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Abstract

Motivation: Microbial communities play important roles in the function and maintenance of vari-

ous biosystems, ranging from the human body to the environment. A major challenge in micro-

biome research is the classification of microbial communities of different environments or host

phenotypes. The most common and cost-effective approach for such studies to date is 16S rRNA

gene sequencing. Recent falls in sequencing costs have increased the demand for simple, efficient

and accurate methods for rapid detection or diagnosis with proved applications in medicine, agri-

culture and forensic science. We describe a reference- and alignment-free approach for predicting

environments and host phenotypes from 16S rRNA gene sequencing based on k-mer representa-

tions that benefits from a bootstrapping framework for investigating the sufficiency of shallow

sub-samples. Deep learning methods as well as classical approaches were explored for predicting

environments and host phenotypes.

Results: A k-mer distribution of shallow sub-samples outperformed Operational Taxonomic Unit

(OTU) features in the tasks of body-site identification and Crohn’s disease prediction. Aside from

being more accurate, using k-mer features in shallow sub-samples allows (i) skipping computationally

costly sequence alignments required in OTU-picking and (ii) provided a proof of concept for the

sufficiency of shallow and short-length 16S rRNA sequencing for phenotype prediction. In addition,

k-mer features predicted representative 16S rRNA gene sequences of 18 ecological environments,

and 5 organismal environments with high macro-F1 scores of 0.88 and 0.87. For large datasets, deep

learning outperformed classical methods such as Random Forest and Support Vector Machine.

Availability and implementation: The software and datasets are available at https://llp.berkeley.

edu/micropheno.

Contact: mofrad@berkeley.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microbial communities have important functions relevant to sup-

porting, regulating, and in some cases causing unwanted conditions

(e.g. diseases) in their hosts/environments, ranging from organismal

environments, such as the human body, to ecological environments,

such as soil and water. These communities typically consist of a

variety of microorganisms, including eukaryotes, archaea, bacteria

and viruses. Due to differences in nutrient availability and environ-

mental conditions, microbial communities from different environ-

ments have widely varying taxonomic structures and compositions

(Ann Moran, 2015; Armbrust et al., 2015; Fierer, 2017; Pinto et al.,

2012).
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The human microbiota refers to all microorganisms living in

close association with the human body. It is now widely believed

that changes in our microbiota correlate with numerous diseases,

raising the possibility that manipulation of these communities may

be used to treat diseases. The microbiota (particularly the intestinal

microbiota) is known to play important roles in healthy humans,

including: (i) prevention of pathogen growth, (ii) education and

regulation of the host immune system and (iii) providing energy sub-

strates to the host (Lynch and Pedersen, 2016). Consequently, dys-

biosis of the human microbiota can promote diseases, including

asthma (Arrieta et al., 2015; Marsland et al., 2013), irritable bowel

syndrome (Cho and Blaser, 2012; Saulnieret al., 2011), Clostridium

difficile infection (Cammarota et al., 2014), chronic periodontitis

(Jorth et al., 2014; Luo Deng et al., 2017), cutaneous leishmaniasis

(Gimblet et al., 2017), obesity (Ridaura et al., 2013; Turnbaugh

et al., 2008), chronic kidney disease (Ramezani and Raj, 2014),

Ulcerative colitis (Michail et al., 2012) and Crohn’s disease (Gevers

et al., 2014; Pascal et al., 2017). The human microbiota appears to

play a particularly important role in the development of Crohn’s dis-

ease. Crohn’s disease is an inflammatory bowel disease (IBD) with a

prevalence of approximately 40 per 100 000 and 200 per 100 000 in

children and adults, respectively (Kappelman et al., 2007).

Environmental microbial communities also serve important func-

tions, such as nutrient cycling (Gilbert and Neufeld, 2014). For in-

stance, the microbiota living in the ocean account for half of the

primary production on the Earth (Ann Moran, 2015). The soil

microbiome surrounding the root of plants impacts plant fertility

and growth (Chaparro et al., 2012).

The starting point of many microbiome studies is commonly 16S

rRNA gene sequencing of microbial samples (Hamady and Knight,

2009). The 16S rRNA gene is highly conserved across bacteria and

archaea, includes both conserved regions, against which universal

species-independent polymerase chain reaction primers can be

directed, and nine hypervariable regions (V1–V9), which allow dif-

ferential identification of taxon identities and relative abundances

(Michael Janda et al., 2007). After sequencing, the obtained data are

usually processed with bioinformatics software such as Quantitative

Insights Into Microbial Ecology (QIIME) (Gregory Caporaso et al.,

2010; Lawley and Tannock, 2017), Mothur (Schloss et al., 2009) or

Usearch (Edgar et al., 2011) and clustered into groups of closely

related sequences, referred to as operational taxonomic units

(OTUs). Later in Section 1.2, we discuss the pros and cons of OTU

features in detail. The low cost of 16S rRNA gene sequencing is one

of the primary reasons for its widespread use in microbiome research.

However, 16S rRNA sequencing has several disadvantages compared

to shotgun metagenome sequencing, detailed in the Supplemental

Material, such as its inability to resolve functions, and accordingly

functional variations within individual taxa (Pollock et al., 2018).

1.1 Machine learning for environments or host

phenotypes classification
Several recent studies predicted the environment or host phenotypes

using 16S gene sequencing data for body-sites (Knights et al., 2011;

Statnikov et al., 2013), disease state (Duvallet et al., 2017; Eck

et al., 2017; Xu et al., 2016), ecological environment quality status

prediction (Cordier et al., 2017) and subject prediction for forensic

science (Fierer et al., 2010; Schmedes et al., 2018). In all, OTUs

served as the main input feature for the downstream machine

learning algorithms. Random Forest (RF) and then, ranking second,

linear Support Vector Machine (SVM) classifiers were reported

as the most effective classification approaches in these studies

(Carrieri et al., 2017; Duvallet et al., 2017; Pasolli et al., 2016;

Statnikov et al., 2013).

Related prior work on body-site classification (Knights et al.,

2011; Statnikov et al., 2013) used the following datasets: Costello

Body Habitat (CBH—6 classes), Costello Skin Sites (CSS—12

classes) (Costello et al., 2009), and Pei Body Site (PBS—4 classes)

(Statnikov et al., 2013). An extensive comparison of classifiers for

body-site classification over CBH, CSS and PBS on top of OTU fea-

tures has been performed by Statnikov et al. (2013). The best accur-

acy levels measured by relative classifier information (RCI) achieved

by using OTU features are reported as 0.784, 0.681 and 0.647 for

CBH, CSS and RCI, respectively. Due to the insufficiency of the

number of samples (on average 57 samples per class for CBH, CSS

and PBS) as well as the unavailability of raw sequences for some of

the datasets mentioned above, instead of using the same dataset we

replicate the state-of-the-art approach suggested in Statnikov et al.

(2013), i.e. RF and SVM over OTU features for a larger dataset

[Human Microbiome Project (HMP) dataset]. We then compare

OTU features with k-mer representations. Working on a larger data-

set allows for a more meaningful investigation and better training

for deep learning approaches.

Detecting disease status based on 16S gene sequencing is becom-

ing more and more popular, with applications in the prediction of

Psoriasis (151 samples for 3 classes—best accuracy: 0.225), IBD

(patients: 49 samples, healthy: 59—best AUC: 0.95) (Xu et al.,

2016) and (patients: 91 samples, healthy: 58 samples—best AUC:

0.92) (Eck et al., 2017). Similar to body-site classification datasets,

the datasets used for disease prediction were also relatively small. In

this article, we use the Crohn’s disease dataset (Gevers et al., 2014)

with 1359 samples (patients: 731 samples, negative class: 628 sam-

ples) for evaluating our proposed method and then compare it with

the use of OTU features.

We focus on machine learning approaches for classification of

environments or host phenotypes of 16S rRNA gene sequencing

data, which is the most popular and cost-effective sequencing

method for the characterization of microbiome to date (Pasolli

et al., 2016; Pollock et al., 2018). Studies on the use of machine

learning for predicting microbial phenotype instead of environ-

ments/host phenotype (Dutilh et al., 2013; Ross et al., 2013), as well

as predictions based on shotgun metagenome and whole-genome mi-

crobial sequencing are beyond the scope of this article, although we

believe that one may easily adapt the proposed approach to shotgun

metagenomics, similar to the study by Cui et al. on IBD prediction

(Cui and Zhang, 2013).

Recently, deep learning methods became popular in various

applications of machine learning in bioinformatics (Asgari and

Mofrad, 2015; Min et al., 2016) and in particular in microbiome re-

search (Ditzler et al., 2015). However, to the best of our knowledge,

this is the first study exploring environment and host phenotype pre-

diction from 16S rRNA gene sequencing data with deep learning

approaches.

1.2 16S rRNA gene sequence representations
OTU representation

As reviewed in Section 1.1, prior machine learning works on envir-

onment/host phenotype prediction have been mainly using OTU

representations as the input features to the learning algorithm.

Although there exist non-OTU based pipelines for 16S rRNA se-

quence analysis [e.g. DADA-2 (Callahan et al., 2016)], almost all

popular 16S rRNA sequence processing pipelines cluster sequences

into OTUs based on their sequence similarities, utilizing a variety of
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algorithms (Lawley and Tannock, 2017; Nguyen et al., 2016).

QIIME allows OTU-picking using three different strategies: (i)

closed-reference OTU-picking: sequences are compared against a

marker gene database [e.g. Greengenes (McDonald et al., 2012) or

SILVA (Quast et al., 2012)] to be clustered into OTUs and then the

sequences different from the reference genomes beyond a certain se-

quence identity threshold are discarded. (ii) Open-reference OTU-

picking: the remaining sequences after a closed-reference calling go

through a de novo clustering. This allows for using the whole

sequences as well as capturing sequences belonging to new commun-

ities, which are absent in the reference databases (Rideout et al.,

2014). (iii) Pure de novo OTU-picking: sequences (or reads) are only

compared among themselves and no reference database is used. The

third strategy is more appropriate for novel species absent in the

current reference. Although OTU clustering reduces the analysis of

millions of reads to working with only thousands of OTUs and sim-

plifies the subsequent phylogeny estimation and multiple sequence

alignment, OTU representations have several shortcomings: (i)

all three OTU-picking strategies involve massive amounts of

sequence alignments either to the reference genomes (in closed-/

opened-reference strategies) or to the sequences present in the sam-

ple (in open-reference and de novo strategies) which makes them

very expensive (Cai et al., 2017) in comparison with reference-free/

alignment-free representations. (ii) Overall sequence similarity is not

a proper condition for grouping sequences and OTUs can be phylo-

genetically incoherent. For instance, a single mutation between two

sequences is mostly ignored by OTU-picking algorithms. However,

if the mutation does not occur within the sample, it might be a signal

for assigning a new group. In addition, several mutations within a

group most likely are not going to be tolerated by OTU-picking

algorithms. However, having the same ratio across samples may

suggest that the mutated sequences belong to the same group

(Koeppel and Wu, 2013; Nguyen et al., 2016). (iii) The number of

OTUs and even their contents are very sensitive to the pipeline and

parameters, and this makes them difficult to reproduce (He et al.,

2015).

1.2 k-mer representations
k-mer count vectors have been shown to be suitable input features

for performing machine learning on biological sequences for a

variety of bioinformatics tasks (Marçais and Kingsford, 2011). In

particular, k-mer count features have been used for taxonomic clas-

sifications of microbial 16S and metagenome datasets (Kawulok and

Deorowicz, 2015; McHardy et al., 2007; Menzel and Krogh, 2015;

Patil et al., 2011; Vervier et al., 2016; Wood and Salzberg, 2014).

However, to the best of our knowledge, k-mer features have not

been explored for phenotypical and environmental characterizations

of 16S rRNA sequence data.

In this article, we propose using k-mer representations of shallow

sub-samples for predicting environments and host phenotypes from

16S rRNA sequences. Our approach is fast, reference-free and

alignment-free, while contributing to building accurate classifiers

outperforming conventional OTU features in body-site identifica-

tion and Crohn’s disease classification. We propose a bootstrapping

framework to investigate the sufficiency of shallow sub-samples

for the prediction of the phenotype of interest, which proves the suf-

ficiency of short-length and shallow sequencing of 16S rRNA. In

addition, we explore deep learning methods as well as classical

approaches for classification. Furthermore, we demonstrate the

value of Principal Component Analysis (PCA), t-Distributed

Stochastic Neighbor Embedding (t-SNE) and supervised deep

representation learning for visualization of microbial samples/

sequences of different phenotypes. We also show that k-mer features

can be used to predict representative 16S rRNA gene sequences

from 18 ecological environments and 5 organismal environments

with high macro-F1s.

2 Materials and methods

2.1 Datasets
Body-site identification

We employ the 16S rRNA gene sequence dataset provided by the

NIH HMP (Huttenhower et al., 2012; Jane et al., 2009) (Available

at http://hmpdacc.org/HM16STR/). In particular, we use processed,

annotated 16S rRNA gene sequences of up to 300 healthy individu-

als, each sampled at four major body-sites (oral, airways, gut and

vagina) and up to three time points. For each major body-site, a

number of sub-sites were sampled. We focus on five body sub-sites:

anterior nares (nasal) with 295 samples, saliva (oral) with 299 sam-

ples, stool (gut) with 325 samples, posterior fornix (urogenital) with

136 samples and mid-vagina (urogenital) with 137 samples, in total

1192 samples. These body-sites are selected to represent differing

levels of spatial and biological proximity to one another, based

on relevance to pertinent human health conditions potentially influ-

enced by the human microbiome. To compare k-mer based

approach with state-of-the-art OTU features, we collect the closed-

reference OTU representations of the same samples in HMP

(Huttenhower et al., 2012) (Available at https://qiita.ucsd.edu/

study/descriptipn/1928) obtained using the QIIME pipeline

(Rideout et al., 2014).

Crohn’s disease prediction

For the classification of Crohn’s disease, we use the 16S rRNA data-

set described in (Gevers et al., 2014) (Available at: https://www.

ncbi.nlm.nih.gov/bioproject/PRJEB13679), which is currently the

largest pediatric Crohn’s disease dataset available. This dataset

includes annotated 16S rRNA gene sequence data for 731 pediatric

(�17 years old) patients with Crohn’s disease and 628 samples veri-

fied as healthy or diagnosed with other diseases, making a total of

1359 samples. Sequencing here was targeted towards the V4 hyper-

variable region of the 16S rRNA gene. Similar to the body-site data-

set, to compare the k-mer based approach with the approach based

on OTU features, we collect the OTU representations of the same

samples from Qiita repository (Available at https://qiita.ucsd.edu/

study/description/1939) obtained using QIIME pipeline (Rideout

et al., 2014).

Predicting the environment for representative 16S rRNA gene

sequences

MetaMetaDB provides a comprehensive dataset of representative

16S rRNA sequences of various ecological and organismal environ-

ments, collected from existing 16S rRNA databases spanning almost

181 million raw sequences. In the MetaMetaDB pipeline, low-

quality nucleotides, adapters, ambiguous sequences, homopolymers,

duplicates and reads shorter than 200 bp, as well as chimeras have

been removed and 16S rRNA sequences were clustered with 97%

identity, generating 1 241 213 representative 16S rRNA sequences

marked by their environment (Chia Yang and Iwasaki, 2014).

MetaMetaDB divides its ecological environments into 34 categories

and its organismal environments into 28 categories. We create three

datasets, which are subsets of MetaMetaDB, to investigate the

discriminative power of k-mers in predicting microbial habitats.

i34 E.Asgari et al.

http://hmpdacc.org/HM16STR/
https://qiita.ucsd.edu/study/descriptipn/
https://qiita.ucsd.edu/study/descriptipn/
https://www.ncbi.nlm.nih.gov/bioproject/PRJEB13679
https://www.ncbi.nlm.nih.gov/bioproject/PRJEB13679
https://qiita.ucsd.edu/study/description/
https://qiita.ucsd.edu/study/description/


Since the sequences in MetaMetaDB were already filtered and semi-

identical sequences removed, OTU-picking would not be required,

as it would result in an almost one-to-one mapping between the

sequences and OTUs (we verified this using QIIME).

Ecological environment prediction: MetaMetaDB is imbalanced

in terms of the number of representative sequences per environment.

For this study, we pick the ecological environments with more than

10 000 samples, ending up with corresponding to 18 classes of eco-

logical environments: activated sludge, ant fungus garden, aquatic,

bioreactor, bioreactor sludge, compost, food, food fermentation,

freshwater, freshwater sediment, groundwater, hot springs, hydro-

carbon, marine, marine sediment, rhizosphere, sediment and soil

(Datasets and descriptions are available at http://mmdb.aori.u-

tokyo.ac.jp/download.html). We make two datasets out of the

sequences in these environments by stratified sampling: ECO-18K

containing 1000 randomly selected instances per class (a total of

18 K sequences) and ECO-180K, which is 10 times larger than

ECO-18K, i.e. contains 10 000 randomly selected instances per class

(a total of 180 K sequences).

Organismal environment prediction: From the organismal envi-

ronments in MetaMetaDB, we select a subset containing gut micro-

biomes of five different organisms (bovine gut, chicken gut, human

gut, mouse gut and termite gut) and down-sampled each class to the

size of the smallest class by stratified sampling, resulting in 620 sam-

ples per class and a total of 3100 sequences. We call this dataset

5GUTS-3100.

2.2 MicroPheno computational workflow
We describe using deep learning and classical methods for classifica-

tion of the environments or host phenotypes of microbial commun-

ities using k-mer frequency representations obtained from shallow

sub-sampling of 16S rRNA gene sequences. We propose a bootstrap-

ping framework to confirm the sufficiency of using a small portion

of the sequences within a 16S rRNA sample for determining the

underlying phenotype. The MicroPheno computational workflow

has the following steps (Fig. 1): (i) to find the proper size N for the

sample, such that it stays representative of the data and produces a

stable k-mer profile, the 16S rRNA sequences go through a boot-

strapping phase. (ii) Afterwards, the sub-sampled sequences are used

to find the best value for k for classification, to produce the k-mer

representations of the samples. (iii) The k-mer representations are

used for classification with deep neural networks (DNN), RF and

linear SVM. (iv) Finally, the k-mer representations as well as the

supervised representations trained using DNNs are used for visual-

ization of the 16S rRNA gene sequences or samples. In what fol-

lows, these steps are explained in detail.

Bootstrapping: Confirming the sufficiency of only a small por-

tion of 16S rRNA sequences for environment or host phenotype

classification is important because (i) sub-sampling reduces the pre-

processing run-time, and (ii) more importantly, it proves that even a

shallow 16S rRNA sequencing is enough. We propose a resampling

framework to give us quantitative measures for finding the proper

sampling size. Let hk Xið Þ be the normalized k-mer distribution of Xi,

a set of sequences in the ith 16S rRNA sample. We investigate

whether only a portion of Xi, which we represent as ~xij, i.e. jth

resample of Xi with sample size N, would be sufficient for producing

a proper representation of Xi. To quantitatively find a sufficient

sample size for Xi, we propose the following criteria in a resampling

scheme. (i) Self-consistency: resamples for a given size N from Xi

produce consistent hk ~xij

� �
’s, i.e. resamples should have similar rep-

resentations. (ii) Representativeness: resamples for a given size N

from Xi produce hk ~xij

� �
’s similar to hk Xið Þ, i.e. similar to the case

where all sequences are used.

We quantitatively define self-inconsistency and unrepresentative-

ness and seek parameter values that minimize them. We measure

the self-inconsistency ( �DS ) of the resamples’ representations by cal-

culating the average Kullback–Leibler divergence among normalized

k-mer distributions for NR resamples (here NR ¼ 10) with sequences

of size N from the ith 16S rRNA sample:

�DS i N;k;NRð Þ¼ 1

NR NR�1ð Þ
X

p6¼qð Þ8p;q2f1;2;...;NRg

DKL hk ~xip

� �
;hk ~xiq

� �� �
;

where j ~xil j¼N; 8l2f1;2;...;NRg. We calculate the average of the

values of �DS i N;k;NRð Þ over the M different 16S rRNA samples:

�DS N;k;NRð Þ ¼ 1

M

XM

i¼1

�DS i N; k;NRð Þ:

We measure the unrepresentativeness ( �DR ) of the resamples

by calculating the average Kullback–Leibler divergence between

normalized k-mer distributions for NR resamples (NR¼10) with

size N and using all the sequences in Xi for the ith 16S rRNA

sample:

�DR i N;k;NRð Þ ¼ 1

NR

X

8p2f1;2;...;NRg
DKL hk ~xip

� �
; hk Xið Þ

� �
;

where j ~xil j ¼ N; 8l 2 f1; 2; . . . ;NRg. We calculate the average over
�DR i N;kð Þ’s for the M 16S rRNA samples:

�DR N;k;NRð Þ ¼ 1

M

XM

i¼1

�DR i N;k;NRð Þ:

For the experiments on body-site and the dataset for Crohn’s dis-

ease, we measure self-inconsistency �DS and unrepresentativeness
�DR for NR¼10 and M¼10 for any 8 � k � 3 with sampling sizes

ranging from 20 to 10 000. Each point in Figure 4 represents the

average of 100 (M�NR) resamples belonging to M randomly

selected 16S rRNA samples, each of which is resampled NR¼10

times. Since in the ecological and organismal datasets each sample is

a single sequence, the bootstrapping step is skipped.k-mer represen-

tation: We propose using the l1 normalized k-mer distribution of 16S

rRNA sequences as input features for machine learning classification

algorithms as well as visualization. Normalizing the representation

allows for having a consistent representation, even when the sampling

size is changed. For each k-value, we pick a sampling size that gives us

a self-consistent and representative representation measured by �DS

N;k;NRð Þ and �DR N; k;NRð Þ, respectively, as explained above.

Classification: RFs and linear SVM are the state-of-the-art classical

approaches for categorical prediction on 16S rRNA sequences (Duvallet

et al., 2017; Pasolli et al., 2016; Statnikov et al., 2013) and in general

for many machine learning problems in bioinformatics (Olson et al.,

2017). These two approaches, which are respectively instances of non-

linear and linear classifiers, are both adopted in this study. In addition

Fig. 1. The components and the data flow in the MicroPheno computational

workflow
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to these classical approaches, we also evaluate the performance of

DNN classifiers in predicting environments and host phenotypes.

We evaluate and tune the model parameter in a stratified 10-fold

cross-validation scheme. To ensure optimizing for both precision

and recall, we optimize the classifiers for the harmonic mean of pre-

cision and recall, i.e. F1. In particular, to give equal importance to

the classification categories, specifically when we have imbalanced

classes, we use macro-F1, which is the average of F1’s over catego-

ries. Finally the evaluation metrics are averaged over the folds and

the standard deviation is also reported. We provide both micro and

macro-metrics which are averaged over instances and over catego-

ries, respectively.

Classical learning algorithms: We use a one-versus-rest strategy

for multi-class linear SVM (Suykens and Vandewalle, 1999) and

tune parameter C, the penalty term for regularization. RF (Breiman,

2001) classifiers are tuned for (i) the number of decision trees in the

ensemble, (ii) the number of features for computing the best node

split and (iii) the function to measure the quality of a split.

Deep learning: We use the Multi-Layer-Perceptrons (MLP) neur-

al network architecture with several hidden layers using Rectified

Linear Unit (ReLU) as the nonlinear activation function. We use the

softmax activation function at the last layer to produce the probabil-

ity vector that can be regarded as representing posterior probabil-

ities (Goodfellow et al., 2016). To avoid overfitting, we perform

early stopping and also use dropout at hidden layers (Srivastava

et al., 2014). A schematic visualization of our neural networks is

depicted in Figure 2. Our objective is minimizing the loss, i.e. cross

entropy between output and the one-hot vector representation of

the target class. The error (the distance between the output and the

target) is used to update the network parameters via a back-

propagation algorithm using Adaptive Moment Estimation (Adam)

as the optimizer (Kingma and Lei Ba, 2015). We start with a single

hidden layer and incrementally increase the number of layers with

systematic exploration of the number of hidden units and dropout

rates to find a proper architecture. We stop adding layers when

increasing the number of layers does not result in achieving a higher

macro-F1 anymore. In addition, for the visualization of samples we

use the output of the n� 1ð Þth hidden layer. Later in the results

DNN-nL is a short form for a MLP neural network with n layers.

Visualization: To project 16S rRNA sequencing samples to 2D

for visualization purposes, we explore PCA (Jolliffe, 1986) as well

as t-SNE (Van Der Maaten and Hinton, 2008), as instances of re-

spectively linear and non-linear dimensionality reduction methods.

In addition, we explore the use of supervised deep representation

learning in visualization of data (Bengio et al., 2013), i.e. we visual-

ize the activation function of the last hidden layer of the neural

network trained for prediction of environments or host phenotypes

to be compared with unsupervised methods. The visualizations help

in obtaining a better understanding on how samples are distributed

in a high dimensional space and how neural networks can obtain a

transformation that separates different categories. More details on

visualization methods are provided as Supplementary Materials.

Implementations: MicroPheno uses implementations of RF,

SVM, t-SNE and PCA in the Python library scikit-learn (Pedregosa

and Varoquaux, 2011), and DNNs are implemented in the Keras

(https://keras.io/) deep learning framework using the TensorFlow

back-end.

3 Results

In this section, the results are organized based on datasets. As dis-

cussed in Section 2.2, we have several choices in each step in the

computational workflow: choosing the value of k in k-mer, the sam-

pling rate and the classifiers. To explore the parameter space more

systematically, we followed the steps demonstrated in Figure 3. (i) In

the first step, for each value of 8 � k � 3, we pick a stable sample

size based on the output of bootstrapping. (ii) We perform the classi-

fication task using tuned RF for different k-values and their selected

sampling sizes based on bootstrapping. We selected RF, because we

found it easy to tune and because it oftentimes outperforms linear

SVM (Olson et al., 2017; Statnikov et al., 2013). (iii) As the third

step, for a selected k, we investigate the role of sampling size (N) in

classification. (iv) Finally, we compare different classifiers for the

selected k and N. We also compare the performance of our proposed

k-mer features with that of OTU features in classification tasks.

3.1 Body-site identification and Crohn’s disease

prediction
(i) Bootstrapping for sampling rate selection for k-mers: Higher

k-values require higher sampling rates to produce self-consistent and

representative representations (Fig. 4 for body-site dataset). As the

structure of the curve for Crohn’s disease dataset is similar to the

body-site dataset, to avoid redundancy, the figure for Crohn’s dis-

ease is provided as Supplementary Material. For each k, we consider

a certain threshold on �DS and �DR , to ensure selecting a sampling

size resulting in self-consistent and representative representations.

(ii) Classification for different values of k with a sampling size

selected based on the output of bootstrapping: Interestingly, using

only 3-mer features with a very low sampling rate (�20/

15 000¼0.0013) provides a relatively high performance for 5-way

body-site classification (Table 1). The value of macro-F1 increases

with the value of k from 3 to 6, but increasing k further than that

does not have any additional effect on macro-F1 (Table 1, body-site

dataset, step (ii)). For Crohn’s disease Choosing k¼6 with a sam-

pling size of 2000 (�2000/38 000¼0.05) provided a macro-F1 of

0.75 which is the minimum k with top performance (Table 1,

Crohn’s disease dataset, step (ii)).

(iii) Exploring the sampling size (N) for a selected k-mer: For a

selected k-value (k¼6), using the RF classifier for different sampling

sizes is presented in Table 1, step (iii) for the body-site and Crohn’s dis-

ease datasets. Body-site classification: the results suggest that changing

Fig. 2. General architecture of the MLP neural networks that have been used in

this study for multi-class classification of environment and host phenotypes

Fig. 3. Steps we take to explore parameters for the representations, and how we

choose the classifier for prediction of the phenotype of interest in this study
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the sampling size from 0.6% to 100% of the sequences will not change

the classification results substantially, suggesting that in body-site iden-

tification, a very shallow sub-sampling of the sequences is sufficient for

a reliable prediction. Using more sequences does not necessarily in-

crease the discriminative power and may even result in over-fitting. We

selected a sampling size of 5000 for 6-mers (the sampling size with the

highest macro-F1 and the minimum standard deviation) for compari-

son between classifiers in the next step. Crohn’s disease dataset:

increasing the sampling size from 100 (100/38 000¼0.003) to 5000

(5000/38 000¼0.13) increased the macro-F1 from 0.7 to 0.75.

However, using all sequences instead of 0.13 of them in each sample,

did not increase the discriminative power (Table 1).

(iv) Comparison of classifiers for the selected N, k: In the body-

site prediction task, the RF classifier obtained the top macro-F1

(0.84) for this 5-way classification (Table 1, step (iv)). The confusion

matrix in Figure 5 shows that the most difficult decision for the clas-

sifier is to distinguish between mid-vagina and posterior fornix,

both of which are urogenital body-sites. As shown in the last row of

Table 1, combining the urogenital body-sites increases the macro-F1

to 0.99 6 0.01 using the neural network. Similarly for the Crohn’s

disease prediction dataset, the RF classifier obtained the top macro-

F1 (0.75) for this binary classification (Table 1, step (iv)).

The visualizations of body-site as well as Crohn’s disease

samples obtained through using PCA, t-SNE over raw k-mer repre-

sentations, and t-SNE on the activation function of the last layer

of the trained neural networks are presented in Figure 6a and b.

These results suggest that supervised training of representations

Table 1. The results for classification of major body-sites as well as Crohn’s disease prediction using k-mer representations

Dataset Step Representation Resample

size

Classifier Micro-metrics (averaged over samples) Macro-metrics (averaged over classes)

Precision Recall F1 Precision Recall F1

Body-site

(�15 000

reads/

sample)

(ii) 3-mers 20 RF 0.84 6 0.02 0.84 6 0.02 0.84 6 0.02 0.75 6 0.03 0.75 6 0.03 0.74 6 0.03

4-mers 100 0.86 6 0.03 0.86 6 0.03 0.86 6 0.03 0.77 6 0.03 0.77 6 0.03 0.77 6 0.03

5-mers 500 0.89 6 0.02 0.89 6 0.02 0.89 6 0.02 0.82 6 0.03 0.82 6 0.03 0.82 6 0.03

6-mers 2000 0.91 6 0.03 0.91 6 0.03 0.91 6 0.03 0.85 6 0.05 0.85 6 0.04 0.84 6 0.05

7-mers 5000 0.91 6 0.03 0.91 6 0.03 0.91 6 0.03 0.85 6 0.05 0.85 6 0.05 0.85 6 0.05

8-mers 8000 0.9 6 0.03 0.9 6 0.03 0.9 6 0.03 0.85 6 0.05 0.84 6 0.05 0.84 6 0.05

Crohn’s disease

(�38 000

reads/

sample)

(ii) 3-mers 20 RF 0.62 6 0.05 0.62 6 0.05 0.62 6 0.05 0.62 6 0.05 0.61 6 0.05 0.61 6 0.05

4-mers 100 0.7 6 0.05 0.7 6 0.05 0.7 6 0.05 0.69 6 0.05 0.69 6 0.05 0.69 6 0.05

5-mers 500 0.74 6 0.05 0.74 6 0.05 0.74 6 0.05 0.74 6 0.05 0.74 6 0.05 0.74 6 0.05

6-mers 2000 0.75 6 0.04 0.75 6 0.04 0.75 6 0.04 0.75 6 0.04 0.75 6 0.04 0.75 6 0.04

7-mers 5000 0.75 6 0.04 0.75 6 0.04 0.75 6 0.04 0.75 6 0.04 0.75 6 0.04 0.75 6 0.04

8-mers 8000 0.75 6 0.04 0.75 6 0.04 0.75 6 0.04 0.75 6 0.04 0.75 6 0.04 0.75 6 0.04

Body-site (iii) 6-mers 100 RF 0.89 6 0.02 0.89 6 0.02 0.89 6 0.02 0.82 6 0.04 0.82 6 0.03 0.81 6 0.03

1000 0.9 6 0.03 0.9 6 0.03 0.9 6 0.03 0.83 6 0.04 0.83 6 0.04 0.83 6 0.04

2000 0.91 6 0.03 0.91 6 0.03 0.91 6 0.03 0.85 6 0.05 0.85 6 0.04 0.84 6 0.05

5000 0.9 6 0.03 0.9 6 0.03 0.9 6 0.03 0.85 6 0.04 0.84 6 0.04 0.84 6 0.04

10 000 0.9 6 0.03 0.9 6 0.03 0.9 6 0.03 0.84 6 0.05 0.84 6 0.05 0.84 6 0.05

All sequences 0.9 6 0.03 0.9 6 0.03 0.9 6 0.03 0.84 6 0.05 0.84 6 0.04 0.84 6 0.05

Crohn’s

disease

(iii) 6-mers 100 RF 0.71 6 0.04 0.71 6 0.04 0.71 6 0.04 0.71 6 0.04 0.7 6 0.04 0.7 6 0.04

1000 0.75 6 0.04 0.75 6 0.04 0.75 6 0.04 0.76 6 0.04 0.75 6 0.04 0.75 6 0.04

2000 0.75 6 0.04 0.75 6 0.04 0.75 6 0.04 0.75 6 0.04 0.75 6 0.04 0.75 6 0.04

5000 0.76 6 0.04 0.76 6 0.04 0.76 6 0.04 0.76 6 0.04 0.75 6 0.04 0.75 6 0.04

10 000 0.76 6 0.04 0.76 6 0.04 0.76 6 0.04 0.76 6 0.05 0.75 6 0.04 0.75 6 0.05

All sequences 0.76 6 0.04 0.76 6 0.04 0.76 6 0.04 0.76 6 0.05 0.75 6 0.04 0.75 6 0.05

Body-site (iv) 6-mers 5000 RF 0.9 6 0.03 0.9 6 0.03 0.9 6 0.03 0.85 6 0.04 0.84 6 0.04 0.84 6 0.04

SVM 0.86 6 0.02 0.86 6 0.02 0.86 6 0.02 0.76 6 0.06 0.76 6 0.03 0.74 6 0.04

DNN-5L 0.87 6 0.01 0.87 6 0.01 0.87 6 0.01 0.79 6 0.02 0.79 6 0.03 0.79 6 0.02

Crohn’s disease (iv) 6-mers 5000 RF 0.76 6 0.04 0.76 6 0.04 0.76 6 0.04 0.76 6 0.04 0.75 6 0.04 0.75 6 0.04

SVM 0.68 6 0.04 0.68 6 0.04 0.68 6 0.04 0.68 6 0.04 0.67 6 0.04 0.67 6 0.04

DNN-7L 0.7 6 0.02 0.7 6 0.02 0.7 6 0.02 0.7 6 0.03 0.7 6 0.02 0.7 6 0.03

Body-site – 6-mers 5000 DNN-4L

(4 classes)

0.99 6 0.01 0.99 6 0.01 0.99 6 0.01 0.99 6 0.01 0.99 6 0.01 0.99 6 0.01

Note: The set of rows matches the steps (ii to iv) mentioned in Figure 3, i.e k-mer selection, N (sample size) selection and finally selection of the classifier.

The classifiers (Random Forest, Support Vector Machine and neural network classifiers) are tuned and evaluated in a stratified 10�fold cross-validation setting.

The last row shows the neural network’s performance in the classification of body-sites when the urogenital body-sites are combined.

Fig. 4. Measuring (i) self-inconsistency ( �DS ) and (ii) unrepresentativeness

( �DR ) for the body-site dataset. Each point represents an average of 100

resamples belonging to 10 randomly selected 16S rRNA samples. Higher

k-values require higher sampling rates to produce self-consistent and repre-

sentative samples
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using neural networks provides a non-linear transformation of data

that can discriminate between dissimilar environments and host

phenotypes.

Comparison of k-mer and OTU features in prediction: For a

comparison between OTU features and k-mer representations in

body-site identification and Crohn’s disease prediction, the RF clas-

sifier (as an instance of non-linear classifier) and linear SVM (as

an instance of linear classifier) were tuned and evaluated in a strati-

fied 10�fold cross-validation setting. Our results suggest that for

both k-mer features and OTUs, RF is the best choice (Table 2). In

addition, with almost 1
5 (body-site dataset) and 1

2 (Crohn’s disease

dataset) of the size of OTU features and in spite of being consider-

ably less expensive to calculate, k-mers marginally outperforms

OTU features in both body-site identification and Crohn’s disease

classification.

Fig. 5. The confusion matrix for the classification of five major body-sites,

using Random Forest classifier in a 10�fold cross-validation scheme. The

presented body-sites are saliva (o: oral), mid-vagina (u: urogenital), anterior

nares (n: nasal), stool (g: gut), and posterior fornix (u: urogenital)

Fig. 6. Visualization of (a) body-site, (b) Crohn’s disease, (c) ecological environments datasets using different projection methods: (i) PCA over 6-mer distributions

with unsupervised training, (ii) t-SNE over 6-mer distributions with unsupervised training, (iii) visualization of the activation function of the last layer of the

trained neural network (projected to 2D using t-SNE). (a) Visualization of the body-site dataset. (b) Visualization of the Crohn’s disease dataset. (c) Visualization of

18 ecological microbial environments
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3.2 Ecological and organismal environment prediction
(ii) Classification for different values of k: As stated before,

for the ecological and organismal datasets we do not need to per-

form resampling, as we classify single, representative 16S rRNA

sequences for the environment of interest. We thus can skip steps

(i) and (iii) (Fig. 3). Step (ii) in Table 3 shows the effect of k in the

performance of the classification of the 18 ecological environments

for the ECO-18K dataset and 5 organismal environments for

5GUTS-3100. Ecological environments: using k¼6 provides

the best classification performance, with a macro-F1 of 0.73 which

is relatively high for a 18-way classification (has a mere 0.06 chance

of randomly being assigned correctly for balanced dataset).

Organismal environments: the results show that k¼6 and 7 provide

a high classification macro-F1 of 0.87 for 5 classes (0.2 chance of

randomly occurring).

(iv) Comparison of classifiers for the selected k: For selected val-

ues of k, the results of the environment prediction with the RF, SVM

and neural network classifiers are provided [Table 3, step (iv), ECO-

18K and 5GUTS-3100 datasets]. The SVM classifier obtained the

top macro-F1s of 0.79 and 0.88, respectively for 18-way and 5-way

classifications.

To see the effect of increasing the number of data points in classi-

fication performance we repeat the classifier comparison (step iv)

for the ECO-180K dataset. The results are summarized in Table 3

ECO-18K dataset, showing that feeding more training instances

results in better training for the deep learning approach, which out-

performed the SVM and achieved a macro-F1 of 0.88, which is very

high for a 18-way classification task. In training the neural networks

for the ECO-18K dataset, increasing the number of hidden layers

from three to more did not help result in improvements. However,

using the ECO-180K dataset, which is 10 times larger, allowed us to

train a deeper network and increased the macro-F1 by 5% going

from 3 layers to 5 layers. Increasing the number of layers further did

not result in any improvements.

Table 2. Comparison of k-mers and OTU features in body-site classification as well as the detection of the Crohn’s disease phenotype

Dataset Features Classifiers Micro-metrics (averaged over samples) Macro-metrics (averaged over classes)

Precision Recall F1 Precision Recall F1

Body-site 6-mer features (size: 4096) RF 0.9 6 0.03 0.9 6 0.03 0.9 6 0.03 0.85 6 0.04 0.84 6 0.04 0.84 6 0.04

SVM 0.86 6 0.02 0.86 6 0.02 0.86 6 0.02 0.76 6 0.06 0.76 6 0.03 0.74 6 0.04

OTU features (size: 20 589) RF 0.89 6 0.02 0.89 6 0.02 0.89 6 0.02 0.83 6 0.03 0.83 6 0.03 0.83 6 0.03

SVM 0.85 6 0.03 0.85 6 0.03 0.85 6 0.03 0.77 6 0.05 0.78 6 0.04 0.76 6 0.04

Crohn’s disease 6-mer features (size: 4096) RF 0.76 6 0.04 0.76 6 0.04 0.76 6 0.04 0.76 6 0.04 0.75 6 0.04 0.75 6 0.04

SVM 0.68 6 0.04 0.68 6 0.04 0.68 6 0.04 0.68 6 0.04 0.67 6 0.04 0.67 6 0.04

OTU features (size: 9511) RF 0.74 6 0.04 0.74 6 0.04 0.74 6 0.04 0.74 6 0.04 0.74 6 0.04 0.74 6 0.04

SVM 0.68 6 0.04 0.68 6 0.04 0.68 6 0.04 0.68 6 0.04 0.68 6 0.04 0.68 6 0.04

Note: For this comparison, Random Forest classifier (as an instance of non-linear classifiers) and linear SVM (as an instance of linear classifiers) have been

used. The classifiers are tuned and evaluated in a stratified 10�fold cross-validation setting.

Table 3. The results for the task of selecting between 18 ecological environments as well as 5 organismal environments belonging to 5

organisms’ gut

Step Representation Dataset Classifier Micro-metrics (averaged over samples) Macro-metrics (averaged over classes)

Precision Recall F1 Precision Recall F1

(ii) 3-mers ECO-18K RF 0.6 6 0.01 0.6 6 0.01 0.6 6 0.01 0.63 6 0.02 0.6 6 0.01 0.57 6 0.01

4-mers 0.67 6 0.01 0.67 6 0.01 0.67 6 0.01 0.7 6 0.01 0.67 6 0.01 0.65 6 0.01

5-mers 0.72 6 0.01 0.72 6 0.01 0.72 6 0.01 0.74 6 0.01 0.72 6 0.01 0.71 6 0.01

6-mers 0.75 6 0.01 0.75 6 0.01 0.75 6 0.01 0.76 6 0.01 0.75 6 0.01 0.73 6 0.01

7-mers 0.74 6 0.01 0.74 6 0.01 0.74 6 0.01 0.76 6 0.01 0.74 6 0.01 0.73 6 0.01

8-mers 0.72 6 0.01 0.72 6 0.01 0.72 6 0.01 0.74 6 0.01 0.72 6 0.01 0.71 6 0.01

(ii) 3-mers 5GUTS-3100 RF 0.8 6 0.02 0.8 6 0.02 0.8 6 0.02 0.8 6 0.02 0.8 6 0.02 0.79 6 0.02

4-mers 0.84 6 0.01 0.84 6 0.01 0.84 6 0.01 0.84 6 0.01 0.84 6 0.01 0.83 6 0.01

5-mers 0.86 6 0.02 0.86 6 0.02 0.86 6 0.02 0.86 6 0.02 0.86 6 0.02 0.85 6 0.02

6-mers 0.87 6 0.01 0.87 6 0.01 0.87 6 0.01 0.87 6 0.01 0.87 6 0.01 0.87 6 0.01

7-mers 0.87 6 0.01 0.87 6 0.01 0.87 6 0.01 0.88 6 0.02 0.87 6 0.01 0.87 6 0.01

8-mers 0.86 6 0.01 0.86 6 0.01 0.86 6 0.01 0.87 6 0.01 0.86 6 0.01 0.86 6 0.01

(iv) 6-mers ECO-18K RF 0.75 6 0.01 0.75 6 0.01 0.75 6 0.01 0.76 6 0.01 0.75 6 0.01 0.73 6 0.01

SVM 0.79 6 0.01 0.79 6 0.01 0.79 6 0.01 0.79 6 0.01 0.79 6 0.01 0.79 6 0.01

DNN-3L 0.78 6 0.01 0.78 6 0.01 0.78 6 0.01 0.78 6 0.01 0.78 6 0.01 0.78 6 0.01

(iv) 6-mers 5GUTS-3100 RF 0.87 6 0.01 0.87 6 0.01 0.87 6 0.01 0.87 6 0.01 0.87 6 0.01 0.87 6 0.01

SVM 0.88 6 0.02 0.88 6 0.02 0.88 6 0.02 0.89 6 0.01 0.88 6 0.02 0.88 6 0.02

DNN-5L 0.87 6 0.01 0.87 6 0.01 0.87 6 0.01 0.87 6 0.01 0.87 6 0.01 0.87 6 0.01

(iv) 6-mers ECO-180K RF 0.83 6 0.0 0.83 6 0.0 0.83 6 0.0 0.84 6 0.0 0.83 6 0.0 0.83 6 0.0

(10� larger) SVM 0.86 6 0.0 0.86 6 0.0 0.86 6 0.0 0.87 6 0.01 0.86 6 0.0 0.86 6 0.0

DNN-5L 0.88 6 0.0 0.88 6 0.0 0.88 6 0.0 0.88 6 0.0 0.88 6 0.0 0.88 6 0.0

Note: The classifiers (Random Forest, Support Vector Machine and neural network classifiers) are tuned and evaluated in a stratified 10�fold cross-validation

setting in three datasets ECO-18K, 5GUTS-3100 and ECO-180K. The step column refers to the steps in Figure 3.
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Neural network visualization: Visualizations of representative

16S rRNA gene sequences in 18 ecological environments obtained

through using PCA, t-SNE and t-SNE on the activation function of

the last layer of the trained neural network are presented in

Figure 6c. For ease of visualization, we randomly picked 100

samples per class. These results suggest that supervised training of rep-

resentations using neural networks provides a non-linear transform-

ation of data containing information about high-level similarities

between environments in the sub-plot on the right [scatter plot (iii)],

where such structures appeared in the visualization only when more

hidden layers were used: (i) on the left, the environments containing

water are clustered in a dense neighborhood: marine, aquatic, fresh-

water, hot springs, bioreactor sludge (described in the source:

‘Bioreactor sludge is usually the sludge inside the bioreactor that treats

waste-water.’), groundwater, and, surprisingly, rhizosphere (an envir-

onment where plants, soil, water, micro-organisms and nutrients meet

and interact). (ii) In the middle, environments labeled related to sedi-

ment are found: sediment, freshwater sediment, marine sediment and

soil. (iii) Environments containing food, like food, food fermentation

and compost are at the bottom of the plot.

4 Discussion and conclusion

In this work, MicroPheno, a new approach for predicting environ-

ments and host phenotypes on 16S rRNA gene sequencing has been

presented, which uses k-mer representations of shallow sub-samples.

We conclude with discussing the results of this study in three parts:

(i) the use of k-mers versus OTUs, (ii) the benefits of shallow

sub-sampling and (iii) classical methods versus the deep learning

approach.

K-mers versus OTUs: To evaluate MicroPheno, we compared

k-mer representations with OTU features in tasks of body-site iden-

tification and Crohn’s disease classification. We replicated the state-

of-the-art approach, i.e. RF over OTU features, on datasets larger

than those that were previously explored. We showed that k-mer

features outperform conventional OTUs, while having several

advantages over OTUs: (i) The k-mer representations are easy to

compute at no computational cost for any type of alignment to

references or tasks of finding pair-wise sequence similarity within

samples as in OTU-picking pipelines. Just to get an idea of the com-

putational efficiency of k-mer calculation in comparison with

OTUs, note that 6-mer distribution calculations have been �13

times and �20 faster than going through the OTU-picking pipelines

respectively for the Crohn’s disease dataset and the Human

Microbiome Project dataset; using the same number of threads.

More details are provided in the Supplementary Material. (ii)

Taxonomy-independent analysis is often the preferred approach for

amplicon sequencing when the samples contain unknown taxa.

k-mer features can be used without making assumptions about the

taxonomy. However, OTU-picking pipelines make assumptions

about the taxonomy as discussed in Section 1.2; therefore they can

even be phylogenetically incoherent. (iii) The k-mer distribution is a

well-defined representation, while OTUs are sensitive to the pipeline

and the parameters. (iv) Sequence similarities are naturally incorpo-

rated in the k-mer representations for the downstream learning algo-

rithm, while with grouping sequences into certain categories,

sequence similarities between OTUs are ignored.

The main disadvantage of k-mer features over OTUs is that using

short k-mers makes it more difficult to trace the relevant taxa to the

phenotype of interest. When such an analysis is needed, using OTUs

or increasing the size of k would be an alternative solution.

However, as long as prediction is concerned, using a k-mer

representation seems to be the best choice for an accurate and rapid

detection/diagnosis over 16S rRNA sequencing samples.

Shallow sub-sampling: We proposed a bootstrapping framework

to investigate the consistency and representativeness of k-mer distri-

butions for different sampling rates. Our results suggest that, de-

pending on the k-mer size, even very low sub-sampling rates (0.001

to 0.1, for k between 3 to 7) not only can provide a consistent repre-

sentation, but can also result in better predictions while possibly

avoiding overfitting. Setting aside the saving in preprocessing time

as a natural benefit of sampling, this result also suggests that at least

for similar phenotypes of interest, shallow sequencing of the micro-

bial community is sufficient for accurate prediction.

Classical classifiers versus deep learning: We studied the use

of deep learning methods as well as classic machine learning

approaches for distinguishing among human body-sites, diagnosis

of Crohn’s disease, and predicting the environments from represen-

tative 16S gene sequences. Studying the role of dataset size in the

classification of ecological environments showed that for large data-

sets (in our experiments 10 K samples per class) using deep learning

provides us with more accurate predictions. However, when the

number of samples is not large enough, RFs performed better on

both OTUs and k-mer features. In addition, we observed that for

classification over representative sequences as opposed to samples

(pool of sequences), the SVM outperformed the RF classifier.

Another advantage of using deep learning in classification was that

supervised training of a proper representation of data results in a

more discriminative representation for the downstream visualization

compared to the unsupervised methods (PCA and t-SNE on the raw

k-mer distributions). For body-site identification and even more

clearly in ecological environment classification, the model was able

to extract more high-level similarities between the environments.
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