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PREFACE 
 

In Kurt Vonnegut’s book Cat’s Cradle, the infamous Dr. Felix Hoenikker says 

that any scientist who can’t explain to an eight-year-old what he is doing is a 

charlatan.  Of course in reality it would be impossible to truly understand all of the 

details of a project without years of scientific education, but reducing the essence of 

research into simplest terms is nevertheless a good exercise.  If I were to try to 

explain my current research to an eight-year-old, I might begin by relating the parable 

of the three blind men who try to learn the nature of an elephant.  The men are led to 

the leg, trunk, and tusk of the elephant, respectively, and then are allowed to touch 

the animal.  After a thorough examination, the men separately conclude that an 

elephant is like a tree, a snake, and a sword.  The moral of the story is that “though 

each was partly in the right … all were in the wrong.”  Similarly, biologists (usually 

highly specialized in one field) know quite a bit about how cells work within one 

specific realm, but so far they have been less successful in bringing this vast 

knowledge together to understand the cellular system as a cohesive whole.  I hope to 

be part of a growing field of researchers who are devising methods that allow us to 

back up and see the whole “elephant” at the expense of glossing over a few wrinkles. 

For as long as I can remember, I have always been in awe of the organized 

complexity of life’s machinery.  The study of biology is an enormous fractal landscape 

– there is intricate detail at every scale.  There is no one functional level from which 

you can see the whole picture, since the details within one layer depend on all the 

others, from biochemical interactions to evolutionary pressures.  Scientists have long 

recognized the need for integrating models across multiple scales and on a system-

wide scope, but only recently have the experimental and computational tools become 
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available for doing this.  “Systems biology,” the term for integrating and modeling 

genome-wide networks and data, has enormous potential for understanding biological 

systems within the cell.   

I learned about systems biology in my search for graduate schools, and the 

more I read, the more the concept resonated with me. Up until graduate school I had 

been interested in all of my studies and enjoyed the winding path classes and 

research had taken me, but I had not really acquired a true passion for any of it. 

However, some extracurricular reading late in college had turned me onto new 

scientific lines of thinking that acknowledge the intractable complexity of systems 

such as the cell, the brain, or the economy, yet recognize organizational and 

functional similarities among these systems as well as unpredictable but deterministic 

origins for their behavior. I couldn’t yet wrap my brain around these ideas or imagine 

how they could be applied to practical biomedicine, but I was fascinated nevertheless, 

and the spark had been planted. 

I found out that the University of California, San Diego had one of the few 

Bioengineering programs with a concentration in systems biology.  Upon entering 

UCSD I had the luck of being placed on a project that would provide an easy 

springboard to this type of research – the design of a high-throughput physiological 

measurement system.  My primary adviser, Dr. Andrew McCulloch, was an expert in 

computational modeling at all scales, and my co-adviser on the project, Dr. Giovanni 

Paternostro, was eager to apply systems modeling to his research on cardiac aging in 

Drosophila.  In addition, I was surrounded by the influential leaders in genome-scale 

systems biology, and had the chance to learn from them directly in a series of 

courses in the subject. 
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  What I learned from these classes was that gaps in our understanding of 

global cellular coordination are being addressed by new technology that measures all 

cellular components at once, new techniques to integrate these components and their 

interactions, and new computer models to quantitatively analyze their function. In 

Chapter 1 I will introduce a few of these ideas in my introduction to the field of 

systems biology.  

This field is not simply the merging of sciences.  It is a different way of 

practicing biology (regardless of whether it is truly “new” or not), and systems biology 

has become the first and only subject that I have felt truly passionate about. I believe 

that the future of biology and medicine will be dramatically altered by innovations 

stemming directly from this approach, and if in later life I can play even a minor role in 

this revolution, I will be satisfied. 

Sweeping comments aside, this is a dissertation rather than a high-level 

commentary, and as such is thick with the details of putting the systems approach 

into practice in an important biological context – cardiac hypoxia – via 

bioinstrumentation, bioinformatics, metabolomics, and computer modeling.  Although 

the first chapter will outline the “big picture,” these overall goals all but disappear in 

the technical details of some of the later chapters.  However, it should be kept in the 

reader's mind, as it was kept in my mind, that all of the time and effort described here 

was spent in pursuit of this ideal of a true genome-wide systems model of cellular 

function, a goal obviously much larger than this thesis managed to accomplish, but 

one which science will no doubt approach within our lifetimes. 
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ABSTRACT OF THE DISSERTATION 
 

Systems Biology of the Cardiac Hypoxia Response in Drosophila 

 

by 

 

Jacob Daniel Feala 

 

Doctor of Philosophy in Bioengineering 

 

University of California, San Diego, 2008 

 

Professor Andrew D. McCulloch, Chair 

Professor Giovanni Paternostro, Co-Chair 

 

 

Drosophila is an emerging model for studying genetic influences on heart 

function, and has also been found to be highly tolerant to hypoxia.  Strategies for 

controlling metabolism in the hypoxic adult fly heart may give clues to new therapies 

for myocardial ischemia in humans, however, the mechanisms of their hypoxic 
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metabolic regulation are not well known.  We adopt a systems biology approach to 

discover important hypoxia-tolerance strategies in ATP-generating metabolism in 

Drosophila heart.   

First, we built automation technology for rapidly screening the in vivo cardiac 

hypoxia response in adult flies, and proved its speed by characterizing the wild type 

over a range of conditions. The assay detected loss-of-function phenotypes in known 

hypoxia-sensitive mutants. 

 Next we used 1H NMR metabolomics to discover the major anaerobic end 

products (lactate, alanine, and acetate), which we built into a genome-wide 

reconstruction of central metabolism. We fit metabolomic data to the model and used 

it to examine the benefits of these pathways under hypoxia. The model was then 

used to predict the effects of a lactate dehydrogenase (LDH) mutant, which were 

supported by metabolomic, heart phenotype, and whole-body assays on an LDH 

mutant strain. 

The model was further refined with gene expression data and used with 

metabolomic profiling to study the effects of age on the hypoxia response. Recovery 

of heart rate, whole-body activity, and ATP concentration was delayed in older flies. 

After fitting the model to metabolomic data for young and old flies, flux-balance 

analysis pointed to impaired mitochondrial recovery, with excess pyruvate converted 

to acetate, as the major source of differences between the age groups. Gene 

expression and the literature on Drosophila aging supported these conclusions. 

This approach was repeated for a strain of flies that had been experimentally 

selected to survive chronic hypoxia. Flux-balance modeling suggested that adapted 

flies may better divert pyruvate flux through pyruvate dehydrogenase rather than 
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pyruvate carboxylase in order to better tolerate acute hypoxia. Gene expression data 

from microarrays helped support this finding. 

The dissertation offers clues to hypoxia tolerance in flies, generating 

hypotheses for further research, and also provides a technology platform for a 

systematic perturbation analysis. 
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Chapter I – 

Introduction 
 

 

I.1 Overview of the Dissertation 
Ischemic heart disease is the leading cause of death worldwide (Murray & 

Lopez, 1997).  At the cellular level, impairments in heart function are caused by 

necrosis and apoptosis following occluded blood supply, or ischemia. Ischemia 

impedes the uptake and washout of nutrients, but its most important component is the 

severely restricted oxygen supply, or hypoxia. Although many genes and pathways 

are known to be involved in cellular damage and defenses in the face of ischemic and 

hypoxic insult, the molecular basis for injury versus resistance to hypoxia is not well 

understood.  

While cellular hypoxia has long been an area of intense research, only 

recently have studies attempted to use genome-scale, discovery-based strategies.  

Global snapshots of the transcriptome, proteome, and metabolome have provided a 

first introduction to the wide array of cellular changes that take place under hypoxic 

conditions.  New methods for modeling and visualizing high-throughput data in the 

context of interaction networks can help filter these large datasets to produce new 

insights and hypotheses. The broad nature of the cellular hypoxia response, involving 

multiple pathways across all three major levels of cellular information processing 
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(metabolic, protein signaling, and transcriptional), makes it an interesting paradigm for 

applying these new techniques.   

This dissertation introduces a systems biology approach for studying 

metabolic regulation during acute hypoxia in heart and muscle tissue, using 

Drosophila as a model organism.  Although there are clear anatomical and 

physiological differences between mammalian and fly heart, multiple genetic 

similarities exist which make the fruit fly an interesting model for hypoxia research. 

Flies are extremely resistant to hypoxic stress, which presents the opportunity for 

discovering novel protective strategies as well as basic shared mechanisms. 

 Central to the systems biology approach is the integration of genome-scale 

datasets. Chapter II (adapted from (Feala et al., 2008b)) describes the development 

and validation of new automation technology with the potential to generate a new 

genome-scale dataset, by screening in vivo hypoxia responses in the fly heart for 

large numbers of genetic perturbations. Chapter III (adapted from (Feala et al., 

2007)) details how we combined the annotated Drosophila genome (Adams et al., 

2000), an online database of enzymes and pathways (Ogata et al., 1999), and the 

legacy of Drosophila biochemistry data from the literature to build an in silico 

reconstruction of all metabolic pathways active in Drosophila myocytes. In Chapter IV 

(reproduced in full from (Coquin et al., 2008) in revision) we incorporate adult thorax 

microarray data into the reconstruction, refining the network to better represent 

enzymes expressed in muscle tissue. 

The other important concepts in systems biology are quantitative modeling, 

perturbation analysis, and iterative refinement of these networks. In Chapter III we 

used NMR spectroscopy to gather metabolic profiles of the thorax during hypoxia (the 
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thorax is mostly composed of flight muscle), which suggested new pathways to add to 

the model. Then we simulated metabolic fluxes during hypoxia in a flux-balance 

model of the network reconstruction, first by constraining the model to data from the 

NMR and then in a series of simple pathway-by-pathway demonstrations. We use the 

results of the simulations to hypothesize mechanisms for hypoxia tolerance, assign 

an important reaction to its correct cellular compartment, and predict the effects of a 

specific enzyme perturbation. At the end of the chapter we use our new measurement 

technology and an assay of whole-body activity to test the prediction on a knock-out 

strain for this enzyme. 

In Chapters IV and V we apply our flux-balance modeling approach to two 

separate but complementary systems. Chapter IV examines the degradation of 

hypoxia tolerance by aging, while Chapter V studies a population of flies that has had 

its tolerance to hypoxia improved by many generations of experimental selection. In 

both studies, metabolic profiles are gathered under various oxygen conditions and 

fitted to the model as flux constraints. Simulations are then used to support 

physiological observations of hypoxic resistance or sensitivity using quantitative 

measures of metabolic performance. Finally, for each system we point to specific 

mechanisms in the model that may account for the metabolic differences, and support 

our hypotheses for regulatory control with existing gene expression data. 

Finally, Chapter VI discusses preliminary results and next steps for 

incorporating a heart phenotype screen and protein interaction networks to construct 

a network model of metabolic regulation, specific for genes that are essential to the 

hypoxia response in the heart. Chapter VI also addresses some of the limitations of 
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the model and our approach, and then summarizes the major scientific conclusions 

and engineering accomplishments. 

The remainder of Chapter I (adapted from (Feala et al., 2008a)) will provide 

background and an introduction to the theory of our approach. 

I.2 Background 
 The ultimate goal of this research is development of a genome-wide, data-

driven model that includes all genes, enzymes, metabolites, and regulatory proteins 

that are involved in hypoxia defenses.  It is advantageous to decide a priori the 

necessary level of detail and the corresponding modeling strategy.  Our aim was to 

model metabolism at the level of enzyme fluxes.  Although it is a daunting task to 

build complete representations of these networks, factors that define the problem of 

interest, such as cell type (cardiac myocyte), time window (acute), and the specific 

context (hypoxia) help to narrow the number of players.   

 Although Drosophila has many advantages as a model organism for genetics 

of the heart and hypoxia tolerance (detailed later), the small size of the fruit fly also 

presents a major limitation in that it is difficult to extract enough myocardial tissue for 

biochemical experimentation.  Without biochemical data for Drosophila myocardium, 

we are forced to take more indirect steps to model metabolism in the fly heart.  For 

this reason, we choose to develop a metabolic model of flight muscle – for which 

much biochemical data is available both in the literature and our own lab – as a 

reasonable first approximation.  We can then use microscope-based methods for 

measuring fly heart function in-vivo to study the effect of enzyme mutations on heart 

phenotypes under stress, and adapt the model to reflect essential pathways in the 
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cardiac myocyte.  Figure I.1 shows an overview of these steps, illustrating the 

biological level and tissue specificity of each data source available for our model. 

I.2.1  Hypoxia in cardiac myocytes 
Ischemia (the obstruction of blood flow) and reperfusion injury (tissue damage 

from the sudden reperfusion of the blood supply) are the causes of cell death in acute 

myocardial infarction (Opie, 1991). In the heart, both the incidence and mortality of 

ischemic events worsen with age (Bonow et al., 1996). Currently the only treatment is 

to restore oxygen-rich blood as soon as possible, either by mechanical (angioplasty) 

or chemical (thrombolytic) means.  Thus there is a need for preventative measures to 

improve tolerance to ischemia-reperfusion injury in high-risk patients. 

Ischemia obstructs three major functions of circulation: oxygen supply, nutrient 

supply, and the washout of byproduct or waste metabolites. Hypoxia-reoxygenation is 

the major cellular insult during ischemia-reperfusion, but depleted metabolite supply 

and washout also play an important role in cellular damage. Hypoxia alone, for 

example when environmental oxygen is lowered, is thus different from ischemia in 

that blood flow is uninterrupted and therefore metabolites are free to circulate. 

However, the level of hypoxic insult during ischemia is much more severe than that 

normally caused by environmental changes seen by humans (e.g. at high altitudes) 

and can also cause some metabolite (e.g. acid) buildup even within an unobstructed 

blood supply. Additionally, in the experiments described in this thesis, the 4-hour 

severe hypoxia stimulus actually causes the fly heart to stop (see Chapter II) and 

therefore the stress is assumed to resemble ischemia in that circulation is impaired 

and metabolites are able to accumulate. Thus the following background on hypoxia 
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covers cellular damages caused by metabolite accumulation as well as in hypoxia 

alone. 

The exact mechanism whereby reversible hypoxic tissue damage finally 

evolves into irreversible damage and cell death is still controversial (Opie, 1998b), but 

is likely to involve both necrotic and apoptotic mechanisms, stemming from the 

hypoxic event itself as well as metabolic stresses introduced during reperfusion.  

Reduced O2 inhibits mitochondrial pathways that produce ATP, which supplies 

energy to the contractile machinery of the heart. In mammalian heart there is a limit to 

which the cell can downregulate ATP demand, since the organ must continue to 

pump for the body to survive. Therefore metabolic pathways that supply ATP are a 

major target for regulation in cardiac hypoxia. 

The heart is able to flexibly use a variety of substrates for energy depending 

on physiological condition (i.e. starvation, ischemia, exercise) and substrate 

availability (Kodde et al., 2007). Under normal conditions, fatty acid oxidation 

accounts for the majority of ATP production, with glucose and lactate contributing 

smaller amounts (Opie, 1998b). Importantly for this thesis, the heart also has 

enzymes for utilizing many other substrate pathways including acetate and amino 

acids, although these contribute very little to overall metabolism. Some evidence 

does suggest that transamination of pyruvate to amino acids may have a role in 

ischemia resistance in the mammalian heart (Julia et al., 1990; Taegtmeyer et al., 

1977). However, the major metabolic effect of hypoxia is that the cell undergoes a 

major shift toward anaerobic glycolysis, inhibiting oxidation of pyruvate and fatty acids 

and relying instead on extracellular glucose and intracellular glycogen. 
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Figure I.1:  TOP:  Overview of the systems approach to studying cardiac 
hypoxia.  In each iteration, candidate genes for regulation of the 
hypoxia response are hypothesized by the constraint-based and 
network models and then validated by experiment. 

 BOTTOM:  Initial construction of the model can incorporate 
several genome-wide datasets of varying cell-type specificity and 
at different levels in the biological hierarchy. 
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As respiration slows, pyruvate uptake into the mitochondria is decreased, and 

the majority is instead converted into lactate. This is the classic fermentation pathway, 

whereby lactate dehydrogenase (LDH) consumes the end products of glycolysis (2 

pyruvate, 2 protons, and 2 NADH) and replenishes one NAD+ for the pathway to 

continue to function (Lehninger et al., 2000). The net reaction of anaerobic glycolysis 

is then 

1 glucose -> 2 ATP + 2 lactate   

It is well-known that the use of this pathway results in acidosis (for example in 

exercising muscle), but a common misconception is that acidosis is caused by the 

production of “lactic acid.” On the contrary, the LDH reaction actually consumes 

protons, and it is the ATP hydrolysis reaction – carried out by the cellular machinery – 

that produces the imbalance of protons. Under normal conditions, pyruvate is 

completely oxidized in the mitochondria, where oxidative phosphorylation consumes 

the balance of NADH and protons from glycolysis and ATP hydrolysis.  When cellular 

respiration slows, glycolysis is decoupled from oxidative phosphorylation, and one 

proton accumulates for each pyruvate diverted from the mitochondria and converted 

to lactate (Ingwall, 2002). See Robergs et. al. (2004) for a review on the biochemistry 

of metabolic acidosis and a discussion of the “lactic acid” misconception.  

The primary metabolic effect of hypoxia is that the cell is forced to depend on 

anaerobic glycolysis for ATP, though glycolytic ATP production is only a fraction of 

mitochondrial output, and acidosis occurs as mitochondrial consumption of protons 

slows. In transition, some additional ATP is made available by release from buffers 

such as creatine phosphate and the conversion of ADP to ATP by adenylate kinase 
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(Ingwall, 2002), but when these sources are exhausted, ATP concentration (more 

precisely, ATP:AMP ratio (Fell, 1997)) begins to drop.  

The loss of ATP and increased acidosis may cause damage by a number of 

mechanisms. Ion pumps are inhibited by depletion of ATP, which causes decreased 

uptake of calcium by the sarcoplasmic reticulum and reduced extrusion of  

intracellular Na+ and from the cell via the Na+/H+ and Na+/Ca2+ exchangers 

(Steenbergen et al., 1987). Ion accumulation can increase osmotic pressure and 

excess Ca2+ can damage mitochondria (Jennings et al., 1986; Opie, 1998a). 

Contractile machinery and metabolic enzymes are negatively regulated by acidosis 

(Opie, 1998b), and contractile forces are reduced. Hypoxia and acidosis together may 

also activate apoptosis pathways that hypoxia alone does not (Graham et al., 2004). 

Paradoxically, even more cellular damage can occur upon reperfusion, due to 

the influx of oxygen that inactive oxidative pathways and damaged mitochondria 

cannot immediately metabolize (Ambrosio et al., 1987). The rise in cellular oxygen 

produces reactive oxygen species (ROS) which can damage proteins and DNA and 

initiate apoptosis (Solaini & Harris, 2005; Yellon & Downey, 2003). 

All cells have intrinsic defenses to maintain homeostasis during oxygen 

fluctuations.  The transcriptional, signaling, and metabolic pathways that carry out 

adaptation to hypoxia are far-reaching and complex, and yet are so highly 

orchestrated that they can be modeled as a single functional unit (Hochachka & 

Somero, 2002).  The response can be separated into two timescales, the early and 

late response.  The early response is characterized by the immediate shift to 

anaerobic metabolism, as well as signaling cascades that act to decrease ATP 

demand throughout the cell (e.g. by decreasing protein translation).  The metabolic 
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“master switch,” AMP-activated protein kinase (AMPK), senses decreases in the 

ATP:AMP ratio and triggers increased carbohydrate metabolism (Pan & Hardie, 

2002). AMPK upregulates glycolysis during ischemia by upregulating glucose 

transporters and stimulating glycolytic enzymes, then increases fatty acid oxidation 

during reperfusion by activating specific control enzymes (Arad et al., 2007; 

Sambandam & Lopaschuk, 2003). Membrane ion pumps are also regulated by AMPK 

in an effort to maintain pH and energy balance in the hypoxic cell. The late response 

to hypoxia involves a transcriptional cascade, triggered by hypoxia-inducible factor 

HIF-1α, as the cell differentiates into a hypoxia-tolerant phenotype (Hochachka & 

Somero, 2002; Semenza, 2001). The full range of AMPK and HIF targets and their 

roles in health and disease are not completely understood. 

Researchers have long desired to enhance survival in the hypoxic cell, but 

attempts to engineer better defenses have proven difficult. Some success has come 

from single molecule interventions in ischemia, either by overexpressing a gene (Du 

et al., 2006), or triggering a signalling pathway (Hataishi et al., 2006), but in general 

these strategies are difficult without a system-wide understanding. For example, in 

glycolysis we know that an attempt to reduce acidosis by decreasing lactate 

production (without increasing mitochondrial respiration) would do more harm than 

good because of the role of LDH in proton consumption and symport. We must first 

understand natural hypoxia defense systems and how they are regulated before we 

can improve on them.  

In fact, the best strategy discovered so far for ischemia resistance is an 

adaptive mechanism that is already intrinsic to the mammalian heart.  Ischemic 

preconditioning is an increased resistance brought on by inducing multiple short, mild 
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ischemic insults hours to days before the major ischemic event. The actual protective 

mechanisms of preconditioning have still not been worked out completely, even after 

years of research, but the signalling cascades involve many of the intrinsic hypoxia 

defense pathways mentioned above (Yellon & Downey, 2003). In addition, evidence 

has been accumulating for the involvement of nitric oxide signaling in innate hypoxia 

defenses and the preconditioning response (Jones & Bolli, 2006). The mitochondria 

have been implicated as the primary end effectors of preconditioning protection, with 

the opening of ATP-regulated potassium channels (KATP) playing a major role via a 

number of theorized mechanisms including anti-apoptotic prevention of the 

mitochondrial permeability transition (Murphy & Steenbergen, 2007; Yellon & 

Downey, 2003). Though drugs are being developed to trigger endogenous pathways 

for ischemic preconditioning (Budas et al., 2007; Yellon & Downey, 2003), these have 

not yet achieved common use in the clinic.  

Another strategy for engineering hypoxia protection is to look in other species 

for novel tolerance mechanisms that can be transferred to humans. Many organisms 

are able to tolerate severe hypoxia for hours at a time with full recovery. It has been 

suggested that one way that hypoxia tolerant organisms prevent the dangerous 

imbalances caused by hypoxia is through rapid and global regulation of metabolism 

(Hochachka, 1980; Hochachka, 2003).  These organisms use a wide variety of 

anaerobic pathways besides fermentation to lactate, and it is thought that these 

exotic pathways carry their own specific benefits for ATP generation, pH 

maintenance, redox potential (NADH/NAD+), and supply of metabolic intermediates 

(Murphy & Steenbergen, 2007). Though these alternative anaerobic pathways may 

have potential for enhancing hypoxia tolerance in humans, the precise role of each of 
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these pathways within the larger, tightly integrated metabolic network must be fully 

understood before such a translational attempt is made. 

I.2.2  Systems biology 
 We have much to gain from using engineering systems analyses to study 

complex networks of interactions in the cell.  Most complex biological phenomena are 

emergent properties of the system, i.e. behaviors not predictable from a detailed 

knowledge of the parts.  Quantitative models can help to predict and explain these 

emergent properties.  Although this concept has existed for decades among 

computational biologists, the recent emergence of systems biology into the 

mainstream has indisputably been driven by the appearance of large high-throughput 

datasets, and the reliance on computer models to integrate and decipher them.   

One view of the systems approach, emulated in the framework described here, 

involves the following sequence of steps adapted from (Ideker et al., 2001):   

• Gather high-throughput data to define all the components involved under 

the context of interest, 

• Reconstruct integrated cellular networks into an in-silico model, 

• Systematically perturb and monitor the components, 

• Reconcile the experimentally observed responses with those predicted by 

the model, 

• Design and perform new perturbation experiments to distinguish between 

competing model hypotheses. 

The first step in this approach is high-throughput collection of biological data.  

High-throughput studies have examined the response to myocardial ischemia at the 

level of transcriptome (Onody et al., 2003; Sehl et al., 2000; Simkhovich et al., 2003; 
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Stanton et al., 2000), metabolome (Sabatine et al., 2005), and proteome (Cuong et 

al., 2006; De Celle et al., 2005; Sakai et al., 2003; White et al., 2005), providing a 

useful – albeit noisy and incomplete – sketch of the cellular milieu in response to 

hypoxia (or hypoxia-reoxygenation) stimulus.  These datasets provide global 

snapshots of molecular components, but by themselves say little about function.  In 

multicellular organisms especially, several layers of complexity are added to the 

system between the cell and organ levels.  Phenotype measurements, quantifying the 

effect on the system as a whole when a component is perturbed, bridge the molecular 

and functional levels.  The “phenome” is the set of quantitative measurements of 

phenotypic function under a specific physiological context, for gene perturbations 

covering the entire genome – i.e. a directed genetic screen.  Quantitative genomic 

phenotype information can be integrated with molecular-level data to add an extra 

layer of biological context. 

The second step in the systems biology paradigm is to map global intracellular 

networks, since cellular components are highly interconnected beyond the traditional 

view of isolated pathways (Barabasi & Oltvai, 2004).  It has been shown that in some 

intracellular systems, the topology of the network is more important for determining 

function than the kinetic parameters of individual interactions (Albert & Othmer, 2003; 

Urbanczik & Wagner, 2005).  Although researchers have long used cartoon networks 

and systems models to describe specific cellular pathways, genome-wide network 

reconstructions have recently been made possible by new bioinformatics tools (Karp 

et al., 2002), high-throughput measurement of protein interactions (Giot et al., 2003; 

Ito et al., 2001; Li et al., 2004; Uetz et al., 2000), and large-scale efforts of manual 

interaction mapping (Reguly et al., 2006).  Manually curated genome-scale metabolic 

reconstructions have been built for a number of model organisms including bacteria 
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(Reed et al., 2003), yeast (Duarte et al., 2004), mice (Sheikh et al., 2005), and 

humans (Duarte et al., 2007), but not yet for Drosophila melanogaster.   

 The third new idea in this approach is the predictive modeling of these 

networks.  Researchers have built a number of kinetic models of smaller systems (Le 

Novere et al., 2006), which can be interfaced with each other in a modular fashion 

using common standards such as Systems Biology Markup Language (SBML) 

(Hucka et al., 2003) or Cell Markup Language (CellML) (Lloyd et al., 2004).  However, 

modeling the detailed dynamics of biological systems generally requires a large set of 

kinetic parameters, which would be impractical to obtain for a genome-wide network.  

Several recent studies have used statistical models and integration of heterogeneous 

datatypes to infer function from large biological networks without relying on 

computationally intensive, parameter-dependent systems of differential equations 

(Han et al., 2004; Ideker et al., 2002; Walhout et al., 2002).  For metabolic 

reconstructions in particular, the constraint-based method is a useful way to 

quantitatively analyze genome-wide networks without large numbers of kinetic 

parameters.  Using the assumption of steady state, this method uncovers the space 

of all possible enzyme flux distributions under the set of physiochemical limitations 

imposed on the system (Palsson, 2000; Papin et al., 2003).  A number of quantitative 

analyses have been developed to explore the biological consequences of this 

solution space (Price et al., 2004).  Flux-balance analysis, the most commonly used 

technique, predicts an optimum flux distribution given the constraints and an objective 

for the system (for example, growth rate or ATP production) (Ibarra et al., 2002; 

Kauffman et al., 2003).  Using these methods, computer simulations of 

microorganisms can approximate fluxes and growth rates seen in-vivo (Duarte et al., 

2004; Edwards et al., 2001).   
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 The last steps of the systems approach describe iterative refinement to the 

model using the results of perturbation analysis.  From this point of view, data-driven 

or ‘inductive’ reasoning is complementary to hypothesis-driven or ‘deductive’ 

reasoning, and for large, complex systems iterative modeling may be the best way to 

generate testable hypotheses (Kell & Oliver, 2004).  This general framework has 

seen much success in studying the single-cell organisms E. coli and S. cerevisae, as 

well as the multicellular eukaryotes C. elegans and Drosophila melanogaster, and 

shows promise as a tool for analyzing more complex organisms.   

I.2.3  Drosophila as a model for systems analysis of cardiac hypoxia 
Fruit flies have received increasing interest as a model for cardiac research 

(Bier & Bodmer, 2004; McCulloch & Paternostro, 2005; Serluca & Fishman, 2006).  

Drosophila has a tube-like heart and a simple circulatory system, which, when 

combined with its legacy of genetic research, makes the fly an attractive organism for 

studying genetic influences of cardiac function.  With its genome sequence currently 

in its fourth revision (Adams et al., 2000; FlyBase, 2003), the fruit fly has one of the 

best characterized genomes of multicellular organisms.  Flies can be reared and 

manipulated with minimal equipment and care, and their fecundity and ease of 

genetic manipulation have made them a popular subject for genetic screens.  The 

Berkeley Drosophila Genome Project has provided a public resource of Drosophila P-

element insertions, covering over 40% of the genome (Bellen et al., 2004). 

Genomic similarities between flies and humans suggest that Drosophila genes 

found to influence cardiac function are likely to have a human counterpart.  About half 

of Drosophila protein sequences are homologous to mammalian proteins (Adams et 

al., 2000), and in a survey of 287 humans disease genes across several physiological 
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categories, Drosophila was found to have a homolog for 62%, including all 6 cardiac 

disease genes examined (Fortini et al., 2000).  Aside from “disease genes”, flies and 

mammals share many other genes underlying basic mechanisms of heart 

development and function.  The identification of the homeobox transcription factor 

tinman, essential for heart vessel formation in flies (Bodmer & Venkatesh, 1998), 

prompted the cloning of homologues (Nkx2-5/Csx) which regulate cardiac 

development in mice (Ikeda et al., 2002; Lints et al., 1993).  Although flies, unlike 

mammals, do not use sodium channels to create cardiac action potentials (Gu & 

Singh, 1995; Johnson et al., 1998), the fly pacemaker nevertheless relies on several 

conserved calcium and potassium channels.  One important example is ether-a-go-

go, which is similar in sequence and function to the human HERG potassium channel 

which has been implicated in long QT syndrome, a potentially fatal cardiac arrhythmia 

(Curran et al., 1995; Warmke & Ganetzky, 1994).  Mutations in the Drosophila version 

of sarco-endoplasmic reticulum calcium ATPase (SERCA), a membrane pump 

important for maintaining calcium homeostasis in mammalian hearts, alters heart rate 

and rhythm in flies (Sanyal et al., 2006).   

Fruit flies have also been used as a model organism for hypoxia research.  

Their innate tolerance to anoxia, being able to recover completely from up to 4 hours 

without oxygen (Haddad et al., 1997), has sparked recent efforts to understand the 

molecular basis for this tolerance.  The presence of the disaccharide trehalose 

increases anoxia tolerance in flies, probably by protecting against protein desiccation 

and aggregation (Chen et al., 2002), and its protective effects were extended to 

human cells by transfecting the Drosophila trehalose synthase enzyme (Chen et al., 

2003).  A mutagenesis screen for anoxia sensitivity discovered the hypnos genes 

(Haddad et al., 1997), one of which was later identified as pre-mRNA adenosine 
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deaminase (dADAR), which edits the mRNA sequences of a number of ion channels 

and is expressed mainly in neurons (Ma et al., 2001). 

It is likely that a core set of genes for defending cells against oxygen 

fluctuations also evolved early and has been conserved in evolution from flies to 

humans (O'Farrell, 2001).  For example, hypoxia inducible factor HIF-1, the metabolic 

“master switch” AMP-activated protein kinase, and nitric oxide signaling all coordinate 

hypoxia adaptation in mammalian heart (Jones & Bolli, 2006; Kido et al., 2005; Pan & 

Hardie, 2002), and are all present and functional in flies (Lavista-Llanos et al., 2002; 

Pan & Hardie, 2002; Wingrove & O'Farrell, 1999).  However, it is not known whether 

these hypoxia tolerance mechanisms are active in fly myocardial tissue specifically. 

The fly has been a subject for applying novel systems biology approaches 

(Albert & Othmer, 2003; Stuart et al., 2006).  RNA interference has been used in 

genome-wide screens for cell viability and for more specific phenotypes relating to 

developmental signaling pathways in flies (Boutros et al., 2004; Friedman & 

Perrimon, 2006), and the potential advantages of using transgenic RNAi libraries in 

this project are  discussed in the Future Directions section of Chapter VI. Large-scale 

transcriptional profiling studies have been performed (Arbeitman et al., 2002; Furlong 

et al., 2001) and the resulting gene expression data were used to construct networks 

of co-expressed genes (Stuart et al., 2003).  Importantly, a genome-scale Drosophila 

protein interaction map (Giot et al., 2003), generated using the yeast two-hybrid 

technique, can be used as a scaffold with which to reconstruct cellular networks.   
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I.3  Cardiac phenotype screen 
 One strategy for discovering the complete set of genes influencing cardiac 

adaptation to hypoxia is to systematically knock out each gene and measure the 

hypoxic heart phenotype.  Of the organisms with publicly available mutant libraries of 

DNA-level perturbations, only Drosophila has a heart, offering the possibility of a 

genetic screen of function in the heart organ. 

I.3.1  Automated cardiac phenotyping technology 
Directed, systematic screens have several advantages over random 

mutagenesis:  every gene can be screened, influential genes are instantly identified 

without follow-up sequencing, and phenotypes can be quantified for all genes rather 

than the top scoring ‘hits’ (Carpenter & Sabatini, 2004).  However, as opposed to 

mutagenesis screens which can have arbitrary duration and scope, a systematic 

genome-wide screen is, by definition, not complete until each gene perturbation has 

been examined.  New technology has made this daunting task conceptually feasible.  

When mounted on a transparent surface with its wings spread, the fly heart is easily 

visible from the dorsal side by a light microscope.  Taking advantage of this property, 

we and others previously developed optical imaging methods for rapid measurement 

of cardiac function in adult flies (Choma et al., 2006; Paternostro et al., 2001; Wolf et 

al., 2006).  Although these methods are computer-aided for faster throughput, none 

are fast enough to screen the approximately 14,000 Drosophila genes within a 

reasonable timeframe.   

We recently developed new automation for rapid in-vivo measurement and 

analysis of the cardiac hypoxia response in adult flies, improving the speed of 

previous methods and reducing human error from repeated experiments.  Automation 
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increases the throughput at several bottlenecks including anesthetization and 

mounting, locating each fly heart under the microscope, environmental control and 

hypoxia stimulus, and gathering M-mode representations of each heart tube.  The M-

mode is a two-dimensional time-space representation of cardiac contraction from 

image intensities measured along a line perpendicular to the heart.  Image analysis 

algorithms can automatically extract functional information such as heart rate and 

diameter from the raw M-mode image.  An overview of the system is displayed in 

Figure I.2. 

I.3.2  Screening cardiac hypoxia phenotypes 
 Before initiating a screen for cardiac hypoxia tolerance, the endpoint must be 

defined.  In their genetic screen, Haddad et. al. (1997) characterized the whole-body 

response, administering total anoxia for 5 minutes and measuring the time to recover 

to a prone body position as the endpoint for distinguishing hypoxia-sensitive 

mutations.  Studies of cardioprotection in mammals use five physiological endpoints:  

infarct size, myocardial stunning, recovery of mechanical function, arrhythmias, and 

electrocardiographic changes (Yellon & Downey, 2003).  Although infarct size and 

electrocardiograms are difficult to obtain in flies, our imaging-based system can 

approximately measure the other three end points.  This technology is able to 

measure real-time heart rhythms – and potentially wall motion – under hypoxic stress; 

therefore stunning, mechanical recovery, and post-hypoxic arrhythmias are three 

measures of function in the hypoxic heart that can be adapted for rapid screening in 

Drosophila.  For example, flies undergo a change in heart rate resembling myocardial 

stunning in mammals, and dilation of the fly heart tube during hypoxia mirrors 

changes in contractility. 
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Figure I.2:  Automated cardiac phenotyping methods.  A computer-

controlled system anesthetizes flies and mounts them on a 
microscope slide, then uses image process algorithms to find 
and measure the heart of each fly under controlled hypoxia 
stimulus. 

 

The time course of phenotypic effects of hypoxia in adult flies and mammalian 

hearts, compared in Figure I.3, suggests a possible range of hypoxia durations that 

may expose physiological differences in a genetic screen.  Before starting the mutant 

screen, automated methods can help to systematically characterize wild-type cardiac 

phenotypes under hypoxic stresses of varying durations and magnitudes.  The screen 

can identify loss of hypoxia tolerance for any reason by a gene deletion, but 
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integration of phenotype data into the molecular network, described later, can then 

help to generate hypotheses for specific metabolic mechanisms. 

 

 

 

Figure I.3:  Time-course of hypoxia tolerance in flies and mammalian heart.  
Flies can survive up to 4 hours of total anoxia, whereas heart 
cells begin to die from coronary occlusion in under an hour. 

 

I.4  NMR metabolomics 
Metabolomics is the comprehensive study of endogenous metabolites with the 

goal of understanding their role in systems biology.  Fluxomics is the direct 

measurement of global metabolite fluxes, usually by using metabolomic methods to 

track molecules labeled with an isotope such as carbon-13.  Two of the most common 

approaches for profiling metabolites and their changes are nuclear magnetic 

resonance (NMR) spectroscopy and mass spectrometry (MS) (Goodacre et al., 2004; 

Nicholson et al., 2002; Watkins & German, 2002; Whitfield et al., 2004). These 

techniques have been used to study isolated metabolites for decades and, because 

of the greatly increased sensitivity of modern methods and instrumentation, in the last 



22 
 

few years have been able to provide more comprehensive metabolic profiles.  Recent 

advances in magnet field strength and probe technology (Keun et al., 2002a) have 

expanded the capability of NMR spectroscopy as a metabolomics tool. Some 

metabolites can be measured with both NMR and mass spectrometry but others are 

best measured by only one of these techniques - for example carbohydrates do not 

ionize well and for them it is preferable to use NMR.  NMR results generally provide 

more accurate quantitative measurements (Keun et al., 2002b).  

 Metabolic profiling is central to a strategy for modeling adaptation to hypoxia 

in flies because metabolite fluxes are, at the molecular level, the main phenotypic 

endpoint for adaptation to hypoxia by signaling networks.  Due to the low sensitivity of 

NMR methods and the difficulty in harvesting heart tissue in the fly, it is difficult to 

obtain large enough samples of Drosophila myocardium for NMR spectroscopy.  

Flight muscle, which takes up most of the mass of the thorax, can perhaps provide a 

reasonable substitute.  Most of the literature on fruit fly biochemistry focuses on flight 

muscle and its metabolic adaptation for flight, therefore reconstruction of the fly 

metabolism is easier for flight muscle tissue.  The biochemistry of Drosophila heart is 

not known, but flight muscle is similar to cardiac muscle in other organisms in that it 

has very high aerobic requirements during exercise and is well supplied with oxygen.  

One major drawback of flight muscle as an approximation to heart metabolism is that 

in many insects such as bees and blowflies it is thought to rely on carbohydrates as 

the major substrate (Gilmour, 1961; Suarez et al., 2005), whereas the heart uses both 

carbohydrates and fatty acids under normal operation (Opie, 1998a).   

Our lab used 1H NMR spectroscopy as a starting point for understanding the 

pathways involved in adaptation to hypoxia in Drosophila flight muscle.  Our results 
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showed that lactate, alanine, and acetate concentrations increase over 4 hours of 

hypoxia, suggesting that Drosophila coordinates glycolysis with three pathways of 

pyruvate metabolism in order to cope with hypoxia (Feala et al., 2007).  However, 

concentration measurements only provide a snapshot in time of the integral of all 

fluxes into and out of a metabolite pool.  Another problem with these data is that the 

relatively low sensitivity of NMR spectroscopy prevents intermediate metabolites from 

being quantified, which would better identify specific pathways.  Isotopomer-based 

fluxomics, discussed in Chapter VI – Future Directions, are discussed as a potential 

solution to these problems. 

 NMR spectroscopy is limited by difficulties including the necessity of water 

suppression.  Certain metabolites, such as the important substrates trehalose, 

glycogen and fatty acids, need to be assayed by other methods due to limitations in 

detection by NMR.   

 

I.5  Metabolic models 

I.5.1 Reconstructing Drosophila metabolism 
The number of published metabolic reconstructions continues to grow every 

year.  Although the majority of available models are for microbes, reconstructions of 

more complex organisms and subsystems are becoming more common.  For 

example, curated models of the human cardiac mitochondria, human red blood cell, 

generic mouse metabolism, mouse cardiomyocyte, and draft multicellular human 

reconstruction have been made publicly available (Duarte et al., 2007; Morel et al., 

2006; Palsson et al., 1989; Sheikh et al., 2005; Vo et al., 2004).   
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Our lab completed a draft in-silico reconstruction of ATP-generating 

metabolism in Drosophila flight muscle to study metabolic adaptation to hypoxia 

(Feala et al., 2007).  The model is curated, meaning that all reactions in the 

reconstruction are balanced and individually inspected by a search of the literature 

and databases before inclusion into the model.  Also, all reactions are 

compartmentalized (cytosol or mitochondria) and balanced for conservation of 

elements and charge.  Reed et. al (2006) reviews the reconstruction process in detail.   

High-throughput data measured in controlled studies can be used to suggest 

the existence or absence of enzymes when refining for a specific cell type or 

condition.  Transcriptomics data are available for fly thorax (Girardot et al., 2006), and 

fly mitochondria have been examined by proteomics methods (Alonso et al., 2005).  

Although these techniques are likely to miss mRNA and proteins present in low 

concentrations, many enzymes can be found in these gene and protein lists, which 

can refine the model to better represent the muscle cell type.   Tissue specificity of a 

metabolic reconstruction can be improved using a list of genes and proteins 

discovered in high-throughput assays of individual cell types and organelles (Vo et 

al., 2004). In Chapter IV we use a microarray dataset from adult thorax to refine the 

metabolic reconstruction. 

I.5.2  Simulating hypoxic metabolism 
In hypoxia, the overall reduction in energy production is thought to be less 

important to cardiac dysfunction than the loss of metabolite balance within the system 

(Ingwall, 2002).  One major advantage of a mathematical model is that conservation 

of mass is enforced; therefore all elements and charges are balanced within the 

system, including electron transport, cofactor concentration, and protons (pH).  Thus, 
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the complicated problems of balancing redox potential and accounting for ATP and 

proton production are solved intrinsically during simulation.  Flux-balance analysis 

(FBA) on the network reconstruction can quantitatively model these relationships in a 

large metabolic network.  See (Schilling et al., 2000),  (Papin et al., 2003) and 

(Kauffman et al., 2003) for a review of the mathematics involved in flux-balance 

analysis. 

FBA requires an “objective function” to maximize in order to select an optimum 

set of steady-state fluxes from the solution space.  In both heart and flight muscle, the 

objective of metabolism is primarily to provide ATP to the energy-consuming myosin 

cross-bridges and ion pumps.  The result of FBA is the distribution of fluxes that 

maximize the objective function under the imposed constraints.  The main type of 

constraint commonly used in these models is restricted metabolite influx and efflux 

rates.  Fluxes measured experimentally, whether by isotopomer labeling or by linear 

approximation of the rate of metabolite accumulation, can be integrated into the 

metabolic model as upper and lower bounds on reaction rates, following the example 

of Vo and Palsson (2006).  Fitting to measured fluxes results in a model 

experimentally refined to represent the specific tissue and context of interest, in our 

case hypoxic flight muscle, reducing the degrees of freedom of the solution.   

Our metabolic model helped us to understand how the three pyruvate 

pathways, hypothesized from the 1H NMR data, might stabilize pH and redox 

potential while maximizing ATP production under low oxygen .  Anaerobic pathways 

for generating these end products were hypothesized, and the corresponding 

reactions were linked to existing Drosophila genes and built into the model.  In order 

to isolate the effects of hypoxia, we used FBA under varying O2 uptake to find the 



26 
 

network states which maximize ATP production under changes in oxygen availability.  

Simulations suggested that the flexibility of pyruvate metabolism provided by these 

three pathways might provide extra tolerance to hypoxia by increasing the ratio of H+ 

produced per ATP generated while simultaneously reducing the amount of 

carbohydrate fuel required per ATP. 

I.5.3 Refining with phenotype data 
Cardiac phenotypes of enzyme mutants can also provide some limited 

information about reactions in cardiomyocyte metabolism.  Systematic perturbation 

analysis – measurements of cardiac phenotypes for all available enzyme mutations – 

can be compared with the results of an in-silico deletion analysis.  For example, if a 

mutation produces a significant decrease in hypoxia tolerance and simulations show 

a decrease in ATP during hypoxia, the enzyme is likely to be an essential component 

of heart metabolism and should be included in the cardiomyocyte network.  The 

methods developed in Chapter II 

I.6 Iteration and detailed follow-up 
Systems analysis of the cardiac hypoxia response generates hypotheses for 

essential pathways and proteins that can be easily tested using mutants or 

biochemical methods.  For example, our lab used metabolomics and modeling to 

predict pathways for the anaerobic production of acetate and alanine under hypoxic 

conditions.  This is being tested with repeated application of our high-throughput 

techniques, gathering metabolomic profiles and cardiac phenotypes of mutants in 

these pathways. 

 Hypoxia sensitive mutants can be further verified by more detailed 

experimental methods, for example by producing transgenic flies for temporal control 
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of gene expression, using cardiac-specific promoters can be used for tissue 

specificity.  In this way, molecular biology has a complementary role in coarse-

grained systems analyses, because any results from the model are only hypotheses 

until they are validated by standard techniques.  Valid results can be entered back 

into the model, improving its accuracy for future simulations. 

I.7 Discussion 
Our systems analysis of the hypoxia response in ATP-producing pathways in 

Drosophila flight muscle provided insights and hypotheses for molecular mechanisms 

contributing to their remarkable hypoxia tolerance.  The other half of the anaerobic 

shift, down-regulation of ATP-consuming pathways, was not modeled but plays a 

crucial role in survival during hypoxia.  Therefore our current efforts are only a first 

step in this framework for developing a global model that represents both ATP supply 

and demand, with a greater relevance to the heart. 

In order to extend this approach to cardiac myocytes, both the model and its 

underlying data must be expanded to represent global regulation of metabolism in the 

heart.  The most logical step would be to use high-throughput data specific for 

Drosophila cardiac myocytes, adding microarray and proteomic data from the fly heart 

to complement our cardiac phenotype measurements of enzymatic mutants.  

However, this approach is limited by the difficulty of obtaining large amounts of fly 

myocardial tissue. 

Chapter VI discusses future applications for the network modeling approached 

discussed in this dissertation. Our experimentally validated, global model of hypoxic 

metabolism could be studied further using flux-balance analysis and other constraint-

based techniques.  To expand the model to encompass possible signaling networks 
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acting on enzymes, it is possible to integrate a protein interaction network (from 

online interaction databases) and measure cardiac phenotypes for all close neighbors 

to enzymes in the metabolic model (preliminary results in this direction are shown in 

Chapter VI).  Although the dense interaction network cannot be functionally simulated 

in the same way as the metabolic model, statistical methods can be used to discover 

highly connected modules enriched with large phenotype changes.   

Efforts to bring data and models together under the context of acute cardiac 

hypoxia could be replicated for other systems of interest, possibly using some of the 

data or networks mentioned here.  Conversely, it would be possible for future work on 

Drosophila cardiac hypoxia to use this integrated model as a framework with which to 

incorporate and interpret further models or experiments.  A major goal for systems 

biology is to provide scaffolds for storing and integrating the overwhelming data both 

in the existing literature and in new high-throughput experiments.  For example, our 

network incorporates the Drosophila annotated genome with decades of literature on 

fly metabolism as well as our newly gathered metabolomic and phenotype data.   

We have taken a discovery-based approach to find system-wide properties of 

the cardiac hypoxia response, integrating “top-down” (phenotype) and “bottom-up” 

(molecular) data.  Network models are a way of bridging the gap across these 

functional scales.  The incorporation of genome-wide data provides a coarse-grained 

view of the system, complementary to a more detailed biochemical and molecular 

biology approach.  By ensuring that all important components are accounted for, a 

global modeling approach is an unbiased way to focus future, more detailed efforts on 

the most important parts of the system. 
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Chapter II – 

Discovering Regulators of the Drosophila Cardiac 
Hypoxia Response Using Automated Phenotyping 
Technology 

 

 

Abstract 

Necrosis and apoptosis during acute myocardial infarction result in part from 

the inability of hypoxic cardiac myocytes to match ATP supply and demand.  In 

contrast, hypoxia tolerant organisms such as Drosophila can rapidly regulate cellular 

metabolism to survive large oxygen fluctuations.  A genetic screen of fly heart 

function during acute hypoxia can be an unbiased way to discover essential enzymes 

and novel signaling proteins involved in this response.  We have developed a 

prototype to show proof of concept for a genome-scale screen, using computer 

automation to rapidly gather in-vivo hypoxic heart data in adult Drosophila. Our 

system automatically anesthetizes flies for mounting on a slide, and then locates the 

heart organ of each fly.  The system then applies a hypoxia stimulus, acquires time-

space (M-mode) images of the heart walls, and analyzes heart rate and rhythm.  The 

assay can gather rapid, highly controlled measurements, and was able to detect 

phenotype differences in two known hypoxia-sensitive mutations used as positive 

controls – trehalose phosphate synthase, a metabolic enzyme, and guanylyl cyclase, 

a signaling enzyme in the nitric oxide pathway.  We discuss the possible applications 
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of a genome-wide cardiac phenotype dataset in systems biology analyses of hypoxic 

metabolism, using genome-scale interaction networks and constraint-based 

metabolic models. 

II.1 Introduction 
The fruitfly is gaining interest as a model organism for heart research not only 

for the ease of its handling and short life cycle, as compared to vertebrate models, 

but also because its well  known genome and  the  array  of  available  genetic  tools  

allows  for  a genomic and systems biology approach.  In contrast with the mouse, 

which takes months to develop new genetic knockout strains, and with the zebrafish, 

which is a relatively new model organism, Drosophila has a genome that is both well-

understood and easy to manipulate.  With its sequence currently in its 4th revision 

(Adams et al., 2000), the fly has one of the best characterized genomes of 

multicellular organisms.  Several publicly available libraries provide strains of single-

gene disruptions via deletion, P-element insertion (Spradling et al., 1999), or 

transgenic RNA interference (Dietzl et al., 2007).  In particular, transgenic RNAi 

libraries make it possible to use the binary GAL4/UAS expression system to cause 

tissue-specific gene inactivation any time during the fly’s lifespan, providing the ability 

to measure the effects of gene perturbations that would cause lethality in early 

development or in other cell types. 

Flies are a favorite for performing forward genetic screens, but so far there 

has not been a large-scale attempt to screen mutants for heart function.  New 

technology for rapid in-vivo measurement of adult fly hearts would allow researchers 

to reverse screen the Drosophila genome for novel genetic influences on 

cardiovascular function.  Several systems do exist for measuring rate and contraction 
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of the fly heart based on video microsocopy (Ocorr et al., 2007; Paternostro et al., 

2001) or optical coherence tomography (Choma et al., 2006; Wolf et al., 2006).  

However, the current methods require many steps of labor-intensive manual 

preparation and data analysis.  In order to fully capitalize on the advantages offered 

by using Drosophila as a model (size, fecundity, life cycle, genetic libraries), we have 

improved on these techniques by automating as many of the steps in the heart 

measurement process as possible.  With computer automation, the fatigue and 

human error that comes with repeated measurements can be minimized, if not 

eliminated.  Our prototype system can be used for a smaller-scale genetic screen and 

also serves as proof of the concept that a genome-wide screen would be feasible with 

parallel implementation and further engineering efforts. 

 

II.2 Screening the cardiac hypoxia response 
  

A genetic screen of heart function only has translational benefit under specific 

biological or environmental contexts such as adaptation to stress or disease states.  

We have chosen to focus on adaptation to acute hypoxia, but in theory our 

measurement system could be useful for screening the cardiac effects of drugs, 

chemicals, aging, environmental stimuli, or most other contexts of interest. 

 Hypoxia-reoxygenation injury is thought to be the primary cause of cell death 

in myocardial infarction (MI) (Opie, 1991).  Currently the only treatment for acute MI is 

to restore blood flow as soon as possible, either by mechanical (angioplasty) or 

chemical (thrombolytic) means.  No treatments are currently available for increasing 

the tolerance of cardiac tissue to hypoxic stress, though some potential lies in drugs 
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that trigger endogenous pathways for ischemic preconditioning (Budas et al., 2007; 

Yellon & Downey, 2003).  

In animals, all cells have intrinsic metabolic and signaling mechanisms for 

adapting to acute hypoxia.  In the ischemic mammalian heart, reduced oxidative 

metabolism causes a decrease in ATP, which stimulates anaerobic glycolysis, i.e. 

fermentation of glucose to lactate, through allosteric stimulation of key enzymes 

(Opie, 1991).  Protein kinases also play a regulatory role in this anaerobic shift, 

stimulating the breakdown of glycogen into glucose and also regulating pyruvate 

dehydrogenase (PDH) to alter the flux through the citrate cycle (Opie, 1991). 

Since oxygen fluctuations can manifest in countless ways over the life of a 

cell, it is likely that the genetic and metabolic core of the cellular hypoxia response 

evolves very early and is tightly conserved from flies to humans (O'Farrell, 2001).  For 

example, hypoxia-inducible factor (HIF-1), AMP-activated protein kinase (AMPK), and 

nitric oxide (NO) are important mediators of the hypoxia response in both mammals 

(Hardie et al., 2003; Semenza, 2001) and flies (Lavista-Llanos et al., 2002; Pan & 

Hardie, 2002).  However, the total cellular response is far-reaching and complex, 

causing an array of changes in metabolic, signaling, and transcriptional networks 

(Hochachka & Somero, 2002), and this system-wide orchestration of cellular hypoxia 

defenses is not well understood.  A screen for hypoxia-sensitive responses during 

cardiac hypoxia would provide a starting point by gathering the list of genes involved. 
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II.3 Hypoxia tolerance in Drosophila 
 

Fruitflies, like many invertebrates, are extremely tolerant to oxygen 

fluctuations, surviving total anoxia for 4-6 hours with full recovery (Haddad et al., 

1997b).  It is thought that this remarkable tolerance stems from the ability to achieve 

system-wide matching of metabolic supply and demand, especially ATP (Hochachka, 

1980).  The genetic basis for hypoxia tolerance in flies has begun to be explored: the 

Drosophila gene coding for the enzyme trehalose phosphate synthase increases 

hypoxia tolerance when overexpressed in flies (Chen et al., 2002) and when 

transfected into human cells (Chen et al., 2003), which lack the gene.  The nitric 

oxide pathway, known to be important for hypoxia sensing and response in 

mammalian heart (Jones & Bolli, 2006; Schulz et al., 2004), was found to mediate 

cellular and behavioral responses to hypoxia in fly larvae (Wingrove & O'Farrell, 

1999).  A genetic screen for hypoxia tolerance (Haddad et al., 1997a) discovered that 

dADAR, an mRNA editor acting on ion channel transcripts (Ma et al., 2001), 

sensitizes the fly to hypoxia when mutated.   

Although Drosophila flight muscle metabolism has been well studied, energy 

metabolism in the fly heart remains mostly unknown, partly due to the difficulty of 

accessing the small heart organ.  In flight muscle, carbohydrates are the main source 

of fuel, and ATP is generated through aerobic glycolysis even during maximum 

exercise.  Under anaerobic conditions, we found that flight muscle produces not only 

lactate (as in mammalian skeletal and cardiac muscle), but also comparably large 

amounts of alanine and acetate (Feala et al., 2007) (see Chapter III).  It is not known 

whether the fly heart oxidizes fatty acids and lactate under normal conditions, as 

mammals do, and we also do not know whether the anaerobic fly heart produces all 
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three end products (lactate, alanine, and acetate) that flight muscle does.  Measuring 

the heart phenotype for targeted perturbations of these enzymes will show which 

pathways of cardiac metabolism are essential for hypoxia tolerance. 

As Drosophila becomes an established model organism for studying cardiac 

hypoxia, there is much to be learned about its metabolism under normal and 

anaerobic conditions.  Targeted gene perturbations can be used with in-vivo 

measurement of heart function to test hypotheses for essential pathways and 

regulators of anaerobic metabolism.  Beyond the enzymes and genes of central 

metabolism, a genome-scale screen of the cardiac hypoxia response in flies may be 

an unbiased way to uncover unique heart-specific hypoxia response genes that give 

flies their extraordinary tolerance.   

We have characterized the acute hypoxia response under various conditions 

(temperature, age, oxygen levels) in adult Drosophila, both to demonstrate the ability 

of our new technology to rapidly gather and analyze fly heart data and also to 

understand limitations and optimize controllable parameters for a future genetic 

screen. Next we describe our automation technology and some characteristic results, 

and then discuss the possible applications of a ‘genomic phenotype’ dataset in a 

systems approach to studying hypoxic myocardium. 

 

II.4 Automation Methods 

II.4.1 Automated measurement overview 
Customized software, written in the Python programming language was 

implemented to automate mounting flies on the slide, locating the moving hearts, and 
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measuring heart parameters.  The automated measurement process consists of the 

following steps (Figure II.1A) :  

• Anesthetize flies 

• Deposit on slide (optional) 

• Refine fly position (manual) 

• Locate flies 

• Detect heart 

• Position M-mode line 

• Capture time-space M-mode image 

• Detect beats in M-modes  

 

Upon insertion of the vials into the system, flies are automatically anesthetized 

with vaporized triethylamine and then manually mounted on microscope slides.  A 

robotic stage then manipulates the slide following a series of image processing 

algorithms in order to locate and focus on the heart tube of each fly under the 

microscope.  The computer then uses the video feed to construct a time-space (M-

mode) representation of a line of pixels across the heart during baseline, optionally 

during a hypoxia stimulus, and then during recovery from hypoxia.  A microscope-

mounted incubator and a temperature controller (REX-C10, RKC Instrument Inc.) 

maintain the slide at a user-defined temperature during the duration of the 

experiment. The slide is removed and replaced, and the process is repeated.  

Software code and circuit diagrams can be found in Appendix A: Automated heart 

measurement technical details. 

•  
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Figure II.1:  Automation overview.   

A) The computer-controlled system anesthetizes flies, deposits 
them on a microscope slide, and detects and focuses the heart 
for acquisition of a time-space M-mode image of wall 
contractions.   

 
B)  Typical M-mode images and heart rates for baseline, 120-
second hypoxia stimulus, and recovery in the wild-type fly. 

 

II.4.2 Anesthetize 
Flies must be anesthetized and mounted on a microscope slide before 

imaging.  This process is automated by computer-controlled activation of a number of 

electrically actuated pinch valves (#98302-06, Cole-Parmer Instrument Co.) within a 

network of tubes connected to anesthetic and a vacuum pump.  Vacuum pressure is 

used to bubble liquid triethylamine anesthesia (FlyNap, Carolina Biological) and send 

the vapor into the sealed chamber containing the fly vial.    The vacuum line is 
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opened and closed several times during anesthetization, alternately drawing FlyNap 

into the chamber and allowing time for the flies to absorb the vapors.  

 

II.4.3 Mounting 
Microscope images of the heart tube have the best quality when the flies are 

mounted on their backs with the wings spread out of the field of view.  This precise 

positioning of flies is the most challenging step to automate; however, this step is 

greatly aided by using plastic slides, specifically polyvinyl chloride (PVC).  The 

advantage of using plastic slides stems from the discovery that the wings of the fruit 

fly are strongly attracted to static electric charge.   

 

 

Figure II.2: The triboelectric series.  Organic outer layers (hair, fur, skin) 
are repelled by glass and attracted to plastics.  The attraction of 
plastic slides to the fly wings obviates the need for adhesives. 
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The triboelectric series compares the ability of materials to accept and retain 

static charges (Adams, 1987).  Figure II.2 shows the position of some sample 

materials on the triboelectric spectrum.  Organic outer materials such as hair, fur, and 

skin appear on the strongly positive end of the spectrum, while plastic materials tend 

to have a strong affinity for negative charge.  Glass appears near the same end of the 

spectrum as organic materials, suggesting that plastic slides would perform better 

than standard glass slides at holding the wings.  Polyvinylchloride (PVC) plastic 

microscope slides are available as an alternative to glass slides, and – as predicted 

by the triboelectric series – retain a negative charge that attracts the wings.  Though 

the flies must be manually positioned on the slide using tweezers, this is made easier 

by the electrostatic attraction, and obviates the need for any adhesives such as 

double-sided tape or gels used previously.  

Under long-term or severe hypoxia, flies undergo reflexive body movement 

(described in II.6 Discussion, and again in more detail in Appendix B: 

Characterization of the Drosophila heart to mild acute hypoxia). Therefore, these 

experiments necessitate an extra step to restrict movement. We developed a 

“sandwich” assembly consisting of the plastic slide, a thin strip of material with precise 

depth at the top and bottom edges of the slide, and an unfrosted glass slide laid on 

top. Divider strips are adhered to glass slides after flies are mounted normally on the 

plastic slides, then the entire assembly is set on an acrylic frame for stability and held 

together with custom aluminum clasps. To allow a pipeline of experiments to be run, 

many sets of frames, clasps, and divider strips were machined to fit standard plastic 

and glass slides (diagrams and specifications can be found in Appendix A). 

From this point, the computer uses the mechanical stage and microscope 

video feed to automatically find the heart tubes and gather measurements.   
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II.4.4 Detection algorithms 
Flies are located by systematically scanning the slide for dark areas.  The 

stark contrast between the bright white of an empty field of view and the dark image 

of the fly allows the use of a simple threshold algorithm. 

The measurement automation software is designed with multiple threads to 

speed the process of scanning the slide for flies.  Rather than scanning point-by-

point, the stage sweeps across the entire length of the slide, as the camera 

continuously gathers images in a separate processing thread.  The resulting 

sequence of images is downsampled in order to minimize overlap, aligned at the 

edges, and reconstructed into an image of the entire slide, as in Figure II.3A.  Pixels 

within the slide image are subjected to a grayscale threshold, and dark spots in the 

resulting binary image are clustered.  The centroid of each cluster is calculated, 

mapped to stage coordinates, and saved as the location of the fly. 

Once the fly has been detected, the next step is to find and focus on the heart 

organ.  The center position of the fly and the direction of its orientation on the slide 

are valuable information for finding the heart, as well as drawing the perpendicular M-

mode line.  The program uses heuristic rules to move the stage along the outer edges 

of the fly (Figure II.3B), excluding the wings which are not seen at this light intensity 

and focus length.  The orientation of the fly can be calculated from the coordinates of 

the fly outline using singular value decomposition (SVD).  The orientation of the long 

axis of the fly is approximated by the first component vector of the SVD, and the M-

mode line is drawn in the direction of the second vector, perpendicular to the heart 

tube.  The centroid of these coordinates usually falls very close to the position of the 

heart.  These values are saved for future use.  
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Figure II.3:  Detection algorithms overview 
A) Threaded software allows the stage to sweep the slide while 

the camera continuously captures frames, which are then 
reconstructed into a composite image of the slide. 

B) Heuristic rules direct the stage around the outer edges of 
each fly, then find the orientation and centroid. 

C) To autofocus, frames are captured as the z-axis is swept, 
similarly to (A), then motion is calculated at each position. 

D) The heart is centered under the M-mode lines by moving to 
the center of accumulated motion within the frame. 

 
 

Since the heart is generally the only moving part of the anesthetized fly, 

motion detection algorithms can be used to find and focus it with good accuracy.  

Calculating the accumulated frame-to-frame difference is a simple way to emphasize 
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the moving part of an image, and this technique is used repeatedly in the next steps 

for finding and focusing on the heart.  A time-consecutive sequence of N frames F0 to 

FN is recorded and stored.  A new image M is constructed that accumulates the 

absolute frame-to-frame variation for each pixel j, calculating differences in every third 

frame in order to capture more movement with less computation.  Mathematically, this 

computation can be represented 

M[j] = ∑ n |Fn[j]-F n-2[j]|                                                 (1)        

The resulting image is scaled to limit values to within the grayscale range of 0 

to 255.  This image then represents maximal variation for a single pixel as white and 

no variation as black. 

A pre-processing step is applied before the program attempts to detect the 

position of the heart.  Since the contrast between the dark fly image and the bright 

white of the empty slide is so large, the edge of the fly has the largest pixel gradient.  

This presents a problem in the above motion detection algorithm, since slight 

movements of the fly will result in a disproportionately large pixel variation along the 

edges.  To combat this, the steps that follow are applied only to the part of the image 

close to the long axis of the fly, de-emphasizing the edges of the fly.  This step is 

implemented by multiplying the accumulated motion image by a unit Gaussian curve 

oriented along the short axis and centered on the long axis of the fly (Figure II.4) 
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Figure II.4: Image processing is limited to a range near the center of the 
fly, along the long axis. 

 
 
Although the heart tube is usually very near the centroid of the image, this 

position is fine-tuned by using the accumulated motion algorithm to detect movement 

in the frame containing the centroid, as well as in one frame in either direction along 

the long axis of the fly.  Total movement is calculated by simply summing the j pixel 

values in the accumulated motion image M.  The slide is moved to the frame with the 

greatest accumulated movement out of the three, which is usually the view containing 

the heart. 

  Heart frame = argmaxk(∑ j Mk[j])                      (2) 

 

An autofocus algorithm searches for the focus length that captures the most 

heart movement, using the motion detection algorithm.  As with the initial scanning of 

the slide in the x direction, a multi-threaded program enables the focus length z to be 

swept over a wide range as the camera continuously grabs frames.  The focus length 

at which the frame has the most motion is saved as the focus length of the heart 

(Figure II.3C). 

Heart focus = argmaxz(∑ j Mz[j])                          (3) 
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At this point the heart is somewhere within the microscope view, in focus, and 

the M-mode image is almost ready to be captured.  The next challenge is to pinpoint 

the location of the heart within the frame.  The M-mode line can then be drawn at this 

point, in the direction perpendicular to the long axis of the fly (calculated previously by 

SVD).  To pinpoint the location of the heart, the program again generates the 

accumulated motion image M of the current view.  The pulsatile heart is expected to 

be the region of this image with the greatest intensity.  Using this expectation and the 

upper bound of the size of the heart tube, a variable threshold can be used to 

approximate the position of the heart within the frame.  Thresholds are applied to the 

grayscale image at a series of pixel values, from 0 (black) to 255 (white), where 0 

indicates zero change in that pixel over time.  At each of these steps, a bounding box 

is drawn around all pixels above the threshold intensity.  The area of the box naturally 

decreases with the increasing threshold, and the process is terminated when this 

area is smaller or equal to the expected size of the heart.  The center of this bounding 

box is a consistently accurate estimate of the heart position.  This concept is 

illustrated in Figure II.3D. 

II.4.5 M-mode acquisition 
Once the camera is centered on the heart, a virtual line is drawn in the center 

of the frame, perpendicular to the long axis of the fly.  A time-space image, or M-

mode, is created, which captures the variation of this line of pixels in time.  Both the 

heart rate and variations in wall diameter can be derived from the M-mode image.  

Since the motion of the heart is represented as a 2-D image rather than a movie, 

thousands of M-modes can be saved with minimal disk space requirements.  This 
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allows further analysis of the images to be done “offline,” after the flies have gone 

through the scanning process.  Figure II.1B depicts M-mode images of the fly heart 

organ during baseline, hypoxia, and recovery from a short stimulus. 

For each fly on the slide, the M-mode is recorded for 20 seconds of baseline, 

a user-controlled duration of hypoxia and recovery.  The M-mode is broken into 2-

second images and saved to disk, along with a snapshot of the heart frame and an 

image of the entire fly reconstructed from frames acquired during the tracing 

algorithm. 

II.4.6 Parallelization 
In addition to its utility in the slide scanning algorithm, the multi-threaded 

nature of the program also allows the user to anesthetize a new batch of flies as the 

current batch is being measured.  This reduces bottlenecks in the measurement 

process and results in the automated detection and measurement becoming the rate-

limiting process.  Further opportunities for pipelining may be possible in the future 

because of the separate threads of operation. 

II.4.7 Automated analysis 
Heart rate and rhythm can easily be extracted from the M-mode 

representations using image processing algorithms.  When dilated the heart tube is 

translucent and appears much brighter through the microscope than in the contracted 

state, therefore the average brightness of pixels in the M-mode line follows the 

contractions of the heart.  The M-mode is reduced to a one-dimensional intensity 

signal by averaging the columns of the image.  Full 2D M-modes are also saved for 

future application of heart wall detection algorithms. 
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Beat detection is more accurate than spectral analysis in analyzing the heart 

rate in hypoxic flies.  As shown in the Results, the heart rate slows dramatically under 

severely hypoxic conditions, which often causes peaks in the spectrum to be masked 

by low-frequency noise.  Also, the heart rhythm is variable during the hypoxic 

response, resulting in broad or scattered peaks that are difficult to detect and 

quantify.  To overcome these problems, we adapted a beat detection algorithm to 

locate contractions within the intensity signal.   

Rather than using the standard beat detection designed for electrocardiogram 

signals, we adapted an algorithm developed for detecting heartbeats from blood 

pressure waves (Aboy et al., 2005), which have slower upstrokes resembling the M-

mode intensity signal.  One-dimensional intensity signals are bandpass filtered (3rd 

order Butterworth, fc = 1 Hz, 40 Hz) and the derivative is calculated by the 3-point 

central difference method.  An exponentially decaying threshold is then applied to the 

derivative signal, with empirically derived high and low limits.  Peaks in the original 

signal closest to suprathreshold peaks in the derivative are marked as beats, and 

then another filter discards beats occurring within the minimum cycle length from 

another beat.  Appendix A contains the analysis code as well as an evaluation of the 

algorithm’s accuracy. 

II.4.8 User Interface 
A graphical user interface (GUI) provides the user with full control and 

monitoring of the process.  The GUI allows the user to view intermediate steps of the 

detection algorithms, and buttons for manual control of the stage allow corrections to 

be made if the heart is not detected or focused correctly.  Clicking on the microscope 

window centers the M-mode line on the selected pixel, allowing small adjustments to 
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be made during detection and measurement.  In addition to the current camera view, 

the GUI displays the last 2 seconds of M-mode acquisition so that the user can 

monitor the raw data, as well as oxygen concentration of the gas mixture.   

A separate GUI, written in Matlab, allows fast inspection and analysis of large 

amounts of M-mode data.  This interface allows the user to discard poor data from 

badly positioned flies, and (blinded to the identity of the fly stock) mark beats missed 

by the analysis algorithm.  Also, we built in the capability for displaying the results of 

heart wall detection and manual marking of systolic and diastolic wall positions in the 

M-mode images.  This leaves our platform open to future work designing image 

processing to automatically trace heart walls and calculate fractional shortening, a 

valuable addition to the analysis of heart rate and rhythm presented here.   

 

II.5 Results                                                                                                            

II.5.1 Speed and accuracy of heart measurements 
Automation often involves a tradeoff between speed and accuracy.  Our work 

adds automation to all steps of the measurement process, including anesthetization, 

mounting, detecting the heart, measurement, and analysis.  The increased speed of 

experiments and decreased reliance on the experimenter results in lower yield, 

accuracy, and data quality, which we quantify in this section.  
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Figure II.5 (facing page):  User interfaces 
A) Measurement GUI. Most steps can be performed 

manually or automatically within the GUI. 
B) The analysis GUI allows the user to evaluate image 

quality and results of the detection algorithm 
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The initial scanning of the slide takes a constant amount of time (155 

seconds) independent of the number of flies in the batch.  Detecting and focusing on 

the heart takes 28 seconds per fly, which amounts to a total detection time of 

155+28*20 = 715 seconds for a batch of 20 flies per slide.  Total measurement time 

for each slide (155 + 28*N + T*N) is dependent on both the number of flies N and the 

experimental duration T.  

Performance of the analysis algorithm is crucial for post-processing of the 

large amounts of data produced by our system.  The accuracy of the beat detection 

algorithm was tested against a truth table of 400 manually annotated 2-second M-

modes from baseline, mild hypoxia, and recovery. A successful detection was 

counted when the algorithm’s beat index came within 3 samples (sample rate = 125 

Hz) of the manually marked beat.  In these conditions, beat detection performed with 

98% sensitivity and 94% specificity at the optimal threshold chosen from the ROC 

(receiver-operating characteristic) curve of the detection algorithm (see Appendix A).   

When analysis algorithms were applied to images from severe hypoxia and 

recovery, poor image quality caused a large drop in beat detection accuracy. Errors 

were corrected in post-processing by manually marking beats using the analysis GUI, 

with the user blinded to the identity of the fly stocks. The necessity of additional 

manual post-processing in the severe hypoxia protocol limits the throughput, but 

Chapter VI lists potential ways to improve the detection algorithms in the future. 

II.5.2 Characterization of the wild-type response to mild cardiac hypoxia 
Our automation allows the highly controlled measurement of hypoxic 

heartbeats for 25 to 50 flies per hour, depending on the measurement duration.  

When nitrogen-oxygen mixtures of less than about 10% O2 are passed over the fly, 
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the heart rate instantly declines, then partially recovers and maintains a reduced rate.  

Restoration of atmospheric oxygen causes transient slowing, then a recovery to 

baseline. Figure II.1B shows example M-modes and heart rate for a single 

measurement.  

To demonstrate the rapid acquisition of heart measurements, we used our 

automation technology to characterize the effect of acute hypoxia on heart rate (HR) 

and regularity of rhythm in the Oregon-R wild-type fly for different oxygen 

percentages, temperatures, ages, sex, and wild-type strains.  See Appendix B for an 

extensive characterization of the mild hypoxia response. 

II.5.3 Positive controls: oxygen-sensitive mutations 
The literature describes some known hypoxia-sensitive Drosophila genes 

(Chen et al., 2002; Ma et al., 2001; Wingrove & O'Farrell, 1999) linked to a variety of 

biological functions. We tested mutants of three of these genes as positive controls 

for detecting hypoxia sensitivity with our system: dADAR, tps1 and for, with respective 

roles in sugar metabolism, nitric oxide signaling, and mRNA editing. All three P-

element strains were measured using the mild hypoxia protocol (3% for 2 minutes), 

and dADAR and for were measured under severe hypoxia (recovery from 4 hours at 

0.5% O2).  

Under mild hypoxia only the tps1 mutant showed small changes in heart rate 

from wild type. While this difference was statistically significant by one-way ANOVA, 

the reduction in heart rate was less than 1 beat per second (Figure II.6). This level of 

hypoxic stress was not sufficient to induce phenotypic differences for the other two 

mutants.  



62 
 

  

Figure II.6: Mutation of the tps1 gene, trehalose phosphate synthase, 
had a slight but significant slowing of heart rate during mild 
hypoxia stimulus. Heart rate is calculated as the inverse of binned 
beat-to-beat (RR) intervals. 

 

Our severe hypoxia protocol (recovery from 4 hours at 0.5%) showed a 

degraded hypoxia response in P-element mutations of the for locus (Figure II.7). This 

locus contains the dg2 gene for guanylyl cyclase, which catalyzes the formation of 

cGMP, a second messenger in the hypoxia-responsive nitric oxide signaling pathway. 

Wingrove and O’Farrell (1999) demonstrated that allelic differences in this gene 

change the nitric-oxide mediated behavioral response to hypoxia, and our results 

suggest that the influence of this pathway extends the adult heart organ. In the 

mammalian heart nitric oxide has recently been identified as a fundamentally 

important cardioprotective agent, mediating cellular defenses against ischemia and 

reperfusion (Jones & Bolli, 2006). 
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Although the dADAR mutant was discovered for its delayed whole body 

recovery following 4 hours of anoxia (Haddad et al., 1997b), the dADAR heart did not 

respond differently from wild type after 4 hours at 0.5% oxygen. This may be due to 

the small difference in oxygen but more likely is due to the fact that the mRNA editor 

acts primarily on mRNA of sodium channels, which are not present in the fly 

pacemaker (Johnson et al., 1998). When testing the severe hypoxia protocol, the tps1 

stock had contamination problems and was not measured. 

 

 

Figure II.7: Mutation of the for gene, important for nitric oxide signaling, 
showed delayed recovery from severe hypoxia.  
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II.6 Discussion 
 

We have developed automation for rapid in-vivo measurement and analysis of 

heart phenotypes in adult Drosophila, and demonstrated the proof of concept by 

characterizing the wild-type hypoxia response for a wide range of parameters.  One 

major limitation that we discovered was that at oxygen levels below 3% (which we 

refer to as “mild hypoxia”), measurements became difficult due to reflexive movement 

of the body and wings. To overcome this problem, we developed an additional 

“severe hypoxia” protocol, which physically restricts fly movement and measures only 

the recovery after 4 hours of 0.5% oxygen. Although both protocols were able to 

induce an altered cardiac phenotype in a hypoxia-sensitive mutant, the effect was 

much more pronounced for severe hypoxia. Beat detection algorithms performed 

accurately for M-mode images of mild hypoxia, but had to be supplemented by 

manual inspection for severe hypoxia data. 

II.6.1 Designing a large-scale genetic screen 
The goal of large-scale directed screening affects all aspects of the assay, 

including fly culturing, experimental setup and data analysis. The ideal measurement 

is fast, scalable and well-controlled not only for the measurements themselves but 

across all of these aspects. 

As mentioned above, severe hypoxia was able to bring about greater 

phenotypic differences in a genetic mutation than mild hypoxia. This protocol limits 

the throughput, however, adding a 4-hour delay to apply the hypoxia stimulus and 

additional time to analyze the poor quality M-mode images. Also, a measurement 

pipeline requires separate components to induce hypoxia while other groups are 
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being measured for baseline and recovery. In the future it is feasible to improve the 

analysis algorithms and add a hypoxia chamber to the system, so this version of the 

assay is most suitable for a screen. 

The genetic background of the flies must also be taken into account in 

designing a screen, since background strain had a surprising effect on the heart even 

in mild hypoxia.  The yw strain had an irregular heartbeat as compared to Oregon-R 

flies (Appendix B). Heart phenotypes of all F1 crosses performed better than inbred 

stocks, reflecting global genetic improvement from outcrossing that could mask the 

effect of individual mutations.  These results imply that careful attention must be paid 

to the genetic background when performing a screen.  In the Bloomington Stock 

Collection, the P-element insertions have been generated in a variety of wild-type 

backgrounds such as yw, ry506, y, and w.  Mutant strains must therefore be out-

crossed to isolate the effects of the gene of interest from the detrimental effects of 

inbreeding, but this adds a minimum of 10 days to the breeding cycle and doubles the 

labor of rearing the flies. 

The most promising solution for the problem of noisy genetic backgrounds is 

the possibility of screening transgenic RNAi libraries. These recently developed 

resources offer both an isogenetic background and the opportunity for tissue- and 

temporal specificity when used with the GAL4/UAS system. Though it would still 

require a cross to be performed for each stock, this might be the most reliable 

method. Chapter VI discusses this option in further detail. 

II.6.2 Incorporating a phenotype screen into a systems approach 
Although gathering heart data from 2,500 mutant Drosophila strains would no 

doubt uncover a handful of novel and interesting genes, the fraction of the genome 
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covered by a screen of that size would be small.  Flies have approximately 14,000 

identified genes, so even at full-time operation the proposed screen would cover less 

than one-fifth of the genome per year.  Until the methods can be improved further or 

implemented in parallel, it may be worthwhile to consider strategies for a targeted 

screen rather than randomly sampling the genome.  We previously presented a 

network-based strategy for ranking genes more likely to affect lifespan (Ferrarini et 

al., 2005).   

Similarly, it may be possible to build a ranked list of candidate hypoxia-

responsive genes based on genome-wide networks.  Since the primary effects of 

oxygen deprivation are metabolic (decreased ATP production, shift in redox potential, 

pH and ion imbalance), a list of candidates could be generated using our constraint-

based network model of hypoxic metabolic regulation described in later chapters. 

II.6.3 Constraint-based metabolic modeling 
A goal of systems biology research is to invent new techniques for integrating 

different types of high-throughput data into functional network models which can be 

simulated to generate testable hypotheses.  The constraint-based method is currently 

the most popular and successful method for modeling genome-wide metabolic 

networks (Price et al., 2004), although most in-silico metabolic reconstructions on 

which constraint-based techniques can be applied have focused on single-cell 

microbes.  However, reconstructions have been performed for the red blood cell 

(Jamshidi et al., 2001), mouse cardiomyocyte (Sheikh et al., 2005), and more recently 

a multicellular human metabolic network was completed (Duarte et al., 2007). In 

Chapters III through V we expand and validate our model of central ATP-generating 

metabolism in Drosophila muscle cells using microarrays and metabolomic data. 
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These genome-wide reconstructions are usually curated manually, starting 

from a high-throughput dataset such as the annotated genome and/or proteomics 

data for the cell type of interest and referring to the literature to confirm putative 

reactions and enzymes.  This method ensures that models start with a complete 

“parts list” for the system, a cornerstone of the systems biology paradigm (Ideker et 

al., 2001).  Iterations of high-throughput experimentation and computer simulation are 

then used to generate and test predictions to progressively increase the accuracy of 

the model.  A genome-wide phenotype screen is a very useful dataset for earlier 

stages of refinement, since the loss of function of particular enzyme gene disruptions 

identifies the essential reactions to be included in the model.  The goal is to create a 

metabolic model that contains all reactions important to hypoxia tolerance in the fly 

heart, and a genetic screen of cardiac hypoxia will let us identify reactions that 

manifest at the phenotype level (the “top down” view), which molecular data and 

modeling can help explain mechanistically (from the “bottom up”). 

The quantitative nature of our screening method fits well with systems models.  

Flux-balance simulations of metabolism provide steady-state flux values for all 

enzymes in the system when optimizing for some objective such as ATP production 

(Kauffman et al., 2003; Palsson, 2006; Stephanopoulos, 1999).  These intra-system 

flux values allow the model to be directly validated against fluxomics data derived 

from metabolomics methods, such as mass spectrometry and NMR spectroscopy (as 

we have done with the Drosophila model (Feala et al., 2007)).  Although some 

assumptions must be made, it is also possible to compare quantitative phenotype 

values to the ability of the model to meet its objectives.  For example, the hypoxic 

heart rate for a certain mutation can be compared against simulated metabolic fluxes, 

as we will show for measurements and simulations of a lactate dehydrogenase 
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deletion in Chapter III.  When performed with a large number of genes in the future, 

these comparisons may provide a coarse-grained quantitative view of system 

operation that goes beyond the “all-or-none” results of a qualitative screen. 

II.7 Summary 
 

Our system for rapid measurement of cardiac hypoxia phenotypes has the 

potential to measure hundreds of fly stocks per year, which is of the order of 

magnitude required for a genome-wide screen.  Though valuable on its own, such a 

screen also has the potential to be integrated into systems analyses, for example with 

computer simulations of metabolism or in protein interaction networks, as a 

complementary “top-down” dataset.  The complexity and scope of the myocardial 

response to acute hypoxia suggests the benefit of studying this system at the 

genome scale. A reverse genetic screen of cardiac hypoxia phenotypes is the first 

step toward identifying and quantifying all of the important components involved. 
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Chapter III – 

Flexibility in energy metabolism supports hypoxia 
tolerance in Drosophila flight muscle:  metabolomic 
and computational systems analysis 

 

 

Abstract 
The fruit fly Drosophila melanogaster offers promise as a genetically tractable 

model for studying adaptation to hypoxia at the cellular level, but the metabolic basis 

for extreme hypoxia tolerance in flies is not well known.  Using 1H NMR spectroscopy, 

metabolomic profiles were collected under hypoxia.  Accumulation of lactate, alanine, 

and acetate suggested that these are the major end products of anaerobic 

metabolism in the fly.  A constraint-based model of ATP-producing pathways was 

built using the annotated genome, existing models, and the literature.  Multiple 

redundant pathways for producing acetate and alanine were added and simulations 

were run in order to find a single optimal strategy for producing each end product.  

System-wide adaptation to hypoxia was then investigated in-silico using the refined 

model.  Simulations supported the hypothesis that the ability to flexibly convert 

pyruvate to these three byproducts might convey hypoxia tolerance by improving the 

ATP/H+ ratio and the efficiency of glucose utilization.   
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III.1 Introduction 
Understanding cellular adaptation to hypoxia is central to the design of 

treatments for injury caused by ischemia-reperfusion, stroke, and myocardial 

infarction.  Cell damage during acute hypoxia is thought to be caused by imbalances 

such as decreased pH, altered calcium homeostasis, increased intracellular osmotic 

pressure, and mitochondrial damage, resulting directly and indirectly from decreased 

ATP (Corbucci et al., 2005; Hochachka & Somero, 2002).  Humans have complex 

physiological systems for regulating oxygen homeostasis that involve multiple spatial 

scales and cell types and have been delicately tuned during evolution.  However, at 

the cellular level, hypoxia resistance mechanisms most likely evolved very early and 

appear to be highly conserved among species (O'Farrell, 2001).   

Lending support to this hypothesis, several genes have been discovered in 

the fruit fly Drosophila melanogaster that are similar in sequence and function to 

human genes for regulation of metabolism, signaling, and transcription during hypoxia 

(Lavista-Llanos et al., 2002; Pan & Hardie, 2002; Piacentini & Karliner, 1999; 

Wingrove & O'Farrell, 1999).  Although hypoxia defenses in flies and humans seem to 

be quite similar at the level of individual genes, stark contrasts exist at the phenotype 

level.  Drosophila have a remarkable tolerance to hypoxia that is the subject of an 

increasing amount of investigation (Haddad, 2006; O'Farrell, 2001).  In contrast with 

humans, who can only survive a few minutes without oxygen, flies can fully recover 

from up to 4 hours in complete anoxia (Haddad et al., 1997). Differences in anaerobic 

generation of ATP are likely to be part of the reason for the disparity in hypoxia 

tolerance between humans and flies; however, Drosophila anaerobic metabolism is 

not well known. 
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Aerobic energy metabolism in insect flight muscle is similar to that of humans 

in most respects; however, there are some major differences that distinguish the 

species, such as the use of proline as an energy source, heavy reliance on the α-

glycerol-3-phosphate shuttle, and the use of arginine as an alternative to creatine for 

ATP buffering (Gilmour, 1961).  Anaerobic energy pathways in Drosophila are likely to 

deviate from those of humans as well.  In human muscle, glycolysis is the major 

anaerobic energy pathway and lactate is the only end product of anaerobic 

metabolism (Nelson, 2000; Wadley et al., 2006).  Many terrestrial insects yield lactate 

and alanine as anaerobic end products, but other species have been known to 

produce a wide array of other products during hypoxia including sorbitol, succinate, 

glycerol, α-glycerol-3-phosphate, pyruvic acid, and fatty acids  (Hoback & Stanley, 

2001).  The specific end products for Drosophila are not known, however, the wide 

diversity of insect biochemistry suggests that exotic pathways for anaerobic energy 

production may also exist in flies (Gilmour, 1961; Hoback & Stanley, 2001).     

Regardless of the pathways used, anaerobic metabolism must be regulated 

over the long term to balance pH, ATP production, redox potential (most importantly 

NADH/NAD+), and coupling metabolites.  Although strategies for maintaining these 

balances are known for many organisms (Hochachka, 1980), quantitative systems 

models can increase mechanistic understanding.  A major advantage of a 

mathematical model is that conservation of mass is enforced; therefore all elements 

and charges are balanced within the system, including electron transport, cofactor 

concentration, and protons (pH).  The constraint-based method uncovers the space 

of all possible steady-state solutions under a set of physiochemical limitations 

imposed on the system (Palsson, 2004).  These network models are useful both for 
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performing detailed in-silico experiments and for discovering more general systems 

level properties (Almaas et al., 2004; Reed & Palsson, 2004).  

To determine whether flies do use alternative hypoxic pathways, we applied 

NMR metabolomic analysis to flight muscle to discover end products for anaerobic 

energy metabolism.  We then added all pathways that might produce these 

compounds, linked them to existing Drosophila genes, and built them into a 

constraint-based model of fly energy metabolism.  Simulations were used to select 

specific anaerobic pathways from a number of alternatives by optimizing for ATP 

production.  Metabolite fluxes measured by NMR were integrated into the model and 

simulations were conducted to investigate production of ATP, H+, and glucose during 

hypoxia.  Simulations were compared with those of classical anaerobic energy 

pathways in mammals to generate hypotheses for mechanisms of hypoxia tolerance 

in flies. 

 

III.2 Materials and Methods 

III.2.1 Fly preparation 
 Oregon-R wild-type flies were reared in constant darkness at 25° C.  At 3-5 

days old, flies were brought into the light approximately 4 hours before experiment. 

III.2.2 Hypoxia experiments 
The hypoxia experiments included five samples each of 5 conditions: control, 

10 minutes hypoxia, 1 hour hypoxia, 4 hours hypoxia, and 4 hours control.  Since the 

vials used for experiment did not contain food, the 4-hour control was included to 

offset the effects of starvation and dehydration over the same time period.  Holes 
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were drilled the screw caps of Sarstedt 15 mL vials, and rubber tubing was inserted 

into each cap and sealed airtight with silicone adhesive.  At the time of experiment, 

filter paper was soaked in distilled water and placed in each vial to prevent drying.  

Approximately 50 flies were transferred and the caps were screwed loosely onto each 

vial to allow gas to flow out.  A mixture of nitrogen and 0.5% oxygen was then 

bubbled through distilled water and passed through the tubing into the vials.  After 5 

minutes of application of hypoxia, the caps were sealed airtight, the gas pressure was 

cut off at the source, and tubing clamps were used to seal the rubber tube, in that 

order.  Control flies were sealed in vials with wet filter paper, but without the 

application of gas.  Vials were lightly shaken to increase spacing among immobile 

flies and stored on their side at 25º C.  At the end of each time point, vials were snap 

frozen in liquid nitrogen and frozen flies were transferred for storage at -80° C.   

Females were separated from males on dry ice under a dissecting 

microscope, then, using forceps and miniature spring scissors (Fine Science Tools, 

Inc., 15003-08), 20 thoraces were separated from head and abdomen and placed into 

Eppendorf vials in liquid nitrogen.  Thoraces were homogenized in an ice bath for 10 

minutes in 300 µL of cold 1:1 acetonitrile:water buffer, homogenates were centrifuged 

in a cold room (4º C) for 10 minutes at 13,000 RPM, and the supernatant was 

ultracentrifugated for 30 minutes at 8,500 RPM using Nanosep centrifugal devices 

(Pall Life Sciences, Ann Arbor, MI) with a 3 kDa molecular weight cutoff.  To reduce 

the contamination of glycerol, a membrane preservative, to below 80 µM, all Nanosep 

devices were washed 4 times (by 5 minutes centrifugation at 13,000 RPM ) with 500 

µL deionized water.  Filtrate was lyophilized using a vacuum centrifuge for 2 hours at 

45° C.  Dried samples were then dissolved in 500 µL D2O buffered at pH 7.4 with 

monobasic/dibasic sodium phosphate.  The NMR standard TSP (3-trimethylsilyl-2H4-



77 
 

 

propionic acid) was added to the samples at a ratio of 1:100 by volume, resulting in a 

concentration of 0.488 mM.  Samples were stored at 4° C until measured. 

III.2.3 NMR spectroscopy and data analysis 
 Analyses of samples were carried out by  1H NMR spectroscopy on a Bruker 

Avance 500 operating at 500.13 MHz 1H resonance frequency.  The NMR probe used 

was the 5 mm TXI 1H/2H-13C/15N Z GRD.  All NMR spectra were recorded at 30° C.  

Typically 1H were measured with 512 scans into 32768 data points, resulting in an 

acquisition time of 1.36 seconds.  A relaxation delay of 2 seconds additionally 

ensured T1 relaxation between successive scans.  Solvent suppression was 

achieved via the Noesypresat pulse sequence (Bruker Spectrospin Ltd.) in which the 

residual water peak is irradiated during the relaxation and mixing time of 80 µs.  All 1H 

spectra were manually corrected for phase and baseline distortions within 

XWINNMRTM (version 2.6, Bruker Spectrospin, Ltd.).  Two-dimensional NMR 

methods including homonuclear correlation spectroscopy (TOCSY) and 

heteronuclear single quantum correlation spectroscopy (HSQC) were carried out in 

order to identify and subsequently confirm the assessment of metabolites.   

Peaks in the 1D spectra were identified, aligned, and quantified by “targeted 

profiling” algorithms (Weljie et al., 2006) within the software Chenomix NMR Suite 4.5 

(Chenomix, Inc.).  The list of metabolites discovered in the 2D spectra was used to 

guide quantification in one dimension.  Metabolite concentrations were imported into 

Matlab (Mathworks, Cambridge, MA) and Excel (Microsoft, Redmond, CA) for plotting 

and curve fitting. 
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III.2.4 Global metabolite profiles under hypoxia  
Metabolite concentrations were measured at 10 minutes, 1 hour, and 4 hours 

to study the time course of adaptation and breakdown of the metabolic network under 

hypoxic stress.   A comparison of Figure III.1 with a previous study of hypoxic isolated 

mouse cells (Troy, 2005) reveals obvious differences between insect and mammalian 

metabolic makeup and response to hypoxia.  Changes in lactate, alanine, and 

acetate peaks can be seen clearly (boxed in red), compared with the relative stability 

of the size and shape of the background spectra.  Water suppression techniques 

were successful for 22 of the 25 spectra, and in the remaining three the water signal 

masked some peak clusters of trehalose and glucose.   

 

Figure III.1:  Representative NMR spectra with emphasis on accumulating end 
products.  
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The spectra of some metabolites overlap considerably, which decreases 

confidence when assigning concentrations to those compounds.  As a result, relative 

changes are measured more precisely than absolute concentrations, and certain 

metabolites were quantified with more certainty than others.  The results of metabolite 

quantification show that many compounds remained at a constant level for all time 

points.  Notably, of the metabolites quantified, none are seen to decrease.  However, 

this is not necessarily an artifact.  An increase in total NMR spectrum does not betray 

conservation of mass, since these additional small molecules may be the breakdown 

products of the proteins, membranes, and other macromolecules that are normally 

discarded during sample preparation.  Also, trehalose and glycogen, the predominant 

sources of anaerobic energy, were not measured.  Although glycogen peaks can be 

seen in the spectra, the absolute concentration cannot be quantified from the NMR 

spectra due to the fact that there are a variable number of hydrogen atoms in each 

glycogen polysaccharide. Trehalose has a high binding affinity to proteins, which are 

filtered from the sample before measurement.  Additional enzymatic assays will be 

necessary to quantify the true time course of trehalose and glycogen concentrations.  

Variability in glycerol concentrations may be a result of residual glycerol on the filters 

used in sample preparation.  Additional assays must also be done to determine true 

changes in glycerol during hypoxia.   

In the absence of oxygen it can be assumed that only accumulation occurs for 

certain end products and only depletion occurs for certain substrates.  For example, 

lactate is a product of the single enzyme lactate dehydrogenase (LDH), and under 

extreme hypoxic conditions this reaction is irreversible.  Therefore, the time course of 

lactate concentrations can be assumed to closely follow LDH flux.  Drosophila heart 

rate slows drastically under hypoxic conditions, as described in Chapter II, and the 
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resulting reduced circulation would prevent these byproducts from exiting the system 

and escaping measurement.  Similar assumptions can be made for the end products 

acetate and alanine, and for the depletion of the common flight muscle substrates 

glycogen, trehalose, and proline.  Glycogen and trehalose were not measured by 

NMR, and will be assayed by biochemical methods in the future.  Proline 

concentrations did not change significantly during hypoxia.  Although this substrate is 

required for flight, proline oxidation pathways were not considered to be important for 

hypoxic ATP generation. 

Acetate, alanine, and lactate showed a statistically significant increasing trend 

with a good linear fit, but the actual time course more closely represented an 

exponential rise to saturation.  However, since flux balance analysis rests on the 

assumption of steady state, reaction fluxes were derived from the slope of the linear 

approximation.   

III.2.5 Statistical analysis 
 For every metabolite with at least one measurement above 0.05 mM, an 

analysis of variance (ANOVA) was applied to the time course, with a Bonferroni 

correction applied to the p-value for the number of metabolites tested.  Two post hoc 

tests were performed for metabolites in which the null hypothesis of no change 

across time points was rejected by ANOVA:  Tukey’s test for cross-comparison of 

each time point, and a test for a linear trend in the data.  Statistical analysis was 

performed using the Prism software package (GraphPad Software, Inc., San Diego, 

CA).   
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III.2.6 Building the reconstruction 
An in-silico reconstruction of ATP-generating metabolism in Drosophila flight 

muscle was created, using the Simpheny biological database software (Genomatica, 

San Diego).  Characteristic of these models is a high level of detailed manual 

curation.  All genes and reactions in the reconstruction were individually inspected 

before inclusion into the model.  Element- and charge-balanced reactions were 

included in the model based on evidence from sequence homology in the annotated 

genome, online enzyme databases, and the literature.  Cellular compartment 

information was also included.  Reed et. al (2006) reviews the reconstruction process 

in detail.   

For the initial draft, we chose to use the human cardiac mitochondrial model 

(Vo et al., 2004) as a template, sifting through all ATP-producing pathways and then 

searching various resources (Flybase, KEGG, Brenda, MetaCyc, or PubMed)(Caspi 

et al., 2006; Consortium, 1998; Ogata et al., 1999; Schomburg et al., 2002), to find 

evidence for a counterpart in Drosophila flight muscle.  Reactions were entered into 

Simpheny and assigned a confidence level depending on whether evidence was 

derived from sequence, genetic, physiologic, or biochemical evidence.  Gene-protein-

reaction associations were made for each reaction, and, whenever necessary, 

changes were made to reflect subtle interspecies differences in cofactors and 

substrates. 

The second phase of the reconstruction was a survey of Drosophila and insect 

biochemistry literature, with a focus on energy-producing pathways that occur in 

exclusively in fruit flies or other species from the parent phylogenic order Diptera, 

especially the closely related blowfly on which much flight muscle research has been 

done.  Reactions were associated with genes whenever possible, but occasionally 
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included in the model based on physiological or biochemical evidence even if the 

corresponding gene was not found.   

In the third phase of the reconstruction, the model scope was expanded to 

account for the production of the end products (acetate and alanine) discovered in the 

NMR results, and to account for other metabolites and cofactors produced or used in 

these reactions.  All pathways in the KEGG database converting pyruvate to alanine 

or acetate were manually inspected and then added to the model if at least one 

enzyme in the pathway had sequence similarity to a Drosophila gene.  Two pathways 

were added for the production of alanine, and four pathways for acetate production 

were added. 

 The scope of the current Drosophila network spans only central, ATP-

generating metabolism.  Upon completion, this version of the reconstruction had a 

total of 162 genes, forming 143 proteins and catalyzing 158 reactions.  The total 

number of metabolites represented in the model was 184.  Reactions in the model 

can be grouped into 4 major pathways:  glycolysis, TCA cycle, oxidative 

phosphorylation, and amino acid (proline and glutamate) metabolism.  The pentose 

phosphate pathway was not included in the current version due to suggestions in the 

literature that in insects the pathway is used for biosynthetic purposes only 

(Hochachka & Somero, 2002).  Fatty acid metabolism is not important for flight in 

Diptera, and is rarely used during hypoxic conditions (Gilmour, 1961; Hochachka, 

1980).  

III.2.7 Constraint-based modeling 
The final product of the reconstruction process is a curated set of enzymatic 

reactions and metabolite transporters that define the complete metabolic network of 
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interest.  Additional constraints can be added to this stoichiometric matrix in the form 

of limits on uptake rates and transporter fluxes.  Reactions and their associated 

biochemicals are represented mathematically as a matrix of stoichiometric 

relationships that can be manipulated with linear algebra to reveal the solution to the 

equation  

dx/dt  = S*v = 0,  

where x is the vector of metabolites, S is the stoichiometric matrix and v is the vector 

of reaction fluxes at steady state.  The null space of S is the set of possible flux 

vectors that satisfy this steady state condition.  Linear programming methods within 

SimPheny were then used to maximize a desired subset of fluxes within this solution 

space to find a single optimum phenotype.  See (Papin et al., 2003) and (Kauffman et 

al., 2003) for a review of the mathematics involved in flux-balance analysis. 

III.2.8 Hypoxia simulation 
 In muscle cells, the objective of metabolism is primarily to provide ATP to the 

energy-consuming myosin cross-bridges and ion pumps.  In all in-silico experiments, 

ATP production was chosen as the single objective function for the linear 

programming algorithm.  An ATP demand reaction was created in the cytosolic 

compartment, in which ATP and water are converted into ADP plus one phosphate 

ion plus one proton.  The flux through this reaction was maximized subject to 

constraints given by the stoichiometry of the network, substrate uptake, and end 

product secretion.  Flux information was exported into Matlab for plotting. 

The Drosophila literature mentions three major energy substrates for flight 

muscle:  glycogen, trehalose, and proline.  Glycerol is also mentioned as a possible 

fuel (Martinez Agosto & McCabe, 2006), but since both the literature and our 
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metabolomic data are inconclusive regarding this compound, it has been excluded as 

a substrate.  For the purposes of this model, trehalose and glycogen are functionally 

equivalent as the predominant sources of glucose.  The depletion of glycogen and 

trehalose are currently unknown; therefore the amount of glucose entering glycolysis 

remains unknown as well.  Initial simulations of hypoxia showed that proline uptake 

decreases as oxygen is constrained, reaching zero at oxygen levels higher than 

those at which lactate and acetate accumulation occur.  Therefore, it is reasonable to 

assume for our simulations that glucose is the only substrate during hypoxia, which 

reduces the degrees of freedom for substrates to two:  glucose and oxygen.   

In order to study changes in the model output using oxygen uptake as the 

independent variable, the system was saturated with glucose by setting the maximum 

uptake to a value much higher than the threshold required to produce the measured 

fluxes of end products under restricted oxygen.  Constraints on O2 influx in the model 

were then used to simulate low extracellular oxygen concentration in hypoxic 

experimental conditions.  We reduced O2 uptake, leaving all other fluxes free to vary 

up to their constrained maxima.   

III.2.9 Model Validation 
 The core energy-producing pathways in the model, consisting of glycolysis, 

TCA (tricarboxylic acid) cycle, electron transport chain, and oxidative phosphorylation, 

were validated using experimentally measured ratios of ATP produced per molecule 

of glucose and ATP per oxygen atom (P/O or ADP/O ratio).   

 Representative oxygen electrode recordings from a study of isolated 

Drosophila mitochondria (Ferguson et al., 2005) were used to approximate the P/O 

ratio in flight muscle using pyruvate/proline and glycerol-3-phosphate as NAD- and 



85 
 

 

FAD- linked substrates, respectively.  These conditions were simulated in the model 

by constraining cytosolic pathways to zero while adding a flux of ADP in the presence 

of an infinite amount of substrate.  The rate of oxygen consumption was compared 

directly to the linear portion of state 3 respiration in the experimental oxygen traces.  

The stoichiometry of electron transport within the model was refined to better 

approximate experimental results. 

 Whole cell simulations were performed to calculate the amount of ATP 

produced per glucose, with no other carbon source added.  Since measurements of 

ATP:glucose ratio were not found in the literature, the results were compared with 

ATP/glucose ratios in human mitochondria. 

The ADP/O ratio produced by simulation was compared to that of experiment 

by constraining the ADP flux to experimental value (≈ 8.9 nmol/min*µg protein) in a 

saturated solution of pyruvate and proline substrate as described in Ferguson, et. al 

(2005).  Oxygen uptake in the linear region of state 3 respiration was then 

approximated from the oxygen electrode trace and the ADP/O ratio was calculated 

using the formula: [ADP]/2[O2].  These conditions were simulated in the model and 

the resulting oxygen uptake rate was compared to experiment.  After noting a large 

discrepancy, the stoichiometry of proton transfer was adjusted for NADH 

dehydrogenase and cytochrome reductase, two reactions in the electron transport 

chain.  These refinements increased the ADP/O ratio from 2.12 to 2.76 in the model, 

the latter value comparing more favorably with the experimental value of 3.34 (a 

percent error of 17% vs 36%).  The FAD+-linked substrate α-glycerol-3-phosphate 

produced a poorly defined oxygen trace; however, a rough approximation of oxygen 

uptake provided an ADP/O ratio of 1.33.  Simulation of the isolated mitochondria in 
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the presence of α-GP produced a ratio of 1.75.  The refined model produced an 

ATP/glucose ratio of 33.0, which is similar to the reported value in humans of 31.5 

(Nelson, 2000). 

 

III.3 Results and Discussion 

III.3.1 Global metabolite profiles under hypoxia  
Of the 21 compounds with at least one sample measurement greater than 

0.05 mM, 6 were found to change significantly according to one-way ANOVA: 

acetate, alanine, arginine, glucose, lactate, and threonine.  All 6 compounds had a 

statistically significant linearly increasing trend.  Three compounds (acetate, alanine, 

lactate) had high R2 goodness-of-fit values and significant changes among several 

time points.  In the remaining three (arginine, glucose, threonine), only the 4-hour 

hypoxia group was significantly different than the rest.  Figure III.2 displays the 

statistically significant subset.  

 

Table III.1:  Approximation of end-product accumulation from NMR data.  
Accumulation of substrate was calculated using the sample volume 
(500 µL) and the flies per sample (20). 

 

Product 
Goodness-of-fit  

(R2) 

Slope of trendline 
(µM/min*sample) 

Accumulation 
(nmol/(min·fly)) 

Lactate 0.81 495 12.4 

Alanine 0.82 798 20.0 

Acetate 0.86 485 12.1 
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Figure III.2:  Metabolites significantly altered during hypoxia, measured by 1H 
NMR spectroscopy.  Lactate, alanine, and acetate accumulate 
over the time course of the experiment and are byproducts of 
anaerobic metabolism, whereas glucose, threonine, and arginine 
concentrations only spike at 4 hours and are possible indications 
of a loss in homeostasis. 

 

One common behavior was for the concentration of a metabolite to remain 

stable for the first hour of hypoxia, but to show a large increase at 4 hours.  Glucose, 

threonine, and arginine show a statistically significant difference from early time 

points to the 4 hour concentration.  Since the survival rate for anoxic flies at 25º C is 

very high for the first few hours and then starts to decline at 6 hours (Haddad et al., 
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1997), it is reasonable to suggest that these metabolites are an early indication of the 

loss of homeostasis, i.e. the breakdown of the system under stress.  Mechanisms for 

protecting the cell and balancing metabolic requirements may begin to lose 

effectiveness at some threshold period of time.  For example, a likely explanation for 

the time course of glucose is that this substrate is replenished by a steady depletion 

of trehalose and glycogen supplies during the manageable first hour of hypoxia.  At 4 

hours, the glucose supply undergoes a large increase, which suggests that the 

system has experienced a drastic reduction in its ability to utilize carbohydrate 

substrates. 

Steady accumulation of lactate, alanine, and acetate is the second 

phenomenon that can be seen in the NMR spectra.  The end products of anaerobic 

metabolism in Drosophila were not previously known.  However, the discovery of 

lactate and alanine accumulation is consistent with the fact that these compounds, 

which do not accumulate under normal conditions, are known to be byproducts of 

anaerobic metabolism in other terrestrial insects (Hoback & Stanley, 2001).  During 

hypoxia, lactate fermentation regenerates NAD+ for glycolysis, with the tradeoff of 

decreasing pH (Nelson, 2000), and certain other organisms have alanine and acetate 

fermentation pathways that perform a similar function (Gade, 1984; Hochachka & 

Somero, 2002). Table I contains calculated results of accumulation during the 

hypoxia experiment.   

III.3.2 Reconstruction and expansion of Drosophila metabolic network  
We built and validated a constraint-based model of known ATP-producing 

pathways in Drosophila.  Results from the NMR metabolomics experiment were then 

used to refine and expand the model, as well as incorporate quantitative flux data.  
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These results suggest that the major metabolites that accumulate under hypoxic 

conditions are lactate, alanine, and acetate.  We expanded the scope of the model to 

include several alternative pathways for generating alanine and acetate from 

pyruvate, and then integrated NMR measurements by placing constraints on the 

steady-state flux out of the system.   

In other organisms, alanine is produced during hypoxia by transamination to 

pyruvate from another amino acid.  In mammals this pathway involves the cycling of 

α-oxoglutarate (also known as α-ketoglutarate) and glutamate (Nelson, 2000) through 

enzymes that are also present in flies.  We added two transaminations to the model 

based on genetic evidence in the KEGG pathway database (Ogata et al., 1999): 

alanine-α-oxoglutarate transaminase (using glutamate as in mammals) and alanine-

glyoxylate transaminase (using glycine and pyruvate as substrates). 

Acetate production has been previously hypothesized as a possible 

mechanism for dealing with mitochondrial acetyl-CoA that cannot be catabolized 

further in the absence of oxygen (Hochachka, 1980).  The benefits of this pathway 

are two-fold.  Acetate is a weaker acid than lactate (pK is 4.8 vs 3.7); also hydrolysis 

of acetyl-CoA to acetate by acetate-CoA ligase is ADP-linked, offering the additional 

benefit of ATP production.  Genetic evidence in flies (from KEGG) also suggests 

alternative pathways for acetate production from pyruvate via acetyl-phosphate or 

acetaldehyde.  These reactions were added along with the acyl-carnitine shuttle for 

transport of mitochondrial acetyl-CoA to the cytosol. 

III.3.3 Hypoxia simulation 
There are several benefits to using a quantitative model to test and generate 

hypotheses about hypoxic energy metabolism.  First, although much is known about 
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the individual pathways, it becomes very hard to manually calculate and predict 

behavior when pathways are combined into an integrated network.  With a few 

reasonable assumptions, steady state in this study for example, some of the vast 

knowledge contained in the literature and public databases can be compiled into a 

comprehensive, predictive model into which individual experiments, such as our 

metabolomic data, can be integrated.  In this mathematical model, the complicated 

problems of balancing redox potential and accounting for proton production are 

solved intrinsically during flux-balance analysis.   

Every simulation of hypoxia produced a flux distribution that utilized only one 

pathway each for production of alanine and acetate, among multiple alternatives.  

Alanine formation used the glutamate-dependent alanine transaminase, since 

Drosophila lack the capability to further metabolize glyoxylate produced by the 

alternative transaminase reaction.  To produce acetate, the model utilized the acetyl-

CoA synthetase reaction in every simulation.  Fluxes through these reactions were 

constrained to a maximum determined by the NMR data, but were not set explicitly; 

rather, the model utilized these pathways to optimize ATP production under hypoxic 

conditions (Figure III.3). 
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Figure III.3 (facing page):  Pathways of ATP generation during hypoxia.  The 
network includes glycolysis, TCA cycle and oxidative 
phosphorylation, as well as reactions for generating lactate, 
alanine, and acetate (in red) during hypoxia.  Of the two pathways 
for creating alanine (purple box) and four options for creating 
acetate (blue box) from pyruvate, optimization of the model 
selected one optimal route for generating each end product 
(nonzero fluxes in color). 
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Our model was used to simulate Drosophila ATP production ranging from 

normoxia to anoxia, using two different systems:  the first allowing lactate, alanine, 

and acetate to accumulate through known and hypothesized pathways, and the 

second allowing only lactate to accumulate through the fermentation pathway also 

used by mammals (which we call the “pseudo-mammalian” model).  Figure III.4 

shows a clear advantage in converting pyruvate to acetate and alanine during all low 

oxygen conditions.  Figure III.4A plots important fluxes under varying oxygen.  Figure 

III.4B compares these fluxes when alanine and acetate production are constrained to 

zero and the constraint on lactate accumulation is removed.  Using pathways that 

generate alanine and acetate decreases proton production, increases ATP 

generation (Figure III.4C), and decreases glucose uptake under all hypoxic and 

anoxic conditions simulated.  
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Figure III.4 (B and C on following page):  Results of flux-balance analysis 

on the model of Drosophila ATP-generating metabolism.   
(A)  Proton production increases but then levels off at low oxygen 
levels as pyruvate begins to be fermented to alanine, acetate, and 
lactate.  Glucose uptake is decreased during restricted oxygen.   
(B)  When pyruvate is only allowed to be converted to lactate 
(Pseudo-mammalian), proton production is much higher and 
glucose uptake remains constant during hypoxia, while  
(C) ATP production remains the same or better.   
Abbreviations:  atp: ATP production, co2: CO2 production; glc: 
glucose uptake; h: proton production; ac: acetate accumulation, 
lac: lactate accumulation, ala: alanine accumulation. 
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Figure III.4 (continued) 
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2002), since it directly quantifies the physiological tradeoff between generating 

energy for the system and maintaining pH levels required for homeostasis.  Another 

suggested indicator, ATP/substrate ratio, is an obvious way of quantifying the 

decreased efficiency of fuel utilization as respiration, the most efficient pathway, is 

restricted.  Since all simulations of restricted oxygen produce more ATP, use less 

glucose, and accumulate fewer protons in the acetate and alanine-producing system, 

the model suggests that these mechanisms contribute to hypoxia tolerance in flies.  

III.3.4 Simplified simulations of hypoxia metabolism 
We used a simple version of the constraint-based model to further examine 

the individual activity of anaerobic pathways and their interactions.  A set of in-silico 

experiments activated various combinations of the pathways, each time using one 

glucose as the system input and restricting oxygen availability in steps from the 

aerobic domain to total anoxia.  Above 6 oxygen molecules per glucose, aerobic 

metabolism dominated and ATP production was maximized at 33 ATP per glucose as 

expected.  Below oxygen levels of 6 per glucose, behavior varied depending on which 

of the three anaerobic pathways was used. 

If the lactate, alanine, and acetate pathways were all restricted, aerobic 

pathways and ATP production decreased linearly to zero as oxygen was restricted 

(Figure III.5A). When the lactate pathway was added alone, as in mammalian 

systems, it behaved as expected: below 6 O2 per glucose, lactate production 

increased linearly with decreasing oxygen and produced an equivalent amount of 

protons, as glycolysis decoupled from oxidative phosphorylation with each pyruvate 

diverted from the mitochondria (Figure III.5B).  
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Figure III.5:  Simulating classical anaerobic metabolism 
A) Anaerobic pathways restricted (aerobic metabolism only) 
B) Classical mammalian pathway using fermentation of lactate 

 
In Drosophila, alanine transaminase can be found both in the cytosol and the 

mitochondria in a tissue-specific manner, with the cytosolic version suggested to be 

expressed in fat body and the mitochondrial version expected in muscle tissue 

(Gilmour, 1961).  However, we found that the benefit of the alanine pathway under 

A 

B 
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hypoxia was highly dependent on which compartment the enzyme was expressed 

Figure III.6.  In simulation of the alanine pathway individually, the mitochondrial 

version of the enzyme had no improvement over aerobic pathways and was not 

activated.  The cytosolic version was similar to the lactate pathway, since it 

replenishes NAD for glycolysis, and displayed oxygen-dependent activity.  Also as in 

the lactate pathway, alanine production caused creation of H+ as glycolysis and 

oxidative phosphorylation were decoupled.  One additional feature of this pathway is 

that the production of each alanine also required a consumption of NH4 from the 

cytosol.  This consequence of alanine fermentation is well known, and in hypoxic 

mammalian muscle amino groups are also expected to come from glutamate 

(Taegtmeyer et al., 1977).  If scavenging free ammonium ions from the cytosol is an 

added benefit to the cell, the model suggests that the alanine pathway has equal or 

better utility than lactate fermentation during hypoxic conditions.  
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 Figure III.6: Only cytosolic alanine is beneficial as an aerobic end product. 
A) Mitochondrial alanine transaminase does not balance 

NADH/NAD+ or contribute to the ATP objective and is not 
used by the model. 

B) Cytosolic alanine production replenishes NAD+, as in lactate 
fermentation, but also consumes free ammonium. 

 

A 

B 
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Acetate production required some oxygen, since it does not replenish NAD+ 

and in fact produces more NADH than the other pathways due to the reliance of 

pyruvate dehydrogenase to form acetyl-CoA.  However, two additional ATP are 

produced from each glucose without requiring the TCA cycle or electron transport 

chain, so the benefit of this pathway in hypoxic conditions manifested as a higher 

ATP/H+ ratio under mild hypoxia.  Specifically, maximal benefit of the acetate 

pathway was at 1/3 the oxygen uptake of the fully aerobic system. In total anoxia, 

however, metabolism was completely shut down without a supply of NAD+. 

Production of each acetate accumulates a proton by the same mechanism as in the 

other pathways.  

 

Figure III.7:  Acetate improves ATP/H+ ratio but requires a small amount of 
oxygen (optimally 1/3 of aerobic O2 uptake). 

 

 Combining all anaerobic pathways maximized the benefit over the entire 

range of available oxygen.  In mild hypoxia (2 to 6 O2 per glucose), the TCA cycle and 

its numerous oxidation steps were shut down as acetyl-CoA was diverted to acetate.  

Below 2 O2 per glucose, lactate and alanine activity saw a linear increase in activity 
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as acetate production decreased proportionally.  The ATP-proton ratio saw a boost 

due to acetate production, but because of lactate and alanine this figure did not drop 

to zero as O2 levels approached total anoxia.  At very low O2, free ammonium was 

consumed for each alanine produced. 

 
Figure III.8: When all three anaerobic pathways are used, ATP/O2 and ATP/H+ 

curves are highest and free NH4 is consumed in the cytosol. 
 

III.3.5 Lactate dehydrogenase mutant 
The model was next used to simulate a lactate dehydrogenase (LDH) loss-of-

function mutant.  As hypothesized, the lactate pathway produced a neutral effect on 

the system as a whole in the computer model, since alanine production equivalently 

resupplied NAD+ to glycolysis.  The NH4 scavenging of the alanine pathway 

suggested by the model may even cause an LDH knock-out to have a beneficial 

effect on hypoxia survival, since the source of pyruvate normally shared by the two 

pathways would instead be completely converted to alanine with the uptake of an 

additional ammonium ion. 
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Figure III.9: Inhibiting lactate dehydrogenase activity has a neutral effect on 
ATP/H+ ratio, and may be beneficial due to increased NH4 uptake 
in the cytosol.  

 
We used 1H NMR to obtain the metabolic profile of an LDH deletion 

(Bloomington stock number 8063). The heterozygous deletion strain was out-crossed 

with Oregon-R wild type flies for one generation. Lactate production in the LDH 

deletion was inhibited compared to controls, while alanine and acetate accumulation 

was greater. Although the model does not specifically predict an increase in acetate 

production, the rise in alanine supports the hypothesis that the alanine pathway is a 

redundant alternative to lactate production.  
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Figure III.10: Metabolic effects of the lactate dehydrogenase deletion 

A) Computer simulations suggest neutral effects on ATP 
metabolism and proton production. Ammonium consumption 
in the cytosol would be greater as the alanine pathway activity 
increases to handle surplus NADH. 

B) Metabolic profiles show inhibited lactate production in the 
deletion strain, with increased activity in the other pathways. 

 

Cardiac phenotypes were acquired by the techniques in Chapter II, and 

whole-body recovery was measured using the protocol in Chapter IV. Both assays 

saw improvements in function, supporting the predictions of the model. 
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Figure III.11 (facing page):  Physiological assays of the LDH deletion. 
A) Heart rate in LDH deletions recovered faster than wild type 
B) LDH deletion strains also recovered whole-body activity faster 

than the wild type 
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III.4 Summary 
Our approach can be used to generate and test new hypotheses about the 

metabolic basis for hypoxia tolerance. Both NMR metabolomic profiling and 

quantitative systems modeling suggest that having several pathways for the 

fermentation products of pyruvate may contribute to hypoxia tolerance in fruit flies.  

Specifically, we used metabolomics with the flux-balance model to generate several 

experimentally testable hypotheses: 

• Alanine and acetate production pathways improve hypoxia tolerance in 

flies by more efficient use of glucose (ATP/substrate ratio) and lower 

proton production (ATP/H+ ratio) when produce the same ATP under a 

given oxygen availability. 

• Only the cytosolic version of alanine transaminase is active during 

anaerobic alanine production in flight muscle. 

• Acetate production uses reversible mitochondrial acetyl-CoA 

synthetase, and is beneficial to metabolism under mild hypoxia but its 

use tapers off in complete anoxia. 

• Hypoxic use of lactate dehydrogenase is redundant and possibly 

detrimental when alanine pathways are available, and an LDH deletion 

should have neutral to beneficial phenotypic effect. 

All of these hypotheses represent interesting and novel directions of research 

into the Drosophila hypoxia response, and the last hypothesis (regarding the LDH 

deletion) was tested and supported by our own experiments. Future work will verify 

these modeling results, and will take advantage of the vast Drosophila gene deletion 
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library (Spradling et al., 1999) by applying further NMR, phenotypic, and biochemical 

experiments on mutants suggested by the model.   
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Chapter IV – 

Metabolomic and flux-balance analysis of aging and 
hypoxia tolerance in Drosophila muscle tissue 

 

 

Abstract 
 

The fruit fly D. melanogaster is increasingly used as a model organism for 

studying acute hypoxia tolerance and for aging, but the interactions between these 

two factors are not well known. Here we show that hypoxia tolerance degrades with 

age in post-hypoxic recovery of whole-body movement, heart rate and ATP content. 

We previously used 1H NMR metabolomics and a constraint-based model of ATP-

generating metabolism to discover the end products of hypoxic metabolism in flies 

and generate hypotheses for the biological mechanisms. We expand the reactions in 

the model using tissue- and age-specific microarray data from the literature, and then 

examine metabolomic profiles of thoraxes after 4 hours at 0.5% O2 and after 5 

minutes of recovery in 40- versus 3-day-old flies. Model simulations were constrained 

to fluxes calculated from these data. Simulations suggest that the decreased ATP 

production during reoxygenation seen in aging flies can be attributed to reduced 

recovery of mitochondrial respiration pathways and concomitant over-dependence on 

the acetate production pathway as an energy source.  
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IV.1 Introduction 
 

Aging is universal to eukaryotic organisms, and at the cellular level its effects 

are global, reaching virtually all cellular processes. Normal function deteriorates with 

age, but more dangerous is the loss of ability to respond to external stresses, 

contributing to a higher risk of death from external causes (Rose, 1991). Of particular 

interest is the age-related decline of cellular hypoxia tolerance, since hypoxic damage 

to heart and brain tissue is the source of pathology in heart attacks and strokes. In the 

heart, both the incidence and mortality of ischemic events worsen with age (Bonow et 

al., 1996). Currently there is a need for preventative measures to improve tolerance 

to ischemia-reperfusion injury in high-risk patients. The fruitfly Drosophila presents a 

possible source of new discoveries, since it shares fundamental oxygen regulation 

pathways with humans but is highly tolerant to hypoxia stimuli (and accompanying 

reoxygenation as well) (Krishnan et al., 1997). Drosophila is also a common model for 

aging research, and relationships have begun to be explored between aging and 

chronic hypoxia tolerance (Vigne & Frelin, 2007), and between aging and oxidative 

stress (Zou et al., 2000). However, the interaction between aging and acute hypoxia 

tolerance in flies has not yet been investigated. 

The exact mechanism whereby reversible hypoxic tissue damage finally 

evolves into irreversible damage is still controversial (Opie, 1998a), but is likely to 

involve both necrotic and apoptotic mechanisms, stemming from metabolic stresses 

introduced during reperfusion as well as the ischemic event itself. Reduced O2 

causes reduction in oxidative metabolism and increased dependence on glycolysis. 
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Under normal conditions of mild hypoxia and steady ATP demand, such as in highly 

active muscle tissue, consumption of protons by oxidative pathways cannot keep up 

with protons produced by ATP hydrolysis and a reversible state of acidosis results 

(Robergs et al., 2004). Contractile machinery and metabolic enzymes are negatively 

regulated by acidosis (Opie, 1998a). In severe hypoxia, ion pumps are inhibited by 

depletion of ATP.  Ion pump inhibition causes decreased uptake of calcium by the 

sarcoplasmic reticulum and reduced extrusion from the cell (Steenbergen et al., 

1987), and this calcium accumulation can damage mitochondria.  Upon reperfusion, 

the cell experiences sudden oxygen influxes that its inactive oxidative pathways and 

damaged mitochondria cannot immediately metabolize, resulting in the creation of 

reactive oxygen species (Ambrosio et al., 1987). It has been suggested that one way 

that hypoxia tolerant organisms prevent these dangerous imbalances by rapid and 

global regulation of metabolism (Hochachka, 1980; Hochachka, 2003). 

All animals have complex, multiscale systems for regulating oxygen 

homeostasis (Hochachka & Somero, 2002). At the cellular level, hypoxia resistance 

mechanisms most likely evolved very early and appear to be highly conserved among 

species (O'Farrell, 2001). Supporting this hypothesis, several fly genes have been 

discovered that are similar in sequence and function to human genes for regulation of 

metabolism, signaling, and transcription during hypoxia (Lavista-Llanos et al., 2002; 

Pan & Hardie, 2002; Wingrove & O'Farrell, 1999). Although the hypoxia response in 

flies and humans seems to share similarities at the level of individual genes, stark 

contrasts exist at the phenotype level. Flies have a remarkable tolerance to hypoxia 

that is the subject of an increasing amount of investigation. In contrast with humans, 

who can only survive a few minutes without oxygen, flies can fully recover from up to 

4 hours in complete anoxia (Krishnan et al., 1997). Genetic determinants of fly 
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hypoxia tolerance have been discovered by genetic screens (Haddad et al., 1997), 

and one enzyme unique to Drosophila increased hypoxia tolerance when transferred 

to human cells (Chen et al., 2003). Flies’ innate hypoxia tolerance can be further 

improved by directed evolution, and gene deletions mimicking these evolutionary 

changes in gene expression improve tolerance in wild-type flies (Zhou et al., 2007). 

The fruitfly is also one of the principal model organisms used for studying the 

genetics of aging, for a number of reasons. Flies develop to adulthood quickly, have a 

short life span, and share a number of characteristics of functional senescence with 

humans (Grotewiel et al., 2005).  Little is known about how aging degrades hypoxia 

defenses. However, aging is well known to profoundly affect metabolism, and 

metabolism plays a central role in genetic interventions on the aging process. In fact, 

many of the best characterized genes that can accelerate or retard aging in model 

organisms act on the insulin pathway and on mitochondria and are studied in flies 

(Giannakou & Partridge, 2007).  Heart and muscle tissue are good indicators of 

functional senescence since they have a single functional purpose (contraction) 

which is highly dependent on metabolic regulation, and they have easily quantifiable 

phenotypes in flies (heart rate and physical activity).  Another advantage of using 

fruitflies to study muscle tissue biochemistry is that the fly thorax is composed 

primarily of flight muscle by mass, which allows for easy dissection of relatively large 

numbers of flies with fairly high specificity for muscle tissue. (However, it must be 

noted that an unavoidable limitation of using whole thoraxes is that there will be some 

contamination with hemolymph and other tissue.)   

The physiological effects and responses to extreme oxygen conditions can 

manifest on many biological levels. Because metabolites are downstream of gene 
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transcripts and proteins, changes in metabolite levels can provide an indication of the 

overall integrated response of an organism. To obtain a better understanding of the 

system-wide effects of hypoxia on fly muscle tissue, we use NMR spectroscopy to 

simultaneously measure many metabolites present in the tissue and their changes in 

response to hypoxic stress, as described previously (Feala et al., 2007). This 

approach, termed metabolomics, is complementary to genomics and proteomics in 

studying the complex biological system response to chemical, physical, and genetic 

factors (Goodacre et al., 2004; Griffin, 2003; Griffin & Bollard, 2004; Nicholson & 

Wilson, 2003). The simultaneous measurement of a large number of metabolites, in 

combination with the use of a constraint-based computational model, allows us to 

quantify global changes in metabolite fluxes.  

The present study investigates how aging affects the metabolic response to 

hypoxia in Drosophila melanogaster. First, we exposed young and old flies to severe 

hypoxia and compared the age-related degradation in physiological recovery at the 

levels of the organism (whole-body activity), organ (heart rate), and cell (ATP 

content). Then, for both age groups, we gathered metabolite profiles during hypoxia 

and recovery and compared these to an untreated control. Metabolite fluxes were 

calculated for hypoxia and recovery and integrated into the model, then simulations of 

network function were inspected for differences in key fluxes such as ATP, H+, and 

glucose. This analysis generated hypotheses for mechanisms of the loss of hypoxia 

tolerance with age, and these hypotheses were checked for consistency against 

existing transcription profiles of young and old flies (Girardot et al., 2006). The results 

show the utility of NMR metabolomic profiling for characterization of the 

instantaneous physiological condition, enabling direct visualization of the perturbation 

of, and return to, homeostasis.  
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IV.2 Materials and Methods  

IV.2.1 Fly preparation  
Oregon-R wild-type flies were reared in constant light at 25° C and food was 

changed twice a week. Young flies (referred to as “3 day” or “3d” elsewhere in the 

text) were harvested for experiment at 3-5 days of age, and old flies (“40 day” or “40d” 

in the text) were collected at 38-42 days old. Because of the relatively small number 

of females surviving to 40 days of age, only males were used for experiment.  

IV.2.2 Hypoxia experiments  
The hypoxia experiments included five samples each of 3 conditions: control, 

4-hour hypoxia, and 4 hours of hypoxia plus 5 minutes of recovery. A hypoxia 

chamber was created using four Sarstedt 50 mL plastic tubes. Two holes were drilled 

into the screw caps of the tubes and rubber hosing was inserted into each hole and 

sealed airtight with silicone adhesive. The hosing from the four tubes was then 

connected in parallel to a single inflow and a single outflow hose. At the time of 

experiment, filter paper was soaked in distilled water and placed in each tube to 

prevent drying. Approximately 50 flies were transferred into each tube, with two of the 

tubes containing young and two containing old flies. A mixture of nitrogen and 0.5% 

oxygen was then bubbled through distilled water and passed through the tubing into 

the vials. After circulating gas through the tubes for 15 minutes, the inflow and outflow 

hoses were sealed airtight with clamps, with the inflow sealed an instant before 

outflow in order to equalize the chamber pressure to the atmosphere. Control flies 

were similarly transferred from food vials and sealed in tubes with room air over the 

same time period in order to control for the effects of starvation and dehydration. 

Vials were lightly shaken to increase spacing among the immobile flies and stored on 
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their side at 25º C. For the 5-minute recovery group, tubes were opened and exposed 

to room air after the 4-hour hypoxia duration.  

For NMR and biochemical assays, vials were snap frozen in liquid nitrogen at 

the end of each time point and shaken to remove heads, legs, and wings. For each 

sample, 20 male thoraxes were separated from abdomen with microforceps on dry 

ice under a dissecting miscrosope and stored at -80° C until measurement.  

IV.2.3 Heart rate measurement  
Baseline heart rate was measured as described previously (Broderick et al., 

2006; Paternostro et al., 2001). Briefly, 10 flies were anesthetized with triethylamine 

(Carolina Biological), and mounted on their backs on microscope slides using double-

sided tape. Custom software and a motorized stage were used to locate and record 

the position of the heart, then draw a virtual line of pixels across the heart walls. 

Microscope recordings of the pixel values along this line were concatenated to create 

time-space (M-mode) image representations of heart wall motion, from which heart 

rate was extracted by custom image analysis algorithms.  

The slide was placed in the custom hypoxia chamber for 4 hours as described 

above, then removed and M-mode images of the fly hearts were again recorded over 

the first 20 minutes of recovery. Since flies were exposed to room air simultaneously 

and therefore had to be measured in parallel, the software automatically multiplexed 

measurements by rotating through the 10 saved heart positions, recording four-

second M-mode images each time. The time from exposure to room air was recorded 

alongside each image, then image data were binned into four 5-minute periods. Heart 

rate for each fly was calculated as the inverse of the average beat-to-beat interval 
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over the first 5 minutes, normalized to baseline values, and this statistic was 

compared for the two age groups by the t-test.  

IV.2.4 Whole body recovery  
In whole-body recovery experiments, flies were exposed to hypoxia as 

described above, except that at the 4-hour timepoint flies were transferred to a lit 

surface where 10 males from each age group were chosen at random and separated 

with a paintbrush from the population. Recovery period, or the time from exposure to 

room air until the fly was standing upright on all legs, was recorded for each fly. 

Kaplan-Meier estimates and 95% confidence intervals for the cumulative distribution 

function were calculated using Matlab (MathWorks, Cambridge MA).  

IV.2.5 NMR preparation  
Thoraxes were homogenized in an ice bath for 3 minutes in 300µL of cold 1:1 

acetonitrile:water buffer, using an OMNI TH homogenizer. Homogenates were 

centrifuged in a ice bath (4º C) for 10 minutes at 12,000 RPM. 10µL of the 

supernatant was used to determine the total protein concentration by the Bradford 

methods. For the Bradford assays, samples were diluted 10 times with extraction 

buffer. The supernatant was ultracentrifugated for 30 minutes at 8,500 RPM using 

Nanosep centrifugal devices (Pall Life Sciences, Ann Arbor, MI) with a 3 kDa 

molecular weight cutoff. To reduce the contamination by glycerol, a membrane 

wetting agent, to below 80µM, all Nanosep devices were washed 4 times (by 5 

minutes centrifugation at 13,000 RPM) with 500µL deionized water. Filtrate was 

lyophilized using a vacuum centrifuge for 2 hours at 45° C. Samples were stored at -

80° C until measured.  
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IV.2.6 NMR spectroscopy and data analysis  
Dried samples were dissolved in 500µL D2O buffered at pH 7.4 with 

monobasic/dibasic sodium phosphate. The NMR standard TSP (3-trimethylsilyl-2H4-

propionic acid) was added to the samples at a ratio of 1:100 by volume, resulting in a 

concentration of 0.488 mM. Analyses of samples were carried out by 1H NMR 

spectroscopy on a Bruker Avance 500 operating at 500.13 MHz 1H resonance 

frequency. The NMR probe used was the 5 mm TXI 1H/2H-13C/15N Z GRD. All NMR 

spectra were recorded at 25° C. Typically 1H were measured with 512 scans into 

16384 data points, resulting in an acquisition time of 1.36 seconds. A relaxation delay 

of 2 seconds additionally ensured T1 relaxation between successive scans. Solvent 

suppression was achieved via the Noesypresat pulse sequence (Bruker Spectrospin 

Ltd.) in which the residual water peak is irradiated during the relaxation and mixing 

time of 80 µs. All 1H spectra were manually corrected for phase and baseline 

distortions within XWINNMRTM (version 2.6, Bruker Spectrospin, Ltd.). Two-

dimensional NMR methods including homonuclear correlation spectroscopy (TOCSY) 

and heteronuclear single quantum correlation spectroscopy (HSQC) were carried out 

in order to identify and subsequently confirm the assessment of metabolites. Peaks in 

the 1D spectra were identified, aligned, and quantified by “targeted profiling” 

algorithms (Weljie et al., 2006) within the software Chenomix NMR Suite 4.5 

(Chenomix, Inc.). The list of metabolites discovered in the 2D spectra was used to 

guide quantification in one dimension.  

IV.2.7 Standards and scaling factors for  metabolite concentrations 
In NMR spectra, the peak integrals relate directly to the number of protons 

giving rise to the peak, and hence to the relative concentrations of the substances in 

the sample. Absolute concentrations can be obtained if the sample contains an added 
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internal standard of known concentration, or if the concentration of a substance is 

known by independent means (e.g., glucose determination by biochemical assay)  

To determine absolute concentration of the 10 metabolites included in the 

model (alanine, lactate, glutamine, glutamate, glucose, pyruvate, proline, 

oxaloacetate and 4-aminobutyrate), a known concentration standard was acquired 

under the same experimental conditions and scaling factors were calculated for each 

metabolite. 

50µL of 10mM freshly made solution of each standard was added to 450uL of 

D2O buffered at pH 7.4 with monobasic/dibasic sodium phosphate containing 

0.488mM of TSP (3-trimethylsilyl-2H4-propionic acid). Acquisition of the standards 

were carried out as described in the previous paragraph in duplicate, and quantified 

using the software Chenomix NMR suite 4.5 (Chenomix, Inc). The ratio 

[Std]Chenomix/[Std]solution is defined as the scaling factor and is reported as the average 

the 2 experiments. 

IV.2.8 ATP assay  
Twenty thoraxes from 3 days old flies or 40 days old males flies were 

homogenized in 300µL of 6M-guanidine-HCl in extraction buffer (100mM Tris-Acetate 

and 2mM EDTA, pH 7.75) to inhibit ATPase (Schwarze et al., 1998) and placed at 

95°C for 5 minutes. The samples were then centrifugated in a cold room for 10 

minutes at 12,000 RPM and the supernatant was diluted 500 times with the extraction 

buffer and mixed with luminescent solution (ATPLite, Perkin Elmer). The 

luminescence was measured by a luminometer (BT) and results were compared to 

the standards. The relative ATP level was calculating by dividing the luminescence by 

the total protein concentration.  
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IV.2.9 Glycogen and Trehalose assay  
Glycogen and trehalose concentrations are difficult to quantify by our NMR 

assay. Trehalose, although visible in the spectra, binds proteins with high affinity and 

thus a highly variable proportion is filtered from the supernatant along with the soluble 

proteins.  Glycogen can also be seen in the spectra, but cannot be quantified due to 

the variable lengths of each polymer chain.  Therefore, these important substrates 

were measured biochemically. 

Twenty thoraxes from 3 days old flies or 40 days old males flies were 

homogenized in an ice bath for 3 minutes in 300µL of 0.25M Na2CO3 using an OMNI 

TH homogenizer and incubated at 95°C for 2 hours to denature proteins. Aqueous 

solutions of 1M of acetic acid (150µL) and 0.2M of sodium acetate (600µL) were 

mixed with the homogenates and the suspensions were centrifugated for 10 minutes 

at 12,000 RPM. 100µl of the supernatant were placed in eppendorf to determine the 

glucose background. 200µL of supernatant were incubated overnight at 37°C with 

trehalase solution (0.05U/mL in 0.2M sodium acetate pH: 5.2).(Schulze et al., 1995) 

Glycogen was assayed using the method developed by Keppler and Decker (Keppler 

& Decker, 1974) with some modifications. 50µL aliquots were incubated with 500µL of 

an A. niger glucoamylase solution (8.7U/mL in 200mM of Acetate buffer pH: 4.8) for 2 

hours at 40°C under constant agitation. The suspensions were centrifugated for 5 

minute at 4000 RPM and glucose was determined on 20µL of supernatant by addition 

of 170µL of a G6-DPH (0.9U/mL)/ATP (1.6mM)/NADP (1.25mM) mixture in 

triethanolamine hydrochloride buffer (380mM TEA.HCl and 5.5mM of MgSO4, pH: 

7.5) and 10µL of Hexokinase solution (32.5U/µL in 3.2M ammonium sulphate buffer 

pH:6) and read at 340nm in a SpectraMax 190 (Molecular Device).  
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IV.2.10 Statistical analysis  
Student’s t-test were performed to compare means between 2 samples. 

P<0.05 were considered statistically significant. For analysis of the NMR data, 

Bonferroni t-tests were performed. Furthermore, for every metabolite with at least one 

measurement above 0.01 mM, an analysis of variance (ANOVA) was performed, with 

a Bonferroni correction applied to the p-value for the number of metabolites tested. 

Tukey’s post-hoc tests were performed for metabolites, in which the null hypothesis of 

no change with treatment was rejected by ANOVA, for cross-comparison of each 

treatment. All statistical analysis were performed using GraphPad Prism software.  

For the Principal Component Analysis, all metabolites with at least one 

measurement above 0.01 mM were included in the dataset. Each sample was 

normalized by protein content measured by the Bradford assay, and selected 

metabolites were scaled using standards as described above. Data from all samples 

(young and old; control, hypoxia and recovery) were combined into one matrix and 

principal components were computed using the princomp function in Matlab 

(Mathworks, Inc., Cambridge, MA). Principal component scores for the samples were 

plotted and visualized within Matlab. 

IV.2.11 Expanding the metabolic network reconstruction  
Our reconstruction of the central, ATP-generating metabolic network of 

Drosophila flight muscle, (described in Feala et al., 2007), was expanded and refined 

using the absolute gene expression profile derived from an Affymetrix microarray of 

whole thorax in 3-day old flies (Girardot et al., 2006). Raw microarray data were 

combined with Affymetrix Drosophila Genome 2.0 annotation files to obtain gene 

identifiers, which were then linked to reactions and pathways of the KEGG database 
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(Kanehisa et al., 2008; Kanehisa & Goto, 2000) using the dme_pathway.list and 

dme_enzyme.list batch files downloaded from the KEGG FTP server1. Genes from 

the microarray dataset were grouped by whether they had a KEGG identifier, and 

those existing in the KEGG database were further grouped by pathway. Mean 

expression levels in 3-day thorax were calculated for each KEGG pathway containing 

more than one Drosophila gene. Pathway expression levels were also visualized on 

KEGG pathway diagrams using the G-language Microarray System2 (Arakawa et al., 

2005) on log-transformed expression data, which were re-scaled to range from 0 to 

100 in order to fit the input format of the web service. The list of pathways with mean 

expression level greater 500 were visualized with this system and also investigated 

by a literature survey in order to determine whether to include the pathway in the 

model. The list of all Drosophila genes in KEGG was also sorted by thorax expression 

level and genes with expression levels greater than 500 were manually examined by 

literature and database search to determine inclusion in the model. Genes and 

reactions were entered into the model using the SimPheny biological database 

software (Genomatica, San Diego).  

IV.2.12 Flux-balance analysis  
Metabolite concentrations for the three experimental conditions (control, 4-

hour hypoxia, 5-minute recovery) were converted into two sets of fluxes by dividing 

the differences in mean concentrations by the time period, resulting in units of 

nmol*mg prot-1*min-1. Standard errors (SE) of the metabolite fluxes were calculated 

from SE of the concentrations (using the formula SEC2-C1 = √[SEC1
2 + SEC2

2] for 

                                                 

1 ftp://ftp.genome.jp/pub/kegg/genes/organisms/dme 
2 http://www.g-language.org/data/marray 
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subtracting random variables for concentration C1 and C2) and converted to the same 

units. Eleven compounds with measured hypoxia fluxes above .05 nmol*mg prot-

1*min-1 were included in the model except for glycerol, which was contaminated by 

glycerol coating on the membrane filter, and β-alanine, a structural amino acid which 

saw a reverse flux during recovery that was unfeasible to incorporate in the current 

version of the model. Fluxes of glycogen and free glucose were similarly estimated 

from the biochemical assays. Metabolite pools were then simulated in the model by 

creating a sink for each compound and forcing fluxes into/out of the system to the 

values calculated from the data.  

Flux-balance analysis was performed to simulate system flux distributions 

during hypoxia and recovery for both young and old flies. The objective function in all 

simulations was the reaction representing utilization of ATP via hydrolysis. The 

SimPheny software was used for initial flux-balance calculations and for visualizing 

superimposed fluxes on the metabolic network.  

We used Matlab (Mathworks, Inc., Cambridge MA) to analyze the sensitivity of 

flux distributions to variance in the data. The COBRA toolbox for constraint-based 

analysis (Becker et al., 2007) was used to import the SimPheny simulations and run 

flux-balance analysis within Matlab. Then, pseudo-random sets of fluxes were 

created by sampling normal distributions with mean and standard errors equal to 

those calculated for each metabolite flux. A group of 10,000 random flux sets was 

created for each of the four experimental conditions (old and young, recovery and 

hypoxia). Virtual “sinks” with unlimited capacity were created for each compound in 

order to represent metabolite pools, allowing intracellular accumulation and depletion 

in case substrates and end products did not perfectly balance. For each sampled set, 
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fluxes into and out of the metabolite pools were constrained to the randomly selected 

fluxes and flux-balance analysis was performed.  

 

IV.3 Results  

IV.3.1 Post-hypoxic recovery of physiological function  
The advantages of using Drosophila to study mechanisms of aging are further 

enhanced by the many similarities in age-related degradation of function between 

flies and humans. For example, we previously found that flies experience a decline in 

maximum heart rate with age that is similar to humans (Paternostro et al., 2001). 

Grotewiel et. al. (2005) review other age-related declines in flies, including motor 

activity, stress response (including oxidative stress), and ATP production.  We 

examined the senescence of the physiological response to hypoxia in three different 

experiments on young (3-day-old or “3-day”) and old (40-day-old or “40-day”) flies. 

Flies respond to acute hypoxic stress by falling into a motionless, prostrate 

stupor, from which they can fully recover after several minutes (Haddad et al., 1997b). 

Aging significantly delayed the recovery of whole-body activity after extreme hypoxic 

stress (4 hours at 0.5% O2, N = 16 males each group) according to Student’s t-Test. 

Figure IV.1A depicts the cumulative recovery to standing position for each group, with 

Kaplan-Meier estimates of 95% confidence intervals. Young flies began to return to 

standing position after an interval of 32 minutes post-hypoxia, with approximately 2/3 

arousing within the first 2 hours. Old flies remained motionless for the first 4 hours 

post-hypoxia, with 2/3 arousing within 8 hours. After 24 hours, the percent of fully 

recovered flies was equivalent between the two age groups.  
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Figure IV.1:  Recovery of physiological function in flies after severe 
hypoxic stress.   
A)  Whole body recovery was defined as time taken to 
recover from hypoxic stupor to a standing position.  Old flies 
took 2 to 3 times longer to recover than young after 4 hours 
of 0.5% oxygen.   
B)  The hearts of young flies began beating again 
immediately on reoxygenation, while older fly hearts 
remained inactive for nearly 5 minutes.  (inset)  When 
heartbeats during the first 5 minutes were binned, 3-day-old 
heart rates were significantly higher (p<0.05).  In both age 
groups, hearts had stopped by the end of the hypoxic 
period. 

 

Recovery of heart activity after the same treatment followed a similar trend, 

though on a different timescale (shown in Figure IV.1B, N = 11 males for each group). 

The fly has a tube-like heart that normally contracts at 6 to 8 beats per second (bps). 

At the end of the hypoxic period, the hearts of both young and old flies were 

completely stopped. In young flies, the heart began slowly beating within the first 

minute, increasing quickly to approximately 3 bps in the third minute, then maintaining 

a range between 2 and 4 bps for the remainder of the 20 minute measurement 
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duration. In contrast, older hearts remained mostly motionless for the first 6-7 

minutes, and then steadily recovered over the remaining interval. Heart rates for both 

groups eventually recovered to baseline levels, but this happened over a longer 

timescale than presented here (the measurement duration was limited for technical 

reasons). Inverse beat-to-beat intervals binned over the first 5 minutes of 

measurement and normalized to baseline were significantly different (p < 0.05) by 

Student's t-test (Figure IV.1A).  

 

 

Figure IV.2:  ATP concentrations in young and old fly thoraxes after a 
control period, at the end of hypoxia (4 hours at 0.5% O2) and 
after 5 minutes of recovery.  Concentrations are normalized 
to protein content.  Differences are statistically significant 
(p<0.01) for control and recovery measurements, but not for 
hypoxia. 
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Similarly, we measured ATP concentrations in flies at baseline, at the end of a 

4-hour hypoxia stimulus and after a 5-minute recovery period – reflecting the time 

period seen in the heart recovery data (Figure IV.2). Under normal oxygen, ATP 

concentrations are 1.8-fold higher in 3-day than 40-day flies (P=0.006). However, at 

end of the hypoxia treatment, ATP levels are very low and equivalent in the two age 

groups. When the flies are allowed to recover, ATP concentration is 6.6-fold higher in 

3-day flies than 40-day ones (P<0.001).  

IV.3.2 Metabolite Assays  

IV.3.2.1 Glycogen, glucose and trehalose 
Glycogen, free cellular glucose, and trehalose are the major sources of 

carbohydrate fuel in flight muscle in many Diptera such as bees and blowflies 

(Childress et al., 1970; Suarez et al., 2005), and are likely to be for Drosophila 

melanogaster as well. The large deposits of glycogen in flight muscle of flies, the 

depletion of these reserves after prolonged flights, and the rapid catabolism of the 

polysaccharide by flight muscle in vitro, indicate that glycogen provides a major 

vehicle for storage of sources of potential energy which can be mobilized to meet the 

metabolic requirements of active muscle (Sacktor & Wormser-Shavit, 1966). The 

disaccharide trehalose can also support flight activity; it was identified as the principal 

blood sugar in many species of insects, was found in muscle, was found to be 

reduced in concentration within these loci after flight, and was metabolized in vitro by 

flight muscle.(Sacktor & Wormser-Shavit, 1966)  

Glycogen and trehalose concentrations are difficult to quantify by our NMR 

assay. Trehalose, although visible in the spectra, binds proteins with high affinity and 

thus a highly variable proportion is filtered from the supernatant along with the soluble 
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proteins.  Glycogen can also be seen in the spectra, but cannot be quantified due to 

the variable lengths of each polymer chain.  Therefore, these important substrates 

were measured biochemically, following enzymatic assays developed by Parrou 

(Parrou & Francois, 1997).  

As for ATP, we measured glycogen concentrations in flies at baseline, at the 

end of a 4-hour hypoxia stimulus, and after a 5-minute recovery period (Figure IV.3). 

Glycogen was found to be the major source of fuel used by young and old flies to 

produce glucose under hypoxic conditions, with concentrations decreasing greatly as 

the substrate was consumed over the hypoxia duration. In both age groups, hypoxic 

trehalose levels were not statistically different from the ones measured under 

normoxia, and further there were no significant differences across age groups for the 

two treatment conditions. Old flies showed consumption of glycogen and trehalose 

during the recovery period (p = 0.004 for glycogen and p = 0.005 for trehalose.)  

IV.3.2.2 1H NMR metabolomics  
NMR spectra were used to quantify free metabolite concentrations in samples 

of 20 fly thoraxes, homogenized, filtered of protein, and buffered in 500µL of D2O (see 

Materials and Methods). Of 37 metabolites identified, 26 had at least one 

measurement higher than our measurement threshold of 10µM (in the D2O 

homogenate). Free glucose was measured by both NMR and biochemical assays, 

allowing us to check for consistency in the data. Glucose concentrations had similar 

qualitative behavior in both datasets, increasing in young flies during hypoxia and 

then returning toward baseline levels during recovery, while in old flies remaining 

steady during hypoxia but decreasing during recovery.  
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Figure IV.3: Glycogen and trehalose concentrations in young and old 
fly thoraxes after a control period, at the end of hypoxia (4 
hours at 0.5% O2) and after 5 minutes of recovery.  
Concentrations are normalized to protein content.  
Differences between the ages are statistically significant 
(p<0.05) for recovery measurements, but not for hypoxia or 
control periods. 

 

Metabolomics experiments generate multivariate data, which complicate 

statistical analysis by typically having a larger number of variables than experimental 

samples. Principal component analysis (PCA) is a vector transformation that can 

reduce this high dimensionality by projecting the data “cloud” (each point in the cloud 

representing a data sample) onto new axes in the multivariate space. The new axes 

are an orthogonal set of basis vectors that are a weighted composite of the variables 

(in this case, metabolites).  

We applied PCA to the metabolomic profiles of young and old flies. When 

plotted on their principal components (Figure IV.4A), young and old flies had very 

similar profiles in control and hypoxic conditions, with large shifts on PC 2 during 4 

hours hypoxia and smaller movements in the direction of PC 1. After 5 minutes in 

room air, both groups returned toward controls along the direction of PC 2, whereas 
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young flies continued to drift slightly along PC 1. Older flies had a pronounced 

movement along PC1 during recovery, corresponding to the large increase in acetate 

seen in NMR data.  

Decomposition of the data by PCA captured nearly 80% of the variability of 

the concentration data with the first principal component (PC), with the second PC 

contributing another 15% to the total variability. Acetate production dominated PC 1, 

while alanine and lactate production were responsible for most of the changes on PC 

2. Oxalacetate, glutamate, glucose, and glutamine had minor contributions to the two 

PCs (Figure IV.4B). Although similar conclusions can be drawn from direct inspection 

of the NMR profiles, PCA confirmed that these changes were the main sources of 

variability across the 6 datasets. In addition, the data show that acetate production is 

orthogonal to alanine and lactate, and may therefore be attributed to separate 

regulatory mechanisms. 
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Figure IV.4: (facing page) Principal component analysis of the 
metabolomics data.   
(A) Data samples plotted along the first two principal components 
(PCs) showed a large separation between young and old flies 
during recovery but not for the control or hypoxic conditions. The 
differences between young and old flies are most prominent on 
PC 1, while the different experimental oxygen conditions are best 
separated along PC 2.  
(B) The principal components are a composite of metabolite 
concentrations. PC 1 is dominated by acetate concentrations, 
while PC 2 has highest contributions from lactate and alanine. 
Other metabolites contribute small amounts to the vector 
weighting. (inset) The first two principal components represent 
over 95% of the variation in the data. 
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One-way analysis of variance evaluated the effect of hypoxia treatment and 

recovery, independent of the age groups. Out of the 26 metabolites with 

concentrations above the 10µM threshold, only 10 were affected by the treatment (p < 

0.047 with Bonferroni correction). As we reported previously, lactate, alanine and 

acetate are the major end products of hypoxic metabolism in Drosophila, and again 

were the only metabolites with large increases over the hypoxic duration in both 

young and old flies. On reoxygenation, fluxes reverse quickly and increase several 

hundred-fold, and we observed that most of the metabolites returned to control levels 

within the 5-minute measurement duration. However, as suggested by the PCA 

analysis, the acetate level continued to increase during recovery in both young and 

old flies.  

We also employed the Student t-test to individually identify metabolites that 

significantly vary between old and young flies for each treatment. We noticed that 

during normoxia and hypoxia few metabolites vary significantly between age groups, 

even before Bonferroni correction for the number of metabolites. The highest 

confidence differences between the ages appear during the recovery period. After 5 

minutes recovery under normal oxygen conditions, the lactate level returns to its 

normal value in young flies whereas in old flies it is still increased by 80% compared 

to control (p = 0.005). Both young and old flies continue to produce acetate during 

recovery, though old flies produce much more (young: +534% compared to control; 

old: +1800% compared to control, p = 0.005). It is also interesting to note that during 

recovery in old flies, oxalacetate concentration increased by 230% compared with 

control. 
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During hypoxia, the production of alanine is not matched by consumption of 

proline, as it is during aerobic exercise in insect flight muscle. In fact, amino groups 

do not balance in hypoxia or recovery for either age group, therefore protein 

degradation and formation may be a factor, respectively, under these conditions. 

Production or consumption of free amino groups was calculated during flux-balance 

analysis, described below. 

IV.3.3 Metabolic reconstruction  
In order to further refine our existing genome-scale metabolic reconstruction 

(Feala et al., 2007) for muscle tissue, we created a filtered gene list based on global 

gene expression measured in 3-day-old thoraxes by Girardot (2006).  Since thorax 

tissue is composed mostly of flight muscle, highly expressed enzyme genes in this 

dataset could be added with confidence to our metabolic network.  These data were 

measured on Affymetrix microarrays, which provide absolute measurements of 

mRNA levels. 
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Table IV.1:  Comparison of Drosophila models 

 

 
 
 

 

 

 Version 0.5 

(Feala et. al., 2007) 

Version 1 

(current) 

Genes 169 211 

Reactions 171 196 

Metabolites 76 83 

Pathways Glycolysis 

TCA cycle 

Oxidative 
phosphorylation 

Fatty acid oxidation 

Proline degradation 

Alanine/glutamate met 

ROS detoxification 

Glycolysis 

Gluconeogenesis 

Pentose phosphate shunt 

TCA cycle 

Oxidative phosphorylation 

Fatty acid oxidation 

Proline degradation 

Alanine/glutamate metabolism 

Glutamine metabolism 

Tyrosine/phenylalanine metabolism 

Aminosugar metabolism 

ROS detoxification 

Starch and sucrose metabolism 

 
Average confidence 

0-4 scale 

(non-transport rxns) 

 

1.83 

 

2.4 
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The histograms in Figure IV.5 display the distribution of the microarray data 

after filtering and integration with the KEGG Pathway Database. The distribution of 

thorax genes linked to at least one KEGG enzyme (Figure IV.5B) has an interesting 

bimodal distribution which is much less prominent in the histogram of all genes 

(Figure IV.5A). This “long tail” roughly corresponds to the threshold of expression 

(500) for inclusion into the model, which was determined empirically from a literature 

and database search of samples of genes at all levels of expression. The distribution 

of mean expression level for all KEGG pathways is shown in Figure IV.5C. The right 

tail of this distribution also seems to correspond to pathways known to be active in 

flight muscle tissue, as exemplified by the pathways labeled in the figure. Table IV.1 

notes new pathways that were included in the model based on mean expression 

level. In all, 49 new genes and 38 new reactions were added to the model from the 

previous version, resulting in totals of 211 genes and 196 reactions. In addition, the 

new version contains many minor improvements to existing reactions, such as cellular 

compartment assignments and gene-protein-reaction associations, as well as the 

removal of enzymes and pathways with low expression levels. A complete map of the 

network is shown in Appendix C, along with a list of reactions.  

 



138 

 

Figure IV.5:  Histograms of absolute thorax expression data, filtered 
through the KEGG pathway database.   
(Top left)  Histogram of raw absolute expression data from 3-
day-old thorax Affymetrix microarrays, after preprocessing 
and normalization described in (Girardot et. al., 2006) 
(Bottom left) Gene expression histogram for the subset of 
genes listed in at least one KEGG pathway.  Note the 
accentuated “fat tail” of the filtered data, resulting in a 
slightly bimodal distribution.   
(Top right)  Mean expression levels of thorax genes for the 
122 KEGG pathways.  Selected pathways are color-coded 
according to inclusion in the model (based on literature data) 
and positioned above the bin that contains the 
corresponding average gene expression. 

 



139 

IV.3.4 Flux-balance analysis  
Though a few Drosophila enzymes have been extensively studied, most of the 

reaction kinetics in fly central metabolism are unknown. To capture as wide a scope 

of pathways as possible, while avoiding the necessity of kinetic parameters, we 

instead applied flux-balance analysis to our network reconstruction. The major 

assumption in flux-balance analysis is that the system is at steady state, therefore 

intra-system metabolite concentrations do not change.  

In addition to the steady state requirement, our analysis assumes that 

accumulation and depletion of metabolites are linear and unidirectional, i.e. fluxes are 

constant over the measurement period and there is no consumption of accumulating 

metabolites or synthesis of depleted metabolites. The fact that the heart stops beating 

during hypoxia supports the assumption that the cells use only the carbohydrate 

stores that we measure, and nutrients are not supplied by the fat body via 

recirculated hemolymph. 

The model was constrained using data from eleven metabolites which were 

chosen based on the magnitude of the changes during hypoxia and recovery and the 

existence of each metabolite within the network. To increase accuracy of the 

simulations, absolute concentrations were estimated from the NMR spectra using 

correction factors as described in the Methods.  For each metabolite selected, we 

approximated a flux by dividing the concentration differences by the experimental 

time period (4 hours for hypoxia, 5 minutes for recovery). Figure IV.6 (top row) shows 

estimated fluxes of these metabolites for each condition, derived from concentration 

data in the NMR and biochemical assays. Exchange reactions were added to the 

model and for each simulation their fluxes into or out of the system were constrained 

to approximate rates of accumulation or depletion. 
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Using the mean and standard error calculated for each flux, Gaussian 

distributions were constructed and sampled to create 10,000 sets of the eleven 

metabolite fluxes, which were then applied to the model to analyze the sensitivity of 

simulations to variation in the NMR data. All populations of fluxes for each reaction 

had approximately normal distributions. Figure IV.6 (bottom row) shows intrasystem 

fluxes calculated in flux-balance simulations. The variance of calculated fluxes is 

probably conservative in that each measured flux is treated as an independent 

random variable during sampling even though in the biological system there are likely 

many correlations among metabolites that are disregarded here. Intrasystem fluxes in 

the model follow the same pattern as the NMR data, with wide variances during 

hypoxia but much tighter distributions during recovery. 

Except for glutamate degradation and the resultant production of ammonium, 

hypoxic fluxes were not significantly different between old and young flies (Figure IV.6 

– left). The opposite signs of measured oxaloacetate fluxes drive a small set of 

anaplerotic reactions, involving glutamate, in different directions; however, the fluxes 

are small in both age groups. Young flies consume more free ammonium, driven by 

surplus production of alanine shown in the NMR data. However, some protein 

degradation, which was not included in this model, may partially account for the 

appearance of NH4 not provided by free amino acids. Glycolysis and TCA cycle 

pathways are used at the same rate in young and old, although production of lactate 

is slightly higher in the old flies.  Proton production and accumulation of anaerobic 

end products is high for both age groups. Surprisingly, calculations of ATP production 

during the hypoxic period were the same in old and young flies.  
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Figure IV.6 (facing page):  Fluxes calculated from NMR data and by flux-
balance analysis.   
(Left) Fluxes during 4-hour hypoxia period.   
(Right) Fluxes during 5-minute post-hypoxic recovery.   
(Top) Fluxes calculated from NMR concentration profiles.  These 
fluxes were applied to the model as constraints. Error bars mark 
standard errors derived from concentration measurements.  
(Bottom)  Fluxes calculated in flux-balance simulations.  Error 
bars mark standard errors of simulations in sensitivity analysis.   
Compound abbreviations:  glcgn: glycogen, ac: acetate, ala: 
alanine, lac: lactate, abut: 4-aminobutyrate, glc: free glucose, glu: 
glutamate, gln: glutamine, oaa: oxaloacetate, pro: proline, pyr: 
pyruvate, o2: oxygen, co2: carbon dioxide, h2o: water, h: protons, 
nh4: ammonia. Reaction abbreviations:  atps: ATP synthase, atp: 
total ATP production, nadh: NADH dehydrogenase, sucd: 
succinate dehydrogenase (Complex II), cyoo: cytochrome 
oxidase, pfk: phosphofructokinase, gpdh: glycerol-3-phosphate 
dehydrogenase, pyk: pyruvate kinase, pdh: pyruvate 
dehydrogenase, cs: citrate synthase, sucd: succinate 
dehydrogenase (TCA cycle), mdh: malate dehydrogenase. 
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During recovery, intrasystem fluxes in the model show more drastic 

differences between the ages, especially in the recovery of oxidative pathways. Old 

flies show much higher acetate production during recovery, which causes the model 

to calculate slightly higher glycolytic fluxes and much lower TCA cycle fluxes due to 

the difference in acetyl-CoA conversion to acetate versus oxidation via the TCA cycle. 

As the flux map of Figure IV.7 shows, reduced activity of the TCA cycle diverts acetyl-

CoA through the acetate pathway. Differences in ATP production during recovery are 

significant; however, the additional ATP from the cleavage of CoA makes up for some 

of the resulting loss of efficiency in carbon utilization. Due to the slow recovery of 

oxidative metabolism, proton fluxes are negligible in old flies, a marked difference 

from the proton consumption that occurs during recovery in 3-day flies.  Table IV.II 

shows key fluxes and ratios from the simulations. 

 

Table IV.2:  Averages of key fluxes in the simulations  

 
 3d 

hypoxia 
40d 

hypoxia 
 3d 

recovery 
40d 

recovery 
Glucose - 3.6 - 3.6  - 19.4 - 53.3 

Oxygen - 11.5 - 11.8  - 576 - 492 

ATP 64.5 67.6  3.17*103 2.89*103 

H+ 4.1 4.1  -135 55.3 

 
(-)  = consumption;  (+) = production.  

glucose = free glucose + glycogen 

units: nmol/min/mg prot 
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Figure IV.7 (facing page): Flux map comparing recovery fluxes in young 
versus old flies.  Fluxes of young and old are represented by the 
red-green color scale, while color coding from black to yellow 
indicates a ratio of 1 over a large range of absolute flux values.  
Numerical flux values are printed next to reaction abbreviations.  
Major anaerobic end products are shown in blue.  
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IV.4 Discussion 
 

Aging causes deterioration of a variety of physiological functions at the 

organism level, which originate from global degradation and dysregulation at the 

cellular and molecular scale. The nature of aging as a genome-wide, multiscale 

phenomenon invites a systems-level approach to understanding the cellular 

mechanisms by which phenotypes degrade. In this study we have focused on 

hypoxia tolerance in Drosophila, which is notably higher than that of mammals but 

degrades similarly with age, as we show using three different physiological 

measurements at three different scales. Though our physiological phenotype 

measurements were not significantly different between young and old flies during 

hypoxia, upon reoxygenation the age groups had major differences.  At the organism 

level, old flies have slower whole-body recovery of activity following hypoxic stress; at 

the organ level, post-hypoxic heart rate takes longer to recover in older flies; and at 

the cellular level, ATP levels are slower to recover after hypoxia in old flies.  

We used metabolomic and computational analysis of muscle metabolism to 

search for clues as to the molecular basis for this delayed recovery. Global metabolite 

profiles were gathered during baseline, after a long hypoxic period, and then after a 

short recovery as in the physiological measurements, and the data were entered into 

our microarray-supported stoichiometric model of Drosophila central metabolism. 

Flux-balance analysis within this model, driven by flux estimates from the metabolic 

profiles, reiterated that the major differences in metabolic function between young 

and old flies occur on reoxygenation rather than during hypoxic stress. Further, the 

model also predicts that differences in recovery of mitochondrial respiration, and the 
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resulting effects on proton production and glucose utilization in old flies, may 

contribute to the differences in physiological recovery.  

Aging is often described as a generalized deterioration of function but our 

results show that not all metabolic pathways are equally affected. The impairment in 

metabolic recovery after hypoxia seems to be mainly in pathways downstream of 

pyruvate (Krebs cycle and respiration) rather than in the anaerobic portion of 

glycolysis. In our model, the decline in respiratory function seems to account for most 

of the difference in hypoxia tolerance with age, which is widely supported by evidence 

that mitochondrial function plays a major role in the overall functional decline seen 

with age in Drosophila (Dubessay et al., 2007; Ferguson et al., 2005) similar to its role 

mammals (Kujoth et al., 2005; Martin, 2001; Martin et al., 2003; Trifunovic et al., 

2004). Activity of electron transport chain enzyme complexes I, III, and IV decrease 

with age in flies although the expression of certain protein subunits of these 

complexes remains unchanged (Dubessay et al., 2007; Ferguson et al., 2005).  

Microarray (Girardot et al., 2006; Zou et al., 2000) and Northern blot  (Dubessay et 

al., 2007) measurements of RNA expression suggest that transcript levels of TCA 

cycle and respiratory enzymes are highly downregulated with age. Glucose and 

glycogen consumption is necessarily higher, since all other catabolic pathways are 

less efficient in terms of ATP production.  The decreased ADP/O ratios seen in 

mitochondrial assays of old flies (Dubessay et al., 2007) were not included in our 

model simulations, but would most likely only accentuate these results. 

The specific cause of this decline in respiratory metabolism is still under 

investigation.  Multiple intermittent reperfusions during anoxia causes injury in young 

flies, marked by lower rates of respiration on reoxygenation (Lighton & Schilman, 
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2007), which supports the hypothesis that fly mitochondria can be damaged by 

reactive oxygen species (ROS) created by oxygen reperfusion.  In older flies, reduced 

respiration has been attributed to both a lifetime of accumulated damage from 

(Dubessay et al., 2007; Ferguson et al., 2005), and a chronically active response to 

(Zou et al., 2000), the generation of ROS in the mitochondria. 

Another possible contributor to the physiological response to hypoxia in heart 

and muscle tissue is acidosis. The production of lactate, alanine, or acetate end 

products from pyruvate partially uncouples glycolysis from oxidative metabolism, 

causing an imbalance in proton production (by ATP hydrolysis) and consumption (by 

ATP synthase) (Robergs et al., 2004). Since acidosis negatively regulates contractility 

both at the sarcoplasmic reticulum and actin-myosin interaction (Opie, 1998b), heart 

rate and muscular activity would be expected to recover faster in the system that is 

quicker to reverse proton accumulation. Young and old flies produce an equivalent 

amount of protons during hypoxia, suggesting that acidosis is unavoidable even in 

hypoxia-tolerant organisms. However, after 5 minutes of reoxygenation, protons in 3-

day flies are being consumed at a high rate by ATP synthase, while the model 

calculates nearly zero proton flux in 40-day flies. This, in combination with the lower 

rate of ATP production in old flies according to the model, can help to explain our 

observations of age-related differences in recovery of physiological functions. Our 

ATP assay also confirms slower restoration of ATP levels in older flies.  

In anaerobic pathways, the major difference between old and young flies is in 

the production of acetate.  Out of the three end products lactate, alanine, and acetate, 

acetate is the only compound still being produced during recovery, and the reason 

might be that the additional ATP and NADH per glucose created by this pathway 
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result in a better ATP/H+ ratio than that of the other two pathways. Therefore, acetate 

production, in both young and old flies, may represent the most efficient utilization of 

any surplus pyruvate that exceeds the oxidative capacity of the recovering 

mitochondria at 5 minutes post-reperfusion. The model, which solves for the optimal 

flux distribution for ATP production, supports this hypothesis by converting all 

pyruvate to acetate when oxygen is restricted, and given a choice of anaerobic 

pathways with unlimited flux capacity. 

Although the long-term, steady-state physiological responses to hypoxic 

stimulus were the same for both age groups, the stress of hypoxia-reoxygenation 

treatment showed short-term dysfunction in aging flies, across molecular to functional 

scales. Therefore, in addition to static differences in mitochondrial enzyme levels and 

activity, as others have measured, our results suggest that aging also affects the 

dynamic regulation of these enzyme fluxes in response to stress. One question that is 

opened by these data is whether the higher oxidative stress is creating new 

mitochondrial damage or merely making evident the effects of damage that has 

already accumulated with age.  Also, are these results caused by the damage to the 

mitochondrial enzymes directly or to the ROS defenses that protect them? 

Our approach compiled genome-scale data from several sources (the 

annotated fly genome, microarrays, and NMR metabolomics), along with detailed 

data from specific assays and the biochemical literature, and integrated them into a 

quantitative computer model that can be validated against future experiments. The 

model helped us to understand systems-level mechanisms for differences in the 

hypoxia response in young and old flies that both support and contribute to existing 

data regarding aging and mitochondrial dysfunction. In the future, specific molecular 
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mechanisms can be further analyzed by comparing to similar models in other species 

and by perturbation analysis using selected enzyme mutations. 
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Chapter V – 

Metabolic profiling and computational modeling of 
Drosophila metabolism following adaptation to 
chronic hypoxia 
 

 

Abstract 
We explored global metabolic effects of hypoxic adaptation, using a 

population of Drosophila flies experimentally selected to survive chronic hypoxic 

environment over several generations. NMR-based metabolic profiles were gathered 

for thoraxes of adapted and control flies for chronic and acute exposure to room air 

(20% oxygen), mild hypoxia (4% O2), and severe acute hypoxia (4 hours at 0.5% 

oxygen). When compared qualitatively by Principal Component Analysis, the hypoxia-

adapted flies showed similar metabolomic profiles when in their adapted oxygen level 

as the control flies showed in room air; by contrast, adapted flies in room air 

qualitatively resembled the stressed profiles of either group under severe acute 

hypoxia. Adapted flies are better able to tolerate severe acute hypoxia as well, and 

we explored the mechanisms of this tolerance using data-driven flux-balance analysis 

of the two groups. A network model of fly metabolism was constrained to flux 

estimates for 10 metabolites from the different NMR profiles, and optimized for ATP 
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production with flux-balance analysis. In the model, adapted flies produced more ATP 

per glucose consumed, and created fewer protons per ATP. In simulations, the 

source of this efficiency was traced to differential usage of Complex I over Complex II 

in the electron transport chain, driven by upregulation of pyruvate into mitochondrial 

respiration rather than through anaplerotic pyruvate carboxylase. Previous microarray 

data support this direction of pyruvate regulation, and greater use of Complex I in 

adapted flies was experimentally confirmed in a separate study. The model generated 

other specific pathway-based hypotheses for hypoxia tolerance that can be followed 

up experimentally in the future.  

V.1 Introduction 
Drosophila are remarkably tolerant to hypoxic stress and reoxygenation injury 

but, as we (previous chapters) and others (Akasaka et al., 2006; Ma et al., 2001; 

Wingrove & O'Farrell, 1999) have shown, this tolerance can be reduced by specific 

genetic mutations and by global degradation due to aging.  The converse question, 

and more important from a translational standpoint, is whether hypoxia defenses can 

be improved as well.  Our preliminary results with lactate dehydrogenase deletions in 

Chapter III suggest that targeted metabolic interventions may improve recovery from 

hypoxic stress. Zhou et. al. (2007) demonstrated that global adaptation via directed 

evolution can also improve hypoxic function, and that genetic interventions mimicking 

specific adaptations in gene expression can enhance tolerance in unadapted flies as 

well. 

Briefly, over many generations Zhou et. al experimentally selected flies for 

their survival in oxygen levels, which were decreased incrementally at each 

generation. A control population (called “naïve” flies from here on) was cultured in 
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parallel in room air (20% O2). Once the selected population was able to withstand 

chronic levels of 4% oxygen, lethal to naïve flies, the populations were compared at 

the genotype and phenotype level. Adapted flies had better recovery from anoxic 

stress, higher oxygen consumption in chronic hypoxia, and decreased body size. 

Gene expression profiles of adapted versus naïve flies showed 4% percent of the 

genome differed in mRNA transcript levels, with half of the differences from 

downregulation, and genetic perturbation of some downregulated candidates 

conferred enhanced hypoxia tolerance in normal strains.  

Microarray analysis provided a useful snapshot of the genetic origin of 

enhanced function, but metabolic profiles are a complementary indicator of the 

cellular phenotype. In collaboration with Dan Zhou and Gabriel Haddad we used 1H 

NMR spectroscopy (methods detailed in Chapters III and IV) to measure metabolic 

profiles for adapted and naïve flies, then examined these profiles by multivariate 

analysis to find the main sources of metabolite variation and observe how the groups 

clustered and shifted within multidimensional space under hypoxic stress. 

Next, we approximated fluxes from hypoxia and control groups, fitted the 

model to these fluxes as constraints, and compared ATP efficiency and proton 

accumulation between adapted and naïve flies. Enzyme-controlled fluxes were 

compared across groups, and similarly to Chapters III and IV we found trends in the 

regulation of pyruvate metabolism, though the specific mechanisms were different. 

Finally, we compared regulation of fluxes in the model to regulation of genes in the 

microarray data and saw parallels in the regulation of enzymes involved in pyruvate 

metabolism. 
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V.2 Materials and Methods 
Flies were cultured in chronic and acute hypoxia conditions as described in 

Zhou et. al. (2007). Hypoxia experiments and NMR spectra were gathered for each 

group as described in Chapters III and IV.  

For the Principal Component Analysis, all metabolites with at least one 

measurement above 0.01 mM were included in the dataset. Each sample was 

normalized by protein content measured by the Bradford assay, and selected 

metabolites were scaled using standards as described above. Data from all samples 

(young and old; control, hypoxia and recovery) were combined into one matrix and 

principal components were computed using the princomp function in Matlab 

(Mathworks, Inc., Cambridge, MA). Principal component scores for the samples were 

plotted and visualized within Matlab. 

Flux-balance simulations were performed as in Chapter IV, and mapping the 

network to gene expression data was performed within the SimPheny software as in 

Chapter IV as well. 

V.3 Results and Discussion 
We gathered metabolic profiles for each population under their respective 

steady state (chronic) culture conditions (4% and 20% oxygen, respectively) and 

under acute hypoxia (4 hours at 0.5% oxygen). We then compared adapted and 

naïve flies in equivalent oxygen by measuring naïve flies at 4% (after 4 hours). 

Finally, adapted flies were measured after culturing for one generation in room air 

and then subjected to acute hypoxia (4 hours at 0.5%), in order to compare acute 

stress over a similar step size (20% to 0.5%). For simplicity and to differentiate the 

perceived hypoxic stress, we labeled the experimental conditions as “steady state” for 
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chronic culture conditions, “mild hypoxia” for smaller steps in oxygen (4% to 0.5% and 

20% to 4% O2), and “severe hypoxia” for the large step size (20% to 0.5% O2). Males 

and females were measured separately for each experiment. The experimental 

groups are summarized in Figure V.1. 

 

Figure V.1: Summary of the experimental conditions for the 7 metabolic 
profiles. Measurements were gathered for both males and females in all 
conditions illustrated, for a total of 14. 

 

V.3.1 Normalization 
Individual samples within groups were normalized by the sum of all metabolite 

concentrations in the sample, and then re-scaled by the group average of these 

concentration totals. Normalization among groups was performed using Bradford 

assays of the soluble protein content, as in Chapter I.V. To minimize the effect of high 

variability in the Bradford assays, metabolite concentrations for each group were 

divided by their mean protein content, discarding the highest and lowest protein 

measurements.  Selected metabolites were scaled empirically using standards 
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(described in detail in Chapter 4), in order to account for small variations in the 

scaling relationships between peak size and metabolite concentration. 

V.3.2 Raw concentration profiles 
Thirty-five metabolites appeared in all 14 individual metabolic profiles, making 

the data difficult to examine by direct inspection. One trend, however, is readily 

apparent in the raw data. All hypoxic stresses (except for severe hypoxia in adapted 

females) tended to increase the levels of most metabolites, including free glucose. 

This is consistent with previous experiments and implies that, since not every 

metabolite can be an anaerobic end product, substrates such as starches and 

proteins are broken down into monomers for fuel faster than they can be consumed 

by catabolic pathways. Figure V.2 displays raw concentration profiles. 

V.3.3 Principal component analysis 
Principal component analysis (PCA) can reduce the dimensionality of the data 

and provide an unbiased determination of which metabolites vary across groups, and 

by how much. Furthermore, this technique can be used to visualize the different 

groups and their hypoxic responses in multidimensional space, and then trace 

movements within this space back to specific metabolites.  
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Figure V.2: Raw metabolite profiles, for selected metabolites over all 

experimental groups. 
 
 

When the 14 metabolic profiles were decomposed by PCA, the first three 

principal components (PCs) accounted for approximately 90% of the variation in the 

data (Figure V.3A). Each PC was composed of a vector of metabolite contributions 

(Figure V.3B): PC 1 has large contributions from many metabolites and represents 

the trend of global increases in metabolites during hypoxic stress, especially for the 

compounds (in order) glucose, alanine, oxalacetate, β-alanine, glutamate, and 

lactate. The PC 2 axis is representative of increased oxalacetate and decreases in 

glucose and alanine. Separation of groups along PC 3 can mostly be attributed to 

different acetate concentrations. Figure V.3C plots average PCA scores for all 14 
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groups. The top axes display the average scores along PC 1 and PC 2, and the 

bottom axes plot PC 1 versus PC. Lines are drawn to connect steady state profiles for 

each group with profiles under acute hypoxia conditions. The direction of these lines 

can be interpreted as changes in specific metabolites by mapping onto Figure V.3B. 

Males and females in the same experimental group tend to cluster together, 

and their hypoxic shifts (represented by lines) are often parallel, with some 

exceptions to both trends - most notably in the case of severe hypoxia. Steady state 

profiles cluster in the same region with the exception of adapted flies at 20% O2, 

which are in the same region of the multidimensional space as stressed profiles. 

Adapted flies travel shorter distances along PC 1 during hypoxia than naïve flies, 

meaning the global increase in metabolites is smaller. Severe and mild stresses in 

both populations can be differentiated by the direction of their shifts along PC 2, 

which represents oxalacetate (accumulating in mild hypoxia), alanine and glucose 

(accumulating in severe hypoxia). Variation along PC 3, representing acetate levels, 

is dominated by mild hypoxia in adapted flies. 

Although multivariate analysis has little to say about detailed molecular 

mechanisms of hypoxia tolerance, the results from PCA suggest that these 

mechanisms may be linked to a small handful of metabolites. They also hint that the 

genetic differences in adapted flies are tailored to their specific level of oxygen, since 

steady state profiles of adapted flies in normoxia are much closer to stressed profiles 

than to the cluster of other steady state groups. Correlations between specific 

metabolites and experimental groups (such as acetate in adapted flies under mild 

hypoxia) are interesting but cannot be interpreted as adaptations in themselves, since 

activity in one pathway can simply be an indirect effect of regulating another.  
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Figure V.3 (facing page): Principal component analysis of all metabolite 
profiles. 

A) Contribution of principal components (PCs). PC 1 causes 
approximately 60% of the variation, and PCs 1 through 3 account for 
approximately 90% of the differences among groups. 

B) Mapping metabolites to PCs. PC 1 represents global increases, PC 2 
represents oxalacetate, alanine, and glucose, and PC 3 represents 
acetate.  

C) Average group scores along the first three principal components. 
Lines represent shifts from 4-hour hypoxia stimulus. Fluxes are 
divided into “steady state”, “mild hypoxia”, and “severe hypoxia” as 
in Figure 1. 
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To investigate differences at the level of pathway activity, we fitted our 

computer model of fly metabolism to fluxes estimated from the time course of 

metabolite profiles. The fact that these shifts had consistent patterns across gender 

and conditions lends confidence to the idea that metabolites fluxes within the model 

may elucidate general properties. 

V.3.4 Flux-balance analysis 
We used flux-balance analysis to examine pathway activity during 8 acute 

hypoxic stimuli (all combinations of adapted versus naïve, severe versus mild stress, 

and male versus female). Ten metabolites were chosen for fitting the model, based 

on the requirements that they (1) were present in the NMR spectra in sufficient 

concentrations for all experimental conditions, (2) were represented in our metabolic 

reconstruction, and (3) changed concentration (accumulated or dissipated) in a 

direction that correctly coincided with any irreversible pathways. Fluxes were 

approximated by dividing differences in two concentrations by the experiment time (4 

hours), and standard errors for fluxes were derived by adding the variances of the two 

concentration measurements. 

Glycogen availability was unconstrained for all simulations. This assumption 

was supported by the large increase in free glucose for most hypoxic measurements, 

indicating that glycogen and trehalose breakdown supplied glucose monomers faster 

than the system could use them. We did not have measurements of oxygen 

consumption, which presented a modeling challenge. Since our flux-balance model 

optimizes for ATP production, the combination of unconstrained glycogen and 

unconstrained oxygen would simply produce infinite fluxes of both. Instead, for each 
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experiment we swept the oxygen consumption constraint over ranges that 

encompassed the qualitative features of the model.  

All simulations required some minimum level of oxygen to produce the fluxes 

observed in the NMR spectra. Below this level, the model was infeasible and above 

this oxygen uptake, aerobic activity converted any additional substrates to CO2. This 

minimum oxygen consumption was lower in the adapted than the naïve flies, 

suggesting that the pathways that remain active during hypoxia in adapted flies are 

more efficient in their use of oxygen. The plot of ATP production versus O2 uptake in 

Figure V.4 demonstrates this graphically: in adapted flies the ATP/O2 curves are 

shifted up, therefore ATP production is higher at a given O2 while O2 consumption is 

lower for a given ATP output. Therefore, although we did not measure oxygen 

consumption for each group, simulations suggest that the adapted metabolism is 

more efficient regardless of where the O2 operating point may lie. Similar patterns 

were seen in substrate efficiency: adapted flies produced more ATP per substrate 

than naïve flies.  

Next we examined the simulated flux distributions across the 8 groups at the 

level of enzyme fluxes. Each experimental group likely operated at a different O2 

uptake, but for the sake of direct comparison of pathway activity we compared the 

simulations at an oxygen flux of 10 nmol/min/mg protein, which gives feasible 

solutions for all groups (refer to Figure V.4). At this simulated O2 flux, adapted flies 

generate more ATP, produce fewer protons, and consume less glycogen (Figure 

V.5). The differences are more pronounced at lower oxygen uptake, but hold true at 

all O2 fluxes. 
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Figure V.4: Efficiency of oxygen utilization in terms of ATP production. In 
adapted flies, ATP-O2 curves were shifted in the direction of more ATP 
produced for each unit of oxygen. (Inset) Except for females under 
severe hypoxia, adapted flies had lower minimum levels of oxygen 
required to fuel their anaerobic pathways.  
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Figure V.5: Production of key metabolites at a common O2 uptake rate (15 
nmol/min/mg protein). Naïve flies have lower ATP/proton and 
ATP/substrate ratios than adapted flies at any given oxygen supply. 
Error bars indicate standard deviation of 100 simulations incorporating 
the variances of NMR measurements. H+ stands for proton 
accumulation. 
 

We also inspected important reactions in the model at this simulated oxygen 

uptake. All reactions with nonzero fluxes that were not transport or exchange 

reactions (i.e. enzyme-linked transformation reactions) were clustered by their flux 

values for unbiased extraction of pathways. Figure V.6 shows reactions 

representative of the largest clusters in the clustergram (not shown). Most of the 

reactions have some variability across groups, especially for the naïve and adapted 

females in severe hypoxia, but a few reactions differ between naïve and adapted flies 

for both sexes and hypoxic stimuli. Pyruvate kinase, the last step in glycolytic 
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formation of pyruvate, is representative of the reduced glycolytic flux in adapted flies. 

Pyruvate carboxylase, an anaplerotic reaction producing oxalacetate from pyruvate, 

has its activity reduced by more than half in adapted flies. The TCA cycle shows few 

consistent trends among the groups, but the electron transport chain shows large 

differences among the groups. Adapted flies utilize Complex I, NADH 

dehydrogenase, at a higher rate, while naïve flies rely more on Complex II (succinate 

dehydrogenase) activity, driven by GPDH transport of reducing equivalents from the 

cytosol. A reducing equivalent entering the electron transport chain via Complex I 

generates more ATP and consumes an additional proton, than one entering via 

Complex II. Experiments in isolated mitochondria have demonstrated that activation 

of Complex II produced a lower P/O ratio than Complex I (Ferguson et al., 2005). 

Two linked mechanisms seem to account for the worse performance of naïve 

flies under hypoxia. First, the excess glycolytic activity in naïve flies is diverted 

through pyruvate carboxylase and into oxalacetate, at a cost of one additional ATP 

for the conversion plus a pyruvate that would be used more efficiently in another 

pathway. Second, the glycolytic flux produces excess NADH which, without a 

corresponding increase in alanine or lactate to balance it, must be shuttled to the 

mitochondria through GPDH and Complex II (with its disadvantage in substrate 

efficiency relative to Complex I, as mentioned above). 
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Figure V.6 (facing page): Fluxes through key reactions at a common oxygen 
uptake. Compared with naïve flies, simulations of adapted flies 
showed lower glycolysis, pyruvate carboxylase, GPDH, and 
Complex II activity, and higher fluxes through Complex I. 

 Abbreviations: PYK – pyruvate kinase, ACS – acetyl-CoA 
synthase, ALAT – alanine transaminase (cytosolic), LDH – lactate 
dehydrogenase, PC – pyruvate carboxylase, PDH – pyruvate 
dehydrogenase, CS – citrate synthase, SuccDH – succinyl CoA 
dehydrogenase (TCA cycle), MDH – malate dehydrogenase 
(mitochondrial), GPDH – glycerol-3-phosphate dehydrogenase 
shuttle, Complex II – succinyl CoA dehydrogenase (electron 
transport chain), Complex I – NADH dehydrogenase. 
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These conclusions are robust with respect to the choice of oxygen uptake at 

which we run the model. Regardless of whether the groups are compared at a 

common level of ATP production, at a common O2 consumption, or whether each 

group is simulated at its own minimum feasible oxygen uptake, there are clear 

differences in glycolytic flux and pyruvate carboxylase activity, resulting in heavier use 

of Complex I and an increased ATP generating efficiency in the adapted flies. A 

cartoon depiction of these pathways is illustrated in Figure V.7. 

 

Figure V.7: Cartoon of downregulated fluxes in simulations of adapted flies. In 
naïve flies, oxalacetate production in the NMR profiles drives increased 
activity of glycolysis, pyruvate carboxylase, and Complex II of the 
electron transport chain. 

 

V.3.5 Incorporating gene expression profiles 
The microarray data obtained by Zhou et. al. (2007) showed many changes in 

gene expression after adaptation to chronic hypoxia, but no individual genes coding 
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for enzymes in our model exceeded the significance threshold. However, connected 

modules of regulated genes are less likely than individual genes to be significant by 

chance and thus the same significance threshold is not applicable. Therefore, we 

mapped the gene expression measurements to our data and explored the effect of a 

slightly reduced significance threshold. After adjusting the threshold to 10% fold 

changes in expression, a cluster of enzymes near the pyruvate branchpoint reaches 

the threshold. Pyruvate carboxylase is downregulated and pyruvate dehydrogenase 

is upregulated, the net effect of which might cause large changes of pyruvate flux. In 

addition, malate dehydrogenase expression is upregulated, which could cause 

additional inhibition of pyruvate carboxylase by dominating the production of 

oxalacetate, their shared product. Unlike pyruvate carboxylase, however, increased 

flux through malate dehydrogenase would be balanced by TCA cycle activity and 

oxalacetate would not accumulate. Metabolic Control Theory (Fell, 1997) has 

demonstrated that tighter control of pathway fluxes can be maintained by regulation 

of demand than supply, i.e. near the end of a pathway. Therefore, this differential 

control of the fate of pyruvate may be enough to drive the increase in glycolysis, and 

may also be a target for enhancing hypoxia tolerance.  

V.4 Summary 
Previously, Zhou et. al. used experimental selection over several generations 

to adapt a Drosophila population to be able survive chronic hypoxia. Adaptation to 

chronic hypoxia is a remarkable feat for directed evolution over a relatively small 

number of generations, considering the complexity and scale of cellular mechanisms 

involved in oxygen regulation. We studied metabolic aspects of this adaptation, first 

measuring metabolic concentration profiles using 1H NMR spectroscopy. Principle 
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Component Analysis of concentration profiles suggested that these genetic 

adaptations are optimized for a single oxygen concentration, since steady state 

profiles of adapted flies cultured in normoxia more closely resemble the metabolic 

signatures of acute hypoxic stress than those of adapted flies in chronic hypoxia or 

control flies in normoxia.  

When we fitted a flux-balance model to metabolic profiles gathered after 4 

hours of acute hypoxia, a common regulatory mechanism surfaced regardless of the 

degree of hypoxic stress or gender. Surprisingly, the differences between adapted 

and naïve flies in various measures of efficiency could be traced to one source: the 

fate of pyruvate in the mitochondria, either carboxylation to oxalacetate or 

dehydrogenation to acetyl-CoA, had multiple consequences for the system. When 

overlaid with gene expression data from adapted flies, this branchpoint connected to 

three differentially regulated enzymes. 



175 

 

 

Figure V.8: Gene expression mapped to the metabolic reconstruction. At the 
pyruvate branchpoint, pyruvate carboxylate is downregulated and 
pyruvate dehydrogenase upregulated in adapted flies, which matches 
the regulation of fluxes seen in simulation. 
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Chapter VI – 

Conclusions and future directions 
 

 

VI.1 Summary of results 
The work presented in this thesis represents a first step towards establishing a 

network-based analysis of cardiac hypoxia, using the fruit fly Drosophila as a model 

organism. We introduced new automation technology for rapid measurement of fly 

heart function, reconstructed the fly metabolic network using with genome-scale 

datasets, measured metabolic concentration profiles with NMR spectroscopy, and 

combined these techniques to measure and simulate the effects of hypoxia in cardiac 

and flight muscle. Our findings repeatedly pointed to the metabolism of pyruvate at 

the end of the glycolytic pathway as the most crucial set of pathways for cellular 

hypoxia tolerance in fly muscle tissue. The following details specific findings from 

each chapter of the dissertation. 

Chapter I 
Chapter I provided a background on cardiac hypoxia in humans, establishing 

known pathways and defense mechanisms as well as some strategies for improving 

cardiac hypoxia tolerance that are currently being explored. We pointed out gaps in 

understanding that have hindered this research. Then we introduced Drosophila as a 

hypoxia tolerant organism with many genetic similarities to humans, and established 
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the fruit fly as an excellent model for applying systems biology to the study of cardiac 

hypoxia to discover novel defense systems. 

Chapter II 
In Chapter II we introduced the concept of genome-wide phenotype screening 

of the cardiac hypoxia response, and the unique features of the fruit fly that make this 

type of screen feasible. The design and implementation of automation technology 

was presented, with preliminary validation results using known hypoxia-sensitive 

mutants. Design considerations for a large-scale screen are discussed, along with 

potential applications of the dataset within our systems biology approach. 

Chapter III 
Chapter III describes the results of metabolic profiles derived from 1H NMR 

spectroscopy over the course of 4 hours of hypoxia in wild-type flies. We introduce 

the metabolic reconstruction and the first iteration of refinement, adding pathways for 

alanine and acetate production as suggested by the NMR data. Then we constrain 

the model to flux estimates from the NMR concentration data and use flux-balance 

simulations to point out improvements in metabolic function (ATP/H+ and 

ATP/substrate ratios) as compared to a mammalian system producing lactate only. All 

three anaerobic pathways were examined individually in simulation to understand 

their specific functional benefit. An enzyme mutation for lactate dehydrogenase (LDH) 

was simulated with neutral to positive effect according to the above metrics. Heart 

function was measured in vivo for an LDH deletion strain using the technology of 

Chapter II, with improved recovery to hypoxia compared to wild-type. Recovery of 

whole-body activity showed similar improvement. 
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Chapter IV 
In Chapter IV we extended our reconstruction of metabolic pathways in 

Drosophila flight muscle using microarray data, then used flux-balance modeling and 

our physiological measurements of heart rate and physical activity to study the 

degradation of the hypoxia response in aging flies. We found that aging degraded 

physiological recovery to hypoxia in a whole-body activity assay, in vivo measurement 

of heart rate, and ATP production. Metabolomic profiles and flux-balance modeling 

suggested that the root of the physiological differences was a delay in the recovery of 

mitochondrial fluxes, with excess pyruvate converted to acetate rather than oxidized 

via the TCA cycle. These conclusions were consistent with aging research in flies and 

microarray data from the literature. 

Chapter V 
Chapter V introduced a strain of flies adapted to chronic hypoxia (Zhou et al., 

2007) and applies a similar analysis to Chapter IV in order to find differences in 

metabolic regulation. Principal Component Analysis was used to calculate major 

sources in metabolite variation over 14 different metabolic profiles for adapted and 

control flies under various conditions. Differences between groups could be attributed 

to concentrations of oxalacetate, acetate, alanine, and glucose. PCA also confirmed 

global increases in free metabolite concentrations under hypoxic stress for all groups.  

Modeling suggested that adapted flies have more efficient utilization of oxygen and 

substrates, with lower proton accumulation, due to downregulation of pyruvate 

carboxylase and heavier use of Complex I over Complex II in the electron transport 

chain. 
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VI.2 Limitations 

VI.2.1 Genetic background 
The measurements described here range in scale from the molecular to the 

phenotype level.  The higher a measurand lay on this scale and the more global the 

effects of the stimulus, the more factors that can affect its value.  To use this project 

as an example, a molecular measurement of thoracic lactate after hypoxia depends 

mainly on regulation of enzymes, substrates, products in muscle tissue.  

Measurement of whole-body recovery from hypoxia, however, depends on metabolic 

homeostasis in all tissue types, neural commands to muscle fibers in response to 

restoration of oxygen, moisture levels, and many others. Hypoxia in itself is a wide-

ranging stimulus, affecting practically all tissue types and cellular subsystems. 

Measurements of complex phenotypes in response to global stimuli therefore 

require very stringent controls.  The experiments in this thesis controlled for age, 

temperature, feeding and culture conditions, circadian influences, and humidity, but 

one major limitation in the use of genetic manipulations was that genetic backgrounds 

were not well controlled.  In fact, the confounding of different background strains is 

seen in the characterization of hypoxia responses in the heart (Appendix B).  Genetic 

differences are similarly expected to affect whole-body recovery from hypoxia as well 

as metabolomic profiles of the cellular response. We compared our mutant stocks 

against their corresponding wild-type strains, but did not out-cross multiple times or 

excise P-elements as additional controls for genetic differences. 

Therefore, isogenetic backgrounds are needed for future experiments. When 

studying small numbers of mutants it is generally acceptable to out-cross several 

times with the wild-type control strain to approximate an isogenetic background.  
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Since a major goal of this research was to develop a scalable framework for large-

scale iterative screens of many mutants, out-crossing was not a feasible 

methodology.  One possible solution to this problem is to use transgenic RNAi 

libraries, described in Future Directions. Also, biochemical validation of protein levels 

for selected mutants would increase confidence in our results, though this is not 

feasible for all stocks within a larger screen. 

VI.2.2 Hypoxia stimuli 
At the beginning of this project, little was known about how the fly heart would 

respond to different oxygen levels and exposure times, therefore the experimental 

setup was designed for flexibility of the O2 stimulus.  However, the custom design 

required a tradeoff in quality, since the equipment was built in our lab, and no doubt 

added some variability to the results. Though we derived statistically significant 

conclusions in spite of the variations, future experiments may require additional 

precision. Now that we have found a protocol that brings out differences between wild 

type and hypoxia-sensitive mutants as well as young and old flies, parts of this 

customized setup can be exchanged for more commercially available hypoxia 

research equipment. 

VI.2.3 Heart measurements 
Measurements of fly heart rate were hampered by the above limitations as 

well as artifacts created by reflexive body movement in response to hypoxia.  

Although the invention of a restrictive slide “chamber” reduce this movement, the 

heart images often drift slightly across the microscope view and confound analysis 

algorithms. Also, the very slow heart rate in the first few minutes of recovery causes 

high numbers of false positives in the beat detection, as the algorithm adapts its 
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threshold and finds false beats within the noise. We manually inspected all of the data 

in this thesis for accuracy, but if large screens are to be performed more work must 

be done to improve the automated analysis. 

Additionally, heart rate is only one of many possible measurements of cardiac 

function.  At the least, the effectiveness of the heart as a fluid pump should be 

quantified with two measurements: rate of contraction and amount of fluid moved per 

contraction. In mammalian hearts, this concept is described in the terms cardiac 

output equals heart rate times stroke volume. To approximate the cardiac output of 

the fly, we need some estimator of stroke volume in addition to heart rate in order to 

make the case that the hearts of a certain strain of flies function “better” than another. 

Our manual inspection confirmed that fractional shortening was not drastically 

different between groups, but automated analysis would have failed to detect 

differences. Feature-based detection of wall movement (described later) could 

estimate fractional shortening of the tube diameter, which would be a useful indirect 

measurement of stroke volume.  

VI.2.4 Metabolomics 
The 1H NMR spectrum provides a global perspective of metabolites present in 

high concentrations in a tissue sample.  However, concentration measurements only 

provide a snapshot in time of the integral of all fluxes into and out of a metabolite 

pool.  Another problem with these data is that the relatively low sensitivity of NMR 

spectroscopy prevents intermediate metabolites from being quantified, which would 

better identify specific pathways. There are other technical limitations to NMR-based 

metabolomics that I will not mention here, since they are generally not intrinsic to the 

technique and may be overcome as the technology is improved. 
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VI.2.5 Metabolic reconstruction and modeling 
Though this was a systems biology project, the sparse metabolic literature for 

flies (relative to humans, yeast, or E. coli, the organisms more commonly used for this 

approach) made it necessary to narrow the scope of our model to ATP-generating 

central metabolism. NMR metabolomics allowed us to find heavily used pathways 

during hypoxia, and genome-wide expression data let us add highly expressed 

enzymes.  

The problem with a model that incorporates only highly active pathways, 

however, is that metabolic fluxes are distributed according to a power-law (Almaas et 

al., 2004). This means that although a handful of fluxes indeed dominate, the number 

of enzymes with low but non-negligible activity is larger than would be expected in a 

normal distribution. Therefore, the aggregate impact of all low-activity pathways is 

likely to be a very important factor in the hypoxia response.  In contrast with the 

pathways that supply them, pathways that demand ATP and metabolic cofactors are 

much more widely distributed across different pathways. Therefore, though the model 

incorporated most of the important fluxes in central metabolism, to have a truly global 

model of the hypoxia response the network must be complete. The next section 

briefly touches on automated methods for metabolic network reconstruction, which 

may be useful toward this goal. 

The other major limitation in the analysis is that we have studied acute 

hypoxia with a steady-state model.  The choice of a sufficiently long time point at 4 

hours helps support the steady-state assumption, but the beginning of the hypoxic 
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response includes some kinetic element that our linear flux approximations must 

necessarily ignore.   

VI.3 Future directions 
Although some of the above limitations are intrinsic, many are technical 

difficulties that can be overcome with the addition of resources such as equipment, 

labor, and time.  Others may require new approaches but should be theoretically 

possible.  The following are some possible future directions for this research that can 

address many of these limitations. 

VI.3.1 Transgenic UAS-RNAi libraries 
The problem of genetic noise in mutant strains is directly addressed by a 

major new advance in the Drosophila community. A genome-wide, transgenic RNAi 

library was recently developed, using the white (w) strain as a background for all 

stocks (Dietzl et al., 2007).  The group designed DNA sequences that code for 

dsRNA transcripts to bind and deactivate specific mRNA transcripts for each gene in 

the genome.  They then inserted each sequence into a w background, tied to the 

yeast Upstream Activating Sequence (UAS).  Attaching the UAS promoter allows 

researchers to implement RNAi knockdown with the commonly used GAL4/UAS 

system, a tool the Drosophila community has long used to express genes with 

spatiotemporal precision.  Briefly, a GAL4 driver is chosen that expresses the yeast 

GAL4 protein (inert in flies) at a specific time and in a specific cell type.  The gene of 

interest (or RNAi sequence in this case) is tied to the GAL4-responsive UAS promoter 

in another fly line. The lines are crossed, and in the progeny GAL4 from the driver 

chromosome - expressed at the desired space and time – activates UAS from the 

responder chromosome and expresses the gene of interest (Figure VI.1). 
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The UAS-RNAi lines can be ordered from the stock center directly and 

crossed with any GAL4 driver line (also publicly available). An additional advantage 

for our purposes is that, with the appropriate GAL4 driver, gene knock-downs that 

would be lethal at the embryonic or larval stage can be delayed until adulthood, or 

until the application of estrogen or heat in an inducible GAL4 line. Many metabolic 

enzymes are lethal when disrupted in the genome, but more are likely to be viable 

when disrupted only in adulthood or for a brief period using this system. Also, muscle 

specificity of a GAL4 driver will control for influences from other tissues, for example 

muscle coordination by neural commands during whole-body recovery. A GAL4 driver 

specifically for the heart organ has been designed and tested as well (Akasaka et al., 

2006). 

In preparation for large-scale screens, several GAL4 lines were tested with 

UAS-GFP responders, and with a lactate dehydrogenase UAS-RNAi line. Expression 

of GAL4 in adult thorax was verified with the GFP responder (Figure VI.1), but future 

work will be needed to validate the efficiency of enzyme knockdown. 

VI.3.2 Biochemical validation 
Mutant and RNAi stocks are commonly used in Drosophila research, but gene 

expression levels are often measured by Northern or Western blot for validation. As 

mentioned in the Limitations, it would be difficult to do this for each stock in a large-

scale mutant screen; however, we have begun to analyze protein expression in the 

LDH deletions used in Chapter III, as well as an RNAi knockdown of the same gene. 

Preliminary data from our lab (LoPresti P., unpublished data) show decreased levels 

of the LDH enzyme in Western blots of the GAL4/UAS-RNAi knockdown, and even 

further reduction in enzyme levels in the heterozygous LDH deletion, when compared 
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with the wild type. These results show promise for the use of heterozygous enzyme 

knockouts and the GAL4/UAS-RNAi method in large-scale screen, although further 

experiments are needed to control for protein content (using a standard such as actin 

or GAPDH). 

VI.3.3 Precision oxygen control 
In the Limitations it was mentioned that a standard commercial hypoxia 

chamber, available from multiple vendors, would be desirable for future experiments.  

Sable Systems, Inc. (Las Vegas, NV) has recently developed a precision hypoxia 

chamber and CO2 sensor specifically for measuring individual flies. This is an 

example of technology that would greatly increase reliability and add very important 

data to the models. 

 

Figure VI.1: The GAL4/UAS system for tissue and temporal specificity of RNAi 
knockdowns. Example data shows tissue expression of our adult 
thorax GAL4 driver line. 
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VI.3.4 Automated fly mounting 
After the anesthesia has taken effect, bursts of pressurized air deposit the flies 

on the microscope slide.  After each burst, a small number of flies is expelled and the 

robotic stage shifts the slide slightly in order to evenly space the flies.  A ‘guide’ tube 

positioned above the slide adds precision to this process.   

The advantage of using plastic slides stems from the discovery that the wings 

of the fruit fly are strongly attracted to static electric charge.  The wings are similarly 

responsive to strong electric fields generated by a high-voltage power source, which 

presents an opportunity for the future development of more sophisticated techniques 

for manipulating their body position.  When flies are expelled onto the charged slides, 

the static electric force causes a large fraction of the flies to land properly on their 

backs with their wings spread.   

VI.3.5 Feature-based image analysis 
M-mode data are rich two-dimensional images and the measurement software 

records multiple images from several M-mode lines at once, yet the analysis software 

still uses the average brightness over each line to construct a one-dimensional signal 

to pass to the beat detection algorithm. Clearly, this is inadequate use of the available 

data, and future efforts should place high priority on improving them.  

First, the image analysis should make full use of the stack of multiple (current 

default = 5) M-modes available.  Heart detection is not 100% accurate and, even with 

the restrictive chamber there is often some drift from physical motion of the flies, 

therefore this redundancy is needed to counteract positioning errors. Future image 

processing should combine these images to reduce noise or at least add more 

sophistication to the choice of which of the images is to be analyzed. 
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Second, the practice of condensing the image to a one-dimensional signal 

throws away information and should be redesigned. Feature detection techniques 

might have potential for recognizing beat “structures” in the time-space images. 

Neural networks and Bayesian methods have been attempted in the past, and 

perhaps should be revisited.  Template matching is another possibility, although the 

image patterns that must be recognized vary widely from fly to fly. We also explored 

cross-correlation methods for wall detection, with minor success, although the results 

are not presented here.  

Designing a successful image analysis algorithm will be challenging since it 

must be robust to the noisy, highly variable M-mode data, however, the ability to 

measure wall diameters, RR intervals, and other features at once will be essential to 

the future of this project. 

VI.3.6 13C isotopomer-based fluxomics 
One possible technique to improve on these limitations is to use isotopomer-

based fluxomics.  Labeled isotopomers provide the possibility of tracing individual 

pathways and accurately calculating enzyme fluxes.  Carbon-13 is an isotope that 

can be measured by NMR spectroscopy, and is naturally present at a rate of only 

about 1%.  Enzymes do not distinguish molecules containing 13C from those with the 

natural 12C isotope, allowing substrate molecules such as glucose to be substituted 

with 13C at various carbon positions and fed into the system., the distribution of 

labeled metabolites and the positions of 13C within those molecules can then be 

measured using NMR spectroscopy.  The network distribution of flux can be 

calculated from the data (Sauer, 2006). Calculating reaction fluxes from steady-state 

isotopomer distributions is a challenge in higher organisms, however, atom-mapping 
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matrices (AMMs) (Zupke & Stephanopoulos, 1994) and isotopomer-mapping matrices 

(IMMs) (Schmidt et al., 1997) provide a scalable mathematical framework that has 

been successful in integrating these data with metabolic networks (Vo & Palsson, 

2006).   

Carbon-13 isotopomer analysis can be used with mass spectrometry (MS) as 

well. Besides NMR spectroscopy, MS is the other commonly used technology for 

metabolomics, often combined with separation techniques such as gas or liquid 

chromatography. The metabolomics field is not yet at a consensus as to which 

method is better, and in fact they may provide complementary information (MS being 

more sensitive to smaller concentrations and NMR often preferred for precise 

quantification).  

VI.3.7 Automated reconstruction 
Down-regulation of ATP consumption is likely to be extremely important in 

hypoxia tolerant organisms, and so anabolic (biosynthetic) pathways must eventually 

be included in the model to account for this.  Automated network reconstruction 

methods can be used to expand the model to include the entire genome.  Recently, 

computer tools have appeared that use the complete set of open reading frames 

(ORFs) in an annotated genome, sometimes combined with information from existing, 

manually curated models, to predict reaction networks and gene-reaction 

associations (Karp et al., 2002; Notebaart et al., 2006).  Though automated methods 

may accelerate the process of building genome-scale reconstructions, the resulting 

network must itself be curated.  Details such as substrate specificity, exact reaction 

stoichiometry, cofactor usage, and compartmentalization are extremely important for 
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flux-balance analysis (Reed et al., 2006) but are unlikely to be produced correctly by 

any computer algorithm.   

VI.3.8 Advanced constraint-based analysis 
In this work we primarily used flux-balance analysis to examine the model, but 

other techniques can be used to study network properties in a metabolic 

reconstruction.  The constraint-based approach includes a number of analytical tools, 

such as decomposition of the network into basis vectors or Monte Carlo sampling to 

estimate the shape of the solution space, variability and correlations between fluxes 

throughout this space, or deletion analysis (Palsson, 2006; Price et al., 2004).  

Metabolic control analysis, which examines the sensitivity of certain target fluxes or 

flux groups to perturbations, could be used to identify control points and important 

enzymatic mediators of adaptation to hypoxia (Stephanopoulos, 1999; 

Stephanopoulos et al., 1998).  

Although the model is parameter-free, meaning that enzyme kinetics are 

ignored, it would also be possible to incorporate some kinetic elements in the 

simulations using finer time resolution of measurements, combined with a method 

such as dynamic flux balance analysis (DFBA). 

VI.3.9 Integrating signaling networks  
Beyond analyzing metabolic mechanisms of the hypoxia response, another 

goal of this research program is to leverage Drosophila’s genetic tools to screen for 

novel regulators of metabolism.  During acute hypoxia, there are many changes in 

metabolic energy production and utilization pathways as the system adapts to the 

anaerobic state.  These changes happen quickly, on the order of minutes in 

Drosophila flight muscle as shown in Chapter III. It is not possible for new genes to be 
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expressed and translated into proteins on these short timescales; therefore, the 

networks involved in metabolic regulation are strictly composed of enzymes, their 

covalent modification by signaling proteins, and their allosteric interactions with small 

molecules.  Protein signaling interactions are more likely candidates for novel 

metabolic regulators than allosteric interactors. Allosteric interactions are usually 

weak, so binding of a small molecule to an enzyme is unlikely to produce large 

enough conformational changes in the protein to effect the extreme changes in 

enzyme fluxes that we have seen during hypoxia (Fell, 1997). The literature contains 

a few important examples of covalent modulators of enzymes during hypoxia, such as 

glycogen phosphorylase and AMP-activated kinase, but in general we have limited 

knowledge of the global signaling cascades that mediate the acute shift to anaerobic 

metabolism. 

The yeast-two-hybrid and other methods have been successful at cataloguing 

immense numbers of protein-protein interactions for the construction of global 

networks.  Online databases such as GRID, DIP, and BIND (Bader et al., 2003; 

Breitkreutz et al., 2003; Xenarios et al., 2002) store protein interactions, which can be 

overlaid onto the metabolic network as a rough sketch of signaling networks lying 

adjacent to metabolism.  A map of interacting metabolic and signaling proteins can 

serve as a backbone onto which new data can be incorporated.  Under the 

(somewhat limited, see (Hakes et al., 2008)) assumption that these networks have 

good coverage of the true ‘interactome,’ most proteins responsible for mediating the 

metabolic adaptation to hypoxia would appear as the first or second neighbors of the 

regulated enzymes.  Therefore, a cardiac phenotype screening could begin with 

genes coding for proteins one link from hypoxia-responsive enzymes in the metabolic 

model, as in Figure VI.2. 
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Figure VI.2:  Integrating the metabolic model with a protein interaction network.  
Fluxes simulated by flux-balance analysis can be linked to 
enzymes in the protein interaction map.  Phenotype values from 
the genetic screen can be included as node values as well.  
Statistical algorithms can extract well-connected modules 
enriched with high-scoring nodes, which can be further validated 
with experiment. 

 

As a very simple demonstration, we merged the Drosophila protein interaction 

network from GRID with the list of enzyme proteins in our metabolic model, and then 

extracted the ‘first neighbors’ – all proteins in the global network that have at least 

one interaction with an enzyme in the model (Figure VI.3).  The resulting subnetwork 

of enzyme interactors contains 606 proteins and 2,214 interactions, and includes 

proteins, such as actin, calmodulin, and several protein kinases.  This first step 
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toward a list of screen candidates has the advantage of unbiased sampling from the 

global network, while at the same time being targeted toward likely metabolic 

regulators.  Results from the cardiac phenotype screen can be examined within this 

network (as node values) and interpreted in contexts, such as vicinity to crucial 

enzymes in model simulations, clustering with other ‘first neighbors’ of enzymes, and 

extraction of small modules of highly-connected hypoxia-responsive proteins. 

 

 
 
Figure VI.3:  A strategy for generating a candidate gene list for a phenotype 

screen.  Rather than screening the entire genome, which is still 
not feasible, the enzymes in the model and their ‘first neighbors’ 
in protein interaction networks might be enriched for important 
hypoxia-responsive metabolic regulators. 
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Conclusion 
This thesis outlined a new approach to studying cardiac hypoxia in Drosophila, 

integrating rapid in-vivo phenotyping, metabolomics, several existing genome-wide 

datasets, and a constraint-based metabolic model to gain a network perspective of 

metabolic regulation. In the process we built a novel automated measurement system 

and a metabolic reconstruction of Drosophila flight muscle, two engineering 

accomplishments that in themselves may be useful to the research community. We 

then used these tools to gain new scientific understanding of hypoxia tolerance 

mechanisms in flies, under normal conditions and following genetic perturbations, 

aging, and adaptation to chronic hypoxia. Most new insights into metabolic hypoxia 

tolerance revolved around the flexible regulation of pyruvate through various 

anaerobic pathways, all of which exist in humans but most of which remain unused 

during hypoxia. Advances in the system-level understanding of hypoxia tolerance are 

necessary if future researchers are to redesign hypoxia defenses in humans. 
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Appendix A –  

Automated heart measurement technical details 

 

 

A.1 Overview 
This appendix contains computer code (written in the Python language), circuit 

diagrams, and operating instructions for the automated Drosophila heart 

measurement system described in Chapter II. The system consists of: 

• An inverted microscope, set to 20x objective 

• A CCD camera mounted on the microscope, connected to a Pentium 

IV computer running Windows XP 

• An automated stage, responding to commands from the computer via 

a serial port. 

• A custom-made network of tubing and pinch valves connected to 

vacuum, pressurized air, the nitrogen mixture for the hypoxia stimulus, 

and a small vial of FlyNap (Carolina Biological) anesthetic.  

• A data acquisition board with at least two analog inputs and at least 5 

digital outputs, communicating with the computer via a separate serial 

port, and 
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• A driver circuit to supply power to the pinch valves and provide 

protection buffers to the DAQ board. 

Software interfaces for the DAQ board, automated stage, and video cameras 

will not be described in detail, since these aspects could change in a separate 

implementation. Instead, the code presented here assumes that all external functions 

are either controllable with the Python Serial module or else some custom code 

wrapped in Python that provides the basic functions used here. 

 

A.2 Measurement protocol 

A.2.1 Baseline measurement and hypoxia stimulus 

• Plug in power strip 

• Turn on oxygen and nitrogen gas tanks (25 psi, 1/4 rotation on large valve) 

• Wait for incubator to heat up, check that temperature is at 26º C (adjust if 

needed) 

• Initialize camera using initcam.bat 

• Make sure stage position places microscope light at top left corner of slide, 

at start point 

• Start Python 2.3 and run program “run.py”  

• [if manually mixing hypoxic gas]  Adjust O2 mixture to desired level, using 

feedback (very slow) from O2 reading in GUI 
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• Anesthetize flies, either manually with chambers from Caroline Biological 

or by placing the glass vial into the automated chamber and clicking 

“Anesthetize” 

• Mount flies onto plastic slide, place glass cover on top and add clamps 

• Place slide assembly onto stage, with the marked corner toward the top 

left. 

• Click “Measure” 

• When asked “New slide?”, click Yes.  

• When prompted, enter name of stock, oxygen level, and measurement 

duration 

• After slide is scanned (during heart detection) begin anesthetizing a new 

batch 

• Once flies are detected click OK to begin measurements 

• Adjust position only on first two M-modes at each stage (initial 

measurement, during gassing, recovery) leave completely still thereafter. 

• If heart is not visible, click “Skip Fly” 

• When prompted, remove slide and place in hypoxia chamber and begin 

hypoxia stimulus.  After flushing 15 minutes with gas, seal and place in 

incubator for stimulus duration. 

• Repeat, once the next batch is anesthetized 

A.2.2 Recovery measurement 

• Click “Measure” 

• When asked “New slide?” click No. 
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• Locate the data folder for the current stock, and the slide.pik file within the 

folder. Do not double-click the file yet. 

• Quickly pull the slide assembly out of the hypoxia chamber and mount on 

the stage. 

• Double click to open the slide.pik file. 

• Manually adjust position if the heart is not perfectly centered and in focus, 

Skip Fly if not possible. 

 

A.2.3 End of experiments 

• Take any vials out of the anesthetic chamber 

• Close Python 

• Turn off gas at tanks 

• Unplug the system and cover the microscope 

 

A.3 Hardware 
Some specialized hardware was assembled to aid the anesthetizing and 

mounting process, control temperature, and mix the hypoxic gas for the stimulus. 

Figure A.1 displays an overview of the tubing and valve network used for 

anesthetizing and depositing flies onto the slide. 
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Figure A.1: Automated anesthesia and mounting overview 
 

Figure A.2 shows the electronic schematic used to control the hardware and 

communicate with the computer. Gas composition and flow rate are controlled 

manually using a gas proportioner (GMR2-010001, Cole-Parmer, Inc.) with an oxygen 

sensor (KE-25) providing [O2] feedback to the user. In the latest version of the 

hardware, some small changes to this configuration have been made. First, the 

thermostat circuit was replaced by a dedicated temperature controller unit for more 

stable temperatures. Also, the use of pre-mixed gas in the N2 gas obviates the need 

for the gas mixer, and so the mixer is set to 100% for the N2 line (pre-mixed gas) and 

0% from the oxygen line. Also, the addition of the slide assembly for long-term 
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hypoxia stimuli has made it unnecessary to pass the nitrogen mixture directly onto the 

fly on the stage, and the hardware originally used function has been removed. 

 
Figure A.2: Circuit and hardware schematic for all custom external hardware 

used in the system. 

 

A.4 Automation code 

A.4.1 Overview 
The algorithms and user interface for mounting, detecting, and measuring 

Drosophila hearts were written entirely in the Python programming language. The 
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main script, which initializes the devices and starts the graphical user interface (GUI), 

is run.py. This script initializes the GUI and threaded operation. Within the threads.py 

script, three separate objects control the camera, mounting hardware, and 

detection/measurement engine. The engine contains the main sequence of operation 

during automation, takes input from the user, and implements most of the high-level 

control logic. 

A.4.2 Script “run.py” 
This script initializes Slide, Camera, and Mount objects, which in turn rely on 

Python or Python-wrapped drivers for their respective Stage, Camera, and DAQ 

interfaces, reproduced below. The top-level run.py script then initializes three thread 

objects (CameraThread, MountThread, and EngineThread) to allow parallel usage of 

the hardware. Two helper objects, FrameBuffer and Flags, are passed back and forth 

among the different threads. Last, the run.py script starts the threads and the GUI 

(inherently on its own thread in the background) and passes the initialized device and 

helper objects. 

 

A.4.3 Script “threads.py” 
The next highest levels of abstraction are the four threads of operation: GUI, 

mounting apparatus, camera, and the control engine. The Camera thread passes 

frames into the shared object FrameBuffer, and the GUI passes information to all 

threads through the Flags object (both contained in shared.py). Both of these shared 

objects have Condition locks to avoid simulataneous access to the data by two 

threads. Each thread also has access to all of the available device drivers. 
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The Mounting thread controls all hardware in the mounting apparatus, with 

sequences for anesthetizing and depositing flies, and for measuring experimental 

oxygen levels using an O2 electrode. The Camera thread continuously grabs frames, 

either one at a time or a specified sequence, and inserts them into the locked 

FrameBuffer for use by other objects. The Engine thread provides high-level control 

of automated detection and measurement algorithms, and is the starting point for 

understanding the flow of automation. 

A.4.4 Script “detect.py” 
The script detect.py contains all of the image processing algorithms for locating 

the x, y, and z position for the heart of each fly. The functions progressively refine the 

position, from scanning the whole slide to refining the position of the heart to the 

middle of the microscope frame. Detailed information on each algorithm is provided in 

Chapter II. 

A.4.5 Script “measure.py” 
All high-level measurement functions begin in the measure.py script. The 

EngineThread calls the proper measurement routine depending on whether the 

measurements are taken during baseline or recovery, and depending whether flies 

are measured sequentially or in multiplex.  

A.4.6 Script “mmode.py” 
The Measure routines all rely on the M-mode object within this script to gather the 

lines of pixels from the video, compile them into an M-mode image, and save the data 

to disk. After the orientation angle of the fly is calculated (in detect.py), a routine 
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within this object calculates the coordinates of the M-mode lines in the microscope 

frame and draws them in gray on the GUI. 

A.4.7 Script “fly.py” 
Each fly on the slide is represented by a Fly object which wraps data and 

position information and contains routines for saving and loading data to/from the 

corresponding folder. 
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Appendix B –  

Characterization of the Drosophila heart to mild acute 
hypoxia 
 

 

In characterizing the wild-type cardiac hypoxia response, we gathered 

additional data beyond what is presented in Chapter II. This appendix details the 

heart rate and regularity in response to different hypoxic conditions and temperatures. 

As with other physiological functions in ectotherms such as Drosophila, heart 

rate is dependent on temperature. Similar to previous results, warmer ambient 

temperature sped up the HR at baseline, as well as during the hypoxia stimulus.  The 

stress of hypoxia was expected to be compounded at high temperatures due to 

increased metabolic activity, however the increase in heart rate appeared to be 

independent of the hypoxia stimulus, as shown in Figure B.1.  Higher temperature 

resulted in more regular heart rhythm for baseline, hypoxia, and recovery, although 

this effect was only statistically significant during hypoxia and between the extremes 

of the temperature range tested (26 C and 35 C).   
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Figure B.1:  Acute hypoxia response over temperatures.   
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Figure B.2:  Acute hypoxia response over oxygen concentrations   
 

At oxygen concentrations below 3%, flies were seen to experience reflexive 

changes in body position, characterized by curling of the body and flaring of the wings 

in the dorsal direction.  These contortions often cause the fly to shift, roll over, or lift 

off of the slide, making further measurement impossible.  At very low oxygen, usable 

data are rare, and even attempts to tape the wings to the slide failed due to the 

curling body.  The oxygen and temperature dependence of this behavior is shown in 

Figure B.2A.  Because of this behavior, measurements were not taken below 2% O2.  

The strength of hypoxia stimulus (percentage oxygen) changed hypoxic HR and also 

changed the shape of the response in Figure B.2B.  At 2% O2, the strongest stimulus 
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measured, rate was slowest and remained steady over the hypoxic time period.  At 

oxygen percentages above 2%, HR dropped similarly for the early phase but then 

recovered by an amount approximately proportional to the percent O2 and remained 

steady for the remainder of the hypoxic period.  Recovery HR was significantly lower 

than baseline for all oxygen percentages.  The heart was significantly more irregular 

for all hypoxia timepoints at 2% oxygen than at higher percentages, and for the first 

30 seconds at 3% O2 (Figure B.2B). 

All further experiments were performed at 26 degrees C and 3% oxygen in 

order to minimize the errors from body movement described above.  Males and 

females did not differ statistically in their HR response, though the trend was for 

males to have higher baseline and recovery HR than females but lower HR during 

hypoxia.  Males had more irregular HR during hypoxia than females.   

Different wild-type strains and their crosses were tested to study the effect of 

differences in genetic background on the cardiac hypoxia response.  We used the 

y1w67c23 strain (yw) since it occurs frequently as a background for P-element gene 

disruptions in the Bloomington Drosophila library.  We also crossed yw with Oregon-R 

to examine the effect on hypoxic HR after outcrossing these heavily inbred strains.  

Oregon-R flies had significantly higher HR than yw for baseline and recovery, but 

similar hypoxic HR.  The F1 cross of Oregon-R and yw had similar baseline and 

recovery HR as the Oregon-R, but during hypoxia the HR was faster than both.  The 

yw strain had an irregular heartbeat as compared to both Oregon-R and the F1 cross 

of the two strains (Figure B.3). 
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Figure B.3: Heart rate and regularity for different wild-type strains and a 
hypoxia-sensitive mutant 

 
The literature describes some known hypoxia-sensitive Drosophila genes 

(described in Chapter II).  We used one of these genes, tps1, as a positive control for 

detecting hypoxia sensitivity with our system.  The tps1 locus codes for the trehalose-

phosphate synthase enzyme, which creates the disaccharide trehalose from glucose 

monomers and causes hypoxia sensitivity when disrupted in flies.  Trehalose is 

important not only as a carbohydrate energy source for anaerobic glycolysis but also 

due to protective properties when bound to proteins.  In one study the Drosophila 

tps1 gene was transfected into human cells, which do not have a copy of the gene, 

and the cells became more tolerant to hypoxia. 
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We acquired a heterozygous P-element insertion of tps1 and outcrossed with 

a wild-type strain.  The tps1 disrupted flies had similar HR in baseline and recovery 

but slightly, though significantly, reduced HR during hypoxia when compared with an 

equivalently outcrossed wild-type strain (Figure B.3). 
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Appendix C –  

Reactions in the Drosophila metabolic reconstruction 
 

Name Equation 
L-alanine transaminase, mitochondrial [m] : akg + ala-L <==> glu-L + pyr 

ornithine transaminase reversible (m) [m] : akg + orn <==> glu-L + glu5sa 

L-asparaginase (mitochondrial) [m] : asn-L + h2o --> asp-L + nh4 

glutamate dehydrogenase (NADP), 
mitochondrial 

[m] : glu-L + h2o + nadp <==> akg + h + 
nadph + nh4 

aspartate transaminase [m] : akg + asp-L <==> glu-L + oaa 

Glutamate Decarboxylase [c] : glu-L + h --> 4abut + co2 

glutamate dehydrogenase (NAD) 
(mitochondrial) 

[m] : glu-L + h2o + nad <==> akg + h + nadh 
+ nh4 

glutamine phosphoribosyldiphosphate 
amidotransferase 

[c] : gln-L + h2o + prpp --> glu-L + ppi + pram 

succinate-semialdehyde dehydrogenase 
(NAD) reversible (mitochondrial) 

[m] : h2o + nad + sucsal --> (2) h + nadh + 
succ 

4-aminobutyrate transaminase, reversible 
(mitochondrial) 

[m] : 4abut + akg <==> glu-L + sucsal 

glutamine synthetase [c] : atp + glu-L + nh4 --> adp + gln-L + h + pi 

glutamine-fructose-6-phosphate 
transaminase 

[c] : f6p + gln-L --> gam6p + glu-L 

glycine N-methyltransferase [c] : amet + gly --> ahcys + h + sarcs 

L-Phenylalanine,tetrahydrobiopterin:oxygen 
oxidoreductase (4-hydroxylating) 

[c] : o2 + phe-L + thbpt --> dhbpt + h2o + tyr-L 

6,7-dihydropteridine reductase [c] : dhbpt + h + nadh --> nad + thbpt 

1-pyrroline-5-carboxylate dehydrogenase, 
mitochondrial 

[m] : 1pyr5c + (2) h2o + nad --> glu-L + h + 
nadh 

proline oxidase (NAD), mitochondrial [m] : nad + pro-L --> 1pyr5c + (2) h + nadh 

Proline dehydrogenase (m) [m] : fad + pro-L --> 1pyr5c + fadh2 + h 

L-Tryptophan,tetrahydrobiopterin:oxygen 
oxidoreductase (5-hydroxylating) 

[c] : o2 + thbpt + trp-L --> 5htrp + dhbpt + h2o 

4-Hydroxyphenylpyruvate:oxygen [c] : 34hpp + o2 --> co2 + hgentis 
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oxidoreductase 

Homogentisate:oxygen 1,2-oxidoreductase 
(decyclizing) 

[c] : hgentis + o2 --> 4mlacac + h 

tyrosine transaminase [c] : akg + tyr-L <==> 34hpp + glu-L 

fumarylacetoacetase [c] : 4fumacac + h2o --> acac + fum + h 

maleylacetoacetate isomerase [c] : 4mlacac --> 4fumacac 

N-acetylglucosamine-6-phosphate 
deacetylase 

[c] : acgam6p + h2o --> ac + gam6p 

glucosamine-6-phosphate deaminase [c] : gam6p + h2o --> f6p + nh4 

chitinase [c] : chtn + (2) h2o --> (3) acgam 

N-acetylglucosamine kinase [c] : acgam + atp --> acgam6p + adp + h 

L-lactate dehydrogenase [c] : lac-L + nad <==> h + nadh + pyr 

aldehyde dehydrogenase (acetylaldehyde, 
NAD), mitochondrial 

[m] : acald + h2o + nad --> ac + (2) h + nadh 

alcohol dehydrogenase (ethanol) [c] : etoh + nad <==> acald + h + nadh 

aldehyde dehydrogenase (acetaldehyde, 
NAD) 

[c] : acald + h2o + nad --> ac + (2) h + nadh 

malic enzyme (NAD), mitochondrial [m] : mal-L + nad --> co2 + nadh + pyr 

Phosphoenolpyruvate carboxykinase (GTP) [m] : gtp + oaa --> co2 + gdp + pep 

malic enzyme (NADP) [c] : mal-L + nadp --> co2 + nadph + pyr 

fumarase [c] : fum + h2o <==> mal-L 

acetyl-CoA C-acetyltransferase, 
mitochondrial 

[m] : (2) accoa <==> aacoa + coa 

Beta oxidation of long chain fatty acid [m] : (7) coa + (7) fad + (7) h2o + (7) nad + 
pmtcoa --> (8) accoa + (7) fadh2 + (7) h + (7) 
nadh 

Beta oxidation  fatty acid [m] : (5) coa + (4) fad + (5) h2o + (5) nad + 
odecoa --> (5) accoa + (4) fadh2 + (5) h + (5) 
nadh + occoa 

Beta oxidation  fatty acid [m] : (4) coa + (3) fad + (4) h2o + hdcoa + (4) 
nad --> (4) accoa + (3) fadh2 + (4) h + (4) 
nadh + occoa 

Beta oxidation of long chain fatty acid [m] : arachcoa + coa + fad + h2o + nad --> 
accoa + fadh2 + h + nadh + stcoa 

Beta oxidation of med/long chain fatty acid [m] : (3) coa + (3) fad + (3) h2o + (3) nad + 
occoa --> (4) accoa + (3) fadh2 + (3) h + (3) 
nadh 

L-carnitine transport out of mitochondria via 
diffusion 

crn[m] --> crn[c] 

carnitine transport, mitochondrial, reversible crn[c] <==> crn[m] 
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fatty-acid--CoA ligase (hexadecanoate) [c] : atp + coa + hdca <==> amp + pmtcoa + 
ppi 

carnitine O-palmitoyltransferase [c] : crn + pmtcoa --> coa + pmtcrn 

C160 transport into the mitochondria pmtcrn[c] --> pmtcrn[m] 

C160 transport into the mitochondria [m] : coa + pmtcrn --> crn + pmtcoa 

fatty-acid--CoA ligase (hexadecenoate) [c] : atp + coa + hdcea <==> amp + hdcoa + 
ppi 

carnitine O-palmitoyltransferase [c] : crn + hdcoa --> coa + hdcecrn 

C161 transport into the mitochondria hdcecrn[c] --> hdcecrn[m] 

C161 transport into the mitochondria [m] : coa + hdcecrn --> crn + hdcoa 

fatty-acid--CoA ligase (octadecenoate) [c] : atp + coa + ocdcea <==> amp + odecoa 
+ ppi 

carnitine octadecenoyl transferase [c] : crn + odecoa --> coa + odecrn 

C181 transport into the mitochondria odecrn[c] --> odecrn[m] 

carnitine octadecenoyl transferase [m] : coa + odecrn --> crn + odecoa 

carnitine O-acetyltransferase [c] : accoa + crn <==> acrn + coa 

acetylcarnitine transport, mitochondrial, 
reversible 

acrn[m] <==> acrn[c] 

fatty-acid--CoA ligase [c] : arach + atp + coa <==> amp + arachcoa 
+ ppi 

carnitine transferase [c] : arachcoa + crn --> arachcrn + coa 

transport into the mitochondria (carnitine) arachcrn[c] --> arachcrn[m] 

carnitine transferase [m] : arachcrn + coa --> arachcoa + crn 

fatty-acid--CoA ligase [c] : atp + coa + crvnc <==> amp + c226coa + 
ppi 

fatty-acid--CoA ligase [c] : atp + coa + lgnc <==> amp + lgnccoa + 
ppi 

fatty-acid--CoA ligase (n-C26:0) [c] : atp + coa + hexc <==> amp + hexccoa + 
ppi 

Fructose-2,6-bisphosphate 2-phosphatase [c] : f26bp + h2o --> f6p + pi 

D-sorbitol dehydrogenase (D-fructose 
producing) 

[c] : nad + sbt-D --> fru + h + nadh 

pyruvate carboxylase [m] : atp + hco3 + pyr --> adp + h + oaa + pi 

glucose-6-phosphate phosphatase [c] : g6p + h2o --> glc-D + pi 

glycerol-3-phosphate dehydrogenase (FAD), 
mitochondrial 

fad[m] + glyc3p[c] --> dhap[c] + fadh2[m] 

Glucose-6-phosphate isomerase [c] : g6p-B <==> f6p-B 

phosphoglucomutase [c] : g1p <==> g6p 
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glycerol-3-phosphate dehydrogenase (NAD) [c] : dhap + h + nadh --> glyc3p + nad 

acylphosphatase [c] : 13dpg + h2o --> 3pg + h + pi 

glycerol kinase [c] : atp + glyc --> adp + glyc3p + h 

fructose-bisphosphatase [c] : fdp + h2o --> f6p + pi 

aldose 1-epimerase (glucose) [c] : glc-bD --> glc-D 

hexokinase (D-glucose:ATP) [c] : atp + glc-D --> adp + g6p + h 

pyruvate kinase [c] : adp + h + pep --> atp + pyr 

glucose-6-phosphate isomerase [c] : g6p <==> f6p 

phosphofructokinase [c] : atp + f6p --> adp + fdp + h 

fructose-bisphosphate aldolase [c] : fdp <==> dhap + g3p 

triose-phosphate isomerase [c] : dhap <==> g3p 

glyceraldehyde-3-phosphate dehydrogenase [c] : g3p + nad + pi <==> 13dpg + h + nadh 

phosphoglycerate kinase [c] : 3pg + atp <==> 13dpg + adp 

Diphosphoglycerate phosphatase [c] : 23dpg + h2o --> 3pg + pi 

phosphoglycerate mutase [c] : 2pg <==> 3pg 

enolase [c] : 2pg <==> h2o + pep 

3-oxoacid CoA-transferase [m] : acac + succoa <==> aacoa + succ 

nucleoside-diphosphate kinase (ATP:GDP) [c] : atp + gdp <==> adp + gtp 

polyphosphate kinase [c] : atp + pi <==> adp + ppi 

adenylate kinase [c] : amp + atp <==> (2) adp 

nucleoside-diphosphate kinase (ATP:GDP), 
mitochondrial 

[m] : atp + gdp <==> adp + gtp 

arginine kinase [c] : arg-L + atp <==> adp + argp + h 

adenylate kinase, mitochondrial [m] : amp + atp <==> (2) adp 

NADH dehydrogenase 2, ubiquinone-8, 
mitochondrial 

(5) h[m] + nadh[m] + q8[m] --> (4) h[c] + 
nad[m] + q8h2[m] 

ubiquinol-8 cytochrome c reductase (2) ficytc[m] + (4) h[m] + q8h2[m] --> (2) 
focytc[m] + (4) h[c] + q8[m] 

cytochrome c oxidase, mitochondrial (4) focytc[m] + (6) h[m] + o2[m] --> (4) 
ficytc[m] + (6) h[c] + (2) h2o[m] 

succinate dehydrogenase (ubiquinone-8), 
mitochondrial 

[m] : fadh2 + q8 <==> fad + q8h2 

ATP synthase (four protons for one ATP) adp[m] + (4) h[c] + pi[m] --> atp[m] + (3) h[m] 
+ h2o[m] 

phosphoribosylpyrophosphate synthetase [c] : atp + r5p <==> amp + h + prpp 

Glucose-6-phosphate isomerase [c] : g6p <==> g6p-B 

ribokinase [c] : atp + rib-D --> adp + h + r5p 
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ribulose 5-phosphate 3-epimerase [c] : ru5p-D <==> xu5p-D 

transketolase [c] : r5p + xu5p-D <==> g3p + s7p 

transaldolase [c] : g3p + s7p <==> e4p + f6p 

transketolase [c] : e4p + xu5p-D <==> f6p + g3p 

glucose 6-phosphate dehydrogenase [c] : g6p + nadp <==> 6pgl + h + nadph 

6-phosphogluconolactonase [c] : 6pgl + h2o --> 6pgc + h 

phosphogluconate dehydrogenase [c] : 6pgc + nadp --> co2 + nadph + ru5p-D 

acetyl-CoA synthetase reversible [c] : ac + atp + coa <==> accoa + amp + ppi 

glutathione oxidoreductase [c] : gthox + h + nadph <==> (2) gthrd + nadp 

catalase [m] : (2) h2o2 --> (2) h2o + o2 

glutathione peroxidase, mitochondria [m] : (2) gthrd + h2o2 <==> gthox + (2) h2o 

glutathione peridoxase [c] : (2) gthrd + h2o2 <==> gthox + (2) h2o 

gamma-glutamylcysteine synthetase [c] : atp + cys-L + glu-L --> adp + glucys + h + 
pi 

glutathione synthetase [c] : atp + glucys + gly --> adp + gthrd + h + pi 

Glutathione transport into mitochondria atp[c] + gthrd[c] + h2o[c] <==> adp[c] + 
gthrd[m] + h[c] + pi[c] 

superoxide dismutase [m] : (2) h + (2) o2s --> h2o2 + o2 

catalase [c] : (2) h2o2 --> (2) h2o + o2 

UTP-glucose-1-phosphate uridylyltransferase [c] : g1p + h + utp <==> ppi + udpg 

1,4-alpha-glucan branching enzyme (glygn1 -
> glygn2) 

[c] : glygn1 --> glygn2 

alpha,alpha-trehalose-phosphate synthase 
(UDP-forming) 

[c] : g6p + udpg <==> h + tre6p + udp 

alpha,alpha-trehalase [c] : h2o + tre --> (2) glc-D 

glycogen phosphorylase (amyls -> glc-D) [c] : glygn3 + (7) h2o --> Tyr-ggn + (7) glc-D 

alpha-amylase (glygn2 -> glygn4) [c] : glygn2 + (8) h2o --> (8) glc-D + glygn4 

alpha-glucosidase [c] : h2o + malt --> (2) glc-D 

pyruvate dehydrogenase [m] : coa + nad + pyr --> accoa + co2 + nadh 

citrate synthase [m] : accoa + h2o + oaa --> cit + coa + h 

Aconitate hydratase [m] : cit <==> icit 

Isocitrate dehydrogenase (NADP+) [m] : icit + nadp --> akg + co2 + nadph 

Isocitrate dehydrogenase (NAD+) [m] : icit + nad --> akg + co2 + nadh 

2-oxoglutarate dehydrogenase [m] : akg + coa + nad --> co2 + nadh + succoa

2-Oxoadipate:lipoamde 2-
oxidoreductase(decarboxylating and 
acceptor-succinylating) (mitochondria) 

[m] : 2oxoadp + coa + nad --> co2 + glutcoa + 
nadh 
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Succinate--CoA ligase (ADP-forming) [m] : atp + coa + succ <==> adp + pi + succoa 

succinate dehydrogenase [m] : fad + succ <==> fadh2 + fum 

fumarase, mitochondrial [m] : fum + h2o <==> mal-L 

malate dehydrogenase [c] : mal-L + nad <==> h + nadh + oaa 

malate dehydrogenase, mitochondrial [m] : mal-L + nad <==> h + nadh + oaa 

L-alanine reversible transport via proton 
symport 

ala-L[e] + h[e] <==> ala-L[c] + h[c] 

L-phenylalanine transport via diffusion 
(extracellular to cytosol) 

phe-L[e] <==> phe-L[c] 

L-proline transport via diffusion pro-L[e] <==> pro-L[c] 

L-tyrosine transport tyr-L[e] <==> tyr-L[c] 

4-aminobutanoate mitochondrial transport via 
diffusion 

4abut[c] <==> 4abut[m] 

glucose transport (uniport) glc-D[e] --> glc-D[c] 

L-lactate reversible transport via proton 
symport 

h[e] + lac-L[e] <==> h[c] + lac-L[c] 

Citrate exchange, diffusion cit[e] <==> cit[c] 

trehalose transport in via proton symporter h[e] + tre[e] --> h[c] + tre[c] 

iron (II) transport fe2[e] --> fe2[c] 

H2O transport via diffusion h2o[e] <==> h2o[c] 

o2 transport (diffusion) o2[e] <==> o2[c] 

phosphate reversible transport via symport h[e] + pi[e] <==> h[c] + pi[c] 

phosphate transport in/out via three Na+ 
symporter 

(3) na1[e] + pi[e] <==> (3) na1[c] + pi[c] 

CO2 transporter via diffusion co2[e] <==> co2[c] 

ammonia reversible transport nh4[e] <==> nh4[c] 

Na+/K+ exchanging ATPase atp[c] + h2o[c] + (2) k[e] + (3) na1[c] --> adp[c] 
+ h[c] + (2) k[c] + (3) na1[e] + pi[c] 

proton diffusion h[c] <==> h[e] 

fatty acid transport via diffusion arach[e] <==> arach[c] 

Octadecenoate (n-C18:1) transport in via 
uniport 

ocdcea[e] --> ocdcea[c] 

acetate transport in via proton symport ac[e] + h[e] --> ac[c] + h[c] 

Hexadecanoate (n-C16:0) transport in via 
uniport 

hdca[e] --> hdca[c] 

hexadecenoate (n-C16:1) transport in via 
uniport 

hdcea[e] --> hdcea[c] 

CoA transporter coa[e] <==> coa[c] 
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glycerol transport via channel glyc[c] <==> glyc[e] 

L-glutamate reversible transport via proton 
symport, mitochondrial 

glu-L[c] + h[c] <==> glu-L[m] + h[m] 

L-proline transport, mitochondrial pro-L[c] <==> pro-L[m] 

alpha-ketoglutarate/malate transporter akg[m] + mal-L[c] <==> akg[c] + mal-L[m] 

L-lactate transport, mitochondrial h[c] + lac-L[c] <==> h[m] + lac-L[m] 

Citrate transporter, mitochondrial cit[c] <==> cit[m] 

glucose transport (uniport) glc-D[e] <==> glc-D[c] 

pyruvate mitochondrial transport via proton 
symport 

h[c] + pyr[c] <==> h[m] + pyr[m] 

NH3 mitochondrial transport nh4[c] <==> nh4[m] 

H2O transport, mitochondrial h2o[c] <==> h2o[m] 

CO2 transport (diffusion), mitochondrial co2[c] <==> co2[m] 

Uncoupling protein h[c] --> h[m] 

phosphate transporter, mitochondrial h[c] + pi[c] <==> h[m] + pi[m] 

O2 transport (diffusion) o2[c] <==> o2[m] 

Acetoacetate mitochondrial transport via H+ 
symport 

acac[c] + h[c] <==> acac[m] + h[m] 

glycerol transport glyc[c] <==> glyc[m] 

CoA transporter coa[c] <==> coa[m] 

acetate mitochondrial transport via proton 
symport 

ac[c] + h[c] <==> ac[m] + h[m] 

acetate reversible transport via proton 
symport 

ac[e] + h[e] <==> ac[c] + h[c] 

carnitine O-aceyltransferase, mitochondrial [m] : acrn + coa <==> accoa + crn 

ADP/ATP transporter, mitochondrial adp[c] + atp[m] --> adp[m] + atp[c] 

aspartate 1-decarboxylase [c] : asp-L + h --> ala-B + co2 

carboxylic acid dissociation [c] : co2 + h2o <==> h2co3 

inorganic diphosphatase [c] : h2o + ppi --> h + (2) pi 

aspartate transaminase [c] : akg + asp-L <==> glu-L + oaa 

trehalose-phosphatase [c] : h2o + tre6p --> pi + tre 

N4-Acetylaminobutanal:NAD+ 
oxidoreductase 

[c] : h2o + n4abutn + nad --> 4aabutn + (2) h 
+ nadh 

carboxylic acid dissociation [m] : co2 + h2o <==> h2co3 

NADPH demand [c] : nadph --> h + nadp 

atp demand [c] : atp + h2o --> adp + h + pi 

HCO3 equilibration reaction [m] : co2 + h2o <==> h + hco3 
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4-aminobutyrate transaminase [c] : 4abut + akg <==> glu-L + sucsal 

glutamate dehydrogenase (NAD) [c] : glu-L + h2o + nad <==> akg + h + nadh + 
nh4 

Peroxidase (multiple substrates) [c] : h2o2 + meoh --> fald + (2) h2o 

 




