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A HORSESHOE FOR MULTIDIMENSIONAL SCALING

JAN DE LEEUW

Abstract. Horseshoes (quadratic curves) routinely show up in mul-

tidimensional scaling and correspondence analysis solutions. We re-

view some of the empirical situations in which they are known to oc-

cur, and we discuss some of the mathematical models that produce

them. One particular model, discussed by Diaconis et al. in a recent

paper, is the Kac-Murdock-Szegö matrix A with elements aij = ρ|i−j|.
In this paper we analyze this example in some detail. We point out

that A is both totally positive and Toeplitz, and that the horseshoes

also occur for other matrices with these properties. It is shown that

double centering of a Toeplitz matrix leads to a centro-symmetric

matrix, which again will produce horseshoes.
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1. Introduction

Horseshoes and similar structures have been observed in many MDS ex-

amples, and in related data analysis techniques such as Principal Com-

ponent Analysis (PCA), Correspondence Analysis (CA), and Multiple Cor-

respondence Analysis (MCA) as well. Empirical examples in MDS include

the classical Ekman color circle and the Plomp-Levelt parabolic musical

intervals [Shepard, 1974]. One can argue that the parametric mapping

techniques in Shepard and Carroll [1966] were intended to unfold these

classical horseshoes.

In political science the horseshoe, curving from left (progressive) to right

(conservative), has been observed in many countries. A good example

is De Gruijter [1967], where the horseshoe folds further into an ellipse on

which the two extremes meet. In De Leeuw and Mair [submitted] an MCA

analysis is presented of roll-call votes in the US senate, where the three-

dimensional dimensional solution consists of two disjoint horseshoes,

one for democrats and one for republicans.

Hill [1974], in one of the earliest articles on CA in English, notes that

horseshoes are commonly found in the analysis of ecological and arche-

ological incidence and abundance matrices. He propose Detrended Cor-

respondence Analysis to unfold the horseshoes into linear dimensions,

because he considers them to be mathematical artifacts, without em-

pirical content, that moreover waste a dimension by presenting one-

dimensional structures in the plane. Further examples can be found

in archeology, where Kendall [1971] used MDS in his HORSHU method

of seriation.

Mathematical conditions leading to horseshoes have been studied in the

various disciplines that encounter them. In Guttman [1950] it was shown

that a CA of the perfect scale leads to curvilinear dimensions, because

the eigenvectors satisfy the three-point recursions defining the classi-

cal orthogonal polynomials, also familiar from discrete Sturm-Liouville

boundary value problems. Further work along these lines is in Iwatsubo

[1984]. Work of Lancaster [1969], and his many co-workers, has shown

how horseshoes, in the form of orthogonal polynomials, show up in the

CA of many bivariate distributions. In CA the horseshoe is so common
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that the Analyse des Données school of Benzécri describes it in detail as

the “Effect Guttman”. See, for example, Benzécri [1980, Ensemble VII].

More generally, in Schriever [1983, 1985] the Gantmacher-Krein-Karlin

theory of total positivity was used to give general conditions for horse-

shoes that show up in the form of oscillating and interlocking eigen-

vectors. It was shown by Schriever, and also by Gifi [1990, Chapter 9],

that many of the popular latent trait models lead to horseshoes. In ecol-

ogy, for example, the Gaussian Ordination Model for abundance data

gives horseshoes in CA. In archeology unimodal frequency matrices or

Q-matrices have the same effect. In a recent chapter De Leeuw [2008] re-

views much of the archeological and ecological literature on horseshoe

effects.

2. Problem

In Diaconis et al. [submitted] a symmetric matrix of order n

D(2) = ene′n −A,

is defined, where en is a vector with all n elements equal to one, and

where A has elements aij = exp(−σ |i − j|), with σ > 0 some positive

number. Classical Multidimensional Scaling (MDS) [Torgerson, 1958] is

applied to D(2), pretending it is a matrix of squared Euclidean distances.

Let Jn be the centering matrix, i.e. Jn = I − 1
nene

′
n. Define Ã = JnAJn.

Classical MDS computes the eigenvalues and eigenvectors of Ã.

Diaconis et al. [submitted] use this example to show how MDS can lead

to horseshoes. Their main empirical example comes from political sci-

ence roll-call data. Their technique imbeds the discrete problem into a

related one with continuous kernel. The eigenvalue problem for the con-

tinuous kernel is solved, and perturbation techniques are used to derive

approximate results for the original discrete data structure.

Note that if we define ρ = exp(−σ), then 0 < ρ < 1, and we can write

A in the simpler form aij = ρ|i−j|. Note that it sometimes makes sense

to write A(ρ) to indicate the dependence on ρ, and some time even to

write An(ρ) to indicate that we are dealing with the leading principal

submatrix of order n of the infinite matrix A∞(ρ).
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The matrix A is the autocorrelation matrix of a stationary AR(1) process,

and it has been studied extensively in Kac et al. [1953], see also Grenan-

der and Szegö [1958]. All our key results are essentially given in those

references, and in computational form they are already in Trench [1988],

where A is called the Kac-Murdock-Szegö matrix. We will also use this

name, and abbreviate it to KMS-matrix. Thus there is nothing in this note

that is not at least 50 years old, except perhaps the way in which we in-

troduce the results. We do not use continuous kernels, and we introduce

increasing structure by using more and more properties of the matrix A.

Note that we derive most of results for A, although MDS analyzes Ã. But

a detailed study of A is necessary before we get to the results for Ã in

the final section.

3. On KMS Matrices

We start with two simple and general properties of A that are immedi-

ately obvious.

Result 1. A is a correlation matrix with positive elements. Thus, by

the Perron-Frobenius Theorem, it has a simple largest eigenvalue, cor-

responding with an eigenvector with positive elements.

Proof. The Perron-Frobenius Theorem is, for example, in Gantmacher

and Krein [2002, p. 83]. �

Result 2. A is positive definite. Thus all its eigenvalues are positive.

Proof. This follows from the interpretation of A as the autocorrelation

matrix of an AR(1) sequence. �

3.1. A is Totally Positive. We now use more structure, and show that A
is totally positive (TP), i.e. all its minors of any order are positive. The

two classical references on total positivity are Gantmacher and Krein

[2002] and Karlin [1968]. Note that the first Russian edition of the

Gantmacher-Krein book is from 1941, the first English translation was

published in 1950.
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Result 3. A is a single-pair matrix, also known as a Green’s matrix [Karlin,

1968, p. 110-112], and is consequently TP.

Proof. See Gantmacher and Krein [2002, p. 78]. Let ψi = ρ−i and χi =
ψ−1
i = ρi. Then

aij =

ψiχj (i ≤ j),
ψjχi (i ≥ j).

Since all ψi and χi have the same sign, and since

ψi
χi
= ρ−2i

strictly increases, the conditions of Gantmacher and Krein [2002, p. 79,

result (c)] are satisfied. In fact, below their result (c), Gantmacher and

Krein explicitly mention our A, which they write as Gσ . �

Result 4. The inverse of A is a symmetric tri-diagonal matrix.

Proof. See Gantmacher and Krein [2002, p. 82, result (g)] for the tri-

diagonal form of the inverse. �

Result 5. The eigenvalues of A satisfy λ1 > λ2 > · · ·λn > 0.

Proof. See Gantmacher and Krein [2002, p. 87, Theorem 6]. �

The most interesting aspect of total positivity is that we can already see

where the horseshoes come from, even though we are using relatively

few properties of A. Those properties A has in common with the very

large number of examples mentioned by Karlin and Gantmacher and

Krein that are also TP, and that will consequently also lead to horse-

shoes. This was first explored systematically in a multivariate data anal-

ysis context by Schriever [1983, 1985].

We need some additional notation. Suppose xk is the eigenvector of A
corresponding with eigenvalue λk, the kth largest eigenvalue. We can

plot the n elements of xk against 1,2, · · · , n and connect successive

points. The zero-crossings of the resulting piecewise linear function are

called the nodes of the eigenvector.
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Result 6. Eigenvector uk has exactly k − 1 sign changes. The nodes of

successive eigenvectors interlace, i.e. the k− 1 nodes of xk separate the

k nodes of xk+1.

Proof. See Gantmacher and Krein [2002, p. 87, Theorem 6]. They ac-

tually give a stronger result on sign changes of linear combinations of

eigenvectors. �

It is shown by Schriever [1985, p. 48-55] that total positivity is already

sufficient for the CA of the matrix to give a horseshoe, in the sense

of a convex or concave curve, if we plot the n elements of the first and

second eigenvector in the plane, and connect successive points. Actually

the weaker condition TP(2), which only assumes that all minors or orders

one and two are positive, is already sufficient.

Remark 1. It may be of interest that aij = exp(−(xi − xj)2) is TP for all

x. In this case we do not need equal spacing. This example is relevant

for the Gaussian Ordination Model in ecology [Ter Braak, 1985].

3.2. A is Toeplitz. From the fact that A is TP we know that there are no

muliple eigenvalues, that the kth eigenvectors has k − 1 sign changes,

and that the eigenvectors have interlacing nodes. We can get some inter-

esting symmetry properties for the eigenvectors by using the fact that A
is Toeplitz. Remember that a symmetric matrix A is Toeplitz if there are

numbers t0, t1, · · · , tn−1 such that aij = t|i−j|.

Result 7. A is a symmetric Toeplitz matrix with ti = ρi.

Suppose Kn is the matrix of order n with ones on the secondary diag-

onal and zeroes everywhere else. We say that a vector x is symmetric

if Knx = x and skew-symmetric if Knx = −x. We will say that eigen-

values of A corresponding with symmetric eigenvectors form the even

spectrum, while those corresponding with skew-symmetric eigenvalues

form the odd spectrum.

Result 8. A has dn2 e symmetric and bn2 c skew-symmetric eigenvectors.

Proof. This result is usually attributed to Cantoni and Butler [1976]. Be-

cause A is Toeplitz we have KnAKn = A. Also K2
n = I, which means all



HORSESHOE 7

eigenvalues of Kn are ±1. Thus if Ax = λx, then KnAKnx = λx, and

AKnx = λKnx. If λ is simple we must have Knx = µx for some µ, and

thus Knx = ±x. This shows eigenvectors of A are either symmetric or

anti-symmetric.

We can go one step further, following the notation of Delsarte and Genin

[1983], by defining

(1) Mn =
1√
2

 Ip Ip
Kp −Kp


Here we assume n is even and the matrices Ip and Kp are of order p = n

2 .

Now M′M = MM′ = I. A Toeplitz matrix (of even order) can be written

in the form

A =
 A1 A2Kp
KpA2 A1


with both A1 and A2 symmetric of order p. Now

M′AM =
A1 +A2 0

0 A1 −A2

 ,
or M′AM = (A1 + A2) ⊕ (A1 − A2). Thus the eigenvectors of M′AM are

of the form X1⊕X2. It follows that the eigenvectors of A are of the form

(2) M(X ⊕ Y) = 1√
2

 X1 X2

KpX1 −KpX2

 ,
and thus the first n2 (in this ordering) are symmetric and the next n2 are

skew-symmetric.

If n is odd we use p = n−1
2 and

(3) Mn =
1√
2


Ip 0 Ip
0

√
2 0

Kp 0 −Kp

 ,
and obtain dn2 e =

n+1
2 symmetric and bn2 c =

n−1
2 skew-symmetric eigen-

vectors �

Result 9. The even and odd spectra of A are interlaced.

Proof. This actually follows from total postivity. But a proof in the

Toeplitz context is in Delsarte and Genin [1983]. �
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Again, it is easy to see how the Toeplitz properties of A lead to horse-

shoes. The eigenvector corresponding with the dominant eigenvalue is

positive (and thus symmetric). All other eigenvectors will have both pos-

itive an negative elements. The next eigenvalue is odd and the third one

is even, so plotting them in the plane will give a horseshoe. Throwing

away the Perron-Frobenius solution and using the next two eigenvalues

is very similar to double centering A and then computing the two domi-

nant eigenvalues of Ã.

All the results in this subsection apply to Toeplitz matrices in general.

This adds important information, because the classes of Toeplitz and

TP matrices are quite different. Toeplitz matrices need not be non-

negative and they need not even be positive semi-definite. There are

many Toeplitz matrices that are not KMS. The covariance matrix of any

weakly stationary sequence of random variables is Toeplitz, for example,

so the same horseshoe result applies to covariance matrices of general

ARMA models. Trench [1993] gives a sufficient condition for the inter-

lacing of the even and odd spectra.

3.3. A is a KMS Matrix. We get sign changes and interlacing eigenvector

nodes from TP and we get interlacing symmetric and skew-symmetric

eigenvectors from Toeplitz. If we use the precise form of the KMS matrix

A we can get much more specific results.

3.3.1. Inverse. The non-zero elements of C = A−1 are

c11 = cnn =
1

1− ρ2
,

ci,i+1 = ci+1,i = −
ρ

1− ρ2
,

c22 = · · · = cn−1,n−1 =
1+ ρ2

1− ρ2
.

For this computation we could use Gantmacher and Krein [2002, p. 78,

formula 29], but the result is classical and is easy to verify directly.

3.3.2. Spectral. To solve the eigen-problem for A−1 we have to solve n
equations. There are the n− 2 equations

(4a) − ρxk + (1+ ρ2 − µ)xk+1 − ρxk+2 = 0,
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for k = 1, · · · .n−2, which define the three-point recursion, and the two

additional equations

(1− µ)x1 − ρx2 = 0,(4b)

−ρxn−1 + (1− µ)xn = 0,(4c)

which define the boundary conditions.

Let’s look first at the n − 2 equations (4a). We’ll construct separate so-

lutions corresponding to the even and odd spectra. If x̂k = cos(αk+ β)
then

ρ(x̂k + x̂k+2) = ρ(cos(αk+ β)+ cos(α(k+ 2)+ β)) =

= 2ρ cos(α(k+ 1)+ β) cos(α) = 2ρ cos(α)x̂k+1.

Thus x̂ is a solution to (4a) with µ = 1 + ρ2 − 2ρ cos(α). Note that this

implies (1− ρ)2 ≤ µ ≤ (1+ ρ)2.

We make x̂ symmetric by choosing β = −1
2α(n + 1). This leaves the

determination of α from (4b). Because of symmetry there is no need to

consider (4c). We must have

(1− µ) cos(
1
2
α(n− 1)) = ρ cos(

1
2
α(n− 3)),

or

(5) cos(
1
2
α(n+ 1))− ρ cos(

1
2
α(n− 1)) = 0.

We have to find the dn2 e solutions of this equation between zero and π .

This must be done numerically.

For the odd spectrum we use x̂k = sin(α(k − 1
2(n + 1)), which gives

eigenvalues µ = 1+ ρ2 − 2ρ cos(α). The boundary condition now is

(1− µ) sin(
1
2
α(n− 1)) = ρ sin(

1
2
α(n− 3)),

which can be written as

(6) sin(
1
2
α(n+ 1))− ρ sin(

1
2
α(n− 1)) = 0.

This equation has bn2 c roots between zero and π , and these roots sepa-

rate the roots of (5). We show an examples with n = 10 in Figure 1, for

two different values of ρ.

Insert Figure 1 about here
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It was shown by Grenander and Szegö [1958] that

(7) 0 < µ1 <
π
n+ 1

< µ2 <
2π
n+ 1

< · · · < µn <
nπ
n+ 1

,

which is of course extremely helpful when solving numerically for the

roots. In Figure 1 there is one red root between every two vertical red

lines, and one green root between every two vertical green lines. The

vertical red lines are at 2kπ/(n+ 1) for k = 1, · · · , dn2 e and the vertical

green lines are at (2k+ 1)/(n+ 1) for k = 1, · · · , bn2 c.

Appendix A has a program in R to rapidly compute the eigenvalues and

eigenvectors. It uses the uniroot() function from the stats package,

and is extremely fast, even for very large n. It is very similar, no doubt,

to the BASIC program described by Trench [1988, p. 296].

Note that between zero and π the cosine decreases from +1 to −1. Thus

the µ increase as a function of α, and are always between (1 − ρ)2 and

(1+ ρ)2.

Of course the eigenvalues of A are of the form

λr (A) =
1− ρ2

1+ ρ2 − 2ρ cos(αr )

where the αr are the roots of (5) and (6). The eigenvectors are sin(αr (k−
1
2(n + 1)) for the odd spectrum and cos(αr (k − 1

2(n + 1)) for the even

spectrum.

4. The Effect of Centering

Doubly centering the KMS matrix A to Ã = JnAJn keeps the matrix pos-

itive semi-definite, but makes it singular. It destroys TP, and even TP(2).

It also wreaks havoc on the Toeplitz property. Fortunately, a great deal

can be salvaged. Remember that a square matrix C of order n is centro-

symmetric if cij = cn−i+1,n−j+1 for all i and j. Toeplitz matrices are

special cases of centro-symmetric matrices. Equivalently, C is centro-

symmetric if C = KnCKn or, again equivalently, if KnC = CKn. We call

a matrix C a PCS matrix if it has non-negative elements and is centro-

symmetric.

Result 10. If C is centro-symmetric then C̃ = JnCJn is centro-symmetric.
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Proof. It is easy to verify that JnKn = KnJn = Kn− 1
nene

′
n. Thus KnC̃Kn =

KnJnCJnKn = JnKnCKnJn = JnCJn = C̃ . �

Result 11. If C is centro-symmetric it has dn2 e symmetric eigenvalues and

bn2 c skew-symmetric eigenvalues.

Proof. A very similar proof applies as for Toeplitz matrices [Cantoni and

Butler, 1976]. A symmetric and centro-symmetric matrix C can be writ-

ten, if n is even, as

C =
 C1 C2Kp
KpC2 KpC1Kp


with both C1 and C2 symmetric of order p. ForM defined by (1) we again

haveM′CM = (C1+C2)⊕(C1−C2), and thus the eigenvectors again have

the form (2). For odd n we make the obvious adjustments. �

Result 12. If C is centro-symmetric the bn2 c skew-symmetric eigenvectors

of C are also eigenvectors of C̃ = JCJ, with the same eigenvalues.

Proof. If Knx = −x then e′nKnx = e′nx = −e′nx. Thus e′nx = 0 or

Jnx = x. If Jnx = x and Cx = λx then C̃x = λx. �

What we have shown in this section is that the most important prop-

erty of Toeplitz matrices from the perspective of horseshoes, which is

that there are only symmetric and skew-symmetric eigenvectors, is pre-

served by centering. We now show that if even and odd eigenvalues are

interlaced for a centr-symmetric matrix C , then they are interlaced for

JnCJn.

Result 13. Suppose λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 are the eigenvalues of the

positive semi-definite centro-symmetric matrix C and λ̃1 ≥ λ̃2 ≥ · · · ≥
λ̃n = 0 those of the double centered C̃ = JnCJn. Suppose even and odd

eigenvalues of C are interlaced. Then for n is even

even odd even odd odd
λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ · · · > λn ≥ 0

‖ ‖ ‖
λ̃1 ≥ λ̃2 ≥ λ̃3 ≥ · · · ≥ λ̃n−1 ≥ λ̃n = 0
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and for n is odd

even odd even odd odd even
λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ · · · ≥ λn−1 ≥ λn ≥ 0

‖ ‖ ‖
λ̃1 ≥ λ̃2 ≥ λ̃3 ≥ · · · ≥ λn−2 ≥ λ̃n−1 ≥ λ̃n = 0

Thus also for C̃ even and odd eigenvalues also interlace.

Proof. This combines the fact that the odd eigenvalues of C and C̃ are

equal, with the interlacing result for eigenvalues given, for example,

in Bellman [1960, Chapter 7, Theorem 5]. We know there is a n× (n−1)
orthonormal matrix M such that Jn = MM′. Then the non-zero eigenval-

ues of JnCJn are the eigenvalues of M′CM and Bellman’s result applies.

Observe that we do not know the order of λ̃k and λk+1 for k even. What

we do know for even k is that λk ≥ λ̃k ≥ λk+2. �

Of course the elements of all eigenvectors of C̃ , except for the last one,

add up to zero. In particular the eigenvector corresponding with λ̃1

is skew-symmetric, with only a single sign-change, and the eigenvector

corresponding with λ̃2 is symmetric. This is an essential component for

what we need to have a horseshoe.

The lower bound λ4 for λ̃2 can be much improved for the non-negative

centro-symmetric matrices C with interlaced even and odd eigenvalues,

and a dominant even Perron-Frobenius eigenvalue.

Result 14. Suppose x is the symmetric eigenvalue of C corresponding

with λ3, and λ̃2 is the dominant symmetric eigenvalue of C̃ . Then λ̃2 ≥
λ3 − (λ3 − λn)x′Jnx ≥ λ3(1− x′Jnx).

Proof. Suppose z = Jnx, and ε2 = (x − z)′(z − x) = 1− x′Jnx. Then z
is symmetric and centered and thus

λ̃2 ≥
z′Az
z′z

= (x + (z − x))
′A(x + (z − x))′

1− ε2
≥ λ3 − 2λ3ε2 + λnε2

1− ε2
,

which is what we set out to prove. �

Result 15. Suppose X are the m = dn2 e symmetric eigenvectors of a

centro-symmetric matrix C . Define f = X′en. Consider the “secular
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equation”

F(µ) =
m∑
i=1

f 2
i

λi − µ
= 0.

Then µ is a non-zero even eigenvalue of C̃ = JnCJn if and only if F(µ) =
0. The corresponding eigenvector is (C − µI)−1en.

Proof. Suppose C̃x̃ = λ̃x̃. Then JnCx̃ = λ̃x̃ or Cx̃ = λ̃x̃ + γen or

x̃ = γ(C − λ̃In)−1en. This implies e′n(C − λ̃In)−1en = 0 or F(λ̃) = 0.

Conversely if F(µ) = 0 with µ 6= 0 we define x̃ = (C − µI)−1en. Then

e′nx̃ = 0 and (C − µIn)x̃ = en, and thus C̃x̃ = µx̃. �

The function F(µ) increases from −∞ to +∞ in every interval λk < µ <
λk+2, and thus it has a single root in each of these intervals. In Figure 2

we show F(µ) for the KMS matrix of order 0 with ρ = exp(−.1) = 0.9048.

Vertical red lines are the eigenvalues of A, vertical green lines those of Ã.

At the green lines F is zero, at the red lines F has its vertical asymptotes

Insert Figure 2 about here

The secular equation F(µ) = 0 can be used both for computational pur-

poses and to derive bounds. For computations we refer, for example,

to Melman [1995, 1997, 1998]. It is clear that with a efficient solver we

can easily compute the roots of the double centered C̃ if we know those

of the centro-symmetric C . We have already seen computing the roots

of the KMS matrix A can be done efficiently, even for large n, and thus

computing roots of Ã can be done efficiently as well.
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Appendix A. Code

1 amat<-function(n,rho) {

2 rho^outer(1:n,1:n,function(x,y) abs(x-y))

3 }

4

5 imat<-function(n,rho) {

6 x<-matrix(0,n,n)

7 diag(x)<-1+rho^2

8 x[1,1]<-1

9 x[n,n]<-1

10 x<-x-rho*parDiag(10)

11 return(x/(1-rho^2))

12 }

13

14 doublyCenter<-function(x) {

15 n<-nrow(x)

16 s<-rowSums(x)/n

17 t<-sum(x)/(n^2)

18 return(x+t-outer(s,s,"+"))

19 }

20

21 secDiag<-function(n) {

22 outer(1:n,1:n,function(i,j) ifelse((i+j)==(n+1),1,0))

23 }

24

25 parDiag<-function(n) {

26 outer(1:n,1:n,function(i,j) ifelse(abs(i-j)==1,1,0))

27 }

28

29 bigMat<-function(n) {

30 mat<-matrix(0,n,n)

31 if ((n%%2)==0) {

32 p<-n/2

33 mat[1:p,1:p]<-diag(p)

34 mat[(p+1):n,(p+1):n]<--secDiag(p)

35 mat[1:p,(p+1):n]<-diag(p)
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36 mat[(p+1):n,1:p]<-secDiag(p)

37 mat<-mat/sqrt(2)

38 }

39 else {

40 p<-(n-1)/2

41 mat[1:p,1:p]<-diag(p)

42 mat[(p+2):n,(p+2):n]<--secDiag(p)

43 mat[1:p,(p+2):n]<-diag(p)

44 mat[(p+2):n,1:p]<-secDiag(p)

45 mat[p+1,p+1]<-sqrt(2)

46 mat<-mat/sqrt(2)

47 }

48 return(mat)

49 }

50

51 mkPlots<-function(n,rho) {

52 x<-seq(0,pi,length=100)

53 plot(x,cos(x*(n+1)/2)-rho*cos(x*(n-1)/2),type="l",

xlab="alpha",ylab="",lwd=3,col="RED")

54 lines(x,sin(x*(n+1)/2)-rho*sin(x*(n-1)/2),lwd=3,

col="GREEN")

55 abline(h=0)

56 for (i in 0:(n+1))

57 if (i%%2 == 0) abline(v=(i*pi)/(n+1),col="RED")

else abline(v=(i*pi)/(n+1),col="GREEN")

58 }

59

60 findRoots<-function(n,rho) {

61 feven<-function(x) cos(x*(n+1)/2)-rho*cos(x*(n-1)/2)

62 fodd<-function(x) sin(x*(n+1)/2)-rho*sin(x*(n-1)/2)

63 lbd<-rep(0,n); vec<-matrix(0,n,n); cv<-(1:n)-(n+1)/2

64 for (i in 1:ceiling(n/2)) {

65 int<-c(2*(i-1)*pi/(n+1),2*i*pi/(n+1))

66 rto<-uniroot(feven,int)$root

67 lbd[2*(i-1)+1]<-rto

68 vec[,2*(i-1)+1]<-cos(rto*cv)
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69 }

70 for (i in 1:floor(n/2)) {

71 int<-c((2*i-1)*pi/(n+1),(2*i+1)*pi/(n+1))

72 rto<-uniroot(fodd,int)$root

73 lbd[2*i]<-rto

74 vec[,2*i]<-sin(rto*cv)

75 }

76 val<-(1-rho^2)/(1+rho^2-2*rho*cos(lbd))

77 vec<-vec/matrix(sqrt(colSums(vec^2)),10,10,byrow=TRUE)

78 return(list(values=val,vectors=vec))

79 }
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Figure 1. Interlacing Roots for n = 10, red is even spec-

trum, green is odd spectrum
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Figure 2. Roots of the Secular Equation
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Kendall, and P. Tăutu, editors, Mathematics in the Archeological and

Historical Sciences, pages 215–252, Edinburgh, 1971. Edinburgh Uni-

versity Press.

H.O. Lancaster. The Chi-squared Distribution. Wiley, New York, New

York, 1969.

A. Melman. A Unifying Convergence Analysis of Second-Order Methods

for Secular Equations. Mathematics of Computation, 66:333–344, 1997.

A. Melman. Numerical Solution of a Secular Equation. Numerische Math-

ematik, 69:483–493, 1995.

A. Melman. Analysis of Third-order Methods for Secular Equations.

Mathematics of Computation, 67:271–286, 1998.

B.F. Schriever. Order Dependence. PhD thesis, University of Amsterdam,

The Netherlands, 1985. Also published in 1985 by CWI, Amsterdam,

The Netherlands.

B.F. Schriever. Scaling of Order-dependent Categorical Variables with

Correspondence Analysis. International Statistical Review, 51:225–238,

1983.

R.N. Shepard. Representation of Structure in Similarity Data: Problems

and Prospects. Psychometrika, 39:373–421, 1974.

R.N. Shepard and J.D. Carroll. Parametric Representations of Nonlinear

Data Structures. In P.R. Krishnaiah, editor, Multivariate Analysis, vol-

ume I, pages 561–592. Academic Press, 1966.

C.J.F. Ter Braak. Correspondence Analysis of Incidence and Abundance

Data: Porperties in Terms of a Unimodal Response Model. Biometrics,

41:859–873, 1985.

W.S Torgerson. Theory and Methods of Scaling. Wiley, New York, 1958.



HORSESHOE 21

W.F. Trench. Numerical Solution of the Eigenvalue Problem for Sym-

metric Rationally Generated Toeplitz Matrices. SIAM Journal Matrix

Analysis and Applications, 9:291–303, 1988.

W.F. Trench. Interlacement of the Even and Odd Spectra of Real Symmet-

ric Toeplitz Matrices. Linear Algebra and Its Applications, 195:59–68,

1993.

Department of Statistics, University of California, Los Angeles, CA 90095-

1554

E-mail address, Jan de Leeuw: deleeuw@stat.ucla.edu

URL, Jan de Leeuw: http://gifi.stat.ucla.edu


	1. Introduction
	2. Problem
	3. On KMS Matrices
	3.1. A is Totally Positive
	3.2. A is Toeplitz
	3.3. A is a KMS Matrix

	4. The Effect of Centering
	Appendix A. Code
	References



