
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Optimal Online Learning with Matrix Parameters

Permalink
https://escholarship.org/uc/item/7xf477q3

Author
Nie, Jiazhong

Publication Date
2015

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7xf477q3
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

OPTIMAL ONLINE LEARNING WITH MATRIX PARAMETERS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Jiazhong Nie

September 2015

The Dissertation of Jiazhong Nie
is approved:

Professor Manfred K. Warmuth, Chair

Professor S.V.N. Vishwanathan

Professor Wojciech Kot lowski
Poznań University of Technology, Poland

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright © by

Jiazhong Nie

2015

Table of Contents

List of Figures v

List of Tables vi

Abstract vii

Acknowledgments ix

1 Introduction 1
1.1 Basic Concepts of Online Learning . 2

1.1.1 A Basic Online Learning Problem: the Expert Setting 4
1.2 Learning Matrix Parameters . 5
1.3 Learning Algorithms . 6
1.4 Overview of the Chapters . 8

1.4.1 Chapter 2: Online PCA with Optimal Regrets 8
1.4.2 Chapter 3: Learning a Set of Directions 10
1.4.3 Chapter 4: Learning Rotations with Optimal Regret 12

2 Online PCA with Optimal Regrets 13
2.1 Introduction . 13
2.2 The Online Algorithms . 21
2.3 Upper Bounds on the Regret . 26

2.3.1 Upper Bounds on the Regret of Loss MEG, Gain MEG, and GD 28
2.3.2 Comparison of the Regret Upper Bounds 30

2.4 Lower Bounds on the Regret of GD . 34
2.4.1 Lower Bound on the Regret of GD Algorithm 36
2.4.2 Lower Bound on the Regret of the Follow the Regularized Leader

GD Algorithm (FRL-GD) . 37
2.5 General Lower Bounds and Optimal Algorithms 41

2.5.1 Time Dependent Lower Bounds for Online PCA 43
2.5.2 Time Dependent Lower Bound for the Generalization with Dense

Instance Matrices . 44

iii

2.5.3 Loss Budget Dependent Lower Bounds 46
2.6 Conclusion . 47

Appendices 49
2.A Proof of Upper Bound (2.13) on the Regret of Gain MEG 49
2.B Proof of Upper Bound (2.14) on the Regret of GD 51
2.C Proof of Theorem 2.2 . 52
2.D Proof of Theorem 2.3 . 66
2.E A Discussion on the Final Parameter of FRL-GD 74
2.F Regret Lower Bounds When the Number of Trials Is Large 75
2.G Regret Lower Bounds When the Number of Trials Is Small 86
2.H Proof of Theorem 2.7 . 92
2.I Auxiliary Lemmas . 93

3 Learning a Set of Directions 95
3.1 Introduction . 95
3.2 The Offline Problem . 103
3.3 Online Algorithm . 105

3.3.1 The Update and Projection . 106
3.4 The Decomposition . 108

3.4.1 Finding a Tangent Set . 110
3.4.2 Removing a Tangent Set Preserves the Mean Constraints 112
3.4.3 Choosing the Weight ρ . 116

3.5 Conclusion . 118

Appendices 120
3.A Range of the Gain . 120
3.B When Do Solutions to the Problems of Learning k Directions and k-PCA

Coincide? . 121
3.C Proof of the Lower bound (Theorem 3.3) 121

4 Learning Rotations with Optimal Regrets 124
4.1 Introduction . 124
4.2 Preliminaries . 126
4.3 Previous Work . 128

4.3.1 The GD Algorithm for Learning Rotations Online 128
4.3.2 Previous Analysis of the GD Algorithm 130

4.4 Loss Dependent Bound for the GD Algorithm 132
4.5 Conclusion . 135

iv

List of Figures

3.1 Comparison of PCA gain (directional gain for c = 0) and directional gain
for c = 1: The target direction x is depicted by a red arrow. In each
case the blue curve is u scaled by the gain of u, as the prediction u goes
around the unit circle. 98

3.2 Plots of directional gain for different values of constant c. In both figures,
the red arrows are the target direction x and the curves are the prediction
u scaled by direction gain (uᵀx + c)2 as u goes around the unit circle.
Each of these curves is plotted for a different value of the constant c (see
the individual values in the legends). 99

v

List of Tables

2.1 Comparison of the time dependent upper bounds on the regret of the
Loss MEG, Gain MEG, and GD algorithms. Each column corresponds
to one of the four combinations of sparse or dense instance matrices versus
k ≤ n

2 or k ≥ n
2 , respectively. All bounds were given in Section 2.3.1 and

Section 2.3.2: constants are omitted, we only show the leading term of
each bound, and when we compare Loss and Gain MEG bounds, we use
m ln n

m = Θ(k) when k ≤ n
2 and k ln n

k = Θ(m) when k ≥ n
2 . Recall

that m is shorthand for n − k. The best (smallest) bound for each case
(column) is shown in bold. In Section 2.5, all bold bounds will be show
to be optimal (within constant factors). 33

2.2 Comparison of the loss budget dependent regret bounds for online PCA
with k ≤ n

2 . Given dimension k of the subspace, each column shows the
values of the two bounds for a specific range of the loss budget BL. The
first row gives the upper bound on the regret of Loss MEG in bold, which
will be shown to be optimal in Section 2.5. The second row gives the lower
bound on the regret of GD, which is sub-optimal whenever BL ≥ k. . . 37

2.3 A tournament with T = 6 trials, S = 2 rounds, and n = 4 experts. The
bits in the table are the binary losses of the experts in each trial. The
brackets show the pairing in each round. The losses of the winners are in
bold. 80

vi

Abstract

Optimal Online Learning with Matrix Parameters

by

Jiazhong Nie

This thesis considers two online matrix learning problems: the problem of online Princi-

ple Component Analysis (PCA) and the problem of learning rotations online. Previous

papers proposed two online algorithms for these problems, which are the Matrix Ex-

ponentiated Gradient (MEG) algorithm and the Gradient Descent (GD) algorithm,

respectively [WK08, HKW10a]. This thesis evaluates these two algorithms by their re-

gret, which is the additional total loss of the online algorithm over the total loss of the

best offline comparator (chosen in hindsight).

In Chapter 2, we show that for online PCA, both algorithms achieve essen-

tially the same and optimal (within a constant factor) regret bound when the bound

is expressed as a function of the number of trials. However, when considering regret

bounds as functions of the loss of the best comparator, MEG remains optimal and

strictly outperforms GD. Chapter 3 considers a generalization of online PCA in which

we use the combination of the compression gain of PCA and the cosine similarity to

measure the closeness between two directions (i.e. unit length vectors). Such a combined

measurement involves both the first and second moments of the learner’s randomized

prediction, and therefore, we propose an online algorithm that maintains both a vector

and a matrix as its parameter simultaneously. In particular, in each trial of the game,

vii

this algorithm uses a novel iterative procedure to decompose its parameter pair into

a mixture of at most n pure directions. Chapter 4 considers the problem of learning

rotations online. We show that for this problem, the GD algorithm is optimal (up to a

constant) for both the regret bounds that are functions of the number of trials and the

regret bounds that are functions of the loss of best comparator.

viii

Acknowledgments

My most gratitude goes to my advisor, Manfred Warmuth, who provided me both

mentorship and friendship. He offered me insights and inspiration that allowed me to

grow as a theoretical researcher in online learning. I benefit immensely from his curiosity,

open mind and rigorous attitude. This work is heavily influenced by his previous work

and this dissertation will not be completed without his tireless editing and guidance. I

cannot thank him enough.

I am lucky to work with many excellent professors and scholars, Professor

David Helmbold, Professor Wojciech Kot lowski, Dr. Wouter M. Koolen and Professor

S.V.N. Vishwanathan. They provided insightful intellectual simulation through discus-

sions and brainstorming sessions. I thank them for their help, feedback and advice

regarding my research. You will be my guiding examples in my future career.

I gained a huge amount of help from the professors and colleagues from the

computer science department at UCSC. I specially thank Professor Yi Zhang for mentor-

ing me for two years and serving as my committee member in my advancement. Special

thanks to the students from machine learning group: Pei Jiang, Holakou Rahmanian,

Micha l Dereziński. They provided valuable feedback on my work. I also would like to

thank Tracie Tucker for her patience with all my administrative problems.

Finally, I would like to thank my family for their support. My parents offered

me selfless love in these many years. I feel so happy to share this achievement with

them. I greatly thank my beautiful and smart wife, Dr. Xiao, who understands me and

ix

supports me all the time. Thank my son, Oscar, for bringing so much joy to my life.

x

Chapter 1

Introduction

This thesis presents some significant new results in the online learning sub-

field of Machine Learning. Online learning distinguishes itself from the common batch

learning by its interactive learning protocol and its adversarial data assumption [Lit87,

LW94, Vov90, CBFH+97, CBL06]. In this thesis, we consider online learning with ma-

trix parameters. In particular, we are interested in the online version of two classical

machine learning problems: Principle Component Analysis (PCA) and learning rota-

tion matrices [WK08, HKW10b]. Previous papers proposed two online algorithms for

these problems, which are the Matrix Exponentiated Gradient (MEG) algorithm and

the Gradient Descent (GD) algorithm, respectively [WK08, HKW10a]. Each of these

algorithms aims at suffering small regret, that is the maximum extra loss the algorithm

could suffer against the best comparator chosen in hindsight. In this thesis, we evaluate

these two algorithms by upper and lower bounds on their regrets. For each problem

setting, an “optimal” algorithm is given, which is always a version of GD or MEG. Here

1

optimal means having regret no more than a constant factor times a regret lower bound

for the problem.

We start in this chapter with an introduction to online learning as well as an

overview of the problems discussed in the thesis. This chapter itself is organized as

follows: Section 1.1 explains basic concepts of online learning, such as, the interactive

learning protocol, the adversarial data setting and worst case regret bounds. These con-

cepts are further demonstrated in Section 1.1.1 with a basic online learning problem,

which is the so called expert setting in the online learning literature. In Section 1.2, we

introduce the two learning problems considered in this thesis, which are the problem

of online Principle Component Analysis (PCA) and the problem of learning rotations

online. Section 1.3 describes the mirror descent algorithm framework, which, when con-

figured with different Bregman divergences, specializes to the MEG and GD algorithms

discussed in the thesis. Finally, in Section 1.4, we give an overview of the main chapters

of the thesis (Chapter 2, 3 and 4).

1.1 Basic Concepts of Online Learning

In a common batch learning problem, the learning algorithm receives a batch of

training examples (labeled instances) as input to find a single hypothesis that generalizes

well on the testing examples. An online learning problem, on the other hand, uses an

interactive protocol that only processes one example in each trial. In particular, in each

trial, the algorithm first commits to some hypothesis, usually by choosing a parameter

2

from a fixed parameter set, then it receives an instance and predicts the label of that

instance. After that, the true label is revealed and some loss is incurred, which measures

the discrepancy between the true and the predicted label. The performance of an

algorithm is measured by the difference between the total loss of the algorithm and

the total loss of the best offline comparator which knows the entire example sequence

in advance. This difference is called the algorithm’s regret and our goal is to design

efficient algorithms whose regret is guaranteed to be small.

The core assumption of the online learning is the adversarial data setting,

which means the algorithms are required to perform well against any example sequence,

possibly generated by an adversary. Therefore, we need an upper bound on the largest

regret any sequence can produce for the algorithm. We call such bounds worst case

regret upper bounds. These bounds are further categorized into two types: the time

dependent bounds, which are functions of the number of the trials (i.e. length of the

example sequence) [Zin03, SST11], and the loss dependent bounds which are functions of

the loss of the best comparator on the example sequence [LW94, CBLW96, CBFH+97,

KW97]. Although most previous work focused on time dependent bounds, in this thesis,

we prove both types of bounds for our learning algorithms, and show that in many cases,

they lead to significantly different conclusion about which algorithm is optimal.

The optimality of algorithms is defined in terms of their worst case regret

bound, that is, given any learning problem, we are interested in algorithms that have

the least worst case regret bound among all the algorithms following the problem’s

protocol. To this end, we lower bound the regret any algorithm will suffer from an

3

adversarial example sequence and call such a bound the regret lower bound of the

problem. If an algorithm suffers worst case regret no more than a constant factor times

the lower bound, then we say the algorithm is optimal for the problem. Notice that

both the discussion of optimal algorithms and the regret lower bounds depend on the

parameterization of the bounds, i.e. if they are time dependent bounds or the loss

dependent bounds.

1.1.1 A Basic Online Learning Problem: the Expert Setting

Now we describe in detail a basic online learning problem, the so called expert

setting. The problem is generalized in various ways later in this thesis. Assume that we

need to solve a problem in repeated trials with the help of n experts. At the beginning of

each trial, the experts propose their solutions to the problem, and a learning algorithm

chooses one of them to follow. After that, each expert incurs a loss, which depends

on the quality of his solution, and we suffer the loss of the chosen expert. Notice that

although we solve a problem repeatedly, the quality of each expert’s solution may vary

from trial to trial, e.g., the accuracy of TV weather predictions may change across

seasons. Also notice that the expert setting is decision-theoretic – a learning algorithm

chooses experts not by evaluating the proposed solutions directly but by its confidence in

the experts, which is derived from the losses revealed throughout trials. An algorithm’s

confidence in the experts at trial t is specified by an n dimensional probability vector

wt: expert i is chosen with probability wt,i. We denote the losses of n experts at trial t

by another n-dimensional vector `t ∈ [0, 1]n. Then, the expected loss of the algorithm is

4

wt ·`t, the inner product between wt and `t
1. For a problem of T trials, the algorithm’s

total loss is
∑T

t=1 `t ·wt and when using the best expert in hindsight as the comparator,

the algorithm’s regret is defined as

REG =

T∑
t=1

(`t ·wt)− min
1≤i≤n

T∑
t=1

lt,i︸ ︷︷ ︸
=Lc

. (1.1)

If all the experts receive losses between zero and one, then the well known Hedge algo-

rithm achieves a loss dependent regret bound of REG ≤
√

2Lc lnn + lnn, where Lc is

the loss of comparator, i.e. the best expert in hindsight (see definition in (1.1)) [FS95]2.

In this thesis, we prove for the expert setting a regret lower bound of Ω(
√

2 ln(n)Lc +

ln(n))3. This shows that for the expert setting, the Hedge algorithm is optimal up to a

constant factor.

1.2 Learning Matrix Parameters

In most common machine learning problems, batch or online, an algorithm’s

decision/hypothesis is parameterized by a real parameter vector. For example, in the

expert setting, an algorithm’s confidence in the experts is parameterized by a probability

vector whereas in the linear classification, a separating plane is parameterized by its

normal vector. This thesis considers two learning problems in which hypotheses are

naturally parameterized by matrices. First, the online PCA problem concerns learning

1Note that in the expert setting, the loss vectors can be viewed as non-negative instance vectors
with a fixed yet hidden label 0. For any weight vector w, the loss between the prediction w · ` and the
hidden label is |0−w · `| = w · `.

2This requires the learning rate of the algorithm to be tuned as a function of Lc
3An asymptotic version of the lower bound, which only holds in the limit (T, n→∞), was previously

proved in [CBFH+97].

5

n × n projection matrices of rank k ≤ n and the corresponding parameter set is the

convex hull of these projection matrices, which is the set of symmetric matrices with

eigenvalues in [0, 1] and summing to k; Second, the rotation learning problem concerns

learning n × n rotation matrices and the corresponding parameter set is convex hull

of rotation matrices, which is the set of matrices with singular values not larger than

one. Note that these matrix learning problems cannot be simply reduced to learning

vectors of length n× n, since their eigenvalue/singular value structure is lost in such a

vectorized form, and more importantly, because learning these matrices is much easier

than learning a vector of length n × n. In fact, consider the special cases where all

the data matrices are diagonal. In these cases, since all the data matrices have a fixed

eigensystem/singular system, the algorithm only learns n eigenvalues. Nevertheless,

[WK08] and [HKW10a] prove for the matrix learning problems the same regret upper

bounds as those proved for the diagonal cases. Moreover, we show in this thesis that

these regret upper bounds are also matched in a constant factor by the lower bounds

proved for the diagonal cases, which means that the diagonal cases are as hard as these

matrix learning problems up to a constant factor.

1.3 Learning Algorithms

Most of the learning algorithms discussed in this thesis are instances of the

Mirror Descent algorithm framework[NY78, KW97]. Under this framework, a learning

algorithm is motivated by a Bregman divergence and updates its parameters from trial

6

to trial as the following: the parameter used for next trial is obtained by minimizing a

trade-off between the motivating Bregman divergence to the old parameter and the loss

on the current example. The intuition is that we want to stay somewhat close to the

old parameter, since it summarizes our knowledge attained so far, but we also want to

learn something new by improving the performance on the current example[KW97].

Different motivating Bregman divergences lead to different families of learning

algorithms. We discuss in this thesis two families of algorithms, the Exponentiated

Gradient (EG) family and the Gradient Descent (GD) family. When learning vector

parameters, the GD family is motivated by squared Euclidean distance, which leads to

an additive update: the parameter is updated by subtracting from it a scaled version

of the loss function’s gradient. On the other hand, the EG family for the vector case

is motivated by relative entropy, which leads to a multiplicative update: the parameter

is updated by multiplying its i-th element wi with e−ηli , where li is loss function’s

derivative w.r.t. wi and η is a learning rate that scales the derivatives.

When learning matrix parameters, the EG family is motivated by the quantum

relative entropy and the resulted algorithm is referred as the Matrix Exponentiated

Gradient (MEG) algorithm, while the GD family is motivated by squared Frobenius

norm and the resulted algorithm is still referred the GD algorithm, since the Frobenius

norm of a matrix equals to the Euclidean norm of the vectorized matrix. In both vector

and matrix versions of the GD algorithm, the parameters are updated by subtracting

from them the scaled gradients of the loss function, where the positive learning rate is

the scaling factor.

7

One central topic of this thesis is to compare the regret bound of MEG and

GD for the two matrix learning problems we considered, and to find for each problem

an algorithm whose regret bound is optimal (within a constant factor). We show in the

following chapters that such a comparison depends on three factors. First, the set of

concepts we are learning, second, whether the instance matrices4 are of rank one or of

full rank, and finally whether we are discussing the time dependent bounds or the loss

dependent bounds. Nevertheless, we are able to show that for the problem of online

PCA, MEG is the optimal algorithm in all cases and in some cases is strictly better

than the GD algorithm. For the problem of learning rotations online, the GD algorithm

is optimal5.

1.4 Overview of the Chapters

We now sketch the contents of the main chapters of this dissertation. Chapter 2

and Chapter 3 have been published at COLT and ALT conferences [NKW13, KNW13],

respectively. Chapter 4 is based on the unpublished manuscript [Nie14].

1.4.1 Chapter 2: Online PCA with Optimal Regrets

In Principal Component Analysis (PCA), the data points xt ∈ Rn are projected

/ compressed onto a k-dimensional subspace. Such a subspace can be represented by

its projection matrix P which is a symmetric matrix in Rn×n with k eigenvalues equal

4Note that in a matrix learning problem, both the parameters and the instances are matrices.
5Since quantum relative entropy is a function of positive semi-definite matrices, MEG is not directly

applicable to the rotation learning problem. For partial results, see [Aro09].

8

1 and n− k eigenvalues equal 0. The goal of PCA is to minimize the total compression

loss
∑

t ‖Pxt − xt‖2, which is solved by the eigenvectors of the k largest eigenvalues of

the covariance matrix C =
∑

t xtx
ᵀ
t .

In this chapter, we consider the online version of PCA [WK08], where in

each trial t = 1, . . . , T , the algorithm chooses (based on the previously observed points

x1, . . . ,xt−1) a randomized subspace of dimension k, which is described by a random-

ized projection matrix Pt of rank k. Then a next point xt is revealed and the algorithm

incurs the expected compression loss: E[‖xt − Ptxt‖22]. The regret of an algorithm is

the difference between the its cumulative loss and the loss of the off-line PCA solution

to data points x1 . . .xT .

We evaluate the GD and MEG algorithms for online PCA in terms of their

worst-case regret bounds. We show that for the time dependent regret bounds, both

algorithms are essentially optimal. This is surprising because MEG is believed to per-

form sub-optimally when the instances are sparse. However, in the case of online PCA,

the loss function is linear with a non-negative gradient, because when viewed in the

right way, the compression loss is a dot product between the complementary projection

matrix I − Pt and an instance matrix xtx
ᵀ
t [WK08]. Furthermore, we show that when

considering loss dependent regret bounds which are functions of the loss of comparator,

then MEG remains optimal and strictly outperforms GD.

Next, we study a generalization of the online PCA problem, in which Nature is

allowed to present the algorithm with dense instance matrices (i.e. positive semi-definite

matrices with bounded largest eigenvalue). Again we can show that MEG is optimal

9

and strictly better than GD in this setting.

1.4.2 Chapter 3: Learning a Set of Directions

The previous chapter discussed online PCA in which data instances are com-

pressed by a k-dimensional subspace minimizing the compression loss, that is, the sum

of the squared distances between the data instances and their projections. Alternatively,

this subspace can be identified by maximizing the compression gain, which is the sum of

the squared length of the projected data instances. In this chapter, we combine the com-

pression gain with the cosine similarity and use the combined measure to measure the

closeness between directions, i.e. vectors of length 1. We refer this combined measure

as the directional gain. Formally, this chapter considers the following online problem

of learning a set of directions: in each trial the learner predicts a set of k randomized

directions u1 . . .uk which are orthogonal to each other and Nature responds with an

instance direction x, then the learner receives the expected directional gain, which is

the expectation of (
∑k

i=1 u
ᵀ
ix + c)2. Since u1 . . .uk are orthogonal to each other, the

directional gain can be expanded as the following:

(
k∑
i=1

uᵀ
ix+ c)2 = xᵀ

k∑
i=1

uiu
ᵀ
ix+ 2c

k∑
i=1

uᵀ
ix+ c2. (1.2)

Hence, the gain is in fact a trade-off between xᵀ∑k
i=1 uiu

ᵀ
ix, which is the compression

gain of the projection matrix
∑k

i=1 uiu
ᵀ
i w.r.t. instance x, and the cosine similarity∑k

i=1 u
ᵀ
ix =

∑k
i=1 cos(ui,x).

Taking expectation of (1.2) w.r.t. learner’s randomized prediction u1 . . .uk,

10

one would see that the expected directional gain depends on both the first and the

second moments of the randomized prediction (E[
∑k

i=1 ui] and E[
∑k

i=1 uiu
ᵀ
i]), whereas

in online PCA, only the second order moment is involved. This fact poses two challenges

to a learning algorithm: First, the algorithm needs to maintain uncertainty via both

the first and the second moments of its prediction simultaneously, and second, when the

algorithm predicts, such uncertainty needs to be efficiently decomposed into a convex

combination of direction sets.

The first challenge is addressed by maintaining a parameter pair (µ,D), where

vector µ and matrix D represent the first and the second moments of the algorithms

prediction, respectively. Moreover, we constraint (µ,D) with the condition µµᵀ/k �

D � I. We will show that such a condition is necessary and sufficient for (µ,D) to

be the first and second moments of a single distribution on orthogonal direction sets of

size k. For the second challenge, we propose an efficient procedure which decomposes

the parameter pair (µ,D) into a mixture of at most n sets of pure directions. This

procedure consists of at most n iterative steps: Each of these steps reduces the rank

of parameter matrix D by removing from the parameter pair (µ,D) a set of pure

directions u1 . . .uk with a mixing coefficient p. Unlike the decomposition procedure

of online PCA which always decomposes with parameter matrix’s eigendirections, our

procedure chooses u1 . . .uk and p in a special way such that after the removal, the

new parameter pair µ−p∑k
i=1 ui and D−p∑k

i=1 uiu
ᵀ
i still satisfy the aforementioned

necessary and sufficient condition.

11

1.4.3 Chapter 4: Learning Rotations with Optimal Regret

In this chapter, we consider the problem of learning rotations online [HKW10b].

In each trial of this problem, the learning algorithm is first given a unit vector xt,

then it predicts (deterministically or randomly) with a unit vector ŷt. Finally, Nature

reveals true rotated vector yt, which is also a unit vector. The loss to the algorithm

is half the expected squared norm of the difference between her predicted vector ŷt

and the true rotated vector yt: E
[

1
2‖yt − ŷt‖2

]
= 1− yᵀt E [ŷt] . We define the offline

comparator of the problem as the rotation matrix Rc that minimizes its loss on data

points (x1,y1) . . . (xT ,yT) in hindsight, i.e.,

Rc = min
R is a rotation

matrix of dimension n

T∑
t=1

‖xt −Ryt‖22.

The regret of an algorithm is then the difference between its cumulative loss and the loss

of the comparatorRc. [HKW10a] applied the GD algorithm to this problem and showed

that when considering the time dependent regret bounds, the algorithm is optimal up

to a constant factor. However, for the loss dependent bounds, there has not been any

result on upper bounding the regret. In this chapter, we prove a loss dependent upper

bound on the regret of the GD algorithm by introducing two new techniques to the its

analysis: First, a refined application of Pythagorean Theorem and second, a new linear

term is added to our algorithm’s measure of progress. Note that the loss dependent

regret bound obtained for GD is also optimal up to a constant factor in contrast to

the case of online PCA where GD is only optimal for time dependent bounds and is

sub-optimal for loss dependent bounds.

12

Chapter 2

Online PCA with Optimal Regrets

2.1 Introduction

In Principal Component Analysis (PCA), the data points xt ∈ Rn are projected

/ compressed onto a k-dimensional subspace. Such a subspace can be represented by

its projection matrix P which is a symmetric matrix in Rn×n with k eigenvalues equal

1 and n − k eigenvalues equal 0. The goal of uncentered PCA is to find the rank k

projection matrix that minimizes the total compression loss
∑

t ‖Pxt − xt‖2, i.e. the

sum of the squared Euclidean distances between the original and the projected data

points.1 Surprisingly, this loss can be written as a linear loss [WK08]:

∑
t

‖Pxt−xt‖2 =
∑
t

‖(P−I)xt‖2 =
∑
t

xᵀ
t (I−P)�2xt = tr

(
(I−P)

∑
t

xtx
ᵀ
t︸ ︷︷ ︸

C

)
,

1In centered PCA the goal is to minimize
∑
t ‖P (xt−µ)− (xt−µ)‖2 where P is a projection matrix

of rank k and µ ∈ Rn is a second mean parameter. For the sake of simplicity we focus on the optimal
algorithms for uncentered PCA. However we believe that our results will essentially carry over to the
centered case (as was already partially done in [WK08]).

13

where in the 3rd equality we used the fact that I−P is a projection matrix and therefore

(I−P)2 = I−P . The final expression of the compression loss is linear in the projection

matrix P − I as well as the covariance matrix C =
∑

t xtx
ᵀ
t which is the sum of the

outer products. The crucial point to note here is that the compression loss is linear in

the outer products xtx
ᵀ
t but not in the original points xt.

The batch version of uncentered PCA is equivalent to finding the eigenvectors

u1, . . . ,uk belonging to the k largest eigenvalues of the covariance matrix C: if P =∑k
i=1 uiu

ᵀ
i is the k dimensional projection matrix formed from these k eigenvectors,

then I − P is the complimentary n − k dimensional projection matrix minimizing the

linear loss tr((I − P)C).

In this chapter we consider the online version of uncentered PCA [WK08],

where in each trial t = 1, . . . , T , the algorithm chooses (based on the previously observed

points x1, . . . ,xt−1) a subspace of dimension k described by its projection matrix Pt of

rank k. Then a next point xt (or instance matrix xtx
ᵀ
t) is revealed and the algorithm

suffers the compression loss:

‖xt − Ptxt‖2 = tr
(
(I − Pt) xtxᵀ

t

)
. (2.1)

The goal here is to obtain an online algorithm whose cumulative loss over trials t =

1, . . . , T is close to the cumulative loss of the best rank k projection matrix chosen in

hindsight after seeing all T instances. The maximum difference between the cumulative

loss of the algorithm and the best off-line comparator is called the (worst-case) regret.

This regret naturally scales with the maximum square 2-norm of the data points xt. For

14

the sake of simplicity we assume that all points have 2-norm equal 1. In the chapter we

find the optimal algorithm for online PCA (and some generalizations), where optimal

here means that the upper bounds we prove for the regret of the algorithm is at most

a constant factor larger the lower bound we can prove for the learning problem.

There are two main families of algorithms in online learning, which differ in how

the parameter vector/matrix is updated: the Gradient Descent (GD) family [CBLW96,

Zin03] and the Exponentiated Gradient (EG) family [KW97]. Both are motivated by

trading off a divergence against the loss. The GD family is motivated by the squared

Euclidean distance divergence, and the Exponentiated Gradient (EG) family by the the

relative entropy divergence [KW97]. The first family leads to additive updates of the

parameter vector/matrix. When there are no constraints on the parameter space, then

the parameter vector/matrix of the GD family is a linear combination of the instances.

However when there are constraints, then after the update the parameter is projected

onto the constraints (by a Bregman projection with respect to the squared Euclidean

distance). The second family leads to multiplicative update algorithms. For that family,

the components of the parameter are non-negative and if the parameter space consists of

probability vectors, then the non-negativity is already enforced by the relative entropy

divergence and less projections are needed.

What is the best parameter space for uncentered PCA? The compression loss

(2.1) is linear in the projection matrix matrix I −Pt which is of rank n− k. An online

algorithm has uncertainty over the best projection matrix. Therefore the parameter

matrix Wt of the algorithm is a mixture of such matrices [WK08] which must be a

15

positive semi-definite matrix of trace n − k whose eigenvalues are capped at 1. The

algorithm chooses its projection matrix I − Pt by sampling from this mixture Wt, i.e.

E[I − Pt] = Wt. The loss of the algorithm is tr((I − Pt) xtxᵀ
t) and its expected loss

tr(Wt xtx
ᵀ
t).

In [WK08], a matrix version of the multiplicative update was applied to PCA,

whose regret bound is logarithmic in the dimension n. This algorithm uses the quan-

tum relative entropy in its motivation and is called the Matrix Exponentiated Gradient

(MEG) algorithm [TRW05]. It does a matrix version of a multiplicative update and

then projects onto the “trace equal n − k” and the “capping” constraints (Here the

projections are with respect to the quantum relative entropy).

For the PCA problem the (expected) loss of the algorithm at trial t is tr(Wtxtx
ᵀ
t).

Consider the generalization to the loss tr(WtXt) where now Xt is any positive semi-

definite symmetric instance matrix and the parameter Wt is still a convex combination

of rank n − k density matrices. In PCA the instance matrices are the outer products,

i.e. Xt = xtx
ᵀ
t . Such instances (also called dyads) are sparse in the sense that their

trace norm is one, independent of the dimension n of the instance matrix. Beginning

with some of the early work on linear regression [KW97], it is known that multiplicative

updates are especially useful when the instances are allowed to be dense. In the matrix

context this means that the symmetric positive semi-definite instance matrices Xt have

maximum eigenvalue (i.e. spectral norm) of say one. Thus for PCA, one may suspect

that MEG is not able to fully exploit the sparsity of the instance matrices. On the other

hand for linear regression, GD is known to have the advantage when the instances are

16

sparse [KW97] and consistently with that, when GD is used for PCA, then its regret is

bounded by a term that is independent of the dimension of the instances. The advan-

tage of GD in the sparse case is also supported by a general survey of Mirror Descent

algorithms (to which GD and MEG belong) for the case when the gradients of the con-

vex loss functions (which may have negative components) lie in certain symmetric norm

balls [SST11]. Again when the gradient vectors of the losses are sparse then GD has

the advantage.

Surprisingly, the situation is quite different for PCA: We show that MEG

achieves the same regret bound as GD for online PCA (despite the sparseness of the

instance matrices) and the regret bounds for both algorithms are within a constant factor

of a new lower bound proved in this chapter that holds for any online PCA algorithm.

This surprising performance of MEG seems to come from the fact that gradients of

the losses in the PCA case are restricted to be non-negative. Therefore our results are

qualitatively different from the cases studied in [SST11] where the gradients of the loss

functions are within a p−norm ball, i.e. symmetric around zero.

Actually, there are two kinds of regret bounds in the literature: bounds ex-

pressed as a function of the time horizon T and bounds that depend on an upper bound

on the loss of the best comparator (which we call a loss budget following [AWY08]). In

typical applications for PCA, there exists a low dimensional subspace which captures

most of the variance in the data and the compression loss is small. Therefore, guarding

against the worst-case loss that grows with the number of trials T is overly pessimistic.

We can show that when considering regret bounds as a function of a loss budget, MEG

17

is optimal and strictly better than GD by a factor of
√
k. This suggests that the mul-

tiplicative updates algorithm is the best choice for prediction problems in which the

parameters are mixture of projection matrices and the gradients of the losses are non-

negative. Note that in this chapter we call an algorithm optimal for a particular problem

if we can prove an upper bound on its worst-case regret that is within a constant factor

of the lower bound for the problem (which must holds for any algorithm).

Related Work and Our Contribution:

The comparison of the GD and MEG algorithms has an extensively history

(see, e.g. [KW97, WV05, ST10, SST11]). It is simplest to compare algorithms in the case

when the loss is linear. Linear losses are the least convex losses and in the regret bounds,

convex losses are often approximated by first-order Taylor approximations which are

linear, and the gradient of the loss functions as the “loss/gain vector” [KW97, Zin03].

In this case it is often assumed that the gradient of the loss lies in an Lp ball (which

is a symmetric constraint) and the results are as expected: EG is optimal when the

parameter space is 1-norm bounded and the gradient vectors are infinity norm bounded,

and GD is optimal when the both spaces are 2-norm bounded [ST10, SST11].

In contrast for PCA, the gradient of the loss tr(WtXt) is the instance matrix

Xt which is assumed to be positive semi-definite. None of the previous work exploits

this special property of the PCA setup, where the gradient of the loss satisfies some

non-negativity property. In this chapter we carefully study this case and show that

MEG is optimal.

18

We also made significant technical progress on the lower bounds for online

PCA. The previous lower bounds ([WK08] and [KWK10]) were incomplete in the fol-

lowing three ways: First, the lower bounds require dense instance matrices, whereas

for standard PCA, the instance matrices (the outer products xtx
ᵀ
t) are sparse. Second,

the previous lower bounds assume that the dimension k of target subspace is at least

n
2 and in common PCA problems k is much smaller than n

2 . Third, the proofs rely on

the Central Limit Theorem and therefore the resulting lower bounds only hold in the

limit as T and n go to infinity (See [CBFH+97, CBL06, AABR09] for details). In this

chapter, we circumvent all three weak aspects of the previous proofs: We give lower

bounds for all four combinations of sparse or dense instance matrices versus k ≤ n
2 or

k ≥ n
2 , respectively. All our lower bounds are non-asymptotic i.e. they hold for all

values of the variables T and n. The new lower bounds use a novel probabilistic bound-

ing argument for the minimum of n random variables. Alternate methods for obtaining

non-asymptotic lower bound for label efficient learning problems in the expert setting

were given in [AB10]. However those techniques are more complicated and it is not

clear how to adapt them to the online PCA problem.

In summary, our contribution consists of proving tight upper bounds on the

regret of the two main online PCA algorithms, as well as proving lower bounds on the

regret of any algorithm for solving online PCA. For the case when the regret is expressed

as a function of the number of trials T , we show that MEG’s and GD’s regret bounds

are independent of the dimension n of the problem and are within a constant factor

of the lower bound on the regret of any online PCA algorithm. This means the both

19

algorithms are optimal in this case. For the case when the regret is a function of the

loss budget, we prove that MEG remains optimal, while we show that the regret of GD

is suboptimal by a
√
k factor.

Furthermore, for a generalization of the PCA setting to the dense instance

case, we improve the known regret bound significantly by switching from a loss version

to a gain version of MEG depending on the dimension k of the subspace. If k ≥ n
2 then

the gain version of MEG is optimal in the dense instance case and when k ≤ n
2 then the

loss version is optimal. On the other hand, GD is non-optimal for both ranges of k.

A much shorter preliminary version of this manuscript appeared in the 24th

International Conference on Algorithmic Learning Theory (2013) [NKW13]. In this

more detailed journal version we give more background and complete proofs of all of

our results (mostly omitted or only sketched in the conference version). this chapter

also has the following additional material: A proof of the budget bound (2.13) for the

gain version of MEG; an extension of the lower bound on the regret of GD (Theorem

2.2) to the case of small budgets; the analysis of the Follow the Regularized Leader

variant of GD (Section 2.4.2) and a discussion of its final parameter matrix (Appendix

2.E); lower bounds on the regret when the number of trials is small (Appendix 2.G).

Outline of the Chapter:

In Section 2.2, we start with describing the MEG and GD algorithms for online

PCA. In particular, we present two versions of the MEG algorithm: the Loss MEG

algorithm introduced in [WK08], and the Gain MEG algorithm, which is the same as

20

Loss MEG except for a sign change in the exponential. Following the description of

each algorithm, we then derive in Section 2.3 their regret bounds expressed as functions

of the number of trials T . These bounds are compared in Section 2.3.2 for all four

combinations of sparse or dense instance matrices versus k ≤ n
2 or k ≥ n

2 , respectively

(see Table 2.1). Next we consider regret bounds expressed as functions of the loss

budget. In Section 2.4, we prove a lower bound on GD’s regret which shows that the

regret of GD is at least
√
k times larger than the regret of Loss EG. A similar lower

bound is proved for the Follow the Regularized Leader variant of GD in Section 2.4.2.

In Section 2.5 we prove lower bounds for online PCA and its dense generalization which

hold for any online algorithm, and in Section 2.6 we conclude with a summary of which

algorithms are optimal.

2.2 The Online Algorithms

Online uncentered PCA uses the following protocol in each trial t = 1, . . . , T :

the algorithm probabilistically chooses a projection matrix Pt ∈ Rn×n of rank k. Then

a point xt ∈ Rn is received and the algorithm suffers the loss tr((I − Pt)xtxᵀ
t).

We also consider the generalization where the instance matrix is any positive

definite matrix Xt instead of an outer product xtx
ᵀ
t . In that case the loss of the

21

algorithm is tr((I − Pt)Xt).
2 The loss is “complementary” to the gain tr(PtXt), i.e.

tr((I − Pt)Xt)︸ ︷︷ ︸
loss

= tr(Xt)︸ ︷︷ ︸
constant

− tr(PtXt)︸ ︷︷ ︸
gain

,

and the n−k dimensional projection matrix I−Pt is “complementary” to the k dimen-

sional projection matrix Pt. These two complementations are inherent to our problem

and will be present throughout the chapter.

In the above protocol, the algorithm is allowed to chooses its k dimensional

subspace Pt probabilistically. Therefore we use the expected compression loss E[tr((I−

Pt)Xt)] as the loss of the algorithm. The regret of the algorithm is then the difference

between its cumulative loss and the loss of the best k subspace:

REG =
T∑
t=1

E[tr((I − Pt)Xt)] − min
P projection

matrix of rank k

T∑
t=1

tr((I − P)Xt).

The regret can also be rewritten in terms of gain, but this gives the same value of the

regret. Therefore, throughout the chapter we use (expected) losses and “loss” regrets

(as defined above) to evaluate the algorithms.

Now we rewrite the loss of the algorithm as tr(E[I −Pt]Xt) which shows that

for any random prediction Pt of rank k, this loss is fully determined by E[I−Pt], a convex

combination of rank m = n − k projection matrices. Hence it is natural to choose the

setWm of convex combinations of rank m projection matrices as the parameter set of

2If the instance matrix Xt has the eigendecomposition
∑
i ξi x

i
tx
i
t
ᵀ
, then we can re-express the loss

as a weighted compression loss

tr((I − Pt)Xt) =
∑
i

ξi ||Ptxit − xit||22.

22

the algorithm. By the definition of projection matrices,Wm is the set of positive semi-

definite matrices of trace m and eigenvalues not larger than 1. The current parameter

Wt ∈Wm of the online algorithm expresses its “uncertainty” about which subspace of

rank m is best for the online data stream seen so far and the (expected) loss in trial

t becomes tr(WtXt). Alternatively, the complementary set Wk of rank k projection

matrices can be used as the parameter set (In that case the loss is tr((I −Wt)Xt)). As

discussed, there is a one-to-one correspondence between the two parameter sets: Given

W ∈Wk, then I −W is the corresponding convex combination in Wm. However as

we shall see, we will motivate online algorithms with divergences between the new and

old parameters and for the multiplicative algorithms the choice of the parameter set

leads to different algorithms.

The second reason why convex combinations are natural parameter spaces is

that since the loss is linear, the convex combination with the minimum loss occurs at a

“pure” projection matrix, i.e.

min
W∈Wm

T∑
t=1

tr(WXt) = min
P projection

matrix of rank k

T∑
t=1

tr((I − P)Xt) and

min
W∈Wk

T∑
t=1

tr((I −W)Xt) = min
P projection

matrix of rank k

T∑
t=1

tr((I − P)Xt). (2.2)

Our protocol requires the algorithm to predict with a rank k projection matrix.

Therefore given a parameter matrix Wt in sayWm, the online algorithm still needs to

produce a random projection matrix Pt of rank k at the beginning of trial t such that

E[I − Pt] = Wt. A simple greedy algorithm for achieving this is given in [WK08]

23

(Algorithm 2) which efficiently decomposes Wt into a convex combination of up to n

projection matrices of rank m. Using the mixture coefficients it is now easy to sample

a projection matrix I − Pt from parameter matrix Wt.

We now motivate the main two online algorithms used in this chapter: the

GD and MEG algorithms. The GD algorithm is straight forward and the MEG algo-

rithm was introduced in [TRW05]. Both are examples of the Mirror Descent family

of algorithms developed much earlier in the area of convex optimization [NY78]. The

Mirror Descent algorithms update their parameter by minimizing a trade-off between

a divergence of the new and old parameter and the loss of the new parameter on the

current instance, while constraining the new parameter to lie in the parameter set.

For the problem of online PCA, the update specializes into the following two

versions depending on the choice of the parameter set:

Loss update on parameter setWm (i.e. Wt+1,W ,Wt ∈Wm):

Wt+1 = argmin
W∈Wm

(∆(W ,Wt) + η tr(WXt)) . (2.3)

Gain update on parameter setWk (i.e. Wt+1,W ,Wt ∈Wk):

Wt+1 = argmin
W∈Wk

(∆(W ,Wt) + η tr((I −W)Xt)) ,

= argmin
W∈Wk

(∆(W ,Wt)− η tr(WXt)) . (2.4)

Here ∆(W ,Wt) is the motivating Bregman divergence that will be different for the

MEG and GD algorithms. The Loss update minimizes a trade-off with the expected

loss tr(WXt) which is a matrix version of the dot loss used for motivating the Hedge

24

algorithm [FS95]. Note that in the gain version, minimizing the loss − tr(WXt) is the

same as maximizing the gain tr(WXt). Recall that there is a one-to-one correspon-

dence betweenWm andWk, i.e. I minus a parameter inWm gives the corresponding

parameter in Wk and vice versa. Therefore, one can for example rewrite the Gain

update (2.4) with the parameter setWm as well:

W̃t+1 = argmin
W∈Wm

(
∆(I −W , I − W̃t) + η tr(WXt)

)
, (2.5)

where the above solutions W̃t+1 ∈Wm of the Gain update is related to the solutions

Wt+1 ∈Wk of (2.4) by the same complimentary relationship, i.e. W̃t+1 = I −Wt+1,

for t = 1, . . . , T . Notice that the Loss update is motivated by the divergence ∆(W ,Wt)

on parameter spaceWm (2.3). On the other hand, when the Gain update is formulated

with parameterWm, then it is motivated by the divergence ∆(I −W , I − W̃t) (2.5).

Now we define the GD and MEG algorithms for online PCA. For the GD

algorithm, the motivating Bregman divergence is the squared Frobenius norm between

the old and new parameters: ∆(W ,Wt) = 1
2‖W −Wt‖2F [KW97, Zin03]. With this

divergence, the Loss update is solved in the following two steps:

GD update:
Descent step: Ŵt+1 = Wt − ηXt,

Projection step: Wt+1 = argmin
W∈Wm

‖W − Ŵt+1‖2F .
(2.6)

Note, that the split into two steps happens whenever a Bregman divergence is traded off

against a linear loss and domain is convex (See [HW09], Section 5.2, for a discussion).

For the squared Frobenius norm, the Gain update is equivalent to the Loss update, since

when formulating both updates on parameter setWm, then the divergence ‖W −Wt‖2F

25

of the Loss update (2.3) and the divergence ‖(I−W)− (I−Wt)‖2F of the Gain update

(2.5) are the same.

The MEG algorithm uses the (un-normalized) quantum relative entropy ∆(W ,Wt) =

tr(W (logW−logWt)+Wt−W) as its motivating Bregman divergence [TRW05] which

is based on the matrix logarithm log. With this divergence the solutions to the Loss

update (2.3) and Gain update (2.4) are the following updates which make use of the

matrix exponential exp (the inverse of log):

Loss MEG update:
Descent step: Ŵt+1 = exp(logWt − ηXt),

Projection step: Wt+1 = argmin
W∈Wm

∆(W , Ŵt+1).

(2.7)

Gain MEG update:
Descent step: Ŵt+1 = exp(logWt + ηXt),

Projection step: Wt+1 = argmin
W∈Wk

∆(W , Ŵt+1).

(2.8)

Note that the only difference between the gain and loss versions of MEG is a sign

flip in the exponential. The projection steps in the algorithms are with respect to the

quantum relative entropy. An efficient procedure for solving such projections is given

in Algorithm 4 of [WK08]: it does a projection with respect to the standard relative

entropy on the vector of eigenvalues of the parameter matrix.

2.3 Upper Bounds on the Regret

In this section, we present regret upper bounds for the three online algorithms

introduced in the previous section, which are Loss MEG, Gain MEG and GD. All

three algorithms are examples from the Mirror Descent family of algorithms. Our proof

26

techniques require us to use different restrictions on the worst-case sequences that the

adversary can produce. For the Loss MEG algorithm, we give the adversary a loss

budget, i.e. the adversary must produce a sequence of instances X1 . . .XT for which

the loss of the best subspace is upper bounded by the loss budget BL:

min
P projection

matrix of rank k

T∑
t=1

tr((I − P)Xt) ≤ BL. (2.9)

We call a regret bound that depends on this parameter a loss budget dependent bound.

A bound of this type was first proved for Loss MEG in [WK08]. The latter paper is the

precursor of this work in which the analysis of online algorithms for PCA was started.

For the algorithm of Gain MEG, we give the adversary a gain budget BG, i.e.

an upper bound on the gain of the best subspace:

max
P projection

matrix of rank k

T∑
t=1

tr(PXt) ≤ BG. (2.10)

Now the adversary can only produce sequences for which all subspaces have gain at most

BG. We call this type of bound a gain budget dependent bound. Finally we prove regret

bounds of a third type for the GD algorithm. For this type the regret is a function of

the number of trials T , and we call such a regret bound a time dependent regret bound.

We present the three regret bounds in the next subsection and compare them

in the following subsection. As we shall see, upper bounds of the regret in terms of a

budget imply time dependent bounds, and for lower bounds the implication is reversed.

27

2.3.1 Upper Bounds on the Regret of Loss MEG, Gain MEG, and GD

The Loss MEG algorithm (2.7) is the original MEG algorithm developed in the

precursor paper [WK08] for online PCA. this chapter proves a loss budget dependent

upper bound on the regret of Loss MEG by lifting a bound developed for learning well

compared to the best subset of m experts to the matrix case where subsets of size

m generalize to projection matrices of rank m (which are complementary to rank k

projection matrices (2.2)).

Loss budget dependent bound of Loss MEG:

REGLoss MEG ≤
√

2BL m log
n

m
+m log

n

m
. (2.11)

This bound holds for any sequence of instance matrices (dense as well as sparse) for

which the total compression loss of the best rank m subspace does not exceed the loss

budget BL (Condition (2.9)).

We begin by showing that the right-hand side of (2.11) is bounded above by

an expression that does not depend on the dimension n of the data points:

REGLoss MEG ≤
√

2BL k + k. (2.12)

This follows immediately from the following inequality and the relationship m = n− k

(n = m+ k):

m log
n

m
= m log

(
k +m

m

)
= m log

(
1 +

k

m

)
≤ m k

m
= k.

As mentioned at the beginning of this subsection (and discussed in more detail

later in Section 2.4), online PCA specializes to the problem of learning well compared

28

to the best set of m = n − k experts. Regret bounds for the expert setting typically

depend logarithmically on the number of experts n. Therefore the above dimension free

regret bound might seem puzzling at first. However there is no contradiction. Using the

setup here, we have m = 1 and k = n−m = n− 1 for the vanilla single expert case and

the above dimension free bound (2.12) becomes
√

2BL(n− 1). This bound is not close

to the optimum loss budget dependent regret bound for the single expert case which is

O(
√
BL log n+log n). This latter bound is obtained by plugging m = 1 into the original

regret bound (2.11). Thus for m = 1, the above dimension free approximation (2.12) of

the original bound is loose. However when k ≤ n
2 , then as we shall see in Section 2.5,

the dimension free approximation actually is tight. In the precursor paper [WK08], a

different but weaker approximation of the original bound was proved that still has an

additional logarithmic dependence when k ≤ n
2 : O(

√
BLk log n

k + k log n
k).

We next develop a regret bound for Gain MEG (2.8). The proof technique

is a variation of the original regret bound for Loss MEG (and is given for the sake of

completeness in Appendix 2.A).

Gain budget dependent bound of Gain MEG:

REGGain MEG ≤
√

2BG k log
n

k
. (2.13)

This bound holds for any sequence of instance matrices (dense as well as sparse) for

which the total gain of the best rank k subspace does not exceed the gain budget BG

(Condition (2.10)).

Finally, we give a simple regret bound for the GD algorithm. This bound

29

(also observed in [ACS13] and proved for the sake of completeness in Appendix 2.B) is

based on two standard techniques: the use of the drop of divergence (squared Frobenius

norm) as a measure of progress and the use of the Pythagorean Theorem for handling

the projection step [HW01].

Time dependent regret bound of GD:

REGGD ≤

√
T km

n for sparse instances

√
T km for dense instances

. (2.14)

Note that each regret bound is expressed as a function of a loss budget, a gain

budget or a time bound. They are obtained by setting the fixed learning rate of the

algorithm as a function of one of these three parameters. The resulting basic algorithms

can be used as sub-modules: For example the algorithm can be stopped as soon as the

loss budget is reached and restarted with twice the budget and the corresponding re-

tuned learning rate. This heuristic is known as the “doubling trick” [CBFH+97]. Much

fancier tuning schemes are explored in [vEGKdR11, dRvEGK14] and are not the focus

of this chapter.

2.3.2 Comparison of the Regret Upper Bounds

Our goal is to find algorithms that achieve the optimal loss budget dependent

and time dependent regret bounds where optimal means that the bound is within a

constant factor of optimum. We are not interested in “gain dependent” regret bounds

per se, i.e. bounds in terms of a gain budget BG, because gains are typically much larger

30

than losses. However when the gain budget restricted regret bounds are converted to

time bounds, then for some setting (discussed below) the resulting algorithm becomes

the only optimal algorithm we are aware of.

The only known loss budget dependent regret bound is bound (2.11) for Loss

MEG obtained in the original paper for online learning of PCA [WK08]. We will show

later in Section 2.5 that this upper bound on the regret is optimal. There are no known

loss budget dependent upper bounds on the regret of GD. However in Section 2.4 we

prove a lower bound on GD’s regret in terms of the loss budget which shows that GD’s

regret is suboptimal by at least a factor of
√
k when the regret is expressed as a function

of the loss budget.

The discussion of the time dependent regret upper bounds is more involved.

We first convert the budget dependent regret bounds of the MEG algorithms into time

dependent bounds. We shall see later, for lower bounds on the regret, time dependent

bounds lead to budget dependent bounds (see Corollary 2.5). Before we do this, recall

that the instance matricesXt are sparse, if the trace ofXt is a most 1, and the instances

are allowed to be dense, if the maximum eigenvalues of the Xt is at most 1. Note that

for any unit length vector xt, tr(xtx
ᵀ
t) = 1, and therefore PCA belongs to the sparse

instance matrix case.

Theorem 2.1. For the problem of online PCA with T trials, the following regret bounds

31

hold for the Loss MEG and Gain MEG algorithms, respectively:

REGLoss MEG ≤ m

√
2T

n
log

n

m
+m log

n

m
, REGGain MEG ≤

√
2T k log

n

k
.

(2.15)

Similarly, for the generalized problem where the instance matrices can be dense, the

following regret bounds hold:

REGLoss MEG ≤ m
√

2T log
n

m
+m log

n

m
, REGGain MEG ≤ k

√
2T log

n

k
.

(2.16)

Proof. The theorem will be proved by developing simple upper bounds on the loss/gain

of the best rank k subspace that depend on the sequence length T . These upper bounds

are then used as budgets in the previously obtained budget dependent bounds.

The best rank k subspace picks k eigenvectors of the covariance matrix C =∑T
t=1Xt with the largest eigenvalues. Hence the total compression loss equals the sum

of the smallest m eigenvalues of C. If ω1, . . . , ωn denote all the eigenvalues of C, then:

n∑
i=1

ωi = tr(C) =
T∑
t=1

tr (Xt) ≤

T for sparse instances

Tn for dense instances

.

where the inequality follows from our definition of sparse and dense instance matrices.

This implies that the sum of the m smallest eigenvalues is upper bounded by Tm
n and

Tm, respectively. By using these two bounds as the loss budget BL in (2.11), we get

the time dependent bound for Loss MEG for sparse and dense instances, respectively.

For the regret bounds of Gain MEG, we use the fact that BG is upper bounded

by T when instances are sparse and upper bounded by kT when the instances are dense,

32

sparse instances dense instances

k ≤ n
2 k ≥ n

2 k ≤ n
2 k ≥ n

2

Loss MEG
√
Tk

√
Tm

(
log n

m

) /
n
m

√
Tkm

√
Tm2 log n

m

Gain MEG
√
Tk log n

k

√
Tm

√
Tk2 ln n

k

√
Tkm

GD
√
Tk

√
Tm

√
Tkm

√
Tkm

Table 2.1: Comparison of the time dependent upper bounds on the regret of the Loss

MEG, Gain MEG, and GD algorithms. Each column corresponds to one of the four

combinations of sparse or dense instance matrices versus k ≤ n
2 or k ≥ n

2 , respectively.

All bounds were given in Section 2.3.1 and Section 2.3.2: constants are omitted, we

only show the leading term of each bound, and when we compare Loss and Gain MEG

bounds, we use m ln n
m = Θ(k) when k ≤ n

2 and k ln n
k = Θ(m) when k ≥ n

2 . Recall that

m is shorthand for n − k. The best (smallest) bound for each case (column) is shown

in bold. In Section 2.5, all bold bounds will be show to be optimal (within constant

factors).

and plug these values for BG into (2.13).

Table 2.1 compares time dependent upper bounds for each of the three algo-

rithms (Loss MEG, Gain MEG, GD) where we consider each of the 4 variants of the

problem: sparse or dense instance matrices versus k ≤ n
2 or k ≥ n

2 .

As far as time dependent bounds are concerned, no single algorithm is optimal

in all cases. In Table 2.1, the optimum bounds are shown in bold. The lower bounds

matching these bold bounds within a constant factor will be proved in Section 2.5. Note

33

that one version of MEG (either the loss or gain version) is optimal in each case, while

GD is optimal only in first case (This is the most important case in practice: online

PCA with k � n). For the remaining three cases, consider the ratio between the GD’s

bound and the better of the two MEG bounds, which is

•
√

n
m/
(
log n

m

)
, when the instances are sparse and k ≥ n

2 ,

•
√

n
k /
(
log n

k

)
, when the instances are dense and k ≤ n

2 and

•
√

n
m/
(
log n

m

)
, when the instances are dense and k ≥ n

2 .

Since none of these three ratios can be upper bounded by a constant, GD is clearly

suboptimal in each of the remaining three cases.

2.4 Lower Bounds on the Regret of GD

Recall that for the case of online PCA, the instances are sparse and the

subspace dimension k is typically at most n
2 . In this case Loss MEG has regret

O(
√
Tk) and the regret of GD is O(

√
Tk) as well. As for loss budget dependent re-

gret bounds, Loss MEG has regret O(
√
BLk + k) and we initially conjectured that GD

has the same bound. However, this is not true: we will now show in this section an

Ω(max{min{BL, k
√
BL}, k}}) lower bound on the regret of GD for sparse instance se-

quences when k ≤ n
2 . In contrast, Loss MEG’s regret bound of O(

√
BLk + k) will be

shown to be optimal in Section 2.5 for this case. It follows that GD is suboptimal by at

least a factor of
√
k when BL = Ω(k2). A detailed comparison of the lower bound for

GD and the optimum upper bound is given in Table 2.2.

34

It suffices to prove lower bounds on GD’s regret on a restricted class of instance

matrices: We assume that all instance matrices are in the same eigensystem, i.e. they

are diagonal matrices X = diag(`) with ` ∈ Rn
≥0. We call the diagonals ` the loss

vectors. In the sparse instance case, the loss vectors are further restricted to be one of

n unit vectors ei, i.e. X = diag(ei) = eie
ᵀ
i . In the dense instance case, the loss vectors

` are restricted to lie in [0, 1]n.

When all instance matrices are diagonal, the covariance matrix is always di-

agonal as well. The off-diagonal elements in a parameter matrix W are irrelevant and

therefore the algorithm’s loss and regret is determined by the diagonals of the parameter

matrices W of trace m. Therefore without loss of generality we can assume that the

parameter matrices are diagonal as well, i.e. W = diag(w) where w is a weight vector

in [0, 1]n with total weight m. Note that the loss becomes a dot product between the

weight vector and the loss vector:

tr(WX) = tr(diag(w) diag(`)) = w · `.

What is the prediction of the algorithm with a diagonal parameter matrix

W = diag(w)? It probabilistically predicts with an m dimensional projection matrix P

s.t. E[P] = diag(w). This means P is a subset of size m from {e1e
ᵀ
1, e2e

ᵀ
2, . . . , ene

ᵀ
n}.

The diagonals of such projection matrices consists of exactly m ones and n − m = k

zeros. In other words the diagonals are indicator vectors of the chosen subsets of size

m and the expected indicator vector equals the weight vector w.

We just outlined one of the main insights of [WK08]: The restriction of the

35

PCA problem to diagonal matrices corresponds to learning a subset of size m. The n

components of the vectors are usually called experts. At trail t the algorithm chooses a

subset of m experts. It then receives a loss vector ` ∈ Rn
≥0 for the experts and incurs

the total loss of the chosen m experts. The algorithm maintains its uncertainty over the

m-sets by means of a parameter vector w ∈ [0, 1]n with total weight m, and it chooses

the subset of size m probabilistically so that the expected indicator vector equal w. We

denote the set of such parameter vectors as Sm. In the sparse instance case, the loss

vector is a unit vector (only one expert incurs a unit of loss). In the dense instance case

` ∈ [0, 1]n, i.e. each expert has bounded loss in [0, 1].

2.4.1 Lower Bound on the Regret of GD Algorithm

The GD algorithm for online PCA (2.6) specializes to the following update of

the parameter vector for learning sets:

Descent step: ŵt+1 = wt − η`t,

Projection step: wt+1 = argminw∈Sm ‖w − ŵt+1‖2.
(2.17)

We now give a lower bound on the regret of the GD algorithm for the m-set

problem. This lower bounds is expressed as a function of the loss budget.

Theorem 2.2. Consider the m = n−k set problem with k ≤ n/2 and unit loss vectors.

Then for any fixed learning rate η ≥ 0, the GD algorithm (2.17) can be forced to have

regret Ω(max{min{BL, k
√
BL}, k}).

We prove this theorem in Appendix 2.C. From the fact that m-set problem is

36

Regret bounds for sparse instances and k ≤ n
2 BL ≤ k k ≤ BL ≤ k2 k2 ≤ BL

Upper bound on regret of Loss MEG (see (2.11)) O(k) O(
√
BLk) O(

√
BLk)

Lower bound on regret of GD (see Theorem 2.2) Ω(k) Ω(BL) Ω(k
√
BL)

Table 2.2: Comparison of the loss budget dependent regret bounds for online PCA with

k ≤ n
2 . Given dimension k of the subspace, each column shows the values of the two

bounds for a specific range of the loss budget BL. The first row gives the upper bound on

the regret of Loss MEG in bold, which will be shown to be optimal in Section 2.5. The

second row gives the lower bound on the regret of GD, which is sub-optimal whenever

BL ≥ k.

a special case of PCA problem, we get the following corollary, which shows that the GD

algorithm is suboptimal (see Table 2.2 for an overview):

Corollary 2.1. Consider the PCA problem with k ≤ n/2 and sparse instance matrices.

Then for any fixed learning rate η ≥ 0, the GD algoirthm (2.6) can be forced to have

regret Ω(max{min{BL, k
√
BL}, k}).

2.4.2 Lower Bound on the Regret of the Follow the Regularized Leader

GD Algorithm (FRL-GD)

In the previous section, we showed that for online PCA with sparse instance

matrices and k ≤ n
2 , the GD algorithm is sub-optimal for loss budget dependent regret

bounds. However, our lower bounds are only for the Mirror Descent version of GD

given in (2.6). This algorithm is prone to “forgetting” lots of information about the

past losses when projections with respect to inequality constraints are involved. Recall

37

that at the end of each trial t, the mirror descent algorithm uses the last parameter

Wt as a summary of the knowledge attained so far, and minimizes a trade-off between

a divergence to the Wt and the loss on the last data point xt to determine the next

parameter Wt+1. When the parameter resulting from the trade-off lies outside the

parameter set, then it is projected back into the parameter set (see update (2.6)). In the

case when the projection enforces inequality constraints on the parameters, information

about the past losses may be lost. This issue was first discussed in Section 5.5 of [HW09].

Curiously enough, Bregman projections with respect to only equality constraints do not

loose information.

We now demonstrate in more detail the “forgetting” issue for the Mirror De-

scent GD algorithm when applied to online PCA. First recall that the batch PCA

solution consists of the subspace spanned by the k eigenvectors belonging to the k

largest values of the covariance matrix C =
∑T

t=1 xtx
ᵀ
t . The complementary space

is the m = n − k dimensional subspace formed by the m eigenvectors of m largest

eigenvalues of −C. Hence, the final parameter WT+1 of the on-line algorithm should

have the same eigenvectors as −C, as well as the order of their corresponding eigen-

values. The descent step of (2.6) accumulates the scaled negated instance matrices

Xt = xtx
ᵀ
t , i.e. Ŵt+1 = Wt − ηXt. In the projection step of (2.6), the parameter

matrix Ŵt+1 is projected back to the parameter setWm by enforcing an equality con-

straint tr(Wt+1) = m and inequality constraints that keep all the eigenvalues of Wt+1

are in the range [0, 1]. The equality constraint on Ŵt+1 results in adding to Ŵt+1 a

scaled version of the identity matrix I (See Appendix 2.C). These iterated shifts do not

38

affect either the eigenvectors or the order of their corresponding eigenvalues. However,

when the inequality constraints are enforced, then at trial t the eigenvalues of Ŵt+1

that are larger than 1 or less than 0 are capped at 1 and 0, respectively. Performing

such a non-uniform capping of Ŵt+1’s eigenvalues in each trial will results in a final

parameter WT+1 with an eigensystem that is typically different from −C. Therefore

the PCA solution extracted from WT+1 and the covariance matrix C will not be the

same.

There is another version of the GD algorithm that does not “forget”: The

Follow the Regularized Leader GD (FRL-GD) algorithm (see, e.g., [SS07]3) trades off

the total loss on all data points against the Frobenius norm of the parameter matrix:

Follow the regularized leader:

Ŵt+1 = argmin

‖W ‖2F + η
t∑

q=1

tr(WXq)

 = −η
t∑

q=1

Xq,

Projection step:

Wt+1 = argmin
W∈Wm

‖W − Ŵt+1‖2F = argmin

Eigenvalues of W in

[0, 1] and tr(W) = m

‖W − Ŵt+1‖2F .

(2.18)

Note that in each trial, the update (2.18) projects a parameter Ŵt+1 that accumulates

all the past scaled negated instance matrices (−ηXt) back to trial one. In contrast, the

Mirror Descent update in (2.6) performs projection iteratively, i.e. it projects parame-

ter matrices of previous trails that are projections themselves. Therefore, the FRL-GD

3This algorithm is also called as the Incremental Off-line Algorithm in [AW01].

39

algorithm circumvents the forgetting issue introduced by iterative projections with re-

spect to inequality constraints. In fact the final parameter WT+1 of the FRL-GD is

the projection of the scaled negated covariance matrix ŴT+1 = −η∑T
t=1 xtx

ᵀ
t = −ηC.

We will show essentially in Appendix 2.E that a single projection operation does not

change the set of eigenvectors belonging to the m largest eigenvalues. This means that

the eigenvectors belonging to the k smallest eigenvalues of WT+1 agree with the eigen-

vectors of C belonging to the k largest eigenvalues of C.

Encouraged by this observation, we initially conjectured that the FRL-GD is

strictly better than the commonly studied Mirror Descent version. More concretely,

we conjectured that the FRL-GD has the optimal loss budget dependent regret bound

for online PCA (as Mirror Descent MEG does which enforces the non-negativity con-

straints with its divergence). Unfortunately, we are able to show the opposite: The

Ω(max{min{BL, k
√
BL}, k}) lower bound we showed for (Mirror Descent) GD in The-

orem 2.2 also holds for FRL-GD. To be precise, we have the following theorem and

corollary:

Theorem 2.3. Consider the m = n−k set problem with k ≤ n/2 and unit loss vectors.

Then for any fixed learning rate η ≥ 0, the vector version of the FRL-GD algorithm

(2.18) can be forced to have regret Ω(max{min{BL, k
√
BL}, k}).

The proof is given in Appendix 2.D. Theorem 2.3 immediately gives the lower

bound on the regret of FRL-GD algorithm for the online PCA:

Corollary 2.2. Consider the PCA problem with k ≤ n/2 and sparse instance matrices.

40

Then for any fixed learning rate η ≥ 0, the FRL-GD algorithm (2.18) can be forced to

have regret Ω(max{min{BL, k
√
BL}, k}).

This shows that the worst case regret of the FRL-GD algorithm is the same

as that of (Mirror Descent) GD, and hence suboptimal.

2.5 General Lower Bounds and Optimal Algorithms

In the previous section, we presented lower bounds on the regret of the GD

algorithms. In this section we present lower bounds on the regret of any algorithm that

solves the online PCA problem and its generalization to the dense instance matrix case.

More importantly, these lower bounds match all our upper bounds on the regret of the

MEG algorithms within a constant factor (See bold entries in Table 2.1 and Table 2.2)

To be precise, we will prove in this section a series of regret lower bounds that match

our loss budget dependent upper bound (2.11) on the regret of Loss MEG, and our time

dependent upper bounds (Theorem 2.1) on the regret of Loss MEG and Gain MEG,

respectively. For the time dependent bounds, our lower bounds will match the lower of

the two MEG bounds in each of the four sub-cases of the problem, i.e. sparse or dense

instance matrices versus k ≤ n
2 or k ≥ n

2 (See Table 2.1 for a summary). Note in one

case the GD algorithm is also optimal: time dependent regret bounds for PCA when

k ≤ n
2 .

We begin with an overview of our proof techniques for the regret lower bounds

that hold for any algorithm solving online PCA and its dense generalization. When

41

proving upper bounds on the regret (in Section 2.3), we first proved upper bounds as

a function of the loss budget BL and then converted them into time dependent upper

bounds. For lower bounds on the regret, the order is reversed: we first will show

time dependent lower bounds and then convert them into loss budget dependent lower

bounds. As discussed in Section 2.4, it suffices to prove lower bounds for the m-set

problem, which is the hard special case when all instances are diagonal.

Let A be the set of all online algorithms for the m-set problem. Such al-

gorithms maintain a weight vector in Sm (consisting of all vectors in [0, 1]n of total

weight m). For an algorithm A ∈ A, we denote its regret by REG(A, `1, . . . , `T) where

`1, . . . , `T is a sequence of T loss vectors. The loss vectors `t lie in a constraint set L.

The constraint set L either consists of all n dimensional unit vectors (the sparse case),

or L = [0, 1]n (the dense case). We use the standard method of lower bounding the

regret for worst case loss sequences from L by the expected regret when the loss vectors

are generated i.i.d. with respect to a distribution P on L:

min
over any

alg. A ∈ A

{
max

over loss vectors
`1, . . . , `T ∈ L

REG(A, `1,...,T)

}

≥ min
over any

alg. A ∈ A

{
E`1,...,`T∼PT [REG(A, `1, . . . , `T)]

}
.

Each lower bound is proved as follows: Choose a distribution P on L, and then show a

lower bound on the expected regret of any algorithm A ∈ A. Note that this expectation

becomes the expected loss of A minus the expected loss of the best comparator (i.e. the

best m-set). We first prove time dependent regret lower bounds with sparse and dense

42

instance matrices in sections 2.5.1 and 2.5.2, respectively. Finally we convert these lower

bounds into loss budget dependent lower bounds (in Section 2.5.3).

2.5.1 Time Dependent Lower Bounds for Online PCA

Recall that m = n − k. First, we give a lower bound on the regret of any

algorithm for the m-set problem, when k ≤ n
2 :

Theorem 2.4. Consider the m-set problem with unit loss vectors. Then for k ≤ n
2 and

T ≥ k, any online algorithm suffers worst case regret at least Ω(
√
Tk).

The proof is given in Appendix 2.F. We lower bound the expected loss w.r.t.

the distribution P which is uniform on the first 2k unit vectors. Note that Theorem 2.4

requires the condition T ≥ k. For the case T < k, there is a lower bounds of Ω(T)

(See Theorem 2.8 in Appendix 2.G). For unit loss vectors, any algorithm has loss (and

regret) O(T). Therefore when T < k, any algorithm achieves the minimax regret up to

a constant factor.

We now consider the uncommon case when k ≥ n
2 :

Theorem 2.5. Consider the m-set problem with unit loss vectors. Then for k ≥

n
2 and T ≥ n log2(n/m), any online algorithm suffers worst case regret of at least

Ω(m
√

T
n ln n

m).

We now set P to the uniform distribution on all n unit vectors (See Appendix

2.F). The small T case (here T < n log2(n/m)) is slightly more involved. There is a

lower bound of Ω(mn T) regret for any algorithm (see Theorem 2.9 in Appendix 2.G).

43

Also the algorithm which predicts with the uniform weight m
n on all experts achieves

the matching regret of O(mn T).

Recall that the m-set problem with unit loss vectors is a special case of the

online PCA problem. Combining the above two lower bounds for different ranges of k

with our upper bound (Inequality (2.15)) on the regret of Loss MEG for online PCA

gives the following corollary:

Corollary 2.3. Consider the problem of online PCA. Then for T ≥ n log2(n/m), the

Θ(m
√

T
n ln n

m) regret of Loss MEG is within a constant factor of the minimax regret.

Note that we do not use the condition T ≥ k of Theorem 2.4, since when

k ≤ n
2 , k = Θ(n log2(n/m)).

2.5.2 Time Dependent Lower Bound for the Generalization with Dense

Instance Matrices

We first give the time dependent lower bound for the m-set problem with dense

loss vectors.

Theorem 2.6. Consider the m-set problem with dense loss vectors. Then for T ≥

log2
n

min{k,m} , any online algorithm suffers worst case regret of at least

Ω(k

√
T ln

n

k
) when k ≤ n

2
or Ω(m

√
T ln

n

m
) when k ≥ n

2
.

The proof is given in Appendix 2.F. The distribution P is such that each

expert incurs a unit of loss with probability 1/2 independently from the other experts.

44

For the small T case (T < log2
n

min{k,m}), there is a lower bound of Ω(min{Tm, Tk})

(See Theorem 2.10 and Theorem 2.11 in Appendix 2.G). A matching upper bound of

O(min{Tm, Tk}) on the regret of any algorithm can be reasoned as follows: Recall that

at each trial, the algorithm suffers loss `t ·wt, where `t is a dense loss vectors in [0, 1]n

and wt is a weight vector that always sums to m. Hence, any algorithm suffers loss at

most m per trial and for T trials and the cumulative loss (and regret) is at most Tm.

The Tk upper bound can be showed similarly by considering the “gain” of the best m

set w∗, which is
∑T

t=1

∑n
i=1 lt,i(1− w∗i) ≤ Tk.

Combining the lower bounds of Theorem 2.6 with the upper bounds on the re-

gret of Loss MEG and Gain MEG when the instance matrices can be dense (inequalities

(2.16)), results in the following corollary, which states that the Gain MEG is optimal

for k ≤ n
2 while the Loss MEG is optimal for k ≥ n

2 .

Corollary 2.4. Consider the generalization of online PCA where the instance matrices

can be dense.

• When k ≤ n
2 and T ≥ log2

n
k , then the regret Θ(k

√
T log n

k) of Gain MEG is

within a constant factor of the minimax regret,

• When k ≥ n
2 and T ≥ log2

n
m , then the regret Θ(m

√
T log n

m) of Loss MEG is

within a constant factor of the minimax regret.

45

2.5.3 Loss Budget Dependent Lower Bounds

In this subsection, we give regret lower bounds that are functions of the loss

budget BL (defined in (2.9)). Similar to our loss budget dependent upper bound (2.11)

on the regret of Loss MEG, the loss dependent lower bounds are the same for both unit

and dense loss vectors:

Theorem 2.7. For the m-set problem with either unit or dense loss vectors, any online

algorithm suffers worst case regret at least Ω(
√
BLm ln n

m) +m ln n
m).

The proof of the theorem is given in Appendix 2.H. We convert the time depen-

dent lower bounds given in Theorem 2.4 and Theorem 2.5 into loss budget dependent

ones. Note that unlike our time dependent lower bounds, Theorem 2.7 is stated for

the full range of the loss budget parameter BL. The proof also distinguishes between

a small and a large budget case depending on whether BL ≤ m ln n
m . The lower bound

of Θ(m ln n
m) follows from a conversion. However the upper bound of O(m ln n

m) for

the small budget case is non-trivial. Incidentally, this upper bound is achieved by Loss

MEG.

Finally, combining this lower bound with the upper bounds (2.11) on the regret

of Loss MEG, gives the following corollary, which establishes the optimality of Loss MEG

no matter if the instance matrices are dense or sparse.

Corollary 2.5. Consider both the problem of online PCA and its generalization to the

dense instance matrices case. Then the regret Θ(
√
BLm ln n

m + m ln n
m) of Loss MEG

is within a constant factor of the minimax regret.

46

2.6 Conclusion

In this chapter, we carefully studied two popular online algorithms for PCA:

the Gradient Descent (GD) and Matrix Exponentiated Gradient (MEG) algorithms.

Contrary to the popular belief that the Exponentiated Gradient family is suboptimal

when the instances are sparse (see, e.g., [KW97]), we showed that both algorithms are

optimal within a constant factor on worst-case sequences of sparse instances, when the

regret is expressed as a function of the number of trials. Furthermore, when considering

regret bounds as a function of a loss budget, then MEG remains optimal and strictly

outperforms GD for sparse instances.

We also studied a generalization of the online PCA problem, in which the

adversary is allowed to present the algorithm with dense instance matrices. Again we

showed that MEG is optimal and strictly better than GD in this setting. It follows that

MEG is the algorithm of choice for online PCA as well as for its generalization to dense

matrices.

In this chapter we focused on obtaining online algorithms with optimal regret

and we ignored efficiency concerns. Straight forward implementations of both the GD

and MEG online PCA updates required O(n3) computation per trial (because they

require an eigendecomposition of the parameter matrices). This leads to a major open

problem for online PCA [HKW10c]: Is there any algorithm that can achieve optimal

regret with O(n2) computation per trial. To this end, [ACS13] considers the Gain

version of GD (Equation (2.4), with the squared Euclidean distance as the divergence)

47

where the projection enforces the additional constraint that the parameter matrix Wt

has rank k̂. Encouraging experimental results are provided for the choice k̂ = k + 1.

However, as we shall see immediately, when the unit length data points are chosen by an

adversary, then any algorithm that uses parameter matrices of rank k̂ less than n suffers

worst case regret linear in T . Recall that the parameter matrixWt at trial t is simply the

expected projection matrix of rank k chosen by the algorithm and this matrix is defined

for any (deterministic or randomized) algorithm. We give an adversary argument for

any algorithm for which the rank of the parameter matrix Wt at any trial t is at most k̂.

The parameter matrices are known to the adversary. Also the initial parameter matrix

W1 must have rank k̂ and be known to the adversary. For any algorithm following this

setup the adversary argument proceeds as follows: At the beginning of the game the

adversary fixes any subspace Q of dimension k̂ + 1. In each trial, the adversary picks a

unit length vector xt ∈ Q, which is in the null space of the parameter matrix Wt of the

algorithm (This is always possible, because the dimension of Q is larger than the rank of

Wt). After T trials, the algorithm has zero gain, while the total gain T is accumulated

within subspace Q. This means that there are k orthogonal directions within Q with

the total gain at least k

k̂+1
T and therefore, the algorithm suffers regret at least k

k̂+1
T .

Besides restricting the rank of the parameter matrix, a second approach is to

add perturbations to the current covariance matrix and then find the eigenvectors of the

k-largest eigenvalues [HKW10c]. So far this approach has not led to algorithms with

optimal regret bounds and O(n2) update time. Some partial results recently appeared

in [GHM15] and [KW15].

48

Appendix

2.A Proof of Upper Bound (2.13) on the Regret of Gain

MEG

Proof. The proof is based on the by now standard proof techniques of [TRW05]. Let

Wt ∈Wk be the parameter of the Gain MEG algorithm at trial t andXt be the instance

matrix at this trial. Now plugging the (un-normalized) relative entropy ∆(W ,Wt) =

tr(W (logW − logWt) +Wt −W) into the descent step of the Gain MEG algorithm

(2.8) gives:

Ŵt+1 = exp(logWt + ηXt) where η ≥ 0 is the learning rate.

Take any projection matrix W ∈Wk as a comparator and use ∆(W ,Wt) −

49

∆(W ,Wt+1) as a measure of progress towards W :

∆(W ,Wt)−∆(W ,Wt+1) ≥ ∆(W ,Wt)−∆(W , Ŵt+1)

= tr(W (log Ŵt+1 − logWt) +Wt − Ŵt+1)

= tr(ηWXt) + tr(Wt − exp(logWt + ηXt))

≥ tr(ηWXt) + tr(Wt −Wt exp(ηXt))

= tr(ηWXt) + tr(Wt(I − exp(ηXt)),

(2.19)

where the first inequality follows from the Pythagorean Theorem and the second from

the Golden-Thompson inequality: tr(exp(logWt + ηXt) ≤ tr(Wt exp(ηXt)). By

Lemma 2.1 of [TRW05],

tr(Wt(I − exp(ηXt))) ≥ (1− eη) tr(WtXt),

and therefore

∆(W ,Wt)−∆(W ,Wt+1) ≥ η tr(WXt)︸ ︷︷ ︸
gain of the
comparator

+ (1− eη) tr(WtXt)︸ ︷︷ ︸
gain of the
algorithm

.

Summing over trials gives:

η

total gain GW of
the comparator W︷ ︸︸ ︷

T∑
t=1

tr(WXt) + (1− eη)

total gain GA
of Gain MEG︷ ︸︸ ︷
T∑
t=1

tr(WtXt)

≤ ∆(W ,W1)︸ ︷︷ ︸
≤ k log k

n
with initialization

W1 = k
nI

− ∆(W ,WT+1)︸ ︷︷ ︸
≥0

.

50

We now rearrange the terms to bound the regret of Gain MEG:

GW −GA ≤ 1

eη − 1
k log

k

n
+

(
1− η

eη − 1

)
GW . (2.20)

Since eη ≥ 1 + η, the coefficient 1
eη−1 of the first term on the RHS is upper bounded by

1
η . Next we upper bound the coefficient of the second term by η:

1− η

eη − 1
= 1− ηe−η

1− e−η ≤ 1− ηe−η

η
= 1− e−η ≤ η.

The inequality (2.13) on the regret of Gain MEG now follows from these two upper

bounds, the budget inequality GW ≤ BG and from tuning the learning rate as a function

of BG:

REGGain EG ≤ k log k
n

η
+ ηBG

η=

√
log kn
BG

=

√
2BG k log

k

n
.

2.B Proof of Upper Bound (2.14) on the Regret of GD

Proof. This proof is also standard [HW01]. Minor alterations are needed because we

have matrix parameters. Let Wt ∈Wm be the parameter of the GD algorithm at trial

t and Xt be the instance matrix at this trial. Then for the best comparator W ∈Wm

and any learning rate η ≥ 0, the following holds

‖Wt+1 −W ‖2F ≤ ‖Ŵt+1 −W ‖2F = ‖Wt −W ‖2F − 2η tr((Wt −W)Xᵀ
t) + η2‖Xt‖2F ,

where the inequality follows from the Pythagorean Theorem [HW01] and the equality

follows from the descent step of the GD algorithm (see (2.6)). By rearranging terms,

51

we have

tr(WtX
ᵀ
t)− tr(WXᵀ

t) ≤ ‖Wt −W ‖2F − ‖Wt+1 −W ‖2F
2η

+
η‖Xt‖2F

2
.

Note that the LHS is the regret in trial t w.r.t. W . By summing all trials, we have that

the (total) regret REGGD =
∑T

t=1 tr(WtX
ᵀ
t) is upper bounded by

‖W1 −W ‖2F −((((((
((‖WT+1 −W ‖2F

2η
+
η
∑T

t=1 ‖Xt‖2F
2

≤ k(n− k)

2nη
+
η
∑T

t=1 ‖Xt‖2F
2

, (2.21)

where we used ‖W1 −W ‖2F ≤
k(n−k)

n since W ∈Wm and W1 = n−k
n I. In the sparse

instance matrix case (when ‖X‖2F ≤ 1), (2.21) can be further simplified as

REGGD ≤
k(n− k)

2nη
+
ηT

2
.

By setting η = k(n−k)
nT , we obtain the

√
k(n−k)

n T regret bound for the sparse instance

case. In the dense instance matrix case, ‖Xt‖2F ≤ n and hence, REGGD ≤
√
k(n− k)T

with η = k(n−k)
T .

2.C Proof of Theorem 2.2

Theorem 2.2 gives a lower bound on the regret of the GD algorithm for the

m-set problem with unit loss vectors. At each trial of the m-set problem, the online

algorithm first predicts with a weight vector wt ∈ [0, 1]n, the coordinates of which sum

to m. Then the algorithm receives a unit loss vector `t and suffers loss wt · `t. The GD

algorithm for online PCA (2.6) specializes to the following updates of the parameter

52

vector for learning m-sets:

Descent step: ŵt+1 = wt − η`t,

Projection step: wt+1 = argminw∈Sm ‖w − ŵt+1‖2,
(2.22)

where η > 0 is the learning rate and Sm = {w ∈ [0, 1]n :
∑n

i=1wi = m}.

Since our lower bound for GD must hold no matter what the fixed learning rate

η is, we construct two adversarial loss sequences: The first causes the GD algorithm to

suffer large regret when η is small and the second causes large regret when η is large.

Specifically, we will show that the GD algorithm suffers regret at least Ω(k/η) on the

first sequence, and at least Ω(min{BL, kBLη}) on the second sequence. We will then

show that the lower bound of the theorem follows by taking the maximum of these

two bounds and by solving for the learning rate that minimizes this maximum. The

first sequence consists of unit losses assigned to the first k experts. At each trial, the

adversary gives a unit of loss to the expert (out of the first k) with the largest current

weight. If the learning rate η is small, then the weights assigned to the first k experts

decrease too slowly (Lemma 2.2). This causes the algorithm to suffer a substantial

amount of loss on the first sequence, while the loss of the remaining m experts remains

zero. The second sequence consists of unit losses assigned to the first k+ 1 experts. As

before, the adversary always gives the expert with the largest weight (now out of the

first k + 1) a unit of loss. Intuitively, the GD algorithm will give high weight to the

m− 1 = n− (k+ 1) loss free experts and the best out of the first k+ 1 experts. As the

η gets larger, the algorithm puts more and more weight on the current best out of the

k+1 experts instead of hedging its bets over all k+1 experts. So the algorithm becomes

53

more and more deterministic and the adversary strategy of hitting the expert with the

largest weight (out of the first k + 1) causes the algorithm to suffer a substantial loss

(Lemma 2.3). Formalizing these findings is not simple as the projection step of the GD

algorithm does not have a closed form. Hence, we need to resort to the Karush-Kuhn-

Tucker optimality conditions and prove a sequence of lemmas before assembling all the

pieces for proving Theorem 2.2.

Let αi be a dual variable for the constraint wt+1,i ≥ 0 (i = 1, . . . , n), βi be a

dual variable for the constraint wt+1,i ≤ 1 (i = 1, . . . , n), and γ be a dual variable for

the constraint
∑n

i=1wt+1,i = m. Then the KKT conditions on the projection step of

(2.22) have the following form: For i = 1, . . . , n,

Stationarity: wt+1,i = −wt,i − η`t,i + γ + αi − βi,

Complementary slackness: wt+1,i αi = 0, (wt+1,i − 1)βi = 0,

Primal feasibility:
∑n

i=1wt+1,i = m, 0 ≤ wt+1,i ≤ 1,

Dual feasibility: αi ≥ 0, βi ≥ 0.

(2.23)

Note that since the projection step of (2.22) is a convex optimization problem, these

conditions are necessary and sufficient for the optimality of a solution. Hence, for

any intermediate weight vector ŵt+1 = wt − η`t, if a set of primal and dual variables

wt+1,α = (α1, . . . , αn),β = (β1, . . . , βn), γ satisfy all the conditions (2.23), then they

are the unique primal and dual solutions of the projection step.

We start with a special case where where the GD update (2.22) actually has a

closed form solution:

Lemma 2.1. Consider a trial of the m-set problem with n experts, when only one expert

54

incurs a unit of loss. If this expert has weight w and all remaining experts have weight

at most 1−min{ ηn , w
n−1}, then the GD algorithm with learning rate η > 0 will decrease

w by min{ (n−1)η
n , w} and increase all the other weights by min{ ηn , w

n−1}.

Proof. W.l.o.g., the first expert incurs a unit of loss in trial t, i.e. wt,1 = w and `t = e1,

where e1 is the unit vector with first coordinate equal to 1 and all other coordinates

equal to 0. To solve the projection step of the GD update (2.22), we distinguish two

cases based on the value of wt,1. In each case we propose a solution to the projection

step and show that it is a valid solution by verifying the KKT conditions (2.23).

Case wt,1 = w ≥ n−1
n η: The proposed solution is γ = η

n and for 1 ≤ i ≤ n,

αi = βi = 0,

wt+1,i =

wt,1 − n−1

n η for i = 1

wt,i + η
n for i ≥ 2

.

All KKT conditions are easy to check, except for the primal feasibility condition:

wt+1,i ≤ 1, for i ≥ 2. By the assumption of the lemma, wt,i ≤ 1 − min{ ηn ,
wt,1
n−1}.

Since we are in the case wt,1 ≥ n−1
n η, we have wt,i ≤ 1− η

n and therefore

wt+1,i = wt,i +
η

n
≤ 1− η

n
+
η

n
= 1.

We conclude that in this case, the first weight decreases by n−1
n η and all the other

weights increase by η
n .

Case wt,1 = w < n−1
n η: The proposed solution is γ =

wt,1
n−1 and for 1 ≤ i ≤ n,

55

βi = 0,

αi =

η − n

n−1wt,1 for i = 1

0 for i ≥ 2

, wt+1,i =

0 for i = 1

wt,i +
wt,1
n−1 for i ≥ 2

.

Again, all KKT conditions are easy to check, except for the primal feasibility condition

wt+1,i ≤ 1 for i ≥ 2. By the assumption of the lemma wt,i ≤ 1−min{ ηn ,
wt,1
n−1}. Since we

are in the case wt,1 <
n−1
n η, we have wt,i ≤ 1− wt,1

n−1 and therefore

wt+1,i = wt,i +
wt,1
n− 1

≤ 1− wt,1
n− 1

+
wt,1
n− 1

= 1.

We conclude that in this case, the first weight decreases by wt,1 and all the other weights

increase by
wt,1
n−1 . Combining the above two cases proves the lemma.

Our next lemma considers the general case when the weight vector before

update does not necessarily satisfy the assumption in Lemma 2.1, i.e. the weights of the

experts not incurring loss may be larger than 1 −min{ ηn , w
n−1} (where w is the weight

of the only expert incurring loss).

Lemma 2.2. Consider a trial of the m-set problem with n experts, when only one

expert incurs a unit of loss. If this expert has weight w, then the GD algorithm with

learning rate η > 0 will decrease w by at most η and will not decrease the weights of

any other experts. Furthermore, if any expert not incurring loss has weight at least

1−min{ ηn , w
n−1}, then its weight will be set to 1 by the capping constraint.

Proof. Let wt be the weight vector at the beginning of the trial and assume w.l.o.g.

that the first expert incurs one unit of loss, i.e. `t = e1. Let wt+1,α,β and γ denote

56

the variables satisfying the KKT conditions (2.23). The lemma now states that:

wt+1,1 ≥ wt,1 − η and wt+1,i ≥ wt,i, for 2 ≤ i ≤ n, (2.24)

and furthermore

wt+1,i = 1, for any 2 ≤ i ≤ n such that wt,i ≥ 1−min{η
n
,
wt,1
n− 1

}. (2.25)

We first prove (2.24). By the stationarity condition of (2.23) and the assump-

tion `t = e1, we have that

wt+1,1 − wt,1 = �
��wt,1 − η + α1 − β1 + γ −���wt,1 = −η + α1 − β1 + γ,

and for 2 ≤ i ≤ n: wt+1,i − wt,i = ��
�wt,1 + αi − βi + γ −���wt,1 = αi − βi + γ.

Therefore, to prove (2.24), it suffices to show αi−βi+γ ≥ 0 for 1 ≤ i ≤ n. By

the dual feasibility condition of (2.23), αi ≥ 0 but −βi ≤ 0. However, when −βi < 0, we

have wt+1,i = 1 by the complementary slackness condition, and therefore (2.24) holds

trivially in this case (noting that wt,i ≤ 1). Now we only need to show γ ≥ 0. We do

this by summing wt,i − η`t,i + γ over indices i such that wt+1,i > 0:

∑
i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i + γ)

αi = 0 since
wt+1,i > 0

=
∑

i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i + γ + αi)

≥
∑

i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i + γ + αi − βi)

≥
∑

i:1≤i≤n,wt+1,i>0

(wt,i) = m. (2.26)

Furthermore, since both the learning rate η and the loss vector `t are non-negative, we

have that for all 1 ≤ i ≤ n,

∑
i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i) ≤
∑

i:1≤i≤n,wt+1,i>0

(wt,i) ≤ m.

57

Combining the above inequality with (2.26) implies that γ ≥ 0, which completes our

proof of (2.24).

Next we prove (2.25). By the stationarity condition of (2.23) and the assump-

tion `t = e1, we have that for 2 ≤ i ≤ n,

wt+1,i = wt,i − η`t,i + αi − βi + γ = wt,i + αi − βi + γ. (2.27)

Now if we further assume that wt,i ≥ 1−min{ ηn ,
wt,1
n−1}, then (2.27) is lower bounded by

wt+1,i = wt,i + αi − βi + γ ≥ 1−min{η
n
,
wt,1
n− 1

}+ αi − βi + γ.

Thus to prove (2.25), it suffices to show that −min{ ηn ,
wt,1
n−1} + αi − βi + γ ≥ 0. By

the dual feasibility condition of (2.23), αi ≥ 0 but −βi ≤ 0. However, when −βi < 0,

then wt+1,i = 1 follows directly from the complementary slackness condition. Therefore

w.l.o.g., we assume βi = 0. Now all that remains is to show γ ≥ min{ ηn ,
wt,1
n−1}, for which

we distinguish the following 2 cases.

Case wt+1,1 > 0: We will show γ ≥ η
n for this case. First note that

m
(2.26)

≤
∑

i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i + γ)
γ≥0
≤

∑
i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i) + nγ. (2.28)

Now since we assume wt+1,1 > 0 and `t = e1, the first term on RHS of (2.28) is upper

bounded by:

∑
i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i) =
∑

i:1≤i≤n,wt+1,i>0

(wt,i)− η ≤ m− η.

Together, we get m ≤ nγ − η +m, and this gives γ ≥ η
n .

58

Case wt+1,1 = 0: We will show γ ≥ wt,1
n−1 for this case. Since wt+1,1 = 0, the

summation
∑

i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i + γ) does not include the case i = 1, i.e.

∑
i:1≤i≤n,wt+1,i>0

(ŵt,i − η`t,i + γ) =
∑

i:2≤i≤n,wt+1,i>0

(ŵt,i − η`t,i + γ) .

Therefore, (2.28) can be tightened as follows:

m
(2.26)

≤
∑

i:2≤i≤n,wt+1,i>0

(wt,i − η`t,i + γ)
γ≥0
≤

∑
i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i) + (n− 1)γ.

Again, by the assumption `t = e1, we have

∑
i:2≤i≤n,wt+1,i>0

(wt,i − η`t,i) =
∑

i:2≤i≤n,wt+1,i>0

(wt,i) ≤ m− wt,1.

Together, we get m ≤ (n − 1)γ + m − wt,1, which gives γ ≥ wt,1
n−1 and completes the

proof.

Our third lemma lower bounds the loss of the GD algorithm with respect to

a particular adversarial loss sequence of n trials (instead of the above lower bounds for

single trials). We argue this lower bound for the special case of the m-set problem when

m = 1, i.e. the vanilla expert setting. As we shall see shortly in the main proof of

Theorem 2.2, the lower bound the general m-set problem degenerates into this special

case for a certain loss sequence. Note that the assumptions of Lemma 2.1 are always

met when m = 1, because in this case any expert not incurring loss has weight at most

1− w, where w is the weight of the expert incurring loss.

Lemma 2.3. Consider the m-set problem with n experts, and m = 1. If at each trial,

only the expert with the largest weight incurs a unit of loss, then after n consecutive such

trials, the GD algorithm with learning rate η > 0 suffers loss at least 1 + 1
32 min{nη, 1}.

59

Proof. First notice that when m = 1, the largest of the n expert weights at each trial

is at least 1
n . Therefore, any algorithm suffers total loss at least 1 in n trials. To show

the extra loss of 1
32 min{nη, 1}, we claim that in at least n

4 of these n trials, the largest

expert weight assigned by the GD algorithm is at least 1
n + 1

8 min{η, 1
n}. This claim is

proved as follows.

Let η′ = min{η, 1
n} and t0 be the first trial that the largest expert weight of

the trial is less than 1
n + 1

8η
′. If t0 >

n
4 , the claim holds trivially. Hence, we assume

t0 ≤ n
4 . Now call any expert with weight at least 1

n − 1
8η
′ at trial t0 a candidate. We will

show that the number of candidates s is at least n
2 . To show this we first upper bound

the expert weights at trial t0 as follows:

sum of non-candidates’ weights ≤ (n− s)
(

1

n
− 1

8
η′
)
,

sum of candidates’ weights ≤ s

(
1

n
+

1

8
η′
)
.

The first inequality follows from the fact that non-candidates have weight at most 1
n− 1

8η
′

and the second inequality follows from the definition of t0, i.e. the maximum weight at

that trial is less than 1
n + 1

8η
′. Now, since all the expert weights at a trial sum to 1, we

have

1 ≤ s
(

1

n
+

1

8
η′
)

+ (n− s)
(

1

n
− 1

8
η′
)

= 1 +
s

4
η′ − n

8
η′,

which gives s ≥ n
2 since η′ ≥ η > 0.

Next, we show that at trial t0+ n
4 , there will be a subset of at least n

4 candidates

whose weight will be at least the larger value of 1
n + 1

8η
′. First recall that at each trial,

only one expert incurs a unit of loss. Therefore, in the n
4 trials from t0 to t0+ n

4−1, there

60

will be at least n
2 − n

4 = n
4 candidates that do not incur any loss. By Lemma 2.1, the

weight of an expert not incurring loss is increased at each trial by min{ ηn , w
n−1}, where

w is the weight of the expert incurring loss at that trial. Note that w ≥ 1
n always hold

since the expert incurring loss has the largest weight among the n experts. Therefore,

at trial t0 + n
4 , each of the n

4 candidates that do incur any loss from trial t0 to trial

t0 + n
4 − 1 has weight at least:

lower bound on the
weight at trial t0︷ ︸︸ ︷

1

n
− 1

8
η′ +

lower bound on the increase
from trial t0 to trial t0 + n

4 − 1︷ ︸︸ ︷
n

4
min{η

n
,
wt
n− 1

}

wt
n−1
≥ 1
n2≥ 1

n
− 1

8
η′ +

n

4
min{η

n
,

1

n2
} =

1

n
+
η′

8
.

Finally, consider the next n
4 trials from t0 + n

4 to t0 + n
2 − 1. (The game must

have more than t0 + n
2 trials, since we assume t0 ≤ n

4 .) The maximum weights at these

trials are always at least 1
n + 1

8η
′, because only one expert incurs loss at a time, and the

weights of the remaining experts are never decreased. This completes the proof of the

claim and the lemma.

Now we are ready to give the lower bound on the regret of the GD algorithm

for the m-set problem. For the sake of readability, we repeat the statement of Theorem

2.2 below:

Theorem 2.2 Consider the m-set problem with k ≤ n/2 and unit loss vectors. Then

for any fixed learning rate η, the GD algorithm (2.22) can be forced to have regret at

61

least Ω(max{min{BL, k
√
BL}, k}).

Proof. Theorem 2.7 gives a lower bound of Ω(
√
BLm log n

m+m log n
m) that holds for any

algorithm. This lower bound is at least Ω(k) since m log n
m = m log(km + 1) ≥ k. Hence

to prove this theorem, we only need to show a lower bound of Ω({min{BL, k
√
BL}),

where BL is the loss budget (defined in (2.9)). Also, w.l.o.g., assume BL ≥ 4k since

when BL ≤ 4k, the claimed bound is in fact Ω(k), which always holds as we just argued.

The hard part (deferred to later) in proving the Ω({min{BL, k
√
BL}) lower

bound for GD is to show that the algorithm suffers regret at least Ω(k/η) and

Ω(min{BL, kBLη}) on two different loss sequences, respectively. Clearly, it follows that

the regret of GD is then at least the maximum of these two bounds. By a case anal-

ysis, one can show that max{a,min{b, c}} ≥ min{b,max{a, c}} for any a, b, c ∈ R.

(We prove this as Lemma 2.11 in Appendix 2.I.) Therefore we get the lower bound of

Ω(min{BL,max{k/η, kBLη}}). The lower bound for GD with any fixed learning rate

now follows from fact that max{k/η, kBLη} is minimized at η = Θ(1/
√
BL). The value

of the lower bound with this choice of η is the target lower bound of Ω(k
√
BL).

We still need to describe the two loss sequences and prove the claimed lower

bounds on the regret. The first loss sequence forces GD to suffer regret Ω(k/η). It

consists of
⌊
km
nη

⌋
+ 1 trials in which only the first k experts incur losses. More precisely,

at each trial, the expert with the largest weight (within the first k experts) incurs one

unit of loss (In the case of tied weights, only the expert with the smallest index incurs

loss). The last m experts have loss 0. Therefore the regret is simply the total loss of

62

the GD algorithm. The loss of the algorithm at each trial is equal to the largest weight

of the first k experts. Therefore the loss is lower bounded by the average of the first k

weights. With a uniform initial weight vector, this average is m
n at the beginning of the

first trail, and by Lemma 2.2, it is decreased by at most η
k after each of the following⌊

km
nη

⌋
+1 trials. Therefore, at the beginning of trial t, the average is at least m

n −(t−1)ηk .

Summing up the arithmetic series from trial 1 to trial
⌊
km
nη

⌋
+1 gives the following lower

bound on the total loss of GD:

1

2

(⌊
km

nη

⌋
+ 1

)(
m

n
+
m

n
−
(⌊

km

nη

⌋
+ 1− 1

)
η

k

) m
n
≥ 1

2

≥ 1

4

(⌊
k

2η

⌋
+ 1

)
= Ω

(
k

η

)
.

Now we describe the second loss sequence which forces the GD algorithm to

suffer regret Ω(min{BL, kBLη}). The sequence consists of (k + 1)BL trials, where the

expert with the largest weight among first k+1 incurs a unit of loss. The best comparator

of this sequence consists of the last m− 1 experts that have 0 total loss and the best of

the first k + 1 experts which has total loss at most BL.

Next we lower bound the loss of GD with respect to this loss sequence. First

observe, that the last m − 1 experts do not incur any loss in the (k + 1)BL trials.

Therefore their weight may increase (from their initial value of m
n), but at any trial the

weight of these experts always have the same value. The value of this block of equal

weights is always the maximum weight of any expert, since the weight value of the block

is never decreased by the algorithm. More precisely, at each trial the block’s value is

increased as given in Lemma 2.1, until the values becomes 1 at trial tcap and stay at 1

till the end of the game. If no such trial tcap exists (i.e. the value of the block remains

63

less than 1 at the end of the game), then let tcap = ∞. In the degenerate case when

m = 1 (i.e. the block has size m− 1 = 0), we simply set tcap = 1 from the beginning.

Depending on the value of tcap, we distinguish two cases in which GD suffers

loss at least BL + Ω(BL) and BL + Ω(min{BL, kBLη}), respectively.

Case tcap > (k+1)BL/2: We will show that GD suffers loss at least BL+Ω(BL)

in this case. First recall that at the beginning of the proof we assumed BL ≥ 4k.

Therefore in the case tcap > (k + 1)BL/2 we have tcap > 4. From our definition of tcap

this means that m ≥ 2. Next we argue that since tcap > (k+ 1)BL/2, we have η ≤ 1
k+1 .

Let Wt denote the sum of the first k + 1 weights at trial t and wt be their maximum.

By Lemma 2.1, we know in each trial prior to tcap the weight wt of the expert incurring

loss is decreased by min{ (n−1)η
n , wt} and all other weights are increased by min{ ηn , wt

n−1}.

Since the expert incurring loss is always one of the first k + 1 experts, we have that in

each trial prior to tcap the total weight Wt is decreased by at least

min

{
(n− 1)η

n
,wt

}
−kmin

{
η

n
,
wt
n− 1

}
≥ m− 1

n
min{η, wt} ≥

m− 1

n
min

{
η,

1

k + 1

}
.

The second inequality follows from the fact that since wt is the largest of the first k+ 1

expert weights, it must be at least 1
k+1 . Together with the fact that W1 = (k+1)m

n , we

have

W(k+1)BL/2 ≤
(k + 1)m

n
− (k + 1)BL

2

m− 1

n
min

{
η,

1

k + 1

}
. (2.29)

Now if η ≥ 1
k+1 , the upper bound (2.29) becomes (k+1)m

n − (m−1)BL
2n , which can be further

upper bounded by m
n using the fact m ≥ 2 and the assumption BL ≥ 4k. However, the

upper bound of W(k+1)BL/2 ≤ m
n is less than 1 and all Wt are at least 1 since m −Wt

64

is the total weight of the last m− 1 experts which is at most m− 1. Therefore we have

η < 1
k+1 in this case.

Now we lower bound the loss of GD by lower bounding the average weight

Wt/(k + 1). We have η < 1
k+1 and tcap > (k + 1)BL/2. Also by Lemma 2.1, Wt

decreases by exactly (m−1)η
n at each trial for 1 ≤ t ≤ (k + 1)BL/2. Therefore the total

average weight in trials 1 through (k + 1)BL/2 is at least

1

2

1

k + 1

(
(k + 1)m

n
+ 1

)
(k + 1)BL

2
=

(
(k + 1)m

n
+ 1

)
BL
4
. (2.30)

Now with m ≥ 2, k ≥ 1 and n = m + k, it is easy to verify that (k+1)m
n is at

least 1 + Ω(1), which along with (2.30) results in a BL
2 + Ω(BL) lower bound on the loss

of GD for 1 ≤ t ≤ (k + 1)BL/2. In trials (k + 1)BL/2 < t ≤ (k + 1)BL, GD suffers

loss at least (k+1)BL
2

1
k+1 = BL

2 since the weight of the expert incurring loss is at least

1
k+1 . Thus in trial 1 through (k + 1)BL the loss of GD is at least BL + Ω(BL) which

concludes the proof of the case tcap ≥ (k + 1)BL/2.

Case tcap ≤ (k + 1)BL/2: We will show that GD suffers total loss at least

BL+Ω(min{BL, kBLη}) in this case. Since GD suffers loss at least BL/2 in the first (k+

1)BL/2 trials, it suffices to show that GD suffers loss at least BL/2+Ω(min{BL, kBLη})

in trials (k + 1)BL/2 + 1 through (k + 1)BL. First note that since tcap ≤ (k + 1)BL/2,

in each of these trials, the weights of the m − 1 loss free experts have reached the cap

1. This means that GD updates the weights of the first k + 1 experts as in the vanilla

expert setting (i.e. m = 1). Therefore by Lemma 2.3, the loss of GD in the second

(k + 1)BL/2 trials is at least BL
2 (1 + 1

32 min{(k + 1)η, 1}) = BL
2 + Ω(min{BL, kBLη}).

65

We conclude that for the second loss sequence, the loss of the best comparator

is at most BL and the loss of GD is at least BL + Ω(min{BL, kBLη}). Therefore,

the regret of GD is at least Ω(min{BL, kBLη}) for the second loss sequence and this

completes our proof of the theorem.

2.D Proof of Theorem 2.3

Theorem 2.3 gives a lower bound on the regret of the FRL-GD algorithm for

the m-set problem with unit loss vectors. In this case, the FRL-GD algorithm (2.18)

specializes to the following:

Follow the regularized leader: ŵt+1 = −η
t∑

q=1

`q,

Projection step: wt+1 = argmin
w∈Sm

‖w − ŵt+1‖2.
(2.31)

The proof has the same structure as the lower bound for the GD algorithm (Appendix

2.C). Again we use two adversarial loss sequences (one for low and high learning rates)

and give three technical lemmas that reason with the KKT conditions. The details

are different because the intermediate weight vector ŵt+1 has a different form than for

vanilla GD. The KKT conditions are the same as the KKT condition for GD (2.22)

except for a slight change in the stationarity condition. For i = 1, . . . , n,

Stationarity: wt+1,i = −η`≤t,i + γ + αi − βi,

Complementary slackness: wt+1,iαi = 0, (wt+1,i − 1)βi = 0,

Primal feasibility:
∑n

i=1wt+1,i = m, 0 ≤ wt+1,i ≤ 1,

Dual feasibility: αi ≥ 0, βi ≥ 0,

(2.32)

66

where `≤t,i =
∑t

q=1 `q,i is the cumulative loss of expert i up to trail t. Again we prove

three technical lemmas before assembling them into the main proof.

Lemma 2.4. Consider the m-set problem with n experts, where at the beginning of trial

t+1, each of the first k+1 experts (where k = n−m) has incurred the same cumulative

loss `, and all the remaining experts are loss free, i.e.

`≤t,i =

` for i ≤ k + 1

0 for i > k + 1

.

Now the FRL-GD algorithm predicts at trail t+ 1 with the weight vector wt+1 given by:

wt+1,i =

if η` < k
k+1 then

m−η`(m−1)

n for i ≤ k + 1

m+η`(k+1)
n for i > k + 1

if η` ≥ k
k+1 then

1

k+1 for i ≤ k + 1

1 for i > k + 1

.

Proof. We prove this lemma by verifying the KKT conditions (2.32). If η` < k
k+1 , we

have:

1 >
m− η`(m− 1)

n
> 0, and 0 <

m+ η`(k + 1)

n
< 1.

Therefore 0 < wt+1,i < 1, for all i. By taking α = β = 0, and γ = m+η`(k+1)
n , the

KKT conditions can easily be verified to hold. If η` ≥ k
k+1 , the KKT conditions are

satisfied by taking αi = 0 for i ≤ k + 1 and αi = k
k+1 − η` for i > k + 1, β = 0 and

γ = 1
k+1 + η`.

67

Lemma 2.5. Consider a trial of the m-set problem with n experts, when only one expert

incurs a unit of loss. Then the FRL-GD algorithm with learning rate η > 0 decreases

the weight of this expert by at most η and none of the other weights are decreased in

this trial.

Proof. Let `≤t−1 be the cumulative loss vector at the beginning of the trial, and let

wt,αt,βt and γt be the corresponding primal and dual variables satisfying KKT condi-

tions (2.32) with respect to `≤t−1. W.l.o.g., we assume the first expert incurs a unit of

loss, i.e. `≤t = `≤t−1 +e1. Let wt+1,αt+1,βt+1 and γt+1 denote the variables satisfying

the KKT conditions with respect to the updated loss vector `≤t. The lemma now states

that wt+1,1 − wt,1 ≥ −η.

The lemma holds trivially when wt+1 = wt. When wt+1 6= wt, we first show

that γt+1 ≥ γt. Since both wt and wt+1 sum to m, there must be an expert j, such

that wt,j < wt+1,j . By the stationarity condition of (2.32), we have:

0 < wt+1,j−wt,j = (−η`≤t,j+αt+1,j−βt+1,j+γt+1) − (−η`≤t−1,j+αt,j−βt,j+γt),

or, equivalently,

γt+1 − γt > η(`≤t,j − `≤t−1,j) + (αt,j − αt+1,j) + (βt+1,j − βt,j). (2.33)

Since wt+1,j > wt,j , and the weights must be nonnegative, we have wt+1,j > 0, and thus

αt+1,j = 0 due to the complementary slackness condition of (2.32). Since αt,j must

be nonnegative due to the dual feasibility condition of (2.32), we have αt,j ≥ αt+1,j .

A similar argument gives βt+1,j ≥ βt,j . Moreover, since `≤t,j − `≤t−1,j ≥ 0 (due to

`≤t = `≤t−1 + e1), the RHS of (2.33) is nonnegative, and thus γt+1 ≥ γt.

68

By the stationary condition of (2.32), we have:

wt+1,1 − wt,1 = (−η`≤t,1 + αt+1,1 − βt+1,1 + γt+1) − (−η`≤t−1,1 + αt,1 − βt,1 + γt)

= −η + (γt+1 − γt) + (αt+1,1 − αt,1) + (βt,1 − βt+1,1), (2.34)

where we used `≤t,1 = `≤t−1,1 + 1. If αt,1 6= 0, then wt,1 = 0 due to complementary

slackness, and the lemma trivially holds. Similarly if βt+1,1 6= 0, then wt+1,1 = 1, and

again the lemma holds trivially. Thus, we may assume that αt,1 = βt+1,1 = 0. However

then (2.34) becomes

wt+1,1 − wt,1 = −η + (γt+1 − γt) + αt+1,1 + βt,1 ≥ −η.

We now show the second statement of the lemma, that wt+1,i ≥ wt,i for all i > 1. First

note that if αt,i > 0, then by the complementary slackness condition of (2.32), wt,i = 0,

and the statement trivially holds. Similarly, if βt+1,i > 0, then by the complementary

slackness condition, wt+1,i = 1, and, again the statement trivially holds. Therefore we

prove the stamement assuming that αt,i = 0 and βt+1,i = 0. Since `≤t,i = `≤t−1,i, the

complementary slackness condition of (2.32) implies:

wt+1,i − wt,i = (���
�−η`≤t,i + αt+1,i − βt+1,i + γt+1) − (���

��−η`≤t−1,i + αt,i − βt,i + γt)

= (αt+1,i − αt,i︸︷︷︸
=0

) + (βt,i − βt+1,i︸ ︷︷ ︸
=0

) + (γt+1 − γt︸ ︷︷ ︸
≥0

)

≥ αt+1,i + βt,i ≥ 0,

where the last inequality is by the dual feasibility condition of (2.32). This finishes the

proof.

69

Lemma 2.6. Consider the m-set problem with n experts, and m = 1. Assume at the

end of trial t, the cumulative losses of all experts are the same. Assume further that the

loss sequence in trials t+1, . . . , n is `t+1 = e1, `t+2 = e2, . . . , `t+n = en, i.e. each expert

subsequently incurs a unit of loss. Then the cumulative loss incurred by the FRL-GD

algorithm in iterations t+ 1, . . . , n is at least 1 + 1
4 min{nη, 1}.

Proof. The proof goes by providing primal and dual variables satisfying the KKT condi-

tions (2.32). Since the solution wt+1 to (2.32) does not change if we shift all cumulative

losses `≤t,i by a constant we can assume w.l.o.g. that the cumulative loss of all experts

at the end of trial t is 0.

Take trial t+j+1 (j ≥ 0), at the beginning of which each of the first j experts

have already incurred a unit of loss and the remaining n − j experts are loss free. If

η ≤ 1
n−j , then the KKT conditions (2.32) are satisfied by taking αi = βi = 0 for all

i = 1, . . . , n, γ = j
nη + 1

n , and

wt+j+1,i =

1
n −

n−j
n η for i ≤ j

1
n + j

nη for i > j

.

In this trial, expert j + 1 incurs a unit of loss, and hence the algorithm’s loss is 1
n + j

nη.

If η > 1
n−j , then the KKT conditions (2.32) are satisfied by taking γ = 1

n−j

and for 1 ≤ i ≤ n, βi = 0,

wt+j+1,i =

0 for i ≤ j

1
n−j for i > j

, αi =

η − 1

n−j for i ≤ j

0 for i > j

.

The loss of the algorithm in such a case is 1
n−j .

70

Thus depending on η, the algorithm’s loss at trial t+ j + 1 is equal to
1
n + j

nη if η ≤ 1
n−j

1
n−j = 1

n + j
n

1
n−k if η > 1

n−j

,

which can be concisely written as: 1
n + j

n min
{
η, 1

n−j

}
. Summing the above over j =

0, . . . , n gives the cumulative loss of the algorithm incurred at trials t+ 1, . . . , t+ n:

n−1∑
j=0

1

n
+
j

n
min

{
η,

1

n− j

}
≥

n−1∑
j=0

1

n
+
j

n
min

{
η,

1

n

}

= 1 +
n− 1

2
min

{
η,

1

n

}
≥ 1 +

1

4
min {ηn, 1} ,

where the last inequality is due to n− 1 > n
2 for n ≥ 2.

We are now ready to give the proof of Theorem 2.3:

Theorem 2.3 Consider the m-set problem with k ≤ n/2 and unit loss vectors. Then

for any fixed learning rate η, the FRL-GD algorithm (2.31) can be forced to have regret

at least Ω(max{min{BL, k
√
BL}, k}).

Proof. Theorem 2.7 gives a lower bound of Ω(
√
BLm log n

m+m log n
m) that holds for any

algorithm. This lower bound is at least Ω(k) since m log n
m = m log(km + 1) ≥ k. Hence

to prove this theorem, we only need to show a lower bound of Ω({min{BL, k
√
BL}).

Similarly as in the proof of Theorem 2.2, we show this in two steps: First, we give two loss

sequences that result in the regret of FRL-GD at least Ω(k/η) and Ω(min{BL, kBLη}),

71

respectively. Then, the lower bound follows by taking the maximum between the two

lower bounds.

The first loss sequence is exactly the same as in the proof of Theorem 2.2, i.e.

the sequence consists of
⌊
km
nη

⌋
+ 1 trials and in each trial, the expert with the largest

weight (within the first k experts) incurs one unit of loss. With Lemma 2.5 in place of

Lemma 2.2, one can easily show an Ω(k/η) regret lower bound for FRL-GD by repeating

the argument from the proof of Theorem 2.2.

Now we describe the second loss sequence which forces the FRL-GD algorithm

to suffer regret Ω(min{(BL), kBLη}). The sequence consists of BL “rounds”, and each

round consist of k+ 1 trials (so that there are (k+ 1)BL trials in total). In each round,

one unit of loss is given alternately to each of the first k + 1 experts, one at a time. In

other words, in trial t, the loss vector `t equals to er where r = t mod (k + 1). The

best comparator of this sequence consists of the last m− 1 loss free experts and any of

the first k + 1 experts, which incurs cumulative loss BL.

To lower bound the loss of the algorithm, first notice that in each round, each

of the first k + 1 experts incurs exactly one unit of loss. The sum of weights of these

experts at the beginning of a round lower bounds the algorithm’s loss in this round.

This is because the weight of a given expert cannot decrease if the expert does not

incur any loss (Lemma 2.5); hence, the weight of a given expert at a trial, in which

that expert receives a unit of loss, will be at least as large as the weight of that expert

at the beginning of a round. Since the weights are initialized uniformly, this sum is

m(k + 1)/n before round 1, and by Lemma 2.4, each of the following rounds decreases

72

it by (m− 1)(k+ 1)η/n until it is lower capped at 1 (Since the total sum of the weights

is m, and none of the remaining m− 1 weights can exceed 1, the sum of weights of the

first k + 1 experts must be at least 1).

We first assume that after BL/2 rounds, this sum is strictly larger than 1 which

means the sum decreases as an arithmetic series for all the first BL/2 rounds and the

algorithm’s loss can be lower bounded by

1

2
(m(k + 1)/n+ 1)

BL
2

Use the same
argument as in (2.30)

= BL/2 + Ω(BL).

Since the sum of the first k + 1 weights at the beginning of any trial is at least 1, the

algorithm incurs loss at least BL/2 in the remaining BL/2 rounds. Summing up the

algorithm’s loss on both halves of the sequence, we get a regret lower bound of Ω(BL).

Now consider the case, when after the first BL/2 rounds, the sum of the first

k+1 weights is 1. This implies that the weights of m−1 remaining experts are all equal

to 1, and will stay at this value, since only the first k + 1 experts incur any loss (and,

by Lemma 2.5, the weight of an expert cannot decrease if that expert does not incur

any loss). Thus, we can disregard the loss free m − 1 experts, and in the remaining

BL/2 rounds, the first k + 1 expert weights are updated as in the m-set problem with

m = 1. Notice that the algorithm suffers loss at least BL/2 in the first BL/2 rounds

and by Lemma 2.6, suffers loss at least BL/2 + BL min{(k + 1)η, 1}/8 in the second

BL/2 rounds. Summing up the algorithm’s loss on both halves of the sequence, we get

a regret lower bound of Ω(min{BL, kBlη}).

73

2.E A Discussion on the Final Parameter of FRL-GD

In this appendix, we show that the final parameter matrix of the FRL-GD

algorithm essentially contains the solution to the batch PCA problem. First recall that

given n dimensional data points x1, . . . ,xT , the batch version of the k-PCA problem

is solved by the eigenvectors of the k largest eigenvalues of the covariance matrix C =∑T
t=1 xtx

ᵀ
t . LetWT+1 be the final parameter matrix of the FRL-GD algorithm when the

instance matrices are X1 = x1x
ᵀ
1, . . . ,XT = xTx

ᵀ
T . We will show that the eigenvectors

of the m = n − k largest eigenvalues of WT+1 are the same as the eigenvectors of the

m largest eigenvalues of the negated covariance matrix −C. Thus, by computing the

complementary subspace of rank k, one finds the solution of the batch PCA problem

with respect to data points x1, . . . ,xT .

Recall that the final parameter WT+1 of FRL-GD is the projection of the −C

into the parameter setWm:

WT+1 = argmin
W∈Wm

‖ −C −W ‖2F .

Let −C have eigendecomposition −C = Udiag(λ)Uᵀ, where λ is the vector of the

eigenvalues of −C. (author?) [ACS13, Lemma 3.2] shows that the projection of −C is

solved by projecting the eigenvalues λ into Sm while keeping its eigensystem unchanged:

WT+1 = Udiag(λ′)Uᵀ and λ′ = argmin
v∈Sm

‖λ− v‖22.

W.l.o.g., assume the elements of λ are in descend order, i.e. λ1 ≥ λ2 ≥ . . . λn. To prove

that the eigenvectors of them largest eigenvalues are the same inWT+1 and−C, we only

74

need to show the following: for any integers pair i and j such that 1 ≤ i ≤ m < j ≤ n, if

λi > λj , then λ′i > λ′j . First note that by the KKT analysis of the problem of projecting

into Sm (see (2.32)), it is easy to see that if λi > λj , then exactly one of the following

three cases holds.

λ′i > λ′j or λ′i = λ′j = 0 or λ′i = λ′j = 1.

Now we show that when i and j further satisfy i ≤ m < j, the latter two cases can

never happen. Suppose λ′i = λ′j = 1 for some i ≤ m < j. In this case for any i′ ≤ m,

λ′i′ = λ′j = 1 also holds. Therefore, the sum of all the coordinates of λ′ will be at least

m + 1 which contradicts λ′ ∈ Sm. Now assume λ′i = λ′j = 0 for some i ≤ m < j. In

this case for any m < j′, λ′i = λ′j′ = 0 also holds. This implies that the sum of all the

coordinates of λ′s will be at most m− 1 which again contradicts λ′ ∈ Sm.

2.F Regret Lower Bounds When the Number of Trials Is

Large

This appendix proves lower bounds on the regret of any online algorithm for

the m-set problem: Theorem 2.4 and Theorem 2.5 prove lower bounds for unit loss

vectors and Theorem 2.6 proves lower bounds for dense loss vectors. In all of these

lower bounds, we assume that the number of the trials T is larger than either the

number of experts n or some function of n, m and k (see details of the assumptions in

individual theorems). The regret lower bounds for small number of the trials are given

in the next Appendix 2.G.

75

All the lower bounds given in this appendix are proved with the probabilis-

tic bounding technique described in Section 2.5, i.e. in each case, we first choose a

probability distribution P and then show a lower bound on the expected regret of any

algorithm when the loss vectors are generated i.i.d. from P. Our lower bounds on the

expected regret make use of the following lemma which gives an upper bound on the

expected loss of the best comparator in a two expert game.

Lemma 2.7. Consider a two expert game in which the random loss pairs of both experts

are i.i.d. between trials, and at each trial the random pair follows the distribution:

value of the loss pair (0, 1) (1, 0) (1, 1) (0, 0)

probability p p q 1− 2p− q
(2.35)

where non-negative parameters p and q satisfy 2p+ q ≤ 1. Let M be the minimum total

loss of the two experts in T such trials. If T and p satisfy Tp ≥ 1/2, then

E [M] ≤ T (p+ q)− c
√
Tp

for some constant c > 0 independent of T , p and q.

Later we will use the case q = 0 of the two expert distribution (2.35) as a

submodule for building sparse distributions over n experts and p = q = 1/4 for building

dense distributions over n experts. To prove Lemma 2.7, we need the following lemma

from [Koo11, Theorem 2.5.3]:

Lemma 2.8. Let at and bt be two binary random variables following the distribution

value of (at, bt) (0, 1) (1, 0)

probability 0.5 0.5

.

76

For T independent such pairs, we have

T

2
−
√
T − 1

2π
≤ E

[
min

{
T∑
t=1

at,
T∑
t=1

bt

}]
≤ T

2
−
√
T + 1

2π
.

Proof. of Lemma 2.7 Denote the experts’ losses at trials 1 ≤ t ≤ T by ãt and b̃t. In

this notation, the statement of Lemma 2.7 is equivalent to:

E

[
min

{∑
t

ãt,
∑
t

b̃t

}]
≤ T (p+ q)− c

√
Tp.

At each trial, the random variable pair (ãt, b̃t) has four possible values: (1, 0),

(0, 1), (1, 1) or (0, 0). If ãt 6= b̃t, then this trial is “covered by” Lemma 2.8. If ãt = b̃t,

then this trial affects
∑

t ãt and
∑

t b̃t the same way and therefore can be excluded from

the minimization. We formalize this observation as follows:

E

[
min

{∑
t

ãt,
∑
t

b̃t

}]
= E

min

 ∑
t:ãt 6=b̃t

ãt,
∑
t:ãt 6=b̃t

b̃t

+ E

∑
t:ã=b̃

ãt

Lemma 2.8
≤ E

[
R

2
−
√
R− 1

2π

]
+ Tq

where R is a binomial random variable with T draws and success probability 2p. Clearly

E[R] = 2Tp and therefore E[R2] = Tp. Moreover under the assumption that Tp ≥ 1/2,

we will show in Lemma 2.12 of Appendix 2.I (using an application of the Chernoff

bound) that E

[√
R−1
2π

]
≥ c
√
Tp for some constant c that does not depend on T , p

and q.

We now use Lemma 2.35 to prove the following theorem which addresses the

m-set problem with unit loss vectors for the case k ≤ n
2 .

77

Theorem 2.4 Consider the m-set problem with unit loss vectors, where m = n − k.

Then for k ≤ n
2 and T ≥ k, any online algorithm suffers worst case regret at least

Ω(
√
Tk).

Proof. In this proof, each loss vector is uniformly sampled from the first 2k unit vectors,

i.e. at each trial, one of the first 2k experts is uniformly chosen to incur a unit of loss.

To show an upper bound on the loss of the comparator, we group these 2k experts into

k pairs and note that the loss of each expert pair follows the joint distribution described

Lemma 2.7 with p = 1
2k and q = 0. Furthermore, the condition Tp ≥ 1/2 of Lemma 2.7

is also satisfied because of the assumption T ≥ k. Hence, by applying Lemma 2.7 we

know that the expected loss of the winner in each pair is at most T/2k−c
√
T/2k, and the

total expected loss for k winners from all k pairs is upper bounded by T/2− c
√
kT/2.

Now recalling that the comparator consists of the m = n − k best experts, its total

expected loss is upper bounded by the expected loss of the k winners, which is at

most T/2 − c
√
kT/2, plus the expected loss of the remaining n − 2k experts, which is

zero. Therefore, we have an upper bound of T/2 − c
√
kT/2 on the expected loss of

the comparator. On the other hand, since losses are generated independently between

trials, any online algorithm suffers loss at least T/2. The difference between the lower

bound on the expected loss of the algorithm and the upper bound on the expected loss

of the best m-set gives the regret lower bound of the theorem.

The case k ≥ n
2 is more complicated. Recall that k = n − 1 reproduces the

vanilla single expert case. Therefore additional log n factor must appear in the square

78

root of the lower bound. We need the following lemma, which is a generalization of

Lemma 2.7 to n experts. In the proof, we upper bound the minimum loss of the experts

by the loss of the winner of a tournament among the n experts. The tournament winner

does not necessarily have the lowest loss. However as we shall see, its expected loss is

close enough to the expected loss of the best expert so that this bounding technique is

still useful for obtaining lower bounds on the regret.

Lemma 2.9. Choose any n, S and T , such that n = 2S and S divides T . If the loss

sequence of length T is generated from a distribution P, such that:

• at each trial t, the distribution of losses on n experts is exchangeable, i.e. for

any permutation π on a set {1, . . . , n}, and for any t, `t = (`t,1, `t,2, . . . , `t,n) and

`πt = (`t,π(1), `t,π(2), . . . , `t,π(n)) have the same distribution,

• and the distribution of losses is i.i.d. between trials,

then,

E [minimum loss among n experts in T trials]

≤ S E [minimum loss among experts 1 and 2 in T/S trials] .

Proof. The key idea is to upper bound the minimum loss of any expert by the loss of the

expert that wins an S round tournament. In the first round, we start with n experts and

pair each expert with a random partner. The round lasts for T/S trials. For each pair,

the expert with the smaller loss wins in this round (tie always broken randomly). The

n/2 winners continue to the second round. At round s, the remaining n/2s−1 experts

79

first round second round
t = 1 t = 2 t = 3 t = 4 t = 5 t = 6[expert 1 1 0 1 0 0 0

expert 4 0 1 0 1 1 1][expert 2 0 0 1 1 1 0
expert 3 1 1 0 1 0 1

Table 2.3: A tournament with T = 6 trials, S = 2 rounds, and n = 4 experts. The bits

in the table are the binary losses of the experts in each trial. The brackets show the

pairing in each round. The losses of the winners are in bold.

are randomly paired and the winners are determined based on the losses in another set

of T/S trials. After S rounds and T = ST/S trials we are left with 1 overall winner.

For example for S = 2 rounds, n = 22 = 4 experts and T = 6 trials, consider

the sequence of losses shown in Table 2.3. Each of the two tournament consists of

6/2 = 3 trials. In the first round, expert 1 is paired with expert 4 and expert 2 with

expert 3. In the first round, the cumulative losses of experts 1, 2, 3, 4 are 2, 1, 2, 1,

respective. So expert 4 is the winner of the first pair and expert 2 is the winner of the

second pair. In the second round, the two winners (experts 2 and 4) are paired, and they

incur cumulative loss 2 and 3, respectively. Hence, expert 2 wins the tournament. The

total loss of the tournament winner in all 6 trials is 3. Note that this is larger than the

minimum total loss of the 4 experts since expert 1 incurred total loss 2. Nevertheless we

shall see that for our probabilistic lower bound proof, the total loss of the tournament

winner is close enough to the total loss of the best expert.

80

To complete the proof it suffices to show that

E [total loss of tournament winner in T trials]

= S E [minimum loss among experts 1 and 2 in T/S trials] .

Due to linearity of expectation:

E [total loss of tournament winner in T trials]

=

S∑
i=1

E [total loss of tournament winner in i-th round] .

The exchangeability of the losses and the symmetry of the tournament guarantees that

each expert is equally likely to be the overall winner. Therefore w.l.o.g., expert 1 is the

overall winner. Consider i-th round of the tournament (1 ≤ i ≤ S), and let (w.l.o.g.)

expert 2 be the partner of expert 1 in this round. We have:

E [total loss of tournament winner in i-th round]

= E

 total loss of exp. 1 in i-th round

∣∣∣∣∣
exp. 1 is the tournament winner,
exp. 2 won all past competitions
at rounds 1, . . . , i− 1.

= E [total loss of exp. 1 in i-th round | exp. 1 wins over exp. 2 in i-th round] .

The second equality is due to the fact that the distribution of losses is i.i.d. between

trials, and therefore the future and past rounds are independent of the current round.

Since the last expression is the same for each of the S rounds we have:

E [total loss of tournament winner in T trials]

= S E [expected loss of expert 1 in T/S trials | expert 1 wins over expert 2] .

81

Remains to be shown that the latter expectation is simple the expectation of the min-

imum of the two experts losses in a single round. Let L1 and L2 be the total losses of

both experts in the T/S trials and let “L1 > L2” denote the event that 1 wins over 2

(ties broken uniformly, so that, e.g., Pr(L1 > L2) + Pr(L2 > L1) = 1). Then

E [L1|L2 > L1] =
(

Pr(L2 > L1) + Pr(L1 > L2)
)

E [L1|L2 > L1] ,

= Pr(L2 > L1) E [L1|L2 > L1] + Pr(L1 > L2) E [L1|L2 > L1]

exchangeability = Pr(L2 > L1) E [L1|L2 > L1] + Pr(L1 > L2) E [L2|L1 > L2]

= Pr(L2 > L1) E [min{L1, L2}|L2 > L1]

+ Pr(L1 > L2) E [min{L1, L2}|L1 > L2]

= E [min{L1, L2}] .

Now, we use this lemma to prove a lower bound for the m-set problem with

k ≥ n
2 :

Theorem 2.5 Consider the m-set problem with unit loss vectors, where m = n − k.

Then for k ≥ n
2 and T ≥ n log2(n/m), any online algorithm suffers worst case regret at

least Ω(m
√
T ln(n/m)/n).

Proof. Let us first assume that n = 2jm for some integer j > 0, i.e. log2(n/m) is a

positive integer, and that T
log2(n/m) is an integer value as well.

At each trial, a randomly chosen expert out of n experts incurs a unit of loss.

To show an upper bound on the loss of the comparator, we partition the n experts into

82

m groups (n divides m from the assumption), and notice that the losses of the n/m

experts in each group are exchangeable. Applying Lemma 2.9 to each group of n/m

experts with S = log2(n/m) rounds and T/S trials per round, we obtain:

E [Loss of the winner in a given group in T trials]

≤ log2

(n
m

)
E

[
Loss of the winner of two experts in

T

log2(n/m)
trials

]
. (2.36)

The expectation on the RHS is the two expert game considered in Lemma 2.7 with

parameters p = 1/n and q = 0. Note that q = 0 because only one expert suffers loss in

each trial. Applying this lemma bounds the expectation on the RHS as

T

log2(n/m)n
− c
√

T

log2(n/m)n
,

Plugging this into (2.36) gives an T/n−c
√
T log2(n/m)/n upper bound on the expected

loss of the winner in a given group. We upper bound the expected loss of the comparator

by the total loss of m winners from the m groups, which in expectation is at most

Tm/n− cm
√
T log2(n/m)/n.

Finally the loss of the algorithm is lower bounded as follows: Every ex-

pert incurs loss 1/n in expectation at each trail and losses are i.i.d. between trials.

Therefore any online algorithm suffers loss at least mT/n. and the expected regret is

lower bounded by cm
√
T log2(n/m)/n. This concludes the proof when n = 2jm and

log2(n/m) divides T .

If n is not of this form, we take the largest n0 < n, such that n0 = 2jm for

some integer j, i.e. n0 = maxj∈N{2jm : 2jm ≤ n}. We then apply the reasoning above

to n0 experts, while the remaining n−n0 will incurs loss 1 all the time, which can only

83

increase the loss of the algorithm, but this will not affect the loss of the comparator

(comparator will never pick these experts). Since n0 ≥ n/2 (otherwise n0 would not be

the largest integer of the form 2jn, smaller than n), this does not change the rate under

Ω(·) of the lower bound of the theorem. Finally, if T
log2(n/m) is not an integer value,

we can choose the largest T0 < T , such T0
log2(n/m) is integer, and use the proof with T0

rounds, while in the remaining T − T0 rounds all losses are zero. Since T0 ≥ T/2, this,

again, does not change the rate under Ω(·).

Finally, we consider the m-set problems with dense loss vectors. The following

theorem proves lower bounds for such problems when k ≤ n
2 and when k ≥ n

2 .

Theorem 2.6 Consider the m-set problem with dense loss vectors , where m = n− k.

Then for T ≥ log2
n

min{k,m} , any online algorithm suffers worst case regret of at least

Ω(k

√
T ln

n

k
) when k ≤ n

2
or Ω(m

√
T ln

n

m
) when k ≥ n

2
.

Proof. The proof is similar to the proof of Theorem 2.5, except that at each trial, the

losses of all n experts are i.i.d. Bernoulli random variable with probability p = 1/2. For

such a distribution over losses, any algorithm suffers expected cumulative loss at least

m T/2 for the m-set problem.

For the sake of simplicity, we make some assumptions about n, k and T that

avoid rounding issues. When k ≤ n/2, we assume that n = 2jk for some integer j ≥ 1

and that T
log2(n/k) is an integer. When k ≥ n/2, i.e. m = n − k ≤ n/2, we assume

84

that n = 2jm for some integer j ≥ 1 and that T
log2(n/m) is an integer. As in the proof

of Theorem 2.5, it is easy to generalize the theorem to arbitrary n, k and T satisfying

T ≥ log2
n

min{k,m} .

Now, we prove our regret lower bounds for each of the two cases: When m ≤

n/2, we group the experts into m groups of size n/m and upper bound the loss of the

comparator using the m group winners. As before, the loss of each winner can be upper

bounded by the lemmas 2.7 (with p = q = 1) and 2.9:

E [Loss of the winner in a given group in T trials]

Lemma 2.9
≤ log2

n

m
E

[
Loss of the winner of two experts in

T

log2(n/m)
trials

]
Lemma 2.7
≤ T

2
− c
√
T

4
log2

n

m
.

Note that since the experts here incur i.i.d. Bernoulli(1
2) losses, the above application of

Lemma 2.7 requires p = q = 1/4. Next, summing up m winners, we have the expected

loss of the comparator upper bounded by Tm/2 − cm
√
T log2(n/m)/4. Taking the

difference between this upper bound and the Tm/2 lower bound on loss of any algorithm

results in the claimed Ω(m
√
T ln(n/m)) lower bound on the regret.

When k ≤ n/2, we group the experts into k groups and consider a loser out

of each group which is the expert which incurs the largest loss in each group. One

can flip around the content of Lemma 2.7 and 2.9 to show that the loser in a group of

n/k experts incurs loss in expectation at least T/2 + c
√
T log2(n/k)/4. Therefore, the

expected loss of all k losers is lower bounded by Tk/2 + ck
√
T log2(n/k)/4. Now note

that the expected loss of the comparator is upper bounded by the expected total loss of

85

all the experts, which is Tn/2, minus the expected loss of the k losers, and hence upper

bounded by

Tn

2
−
(
Tk

2
+ ck

√
T

4
log2

n

k

)
=
Tm

2
− ck

√
T

4
log2

n

k
.

Finally, the claimed regret bounds follows from taking the difference between this upper

bound and the Tm/2 lower bound on the loss of any online algorithm.

2.G Regret Lower Bounds When the Number of Trials Is

Small

This appendix gives general regret lower bounds for the m-set problem when

the number of trials T is small: Theorem 2.8 and Theorem 2.9 show lower bounds when

the loss vectors are unit vectors; Theorem 2.10 and Theorem 2.11 show lower bounds

when the loss vectors are dense vectors. Unlike the lower bounds for large T that

are proved with probabilistic arguments (see previous Appendix 2.F) all of the lower

bounds in this appendix are proved by showing explicit adversary strategies that force

large regret to any online algorithm. The matching upper bounds for small T are trivial

and can be found in Section 2.5.

Theorem 2.8. Consider the m-set problem with unit loss vectors, where m = n − k.

Then for k ≤ n
2 and T ≤ k, any online algorithm suffers worst case regret at least Ω(T).

Proof. Consider an adversary that at each trial gives a unit of loss to the expert with the

largest weight assigned by the algorithm. Recall that m = n− k and k ≤ n
2 . Therefore

all the weights assigned by the algorithm sum to m ≥ n
2 and the largest weight out of

86

n experts is at least 1
2 . Hence, after T trials, any algorithm suffers total loss at least

T
2 . On the other hand, since there are at least n− T ≥ m (becaue T ≤ k) experts that

are loss free, the loss of the best m-set of experts is zero. Therefore, the regret of any

algorithm is at least T
2 .

Now we consider the case when k ≥ n
2 . We start with a lemma which is

parameterized by an integer 1 ≤ i ≤ k instead of the number of the trials T .

Lemma 2.10. Consider the m-set problem with unit loss vectors, where m = n−k. For

any integer 1 ≤ i ≤ k, an adversary can force any algorithm to suffer loss Ω(m log2
n
n−i)

in O(n log2
n
n−i) trials, and at the same time, keep a set of m experts with loss zero.

Proof. The adversary’s strategy has i rounds, where the j-th round (1 ≤ j ≤ i) has at

most
⌈

n
n−j+1

⌉
trials and after it finishes, there will be at least n − j experts that still

have loss zero. The first round has only one trial, in which a unit of loss is given to the

expert with the largest weight. Since all the weights assigned by the algorithm sum to

m, the algorithm suffers loss at least m
n in the first round.

Each of the following rounds may contain multiple trials and at the end of

round j−1 (2 ≤ j ≤ i), there are still at least n− j+1 loss free experts. In round j, the

adversary uses a strategy with two sub-cases as follows: The adversary first considers

the experts that are still loss free. If any of the first n−j+1 of them has weight at least

m
2(n−j+1) , then we are in case 1, where a unit of loss is given to this expert. Otherwise,

we are in case 2, in which the adversary considers the remaining j − 1 experts (which

may or may not be loss free) and gives a unit of loss to the one with the largest weight

87

among them. The j-th round ends when the algorithm has suffered total loss at least

m
2(n−j+1) in that round. Note that whenever case 1 is reached, a round ends immediately.

Our strategy guarantees that after round j, there are at least n − j experts that are

loss free. Next we upper bound the number of case 2 trials in a round by showing a

lower bound on the loss of the algorithm in case 2 trials. Recall that in case 2, n− j+ 1

experts have weight no more than m
2(n−j+1) each, and the expert that has the largest

weight in the remaining j − 1 experts incurs a unit of loss. Using these facts as well as

the fact that all the weights sum to m, we can lower bound the weight of the expert

that incurs loss (which is also the loss of the algorithm) as follows:(
m− m

2(n−j+1)(n− j + 1)
)

j − 1
≥ m

2(j − 1)
≥ m

2n
.

Recalling that the j-th round ends when the algorithm suffers total loss m
2(n−j+1) in that

round, we conclude that the j-th round can have at most
⌈

n
n−j+1

⌉
trials.

Summing up over i rounds, the algorithm suffers total loss at least
∑i

j=1
m

2(n−j+1) =

Ω(m log n
n+i) in at most

∑i
j=1

⌈
n

2(n−j−1)

⌉
= O(n log n

n−i) trials. On the other hand, the

loss of the best m-set of experts is zero due to assumption i ≤ k and the fact that after

j = i rounds, there are at least n− i loss free experts. Hence the lemma follows.

Theorem 2.9. Consider the m-set problem with unit loss vectors, where m = n − k.

Then for k ≥ n
2 and T ≤ n log2

n
m , any algorithm suffers worst case regret at least

Ω(mn T).

Proof. Lemma 2.10 states that there exist two positive constants c1 and c2, such that

for any integer 1 ≤ i ≤ k, the adversary can force any algorithm to suffer regret at least

88

c1m log2
n
n−i in at most c2n log2

n
n−i trials. The proof splits into two cases, depending

on the number of the trials T :

• When T < c2n log2
n
n−1 , T is upper bounded by a constant as follows:

T < c2n log2

n

n− 1
=

c2n

log 2
log

(
1 +

1

n− 1

)
≤ c2n

(n− 1) log 2

n≥2
≤ 2c2

log 2
.

Since the adversary can always force any algorithm to suffer constant regret, the

theorem holds trivially.

• When T ≥ c2n log2
n
n−1 , we set i = min{bi′c , k}, where i′ = n(1 − 2−T/c2n)

is the solution of c2n log2
n

n−i′ = T . We note that the function c2n log2
n
n−i is

monotonically increasing in i, which results in two facts: first, i ≥ 1, since we

assumed T ≥ c2n log2
n
n−1 ; second, c2n log2

n
n−i ≤ T , since i ≤ bi′c. We further

show that c2n log2
n
n−i ≥ min{c2,

1
3}T as follows:

– When i = bi′c, first note that
(

n
n−i

)3
≥ n

n−i′ , since:

(n− i′)n2− (n− i)3 ≥ (n− i−1)n2− (n− i)3 = 2n2i+ 3ni2− i3−n2
1≤i<n
≥ 0.

Plugging c2n log2
n

n−i′ = T , we have c2n log2
n
n−i ≥ 1

3T .

– When i = k, c2n log2
n
n−i = c2n log2

n
m ≥ c2T , since T ≤ n log2

n
m is assumed

in the theorem.

Now, using Lemma 2.10 with i set as i = min{bi′c , k}, results in an adversary

that forces the algorithm to suffer regret at least c1m log n
n−i ≥ mc1

nc2
min{c2,

1
3}T =

Ω
(
m
n T
)

in at most T trials. When the adversary uses less than T trials, then the

89

game can be extended to last exactly T trials by playing zero loss vectors for the

remaining trials.

Theorem 2.10. Consider the m-set problem with dense loss vectors, where m = n−k.

Then for k ≥ n
2 and T ≤ log2

n
m , the worst case regret of any algorithm is at least

Ω(Tm).

Proof. The proof uses an adversary which forces any algorithm to suffer loss Ω(Tm),

and still keeps the best m-set of experts to be loss free. Note that at each trial, the

adversary decides on the loss vector after the algorithm makes its prediction wt, where

wt ∈ [0, 1]n with
∑

iwt,i = m.

At trial one, the adversary first sorts the n experts by their weights assigned

by the algorithm, and then gives a unit of loss to each of the experts in the first half, i.e.

the experts with larger weights. Since the weights sum to m, the total weight assigned

to the experts in the first half is at least m
2 . Hence in the first trial, the algorithm suffers

loss at least m
2 .

At each of the following trials, the adversary only sorts those experts that

have not incur any loss so far and gives unit losses to the first half (the half with larger

weights) of these experts, as well as all the experts that have already incurred losses

before this trial. It is easy to see that in this way the algorithm suffers loss at least m
2

at each trial.

Since the number of the experts that are loss free halves at each trial, after

90

T ≤ log2
n
m trials, there will still be at least m loss free experts. Now since the algorithm

suffers loss at least mT
2 in T trials, the theorem follows.

Theorem 2.11. Consider the m-set problem with dense loss vectors, where m = n−k.

Then for k ≤ n
2 and T ≤ log2

n
k , any algorithm suffers worst case regret at least Ω(Tk).

Proof. The proof becomes conceptually simpler if we use the notion of gain defined as

the follows: if wt is the parameter of the algorithm, we define its complement w̄t as

w̄t,i = 1 − wt,i. The gain of the algorithm at trial t is the inner product between the

“gain” vector `t and the complement w̄t, i.e. w̄t · `t. Similarly, for any comparator

w ∈ Sm, we define its gain as w̄ · `t =
∑n

i=1(1 − wi)lt,i. It is easy to verify that the

regret of the algorithm can be written as the difference between the largest gain of any

subset of k experts and the gain of the algorithm:

REG = max
w̄∈Sk

T∑
t=1

w̄ · `t −
T∑
t=1

w̄t · `t,

where Sk = {w ∈ [0, 1]n :
∑

iwi = k}. At trial one, the adversary first sorts the n

experts by their complementary weights and then gives a unit of gain to each of the

experts in the second half, i.e. the experts with smaller complementary weights. Since

the complementary weights sum to k, the gain of the algorithm is at most k
2 in the first

trial.

At each of the following trials, the adversary only sorts the experts that re-

ceived gains in all of the previous trials by their complementary weights. It then gives

unit gains to the second half (the half with smaller complementary weights) of these

91

experts. It is easy to see that in this way the gain of the algorithm is at most k
2 at each

trial.

Note that half of the experts that always receive gain prior to a trial t will

receive gain again in trial t. Hence, after T ≤ log2
n
k trials, there will be at least k

experts that received gains in all of the T trials, which means that the total gain of

the best k experts is Tk. Now, since the algorithm receives total gain at most kT
2 in T

trials, the theorem follows.

2.H Proof of Theorem 2.7

The following theorem gives a regret lower bound that is expressed as a function

of the loss budget BL. This lower bound holds for any online algorithm that solves the

m-set problem with either unit or dense loss vectors. The proof is based on the time

dependent regret lower bounds proven in the previous appendices.

Theorem 2.7 For the m set problem with either unit or dense loss vectors, any online

algorithm suffers worst case regret of at least Ω(max{
√
BLm ln(n/m),m ln(n/m)}).

Proof. Since the unit loss vectors are a subset of the dense loss vectors, we only need to

prove the theorem with the unit loss vectors. First consider the case that BL ≤ m log2
n
m

and the lower bound we need to prove becomes Ω(m ln(n/m)). In this case, the lower

bound follows directly from Lemma 2.10 by setting the variable i of the lemma to k.

Next, consider the case when BL ≥ m log2
n
m and the lower bound we need

to prove becomes Ω(
√
BLm ln(n/m)). We need to construct a instance sequence of

92

loss budget BL incurring regret at least Ω(
√
BLm ln(n/m)) to any algorithm. This

instance sequence is constructed via Theorem 2.4 and Theorem 2.5: For any algorithm,

these theorems provide a sequence of T unit loss vectors that incurs regret at least

Ω(m

√
T ln(n/m)

n). We apply these theorems with T = n
mBL ≥ n log2

n
m . Since the

produced sequence consists of unit loss vectors and has length n
mBL, the total loss of

the m best experts is at most BL. Finally plugging T = n
mBL into the regret bounds

guaranteed by the theorems results in the regret Ω(
√
BLm ln(n/m)).

2.I Auxiliary Lemmas

Lemma 2.11. Inequality max{min{a, b}, c} ≥ min{max{a, c}, b} holds for any real

number a, b and c.

Proof. If c ≥ max{a, b}, LHS is c and RHS is b. Hence, the inequality holds. If a ≥ c ≥ b

or b ≥ c ≥ a, LHS is c while RHS is at most c. If c ≤ a and c ≤ b, both sides are

min{a, b}.

Lemma 2.12. Let X ∼ Binomial(T, p). If Tp ≥ 8c for any positive constant c, then

E[
√
X] ≥ c√

2(1+c)

√
Tp.

Proof. We use the following form of the Chernoff bound [DS02]:

Pr(X ≤ Tp− δ) ≤ e−
δ2

2Tp .

Setting δ = 1
2Tp, we have Pr(X ≤ 1

2Tp) ≤ e−Tp/8 ≤ e−c. Since for c > 0, log(c) ≤ c−1,

this implies e−c ≤ 1
1+c , so that we further have Pr(X ≤ 1

2Tp) ≤ 1
1+c = 1 − c

1+c . Now

93

we calculate E[
√
X] from its definition,

E[
√
X] =

T∑
x=0

Pr(X = x)
√
x ≥

T∑
x=bTp2 c+1

Pr(X = x)
√
x

≥
T∑

x=bTp2 c+1

Pr(X = x)

√⌊
Tp

2

⌋
+ 1

= Pr(X > 1
2Tp)

√⌊
Tp

2

⌋
+ 1

≥ c√
2(1 + c)

√
TP .

94

Chapter 3

Learning a Set of Directions

3.1 Introduction

In this chapter we consider learning directions. Let us fix the dimensionality

n throughout. Then a direction is simply a vector u ∈ Rn of unit length. We model the

learning problem as a sequential game where each round the learner predicts by playing

a direction u and nature responds with an instance direction x. We define the resulting

directional gain as (
uᵀx+ c

)2
(3.1)

where the constant c is a fixed design parameter known to the learner. We choose to

study this gain because it is a simple and smooth trade-off (governed by c) between two

intuitively reasonable criteria of closeness: the angle cosine and the subspace similarity.

To see this, we expand our gain as:

(
uᵀx+ c

)2
= (uᵀx)2 + 2c uᵀx+ c2. (3.2)

95

• As c → ∞, then our gain becomes the angle cosine uᵀx = cos(u,x). There is a

simple minimax algorithm for this angle gain by [KW11].

• When c = 0, then our gain becomes the subspace similarity (uᵀx)2. This gain is

optimized in rank one (uncentered) PCA. [WK08]. The main disadvantage of the

PCA gain (uᵀx)2 is that it is fundamentally bidirectional, i.e. reversing either u

or x does not affect this gain.

• For general c, the directional gain (3.2) is a trade-off between the above two gains.

Unfortunately the algorithms for the linear and quadratic gains cannot just be

merged somehow. As we shall see the tools needed for the trade-off gain are much

more involved. In Figure 3.1, we compare the directional gain for c = 1 with the

original PCA gain, i.e. the directional gain for c = 0. As one can see from the

figure, for c = 1 the directional gain is highly sensitive1 to the direction of the

prediction u as well as the target instance x: it attains maximum value 4 when

x is the same direction as u (i.e. x = u) and minimum value 0 at the opposite

x = −u. Figure 3.2 further plots this gain for several different values of c between

0 and 5. Note that since (uᵀx − c)2 = ((−u)ᵀx + c)2, the corresponding plots

for negative c values can be obtained by rotating the plots in Figure 3.1 by 180

degrees. A discussion on the range of this gain for general values of c is given in

1The bidirectional PCA gain is essentially the average of the directional gain for x and −x:

(uᵀx)2︸ ︷︷ ︸
PCA gain

= 1
2

(
(uᵀx+ c)2︸ ︷︷ ︸

directional gain of x

+ (uᵀ(−x) + c)2︸ ︷︷ ︸
directional gain of −x

)
− c2.

Thus the algorithms of this paper retain PCA as a special case when the instance directions are doubled.

96

Appendix 3.A.

• Note that the quadratic Taylor approximation of any gain g(uᵀx) at u = 0 has

the form g(0) + g′(0)uᵀx+ 1
2g
′′(0) (uᵀx)2. Dividing by 1

2g
′′(0) results in our gain

(3.2) except for an immaterial constant shift.

So how can we get away with maximizing a quadratic gain? Note that the gain

is linear in u and uuᵀ, and therefore the underlying optimization problems become linear

semi-definite.

We think of a sequence of instances x1, . . . ,xT as “easy” if there is a single

direction u with high cumulative gain. The goal of the learner is to predict well if the

data are easy. To this end, we evaluate the performance of the learner after T rounds

by measuring its regret :

max
unit u

T∑
t=1

(
uᵀxt + c

)2
︸ ︷︷ ︸

offline gain

−
T∑
t=1

(
uᵀ
txt + c

)2
︸ ︷︷ ︸

online gain

.

Here ut denotes the direction of the online algorithm chosen at trial t. To be able to

guarantee low regret in an adversarial environment, it is sometimes advantageous to

choose the direction ut probabilistically and define the regret as the offline gain minus

the expected online gain. A probability distribution P on predictions u has expected

gain given by

E
[(
xᵀu+ c

)2]
= E

[
xᵀuuᵀx+ 2cxᵀu+ c2

]
= xᵀ E

[
uuᵀ]x+ 2cxᵀ E [u] + c2.

This shows that most of P is irrelevant. The expected gain is determined by just

the first moment (mean) E [u] and second moment E [uuᵀ]. In this chapter we never

97

(a) PCA gain (uᵀx)2

−1 0 1 2 3 4
−3

−2

−1

0

1

2

3

Instance x
PCA gain: (x · u)2

(b) Directional gain
(
uᵀx+ 1

)2

−1 0 1 2 3 4
−3

−2

−1

0

1

2

3

Instance x
Directional PCA gain: (x⊤u+ 1)2Figure 3.1: Comparison of PCA gain (directional gain for c = 0) and directional gain

for c = 1: The target direction x is depicted by a red arrow. In each case the blue curve

is u scaled by the gain of u, as the prediction u goes around the unit circle.

98

(a) Directional gain
(
uᵀx+ c

)2
with c = 0, 0.25, 0.5, 0.75, 1

- 3

- 2

- 1

0

1

2

3

- 1 0 1 2 3 4

Direction x Gain with c=0 Gain with c=0.25

Gain with c=0.5 Gain with c=0.75 Gain with c=1

(b) Directional gain
(
uᵀx+ c

)2
with c = 1, 2, 3, 4, 5

- 30

- 20

- 10

0

10

20

30

- 20 - 10 0 10 20 30 40

Direction x Gain with c=1 Gain with c=2

Gain with c=3 Gain with c=4 Gain with c=5

Figure 3.2: Plots of directional gain for different values of constant c. In both figures,
the red arrows are the target direction x and the curves are the prediction u scaled
by direction gain (uᵀx + c)2 as u goes around the unit circle. Each of these curves is
plotted for a different value of the constant c (see the individual values in the legends).

99

work with full distributions, but always with these simple two statistics. That is, the

parameter of the algorithm has the form (µ,D), s.t. (µ,D) = E [(u,uuᵀ)] for some P.

It is hence important to characterize which pairs of first and second moments can arise

from distributions: We will show that a vector µ and symmetric matrix D are the first

and second moment of some distribution on directions iff tr(D) = 1 and D � µµᵀ.

Note that these conditions imply that D is a density matrix, i.e. a positive semi-definite

matrix of unit trace.

Our algorithm has the following outline. At the beginning of each trial we

decompose the current parameter (µt,Dt) into a sparse mixture of pure events (u,uuᵀ)

and choose a direction ut at random from this mixture. We then update the parameter

based on the observed instance xt and project the updated parameter back into the

parameter space.

We also consider the direction learning problem where each round the learner

plays a set of k orthogonal directions u1, . . . ,uk. The set size k is a fixed design

parameter known to the learner. After nature reveals its instance x, the algorithm now

achieves the total gain over the set:

k∑
i=1

(uᵀ
ix+ c)

2
. (3.3)

The online algorithm chooses such a set probabilistically in each trial. If P is a probabil-

ity distribution on such sets u1, . . . ,uk, then the expectation of the gain (3.3) expands

to

E

[k∑
i=1

(xᵀui + c)2

]
= xᵀ E

[k∑
i=1

uiu
ᵀ
i

]
x+ 2cxᵀ E

[k∑
i=1

ui

]
+ kc2.

100

We see that the expected gain is again determined by the first moment E
[∑k

i=1 ui

]
and

second moment E
[∑k

i=1 uiu
ᵀ
i

]
. We will show that a vector µ and matrix D are the

first two moments of a distribution on sets of k orthogonal directions iff tr(D) = k and

µµᵀ/k �D � I. The parameter space of our algorithm hence consists of all (µ,D) with

these properties. Again we present an algorithm for decomposing an arbitrary parameter

(µ,D) into a sparse mixture of pure events (
∑k

i=1 ui,
∑k

i=1 uiu
ᵀ
i) with orthonormal ui

and sample from this mixture at the beginning of each trial. We also generalize our

projection algorithm to the k > 1 case.

The gain (3.1) (and set generalization (3.3)) are quadratic in their natural

parameterization by the direction u. However by expanding the square, we find that

they are linear in the two parts u and uuᵀ. Our setup exploits this linear reformulation

of the gain.

We still need to discuss which type of algorithms should be used for updating

the parameter matrix after processing the current direction. Recall that there are two

algorithms to consider: the Matrix Exponentiated Gradient (MEG) algorithm that is

based on regularizing with the Quantum Relative Entropy [TRW05] and the Gradient

Descent (GD) algorithm which uses the squared Frobenius norm as a regularizer. For

our problem both of these algorithms essentially have the same regret bounds when the

bounds are expressed as functions of the number of trials (examples) T , i.e. when they

are time dependent bounds. Similar to the loss dependent regret bound we discussed

in Chapter 2, we could also develop gain dependent regret bound for our problem, i.e.

the number of the trials T in the regret can be replaced by the total gain of the best

101

comparator. However, such a bound is not interesting in practice since the total gain

of the best comparator is usually as large as the number of examples T . Therefore in

this chapter, we only develop for the problem of learning directions a time dependent

regret bound. We prove this bound with GD algorithm, which is the simpler of the two

aforementioned online algorithms.

Related Work

The outline of our algorithm is similar to Component Hedge [KWK10] which

deals with distributions on exponentially many combinatorial concepts by maintaining

the expectation of their constituent components. The key two pieces are the convex

decomposition and the projection algorithm. This method was lifted to the matrix

domain in the work on online PCA [WK08]. However each piece is significantly more

complicated in our setting because our gain trades off first and second order parts.

Our work is related to centered PCA [WK08] which also uses a mean and a

density matrix as the parameter. However in that case the mean is unconstrained and

can be optimized independently from the density, leading to a much simpler problem.

Our gain (uᵀx+ c)2 is a simple polynomial kernel with the feature map φ(u)

being comprised of the n components of u, the n2 components of uuᵀ and a constant

feature. However our methods are decidedly different from kernel methods (including

Kernel PCA [KW07]). Our algorithms don’t just rely on dot products φ(xt)
ᵀφ(xq)

in feature space (the kernel paradigm). Instead, our parameter is always a convex

combination of φ(u) and we project back into this parameter space. This projection

102

step clearly violates the kernel paradigm.

Outline

We warm up by optimizing the gain offline in Section 3.2. We then present

the online algorithm in Section 3.3 and analyze its regret. The essential building block

in both these sections is the characterization of the parameter space. We prove the

difficult direction of the characterization theorem in Section 3.4 by presenting our new

decomposition algorithm. We conclude by discussing the big picture in Section 3.5.

3.2 The Offline Problem

Given a sequence of directions x1, . . . ,xT , the offline problem is to optimize

the total gain:

max
orthonormal u1...uk

T∑
t=1

k∑
i=1

(uᵀ
ixt + c)2

= max
orthonormal u1...uk

tr

(k∑
i=1

uiu
ᵀ
i

T∑
t=1

xtx
ᵀ
t︸ ︷︷ ︸

=:R

)
+ 2c

(k∑
i=1

ui

)ᵀ T∑
t=1

xt︸ ︷︷ ︸
=:r

+Tc2.

We will reformulate the above as a semi-definite optimization problem. Instead of max-

imizing over a single orthonormal set, we maximize the expected value of the objective

over distributions on such sets. This does not change the value of the optimization

problem. For any probability distribution on sets of k orthogonal directions, we can

characterize the first moment E
[∑k

i=1 ui

]
and second moment E

[∑k
i=1 uiu

ᵀ
i

]
as fol-

lows:

103

Theorem 3.1. A vector µ ∈ Rn and symmetric matrix D ∈ Rn×n are the first and

second moment of a probability distribution on sets of k orthogonal directions if and

only if

tr(D) = k and µµᵀ/k �D � I. (3.4)

Proof. For the =⇒ direction, it suffices to show that (3.4) is satisfied for “pure” dis-

tributions, i.e. when D =
∑k

i=1 uiu
ᵀ
i and µ =

∑k
i=1 ui, for some set of orthogonal

directions. The result then extends to all distributions by convexity. Since the con-

dition is invariant under basis transformations, we may as well verify it for the set of

standard basis vectors e1, . . . , ek. Its first and second moment are

µ =

 1k

0n−k

 and D =

Ik 0

0 0

 .
Clearly, tr(D) = k and D � I. To show that µµᵀ/k � D, note that µ is the only

eigenvector of µµᵀ/k, and its associated eigenvalue is 1. However, µ is also an eigen-

vector of D, again with eigenvalue 1. The⇐= direction is much harder. It follows from

the decomposition procedure presented in Section 3.4.

This means that our offline problem becomes the following semi-definite pro-

gram:

max
(µ,D) s.t. tr(D)=k and µµᵀ/k�D�I

tr(DR) + 2c µᵀr + Tc2.

In Appendix 3.B we discuss a special condition on (r,R) when the solution of the k

directions problem can be constructed from the solution to the k-PCA problem.

104

Note that the solution (µ∗,D∗) returned for the above optimization problem

might not be a pure set of k directions but the first and second moment of a distribution

on sets of k orthogonal directions, all of which have the same gain. In that case we can

employ the decomposition algorithm of Section 3.4 which decomposes the moments

(µ∗,D∗) into a mixture of pure solutions. To obtain one set, simply run this greedy

algorithm for one step.

3.3 Online Algorithm

The algorithm maintains the two moments (µt,Dt) as its parameter. It follows

the protocol:

At trial t = 1 . . . T ,
1. Learner decomposes parameter (µt,Dt) into a mixture of 2(n+ 1) sets

of k orthonormal directions and chooses a set u1, . . . ,uk at random from it
2. Nature reveals direction xt ∈ Rn

3. Learner receives expected gain E
[∑k

i=1(uᵀ
ixt + c)2

]
4. Learner updates (µt,Dt) to (µ̂t+1, D̂t+1) based on the gradient of the gain on xt
5. Learner produces new parameter (µt+1,Dt+1) by

projecting (µ̂t+1, D̂t+1) back into the parameter space.

The goal of the learner is to minimize the regret which is the gain of the offline algorithm

minus the expected gain of the online algorithm. We first show how to update and

project (steps 4 and 5) and defer the decomposition step 1 to the end, since it is the

hardest.

105

3.3.1 The Update and Projection

We update using the Gradient Descent algorithm (see e.g. [Zin03, CBLW96])

µ̂t+1 := µt + 2ηc xt and D̂t+1 := Dt + η xtx
ᵀ
t ,

and project back into the parameter space as follows:

(µt+1,Dt+1) := argmin
(µ,D) s.t. tr(D)=k and µµᵀ/k�D�I

‖D − D̂t+1‖2F + ‖µ− µ̂t+1‖2.

Since both the objective and the constraint set are convex, this projection can be effi-

ciently computed using a convex optimization package.2

The above GD update and the projection are based on regularizing with the

square Frobenius norm. An alternate would be the Matrix Exponentiated Gradient

update which uses the Quantum Relative Entropy as a regularizer. Since the MEG

update has the same regret bound (not shown) for our specific problem based on unit

instance vectors, we chose to only present the simpler GD update.

The following theorem develops a regret bound for the GD algorithm. Note

that the drop of the squared Frobenius norm is used as a measure of progress. We don’t

need to be concerned with the projection step since the Pythagorean Theorem implies

that the projection step does not hurt [HW01].

Theorem 3.2. Fix dimension n, set size k and gain constant c. The regret after T

trials of the GD algorithm with learning rate η =

√
k+

k(n−k)
n

(4c2+1)T
and initial parameters

µ1 = 0 and D1 = k
nI is upper bounded by

√
2(4c2 + 1)

(
n−k
n + 1

)
kT .

2There are several SDP packages (such as CVX) that are guaranteed to output the value of the SDP
up to an additive error of ε in time polynomial in the size of the program description and log 1

ε
.

106

Proof. Let W =

[
µ D

]
denote the matrix formed by concatenating column vector µ

and matrix D. Similarly, let X =

[
2cx xxᵀ

]
. With this notation, the expected gain

tr(Dxxᵀ) + 2cµᵀx+ kc2 of parameter (µ,D) on instance x becomes tr(WXᵀ) + kc2.

For any offline comparator W ∗ =

[∑k
i=1 ui

∑k
i=1 uiu

ᵀ
i

]
, we have

‖Wt+1−W ∗‖2F ≤ ‖Ŵt+1−W ∗‖2F = ‖Wt−W ∗‖2F − 2η tr((W ∗−Wt)X
ᵀ
t) + η2‖Xt‖2F ,

where the inequality follows from the Pythagorean Theorem [HW01]. Since xt has unit

length, ‖Xt‖2F =

∥∥∥∥[2cxt xtx
ᵀ
t

]∥∥∥∥2

F

= 4c2‖xt‖2 + ‖xtxᵀ
t ‖2F = 4c2 + 1. By rearranging

terms, we have

tr(W ∗Xᵀ
t)− tr(WtX

ᵀ
t) ≤ ‖Wt −W ∗‖2F − ‖Wt+1 −W ∗‖2F

2η
+

(4c2 + 1)η

2
. (3.5)

Note that the LHS of (3.5) is the regret in trial t. Summing the inequality over all T

trials, we have that the total regret is upper bounded by

‖W1 −W ∗‖2F −((((((
(((‖WT+1 −W ∗‖2F

2η
+

(4c2 + 1)ηT

2
≤ k + k(n−k)

n

2η
+

(4c2 + 1)ηT

2
,

since ‖W1 −W ∗‖2F = ‖
[
0 k
nI

]
−
[∑

i ui
∑

iuiu
ᵀ
i

]
‖2F is by the rotation invariance of

‖.‖2F equal to ‖
[
0 k
nI

]
−
[
1k Ik

]
‖2F = k(n−k)

n +k. Choosing η =

√
k+

k(n−k)
n

(4c2+1)T
proves the

theorem.

We now reason that the above regret bound for GD (expressed as a function

of the number of the trials T) cannot be improved by more than a constant factor. We

first consider the original online PCA problem, where c = 0. In this case our regret

bound for GD becomes
√

2
(
n−k
n + 1

)
kT and a matching lower bound (up to a constant

factor) was shown in [NKW13].

107

Theorem 3.3. The minimax regret of the T -round directional gain game with constant

c 6= 0 and orthonormal sets of size k is Ω(
√
c2kT).

3.4 The Decomposition

In this section we decompose any parameter (µ,D) satisfying (3.4), that is, we

write it as a convex combination of (first and second moments of) sets of k orthogonal

directions. Our algorithm is a greedy iterative removal scheme, like the decomposi-

tion algorithms for sets and subspaces [WK08], permutations [HW09], paths and trees

[KWK10].

Note that the condition µµᵀ/k �D of Theorem 3.1 is equivalent to the follow-

ing, whereD† denotes the pseudo-inverse: D � 0, µD†µ ≤ k and µ ∈ range(D)(see e.g.

[Ber11, Proposition 8.2.4]). It will be convenient to assume that the mean is extreme,

i.e. µᵀD†µ = k. If instead µᵀD†µ < k we may decompose by mixing the two decom-

positions3 of the extreme opposites
(
±µ
√

k
µᵀD†µ

,D
)

with probabilities k±µᵀD†µ
2k . (If

the mean µ is zero we may choose any pair of opposites in the range of D.) So we

henceforth assume that

tr(D) = k, 0 � D � I, µ ∈ range(D) and µᵀD†µ = k. (3.6)

This equation implies that the eigenvalues of D lie in [0, 1]. We proceed by recursion

on

χ(D) := the number of eigenvalues of D in (0, 1).

3Each decomposition will be of size n+ 1, for a total of 2(n+ 1).

108

In the base case χ(D) = 0 all eigenvalues of D are either 0 or 1, and since tr(D) = k

there must be k ones and n − k zeroes. In particular this means that µᵀµ = k. To

obtain an orthonormal set with mean µ and second moment D, we may choose U to

be any orthonormal basis spanning the range of D with sum equal to µ.

If χ(D) > 0 we find an orthonormal set u1, . . . ,uk (with moments (
∑k

i=1 ui,
∑k

i=1 uiu
ᵀ
i)

that are abbreviated as (s,S) throughout), a probability ρ ∈ (0, 1), and decompose

(µ,D) = ρ (s,S) + (1− ρ) (µ̃, D̃),

where the normalized remainder (µ̃, D̃) :=
(
µ−ρs
1−ρ ,

D−ρS
1−ρ

)
again satisfies (3.6) so that

it can be decomposed recursively and moreover χ(D̃) < χ(D). This recursive process

must therefore terminate in at most n+ 1 steps.

A similar but simpler recursive process is used in the original online PCA

problem (where c = 0) [WK08]. In this case, the learner only needs to decompose

the parameter matrix D into a small mixture of orthonormal sets of size k. These

orthonormal sets can always be chosen as subsets of the eigenvectors ofD. In the general

case (when c 6= 0), the sets need to simultaneously decompose the mean parameter µ,

and the additional constraints this imposes are not generally satisfied by the eigenvectors

of D.

The rest of this section will be concerned with finding the set U = [u1, . . . ,uk]

and the probability ρ and proving that χ(D̃) < χ(D). First in Theorem 3.4 we prove

that Algorithm 3.1 will find an orthonormal set of k so-called tangent directions. We

call a direction u tangent to (µ,D) if uᵀD†µ = 1. Then in Lemma 3.2 we show that

109

splitting off a tangent set U preserves (3.6). Finally in Theorem 3.5 we show that the

probability ρ ∈ (0, 1) can be found, and that χ(D̃) < χ(D).

3.4.1 Finding a Tangent Set

In this section we present Algorithm 3.1 for finding a tangent set. The algo-

rithm will make use of the following simple lemma.

Lemma 3.1. A linear equation vᵀx = a of dimension at least 2 has a solution for x of

unit length if ‖v‖ ≥ |a|.

Proof. Let v⊥ be a unit vector perpendicular to v. If ‖v‖ = a = 0, return v⊥. Otherwise

a
‖v‖2v +

√
1− a2

‖v‖2v
⊥ is a unit length solution.

We are now ready to show that the algorithm indeed produces a tangent set.

Theorem 3.4. Let µ and D satisfy (3.6). Let [A B C] be an orthonormal eigenbasis

for D, with A associated to the eigenvalue 1, C to eigenvalue 0 and B to the remaining

intermediate eigenvalues. (Any of them can be empty). Then Algorithm 3.1 applied to

(µ,D) produces a set U = [u1, . . . ,uk] of k orthonormal vectors with moments (s,S)

such that

UᵀD†µ = 1k U is a tangent set (3.7a)

S = DD†S U avoids the 0 eigenspace of D (3.7b)

I − S = (I −D)(I −D)†(I − S) U contains the 1 eigenspace of D (3.7c)

The algorithm can be implemented in time O(kn2) when CCᵀ is precomputed.

110

Proof. We first show that Â consists of k orthonormal vectors and that ‖ÂᵀD†µ‖2 = k.

When rank(A) = k, since I �D and tr(D) = k, B is empty and D = D† = AAᵀ.

‖AᵀD†µ‖2 = µᵀD†AAᵀD†µ = µᵀD†µ = k.

When rank(A) < k, D can be eigendecomposed as D = AAᵀ +BD̂Bᵀ where D̂ is a

diagonal matrix and 0 ≺ D̂ ≺ I. We rewrite D†, vA and vB with the decomposition

as:

D† = AAᵀ+BD̂†Bᵀ, vA = AAᵀD†µ = AAᵀµ, vB = BBᵀD†µ = BD̂†Bᵀµ.

Now we show that the conditions for using Lemma 3.1 to compute v̂ are met.

• rank(B) = rank(A) + rank(B)︸ ︷︷ ︸
>k

− rank(A)︸ ︷︷ ︸
<k

≥ 2. The lower bound on rank(A) +

rank(B) follows from

I � D̂

︷ ︸︸ ︷
rank(A) + rank(B) = tr(AAᵀ +BBᵀ)︸ ︷︷ ︸

A and B consist of orthonormal vectors

> tr(AAᵀ +BD̂Bᵀ) = k.

• To show k ≥ ‖vA‖2, notice that

k = µᵀD†µ = µᵀ(AAᵀ +BD̂†Bᵀ)µᵀ = µᵀAAᵀAAᵀµ︸ ︷︷ ︸
‖vA‖2

+µᵀBD̂†Bᵀµ︸ ︷︷ ︸
≥0

• Finally ‖vB‖ ≥
√
k − ‖vA‖2 follows from (D̂†)2 � D̂† and

‖vB‖2 = µᵀB(D̂†)2Bᵀµ ≥ µᵀBD̂†Bᵀµ = k − ‖vA‖2.

111

The next step is to show that finding B̂ is always possible. This follows simply from

k − rank(A) − 1 ≤ (rank(A) + rank(B) − 1) − rank(A) − 1 = rank(B) − 2. Since A,

v̂ and B̂ are orthogonal to each other and B̂ is also orthogonal to D†µ, ‖ÂᵀD†µ‖2 =

‖vA‖2 + (v̂ᵀD†µ)2 = k.

So in both cases, ÂᵀD†µ is a vector in Rk with length
√
k. By a rotation

matrix Û in Rk×k, we can rotate ÂᵀD†µ to a vector of the same length, 1k(see e.g.

[HKW15]). As a result, UᵀD†µ = ÛÂᵀDµ = 1k and UᵀU = ÛÂᵀÂÛ = Ik.

Finally, noticing that by construction of Â, range(U) ∈ range(D), U =

DD†U . Also,

I − S = I −AAᵀ − v̂v̂ᵀ − B̂B̂ᵀ = BB +CC − v̂v̂ᵀ − B̂B̂ᵀ

means range(I − S) ∈ range(BBᵀ +CCᵀ) = range((I −D)(I −D)†) as required.

Now we show how to implement the algorithm in O(kn2) with precomputed

CCᵀ. First computing A can be done in O(kn2) time. Noticing that AAᵀ +BBᵀ +

CCᵀ = I, we obtain BBᵀ in O(n2). Using columns of BBᵀ as a basis of B, B̂ can be

computed in (k2n) with a Gram-Schmidt process. Finally, computing a rotation matrix

in SO(k) needs time O(k2) and computing ÂÛ needs time O(kn2).

3.4.2 Removing a Tangent Set Preserves the Mean Constraints

At this point we have a tangent set U to split off. We now show that the

remainder (µ̃, D̃) satisfies (3.6). We start with the rightmost two conditions, which will

be satisfied for any weight ρ > 0. Lemma 3.2 covers a single tangent vector, whereas

112

Algorithm 3.1 Find a removable set U

Input: parameter (µ,D) satisfying (3.6)

Output:orthonormal k-set U satisfying (3.7)

Compute orthonormal eigenbasis A and B of D as described in Theorem 3.4

if rank(A) = k then

Â = A

else

vA = AAᵀD†µ // Project D†µ on A

vB = BBᵀD†µ // Project D†µ on B

Compute a unit vector v̂ in B satisfying v̂ᵀvB =
√
k − ‖vA‖2 via Lemma 3.1

Pick k− rank(A)− 1 orthonormal basis B̂ from the complementary of [vB, v̂] in B

Â =

[
A v̂ B̂

]
end if

Compute a rotation matrix Û ∈ SO(k) which rotates ÂᵀD†µ to 1k

return U = ÂÛᵀ

113

Lemma 3.3 covers sets.

Lemma 3.2. Fix a matrix D ∈ Rn×n, vectors µ,u ∈ range(D) with uD†µ = 1 and a

weight ρ ∈ R. Define D̃ := D − ρuuᵀ and µ̃ := µ− ρu. Then

µ̃ᵀD̃†µ̃ = µᵀD†µ− ρ and µ̃ ∈ range(D̃).

If rank(D̃) = rank(D) then D̃†µ̃ = D†µ. Otherwise there is a real number α such that

D̃†µ̃ = D†µ+ αD†u and D̃D†u = 0.

Proof. First notice that rank(D)− 1 ≤ rank(D̃) ≤ rank(D), since u ∈ Rn and ρuᵀu is

a rank one modification. So rank(D̃) equals either rank(D) or rank(D)− 1. We cover

these two cases separately. In the first case when rank(D̃) = rank(D) we have

D̃†µ̃ = (D − ρuuᵀ)†(µ− ρu) =

(
D† + ρ

D†uuᵀD†

1− ρuᵀD†u

)
(µ− ρu) = D†µ

by [Ber11, Fact 6.4.2]. And so µ̃D̃†µ̃ = (µ− ρu)ᵀD†µ = µᵀD†u− ρ. Also in this case

µ̃ ∈ range(D) = range(D̃).

In the second case rank(D̃) = rank(D) − 1 or equivalently ρuᵀD†u = 1. We

first show D†u is a null vector of D̃.

D̃D†u = (D − ρuuᵀ)D†u = DD†u− uρuᵀD†u = u− u = 0

Notice that DD†u = u 6= 0, so range(D̃) is exactly the complementary space of D†u

in range(D). This implies µ̃ ∈ range(D̃) since D†u is also null to µ̃:

µ̃ᵀD†u = (µ− ρu)ᵀD†u = µᵀD†u− ρuᵀD†u = 1− 1 = 0

114

We now use [Ber11, Fact 6.4.2] to rewrite D̃† (αi are unimportant scalars)

D̃†µ̃ =[D† + α1D
†uuᵀ(D†)2 + α2(D†)2uuᵀD† + α3D

†uuᵀD†︸ ︷︷ ︸
(become 0 after distribution)

]µ̃

=[D† + α1D
†uuᵀ(D†)2](µ− ρu)

=D†µ− ρD†u+ α1D
†uuᵀ(D†)2(µ− ρu)︸ ︷︷ ︸

a number

= D†µ+ αD†u.

The last thing to show is µ̃D̃†µ̃ = µD†µ− ρ which follows by

µ̃D̃†µ̃ = µ̃ᵀ(D†µ+ αD†u) = (µ− ρu)ᵀD†µ = µᵀD†µ− ρ.
The previous lemma covered single tangent vectors. Next we take out a full

tangent set.

Lemma 3.3. Let µ,D satisfy (3.6), and let the orthonormal set u1, . . . ,uk (with mo-

ments (s,S)) be tangent. Then for any ρ > 0 if D � ρS, we have

(µ− ρs)ᵀ(D − ρS)(µ− ρs) = µᵀDµ− kρ and µ− ρs ∈ range(D − ρS).

Proof. For 1 ≤ d ≤ k, define the intermediate remainder as µ̃d := µ − ρ∑d
i=1 ui and

D̃d := D − ρ∑d
i=1 uiu

ᵀ
i . Also D̃0 = D and µ̃0 = µ. We show by induction that ui

remains tangent to (µ̃d, D̃d) for d < i ≤ k and

µ̃ᵀ
dD̃dµ̃d = µᵀDµ− dρ and µ̃d ∈ range(D̃d).

The base case d = 0 is trivial. Let us, to simplify notation, show the induction step

for d = 1. The last two claims follow directly from Lemma 3.2. We now show that

for 2 ≤ i ≤ k, ui is also tangent to µ̃1 and D̃1. When rank(D̃1) = rank(D) we have

115

uᵀ
i D̃
†
1µ̃1 = uᵀ

iDµ = 1 as required. When rank(D̃1) = rank(D)− 1,

uᵀ
i D̃
†
1µ̃1 = uᵀ

iD
†µ− αuᵀ

iD
†u1 = 1− αuᵀ

iD
†u1.

Note that uᵀ
iD
†u1 = 0, for otherwise, (D†u1)ᵀ(D̃1−ρuiuᵀ

i)(D
†u1) = −ρ(uᵀ

iD
†u1)2 <

0, which contradicts D̃1 − ρuiuᵀ
i � D̃k � 0. This also implies ui ∈ range(D̃1) which

means ui is tangent to µ̃1 and D̃1.

3.4.3 Choosing the Weight ρ

We know that taking out a tangent set U preserves the rightmost two con-

straints of (3.6) on the remainder for any weight ρ. To satisfy the leftmost two, we

investigate how semi-definiteness and rank of D̃ are related to ρ.

Lemma 3.4. Let D,S ∈ Rn×n be non-zero positive semi-definite matrices with S =

DD†S. Define ρs := 1
λmax(D†S)

where λmax(M) is the largest eigenvalue of M . Then

the following hold for D̃ = D − ρS:

• 0 < ρs <∞

• D̃ � 0 for any ρ ≤ ρs

• rank(D̃) ≤ rank(D), and rank(D̃) < rank(D) when ρ = ρs.

Proof. First notice that S = DD†S implies both S ∈ range(D) and D̃ = D − ρS ∈

range(D). So rank(D̃) ≤ rank(D). Next, 0 < ρs < ∞ follows from that D†S is non-

zero and positive semi-definite. To show D̃ � 0, consider an eigenpair (v, p) of D̃ where

116

v is a unit vector.

vᵀD†Sv =
vᵀD†

ρ
(Dv − (D − ρS)v) =

vᵀD†

ρ
(Dv − pv) =

1

ρ
− p

ρ
vᵀD†v.

When ρ ≤ ρs, 1
ρ ≥ λmax(D†S) ≥ vᵀD†Sv which implies p ≥ 0. So D̃ � 0.

When ρ = ρs, let x be a eigenvector of eigenvalue 1
ρs

: D†Sx = 1
ρs
x 6= 0 and

notice that

D(D†Sx) = Sx 6= 0 D̃(D†Sx) = (D − ρS)D†Sx = DD†Sx− ρS 1

ρ
x = 0.

So D̃ has at least one more null dimension than D. Together with D̃ ∈ range(D), this

implies rank(D̃) < rank(D).

Finally, we are able to choose ρ to in addition satisfy the leftmost two conditions

of (3.6), and reduce the complexity χ(D̃).

Theorem 3.5. Let (µ,D) satisfy (3.6). Let U be the output of Algorithm 3.1, and let

ρ = min

{
1

λmax(D†S)
,

1

λmax

(
(I −D)†(I − S)

)} .
Then the normalized remainder (µ̃, D̃) =

(µ−ρs
1−ρ ,

D−ρS
1−ρ

)
satisfies (3.6) and χ(D̃) <

χ(D).

Proof. If I � D � 0, since ρ ≤ 1
λmax(D†S)

, by Lemma 3.4 D − ρS � 0 and so D̃ � 0.

Also since (I −D) � 0 and ρ ≤ 1
λmax((I−D)†(I−S))

, (I −D) − ρ(I − S) � 0 which is

equivalent to I � D̃. Also

tr(D̃) =
tr(D)− ρ tr(S)

1− ρ =
k − ρk
1− ρ = k.

117

Since all u1, . . . ,uk are tangent, we may apply Lemma 3.3 to show that µ̃D̃†µ̃ = k and

µ̃ ∈ range(D̃). By Lemma 3.4, rank(D̃) ≤ rank(D) and rank(I − D̃) ≤ rank(I −D),

where at least one inequality is strict since ρ equals the minimum of 1
λmax(D†S)

and

1
λmax((I−D)†(I−S))

. Finally observe that χ(D) = rank(D) + rank(I −D) − n so that

χ(D̃) < χ(D).

To implement the decomposition efficiently, one may want to compute D†

incrementally by doing k rank one pseudo-inverse updates for each set peeled off. Since

each of these updates needs O(n2), peeling one set off can be completed in O(kn2).

Notice that Algorithm 3.1 can also be implemented in O(kn2) (see Theorem 3.4) with a

projector of the null space of D incrementally maintained using Lemma 3.2. Combining

the two parts gives a O(kn3) implementation for the entire decomposition process.

3.5 Conclusion

A new use of kernels is emerging from this line of research: The gain/loss is

a kernel k(u,x) = φ(u)ᵀφ(x), the parameter space consists of all possible expectations

E [φ(u)], and after the update, the algorithm projects back into this parameter space.

Finally any parameter is decomposed into a small mixture of φ(u), and thus the pa-

rameter is expressed in terms of the original domain of the feature map φ. We showed

here how to do this for a simple quadratic kernel, and the work on Component Hedge

can be reinterpreted as following this outline. However, what are the ingredients needed

for the method to succeed in general? For example can this be done for higher order

118

polynomial kernels?

In our treatment all instances x were assumed to be unit length. Ideally we

want to learn vectors of varying length. To do this, more work first needs to be done

on developing expert updates that can handle unbounded losses (see e.g. [McM13] for

a start). This work should be transferable to the matrix domain.

We believe that the richer modeling capability developed in this chapter will

make the use of matrix parameters imperative. However, one of the main criticism of

this line of research is that it relies on eigendecompositions that require O(n3) time. The

key open problem is to develop O(n2) algorithms without degrading the regret bounds

too much (See e.g. discussions in [HKW10c]).

119

Appendix

3.A Range of the Gain

We first determine the range of the gain during a single trial. Fix any set of

k orthogonal directions u1, . . . ,uk and let µ =
∑k

i=1 ui so that ‖µ‖ =
√
k. Let x be a

direction, and let x̂ =
∑k

i=1(uᵀ
ix)ui be the projection of x on the set. This notation

allows us to write
k∑
i=1

(xᵀui + c)2 = ‖x̂‖2 + 2c x̂ᵀµ+ kc2.

Using Cauchy-Schwartz, i.e. (x̂ᵀµ)2 ≤ ‖x̂‖‖µ‖, the gain can be sandwiched as follows:

(‖x̂‖−
√
kc)2 = ‖x̂‖2−2

√
kc‖x̂‖+kc2 ≤

k∑
i=1

(xᵀui + c)
2 ≤ ‖x̂‖2+2

√
kc‖x̂‖+kc2 = (‖x̂‖+

√
kc)2.

Recall that Cauchy-Schwartz holds with equality when x̂ and µ are parallel. For c ≥ 0,

the gain is hence maximized at x = x̂ = µ/
√
k, where it takes value (1 +

√
kc)2.

Minimization is slightly more complicated. If
√
kc ≥ 1, the gain is minimized at x =

x̂ = −µ/
√
k, i.e. the reverse of the maximizer, where it takes value (1 −

√
kc)2. If on

the other hand
√
kc ≤ 1, the gain is minimized when x̂ = −cµ. This means that we can

choose any x = x̂+x⊥, where x⊥ is any vector of length
√

1− kc2 that is perpendicular

to all u1, . . . ,uk. Now the gain takes value 0.

120

3.B When Do Solutions to the Problems of Learning k

Directions and k-PCA Coincide?

Let R and r denote
∑

t xtx
ᵀ
t and

∑
t xt, respectively. Let UUᵀ︸ ︷︷ ︸

(n,k)×(k,n)

be the

rank k projection matrix for the solution subspace of the PCA problem.

Lemma 3.5. If r lies in the subspace of the k-PCA solution, i.e. UUᵀr = r, then there

is an orthonormal basis Û s.t. ÛÛᵀ = UUᵀ which is also the solution of learning of k

directions problem.

Proof. The gains relate as follows:

directional gain︷ ︸︸ ︷
tr(UUᵀR)︸ ︷︷ ︸

PCA gain

+2c 1ᵀUᵀr .

Since UUᵀr = r, there is an orthonormal basis Û s.t. ÛÛᵀ = UUᵀ, and Û1 and r

point in the same direction. So U = Û maximizes 1ᵀUᵀr. On the other hand, since

UUᵀ is the solution subspace of PCA, and UUᵀ = ÛÛᵀ, U = Û also maximizes the

PCA gain tr(UUᵀR). This means that Û maximizes both terms of the directional PCA

gain and is a solution to both problems.

3.C Proof of the Lower bound (Theorem 3.3)

First notice that for any distribution P on instance sequences x1...T , the min-

imax regret of the game is lower bounded by the difference

Ex1...T∼P [GC]− max
alg. A

Ex1...T∼P [GA], (3.8)

121

where GC is the gain of the comparator (i.e. the best set of k orthogonal directions)

chosen in hindsight and GA is the gain of algorithm A.

In our lower bound, we use a P that is i.i.d. between trails and at each trial

gives probability 1
2 to each of the following two opposite instances,

x+ := (1/
√
k, . . . , 1/

√
k︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
n−k

) and x− := − (1/
√
k, . . . , 1/

√
k︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
n−k

).

Now we lower bound the difference in (3.8) for this particular choice of P. We first

lower bound the gain of the comparator by the gain of the best of two orthonormal

sets, either {e1, . . . , ek} or {−e1, . . . ,−ek} (these sets maximize the gain on x+ and x−

respectively).

Ex1...T∼P [GC] ≥ Ex1...T∼P

[
T∑
t=1

xᵀ
tDxt + 2cmax

{
µᵀ

+

T∑
t=1

xt,µ
ᵀ
−

T∑
t=1

xt

}]
+ Tc2,

where µ+ and µ− are the first moments of the two sets, that is

µ+ = {1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0} and µ− = {−1, . . . ,−1︸ ︷︷ ︸
k

, 0, . . . 0},

and D =

Ik 0

0 0

 is the common second moment of both sets. Since we only compare

to two sets, the first moment part of the gain is essentially the two experts setting with

loss per round equal to ±2c
√
k. With analysis in [Koo11], one can show that the first

moment part is hence lower bounded by Ω(
√
c2kT). The second moment part, noticing

that both instances x+ and x− lie in the span of D, always attains its maximum T .

Finally, since instances are generated independently between trials with expectation

122

zero (E[xt] = 0), any algorithm has expected gain 0 in the first moment part, and so

max
alg. A

Ex1...T∼P [GA] ≤ T (1 + c2).

By combining the bounds on comparator and algorithms, we show a Ω(
√
c2kT) lower

bound of the difference in (3.8) which concludes our proof.

123

Chapter 4

Learning Rotations with Optimal

Regrets

4.1 Introduction

This chapter considers the problem of learning rotations. The goal of this

problem is to find the underlying rotation from a given set of examples, i.e. vector pairs

consisting of vectors before and after the rotation. Learning rotations is a fundamental

problem in computer vision since it has a wide application in various fields, such as

robotics, optical character recognition and motion analysis (see motivating examples in

[Aro09] and [HKW15] and the references therein). The batch version of this problem

was introduced by [Wah65] in which a simple and by now well known solution was

presented. In contrast, the online version of this problem is more challenging: It was

posed as an open problem in [SW08].

124

Recently, [HKW10a] tackled this problem of learning rotations online with the

Gradient Descend (GD) algorithm. The paper showed that in the worst case, the GD

algorithm suffers regret at most O(
√
nT), where n is the dimension of the examples

and T is the number of the trials. A matching lower bound of Ω(
√
nT) was also shown

on the worst case regret of any online algorithm. Note that both of these results are

time dependent bounds, i.e. they are functions of the number of the trials T . Now

recall that there is another type of regret bounds which are functions of loss the best

comparator Lc, i.e. the so called loss dependent regret bounds. We argue that the loss

dependent bounds are more interesting in practice since in a practical learning problem,

there usually exists a good comparator with Lc much less than the number of the trials

T . To this end, [HKW15] shows a loss dependent lower bound of Ω(
√
nLc + n) on the

worst case regret of any online algorithm for this learning problem. 1 However, f This

loss dependent bound follows essentially from the previous time dependent bound of

Ω(
√
nT). or the regret upper bounds, there is no easy way to convert time dependent

ones into loss dependent ones. In fact, for this problem of learning rotations online,

there has not been any result on the loss dependent regret upper bounds from any of

the previous work.

This chapter proves for the first time a loss dependent upper bound ofO(
√
nLc+

n) on the regret of the GD algorithm for learning rotations online. This upper bound

follows from two improvements to the previous analysis of the algorithm, which are

1Besides of a loss dependent regret lower bound, the major contribution of [HKW15] is a variant of
the standard GD algorithm for learning rotations online. We will discuss this variant in the conclusion
of this chapter.

125

first, refining the previous application of Pythagorean Theorem (see (4.7)) and second,

adding a new term to our algorithm’s measure of progress (see (4.10)). The obtained

upper bound of O(
√
nLc + n) matches the previous lower bound of Ω(

√
nLc + n) and

therefore is minimax optimal up to a constant factor.

The rest of this chapter is organized as follows: Section 4.2 gives the pre-

liminaries of the problem of learning rotations online. Section 4.3 describes the GD

algorithm which is introduced in [HKW10a] to solve this learning problem. The section

also gives an overview of the previous analysis of the algorithm and explains why it can

not prove a loss dependent regret bound. Section 4.4 improves the previous analysis

with the two aforementioned techniques and proves the main result of this chapter,

an O(
√
nLc + n) upper bound on the worst case regret of the GD algorithm. Finally,

Section 4.5 concludes the chapter with an open problem.

4.2 Preliminaries

In this chapter, integer n and T are always the dimension of the examples and

the number of trials, respectively. All the vectors are in Rn and all the matrices are in

Rn×n. We denote the Euclidean norm of a vector by ‖ · ‖, i.e. ‖x‖ =
√∑

i x
2
i =
√
xᵀx.

Furthermore, a vector x is called a unit vector if ‖x‖ = 1. The Frobenius norm of a

matrix W is denoted by ‖W ‖F =
√∑

i,j w
2
i,j =

√
tr(WW ᵀ), where tr(W) is the trace

of matrix W .

Next we give a precise definition of the problem of learning rotations online.

126

The problem of learning rotations online proceeds in a series of trials. In each trial, it

follows the protocol:

In trial t = 1 . . . T :

1. The learning algorithm is first given a unit vector xt.

2. Then, it predicts (deterministically or randomly) with a unit vector ŷt.

3. Nature reveals a true rotated vector, which is also a unit vector yt.

4. The loss to the algorithm is then half of the squared norm of the difference

between her predicted vector ŷt and the true rotated vector yt:

1
2‖yt − ŷt‖2 = 1− yᵀt ŷt. (4.1)

If ŷt is chosen probabilistically, then we define the expected loss as

E
[

1
2‖yt − ŷt‖2

]
= 1− yᵀt E [ŷt] . (4.2)

Note that the loss function of this learning problem (see (4.1) and (4.2)) is

linear in the prediction vector ŷt or the expected prediction vector E [ŷt]. The goal

of the learner is to minimize its regret REG on all T examples against the best fixed

rotation chosen in hindsight:

REG =

T∑
t=1

E
[

1
2‖yt − ŷt‖2

]
− min
R∈SO(n)

T∑
t=1

1
2‖yt −Rxt‖2 =

T∑
t=1

yᵀtR
∗xt − yᵀt E [ŷt] ,

where R∗ = argminR∈SO(n)

∑T
t=1

1
2‖yt − Rxt‖2 is the best rotation matrix chosen in

127

hindsight.

4.3 Previous Work

This section describes the GD algorithm for the problem of learning rotations

online. The algorithm is introduced in [HKW10a], in which a standard analysis of the

algorithm provides an upper bound of O(
√
nT) on its worst case regret. This section

will outline this standard analysis and explain why it can not provide a loss dependent

bound.

4.3.1 The GD Algorithm for Learning Rotations Online

The GD algorithm for learning rotations online is a probabilistic algorithm,

i.e. in each trial, it predicts with a randomly chosen unit vector ŷt The algorithm

maintains a matrix parameter Wt (1 ≤ t ≤ T) that is always a convex combination of

n × n rotations matrices. We denote by Wrot the set of all such parameter matrices.

[HKW10a] shows that Wrot consists of all the n × n matrices that have all of their

singular values in [0, 1]. In each trial, this algorithm processes an example of unit vector

pairs (xt,yt) as follows: After receiving xt, it first samples a random rotation matrix

Rt whose expectation E [Rt] is the algorithm’s parameter matrix Wt (see an example

of such sampling procedure in [HKW10a]). Given Rt, the algorithm predicts with unit

vector ŷt = Rtxt and suffers expected loss 1− yᵀt E [ŷt] = 1− yᵀtWtxt, where yt is the

“true” rotated vector revealed by Nature. Finally, the algorithm updates its parameter

128

Wt as:

Descent step: Ŵt+1 = argmin
(
η

loss on example (xt,yt)︷ ︸︸ ︷
(1− yᵀtWxt) +

divergence︷ ︸︸ ︷
1

2
‖W −Wt‖2F

)
,

= Wt + ηytx
ᵀ
t ,

Projection step: Wt+1 = argmin
W∈Wrot

‖W − Ŵt+1‖2F ,

(4.3)

where ‖ · ‖F is the Frobenius norm of matrices defined above. The descent step of the

above GD update minimizes the trade-off between the parameter divergence ‖W−Wt‖2F

and the loss on the current example 1 − yᵀtWxt without the constraint that W ∈

Wrot. Then the projection step projects the intermediate parameter Ŵt+1 back into

the parameter setWrot.

The GD algorithm is an example of the more general Mirror Descent algo-

rithm family. A mirror descent algorithm is motivated by a Bregman divergence which

measures the discrepancy between the new and the old parameters of an update. For

example, the above GD algorithm is motivated by the Frobenius norm of matrices. An-

other important example of the Mirror Descent algorithms is the Matrix Exponential

Gradient (MEG) algorithm [TRW05]. We do not consider the MEG algorithm in this

chapter since as we shall see that for the problem of learning rotations online, the GD

algorithm is already minimax optimal (up to a constant factor) for both the time de-

pendent and the loss dependent bounds. Also, we do not know how to generalize the

quantum relative entropy to the parameter setWrot. Recall that for the problem of on-

line PCA, the GD algorithm is outperformed by the MEG algorithm in loss dependent

bounds. See a detailed comparison of the two algorithms for Online PCA in Chapter 2.

129

4.3.2 Previous Analysis of the GD Algorithm

Now we outline the previous analysis of the GD algorithm (4.3). This analysis

gives an upper bound of O(
√
nT) on the regret of GD[HKW10a]. Let W ∈ Wrot be

any comparator in the parameter set. The analysis first uses ‖Wt−W ‖2F −‖Wt−W ‖2F

as a measure of progress towards the comparator W :

Algorithm’s regret in trial t︷ ︸︸ ︷
yᵀtWxt − yᵀWtxt = 1

2η

(
‖Wt −W ‖2F − ‖Wt + ηytx

ᵀ
t −W ‖2F

)
+
η

2

=1︷ ︸︸ ︷
‖ytxᵀ

t ‖2F

= 1
2η

(
‖Wt −W ‖2F − ‖Ŵt+1 −W ‖2F

)
+
η

2
(4.4)

≤ 1
2η

(
‖Wt −W ‖2F − ‖Wt+1 −W ‖2F

)
+
η

2
. (4.5)

Here the first equality follows from the definition of Frobenius norm and the inequality

follows from Pythagorean Theorem.

Next, we add up (4.5) over trial t = 1 . . . T and the divergence term ‖Wt−W ‖2F

will telescope with each other. Therefore, the total regret of the algorithm is upper

bounded by

REG ≤ 1
2η

(
‖W1 −W ‖2F − ‖WT+1 −W ‖2F

)
+
η

2
T. (4.6)

Now recalling that W1,W ∈Wrot, the RHS of (4.6) can be further upper bounded by

O(nη + ηT). Setting η properly gives the O(
√
nT) upper bound on the GD’s regret.

Next we show that no matter how the learning rate η is tuned, one can never

use (4.6) to prove a loss dependent bound for the GD algorithm. Consider a game with

one dimensional examples xt = yt = 1, t = 1 . . . T and one dimensional parameter set

Wrot = [−1, 1]. Since the corresponding loss function is 1 − xtwtyt = 1 − wt, the best

comparator in [−1, 1] suffers loss Lc = 0. Hence, to achieve a loss dependent regret

130

bound, the GD algorithm can suffer at most some constant amount of loss, where the

constant does not depend on T . This implies the learning rate η of the algorithm is

lower bounded by some constant that does not depend on T . However, such a learning

rate makes the RHS of (4.6) grow linearly in T and therefore, it is not upper bounded

by any function of the loss of the comparator (which is zero).

This observation suggests that the above application of Pythagorean Theorem

(see (4.5)) is too crude. We present in Section 4.4 a refined application of Pythagorean

Theorem and based on this improvement as well as adding a linear term tr(W (W ᵀ
t+1−

W ᵀ
t)) to our algorithm’s measure of progress, we derive a loss dependent bound for the

GD algorithm.

Before finishing this section, we would like to discuss [SST10] which proves

loss dependent regret bounds for the general Mirror Descent algorithm family. [SST10]

claims that if the loss function of a learning problem satisfies a smoothness constant

S, then the regret of a Mirror Descent algorithm for this problem is upper bounded

by a function of the constant S and the loss of the best comparator Lc (see [SST10,

Theorem 3]. However, their proof implicitly assumes that the loss function is non-

negative on the entire vector space it lies in (see the proof of [SST10, Lemma 4.1]).

Recall that in the problem of learning rotations online, the loss function is linear in

the algorithm’s parameter (see (4.2)), and therefore does not satisfy the “global” non-

negativity assumption in [SST10]. Hence, this problem is not a special case of their

results.

131

4.4 Loss Dependent Bound for the GD Algorithm

This section derives an upper bound of O(
√
nLc + n) on the regret of the GD

algorithm (4.3). We refine the previous application of Pythagorean Theorem by consid-

ering the difference between the intermediate parameter matrix Ŵt+1 and the projected

parameter matrix Wt+1. We denote this difference matrix by Zt+1 = Wt+1 − Ŵt+1.

Recall that Wt+1 is the projection of Ŵt+1 into the parameter set Wrot. Therefore,

Pythagorean Theorem gives:

‖Ŵt+1 −W ‖2F ≥ ‖Wt+1 −W ‖2F + ‖Zt+1‖2F , (4.7)

where W is any fixed comparator in Wrot. However, as seen in (4.5), the previous

application of Pythagorean Theorem ignores the ‖Zt+1‖2F term of the above inequality.

Instead, it uses the relaxed version ‖Ŵt+1 −W ‖2F ≥ ‖Wt+1 −W ‖2F . In this section,

we use the full version of (4.7) and by doing this, we prove a loss dependent regret

bound for the GD algorithm. We start with the following useful observation about the

difference matrix Zt.

Lemma 4.1. Let Ŵt+1 and Wt+1 be the intermediate parameter matrix and the pro-

jected parameter matrix defined in (4.3) respectively. Then, the difference matrix Zt+1 =

Wt+1 − Ŵt+1 has rank at most one.

Proof. First consider Ŵt+1 = Wt + ηyxᵀ, where Wt ∈Wrot is the algorithm’s param-

eter matrix in trial t and (xt,yt) is the corresponding data example. Since Ŵt+1 is Wt

plus a rank one perturbation ηyxᵀ, we have by [Tho76, Theorem 1] that σ2(Ŵt+1) ≤

132

σ1(Wt) where σ2(Ŵt+1) is the second largest singular value of Ŵt+1 and σ1(Wt) is the

largest singular value of Wt. Now since Wt has all of its singular values in [0, 1], Ŵt

has at most one singular value larger than 1.

Next, considerWt+1 which is the projection of Ŵt+1 intoWrot. By [HKW10a,

Lemma 2], Wt+1 and Ŵt+1 share the same singular vectors and their singular values

satisfy the following: The i-th singular value of Wt+1 is the i-th singular value of Ŵt+1

capped at 1, i.e. for 1 ≤ i ≤ n, σi(Wt+1) = min{σi(Ŵt+1), 1}. Since we have just

argued that Ŵt+1 has at most one singular value larger than 1, Ŵt+1 and Wt+1 must

share at least n − 1 of their singular values. Therefore, their difference Zt has rank at

most one.

Now we are ready to present the main result of this chapter, a loss dependent

upper bound on the regret of the GD algorithm

Theorem 4.1. Consider the problem of learning rotations online with n dimensional

examples. If the loss of the best comparator is Lc, then the GD algorithm with learning

rate η =
√

2n
Lc suffers worst case regret at most 2

√
2nLc + 2n.

Proof. As in the previous analysis of the algorithm (see (4.4)), we start with the equality:

Algorithm’s regret in trial t︷ ︸︸ ︷
yᵀtWxt − yᵀWtxt = 1

2η

(
‖Wt −W ‖2F − ‖Ŵt+1 −W ‖2F + η2

)
Now plugging in the Inequality (4.7), we have the algorithm’s regret in trial t upper

bounded by

1

2η

(
‖Wt −W ‖2F − ‖Wt+1 −W ‖2F + η2 − ‖Zt+1‖2F

)
133

Next we upper bound η2 − ‖Zt+1‖2F as follows:

η2 − ‖Zt+1‖2F ≤ η2 − ‖Zt+1‖2F + (η − ‖Zt+1‖F)2

= 2η2 − 2η‖Zt+1‖F . (4.8)

We now argue that he term ‖Zt+1‖F in the RHS of (4.8) is lower bounded by tr(WZᵀ
t+1)

for any comparator W ∈Wrot:

‖Zt+1‖F = σ1(Zt+1) (Zt+1 has rank at most 1)

≥ σ1(W)σ1(Zt+1) (W ∈Wrot)

=
∑n

i=1 σi(W)σi(Zt+1) (Zt+1 has rank at most 1)

≥ tr(WZᵀ
t+1) (von Neumann’s trace inequality),

(4.9)

where σi(W) and σi(Zt+1) are the i-th singular values of W and Zt+1 respectively.

Plugging (4.9) back to (4.8), we have

η2 − ‖Zt+1‖2F ≤ 2(η2 − η tr(WZᵀ
t+1))

= 2η2 − 2η2 tr(Wxty
ᵀ
t) + 2η2 tr(Wxty

ᵀ
t)− 2η tr(WZᵀ

t+1)

= 2η2(1− tr(yᵀtWxt)) + 2η tr(W (ηxty
ᵀ
t −Zᵀ

t+1))

= 2η2 (1− tr(yᵀtWxt))︸ ︷︷ ︸
loss of comparator W

+2η tr(WW ᵀ
t+1 −WW ᵀ

t)︸ ︷︷ ︸
linear part in measure of progress

. (4.10)

Finally, plugging (4.10) back to (4.4) and summing it over T trials gives the following

upper bound on the total regret of the algorithm:

REG ≤ 1

2η
‖W1 −W ‖2F + ηLc + tr(W (W ᵀ

T+1 −W
ᵀ
1)).

Now, since all of W1, WT+1 and W are inWrot, we have:

‖W1 −W ‖2F ≤ 4n and tr(W (W ᵀ
T+1 −W

ᵀ
1)) ≤ 2n.

134

Plugging these inequalities back, we have the following loss dependent regret bound:

REG ≤ 2n

η
+ ηLc + 2n

η=
√

2n
Lc

= 2
√

2nLc + 2n.

Note that the above loss dependent regret bound is obtained by tuning the

learning rate as a function of the loss of the best comparator Lc. In cases that Lc is not

known beforehand, one could first estimate Lc with an arbitrary constant and start the

algorithm with the learning rate tuned accordingly. Later on, whenever the estimate is

reached by a comparator, one should double the previous estimate of Lc and restart the

algorithm with the corresponding re-tuned learning rate. This method of tuning the

learning rate is known as the “doubling trick” and was shown to achieve regret bounds

in a constant factor of the bounds of the underlying algorithm [CBLW96].

4.5 Conclusion

In this chapter we prove an upper bound of O(
√
nLc + n) on the regret of the

GD algorithm for the problem of learning rotations online. The upper bound is obtained

by introducing two new techniques: First a refined application of Pythagorean Theorem

(see (4.7)) and second, adding a linear term tr(W (W ᵀ
t+1 −W ᵀ

t)) to our algorithm’s

measure of progress (see (4.10)). This upper bound is minimax optimal (up to constant

factor) since a matching lower bound is previously given in [HKW15].

Now we conclude the chapter with an open problem regarding a modified ver-

sion of the GD algorithm presented in this chapter. Recall that because of the projection

135

step of Update (4.3), the parameter matrix Wt of the GD algorithm is always inWrot.

However, maintaining the parameter always inWrot is not necessary for the problem of

learning rotations online since the algorithm is only required to predict (probabilistically

or deterministically) with a unit vector ŷt (see the protocol in Section 4.2) in each trial.

Therefore, [HKW15] proposed a “Lazy Projection GD” algorithm which only projects

its parameter Wt when it cannot sample a random unit vector ŷt satisfying the condi-

tion E [ŷt] = Wtxt. This new algorithm is more efficient than the GD algorithm (4.3)

since it “projects as little as necessary”, and at the same time achieves the same time

depend regret bound as the GD algorithm. Our open problem concerns the following

question: can we use the new proof techniques presented in this chapter to prove a loss

dependent upper bound on the regret of the “Lazy Projection GD” algorithm?

136

Bibliography

[AABR09] Jacob Abernethy, Alekh Agarwal, Peter L. Bartlett, and Alexander

Rakhlin. A stochastic view of optimal regret through minimax duality.

In COLT, pages 56–64, 2009.

[AB10] Jean-Yves Audibert and Sébastien Bubeck. Regret bounds and minimax

policies under partial monitoring. Journal of Machine Learning Research,

11:2785–2836, 2010.

[ACS13] Raman Arora, Andrew Cotter, and Nati Srebro. Stochastic optimization

of PCA with capped MSG. In NIPS, pages 1815–1823, 2013.

[Aro09] Raman Arora. On learning rotations. In NIPS, pages 55–63, 2009.

[AW01] Katy S. Azoury and Manfred K. Warmuth. Relative loss bounds for on-line

density estimation with the exponential family of distributions. Machine

Learning, 43(3):211–246, 2001.

[AWY08] Jacob Abernethy, Manfred K. Warmuth, and Joel Yellin. When random

play is optimal against an adversary. In COLT, pages 437–446, 2008.

137

[Ber11] Dennis S. Bernstein. Matrix Mathematics: Theory, Facts, and Formulas

(Second Edition). Princeton reference. Princeton University Press, 2011.

[CBFH+97] Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold,

Robert E. Schapire, and Manfred K. Warmuth. How to use expert advice.

Journal of the ACM, 44(3):427–485, 1997.

[CBL06] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games.

Cambridge University Press, 2006.

[CBLW96] Nicolò Cesa-Bianchi, Philip M. Long, and Manfred K. Warmuth. Worst-

case quadratic loss bounds for prediction using linear functions and gra-

dient descent. IEEE Trans. Neural Netw. Learning Syst., 7(3):604–619,

1996.

[dRvEGK14] Steven de Rooij, Tim van Erven, Peter D. Grünwald, and Wouter M.

Koolen. Follow the leader if you can, hedge if you must. Journal of

Machine Learning Research, 15:1281–1316, 2014.

[DS02] M.H. DeGroot and M.J. Schervish. Probability and Statistics. Addison-

Wesley series in statistics. Addison-Wesley, 2002.

[FS95] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization

of on-line learning and an application to boosting. In EuroCOLT, pages

23–37, 1995.

138

[GHM15] Dan Garber, Elad Hazan, and Tengyu Ma. Online learning of eigenvectors.

In ICML, pages 560–568, 2015.

[HKW10a] Elad Hazan, Satyen Kale, and Manfred K. Warmuth. Corrigendum to

”learning rotations with little regret”. Corrigendum, 2010.

[HKW10b] Elad Hazan, Satyen Kale, and Manfred K. Warmuth. Learning rotations

with little regret. In COLT, pages 144–154, 2010.

[HKW10c] Elad Hazan, Satyen Kale, and Manfred K. Warmuth. On-line variance

minimization in o(n2) per trial? In COLT, pages 314–315, 2010.

[HKW15] Elad Hazan, Satyen Kale, and Manfred K. Warmuth. Learning rotations

with little regret. to appear in Machine Learning Journal, 2015.

[HW01] Mark Herbster and Manfred K. Warmuth. Tracking the best linear pre-

dictor. Journal of Machine Learning Research, 1:281–309, 2001.

[HW09] David P. Helmbold and Manfred K. Warmuth. Learning permuta-

tions with exponential weights. Journal of Machine Learning Research,

10:1705–1736, 2009.

[KNW13] Wouter M. Koolen, Jiazhong Nie, and Manfred K. Warmuth. Learning a

set of directions. In COLT, pages 851–866, 2013.

[Koo11] Wouter M. Koolen. Combining strategies efficiently: high-quality decisions

from conflicting advice. PhD thesis, Institute of Logic, Language and

Computation (ILLC), University of Amsterdam, 2011.

139

[KW97] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus

gradient descent for linear predictors. Inf. Comput., 132(1):1–63, 1997.

[KW07] Dima Kuzmin and Manfred K. Warmuth. Online kernel PCA with en-

tropic matrix updates. In ICML, pages 465–472, 2007.

[KW11] Wojciech Kotlowski and Manfred K. Warmuth. Minimax algorithm for

learning rotations. In COLT, pages 821–824, 2011.

[KW15] Wojciech Kotlowski and Manfred K. Warmuth. PCA with Guassian per-

turbation. Private communication, 2015.

[KWK10] Wouter M. Koolen, Manfred K. Warmuth, and Jyrki Kivinen. Hedging

structured concepts. In COLT, pages 93–105, 2010.

[Lit87] Nick Littlestone. Learning quickly when irrelevant attributes abound: A

new linear-threshold algorithm. Machine Learning, 2(4):285–318, 1987.

[LW94] Nick Littlestone and Manfred K. Warmuth. The weighted majority algo-

rithm. Information and Computation, 108(2):212–261, 1994.

[McM13] Brendan McMahon. Minimax optimal algorithms for unconstrained linear

optimization. Unpublished manuscript arXiv:1302.2176v1, February 2013.

[Nie14] Jiazhong Nie. Loss dependent regret bounds for online gradient descent.

Unpublished manuscript, 2014.

140

[NKW13] Jiazhong Nie, Wojciech Kotlowski, and Manfred K. Warmuth. Online

PCA with optimal regrets. In ALT, pages 98–112, 2013.

[NY78] Arkadi Nemirovski and D Yudin. On cesaros convergence of the gradi-

ent descent method for finding saddle points of convex-concave functions.

Doklady Akademii Nauk, 4(249):249, 1978.

[SS07] Shai Shalev-Shwartz and Yoram Singer. A primal-dual perspective of

online learning algorithms. Machine Learning, 69(2-3):115–142, 2007.

[SST10] Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low

noise and fast rates. In NIPS, pages 2199–2207, 2010.

[SST11] Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. On the universal-

ity of online mirror descent. In NIPS, pages 2645–2653, 2011.

[ST10] Karthik Sridharan and Ambuj Tewari. Convex games in banach spaces.

In COLT, pages 1–13, 2010.

[SW08] Adam M. Smith and Manfred K. Warmuth. Learning rotations. In COLT,

page 517, 2008.

[Tho76] R.C. Thompson. The behavior of eigenvalues and singular values under

perturbations of restricted rank. Linear Algebra and its Applications,

13(12):69 – 78, 1976.

[TRW05] Koji Tsuda, Gunnar Rätsch, and Manfred K. Warmuth. Matrix exponen-

141

tial gradient updates for on-line learning and bregman projection. Journal

of Machine Learning Research, 6:995–1018, 2005.

[vEGKdR11] Tim van Erven, Peter Grünwald, Wouter M. Koolen, and Steven de Rooij.

Adaptive hedge. In NIPS, pages 1656–1664, 2011.

[Vov90] Vladimir Vovk. Aggregating strategies. In COLT, pages 371–386, 1990.

[Wah65] Grace Wahba. Problem 651: A least squares estimate of spacecraft atti-

tude. SAIM Review, 7(3):409, 1965.

[WK08] Manfred K. Warmuth and Dima Kuzmin. Randomized online PCA algo-

rithms with regret bounds that are logarithmic in the dimension. Journal

of Machine Learning Research, 9:2287–2320, October 2008.

[WV05] Manfred K. Warmuth and S. V. N. Vishwanathan. Leaving the span. In

COLT, pages 366–381, 2005.

[Zin03] Martin Zinkevich. Online convex programming and generalized infinites-

imal gradient ascent. In ICML, pages 928–936, 2003.

142

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Basic Concepts of Online Learning
	A Basic Online Learning Problem: the Expert Setting

	Learning Matrix Parameters
	Learning Algorithms
	Overview of the Chapters
	Chapter 2: Online PCA with Optimal Regrets
	Chapter 3: Learning a Set of Directions
	Chapter 4: Learning Rotations with Optimal Regret

	Online PCA with Optimal Regrets
	Introduction
	The Online Algorithms
	Upper Bounds on the Regret
	Upper Bounds on the Regret of Loss MEG, Gain MEG, and GD
	Comparison of the Regret Upper Bounds

	Lower Bounds on the Regret of GD
	Lower Bound on the Regret of GD Algorithm
	Lower Bound on the Regret of the Follow the Regularized Leader GD Algorithm (FRL-GD)

	General Lower Bounds and Optimal Algorithms
	Time Dependent Lower Bounds for Online PCA
	Time Dependent Lower Bound for the Generalization with Dense Instance Matrices
	Loss Budget Dependent Lower Bounds

	Conclusion

	Appendices
	Proof of Upper Bound (2.13) on the Regret of Gain MEG
	Proof of Upper Bound (2.14) on the Regret of GD
	Proof of Theorem 2.2
	Proof of Theorem 2.3
	A Discussion on the Final Parameter of FRL-GD
	Regret Lower Bounds When the Number of Trials Is Large
	Regret Lower Bounds When the Number of Trials Is Small
	Proof of Theorem 2.7
	Auxiliary Lemmas

	Learning a Set of Directions
	Introduction
	The Offline Problem
	Online Algorithm
	The Update and Projection

	The Decomposition
	Finding a Tangent Set
	Removing a Tangent Set Preserves the Mean Constraints
	Choosing the Weight rho

	Conclusion

	Appendices
	Range of the Gain
	When Do Solutions to the Problems of Learning k Directions and k-PCA Coincide?
	Proof of the Lower bound (Theorem 3.3)

	Learning Rotations with Optimal Regrets
	Introduction
	Preliminaries
	Previous Work
	The GD Algorithm for Learning Rotations Online
	Previous Analysis of the GD Algorithm

	Loss Dependent Bound for the GD Algorithm
	Conclusion

