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Large-scale chemical process systems are characterized by highly nonlinear be-

havior and the coupling of physico-chemical phenomena occurring at disparate time

scales. Examples include fluidized catalytic crackers, distillation columns, biochem-

ical reactors as well as chemical process networks in which the individual processes

evolve in a fast time-scale and the network dynamics evolve in a slow time-scale. Tra-

ditionally, the design of advanced model-based control systems for chemical processes

has followed the centralized paradigm in which one control system is used to com-

pute the control actions of all manipulated inputs. While the centralized paradigm

to model-based process control has been successful, when the number of the process

state variables, manipulated inputs and measurements in a chemical plant becomes

large - a common occurrence in modern plants -, the computational time needed for

the solution of the centralized control problem may increase significantly and may

impede the ability of centralized control systems (particularly when nonlinear con-
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strained optimization-based control systems like model predictive control-MPC are

used), to carry out real-time calculations within the limits set by process dynamics

and operating conditions. One feasible alternative to overcome this problem is to

utilize cooperative, distributed control architectures in which the manipulated inputs

are computed by solving more than one control (optimization) problems in separate

processors in a coordinated fashion.

Motivated by the above considerations, this dissertation presents rigorous, yet

practical, methods for the design of distributed model predictive control systems for

nonlinear and two-time-scale process networks. Beginning with a review of results on

the subject, the first part of this dissertation presents the design of two, sequential

and iterative, distributed MPC architectures via Lyapunov-based control techniques

for general nonlinear process systems. Key practical issues like the feedback of asyn-

chronous and delayed measurements as well as the utilization of cost functions that

explicitly account for economic considerations are explicitly addressed in the formula-

tion and design of the controllers and of their communication strategy. In the second

part of the dissertation, we focus on the design of model predictive control systems for

nonlinear two-times-scale process networks within the framework of singular pertur-

bations. Both centralized and distributed MPC designs are presented. Throughout

the thesis, the applicability, effectiveness and computational efficiency of the control

methods are evaluated via simulations using numerous, large-scale chemical process

networks.
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Chapter 1

Introduction

1.1 Background

Chemical processes and plants are characterized by nonlinear behavior and strong

coupling of physico-chemical phenomena occurring at disparate time-scales. Examples

include fluidized catalytic crackers, distillation columns, biochemical reactors as well

as chemical process networks in which the individual processes evolve in a fast time-

scale and the network dynamics evolve in a slow time-scale.

The nonlinear behavior of many chemical processes has motivated extensive re-

search on nonlinear process control with the emphasis being primarily on the design of

centralized nonlinear control systems (see, for example, [56, 6, 107, 41, 76, 15] for re-

sults and references in this area). In addition to nonlinear behavior, industrial process

models are characterized by the presence of unknown process parameters and external

disturbances which, if not accounted for in the controller design, may cause perfor-

mance deterioration and even closed-loop instability. This realization has motivated

numerous studies on the problem of designing controllers for uncertain nonlinear sys-
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tems (e.g., [23, 51, 73, 49, 18]). The problems caused by input constraints have also

motivated numerous studies on the dynamics and control of systems subject to input

constraints. Important contributions include results on optimization-based methods

such as model predictive control (e.g., [36, 88, 98, 76, 1]) and Lyapunov-based control

(e.g., [59, 96, 48, 97, 94, 53]). Earlier work of our group developed [28, 29, 18] a unified

framework for model-based control of continuous-time nonlinear processes with un-

certainty and input constraints. This framework adopts a Lyapunov-based approach

and leads to the synthesis of robust nonlinear controllers that possess an explicitly

characterized region of guaranteed closed-loop stability. Subsequently, we used these

results to develop a hybrid predictive control structure that employs switching be-

tween Lyapunov-based control and model predictive control (MPC) for stabilization

of nonlinear systems with uncertainty and input constraints [31, 78]. The hybrid

predictive control structure embeds the implementation of MPC within the stability

region of a Lyapunov-based bounded controller which serves as a fall-back controller

that can be switched to in the event of infeasibility or instability of MPC. We also

note here important other work on a diverse array of hybrid system issues including

modeling (e.g., [106, 4]), simulation (e.g., [4, 37]), optimization (e.g., [33, 39, 38, 8, 7]),

stability analysis (e.g., [109, 42, 25]), and control (e.g., [5, 43, 55, 32, 30, 81]); all of

these results, however, deal with the design of centralized control systems.

While the centralized paradigm to model-based process control has been success-

ful, when the number of the process state variables, manipulated inputs and measure-

ments in a chemical plant becomes large - a common occurrence in modern plants -,

the computational time needed for the solution of the centralized control problem may

increase significantly and may impede the ability of centralized control systems (par-

ticularly when nonlinear constrained optimization-based control systems like model

predictive control-MPC are used), to carry out real-time calculations within the limits
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set by process dynamics and operating conditions. One feasible alternative to over-

come this problem is to utilize cooperative, distributed control architectures in which

the manipulated inputs are computed by solving more than one control (optimization)

problems in separate processors in a coordinated fashion. With respect to available

results in this direction, several distributed MPC methods have been proposed in

the literature that deal with the coordination of separate MPC controllers that com-

municate in order to obtain optimal input trajectories in a distributed manner; see

[10, 89, 92] for reviews of results in this area. More specifically, in [27], the prob-

lem of distributed control of dynamically coupled nonlinear systems that are subject

to decoupled constraints was considered. In [91, 46], the effect of the coupling was

modeled as a bounded disturbance compensated using a robust MPC formulation. In

[100], it was proven that through multiple communications between distributed con-

trollers and using system-wide control objective functions, stability of the closed-loop

system can be guaranteed. In [50], distributed MPC of decoupled systems (a class of

systems of relevance in the context of multi-agents systems) was studied. In [72], an

MPC algorithm was proposed under the main condition that the system is nonlinear,

discrete-time and no information is exchanged between local controllers, and in [85],

MPC for nonlinear systems was studied from an input-to-state stability point of view.

In [71], a game theory based distributed MPC scheme for constrained linear systems

was proposed.

Time-scale multiplicity is a common feature of many chemical processes and plants

of industrial interest and usually arises due to the strong coupling of physico-chemical

phenomena, like slow and fast reactions, occurring at disparate time-scales. In addi-

tion to this, the dynamics of control actuation and measurement sensing systems very

often adds a fast-dynamics layer in the closed-loop system. The analysis and con-

troller design problems for multiple-time-scale systems are usually addressed within
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the mathematical framework of singular perturbations (e.g., [54]). Within this frame-

work, a variety of explicit controller design methods have been primarily developed

for both linear and nonlinear singularly perturbed systems, ranging from optimal

control [54] to geometric control (e.g., [16, 57]) and Lyapunov-based control [21].

In the context of MPC of singularly perturbed systems, most of the efforts have

been dedicated to linear systems [104] or to MPC of specific classes of two-time-scale

processes [9, 99]. In a recent work [12], we studied MPC for nonlinear singularly per-

turbed systems where MPC is used only in the slow time-scale and the fast dynamics

are assumed to be stabilizable by a “fast” explicit controller. Finally, in another

recent set of papers [3, 70], MPC of two-time-scale processes described by nonlin-

ear singularly perturbed systems in non-standard form (i.e., systems in which the

separation of slow and fast state variables is not explicit in the original coordinates

and a coordinate change should be used to obtain a singularly perturbed system in

standard form) was addressed; in these works the fast dynamics are also assumed to

be stabilizable by a “fast” explicit controller.

1.2 Objectives and Organization of the Disserta-

tion

Motivated by the potential benefit of distributed control systems to regulate complex

process networks, the objectives of this dissertation are summarized below:

1. To develop distributed predictive control methods for large-scale nonlinear pro-

cess networks taking into account asynchronous and time-varying delayed mea-

surements.

2. To develop distributed economic predictive control methods for large-scale non-
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linear process networks.

3. To develop model predictive control methods for two-time-scale process net-

works.

The dissertation is organized as follows. In Chapter 2, we focus on distributed

model predictive control of large scale nonlinear process systems in which several

distinct sets of manipulated inputs are used to regulate the process. For each set

of manipulated inputs, a different model predictive controller is used to compute

the control actions, which is able to communicate with the rest of the controllers in

making its decisions. Under the assumption that feedback of the state of the process

is available to all the distributed controllers at each sampling time and a model of

the plant is available, we propose two different distributed model predictive control

architectures. In the first architecture, the distributed controllers use a one-directional

communication strategy, are evaluated in sequence and each controller is evaluated

only once at each sampling time; in the second architecture, the distributed controllers

utilize a bi-directional communication strategy, are evaluated in parallel and iterate

to improve closed-loop performance. In the design of the distributed model predictive

controllers, Lyapunov-based model predictive control techniques are used. In order

to ensure the stability of the closed-loop system, each model predictive controller in

both architectures incorporates a stability constraint which is based on a suitable

Lyapunov-based controller. We prove that the proposed distributed model predictive

control architectures enforce practical stability in the closed-loop system and optimal

performance. The theoretical results are illustrated through a catalytic alkylation of

benzene process example.

In Chapter 3, we propose sequential and iterative DMPC schemes for large scale

nonlinear systems subject to asynchronous and delayed state feedback [64, 14, 62]. In
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the case of asynchronous feedback, under the assumption that there is an upper bound

on the maximum interval between two consecutive measurements, we first extend the

results obtained in Chapter 2 for sequential DMPC to include asynchronous feedback,

and then re-design the iterative DMPC scheme presented in Chapter 2 to take explic-

itly into account asynchronous feedback. Subsequently, we design an iterative DMPC

scheme for systems subject to asynchronous feedback that also involves time-delays

under the assumption that there exists an upper bound on the maximum feedback

delay. This design takes advantage of the bi-directional communication network used

in the iterative DMPC framework. Sufficient conditions under which the proposed

distributed control designs guarantee that the states of the closed-loop system are

ultimately bounded in regions that contain the origin are provided. The theoretical

results are illustrated through a catalytic alkylation of benzene process example.

In Chapter 4, we focus on the development and application of distributed and

centralized Lyapunov economic MPC designs to a catalytic alkylation of benzene

process network, which consists of four continuously stirred tank reactors and a flash

separator. A new economic measure for the entire process network is proposed which

accounts for a broad set of economic considerations on the process operation in-

cluding reaction conversion, separation quality and energy efficiency. Subsequently,

steady-state process optimization is first carried out to locate an economically opti-

mal (with respect to the proposed economic measure) operating steady-state. Then, a

sequential distributed economic model predictive control design method, suitable for

large-scale process networks, is proposed and its closed-loop stability properties are

established. Using the proposed method, economic, distributed as well as centralized,

model predictive control systems are designed and are implemented on the process to

drive the closed-loop system state close to the economically optimal steady-state. The

closed-loop performance and time needed for control action calculation are evaluated
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through simulations and compared with the ones of a centralized Lyapunov-based

model predictive control design, which uses a conventional, quadratic cost function

that includes penalty on the deviation of the states and inputs from their economically

optimal steady-state values.

In Chapter 5, we focus on model predictive control of nonlinear singularly per-

turbed systems in standard form where the separation between the fast and slow state

variables is explicit. A composite control system using multirate sampling (i.e., fast

sampling of the fast state variables and slow sampling of the slow state variables)

and consisting of a “fast” feedback controller that stabilizes the fast dynamics and

a model predictive controller that stabilizes the slow dynamics and enforces desired

performance objectives in the slow subsystem is designed. Using stability results for

nonlinear singularly perturbed systems, the closed-loop system is analyzed and suf-

ficient conditions for stability are derived. A large-scale nonlinear reactor-separator

process network is used to demonstrate the application of the method including a

distributed implementation of the predictive controller.

In Chapter 6, a composite control system comprised of a “fast” MPC acting to

regulate the fast dynamics and a “slow” MPC acting to regulate the slow dynamics

is designed. The composite MPC system uses multirate sampling of the plant state

measurements, i.e., fast sampling of the fast state variables is used in the fast MPC

and slow-sampling of the slow state variables is used in the slow MPC as well as in

the fast MPC. Using singular perturbation theory, the stability and optimality of the

closed-loop nonlinear singularly perturbed system are analyzed. The proposed fast-

slow MPC design does not require communication between the two MPCs, and thus,

it can be classified as decentralized in nature. A chemical process example which

exhibits two-time-scale behavior is used to demonstrate the structure and implemen-
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tation of the fast-slow MPC architecture in a practical setting. Extensive simulations

are carried out to assess the performance and computational efficiency of the fast-slow

MPC system.

Chapter 7 summaries the main results of the dissertation and discusses future

research possibilities in distributed control system design.
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Chapter 2

Sequential and Iterative

Architectures for Distributed

Model Predictive Control of

Nonlinear Process Systems

2.1 Introduction

Model predictive control (MPC) is a popular control strategy based on using a model

of the process to predict at each sampling time the future evolution of the system

from the current state along a given prediction horizon. Using these predictions, the

manipulated input trajectory that minimizes a given performance index is computed

solving a suitable optimization problem. To obtain finite dimensional optimization

problems, MPC optimizes over a family of piecewise constant trajectories with a

fixed sampling time and a finite prediction horizon. Once the optimization problem
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is solved, only the first manipulated input value is implemented, discarding the rest

of the trajectory and repeating the optimization in the next sampling step [36, 86].

Typically, MPC is studied from a centralized control point of view in which all the

manipulated inputs of a control system are optimized with respect to an objective

function in a single optimization problem. When the number of the state variable and

manipulated inputs of the process, however, becomes large, the computational burden

of the centralized optimization problem may increase significantly and may impede

the applicability of a centralized MPC, especially in the case where nonlinear process

models are used in the MPC. One feasible alternative to overcome this problem is to

utilize a distributed MPC architecture in which the manipulated inputs are computed

by more than one optimization problems in a coordinated fashion. With respect to

available results on distributed MPC architectures, several distributed MPC methods

have been proposed in the literature that deal with the coordination of separate

MPC controllers that communicate in order to obtain optimal input trajectories in

a distributed manner; see [10, 89, 92] for reviews of results in this area. In [65], a

distributed MPC architecture with one-directional communication was proposed for

general nonlinear process systems. In this architecture, two separate MPC controllers

designed via Lyapunov-based MPC (LMPC) were considered, in which one LMPC

was used to guarantee the stability of the closed-loop system and the other LMPC was

used to improve the closed-loop performance. Generally, the computational burden of

these distributed MPC methods is smaller compared to the one of the corresponding

centralized MPC because of the formulation of optimization problems with a smaller

number of decision variables.

In this chapter, we focus on distributed model predictive control of large scale

nonlinear process systems in which several distinct sets of manipulated inputs are

used to regulate the process [63]. For each set of manipulated inputs, a different
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model predictive controller is used to compute the control actions, which is able to

communicate with the rest of the controllers in making its decisions. Under the

assumption that feedback of the state of the process is available to all the distributed

controllers at each sampling time and a model of the plant is available, we propose

two different distributed model predictive control architectures designed via LMPC

techniques. In the first architecture, the distributed controllers use a one-directional

communication strategy, are evaluated in sequence and each controller is evaluated

only once at each sampling time; in the second architecture, the distributed controllers

utilize a bi-directional communication strategy, are evaluated in parallel and iterate

to improve closed-loop performance. In order to ensure the stability of the closed-

loop system, each model predictive controller in both architectures incorporates a

stability constraint which is based on a suitable Lyapunov-based controller. We prove

that the proposed distributed model predictive control architectures enforce practical

stability in the closed-loop system and optimal performance. The theoretical results

are illustrated through a catalytic alkylation of benzene process example.

2.2 Preliminaries

2.2.1 Control problem formulation

We consider nonlinear process systems described by the following state-space model:

ẋ(t) = f(x(t)) +
m∑
i=1

gi(x(t))ui(t) + k(x(t))w(t) (2.1)

where x(t) ∈ Rnx denotes the vector of process state variables, ui(t) ∈ Rmui , i =

1, . . . ,m, are m sets of control (manipulated) inputs and w(t) ∈ Rnw denotes the vec-
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tor of disturbance variables. The m sets of inputs are restricted to be in m nonempty

convex sets Ui ⊆ Rmui , i = 1, . . . ,m, which are defined as follows:

Ui := {ui ∈ Rmui : |ui| ≤ umax
i }∗, i = 1, . . . ,m

where umax
i , i = 1, . . . ,m, are the magnitudes of the input constraints. The distur-

bance vector is bounded, i.e., w(t) ∈ W where

W := {w ∈ Rnw : |w| ≤ θ, θ > 0}.

We assume that f , gi, i = 1, . . . ,m, and k are locally Lipschitz vector functions

and that the origin is an equilibrium of the unforced nominal system (i.e., system of

Eq. 2.1 with ui(t) = 0, i = 1, . . . ,m, w(t) = 0 for all t) which implies that f(0) = 0.

We also assume that the state x of the system is sampled synchronously and the time

instants at which we have state measurement samplings are indicated by the time

sequence {tk≥0} with tk = t0 + k∆, k = 0, 1, . . . where t0 is the initial time and ∆ is

the sampling time.

Remark 2.1 In general, distributed control systems are formulated based on the as-

sumption that the controlled process systems consist of decoupled or partially coupled

subsystems. However, we consider a fully coupled process model; this is a very com-

mon occurrence in chemical process control as we will illustrate in the example of

section 2.4. In our future work, we will extend the proposed distributed control sys-

tems to the case in which only local state information is available to each distributed

controller based on distributed state estimation.

Remark 2.2 Note that the assumption that f , gi, i = 1, . . . ,m and k are locally

∗| · | denotes Euclidean norm of a vector.
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Lipschitz vector functions is a reasonable assumption for most of chemical processes.

Note also that the assumption that the state x of the system is sampled synchronously

is a widely used assumption in process control research. The proposed control system

designs can be extended to the case where only part of the state x is measurable by

designing an observer to estimate the whole state vector from output measurements

and by designing the control system based on the measured and estimated states. In

this case, the stability properties of the resulting output feedback control systems are

affected by the convergence of the observer and need to be carefully studied.

2.2.2 Lyapunov-based controller

We assume that there exists a Lyapunov-based controller h(x) = [h1(x) . . . hm(x)]
T

with ui = hi(x), i = 1, . . . ,m, which renders the origin of the nominal closed-loop

system asymptotically stable while satisfying the input constraints for all the states x

inside a given stability region. We note that this assumption is essentially equivalent

to the assumption that the process is stabilizable or that the pair (A,B) in the case

of linear systems is stabilizable. Using converse Lyapunov theorems [75, 60, 18], this

assumption implies that there exist functions αi(·), i = 1, 2, 3, 4 of class K† and

a continuously differentiable Lyapunov function V (x) for the nominal closed-loop

†A continuous function α : [0, a) → [0,∞) is said to belong to class K if it is strictly increasing
and α(0) = 0.
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system, that satisfy the following inequalities:

α1(|x|) ≤ V (x) ≤ α2(|x|)

∂V (x)

∂x
(f(x) +

m∑
i=1

gi(x)hi(x)) ≤ −α3(|x|)

|∂V (x)

∂x
| ≤ α4(|x|)

hi(x) ∈ Ui, i = 1, . . . ,m

(2.2)

for all x ∈ D ⊆ Rnx where D is an open neighborhood of the origin. We denote the

region Ωρ
‡ ⊆ D as the stability region of the closed-loop system under the Lyapunov-

based controller h(x). The construction of V (x) can be carried out in a number of

ways using systematic techniques like, for example, sum-of-squares methods.

By continuity, the local Lipschitz property assumed for the vector fields f , gi, i =

1, . . . ,m, and k and taking into account that the manipulated inputs ui, i = 1, . . . ,m,

and the disturbance w are bounded in convex sets, there exists a positive constant

M such that

|f(x) +
m∑
i=1

gi(x)ui + k(x)w| ≤M (2.3)

for all x ∈ Ωρ, ui ∈ Ui, i = 1, . . . ,m, and w ∈ W . In addition, by the continuous

differentiable property of the Lyapunov function V (x) and the Lipschitz property

assumed for the vector field f , there exist positive constants Lx, Lui
, i = 1, . . . ,m,

and Lw such that

|∂V
∂x

f(x)− ∂V

∂x
f(x′)| ≤ Lx|x− x′|

|∂V
∂x

gi(x)−
∂V

∂x
gi(x

′)| ≤ Lui
|x− x′|, i = 1, . . . ,m

|∂V
∂x

k(x)| ≤ Lw

(2.4)

‡We use Ωρ to denote the set Ωρ := {x ∈ Rnx |V (x) ≤ ρ}.
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for all x, x′ ∈ Ωρ, ui ∈ Ui, i = 1, . . . ,m, and w ∈ W .

Remark 2.3 Different state feedback control laws for nonlinear systems have been

developed using Lyapunov techniques; the reader may refer to [59, 53, 18, 28, 29] for

results in this area including results on the design of bounded Lyapunov-based con-

trollers by taking explicitly into account input constraints for broad classes of nonlinear

systems.

2.2.3 Centralized LMPC

To take advantage of all the sets of manipulated inputs, one option is to design a

centralized MPC controller. In order to guarantee robust stability of the closed-loop

system, the MPC controller must include a set of stability constraints. To do this, we

propose to use the LMPC controller proposed in [77, 79] which guarantees practical

stability of the closed-loop system, allows for an explicit characterization of the sta-

bility region and yields a reduced complexity optimization problem. LMPC is based

on uniting receding horizon control with control Lyapunov functions and computes

the manipulated input trajectory solving a finite horizon constrained optimal control

problem. The LMPC controller is based on the Lyapunov-based controller h(x). The

controller h(x) is used to define a stability constraint for the LMPC controller which

guarantees that the LMPC controller inherits the stability and robustness properties

of the Lyapunov-based controller h(x). The LMPC controller introduced in [77, 79]

is based on the following optimization problem:

min
uc1...ucm∈S(∆)

∫ N∆

0

[x̃T (τ)Qcx̃(τ) +
m∑
i=1

uT
ci(τ)Rciuci(τ)]dτ (2.5a)

s.t. ˙̃x(τ) = f(x̃(τ)) +
m∑
i=1

gi(x̃(τ))uci (2.5b)
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uci(τ) ∈ Ui, i = 1, . . . ,m (2.5c)

x̃(0) = x(tk) (2.5d)

m∑
i=1

∂V (x)

∂x
gi(x(tk))uci(0) ≤

m∑
i=1

∂V (x)

∂x
gi(x(tk))hi(x(tk)) (2.5e)

where S(∆) is the family of piece-wise constant functions with sampling period ∆,

N is the prediction horizon, Qc and Rci, i = 1, . . . ,m, are positive definite weight

matrices that define the cost, x(tk) is the state measurement obtained at tk, x̃ is the

predicted trajectory of the nominal system with ui, i = 1, . . . ,m, the input trajectory

computed by the LMPC of Eq. 2.5.

The optimal solution to this optimization problem is denoted by u∗
ci(τ |tk), i =

1, . . . ,m, which is defined for τ ∈ [0, N∆). The LMPC controller is implemented

with a receding horizon method; that is, at each sampling time tk, the new state

x(tk) is received from the sensors, the optimization problem of Eq. 2.5 is solved, and

u∗
ci(t− tk|tk), i = 1, . . . ,m are applied to the closed-loop system for t ∈ [tk, tk+1).

The optimization problem of Eq. 2.5 does not depend on the uncertainty and

guarantees that the system in closed-loop with the LMPC controller of Eq. 2.5 main-

tains the stability properties of the Lyapunov-based controller. The constraint of

Eq. 2.5e guarantees that the value of the time derivative of the Lyapunov function

at the initial evaluation time of the centralized LMPC controller is lower or equal to

the value obtained if only the Lyapunov-based controller h(x) is implemented in the

closed-loop system in a sample-and-hold fashion. This is the constraint that allows

proving that the centralized LMPC controller inherits the stability and robustness

properties of the Lyapunov-based controller.

The manipulated inputs of the closed-loop system under the above centralized
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Figure 2.1: Distributed MPC scheme proposed in [65].

LMPC controller are defined as follows

ui(t) = u∗
ci(t− tk|tk), i = 1, . . . ,m, ∀t ∈ [tk, tk+1). (2.6)

In what follows, we refer to this controller as the centralized LMPC. The main prop-

erty of the centralized LMPC controller is that the origin of the closed-loop system

is practically stable for all initial states inside the stability region Ωρ for a sufficient

small sampling time ∆ and disturbance upper bound θ. This property is also guar-

anteed by the Lyapunov-based controller h(x) when the controllers are implemented

in a sample-and-hold fashion (see [22, 82] for results on sampled-data systems). The

main advantage of LMPC approaches with respect to the Lyapunov-based controller

is that optimality considerations can be taken explicitly into account (as well as con-

straints on the inputs and the states [79]) in the computation of the controller within

an online optimization framework improving closed-loop performance.
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2.3 Distributed model predictive control architec-

tures

2.3.1 Introduction

In a previous work of our group [65], a distributed MPC architecture for nonlin-

ear process systems based on the scheme shown in Fig. 2.1 was introduced. In this

distributed MPC architecture, two MPC controllers designed via LMPC were con-

sidered. One of the two LMPC controllers (LMPC 1) was designed to guarantee the

stability of the closed-loop system and the other LMPC controller (LMPC 2) was

designed to improve the closed-loop performance while maintaining the closed-loop

stability achieved by LMPC 1. This distributed MPC architecture required one-

directional communication between the two distributed controllers and was proved

that it guarantees practical stability of the closed-loop system and has the potential

to maintain the closed-loop stability and performance in the face of new or failing

controllers or actuators (for example, a zero input of LMPC 2 does not affect the

closed-loop stability) and to reduce computational burden in the evaluation of the

optimal manipulated inputs compared with a fully centralized LMPC controller of

the same input/output-space dimension.

In this study, our objective is to extend our results in [65] and propose distributed

MPC architectures including multiple MPCs for large scale nonlinear process sys-

tems. Specifically, we propose two different distributed MPC architectures. The

first distributed MPC architecture is a direct extension of our previous work in [65] in

which different MPC controllers are evaluated in sequence, only once at each sampling

time and require only one-directional communication between consecutive distributed

controllers (i.e., the distributed controllers are connected by pairs). In the second ar-
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Figure 2.2: Sequential distributed LMPC architecture.

chitecture, different MPC controllers are evaluated in parallel, once or more than

once at each sampling time depending on the number of iterations, and bi-directional

communication among all the distributed controllers (i.e., the distributed controllers

are all interconnected) is used.

In each proposed architecture, we will design m LMPC controllers to compute ui,

i = 1, . . . ,m, and refer to the LMPC controller computing the input trajectories of

ui as LMPC i.

2.3.2 Sequential distributed LMPC

In this section, we will discuss the direct extension of the results in [65] to include

multiple LMPC controllers, in which different LMPC controllers are evaluated in

sequence, once at each sampling time and one-directional communication between

consecutive distributed controllers (i.e., the distributed controllers are connected by

pairs) is used. A schematic of this architecture is shown in Fig. 2.2. We first present

the proposed implementation strategy of this distributed MPC architecture and then
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design the corresponding LMPC controllers. The proposed implementation strategy

of this distributed MPC architecture is as follows:

1. At each sampling time tk, all the LMPC controllers receive the state measure-

ment x(tk) from the sensors.

2. For j = m to 1

2.1 LMPC j receives the entire future input trajectories of ui, i = m, . . . , j+1,

from LMPC j+1 and evaluates the future input trajectory of uj based on

x(tk) and the received future input trajectories.

2.2 LMPC j sends the first step input value of uj to its actuators and the

entire future input trajectories of ui, i = m, . . . , j, to LMPC j − 1.

In this architecture, each LMPC controller only sends its future input trajectory

and the future input trajectories it received to the next LMPC controller (i.e., LMPC j

sends input trajectories to LMPC j − 1). This implies that LMPC j, j = m, . . . , 2,

does not have any information about the values that ui, i = j−1, . . . , 1 will take when

the optimization problems of the LMPC controllers are designed. In order to make

a decision, LMPC j, j = m, . . . , 2 must assume trajectories for ui, i = j − 1, . . . , 1,

along the prediction horizon. To this end, the Lyapunov-based controller h(x) is used.

In order to inherit the stability properties of the controller h(x) (i.e., the stability

properties of h(x)), each control input ui, i = 1, . . . ,m must satisfy a constraint

that guarantees a given minimum contribution to the decrease rate of the Lyapunov

function V (x). Specifically, the proposed design of the LMPC j, j = 1, . . . ,m, is

based on the following optimization problem:

u∗
s,j(τ |tk) = arg min

us,j∈S(∆)

∫ N∆

0

[x̃T (τ)Qcx̃(τ) +
m∑
i=1

us,i(τ)
TRcius,i(τ)]dτ (2.7a)
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s.t. ˙̃x(τ) = f(x̃(τ)) +
m∑
i=1

gi(x̃(τ))us,i (2.7b)

us,i(τ) = hi(x̃(j∆)), i = 1, . . . , j − 1, ∀ τ ∈ [l∆, (l + 1)∆), l = 0, ..., N − 1

(2.7c)

us,i(τ) = u∗
s,i(τ |tk), i = j + 1, . . . ,m (2.7d)

us,j(τ) ∈ Uj (2.7e)

x̃(0) = x(tk) (2.7f)

∂V (x)

∂x
gj(x(tk))us,j(0) ≤

∂V (x)

∂x
gj(x(tk))hj(x(tk)) (2.7g)

where x̃ is the predicted trajectory of the nominal system with ui, i = j + 1, . . . ,m,

the input trajectory computed by the LMPC controllers of Eq. 2.7 evaluated before

LMPC j, ui, i = 1, . . . , j−1, the corresponding elements of h(x) applied in a sample-

and-hold fashion and u∗
s,i(τ |tk) denotes the future input trajectory of ui obtained by

LMPC i of the form of Eq. 2.7. The optimal solution to the optimization problem of

Eq. 2.7 is denoted u∗
s,j(τ |tk) which is defined for τ ∈ [0, N∆).

The constraint of Eq. 2.7b is the nominal model of the system of Eq. 2.1, which

is used to predict the future evolution of the system; the constraints of Eq. 2.7c

define the value of the inputs evaluated after uj (i.e., ui with i = 1, . . . , j − 1); the

constraints of Eq. 2.7d define the value of the inputs evaluated before uj (i.e., ui with

i = j + 1, . . . ,m); the constraint of Eq. 2.7e is the constraint on the manipulated

input uj; the constraint of Eq. 2.7f sets the initial state for the optimization problem;

the constraint of Eq. 2.7g guarantees that the contribution of input uj to the decrease

rate of the time derivative of the Lyapunov function at the initial evaluation time, if
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uj = u∗
s,j(0|tk) is applied, is bigger or equal to the value obtained when uj = hj(x(tk))

is applied. This constraint allows proving the closed-loop stability properties of the

proposed controller.

The manipulated inputs of the proposed control design of Eq. 2.7 are defined as

follows:

ui(t) = u∗
s,i(t− tk|tk), i = 1, . . . ,m, ∀t ∈ [tk, tk+1). (2.8)

In what follows, we refer to this distributed LMPC architecture as the sequential

distributed LMPC.

Remark 2.4 Note that, in order to simplify the description of the implementation

strategy proposed above in this section, we do not distinguish LMPC m and LMPC 1

from the others. We note that LMPC m does not receive any information from

the other controllers and LMPC 1 does not have to send information to any other

controller.

The proposed distributed LMPC architecture of Eqs. 2.7-2.8 computes the inputs

ui, i = 1, . . . ,m, applied to the system of Eq. 2.1 in a way such that in the closed-

loop system, the value of the Lyapunov function at time instant tk (i.e., V (x(tk))) is

a decreasing sequence of values with a lower bound. Following Lyapunov arguments,

this property guarantees practical stability of the closed-loop system. This is achieved

due to the constraint of Eq. 2.7g. This property is presented in Theorem 2.1 below.

Theorem 2.1 Consider the system of Eq. 2.1 in closed-loop under the distributed

LMPC of Eqs. 2.7-2.8 based on the controller h(x) that satisfies the condition of

Eq. 2.2 with class K functions αi(·), i = 1, 2, 3, 4. Let ϵw > 0, ∆ > 0 and ρ > ρs > 0
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satisfy the following constraint:

−α3(α
−1
2 (ρs)) + L∗ ≤ −ϵw/∆ (2.9)

where L∗ = (Lx +
∑m

i=1 Lui
umax
i )M + Lwθ with M , Lx, Lui

(i = 1, . . . ,m) and Lw

being defined in Eqs. 2.3-2.4. For any N ≥ 1, if x(t0) ∈ Ωρ and if ρ∗ ≤ ρ where

ρ∗ = max{V (x(t+∆)) : V (x(t)) ≤ ρs}, (2.10)

then the state x(t) of the closed-loop system is ultimately bounded in Ωρ∗.

Proof 2.1 The proof consists of two parts. We first prove that the optimization

problem of Eq. 2.7 is feasible for all j = 1, . . . ,m and x ∈ Ωρ. Then we prove that,

under the proposed distributed LMPC of Eqs. 2.7-2.8, the state of the system of

Eq. 2.1 is ultimately bounded in Ωρ∗ . Note that the constraint of Eq. 2.7g of each

distributed controller is independent from the decisions that the rest of the distributed

controllers make.

Part 1: In order to prove the feasibility of the optimization problem of Eq. 2.7,

we only have to prove that there exists a us,j(0) which satisfies the input constraint

of Eq. 2.7e and the constraint of Eq. 2.7g. This is because the constraint of Eq. 2.7g

is only enforced on the first prediction step of us,j(τ) and in the prediction time

τ ∈ [∆, N∆), the input constraint of Eq. 2.8 can be easily satisfied with us,j(τ) being

any value in the convex set Uj.

We assume that x(tk) ∈ Ωρ (x(t) is bounded in Ωρ which will be proved in Part

2). It is easy to verify that the value of us,j such that us,j(0) = hj(x(tk)) satisfies the

input constraint of Eq. 2.7e (assumed property of h(x) for x ∈ Ωρ) and the constraint

of Eq. 2.7g, thus, the feasibility of the optimization problem of LMPC j, j = 1, . . . ,m,
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is guaranteed.

Part 2: From the condition of Eq. 2.2 and the constraint of Eq. 2.7g, if x(tk) ∈ Ωρ,

it follows that

∂V

∂x
(f(x(tk)) +

m∑
i=1

gi(x(tk))u
∗
s,i(0|tk)) ≤

∂V

∂x
(f(x(tk)) +

m∑
i=1

gi(x(tk))hi(x(tk))

≤ −α3(|x(tk)|).
(2.11)

The time derivative of the Lyapunov function V along the actual state trajectory x(t)

of the system of Eq. 2.1 in t ∈ [tk, tk+1) is given by

V̇ (x(t)) =
∂V

∂x
(f(x(t)) +

m∑
i=1

gi(x(t))u
∗
s,i(0|tk) + k(x(t))w(t)). (2.12)

Adding and subtracting ∂V
∂x
(f(x(tk)) +

∑m
i=1 gi(x(tk))u

∗
s,i(0|tk)) and taking into ac-

count Eq. 2.11, we obtain the following inequality

V̇ (x(t)) ≤ −α3(|x(tk)|) +
∂V

∂x
(f(x(t)) +

m∑
i=1

gi(x(t))u
∗
s,i(0|tk) + k(x(t))w(t))

−∂V

∂x
(f(x(tk)) +

m∑
i=1

gi(x(tk))u
∗
s,i(0|tk)).

(2.13)

Taking into account Eqs. 2.2 and 2.3, the following inequality if obtained for all

x(tk) ∈ Ωρ/Ωρs
§ from Eq. 2.13

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs)) + (Lx +

m∑
i=1

Lui
u∗
s,i(0|tk))|x(t)− x(tk)|+ Lw|w(t)|.

(2.14)

Taking into account Eq. 2.3 and the continuity of x(t), the following bound can be

§The operator “/” is used to denote set subtraction, i.e., A/B := {x ∈ Rnx : x ∈ A, x /∈ B}.
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written for all t ∈ [tk, tk+1)

|x(t)− x(tk)| ≤M∆.

Using this expression, the bounds on the disturbance w(t) and the inputs ui, i =

1, . . . ,m, and Eq. 2.14, we obtain the following bound on the time derivative of the

Lyapunov function for t ∈ [tk, tk+1), for all initial states x(tk) ∈ Ωρ/Ωρs

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs)) + (Lx +

m∑
i=1

Lui
umax
i )M + Lwθ. (2.15)

If the condition of Eq. 2.9 is satisfied, then there exists ϵw > 0 such that the following

inequality holds for x(tk) ∈ Ωρ/Ωρs

V̇ (x(t)) ≤ −ϵw/∆ (2.16)

for t ∈ [tk, tk+1). Integrating the inequality of Eq. 2.16 on t ∈ [tk, tk+1), we obtain

that

V (x(tk+1) ≤ V (x(tk))− ϵw (2.17)

and

V (x(t)) ≤ V (x(tk)), ∀t ∈ [tk, tk+1) (2.18)

for all x(tk) ∈ Ωρ/Ωρs . Using Eqs. 2.17 and 2.18 recursively it can be proved that,

if x(t0) ∈ Ωρ/Ωρs , the state converges to Ωρs in a finite number of sampling times

without leaving the stability region. Once the state converges to Ωρs ⊆ Ωρ∗ , it

remains inside Ωρ∗ for all times. This statement holds because of the definition of

ρ∗. This proves that the closed-loop system under the proposed distributed LMPC

of Eqs. 2.7-2.8 is ultimately bounded in Ωρ∗ .
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Figure 2.3: Iterative distributed LMPC architecture.

2.3.3 Iterative distributed LMPC

An alternative to the sequential distributed LMPC architecture presented in the previ-

ous section is to evaluate all the distributed LMPCs in parallel and iterate to improve

closed-loop performance. A schematic of this control architecture is shown in Fig. 2.3.

In this architecture, each distributed LMPC controller must be able to communicate

with all the other controllers (i.e., the distributed controllers are all interconnected).

More specifically, when a new state measurement is available at a sampling time, each

distributed LMPC controller evaluates and obtains its future input trajectory; and

then each LMPC controller broadcasts its latest obtained future input trajectory to

all the other controllers. Based on the newly received input trajectories, each LMPC

controller evaluates its future input trajectory again and this process is repeated un-

til a certain termination condition is satisfied. Specifically, we proposed to use the

following implementation strategy:

1. At each sampling time tk, all the LMPC controllers receive the state measure-

ment x(tk) from the sensors.
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2. At iteration c (c ≥ 1):

2.1 All the distributed LMPC controllers exchange their latest future input

trajectories.

2.2 Each LMPC controller evaluates its own future input trajectory based

on x(tk) and the latest received input trajectories of all the other LMPC

controllers.

3. If the termination condition is satisfied, each LMPC controller sends the first

step input value of its latest input trajectory to its actuators; if the termination

condition is not satisfied, go to step 2 (c = c+ 1).

Note that at the initial iteration, all the LMPC controllers use h(x) to estimate

the input trajectories of all the other controllers. Note also that the number of

iterations c can be variable and it does not affect the closed-loop stability of the

proposed distributed LMPC architecture; a point that will be made clear below. For

the iterations in this distributed LMPC architecture, there are different choices of the

termination condition. For example, the number of iterations c may be restricted to

be smaller than a maximum iteration number cmax (i.e., c ≤ cmax) or the iterations

may be terminated when the difference of the performance or the solution between

two consecutive iterations is smaller than a threshold value or the iterations maybe

terminated when a maximum computational time is reached.

In order to proceed, we define x̂(τ |tk) for τ ∈ [0, N∆) as the nominal sampled

trajectory of the system of Eq. 2.1 associated with the feedback control law h(x) and

sampling time ∆ starting from x(tk). This nominal sampled trajectory is obtained
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by integrating recursively the following differential equation:

˙̂x(τ |tk) = f(x̂(τ |tk)) +
m∑
i=1

gi(x̂(τ |tk))hi(x̂(l∆|tk)), ∀τ ∈ [(l∆, (l + 1)∆)),

l = 0, . . . , N − 1.

Based on x̂(τ |tk), we can define the following variable

u∗,0
p,j(τ |tk) = hj(x̂(l∆|tk)), j = 1, . . . ,m, ∀τ ∈ [(l∆, (l + 1)∆)), l = 0, . . . , N − 1.

which will be used as the initial guess of the trajectory of uj.

The proposed design of the LMPC j, j = 1, . . . ,m, at iteration c is based on the

following optimization problem:

u∗,c
p,j(τ |tk) = arg min

up,j∈S(∆)

∫ N∆

0

[x̃T (τ)Qcx̃(τ) +
m∑
i=1

up,i(τ)
TRciup,i(τ)]dτ (2.20a)

s.t. ˙̃x(τ) = f(x̃(τ)) +
m∑
i=1

gi(x̃(τ))up,i (2.20b)

up,i(τ) = u∗,c−1
p,i (τ |tk), ∀i ̸= j (2.20c)

up,j(τ) ∈ Uj (2.20d)

x̃(0) = x(tk) (2.20e)

∂V (x)

∂x
gj(x(tk))up,j(0) ≤

∂V (x)

∂x
gj(x(tk))hj(x(tk)) (2.20f)

where x̃ is the predicted trajectory of the nominal system with uk, the input trajectory,

computed by the LMPCs of Eq. 2.20 and all the other inputs are the optimal input
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trajectories at iteration c − 1 of the rest of distributed controllers. The optimal

solution to the optimization problem of Eq. 2.20 is denoted u∗,c
p,j(τ |tk) which is defined

for τ ∈ [0, N∆). Accordingly, we define the final optimal input trajectory of LMPC j

(that is, the optimal trajectories computed at the last iteration) as u∗
p,j(τ |tk) which

is also defined for τ ∈ [0, N∆).

The manipulated inputs of the proposed control design of Eq. 2.20 are defined as

follows:

ui(t) = u∗
p,i(t− tk|tk), i = 1, . . . ,m, ∀t ∈ [tk, tk+1). (2.21)

In what follows, we refer to this distributed LMPC architecture as the iterative dis-

tributed LMPC. The stability property of the iterative distributed LMPC is stated

in the following Theorem 2.2.

Theorem 2.2 Consider the system of Eq. 2.1 in closed-loop under the distributed

LMPC of Eqs. 2.20-2.21 based on the controller h(x) that satisfies the condition of

Eq. 2.2. Let ϵw > 0, ∆ > 0 and ρ > ρs > 0 satisfy the constraint of Eq. 2.9. For any

N ≥ 1 and c ≥ 1, if x(t0) ∈ Ωρ and if ρ∗ ≤ ρ where ρ∗ is defined as in Eq. 2.10, then

the state x(t) of the closed-loop system is ultimately bounded in Ωρ∗.

Proof 2.2 Similar to the proof of Theorem 2.1, the proof of Theorem 2.2 also consists

of two parts. We first prove that the optimization problem of Eq. 2.20 is feasible for

each iteration c and x ∈ Ωρ. Then we prove that, under the proposed distributed

LMPC scheme of Eqs. 2.20-2.21, the state of the system of Eq. 2.1 is ultimately

bounded in Ωρ∗ .

Part 1: In order to prove the feasibility of the optimization problem of Eq. 2.20,

we only have to prove that there exists a up,j(0) which satisfies the input constraint of

Eq. 2.20d and the constraint of Eq. 2.20f. This is because the constraint of Eq. 2.20f
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is only enforced on the first prediction step of up,j(τ) and in the prediction time

τ ∈ [∆, N∆), the input constraint of Eq. 2.21 can be easily satisfied with up,j(τ)

being any value in the convex set Uj.

We assume that x(tk) ∈ Ωρ (x(t) is bounded in Ωρ which will be proved in Part

2). It is easy to verify that the value of up,j such that up,j(0) = hj(x(tk)) satisfies

the input constraint of Eq. 2.20d (assumed property of h(x) for x ∈ Ωρ) and the

constraint of Eq. 2.20f for all possible c, thus, the feasibility of LMPC j, j = 1, . . . ,m,

is guaranteed.

Part 2: By adding the constraint of Eq. 2.20f of each LMPC together, we have

m∑
j=1

∂V (x)

∂x
gj(x(tk))u

∗,c
p,j(0|tk) ≤

m∑
j=1

∂V (x)

∂x
gj(x(tk))hj(x(tk))

It follows from the above inequality and condition of Eq. 2.2 that

∂V

∂x
(f(x(tk)) +

m∑
j=1

gj(x(tk))u
∗,c
p,j(0|tk)) ≤

∂V

∂x
(f(x(tk)) +

m∑
j=1

gj(x(tk))hj(x(tk)))

≤ −α3(|x(tk)|).
(2.22)

Following the same approach as in the proof of Theorem 2.1, we know that if condition

of Eq. 2.9 is satisfied, then the state of the closed-loop system can be proved to be

maintained in Ωρ∗ under the proposed distributed LMPC architecture of Eqs. 2.20-

2.21.

Remark 2.5 Note that the distributed LMPC designs have the same stability re-

gion Ωρ as the one of the Lyapunov-based controller h(x). When the stability of the

Lyapunov-based controller h(x) is global (i.e., the stability region is the entire state

space), then the stability of the distributed LMPC designs is also global. Note also

that for any initial condition in Ωρ, the distributed LMPC designs are proved to be
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feasible.

Remark 2.6 We do not consider delays introduced into the system by the commu-

nication network or by the time needed to solve the optimization problems. In future

works, these delays will be taken into account in the formulation of the controllers. In

this work, state constraints have also not been considered but the proposed designs can

be extended to handle state constraints by restricting the closed-loop stability region

further to satisfy the state constraints.

Remark 2.7 The choice of the horizon of the distributed LMPC designs does not

affect the stability of the closed-loop system. For any horizon length N ≥ 1, the

closed-loop stability is guaranteed by the constraints of Eqs. 2.7g and 2.20f. However,

the choice of the horizon does affect the performance of the distributed LMPC designs.

Remark 2.8 Note that because the manipulated inputs enter the dynamics of the

system of Eq. 2.1 in an affine manner, the constraints designed in the LMPC opti-

mization problems of Eqs. 2.7 and 2.20 to guarantee the closed-loop stability can be

decoupled for different distributed controllers as in Eqs. 2.7g and 2.20f.

Remark 2.9 In the sequential distributed LMPC architecture presented in Section

2.3.2, the distributed controllers are evaluated in sequence, which implies that the

minimal time to obtain a set of solutions to all the LMPC controllers is the sum of

the evaluation times of all the LMPC controllers; whereas in the iterative distributed

LMPC architecture proposed in Section 2.3.3, the distributed controllers are evaluated

in parallel, which implies that the minimal time to obtain a set of solutions to all

the LMPC controllers in each iteration is the largest evaluation time among all the

LMPCs.
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Remark 2.10 Note that the sequential (or iterative) distributed LMPC is not a direct

decomposition of the centralized LMPC because the set of constraints of Eq. 2.7g (or

Eq. 2.20f) for j = 1, . . . ,m in the distributed LMPC formulation of Eq. 2.7 (or

Eq. 2.20) imposes a different feasibility region from the one of the centralized LMPC

of Eq. 2.5 which has a single constraint (Eq. 2.5e).

Remark 2.11 In general, there is no guaranteed convergence of the optimal cost or

solution of an iterated distributed MPC (e.g., the distributed MPC architecture dis-

cussed in Section 2.3.3) to the optimal cost or solution of a centralized MPC for

general nonlinear constrained systems because of the non-convexity of the MPC opti-

mization problems. The reader may refer to [10, 91] for discussions on the conditions

under which convergence of the solution of a distributed linear or convex MPC design

to the solution of a centralized MPC or a Pareto optimal solution is ensured in the

context of linear systems.

Remark 2.12 Note also that in general there is no guarantee that the closed-loop per-

formance of one (centralized or distributed) MPC architecture discussed in this work

should be superior than the others since the solutions provided by these MPC archi-

tectures are proved to be feasible and stabilizing but the superiority of the performance

of one MPC architecture over another is not established. This is because the MPC

designs are implemented in a receding horizon scheme and the prediction horizon is fi-

nite; and also because the different MPC designs are not equivalent as we discussed in

Remark 2.10 and the non-convexity property as we discussed in Remark 2.11. In ap-

plications of these MPC architectures, especially for chemical process control in which

non-convex problems is a very common occurrence, simulations should be conducted

before making decisions as to which architecture should be used.
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Figure 2.4: Process flow diagram of alkylation of benzene.

2.4 Application to a chemical process

2.4.1 Process description and modeling

The process of alkylation of benzene with ethylene to produce ethylbenzene is widely

used in the petrochemical industry. Dehydration of the product produces styrene,

which is the precursor to polystyrene and many copolymers. Over the last two

decades, several methods and simulation results of alkylation of benzene with cat-

alysts have been reported in the literature. The process model developed in this

section is based on these references [35, 58, 84, 110]. More specifically, the process

considered in this work consists of four continuously stirred tank reactors (CSTRs)
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and a flash tank separator, as shown in Fig. 2.4. The CSTR-1, CSTR-2 and CSTR-3

are in series and involve the alkylation of benzene with ethylene. Pure benzene is fed

from stream F1 and pure ethylene is fed from streams F2, F4 and F6. Two catalytic

reactions take place in CSTR-1, CSTR-2 and CSTR-3. Benzene (A) reacts with

ethylene (B) and produces the required product ethylbenzene (C) (reaction 1); ethyl-

benzene can further react with ethylene to form 1,3-diethylbenzene (D) (reaction 2)

which is the byproduct. The effluent of CSTR-3, including the products and leftover

reactants, is fed to a flash tank separator, in which most of benzene is separated

overhead by vaporization and condensation techniques and recycled back to the plant

and the bottom product stream is removed. A portion of the recycle stream Fr2 is

fed back to CSTR-1 and another portion of the recycle stream Fr1 is fed to CSTR-4

together with an additional feed stream F10 which contains 1,3-diethylbenzene from

further distillation process that we do not consider in this example. In CSTR-4, reac-

tion 2 and catalyzed transalkylation reaction in which 1,3-diethylbenzene reacts with

benzene to produce ethylbenzene (reaction 3) takes place. All chemicals left from

CSTR-4 eventually pass into the separator. All the materials in the reactions are in

liquid phase due to high pressure. The dynamic equations describing the behavior of

the process, obtained through material and energy balances under standard modeling

assumptions, are given below:

dCA1

dt
=

F1CA0 + Fr2CAr − F3CA1

V1
− r1(T1, CA1, CB1) (2.23a)

dCB1

dt
=

F2CB0 + Fr2CBr − F3CB1

V1
− r1(T1, CA1, CB1)− r2(T1, CB1, CC1) (2.23b)

dCC1

dt
=

Fr2CCr − F3CC1

V1
+ r1(T1, CA1, CB1)− r2(T1, CB1, CC1) (2.23c)
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dCD1

dt
=

Fr2CDr − F3CD1

V1
+ r2(T1, CB1, CC1) (2.23d)

dT1

dt
=

Q1 + F1CA0HA(TA0) + F2CB0HB(TB0)
A,B,C,D∑

i
Ci1CpiV1

+

A,B,C,D∑
i

(Fr2CirHi(T4)− F3Ci1Hi(T1))

A,B,C,D∑
i

Ci1CpiV1

+
−∆Hr1r1(T1, CA1, CB1)−∆Hr2r2(T1, CB1, CC1)

A,B,C,D∑
i

Ci1CpiV1

(2.23e)

dCA2

dt
=

F3CA1 − F5CA2

V2
− r1(T2, CA2, CB2) (2.23f)

dCB2

dt
=

F3CB1 + F4CB0 − F5CB2

V2
− r1(T2, CA2, CB2)− r2(T2, CB2, CC2) (2.23g)

dCC2

dt
=

F3CC1 − F5CC2

V2
+ r1(T2, CA2, CB2)− r2(T2, CB2, CC2) (2.23h)

dCD2

dt
=

F3CD1 − F5CR2

V2
+ r2(T2, CB2, CC2) (2.23i)

dT2

dt
=

Q2 + F4CB0HB(TB0) +
A,B,C,D∑

i
(F3Ci1Hi(T1)− F5Ci2Hi(T2))

A,B,C,D∑
i

Ci2CpiV2

+
−∆Hr1r1(T2, CA2, CB2)−∆Hr2r2(T2, CA2, CB2)

A,B,C,D∑
i

Ci2CpiV2

(2.23j)

dCA3

dt
=

F5CA2 − F7CA3

V3
− r1(T3, CA3, CB3) (2.23k)

dCB3

dt
=

F5CB2 + F6CB0 − F7CB3

V3
− r1(T3, CA3, CB3)− r2(T3, CB3, CC3) (2.23l)
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dCC3

dt
=

F5CC2 − F7CC3

V3
+ r1(T3, CA3, CB3)− r2(T3, CB3, CC3) (2.23m)

dCD3

dt
=

F5CD2 − F7CD3

V3
+ r2(T3, CB3, CC3) (2.23n)

dT3

dt
=

Q3 + F6CB0HB(TB0) +
A,B,C,D∑

i
(F5Ci2Hi(T2)− F7Ci3Hi(T3))

A,B,C,D∑
i

Ci3CpiV3

+
−∆Hr1r1(T3, CA3, CB3)−∆Hr2r2(T3, CB3, CC3)

A,B,C,D∑
i

Ci3CpiV3

(2.23o)

dCA4

dt
=

F7CA3 + F9CA5 − FrCAr − F8CA4

V4
(2.23p)

dCB4

dt
=

F7CB3 + F9CB5 − FrCBr − F8CB4

V4
(2.23q)

dCC4

dt
=

F7CC3 + F9CC5 − FrCCr − F8CC4

V4
(2.23r)

dCD4

dt
=

F7CD3 + F9CD5 − FrCDr − F8CD4

V4
(2.23s)

dT4

dt
=

Q4 +
A,B,C,D∑

i
(F7Ci3Hi(T3) + F9Ci5Hi(T5)− FrCirHi(T4)

A,B,C,D∑
i

Ci4CpiV4

−

A,B,C,D∑
i

(F8Ci4Hi(T4) + FrCirHvapi)

A,B,C,D∑
i

Ci4CpiV4

(2.23t)

dCA5

dt
=

Fr1CAr − F9CA5

V5
− r3(T5, CA5, CD5) (2.23u)

dCB5

dt
=

Fr1CBr − F9CB5

V5
− r2(T5, CB5, CC5) (2.23v)

dCC5

dt
=

Fr1CCr − F9CC5

V5
− r2(T5, CB5, CC5) + 2r3(T5, CA5, CD5) (2.23w)
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dCD5

dt
=

Fr1CDr + F10CD0 − F9CD5

V5
+ r2(T5, CB5, CC5)− r3(T5, CA5, CD5) (2.23x)

dT5

dt
=

Q5 + F10CD0HD(TD0) +
A,B,C,D∑

i
(FrCirHi(T4)− F9Ci5Hi(T5))

A,B,C,D∑
i

Ci5CpiV5

+
−∆Hr2r2(T5, CB5, CC5)−∆Hr3r3(T5, CA5, CD5)

A,B,C,D∑
i

Ci5CpiV5

(2.23y)

where r1, r2 and r3 are the reaction rates of reactions 1, 2 and 3 respectively and Hi,

i = A, B, C, D, are the enthalpies of the reactants. The reaction rates are related

to the concentrations of the reactants and the temperature in each reactor as follows:

r1(T,CA, CB) = kr1C
0.32
A C1.5

B

r2(T,CB, CC) =
kr2C

2.5
B C0.5

C

(1 + kEB2CD)

r3(T,CA, CD) =
kr3C

1.0218
A CD

(1 + kEB3CA)

with

kr1 = 0.0840e(−9502/RT ), kr2 = 0.0850e(−20640/RT ), kr3 = 237.8e(−61280/RT )

kEB2 = 0.0152e(−3933/RT ), kEB3 = 0.4901e(−50870/RT ).

The heat capacities of the species are assumed to be constants and the molar

enthalpies have a linear dependence on temperature as follows:
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Hi(T ) = Hiref + Cpi(T − Tref ), i = A,B,C,D

where Cpi, i = A, B, C, D are heat capacities.

The model of the flash tank separator is developed under the assumption that the

relative volatility of each species has a linear correlation with the temperature of the

vessel within the operating temperature range of the flash tank, as shown below:

αA = 0.0449T4 + 10, αB = 0.0260T4 + 10

αC = 0.0065T4 + 0.5, αD = 0.0058T4 + 0.25

where αi, i = A, B, C,D, represent the relative volatilities. It has also been assumed

that there is a negligible amount of reaction taking place in the separator. The

following algebraic equations model the composition of the overhead stream relative

to the composition of the liquid holdup in the flash tank:

Mi = (F7Ci3 + F9Ci5)
αi(F7Ci3 + F9Ci5)

A,B,C,D∑
k

αk(F7Ck3 + F9Ck5)

, i = A,B,C,D

where Mi, i = A, B, C, D are the molar flow rates of the overhead reactants. Based

on Mi, i = A, B, C, D, we can calculate the concentration of the reactants in the

recycle streams as follows:

Cir =
Mi

A,B,C,D∑
k

Mi/Ck0

, i = A,B,C,D
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where Ck0, k = A,B,C,D, are the mole densities of pure reactants. The condensation

of vapor takes place overhead, and a portion of the condensed liquid is purged back to

separator to keep the flow rate of the recycle stream at a fixed value. The temperature

of the condensed liquid is assumed to be the same as the temperature of the vessel.

The definitions for the variables used in the above model can be found in Table 2.1,

with the parameter values given in Table 2.2.

Each of the tanks has an external heat/coolant input. The manipulated inputs to

the process are the heat injected to or removed from the five vessels, Q1, Q2, Q3, Q4

and Q5, and the feed stream flow rates to CSTR-2 and CSTR-3, F4 and F6.

The states of the process consist of the concentrations of A, B, C, D in each

of the five vessels and the temperatures of the vessels. The state of the process is

assumed to be available continuously to the controllers. We consider a stable steady

state (operating point), xs, of the process which is defined by the steady-state inputs

Q1s, Q2s, Q3s, Q4s, Q5s, F4s and F6s which are shown in Table 2.3 with corresponding

steady-state values shown in Table 2.4.

The control objective is to regulate the system from an initial state to the steady

state. The initial state values are shown in Table 2.6.

The first distributed controller (LMPC 1) will be designed to decide the values

of Q1, Q2 and Q3, the second distributed controller (LMPC 2) will be designed to

decide the values of Q4 and Q5, and the third distributed controller (LMPC 3) will

be designed to decide the values of F4 and F6. Taking this into account, the process

model of Eq. 2.23 belongs to the following class of nonlinear systems:

ẋ(t) = f(x) + g1(x)u1(x) + g2(x)u2(x) + g3(x)u3(x)

where the state x is the deviation of the state of the process from the steady state,
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Table 2.1: Process variables of the alkylation of benzene process of Eqs. 2.23

CA1, CB1, CC1, CD1 Concentrations of A, B, C, D in CSTR-1

CA2, CB2, CC2 ,CD2 Concentrations of A, B, C, D in CSTR-2

CA3, CB3, CC3, CD3 Concentrations of A, B, C, D in CSTR-3

CA4, CB4, CC4, CD4 Concentrations of A, B, C, D in separator

CA5, CB5, CC5, CD5 Concentrations of A, B, C, D in CSTR-4

CAr, CBr, CCr, CDr Concentrations of A, B, C, D in Fr, Fr1, Fr2

T1, T2, T3, T4, T5 Temperatures in each vessel

Tref Reference temperature

F3, F5, F7, F8, F9 Effluent flow rates from each vessel

F1, F2, F4, F6, F10 Feed flow rates to each vessel

Fr, Fr1, Fr2 Recycle flow rates

HvapA, HvapB, HvapC , HvapD Enthalpies of vaporization of A, B, C, D

HAref , HBref , HCref , HDref Enthalpies of A, B, C, D at Tref

∆Hr1, ∆Hr2, ∆Hr3 Heat of reactions 1, 2 and 3

V1, V2, V3, V4, V5 Volume of each vessel

Q1, Q2, Q3, Q4, Q5 External heat/coolant inputs to each vessel

CpA, CpB, CpC , CpD Heat capacity of A, B, C, D at liquid phase

αA, αB, αC , αD Relative volatilities of A, B, C, D

CA0, CB0, CC0, CD0 Molar densities of pure A, B, C, D

TA0, TB0, TD0 Feed temperatures of pure A, B, D
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Table 2.2: Parameter values of the alkylation of benzene process of Eqs. 2.23

F1 7.1× 10−3 [m3/s] Fr 0.012 [m3/s]

F2 8.697× 10−4 [m3/s] Fr1 0.006 [m3/s]

Fr2 0.006 [m3/s] V1 1 [m3]

F10 2.31× 10−3 [m3/s] V2 1 [m3]

HvapA 3.073× 104 [J/mole] V3 1 [m3]

HvapB 1.35× 104 [J/mole] V4 3 [m3]

HvapC 4.226× 104 [J/mole] V5 1 [m3]

HvapD 4.55× 104 [J/mole] CpA 184.6 [J/mole ·K]

HAref 7.44× 104 [J/mole] HBref 5.91× 104 [J/mole]

HCref 2.02× 104 [J/mole] HBref −2.89× 104 [J/mole]

∆Hr1 −1.536× 105 [J/mole] CpB 59.1 [J/mole ·K]

∆Hr2 −1.118× 105 [J/mole] CpC 247 [J/mole ·K]

∆Hr3 4.141× 105 [J/mole] CpD 301.3 [J/mole ·K]

CA0 1.126× 104 [mole/m3] Tref 450 [K]

CB0 2.028× 104 [mole/m3] TA0 473 [K]

CC0 8174 [mole/m3] TB0 473 [K]

CD0 6485 [mole/m3] TD0 473 [K]

k 0.8
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Table 2.3: Steady-state input values for xs of the alkylation of benzene process of
Eqs. 2.23

Q1s -4.4×106 [J/s] Q2s -4.6×106 [J/s]

Q3s -4.7×106 [J/s] Q4s 9.2×106 [J/s]

Q5s 5.9×106 [J/s] F4s 8.697×10−4 [m3/s]

F4s 8.697×10−4 [m3/s]

Table 2.4: Steady-state values for xs of the alkylation of benzene process of Eqs. 2.23

CA1 9.101× 103 [mole/m3] CA2 7.548× 103 [mole/m3]

CB1 22.15 [mole/m3] CB2 23.46 [mole/m3]

CC1 1.120× 103 [mole/m3] CC2 1.908× 103 [mole/m3]

CD1 2.120× 102 [mole/m3] CD2 3.731× 102 [mole/m3]

T1 4.772× 102 [K] T2 4.77× 102 [K]

CA3 6.163× 103 [mole/m3] CA4 1.723× 103 [mole/m3]

CB3 24.84 [mole/m3] CB4 13.67 [mole/m3]

CC3 2.616× 103 [mole/m3] CC4 5.473× 103 [mole/m3]

CD3 5.058× 102 [mole/m3] CD4 7.044× 102 [mole/m3]

T3 4.735× 102 [K] T4 4.706× 102 [K]

CA5 5.747× 103 [mole/m3] CD5 1.537× 102 [mole/m3]

CB5 3.995 [mole/m3] T5 4.783× 102 [K]

CC5 3.830× 103 [mole/m3]
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Table 2.5: Manipulated input constraints of the alkylation of benzene process of
Eqs. 2.23

|u11| ≤ 7.5× 105 [J/s] |u12| ≤ 5× 105 [J/s]

|u13| ≤ 5× 105 [J/s] |u21| ≤ 6× 105 [J/s]

|u22| ≤ 5× 105 [J/s] |u31| ≤ 4.93× 10−5 [m3/s]

|u32| ≤ 4.93× 10−5 [m3/s]

Table 2.6: Initial state values of the alkylation of benzene process of Eqs. 2.23

CA1 9.112× 103 [mole/m3] CA2 7.557× 103 [mole/m3]

CB1 25.09 [mole/m3] CB2 27.16 [mole/m3]

CC1 1.113× 103 [mole/m3] CC2 1.905× 103 [mole/m3]

CD1 2.186× 102 [mole/m3] CD2 3.695× 102 [mole/m3]

T1 4.430× 102 [K] T2 4.371× 102 [K]

CA3 6.170× 103 [mole/m3] CA4 1.800× 103 [mole/m3]

CB3 29.45 [mole/m3] CB4 16.35 [mole/m3]

CC3 2.617× 103 [mole/m3] CC4 5.321× 103 [mole/m3]

CD3 5.001× 102 [mole/m3] CD4 7.790× 102 [mole/m3]

T3 4.284× 102 [K] T4 4.331× 102 [K]

CA5 5.889× 103 [mole/m3] CD5 2.790× 102 [mole/m3]

CB5 5.733 [mole/m3] T5 4.576× 102 [K]

CC5 3.566× 103 [mole/m3]
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uT
1 = [u11 u12 u13] = [Q1−Q1s Q2−Q2s Q3−Q3s], u

T
2 = [u21 u22] = [Q4−Q4s Q5−Q5s]

and uT
3 = [u31 u32] = [F4−F4s F6−F6s] are the manipulated inputs which are subject

to the constraints shown in Table 2.5.

In the control of the process, u1 and u2 are necessary to keep the stability of the

closed-loop system, while u3 can be used as an extra manipulated input to improve

the closed-loop performance. To illustrate the theoretical results, we first design the

Lyapunov-based controller h(x) = [h1(x) h2(x) h3(x)]
T . Specifically, h1(x) and h2(x)

are designed as follows [93]:

hi(x) =


−
LfV +

√
(LfV )2 + (LgiV )4

(LgiV )2
LgiV if LgiV ̸= 0

0 if LgiV = 0

(2.24)

where i = 1, 2, LfV =
∂V

∂x
f(x) and LgiV =

∂V

∂x
gi(x) denote the Lie derivatives of

the scalar function V with respect to the vector fields f and gi (i = 1, 2), respectively.

The controller h3(x) is chosen to be h3(x) = [0 0]T because the input set u3 is not

needed to stabilize the process. We consider a Lyapunov function V (x) = xTPx with

P being the following weight matrix

P = diag¶([1 1 1 1 10 1 1 1 1 10 1 1 1 1 10 1 1 1 1 10 1 1 1 1 10]).

The weights in P are chosen by a trail-and-error procedure. The basic idea behind this

procedure is that more weight should be put on the temperatures of the five vessels

because temperatures have more significant effect on the overall control performance,

and the Lyapunov-based controller h(x) should be able to stabilize the closed-loop

system asymptotically with continuous feedback and actuation.

¶diag(v) denotes a matrix with its diagonal elements being the elements of vector v and all the
other elements being zeros.
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Figure 2.5: Trajectories of the Lyapunov function V (x) of the alkylation of benzene
process of Eqs. 2.23 under the controller h(x) of Eq. 2.24 implemented in a sample-
and-hold fashion (solid line), the centralized LMPC of Eqs. 2.5 (dashed line), the
sequential DMPC of Eqs. 2.7 (dash-dotted line) and the iterative DMPC of Eqs. 2.20
with c = 1 (dotted line)

Based on h(x), we design the centralized LMPC, the sequential distributed LMPC

and the iterative distributed LMPC. The sampling time used is ∆ = 30 s and the

weight matrices

Qc = diag([1 1 1 1 103 1 1 1 1 103 10 10 10 10 104 1 1 1 1 103 1 1 1 1 103]).

and Rc1 = diag([10−8 10−8 10−8]), Rc2 = diag([10−8 10−8]) and Rc3 = diag([1 1]).

2.4.2 Simulation results

First, we carried out a set of simulations which demonstrate that the nonlinear control

law h(x) and the different schemes of LMPCs can all stabilize the closed-loop system

asymptotically. Figure 2.5 shows the trajectories of the Lyapunov function V (x)

under the different control schemes. Note that because of the constraints of Eqs. 2.5e,

2.7g and 2.20f, the trajectories of the Lyapunov function of the closed-loop system

under the centralized LMPC, the sequential DMPC and the iterative DMPC are

guaranteed to be bounded by the corresponding Lyapunov function trajectory under
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Table 2.7: Mean evaluation time of different LMPC optimization problems for 100
evaluations

N = 1 (s) N = 3 (s) N = 6 (s)

Centralized LMPC 2.192 8.694 27.890

LMPC 1 0.472 2.358 6.515

Sequential LMPC 2 0.497 1.700 4.493

LMPC 3 0.365 1.453 3.991

LMPC 1 0.484 2.371 6.280

Iterative LMPC 2 0.426 1.716 4.413

LMPC 3 0.185 0.854 2.355

the controller h(x) implemented in a sample-and-hold fashion with the sampling time

∆ until V (x) converges to a small region around the origin (i.e., Ωρmin
). This point is

also illustrated in Figure 2.5.

Next, we compare the mean evaluation times of the centralized LMPC optimiza-

tion problem and the sequential and iterative DMPC optimization problems. Each

LMPC optimization problem was evaluated 100 times at different conditions. Differ-

ent prediction horizons were considered in this set of simulations. The simulations

were carried out using JAVATM programming language in a PENTIUMr 3.20 GHz

computer. The optimization problems were solved using the open source interior

point optimizer Ipopt [101]. The results are shown in Table 2.7. From Table 2.7,

we can see that in all cases, the time needed to solve the centralized LMPC is much

larger than the time needed to solve the sequential or iterative DMPCs. This is be-

cause the centralized LMPC has to solve a much larger (in terms of decision variables)

optimization problem than the DMPCs. We can also see that the evaluation time of
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Figure 2.6: Total performance costs along the closed-loop trajectories of the alkylation
of benzene process of Eqs. 2.23 under centralized LMPC of Eqs. 2.5 (dashed line),
sequential DMPC of Eqs. 2.7 (dash-dotted line) and iterative DMPC of Eqs. 2.20
(solid line)

the centralized LMPC is even larger than the sum of evaluation times of LMPC 1,

LMPC 2 and LMPC 3 in the sequential DMPC, and the times needed to solve the

DMPCs in both sequential and iterative distributed schemes are of the same order of

magnitude.

In the following set of simulations, we compare the centralized LMPC and the two

DMPC schemes from a performance index point of view. In this set of simulations,

the prediction horizon is N = 1. To carry out this comparison, the same initial

condition and parameters were used for the different control schemes and the total

cost under each control scheme was computed as follows:

J =

∫ tM

t0

[
∥x(τ)∥Qc

+ ∥u1(τ)∥Rc1
+ ∥u2(τ)∥Rc2

+ ∥u3(τ)∥Rc3

]
dτ (2.25)

where t0 = 0 is the initial time of the simulations and tM = 1000 s is the end of the

simulations. Table 2.8 shows the total cost along the closed-loop system trajectories

(trajectories I) under the different control schemes. For the iterative DMPC design,
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Table 2.8: Total performance costs along the closed-loop trajectories I of the alkyla-
tion of benzene process of Eqs. 2.23

J (×107)

Centralized 1.8858

Sequential 1.8891

cmax 1 3 5 7 9 11 13 15

Iterative 1.8955 1.8883 1.8867 1.8863 1.8862 1.8859 1.8858 1.8858

different maximum number of iterations, cmax, are used. From Table 2.8, we can see

that in this set of simulations, the centralized LMPC gives the lowest performance

cost, the sequential DMPC gives lower cost than the iterative DMPC when there is no

iteration (cmax = 1). However, as the iteration number c increases, the performance

cost given by the iterative DMPC decreases and converges to the cost of the one

corresponding to the centralized LMPC. This point is also shown in Figure 2.6.

Note that the above set of simulations only represents one case of many possible

cases. As we discussed in Remarks 2.11 and 2.12, there is no guaranteed convergence

of the performance of distributed MPC to the performance of a centralized MPC and

there is also no guaranteed superiority of the performance of one DMPC scheme over

the others. In the following, we show two sets of simulations to illustrate these points.

In both sets of simulations, we chose different matrices Rc1 and Rc2, and all the other

parameters (Qc, Rc3, ∆, N) remained the same as the previous set of simulations. In

the first set of simulations, we picked Rc1 = diag([5× 10−5 5× 10−5 5× 10−5]), Rc2 =

diag([5 × 10−5 5 × 10−5]). The total performance cost along the closed-loop system

trajectories (trajectories II) under this simulation setting are shown in Table 2.9.
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Table 2.9: Total performance costs along the closed-loop trajectories II of the alky-
lation of benzene process of Eqs. 2.23

J (×107)

Centralized 5.052

Sequential 7.039

cmax 1 3 5 6

Iterative 7.2286 7.2241 7.2240 7.2240

Table 2.10: Total performance costs along the closed-loop trajectories III of the alky-
lation of benzene process of Eqs. 2.23

J (×107)

Centralized 3.8564

Sequential 3.6755

cmax 1 3 4

Iterative 3.6663 3.6639 3.6639
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From Table 2.9, we can see that the centralized LMPC provides a much lower cost

than both the sequential and iterative distributed LMPCs. We can also see that

as the number of iterations increases, the iterative distributed LMPC converges to

a value which is different from the one obtained by the centralized LMPC. In the

second set of simulations, we picked Rc1 = diag([1 × 10−4 1 × 10−4 1 × 10−4]),

Rc2 = diag([1× 10−4 1× 10−4]) and the total performance cost along the closed-loop

system trajectories (trajectories III) are shown in Table 2.10 from which we can see

that the centralized LMPC provides a higher cost than both distributed LMPCs.

2.5 Conclusions

In this chapter, we presented two different architectures of distributed MPC for

nonlinear process systems: sequential distributed LMPC and iterative distributed

LMPC. In both architectures, the MPC controllers were designed via LMPC tech-

niques. In the sequential distributed LMPC architecture, the distributed LMPC con-

trollers adopt a one-directional communication strategy and are evaluated in sequence

and once at each sampling time; in the iterative distributed LMPC architecture, the

distributed LMPC controllers utilize a bi-directional communication strategy, are

evaluated in parallel and iterate to improve closed-loop performance. Each LMPC

controller in both architectures incorporates a suitable stability constraint which en-

sures that the state of the closed-loop system under the proposed distributed MPC

architectures is ultimately bounded in an invariant set. Extensive simulations using

a catalytic alkylation of benzene process example were carried out to compare the

proposed distributed MPC architectures with existing centralized LMPC algorithms

from computational time and closed-loop performance points of view.
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Chapter 3

Sequential and Iterative

Distributed Model Predictive

Control of Nonlinear Systems:

Handling Asynchronous and

Delayed Measurements

3.1 Introduction

The development of DMPC schemes is of particular interest for the process indus-

tries because of the possibility of augmenting the sensor and actuation capabilities of

control systems using hybrid communication networks that take advantage of an ef-

ficient integration of the existing, point-to-point communication networks (i.e., wired

connections from each actuator or sensor to the control system using dedicated lo-
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cal area networks) and additional wired or wireless networked actuator or sensor

devices [108, 24, 83, 17]. However, the design of networked control systems has to

account for the dynamics introduced by the communication network which may in-

clude time-varying delays or data losses in feedback. On the other hand, measuring

difficulties of some system states, for example, species concentrations, in chemical

processes also introduce the presence of asynchronous and delayed feedback in con-

trol loops. Previous work on MPC design for systems subject to asynchronous or

delayed feedback has primarily focused on centralized MPC designs [45, 61, 80, 67]

and little attention has been given to the design of DMPC for systems subject to

asynchronous or delayed measurements. In a recent paper [34], the issue of delays in

the communication between distributed controllers was addressed. In the work [66],

sequential DMPC schemes for nonlinear systems subject to asynchronous and delayed

state feedback were developed; however, the design of sequential DMPC involving two

distributed controllers was only considered, and the design of sequential DMPC in-

volving multiple controllers subject to asynchronous state feedback or iterative DMPC

for nonlinear system subject to asynchronous and delayed state feedback was not ad-

dressed.

Motivated by the above considerations, in this chapter, we propose sequential and

iterative DMPC schemes for large scale nonlinear systems subject to asynchronous

and delayed state feedback [64, 14, 62]. In the case of asynchronous feedback, under

the assumption that there is an upper bound on the maximum interval between two

consecutive measurements, we first extend the results obtained in [66] for sequential

DMPC to include multiple distributed controllers, and then re-design the iterative

DMPC scheme presented in [63] to take explicitly into account asynchronous feed-

back. Subsequently, we design an iterative DMPC scheme for systems subject to

asynchronous feedback that also involve time-delays under the assumption that there
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exists an upper bound on the maximum feedback delay. This design takes advantage

of the bi-directional communication network used in the iterative DMPC framework.

Sufficient conditions under which the proposed distributed control designs guarantee

that the states of the closed-loop system are ultimately bounded in regions that con-

tain the origin are provided. The theoretical results are illustrated through a catalytic

alkylation of benzene process example.

3.2 Preliminaries

3.2.1 Problem formulation

We consider nonlinear process systems described by the following state-space model:

ẋ(t) = f(x(t)) +
m∑
i=1

gi(x(t))ui(t) + k(x(t))w(t) (3.1)

where x(t) ∈ Rnx denotes the vector of process state variables, ui(t) ∈ Rmui , i =

1, . . . ,m, are m sets of control (manipulated) inputs and w(t) ∈ Rnw denotes the vec-

tor of disturbance variables. The m sets of inputs are restricted to be in m nonempty

convex sets Ui ⊆ Rmui , i = 1, . . . ,m, which are defined as follows:

Ui := {ui ∈ Rmui : |ui| ≤ umax
i }∗, i = 1, . . . ,m

where umax
i , i = 1, . . . ,m, are the magnitudes of the input constraints. The distur-

bance vector is bounded, i.e., w(t) ∈ W where

W := {w ∈ Rnw : |w| ≤ θ, θ > 0}.
∗| · | denotes Euclidean norm of a vector.
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We assume that f(x), gi(x), i = 1, . . . ,m, and k(x) are locally Lipschitz vector

functions and that the origin is an equilibrium of the unforced nominal system (i.e.,

system of Eq. 3.1 with ui(t) = 0, i = 1, . . . ,m, w(t) = 0 for all t) which implies that

f(0) = 0.

3.2.2 Lyapunov-based controller

We assume that there exists a Lyapunov-based controller h(x) = [h1(x) . . . hm(x)]
T

with ui = hi(x), i = 1, . . . ,m, which renders (under continuous state feedback) the

origin of the nominal closed-loop system asymptotically stable while satisfying the

input constraints for all the states x inside a given stability region. We note that

this assumption is essentially equivalent to the assumption that the process is stabi-

lizable or that the pair (A,B) in the case of linear systems is stabilizable. Using con-

verse Lyapunov theorems [60, 18], this assumption implies that there exist functions

αi(·), i = 1, 2, 3, 4 of class K† and a continuously differentiable Lyapunov function

V (x) for the nominal closed-loop system, that satisfy the following inequalities:

α1(|x|) ≤ V (x) ≤ α2(|x|)

∂V (x)

∂x

(
f(x) +

m∑
i=1

gi(x)hi(x)

)
≤ −α3(|x|)∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ α4(|x|)

hi(x) ∈ Ui, i = 1, . . . ,m

(3.2)

for all x ∈ O ⊆ Rnx where O is an open neighborhood of the origin. We denote the

region Ωρ ⊆ O‡ as the stability region of the closed-loop system under the Lyapunov-

†A continuous function α : [0, a) → [0,∞) is said to belong to class K if it is strictly increasing
and α(0) = 0.

‡We use Ωρ to denote the set Ωρ := {x ∈ Rnx : V (x) ≤ ρ}.
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based controller h(x). The construction of V (x) can be carried out in a number of

ways using systematic techniques like, for example, sum-of-squares methods.

By continuity, the local Lipschitz property assumed for the vector fields f(x),

gi(x), i = 1, . . . ,m, and k(x) and taking into account that the manipulated inputs

ui, i = 1, . . . ,m, and the disturbance w are bounded in convex sets, there exists a

positive constant M such that

∣∣∣∣∣f(x) +
m∑
i=1

gi(x)ui + k(x)w

∣∣∣∣∣ ≤M (3.3)

for all x ∈ Ωρ, ui ∈ Ui, i = 1, . . . ,m, and w ∈ W . In addition, by the continuous

differentiable property of the Lyapunov function V (x) and the Lipschitz property

assumed for the vector field f(x), there exist positive constants Lx, Lui
, i = 1, . . . ,m,

and Lw such that

∣∣∣∣∂V∂x f(x)− ∂V

∂x
f(x′)

∣∣∣∣ ≤ Lx |x− x′|∣∣∣∣∂V∂x gi(x)−
∂V

∂x
gi(x

′)

∣∣∣∣ ≤ Lui
|x− x′|, i = 1, . . . ,m∣∣∣∣∂V∂x k(x)

∣∣∣∣ ≤ Lw

(3.4)

for all x, x′ ∈ Ωρ, ui ∈ Ui, i = 1, . . . ,m, and w ∈ W .

3.3 DMPC with asynchronous measurements

3.3.1 Modeling of asynchronous measurement

We assume that the state of the system of Eq. 3.1, x(t), is available asynchronously

at time instants tk where {tk≥0} is a random increasing sequence of times. The
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distribution of {tk≥0} characterizes the time needed to obtain a new measurement. In

general, if there exists the possibility of arbitrarily large periods of time in which a new

measurement is not available, then it is not possible to provide guaranteed stability

properties. In order to study the stability properties in a deterministic framework,

in the present work, we assume that there exists an upper bound Tm on the interval

between two successive measurements, i.e., max
k
{tk+1 − tk} ≤ Tm. This assumption

is reasonable from process control and networked control systems perspectives [102,

103]. This model of asynchronous measurements is of relevance to systems subject to

asynchronous measurement samplings and to networked control systems, where the

asynchronous property is introduced by data losses in the communication network

connecting the sensors/actuators and the controllers.

In this section, we design sequential and iterative DMPC schemes, taking into

account asynchronous measurements explicitly in their designs, that provide deter-

ministic closed-loop stability properties. In each proposed architecture, we will design

m Lyapunov-based MPC (LMPC) controllers to compute ui, i = 1, . . . ,m, and refer

to the LMPC computing the input trajectories of ui as LMPC i.

3.3.2 Sequential DMPC formulation

A schematic diagram of the proposed sequential DMPC design for a system subject

to asynchronous measurements is shown in Fig. 3.1. We propose to take advantage

of the MPC scheme when feedback is lost to update the control inputs based on a

state prediction obtained by the model and to have the control actuators store and

implement the last computed optimal input trajectories [80, 66]. Specifically, the

proposed implementation strategy is as follows:

1. When a new measurement is available at tk, all the LMPCs receive the state
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Figure 3.1: Sequential DMPC for nonlinear systems subject to asynchronous mea-
surements.

measurement x(tk) from the sensors.

2. For j = m to 1

2.1. LMPC j receives the entire future input trajectories of ui, i = m, . . . , j+1,

from LMPC j+1 and evaluates the future input trajectory of uj based on

x(tk) and the received future input trajectories.

2.2. LMPC j sends the entire input trajectories of uj to its actuators and the

entire input trajectories of ui, i = m, . . . , j, to LMPC j − 1.

Note that in the above implementation strategy, each LMPC sends its own com-

puted input trajectories and the other input trajectories it received to the next LMPC

controller (i.e., LMPC j sends input trajectories to LMPC j − 1). This implies that

LMPC j, j = m, . . . , 2, does not have any information about the values that ui,

i = j − 1, . . . , 1 will take when the optimization problems of the LMPC controllers

are evaluated. In order to make a decision, LMPC j, j = m, . . . , 2 must assume

trajectories for ui, i = j − 1, . . . , 1, along the prediction horizon. To this end, the
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Lyapunov-based controller h(x) is used. In order to inherit the stability properties of

the controller h(x), each control input ui, i = 1, . . . ,mmust satisfy a set of constraints

that guarantee a given minimum contribution to the decrease rate of the Lyapunov

function V (x) in the case of asynchronous measurements.

In order to proceed, we define x̂(τ |tk) for τ ∈ [0, N∆] as the nominal sampled

trajectory of the system of Eq. 3.1 associated with the feedback control law h(x) and

sampling time ∆ starting from x(tk). This nominal sampled trajectory is obtained

by integrating the following differential equation recursively:

˙̂x(τ |tk) = f(x̂(τ |tk)) +
m∑
i=1

gi(x̂(τ |tk))hi(x̂(l∆|tk)),

∀τ ∈ [(l∆, (l + 1)∆)), l = 0, . . . , N − 1.

(3.5)

Based on x̂(τ |tk), we can define the following input trajectories:

un,j(τ |tk) = hj(x̂(l∆|tk)), j = 1, . . . ,m, ∀τ ∈ [l∆, (l + 1)∆), l = 0, . . . , N − 1

(3.6)

which will be used in the design of the LMPCs. Specifically, the design of LMPC j,

j = 1, . . . ,m, is based on the following optimization problem:

min
us,j∈S(∆)

∫ N∆

0

[
x̃j(τ)TQcx̃

j(τ) +
∑m

i=1 us,i(τ)
TRcius,i(τ)

]
dτ (3.7a)

s.t. ˙̃xj(τ) = f(x̃j(τ)) +
∑m

i=1 gi(x̃
j(τ))us,i (3.7b)

˙̂xj(τ) = f(x̂j(τ)) +
∑j

i=1 gi(x̂
j(τ))un,i(τ |tk) +

∑m
i=j+1 gi(x̂

j(τ))us,i (3.7c)

us,i(τ) = un,i(τ |tk), i = 1, . . . , j − 1 (3.7d)

us,i(τ) = u∗
s,i(τ |tk), i = j + 1, . . . ,m (3.7e)
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us,j(τ) ∈ Uj (3.7f)

x̃j(0) = x̂j(0) = x(tk) (3.7g)

V (x̃j(τ)) ≤ V (x̂j(τ)), ∀τ ∈ [0, NR∆] (3.7h)

where S(∆) is the family of piece-wise constant functions with sampling time ∆, N

is the prediction horizon, Qc and Rci, i = 1, . . . ,m, are positive definite weighting

matrices, and NR is the smallest integer satisfying Tm ≤ NR∆. The vector x̃j is the

predicted trajectory of the nominal system with uj computed by the above optimiza-

tion problem (i.e., LMPC j) and the other control inputs defined by Eqs. 3.7d-3.7e.

The vector x̂j is the predicted trajectory of the nominal system with uj = un,j(τ |tk)

and the other control inputs defined by Eqs. 3.7d-3.7e. In order to fully take advan-

tage of the prediction, we choose N ≥ NR. The optimal solution to this optimization

problem is denoted u∗
s,j(τ |tk) and is defined for τ ∈ [0, N∆).

The constraint of Eq. 3.7b is the nominal model of the system, which is used to

generate the trajectory x̃j; the constraint of Eq. 3.7c defines a reference trajectory of

the nominal system (i.e., x̂j) when the input uj is defined by un,j(τ |tk); the constraint

of Eq. 3.7d defines the value of the inputs evaluated after uj (i.e., ui with i = 1, . . . , j−

1); the constraint of Eq. 3.7e defines the value of the inputs evaluated before uj (i.e., ui

with i = j+1, . . . ,m); the constraint of Eq. 3.7f is the constraint on the manipulated

input uj; the constraint of Eq. 3.7g sets the initial state for the optimization problem;

and the constraint of Eq. 3.7h guarantees that the contribution of input uj to the

decrease rate of the time derivative of the Lyapunov function from tk to tk +NR∆, if

uj = u∗
s,j(τ |tk), τ ∈ [0, NR∆) is applied, is bigger or equal to the value obtained when

uj = un,j(t − tk|tk), t ∈ [tk, tk + NR∆) is applied. This constraint guarantees that
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the proposed sequential DMPC design maintains the stability of the Lyapunov-based

controller h(x) implemented in a sample-and-hold fashion and with open-loop state

estimation in the presence of asynchronous measurements.

The manipulated inputs of the closed-loop system under the above sequential

DMPC are defined as follows:

ui(t) = u∗
s,i(t− tk|tk), i = 1, . . . ,m, ∀t ∈ [tk, tk+1). (3.8)

The proposed sequential DMPC design of Eqs. 3.7-3.8 maintains the closed-loop

stability properties of the Lyapunov-based controller h(x) implemented in a sample-

and-hold fashion and with open-loop state estimation in the presence of asynchronous

measurements. This property is presented in Theorem 3.1 below. To state this

theorem, we need the following propositions.

Proposition 3.1 (c.f. [80, 63]) Consider the nominal sampled trajectory x̂ of the

system of Eq. 3.1 in closed-loop with the Lyapunov-based controller h(x) applied in

a sample-and-hold fashion and with open-loop state estimation. Let ∆, ϵs > 0 and

ρ > ρs > 0 satisfy

−α3(α
−1
2 (ρs)) + L∗M ≤ −ϵs/∆ (3.9)

with L∗ = Lx +
∑m

i=1 Lui
umax
i . Then, if ρmin < ρ where

ρmin = max{V (x̂(t+∆)) : V (x̂(t)) ≤ ρs} (3.10)

and x̂(0) ∈ Ωρ, the following inequality holds:

V (x̂(k∆)) ≤ max{V (x̂(0))− kϵs, ρmin}. (3.11)
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Proposition 3.1 ensures that if the nominal system under the control h(x) imple-

mented in a sample-and-hold fashion and with open-loop state estimation starts in

Ωρ, then it is ultimately bounded in Ωρmin
. The following proposition provides an up-

per bound on the deviation of the state trajectory obtained using the nominal model,

from the actual state trajectory when the same control actions are applied.

Proposition 3.2 (c.f. [69, 68]) Consider the systems

ẋa(t) = f(xa(t)) +
m∑
i=1

gi(xa(t))ui(t) + k(xa(t))w(t))

ẋb(t) = f(xb(t)) +
m∑
i=1

gi(xb(t))ui(t)

(3.12)

with initial states xa(t0) = xb(t0) ∈ Ωρ. There exists a class K function fW (·) such

that

|xa(t)− xb(t)| ≤ fW (t− t0), (3.13)

for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W with fW (τ) = Rwθ(e
Rxτ − 1)/Rx and Rw,

Rx are positive numbers.

Proposition 3.3 bounds the difference between the magnitudes of the Lyapunov

function of two states in Ωρ.

Proposition 3.3 (c.f. [69, 68]) Consider the Lyapunov function V (·) of the system

of Eq. 3.1. There exists a quadratic function fV (·) such that

V (x) ≤ V (x̂) + fV (|x− x̂|) (3.14)

for all x, x̂ ∈ Ωρ with fV (s) = α4(α
−1
1 (ρ))s+Mvs

2 and Mv > 0.
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In Theorem 3.1 below, we provide sufficient conditions under which the DMPC

design of Eqs. 3.7-3.8 guarantees that the state of the closed-loop system is ultimately

bounded in a region that contains the origin.

Theorem 3.1 Consider the system of Eq. 3.1 in closed-loop with the DMPC design

of Eqs. 3.7-3.8 based on the controller h(x) that satisfies the conditions of Eq. 3.2 with

class K functions αi(·), i = 1, 2, 3, 4. Let ∆, ϵs > 0, ρ > ρmin > 0, ρ > ρs > 0 and

N ≥ NR ≥ 1 satisfy the conditions of Eqs. 3.9 and 3.10 and the following inequality:

−NRϵs + fV (fW (NR∆)) < 0 (3.15)

with NR being the smallest integer satisfying NR∆ ≥ Tm. If the initial state of the

closed-loop system x(t0) ∈ Ωρ, then x(t) is ultimately bounded in Ωρa ⊆ Ωρ where

ρa = ρmin + fV (fW (NR∆)).

Proof 3.1 In order to prove that the state of the closed-loop system is ultimately

bounded in a region that contains the origin, we prove that V (x(tk)) is a decreasing

sequence of values with a lower bound. Specifically, we focus on the time interval

t ∈ [tk, tk+1] and prove that V (x(tk+1)) is reduced compared with V (x(tk)) or is

maintained in an invariant set containing the origin.

To simplify the notation, we assume that all the signals used in this proof refer to

the different optimization problems solved at tk with the initial condition x(tk), and

the trajectory x̃j(t), j = 1, . . . ,m, is corresponding to the optimal input u∗
s,j+1(τ |tk).

We also note that the predicted trajectories x̃j+1(t) and x̂j(t) generated in the opti-

mization problems of LMPC j + 1 and LMPC j are identical. This property will be

used in the proof.
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Part 1: In this part, we prove that the stability results stated in Theorem 3.1

hold in the case that tk+1 − tk = Tm for all k and Tm = NR∆. This case corresponds

to the worst possible situation in the sense that the controllers need to operate in

open-loop for the maximum possible amount of time. By Proposition 3.1 and the fact

that tk+1 = tk +NR∆, the following inequality can be obtained:

V (x̂(tk+1)) ≤ max{V (x̂(tk))−NRϵs, ρmin}. (3.16)

From the constraints of Eq. 3.7h in the LMPCs, the following inequality can be

written for all t ∈ [tk, tk +NR∆]:

V (x̃j(t)) ≤ V (x̂j(t)), j = 1, . . . ,m. (3.17)

By the fact that x̃j+1(t) and x̂j(t) are identical, the following equations can be written

for all t ∈ [tk, tk +NR∆]:

V (x̂j(t)) = V (x̃j+1(t)), j = 1, . . . ,m− 1. (3.18)

From the inequalities of Eqs. 3.17 and 3.18, the following inequalities are obtained

for all t ∈ [tk, tk +NR∆]:

V (x̃1(t)) ≤ . . . ≤ V (x̃j(t)) ≤ . . . ≤ V (x̃m(t)) ≤ V (x̂m(t)). (3.19)

Note that the trajectory x̃1 is the nominal trajectory (i.e., x̃) of the closed-loop

system under the control of the sequential DMPC. Note also that the trajectory x̂m is

the nominal sampled trajectory (i.e., x̂) of the closed-loop system defined in Eq. 3.5.
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Therefore, the following trajectory can be written:

V (x̃(t)) ≤ V (x̂(t)),∀ t ∈ [tk, tk +NR∆). (3.20)

From the inequalities of Eq. 3.16 and 3.20 and the fact that x̂(tk) = x(tk), the following

inequality is obtained:

V (x̃(tk+1)) ≤ max{V (x(tk))−NRϵs, ρmin}. (3.21)

When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply Propo-

sition 3.3 to obtain the following inequality:

V (x(tk+1)) ≤ V (x̃(tk+1)) + fV (|x̃(tk+1)− x(tk+1)|). (3.22)

Applying Proposition 3.2 we obtain the following upper bound on the deviation of

x̃(t) from x(t):

|x(tk+1)− x̃(tk+1)| ≤ fW (NR∆). (3.23)

From the inequalities of Eqs. 3.22 and 3.23, the following upper bound on V (x(tk+1))

can be written:

V (x(tk+1)) ≤ V (x̃(tk+1)) + fV (fW (NR∆)). (3.24)

Using the inequality of Eq. 3.21, we can re-write the inequality of Eq. 3.24 as follows:

V (x(tk+1)) ≤ max{V (x(tk))−NRϵs, ρmin}+ fV (fW (NR∆)). (3.25)

If the condition of Eq. 3.15 is satisfied, from the inequality of Eq. 3.25, we know that
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there exists ϵw > 0 such that the following inequality holds

V (x(tk+1)) ≤ max{V (x(tk))− ϵw, ρa} (3.26)

which implies that if x(tk) ∈ Ωρ/Ωρa , then V (x(tk+1)) < V (x(tk)), and if x(tk) ∈ Ωρa ,

then V (x(tk+1)) ≤ ρa.

Because the upper bound on the difference between the Lyapunov function of the

actual trajectory x and the nominal trajectory x̃ is a strictly increasing function of

time (see Propositions 3.2 and 3.3 for the expressions of fV and fW ), the inequality

of Eq. 3.26 also implies that

V (x(t)) ≤ max{V (x(tk)), ρa}, ∀t ∈ [tk, tk+1]. (3.27)

Using the inequality of Eq. 3.27 recursively, it can be proved that if x(t0) ∈ Ωρ, then

the closed-loop trajectories of the system of Eq. 3.1 under the proposed sequential

DMPC design of Eqs. 3.7-3.8 stay in Ωρ for all times (i.e., x(t) ∈ Ωρ, ∀t). Moreover,

using the inequality of Eq. 3.27 recursively, it can be proved that if x(t0) ∈ Ωρ, the

closed-loop trajectories of the system of Eq. 3.1 under the proposed sequential DMPC

design satisfy

lim sup
t→∞

V (x(t)) ≤ ρa.

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρa for the

case when tk+1 − tk = Tm for all k and Tm = NR∆.

Part 2: In this part, we extend the results proved in Part 1 to the general case,

that is, tk+1 − tk ≤ Tm for all k and Tm ≤ NR∆ which implies that tk+1 − tk ≤ NR∆.

Because fV and fW are strictly increasing functions of their arguments and fV is

convex, following similar steps as in Part 1, it can be shown that the inequality of
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Figure 3.2: Iterative DMPC for nonlinear systems subject to asynchronous measure-
ments.

Eq. 3.25 still holds. This proves that the stability results stated in Theorem 3.1 hold.

3.3.3 Iterative DMPC formulation

In contrast to the one-directional communication of the sequential DMPC architec-

ture, the iterative DMPC architecture utilizes a bi-directional communication strategy

in which all the distributed controllers are able to share their future input trajecto-

ries information after each iteration. In the presence of asynchronous measurements,

the iterative DMPC in [63] cannot guarantee closed-loop stability. In this subsec-

tion, we modify the implementation strategy and the formulation of the distributed

controllers to take into account asynchronous measurements. The proposed imple-

mentation strategy is as follows:

1. When a new measurement is available at tk, all the LMPCs receive the state

measurement x(tk) from the sensors.

2. At iteration c (c ≥ 1):
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2.1. All the distributed LMPCs exchange their latest future input trajectories.

2.2. Each LMPC evaluates its own future input trajectory based on x(tk) and

the latest received input trajectories of all the other LMPCs.

3. If a termination condition is satisfied, each LMPC sends its entire future input

trajectory to its actuators; if the termination condition is not satisfied, go to

step 2 (c← c+ 1).

For the iterations in this DMPC design, there are different choices of the ter-

mination condition. For example, the number of iterations c may be restricted to

be smaller than a maximum iteration number cmax (i.e., c ≤ cmax) or the iterations

may be terminated when the difference of the performance or the solution between

two consecutive iterations is smaller than a threshold value or the iterations maybe

terminated when a maximum computational time is reached.

The proposed design of the LMPC j, j = 1, . . . ,m, at iteration c is based on the

following optimization problem:

min
up,j∈S(∆)

∫ N∆

0

[
x̃j(τ)TQcx̃

j(τ) +
∑m

i=1 up,i(τ)
TRciup,i(τ)

]
dτ (3.28a)

s.t. ˙̃xj(τ) = f(x̃j(τ)) +
∑m

i=1 gi(x̃
j(τ))up,i (3.28b)

up,i(τ) = u∗,c−1
p,i (τ |tk), ∀i ̸= j (3.28c)

∣∣up,j(τ)− u∗,c−1
p,j (τ |tk)

∣∣ ≤ ∆uj, ∀τ ∈ [0, NR∆] (3.28d)

up,j(τ) ∈ Uj (3.28e)

x̃j(0) = x(tk) (3.28f)
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∂V (x̃j)

∂x̃j

(
1

m
f(x̃j(τ)) + gj(x̃

j(τ))up,j(τ)

)
≤

∂V (x̂)

∂x̂

(
1

m
f(x̂(τ |tk)) + gj(x̂(τ |tk))un,j(τ |tk)

)
, ∀τ ∈ [0, NR∆] (3.28g)

where x̃j is the predicted trajectory of the nominal system with uj computed by

the LMPC of Eq. 3.28 and all the other inputs are the optimal input trajectories

at iteration c − 1 of the rest of the distributed controllers. The optimal solution

to this optimization problem is denoted u∗,c
p,j(τ |tk) which is defined for τ ∈ [0, N∆).

Accordingly, we define the final optimal input trajectory of LMPC j (that is, the

optimal trajectories computed at the last iteration) as u∗
p,j(τ |tk) which is also defined

for τ ∈ [0, N∆).

Note that for the first iteration of each distributed LMPC, the input trajectories

defined in Eq. 3.6 based on the trajectory generated in Eq. 3.5 are used as the initial

input trajectory guesses; that is, u∗,0
p,i = un,i with i = 1, . . . ,m.

The constraint of Eq. 3.28d puts a limit on the input change in two consecutive

iterations. This constraint allows LMPC j to take advantage of the input trajectories

received in the last iteration (i.e., u∗,c−1
p,i , ∀i ̸= j) to predict the future evolution of the

system state without introducing big errors. For LMPC j (i.e., uj), the magnitude

of input change in two consecutive iterations is restricted to be smaller than a posi-

tive constant ∆uj. The constraint of Eq. 3.28g is used to guarantee the closed-loop

stability.

The manipulated inputs of the closed-loop system under the above iterative DMPC

are defined as follows:

ui(t) = u∗
p,i(t− tk|tk), i = 1, . . . ,m, ∀t ∈ [tk, tk+1). (3.29)
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The iterative DMPC design of Eqs. 3.28-3.29 takes into account asynchronous

measurements explicitly in the controller design and the implementation strategy.

It maintains the closed-loop stability properties of the Lyapunov-based controller

h(x) implemented in a sample-and-hold fashion and with open-loop state estimation.

This property is presented in Theorem 3.2. To state this theorem, we need another

proposition.

Proposition 3.4 Consider the systems

ẋa(t) = f(xa(t)) +
m∑
i=1

gi(xa(t))u
c
i(t)

ẋb(t) = f(xb(t)) +

m, i̸=j∑
i=1

gi(xb(t))u
c−1
i (t) + gj(xb(t))u

c
j(t)

with initial states xa(t0) = xb(t0) ∈ Ωρ. There exists a class K function fX,j(·) such

that

|xa(t)− xb(t)| ≤ fX,j(t− t0) (3.30)

for all xa(t), xb(t) ∈ Ωρ, and uc
i(t), uc−1

i ∈ Ui and |uc
i(t) − uc−1

i (t)| ≤ ∆ui with

i = 1, . . . ,m.

Proof 3.2 Define the error vector as e(t) = xa(t)− xb(t). The time derivative of the

error is given by

ė(t) = f(xa(t))− f(xb(t)) +

m, i ̸=j∑
i=1

gi(xa(t))u
c
i(t)−

m, i ̸=j∑
i=1

gi(xb(t))u
c−1
i (t).

Adding and subtracting
∑m, i ̸=j

i=1 gi(xb(t))u
c
i(t) to/from the right-hand-side of the
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above equation, we obtain the following equation:

ė(t) = f(xa(t))− f(xb(t)) +

m, i ̸=j∑
i=1

(gi(xa(t))u
c
i(t)− gi(xb(t))u

c
i(t))

+

m, i ̸=j∑
i=1

(gi(xb(t))u
c
i(t)− gi(xb(t))u

c−1
i (t)).

By local Lipschitz properties assumed for the vector fields gi(·), i = 1, . . . ,m, there

exist positive constants Mg,i, i = 1, . . . ,m such that |gi(x)| ≤ Mg,i, i = 1, . . . ,m.

Moreover, by continuity and the local Lipschitz properties assumed for the vector

field f(·), the fact that the manipulated inputs are bounded in convex sets and the

difference between uc
i(t) and uc−1

i (t) is bounded, there exist positive constants Cx and

Cg,i (i = 1, . . . ,m) that satisfy the following inequality:

|ė(t)| ≤ Cx |xa(t)− xb(t)|+
m, i̸=j∑
i=1

Cg,i |xa(t)− xb(t)| |uc
i(t)|

+

m, i̸=j∑
i=1

|gi(xb(t))|
∣∣uc

i(t)− uc−1
i (t)

∣∣
≤ Cx|e(t)|+

m, i̸=j∑
i=1

Cg,iu
max
i |e(t)|+

m, i ̸=j∑
i=1

Mg,i∆ui.

Denoting C1,j = Cx +
∑m, i ̸=j

i=1 Cg,iu
max
i and C2,j =

∑m, i̸=j
i=1 Mg,i∆ui, we can obtain

|ė(t)| ≤ C1,j|e(t)|+ C2,j.

Integrating |ė(t)| with initial condition e(t0) = 0 (recall that xa(t0) = xb(t0)), the

following bound on the norm of the error vector is obtained:

|e(t)| ≤ C2,j

C1,j

(eC1,j(t−t0) − 1).

70



This implies that Eq. 3.30 holds for

fX,j(τ) =
C2,j

C1,j

(eC1,jτ − 1).

Proposition 3.4 bounds the difference between the nominal state trajectory under

the optimized control inputs and the predicted nominal state trajectory generated in

each LMPC optimization problem. To simplify the proof of Theorem 3.2, we define

a new function fX(τ) based on fX,i, i = 1, . . . ,m, as follows:

fX(τ) =
m∑
i=1

(
1

m
Lx + Lui

umax
i

)(
1

C1,i

fX,i(τ)−
C2,i

C1,i

τ

)
.

It is easy to verify that fX(τ) is a strictly increasing and convex function of its

argument.

In Theorem 3.2 below, we provide sufficient conditions under which the iterative

DMPC guarantees that the state of the closed-loop system is ultimately bounded in

a region that contains the origin.

Theorem 3.2 Consider the system of Eq. 3.1 in closed-loop with the DMPC design

of Eqs. 3.28-3.29 based on the controller h(x) that satisfies the conditions of Eq. 3.2

with class K functions αi(·), i = 1, 2, 3, 4. Let ∆, ϵs > 0, ρ > ρmin > 0, ρ > ρs > 0 and

N ≥ NR ≥ 1 satisfy the conditions of Eqs. 3.9 and 3.10 and the following inequality:

−NRϵs + fX(NR∆) + fV (fW (NR∆)) < 0 (3.31)

with NR being the smallest integer satisfying NR∆ ≥ Tm. If the initial state of the

71



closed-loop system x(t0) ∈ Ωρ, then x(t) is ultimately bounded in Ωρb ⊆ Ωρ where

ρb = ρmin + fX(NR∆) + fV (fW (NR∆)).

Proof 3.3 We follow a similar strategy to the one in the proof of Theorem 3.1. In

order to simplify the notation, we assume that all the signals used in this proof refer

to the different optimization variables of the problems solved at tk with the initial

condition x(tk). This proof also includes two parts.

Part I: In this part, we prove that the stability results stated in Theorem 3.2 hold

in the case that tk+1 − tk = Tm for all k and Tm = NR∆. The derivative of the

Lyapunov function of the nominal system of Eq. 3.1 under the control of the iterative

DMPC of Eqs. 3.28-3.29 from tk to tk+1 is expressed as follows:

V̇ (x̃(τ)) =
∂V

∂x

(
f(x̃(τ)) +

m∑
i=1

gi(x̃(τ))u
∗
p,i(τ |tk)

)
, ∀τ ∈ [0, NR∆].

Adding the above inequality and the constraints of Eq. 3.28g in each LMPC together,

we can obtain the following inequality:

V̇ (x̃(τ)) ≤ ∂V

∂x

(
f(x̃(τ)) +

m∑
i=1

gi(x̃(τ))u
∗
p,i(τ |tk)

)

+
∂V

∂x

(
f(x̂(τ |tk)) +

m∑
i=1

gi(x̂(τ |tk))un,i(τ |tk)

)
−∂V

∂x

(
1

m
f(x̃1(τ)) + g1(x̃

1(τ))u∗
p,1(τ |tk)

)
− . . .

−∂V

∂x

(
1

m
f(x̃m(τ)) + gm(x̃

m(τ))u∗
p,m(τ |tk)

)
, ∀τ ∈ [0, NR∆].

(3.32)

Reworking the above inequality, the following inequality can be obtained for τ ∈
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[0, NR∆]:

V̇ (x̃(τ)) ≤ ∂V

∂x

(
f(x̂(τ |tk)) +

m∑
i=1

gi(x̂(τ |tk))un,i(τ |tk)

)
+
∂V

∂x

(
1

m
f(x̃(τ)) + g1(x̃)u

∗
p,1(τ |tk)

)
−∂V

∂x

(
1

m
f(x̃1(τ)) + g1(x̃

1(τ))u∗
p,1(τ |tk)

)
+ . . .

+
∂V

∂x

(
1

m
f(x̃(τ)) + gm(x̃)u

∗
p,m(τ |tk)

)
−∂V

∂x

(
1

m
f(x̃m(τ)) + gm(x̃

m(τ))u∗
p,m(τ |tk)

)
.

(3.33)

By the continuity and locally Lipschitz properties assumed for the vector fields f(·),

gi(·), i = 1, . . . ,m, and the constants defined in Eq. 3.3, the following inequality can

be obtained for τ ∈ [0, NR∆]:

V̇ (x̃(τ)) ≤ V̇ (x̂(τ |tk)) +
(

1

m
Lx + Lu1u

∗
p,1(τ |tk)

)
|x̃(τ)− x̃1(τ)|+ . . .

+

(
1

m
Lx + Lumu

∗
p,m(τ |tk)

)
|x̃(τ)− x̃m(τ)|.

(3.34)

Applying Proposition 3.4 to the above inequality of Eq. 3.34, we obtain the following

inequality for τ ∈ [0, NR∆]:

V̇ (x̃(τ)) ≤ V̇ (x̂(τ |tk))+
(

1

m
Lx + Lu1u

max
1

)
fX,1(τ)+. . .+

(
1

m
Lx + Lumu

max
m

)
fX,m(τ).

(3.35)

Integrating the inequality of Eq. 3.35 from τ = 0 to τ = NR∆ and taking into account
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that x̃(tk) = x̂(tk), and tk+1 − tk = NR∆, the following inequality can be obtained:

V (x̃(tk+1)) ≤ V (x̂(tk+1))

+

(
1

m
Lx + Lu1u

max
1

)(
1

C1,1

fX,1(NR∆)− C2,1

C1,1

NR∆

)
+ . . .

+

(
1

m
Lx + Lumu

max
m

)(
1

C1,m

fX,m(NR∆)− C2,m

C1,m

NR∆

)
.

(3.36)

From the definition of fX(·), we have

V (x̃(tk+1)) ≤ V (x̂(tk+1)) + fX(NR∆). (3.37)

By Propositions 3.1 and 3.3 and following similar calculations to the ones in the proof

of Theorem 3.1, we obtain the following inequality

V (x(tk+1)) ≤ max{V (x(tk))−NRϵs, ρmin}+ fX(NR∆) + fV (fW (NR∆)). (3.38)

If the condition of Eq. 3.31 is satisfied, we know that there exists ϵw > 0 such that

the following inequality holds

V (x(tk+1)) ≤ max{V (x(tk))− ϵw, ρb} (3.39)

which implies that if x(tk) ∈ Ωρ/Ωρb , then V (x(tk+1)) < V (x(tk)), and if x(tk) ∈ Ωρb ,

then V (x(tk+1)) ≤ ρb.

Because the upper bound on the difference between the Lyapunov function of the

actual trajectory x and the nominal trajectory x̃ is a strictly increasing function of

time, the inequality of Eq. 3.39 also implies that

V (x(t)) ≤ max{V (x(tk))− ϵw, ρb}, ∀t ∈ [tk, tk+1]. (3.40)
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Using the inequality of Eq. 3.40 recursively, it can be proved that if x(t0) ∈ Ωρ,

then the closed-loop trajectories of the system of Eq. 3.1 under the proposed iterative

DMPC design stay in Ωρ for all times (i.e., x(t) ∈ Ωρ for all t). Moreover, if x(t0) ∈ Ωρ,

the closed-loop trajectories of the system of Eq. 3.1 under the proposed iterative

DMPC design satisfy

lim sup
t→∞

V (x(t)) ≤ ρb.

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρb for the

case when tk+1 − tk = Tm for all k and Tm = NR∆.

Part 2: In this part, we extend the results proved in Part 1 to the general case,

that is, tk+1 − tk ≤ Tm for all k and Tm ≤ NR∆ which implies that tk+1 − tk ≤ NR∆.

Because fV , fW and fX are strictly increasing functions of their arguments and fX ,

fV are convex, following similar steps as in Part 1, it can be shown that the inequality

of Eq. 3.38 still holds. This proves that the stability results stated in Theorem 3.2

hold.

Remark 3.1 Referring to the design of the LMPC of Eq. 3.28, the constraint of

Eq. 3.28d ensures that the deviation of the predicted future state evolution (using

input trajectories obtained in the last iteration) from the actual system state evolution

is bounded. It also ensures that the results stated in Theorem 3.2 do not depend on

the iteration number c which means the iteration of the DMPC can be terminated

at any iteration and the stability properties stated in Theorem 3.2 continue to hold.

The constraint of Eq. 3.28d can be also imposed as the termination condition of the

iterative DMPC; that is, the DMPC stops iterating when |up,i(τ)−u∗,c−1
p,i (τ |tk)| ≤ ∆ui,

i = 1, . . . ,m, for all τ ∈ [0, NR∆]. In this case, however, the stability properties stated

in Theorem 3.2 have dependence on the iteration number c in a way that they hold

only after the termination condition of Eq. 3.28d is satisfied.
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3.4 DMPC with delayed measurements

In this section, we consider the design of DMPC for systems subject to delayed

measurements. In our previous work [66], we pointed out that in order to obtain a

good estimate of the current system state from a delayed state measurement, a DMPC

design should have bi-directional communication among the distributed controllers.

Consequently, we focus on the design of DMPC for nonlinear systems subject to

delayed measurements in an iterative DMPC framework.

3.4.1 Modeling of delayed measurements

We assume that the state of the system of Eq. 3.1 is received by the controllers at

asynchronous time instants tk where {tk≥0} is a random increasing sequence of times

and that there exists an upper bound Tm on the interval between two successive

measurements. We also assume that there are delays in the measurements received

by the controllers due to delays in the sampling process and data transmission. In

order to model delays in measurements, another auxiliary variable dk is introduced

to indicate the delay corresponding to the measurement received at time tk, that is,

at time tk, the measurement x(tk − dk) is received. In general, if the sequence {dk≥0}

is modeled using a random process, there exists the possibility of arbitrarily large

delays. In this case, it is improper to use all the delayed measurements to estimate

the current state and decide the control inputs, because when the delays are too

large, they may introduce enough errors to destroy the stability of the closed-loop

system. In order to study the stability properties in a deterministic framework, we

assume that the delays associated with the measurements are smaller than an upper

bound D, which is, in general, relevant to measurement sensors and data transmission

networks. This model is of relevance to systems subject to delayed measurements and
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x(tk+j+1 − dk+j+1)

D − dk Tm

Figure 3.3: A possible sequence of delayed measurements.

to networked control systems, where the delay is introduced by the communication

network connecting the sensors and the controllers.

Note that because the delays are time-varying, it is possible that at a time instant

tk, the controllers may receive a measurement x(tk − dk) which does not provide new

information (i.e., tk − dk < tk−1 − dk−1); that is, the controller has already received

a measurement of the state after time tk − dk. We assume that each measurement is

time-labeled and hence the controllers are able to discard a newly received measure-

ment if tk − dk < tk−1− dk−1. Figure 3.3 shows part of a possible sequence of {tk≥0}.

At time tk, the state measurement x(tk − dk) is received. There exists a possibility

that between tk and tk+j, with tk+j − tk = D − dk and j being an unknown integer,

all the measurements received do not provide new information. Note that any mea-

surements received after tk+j provide new information because the maximum delay

is D and the latest received measurement is x(tk − dk). The maximum possible time

interval between tk+j and tk+j+1 is Tm. Therefore, the maximum amount of time the

system might operate in open-loop following tk is D + Tm − dk. This upper bound

will be used in the formulation of the iterative DMPC design for systems subject to

delayed measurements below.

3.4.2 Iterative DMPC formulation

As in the DMPC designs for systems subject to asynchronous measurements, we

propose to take advantage of the system model both to estimate the current system
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Figure 3.4: Iterative DMPC for nonlinear systems subject to delayed measurements.

state from a delayed measurement and to control the system in open-loop when new

information is not available. To this end, when a delayed measurement is received, the

distributed controllers use the system model and the input trajectories that have been

applied to the system to get an estimate of the current state and then based on the

estimate, MPC optimization problems are solved to compute the optimal future input

trajectory that will be applied until new measurements are received. A schematic of

the proposed iterative DMPC for systems subject to delayed measurements is shown

in Fig. 3.4. The proposed implementation strategy for the proposed iterative DMPC

design is as follows

1. When a measurement x(tk−dk) is available at tk, all the distributed controllers

receive the state measurement and check whether the measurement provides

new information. If tk−dk > maxl<k tl−dl, go to step 2. Else the measurement

does not contain new information and is discarded, go to step 3.

2. All the distributed controllers exchange their last implemented input trajecto-

ries and estimate the current state of the system xe(tk).
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3. At iteration c (c ≥ 1):

3.1. All the distributed controllers exchange their latest future input trajecto-

ries.

3.2. Each controller evaluates its own future input trajectory based on xe(tk)

and the latest received input trajectories of all the other distributed con-

trollers.

4. If a termination condition is satisfied, each distributed controller sends its entire

future input trajectory to its actuators; if the termination condition is not

satisfied, go to step 3 (c← c+ 1).

In order to estimate the current system state xe(tk) based on a delayed measure-

ment x(tk − dk), the distributed controllers take advantage of the input trajectories

that have been applied to the system from tk − dk to tk and the system model of

Eq. 3.1. Let us denote the input trajectories that have been applied to the system

as u∗
d,i(t), i = 1, . . . ,m. Therefore, xe(tk) is evaluated by integrating the following

equation:

ẋe(t) = f(xe(t)) +
m∑
i=1

gi(x
e(t))u∗

d,i(t), ∀t ∈ [tk − dk, tk) (3.41)

with xe(tk − dk) = x(tk − dk).

Before going to the design of the iterative DMPC, we need to define another

nominal sampled trajectory x̌(τ |tk) for τ ∈ [0, N∆], which is obtained by replacing

x̂(τ |tk) with x̌(τ |tk) in Eq. 3.5 and then integrating the equation with x̌(tk) = xe(tk).

Based on x̌(τ |tk), we define a new input trajectory as follows:

ue
n,j(τ |tk) = hj(x̌(l∆|tk)), j = 1, . . . ,m, ∀τ ∈ [l∆, (l + 1)∆), l = 0, . . . , N − 1
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which will be used in the design of the LMPC to construct the stability constraint

and used as the initial input guess for iteration 1 (i.e., u∗,0
d,i = ue

n,i for i = 1, . . . ,m).

Specifically, the design of LMPC j, j = 1, . . . ,m, at iteration c is based on the

following optimization problem:

min
ud,j∈S(∆)

∫ N∆

0

[
x̃j(τ)TQcx̃

j(τ) +
∑m

i=1 ud,i(τ)
TRciud,i(τ)

]
dτ (3.42a)

s.t. ˙̃xj(τ) = f(x̃j(τ)) +
∑m

i=1 gi(x̃
j(τ))ud,i(τ) (3.42b)

ud,i(τ) = u∗,c−1
d,i (τ |tk), ∀i ̸= j (3.42c)

∣∣ud,j(τ)− u∗,c−1
d,j (τ |tk)

∣∣ ≤ ∆uj, ∀τ ∈ [0, NDk∆] (3.42d)

ud,j(τ) ∈ Uj (3.42e)

x̃j(0) = xe(tk) (3.42f)

∂V (x̃j)

∂x̃j

(
1

m
f(x̃j(τ)) + gj(x̃

j(τ))ud,j(τ)

)
≤

∂V (x̌)

∂x̌

(
1

m
f(x̌(τ |tk)) + gj(x̌(τ |tk))ue

n,j(τ |tk)
)
, ∀τ ∈ [0, NDk∆] (3.42g)

where NDk is the minimum integer satisfying NDk∆ ≥ Tm + D − dk. The optimal

solution to the optimization problem of Eq. 3.42 is denoted u∗,c
d,j(τ |tk) which is defined

for τ ∈ [0, N∆). Accordingly, we define the final optimal input trajectory of LMPC j

as u∗
d,j(τ |tk) which is also defined for τ ∈ [0, N∆). Note that the length of the

constraint NDk depends on the current delay dk, so it may have different values

at different time instants and has to be updated before solving the optimization

problems.
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The manipulated inputs of the closed-loop system under the above iterative DMPC

for systems subject to delayed measurements are defined as follows:

ui(t) = u∗
d,i(t− tk|tk), i = 1, . . . ,m, ∀t ∈ [tk, tk+q) (3.43)

for all tk such that tk − dk > maxl<k tl − dl and for a given tk, the variable q denotes

the smallest integer that satisfies tk+q − dk+q > tk − dk. The stability properties of

the iterative DMPC of Eqs. 3.42-3.43 are stated in the following theorem.

Theorem 3.3 Consider the system of Eq. 3.1 in closed-loop with the DMPC design

of Eqs. 3.42-3.43 based on the controller h(x) that satisfies the conditions of Eq. 3.2

with class K functions αi(·), i = 1, 2, 3, 4. Let ∆, ϵs > 0, ρ > ρmin > 0, ρ > ρs > 0,

N ≥ 1 and D ≤ 0 satisfy the conditions of Eqs. 3.9 and 3.10 and the following

inequality:

−NRϵs + fX(ND∆) + fV (fW (ND∆)) + fV (fW (D)) < 0 (3.44)

with ND being the smallest integer satisfying ND∆ ≥ Tm + D and NR being the

smallest integer satisfying NR∆ ≥ Tm. If the initial state of the closed-loop system

x(t0) ∈ Ωρ, N ≥ ND and d0 = 0, then x(t) is ultimately bounded in Ωρd ⊆ Ωρ where

ρd = ρmin + fX(ND∆) + fV (fW (ND∆)) + fV (fW (D)).

Proof 3.4 We assume that at tk, a delayed measurement x(tk − dk) containing new

information is received, and that the next measurement with new state information

is not received until tk+i. This implies that tk+i−dk+i > tk−dk and that the iterative

DMPC of Eqs. 3.42-3.43 is solved at tk and the optimal input trajectories u∗
d,i(τ |tk),
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i = 1, . . . ,m, are applied from tk to tk+i. In this proof, we will refer to x̃(t) for

t ∈ [tk, tk+i] as the state trajectory of the nominal system of Eq. 3.1 under the control

of the iterative DMPC of Eqs. 3.42-3.43 with x̃(tk) = xe(tk).

Part I: In this part, we prove that the stability results stated in Theorem 3.3 hold

for tk+i − tk = NDk∆ and all dk ≤ D. By Proposition 3.1 and taking into account

that x̌(tk) = xe(tk), the following inequality can be obtained:

V (x̌(tk+i)) ≤ max{V (xe(tk))−NDkϵs, ρmin}. (3.45)

By Proposition 3.2 and taking into account that xe(tk−dk) = x(tk−dk), x̃(tk) = xe(tk)

and ND∆ ≥ NDk∆+ dk, the following inequalities can be obtained:

|xe(tk)− x(tk)| ≤ fW (dk)

|x̃(tk+i)− x(tk+i)| ≤ fW (ND∆).
(3.46)

When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply Propo-

sition 3.3 to obtain the following inequalities:

V (xe(tk)) ≤ V (x(tk)) + fV (fW (dk))

V (x(tk+i)) ≤ V (x̃(tk+i)) + fV (fW (ND∆)).
(3.47)

From Eqs. 3.45 and 3.47, the following inequality is obtained:

V (x̌(tk+i)) ≤ max{V (x(tk))−NDkϵs, ρmin}+ fV (fW (dk)). (3.48)

By Proposition 3.4 and following similar steps as in the proof of Theorem 3.2, the
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following inequality can be obtained:

V (x̃(tk+i)) ≤ V (x̌(tk+i)) + fX(NDk∆). (3.49)

From Eqs. 3.47, 3.48 and 3.49, the following inequality is obtained:

V (x(tk+i)) ≤ max{V (x(tk))−NDkϵs, ρmin}+fV (fW (dk))+fV (fW (ND∆))+fX(NDk∆).

(3.50)

In order to prove that the Lyapunov function is decreasing between two consecutive

new measurements, the following inequality must hold

NDkϵs > fV (fW (dk)) + fV (fW (ND∆)) + fX(NDk∆) (3.51)

for all possible 0 ≤ dk ≤ D. Taking into account that fW , fV and fX are strictly

increasing functions of their arguments, NDk is a decreasing function of the delay dk

and that if dk = D then NDk
= NR, then if the condition of Eq. 3.44 is satisfied, the

condition of Eq. 3.51 holds for all possible dk and there exists ϵw > 0 such that the

following inequality holds

V (x(tk+i)) ≤ max{V (x(tk))− ϵw, ρd} (3.52)

which implies that if x(tk) ∈ Ωρ/Ωρd , then V (x(tk+i)) < V (x(tk)), and if x(tk) ∈ Ωρd ,

then V (x(tk+i)) ≤ ρd.

Because the upper bound on the difference between the Lyapunov function of the

actual trajectory x and the nominal trajectory x̃ is a strictly increasing function of
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time, the inequality of Eq. 3.52 also implies that

V (x(t)) ≤ max{V (x(tk)), ρd}, ∀t ∈ [tk, tk+i]. (3.53)

Using the inequality of Eq. 3.53 recursively, it can be proved that if x(t0) ∈ Ωρ,

then the closed-loop trajectories of the system of Eq. 3.1 under the proposed iterative

DMPC stay in Ωρ for all times (i.e., x(t) ∈ Ωρ, ∀t). Moreover, using the inequality of

Eq. 3.53 recursively, it can be proved that if x(t0) ∈ Ωρ, the closed-loop trajectories

of the system of Eq. 3.1 under the proposed iterative DMPC satisfy

lim sup
t→∞

V (x(t)) ≤ ρd.

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρd when

tk+i − tk = NDk∆.

Part 2: In this part, we extend the results proved in Part 1 to the general case,

that is, tk+i − tk ≤ NDk∆. Taking into account that fV , fW and fX are strictly

increasing functions of their arguments and following similar steps as in Part 1, it can

be readily proved that the inequality of Eq. 3.51 holds for all possible dk ≤ D and

tk+i − tk ≤ NDk∆. Using this inequality and following the same line of argument as

in the previous part, the stability results stated in Theorem 3.3 can be proved.
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Figure 3.5: Process flow diagram of alkylation of benzene.
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3.5 Application to an alkylation of benzene pro-

cess

3.5.1 Process and control problem description

Consider the alkylation of benzene process of Eqs. 2.23 described in Section 2.4. The

control objective is to drive the system from the initial condition as shown in Table 2.6

to the desired steady-state as shown in Table 2.4. The manipulated inputs are the

heat injected to or removed from the five vessels, Q1, Q2, Q3, Q4 and Q5, and the

feed stream flow rates to CSTR-2 and CSTR-3, F4 and F6, whose steady-state input

values are shown in Table 2.3. We design three distributed LMPCs to manipulate

the 7 inputs. Similarly, the first distributed controller (LMPC 1) will be designed to

decide the values of Q1, Q2 and Q3, the second distributed controller (LMPC 2) will

be designed to decide the values of Q4 and Q5, and the third distributed controller

(LMPC 3) will be designed to decide the values of F4 and F6. The deviations of these

inputs from their corresponding steady-state values are subject to the constraints

shown in Table 2.5. We use the same design of h(x) as in Section 2.4 with a quadratic

Lyapunov function V (x) = xTPx with P being the following weight matrix:

P = diag ([1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]) . (3.54)

Based on h(x), we design the sequential DMPC of Eqs. 3.7 and the iterative DMPC

of Eqs. 3.28 with the following weighting matrices:

Qc = diag
([
1 1 1 1 103 1 1 1 1 103 10 10 10 10 3000 1 1 1 1 103 1 1 1 1 103

])
(3.55)
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and Rc1 = diag ([1× 10−8 1× 10−8 1× 10−8]), Rc2 = diag ([1× 10−8 1× 10−8]) and

Rc3 = diag ([10 10]). The sampling time of the LMPCs is chosen to be ∆ = 30 sec.

For the iterative DMPC of Eqs. 3.28, ∆ui is chosen to be 0.25umax
i for all the dis-

tributed LMPCs and maximum iteration numbers (i.e., c ≤ cmax) are applied as the

termination conditions. In all the simulations, bounded process noise is added to the

right hand side of the ordinary differential equations of the process model to simulate

disturbances/model uncertainty.

3.5.2 Asynchronous measurements without delay

In this subsection, we consider that the state of the process of Eq. 2.23 is sampled

asynchronously and that the maximum interval between two consecutive measure-

ments is Tm = 75 sec. The asynchronous nature of the measurements is introduced

by the measurement difficulties of the full state given the presence of several species

concentration measurements. We will compare the proposed sequential and iterative

DMPC for systems subject to asynchronous measurements with a centralized LMPC

which takes into account asynchronous measurements explicitly [80]. The centralized

LMPC uses the same weighting matrices, sampling time and prediction horizon as

used in the DMPCs. To model the time sequence {tk≥0}, we apply an upper bounded

random Poisson process. The Poisson process is defined by the number of events per

unit time W . The interval between two successive state sampling times is given by

∆a = min{−lnχ/W, Tm}, where χ is a random variable with uniform probability

distribution between 0 and 1. This generation ensures that max
k
{tk+1 − tk} ≤ Tm.

In the simulations, W is chosen to be 30 and the time sequence generated by this

bounded Poisson process is shown in Fig. 3.6. For this set of simulations, we choose

the prediction horizon of all the LMPCs to be N = 3 and choose NR = N so that
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Figure 3.6: Asynchronous measurement sampling times {tk≥0} with Tm = 75 sec: the
x−axis indicates {tk≥0} and the y−axis indicates the size of the interval between tk
and tk−1.

NR∆ ≥ Tm.

We first compare the proposed DMPC designs for systems subject to asynchronous

measurements with the centralized LMPC from a stability point of view. Figure 3.7

shows the trajectory of the Lyapunov function V (x) under these control designs. From

Fig. 3.7, we see that the proposed DMPC designs as well as the centralized LMPC

design are able to drive the system state to a region very close to the desired steady

state. From Fig. 3.7, we can also see that the sequential DMPC, the centralized LMPC

and the iterative DMPC with cmax = 5 give very similar trajectories of V (x). Another

important aspect we can see from Fig. 3.7(b) is that at the early stage of the closed-

loop system simulation, because of the strong driving force related to the difference

between the set-point and the initial condition, the process noise/disturbance has

small influence on the process dynamics, even though the controller(s) has/have to

operate in the presence of asynchronous measurements. When the states are getting

close to the set-point, the Lyapunov function starts to fluctuate due to the domination

of noise/disturbance over the vanishing driving force. However, the proposed DMPC

designs are able to maintain practical stability of the closed-loop system and keep the

trajectory of the Lyapunov function in a bounded region (V (x) ≤ 250) very close to

the steady state.

Next, we compare the evaluation times of the LMPCs in these control designs.
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Figure 3.7: Trajectories of the Lyapunov function under the Lyapunov-based con-
troller h(x) implemented in a sample-and-hold fashion and with open-loop state esti-
mation, the iterative DMPC of Eqs. 3.28 with cmax = 1 and cmax = 5, the sequential
DMPC of Eqs. 3.7 and the centralized LMPC in [80]: (a) V (x); (b) Log(V (x)).
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The simulations are carried out by Java programming language in a Pentium 3.20

GHz computer. The optimization problems are solved by the open source interior

point optimizer Ipopt [101]. We evaluate the LMPC optimization problems for 100

runs. The mean evaluation time of the centralized LMPC, which optimizes all the

inputs in one optimization problem, is about 23.7 sec. The mean evaluation time for

the sequential DMPC architecture, which is the sum of the evaluation times (1.9 sec,

3.6 sec and 3.2 sec) of the three LMPCs, is about 8.7 sec. The mean evaluation

time of the iterative DMPC architecture with one iteration is 6.3 sec which is the

largest evaluation time among the evaluation times (1.6 sec, 6.3 sec and 4.3 sec) of

the three LMPCs. The mean evaluation time of the iterative DMPC architecture

with four iterations is 18.7 sec with the evaluation times of the three LMPCs being

6.9 sec, 18.7 sec and 14.0 sec. From this set of simulations, we can see that the

proposed DMPC designs lead to a significant reduction in the controller evaluation

time compared with a centralized LMPC design though they provide a very similar

performance.

3.5.3 Asynchronous measurements subject to delays

In this subsection, we consider that the state of the process of Eq. 2.23 is sampled at

asynchronous time instants {tk≥0} with an upper bound Tm = 50 sec on the interval

between two successive measurements. Moreover, we consider that there are delays

involved in the measurement samplings and the upper bound on the maximum delay

is D = 40 sec. The delays in measurements can naturally arise in the context of

species concentration measurements. We will compare the proposed iterative DMPC

design of Eqs. 3.42-3.43 with a centralized LMPC which takes into account delayed

measurements explicitly [67]. The centralized LMPC uses the same weighting matri-
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Figure 3.8: Asynchronous time sequence {tk≥0} and corresponding delay sequence
{dk≥0} with Tm = 50 sec and D = 40 sec: the x−axis indicates {tk≥0} and the
y−axis indicates the size of dk.

ces, sampling time and prediction horizon as used in the DMPCs. In order to model

the sampling time instants, the same Poisson process is used to generate {tk≥0} with

W = 30 and Tm = 50 sec and another random process is used to generate the as-

sociated delay sequence {dk≥0} with D = 40 sec. For this set of simulations, we

also choose the prediction horizon of all the LMPCs to be N = 3 so that the horizon

covers the maximum possible open-loop operation interval. Figure 3.8 shows the time

instants when new state measurements are received and the associated delay sizes.

Note that for all the control designs considered in this subsection, the same state

estimation strategy shown in Eq. 3.41 is used.

Figure 3.9 shows the trajectory of the Lyapunov function V (x) under different

control designs. From Fig. 3.9, we see that both the proposed iterative DMPC for

systems subject to delayed measurements and the centralized LMPC design in [67]

are able to drive the system state to a region very close to the desired steady state

(V (x) ≤ 250); the trajectories of V (x) generated by the iterative DMPC design are

bounded by the corresponding trajectory of V (x) under the Lyapunov-based controller

h(x) implemented in a sample-and-hold fashion and with open-loop state estimation.

From Fig. 3.9, we can also see that the centralized LMPC and the iterative DMPC

with cmax = 5 give very similar trajectories of V (x).

In the final set of simulations, we compare the centralized LMPC and the two
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Figure 3.9: Trajectories of the Lyapunov function under the Lyapunov-based con-
troller h(x) implemented in a sample-and-hold fashion and with open-loop state es-
timation, the iterative DMPC of Eqs. 3.42-3.43 with cmax = 1 and cmax = 5 and the
centralized LMPC in [67]: (a) V (x); (b) Log(V (x)).
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Figure 3.10: Total performance cost along the closed-loop system trajectories of cen-
tralized LMPC in [67] (dashed line) and iterative DMPC of Eqs. 3.42-3.43 (solid
line).

distributed LMPC schemes from a performance index point of view. To carry out

this comparison, the same initial condition and parameters were used for the different

control schemes and the total cost under each control scheme was computed as follows:

J =

∫ tf

0

(x(t)TQcx(t) + u1(t)
TRc1u1(t) + u2(t)

TRc2u2(t) + u3(t)
TRc3u3(t))dt

where tf = 1500 sec is the final simulation time. Figure 3.10 shows the total cost

along the closed-loop system trajectories under the iterative DMPC of Eqs. 3.42-3.43

and the centralized LMPC in [67]. For the iterative DMPC design, different maxi-

mum numbers of iterations, cmax, are used. From Fig. 3.10, we can see that as the

iteration number c increases, the performance cost given by the iterative DMPC de-

sign decreases and converges to a value which is very close to the cost of the one

corresponding to the centralized LMPC. However, we note that there is no guaran-

teed convergence of the performance of iterative DMPC design to the performance

of a centralized MPC because of the non-convexity of the LMPC optimization prob-

lems, and the different stability constraints imposed in the centralized LMPC and the

iterative DMPC design.
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3.6 Conclusions

In this chapter, we designed sequential and iterative DMPC schemes for large scale

nonlinear systems subject to asynchronous and delayed state feedback. First, we fo-

cused on nonlinear systems subject to asynchronous measurements without delays. In

this case, we first extended our previous sequential DMPC design (Chapter 2) to in-

clude asynchronous measurements and then re-designed the iterative DMPC scheme

proposed in Chapter 2 to take explicitly into account asynchronous feedback. Follow-

ing that, we focused on the design of an iterative DMPC scheme for nonlinear systems

subject to delayed measurements. This design taked advantage of the bi-directional

communication network already used in the iterative DMPC framework. Mathemati-

cal analysis were carried out to derive sufficient conditions under which the proposed

distributed control designs guarantee that the states of the closed-loop system are

ultimately bounded in regions that contain the origin. Through a catalytic alkylation

of benzene process example, we successfully compared the proposed DMPC designs

with two centralized LMPC designs from stability, evaluation time and performance

points of view.
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Chapter 4

Distributed Economic MPC:

Application to a Nonlinear

Chemical Process Network

4.1 Introduction

The traditional, and currently dominant, approach to the achievement of economic

optimization considerations of a plant relies on the use of a two-layer approach in

which the upper layer is used to compute optimal process operation points taking

into account economic considerations and using steady-state process models, and the

lower-layer (i.e., process control layer) employs automatic feedback control systems

to force the process to operate at the economically optimal steady-state computed

by the upper layer. In the process control layer, classical control schemes wherever

appropriate, as well as model predictive control (MPC) due to its ability to deal with

multivariable constrained control problems and to account for optimization consid-
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erations [36, 76], are widely used in industry. In the context of MPC, the standard

approach is to use a quadratic cost function that involves penalties on the devia-

tions of the state variables and of the control actions from their economically-optimal

steady-state values over a finite prediction horizon. This consideration, together with

appropriate stability constraints, allows standard MPC schemes to drive the state of

the closed-loop system to the economically optimal steady-state for a suitable set of

initial conditions. While this approach to enforcing economic considerations in the

context of standard MPC formulations is widely used, there is room to improve upon

the incorporation of economic considerations in the control layer and the computation

of the control action.

To this end, there have been several authors within process control advocat-

ing the tighter integration of MPC and economic optimization of processes (e.g.,

[74, 2, 87, 47]). In [44], two economic MPC schemes were proposed for cyclic pro-

cesses and nominal stability of the closed-loop system was established via Lyapunov

techniques. MPC designs using an economics-based cost function were proposed in

[26] and the closed-loop stability properties were established via a suitable Lyapunov

function through adoption of a terminal constraint which requires that the closed-loop

system state is driven to a steady-state at the end of the prediction horizon. Even

though a rigorous stability analysis is included in [26], it is difficult, in general, to

characterize, a priori, the set of initial conditions starting from where feasibility and

closed-loop stability of the proposed MPC scheme are guaranteed. In contrast, in

[40], a Lyapunov-based centralized economic MPC (LEMPC) scheme which has two

different operation modes was proposed. The first operation mode corresponds to

the period in which the cost function should be optimized while the second operation

mode corresponds to operation in which the system is driven by the economic MPC

to an appropriate ideally economically optimal steady-state. The design proposed in
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[40] took advantage of the pre-defined Lyapunov-based controller to achieve feasibility

and characterize the closed-loop stability region.

All of the above economic MPC designs are centralized in nature, that is the

optimal manipulated input trajectories are computed from the solution of a single

optimization problem. This approach is clearly effective in a number of applications

but it may be limited in the context of large-scale nonlinear process networks that in-

volve a large number of manipulated inputs. Distributed MPC (DMPC) has emerged

as a feasible alternative to reduce the computational complexity of centralized MPC

by solving multiple, reduced-order optimization problems in a parallel, iterative fash-

ion; the reader may refer to ([10, 90, 92, 19]) for recent results in this area as well

as to Chapter 2 and 3 of this thesis. However, all the existing DMPC methods uti-

lize quadratic cost function that penalize the deviation of the states and inputs from

their operating steady-state values, and generally, they do not explicitly account for

economic objectives.

Motivated by the above, we focus on the development and application of dis-

tributed and centralized LEMPC designs to a catalytic alkylation of benzene process

network [13], which consists of four continuously stirred tank reactors and a flash

separator (See Section 2.4). A new economic measure for the entire process net-

work is proposed which accounts for a broad set of economic considerations on the

process operation including reaction conversion, separation quality and energy effi-

ciency. Subsequently, steady-state process optimization is first carried out to locate

an economically optimal (with respect to the proposed economic measure) operating

steady-state. Then, a sequential distributed economic model predictive control design

method, suitable for large-scale process networks, is proposed and its closed-loop sta-

bility properties are established. Using the proposed method, economic, distributed
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as well as centralized, model predictive control systems are designed and are imple-

mented on the process to drive the closed-loop system state close to the economically

optimal steady-state. The closed-loop performance and time needed for control ac-

tion calculation are evaluated through simulations and compared with the ones of

a centralized Lyapunov-based model predictive control design, which uses a conven-

tional, quadratic cost function that includes penalty on the deviation of the states

and inputs from their economically optimal steady-state values.

4.2 Preliminaries

4.2.1 Notation

The notation | · | is used to denote the Euclidean norm of a vector, and a continuous

function α : [0, a) → [0, a) is said to belong to class K if it is strictly increasing and

satisfies α(0) = 0. The symbol Ωr is used to denote the set Ωr := {x ∈ Rnx : V (x) ≤

r} where V is a scalar continuous differentiable positive definite function, and the

operator ‘/’ denotes set subtraction, that is, A/B := {x ∈ Rnx : x ∈ A, x /∈ B}. The

symbol diag(v) denotes a matrix whose diagonal elements are the elements of vector

v and all the other elements are zeros.

4.2.2 Class of nonlinear systems

We consider nonlinear systems described by the following state-space model:

ẋ(t) = f(x(t), u1(t), . . . , um(t), w(t)) (4.1)
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where x(t) ∈ Rnx denotes the vector of state variables of the system, ui(t) ∈ Rmui

(i = 1, . . . ,m) and w(t) ∈ Rnw are the ith set of control (manipulated) inputs and

disturbances, respectively. The m sets of inputs are restricted to be in m nonempty

convex sets Ui ⊆ Rmui , i = 1, . . . ,m, which are defined as Ui := {ui ∈ Rmui : |ui| ≤

umax
i } where umax

i , i = 1, . . . ,m, are the magnitudes of the input constraints. We

will design m controllers to compute the m sets of control inputs ui, i = 1, . . . ,m,

respectively. We will refer to the controller computing ui as controller i. w(t) is

assumed to be bounded, that is, w(t) ∈ W with W := {w ∈ Rnw : |w| ≤ θ, θ > 0}.

We assume that f is a locally Lipschitz vector function and that the origin is an

equilibrium point of the unforced nominal system (i.e., system of Eq. 4.1 with ui(t) =

0, i = 1, . . . ,m, w(t) = 0 for all t) which implies that f(0, . . . , 0) = 0.

4.2.3 Stabilizability assumptions

We assume that there exists a feedback controller h(x) = [h1(x) · · · hm(x)]
T which

renders the origin of the nominal closed-loop system asymptotically stable with ui =

hi(x), i = 1, . . . ,m, while satisfying the input constraints for all the states x inside

a given stability region. Using converse Lyapunov theorems [60, 18], this assumption

implies that there exist class K functions αi(·), i = 1, 2, 3, 4 and a continuously

differentiable Lyapunov function V (x) for the nominal closed-loop system, that satisfy

the following inequalities:

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)

∂x
f(x, h1(x), . . . , hm(x), 0) ≤ −α3(|x|)∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ α4(|x|), hi(x) ∈ Ui, i = 1, . . . ,m

(4.2)
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for all x ∈ O. We denote the region Ωρ ⊆ O (Ωρ is a level set of V (x)) as the stability

region of the closed-loop system under the Lyapunov-based controller h(x). Note that

explicit stabilizing control laws that provide explicitly defined regions of attraction for

the closed-loop system have been developed using Lyapunov techniques for specific

classes of nonlinear systems, particularly input-affine nonlinear systems; the reader

may refer to [53, 18, 59] for results in this area including results on the design of

bounded Lyapunov-based controllers by taking explicitly into account constraints for

broad classes of nonlinear systems.

By continuity, the local Lipschitz property assumed for the vector field f and

taking into account that the manipulated inputs ui, i = 1, . . . ,m are bounded, there

exists a positive constant M such that:

|f(x, u1, . . . , um, w)| ≤M (4.3)

for all x ∈ Ωρ and ui ∈ Ui, i = 1, . . . ,m. By the continuous differentiable property of

the Lyapunov function V (x) and the Lipschitz property assumed for the vector field

f , there exist positive constants Lx, Lw, L
′
x and L′

w such that:

|f(x, u1, . . . , um, w)− f(x′, u1, . . . , um, 0)| ≤ Lx |x− x′|+ Lw |w|∣∣∣∂V (x)
∂x

f(x, u1, . . . , um, w)− ∂V (x′)
∂x

f(x′, u1, . . . , um, 0)
∣∣∣ ≤ L′

x |x− x′|+ L′
w |w|

(4.4)

for all x, x′ ∈ Ωρ, ui ∈ Ui, i = 1, . . . ,m and w ∈ W .

4.3 Nonlinear chemical process network

In this section, we consider the alkylation of benzene example as being described in

Chapter 2.4. Subsequently, we introduce the economic cost measure.
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4.3.1 Description of the alkylation of benzene process

The process of alkylation of benzene with ethylene to produce ethylbenzene is widely

used in the petrochemical industry. Dehydration of the product produces styrene,

which is the precursor to polystyrene and many copolymers. Over the last two

decades, several modeling and simulation results of alkylation of benzene with cat-

alysts have been reported in the literature. The process model developed in this

section is based on the references [35, 58, 84, 105, 110]. More specifically, the process

considered in this work consists of four continuously stirred tank reactors (CSTRs)

and a flash tank separator, as shown in Fig. 4.1. The CSTR-1, CSTR-2 and CSTR-3

are in series and involve the alkylation of benzene with ethylene. Pure benzene is

fed through stream F1 and pure ethylene is fed through streams F2, F4 and F6. Two

catalytic reactions take place in CSTR-1, CSTR-2 and CSTR-3. Benzene (A) reacts

with ethylene (B) and produces the required product ethylbenzene (C) (reaction 1);

ethylbenzene can further react with ethylene to form 1,3-diethylbenzene (D) (reac-

tion 2) which is the byproduct. The effluent of CSTR-3, including the products and

leftover reactants, is fed to a flash tank separator, in which most of benzene is sepa-

rated overhead by vaporization and condensation techniques and recycled back to the

plant and the bottom product stream is removed. A portion of the recycle stream Fr2

is fed back to CSTR-1 and another portion of the recycle stream Fr1 is fed to CSTR-4

together with an additional feed stream F10 which contains 1,3-diethylbenzene from

further distillation process that we do not consider in this example. In CSTR-4, both

reaction 2 and the catalyzed transalkylation reaction in which 1,3-diethylbenzene re-

acts with benzene to produce ethylbenzene (reaction 3) take place. All chemicals left

from CSTR-4 eventually pass into the separator. All the materials in the reactions

are in liquid phase due to high pressure. The dynamic equations describing the be-
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Figure 4.1: Process flow diagram of alkylation of benzene.

havior of the process, obtained through material and energy balances under standard

modeling assumptions, can be found in Eq. 2.23. The process model consists of 25

coupled nonlinear ordinary differential equations.

Each of the tanks has an external heat/coolant input. The manipulated inputs

to the process are the heat injected to or removed from the five vessels, Q1, Q2, Q3,

Q4 and Q5, and the feed streams F2, F4 and F6 to CSTR-1, CSTR-2 and CSTR-3,

respectively.

The states of the process consist of the concentrations of A, B, C, D in each of

the five vessels and the temperatures of the vessels. The measurement of the process

state is assumed to be available continuously to the controllers; i.e., state feedback
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control is considered.

4.3.2 Economic cost measure

In this example, we consider the economic measure shown below accounting for three

aspects: reaction conversion, separation quality, and energy efficiency:

L(x, u1, ..., um) = A1
r1
r2

+ A2r3 − A4Q4 − A5Q5

+A3
F8CC4

F8(CA4 + CB4 + CC4 + CD4)

(4.5)

where L(x, u1, ..., um) is the economic measure, x is the state of the system, u1, ..., um

are the manipulated inputs with U := [u1 ... um] = [Q1 Q2 Q3 Q4 Q5F2 F4 F6] and

A1, . . . , A5 are constant weighting coefficients, r1, r2 and r3 are the reaction rates of

reactions 1, 2 and 3, respectively, and CA4, CB4, CC4 and CD4 are concentrations of

species A, B, C, D in the product outlet flow F8. Note that the reaction rates are

related to the concentrations of the reactants and the temperature in each reactor.

The first two terms of the measure describe the reaction conversion and the goal

is to increase the rate of reactions one and three but suppress the rate of reaction two

since it produces a by-product. The third and forth terms of the measure focus on

energy efficiency. The fifth term of the measure takes the separation step into account,

and the separation quality is measured in terms of the mole fraction of species C

in the outlet stream F8. We first solve a steady-state optimization problem using

the economic measure of Eq. 4.5 as the cost function to be maximized to compute

an economically optimal operating steady-state. The detailed formulation is shown
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below:

max
x,u1...um

L(x, u1, ..., um) (4.6a)

s.t. f(x, u1, ..., um, 0) = 0 (4.6b)

ui ∈ Ui (4.6c)

x ∈ X (4.6d)

2,4,6∑
i

Fi =Fmax (4.6e)

V (x) ≤ ρ̃ (4.6f)

where L(x, u1, ..., um) is the economic measure in Eq. 4.5, f(x, u1, ..., um, 0) is the nom-

inal steady-state process model that described in [63], Fmax is the maximum amount

of reactant B that is allowed to enter the process per second, and V is the Lyapunov

function and is taken to be V (x) = (x−xs)TP (x−xs) with P being a diagonal matrix

of the form diag([1 10 1 1 102 1 10 1 1 102 1 10 1 1 102 1 10 1 1 102 1 10 1 1 102]). The

optimal solution to this optimization problem is denoted as xs and us
i , i = 1, ...,m.

We note that the choice of P is done via trial-and-error and testing via simulations

(there is no other way particularly given the type of nonlinearities involved); further,

we note that the computation of V̇ is done on the basis of the nonlinear vector fields

of the process dynamic model and not on the basis of any type of linearization. We

do scale the terms in P based on the different magnitude of the state variables. The

value of ρ̃ is computed in a similar fashion and it is a function of V , process dynamic

model and input constraints.

In the problem of Eq. 4.6, the constraint of Eq. 4.6b guarantees that the opti-
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Table 4.1: Steady-state input values.

u1 -4.4×106 [J/s] u2 -4.6×106 [J/s]

u3 -4.7×106 [J/s] u4 9.2×106 [J/s]

u5 5.9×106 [J/s] u6 8.697×10−4 [m3/s]

u7 8.697×10−4 [m3/s] u8 8.697×10−4 [m3/s]

mal solution satisfies the steady-state process model; the constraints of Eq. 4.6c and

Eq. 4.6d define the state and input constraints; the constraint of Eq. 4.6e implies that

the total amount of feed input B distributed through the stream F2, F4, and F6 has

to be equal to the maximum feed input Fmax; and, the constraint of Eq. 4.6f imposes

a Lyapunov constraint so that the solution has to lie inside the level set ρ̃.

We consider the system starting at t = 0 from a stable steady-state (x0) that is

defined by the steady-state inputs shown in Table 4.1. The state constraints that

are imposed in this example require that the upper and lower bounds of the optimal

temperature states are ±6% from the steady-state values of Table 4.1. The values

of the rest of the state variables (concentrations) are required to be positive. The

constrains that the manipulated inputs are subjected to are shown in Table 4.2. The

values of Fmax and ρ̃ are taken to be 26.091× 10−4 mol/s and 2.4× 106, respectively,

and the coefficients A1, A2, A3, A4, A5 are chosen to be 3, 1, 45, 27× 10−7, and 21×

10−7, respectively.

The steady-state optimization problem of Eq. 4.6 was solved by the open source

interior point optimizer Ipopt under default settings in a JAVA programming envi-

ronment. Simulation results indicate that there is only one optimal solution, and the

optimal input values are given in Table 4.3. We also note that the optimal steady-state

is unstable, determined by computing the Jacobian eigenvalues, and some tempera-
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Figure 4.2: Weight percentage on the terms of the economic measure used by the
steady-state optimization problem.

ture states of the final solution are at the boundary of the set X. The value of the

Lyapunov function of the optimal solution of Eq. 4.6 is 1.45×106, which lies inside the

set ρ̃. The optimal value of the economic measure is 33.41, which is a 5.7% increase

from the initial steady-state of Table 4.1, and the weight placed on the various terms

of the economic measure is shown in Fig. 4.2. We note that we nearly-equally weigh

reaction conversion (first two terms), energy efficiency (third and fourth terms) and

separation (fifth term). This was done because we consider, from a cost point of view,

that these three terms equally contribute into the cost but if this is not the case, then

the weights can be readily modified to accommodate different cost contributions of

each one of these terms.

4.4 Distributed LEMPC

As the number of manipulated inputs increases as it is the case in the context of control

of large-scale chemical plants, the evaluation time of a centralized MPC may increase
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Table 4.2: Manipulated input constraints.

|us
1 − u1| ≤ 4.0× 106 [J/s] |us

5 − u5| ≤ 2.0× 106 [J/s]

|us
2 − u2| ≤ 4.0× 106 [J/s] |us

6 − u6| ≤ 8.679× 10−4 [m3/s]

|us
3 − u3| ≤ 4.0× 106 [J/s] |us

7 − u7| ≤ 8.679× 10−4 [m3/s]

|us
4 − u4| ≤ 4.0× 106 [J/s] |us

8 − u8| ≤ 8.679× 10−4 [m3/s]

Table 4.3: Optimal steady-state input values.

us
1 -5.773×106 [J/s] us

2 -4.281×106 [J/s]

us
3 -1.481×106 [J/s] us

4 6.238×106 [J/s]

us
5 7.010×106 [J/s] us

6 1.296×10−3 [m3/s]

us
7 7.355×10−4 [m3/s] us

8 5.773×10−4 [m3/s]

significantly. This may impede the ability of centralized MPC to carry out real-time

calculations within the limits imposed by process dynamics and operating conditions.

Moreover, a centralized control system for large-scale systems may be difficult to

organize and maintain and is vulnerable to potential process faults. To overcome these

issues, in this work, we propose to utilize a sequential distributed economic model

predictive control (EMPC) architecture as shown in Fig. 4.3. In this architecture, each

set of the m sets of control inputs is calculated using an LEMPC. The distributed

controllers are connected using one-directional communication network, evaluated in

sequence. We will refer to the controller computing ui associated with subsystem

i as LEMPC i. In this section, we propose two different implementation strategies

for the sequential distributed EMPC architecture and we assume that the state x of

the system is sampled synchronously and the time instants at which we have state

measurements are indicated by the time sequence {tk≥0} with tk = t0 + k∆, k =
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Figure 4.3: Distributed LEMPC architecture.

0, 1, . . . where t0 is the initial time and ∆ is the sampling time.

4.4.1 Implementation strategy I

In this implementation strategy for the distributed LEMPC architecture, all the dis-

tributed controllers are evaluated in sequence and once at each sampling time. Specif-

ically, at a sampling time, tk, when a measurement is received, the distributed con-

trollers evaluate their future input trajectories in sequence starting from LEMPC m

to LEMPC 1. Once a controller finishes evaluating its own future input trajectory,

it sends its own future input trajectory and the future input trajectories it received

to the next controller (i.e., LEMPC j sends input trajectories of ui, i = m, . . . , j, to

LEMPC j − 1).

This implementation strategy implies that LEMPC j, j = m, . . . , 2, does not have

any information about the values that ui, i = j − 1, . . . , 1 will take when the opti-

mization problem of LEMPC j is solved. In order to make a decision, LEMPC j,

j = m, . . . , 2 must assume trajectories for ui, i = j − 1, . . . , 1, along the prediction

horizon. To this end, the Lyapunov-based controller h(x) is used. In order for the
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distributed EMPC to inherit the stability properties of the controller h(x), each con-

trol input ui, i = 1, . . . ,m must satisfy a constraint that guarantees a given minimum

contribution to the decrease rate of the Lyapunov function V (x). Specifically, the pro-

posed design of the LEMPC j, j = 1, . . . ,m, is based on the following optimization

problem:

max
uj∈S(∆)

∫ tk+N

tk

L(x̃j(τ), u1(τ), . . . , um(τ))dτ (4.7a)

s.t. ˙̃xj(t) = f(x̃j(t), u1(t), . . . , um(t), 0) (4.7b)

ui(t) = hi(x̃
j(tk+l)), i = 1, . . . , j − 1,

∀t ∈ [tk+l, tk+l+1), l = 0, ..., N − 1 (4.7c)

ui(t) = u∗
i (t|tk), i = j + 1, . . . ,m (4.7d)

uj(t) ∈ Uj, i = 1, . . . ,m (4.7e)

x̃j(tk) = x(tk) (4.7f)

V (x̃j(t)) ≤ ρ̃, ∀t ∈ [tk, tk+N), if tk ≤ t′ and V (x(tk)) ≤ ρ̃ (4.7g)

∂V (x(tk))

∂x
f(x(tk), u

n
1 (tk), . . . , u

n
j−1(tk), uj(tk), . . . , um(tk))

≤ ∂V (x(tk))

∂x
f(x(tk), u

n
1 (tk), . . . , u

n
j (tk), uj+1(tk), . . . , um(tk)),

if tk > t′ or ρ̃ < V (x(tk)) ≤ ρ (4.7h)

where x̃j is the predicted trajectory of the nominal system with ui, i = j + 1, . . . ,m,

the input trajectory computed by the LEMPC controllers of Eq. 4.7 evaluated before
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LEMPC j, ui, i = 1, . . . , j − 1, the corresponding elements of h(x) applied in a

sample-and-hold fashion, u∗
i (t|tk) denotes the future input trajectory of ui obtained

by LEMPC i of the form of Eq. 4.7, and un
i (tk), i = 1, . . . ,m, are inputs determined by

hi(x(tk)) (i.e., u
n
i (tk) = hi(x(tk))). The optimal solution to the optimization problem

of Eq. 4.7 is denoted u∗
j(t|tk) which is defined for t ∈ [tk, tk+N). The relation between

ρ̃ and ρ is characterized in Theorem 4.1 below.

In the optimization problem of Eq. 4.7, the constraint of Eq. 4.7g is only active

when x(tk) ∈ Ωρ̃ in the first operation mode and is incorporated to ensure that

the predicted state evolution of the closed-loop system is maintained in the region Ωρ̃

(thus, the actual state of the closed-loop system is in the stability region Ωρ; this point

will be proved in Theorem 4.1 below). Due to the fact that all of the controllers receive

state feedback x(tk) at sampling time tk, all of the distributed controller operate in the

same operation mode by verifying whether V (x(tk)) ≤ ρ̃; the constraint of Eq. 4.7h

is only active in the second operation mode or when ρ̃ < V (x(tk)) ≤ ρ in the first

operation mode. This constraint guarantees that the contribution of input uj to the

decrease rate of the time derivative of the Lyapunov function V (x) at the initial time

(i.e., tk), if uj = u∗
j(tk|tk) is applied, is bigger than or equal to the value obtained

when uj = hj(x(tk)) is applied.

The manipulated inputs of the proposed distributed control design from time tk

to tk+1 (k = 0, 1, 2, . . .) are applied in a receding horizon scheme as follows:

ui(t) = u∗
i (t|tk), i = 1, . . . ,m, ∀t ∈ [tk, tk+1). (4.8)

To proceed for the closed-loop stability analysis, we need the following proposi-

tions.
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Proposition 4.1 (c.f. [63]) Consider the systems:

ẋa(t) = f(xa(t), u1(t), . . . , um(t), w(t))

ẋb(t) = f(xa(t), u1(t), . . . , um(t), 0)
(4.9)

with initial states xa(t0) = xb(t0) ∈ Ωρ. There exists a K function fW (·) such that:

|xa(t)− xb(t)| ≤ fW (t− t0), (4.10)

for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W with fW (τ) = Lwθ(e
Lxτ − 1)/Lx.

Proposition 4.1 provides an upper bound on the deviation of the state trajectory

obtained using the nominal model, from the actual system state trajectory when

the same control input trajectories are applied. Proposition 4.2 below bounds the

difference between the magnitudes of the Lyapunov function of two different states

in Ωρ.

Proposition 4.2 (c.f. [63]) Consider the Lyapunov function V (·) of the system of

Eq. 4.1. There exists a quadratic function fV (·) such that:

V (x) ≤ V (x̂) + fV (|x− x̂|) (4.11)

for all x, x̂ ∈ Ωρ with fV (s) = α4(α
−1
1 (ρ))s+Mvs

2 where Mv is a positive constant.

Proposition 4.3 below ensures that if the nominal system controlled by h(x) im-

plemented in a sample-and-hold fashion and with open-loop state estimation starts

in Ωρ, then it is ultimately bounded in Ωρmin
.

Proposition 4.3 (c.f. [63]) Consider the nominal sampled trajectory x̂(t) of the

system of Eq. 4.1 in closed-loop for a controller h(x), which satisfies the condition of
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Eq. 4.2, obtained by solving recursively:

˙̂x(t) = f(x̂(t), h1(x̂(tk)), . . . , hm(x̂(tk)), 0) (4.12)

where t ∈ [tk, tk+1) with tk = t0 + k∆, k = 0, 1, . . .. Let ∆, ϵs > 0 and ρ > ρs > 0

satisfy:

−α3

(
α−1
2 (ρs)

)
+ L′

xM∆ ≤ −ϵs/∆. (4.13)

Then, if x̂(t0) ∈ Ωρ and ρmin < ρ where ρmin = max{V (x(t + ∆)) : V (x(t)) ≤ ρs},

the following inequality holds: V (x̂(t)) ≤ V (x̂(tk)), ∀t ∈ [tk, tk+1) and V (x̂(tk)) ≤

max{V (x̂(t0))− kϵs, ρmin}.

Theorem 4.1 below provides sufficient conditions under which the LEMPC of

Eq. 4.7 guarantees that the state of the closed-loop system is always bounded in Ωρ

and is ultimately bounded in a small region containing the origin.

Theorem 4.1 Consider the system of Eq. 4.1 in closed-loop under the distributed

LEMPC design of Eq. 4.7 based on a controller h(x) that satisfies the conditions of

Eq. 4.2. Let ϵw > 0, ∆ > 0, ρ > ρ̃ > 0 and ρ > ρs > 0 satisfy:

ρ̃ ≤ ρ− fV (fW (∆)) (4.14)

and

−α3(α
−1
2 (ρs)) + L′

xM∆+ L′
wθ ≤ −ϵw/∆. (4.15)

If x(t0) ∈ Ωρ, ρs ≤ ρ̃, ρmin ≤ ρ and N ≥ 1, then the state x(t) of the closed-loop

system is always bounded in Ωρ and is ultimately bounded in Ωρmin
with ρmin defined

in Proposition 4.3 .

Proof: The proof consists of three parts. We first prove that the optimization
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problem of Eq. 4.7 is feasible for all states x ∈ Ωρ. Subsequently, we prove that, in

the first operation mode, under the LEMPC design of Eq. 4.7, the closed-loop state of

the system of Eq. 4.1 is always bounded in Ωρ. Finally, we prove that, in the second

operation mode, under the LEMPC of Eq. 4.7, the closed-loop state of the system of

Eq. 4.1 is ultimately bounded in ρmin.

Part 1: When x(t) is maintained in Ωρ (which will be proved in Part 2), the

feasibility of the distributed EMPC (DEMPC) of Eq. 4.7 follows because input tra-

jectory uj(t), j = 1, . . . ,m, such that uj(t) = hj(x(tk+q)), ∀t ∈ [tk+q, tk+q+1) with

q = 0, . . . , N − 1 is a feasible solution to the optimization problem of Eq. 4.7 since

such trajectory satisfy the input constraint of Eq. 4.7e and the Lyapunov-based con-

straints of Eqs. 4.7g and 4.7h. This is guaranteed by the closed-loop stability property

of the Lyapunov-based controller h(x); the reader may refer to [80] for more detailed

discussion on the stability property of the Lyapunov-based controller h(x).

Part 2: We assume that the LEMPC of Eq. 4.7 operates in the first operation

mode. We prove that if x(tk) ∈ Ωρ̃, then x(tk+1) ∈ Ωρ; and if x(tk) ∈ Ωρ/Ωρ̃, then

V (x(tk+1)) < V (x(tk)) and in finite steps, the state converges to Ωρ̃ (i.e., x(tk+j) ∈ Ωρ̃

where j is a finite positive integer).

When x(tk) ∈ Ωρ̃, from the constraint of Eq. 4.7g, we obtain that x̃1(tk+1) ∈ Ωρ̃.

By Propositions 4.1 and 4.2, we obtain the following inequality:

V (x(tk+1)) ≤ V (x̃1(tk+1)) + fV (fW (∆)). (4.16)

Note that LEMPC 1 has access to all of the optimal input trajectories of the other

distributed controllers evaluated before it. Since V (x̃1(tk+1)) ≤ ρ̃, if the condition of
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Eq. 4.14 is satisfied, we can conclude that:

x(tk+1) ∈ Ωρ.

When x(tk) ∈ Ωρ/Ωρ̃, from the constraint of Eq. 4.7h and the condition of Eq. 4.2,

we can obtain:

∂V (x(tk))

∂x
f(x(tk), u

∗
1(tk|tk), . . . , u∗

m(tk|tk), 0)

≤ ∂V (x(tk))

∂x
f(x(tk), h1(x(tk)), u

∗
2(tk|tk), . . . , u∗

m(tk|tk), 0)

≤ · · ·

≤ ∂V (x(tk))

∂x
f(x(tk), h1(x(tk)), . . . , hm(x(tk)), 0)

≤ −α3(|x(tk)|).

(4.17)

The time derivative of the Lyapunov function along the actual system state x(t) for

t ∈ [tk, tk+1) can be written as follows:

V̇ (x(t)) =
∂V (x(t))

∂x
f(x(t), u∗

1(tk|tk), . . . , u∗
m(tk|tk), w(t)) (4.18)

Adding and subtracting
∂V (x(tk))

∂x
f(x(t), u∗

1(tk|tk), . . . ,

u∗
m(tk|tk), 0) to/from the above equation and accounting for Eq. 4.17, we have:

V̇ (x(t)) ≤ −α3(|x(tk)|) +
∂V (x(t))

∂x
f(x(t), u∗

1(tk|tk), . . . , u∗
m(tk|tk), w(t))

−∂V (x(tk))

∂x
f(x(t), u∗

1(tk|tk), . . . , u∗
m(tk|tk), 0)

(4.19)

Due to the fact that the disturbance is bounded (i.e., |w| ≤ θ) and the Lipschitz
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properties of Eq. 4.4, we can write:

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs)) + L′

x|x(t)− x(tk)|+ Lwθ. (4.20)

Taking into account Eq. 4.3 and the continuity of x(t), the following bound can be

written for all τ ∈ [tk, tk+1)

|x(τ)− x(tk)| ≤M∆. (4.21)

Since x(tk) ∈ Ωρ/Ωρ̃, it can be concluded that x(tk) ∈ Ωρ/Ωρs . Thus, we can write

for t ∈ [tk, tk+1)

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs)) + L′

xM∆+ Lwθ. (4.22)

If the condition of Eq. 4.15 is satisfied, then there exists ϵw > 0 such that the following

inequality holds for x(tk) ∈ Ωρ/Ωρ̃:

V̇ (x(t)) ≤ −ϵw/∆, ∀t = [tk, tk+1).

Integrating this bound on t ∈ [tk, tk+1), we obtain that:

V (x(tk+1)) ≤ V (x(tk))− ϵw

V (x(t)) ≤ V (x(tk)), ∀t ∈ [tk, tk+1)

(4.23)

for all x(tk) ∈ Ωρ/Ωρ̃. Using Eq. 4.23 recursively, it is proved that, if x(tk) ∈ Ωρ/Ωρ̃,

the state converges to Ωρ̃ in a finite number of sampling times without leaving Ωρ.

Part 3: We assume that the DEMPC of Eq. 4.7 operates in the second operation

mode. We prove that if x(tk) ∈ Ωρ, then V (x(tk+1)) ≤ V (x(tk)) and the system state

is ultimately bounded in an invariant set Ωρmin
. Following the similar steps as in Part
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Figure 4.4: Distributed controller evaluation sequence.

2, we can derive that the inequality of Eq. 4.23 hold for all x(tk) ∈ Ωρ/Ωρs . Using

this result recursively, it is proved that, if x(tk) ∈ Ωρ/Ωρs , the state converges to Ωρs

in a finite number of sampling times without leaving Ωρ. Once the state converges

to Ωρs ⊆ Ωρmin
, it remains inside Ωρmin

for all times. This statement holds because of

the definition of ρmin. This proves that the closed-loop system under the LEMPC of

Eq. 4.7 is ultimately bounded in Ωρmin
.

4.4.2 Implementation strategy II

In the implementation strategy introduced in the previous subsection, the evaluation

time of the distributed LEMPC at a sampling time is the summation of the evaluation

times of all the distributed controllers; this is because at each sampling time all

distributed controllers are evaluated in a sequential fashion. However, for applications

in which a small sampling time needs to be used and fast controller evaluation is

required, we may distribute the evaluation of the distributed controllers into multiple

sampling periods. In this implementation strategy, the distributed controllers are

evaluated in sequence but over several sampling times and only one controller is

evaluated at each sampling time. Figure 4.4 shows a possible evaluation sequence

of the distributed controllers in this implementation strategy. In Fig. 4.4, at tk,

LEMPC m is evaluated and it sends the input trajectories of um to LEMPC m− 1;

at tk+1, LEMPC m − 1 is evaluated and it sends um and um−1 to LEMPC m − 2;
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from time tk+2 to tk+m, LEMPC m − 2 to LEMPC 1 are evaluated in sequence and

one complete distributed control system evaluation cycle is carried out. Another

controller evaluation cycle starts at tk+m+1 with the evaluation of LEMPC m again.

In order to guarantee the closed-loop stability of this implementation strategy, the

design of the distributed LEMPC of Eq. 4.7 needs to be modified to account for the

multiple sampling time evaluation cycle. We note that both implementation strategy

I and implementation strategy II can be executed using parallel computing.

Remark 4.1 Referring to the choice of the Lyapunov function in the context of a

specific chemical process application, we note the following: First, an economically-

optimal equilibrium point is computed as the solution of the steady-state optimization

problem of Eq. 4.6. This equilibrium point is then used to construct a Lyapunov

function for the process expressed in terms of state variable deviations from this equi-

librium point (in most applications, quadratic Lyapunov functions can be used; please

see application example in section 4.5). Subsequently, this Lyapunov function is used

for the design of a state feedback controller h(x) and the computation of the set of

initial conditions starting from where closed-loop stability (i.e., convergence to a small

neighborhood of the economically-optimal equilibrium point) is guaranteed. This set

is typically a level set, Ωρ, of the Lyapunov function V embedded within the set where

the time derivative of V along the trajectories of the nonlinear closed-loop system

with h(x) is negative. Therefore, the construction of Ωρ accounts explicitly for the

process nonlinearity and it is not a local (i.e., based on the linearization) stability

region. Referring to the economic MPC, we note that no assumption is made that the

optimization problem at sampling time tk with x(tk) ∈ Ωρ has a unique solution. Due

to the incorporation of the Lyapunov-based constraint of Eq. 4.7h, for any x(tk) ∈ Ωρ,

the economic MPC problem has a solution; the one defined by h(x). Therefore, the
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purpose of the optimization problem is to compute control actions over the prediction

horizon that optimize the cost of Eq. 4.7 further, yet they satisfy the Lyapunov-based

constraint of Eq. 4.7h. Given the constraint that x(t), t ∈ [tk, tk+N ], stays in Ωρ,

the economic MPC optimization problem can be solved either locally or globally (with

respect to its optimum) within Ωρ, depending on the type of optimal solution that is

required to be found. Note that during mode 1 operation under the economic MPC of

Eq. 4.7, the Lyapunov constraint is not used to steer the closed-loop system state to

the economically-optimal equilibrium point used in the construction of the Lyapunov

function but it is simply used to constrain the closed-loop state within a certain oper-

ating set (typically Ωρ) where feasibility of the economic MPC optimization problem

is guaranteed. As a consequence, there is no need to impose explicit constraints that

limit the discrepancy between h(x) and the economic MPC-based control action in the

centralized LEMPC case. Finally, due to the use of a finite sampling time, asymptotic

stability of the final equilibrium point can not be studied instead practical stability (i.e.,

ultimate boundedness of the state in a small ball containing the desired steady-state)

is studied.

4.5 Application to nonlinear chemical process net-

work

In this section, we apply the two economic MPC architectures to the process; that

is: the centralized Lyapunov-based economic MPC and the sequential distributed

Lyapunov-based economic MPC. The objective of all controllers is to drive the system

from the stable steady-state defined in Table 4.1 to the economically optimal steady-

state. We will also compare the performance of the economic MPC and DMPC with
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the performance of a conventional centralized MPC utilizing a quadratic cost function.

4.5.1 Preliminaries

We begin with some preliminaries that will be used in the formulations of the var-

ious MPC designs. All MPCs utilize the following Lyapunov function V (x) = (x −

xs)TP (x−xs) with P being the same matrix as in Section 4.3.2. We assume that the

state x of the system is sampled synchronously and the time instants at which we

have state measurements are indicated by the time sequence tk≥0 with tk = t0 + k∆,

k = 0, 1, . . . where t0 is the initial time and ∆ is the sampling time. The manipulated

input in this control problem is defined below with respect to the optimal steady-state

input values:

Ũ = [ũ1 ... ũ8] = [u1 − us
1 ... u8 − us

8]

The constraints that all MPC controllers have to satisfy are listed in Table 4.4. It

is important to note that even though the input constraints have been modified

accordingly, the set U still satisfies the constrains in Table 4.2.

The process model in [63] belongs to the following class of nonlinear systems

(which is included in the broad class of nonlinear systems of Eq. 4.1):

ẋ(t) = f(x) +
8∑

i=1

gi(x)ũi

where the state x is the deviation of the states variables from the economically-

optimal steady-state. For the control of the process, the input ũ1, ũ2,ũ3, ũ4 and ũ5

are necessary to keep the stability of the closed-loop system, while ũ6, ũ7 and ũ8 can

be used as extra inputs to improve the closed-loop performance. The design of the
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Table 4.4: Manipulated input constraints for all controllers.

|ũ1| ≤ 3.5× 105 [J/s] |ũ2| ≤ 3.5× 105 [J/s]

|ũ3| ≤ 7× 105 [J/s] |ũ4| ≤ 10× 105 [J/s]

|ũ5| ≤ 3× 105 [J/s] |ũi| ≤ 1.7394× 10−4 [m3/s](i = 6, 7, 8)

Lyapunov-based controller hi(x), i = 1, ..., 5 is based on Sontag’s formula [93]:

hi(x) =

 −
LfV+

√
(LfV )2+(LgiV )4

(LgiV )2
LgiV if LgiV ̸= 0

0 if LgiV = 0

where i = 1, ..., 5, LfV =
∂V

∂x
f(x) and LgiV =

∂V

∂x
gi(x) denote the Lie derivatives of

the scalar function V with respect to the vector fields f and gi, respectively. The

controllers h6(x), h7(x) and h8(x) are chosen to be 0.

For comparison purposes, we consider the following objective function of the con-

ventional centralized MPC:

J =
N∆∑
i=0

[x(ti)
TQcx(ti) +

8∑
j=1

uj(ti)
TRcjuj(ti)] (4.24)

the weighting matrices are chosen to be Qc = diag([1 1 1 1 103 1 1 1 1 103 10

10 10 10 104 1 1 1 1 103 1 1 1 1 103]), andRcj = diag([10−8 10−8 10−8 10−8 10−8 1 1 1]).

4.5.2 Centralized LEMPC

The centralized Lyapunov-based economic MPC design follows the formulation of our

previous work [40] with minor modifications (appropriate for the chemical process
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example in this work) as follows:

ũ∗
j(tk) = max

uj∈S(∆)

∫ tk+N

tk

L(x̃(τ), ũj(τ))dτ (4.25a)

s.t. ˙̃x(t) = f(x̃(t)) +
8∑

i=1

gi(x̃(t))ũi(t) (4.25b)

∀ t ∈ [tk, tk+1), k = 0, ..., N − 1

ũj(t) ∈ Uj (4.25c)

x̃(tk) = x(tk) (4.25d)

∑
i=2,4,6

Fi =Fmax (4.25e)

Mode one:

x̃(tk) ∈ X (4.25f)

V (x̃(tk)) ≤ ρ̃e (4.25g)

Mode two:

∂V (x̃(tk))

∂x
gj(x̃(tk))uj(tk) ≤ inf

t∈[tk−1,tk]

∂V (x̃(t))

∂x
gj(x̃(t))hj(x̃(t)) (4.25h)

where x̃ is the predicted closed-loop system state, S(∆) is the family of piecewise

constant function with period ∆ and tk+N = tk + N∆. The economic measure L

of Eq. 4.25 has the same set up as in Section 4.3.2 Eq. 4.5 and Eq. 4.25e imposes
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the quantity constraint of reactant B, from which Fmax has the same value as in

Section 4.3.2.

At mode one operation, Eq. 4.25f of the formulation ensures that the state variable

x̃(tk) that has been obtained by applying the solution ũ∗
j(tk) is bounded. It is impor-

tant to distinguish the difference between the constraints of Eq. 4.6d and Eq. 4.25f.

Since steady-state optimization focuses on a steady-state solution, Eq. 4.6d merely

states that the solution has to be bounded; however, the economic MPC, which is a

finite-horizon dynamic optimization problem, has to enforce a more aggressive con-

straint on the closed-loop state trajectory, where the state variables at the end of each

sampling time have to be bounded. With respect to the constraint x(tk) ∈ X, we

require that the state variables x(tk) remain within ±6% of their initial steady-state

values for all times; note that the economically optimal steady-state is within X.

The level set ρe is chosen to be 1.45 × 106. At mode two operation, the constraint

of Eq. 4.25h is a tighter version of the Lyapunov-based constraint in [40], and it is

used to ensure that the closed-loop system state converges sufficiently close to the

economically optimal steady-state.

4.5.3 Sequential distributed LEMPC

In this section, we design a sequential distributed LEMPC architecture for the ben-

zene process. Specifically, the first distributed model predictive controller (DMPC 1)

obtains the optimal values of ũ4 and ũ5, the second distributed controller (DMPC

2) is designed to obtain the optimal values of ũ1, ũ2 and ũ3, while the third dis-

tributed controller (DMPC 3) is designed to obtain the optimal values of ũ6, ũ7 and
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ũ8. Specifically, DMPC j (j = 1, 2, 3) can be formulated as follows:

u∗
s,j(tk) = max

us,j∈S(∆)

∫ tk+N

tk

L(x̃(τ), ũs,j(τ))dτ (4.26a)

s.t. ˙̃x(t) = f(x̃(t)) +
8∑

i=1

gi(x̃(t))ũs,i(t) (4.26b)

∀ t ∈ [tk, tk+1), k = 0, ..., N − 1

ũs,i(tk) = u∗
s,i(tk), i = 1, . . . , j − 1 (4.26c)

ũs,i(tk) = hi(x̃(tk)), i = j, . . . ,m (4.26d)

ũs,j(t) ∈ Uj (4.26e)

x̃(0) = x(tk) (4.26f)

∑
i={2,4,6}

Fi =Fmax (4.26g)

Mode one:

x̃(tk) ∈ Xs (4.26h)

V (x̃(tk)) ≤ ρ̃e (4.26i)

Mode two:

∂V (x̃(tk))

∂x
gj(x̃(tk))uj(tk) ≤

∂V (x(tk))

∂x
gj(x̃(tk))hj(x̃(tk)) (4.26j)
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where the economic measure L has the same form as in Section 4.3.2 Eq. 4.5 and

Fmax and ρ̃e have the same values as in Section 4.5.2.

Since each DMPC controller is designed to obtain a subset of the manipulated

inputs, the state constraint enforced in the centralized Lyapunov-based economic

MPC design may not be satisfied in each DMPC calculation, and thus, a relaxed

version of this constraint is used where we require that the state variables x(tk) remain

within ±7% of their initial steady-state values for all times in all DMPC calculations.

Thus, appropriate bounds on the initial state condition needs to be enforced (close

enough to the desired steady-state).

4.5.4 Closed-loop simulation results

The simulations were performed in a JAVA platform by a Core2 Quad Q6600 com-

puter. The simulation time for each run is 3000 seconds. Three different simulation

cases are studied here in order to evaluate the properties of the proposed controller

designs. The first case studies the closed-loop system performance by the central-

ized LEMPC and by the DLEMPC both operating at mode two. The second case

studies the closed-loop system performance by the same controllers but operating at

mode one. In the last case, we study the closed-loop system performance by the

same controllers operating at mode one first and then at mode two. We will compare

the closed-loop system performance of the economic MPC to the performance of the

conventional centralized Lyapunov-based MPC (LMPC) which uses the conventional

quadratic cost function of Eq. 4.24.

All simulation studies apply the same prediction horizons, which is N = 3. Only

the first piece from the computed optimal input trajectory of the optimization prob-

lems is implemented in each sampling time following a receding horizon scheme. The
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sampling time of the optimization problems is ∆ = 30s, and as a result, the total num-

ber of sampling times alone one simulation is one hundred. All state measurements

are available to the MPC controllers at each sampling time.

The numerical method that is used to integrate the process model is explicit Euler

with a fixed time step equal to 0.5 seconds. Again, as in the case of steady-state

optimization, the optimization problems of each MPC scheme are solved using the

open source interior point optimizer Ipopt. The Hessian is approximated by Quasi-

Newton’s method. Regarding to the termination criteria and the maximum number

of iterations, the values used by all simulations are 10−3 and 200, respectively.

The results of case one are shown in Fig. 4.5 and Fig. 4.6. It is important to

note that even though the conventional centralized MPC does not use the economic

measure as its objective function, we recalculate its performance from an economic

perspective based on Eq. 4.25a and include it in the figures. The Lyapunov function

in Fig. 4.5 clearly indicates that both economic MPC schemes stabilize the process

asymptotically to the optimal steady state. Specifically, the centralized LEMPC

drives the system to the optimal steady-state, and in terms of accumulated economic

measure, it performs better than the conventional MPC controller by 1.5% up to

1000 seconds of simulation time. In contrast, there exists an offset of the economic

measure of the DLEMPC, and that is in coincidence with the fact that the value of

its Lyapunov function converges to a non-zero positive number at the end. We note

here that even though all simulations reported in Figs. 4.5, 4.7 and 4.9 have been

carrying out using a total simulation time of 3000 seconds, in order to better show

the initial transient behavior in Figs. 4.5 and 4.9, we report the results up to 1500

seconds where the trajectories of all simulations have reached steady-state.

With respect to the centralized LEMPC, we notice that the offset is caused pri-
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marily by the structure of the DLEMPC. While each DMPC controller accomplishes

each mission successfully according to its formulation, the overall closed-loop cost

does not converge to the one of the centralized LEMPC.

With respect to the evaluation time of the different controllers at each sampling

time, the DLEMPC outperforms the centralized LEMPC by more than 50% in average

and even the centralized MPC at the beginning. It is important to note that the total

evaluation time required for the DLEMPC in one sampling time is the sum of the

evaluation times of all the DMPC controllers. We also observe that the evaluation

time of centralized LMPC overshoots at few sampling times after t = 1800 s. This

increase in the controller evaluation time is due to a significant sampling time which

allows for deviation of the closed-loop trajectories from the steady-state, as well as

the effort of the controller to satisfy the Lyapunov constraint in the first move and

the non-convexity of the optimization problem.

The results of case two are shown in Fig. 4.7 and in Fig. 4.8. The Lyapunov func-

tion of Fig. 4.7 indicates that starting from ρ̃e = 1.45× 106, both control schemes are

not able to stabilize the closed-loop system to the economically optimal steady-state

but converge to a region with their V values approximately equal to ρ̃ = 1 × 105.

This result is expected since as we have mentioned in Section 4.3.2 the economically

optimal operating steady-state is an unstable steady state. Looking at the economic

measure, even though both control schemes have similar value of the Lyapunov func-

tion at the end, the DLEMPC has a higher economic measure overall compared with

the one of the centralized economic MPC. The reason is due to the different state

constraints imposed in each of their problem formulations. Finally, comparing the

evaluation time of the different MPC schemes at mode one, we see that, as expected,

the DLEMPC outperforms the other schemes at the first 500 seconds. The average
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Figure 4.5: Trajectories of the economic measure and of the Lyapunov function using
the centralized LMPC with conventional quadratic cost of Eq. 4.24 (solid line), the
centralized LEMPC (dashed line) at mode two, and the DLEMPC (dotted line) at
mode two. The prediction horizon N = 3.
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Figure 4.6: The total evaluation time needed for evaluation of each MPC method.
Centralized LMPC with conventional quadratic cost of Eq. 4.24 (dotted line with
squares), the centralized LEMPC (dashed line with circles) at mode two, and the
DLEMPC (solid line with asterisks) at mode two. The prediction horizon N = 3.
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Table 4.5: Average Control Action Evaluation Time

Average Control Action Evaluation Time

LEMPC Mode 1 5.58 seconds

Mode 2 22.91 seconds

DLEMPC Mode 1 5.16 seconds

Mode 2 11.10 seconds

Centralized LMPC 17.49 seconds

control action evaluation times for the different cases are summarized in Table 4.5.

The last two figures (Fig. 4.9 and Fig. 4.10) belong to the study of case three,

for which we want to demonstrate that the controllers can switch their operating

mode between mode one and mode two under either the centralized LEMPC or the

DLEMPC; the switching choice, depends on the control objective, e.g., fast compu-

tational time or offset elimination. Finally, it is worthwhile to discuss few benefits of

using economic MPC instead of conventional MPC based on the results of this study.

First, the centralized LEMPC is characterized by an improved coupling between the

different layers of a plant-wide process control system, in particular, the economic

optimization and process control layer. In terms of performance, the economic MPC

is able to drive the system to the set-point for higher profit return with comparable

computational time. Another benefit of applying economic MPC is the ease of tuning.

It is a difficult task to assign a reasonable value to the parameters of conventional

MPC with quadratic cost since very often they do not have any physical meaning.

On the other hand, all parameters of economic MPC have specific economic meaning,

and thus, their tuning is more intuitive.
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Figure 4.7: Trajectories of the economic measure and of the Lyapunov function using
the centralized LMPC with conventional quadratic cost of Eq. 4.24 (solid line), the
centralized LEMPC (dashed line) at mode one, and the DLEMPC (dotted line) at
mode one. The prediction horizon N = 3, and the level set ρ̃e = 1.45× 106.
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Figure 4.8: The total evaluation time needed for each evaluation of centralized
LEMPC (dashed line with circles) at mode one and DLEMPC (solid line with as-
terisks) at mode one. The prediction horizon N = 3.

131



0 500 1000 1500 2000 2500 3000
28

30

32

34

36

L
(t

)

Time (s)

0 500 1000 1500 2000 2500 3000
0

5

10

15
x 10

5

V
(t

)

Time (s)

Figure 4.9: Trajectories of the economic measure and of the Lyapunov function by
centralized LMPC with conventional quadratic cost of Eq. 4.24 (solid line), the cen-
tralized LEMPC (dashed line), and the DLEMPC (dot line). The last two operate
at mode one up to t = 1500 s ans subsequently at mode two. The prediction horizon
N = 3, and the level set ρ̃e = 1.45× 106.
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Figure 4.10: The total evaluation time needed for each evaluation of MPC method
corresponding to Fig. 4.9. Centralized LMPC with conventional quadratic cost of
Eq. 4.24 (dotted line with squares), the centralized LEMPC (dashed line with circles),
and DLEMPC (solid line with asterisks). The prediction horizon N = 3.
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4.6 Conclusions

In this chapter, we carried out an application of centralized LEMPC and sequential

distributed LEMPC architectures to a catalytic alkylation of benzene process net-

work which consists of four continuous stirred tank reactors and a flash separator.

In the sequential distributed LEMPC design, three separate Lyapunov-based model

predictive controllers were designed to control the process in a sequential coordinated

fashion. The closed-loop stability properties of the sequential distributed LEMPC de-

sign were rigorously analyzed and sufficient conditions for closed-loop stability were

established. Simulations were carried out to compare the proposed economic MPC

architectures with a centralized LMPC which uses a quadratic cost function that

includes penalty on the deviation of the states and inputs from their economically

optimal steady-state values, from computational time and closed-loop performance

points of view.
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Chapter 5

Model Predictive Control of

Nonlinear Singularly Perturbed

Systems: Application to a

Large-Scale Process Network

5.1 Introduction

Chemical processes and plants are characterized by nonlinear behavior and strong

coupling of physico-chemical phenomena occurring at disparate time-scales. Examples

include fluidized catalytic crackers, distillation columns, biochemical reactors as well

as chemical process networks in which the individual processes evolve in a fast time-

scale and the network dynamics evolve in a slow time-scale. Singular perturbation

theory provides a natural framework for modeling, analysis, order reduction and

controller design for nonlinear two-time-scale processes (e.g., [16, 57]).
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This chapter focuses on model predictive control of nonlinear singularly perturbed

systems in standard form where the separation between the fast and slow state vari-

ables is explicit [12]. A composite control system using multirate sampling (i.e., fast

sampling of the fast state variables and slow sampling of the slow state variables)

and consisting of a “fast” feedback controller that stabilizes the fast dynamics and

a model predictive controller that stabilizes the slow dynamics and enforces desired

performance objectives in the slow subsystem is designed. Using stability results for

nonlinear singularly perturbed systems, the closed-loop system is analyzed and suf-

ficient conditions for stability are derived. A large-scale nonlinear reactor-separator

process network is used to demonstrate the application of the method including a

distributed implementation of the predictive controller.

5.2 Preliminaries

5.2.1 Notation

The operator | · | is used to denote Euclidean norm of a vector and the symbol Ωr

is used to denote the set Ωr := {x ∈ Rnx : V (x) ≤ r} where V is a positive definite

scalar function. For any measurable (with respect to the Lebesgue measure) function

w : R≥0 → Rl, ||w|| denotes ess.sup.|w(t)|, t ≥ 0. A function γ : R≥0 → R≥0 is said

to be of class K if it is continuous, nondecreasing, and is zero at zero. A function

β : R≥0×R≥0 → R≥0 is said to be of class KL if, for each fixed t, the function β(·, t)

is of class K and, for each fixed s, the function β(s, ·) is nonincreasing and tends to

zero at infinity. The symbol diag(v) denotes a matrix whose diagonal elements are

the elements of vector v and all the other elements are zeros.

136



5.2.2 Class of nonlinear singularly perturbed systems

In this work, we focus on nonlinear singularly perturbed systems in standard form

with the following state-space description:

ẋ = f(x, z, ϵ, us, w), x(0) = x0

ϵż = g(x, z, ϵ, uf , w), z(0) = z0

(5.1)

where x ∈ Rn and z ∈ Rm denote the vector of state variables, ϵ is a small positive

parameter, w ∈ Rl denotes the vector of disturbances and us ∈ U ⊂ Rp and uf ∈

V ⊂ Rq are two sets of manipulated inputs. The sets U and V are nonempty convex

sets which are defined as follows:

U := {us,i(t) : |us,i(t)| ≤ umax
s,i , i ∈ [1, p]}

V := {uf,j(t) : |uf,j(t)| ≤ umax
f,j , j ∈ [1, q]}

(5.2)

where umax
s,i and umax

f,j are positive real numbers, specifying the input constraints.

The disturbance vector is assumed to be absolutely continuous and bounded, i.e.,

W := {w(t) ∈ Rl : |w(t)| ≤ θ} where θ is a positive real number. Since the small

parameter ϵ multiplies the time derivative of the vector z in the system of Eq. 5.1, the

separation of the slow and fast variables in Eq. 5.1 is explicit, and thus, we will refer

to the vector x as the slow states and to the vector z as the fast states. We assume

that the vector fields f and g are locally Lipschitz in Rn×Rm× [0, ϵ̄)×Rp×Rq×Rl

for some ϵ̄ > 0 and that the origin is an equilibrium point of the unforced nominal

system (i.e., system of Eq. 5.1 with us = 0, uf = 0 and w = 0).

With respect to the control problem formulation, we assume that the fast states

z are sampled continuously and their measurements are available for all time t (for

example, variables for which fast sampling is possible usually include temperature,
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pressure and hold-ups) while the slow states x are sampled synchronously and are

available at time instants indicated by the time sequence {tk≥0} with tk = t0+k∆, k =

0, 1, . . . where t0 is the initial time and ∆ is the sampling time (for example, slowly

sampled variables usually involve species concentrations). The set of manipulated

inputs uf is responsible for stabilizing the fast dynamics of Eq. 5.1 and for this set the

control action is assumed to be computed continuously, while the set of manipulated

inputs us is evaluated at each sampling time tk and is responsible for stabilizing the

slow dynamics and enforcing a desired level of optimal closed-loop performance.

5.2.3 Two-time-scale system decomposition

The explicit separation of the slow and fast variables in the system of Eq. 5.1 allows

decomposing it into two separate reduced-order systems evolving in different time-

scales. To proceed with such a two-time-scale decomposition and in order to simplify

the notation of the subsequent development, we will first address the issue of stability

of the fast dynamics. Since there is no assumption that the fast dynamics of Eq. 5.1

are asymptotically stable, we assume the existence of a “fast” feedback control law

uf = p(x, z) that renders the fast dynamics asymptotically stable in a sense to be

made precise in Assumption 5.2 below. Substituting uf = p(x, z) in Eq. 5.1 and

setting ϵ = 0 in the resulting system, we obtain:

dx

dt
= f(x, z, 0, us, w) (5.3a)

0 = g(x, z, 0, p(x, z), w) (5.3b)
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Assumption 5.1 The equation g(x, z, 0, p(x, z), w) = 0 possesses a unique root

z = ĝ(x,w) (5.4)

with the properties that ĝ : Rn × Rl → Rm and its partial derivatives
∂ĝ

∂x
,
∂ĝ

∂w
are

locally Lipschitz.

Assumption 5.1 is a standard requirement in singularly perturbation theory (please

see, for example, [54]) and it is made to ensure that the system has an isolated

equilibrium manifold for the fast dynamics. On this manifold, z can be expressed

in terms of x and w using an algebraic expression. This assumption does not pose

any practical limitation in the example but it is a necessary one in the singular

perturbation framework to construct a well-defined slow subsystem.

Using z = ĝ(x,w), we can re-write Eq. 5.3 as follows:

dx

dt
= f(x, ĝ(x,w), 0, us, w) =: fs(x, us, w) (5.5)

We will refer to the subsystem of Eq. 5.5 as the slow subsystem.

Introducing the fast time scale τ =
t

ϵ
and the deviation variable y = z − ĝ(x,w),

we can rewrite the nonlinear singularly perturbed system of Eq. 5.1 as follows:

dx

dτ
= ϵf(x, y + ĝ(x,w), ϵ, us, w)

dy

dτ
= g(x, y + ĝ(x,w), ϵ, uf , w)− ϵ

∂ĝ

∂w
ẇ

−ϵ∂ĝ
∂x

f(x, y + ĝ(x,w), ϵ, us, w)

(5.6)
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Setting ϵ = 0, we obtain the following fast subsystem:

dy

dτ
= g(x, y + ĝ(x,w), 0, uf , w) (5.7)

where x and w can be considered as “frozen” to their initial values. Below we state

our assumption on the stabilization of the fast subsystem:

Assumption 5.2 There exists a feedback control law uf = p(x, z) = p(x, y+ĝ(x,w)) ∈

V where p(x, z) is a locally Lipschitz vector function of its arguments, such that the

origin of the closed-loop fast subsystem:

dy

dτ
= g(x, y + ĝ(x,w), 0, p(x, y + ĝ(x,w)), w) (5.8)

is globally asymptotically stable, uniformly in x ∈ Rn and w ∈ Rl, in the sense that

there exists a class KL function βy such that for any y(0) ∈ Rm:

|y(t)| ≤ βy(|y(0)|,
t

ϵ
) (5.9)

for t ≥ 0.

5.2.4 Lyapunov-based controller

We assume that there exists a Lyapunov-based locally Lipschitz control law h(x) =

[h1(x) . . . hp(x)]
T with us,i = hi(x), i = 1, . . . , p, which renders the origin of the

nominal closed-loop slow subsystem asymptotically stable while satisfying the input

constraints for all the states x inside a given stability region. Using converse Lyapunov

theorems [75, 60, 18], this assumption implies that there exist functions αi(·), i =

1, 2, 3, 4 of class K and a continuously differentiable Lyapunov function V (x) for the
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nominal closed-loop slow subsystem that satisfy the following inequalities:

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)

∂x
(fs(x, h(x), 0)) ≤ −α3(|x|)

h(x) ∈ U

(5.10)

for all x ∈ D ⊆ Rn where D is an open neighborhood of the origin. We denote the

region Ωρ ⊆ D as the stability region of the closed-loop slow subsystem under the

Lyapunov-based controller h(x). By continuity, the local Lipschitz property assumed

for the vector fields fs(x, us, w) and taking into account that the manipulated inputs

ui, i = 1, . . . , p, and the disturbance w are bounded in convex sets, there exists a

positive constant M such that

|fs(x, us, w)| ≤M (5.11)

for all x ∈ Ωρ, us ∈ U , and w ∈ W . In addition, by the continuous differentiable

property of the Lyapunov function V (x) and the Lipschitz property assumed for the

vector field fs(x, us, w), there exist positive constants Lx and Lw such that

|∂V
∂x

fs(x, us, w)−
∂V

∂x
fs(x

′, us, w)| ≤ Lx|x− x′|

|∂V
∂x

fs(x, us, w)−
∂V

∂x
fs(x, us, w

′)| ≤ Lw|w − w′|
(5.12)

for all x, x′ ∈ Ωρ, us ∈ U , and w,w′ ∈ W .

5.2.5 Lyapunov-based MPC formulation

The longer sampling time of the slow state variables allows utilizing MPC to compute

the control action us. A schematic of the proposed control system structure is shown
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p(x, z)

MPC

ϵż = g(x, z, ϵ, uf , w)

ẋ = f(x, z, ϵ, us, w)

uf

us

x z

z

x

Figure 5.1: A schematic of the proposed control system structure.

in Fig. 5.1. Specifically, we use the LMPC proposed in [79] which guarantees prac-

tical stability of the closed-loop system and allows for an explicit characterization of

the stability region to compute us. The LMPC is based on the Lyapunov-based con-

troller h(x). The controller h(x) is used to define a stability constraint for the LMPC

controller which guarantees that the LMPC controller inherits the stability and ro-

bustness properties of the Lyapunov-based controller h(x). The LMPC controller is

based on the following optimization problem:

min
us∈S(∆)

∫ Nc∆

0

[x̃T (τ)Qcx̃(τ) + uT
s (τ)Rcus(τ)]dτ (5.13a)

s.t. ˙̃x(τ) = fs(x̃(τ), us, 0) (5.13b)

us(τ) ∈ Us (5.13c)

x̃(0) = x(tk) (5.13d)

∂V (x)

∂x
fs(x(tk), us(0), 0) ≤

∂V (x)

∂x
fs(x(tk), h(x(tk)), 0) (5.13e)
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where S(∆) is the family of piece-wise constant functions with sampling period ∆, Nc

is the prediction horizon, Qc and Rc are positive definite weight matrices that define

the cost, x(tk) is the state measurement obtained at tk, x̃ is the predicted trajectory

of the nominal system with us, the input trajectory computed by the LMPC of

Eq. 5.13. The optimal solution to this optimization problem is denoted by u∗
s(τ |tk),

and is defined for τ ∈ [0, Nc∆).

The optimization problem of Eq. 5.13 does not depend on the uncertainty and

guarantees that the system in closed-loop with the LMPC controller of Eq. 5.13

maintains the stability properties of the Lyapunov-based controller. The constraint

of Eq. 5.13e guarantees that the value of the time derivative of the Lyapunov function

at the initial evaluation time of the LMPC is lower or equal to the value obtained if

only the Lyapunov-based controller h(x) is implemented in the closed-loop system in

a sample-and-hold fashion. This is the constraint that allows proving that the LMPC

inherits the stability and robustness properties of the Lyapunov-based controller. The

manipulated inputs of the closed-loop slow subsystem under the LMPC controller are

defined as follows

us(t) = u∗
s(t− tk|tk), ∀t ∈ [tk, tk+1). (5.14)

The main property of the LMPC controller is that the origin of the closed-loop system

is practically stable for all initial states inside the stability region Ωρ for a sufficient

small sampling time ∆ and disturbance upper bound θ. The main advantage of

LMPC approaches with respect to the Lyapunov-based controller is that optimality

considerations can be taken explicitly into account (as well as constraints on the

inputs and the states [79]) in the computation of the controller within an online

optimization framework improving closed-loop performance.

Proposition 5.1 (c.f. [79, 80]) Consider the slow subsystem of Eq. 5.5 in closed-
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loop under the LMPC design of Eq. 5.14 based on a Lyapunov-based controller h(x)

that satisfies the conditions of Eq. 5.10. Let ϵw > 0, ∆ > 0 and ρ > ρs > 0, θ > 0

satisfy the following constraint:

−α3(α
−1
2 (ρs)) + LxM∆+ Lwθ ≤ −ϵw/∆. (5.15)

There exists a class KL function βx and a class K function γ such that if x(0) ∈ Ωρ,

then x(t) ∈ Ωρ for all t ≥ 0 and

|x(t)| ≤ βx(|x(0)|, t) + γ(ρ∗) (5.16)

with ρ∗ = max{V (x(t+∆)) : V (x(t)) ≤ ρs}.

5.3 Stability analysis

The closed-loop stability of the system of Eq. 5.1 under the control of the controller

p(x, z) and the LMPC of Eq. 5.13 is established in the following theorem under

appropriate conditions.

Theorem 5.1 Consider the system of Eq. 5.1 in closed-loop with uf = p(x, z) and

us determined by the LMPC of Eq. 5.13 based on a controller h(·) that satisfies the

conditions of Eq. 5.10. Let also assumptions 5.1 and 5.2 and the condition of Eq. 5.15

hold. Then there exist functions βx and βy of class KL, a pair of positive real numbers

(δ, d) and ϵ∗ > 0 such that if max{|x(0)|, |y(0)|, ||w||, ||ẇ||}
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≤ δ and ϵ ∈ (0, ϵ∗], then,

|x(t)| ≤ βx(|x(0)|, t) + γ(ρ∗) + d

|y(t)| ≤ βy(|y(0)|,
t

ϵ
) + d

(5.17)

for all t ≥ 0.

Proof: When uf = p(x, z) and us = u∗
s is determined by the LMPC of Eq. 5.14,

the closed-loop system takes the following form:

ẋ = f(x, z, ϵ, u∗
s, w), x(0) = x0

ϵż = g(x, z, ϵ, p(x, z), w), z(0) = z0.

(5.18)

We will first compute the slow and fast closed-loop subsystems. Setting ϵ = 0 in

Eq. 5.18, we obtain:
dx

dt
= f(x, z, 0, u∗

s, w)

0 = g(x, z, 0, p(x, z), w).

(5.19)

Using that the second equation has a unique, isolated solution z = ĝ(x,w) (assump-

tion 5.1), we can re-write 5.19 as follows:

dx

dt
= f(x, ĝ(x,w), 0, u∗

s, w) = fs(x, u
∗
s, w) (5.20)

According to Proposition 5.1, the state x(t) of the closed-loop slow subsystem of

Eq. 5.20 starting from x(0) ∈ Ωρ stays in Ωρ (i.e., x(t) ∈ Ωρ ∀t ≥ 0) and satisfies the

bound of Eq.5.16.
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We now turn to the fast subsystem. Using τ =
t

ϵ
and y = z − ĝ(x,w), the

closed-loop system of Eq. 5.18 can be written as:

dx

dτ
= ϵf(x, y + ĝ(x,w), ϵ, us(x), w)

dy

dτ
= g(x, y + ĝ(x,w), ϵ, p(x, y), w)− ϵ

∂ĝ

∂w
ẇ

−ϵ∂ĝ
∂x

f(x, y + ĝ(x,w), us(x), w)

(5.21)

Setting ϵ = 0, the closed-loop fast subsystem is obtained:

dy

dτ
= g(x, y + ĝ(x,w), 0, p(x, y), w) (5.22)

According to Assumption 5.2, the origin of the system of Eq. 5.22 is globally asymp-

totically stable, uniformly in x ∈ Rn and w ∈ Rl in the sense that there exists a

class KL function βy such that for any y(0) ∈ Rm, the bound of Eq. 5.9 holds for

t ≥ 0. Therefore, the closed-loop system of Eq. 5.18 satisfies the assumptions 1,

2 and 3 of Theorem 1 in [20]. Thus, there exist functions βx and βy of class KL,

positive real numbers (δ, d) (note that the existence of δ such that |x(0)| ≤ δ im-

plies that x(0) ∈ Ωρ follows from the smoothness of V (x)), and ϵ∗ > 0 such that if

max{|x(0)|, |y(0)|, ||w||, ||ẇ||} ≤ δ and ϵ ∈ (0, ϵ∗], then, the bounds of Eq.5.17 hold

for all t ≥ 0. �

Remark 5.1 We note that the class of nonlinear systems of Eq. 5.1 can be generalized

to include: a) us in the g vector field (i.e., the manipulated inputs that are used to

control the slow subsystem affect directly the fast dynamics), and b) uf in the f vector

field (i.e., the manipulated inputs that are used to control the fast subsystem affect

directly the slow dynamics). Such a generalization would simply require that us, which

is computed by the MPC and is piecewise continuous in time, is passed through an
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appropriate filter to become absolutely continuous (see also Theorem 1 and Remark 1

in [20]); this generalization is not pursued here in order to avoid complicating further

the notation. We also note that instead of using the LMPC of Eq. 5.13 other MPC

schemes including distributed MPC schemes can be used to control the slow subsystem

and they will inherit the stability properties of Theorem 5.1 as long as these MPC

schemes satisfy the conditions of Proposition 5.1.

5.4 Application to a nonlinear large-scale process

network

5.4.1 Process description and control system design

The process considered in this study is a reactor-distillation process network, shown

in Fig. 5.2 (see also [57]). It consists of a continuously stirred tank reactor (CSTR),

a distillation tower including a reboiler and a condenser, and a recycle loop. A set

of elementary exothermic reactions in series takes place in the reactor of the form

A
k1−→ B

k2−→ C, in which A is the reactant, B is the desired product and C is the

by-product. The reactor is fed with a fresh feed of pure species A at flowrate F0. The

outlet of the reactor is fed into the distillation tower, where most of the reactant A is

separated overhead and recycled back to the CSTR, and most of the product and the

by-product leave the system through stream Bt. There are three heat/coolant inputs,

labeled as Q1, Q2, and Q3, that are assigned to the CSTR, the condenser, and the

reboiler, respectively. The flow rates of streams F , D and Bt are regulated by three

valves, labeled as V 1, V 2, and V 3, respectively. The dynamic equations describing

the behavior of the process are obtained through material and energy balances under

standard modeling assumptions. Specifically, the dynamic model of the CSTR is as
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Figure 5.2: Chemical process network schematic.
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follows:

ṀR = F0 +D − F (5.23a)

ẋA,R =
F0(1− xA,R) +D(xA,0 − xA,R)

MR

− k1e
−E1/RTxA,R (5.23b)

ẋB,R =
−F0xB,R +D(xB,0 − xB,R)

MR

+ k1e
−E1/RTxA,R

− k2e
−E2/RTxB,R (5.23c)

ḢL,R =
F0(HL,F0 −HL,R) +D(HL,0 −HL,R)

MR

+
Q1

MR

− k1e
−E1/RTxA,R∆Hr1 − k2e

−E2/RTxB,R∆Hr2 (5.23d)

The dynamic model of the condenser is as follows:

Ṁ0 = V̄ −R−D (5.24a)

ẋi,0 =
V̄

M0

(yi,1 − xi,0) (5.24b)

ḢL,0 =
V̄

M0

(HV,1 −HL,0) +
Q2

M0

(5.24c)

where i = A,B,C. The dynamic model of the distillation column is as follows:

ẋi,j =
1

Mj

[V̄ (yi,j+1 − yi,j) +R(xi,j−1 − xi,j)], 1 ≤ j < f (5.25a)

ḢL,j =
V̄

Mj

(HV,j+1 −HV,j) +
R

Mj

(HL,j−1 −HL,j), 1 ≤ j < f (5.25b)

ẋi,f =
1

Mf

[V̄ (yi,f+1 − yi,f ) +R(xi,f−1 − xi,f ) + F (xi,R − xi,f )], (5.25c)
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j = f

ḢL,f =
V̄

Mf

(HV,f+1 −HV,f ) +
R

Mf

(HL,f−1 −HL,f ) +
F

Mf

(HL,R −HL,f ) (5.25d)

j = f

ẋi,j =
1

Mj

[V̄ (yi,j+1 − yi,j) + (R + F )(xi,j−1 − xi,j)], f < j ≤ N (5.25e)

ḢL,j =
V̄

Mj

(HV,j+1 −HV,j) +
R + F

Mj

(HL,j−1 −HL,j), f < j ≤ N (5.25f)

where i = A,B,C and N is the number of column stages. Finally, the dynamic model

of the reboiler is as follows:

ṀN+1 = R + F − V̄ −Bt (5.26a)

ẋi,N+1 =
1

MN+1

[(R + F )(xi,N − xi,N+1)− V̄ (yi,N+1 − xi,N+1)] (5.26b)

ḢL,N+1 =
R + F

MN+1

(HL,N −HL,N+1)−
V̄

MN+1

(HV,N+1 −HL,N+1)

+
Q3

MN+1

(5.26c)

where i = A,B,C. The definitions of the process parameters and their nominal values

are given in Table 5.1 and in Table 5.2, respectively.

The model of the CSTR assumes perfect mixing and spatially uniform heat con-

duction. Both reactions in the reactor are first-order elementary reactions. The com-

position of species C can be computed by the following relationship, xA,R + xB,R +

xC,R = 1. For the derivation of the dynamic model of the multicomponent distillation,

we apply stage-by-stage methods and batch rectification. To apply this approach, we
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Table 5.1: Process variables

F0, D, F , R, V̄ , B Effluent flow rates

F̃0, D̃, F̃ , R̃, Ṽ , B̃ Steady-state values of effluent flow rates

xi,R Species composition in the CSTR

xi,j Species composition in the distillation tower

MR, M0, MM+1 Liquid hold-up in each vessel

CPV ,i Heat capacity of each species at vapor phase

αi Relative volatilities of each species

∆Hr1, ∆Hr2 Heat of reactions 1 and 2

HV,R Enthalpy of mixture in the CSTR

HV,j Enthalpy of gas mixture

HL,j Enthalpy of liquid mixture

HL,F0 Enthalpy of feed input

k1, k2 Reaction coefficient

E1,E2 Activation energy

Q1, Q2, Q3 External heat/coolant inputs to each vessel

Table 5.2: Parameter values

∆Hr1 2, 500 [J/mol] ∆Hr2 5, 500 [J/mol]

E1 9, 500 [J/mol] E2 12, 000 [J/mol]

k1 2.4 [1/s] k2 4.0 [1/s]

F0, F̃0 100 [mol/s] HL,F0 61.06 [J/mol]
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assume vapor-liquid equilibrium in each stage, perfect mixing of liquid and vapor in

each stage, negligible vapor holdup, constant-molar-liquid holdup, Mj, on each stage,

and adiabatic process for the entire distillation process. In this work, the thermo-

dynamic properties of the mixtures are obtained by assuming ideal behavior in both

liquid phase and vapor phase. Specifically, the enthalpy of each species in vapor state

is described by the following expression:

hV,i = ho
V,i + CPV ,i(T − T0)

where T0 is the reference temperature and its value is 373.15 K, ho
V,i is the enthalpy

of a species at the reference temperature and CPV ,i is the heat capacity of a species

and is assumed to be a constant. The derivation of the enthalpy of a vapor mixture

and the enthalpy of a liquid mixture, based on above assumptions, is given by:

HV =

A,B,C∑
i

yih
0
V,i + (T − T0)

A,B,C∑
i

yiCpV ,i

HL =

A,B,C∑
i

xi(h
0
V,i−∆HV ap

i ) + (T − T0)

A,B,C∑
i

xiCpV ,i

(5.27)

If the enthalpy of a liquid mixture is known, we can obtain the temperature using

the following expression:

T =

HL −
A,B,C∑

i

xi(h
0
V,i−∆HV ap

i )

A,B,C∑
i

xiCpV ,i

+ T0

Furthermore, the enthalpy of the vapor mixture can be obtained by substituting

the computed temperature value back into Eq. 5.27. For ideal liquid-vapor mixture,

Raoult’s law determines the relationship between the vapor phase molar composition
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Table 5.3: Process parameters

A B C

CpV ,i [J/mol ·K] 1.86 2.01 2.00

∆HV ap
i [J/mol] 83.333 86.111 85.556

ho
V,i [J/mol] 283.889 369.844 394.444

αi 5.5 1.2 1.0

Table 5.4: Final steady-state manipulated input values

Q̃1 2.85·105 [J/s] Q̃2 -1.93·105 [J/s] Q̃3 2.31·105 [J/s] F̃ 1880 [mol/s]

Ṽ 2070 [mol/s] B̃t 100 [mol/s] D̃ 1780 [mol/s] R̃ 290 [mol/s]

and the liquid phase molar composition of each species. In this model, we assume

that the vapor pressure of each species, or the relative volatility of each species,

is a constant. Hence, the following equation, based on Raoult’s law, can be used to

compute the vapor phase molar composition, once the liquid phase molar composition

is known:

yi =
αixi

A,B,C∑
k

αkxk

For the other thermodynamic parameters, one can refer to Table 5.3 for their

nominal values. The distillation tower has a total of 15 trays, and the reactor outlet is

fed into tray 12. The entire process network has a total of 57 states which consist of the

compositions of A, B, and C in the reactors, column stages, reboiler and condenser,

as well as the enthalpy in each of the vessels. The desired (final) operating point

of the process, corresponding to the seven steady-state manipulated input values,

F̃ , Ṽ , B̃, R̃, D̃, Q̃1, Q̃2, and Q̃3 (Table 5.4), is given in Table 5.5.
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Table 5.5: Final steady-state values of the states of CSTR, reboiler and condenser

M̃R 1100 [mol] M̃0 1050 [mol] M̃N+1 1200 [mol]

x̃A,R 0.897 x̃A,0 0.948 x̃A,N+1 0.00666

x̃B,R 0.0965 x̃B,0 0.0505 x̃B,N+1 0.916

H̃L,R 1.849 ·102 [J/mol] H̃L,0 1.952 ·102 [J/mol] H̃L,N+1 3.826 ·102 [J/mol]

Table 5.6: Initial steady-state manipulated input values

Q1 3.58·105 [J/s] Q2 -2.00·105 [J/s] Q3 2.335·105 [J/s] F 1880 [mol/s]

V 2070 [mol/s] Bt 100 [mol/s] D 1780 [mol/s] R 290 [mol/s]

Table 5.7: Initial steady state values of the states of CSTR, reboiler and condenser

MR 1300 [mol] xA,R 0.763

M0 1125 [mol] xA,0 0.806

MN+1 1425 [mol] xA,N+1 0.00159

xB,R 0.210 HL,R 1.966 ×102 [J/mol]

xB,0 0.176 HL,0 2.047 ×102 [J/mol]

xB,N+1 0.800 HL,N+1 3.880 ×102 [J/mol]
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The goal of the controller is to drive the system from the initial stable operating

point to the desired operating point. The initial steady-state values for the manipu-

lated inputs and the states of the CSTR, reboiler and condenser are given in Table 5.6

and in Table 5.7, respectively. Before proceeding with the control design, we note

that via extensive simulation we have verified that the process exhibits two-time-scale

behavior (see Figure 5.12) owing to the use of large recycle, D, relative to the feed

input, F0, which motivates defining ϵ = F̃o/D̃ = 0.056. However, several of the pro-

cess states exhibit dynamic behavior in both fast and slow time scales, and thus, the

explicit separation of the process model states into fast and slow ones in a way that

it is consistent with the standard singularly perturbed model form of Eq. 5.1 is not

a feasible task in this particular application. For this reason, instead of separating

the states into fast and slow ones, we divide the manipulated inputs into the ones

that regulate critical fast states and the ones that regulate the process state in the

slow time-scale. Specifically, we define the following dimensionless manipulated in-

puts, u1 = F/F̃ , u2 = V̄ /Ṽ , u3 = Bt/B̃t, u4 = D/D̃, u5 = Q1/Q̃1, u6 = Q2/Q̃2 and

u7 = Q3/Q̃3. Through extensive simulations, we found that the manipulated inputs,

u1, u2, u3 and u4 can be used to control the liquid hold-ups (fast dynamics), and u5,

u6 and u7 can be used to control the process state in the slow time-scale; please see

remark 5.2 below for a detailed discussion and simulations on this issue.

With respect to control design, we propose to design a control system that utilizes

proportional control to compute the inputs associated with the fast dynamics and

MPC to compute the inputs associated with the slow dynamics. Specifically, four

different proportional controllers are used to regulate each of the flow rates, F , D,

V̄ , and B with respect to the final steady-state input values in Table 5.4 and the
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steady-state liquid holdups in Table 5.5:

u1 = F/F̃ = 1− kc1(M̃R −MR) (5.28a)

u2 = V̄ /Ṽ = 1− kc2(M̃N+1 −MN+1) (5.28b)

u3 = B/B̃ = 1− kc3(M̃0 −M0) (5.28c)

u4 = D/D̃ = 1− kc4(M̃0 −M0) (5.28d)

in which kc1, kc2, kc3 and kc4 are all equal to 0.0001. The controllers of Eq. 5.28 utilize

feedback of the hold-ups that can be sampled fast and can stabilize the liquid hold-up

levels of the CSTR, the reboiler and the condenser. Note that the effluent flow rate of

the vapor mixture V̄ is also regulated by a pressure valve. When the pressure inside

the reboiler goes down, the rate of liquid evaporation rises and therefore, the flow

rate V̄ goes up. In this example, we do not consider the pressure effect in the process

model and assume that V̄ is controllable and is directly related to the liquid holdup

of the reboiler.

The control of the slow dynamics involves the application of MPC. Three MPC

strategies are applied and compared in this study. Specifically, a centralized LMPC

which calculates all the inputs in one optimization problem, a sequential distributed

MPC (DMPC) in which the control inputs are calculated by distributed optimiza-

tion problems in sequence, and an iterative DMPC in which the control inputs are

evaluated by parallel distributed optimization problems solved in an iterative fash-

ion. For more discussion on the sequential and iterative DMPC, please refer to [63].

We define the term evaluation number to indicate the number of evaluations for the

optimization problem solved in each controller at each sampling time. For instance,
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Figure 5.3: Sequential DMPC architecture manipulating u5, u6 and u7.

an evaluation number of one implies that there is no information sharing between the

controllers, and each one of them returns the manipulated input values after the end

of one evaluation.

Three distributed LMPCs are designed for both DMPC control strategies. In both

strategies, LMPC 1 determines the input Q1, LMPC 2 determines the input Q2, and

LMPC 3 determines the input Q3. Schematics of the sequential and iterative DMPC

architectures for this process are shown in Figs. 5.3 and 5.4, respectively. In order to

formulate each of the optimization problems of the DMPCs (see [63]), the following

feedback laws are used as the reference control laws in the design of the three LMPCs:

u5 = Q1/Q̃1 = 1 + kc5(T̃1 − T1) (5.29a)

u6 = Q2/Q̃2 = 1 + kc6(T̃2 − T2) (5.29b)

u7 = Q3/Q̃3 = 1 + kc7(T̃2 − T3) (5.29c)

where kc5 = 0.008, kc6 = 0.0002, kc7 = 0.0002, T̃1 = 360.25, T̃2 = 367.97 and T̃3 =
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Figure 5.4: Iterative DMPC architecture manipulating u5, u6 and u7.

421.72. In the design of the LMPCs, a quadratic Lyapunov function V (x) = xTPx

where P is an identity matrix is used to put even weights on the different states.

Through extensive simulations, we found that this Lyapunov function choice to be

a good one in terms of control performance and ease of controller implementation.

In the simulations, the inputs associated with the slow dynamics are subject to the

following constraints:

0.9 ≤ u5 ≤ 1.3, 0.9 ≤ u6 ≤ 1.2, 0.9 ≤ u7 ≤ 1.2.

5.4.2 Simulation results

The simulations were performed in Microsoft Visual Studio by a Core2 Quad Q6600

computer. The total process evaluation time for each run is 3000 seconds. Four differ-

ent cases are studied here. The first one applies the centralized LMPC scheme. The

second case is for the sequential DMPC approach. In the third and fourth case study,
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the iterative DMPC scheme with one evaluation and two evaluations are used. Two

different prediction horizons are used for each of the MPC methods, N = 1 and N =

2. Only the first input value from the output of the optimization problems is imple-

mented following a receding horizon scheme. The sampling time of the optimization

problems is ∆ = 30 s, and as a result, the total number of sampling times along one

simulation is 100. By assumption, all state measurements are available to the MPC

controllers at each sampling time and are available continuously to the proportional

controllers. The numerical method that is used to integrate the process is explicit

Euler with a fixed time step of 0.1 s and the LMPC optimization problems are solved

using the open source interior point optimizer Ipopt [101].

The cost function used in each MPC scheme is as follows:

J =

∫ tk+N

tk

[
xT (t)Qcx(t) + UT

2 (t)RciU2(t)
]
dt

where tk is time when the controller is evaluated and UT
2 = [u5−1 u6−1 u7−1]. The

weighting matrix Qc is a diagonal matrix with its diagonal element Qc,i = 1/xset,i,

where xset,i is the steady state value of the corresponding state variable. The weighting

matrix Rc2 is also a diagonal matrix with Rc2 = diag([10000 10000 10000]).

Figure 5.5 shows the trajectories of the Lyapunov function V (x) under the different

control schemes. Based on these trajectories, it can be seen that all MPC strategies

stabilize the closed-loop system and give very close results in terms of trajectories of

V (x). The corresponding trajectories of the inputs Q1, Q2 and Q3 (i.e., u5, u6 and

u7) are shown in Figs. 5.6, 5.7 and 5.8.

Next, we investigate the instantaneous closed-loop performance at each sampling

time measured by xT (tk)Qcx(tk)+
2∑

i=1

UT
i (tk)RciUi(tk), k = 0, 1, . . . under the central-

ized LMPC and the two DMPC schemes where UT
1 = [u1−1 u2−1 u3−1 u4−1] and
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Figure 5.5: Trajectories of V (x) under the centralized LMPC (◦), the sequential
DMPC (∗), and the iterative DMPC with one evaluation (�) and with two evaluations
(×).

Rc1 = diag([10000 10000 10000 10000 10000]). The results are shown in Fig. 5.9. We

note that in this cost we also include the control inputs used for the fast dynamics in

order to have a comprehensive comparison. From Fig. 5.9, we see that as the simula-

tion time approaches 1000 s, the instantaneous closed-loop performance given by the

different control schemes is nearly the same. This is because under the different con-

trol schemes, the closed-loop system state is driven to the same desired steady-state.

From Fig. 5.9 (especially from the first half of the simulation: 0 < t < 500 s), we can

also see that the centralized control scheme gives the best performance and as the

iteration number increases, the performance given by the iterative DMPC converges

to the one given by the centralized control scheme. This property of the iterative

DMPC is not guaranteed for general nonlinear systems but it is found to hold for this

specific simulation study.
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Figure 5.6: Trajectories of the input Q1 (i.e., u5) under the centralized LMPC (◦),
the sequential DMPC (∗), and the iterative DMPC with one evaluation (�) and with
two evaluations (×).
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Figure 5.7: Trajectories of the input Q2 (i.e., u6) under the centralized LMPC (◦),
the sequential DMPC (∗), and the iterative DMPC with one evaluation (�) and with
two evaluations (×).
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Figure 5.8: Trajectories of the input Q3 (i.e., u7) under the centralized LMPC (◦),
the sequential DMPC (∗), and the iterative DMPC with one evaluation (�) and with
two evaluations (×).
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Figure 5.9: The costs of the closed-loop system under the centralized LMPC (◦), the
sequential DMPC (∗), and the iterative DMPC with one evaluation (�) and with two
evaluations (×).
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In the last set of simulations, attention is given to the evaluation time of the three

MPC schemes, as shown in Fig. 5.10 (N = 1) and in Fig. 5.11 (N = 2). Because

of the different structure of the two DMPC architectures, it is important to note

that the total evaluation time required for the sequential DMPC in one sampling

time is the sum of the evaluation times of the three LMPCs; on the other hand,

the total evaluation time required for the iterative DMPC with one evaluation in

one sampling time is the maximum evaluation time among all the three LMPCs.

Both Figures clearly demonstrate that the iterative DMPC with one evaluation has

the smallest total evaluation time compared with the other MPC schemes, and the

sequential DMPC requires more evaluation time than the centralized LMPC in this set

of simulations. In Fig. 5.10, the average evaluation time of the iterative DMPC with

one evaluation over the entire simulation is 1.70 s, which is about 70% of the average

time needed for the centralized LMPC and 2.6 times faster than the average time

needed for the sequential DMPC. Similarly, in Fig. 5.11, the average total evaluation

time of the iterative DMPC with one evaluation along the simulation is 4.25 seconds,

which is about 63% of the average time needed for the centralized LMPC and 2.3

times faster than the average time needed for the sequential DMPC.

Remark 5.2 To justify the use of u1, u2, u3 and u4 to control the liquid hold-ups

that exhibit fast dynamic behavior, we carried out a set of simulations of the closed-

loop system under the fast proportional controls used to manipulate u1, u2, u3 and

u4 and the centralized MPC used to manipulate u5, u6 and u7. Figure 5.12 shows

the evolution of a measure of the liquid hold-ups (ρf (t)) which exhibit fast dynamics

initially (fast time-scale) and the evolution of a measure of the compositions (ρs(t))

which exhibit dynamics in a slow time-scale, thereby confirming our choice to use fast

acting feedback to regulate the liquid hold-ups. In Figure 5.12, the measures ρs(t) and
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Figure 5.10: The total evaluation time needed for each evaluation of each MPC
method. Centralized LMPC (solid line with ∗), sequential DMPC (dashed line with
◦), and iterative DMPC with one evaluation (dotted line with �). The prediction
horizon N = 1.
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Figure 5.11: The total evaluation time needed for each evaluation of each MPC
method. Centralized LMPC (solid line with ∗), sequential DMPC (dashed line with
◦), and iterative DMPC with one evaluation (dotted line with �). The prediction
horizon N = 2.
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Figure 5.12: Evolution of a measure of the liquid hold-ups (ρf (t); + symbol) and
evolution of a measure of the compositions (ρs(t); o symbol).

ρf (t) are defined as follows:

ρs(t) =

A,B,C∑
i

15∑
j

(xi,j − x̃i,j)
2+

A,B,C∑
i

(xi,R − x̃i,R)
2

max((xi,j − x̃i,j)2, (xi,R − x̃i,R)2)
(5.30a)

ρf (t) =
(Mo − M̃o)

2 + (MN+1 − M̃N+1)
2 + (MR − M̃R)

2

max((Mo − M̃o)2, (MN+1 − M̃N+1)2, (MR − M̃R)2)
(5.30b)
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5.5 Conclusions

This chapter focused on model predictive control of a class of nonlinear singularly

perturbed systems. The motivation for this work is provided by broad classes of

large-scale process networks that involve coupled variables that evolve in disparate

(fast and slow) time scales. For such process networks, direct application of model

predictive control to compute the control actions for all manipulated inputs leads to

very high-order optimization problems that may not be solvable in real-time. Instead,

we proposed a control system using multirate sampling (i.e., fast sampling of easy-

to-measure fast-evolving variables and slow sampling of slow-evolving variables) and

consisting of an explicit feedback controller that stabilizes the fast dynamics and a

model predictive controller that stabilizes the slow dynamics and enforces desired per-

formance objectives in the slow subsystem was proposed. In this way, the model pre-

dictive controller solves an optimization problem with a substantially smaller number

of decision variables, and thus, it requires less computational time. Sufficient condi-

tions under which the closed-loop system stability, accounting for multirate sampling

and sample-and-hold implementation of the predictive controller, is guaranteed were

provided. The applicability and effectiveness of the proposed control system was il-

lustrated via a large-scale nonlinear reactor-separator process network which exhibits

two-time-scale behavior and the computational effectiveness of distributed predictive

control implementation was demonstrated.
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Chapter 6

Composite Fast-Slow MPC Design

for Nonlinear Singularly Perturbed

Systems

6.1 Introduction

In Chapter 5, we studied MPC for nonlinear singularly perturbed systems where

MPC is used only in the slow time-scale and the fast dynamics are assumed to be

stabilizable by a “fast” explicit controller.

This chapter focuses on model predictive control of nonlinear singularly perturbed

systems in standard form where the separation between the fast and slow state vari-

ables is explicit [11]. Specifically, a composite control system comprised of a “fast”

MPC acting to regulate the fast dynamics and a “slow” MPC acting to regulate the

slow dynamics is designed. The composite MPC system uses multirate sampling of

the plant state measurements, i.e., fast sampling of the fast state variables is used
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in the fast MPC and slow-sampling of the slow state variables is used in the slow

MPC as well as in the fast MPC. Using singular perturbation theory, the stability

and optimality of the closed-loop nonlinear singularly perturbed system are analyzed.

The proposed fast-slow MPC design does not require communication between the two

MPCs, and thus, it can be classified as decentralized in nature. A chemical process

example which exhibits two-time-scale behavior is used to demonstrate the struc-

ture and implementation of the fast-slow MPC architecture in a practical setting.

Extensive simulations are carried out to assess the performance and computational

efficiency of the fast-slow MPC system.

6.2 Preliminaries

6.2.1 Notation

The operator | · | is used to denote Euclidean norm of a vector and the symbol Ωr

is used to denote the set Ωr := {x ∈ Rnx : V (x) ≤ r} where V is a positive definite

scalar function. For any measurable (with respect to the Lebesgue measure) function

w : R≥0 → Rl, ||w|| denotes ess.sup.|w(t)|, t ≥ 0. A function γ : R≥0 → R≥0 is said

to be of class K if it is continuous, nondecreasing, and is zero at zero. A function

β : R≥0×R≥0 → R≥0 is said to be of class KL if, for each fixed t, the function β(·, t)

is of class K and, for each fixed s, the function β(s, ·) is nonincreasing and tends to

zero at infinity. The symbol diag(v) denotes a matrix whose diagonal elements are

the elements of vector v and all the other elements are zeros.
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6.2.2 Class of nonlinear singularly perturbed systems

In this section, we focus on nonlinear singularly perturbed systems in standard form

with the following state-space description:

ẋ = f(x, z, ϵ, us, w), x(0) = x0

ϵż = g(x, z, ϵ, uf , w), z(0) = z0

(6.1)

where x ∈ Rn and z ∈ Rm denote the vector of state variables, ϵ is a small positive

parameter, w ∈ Rl denotes the vector of disturbances and us ∈ U ⊂ Rp and uf ∈

V ⊂ Rq are two sets of manipulated inputs. The sets U and V are nonempty convex

sets which are defined as follows:

U := {us,i(t) : |us,i(t)| ≤ umax
s,i , i ∈ [1, p]}

V := {uf,j(t) : |uf,j(t)| ≤ umax
f,j , j ∈ [1, q]}

(6.2)

where umax
s,i and umax

f,j are positive real numbers, specifying the input constraints.

The disturbance vector is assumed to be absolutely continuous and bounded, i.e.,

W := {w(t) ∈ Rl : |w(t)| ≤ θ} where θ is a positive real number. Since the small

parameter ϵ multiplies the time derivative of the vector z in the system of Eq. 6.1, the

separation of the slow and fast variables in Eq. 6.1 is explicit, and thus, we will refer

to the vector x as the slow states and to the vector z as the fast states. We assume

that the vector fields f and g are sufficiently smooth in Rn × Rm × [0, ϵ̄) × Rp × Rl

and Rn×Rm× [0, ϵ̄)×Rq×Rl, respectively, for some ϵ̄ > 0, and that the origin is an

equilibrium point of the unforced nominal system (i.e., system of Eq. 6.1 with us = 0,

uf = 0 and w = 0).

With respect to the control problem formulation, we assume that the fast states

z are sampled continuously and their measurements are available for all time t (for
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example, variables for which fast sampling is possible usually include temperature,

pressure and hold-ups) while the slow states x are sampled synchronously and are

available at time instants indicated by the time sequence {tk≥0} with tk = t0+k∆, k =

0, 1, . . . where t0 is the initial time and ∆ is the measurement sampling time of the slow

states (for example, slowly sampled variables usually involve species concentrations).

The set of manipulated inputs uf is responsible for stabilizing the fast dynamics of

Eq. 6.1 and for this set the control action is assumed to be computed every ∆f , while

the set of manipulated inputs us is evaluated every ∆s and is responsible for stabilizing

the slow dynamics and enforcing a desired level of optimal closed-loop performance.

The relationship between ∆, ∆s and ∆f will be discussed below.

6.2.3 Two-time-scale decomposition

The explicit separation of slow and fast variables in the system of Eq. 6.1 allows

decomposing it into two separate reduced-order systems evolving in different time-

scales. To proceed with such a two-time-scale decomposition and in order to simplify

the notation of the subsequent development, we will first address the issue of con-

trolling the fast dynamics. Since there is no assumption that the fast dynamics of

Eq. 6.1 are asymptotically stable, we assume the existence of a “fast” model predic-

tive control law uf that renders the fast dynamics asymptotically stable in a sense

to be made precise in Assumption 6.2 below. In contrast to previous approaches to

uf controller design (e.g., [54]), we focus on the design of a feedback control law that

does not modify the open-loop equilibrium manifold for the fast dynamics. This is

in contrast to our previous work [12] (also Chapter 5) where the fast feedback uf

modifies the equilibrium manifold for the fast dynamics in the closed-loop system.

This implies that when we set ϵ = 0 in the singularly perturbed system of Eq. 6.1 to
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derive the slow subsystem uf = 0, and the resulting slow subsystem takes the form:

dx

dt
= f(x, z, 0, us, w) (6.3a)

0 = g(x, z, 0, 0, w) (6.3b)

Assumption 6.1 below is a standard requirement in singularly perturbation theory

(please see, for example, [54]) and it is made to ensure that the system of Eq. 6.1 has

an isolated equilibrium manifold for the fast dynamics. On this manifold, z can be

expressed in terms of x and w using an algebraic expression; note that g(x, z, 0, 0, w) is

in this case independent of the expression of the “fast” feedback control law uf . This

assumption does not pose any significant limitations in practical applications but it

is a necessary one in the singular perturbation framework to construct a well-defined

slow subsystem.

Assumption 6.1 The equation g(x, z, 0, 0, w) = 0 possesses a unique root

z = g̃(x,w) (6.4)

with the properties that g̃ : Rn × Rl → Rm and its partial derivatives
∂g̃

∂x
,
∂g̃

∂w
are

sufficiently smooth.

Using z = g̃(x,w), we can re-write Eq. 6.3 as follows:

dx

dt
= f(x, g̃(x,w), 0, us, w) =: fs(x, us, w) (6.5)

We will refer to the subsystem of Eq. 6.5 as the slow subsystem.
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Introducing the fast time scale τ =
t

ϵ
and the deviation variable y = z − g̃(x,w),

we can rewrite the nonlinear singularly perturbed system of Eq. 6.1 as follows:

dx

dτ
= ϵf(x, y + g̃(x,w), ϵ, us, w)

dy

dτ
= g(x, y + g̃(x,w), ϵ, uf , w)− ϵ

∂g̃

∂w
ẇ

−ϵ∂g̃
∂x

f(x, y + g̃(x,w), ϵ, us, w)

(6.6)

Setting ϵ = 0, we obtain the following fast subsystem:

dy

dτ
= g(x, y + g̃(x,w), 0, uf , w) (6.7)

where x and w can be considered as “frozen” to their initial values.

6.2.4 Slow-fast subsystem stabilizability assumptions

We assume that there exists a Lyapunov-based locally Lipschitz control law hs(x) =

[hs1(x) . . . hsp(x)]
T with us,i = hsi(x), i = 1, . . . , p, which renders the origin of the

nominal closed-loop slow subsystem of Eq. 6.5 asymptotically stable while satisfying

the input constraints for all the states x inside a given stability region. Such an explicit

controller can be designed using Lyapunov-based control techniques [60, 18]. Using

converse Lyapunov theorems [75, 60, 18], this assumption implies that there exist

functions αs,i(·), i = 1, 2, 3 of class K and a continuously differentiable Lyapunov

function Vs(x) for the nominal closed-loop slow subsystem that satisfy the following

inequalities:

αs,1(|x|) ≤ Vs(x) ≤ αs,2(|x|)
∂Vs(x)

∂x
(fs(x, hs(x), 0)) ≤ −αs,3(|x|)

hs(x) ∈ U

(6.8)
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for all x ∈ Ds ⊆ Rn where Ds is an open neighborhood of the origin. We denote the

region Ωρs ⊆ Ds as the stability region of the closed-loop slow subsystem under the

Lyapunov-based controller hs(x). By continuity, the smoothness property assumed

for the vector fields fs(x, us, w) and taking into account that the manipulated inputs

us,i, i = 1, . . . , p, and the disturbance w are bounded in convex sets, there exists a

positive constant Ms such that

|fs(x, us, w)| ≤Ms (6.9)

for all x ∈ Ωρs , us ∈ U , and w ∈ W . In addition, by the continuous differentiable

property of the Lyapunov function Vs(x) and the smoothness property assumed for

the vector field fs(x, us, w), there exist positive constants Lx and Lws such that

|∂Vs

∂x
fs(x, us, w)−

∂Vs

∂x
fs(x

′, us, w)| ≤ Lx|x− x′|

|∂Vs

∂x
fs(x, us, w)−

∂Vs

∂x
fs(x, us, w

′)| ≤ Lws |w − w′|
(6.10)

for all x, x′ ∈ Ωρs , us ∈ U , and w,w′ ∈ W .

Assumption 6.2 There exists a feedback control law uf = p(x)y ∈ V where p(x)

is a sufficiently smooth vector function of its argument, such that the origin of the

closed-loop fast subsystem:

dy

dτ
= g(x, y + g̃(x,w), 0, p(x)y, w) (6.11)

is globally asymptotically stable, uniformly in x ∈ Rn and w ∈ Rl, in the sense that

there exists a class KL function βy such that for any y(0) ∈ Rm:

|y(t)| ≤ βy(|y(0)|,
t

ϵ
) (6.12)
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for t ≥ 0.

This assumption implies that there exist functions αf,i(·), i = 1, 2, 3 of class K and a

continuously differentiable Lyapunov function Vf (y) for the nominal closed-loop fast

subsystem that satisfy the following inequalities:

αf,1(|y|) ≤ Vf (x) ≤ αf,2(|y|)
∂Vf (x)

∂y
(g(x, y + g̃(x,w), 0, p(x)y, w)) ≤ −αf,3(|y|)

p(x)y ∈ V

(6.13)

for all y ∈ Df ⊆ Rm where Df is an open neighborhood of the origin. We denote the

region Ωρf ⊆ Df as the stability region of the closed-loop fast subsystem under the

nonlinear controller p(x)y.

By continuity, the smoothness property assumed for the vector fields g(x, y, 0, uf , w)

and taking into account that the manipulated inputs uf,j, j = 1, . . . , q, and the dis-

turbance w are bounded in convex sets, there exists a positive constant Mf such

that

|g(x, y, 0, uf , w)| ≤Mf (6.14)

for all y ∈ Ωρf , uf ∈ V , and w ∈ W . In addition, by the continuous differentiable

property of the Lyapunov function Vf (x) and the smoothness property assumed for

the vector field g(x, y, 0, uf , w), there exist positive constants Ly and Lwf
such that

|
∂Vf

∂y
g(x, y, 0, uf , w)−

∂Vf

∂y
g(x, y′, 0, uf , w)| ≤ Ly|y − y′|

|
∂Vf

∂y
g(x, y, 0, uf , w)−

∂Vf

∂y
g(x, y, 0, uf , w

′)| ≤ Lwf
|w − w′|

(6.15)

for all y, y′ ∈ Ωρf , uf ∈ V , and w,w′ ∈ W .
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6.3 Fast-Slow MPC design

The singular perturbation framework of Eq. 6.1 can be used to develop composite

control systems where an MPC is used in the fast time scale and another MPC is

used in the slow time-scale. A schematic of the proposed composite fast-slow MPC

architecture is shown in Fig. 6.1. In this case, a convenient way from a control

problem formulation point of view is to design a fast-MPC that uses feedback of the

deviation variable y in which case uf is only active in the boundary layer (fast motion

of the fast dynamics) and becomes nearly zero in the slow time-scale. In this case,

there is no need for communication between the fast MPC and the slow MPC (please

see Remark 6.2 below). Specifically, referring to the singularly perturbed system of

Eq. 6.6, the cost can be defined as:

J = Js + Jf

=

∫ ts

0

[
xT (τ̃)Qsx(τ̃) + uT

s (τ̃)Rsus(τ̃)
]
dτ̃

+

∫ tf

0

[
yT (τ̃)Qfy(τ̃) + uT

f (τ̃)Rfuf (τ̃)
]
dτ̃

(6.16)

where Qs, Qf , Rs, Rf are positive definite weighting matrices, and ts and tf are the

prediction horizons for the parts of the cost focusing on the slow and fast subsystems,

respectively.

6.3.1 Lyapunov-based slow MPC formulation

Referring to the slow subsystem of Eq. 6.5, we use the LMPC proposed in [79] which

guarantees practical stability of the closed-loop system and allows for an explicit

characterization of the stability region to compute us. The LMPC is based on the

Lyapunov-based controller hs(x). The controller hs(x) is used to define a stability
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Fast MPC

Slow MPC

ϵż = g(x, z, ϵ, uf , w)

ẋ = f(x, z, ϵ, us, w)

uf

us

x z

y

x

Figure 6.1: A schematic of the composite control system using MPC in both the fast
and slow time-scales.

constraint for the LMPC controller which guarantees that the LMPC controller in-

herits the stability and robustness properties of the Lyapunov-based controller hs(x).

The LMPC controller is based on the following optimization problem:

min
us∈S(∆s)

∫ Ns∆s

0

[x̃T (τ̃)Qsx̃(τ̃) + uT
s (τ̃)Rsus(τ̃)]dτ̃ (6.17a)

s.t. ˙̃x(τ̃) = fs(x̃(τ̃), us, 0) (6.17b)

us(τ̃) ∈ U (6.17c)

x̃(0) = x(tk) (6.17d)

∂Vs(x)

∂x
fs(x(tk), us(0), 0) ≤

∂Vs(x)

∂x
fs(x(tk), hs(x(tk)), 0) (6.17e)
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where S(∆s) is the family of piece-wise constant functions with sampling period ∆s,

Ns is the prediction horizon, x(tk) is the state measurement obtained at tk, x̃ is the

predicted trajectory of the nominal system with us, the input trajectory computed by

the LMPC of Eq. 6.17. The optimal solution to this optimization problem is denoted

by u∗
s(τ̃ |tk), and is defined for τ̃ ∈ [0, Ns∆s). Note that in the MPC of Eq. 6.17, the

control action is calculated every ∆s which is the sampling interval of the slow states

(i.e., ∆ = ∆s).

The optimization problem of Eq. 6.17 does not depend on the uncertainty and

guarantees that the system in closed-loop with the LMPC controller of Eq. 6.17

maintains the stability properties of the Lyapunov-based controller. The constraint

of Eq. 6.17e guarantees that the value of the time derivative of the Lyapunov function

at the initial evaluation time of the LMPC is lower or equal to the value obtained if

only the Lyapunov-based controller hs(x) is implemented in the closed-loop system in

a sample-and-hold fashion. This is the constraint that allows proving that the LMPC

inherits the stability and robustness properties of the Lyapunov-based controller. The

manipulated inputs of the closed-loop slow subsystem under the LMPC controller are

defined as follows

us(t) = u∗
s(t− tk|tk), ∀t ∈ [tk, tk+1). (6.18)

The main property of the LMPC controller is that the origin of the closed-loop system

is practically stable for all initial states inside the stability region Ωρs for a sufficient

small sampling time ∆s and disturbance upper bound θ. The main advantage of

LMPC approaches with respect to Lyapunov-based control is that optimality consid-

erations can be explicitly taken into account (as well as constraints on the inputs and

the states [79]) in the computation of the control action within an online optimization

framework.
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Proposition 6.1 (c.f. [79, 80]) Consider the slow subsystem of Eq. 6.5 in closed-

loop under the LMPC of Eq. 6.18 based on a Lyapunov-based controller hs(x) that

satisfies the conditions of Eq. 6.8. Let ϵws > 0, ∆s > 0 and ρs > ρss > 0, θ > 0 satisfy

the following constraint:

−αs,3(α
−1
s,2(ρ

s
s)) + LxMs∆s + Lwsθ ≤ −ϵws/∆s. (6.19)

There exists a class KL function βx and a class K function γx such that if x(0) ∈ Ωρs,

then x(t) ∈ Ωρss for all t ≥ 0 and

|x(t)| ≤ βx(|x(0)|, t) + γx(ρ
∗
s) (6.20)

with ρ∗s = max{Vs(x(t+∆s)) : Vs(x(t)) ≤ ρss}.

6.3.2 Lyapunov-based fast MPC formulation

Referring to the fast subsystem of Eq. 6.7, the fast MPC at time tk is formulated as

follows

min
uf∈S(∆f )

∫ Nf∆f

0

[ỹT (τ̂)Qf ỹ(τ̂) + uT
f (τ̂)Rfuf (τ̂)]dτ̂ (6.21a)

s.t.
dỹ

dτ̂
= g(x(tk), ỹ + g̃(x(tk), 0), 0, uf , 0) (6.21b)

uf ∈ V (6.21c)

ỹ(0) = y(tk) (6.21d)

∂Vf (y)

∂y
g(x(tk), y(tk) + g̃(x(tk), 0), 0, uf , 0)
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≤ ∂Vf (y)

∂y
g(x(tk), y(tk) + g̃(x(tk), 0), 0, p(x(tk))y(tk), 0) (6.21e)

where S(∆f ) is the family of piece-wise constant functions with sampling period ∆f ,

Nf is the prediction horizon of this MPC, y(tk) is the state measurement obtained at

tk, ỹ is the predicted trajectory of the nominal system with uf , the input trajectory

computed by the LMPC of Eq. 6.21. The optimal solution to this optimization

problem is denoted by u∗
f (τ̂ |tk), and is defined for τ̂ ∈ [0, Nf∆f ). Note that in the

MPC of Eq. 6.21, the control action is calculated every ∆f , the fast state z is available

every ∆f and the slow state x is available every ∆s. Note also that we assume that

∆s is an integer multiple of ∆f .

The manipulated inputs of the closed-loop fast subsystem under the LMPC con-

troller are defined as follows:

uf (t) = u∗
f (t− tk|tk), ∀t ∈ [tk, tk +∆f ). (6.22)

Proposition 6.2 (c.f. [79, 80]) Consider the fast subsystem of Eq. 6.7 in closed-

loop under the LMPC of Eq. 6.22 based on a nonlinear feedback control law p(x)y

that satisfies the conditions of Eq. 6.13. Let ϵwf
> 0, ∆f > 0 and ρf > ρfs > 0, θ > 0

satisfy the following constraint:

−αf,3(α
−1
f,2(ρ

f
s )) + LyMf∆f + Lwf

θ ≤ −ϵwf
/∆f . (6.23)

Then, there exists a class KL function βy and a class K function γy such that if

y(0) ∈ Ωρf , then y(t) ∈ Ωρfs
for all t ≥ 0 and

|y(t)| ≤ βy(|y(0)|,
t

ϵ
) + γy(ρ

∗
f ) (6.24)
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with ρ∗f = max{Vf (y(t+∆f )) : Vf (y(t)) ≤ ρfs}, uniformly in x ∈ Ωρs and w ∈ W .

Remark 6.1 The “fast” LMPC of Eq. 6.21 utilizes feedback of the “fast” state vector

z which is obtained continuously (fast sampling of the fast states) as well as feedback

of the slow states that is available at tk, tk+1, . . . where tk+1 = tk +∆. Since the fast

MPC has to compute its control action every ∆f , the measurement x(tk) will be used

in the controller of Eq. 6.21 for all fast sampling times, ∆f , within [tk, tk +∆] until

a new measurement of the slow state vector is obtained. Since x is practically frozen

in the boundary layer - time interval in which z changes a lot but x stays nearly

fixed (depending on the value of ϵ), - the stability of the closed-loop fast subsystem

uniformly in x and w can be proved; please see also [20] and next section.

6.4 Stability analysis

The closed-loop stability of the system of Eq. 6.1 under the LMPCs of Eqs. 6.17 and

6.21 is established in the following theorem under appropriate conditions.

Theorem 6.1 Consider the system of Eq. 6.1 in closed-loop with uf and us com-

puted by the LMPCs of Eqs. 6.22 and 6.18 based on controllers p(x)y and hs(·) that

satisfies the conditions of Eqs. 6.13 and 6.8. Let also Assumptions 6.1 and 6.2 and

the condition of Eqs. 6.19 and 6.23 hold. Then there exist functions βx and βy of

class KL, a pair of positive real numbers (δ, d) and ϵ∗ > 0 such that if

max{|x(0)|, |y(0)|, ||w||, ||ẇ||} ≤ δ and ϵ ∈ (0, ϵ∗], then,

|x(t)| ≤ βx(|x(0)|, t) + γx(ρ
∗
s) + d

|y(t)| ≤ βy(|y(0)|,
t

ϵ
) + γy(ρ

∗
f ) + d

(6.25)

for all t ≥ 0.
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Proof: When uf = u∗
f and us = u∗

s are determined by the LMPCs of Eqs. 6.22

and 6.18, respectively, the closed-loop system takes the following form:

ẋ = f(x, z, ϵ, u∗
s, w), x(0) = x0

ϵż = g(x, z, ϵ, u∗
f , w), z(0) = z0.

(6.26)

We will first compute the slow and fast closed-loop subsystems. Setting ϵ = 0 in

Eq. 6.26 and taking advantage of the fact that u∗
f = 0 when ϵ = 0, we obtain:

dx

dt
= f(x, z, 0, u∗

s, w)

0 = g(x, z, 0, 0, w).

(6.27)

Using that the second equation has a unique, isolated solution z = g̃(x,w) (Assump-

tion 6.1), we can re-write 6.27 as follows:

dx

dt
= f(x, g̃(x,w), 0, u∗

s, w) = fs(x, u
∗
s, w) (6.28)

According to Proposition 6.1, the state x(t) of the closed-loop slow subsystem of

Eq. 6.28 starting from x(0) ∈ Ωρs stays in Ωρs (i.e., x(t) ∈ Ωρs ∀t ≥ 0) and satisfies

the bound of Eq.6.20.

We now turn to the fast subsystem. Using τ =
t

ϵ
and y = z − g̃(x,w), the

closed-loop system of Eq. 6.26 can be written as:

dx

dτ
= ϵf(x, y + g̃(x,w), ϵ, u∗

s, w)

dy

dτ
= g(x, y + g̃(x,w), ϵ, u∗

f , w)− ϵ
∂g̃

∂w
ẇ − ϵ

∂g̃

∂x
f(x, y + g̃(x,w), u∗

s, w)

(6.29)
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Setting ϵ = 0, the following closed-loop fast subsystem is obtained:

dy

dτ
= g(x, y + g̃(x,w), 0, u∗

f , w) (6.30)

According to Proposition 6.2, the state y(t) of the closed-loop fast subsystem of

Eq. 6.30 starting from y(0) ∈ Ωρf stays in Ωρf (i.e., y(t) ∈ Ωρf ∀t ≥ 0) and satisfies

the bound of Eq.6.24. Therefore, using similar arguments to the proof of Theorem 6.1

in [20], we have that there exist functions βx and βy of classKL, positive real numbers

(δ, d) (note that the existence of δ such that |x(0)| ≤ δ and |y(0)| ≤ δ imply that

x(0) ∈ Ωρs and y(0) ∈ Ωρf follows from the smoothness of Vs(x) and Vf (y)), and

ϵ∗ > 0 such that if max{|x(0)|, |y(0)|, ||w||, ||ẇ||} ≤ δ and ϵ ∈ (0, ϵ∗], then, the bounds

of Eq.6.25 hold for all t ≥ 0. �

Remark 6.2 Referring to the composite fast-slow MPC architecture of Fig. 6.1, we

note that it can find an interpretation in the context of distributed MPC architec-

tures [65, 63, 19]. While conventional distributed MPC design where one MPC could

manipulate uf and another MPC could manipulate us would normally require the

use of communication between the fast MPC and the slow MPC to coordinate their

actions ([92, 95]), the fast-slow MPC architecture of Fig. 1 takes advantage of the

two-time-scale system property to design a fast-MPC that uses feedback of the devi-

ation variable y in which case uf is only active in the boundary layer (fast motion

of the fast dynamics) and becomes nearly zero in the slow time-scale. As a result,

there is no need for communication between the fast MPC and the slow MPC; in this

sense, the control structure of Fig. 6.1 can be classified as decentralized. This point

demonstrates that accounting for time-scale multiplicity can lead to simplification in

the communication strategy of distributed MPCs. Such a two-time-scale DMPC ar-

chitecture takes advantage of the time-scale separation in the process model and yields
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near optimal performance in a sense to be precisely defined in the next section.

6.5 Near Optimality

In this section, we establish that the finite-time cost of the closed-loop singularly per-

turbed system of Eq. 6.26 under the fast-slow MPCs, converges to the corresponding

cost computed on the basis of the fast and slow subsystems. It should be emphasized

that the finite-time time analysis of the closed-loop system optimality relies on the

practical closed-loop system stability established in the previous section. We note

that after the fast and slow states enter their corresponding final invariant set, we

can only guarantee boundedness of the closed-loop system states but not eventual

convergence to the origin. Therefore, the integral of the closed-loop cost over the

infinite-time interval is infinite. As a consequence, we focus on near-optimality over

a finite-time interval.

We assume w = 0 and define the finite-time interval [0, tI ], where tI is the time

needed for the state of the closed-loop system of Eq. 6.26 starting from the initial

condition (x(0), z(0)) that satisfies the conditions of Theorem 6.1 to enter an invariant

set containing the origin in which x(tI) ∈ Ωρss and y(tI) ∈ Ωρfs
. Referring to the system

of Eq. 6.26 with w = 0, the finite-time cost in the interval time [0, tI ] is defined as

follows:

J = Js + Jf

=

∫ tI

0

[
xT (τ̄)Qsx(τ̄) + u∗T

s (τ̄)Rsu
∗
s(τ̄)

]
dτ̄

+

∫ tI

0

[
yT (τ̄)Qfy(τ̄) + u∗T

f (τ̄)Rfu
∗
f (τ̄)

]
dτ̄

(6.31)

where Qs, Rs, Qf , Rf are appropriate matrices defined in section 6.3. We now define
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the trajectory of the closed-loop slow subsystem under the slow LMPC:

˙̂x = fs(x̂, u
∗
s, 0), x̂(0) = x0 (6.32)

for t ∈ [0, tI ], and the corresponding cost is defined as follows:

J∗
s =

∫ tI

0

[
x̂T (τ̄)Qsx̂(τ̄) + u∗T

s (τ̄)Rsu
∗
s(τ̄)

]
dτ̄ (6.33)

Similarly, we define the trajectory of the closed-loop fast subsystem under the fast

LMPC:

dŷ

dτ
= g(x, ŷ + g̃(x, 0), 0, u∗

f , 0), ŷ(0) = y0, (6.34)

and the corresponding cost is defined as follows:

J∗
f =

∫ tb

0

[
ŷT (

τ̄

ϵ
)Qf ŷ(

τ̄

ϵ
) + u∗T

f (
τ̄

ϵ
)Rfu

∗
f (
τ̄

ϵ
)
]
dτ̄ (6.35)

where tb ∼ O(ϵ). We now state the main result of this section.

Theorem 6.2 Consider the closed-loop system of Eq. 6.26 under the slow and fast

LMPCs of Eqs. 6.17 and 6.21, respectively, and its corresponding slow and fast sub-

systems of Eqs. 6.32 and 6.34. Let tI be the time needed for the state of the closed-

loop system of Eq. 6.26 starting from the initial condition (x(0), z(0)) satisfying the

conditions of Theorem 6.1 to enter an invariant set containing the origin in which

x(tI) ∈ Ωρss and y(tI) ∈ Ωρfs
. Then, J → J∗

s + J∗
f as ϵ→ 0.

Proof 6.1 We exploit closeness of solutions results and combine them with optimal-

ity results to prove that the two-time-scale LMPC is near-optimal in the sense that

the cost function associated with the full closed-loop system approaches the sum of

the optimal costs of the reduced subsystems when ϵ → 0. Using the closed-loop
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stability results of Eq. 6.25, we can obtain time tI which is the time needed for the

state of the closed-loop system of Eq. 6.26 starting from (x(0), z(0)) satisfying the

conditions of Theorem 6.1 to enter an invariant set containing the origin in which

x(tI) ∈ Ωρss and y(tI) ∈ Ωρfs
. Using the bound of Eq. 6.25 and similar arguments to

the ones in the proof of Tikhonov’s theorem (see Theorem 9.1 in [52]), there exists

ϵ0 ∈ (0, ϵ∗] such that ∀ϵ ∈ (0, ϵ0]:

x(t) = x̂(t) +O(ϵ), ∀t ∈ [0, tI ] (6.36)

y(t) = ŷ(
t

ϵ
) +O(ϵ), ∀t ∈ [0, tI ] (6.37)

and

u∗
s(x(t)) = u∗

s(x̂(t)) +O(ϵ), ∀t ∈ [0, tI ]

u∗
f (x(t), y(t)) = u∗

f (x̂(t), ŷ(
t
ϵ
)) +O(ϵ), ∀t ∈ [0, tI ]

(6.38)

From the estimates of Eqs. 6.36, 6.37 and 6.38, it can be concluded that there exists

a positive real number N̄ such that Eq. 6.31 yields:

J =

∫ tI

0

[
xT (τ̄)Qsx(τ̄) + u∗

T

s (x(τ̄))Rsu
∗
s(x(τ̄))

]
dτ̄

+

∫ tI

0

[
yT (τ̄)Qfy(τ̄) + u∗

T

f (x(τ̄), y(τ̄))Rfu
∗
f (x(τ̄), y(τ̄))

]
dτ̄

=

∫ tI

0

[
x̂T (τ̄)Qsx̂(τ̄) + u∗

T

s (x̂(τ̄))Rsu
∗
s(x̂(τ̄))

]
dτ̄

+

∫ tb

0

[
ŷT (

τ̄

ϵ
)Qf ŷ(

τ̄

ϵ
) + u∗

T

f (x̂(τ̄), ŷ(
τ̄

ϵ
))Rfu

∗
f (x̂(τ̄), ŷ(

τ̄

ϵ
))
]
dτ̄ + N̄ϵ

= J∗
s + J∗

f + N̄ϵ

(6.39)

Thus, as ϵ→ 0, we have that J → J∗
s + J∗

f .

Remark 6.3 Most of the literature on control of singularly perturbed systems (e.g.,

[10]) deals with systems in which the manipulated input (or input vector), u, is de-
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composed into two components, us and uf , (i.e., u = us + uf) and continuous (not

sample-and-hold) implementation of the control action on the process (i.e., singularly

perturbed system) is assumed. This formulation for the manipulated inputs and control

action implementation, however, is not general enough to deal with model predictive

control as the method used for feedback design. Specifically, MPC implementation

should be done in a sample-and-hold fashion, and moreover, different sampling times

should be utilized by the manipulated inputs used to control the fast and slow dy-

namics, respectively. In particular, the manipulated inputs used to control the fast

dynamics, uf , should use a small sampling time, while the manipulated inputs used

to control the slow dynamics, us, could use a larger sampling time. Such a difference

in sampling times would not have been possible in the standard singularly perturbed

control problem formulation where continuous implementation of manipulated inputs

is assumed.

6.6 Chemical Process Example

In this section, we consider a chemical process example to demonstrate the structure

and implementation of the proposed fast-slow MPC architecture in a practical setting.

The chemical process consists of a network of two continuously stirred tank reactors

(CSTRs) and one flash tank separator with recycle. Specifically, fresh feed of species

A goes into CSTR 1 through stream F0. An elementary reaction (r1) A → B takes

place inside CSTR 1. The outlet of CSTR 1 is fed into CSTR 2, where a second

reaction takes place (r2) B + C → D and produces the desired product D; note that

r2 does not take place in CSTR 1 because catalyst is not added in CSTR 1. Another

stream F4 supplies reactant C into CSTR 2 continuously. All leftover materials from

CSTR 2 enter a flash separator where most of the reactants are being recycled back
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FR, T3, CAr, CBr,
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CB3, CC3, CD3

F4, Tco, CC0

Q1

Slow MPC

Fast MPC

Q2

Q3

Figure 6.2: Diagram of chemical process example and fast-slow MPC architecture.
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to CSTR 1. The dynamic equations describing the behavior of the process, obtained

through material and energy balances under standard modeling assumptions, are

given below:

V1
dCA1

dt
=F0CA0 + FrCAr − F1CA1 − k1e

−E1/RT1CA1V1 (6.40a)

V1
dCB1

dt
=FrCBr − F1CB1 + k1e

−E1/RT1CA1V1 (6.40b)

V1
dCC1

dt
=FrCCr − F1CC1 (6.40c)

V1
dCD1

dt
=FrCDr − F1CD1 (6.40d)

ρmcpmV1
dT1

dt
=F0ρmAcpmATA0 + FrρmcpmT3 − F1ρmcpmT1

+ (−∆Hr1)k1e
−E1/RT1CA1V1 +Q1 (6.40e)

V2
dCA2

dt
=F1CA1 − F2CA2 − k1e

−E1/RT2CA2V2 (6.40f)

V2
dCB2

dt
=F1CB1 − F2CB2 + k1e

−E1/RT2CA2V2 − k2e
−E2/RTCB2CC2V2 (6.40g)

V2
dCC2

dt
=F1CC1 + F4CC0 − F2CC2 − k2e

−E2/RT2CB2CC2V2 (6.40h)

V2
dCD2

dt
=F1CD1 − F2CD2 + k2e

−E2/RT2CB2CC2V2 (6.40i)

ρmcpmV2
dT2

dt
=F1ρmcpmT1 + F4ρmccpmcTC0 − F2ρmcpmT2

+ (−∆Hr1)k1e
−E1/RT2CA2V2 + (−∆Hr2)k2e

−E2/RT2CB2CC2V2 +Q2

(6.40j)

V3
dCA3

dt
=F2CA2 − F3CA3 − FrCAr (6.40k)
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V3
dCB3

dt
=F2CB2 − F3CB3 − FrCBr (6.40l)

V3
dCC3

dt
=F2CC2 − F3CC3 − FrCCr (6.40m)

V3
dCD3

dt
=F2CD2 − F3CD3 − FrCDr (6.40n)

ρmcpmV3
dT3

dt
=F2ρmcpm(T2 − T3)−

A,B,C,D∑
i

FrCirH
vap
i +Q3 (6.40o)

where the definitions of the the process variables and their assigned values are shown

in Table 6.1 and Table 6.2, respectively.

The models of the CSTRs and of the separator are developed under the assump-

tions that the liquid hold-up level of all tanks is fixed and the relative volatility of each

species is constant. The following algebraic equations govern the molar composition

of different species at the recycle stream:

xAr =
αACA3

αACA3 + αBCB3 + αCCC3 + αDCD3

xBr =
αBCB3

αACA3 + αBCB3 + αCCC3 + αDCD3

xCr =
αCCC3

αACA3 + αBCB3 + αCCC3 + αDCD3

xDr =
αDCD3

αACA3 + αBCB3 + αCCC3 + αDCD3

where xir, i = A,B,C,D represents the molar composition of species A,B,C and D,

respectively. Each of the tanks has an external heat input that is used as manipulated

input, labeled as Q1, Q2 and Q3. In this example, the liquid holdup V2 in the catalytic

reactor CSTR 2 is significantly smaller than the liquid holdup in CSTR 1, V1, and

the flash separator V3.

Taking this into account, the process model of Eq. 6.40 can be converted into
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Table 6.1: Process variables

Ci1, i = A,B,C D Concentration of different species at CSTR-1

Ci2, i = A,B,C D Concentration of different species at CSTR-2

Ci3, i = A,B,C D Concentration of different species at CSTR-3

Cir, i = A,B,C D Concentration of different species at Fr

Tj, i = 1,2,3,r Temperatures of CSTR-1,2,3

TA0, TC0 Temperatures of stream F0 and F4

V1, V2 and V 3 Vessel volume of CSTR-1,2 and separator

ρm, ρmA and ρmC Density of the mixture, species A and C

cm, cmA and cmC Heat capacity of the mixture, species A and C

∆Hr1 and ∆Hr2 Heat of reaction r1 and r2

k1 and k2 Reaction coefficients of r1 and r2

E1 and E2 Activation energy of r1 and r2

Hvap
i , i =A,B,C,D Enthalpy of vaporization of different species
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Table 6.2: Process values

V1 4.0 m3 V2 0.2 m3

V3 3.0 m3 TA0 298.15 K

TC0 298.15 K CA0 2 kmol m−3

CC0 2 kmol m−3 F0 0.04 m3 s−1

F4 0.05 m3 s−1 Fr 1.8 m3 s−1

ρm 900.0 kg m−3 ρmA 950.0 kg m−3

ρmC 870.0 kg m−3 cpm 0.231 kcal kg−1 K−1

cpmA 0.214 kcal kg−1 K−1 cpmC 0.251 kcal kg−1 K−1

∆Hr1 5.4 × 101 kcal mol−1 ∆Hr2 9.98 × 101 kcal mol−1

k1 3.35 × 103 s−1 k2 5.25 × 104 m3 kmol−1 s−1

E1 1.04 × 104 kcal kmol E2 4.0 × 103 kcal kmol

R 1.987 kcal kmol−1 K−1 Hvap
A 100 kcal kmol−1

Hvap
B 110 kcal kmol−1 Hvap

C 120 kcal kmol−1

Hvap
D 120 kcal kmol−1
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the standard singularly perturbed form by dividing Eq.6.40f-6.40j by V1 and defining

ε = V2

V1
to derive the following state-space model:

ẋ = f(x, z, ε,Q1, Q3, ws), x(0) = x0

εż = g(x, z, ε,Q2, wf ), z(0) = z0

(6.41)

where the fast state z = [CA2 CB2 CC2 CD2 T2] and the slow state x consists of the

rest of the state variables. With respect to the manipulated input decomposition, Q1

and Q3 enter the slow process states, x, and will be regulated by the slow MPC, and

Q2 enters the fast process states, z, and will be regulated by the fast MPC. Finally,

we define the following deviation variables z̄ = z − zset and x̄ = x − xset, where zset

and xset are the desired (final) steady-state values and are defined in Table. 6.3.

6.6.1 Controller synthesis

Table 6.3: Initial steady-state and final steady-state manipulated input values

Initial steady state (unit kcal)

Qint
1 = 3.2e3 Qint

2 = −3.7e3 Qint
3 = 3.5e3

Final steady-state (unit kcal)

Qset
1 = 5.2e3 Qset

2 = −4.7e3 Qset
3 = 2.8e3

In this section, we synthesize three control schemes: a) a centralized LMPC ar-

chitecture, b) an MPC architecture that uses a “fast” explicit controller and a slow

LMPC [12], and c) the composite fast-slow LMPC architecture introduced in this

paper, shown in Figure 6.2. All controller designs have the same objective to drive

the system from an initial steady-state to a final steady-state; both are stable steady-
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states and are defined in Table 6.3. In the context of the centralized LMPC, the ma-

nipulated input vector is defined as u = [u1 u2 u3]
T = [Q1−Qset

1 Q2−Qset
2 Q3−Qset

3 ]T

for all LMPC synthesis and their constraints are chosen to be:

3.2e3 kcal ≤ u1 ≤ 6.0e3 kcal

−5.5e3 kcal ≤ u2 ≤ −2.8e3 kcal

2.0e3 kcal ≤ u3 ≤ 4.0e3 kcal

We consider the following objective function in the centralized LMPC design:

Jc =

∫ tI

0

[x̄T (τ̄)Qc1x̄(τ̄) + z̄T (τ̄)Qc2z̄(τ̄) + uT (τ̄)Rcu(τ̄)]dτ̄ (6.42a)

where Qc1 and Qc2 are weighting matrices and their diagonal values are defined as

the reciprocal of the average of the initial and final steady-state values of the states

they are associated with, and Rc = diag([1.0e−8 1.0e−8 1.0e−10]) is also a weight-

ing matrix. With respect to the Lyapunov constraint, three different proportional

controllers are implemented as h(x̄):

u1 = k1(T
set
1 − T1) (6.43a)

u2 = k2(T
set
2 − T2) (6.43b)

u3 = k3(T
set
3 − T3) (6.43c)

where T set
1 , T set

2 and T set
3 are the final steady-state temperatures of each vessel and k1,

k2 and k3 are constant coefficients and are chosen to be -60, 50 and 30, respectively. All

diagonal elements of the weighting matrices of the Lyapunov function V = x̄TP1x̄ +

z̄TP2z̄ are chosen to be unity.
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To synthesize the slow LMPC and the composite fast-slow LMPC schemes, we

first split the set of manipulated inputs u into us = [u1 u3] and uf = [u2]. Following

from Eq. 6.17, the slow time-scale objective function Js in this example is chosen to

be:

Js =

∫ tI

0

[
x̄T (τ̄)Qc1x̄(τ̄) + uT

s (τ̄)Rsus(τ̄)
]
dτ̄ (6.44)

where Rs has the same values as in Rc for the same input variables. In order to

solve for Eq. 6.17c, the nonlinear algebraic equation g(x̄, w) has to be solved at each

slow sampling time when the slow state measurements are available. The Lyapunov

based controller hs(x̄) in the slow LMPC design implements the same proportional

control law as in Eq.6.43a and Eq.6.43c. To complete the synthesis of the slow LMPC

scheme, we assign the slow LMPC to regulate the heat inputs Q1 and Q3 and assign

the proportional controller Eq.6.43b to regulate the heat input Q2.

Finally, we use the following objective function Jf for the fast LMPC:

Jf =

∫ tI

0

[
yT (τ̄)Qc2y(τ̄) + uT

f (τ̄)Rfuf (τ̄)
]
dτ (6.45)

where Rf = 1.0e − 8 and y is defined as y = z̄ − g(x̄, w). The formulation of fast

LMPC requires that the nonlinear function g(x̄, w) has to be solved at the end of each

fast sampling time where the slow state measurements are available. The controller

p(x̄)y appeared on the Lyapunov constraint at Eq. 6.21e is designed to be a control

law of the form p(x̄)y = k4(g(x̄, w) − T2) where k4 = 25. Together with the slow

LMPC design, this completes the synthesis of the composite fast-slow LMPC.
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6.7 Closed-loop results

The simulations are performed in C++ programming environment by a Core2 Quad

Q6600 computer. The simulation time for each run is 510 seconds. We study the

closed-loop system performance as well as the response speed by each of the MPC

schemes, and by comparison, we evaluate the characteristics of the composite fast-

slow LMPC design in terms of stability, optimality and control action evaluation

time.

For all simulation studies, we use the same prediction horizon N = 1. The fast

and slow state measurements are assumed to be available at every three seconds

(∆ = 3 s) to all LMPC controllers, and the temperature measurement (T2) is assumed

to be continuously available to the proportional controller in the composite LMPC

design. The sampling time of the centralized LMPC, fast LMPC, and slow LMPC

are ∆c = 15 s, ∆s = 15 s and ∆f = 3 s, respectively. For each LMPC scheme,

only the first piece from the computed optimal input trajectory of the optimization

problems is implemented in each sampling time following a receding horizon scheme.

The manipulated input regulated by the proportional controller in the slow LMPC

scheme is also implemented in a sample-and-hold fashion and its sampling time is

denoted as ∆P
f .

The numerical method that is used to integrate the process model is explicit Euler

with a fixed time step equal to 0.001 seconds. However, in the cases of slow LMPC

scheme and composite fast-slow LMPC scheme, the explicit separation of the fast

and slow dynamics allows a larger time step to be used by the slow LMPC, and it is

0.1 seconds. The optimization problems of each LMPC scheme are solved using the

open source interior point optimizer Ipopt. The Hessian is approximated by Quasi-

Newton’s method. Regarding the termination criteria and the maximum number of
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iterations, the values used by all simulations are 10−3 and 150, respectively.

The closed-loop performance of all LMPC schemes is illustrated in Fig. 6.3 and

in Fig. 6.4. The trajectories of the slow LMPC scheme with the “fast” proportional

controller in Fig. 6.3 are evaluated based on Eq. 6.42a for the purpose of comparison.

The performance costs in both figures clearly indicate that both the centralized LMPC

and the fast-slow LMPC schemes stabilize the closed-loop process asymptotically to

the final steady state. We also note that both the fast LMPC and the slow LMPC in

the composite fast-slow MPC design are able to stabilize the fast and slow dynamics of

the singularly perturbed system asymptotically (Fig. 6.4). On the other hand, under

the setting of ∆P
f = 1 s, the slow LMPC scheme using a “fast” explicit controller is not

able to drive the closed-loop system to the final steady state. It causes oscillations

of the closed-loop system around the final steady state, which contributes to the

increase of the performance cost with increasing simulation time (Fig. 6.3). This

problem can be resolved if the sampling time for the ”fast” proportional controller is

reduced to 0.001 seconds; specifically, Fig. 6.3 shows that in this case the oscillations

diminish and the closed-loop system converges to the final steady state gradually with

a performance cost that is higher than the one of the centralized LMPC. Finally, it is

important to note that we can not directly compare the optimal performance of the

centralized LMPC scheme and of the composite fast-slow LMPC scheme since they

utilize different cost functions.

Fig. 6.5 and Fig. 6.6 show the simulation results comparing the computational

speed between the centralized LMPC and the composite fast-slow LMPC. Since the

explicit separation between the fast and slow dynamics reduces the dimension of the

process dynamic model and the corresponding step of numerical integration as well

as the number of manipulated inputs for the slow LMPC and the fast LMPC, the
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Figure 6.3: Performance cost of each controller design based on Eq. 6.42a: the cen-
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Figure 6.5: The total evaluation time needed for each evaluation of the control action
by the centralized LMPC design (dashed-dotted line with plus) and by the fast LMPC
of the fast-slow LMPC design (dashed line with circles).
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Figure 6.6: The total evaluation time needed for each evaluation of the control action
by the centralized LMPC design (dashed-dotted line with plus) and by the slow LMPC
of the fast-slow LMPC design (dotted line with asterisks).
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composite fast-slow LMPC computes the control action significantly faster compared

to the centralized LMPC. Specifically, the results in Fig. 6.5 and Fig. 6.6 indicate

that the fast LMPC needs on average one second for the control action evaluation at

each fast sampling time, and compared to the centralized LMPC, it is at least five

times faster on average. Similarly, the slow LMPC is at least five times faster on

average in evaluating its control actions at each slow sampling time compared to the

time needed for the centralized LMPC.

6.8 Conclusions

This chapter focused on the theoretical development of a composite fast-slow LMPC

architecture for nonlinear singularly perturbed systems in standard form and its ap-

plication to a chemical process which consists of two continuous stirred tank reactors

(CSTRs) and a flash separator with recycle. The proposed fast-slow MPC design

is decentralized in nature and enforces stability and near-optimality in the closed-

loop singularly perturbed system provided the singular perturbation parameter is

sufficiently small. Extensive simulations were carried out to compare the proposed

architecture with existing centralized LMPC techniques from computational time and

closed-loop performance points of view.
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Chapter 7

Conclusions

This dissertation presented methods for designing distributed model predictive control

(MPC) systems for nonlinear and two-time-scale process networks and demonstrated

their application using various chemical process network examples.

Specifically, Chapter 2 presented two different architectures of distributed MPC

for nonlinear process systems: sequential distributed LMPC and iterative distributed

LMPC. In both architectures, the MPC controllers were designed via LMPC tech-

niques. In the sequential distributed LMPC architecture, the distributed LMPC con-

trollers adopt a one-directional communication strategy and are evaluated in sequence

and once at each sampling time; in the iterative distributed LMPC architecture, the

distributed LMPC controllers utilize a bi-directional communication strategy, are

evaluated in parallel and iterate to improve closed-loop performance. Each LMPC

controller in both architectures incorporates a suitable stability constraint which en-

sures that the state of the closed-loop system under the proposed distributed MPC

architectures is ultimately bounded in an invariant set. Extensive simulations using

a catalytic alkylation of benzene process example were carried out to compare the

proposed distributed MPC architectures with existing centralized LMPC algorithms
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from computational time and closed-loop performance points of view.

In Chapter 3, we designed sequential and iterative DMPC schemes for large scale

nonlinear systems subject to asynchronous and delayed state feedback. First, we fo-

cused on nonlinear systems subject to asynchronous measurements without delays.

In this case, we first extended our previous sequential DMPC design [66] to include

asynchronous measurements and then re-designed the iterative DMPC scheme pro-

posed in [63] to take explicitly into account asynchronous feedback. Following that,

we focused on the design of an iterative DMPC scheme for nonlinear systems subject

to delayed measurements. This design took advantage of the bi-directional com-

munication network already used in the iterative DMPC framework. Mathematical

analyses were carried out to derive sufficient conditions under which the proposed

distributed control designs guarantee that the states of the closed-loop system are

ultimately bounded in regions that contain the origin. Through a catalytic alkylation

of benzene process example, we successfully compared the proposed DMPC designs

with two centralized LMPC designs from stability, evaluation time and performance

points of view.

Chapter 4 presented an application of centralized LEMPC and sequential dis-

tributed LEMPC architectures to a catalytic alkylation of benzene process network

which consists of four continuous stirred tank reactors and a flash separator. In the se-

quential distributed LEMPC design, three separate Lyapunov-based model predictive

controllers were designed to control the process in a sequential coordinated fashion.

The closed-loop stability properties of the sequential distributed LEMPC design were

rigorously analyzed and sufficient conditions for closed-loop stability were established.

Simulations were carried out to compare the proposed economic MPC architectures

with a centralized LMPC which uses a quadratic cost function that includes penalty
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on the deviation of the states and inputs from their economically optimal steady-state

values, from computational time and closed-loop performance points of view.

Chapter 5 focused on model predictive control of a class of nonlinear singularly

perturbed systems. The motivation for this work is provided by broad classes of

large-scale process networks that involve coupled variables that evolve in disparate

(fast and slow) time scales. For such process networks, direct application of model

predictive control to compute the control actions for all manipulated inputs leads to

very high-order optimization problems that may not be solvable in real-time. Instead,

we proposed a control system using multirate sampling (i.e., fast sampling of easy-

to-measure fast-evolving variables and slow sampling of slow-evolving variables) and

consisting of an explicit feedback controller that stabilizes the fast dynamics and a

model predictive controller that stabilizes the slow dynamics and enforces desired per-

formance objectives in the slow subsystem was proposed. In this way, the model pre-

dictive controller solves an optimization problem with a substantially smaller number

of decision variables, and thus, it requires less computational time. Sufficient condi-

tions under which the closed-loop system stability, accounting for multirate sampling

and sample-and-hold implementation of the predictive controller, is guaranteed were

provided. The applicability and effectiveness of the proposed control system was il-

lustrated via a large-scale nonlinear reactor-separator process network which exhibits

two-time-scale behavior and the computational effectiveness of distributed predictive

control implementation was demonstrated.

In Chapter 6, we emphasized on the theoretical development of a composite fast-

slow LMPC architecture for nonlinear singularly perturbed systems in standard form

and its application to a chemical process which consists of two continuous stirred tank

reactors (CSTRs) and a flash separator with recycle. The proposed fast-slow MPC
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design is decentralized in nature and enforces stability and near-optimality in the

closed-loop singularly perturbed system provided the singular perturbation parameter

is sufficiently small. Extensive simulations were carried out to compare the proposed

architecture with existing centralized LMPC techniques from computational time and

closed-loop performance points of view.

Future research in distributed predictive control as well as related areas includes

the development of general methods for the handling of broad types of communication

disruptions between distributed controllers, the design of distributed state estimation

systems which provide fast and guaranteed convergence and the development of dis-

tributed plant monitoring and fault-tolerant control systems. The reader may refer

to [17, 90, 92] for more discussions on the related open problems.
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[69] J. Liu, D. Muñoz de la Peña, B. J. Ohran, P. D. Christofides, and J. F.
Davis. A two-tier control architecture for nonlinear process systems with con-
tinuous/asynchronous feedback. International Journal of Control, 83:257–272,
2010.

[70] P. Daoutidis M. Baldea and Z.K. Nagy. Nonlinear model predictive control
of integrated process systems. In NOLCOS 2010, 8th IFAC Symposium on
Nonlinear Control Systems, Bologna, Italy, 2010.

214
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