
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
ADMP: An Adaptive Multicast Routing Protocol for Mobile Ad HocNetworks

Permalink
https://escholarship.org/uc/item/7wf7j15b

Author
Garcia-Luna-Aceves, J.J.

Publication Date
2006-08-20

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7wf7j15b
https://escholarship.org
http://www.cdlib.org/

ADMP: An Adaptive Multicast Routing
Protocol for Mobile Ad Hoc Networks*

Rolando Menchaca-Mendez1, Ricardo Menchaca-Mendez1, and J. J. Garcia-
Luna-Aceves12

1 Dept. of Computer Engineering, University of California, Santa Cruz
1156 High Street, Santa Cruz, CA 95064, U.S.A.

{menchaca, rmenchaca, jj}@soe.ucsc.edu
WWW home page: http://www.soe.ucsc.edu/ research/ccrg/home.html

2 Palo Alto Research Center (PARC), 3333 Coyote Hill Road
Palo Alto, CA 94304, U.S.A.

WWW home page: http://www.parc.xerox.com

Abstract. We present ADMP, the adaptive mesh-based multicast routing
protocol, in which nodes are able to independently tune the amount of
redundancy used to transmit data packets with the goal of improving the
overall packet delivery ratio while keeping the retransmission overhead as low
as possible. ADMP is based on a novel distributed algorithm for computing
connected dominating sets. ADMP uses a single type of control packet, called
multicast announcement, which is used to build the meshes of multicast
groups, elect the core of each mesh and obtain two-hop neighborhood
information. Using detailed simulations for different scenarios, we show that
ADMP achieves similar or better reliability than two mesh-based multicast
protocols that are very resilient (ODMRP and PUMA) while inducing low
packet retransmission overhead.

1 Introduction

Mobile Ad Hoc Networks (or MANETs) are highly dynamic and do not rely on a
fixed infrastructure. MANETs are well suited to applications where rapid
deployment and dynamic reconfiguration are necessary. Examples of such scenarios
are: military battlefield, emergency search and rescue, conference and conventions.
The objective of a multicast routing protocol for MANETs is to enable

* This work was supported in part by the Mexican National Council for Science and

Technology (CONACyT), by the Mexican National Polytechnic Institute (IPN), by the
National Science Foundation under Grant CNS-0435522, and by the Baskin Chair of
Computer Engineering at the University of California, Santa Cruz.

2 Rolando Menchaca-Mendez1, Ricardo Menchaca-Mendez1, and J. J. Garcia-Luna-
Aceves12

communication between one or more senders and a group of receivers in a network
where nodes are mobile and may not be within direct wireless transmission range of
each other. These protocols must use the available bandwidth and nodes’ energy very
efficiently, given that they are scarce resources in MANETs and do so when nodes
may be highly mobile.

Several MANET multicast protocols have been proposed recently (e.g. [1-8]). In
general, the approaches taken up to date can be classified by the way they support
the routing structure they maintain; namely tree-based and mesh-based protocols.

A tree-based multicast routing protocol constructs and maintains either a shared
multicast routing tree or multiple multicast trees. Recent examples of tree-based
multicast routing protocols are the Multicast Ad hoc On-demand Distance Vector
Protocol (MAODV) [1] and the Adaptive Demand-driven Multicast Routing
Protocol (ADMR) [2]. The tree-based approach has adequate performance in wired
networks [9]; however, establishing and maintaining a tree or a set of trees in
MANETs incurs substantial communication overhead as the branches break due to
node mobility, which has a negative impact in the overall performance of the
protocol [3].

On the other hand, a mesh-based multicast routing protocol maintains a mesh for
each multicast group consisting of a connected sub-graph of the network that
includes all receivers of a particular group and the relays needed to maintain
connectivity with all the receivers in the group. Maintaining a connected component
is far less complicated than maintaining a tree and hence mesh-based protocols tend
to be simpler and more robust. However, as we will see in Section 4, in situations
with high mobility or high channel-contention, mesh-based multicast protocols can
also have poor performance when too many redundant relays are used to forward
multicast traffic. Two well-know representatives of mesh-based protocols are the
Core Assisted Mesh Protocol (CAMP) [4] and the On-Demand Multicast Routing
Protocol (ODMRP) [5].

In this paper we present the Adaptive Dominant Multicast Protocol (ADMP), a
protocol that further improves the reliability and efficiency of its direct predecessors
PUMA [6] and DPUMA [3]. ADMP makes use of a novel distributed algorithm that
computes connected dominating sets to provide high delivery ratios under high node-
mobility and high channel-contention. The main idea that ADMP borrows from
PUMA is that a single control packet (a multicast announcement) is flooded
periodically to build the mesh for one or multiple multicast groups, elect the core of
each mesh and collect two-hop neighborhood information. When forwarding a
packet, ADMP dynamically computes the connected dominating set of the current
mesh using a utility function that takes into account relative mobility of nodes and
channel contention. Depending on the local node conditions, a node adjusts the
amount of redundancy used to cover these two-hop neighbors that are also mesh
members of a given multicast group.

The remaining of this paper is organized as follows. Section 2 summarizes
related work on multicast routing protocols for MANETs and the distributed
computation of connected dominating sets. Section 3 presents ADMP and the
General Augmented Greedy Set Cover (GAGSC) algorithm. As we will explain in
more detail in Sub-section 3.2, GAGSC is able to compute connected dominating

ADMP: An Adaptive Multicast Routing Protocol for Mobile Ad Hoc Networks 3

sets taking into account two-hop information regarding channel contention and
nodes’ mobility in order to compute a dominating set whose size reflects the amount
of redundancy used to forward a multicast data packet. In section 4 we show a series
of performance comparisons among ODMRP, PUMA, DPUMA, and ADMP over
different scenarios. Finally, in Section 5 we present concluding remarks and current
work.

2 Related Work

2.1 Multicast Routing Protocols

ODMRP is a representative of the state of the art in mesh-based multicast routing
protocols. In order to establish the mesh, ODMRP requires cooperation of nodes
wishing to send data to a multicast group. Senders periodically flood a Join Query
packet throughout the network. These periodic transmissions are used to update the
routes. Each multicast group member after receiving a Join Query, broadcasts a Join
Table to all its neighbors in order to establish a forwarding group. Senders broadcast
data packets to all its neighbors. Members of the forwarding group forward the
packet. Using ODMRP, multiple routes from a sender to a multicast receiver may
exits due to the mesh structure created by the forwarding group members. The
limitations of ODMRP are the need for network-wide packet floods and the sender
initiated construction of the mesh. This method of mesh construction results in a
mesh that includes many more nodes that there are needed in a multicast routing tree,
as well as numerous unnecessary transmissions of data packets compared to a
receiver initiated approach. DCMP [7] is an extension to ODMRP that designates
certain senders as cores and reduces the number of senders performing flooding.
NSMP [8] is another extension to ODMRP aiming to restrict the flood of control
packets to a subset of the entire network. However, DCMP and NSMP fail to
eliminate entirely ODMRP’s drawback of multiple control packet floods per group.

CAMP avoids the need for network-wide floods from each source to maintain
multicast meshes by using one or more cores per multicast group. A receiver-
initiated approach is used for receivers to join a multicast group by sending unicast
join requests towards a core of the desired group. The drawbacks of CAMP are that
it needs the pre-assignment of cores to groups and a unicast routing protocol to
maintain routing information about the cores. This later characteristic may induce
considerable overhead in a large ad hoc network.

PUMA supports the IP multicast service model of allowing any source to send
multicast packets addressed to a given multicast group, without having to know the
constituency of the group. Furthermore, sources need not join a multicast group in
order to send data packets to the group. Like CAMP, PUMA uses a receiver initiated
approach in which receivers join a multicast group using the address of a special
node (core in CAMP), without the need for network-wide flooding of control or data
packets from all the sources of a group. PUMA implements a distributed algorithm
to elect one of the receivers of a group as the core of the group, and to inform each
router in the network of at least one next-hop to the elected core of each group (mesh
establishment). The election algorithm used in PUMA is essentially the same as the

4 Rolando Menchaca-Mendez1, Ricardo Menchaca-Mendez1, and J. J. Garcia-Luna-
Aceves12

spanning tree algorithm introduced by Perlman for internetworks of transparent
bridges [10]. Within a finite time proportional to the time needed to reach the router
farthest away from the eventual core of a group, each router has one or multiple
paths to the elected core.

Hence a receiver can connect to the elected core along all shortest paths between
the receiver and the core. All nodes on shortest paths between any receiver and the
core collectively form the mesh of the multicast group. This is the case given that all
nodes in the network receive multicast announcements for every active multicast
group stating the core of the group. Hence a sender node can send packets to the
multicast group by encapsulating them in unicast packets to the core along any of the
paths to the core. PUMA uses a single control packet for all its functions, the
multicast announcement. Each multicast announcement specifies a sequence number,
the address of the group, the address of the core, the distance to the core, a mesh
member flag that is set when the sending node belongs to the mesh, a parent field
that states the preferred neighbor to reach the core, and a list of neighbors who are
mesh members. With the information contained in such announcements, nodes elect
cores, determine routes for sources outside a multicast group to unicast multicast
data packets towards the group, notify others about joining or leaving a group’s
mesh, maintain the mesh and get two-hop information of nodes belonging to each
multicast group.

In the basic PUMA protocol, once a multicast message reaches a mesh member,
it is flooded across the whole mesh. This can lead to unnecessary overhead because a
given node can be covered by more than one neighbor and hence receive a multicast
message more than once. In order to reduce this overhead, DPUMA incorporates the
concept of connected dominating sets to dynamically determine a subset of one-hop
nodes such that if these nodes broadcast the packet, it will be received by all mesh
members in a two-hop neighborhood and eventually by all members in the mesh.

2.2 Distributed Computation of Connected Dominating Sets

For the distributed computation of connected dominating sets, we use a simple
graph G = (V,E) to represent an ad hoc wireless network, where V represents a set of
wireless mobile nodes and E a communication link between two nodes. An edge
(u,v) indicates that both nodes u and v are within each other’s transmission range.
Such graph is also called unit disk graph [11]. It is easy to see that the topology of
this type of graphs vary over time due to node mobility.

For a given undirected graph G = (V, E), a connected dominating set (CDS) in
the graph is any set of connected vertices VV ⊆' such that each 'VVv −∈ is
adjacent to some vertex in V’. The problem of determining the minimum connected
dominating set (MCDS) is known to be NP-complete. Therefore, only distributed
approximated algorithms running in polynomial-time are practical for MANETs.

If we compute a connected dominating set V’ of a given network, only those
nodes belonging to V’ have to broadcast a packet in order to reach every node in the
network, with the corresponding savings of V- V’ messages. It is important to note
that distributed approximations that run in polynomial-time do not compute the
minimum dominating set; however, in the context of MANETs, computing a larger

ADMP: An Adaptive Multicast Routing Protocol for Mobile Ad Hoc Networks 5

dominating set is actually desirable to augment the reliability with which a packet is
delivered.

Lim and Kim [12] showed that the minimum connected dominating set (MCDS)
problem can be reduced to the problem of building a minimum cost flooding tree
(MCFT) and they proposed a set of heuristics for flooding trees that lead to two
algorithms: self-pruning and dominant pruning (DP). They also showed that both
algorithms perform better than blind flooding, in which each node broadcast a packet
to its neighbors whenever it receives the packet along the shortest path from the
source node, and that DP outperforms self-pruning. Since then, many other
approaches have been purposed to compute CDS and to improve communication
protocols applying CDS. For example, enhancements to dominant pruning have been
reported by Lou and Wu [11] who describe the total dominant pruning (TDP)
algorithm and the partial dominant pruning (PDP) algorithm, and by Spohn and
Garcia-Luna-Aceves [13] who presented the enhanced dominant pruning (EDP)
algorithm which improves DP’s performance. All these algorithms utilize two-hop
neighborhood information.

In this work we propose a generalization to the approach used by Lim and Kim in
their dominating pruning algorithm [12]. Their approach uses a greedy set cover
(GSC) strategy in order to compute the dominating set of each two-hop
neighborhood of the nodes involved in the diffusion of a packet.

3 Adaptive Dominant Multicast Protocol (ADMP)

In [3] we demonstrate how DPUMA effectively increase the delivery ratio of PUMA
while incurring far less retransmission overhead. However, as it is shown in Figure
4, this is not longer true for scenarios where nodes have high mobility. The reason
for this behavior is that, in general, the performance of protocols that rely on the
freshness of topological information is strongly impacted by the relative mobility
among nodes. It would be desirable to have an approach capable of delivering the
reliability achieved by PUMA under light loads or high node mobility, and the one
achieved by DPUMA under high loads with low mobility.

The first step towards such a protocol is to get an accurate view of the
instantaneous levels of relative mobility and contention, so that; nodes were able to
select the operation mode that performs best under each condition. The next section
describes two simple mechanisms to detect the degree of relative mobility and the
degree of local contention.

3.1 Detection of Relative Mobility and Contention Levels

To compute the level of relative mobility, each node keeps track of how its one-hop
neighborhood has changed between two consecutive sampling periods, then, nodes
compute an exponential weighted moving average to avoid reacting too fast to
changes in their perceived relative mobility.

We define instantaneous relative mobility m as [d/(r+d)]/sp, where sp is the length
of the sampling period, d is the number of new or missing one-hop neighbors
detected in the current sampling period with respect to the neighbors detected in the

6 Rolando Menchaca-Mendez1, Ricardo Menchaca-Mendez1, and J. J. Garcia-Luna-
Aceves12

previous sampling period, and r is the number of neighbors that did not change from
the previous sampling period with respect to the current sampling period. The degree
of relative mobility υn during sampling period n is:

mnn αναν +−= − 1)1((1)

Where α is a constant used to assign weight to the previous (υn-1) and newly
calculated values (m) of the degree of relative mobility.

Another aspect that has a strong influence over the performance of protocols that
use contention-based medium access control (MAC) protocols is traffic load. To
measure one-hop contention we propose a simple and very intuitive metric that is
based on the ratio between the number of received signals with errors and the total
number of received signals during a fixed period of time. This ratio tries to
approximate the current probability of a successful transmission. Then, as in the
previous case, we use an exponential weighted moving average to cope with sudden
and short term variations. We define the instantaneous contention level c as (e/t)/sp,
where e is the number of signals with errors received during the sampling period, and
t is the total number of signals received during the sampling period. The degree of
contention γ during sampling period n is defined as:

cnn βγβγ +−= −1)1((2)

Analogously to the previous case, β is a constant used to assign weight to the
previous (γ n-1) and newly calculated values (c) of the degree of contention.

The current default value for α and β is 0.2. However, our results show that the
performance of ADMP is not very sensitive to these parameters.

3.2 General Augmented Greedy Set Cover (GAGSC)

In the case of DPUMA, since nodes already interchange one-hop topology
information, they can, almost for free, gather information about contention and
mobility of the nodes that belong to their two-hop neighborhood. Here we present a
novel algorithm that takes advantage of this information, and that makes more fine-
grained decisions when selecting the amount of redundancy used to relay a packet.

Our algorithm, which we have called General Augmented Greedy Set Cover
(GAGSC), has two main phases. In the first phase, based on their local contention
and relative mobility degree, two-hop neighbors are assigned with a coverage value
which reflects the amount of redundancy that will be used to cover that node, or in
other words, the number of one-hop neighbors that the algorithm will try to use to
cover (or to dominate) that particular two-hop neighbor. In the second phase, the
algorithm uses a greedy strategy by selecting one-hop neighbors with the highest
value in a utility function fu. fu(·) of a given one-hop neighbor b is proportional to
number of two-hop neighbors (nn) which are covered by b, and inversely
proportional to the exponential of b’s contention (cd) and relative mobility degrees
(md). By using this utility function, GAGSC tend to favor one-hop neighbors with
lower local contention and mobility degrees over nodes which might cover more
two-hop neighbors but that have larger values for these metrics.

ADMP: An Adaptive Multicast Routing Protocol for Mobile Ad Hoc Networks 7

In particular, our current implementation of ADMP uses the following utility
function.

mdcdu ennf 5.15.1 −−⋅=
(3)

Figure 1 shows a partial plot of the utility function that only considers the
contention and relative mobility degrees. From the plot of the function, it is easy to
see how nodes with low contention and mobility degrees will tend to be selected first
than nodes with larger values in these metrics.

Fig. 1. Plot of the utility function used to select one-hop neighbors

Now, we are ready to make a more formal description of the GAGSC algorithm.
As in [12] we use N(u) to represent the neighbor set of a given node u (including u)
and N(N(u)) to represent the neighbor set of N(u) (i.e., the set of nodes that are
within two hops from u). When a mesh member v receives a data packet from u, it
selects a number of forwarding nodes that can cover (with the adequate redundancy)
all the nodes in N(N(v)). u is the previous relaying node, hence nodes in N(u) have
already received the packet, and nodes in N(v) will receive the packet after v
rebroadcast it. Therefore, v just needs to determine its forwarding list F(u,v) from
B(u,v) = N(v) – N(u) to cover all nodes in U(u,v) = N(N(v)) – N(u) – N(v).

The GAST algorithm works as follows.
Phase 1: For all two-hop neighbor node),(vuUx∈ , let coverage(x) be its

corresponding coverage value, i.e., the number of one-hop neighbors that the
algorithm will try to use to cover (or dominate) that particular node. Now, using
rules like “if v’s contention is low and v’s mobility is low and x’s contention is low
and x’s mobility is low then set coverage(x) equal to 3” or “if v’s contention is high
and v’s mobility is low and x’s contention is high and x’s mobility is low then set
coverage(x) equal to 1”. Nodes use two threshold values to decide whether their
current contention and relative mobility degrees are low or high. GAGSC employs
16 rules that correspond to all possible combinations of high and low contention and

8 Rolando Menchaca-Mendez1, Ricardo Menchaca-Mendez1, and J. J. Garcia-Luna-
Aceves12

mobility degrees for the two-hop node x under consideration and the node v which is
computing its forwarding list.

The intuition behind these rules is as follows. When nodes detect low contention
degree in the channel, they are safe to use high redundancy during the dissemination
of data, or in other words, they can assign a high value to coverage(x), so that nodes
will try to cover (or dominate) their two-hop neighbors with as many one-hop
neighbors as possible. This mode of operation is similar to PUMA where data
packets are flooded within the mesh. On the other hand, when high degrees of
contention are detected, nodes will try to compute a CDS which is as small as
possible; hence they assign low values to coverage(x). In this last situation, nodes
operate in a mode similar to DPUMA, so that they are able to reduce the redundancy
used when disseminating data packets. Analogously, when nodes detect low relative
mobility degree, they are safe to rely on their current topology information and
compute CDS which are as small as possible. Finally, when nodes perceive a high
mobility degree, it is better to flood the mesh which is robust to topological changes
because it does not make any assumption about the presence of a given node in the
one-hop neighborhood, so nodes will assign high values to coverage(x).

It is important to remark that even if a given two-hop neighbor, say x, is assigned
with a coverage value C > 1, there is no guarantee that at the end of Phase 2, x is
going to be covered by C one-hop nodes. This situation is apparent on Figure 2,
where node x will be covered by at most one one-hop neighbor (a) no matter what is
the value assigned to coverage(x).

Fig. 2. Two-hop neighborhood of node v that has not been covered so far when receiving a
multicast data packet from node u

Phase 2: Compute: F(u,v).
Let F(u,v) be the forwarding list to be computed, Z be the set of nodes that have

been covered up to the current iteration which is initially empty,
),()(vuUvNS ii ∩= be the set of two-hop nodes that can be covered by node vi,

U iSK = be the set of nodes that have to be covered at the end of the execution of
the algorithm, and mob(vi) be the relative mobility degree of vi, and con(vi) be the
contention degree of vi for all),(vuBvi∈ .
1. Find the 1-hop node vm whose fu(|Sm|, con(vm), mob(vm)) is a maximum
2. For all node mSx∈ make coverage(x) = coverage(x) –1 in all Si
3. For all Si, make
o Ei = {x | iSx∈ and coverage(x) = 0},
o Si = Si – Ei, Z = Z∪ Ei, φ=mS and

u v

Previous
relay

Current
relay a

b

c

x

y Two-hop
neighbor of v

One-hop
neighbor of v

Nodes within transmission
range
Forwarding of mcast packet

ADMP: An Adaptive Multicast Routing Protocol for Mobile Ad Hoc Networks 9

o F(u,v) = F(u,v)∪ {vm}
4. Stop if Z=K or if F(u,v) = B(u,v); otherwise, goto step 1
5. If F(u,v) = B(u,v) then F(u,v) = φ where φ is an special marker used to denote that

every one-hop neighbor (if it has not done that before) has to retransmit the data
packet
It is important to note that, in order to mimic the behavior of PUMA and achieve

its resilience to continuous topological changes it is not enough to designate all one-
hop neighbors as forwarders. We also need a way to specify that any mesh member,
that happens to be in the one-hop neighborhood, has to retransmit a packet, even if
the current forwarding node has not perceived it yet. In the specification of our
algorithm, the φ marker introduced in Step 5 plays this role.

3.3 Forwarding Data Packets Within The Mesh

Finally, to complete the description of the GAGSC algorithm, we present how it
is used in the context of disseminating a data packet within a mesh.
o When a mesh member v receives a multicast data packet from its transport

layer, it determines its forwarding list F(-,v) using GAGSC, then the node
piggybacks F(-,v) in the data packet and transmits it.

o When v receives a multicast data packet from a mesh member u
o If)(*,uFv∈ or F(*,u) equals φ, it uses GAGSC to determine its

forwarding list F(u,v), piggybacks F(u,v) in the data packet and
retransmit it.

o If)(*,uFv∉ , it just accepts the packet
o When v receives a multicast data packet from a non-mesh member u, v

computes the forwarding list F(-,v), piggybacks F(-,v) in the data packet and
retransmit it. In this case, u can be a sender or a next hop in the path from the
sender to the core.

4 Experimental Results

We compared the performance of ADMP against the performance of PUMA,
DPUMA and ODMRP. We used the discrete event simulator Qualnet version 3.5.
The distribution of Qualnet itself has the ODMRP code. Each simulation was run for
five different seed values with the exception of the mobility scenario which uses 20
seeds. This is necessary to obtain representative results because a given seed can
generate very different mobility traces for different protocols. To have meaningful
comparisons, all timer values (i.e., interval for sending JOIN requests and JOIN
tables in ODMRP and the interval for sending multicast announcements in the
PUMA family) were set to 3 seconds. Unless other values are specified, Table 1 lists
the details about the simulation environment. The metrics used are packet delivery
ratio and average number of data packets relayed.

In our first experiment we varied the packet size from 64 to 1024 bytes. There
are two senders and one group composed of 30 nodes. Only one sender belongs to
the multicast group. From Figure 3 we can observe how PUMA performs very well

10 Rolando Menchaca-Mendez1, Ricardo Menchaca-Mendez1, and J. J. Garcia-Luna-
Aceves12

for small packet sizes but as the packet size increases, its packet delivery ratio drops
dramatically.

Table 1. Simulation environment

Simulation Environment
Total Nodes 50 Simulation time 100s
Node Placement Random Simulation area 1300×1300m
Mobility Model Random Waypoint Channel Capacity 2000000 bps
Pause Time 10s MAC protocol IEEE 802.11
Min-Max Vel. 0 – 10 m/s Data Source MCBR
Transmission Power 15 dbm
Number of packets sent per source 1000

This experiment shows how for medium to large packet sizes those protocols that

compute dominating sets (DPUMA, and ADMP) achieve higher delivery ratios than
protocols like PUMA that use much more redundancy. From Figure 3 we can also
observe how ADMP performs very close to the best case of the base protocols,
namely, close to PUMA for small packets and close to DPUMA for large packets.
This is a strong indication that ADMP nodes effectively detect their current
conditions on the channel and select the appropriate mode of operation.

Fig. 3. Packet delivery ratio and average number of retransmission when varying the packet
size

In our second experiment we varied from 1 to 50m/s the nodes’ speed (with a
pause time of 0 seconds). In this experiment we show how effective is the proposed
metric to detect relative mobility, and how this information is used by the nodes to
autonomously decide which mode of operation has to be used. As it can be seen on
Figure 4, ADMP performs similar or better than the best of the base options of the
family of PUMA protocols (PUMA, DPUMA). Again, this is a strong indication that
ADMP nodes effectively detect the current mobility condition and select the
appropriate mode of operation.

A very interesting situation is that for speeds between 10m/s and 30m/s, ADMP
performs even better than the base protocols. The reason is that nodes can

0 100 200 300 400 500 600 700 800 900 1000
300

400

500

600

700

800

900

1000

1100

1200

1300
Contention: 1 group of 30 nodes, 2 senders, 20 packets per second

Packet Length

A
ve

ra
ge

 N
um

be
r o

f D
at

a
P

ac
ke

ts
 R

el
ay

ed

0 100 200 300 400 500 600 700 800 900 1000
0.4

0.5

0.6

0.7

0.8

0.9

1
Contention: 1 group of 30 nodes, 2 senders, 20 packets per second

Packet Length

P
ac

ke
t D

el
iv

er
y

R
at

io

ODMRP
PUMA
DPUMA
ADMP

ADMP: An Adaptive Multicast Routing Protocol for Mobile Ad Hoc Networks 11

independently select the current “best strategy”, so nodes which are in different
regions of the MANET can use the operation mode that best fit that particular region.

Fig. 4. Packet delivery ratio and average number of retransmission when varying the speed of
the nodes

Finally, Figure 5 shows the behavior of the degree of relative mobility of a given
node for different values of the speed of the nodes. From the figure we can observe
that as the speed of the nodes increases, the height of the peaks in the graphs also
increases. The peaks in the graphs correspond to the time when a multicast
announcement is flooded across the MANET. This is also the time when the all the
topology information is updated.

Fig. 5. Values taken by the Relative Mobility and Contention Degree metrics for different
values of the speed of the nodes and packet length

Figure 5 also shows the behavior of the contention degree perceived by a given
node for different values of the length of the data packets. As well as in the case of
the relative mobility degree, we can observe a good correlation between the proposed
metrics and the conditions in the network. As we saw in the previous paragraphs,
our protocols take advantage of this information to tune the amount of redundancy
used to transmit data packets.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

Sampling period

C
on

te
nt

io
n

D
eg

re
e

Packets of 32 bytes
Packets of 256 bytes
Packets of 1024 bytes

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

Sampling Period

R
el

at
iv

e
M

ob
ili

ty
 D

eg
re

e

1ms
20ms
50ms

0 5 10 15 20 25 30 35 40 45 50
500

600

700

800

900

1000

1100

1200

1300
Mobility: 1 group of 30 nodes, 2 senders, 20 packets per second

Node Speed (m/s)

A
ve

ra
ge

 N
um

be
r o

f D
at

a
P

ac
ke

ts
 R

el
ay

ed

0 5 10 15 20 25 30 35 40 45 50
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94
Mobility: 1 group of 30 nodes, 2 senders, 20 packets per second

Node Speed (m/s)

P
ac

ke
t D

el
iv

er
y

R
at

io
ODMRP
PUMA
DPUMA
ADMP

12 Rolando Menchaca-Mendez1, Ricardo Menchaca-Mendez1, and J. J. Garcia-Luna-
Aceves12

5 Conclusions

In this paper we presented ADMP, a mesh-based multicast protocol that carries out
its three basic tasks (electing a core, establishment of the mesh and getting 2-hop
neighborhood information) by flooding a single control packet per each multicast
group. When diffusing a data packet over the mesh, nodes in ADMP use GAGSC to
compute a dominating set of the mesh taking into account the nodes’ contention and
relative mobility degrees. The size of the dominating set reflects the amount of
redundancy that is used to diffuse a packet across the mesh. Our results show that for
all the scenarios ADMP performs similar or better than PUMA, APUMA and
consistently better than ODMRP. Our current research focuses on core election
protocols and the way in which core placement affects the topology of the mesh as
well as the delay and delivery ratio of mesh-based multicast protocols.

References

1. E. Royer and C. Perkins, “Multicast operation of the ad hoc on-demand distance vector
routing protocol,” in Proceedings of Mobicom, August 1999

2. L. Ji and M. S. Corson, “A lightweight adaptive multicast algorithm”, in Proceedings of
IEEE GLOBECOM 1998, December 1998, pp. 1036–1042

3. R. Menchaca-Mendez, R. Vaishampayan, J. J. Garcia-Luna-Aceves, K. Obraczka,
“DPUMA: A Highly Efficient Multicast Routing Protocol for Mobile Ad Hoc Networks,”
ADHOC-NOW 2005: 178-191

4. J. J. Garcia-Luna-Aceves and E.L. Madruga, “The core assisted mesh protocol,” IEEE
Journal on Selected Areas in Communications, Special Issue on Ad-Hoc Networks, vol. 17,
no. 8, pp. 1380–1394, August 1999

5. S. J. Lee, M. Gerla, and Chian, “On-demand multicast routing protocol,” in Proceedings of
WCNC, September 1999

6. R. Vaishampayan and J.J. Garcia-Luna-Aceves, Efficient and Robust Multicast Routing in
Mobile Ad Hoc Networks , Proc. IEEE MASS 2004: The 1st IEEE International Conf. on
Mobile Ad-hoc and Sensor Systems, Fort Lauderdale, Florida, October 25-27, 2004

7. S. K. Das, B. S. Manoj, and C. S. Ram Murthy, “A dynamic core based multicast routing
protocol for ad hoc wireless networks,” in Proceedings of the ACM MobiHoc, June 2002

8. S. Lee and C. Kim, “Neighbor supporting ad hoc multicast routing protocol,” in
Proceedings of the ACM MobiHoc, August 2000

9. Deering S. E., et-al, "The PIM Architecture for Wide-Area Multicast Routing", IEEE/ACM
Transactions on Networking, Vol.4, No.2, April 1996

10. R. Perlman, “An algorithm for distributed computation of a spanning tree in an extended
lan,” in ACM Special Interest Group on Data Com. (SIGCOMM), 1985, pp. 44–53

11. Wei Lou, Jie Wu, “On Reducing Broadcast Redundancy in Ad Hoc Wireless Networks,”
IEEE Transactions on Mobile Computing, Vol. 1, Issue 2 (April 2002), Pages: 111 – 123

12. H. Lim and C. Kim, “Flooding in wireless ad hoc networks,” Computer Communications,
vol. 24, February 2001

13. M.A. Spohn and J.J. Garcia-Luna-Aceves, “Enhanced Dominant Pruning Applied to The
Route Discovery Process of On-demand Routing Protocols,” Proc. IEEE IC3N 03: Twelfth
Int. Conf. on Computer Com. and Networks, Dallas, Texas, October 20 - 22, 2003

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

