L. Freedman, Leif C. Groop, David Altshuler, Kristin G.
Ardlie, and Joel N. Hirschhorn. Demonstrating stratification in a european
american population. Nat Genet, 37(8):868–72, 8 2005.

[31] Lawrence W. Castellani, Cara N. Nguyen, Sarada Charugundla, Michael M.
Weinstein, Chau X. Doan, William S. Blaner, Nuttaporn Wongsiriroj, and
Aldons J. Lusis. Apolipoprotein aii is a regulator of very low density lipoprotein
metabolism and insulin resistance. J Biol Chem, 283(17):11633–44, 4 2008.

[32] Alessandra C. L. Cervino, Ariel Darvasi, Mohammad Fallahi, Christopher C.
Mader, and Nicholas F. Tsinoremas. An integrated in silico gene mapping
strategy in inbred mice. Genetics, 175(1):321–33, 1 2007.

[33] M. Chee, R. Yang, E. Hubbell, A. Berno, X. C. Huang, D. Stern, J. Winkler,
D. J. Lockhart, M. S. Morris, and S. P. Fodor. Accessing genetic information
with high-density dna arrays. Science, 274(5287):610–4, 10 1996.

[34] Elissa J. Chesler, Lu Lu, Siming Shou, Yanhua Qu, Jing Gu, Jintao Wang,
Hui Chen Hsu, John D. Mountz, Nicole E. Baldwin, Michael A. Langston,
David W. Threadgill, Kenneth F. Manly, and Robert W. Williams. Complex
trait analysis of gene expression uncovers polygenic and pleiotropic networks
that modulate nervous system function. Nat Genet, 37(3):233–42, 3 2005.

[35] Vivian G. Cheung, Richard S. Spielman, Kathryn G. Ewens, Teresa M. Weber,
Michael Morley, and Joshua T. Burdick. Mapping determinants of human gene
expression by regional and genome-wide association. Nature, 437(7063):1365–9,
10 2005.

[36] M. Chicurel. Faster, better, cheaper genotyping. Nature, 412(6847):580–2, 8
2001.



198

[37] Yoonha Choi, Ellen M. Wijsman, and Bruce S. Weir. Case-control association
testing in the presence of unknown relationships. Genet Epidemiol, 3 2009.

[38] Gary A. Churchill. Fundamentals of experimental design for cdna microarrays.
Nat Genet, 32 Suppl:490–5, 12 2002.

[39] Gary A. Churchill, David C. Airey, Hooman Allayee, Joe M. Angel, Alan D.
Attie, Jackson Beatty, William D. Beavis, John K. Belknap, Beth Bennett,
Wade Berrettini, Andre Bleich, Molly Bogue, Karl W. Broman, Kari J. Buck,
Ed Buckler, Margit Burmeister, Elissa J. Chesler, James M. Cheverud, Steven
Clapcote, Melloni N. Cook, Roger D. Cox, John C. Crabbe, Wim E. Cru-
sio, Ariel Darvasi, Christian F. Deschepper, R. W. Doerge, Charles R. Farber,
Jiri Forejt, Daniel Gaile, Steven J. Garlow, Hartmut Geiger, Howard Ger-
shenfeld, Terry Gordon, Jing Gu, Weikuan Gu, Gerald de Haan, Nancy L.
Hayes, Craig Heller, Heinz Himmelbauer, Robert Hitzemann, Kent Hunter,
Hui-Chen C. Hsu, Fuad A. Iraqi, Boris Ivandic, Howard J. Jacob, Ritsert C.
Jansen, Karl J. Jepsen, Dabney K. Johnson, Thomas E. Johnson, Gerd Kem-
permann, Christina Kendziorski, Malak Kotb, R. Frank Kooy, Bastien Llamas,
Frank Lammert, Jean-Michel M. Lassalle, Pedro R. Lowenstein, Lu Lu, Aldons
Lusis, Kenneth F. Manly, Ralph Marcucio, Doug Matthews, Juan F. Medrano,
Darla R. Miller, Guy Mittleman, Beverly A. Mock, Jeffrey S. Mogil, Xavier
Montagutelli, Grant Morahan, David G. Morris, Richard Mott, Joseph H.
Nadeau, Hiroki Nagase, Richard S. Nowakowski, Bruce F. O’Hara, Alexan-
der V. Osadchuk, Grier P. Page, Beverly Paigen, Kenneth Paigen, Abraham A.
Palmer, Huei-Ju J. Pan, Leena Peltonen-Palotie, Jeremy Peirce, Daniel Pomp,
Michal Pravenec, Daniel R. Prows, Zhonghua Qi, Roger H. Reeves, John
Roder, Glenn D. Rosen, Eric E. Schadt, Leonard C. Schalkwyk, Ze’ev Seltzer,
Kazuhiro Shimomura, Siming Shou, Mikko J. SillanpÃďÃď, Linda D. Sira-
cusa, Hans-Willem W. Snoeck, Jimmy L. Spearow, Karen Svenson, Lisa M.
Tarantino, David Threadgill, Linda A. Toth, William Valdar, Fernando Pardo-
Manuel de Villena, Craig Warden, Steve Whatley, Robert W. Williams, Tim
Wiltshire, Nengjun Yi, Dabao Zhang, Min Zhang, Fei Zou, and Complex Trait
Consortium. The collaborative cross, a community resource for the genetic
analysis of complex traits. Nat Genet, 36(11):1133–7, 11 2004.

[40] Jonathan C. Cohen, Robert S. Kiss, Alexander Pertsemlidis, Yves L. Marcel,
Ruth McPherson, and Helen H. Hobbs. Multiple rare alleles contribute to low
plasma levels of hdl cholesterol. Science, 305(5685):869–72, 8 2004.

[41] F. S. Collins, L. D. Brooks, and A. Chakravarti. A dna polymorphism discovery
resource for research on human genetic variation. Genome Res, 8(12):1229–31,
12 1998.

[42] Sonia Colombo, Daniela Ronchetti, Johan M. Thevelein, Joris Winderickx,
and Enzo Martegani. Activation state of the ras2 protein and glucose-induced
signaling in saccharomyces cerevisiae. J Biol Chem, 279(45):46715–22, 11 2004.



199

[43] C. M. Crainiceanu and D. Ruppert. Likelihood ratio tests in linear mixed
models with one variance component. Journal of the Royal Statistical Society.
Series B, Statistical Methodology, pages 165–185, 2004.

[44] Paul I. W. de Bakker, Gil McVean, Pardis C. Sabeti, Marcos M. Miretti, Todd
Green, Jonathan Marchini, Xiayi Ke, Alienke J. Monsuur, Pamela Whittaker,
Marcos Delgado, Jonathan Morrison, Angela Richardson, Emily C. Walsh,
Xiaojiang Gao, Luana Galver, John Hart, David A. Hafler, Margaret Pericak-
Vance, John A. Todd, Mark J. Daly, John Trowsdale, Cisca Wijmenga, Tim J.
Vyse, Stephan Beck, Sarah Shaw Murray, Mary Carrington, Simon Gregory,
Panos Deloukas, and John D. Rioux. A high-resolution hla and snp haplotype
map for disease association studies in the extended human mhc. Nat Genet,
38(10):1166–72, 10 2006.

[45] Paul I. W. de Bakker, Roman Yelensky, Itsik Pe’er, Stacey B. Gabriel, Mark J.
Daly, and David Altshuler. Efficiency and power in genetic association studies.
Nat Genet, 37(11):1217–23, 11 2005.

[46] Dirk-Jan J. de Koning and Chris S. Haley. Genetical genomics in humans and
model organisms. Trends Genet, 21(7):377–81, 7 2005.

[47] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), pages 1–38, 1977.

[48] A. P. Dempster, D. B. Rubin, and R. K. Tsutakawa. Estimation in covariance
components models. Journal of the American Statistical Association, pages
341–353, 1981.

[49] B. Devlin and N. Risch. A comparison of linkage disequilibrium measures for
fine-scale mapping. Genomics, 29(2):311–22, 9 1995.

[50] B. Devlin and K. Roeder. Genomic control for association studies. Biometrics,
55(4):997–1004, 12 1999.

[51] M. H. Doolittle, R. C. LeBoeuf, C. H. Warden, L. M. Bee, and A. J. Lusis. A
polymorphism affecting apolipoprotein a-ii translational efficiency determines
high density lipoprotein size and composition. J Biol Chem, 265(27):16380–8,
9 1990.

[52] Sudheer Doss, Eric E. Schadt, Thomas A. Drake, and Aldons J. Lusis. Cis-
acting expression quantitative trait loci in mice. Genome Res, 15(5):681–91, 5
2005.

[53] Douglas F. Easton, Karen A. Pooley, Alison M. Dunning, Paul D. P. Pharoah,
Deborah Thompson, Dennis G. Ballinger, Jeffery P. Struewing, Jonathan
Morrison, Helen Field, Robert Luben, Nicholas Wareham, Shahana Ahmed,



200

Catherine S. Healey, Richard Bowman, SEARCH collaborators, Kerstin B.
Meyer, Christopher A. Haiman, Laurence K. Kolonel, Brian E. Henderson,
Loic Le Marchand, Paul Brennan, Suleeporn Sangrajrang, Valerie Gaborieau,
Fabrice Odefrey, Chen-Yang Y. Shen, Pei-Ei E. Wu, Hui-Chun C. Wang, Di-
ana Eccles, D. Gareth Evans, Julian Peto, Olivia Fletcher, Nichola Johnson,
Sheila Seal, Michael R. Stratton, Nazneen Rahman, Georgia Chenevix-Trench,
Stig E. Bojesen, BÃÿrge G. Nordestgaard, Christen K. Axelsson, Montserrat
Garcia-Closas, Louise Brinton, Stephen Chanock, Jolanta Lissowska, Beata
Peplonska, Heli Nevanlinna, Rainer Fagerholm, Hannaleena Eerola, Daehee
Kang, Keun-Young Y. Yoo, Dong-Young Y. Noh, Sei-Hyun H. Ahn, David J.
Hunter, Susan E. Hankinson, David G. Cox, Per Hall, Sara Wedren, Jianjun
Liu, Yen-Ling L. Low, Natalia Bogdanova, Peter SchÃĳrmann, Thilo DÃűrk,
Rob A. E. M. Tollenaar, Catharina E. Jacobi, Peter Devilee, Jan G. M. Klijn,
Alice J. Sigurdson, Michele M. Doody, Bruce H. Alexander, Jinghui Zhang, An-
gela Cox, Ian W. Brock, Gordon MacPherson, Malcolm W. R. Reed, Fergus J.
Couch, Ellen L. Goode, Janet E. Olson, Hanne Meijers-Heijboer, Ans van den
Ouweland, AndrÃľ Uitterlinden, Fernando Rivadeneira, Roger L. Milne, Gloria
Ribas, Anna Gonzalez-Neira, Javier Benitez, John L. Hopper, Margaret Mc-
Credie, Melissa Southey, Graham G. Giles, Chris Schroen, Christina Justen-
hoven, Hiltrud Brauch, Ute Hamann, Yon-Dschun D. Ko, Amanda B. Spur-
dle, Jonathan Beesley, Xiaoqing Chen, kConFab, AOCS Management Group,
Arto Mannermaa, Veli-Matti M. Kosma, Vesa Kataja, Jaana Hartikainen,
Nicholas E. Day, David R. Cox, and Bruce A. J. Ponder. Genome-wide
association study identifies novel breast cancer susceptibility loci. Nature,
447(7148):1087–93, 6 2007.

[54] Valur Emilsson, Gudmar Thorleifsson, Bin Zhang, Amy S. Leonardson, Florian
Zink, Jun Zhu, Sonia Carlson, Agnar Helgason, G. Bragi Walters, Steinunn
Gunnarsdottir, Magali Mouy, Valgerdur Steinthorsdottir, Gudrun H. Eiriks-
dottir, Gyda Bjornsdottir, Inga Reynisdottir, Daniel Gudbjartsson, Anna Hel-
gadottir, Aslaug Jonasdottir, Adalbjorg Jonasdottir, Unnur Styrkarsdottir,
Solveig Gretarsdottir, Kristinn P. Magnusson, Hreinn Stefansson, Ragnhei-
dur Fossdal, Kristleifur Kristjansson, Hjortur G. Gislason, Tryggvi Stefansson,
Bjorn G. Leifsson, Unnur Thorsteinsdottir, John R. Lamb, Jeffrey R. Gulcher,
Marc L. Reitman, Augustine Kong, Eric E. Schadt, and Kari Stefansson. Ge-
netics of gene expression and its effect on disease. Nature, 452(7186):423–8, 3
2008.

[55] M. P. Epstein, W. L. Duren, and M. Boehnke. Improved inference of relation-
ship for pairs of individuals. Am J Hum Genet, 67(5):1219–31, 11 2000.

[56] Charles R. Farber and Aldons J. Lusis. Integrating global gene expression
analysis and genetics. Adv Genet, 60:571–601, 2008.

[57] Thomas L. Fare, Ernest M. Coffey, Hongyue Dai, Yudong D. He, Deborah A.



201

Kessler, Kristopher A. Kilian, John E. Koch, Eric LeProust, Matthew J. Mar-
ton, Michael R. Meyer, Roland B. Stoughton, George Y. Tokiwa, and Yanqun
Wang. Effects of atmospheric ozone on microarray data quality. Anal Chem,
75(17):4672–5, 9 2003.

[58] J. Felsenstein. Phylogenies and the comparative method. American Naturalist,
125(1):1, 1985.

[59] J. Felsenstein and G. A. Churchill. A hidden markov model approach to vari-
ation among sites in rate of evolution. Mol. Biol. Evol, 13(1):93–104, 1 1996.

[60] S. D. Ferris, R. D. Sage, and A. C. Wilson. Evidence from mtdna sequences
that common laboratory strains of inbred mice are descended from a single
female. Nature, 295(5845):163–5, 1 1982.

[61] S. R. A. Fisher. The correlation between relatives on the supposition of
mendelian inheritance. Trans R Soc Edinb, 52:399–433, 1918.

[62] W. M. Fitch and E. Margoliash. Construction of phylogenetic trees. Science,
155(760):279–84, 1 1967.

[63] Jonathan Flint and Richard Mott. Applying mouse complex-trait resources to
behavioural genetics. Nature, 456(7223):724–7, 12 2008.

[64] Jonathan Flint, William Valdar, Sagiv Shifman, and Richard Mott. Strategies
for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet,
6(4):271–86, 4 2005.

[65] Sherry A. Flint-Garcia, Anne-CÃľline C. Thuillet, Jianming Yu, Gael Pres-
soir, Susan M. Romero, Sharon E. Mitchell, John Doebley, Stephen Kreso-
vich, Major M. Goodman, and Edward S. Buckler. Maize association popula-
tion: a high-resolution platform for quantitative trait locus dissection. Plant
J, 44(6):1054–64, 12 2005.

[66] Eric J. Foss, Dragan Radulovic, Scott A. Shaffer, Douglas M. Ruderfer, Antonio
Bedalov, David R. Goodlett, and Leonid Kruglyak. Genetic basis of proteome
variation in yeast. Nat Genet, 39(11):1369–75, 11 2007.

[67] Kelly A. Frazer, Eleazar Eskin, Hyun Min Kang, Molly A. Bogue, David A.
Hinds, Erica J. Beilharz, Robert V. Gupta, Julie Montgomery, Matt M. Moren-
zoni, Geoffrey B. Nilsen, Charit L. Pethiyagoda, Laura L. Stuve, Frank M.
Johnson, Mark J. Daly, Claire M. Wade, and David R. Cox. A sequence-
based variation map of 8.27 million snps in inbred mouse strains. Nature,
448(7157):1050–3, 8 2007.

[68] Kelly A. Frazer, Claire M. Wade, David A. Hinds, Nila Patil, David R. Cox,
and Mark J. Daly. Segmental phylogenetic relationships of inbred mouse strains



202

revealed by fine-scale analysis of sequence variation across 4.6 mb of mouse
genome. Genome Res, 14(8):1493–500, 8 2004.

[69] Ruth Frikke-Schmidt, BÃÿrge G. Nordestgaard, Gorm B. Jensen, and Anne
Tybjaerg-Hansen. Genetic variation in abc transporter a1 contributes to hdl
cholesterol in the general population. J Clin Invest, 114(9):1343–53, 11 2004.

[70] Anatole Ghazalpour, Sudheer Doss, Hyun Kang, Charles Farber, Ping-Zi Z.
Wen, Alec Brozell, Ruth Castellanos, Eleazar Eskin, Desmond J. Smith,
Thomas A. Drake, and Aldons J. Lusis. High-resolution mapping of gene
expression using association in an outbred mouse stock. PLoS Genet,
4(8):e1000149, 2008.

[71] Anatole Ghazalpour, Sudheer Doss, Bin Zhang, Susanna Wang, Christopher
Plaisier, Ruth Castellanos, Alec Brozell, Eric E. Schadt, Thomas A. Drake,
Aldons J. Lusis, and Steve Horvath. Integrating genetic and network analysis
to characterize genes related to mouse weight. PLoS Genet, 2(8):e130, 8 2006.

[72] A. R. Gilmour, R. Thompson, and B. R. Cullis. Average information reml: An
efficient algorithm for variance parameter estimation in linear mixed models.
Biometrics, 51:1440–1450, 1995.

[73] H. U. Graser, S. P. Smith, and B. Tier. A derivative-free approach for estimat-
ing variance components in animal models by restricted maximum likelihood.
Journal of animal science, 64(5):1362, 1987.

[74] Stephen C. Grubb, Terry P. Maddatu, Carol J. Bult, and Molly A. Bogue.
Mouse phenome database. Nucleic Acids Res, 37(Database issue):D720–30, 1
2009.

[75] A. Grupe, S. Germer, J. Usuka, D. Aud, J. K. Belknap, R. F. Klein, M. K.
Ahluwalia, R. Higuchi, and G. Peltz. In silico mapping of complex disease-
related traits in mice. Science, 292(5523):1915–8, 6 2001.

[76] Xun Gu. Statistical framework for phylogenomic analysis of gene family ex-
pression profiles. Genetics, 167(1):531–42, 5 2004.

[77] Weihua Guan, Liming Liang, Michael Boehnke, and GonÃğalo R. Abecasis.
Genotype-based matching to correct for population stratification in large-scale
case-control genetic association studies. Genet Epidemiol, 1 2009.

[78] Kevin L. Gunderson, Frank J. Steemers, Grace Lee, Leo G. Mendoza, and
Mark S. Chee. A genome-wide scalable snp genotyping assay using microarray
technology. Nat Genet, 37(5):549–54, 5 2005.

[79] Yingying Guo, Peng Lu, Erin Farrell, Xun Zhang, Paul Weller, Mario Mon-
shouwer, Jianmei Wang, Guochun Liao, Zhaomei Zhang, Steven Hu, John



203

Allard, Steve Shafer, Jonathan Usuka, and Gary Peltz. In silico and in vitro
pharmacogenetic analysis in mice. Proc Natl Acad Sci U S A, 104(45):17735–
40, 11 2007.

[80] Yingying Guo, Paul Weller, Erin Farrell, Paul Cheung, Bill Fitch, Douglas
Clark, Shao-yong Y. Wu, Jianmei Wang, Guochun Liao, Zhaomei Zhang,
John Allard, Janet Cheng, Anh Nguyen, Sharon Jiang, Steve Shafer, Jonathan
Usuka, Mohammad Masjedizadeh, and Gary Peltz. In silico pharmacogenetics
of warfarin metabolism. Nat Biotechnol, 24(5):531–6, 5 2006.

[81] U. GÃĳldener, M. MÃĳnsterkÃűtter, G. KastenmÃĳller, N. Strack, J. van
Helden, C. Lemer, J. Richelles, S. J. Wodak, J. GarcÃŋa-MartÃŋnez, J. E.
PÃľrez-OrtÃŋn, H. Michael, A. Kaps, E. Talla, B. Dujon, B. AndrÃľ, J. L.
Souciet, J. De Montigny, E. Bon, C. Gaillardin, and H. W. Mewes. Cygd:
the comprehensive yeast genome database. Nucleic Acids Res, 33(Database
issue):D364–8, 1 2005.

[82] Eran Halperin and Eleazar Eskin. Haplotype reconstruction from genotype
data using imperfect phylogeny. Bioinformatics, 20(12):1842–9, 8 2004.

[83] O. J. Hardy and X. Vekemans. Spagedi: a versatile computer program to anal-
yse spatial genetic structure at the individual or population levels. Molecular
Ecology Notes, 2(4):618–620, 2002.

[84] D. A. Harville. Biometrika, 1974.

[85] Agnar Helgason, BryndÃŋs YngvadÃşttir, Birgir Hrafnkelsson, Jeffrey Gulcher,
and KÃąri StefÃąnsson. An icelandic example of the impact of population
structure on association studies. Nat Genet, 37(1):90–5, 1 2005.

[86] C. R. Henderson. Applications of linear models in animal breeding. University
of Guelph Guelph, CN, 1984.

[87] David A. Hinds, Laura L. Stuve, Geoffrey B. Nilsen, Eran Halperin, Eleazar
Eskin, Dennis G. Ballinger, Kelly A. Frazer, and David R. Cox. Whole-
genome patterns of common dna variation in three human populations. Science,
307(5712):1072–9, 2 2005.

[88] Lucy Huang, Yun Li, Andrew B. Singleton, John A. Hardy, GonÃğalo Abecasis,
Noah A. Rosenberg, and Paul Scheet. Genotype-imputation accuracy across
worldwide human populations. Am J Hum Genet, 84(2):235–50, 2 2009.

[89] Norbert Hubner, Caroline A. Wallace, Heike Zimdahl, Enrico Petretto, Her-
bert Schulz, Fiona Maciver, Michael Mueller, Oliver Hummel, Jan Monti, Va-
clav Zidek, Alena Musilova, Vladimir Kren, Helen Causton, Laurence Game,
Gabriele Born, Sabine Schmidt, Anita MÃĳller, Stuart A. Cook, Theodore W.
Kurtz, John Whittaker, Michal Pravenec, and Timothy J. Aitman. Integrated



204

transcriptional profiling and linkage analysis for identification of genes under-
lying disease. Nat Genet, 37(3):243–53, 3 2005.

[90] T. Ideker, T. Galitski, and L. Hood. A new approach to decoding life: systems
biology. Annu Rev Genomics Hum Genet, 2:343–72, 2001.

[91] Folami Y. Ideraabdullah, Elena de la Casa-EsperÃşn, Timothy A. Bell,
David A. Detwiler, Terry Magnuson, Carmen Sapienza, and Fernando Pardo-
Manuel de Villena. Genetic and haplotype diversity among wild-derived mouse
inbred strains. Genome Res, 14(10A):1880–7, 10 2004.

[92] SAS Institute. SAS/STAT 9.1 User’s Guide. SAS Institute Inc. Cary, NC,
2004.

[93] InternationalHapMapConsortium. A second generation human haplotype map
of over 3.1 million snps. Nature, 449(7164):851–61, 10 2007.

[94] Rafael A. Irizarry, Bridget Hobbs, Francois Collin, Yasmin D. Beazer-Barclay,
Kristen J. Antonellis, Uwe Scherf, and Terence P. Speed. Exploration, normal-
ization, and summaries of high density oligonucleotide array probe level data.
Biostatistics, 4(2):249–64, 4 2003.

[95] Rafael A. Irizarry, Daniel Warren, Forrest Spencer, Irene F. Kim, Shyam
Biswal, Bryan C. Frank, Edward Gabrielson, Joe G. N. Garcia, Joel Ge-
oghegan, Gregory Germino, Constance Griffin, Sara C. Hilmer, Eric Hoff-
man, Anne E. Jedlicka, Ernest Kawasaki, Francisco MartÃŋnez-Murillo, Laura
Morsberger, Hannah Lee, David Petersen, John Quackenbush, Alan Scott,
Michael Wilson, Yanqin Yang, Shui Qing Ye, and Wayne Yu. Multiple-
laboratory comparison of microarray platforms. Nat Methods, 2(5):345–50,
5 2005.

[96] Eveliina Jakkula, Karola RehnstrÃűm, Teppo Varilo, Olli P. H. PietilÃďinen,
Tiina Paunio, Nancy L. Pedersen, Ulf deFaire, Marjo-Riitta R. JÃďrvelin, Juha
Saharinen, Nelson Freimer, Samuli Ripatti, Shaun Purcell, Andrew Collins,
Mark J. Daly, Aarno Palotie, and Leena Peltonen. The genome-wide patterns
of variation expose significant substructure in a founder population. Am J
Hum Genet, 83(6):787–94, 12 2008.

[97] Georg Jander, Susan R. Norris, Steven D. Rounsley, David F. Bush, Irena M.
Levin, and Robert L. Last. Arabidopsis map-based cloning in the post-genome
era. Plant Physiol, 129(2):440–50, 6 2002.

[98] R. C. Jansen and J. P. Nap. Genetical genomics: the added value from segre-
gation. Trends Genet, 17(7):388–91, 7 2001.

[99] D. L. Johnson and R. Thompson. Restricted maximum likelihood estima-
tion of variance components for univariate animal models using sparse matrix



205

techniques and average information. Journal of Dairy Science, 78(2):449–456,
1995.

[100] W. Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting batch effects
in microarray expression data using empirical bayes methods. Biostatistics,
8(1):118–27, 1 2007.

[101] Haja N. Kadarmideen, Peter von Rohr, and Luc L. G. Janss. From genetical
genomics to systems genetics: potential applications in quantitative genomics
and animal breeding. Mamm Genome, 17(6):548–64, 6 2006.

[102] Hyun Min Kang, Chun Ye, and Eleazar Eskin. Accurate discovery of expression
quantitative trait loci under confounding from spurious and genuine regulatory
hotspots. Genetics, 180(4):1909–25, 12 2008.

[103] Hyun Min Kang, Noah A. Zaitlen, Claire M. Wade, Andrew Kirby, David
Heckerman, Mark J. Daly, and Eleazar Eskin. Efficient control of population
structure in model organism association mapping. Genetics, 178(3):1709–23, 3
2008.

[104] Elinor K. Karlsson, Izabella Baranowska, Claire M. Wade, Nicolette H. C.
Salmon Hillbertz, Michael C. Zody, Nathan Anderson, Tara M. Biagi, Nick
Patterson, Gerli Rosengren Pielberg, Edward J. Kulbokas, Kenine E. Com-
stock, Evan T. Keller, Jill P. Mesirov, Henrik von Euler, Olle KÃďmpe, Ake
Hedhammar, Eric S. Lander, GÃűran Andersson, Leif Andersson, and Kerstin
Lindblad-Toh. Efficient mapping of mendelian traits in dogs through genome-
wide association. Nat Genet, 39(11):1321–8, 11 2007.

[105] K. Kathiresan, S. Manivannan, M. A. Nabeel, and B. Dhivya. Studies on silver
nanoparticles synthesized by a marine fungus, penicillium fellutanum isolated
from coastal mangrove sediment. Colloids Surf B Biointerfaces, 71(1):133–7,
6 2009.

[106] B. W. Kennedy, M. Quinton, and J. A. van Arendonk. Estimation of effects of
single genes on quantitative traits. J Anim Sci, 70(7):2000–12, 7 1992.

[107] Joost J. B. Keurentjes, Jingyuan Fu, Inez R. Terpstra, Juan M. Garcia, Guido
van den Ackerveken, L. Basten Snoek, Anton J. M. Peeters, Dick Vreugdenhil,
Maarten Koornneef, and Ritsert C. Jansen. Regulatory network construction
in arabidopsis by using genome-wide gene expression quantitative trait loci.
Proc Natl Acad Sci U S A, 104(5):1708–13, 1 2007.

[108] J. F. C. Kingman. On the genealogy of large populations. Journal of Applied
Probability, pages 27–43, 1982.

[109] Andrew Kirby, Hyun Min Kang, Claire M. Wade, Chris J. Cotsapas, Emrah
Kostem, Buhm Han, Manuel Rivas, Molly A. Bogue, Kelly A Frazer, Frank M.



206

Johnson, Erica J. Beilharz, David R. Cox, Eleazar Eskin, and Mark J. Daly.
A high density haplotype resouce of 94 inbred mouse strains.

[110] H. Kishino and M. Hasegawa. Evaluation of the maximum likelihood estimate
of the evolutionary tree topologies from dna sequence data, and the branching
order in hominoidea. J Mol Evol, 29(2):170–9, 8 1989.

[111] Hiroaki Kitano. Systems biology: a brief overview. Science, 295(5560):1662–4,
3 2002.

[112] Robert F. Klein, John Allard, Zafrira Avnur, Tania Nikolcheva, David Rotstein,
Amy S. Carlos, Marie Shea, Ruth V. Waters, John K. Belknap, Gary Peltz,
and Eric S. Orwoll. Regulation of bone mass in mice by the lipoxygenase gene
alox15. Science, 303(5655):229–32, 1 2004.

[113] Nan M. Laird and Christoph Lange. Family-based methods for linkage and
association analysis. Adv Genet, 60:219–52, 2008.

[114] U. Landegren, M. Nilsson, and P. Y. Kwok. Reading bits of genetic information:
methods for single-nucleotide polymorphism analysis. Genome Res, 8(8):769–
76, 8 1998.

[115] K. Lange. Mathematical and statistical methods for genetic analysis. Springer,
2002.

[116] Larry J. Leamy, Daniel Pomp, E. J. Eisen, and James M. Cheverud. Pleiotropy
of quantitative trait loci for organ weights and limb bone lengths in mice.
Physiol Genomics, 10(1):21–9, 7 2002.

[117] Su-In I. Lee, Dana Pe’er, AimÃľe M. Dudley, George M. Church, and Daphne
Koller. Identifying regulatory mechanisms using individual variation reveals
key role for chromatin modification. Proc Natl Acad Sci U S A, 103(38):14062–
7, 9 2006.

[118] Jeffrey T. Leek and John D. Storey. Capturing heterogeneity in gene expression
studies by surrogate variable analysis. PLoS Genet, 3(9):1724–35, 9 2007.

[119] Guochun Liao, Jianmei Wang, Jingshu Guo, John Allard, Janet Cheng, Anh
Ng, Steve Shafer, Anne Puech, John D. McPherson, Dorothee Foernzler, Gary
Peltz, and Jonathan Usuka. In silico genetics: identification of a functional
element regulating h2-ealpha gene expression. Science, 306(5696):690–5, 10
2004.

[120] K. Lindblad-Toh, E. Winchester, M. J. Daly, D. G. Wang, J. N. Hirschhorn,
J. P. Laviolette, K. Ardlie, D. E. Reich, E. Robinson, P. Sklar, N. Shah,
D. Thomas, J. B. Fan, T. Gingeras, J. Warrington, N. Patil, T. J. Hudson,
and E. S. Lander. Large-scale discovery and genotyping of single-nucleotide
polymorphisms in the mouse. Nat Genet, 24(4):381–6, 4 2000.



207

[121] Kerstin Lindblad-Toh, Claire M. Wade, Tarjei S. Mikkelsen, Elinor K. Karls-
son, David B. Jaffe, Michael Kamal, Michele Clamp, Jean L. Chang, Ed-
ward J. Kulbokas, Michael C. Zody, Evan Mauceli, Xiaohui Xie, Matthew
Breen, Robert K. Wayne, Elaine A. Ostrander, Chris P. Ponting, Francis Gal-
ibert, Douglas R. Smith, Pieter J. DeJong, Ewen Kirkness, Pablo Alvarez, Tara
Biagi, William Brockman, Jonathan Butler, Chee-Wye W. Chin, April Cook,
James Cuff, Mark J. Daly, David DeCaprio, Sante Gnerre, Manfred Grab-
herr, Manolis Kellis, Michael Kleber, Carolyne Bardeleben, Leo Goodstadt,
Andreas Heger, Christophe Hitte, Lisa Kim, Klaus-Peter P. Koepfli, Heidi G.
Parker, John P. Pollinger, Stephen M. J. Searle, Nathan B. Sutter, Rachael
Thomas, Caleb Webber, Jennifer Baldwin, and Eric S. Lander. Genome se-
quence, comparative analysis and haplotype structure of the domestic dog.
Nature, 438(7069):803–19, 12 2005.

[122] M. J. Lindstrom and D. M. Bates. Newton-raphson and em algorithms for lin-
ear mixed-effects models for repeated-measures data. Journal of the American
Statistical Association, 83(404):1014–1022, 1988.

[123] Pengyuan Liu, Haris Vikis, Yan Lu, Daolong Wang, and Ming You. Large-scale
in silico mapping of complex quantitative traits in inbred mice. PLoS ONE,
2(7):e651, 2007.

[124] Pengyuan Liu, Yian Wang, Haris Vikis, Anna Maciag, Daolong Wang, Yan
Lu, Yan Liu, and Ming You. Candidate lung tumor susceptibility genes iden-
tified through whole-genome association analyses in inbred mice. Nat Genet,
38(8):888–95, 8 2006.

[125] Jennifer K. Lowe, Julian B. Maller, Itsik Pe’er, Benjamin M. Neale, Jacqueline
Salit, Eimear E. Kenny, Jessica L. Shea, Ralph Burkhardt, J. Gustav Smith,
Weizhen Ji, Martha Noel, Jia Nee Foo, Maude L. Blundell, Vita Skilling, Laura
Garcia, Marcia L. Sullivan, Heather E. Lee, Anna Labek, Hope Ferdowsian,
Steven B. Auerbach, Richard P. Lifton, Christopher Newton-Cheh, Jan L.
Breslow, Markus Stoffel, Mark J. Daly, David M. Altshuler, and Jeffrey M.
Friedman. Genome-wide association studies in an isolated founder population
from the pacific island of kosrae. PLoS Genet, 5(2):e1000365, 2 2009.

[126] Aldons J. Lusis, Alan D. Attie, and Karen Reue. Metabolic syndrome: from
epidemiology to systems biology. Nat Rev Genet, 9(11):819–30, 11 2008.

[127] M. Lynch and K. Ritland. Estimation of pairwise relatedness with molecular
markers. Genetics, 152(4):1753–66, 8 1999.

[128] Brendan Maher. Personal genomes: The case of the missing heritability. Na-
ture, 456(7218):18–21, 11 2008.



208

[129] Andrea Manica, William Amos, FranÃğois Balloux, and Tsunehiko Hanihara.
The effect of ancient population bottlenecks on human phenotypic variation.
Nature, 448(7151):346–8, 7 2007.

[130] Kenneth F. Manly, Jintao Wang, and Robert W. Williams. Weighting by
heritability for detection of quantitative trait loci with microarray estimates of
gene expression. Genome Biol, 6(3):R27, 2005.

[131] Teri A. Manolio. Cohort studies and the genetics of complex disease. Nat
Genet, 41(1):5–6, 1 2009.

[132] Jonathan Marchini, Bryan Howie, Simon Myers, Gil McVean, and Peter Don-
nelly. A new multipoint method for genome-wide association studies by impu-
tation of genotypes. Nat Genet, 39(7):906–13, 7 2007.

[133] E. P. Martins and T. F. Hansen. Phylogenies and the comparative method: a
general approach to incorporating phylogenetic information into the analysis
of interspecific data. American Naturalist, 149(4):646, 1997.

[134] Godfred L. Masinde, Xinmin Li, Weikuan Gu, Heather Davidson, Melanie
Hamilton-Ulland, Jon Wergedal, Subburaman Mohan, and David J. Baylink.
Quantitative trait loci (qtl) for lean body mass and body length in mrl/mpj
and sjl/j f(2) mice. Funct Integr Genomics, 2(3):98–104, 8 2002.

[135] Hajime Matsuzaki, Shoulian Dong, Halina Loi, Xiaojun Di, Guoying Liu, Earl
Hubbell, Jane Law, Tam Berntsen, Monica Chadha, Henry Hui, Geoffrey Yang,
Giulia C. Kennedy, Teresa A. Webster, Simon Cawley, P. Sean Walsh, Keith W.
Jones, Stephen P. A. Fodor, and Rui Mei. Genotyping over 100,000 snps on a
pair of oligonucleotide arrays. Nat Methods, 1(2):109–11, 11 2004.

[136] B. H. McArdle and M. J. Anderson. Fitting multivariate models to community
data: a comment on distance-based redundancy analysis. Ecology, 82(1):290–
297, 2001.

[137] Phillip McClurg, Jeff Janes, Chunlei Wu, David L. Delano, John R. Walker,
Serge Batalov, Joseph S. Takahashi, Kazuhiro Shimomura, Akira Kohsaka,
Joseph Bass, Tim Wiltshire, and Andrew I. Su. Genomewide association
analysis in diverse inbred mice: power and population structure. Genetics,
176(1):675–83, 5 2007.

[138] Charles E. McCulloch. Generalized linear mixed models. Institute of Mathe-
matical Statistics ; Alexandria, Va. : American Statistical Association„ Beach-
wood, Ohio, 2003.

[139] M. S. McPeek and L. Sun. Statistical tests for detection of misspecified rela-
tionships by use of genome-screen data. Am J Hum Genet, 66(3):1076–94, 3
2000.



209

[140] M. Mehrabian, J. H. Qiao, R. Hyman, D. Ruddle, C. Laughton, and A. J. Lusis.
Influence of the apoa-ii gene locus on hdl levels and fatty streak development
in mice. Arterioscler Thromb, 13(1):1–10, 1 1993.

[141] K. Meyer. Restricted maximum likelihood to estimate variance components for
animal models with several random effects using a derivative-free algorithm.
Genetics selection evolution, 21(3):317–340, 1989.

[142] Brook G. Milligan. Maximum-likelihood estimation of relatedness. Genetics,
163(3):1153–67, 3 2003.

[143] Karen L. Mohlke, Michael Boehnke, and GonÃğalo R. Abecasis. Metabolic
and cardiovascular traits: an abundance of recently identified common genetic
variants. Hum Mol Genet, 17(R2):R102–8, 10 2008.

[144] Jennifer L. Moran, Andrew D. Bolton, Pamela V. Tran, Alison Brown,
Noelle D. Dwyer, Danielle K. Manning, Bryan C. Bjork, Cheng Li, Kate Mont-
gomery, Sandra M. Siepka, Martha Hotz Vitaterna, Joseph S. Takahashi, Tim
Wiltshire, David J. Kwiatkowski, Raju Kucherlapati, and David R. Beier. Uti-
lization of a whole genome snp panel for efficient genetic mapping in the mouse.
Genome Res, 16(3):436–40, 3 2006.

[145] MouseGenomeSequencingConsortium. Initial sequencing and comparative
analysis of the mouse genome. Nature, 420(6915):520–62, 12 2002.

[146] Richard J. Mural, Mark D. Adams, Eugene W. Myers, Hamilton O. Smith,
George L. Gabor Miklos, Ron Wides, Aaron Halpern, Peter W. Li, Granger G.
Sutton, Joe Nadeau, Steven L. Salzberg, Robert A. Holt, Chinnappa D.
Kodira, Fu Lu, Lin Chen, Zuoming Deng, Carlos C. Evangelista, Weiniu Gan,
Thomas J. Heiman, Jiayin Li, Zhenya Li, Gennady V. Merkulov, Natalia V.
Milshina, Ashwinikumar K. Naik, Rong Qi, Bixiong Chris Shue, Aihui Wang,
Jian Wang, Xin Wang, Xianghe Yan, Jane Ye, Shibu Yooseph, Qi Zhao, Lian-
sheng Zheng, Shiaoping C. Zhu, Kendra Biddick, Randall Bolanos, Arthur L.
Delcher, Ian M. Dew, Daniel Fasulo, Michael J. Flanigan, Daniel H. Huson,
Saul A. Kravitz, Jason R. Miller, Clark M. Mobarry, Knut Reinert, Karin A.
Remington, Qing Zhang, Xiangqun H. Zheng, Deborah R. Nusskern, Zhongwu
Lai, Yiding Lei, Wenyan Zhong, Alison Yao, Ping Guan, Rui-Ru R. Ji, Zhip-
ing Gu, Zhen-Yuan Y. Wang, Fei Zhong, Chunlin Xiao, Chia-Chien C. Chi-
ang, Mark Yandell, Jennifer R. Wortman, Peter G. Amanatides, Suzanne L.
Hladun, Eric C. Pratts, Jeffery E. Johnson, Kristina L. Dodson, Kerry J.
Woodford, Cheryl A. Evans, Barry Gropman, Douglas B. Rusch, Eli Ven-
ter, Mei Wang, Thomas J. Smith, Jarrett T. Houck, Donald E. Tompkins,
Charles Haynes, Debbie Jacob, Soo H. Chin, David R. Allen, Carl E. Dahlke,
Robert Sanders, Kelvin Li, Xiangjun Liu, Alexander A. Levitsky, William H.
Majoros, Quan Chen, Ashley C. Xia, John R. Lopez, Michael T. Donnelly,
Matthew H. Newman, Anna Glodek, Cheryl L. Kraft, Marc Nodell, Feroze



210

Ali, Hui-Jin J. An, Danita Baldwin-Pitts, Karen Y. Beeson, Shuang Cai, Mark
Carnes, Amy Carver, Parris M. Caulk, Angela Center, Yen-Hui H. Chen, Ming-
Lai L. Cheng, My D. Coyne, Michelle Crowder, Steven Danaher, Lionel B. Dav-
enport, Raymond Desilets, Susanne M. Dietz, Lisa Doup, Patrick Dullaghan,
Steven Ferriera, Carl R. Fosler, Harold C. Gire, Andres Gluecksmann, Jean-
nine D. Gocayne, Jonathan Gray, Brit Hart, Jason Haynes, Jeffery Hoover,
Tim Howland, Chinyere Ibegwam, Mena Jalali, David Johns, Leslie Kline,
Daniel S. Ma, Steven MacCawley, Anand Magoon, Felecia Mann, David May,
Tina C. McIntosh, Somil Mehta, Linda Moy, Mee C. Moy, Brian J. Murphy,
Sean D. Murphy, Keith A. Nelson, Zubeda Nuri, Kimberly A. Parker, Alexan-
dre C. Prudhomme, Vinita N. Puri, Hina Qureshi, John C. Raley, Matthew S.
Reardon, Megan A. Regier, Yu-Hui C. H. Rogers, Deanna L. Romblad, Jakob
Schutz, John L. Scott, Richard Scott, Cynthia D. Sitter, Michella Smallwood,
Arlan C. Sprague, Erin Stewart, Renee V. Strong, Ellen Suh, Karena Sylvester,
Reginald Thomas, Ni Ni Tint, Christopher Tsonis, Gary Wang, George Wang,
Monica S. Williams, Sherita M. Williams, Sandra M. Windsor, Keriellen Wolfe,
Mitchell M. Wu, Jayshree Zaveri, Kabir Chaturvedi, Andrei E. Gabrielian,
Zhaoxi Ke, Jingtao Sun, Gangadharan Subramanian, J. Craig Venter, Cyn-
thia M. Pfannkoch, Mary Barnstead, and Lisa D. Stephenson. A comparison of
whole-genome shotgun-derived mouse chromosome 16 and the human genome.
Science, 296(5573):1661–71, 5 2002.

[147] J. A. Nelder and R. Mead. A simplex method for function minimization. The
computer journal, 7(4):308, 1965.

[148] D. L. Newman, M. Abney, M. S. McPeek, C. Ober, and N. J. Cox. The im-
portance of genealogy in determining genetic associations with complex traits.
Am J Hum Genet, 69(5):1146–8, 11 2001.

[149] Caroline M. Nievergelt, Ondrej Libiger, and Nicholas J. Schork. Generalized
analysis of molecular variance. PLoS Genet, 3(4):e51, 4 2007.

[150] Magnus Nordborg, Tina T. Hu, Yoko Ishino, Jinal Jhaveri, Christopher Tooma-
jian, Honggang Zheng, Erica Bakker, Peter Calabrese, Jean Gladstone, Rana
Goyal, Mattias Jakobsson, Sung Kim, Yuri Morozov, Badri Padhukasahasram,
Vincent Plagnol, Noah A. Rosenberg, Chitiksha Shah, Jeffrey D. Wall, Jue
Wang, Keyan Zhao, Theodore Kalbfleisch, Vincent Schulz, Martin Kreitman,
and Joy Bergelson. The pattern of polymorphism in arabidopsis thaliana. PLoS
Biol, 3(7):e196, 7 2005.

[151] Michael Nothnagel, David Ellinghaus, Stefan Schreiber, Michael Krawczak,
and Andre Franke. A comprehensive evaluation of snp genotype imputation.
Hum Genet, 125(2):163–71, 3 2009.

[152] John Novembre and Matthew Stephens. Interpreting principal component anal-
yses of spatial population genetic variation. Nat Genet, 40(5):646–9, 5 2008.



211

[153] Emma S. Nyman, Anu Loukola, Teppo Varilo, Jesper Ekelund, Juha Vei-
jola, Matti Joukamaa, Anja Taanila, Anneli Pouta, Jouko Miettunen, Nel-
son Freimer, Marjo-Riitta R. JÃďrvelin, and Leena Peltonen. Impact of the
dopamine receptor gene family on temperament traits in a population-based
birth cohort. Am J Med Genet B Neuropsychiatr Genet, 12 2008.

[154] Todd H. Oakley, Zhenglong Gu, Ehab Abouheif, Nipam H. Patel, and Wen-
Hsiung H. Li. Comparative methods for the analysis of gene-expression evolu-
tion: an example using yeast functional genomic data. Mol Biol Evol, 22(1):40–
50, 1 2005.

[155] C. Ober, M. Abney, and M. S. McPeek. The genetic dissection of complex
traits in a founder population. Am J Hum Genet, 69(5):1068–79, 11 2001.

[156] N. Patil, A. J. Berno, D. A. Hinds, W. A. Barrett, J. M. Doshi, C. R. Hacker,
C. R. Kautzer, D. H. Lee, C. Marjoribanks, D. P. McDonough, B. T. Nguyen,
M. C. Norris, J. B. Sheehan, N. Shen, D. Stern, R. P. Stokowski, D. J. Thomas,
M. O. Trulson, K. R. Vyas, K. A. Frazer, S. P. Fodor, and D. R. Cox. Blocks
of limited haplotype diversity revealed by high-resolution scanning of human
chromosome 21. Science, 294(5547):1719–23, 11 2001.

[157] H. D. Patterson and R. Thompson. Recovery of inter-block information when
block sizes are unequal. Biometrika, 58(3):545–554, 1971.

[158] Nick Patterson, Alkes L. Price, and David Reich. Population structure and
eigenanalysis. PLoS Genet, 2(12):e190, 12 2006.

[159] Bret A. Payseur and Michael Place. Prospects for association mapping in
classical inbred mouse strains. Genetics, 175(4):1999–2008, 4 2007.

[160] Jeremy L. Peirce, Hongqiang Li, Jintao Wang, Kenneth F. Manly, Robert J.
Hitzemann, John K. Belknap, Glenn D. Rosen, Shirlean Goodwin, Thomas R.
Sutter, Robert W. Williams, and Lu Lu. How replicable are mrna expression
qtl? Mamm Genome, 17(6):643–56, 6 2006.

[161] Ethan O. Perlstein, Douglas M. Ruderfer, David C. Roberts, Stuart L.
Schreiber, and Leonid Kruglyak. Genetic basis of individual differences in
the response to small-molecule drugs in yeast. Nat Genet, 39(4):496–502, 4
2007.

[162] Luanne L. Peters, Raymond F. Robledo, Carol J. Bult, Gary A. Churchill,
Beverly J. Paigen, and Karen L. Svenson. The mouse as a model for human
biology: a resource guide for complex trait analysis. Nat Rev Genet, 8(1):58–69,
1 2007.

[163] Petko M. Petkov, Yueming Ding, Megan A. Cassell, Weidong Zhang, Gunjan
Wagner, Evelyn E. Sargent, Steven Asquith, Victor Crew, Kevin A. Johnson,



212

Phil Robinson, Valerie E. Scott, and Michael V. Wiles. An efficient snp system
for mouse genome scanning and elucidating strain relationships. Genome Res,
14(9):1806–11, 9 2004.

[164] Petko M. Petkov, Joel H. Graber, Gary A. Churchill, Keith DiPetrillo, Ben-
jamin L. King, and Kenneth Paigen. Evidence of a large-scale functional orga-
nization of mammalian chromosomes. PLoS Genet, 1(3):e33, 9 2005.

[165] Enrico Petretto, Jonathan Mangion, Michal Pravanec, Norbert Hubner, and
Timothy J. Aitman. Integrated gene expression profiling and linkage analysis
in the rat. Mamm Genome, 17(6):480–9, 6 2006.

[166] Mathew T. Pletcher, Philip McClurg, Serge Batalov, Andrew I. Su, S. Whit-
ney Barnes, Erica Lagler, Ron Korstanje, Xiaosong Wang, Deborah Nusskern,
Molly A. Bogue, Richard J. Mural, Beverly Paigen, and Tim Wiltshire. Use
of a dense single nucleotide polymorphism map for in silico mapping in the
mouse. PLoS Biol, 2(12):e393, 12 2004.

[167] Alkes L. Price, Nick Patterson, Dustin C. Hancks, Simon Myers, David Reich,
Vivian G. Cheung, and Richard S. Spielman. Effects of cis and trans genetic
ancestry on gene expression in african americans. PLoS Genet, 4(12):e1000294,
12 2008.

[168] Alkes L. Price, Nick J. Patterson, Robert M. Plenge, Michael E. Weinblatt,
Nancy A. Shadick, and David Reich. Principal components analysis corrects
for stratification in genome-wide association studies. Nat Genet, 38(8):904–9,
8 2006.

[169] J. K. Pritchard, M. Stephens, and P. Donnelly. Inference of population struc-
ture using multilocus genotype data. Genetics, 155(2):945–59, 6 2000.

[170] J. K. Pritchard, M. Stephens, N. A. Rosenberg, and P. Donnelly. Association
mapping in structured populations. Am J Hum Genet, 67(1):170–81, 7 2000.

[171] Inga Prokopenko, Claudia Langenberg, Jose C. Florez, Richa Saxena, Nicole
Soranzo, Gudmar Thorleifsson, Ruth J. F. Loos, Alisa K. Manning, Anne U.
Jackson, Yurii Aulchenko, Simon C. Potter, Michael R. Erdos, Serena Sanna,
Jouke-Jan J. Hottenga, Eleanor Wheeler, Marika Kaakinen, Valeriya Lyssenko,
Wei-Min M. Chen, Kourosh Ahmadi, Jacques S. Beckmann, Richard N.
Bergman, Murielle Bochud, Lori L. Bonnycastle, Thomas A. Buchanan, Anto-
nio Cao, Alessandra Cervino, Lachlan Coin, Francis S. Collins, Laura Crisponi,
Eco J. C. de Geus, Abbas Dehghan, Panos Deloukas, Alex S. F. Doney,
Paul Elliott, Nelson Freimer, Vesela Gateva, Christian Herder, Albert Hof-
man, Thomas E. Hughes, Sarah Hunt, Thomas Illig, Michael Inouye, Bo Iso-
maa, Toby Johnson, Augustine Kong, Maria Krestyaninova, Johanna Kuusisto,
Markku Laakso, Noha Lim, Ulf Lindblad, Cecilia M. Lindgren, Owen T. Mc-
Cann, Karen L. Mohlke, Andrew D. Morris, Silvia Naitza, Marco OrrÃź, Colin



213

N. A. Palmer, Anneli Pouta, Joshua Randall, Wolfgang Rathmann, Jouko
Saramies, Paul Scheet, Laura J. Scott, Angelo Scuteri, Stephen Sharp, Eric
Sijbrands, Jan H. Smit, Kijoung Song, Valgerdur Steinthorsdottir, Heather M.
Stringham, Tiinamaija Tuomi, Jaakko Tuomilehto, AndrÃľ G. Uitterlinden,
Benjamin F. Voight, Dawn Waterworth, H-Erich E. Wichmann, Gonneke
Willemsen, Jacqueline C. M. Witteman, Xin Yuan, Jing Hua Zhao, Eleftheria
Zeggini, David Schlessinger, Manjinder Sandhu, Dorret I. Boomsma, Manuela
Uda, Tim D. Spector, Brenda Wjh Penninx, David Altshuler, Peter Vollen-
weider, Marjo Riitta Jarvelin, Edward Lakatta, Gerard Waeber, Caroline S.
Fox, Leena Peltonen, Leif C. Groop, Vincent Mooser, L. Adrienne Cupples,
Unnur Thorsteinsdottir, Michael Boehnke, InÃłs Barroso, Cornelia Van Duijn,
JosÃľe Dupuis, Richard M. Watanabe, Kari Stefansson, Mark I. McCarthy,
Nicholas J. Wareham, James B. Meigs, and GonÃğalo R. Abecasis. Variants
in mtnr1b influence fasting glucose levels. Nat Genet, 41(1):77–81, 1 2009.

[172] Shaun Purcell, Benjamin Neale, Kathe Todd-Brown, Lori Thomas, Manuel
A. R. Ferreira, David Bender, Julian Maller, Pamela Sklar, Paul I. W.
de Bakker, Mark J. Daly, and Pak C. Sham. Plink: a tool set for whole-
genome association and population-based linkage analyses. Am J Hum Genet,
81(3):559–75, 9 2007.

[173] D. A. Purcell-Huynh, A. Weinreb, L. W. Castellani, M. Mehrabian, M. H.
Doolittle, and A. J. Lusis. Genetic factors in lipoprotein metabolism. analysis
of a genetic cross between inbred mouse strains nzb/binj and sm/j using a
complete linkage map approach. J Clin Invest, 96(4):1845–58, 10 1995.

[174] Miguel PÃľrez-Enciso. In silico study of transcriptome genetic variation in
outbred populations. Genetics, 166(1):547–54, 1 2004.

[175] P. Rantakallio. Groups at risk in low birth weight infants and perinatal mor-
tality. Acta Paediatr Scand, 193:Suppl 193:1+, 1969.

[176] D. R. Reed, S. Li, X. Li, L. Huang, M. G. Tordoff, R. Starling-Roney,
K. Taniguchi, D. B. West, J. D. Ohmen, G. K. Beauchamp, and A. A. Bach-
manov. Polymorphisms in the taste receptor gene (tas1r3) region are associated
with saccharin preference in 30 mouse strains. J Neurosci, 24(4):938–46, 1 2004.

[177] David E. Reich, Stephen F. Schaffner, Mark J. Daly, Gil McVean, James C.
Mullikin, John M. Higgins, Daniel J. Richter, Eric S. Lander, and David Alt-
shuler. Human genome sequence variation and the influence of gene history,
mutation and recombination. Nat Genet, 32(1):135–42, 9 2002.

[178] John P. Rice, Nancy L. Saccone, and Jonathan Corbett. Model-based methods
for linkage analysis. Adv Genet, 60:155–73, 2008.

[179] N. Risch and K. Merikangas. The future of genetic studies of complex human
diseases. Science, 273(5281):1516–7, 9 1996.



214

[180] Mark D. Robinson, JÃűrg Grigull, Naveed Mohammad, and Timothy R.
Hughes. Funspec: a web-based cluster interpreter for yeast. BMC Bioin-
formatics, 3:35, 11 2002.

[181] Mark D. Robinson and Terence P. Speed. A comparison of affymetrix gene
expression arrays. BMC Bioinformatics, 8:449, 2007.

[182] Joao L. Rocha, Eugene J. Eisen, L. Dale Van Vleck, and Daniel Pomp. A large-
sample qtl study in mice: Ii. body composition. Mamm Genome, 15(2):100–13,
2 2004.

[183] Matthew V. Rockman and Leonid Kruglyak. Genetics of global gene expression.
Nat Rev Genet, 7(11):862–72, 11 2006.

[184] Chiara Sabatti, Susan K. Service, Anna-Liisa L. Hartikainen, Anneli Pouta,
Samuli Ripatti, Jae Brodsky, Chris G. Jones, Noah A. Zaitlen, Teppo Var-
ilo, Marika Kaakinen, Ulla Sovio, Aimo Ruokonen, Jaana Laitinen, Eveli-
ina Jakkula, Lachlan Coin, Clive Hoggart, Andrew Collins, Hannu Turunen,
Stacey Gabriel, Paul Elliot, Mark I. McCarthy, Mark J. Daly, Marjo-Riitta R.
JÃďrvelin, Nelson B. Freimer, and Leena Peltonen. Genome-wide association
analysis of metabolic traits in a birth cohort from a founder population. Nat
Genet, 41(1):35–46, 1 2009.

[185] Eric E. Schadt, Cliona Molony, Eugene Chudin, Ke Hao, Xia Yang, Pek Y.
Lum, Andrew Kasarskis, Bin Zhang, Susanna Wang, Christine Suver, Jun
Zhu, Joshua Millstein, Solveig Sieberts, John Lamb, Debraj GuhaThakurta,
Jonathan Derry, John D. Storey, Iliana Avila-Campillo, Mark J. Kruger,
Jason M. Johnson, Carol A. Rohl, Atila van Nas, Margarete Mehrabian,
Thomas A. Drake, Aldons J. Lusis, Ryan C. Smith, F. Peter Guengerich,
Stephen C. Strom, Erin Schuetz, Thomas H. Rushmore, and Roger Ulrich.
Mapping the genetic architecture of gene expression in human liver. PLoS
Biol, 6(5):e107, 5 2008.

[186] Paul Scheet and Matthew Stephens. A fast and flexible statistical model for
large-scale population genotype data: applications to inferring missing geno-
types and haplotypic phase. Am J Hum Genet, 78(4):629–44, 4 2006.

[187] Nicholas J. Schork, Jennifer Wessel, and Nathalie Malo. Dna sequence-based
phenotypic association analysis. Adv Genet, 60:195–217, 2008.

[188] Solveig K. Sieberts and Eric E. Schadt. Moving toward a system genetics view
of disease. Mamm Genome, 18(6-7):389–401, 7 2007.

[189] L. M. Silver. Mouse genetics: concepts and applications. Oxford University
Press, USA, 1995.



215

[190] Erin N. Smith and Leonid Kruglyak. Gene-environment interaction in yeast
gene expression. PLoS Biol, 6(4):e83, 4 2008.

[191] Ulla Sovio, Amanda J. Bennett, Iona Y. Millwood, John Molitor, Paul F.
O’Reilly, Nicholas J. Timpson, Marika Kaakinen, Jaana Laitinen, Jari Haukka,
Demetris Pillas, Ioanna Tzoulaki, Jassy Molitor, Clive Hoggart, Lachlan J. M.
Coin, John Whittaker, Anneli Pouta, Anna-Liisa L. Hartikainen, Nelson B.
Freimer, Elisabeth Widen, Leena Peltonen, Paul Elliott, Mark I. McCarthy,
and Marjo-Riitta R. Jarvelin. Genetic determinants of height growth assessed
longitudinally from infancy to adulthood in the northern finland birth cohort
1966. PLoS Genet, 5(3):e1000409, 3 2009.

[192] Richard S. Spielman, Laurel A. Bastone, Joshua T. Burdick, Michael Morley,
Warren J. Ewens, and Vivian G. Cheung. Common genetic variants account for
differences in gene expression among ethnic groups. Nat Genet, 39(2):226–31,
2 2007.

[193] STARConsortium. Snp and haplotype mapping for genetic analysis in the rat.
Nat Genet, 40(5):560–6, 5 2008.

[194] Lincoln D. Stein, Christopher Mungall, ShengQiang Shu, Michael Caudy,
Marco Mangone, Allen Day, Elizabeth Nickerson, Jason E. Stajich, Todd W.
Harris, Adrian Arva, and Suzanna Lewis. The generic genome browser: a build-
ing block for a model organism system database. Genome Res, 12(10):1599–
610, 10 2002.

[195] John D. Storey, Joshua M. Akey, and Leonid Kruglyak. Multiple locus linkage
analysis of genomewide expression in yeast. PLoS Biol, 3(8):e267, 8 2005.

[196] John D. Storey and Robert Tibshirani. Statistical significance for genomewide
studies. Proc Natl Acad Sci U S A, 100(16):9440–5, 8 2003.

[197] D. O. Stram and J. W. Lee. Variance components testing in the longitudinal
mixed effects model. Biometrics, 50(4):1171–7, 12 1994.

[198] Barbara E. Stranger, Matthew S. Forrest, Mark Dunning, Catherine E. In-
gle, Claude Beazley, Natalie Thorne, Richard Redon, Christine P. Bird, Anna
de Grassi, Charles Lee, Chris Tyler-Smith, Nigel Carter, Stephen W. Scherer,
Simon TavarÃľ, Panagiotis Deloukas, Matthew E. Hurles, and Emmanouil T.
Dermitzakis. Relative impact of nucleotide and copy number variation on gene
expression phenotypes. Science, 315(5813):848–53, 2 2007.

[199] Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee,
Benjamin L. Ebert, Michael A. Gillette, Amanda Paulovich, Scott L. Pomeroy,
Todd R. Golub, Eric S. Lander, and Jill P. Mesirov. Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci U S A, 102(43):15545–50, 10 2005.



216

[200] Jin P. Szatkiewicz, Glen L. Beane, Yueming Ding, Lucie Hutchins, Fernando
Pardo-Manuel de Villena, and Gary A. Churchill. An imputed genotype re-
source for the laboratory mouse. Mamm Genome, 19(3):199–208, 3 2008.

[201] K. Tanaka, M. Nakafuku, T. Satoh, M. S. Marshall, J. B. Gibbs, K. Mat-
sumoto, Y. Kaziro, and A. Toh-e. S. cerevisiae genes ira1 and ira2 encode
proteins that may be functionally equivalent to mammalian ras gtpase activat-
ing protein. Cell, 60(5):803–7, 3 1990.

[202] Gilles Thomas, Kevin B. Jacobs, Peter Kraft, Meredith Yeager, Sholom Wa-
cholder, David G. Cox, Susan E. Hankinson, Amy Hutchinson, Zhaoming
Wang, Kai Yu, Nilanjan Chatterjee, Montserrat Garcia-Closas, Jesus Gonzalez-
Bosquet, Ludmila Prokunina-Olsson, Nick Orr, Walter C. Willett, Graham A.
Colditz, Regina G. Ziegler, Christine D. Berg, Saundra S. Buys, Catherine A.
McCarty, Heather Spencer Feigelson, Eugenia E. Calle, Michael J. Thun, Ryan
Diver, Ross Prentice, Rebecca Jackson, Charles Kooperberg, Rowan Chle-
bowski, Jolanta Lissowska, Beata Peplonska, Louise A. Brinton, Alice Sig-
urdson, Michele Doody, Parveen Bhatti, Bruce H. Alexander, Julie Buring,
I-Min M. Lee, Lars J. Vatten, Kristian Hveem, Merethe Kumle, Richard B.
Hayes, Margaret Tucker, Daniela S. Gerhard, Joseph F. Fraumeni, Robert N.
Hoover, Stephen J. Chanock, and David J. Hunter. A multistage genome-wide
association study in breast cancer identifies two new risk alleles at 1p11.2 and
14q24.1 (rad51l1). Nat Genet, 3 2009.

[203] S. C. Thomas and W. G. Hill. Estimating quantitative genetic parameters
using sibships reconstructed from marker data. Genetics, 155(4):1961–72, 8
2000.

[204] Jung-Ying Y. Tzeng and Daowen Zhang. Haplotype-based association analysis
via variance-components score test. Am J Hum Genet, 81(5):927–38, 11 2007.

[205] Jung-Ying Y. Tzeng, Daowen Zhang, Sheng-Mao M. Chang, Duncan C.
Thomas, and Marie Davidian. Gene-trait similarity regression for multimarker-
based association analysis. Biometrics, 2 2009.

[206] William Valdar, Leah C. Solberg, Dominique Gauguier, Stephanie Burnett,
Paul Klenerman, William O. Cookson, Martin S. Taylor, J. Nicholas P. Rawl-
ins, Richard Mott, and Jonathan Flint. Genome-wide genetic association of
complex traits in heterogeneous stock mice. Nat Genet, 38(8):879–87, 8 2006.

[207] T. Van de Casteele, P. Galbusera, and E. Matthysen. A comparison of
microsatellite-based pairwise relatedness estimators. Mol Ecol, 10(6):1539–49,
6 2001.

[208] Laura J. van ’t Veer, Hongyue Dai, Marc J. van de Vijver, Yudong D.
He, Augustinus A. M. Hart, Mao Mao, Hans L. Peterse, Karin van der



217

Kooy, Matthew J. Marton, Anke T. Witteveen, George J. Schreiber, Ron M.
Kerkhoven, Chris Roberts, Peter S. Linsley, RenÃľ Bernards, and Stephen H.
Friend. Gene expression profiling predicts clinical outcome of breast cancer.
Nature, 415(6871):530–6, 1 2002.

[209] Teppo Varilo and Leena Peltonen. Isolates and their potential use in complex
gene mapping efforts. Curr Opin Genet Dev, 14(3):316–23, 6 2004.

[210] A. Viterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE transactions on Information Theory,
13(2):260–269, 1967.

[211] Benjamin F. Voight and Jonathan K. Pritchard. Confounding from cryptic
relatedness in case-control association studies. PLoS Genet, 1(3):e32, 9 2005.

[212] Claire M. Wade and Mark J. Daly. Genetic variation in laboratory mice. Nat
Genet, 37(11):1175–80, 11 2005.

[213] Claire M. Wade, Edward J. Kulbokas, Andrew W. Kirby, Michael C. Zody,
James C. Mullikin, Eric S. Lander, Kerstin Lindblad-Toh, and Mark J. Daly.
The mosaic structure of variation in the laboratory mouse genome. Nature,
420(6915):574–8, 12 2002.

[214] Nicole A. R. Walter, Shannon K. McWeeney, Sandra T. Peters, John K. Belk-
nap, Robert Hitzemann, and Kari J. Buck. Snps matter: impact on detection
of differential expression. Nat Methods, 4(9):679–80, 9 2007.

[215] Jinliang Wang. An estimator for pairwise relatedness using molecular markers.
Genetics, 160(3):1203–15, 3 2002.

[216] Shuang Wang, Tian Zheng, and Yuanjia Wang. Transcription activity hot spot,
is it real or an artifact? BMC Proc, 1 Suppl 1:S94, 2007.

[217] Susanna S. Wang, Eric E. Schadt, Hui Wang, Xuping Wang, Leslie Ingram-
Drake, Weibin Shi, Thomas A. Drake, and Aldons J. Lusis. Identification of
pathways for atherosclerosis in mice: integration of quantitative trait locus
analysis and global gene expression data. Circ Res, 101(3):e11–30, 8 2007.

[218] Xiaosong Wang, Naoki Ishimori, Ron Korstanje, Jarod Rollins, and Beverly
Paigen. Identifying novel genes for atherosclerosis through mouse-human com-
parative genetics. Am J Hum Genet, 77(1):1–15, 7 2005.

[219] Xiaosong Wang and Beverly Paigen. Genetics of variation in hdl cholesterol in
humans and mice. Circ Res, 96(1):27–42, 1 2005.

[220] C. H. Warden, A. Daluiski, X. Bu, D. A. Purcell-Huynh, C. De Meester, B. H.
Shieh, D. L. Puppione, R. M. Gray, G. M. Reaven, and Y. D. Chen. Evidence
for linkage of the apolipoprotein a-ii locus to plasma apolipoprotein a-ii and free



218

fatty acid levels in mice and humans. Proc Natl Acad Sci U S A, 90(22):10886–
90, 11 1993.

[221] Bruce S. Weir, Amy D. Anderson, and Amanda B. Hepler. Genetic relatedness
analysis: modern data and new challenges. Nat Rev Genet, 7(10):771–80, 10
2006.

[222] S. J. Welham and R. Thompson. Likelihood ratio tests for fixed model terms
using residual maximum likelihood. Journal of the Royal Statistical Society.
Series B (Methodological), pages 701–714, 1997.

[223] WellcomeTrustCaseControlConsortium. Genome-wide association study of
14,000 cases of seven common diseases and 3,000 shared controls. Nature,
447(7145):661–78, 6 2007.

[224] Jennifer Wessel and Nicholas J. Schork. Generalized genomic distance-based
regression methodology for multilocus association analysis. Am J Hum Genet,
79(5):792–806, 11 2006.

[225] Cristen J. Willer, Serena Sanna, Anne U. Jackson, Angelo Scuteri, Lori L. Bon-
nycastle, Robert Clarke, Simon C. Heath, Nicholas J. Timpson, Samer S. Naj-
jar, Heather M. Stringham, James Strait, William L. Duren, Andrea Maschio,
Fabio Busonero, Antonella Mulas, Giuseppe Albai, Amy J. Swift, Mario A.
Morken, Narisu Narisu, Derrick Bennett, Sarah Parish, Haiqing Shen, Pilar
Galan, Pierre Meneton, Serge Hercberg, Diana Zelenika, Wei-Min M. Chen,
Yun Li, Laura J. Scott, Paul A. Scheet, Jouko Sundvall, Richard M. Watan-
abe, Ramaiah Nagaraja, Shah Ebrahim, Debbie A. Lawlor, Yoav Ben-Shlomo,
George Davey-Smith, Alan R. Shuldiner, Rory Collins, Richard N. Bergman,
Manuela Uda, Jaakko Tuomilehto, Antonio Cao, Francis S. Collins, Edward
Lakatta, G. Mark Lathrop, Michael Boehnke, David Schlessinger, Karen L.
Mohlke, and GonÃğalo R. Abecasis. Newly identified loci that influence lipid
concentrations and risk of coronary artery disease. Nat Genet, 40(2):161–9, 2
2008.

[226] Cristen J. Willer, Elizabeth K. Speliotes, Ruth J. F. Loos, Shengxu Li, Ce-
cilia M. Lindgren, Iris M. Heid, Sonja I. Berndt, Amanda L. Elliott, Anne U.
Jackson, Claudia Lamina, Guillaume Lettre, Noha Lim, Helen N. Lyon,
Steven A. McCarroll, Konstantinos Papadakis, Lu Qi, Joshua C. Randall,
Rosa Maria Roccasecca, Serena Sanna, Paul Scheet, Michael N. Weedon,
Eleanor Wheeler, Jing Hua Zhao, Leonie C. Jacobs, Inga Prokopenko, Nicole
Soranzo, Toshiko Tanaka, Nicholas J. Timpson, Peter Almgren, Amanda Ben-
nett, Richard N. Bergman, Sheila A. Bingham, Lori L. Bonnycastle, Mor-
ris Brown, NoÃńl P. Burtt, Peter Chines, Lachlan Coin, Francis S. Collins,
John M. Connell, Cyrus Cooper, George Davey Smith, Elaine M. Dennison,
Parimal Deodhar, Paul Elliott, Michael R. Erdos, Karol Estrada, David M.
Evans, Lauren Gianniny, Christian Gieger, Christopher J. Gillson, Candace



219

Guiducci, Rachel Hackett, David Hadley, Alistair S. Hall, Aki S. Havulinna,
Johannes Hebebrand, Albert Hofman, Bo Isomaa, Kevin B. Jacobs, Toby John-
son, Pekka Jousilahti, Zorica Jovanovic, Kay-Tee T. Khaw, Peter Kraft, Mikko
Kuokkanen, Johanna Kuusisto, Jaana Laitinen, Edward G. Lakatta, Jian’an
Luan, Robert N. Luben, Massimo Mangino, Wendy L. McArdle, Thomas
Meitinger, Antonella Mulas, Patricia B. Munroe, Narisu Narisu, Andrew R.
Ness, Kate Northstone, Stephen O’Rahilly, Carolin Purmann, Matthew G.
Rees, Martin RidderstrÃěle, Susan M. Ring, Fernando Rivadeneira, Aimo
Ruokonen, Manjinder S. Sandhu, Jouko Saramies, Laura J. Scott, Angelo Scu-
teri, Kaisa Silander, Matthew A. Sims, Kijoung Song, Jonathan Stephens,
Suzanne Stevens, Heather M. Stringham, Y. C. Loraine Tung, Timo T. Valle,
Cornelia M. Van Duijn, Karani S. Vimaleswaran, Peter Vollenweider, Ger-
ard Waeber, Chris Wallace, Richard M. Watanabe, Dawn M. Waterworth,
Nicholas Watkins, Wellcome Trust Case Control Consortium, Jacqueline C. M.
Witteman, Eleftheria Zeggini, Guangju Zhai, M. Carola Zillikens, David
Altshuler, Mark J. Caulfield, Stephen J. Chanock, I. Sadaf Farooqi, Luigi
Ferrucci, Jack M. Guralnik, Andrew T. Hattersley, Frank B. Hu, Marjo-
Riitta R. Jarvelin, Markku Laakso, Vincent Mooser, Ken K. Ong, Willem H.
Ouwehand, Veikko Salomaa, Nilesh J. Samani, Timothy D. Spector, Tiina-
maija Tuomi, Jaakko Tuomilehto, Manuela Uda, AndrÃľ G. Uitterlinden,
Nicholas J. Wareham, Panagiotis Deloukas, Timothy M. Frayling, Leif C.
Groop, Richard B. Hayes, David J. Hunter, Karen L. Mohlke, Leena Pelto-
nen, David Schlessinger, David P. Strachan, H-Erich E. Wichmann, Mark I.
McCarthy, Michael Boehnke, InÃłs Barroso, GonÃğalo R. Abecasis, Joel N.
Hirschhorn, and Genetic Investigation of ANthropometric Traits Consortium.
Six new loci associated with body mass index highlight a neuronal influence
on body weight regulation. Nat Genet, 41(1):25–34, 1 2009.

[227] R. W. Williams, J. Gu, S. Qi, and L. Lu. The genetic structure of recombi-
nant inbred mice: high-resolution consensus maps for complex trait analysis.
Genome Biol, 2(11):RESEARCH0046, 2001.

[228] Robert W.Williams. Expression genetics and the phenotype revolution. Mamm
Genome, 17(6):496–502, 6 2006.

[229] Rohan B. H. Williams, Chris J. Cotsapas, Mark J. Cowley, Eva Chan, David J.
Nott, and Peter F. R. Little. Normalization procedures and detection of linkage
signal in genetical-genomics experiments. Nat Genet, 38(8):855–6; author reply
856–9, 8 2006.

[230] TimWiltshire, Mathew T. Pletcher, Serge Batalov, S. Whitney Barnes, Lisa M.
Tarantino, Michael P. Cooke, Hua Wu, Kevin Smylie, Andrey Santrosyan,
Neal G. Copeland, Nancy A. Jenkins, Francis Kalush, Richard J. Mural,
Richard J. Glynne, Steve A. Kay, Mark D. Adams, and Colin F. Fletcher.



220

Genome-wide single-nucleotide polymorphism analysis defines haplotype pat-
terns in mouse. Proc Natl Acad Sci U S A, 100(6):3380–5, 3 2003.

[231] B. Yalcin, J. Fullerton, S. Miller, D. A. Keays, S. Brady, A. Bhomra, A. Jeffer-
son, E. Volpi, R. R. Copley, J. Flint, and R. Mott. Unexpected complexity in
the haplotypes of commonly used inbred strains of laboratory mice. Proc Natl
Acad Sci U S A, 101(26):9734–9, 6 2004.

[232] Hyuna Yang, Timothy A. Bell, Gary A. Churchill, and Fernando Pardo-
Manuel de Villena. On the subspecific origin of the laboratory mouse. Nat
Genet, 39(9):1100–7, 9 2007.

[233] Yee Hwa Yang, Sandrine Dudoit, Percy Luu, David M. Lin, Vivian Peng, John
Ngai, and Terence P. Speed. Normalization for cdna microarray data: a robust
composite method addressing single and multiple slide systematic variation.
Nucleic Acids Res, 30(4):e15, 2 2002.

[234] Chun Ye and Eleazar Eskin. Discovering tightly regulated and differentially ex-
pressed gene sets in whole genome expression data. Bioinformatics, 23(2):e84–
90, 1 2007.

[235] Jianming Yu, Gael Pressoir, William H. Briggs, Irie Vroh Bi, Masanori Ya-
masaki, John F. Doebley, Michael D. McMullen, Brandon S. Gaut, Dahlia M.
Nielsen, James B. Holland, Stephen Kresovich, and Edward S. Buckler. A uni-
fied mixed-model method for association mapping that accounts for multiple
levels of relatedness. Nat Genet, 38(2):203–8, 2 2006.

[236] GaÃńl Yvert, Rachel B. Brem, Jacqueline Whittle, Joshua M. Akey, Eric Foss,
Erin N. Smith, Rachel Mackelprang, and Leonid Kruglyak. Trans-acting regula-
tory variation in saccharomyces cerevisiae and the role of transcription factors.
Nat Genet, 35(1):57–64, 9 2003.

[237] Noah Zaitlen, Hyun Min Kang, Eleazar Eskin, and Eran Halperin. Leveraging
the hapmap correlation structure in association studies. Am J Hum Genet,
80(4):683–91, 4 2007.

[238] Eleftheria Zeggini, Laura J. Scott, Richa Saxena, Benjamin F. Voight,
Jonathan L. Marchini, Tianle Hu, Paul I. W. de Bakker, GonÃğalo R. Abecasis,
Peter Almgren, Gitte Andersen, Kristin Ardlie, Kristina Bengtsson BostrÃűm,
Richard N. Bergman, Lori L. Bonnycastle, Knut Borch-Johnsen, NoÃńl P.
Burtt, Hong Chen, Peter S. Chines, Mark J. Daly, Parimal Deodhar, Chia-
Jen J. Ding, Alex S. F. Doney, William L. Duren, Katherine S. Elliott,
Michael R. Erdos, Timothy M. Frayling, Rachel M. Freathy, Lauren Gianniny,
Harald Grallert, Niels Grarup, Christopher J. Groves, Candace Guiducci, Tor-
ben Hansen, Christian Herder, Graham A. Hitman, Thomas E. Hughes, Bo Iso-
maa, Anne U. Jackson, Torben JÃÿrgensen, Augustine Kong, Kari Kubalanza,



221

Finny G. Kuruvilla, Johanna Kuusisto, Claudia Langenberg, Hana Lango,
Torsten Lauritzen, Yun Li, Cecilia M. Lindgren, Valeriya Lyssenko, Amanda F.
Marvelle, Christa Meisinger, Kristian Midthjell, Karen L. Mohlke, Mario A.
Morken, Andrew D. Morris, Narisu Narisu, Peter Nilsson, Katharine R. Owen,
Colin N. A. Palmer, Felicity Payne, John R. B. Perry, Elin Pettersen, Carl
Platou, Inga Prokopenko, Lu Qi, Li Qin, Nigel W. Rayner, Matthew Rees,
Jeffrey J. Roix, Anelli Sandbaek, Beverley Shields, Marketa SjÃűgren, Valger-
dur Steinthorsdottir, Heather M. Stringham, Amy J. Swift, Gudmar Thor-
leifsson, Unnur Thorsteinsdottir, Nicholas J. Timpson, Tiinamaija Tuomi,
Jaakko Tuomilehto, Mark Walker, Richard M. Watanabe, Michael N. Wee-
don, Cristen J. Willer, Wellcome Trust Case Control Consortium, Thomas Illig,
Kristian Hveem, Frank B. Hu, Markku Laakso, Kari Stefansson, Oluf Pedersen,
Nicholas J. Wareham, InÃłs Barroso, Andrew T. Hattersley, Francis S. Collins,
Leif Groop, Mark I. McCarthy, Michael Boehnke, and David Altshuler. Meta-
analysis of genome-wide association data and large-scale replication identifies
additional susceptibility loci for type 2 diabetes. Nat Genet, 40(5):638–45, 5
2008.

[239] Jinghui Zhang, Kent W. Hunter, Michael Gandolph, William L. Rowe,
Richard P. Finney, Jenny M. Kelley, Michael Edmonson, and Kenneth H. Bue-
tow. A high-resolution multistrain haplotype analysis of laboratory mouse
genome reveals three distinctive genetic variation patterns. Genome Res,
15(2):241–9, 2 2005.

[240] Keyan Zhao, MarÃŋa JosÃľ Aranzana, Sung Kim, Clare Lister, Chikako
Shindo, Chunlao Tang, Christopher Toomajian, Honggang Zheng, Caroline
Dean, Paul Marjoram, and Magnus Nordborg. An arabidopsis example of
association mapping in structured samples. PLoS Genet, 3(1):e4, 1 2007.

[241] Keyan Zhao, Magnus Nordborg, and Paul Marjoram. Genome-wide association
mapping using mixed-models: application to gaw15 problem 3. BMC Proc, 1
Suppl 1:S164, 2007.

[242] Jun Zhu, Bin Zhang, Erin N. Smith, Becky Drees, Rachel B. Brem, Leonid
Kruglyak, Roger E. Bumgarner, and Eric E. Schadt. Integrating large-scale
functional genomic data to dissect the complexity of yeast regulatory networks.
Nat Genet, 40(7):854–61, 7 2008.

[243] Fei Zou, Jonathan A. L. Gelfond, David C. Airey, Lu Lu, Kenneth F. Manly,
Robert W. Williams, and David W. Threadgill. Quantitative trait locus anal-
ysis using recombinant inbred intercrosses: theoretical and empirical consider-
ations. Genetics, 170(3):1299–311, 7 2005.




