UC Berkeley UC Berkeley Previously Published Works

Title

Non-linear response of carbon dioxide and methane emissions to oxygen availability in a drained histosol

Permalink https://escholarship.org/uc/item/7xz8h9xx

Journal Biogeochemistry, 123(1-2)

ISSN 0168-2563

Authors McNicol, Gavin Silver, Whendee L

Publication Date 2015-03-01

Peer reviewed

1	Title:
2	Non-linear response of carbon dioxide and methane emissions to oxygen availability in a drained
3	Histosol
4	
5	Author Names and Affiliations:
6	Gavin McNicol ^a , Whendee L. Silver ^a
7	a. Department of Environmental Science, Policy, and Management, University of
8	California, Berkeley, Berkeley, CA, United States.
9	
10	Address Details:
11	130 Mulford Hall, #3114, University of California Berkeley, CA 94720, United States.
12	
13	Corresponding Authors Contact Details:
14	Email: gavinmenicol@berkeley.edu
15	Telephone: 510-541-1145
16	
17	
18	
19	
20	
21	
22	
23	

24 Key Points:

25	• Histosol carbon gas fluxes were measured under a wide range of oxygen concentrations						
26	• The response of carbon gas fluxes to oxygen concentration was non-linear						
27	• Data indicate high sensitivity of Histosol carbon gas flux to low oxygen (< 2%)						
28	concentrations						
29							
30	Abstract:						
31	Organic-rich wetland soils in the Histosol soil order represent the largest soil carbon (C) pool						
32	globally. Carbon accumulation in these ecosystems is largely due to oxygen (O ₂) limitation of						
33	decomposition. Increased O ₂ availability from wetland drainage and climate change may						

34 stimulate C decomposition overall and affect the balance of carbon dioxide (CO₂) and methane

35 (CH₄) greenhouse gas release. Characterizing relationships, including non-linearity, between soil

36 O₂ and C gas emissions is therefore critical to predict the partitioning and rate of C release from

37 Histosols under greater O_2 availability. We varied gas-phase O_2 concentration from 0.03 to 20 %

38 in incubations of a sapric Histosol and measured resulting CO_2 and CH_4 emissions. Efflux of

 $39 \quad CO_2 \ increased \ and \ CH_4 \ emissions \ decreased \ at \ higher \ O_2 \ concentrations, \ and \ rates \ were \ best$

 $40 \qquad \text{described by log-linear model fits. The non-linear response of CO_2 and CH_4 emissions to O_2 \\$

41 concentration indicates that moist, C rich Histosols may be highly sensitive to increases in O₂

42 availability, even below concentration thresholds typically classified as anoxic.

43

44 Keywords:

45 Soil respiration; methane; carbon dioxide; oxygen; Histosol, drained peatland

47 Main Text: (2544 words)

48 Carbon-rich Histosols found in peatlands and other wetland ecosystems contain as much as one-49 third of Earth's soil carbon (C) pool (Limpens et al. 2008). Globally many Histosols have been 50 drained for agriculture leading to large C losses and altered patterns of greenhouse gas 51 emissions. Increased soil organic C oxidation and associated carbon dioxide (CO₂) emissions 52 following drainage or natural drying of the soil have been documented in temperate (Schothorst 53 1977; Moore and Knowles 1989; Deverel and Rojstaczer 1996; Kasimir-Klemedtsson et al. 54 1997; Nieveen et al. 2005; Teh et al. 2011; Hatala et al. 2012), high-latitude (Jungkunst and 55 Fiedler 2007; Silvola et al. 2009; Sulman et al. 2009), and tropical (Moore et al. 2013) peatland 56 Histosols. Soil drying and water table drawdown in some regions under predicted climatic 57 changes may have similar effects on Histosol C stocks and fluxes (Laiho 2006; Limpens et al. 58 2008).

59

60 The availability of oxygen (O_2) is a critical control on rates of Histosol C loss as it activates key 61 oxidative enzymes necessary for extracellular breakdown of inhibitory phenolic compounds and 62 permits energetically favorable aerobic respiration (Clymo 1984; Freeman et al. 2001; Freeman 63 et al. 2004; Laiho 2006; Teh et al. 2011; Philben et al. 2014). Drainage of wetlands exposes 64 Histosols to elevated O_2 (Laiho 2006) which can increase short-term rates of CO_2 emissions by 65 two-fold or more compared to anaerobic conditions (Moore and Dalva 1993; Silvola et al. 1996; 66 Blodau and Moore 2003; Chimner and Cooper 2003; Glatzel et al. 2004; McNicol and Silver 67 2014). Drainage also dramatically decreases Histosol emissions of methane (CH₄), a greenhouse 68 gas 34 times more potent than CO₂ over a 100-year timescale (Myhre et al. 2013), by facilitating 69 aerobic microbial methanotrophy in drained soil layers (Sundh et al. 1994; Hanson and Hanson

1996; Whalen 2005). Though vegetation composition, nutrient availability, substrate quality, and
temperature also regulate rates of soil C emissions across distinct wetland Histosols (Bridgham
et al. 2006), O₂ is a direct mechanistic control on both CO₂ and CH₄ emissions.

74	Over short timescales the release of CO_2 and CH_4 from Histosols is strongly influenced by rates
75	of aerobic microbial respiration and CH ₄ consumption (methanotrophy), which are by definition
76	dependent on available O2. However, to our knowledge, no studies have explicitly characterized
77	the kinetic response of these aerobic processes at aggregate-to-pedon scale to the wide range of
78	gas-phase O ₂ concentration possible <i>in situ</i> (0-21 %). Oxygen is likely to occur at very low
79	concentrations in soil air under conditions of high biological O2 demand and a tortuous gas-phase
80	diffusion environment (Grable and Siemer 1968; Silver et al. 1999; Teh et al. 2005; Hall et al.
81	2012), such as soils at depth in peatlands. With the exception of microaerophilic methanotrophs
82	(Hanson and Hanson 1996), we have surprisingly little understanding of how processes
83	important to Histosol C gas exchange are affected by low soil O_2 concentrations (< 1 %) that are
84	functionally equated with anoxic conditions in geochemical redox classifications (Berner 1981;
85	Scott and Morgan 1990; Chapelle et al. 1995). Most soil microcosm studies that manipulate O_2
86	concentration have imposed coarse (Teh et al. 2005) or narrow (Greenwood 1961) ranges, which
87	are aptly suited for mechanistic investigations, but cannot characterize a kinetic response
88	relevant to the wide range of potential in situ O2 concentrations. Extant studies that contrast oxic
89	and anoxic conditions function as useful end-members, but are insufficient to investigate non-
90	linearity. Non-linear relationships, common in biophysical systems, and are important to identify
91	and characterize to accurately predict responses to environmental variance (Ruel and Ayres
92	1999). In the case of Histosols, non-linear effects of O ₂ must be represented to accurately model

C biogeochemical processes. Indeed recent modeling work shows that improved representation
of soil O₂ availability better predicts C fluxes from peatland Histosols (Fan et al. 2014).

95

96 There are both intrinsic and extrinsic factors that could lead to non-linearity between soil O_2 97 availability and emission of CO₂ and CH₄. Standard Michaelis-Menten enzyme kinetics that 98 govern the intrinsic reaction rates of microbially mediated soil processes would predict a non-99 linear response of aerobic respiration or CH_4 consumption to O_2 concentration. Extrinsic factors, 100 such as substrate availability (labile C or CH₄) or slow diffusive gas transport, could also lead to 101 asymptotic relationships between O₂ consuming processes and O₂ concentration (Davidson and 102 Janssens 2006). In this study, we test the hypothesis that the aerobic processes underlying CO_2 103 and CH₄ emissions from peatland soils are highly sensitive to O₂, resulting in asymptotic, non-104 linear relationships between C gas fluxes and O₂ concentrations. To test this hypothesis we 105 measured the short-term responses of CO_2 and CH_4 emissions in incubations of a drained 106 peatland Histosol to a wide range of gas-phase O₂ concentrations. 107 108 We collected approximately 6 kg of soil from the vadose zone-water table interface in a drained 109 peatland pasture located on Sherman Island, in the Sacramento San-Joaquin Delta, CA. Similar 110 to other Delta regions globally, the Sacramento Delta has experienced extensive land reclamation 111 over the last 150 years (Deverel and Rojstaczer 1996). The contemporary soil profile consists of

112 a 25 to 92 cm oxidized layer overlying a thick sapric peat horizon (Table 1) (Drexler et al. 2009).

113 We used peat soil from 80-100 cm depth that straddles the water table and therefore has only

114 undergone slight oxidation and is classified as a sapric Histosol (mucky peat). Soils at this depth

115 were wet, but not saturated at the time of collection (Table 1); moisture increases seasonally to

116 saturation in summer-time due to managed water table increases. Soil CN concentration and bulk 117 density by depth are reported in Table 1 (unpublished data). Steep, persistent O₂ concentration 118 gradients with depth have been observed at the site (Figure 1). Data are averages of hourly gas-119 phase O_2 measurements collected in March 2012 (n = 744) using calibrated galvanic cell sensors 120 (Apogee Instruments, Logan, Utah) installed at 10, 20, and 30 cm in watertight PVC cylinders 121 with a Gore-Tex seal at one end that permitted soil-chamber gas exchange (Liptzin et al. 2010). 122 The soil exhibits a consistent structure composed of fine (~mm) spherical aggregates with low 123 bulk density (Table 1), thus only gentle mixing by hand was required to homogenize slight 124 moisture differences within the sampled soil. Any stones and green plant material introduced 125 during soil collection were removed in the laboratory before approximately 200 g samples were transferred to either 1 L (946 cm³) (higher O₂ treatments) or 4 L (3,786 cm³) sized Mason jars 126 127 (lower O₂ treatments). Larger jars were used for low O₂ treatments to minimize the effect of O₂ 128 consumption and sample removal on headspace O₂ concentrations during the incubation. The jar 129 headspace was made anaerobic using a 2 hr pre-incubation in a glovebox and purging the 130 headspace with Ultra-High Purity (UHP) N₂ (Praxair, Richmond, CA) at 10 PSI. Flow rates and 131 timing required for removing O₂ below detectable limits were determined *a priori* using a 132 galvanic cell sensor (Apogee Instruments, Logan, Utah). Jars were then fitted with gas-tight lids 133 and incubated in the dark (i.e. in boxes) to prevent phototrophic CO₂ consumption.

134

135 Seven O_2 treatment levels (0.03, 0.1, 0.3, 1, 3, 10, 20 %; n = 4) were achieved by quantitative

additions of either Ultra-Zero Air (19.5-23.5 % O₂, balance N₂), or UHP O₂ (99.993 % O₂;

137 Praxair, Richmond, CA). Treatment O₂ concentrations below 0.03 % were not attempted because

138 the precision with which the residual O_2 concentration in jars after N_2 flushing was known at the

139 same order-of-magnitude as the lowest O_2 treatment ($\pm 0.01 \% O_2$). Headspaces were mixed 10 140 times with a 10 ml syringe after O_2 additions and 20 ml headspace subsamples were taken 141 immediately after mixing, and after 2, 4, and 6 h of incubation. Incubations were conducted at 142 room temperature (21 °C) and significant pressure changes were avoided by replacing headspace 143 after sample removal with either UHP N₂ (low O₂ treatments), 10 % O₂ in N₂ (10 % treatment), 144 or Ultra-Zero Air (20 % treatment). Gas (CO₂ and CH₄) concentrations were determined on a 145 Shimadzu GC-14A gas chromatograph (Shimadzu Scientific Inc., Columbia, Maryland, USA) 146 equipped with TCD and FID detectors and calibrated with standard gas containing 997 ppm(v) 147 CO_2 and 9.91 ppm(v) CH_4 .

148

149 Fluxes were computed from the linear term of a second-order polynomial fit (CO₂ flux) or linear fit (CH₄) and accepted if fit $R^2 \ge 0.99$ (12.5 % fluxes rejected). Flux data were plotted against O₂ 150 151 concentration with both linear and log-linear regressions, and fits were compared using the coefficient of determination (R^2) and the distribution of residuals as performance metrics. Direct 152 comparison of the R^2 is a fair metric for significant relationships (P < 0.001) in this case because 153 154 only one parameter is being estimated in both linear and log-linear fits, for $[O_2]$ and $log_{10}[O_2]$, 155 respectively. Quasi-Michaelis-Menten (qMM) parameters (maximum reaction velocity (qVmax) 156 and half saturation constants (qkM_{O2})) were estimated by normalizing fluxes to the mean flux 157 observed at the lowest O_2 concentration treatment (0.03 %) that forced model fits through the 158 origin. We qualify the parameters as qMM as they are not strict measures of single-enzyme 159 reaction rates. Simultaneous effects of O₂ on both aerobic and anaerobic processes (e.g. CH₄ 160 oxidation and production) and other limiting factors, such as rates of diffusive gas transport 161 across the soil air-water boundary or C substrate availability, mean the qMM parameters should

be interpreted without mechanistic specificity. All data analysis was performed in open-source
statistical software package, R (v. 2.15.2, Vienna, Austria).

164

165 Mean soil CO_2 emissions significantly increased (P < 0.001) with increasing O_2 concentration (Figure 2a,b; Table 2) from $180 \pm 5 \ \mu g \ C \ g^{-1} \ d^{-1}$ at 0.03 % O₂ to 227 $\pm 16 \ \mu g \ C \ g^{-1} \ d^{-1}$ at 20 % O₂. 166 A log-linear fit outperformed a linear model fit to all data by both metrics: log-linear R² was 0.49 167 168 in contrast to 0.38 for the linear model (Table 2), and the residuals more closely approximated a 169 normal distribution (Supp. Mat. Figure 1a,b) with less skewing at lower fitted values. Crucially, 170 the modeled y-intercept (background anaerobic respiration rate) was much lower with the loglinear fit (126 μ g C g⁻¹ d⁻¹) than the linear fit (186 μ g C g⁻¹ d⁻¹), thus the total modeled effect of 171 172 oxic conditions (~20 % O_2) on respiration was thus much larger with the log-linear fit (75 % 173 increase) compared to the linear fit (24 % increase). After normalizing data by lowest O₂ treatment we extracted a qVmax for aerobic respiration of 47.3 μ g C g⁻¹ d⁻¹ and qkM_{O2} of 2.2 % 174 175 O₂.

176

177 Mean soil CH₄ emissions decreased (P < 0.001) with increasing O₂ concentration (Figure 2c, d) 178 from 303 ± 32 ng C g⁻¹ d⁻¹ at 0.03 % to 77 ± 11 ng C g⁻¹ d⁻¹ at 20 % O₂. A log-linear model 179 greatly outperformed a linear model fit by both metrics: log-linear R² was 0.70 compared to 0.40 180 for the linear fit (Table 2), and the residuals vs. fitted value distribution improved with the log-181 linear fit (Supp. Mat. Figure 1c, d). The modeled y-intercept (background CH₄ production rate) 182 was twice as large (0.42 μ g C g⁻¹ d⁻¹) for the log-linear fit, than for the linear fit (0.21 μ g C g⁻¹ d⁻¹ 183 ¹), and the modeled effect of 20 % O₂ was thus proportionally larger (-383 % for log-linear vs. - 184 257 % for linear). After normalization we extracted a qVmax for aerobic methanotrophy of -0.18 185 μ g C g⁻¹ d⁻¹ and a qkM_{O2} of 0.2 %.

186

187 We found that heterotrophic respiration rates increased with greater available gas-phase O_2 as 188 would be anticipated given the favorable conditions for aerobic decomposition: namely moist, C-189 -rich soil, not yet at steady-state with the oxidizing atmosphere (Clymo 1984; Laiho 2006; 190 Philben et al. 2014). Importantly, we found that a log-linear model better described the 191 relationship than a linear model and the approximated qkM₀₂ indicated a high sensitivity of 192 aerobic respiration rates to available O₂ with 50 % of stimulated respiration occurring below 2.2 193 % O2. This stands in contrast to geochemical characterizations of soil redox that often refer to 194 soils as functionally anoxic below a 1 % gas-phase O₂ concentration (Berner 1981; Scott and 195 Morgan 1990; Chapelle et al. 1995). Other soils, however, may display varying degrees of O₂ 196 sensitivity where other extrinsic factors become rate limiting, such as soluble C substrate supply, or where constraints imposed by the gas-phase diffusion environment restrict O₂ transport 197 198 (Davidson and Janssens 2006). For example, we have previously observed a similarly large 199 effect of headspace O₂ removal on heterotrophic respiration rates in a peatland Histosol, whereas 200 no immediate effect was observed in a tropical Ultisol collected from the Luquillo Experimental 201 Forest, Puerto Rico (McNicol and Silver 2014). Notably, the predicted y-intercept, which reflects 202 the estimated rate of background anaerobic respiration, was much lower in the log-linear model $(126 \ \mu g \ C \ g^{-1} \ d^{-1})$ than the linear model (186 $\ \mu g \ C \ g^{-1} \ d^{-1})$. This highlights the potential for errors 203 204 arising from incorrect kinetic characterization of the impact of low O₂ concentrations – such as 205 those found at depth in drained peatlands - on process models that incorporate microbial 206 function. Regardless of fit, absolute rates of predicted anaerobic respiration are higher than

207	would be expected in C accumulating Histosols. We suggest this is due to high alternative
208	electron acceptor availability, the sapric quality of the peat, and the low water-table position. In
209	particular, the drained deltaic Histosol used in this study has a large acid-extractable Fe pool (>1
210	mg Fe g ⁻¹ ; McNicol and Silver, unpublished data) that is $\sim 40\%$ Fe(III) at the water-table
211	interface (McNicol and Silver, 2014). The CO ₂ emission data suggest that substantial stimulation
212	of CO ₂ production may be possible in moist, C-rich Histosols at low O ₂ concentrations.
213	

214 Histosol CH₄ emissions were greatly attenuated at higher O₂ concentrations and this was likely 215 due to a shift toward more aerobic, and fewer anaerobic, soil microsites favoring greater CH₄ 216 consumption, and less CH₄ production overall (Silver et al. 1999; von Fischer and Hedin 2007). 217 Improvements by fitting a log-linear model were particularly apparent for CH₄ emissions and the 218 approximated qkM₀₂ of 0.2 % indicates a very strong O₂ sensitivity. Although we did not 219 experimentally isolate CH₄ consumption, this strong sensitivity to O₂ is consistent with a micro-220 aerophilic community of methanotrophs (Hanson and Hanson 1996) and observed maxima in 221 gross CH₄ consumption rates immediately above the water table in peatland Histosols where O₂ 222 availability is well below atmospheric concentrations (Sundh et al. 1994; Limpens et al. 2008). 223 Further work is needed to evaluate the short-term O₂ sensitivity of gross CH₄ production and 224 oxidation separately, but these data demonstrate that even very low (< 1%) gas-phase 225 concentrations of O₂ are sufficient to strongly attenuate CH₄ fluxes in wetland soils. 226 227 Soil O₂ is increasingly being measured *in situ* (Silver et al. 1999, 2013; Teh et al. 2005; Burgin 228 and Groffman 2012; Hall et al. 2012; Philben et al. 2014). Though O₂ is only one component of

229 the soil redox environment, it is a highly favored oxidant with direct effects on microbial

230 respiration and methanotrophy, and thus may be a useful measurement for linking redox 231 biogeochemistry, microbial ecology, and soil-atmosphere exchange of greenhouse gases 232 (Faulkner et al. 1989; Conrad 1996). In particular the large C pool contained globally in peatland 233 Histosols is maintained by the low availability of O₂ (Freeman et al. 2001; Freeman et al. 2004). 234 Recent modeling efforts show it is necessary to consider the response of aerobic and anaerobic C 235 cycling to the wide range of possible O₂ concentrations in drained soil layers of peatland 236 Histosols (Fan et al. 2014), yet surprisingly few data sets address biogeochemical sensitivity to O2. We varied O2 concentration across several orders of magnitude in laboratory incubations of a 237 238 drained peatland Histosol to investigate the sensitivity of C gas emissions, and in particular the 239 occurrence and importance of non-linearity. We found a log-linear fit best explained the response 240 of CO₂ and CH₄ emissions to O₂ concentration. The results indicate non-linear O₂ effects may be 241 important to consider in soil C biogeochemical models because they predict different background 242 (anaerobic) rates of C emission when compared to linear models, and can capture asymptotic 243 effects of increasing O₂ availability. In summary, the study used a novel O₂ manipulation to 244 identify non-linear relationships between O₂ and Histosol C emissions, and demonstrated the 245 sensitivity of emissions to low O₂ conditions that are often functionally equated with anoxia. 246

247 Acknowledgements:

This project was supported by the California Delta Stewardship Council via the Delta Science
Program. G. M. was supported by a Lawrence Scholarship from Lawrence Livermore National
Laboratory. Additional support was provided by UC-AES. We also thank the anonymous
reviewers for comments that improved the manuscript.

252

253 **References:**

- 254 Berner RA (1981) A new geochemical classification of sedimentary environments. Journal of
- 255 Sedimentary Research 51(2): 359-365
- 256 Blodau C, Moore TR (2003) Micro-scale CO₂ and CH₄ dynamics in a peat soil during a water
- fluctuation and sulfate pulse. Soil Biology and Biochemistry 35(4): 535-547
- 258 Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North
- American wetlands. Wetlands 26(4): 889-916
- 260 Burgin AJ, Groffman PM (2012) Soil O₂ controls denitrification rates and N₂O yield in a riparian
- wetland. Journal of Geophysical Research: Biogeosciences 117(G1): G01010
- 262 Chapelle FH, McMahon PB, Dubrovsky NM, Fujii RF, Oaksford ET, Vroblesky DA (1995)
- 263 Deducing the distribution of terminal electron-accepting processes in hydrologically diverse
- 264 groundwater systems. Water Resources Research 31(2): 359-371
- 265 Chimner RA, Cooper DJ (2003) Influence of water table levels on CO₂ emissions in a Colorado
- subalpine fen: An in situ microcosm study. Soil Biology and Biochemistry 35(3): 345-351
- 267 Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H₂, CO, CH₄,
- 268 OCS, N₂O, and NO). Microbiological Reviews 60(4): 609-640
- 269 Clymo RS (1984) The limits to peat bog growth. Philosophical Transactions of the Royal Society
- of London. Biological Sciences 303(1117): 605-654
- 271 Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and
- feedbacks to climate change. Nature 440(7081): 165-173
- 273 Deverel SJ, Rojstaczer S (1996) Subsidence of agricultural lands in the Sacramento-San Joaquin
- 274 Delta, California: Role of aqueous and gaseous carbon fluxes. Water research 32(8): 2359-2367

- 275 Drexler JZ, de Fontaine CS, Deverel SJ (2009) The legacy of wetland drainage on the remaining
- peat in the Sacramento-San Joaquin Delta, California, USA. Wetlands 29(1): 372-386
- Fan Z, Neff JC, Waldrop MP, Ballantyne AP, Turetsky MR (2014) Transport of oxygen in soil
- 278 pore-water systems: Implications for modeling emissions of carbon dioxide and methane from
- 279 peatlands. Biogeochemistry 121(3): 455-470
- 280 Faulkner SP, Patrick WH, Gambrell RP (1989) Field techniques for measuring wetland soil
- 281 parameters. Soil Sci. Soc. Am. J. 53(3): 883-890
- Freeman C, Ostle N, Kang H (2001) An enzymic 'latch' on a global carbon store. Nature
- 283 409(6817): 149-149
- 284 Freeman C, Ostle NJ, Fenner N, Kang H (2004) A regulatory role for phenol oxidase during
- decomposition in peatlands. Soil Biology and Biochemistry 36(10): 1663-1667
- 286 Glatzel S, Basiliko N, Moore T (2004) Carbon dioxide and methane production potentials of
- 287 peats from natural, harvested and restored sites, eastern Québec, Canada. Wetlands 24(2): 261-
- 288 267
- 289 Grable AR, Siemer EG (1968) Effects of bulk density, aggregate size, and soil water suction on
- 290 oxygen diffusion, redox potentials, and elongation of corn roots. Soil Sci. Soc. Am. J. 32(2):
- 291 180-186
- 292 Greenwood DJ (1961) The effect of oxygen concentration on the decomposition of organic
- 293 materials in soil. Plant and Soil 14(4): 360-376
- Hall SJ, McDowell WH, Silver WL (2012) When wet gets wetter: Decoupling of moisture, redox
- biogeochemistry, and greenhouse gas fluxes in a humid tropical forest soil. Ecosystems 16(4):
- 296 576-589
- Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbio Mol Biol R 60(2): 439-463

- Hatala JA, Detto M, Sonnentag O, Deverel SJ, Verfaillie J, Baldocchi DD (2012) Greenhouse
- 299 gas (CO₂, CH₄, H₂O) fluxes from drained and flooded agricultural peatlands in the Sacramento-
- 300 San Joaquin Delta. Agriculture, Ecosystems and Environment 150: 1-18
- 301 Jungkunst HF, Fiedler S (2007) Latitudinal differentiated water table control of carbon dioxide,
- 302 methane and nitrous oxide fluxes from hydromorphic soils: feedbacks to climate change. Global
- 303 change biology 13(12): 2668-2683
- 304 Kasimir-Klemedtsson Å, Klemedtsson L, Berglund K, Martikainen P, Silvola J, Oenema O
- 305 (1997) Greenhouse gas emissions from farmed organic soils: a review. Soil Use and
- 306 Management 13: 245-250
- 307 Laiho R (2006) Decomposition in peatlands: Reconciling seemingly contrasting results on the
- 308 impacts of lowered water levels. Soil Biology and Biochemistry 38(8): 2011-2024
- 309 Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H,
- 310 Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global
- 311 implications a synthesis. Biogeosciences 5(5): 1475-1491
- 312 Liptzin D, Silver WL, Detto M (2010) Temporal dynamics in soil oxygen and greenhouse gases
- in two humid tropical forests. Ecosystems 14(2): 171-182
- 314 McNicol G, Silver WL (2014) Separate effects of flooding and anaerobiosis on soil greenhouse
- 315 gas emissions and redox sensitive biogeochemistry. Journal of Geophysical Research:
- 316 Biogeosciences 119(4): 2013JG002433
- 317 Moore TR, Dalva M (1993) The influence of temperature and water table position on carbon
- 318 dioxide and methane emissions from laboratory columns of peatland soils. Journal of Soil
- 319 Science 44(4): 651-664

- 320 Moore S, Evans CD, Page SE, Garnett MH, Jones TG, Freeman C, Hooijer A, Wiltshire AJ,
- 321 Limin SH, Gauci V (2013) Deep instability of deforested tropical peatlands revealed by fluvial
- 322 organic carbon fluxes. Nature 493(7434): 660-663
- 323 Moore TR, Knowles R (1989) The influence of water table levels on methane and carbon dioxide
- 324 emissions from peatland soils. Canadian Journal of Soil Science 69(1): 33-38
- 325 Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F,
- Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, and Zhang H, (2013)
- 327 Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science
- 328 Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental
- 329 Panel on Climate Change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J,
- 330 Nauels A, Xia Y, Bex V, and Midgley PM, (eds.)]. Cambridge University Press, Cambridge,
- 331 United Kingdom and New York, NY, USA.
- 332 Nieveen JP, Campbell DI, Schipper LA, Blair IJ (2005) Carbon exchange of grazed pasture on a
- drained peat soil. Global change biology 11(4): 607-618
- 334 Oleszczuk R, Truba M (2013) The analysis of some physical properties of drained peat-moorish
- soil layers. Annals of Warsaw University of Life Sciences SGGW. Land Reclamation 45(1):
- 336 41-48
- 337 Philben M, Kaiser K, Benner R (2014) Does oxygen exposure time control the extent of organic
- matter decomposition in peatlands? Journal of Geophysical Research: Biogeosciences 119(5):
- 339 2013JG002573
- Ruel JJ, Ayres MP (1999) Jensen's inequality predicts effects of environmental variation. Trends
 in Ecology and Evolution 14(9): 361-366

- 342 Schothorst CJ (1977) Subsidence of low moor peat soils in the western Netherlands. Geoderma
 343 17(4): 265-291
- 344 Scott Michael J, Morgan James J (1990) Energetics and conservative properties of redox
- 345 systems. In: Chemical Modeling of Aqueous Systems II. ACS Symposium Series, vol 416.
- 346 American Chemical Society. pp 368-378
- 347 Silver WL, Lugo AE, Keller M (1999) Soil oxygen availability and biogeochemistry along
- rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44(3):
- 349 301-328
- 350 Silver W, Liptzin D, Almaraz M (2013) Soil redox dynamics and biogeochemistry along a
- tropical elevational gradient. Ecol. Bull 4: 195-209
- 352 Silvola J, Alm J, Ahlholm U, Nykanen H, Martikainen PJ (1996) CO₂ fluxes from peat in boreal
- 353 mires under varying temperature and moisture conditions. Journal of Ecology 84(2): 219-228
- 354 Sundh I, Nilsson M, Granberg G, Svensson BH (1994) Depth distribution of microbial
- 355 production and oxidation of methane in northern boreal peatlands. Microbial ecology 27(3): 253-
- 356 265
- 357 Sulman BN, Desai AR, Cook BD, Saliendra N, Mackay DS (2009) Contrasting carbon dioxide
- 358 fluxes between a drying shrub wetland in Northern Wisconsin, USA, and nearby forests.
- 359 Biogeosciences 6(6): 1115-1126
- 360 Teh YA, Silver WL, Conrad ME (2005) Oxygen effects on methane production and oxidation in
- humid tropical forest soils. Global Change Biology 11(8): 1283-1297
- 362 Teh YA, Silver WL, Sonnentag O, Detto M, Kelly M, Baldocchi DD (2011) Large greenhouse
- 363 gas emissions from a temperate peatland pasture. Ecosystems 14(2): 311-325

364	von Fischer JC, Hedin LO (2007) Controls on soil methane fluxes: Tests of biophysical								
365	mechanisms using stable isotope tracers. Global Biogeochemical Cycles 21(2): GB2007								
366	Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the								
367	atmosphere. Environmental Engineering Science 22(1): 73-94								
368									
369									
370									
371									
372									
373									
374									
375									
376									
377									
378									
379									
380	Tables:								
381									
	Soil Classification	Site Location	C/N (%)	Moisture (%)	Bulk Density (g cm ⁻³)	Porosity*			
	Typic Haplosaprists	Sherman Island, CA	$23.7 \pm 3.0/$ 1.1 ± 0.1	62 ± 1	0.25	0.84			

Table 1 Soil classification and characteristics at 80 cm depth in profile (mean \pm SE).

*Porosity estimated using assumed sapric peat particle density of 1.6 g cm⁻³ (Oleszczuk and

385 Truba, 2013)

386

Gas	Fit	p-value	\mathbf{R}^2	Y-intercept	O ₂ Effect	qVmax	qkM _{O2}
				$(\mu g C g^{-1} d^{-1})$	(%)	$(\mu g C g^{-1} d^{-1})$	(%)
$\rm CO_2$	Linear	< 0.001	0.38	186	+24	-	-
	Log	< 0.001	0.49	126	+75	-	-
	MM	-	-	-	-	47.3	2.2
CH_4	Linear	< 0.001	0.40	0.21	-257	-	-
	Log	< 0.001	0.70	0.42	-383	-	-
	MM	-	-	-	-	-0.18	0.2

387

Table 2 Coefficients and fits of linear, log-linear (Log), and Michaelis-Menten (MM) models

389

390 **Captions**

Fig. 1. Average O_2 concentrations (mean ± 1 SD) with depth (10, 20, 30 cm) in drained peatland

392 pasture Sherman Island, CA, collected hourly (n = 744) in March 2012

393

Fig. 2. CO_2 flux (a, b; $\mu g C g^{-1} d^{-1}$) and CH_4 flux (c, d; $ng C g^{-1} d^{-1}$) versus O_2 concentration ([O_2])

395 (ppm(v))) on untransformed x-axis (a, c) and log₁₀ transformed (b, d) x-axis. Dashed line,

396 coefficients, R^2 and p-values are for log-linear model fit