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ABSTRACT OF THE DISSERTATION 
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Dr. Umar Mohideen, Chairperson 
 
 
 

The role of material losses in the Casimir force and its incorporation into the 

Lifshitz theory of the Casimir force remains unresolved. This force results from the 

modification of the zero point photon spectra due to the presence of boundaries. The 

problem arises when the Casimir force is calculated at non-zero temperatures for real 

materials boundaries. This means that the contribution of the thermal photons must be 

added to that of the zero point photons while both contributions satisfying non-ideal 

boundary conditions.  We address this problem by dynamically measuring the Casimir 

pressure between two parallel plates at T = 6.7 K, T = 77 K, and T = 300 K. At these 

temperatures, we have measured the Casmir pressure between gold coated substrates in 

the range 120 nm to 600 nm. To measure it we use a variable temperature atomic force 

microscope that we designed and built at UC-Riverside. Particularly at T = 6.7 K, the 

relative percent error of the experimental values is < 1 % in the range 150 nm to 230 nm. 

In addition, these results have less than 2% degree of agreement with the corresponding 
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theoretical values calculated using the generalized Drude-like model. This precision is 

sufficient to measure the thermal effects of the Casmir pressure predicted by the 

generalized Drude-like model. The outcome of these results will deepen our 

understanding of the mechanisms that virtual photons use to exchange energy with real 

materials. Moreover, they are bound to have a technological impact in the 

nanotechnology industry. 
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1 Introduction 
 The Casimir force belongs to a group of forces that are induced by fluctuations.  

These forces have an entropic origin and are found throughout Nature [4]. They surface 

when certain characteristic parameter of the fluctuations is large enough to interact with 

distant macroscopic boundaries. When these boundaries confine the fluctuations, hence 

limiting the entropy in the confined space, the result is an attractive force between them. 

This force is a consequence of the system's drive to minimize such a space. These forces 

are mostly due to quantum vacuum fluctuations or thermal fluctuations.[4] Quantum 

vacuum fluctuations, for example, have an infinite range and give rise to the Casimir 

force. In contrast, thermal fluctuations have a range that depends on the parameters of the 

system and are responsible for forces of classical origin. Such are the cases of the Critical 

Casimir force [5] and the force decreasing the thickness of a superfluid Helium (4He) film 

wetting a substrate [6]. Interestingly, the Critical Casimir force has been measured in two 

different systems: One of them consists of two surfaces that confine a binary liquid 

mixture close to its critical point [6]. The other is a 4He film at the vicinity of the 

superfluid/normal transition, where, due to finite-size scaling, the Critical Casimir force 

thins the film [6]. In summary, a force will attract the boundaries that confine long-range 

fluctuations, either of classical or quantum origin. Additionally, the entropic nature of 

these forces does not allow them to be compensated, which is in contrast to electrostatic, 

magnetic, or gravitational forces, where corresponding opposite fields can result in a net 

force equal to zero. 

The subject of this manuscript centers on the Casimir force between metallic 
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surfaces, which as mentioned previously, a force that is due to the quantum vacuum 

fluctuations. These fluctuations are essential for quantum field theories as they describe 

the states that exist in the absence of sources. For the case of Quantum Electrodynamics 

(QED), these states correspond to the virtual photons, and their energy is the zero-point 

energy of the electromagnetic (EM) fields. These photons are claimed to be responsible 

for the Lamb shift, anomalous magnetic moment of the electron, the Unruh effect, and the 

Casimir effect [7]. It has even been suggested that the zero-point energy of the EM fields 

contributes to the cosmological constant [8]. Nevertheless, the reality of these quantum 

vacuum fluctuations has been contested [9]. In part this is because they have not been 

experimentally observed but mainly because the effects mentioned above can be 

explained without reference to these fluctuations. Such is the case for the Casimir 

phenomena, which can be explained as a relativistic quantum effect between multiple EM 

induced dipoles [7]. This view is related to the Van der Waals forces,  however, it will not 

be described in this manuscript because it has been shown to be equivalent to the 

quantum vacuum fluctuations approach [7]. Since the quantum vacuum fluctuations play 

such a central role in the simplest description of many phenomena, more exploration is 

needed.[10] 

 The Casimir force is one tool to explore the quantum vacuum and the properties 

of its zero-point fluctuations.  In 1948, Hendrick Casimir showed that the attractive force 

between parallel plates is due to the quantum vacuum fluctuations [11], a pioneering 

result that lead to more inquires about the nature of these fluctuations. To obtain this 

result he calculated the zero-point energy inside and outside of a cavity formed by two 
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parallel plates. He used the ideal metal approximation, ε(ω) → ∞, for the plates and 

assumed they were at the same electrostatic potential. He then calculated the energy 

difference between these two regions. Surprisingly, the result is a finite value that is 

independent of any renormalization function. The expression he obtained for the force 

between the plates is the following:  

�� � �����240 � 1�� · � 

1.1  

Here F0 is denotes the Casimir force. The value d is the separation distance between the 

plates and A is the area of the plates. About a decade later, E. Lifshitz derived a 

macroscopic theory for the Casimir force with a more realistic view of the materials that 

confine the quantum vacuum fluctuations [12]. Moreover, this includes the effects that 

thermal photons have on the Casimir force. To be specific, using the fluctuation-

dissipation theorem, he calculated the force assuming the plates to be dielectrics at a non-

zero temperature. His result is currently used to obtain the accuracy of Casimir force 

experiments [13]. In this theoretical approach, the constituent material of the plates is 

characterized through their electric permittivity. Their explicit form is established when 

the theoretical model describing the material is selected. For example, using the 

Schwinger's prescription [14], Lifshitz's approach reproduces the expression in eq. 1 

when ε(ω) → ∞ is taken before considering temperature effects. It is worth noting that a 

better theoretical description of the plates will provide a better understanding of the 

interactions between the vacuum fluctuations and real materials. Of utmost importance 
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however, is that the results obtained by Lifshitz and Casimir produced ways to investigate 

the quantum vacuum from the interaction of real macroscopic objects.  

 These results have had a technological impact and a growing interest in the micro 

and nano machines community [15]. Due to the continuous miniaturization of devices 

and the lack of control of the Casimir force, the semiconductor industry has had to 

engineer devices with actuators -most likely a spring- that compensates for this force 

[16]. This approach has been used in several current working devices but is not always 

reliable [16]. The actuators are prone to wear, loose elastic properties, and eventually 

deteriorate. The idea of replacing them is, in most cases, nearly impossible and not cost 

effective. Furthermore, continuous device miniaturization will increase the role of the 

Casimir force in these technologies [15]. For example, using Eq. 1.1, when d = 10 nm the 

Casimir pressure is 1 atm. This means that there will need to be a more sophisticated 

approach to dealing with this force. A possible way to achieve this is to better understand 

the quantum vacuum fluctuations when they are confined.  This could possibly result in 

the ability to control the Casimir force, which will minimize the need for actuators that 

compensate this force. In addition, the control of the Casimir force could eventually lead 

to using it as the driving force behind future nano devices.   

 These conclusions have led researchers to setup experiments to study the quantum 

vacuum through the Casimir force. Since 1958, Sparnaay [17] and others [18-20] have 

carried out experiments, mostly between parallel plates, that attempted to measure this 

force. Unfortunately, the results of those experiments were only qualitative. Either they 

did not have enough force sensitivity or they had large systematic errors and were unable 
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to provide quantitative conclusions. Nevertheless, their results provided direction to the 

field and some measurement standards that are still followed today [13]. In contrast, 

recent experiments have used high-precision instruments to measure the Casimir force. 

They have used instruments such as the atomic force microscope (AFM) [21-23]and 

sensitive microelectromechanical devices (MEMS) [2, 24]. Their results have achieved a 

precision of around 1% with such a high accuracy that theoretical models can be put to 

the test. Another key factor is that the experiments performed with these instruments have 

extensive work on reducing systematic errors and surface preparation of the substrates.  

Such efforts have allowed them to fully investigate the behavior of the quantum vacuum 

fluctuations when they are confined.  

 The resurgence of interest in the Casimir force dates to a demonstration 

experiment by Lamoreaux in 1997 [25]. The instrument he used was a torsion balance 

that measured the Casimir force between a metal-coated lens and a plate with a similar 

coating. His results, while better than those obtained in previous experiments, were not 

sufficiently precise to increase the understanding of the quantum vacuum.[13, 26] This is 

not the case for later experiments by Mohideen et al. and the experiments that that 

followed [21-23, 27, 28]; their 1% precision is not only more than an order of magnitude 

better than the precision of Lamoreaux's experiment, but their accuracy is higher as well. 

This is because they used high-precision instruments and their data is compared to more 

specific models of the metal-coated plates.  Their results, obtained with similar lens-plate 

setups, have uncovered several properties of the quantum vacuum through the Casimir 

force. For instance, they found a geometry dependence of the force, which accounts for 
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diffraction-like effects on the fluctuations and the non-additivity of the Casimir force 

[22]. Furthermore, many of these precise experiments have been geared towards the 

understanding of the interaction of the vacuum fluctuations with real materials. For 

example, since plates are intrinsically rough, they measured the roughness and corrected 

the measured force [28]. They also modified the electrical and optical properties of the 

plates to better understand the connection between the electric permittivity of the plates 

and the quantum vacuum fluctuations [23, 27].  This last decade has seen numerous 

precise Casimir force experiments that have enhanced our understanding of the quantum 

vacuum. 

 Although these experiments have covered much ground, there still remains 

considerable number of paradoxes [13, 29, 30]. One of them is the role played by the 

dissipation of the constituent material of the plates in the Casimir force. Dissipation, 

which accounts for the relaxation processes of the conduction electrons, is a part of the 

response of any material to EM fields. Particularly at non zero-temperatures, the 

influence that the dissipation has on the material's response has been a subject of recent 

theoretical controversy [10, 13, 31, 32]. For two plates in thermal equilibrium, the dispute 

arises because temperature accentuates distinct behaviors of the force for different models 

of the plates' electric permittivity. For example, when the plates are metallic, simple 

models of the permittivity, such as the Drude or the Plasma model, produce different 

numerical values of the Casimir force. In addition to this highly debated difference, 

Drude-type models do not reproduce the ideal metal value of the force [13]. Although this 

is not universally accepted [33-35], this is not the sole detractor of these types of models. 



7 
 

For sufficiently low temperatures and in combination with Lifshitz's approach, they 

produce large thermal corrections to the force and violate the third law of 

Thermodynamics [13]; this is in contrast to calculating the force using the electric 

permittivity described with Plasma-type models, which have no fundamental problems. 

Regardless, Drude-type models are promoted because they describe more accurately the 

response of the plates' material to EM fields, especially when compared to models such 

as the Plasma model -a more phenomenological approach. According to the competing 

factions in the Casimir field, models that are more accurate should be employed to 

compare with experimental measurements. However, within the Lifshitz's approach, the 

current more accurate models have troublesome consequences. Simpler models do not 

have these issues; hence, the paradox.  

 As mentioned above, it is predicted that temperature accentuates different 

behaviors of the Casimir force for different theoretical models of the plates; therefore, 

performing experiments in a region where temperature can influence the Casimir force is 

essential. This has not been the case, however, since all experiments have been performed 

at room temperature and at separations between the plates of less than 1 micron. With 

these parameters, most experimental efforts to measure the effects of material dissipation 

at non-zero temperatures on the Casimir force have not been convincing [25]. The main 

reason is that they have not had sufficient force resolution to detect the thermal effects of 

this force. High resolution is paramount because thermal effects have a minute influence 

on the Casimir force at room temperature, and at plates' separation of less than 6 micron. 

It is only recently that a thermal correction due to the Drude model has been excluded 
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experimentally [36]. The experiment that observed it was performed at room temperature, 

between two gold (Au) coated substrates, and at distances between the substrates of less 

that 1 micron. These observations claim to be able to discern between two of the 

competing theories that describe the plates. However, these results have been contested 

and it has been suggested by various researches that they are not definitive. They assert 

that the accuracy of these measurements is overestimated [37]. Other researchers 

advocate that these results are explained with a more rigorous theoretical formulation of 

the model of the constituent material of the plates [38]. It is nevertheless general 

consensus that more precise, higher resolution experiments are required to resolve this 

subject.  

 It is the purpose of this manuscript to present an experimental study of the 

Casimir force induced by quantum vacuum fluctuations. The objective of this study is 

two fold: To understand the role of material dissipation in the Casimir force at non-zero 

temperatures, and to precisely measure the Casimir pressure between two metal plates 

separated up to 1.5 micrometers. To achieve these objectives we have designed and 

constructed a high resolution atomic force microscope capable of precise measurements. 

This microscope functions in a high vacuum environment and at various temperatures: At 

room temperature, 77 K, and at 6.7 K. Its high resolution is reached with a dynamic 

technique that measures the gradient of the studied force. Pragmatism has shown 

experimenters in this field that this gradient should be measured between a sphere and a 

substrate, instead of between two flat plates. This microscope follows this approach. After 

certain mathematical manipulation, the outcome of these measurements can be related to 
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the Casimir pressure between two flat plates. While similar instruments [2, 24, 39] have 

already used dynamic techniques to study the Casimir force, none of them has used them 

in a low temperature environment. The advantage and particularity of using our 

microscope in this environment is that it has the potential to have greater resolution than 

its counterparts do at room temperature. Therefore, in principle, this microscope should 

have enough resolution to distinguish between the two competing theories regarding 

material dissipation. In conclusion, we expect its results to shed some light on the way 

the quantum vacuum fluctuations interact with the dissipative materials that confine 

them. In addition, they should allow technologists to have a clearer picture of the 

scenarios devices will encounter when size scales drop far below 1 micron.  

 This thesis contains seven chapters. The first one is the introduction. The second 

chapter describes a theoretical formulation of the Casmir force at zero temperature in the 

plate-plate configuration and in the sphere-plate configuration. The following chapter 

presents the same formalism from chapter two but for the Casmir force at non-zero 

temperatures. In this third chapter, we also review some material models that are relevant 

for the measurement of the force and present the controversial results that researchers 

have obtained. In the fourth chapter, we review previous techniques to measure the 

Casmir force and some of its most relevant accomplishments. Additionally, we present 

the technique used by the authors of this manuscript to measure the Casmir force and the 

reasons why it has the potential to increase the force resolution by several orders of 

magnitude. The fifth chapter describes the most relevant features of the experimental 

apparatus used by the authors to explore the Casmir effect and in the sixth chapter; the 



10 
 

results and the analysis of the measurements are presented. Chapter 7 concludes the thesis 

with a review of the accomplishments and future prospects of this experimental study. 
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2 Casimir force at zero Kelvin 

 In this chapter, there are two sections with different derivations of the Casimir 

force between parallel plates, both of them assuming that the temperature is zero. The 

first section treats the material boundaries as ideal metals, similar to the approach 

followed by H. Casimir. The resulting expression is used in the next subsection to briefly 

describe the Proximity Force Approximation, a necessary step to obtain an approximate 

value of the Casimir force between a sphere and a plate. The second section contains a 

derivation of Lifshitz's equation for dielectric materials and some of its properties. For 

instance, it is shown that Lifshitz's equation is equal to Casimir's result in the ideal metal 

regime. Lastly, there is a brief description of a theoretical formulation that has been used 

to correct the Casimir force model for plate’s roughness and their finite conductivity. This 

formulation will provide a more realistic model for the Casimir force, hence reducing the 

accuracy of the experimental measurements.  

2.1 Casimir Force for Ideal Metals 

 To obtain the Casimir force for two semi-infinite parallel plates at T = 0, it can be 

assumed that they are made out of ideal metal (ε(ω) → ∞) and electrostatically neutral. 

This defines the boundary conditions for the EM field fluctuations - the quantum vacuum 

fluctuations- between the plates.  These fluctuations have an energy equivalent to the 

ground state's zero point energy of a quantum harmonic oscillator. Hence, for 

monochromatic fluctuations this energy is E� � �ω/2. This means that the total zero-

point energy between the parallel plates separated by a distance d, and both with side 
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dimensions of Lx = Ly = L, is the following:  

 

E�d� � � 2 �ω�,�,�2�
�,�,� � � π�c "l�L� % m�L� % n�d�() �*�

�,�,� , l, m, n + 0. 
2.1 

This equation accounts for two independent polarizations of the field and avoids term 

repetition; -only one polarization is included when either index is zero: this is the reason 

for the prime at the summation.  

 To calculate the zero point energy outside the plates, a box with sides Lx, Ly, and 

Lz is considered. If these dimensions are taken to infinity, the zero point energy inside the 

box has the following expression  

E�∞� � L�π� ��c� dπ . dk01
� . dk21

� . dk31
� 4k0� % k2� % k3�5) �* , 

2.2 

where k0 � πl L0* , k2 � πm L2* , and k3 � πn L3* . This energy is the equal to the energy 

outside of the plates. 

 For semi-infinite plates, L  >> d, U�d� � E�d� 8 E�∞� is the energy to bring the 

plates from infinity to a distance d from each other, 

U�d� � L��cπ� 9� . dk01
� . dk21

� �k0� % k2� % n�π�d� �) �*�
�

8 dπ . dk01
� . dk21

� . dk31
� 4k0� % k2� % k3�5) �* :. 
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2.3 

This expression, of two infinite quantities, can be reduced to a finite quantity through 

various renormalization procedures. Physically, however, this is possible because the 

metal plates set a natural cutoff frequency and the cutoff function can be chosen 

accordingly. This cutoff function considers that the metal plates are transparent to high 

frequency field fluctuations; which happens when the frequencies of these fluctuations 

are much larger than the plasma frequency of the metal substrate. The chosen cutoff 

function and Eq.  2.3, after some mathematical manipulation, result in an expression that 

does not depend on the cutoff frequency or this cutoff function. This result is the 

expression in eq. 2.4, the Casimir energy: 

U�d� � 8 � π��c720d<� L�. 
2.4 

This expression and F�d� � 8>U�d� yield the Casimir force of Eq.  1.1.  

2.1.1 Proximity Force Approximation 

 Precise Casimir force experiments are performed in the lens-plate configuration; 

specifically, between a sphere and a plate. This configuration has resolved the issues 

related to maintaining two plates parallel. Its disadvantage is that there is not an exact 

theoretical expression for its Casimir energy.  To overcome this, researchers have used 

the Proximity force approximation (PFA) [40] to compare their force measurements to 

the approximated expressions of the theory. This is an approximate method to calculate 

the averaged interaction energy between two curved objects separated, at their closest 
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point, by a distance z. To calculate this energy, each of these objects' surfaces is redrawn 

with infinitesimal planes, located along the surfaces, and following the curvature of each 

object. It continues by calculating the interaction energy between two of these planes, one 

from each object, and facing each other.  The result is the interaction energy per unit area 

between these facing planes, Ei(w), where w is the separation between them and the i 

denotes the i-th pair of planes. This procedure continues between pairs of planes for all 

the planes of the objects. The sum of all the corresponding Ei(w) terms per pair is the 

total interaction energy between the two objects, V(z): 

V�z� � .E�w�dS.C  

2.5 

S is the total surface involved in the calculation of V(z). This expression assumes that the 

interaction energy between non-facing planes is negligible and that z is small in 

comparison to the radii of curvature of the objects. 

 The expression in Eq. 2.5 yields the approximate value of the Casimir energy 

between a sphere of radius R and a plate separated by a distance d. The negative 

derivative of this value with respect to d is the Casimir force for the same configuration: 

FDE�d� � 2πREEE� �d�, 
 2.6 

where EEE� �d� is the Casimir energy between two semi-infinite plates of eq. 2.4. 

 The proximity approximation, developed by Derjaguin, has been successfully 

applied to many fields, especially, fields related to scanning probe microscopy (SPM). In 
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the Casimir field however, where precision has become paramount, researchers have 

contested PFA [41, 42].  This is because, for the sphere-plane configuration, it introduces 

a relative error of the order of d/R to the theory [43]. This result, obtained from 

dimensional considerations, is less than 0.01 in current experiments. A recent [44] 

experiment however, has estimated that this value is smaller than d/R. This result 

contradicts the extrapolated results of numerical calculations from Emig et al. [41] and 

Maia-Neto et al. [42] For ideal metal substrates, these researchers have claimed a 

correction of the order d/R beyond PFA. They estimated that d/R ~ 1.4, using parameters 

of current Casimir experiments.  

Recently, using the scattering method, other researchers have computed the Casmir 

energy between a sphere and a plate for non-ideal metals at non-zero temperatures. They 

have obtained expressions for materials described with the Drude model [45, 46], the 

plasma model [45, 46], and their corresponding generalizations [46]. For d/R > 1, these 

expressions are analytical and show large deviations from the PFA. These researchers 

have obtained analytical expressions for the energy and numerically found strong 

correlations between temperature, dissipation, and geometry. In addition, they have found 

that their results are material dependent. For d/R < 1, this method can attain exact values 

for intense numerical calculations. That is, since the scattering method depends on a 

multipole expansion of the partial EM waves scattered from sphere-plate configuration, 

when the sphere plate distance is small, the amount of terms in the expansion is large. 

Hence, the accuracy of this method relies on the amount of terms form the expansion are 

included. Additionally, only analytical expressions (not tabulated data) can be used for 
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the material properties. Since there is not a consensus of the relative error introduced by 

PFA and an exact calculation has not been performed yet, this experimental study 

considers this error to be of the order of d/R. 

2.2 Casimir Force for Dielectric Materials 

 Microscopic theories, such as Van der Waals forces for neutral atoms, were not 

able to reproduce the result of Casmir [7], eq. 1.1, between two parallel plates. They 

obtained the same distance dependence, but the numerical value is off by 20%. This 

disagreement is due to the assumption, within these theories, that the interaction of atoms 

occurs only between pairs of them. This assumption is correct for rarefied media, but not 

for dense macroscopic objects, where the interaction between pairs of atoms is modified 

by the surrounding medium. To account for this, Lifshitz developed a macroscopic 

formalism that considers the interaction between objects through the fluctuating EM 

fields that are inside of them and leak outside of their boundaries [12]. These fields must 

be consistent with the dispersion relations of the medium and the boundary conditions of 

the objects. The result is an expression, referred to as Lifshitz's formula, which calculates 

the Casimir force between two dielectric plates at non-zero temperature. For the case of 

ideal metal plates at T = 0, it recovers the result of Eq. 1.1, and for rarefied media, at T = 

0 as well, it yields the result obtained with microscopic theories. 

  Lifshitz's formalism has been revisited by many researchers [13, 30], which have 

obtained equivalent results with different and more modern formalisms, and not always 

explicitly recurring to the zero-point energy between the plates. Some of these 
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formalisms use Source theory [47], Green functions derivations and an approach based 

on the delta-functions potentials [30]. In this manuscript, Lifshitz's formula is obtained 

using the approach of Milonni [7]on the results by Van Kampen et al. [48], which, 

including retardation, and effectively calculates the zero-point energy between two 

dielectric plates. This approach reproduces Lifshit'z formula for dielctric materials and is 

coherent with the quantum vacuum fluctuations picture of the Casimir force. Its 

disadvantage is that it does not consider the absorption of the material. That is, in this 

approach, the procedure to measure the energy between the dielectric plates assumes only 

real dielectric functions. Nevertheless, the result is the Lifshitz formula, which can be 

used for materials with absorption i.e. materials with complex ε(ω). The answer to this 

paradox relies on a special mathematical procedure. To be able to sum the modes between 

the plates, the calculations are performed in the complex plane. This results in the modes 

frequency ω → iξ, hence ε(ω) → ε(iξ), a quantity that is always real and obtained with 

the Kramers-Kronig dispersion relation. This connects the value of the dielectric function 

ε(iξ) to the non-zero absorption of the material. While the approach of Milonni is not 

entirely rigorous, since it contains certain mathematical weaknesses, researchers have 

shown that it can be corrected. Barash and Ginzburg gave a formal derivation of 

Lifshitz’s formula in the context of zero-point fluctuations [7]. But most importantly, 

their theory assumes the dielectric functions to be complex, which means it includes the 

imaginary term of the permittivity related to the absorption of the materials. 



18 
 

2.3 Lifshitz's Equation by Van Kampen et al. 

 To obtain the Casimir force between dielectrics plates, they consider three parallel 

layers of different dielectric media. In this approach, these layers are characterized by 

their non-local responses to fluctuating EM fields, εj(ω). A schematic drawing of the 

configuration of the system under study is presented in Fig 1. The distance d between the 

exterior layers is small in comparison with the dimensions of the other 2 layers. The 

fields inside each of the layers are described by the Maxwell equations without sources. 

They are uniquely defined with the boundary conditions of this configuration, which are 

the standard conditions for stratified media.  

 The EM fields in these configurations have a different solution in each dielectric 

region, a periodic solution in the region between the plates (0 < z < d), and exponentially 

decaying fields in the other regions (z < 0, z > d). Since the layers are semi-infinite only 

the z-component of the EM fields Ez(z) is meaningful to the Casimir problem:  

Eqs. QQ1  

z = d 

ε2 (ω)  

ε3 (ω)  

ε1 (ω)  

z 

z = 0 

Figure 2.1. The system under study consists of three semi-infinite layers of three different 
dielectric media.  
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GH�I� � �JKLH ,   I M 0, 
                                     � NJKOH % PJQKOH, 0 M I M �, 

            � RJQKSH ,   I T �, 
where UV � WX� 8 YV�Z� Z� ��⁄ , a real value, and A, B, C, and D are constants. These 

constants and the continuity conditions at the boundaries define the frequencies of the 

EM fields in the three regions. The frequencies are the solutions of the following 

expressions: 

Eqs. QQ2  

�Y<U) % Y)U<��Y<U� % Y�U<��Y<U) 8 Y)U<��Y<U� 8 Y�U<� J�KO\ 8 1 � 0, 
Eqs. QQ3  

�U) % U<��U� % U<��U) 8 U<��U� 8 U<� J�KO\ 8 1 � 0, 
 

where eqs. QQ2 corresponds to the Transverse Magnetic modes (TM) and eqs. QQ3 to 

the Transverse Electrical modes (TE).  

 The zero-point energy associated with the frequencies, the solutions, of eqs QQ2 

& QQ3, for the TM and TE polarizations is,  

Eq. QQ4  

G��� � �4� � . �XX ]� Z_̂`^ �X� % � Z_̂a^ �X�b1
� , 

 

where k is the wavenumber of the continuous modes and A is the area of the layers. In 
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this expression the modes in the x and y direction are continuous and therefore integrated.  

 The sums in eq. QQ4 are over the frequencies that satisfy eqs. QQ2 & QQ3. If 

these equations are defined in the complex ω plane as FTM(ω) and FTE(ω) respectively, the 

sums in eq. QQ4 are the sums of the zeros of these functions. A feature of these functions 

is that their poles do not depend on the distance d. In terms of these functions and using 

the Argument Principle of Complex Analysis, eq. QQ4 can be expressed in this form,  

Eq. QQ5  

G��� � �4� � c 12�de . �XX1
� "f Z �_`� �Z��_`�Z� �Z % f Z �_a� �Z��_a�Z� �Zgg (, 

 

where the contour C is over the imaginary axis and a semicircle in the right half of the ω-

plane. �_a� �Z� hi� �_a� �Z� are derivatives with respect to ω of the functions defined 

above. It is assumed that the frequencies of eq. QQ4 are real, setting the values of εj (ω) 

to be real. Since the integral over the semicircle of C does not depend on d, the integral is 

performed along the imaginary axis. It is in this step that ω → iξ. If a new function G(ξ) 

= F(iξ) is defined, eq.QQ5 reads,  

 Eq. QQ6  

G��� � �8� � . �XX1
� ". �k lmn o_`�k�1

Q1 % . �k lmn o_a�k�1
Q1 (. 

 

The force then, is, 

Eq. QQ7  
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���� � 8 �2�� � . �XX1
� . �kU<1

� ] 1o_`�X, k� % 1o_a�X, k�b. 
 

With the purpose of showing the equivalence of this equation with Lifshitz’s formula, this 

approach requires the introduction of the variables p, s1, and s2. In terms of the variables 

from eq. QQ7 have the form: 

Eq. QQ8  

X� � Y<�dk� k��� �p� 8 1�, U< � WY<�dk� k� p, U),� � Y<�dk� k��� q),�� . 
Milonni has shown the equivalence between eq. QQ7 and Lifshitz's formula: 

Eq. QQ9  

���� � 8 �2�� � . �pp�1
) . �kk<Y<< �⁄1

� �]Y<q) % Y)pY<q) 8 Y)p Y<q� % Y�pY<q� 8 Y�p J�rsWtOu v⁄ 8 1bQ)

% ]q) % pq) 8 p q� % pq� 8 p J�rsWtOu v⁄ 8 1bQ)�. 
 

 This expression is reduced to the case that Hendrik Casimir calculated when ε1,2 

(ω) → ∞ and ε3(ω) = 1, which is the ideal metal limit, substituting these values in eq. 

QQ9, the force between the layers is,  

Eq. QQ10  

���� � 8 �2���< � . �pp�1
) . �kk<1

�
2J�rsu v⁄ 8 1 � 8 ����240�� �. 

In addition, Eq. QQ9 is useful to derive the retarded and non-retarded limits of the force 

between the plates, as well as the forces between neutral atoms, the commonly known 
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Van der Waals force.  

 To account for realistic properties of the dielectric layers and compare eq. QQ9 to 

experimental results, it is necessary to include certain corrections, some of which are 

addressed in the following section.  

2.3.1 Corrections to the Model: Roughness and Finite Conductivity of the Plates. 

 Roughness and finite conductivity corrections increase the accuracy of the models 

of the Casmir force and reduce deviations between the models and their experimental 

counterpart. Finite conductivity corrections account for 10-20% of the force at d < 1 

micrometer [43], and depending on the substrate's quality, the roughness can sufficiently 

change the force at short distances. Experimentally, this was first demonstrated by 

Mohideen et al. [21], where they were able to discern between the corrected model and 

the model predicted for perfect plates. In their study, the corrected model assumes that the 

corrections are not correlated. That is, the corrected expression of the Casimir force 

considers each correction separately as a multiplication factor. While this approach 

proves that the corrections have a measurable effect on the force, up to 20% due to 

surface roughness, it has shown that at short separations they can be correlated. For this 

reason, Klimchitskaya et al. [49] developed a non-multiplicative approach to account for 

the combined effect of conductivity and roughness corrections. Based on the Proximity 

Force Approximation, this approach geometrically averages the forces between surface 

features of the plates. Specifically, each force is calculated between two facing features of 

the plates and in the average, each force is weighed by the probability of having such a 

combination of features. This approach has been the method of choice for researchers 
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because current experiments measure the force at distances about a 100 nm, where the 

correlation of the corrections is more significant.  

 Nonetheless, the assumption in the experiment of this manuscript is that the 

corrections are not correlated. This experiment measures the Casimir force at separations 

above 120 nm for substrates with roughness of about 1 nm. It has been shown [50] that 

for such small roughness and separations, the approach used by Mohideen et al. yields 

equivalent results to the non multiplicative approach. 

2.3.2 Conductivity Correction: Imperfect Conductivity of the Plates. 

 An imperfect conductor has a finite electrical conductivity, which is in contrast to 

the infinite conductivity of a perfect metal. Conductivity is considered in the Casimir 

force picture through the permittivities, εj(ω),  of the dielectric layers in  eq. QQ9.  For 

the case in which two conducting plates, made of the same material, are separated by a 

vacuum gap, ε1,2(ω) = ε(ω) and ε3(ω) = 1. The choice for ε(ω), as mentioned above, will 

set the degree of realism of the theoretical model of the plates.  However, inspection of 

the Lifshitz's formula shows that the model is effectively preselected. The reasons are that 

the force between the plates is measured at distances of the order of micrometers and that 

the dominant frequencies in this configuration are near ω ~ c/d.  Consequently, these 

frequencies are in the optical and infrared range. The plates’ response to EM fields of 

these high frequencies is accurately described with the Plasma model for metals. In the 

context of the Lifshitz's formula (ω → iξ), it has the following expression: 

Eq. WW1      
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Y�dk� � 1 % Zs�k� , 
where Zs is the plasma frequency of the metal plates: 

Eq. WW2      

Zs� � 4�wJ�xy . 
In this expression, N is the density of conduction electrons and xy is their effective mass.  

To calculate the conductivity correction in the plasma model regime, researchers 

use a perturbation method that expands the force in powers of the relative penetration 

depth δ0/d of the field fluctuations [43, 51], where z� � 2�� Zs*  is the skin depth of the 

metal plates. For � { 2�� Zs* , this approach is accurate and in good agreement with 

numerical results using optical tabulated data for the complex permittivity of the 

constituent material of the plate. Currently, researchers [13] have calculated the force for 

an imperfect conductor up to the fourth power of δ0/d: 

Eq. WW3  

�ss| ��� � �ss� ��� "1 8 163 z�� % 24 z���� 8 6407 �1 8 ��210� z�<�< % 28009 �1 8 163��7350 � z����(, 
where �ss� ��� is the expression in eq. 1 for perfect plates, and the superscript c refers to 

the force corrected for finite conductivity. Note that, at first order, eq. WW3 is congruent 

with the idea of the plates having a finite conductivity. That is  �ss| ��� M �ss� ��� . 

Similarly, Lambrecht et al. [52] [53]found that the force between perfect mirrors is 

always greater than the force between mirrors with and arbitrarily-frequency dependant 

reflectivity. 
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 Since experimental measurements are between a sphere and a plate, using PFA, 

the corresponding Casimir force with conductivity corrections is  

Eq. WW4 

 

FDE� �d� � FDE�d� "1 8 4 δ�d % 725 δ��d� 8 3207 �1 8 π�210� δ�<d< % 4003 �1 8 163π�7350 � δ��d�( . 
 

FDE�d� is the force between a sphere and a plate for perfect conductors of eq. 2.6.  

2.3.3 Roughness Correction 

 Roughness of the plates in the Casimir force context has been a subject of 

continuous interest.  There are two kinds of roughness, periodic and stochastic.  

Currently, there is much enthusiasm regarding roughness as a periodic corrugation of the 

plate, where exact formulations for the Casimir force for this configuration have been 

obtained [53, 54]. The researchers developing these models are interested in the 

diffraction-like effects of the zero-point fluctuations and the non-additivity of the force 

[53]. These effects occur when the corrugation period λ is smaller than the separation 

between the substrates d; otherwise, they are negligible. The study of these effects was 

triggered by an experiment, in which λ/d > 1, of Mohideeen et al. [55] It did not observe 

the mentioned effects, but showed that there exist a non-trivial boundary dependence of 

the Casimir force between a metal-coated sphere and metal-coated grating. In a recent 

experiment, Chiu et al. [56] precisely measured these effects between corrugated plates. 

However, when the Casimir force is measured between relatively flat surfaces, 
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diffraction-like effects due to the stochastic roughness is  negligible, if the amplitude is 

less than 1 nm for separation distances >100 nm. This is the case of the experimental 

study reported in this manuscript. Although periodic features are found on the surface of 

the plates, the value of the corresponding correction is negligible as well.  The reason is 

that the correlation length of these features is much bigger than the distance between the 

plates. 

 The roughness of the plates in the experimental study reported in this manuscript 

is modeled with a pairwise summation approximation [10], a phenomenological 

approach, and a simpler method. This approximation assumes that the interaction 

between two objects is the sum of the interactions between pairs of infinitesimal 

volumes; three or more infinitesimal volumes interactions are not consider. While 

Mohideen et al. [21] followed the same approach, the following description includes 

correction terms of higher order, and the roughness of each substrate considered. In this 

model, the roughness of the two surfaces is described by two different functions: 

Eqs. XX 

z) � δ)f)�x), y)� and z� � d % δ�f��x�, y��. 
 

Where δ� is the rms variance of the surface features of the i-th substrate and the value d is 

the mean value of the distance between the plates. Moreover, for stochastic surface 

roughness on the plates the functions � f��x�, y�� � for i = 1, 2, form a distribution with 

δ�� as its width. The distribution is normalized to one and  δ� M �. This means that the 

Casimir energy between substrates, in the PFA approach, has to be averaged over all 
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possible values of the ith functions for each substrate. This is achieved assuming that the 

mentioned distribution is a normal distribution.  Then, the Casimir force between plates, 

FEE� , is  

Eq. XX1 

FEE� � 8 14A� ∂∂d ��U��d��)��, 
where, A is the area of the plates and the superscript r denotes that the roughness 

corrections are included in the force. U��d�  is the Casimir energy, obtained through 

pairwise summation, of an induced dipole-dipole interaction. In addition, it 

approximately considers the non-additivity of the interaction.  

For a sphere-plate configuration, eq. XX1 yields a Casimir force equal to,  

Eq. XX2  

FDE� �d� � FDE�d� �1 % 6 "cδ)d e� % cδ�d e�( % 45 "cδ)d e� % cδ�d e�(��, 
where FDE�d� is the Casimir force between a sphere and a plate for perfect conductors, 

the expression in eq. 2.6. 

 To obtain a numerical correction from eq. XX2, the rms variance,  δ�, of each 

substrate is calculated with values measured from the topography of the substrates, which 

is generally obtained with an atomic force microscope. The topography is then, 

characterized by a probability distribution, where vi(hi) is the probability of having an 

area of the substrate with features of height hi. For a discrete number of vi values, the 

average distance H0 is, 

Eq. XX3  
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��H� 8 h� �v� � 0,�
��)  

where n is the number of areas that are obtained in the analysis of the topography. With 

this same distribution the rms variance is,  

Eq. XX4  

δ��D� � ��H� 8 h� ��v�.�
��)  

This expression and eq. XX2 yields the roughness correction to the Casimir force 

between a sphere and a plate in the pairwise approximation, both of which have a 

stochastic roughness. 

 The expressions obtained in this chapter are an initial approach to the description 

of the Casimir force between parallel plates and between a sphere and a plane. In eq. 

QQ9, Lifshitz, formula, the corrections due to surface roughness, eq. XX2, and the 

correction due to finite conductivity, eq. WW4, create a robust formulation that allows 

researchers to better compare their experimental results with the theory. However, since 

experiments are performed at non-zero temperatures, it is necessary to include the 

temperature in the formulism described above. Next chapter presents a derivation of the 

Lifshitz equation that includes temperature, as well as its results when different 

permittivities are employed.  
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3 Casmir Force at Finite Temperatures. 
 
 In this chapter, the Lifshitz's equation is considered for finite temperatures, and in 

this context, some of the consequences of the nature of the material of the confining 

plates are reviewed. In the first section, using the results from chapter two, the Lifshitz's 

equation for finite temperatures is derived. The following section describes controversial 

issues related to the thermal corrections of the Casimir force. The Lifshitz's equation is 

calculated for the competing models for the metal plates. The models considered are 

Plasma-type models and Drude-type models. To illustrate the controversies of these two 

approaches, this chapter ends with some arguments in favor and against these competing 

approaches. 

3.1 Casmir Force for Two Parallel Plates at Finite Temperatures. 

 An intuitive, Casmir-like, way to understand the temperature dependence of the 

Lifshitz’s equation, eq. QQ9, is to extend it by including thermal photons. In contrast to 

zero-point photons, thermal photons are the black body photons which result from the 

plates and surroundings being at non-zero temperature. This means that the energy of the 

EM fluctuations inside the cavity formed by the plates correspond to the solution to the 

Maxwell equations without sources.  That is, E�d� � ∑ �ω�41 2⁄ % n�ω��5� , where  

n�ω�� is the average number of thermal photons inside the cavity with frequency ω� , 
given by the Planck formula, and the other term corresponds to the zero-point energy of 

the quantum fluctuation with the same frequency, as it was presented in eq. QQ9. Then, 

the total energy of the EM field fluctuations inside the cavity is,   
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Eq. 3.1 

E�d� � � �ω�y
� c12 % 1e��� ���⁄ 8 1e � � �ω�2 �e��� ���⁄ % e��� ���⁄e��� ���⁄ 8 e��� ���⁄ �y

�
� � �ω�2 coth �ω�2k�T .y

�  

Where the middle expression was multiplied by 

eQ��� ����⁄eQ��� ����⁄ , 
and k� is the Boltzmann constant and T the temperature.  The superscript* on the sum of 

eq. 3.1 means that two polarizations are included and should not include terms that are 

repeated, in a similar fashion to eq. QQ9.  Eq. 3.1 is valuable because it makes a clear 

connection with the thermal photons through the Planck distribution, n�ω��, in the same 

context as the Casmir’s calculation. That is, conceptually, it helps understand the 

temperature dependence of the Casmir force. Since this is a Casmir-like approach to 

describe the Casmir force at non-zero temperatures, it is more appropriate to use 

methods, such as Lifshitz-type method, that include the nature of the material of the 

plates to calculate the temperature dependence of the Casmir force.  

Since Lifshitz’s 1956 paper [12], there have been many formal derivations of the 

Lifshitz’s equation  that include the temperature dependence. To obtain it, researchers 

have used different approaches. For instance, they have used source theory, scattering 

theory, quantum statistical physics, quantum field theory in the Matsubara formulation, 

etc [57].  Milonni’s approach [7] is based on a symmetrical ordering of field operators, 

where an explicit contribution from the vacuum fields is found –This is a sourceless 
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theory equivalent to the known source theory of Swinger et al. [7]. Using eq. QQ7 and 

ξ � 8iω  in Milonni’s approach, the Casmir force between two plates of the same 

material �ε) � ε� � ε� and with vacuum in between �ε< � ε� is given by,  

3.2 

F�d� � 8 �2π�c< A . dpp�1
) . dωω<1

� �"cs % εps 8 εpe� eQ���E£ ¤⁄ 8 1(Q)

% "cs % ps % pe� eQ��E£ ¤⁄ 8 1(Q)� coth �ω2k�T, 
where 

s � Wp� 8 1 % ε�ω�,      and      ε �   ε�ω�. 
Where the hyperbolic cotangent term from eq. 3.1 is present in the latter expression, this 

remarks, as is mentioned above, that the thermal photons and virtual photons are included 

in this expression. To account for these photons, eq. 3.2 has to be integrated over a range 

of real frequencies. This integral is better calculated in the complex plane, such that ω ¥
iξ, because the Argument Principle can be used. For this purpose, it is worth noting that 

the hyperbolic cotangent term has poles on the imaginary axis at, 

3.3 

ω� � 2πin k�T� � iξ�, 
for all integers n. Note that the frequencies ξ� are commonly referred as Matsubara 

frequencies. To solve the integral a contour is chosen on the top-right quadrant of the 

plane, in this way the poles in the imaginary axis are the only terms that contribute to the 

integral. eq 3.1 then, can be written as, 
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3.4 

  

F�d� � 8 k�Tπc< A . dpp�1
) � ¦ ξ�<1

� �"cs % εps 8 εpe� e�§¨E£ ¤⁄ 8 1(Q)

% "cs % ps 8 pe� e�§¨E£ ¤⁄ 8 1(Q)�. 
The prime on the summation of eq. 3.4 indicates that a factor of ½ must multiply the n = 

0 term.   

A less intuitive yet more computationally useful approach to obtain eq. 3.3 is the 

thermal Green’s functions method. The thermal green functions of eq. QQ7 are 

G�ª�k, ξ� and G�«�k, ξ� , which are periodic in imaginary time and have a period of 

1 k�T⁄  [58]. This means that instead of an integral over the frequencies ξ in eq. QQ7, 

there is a sum over the Matsubara frequencies of eq. 3.3. This transformation can be 

formally expressed in the following way,  

3.5 

�2� . dξ1
� ¬ k�T � ¦ 1

��� , 
Where the double arrow means that the transformation can be performed in both 

directions and the prime on the summation has the same meaning as above. In addition, 

the continuous value ξ transforms into the discrete values ξ�of the Matsubara frequencies. 

The reason eq. 3.5 is not entirely formal is that, for real materials, the dielectric properties 

may be different for non-zero temperatures from those for temperature equal to zero [13]. 
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Nevertheless, from eq. QQ7 the Casmir force between two plates of the same material 

�ε) � ε� � ε� and with vacuum in between�ε< � ε� for at non-zero temperatures is,  

3.6 

F�d� � 8 k�Tπ A � ¦ . kK<dk ] 1G�ª�k, ξ�� % 1G�«�k, ξ��b1
�  1

��� . 
If transformation 3.5 is applied to eq. QQ9, the expression in eq. 3.4 is obtained, making 

both methods equivalent. 

 Eq. 3.6 can be represented in a more physically intuitive manner in terms of the 

Fresnel reflections coefficients calculated along the imaginary axis, where they are real. 

Using the same assumptions for the plates, as in the derivation of 3.6 and for the case 

where the plates are placed in vacuum, these coefficients can be represented in this way, 

3.7 

r�ª�k, ξ�� � εU< 8 UεU< % U ,        and       r�«�k, ξ�� � U< 8 UU< % U. 
Where K< � ¯k� % ξ�� c�⁄  and K � ¯k� % ε�iξ�� ξ�� c�⁄  . The expression in eq. 3.6 can 

be written as,  

3.8 

  

F�d� � 8 k�Tπ A � ¦ . kK<dk °�r�ªQ� �k, ξ��J�KO\ 8 1�Q) % �r�«Q��k, ξ��J�KO\ 8 1�Q)±1
�  1

��� . 
This expression is in terms of both two field polarizations and its respective reflections 

coefficients. Simple inspection of eq. 3.8 results in troublesome physical consequences. 
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Below, they are reviewed and analyzed briefly. Moreover, integration of eq. 3.8 over the 

separation distance results in the Casmir energy between two identical plates with 

vacuum in between and for finite temperatures. This result will be used below to find, in 

combination with the PFA, the force in the sphere-plate configuration.  

The expression in eq. 3.8 along with a suitable electric permittivity, ε�iξ��, are 

commonly used to calculate the Casmir force in the plate-plate configuration. While 

choosing a  ε�iξ�� does not seem to be challenging, since, as mentioned in chapter two, 

the contributing frequencies are in the optical and in the infrared range. The low 

frequency contribution on a first inspection of eq. 3.8 appears to be small. At low 

frequencies, there are two competing descriptions the Drude and Plasma models.  It is 

generally accepted that the low frequency behavior of real metals are well described with 

the permittivity of the Drude model.  Nevertheless, regardless of the permittivity used in 

the Lifshitz’s equation, one has to asymptotically recover the Casmir force for ideal 

metals at large separation distances as the reflectivity of metals approaches ideal behavior 

for large wavelengths. Furthermore, the expressions found have to satisfy well 

established laws of physics.   

3.1.1 Simple inspection of the Casmir Force. 

For ideal metals �ε ¥ ∞� , inspection of the expressions in eq. 3.7 result in 

r�ª�k, ξ�� � 1 and r�«�k, ξ�� � 1 for n T 0. For the Matsubara frequency corresponding 

to  n � 0, r�«�k, ξ�� � 0. To avoid this discontinuity, Schwinger et al. [14] suggested that 

the limit ε ¥ ∞ be taken first on eq. 3.8, implying that r�ª�k, ξ�� � 1 and r�«�k, ξ�� �
81, and after that the summation over the Matsubara frequencies should be performed. 
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This prescription –called Swinger’s prescription- allowed expression in eq. 3.8 to obtain 

Casmir’s ideal metal plate value at large separation distances and at T = 0. The 

mathematical constraint put by this prescription on the metal has been contested by many 

researchers [13, 32]. They have then, suggested other models that describe the metal 

plates more accurately. For instance, simple models for real metals have permittivities 

that depend on frequency as ε�iξ�~ 1 ξ⁄ , Drude-type models are one example of them. If 

substituted in eq. 3.7, in the limit of infinite conductivity, the same discontinuity for n =0 

described above is found. On the contrary, models that are intuitively more suitable, such 

as Plasma-type models where ε�iξ�~ ωE� ξ�⁄ , and where at the n=0 Matsubara frequency 

the reflection coefficients are, 

3.9 

r�ª�k, 0� � 1           hi�        r�«�k, 0� � 81, 
when the limit ωE ¥ ∞. That is, the Plasma-type models recover the ideal metal case. 

These arguments should be sufficient to deter researchers from pursuing Drude-type 

models to describe the nature of the metal plates. However, the alternative claim, that real 

metals are not well described with the Plasma-type models, is a sound statement in their 

favor. It should also be pointed out that, at short separation between the plates, where the 

temperature correction for eq. 3.8 is minimal, the variation between the Drude model and 

the Plasma models is around 2% [59]. At larger distances, the variation of the results 

from these models is more pronounced.  

Researchers have explored several options to find a suitable permittivity, one that 

describes the metal as accurate as possible, while at the same time satisfying the 
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somewhat hidden constraints imposed by the Lifshitz’s equation. Since all explored 

models lead to different results for the thermal Casmir force [13], the models presented 

below are the ones that support the use of tabulated optical data. However, to keep an 

open mind on the controversies of the thermal Casmir force, the results from the Plasma 

model and the Drude model are presented as well.  

3.2 Casmir Force with Metals Described by Plasma-Type Models. 

3.2.1 Plasma Model and Lifshitz’s equation. 

The Plasma model, eq. 2.ww1, describes the response of the free electrons in the 

metals without taking into account their relaxation processes, neglecting free electron 

collisions.  

If the role of the core electrons are neglected and the complete permittivity is 

represented by the Plasma model, to obtain the thermal Casmir force eq. 2.ww1 is 

substituted in 3.8 for T ³ T́ µµ, where k�T́ µµ � �c 2d⁄ , and using perturbation methods 

and expanding in powers of δ d⁄  and T T́ µµ⁄  , the force is,  

3.10 

FEEE �d� � FEE� �d� ¶1 % 13 c TT́ µµe� 8 163 δ�d "1 8 45ζ�3�8π< c TT́ µµe<( % � c� δ��d�
¸

��� :, 
where ζ�z�is the Riemann zeta function and the coefficients c� are explicitly calculated in 

Bordag et.al [43]. This expression is correct for 2πc ωE* M � M 2¹x , which are the 

distances of interest for the experiment of this manuscript. Furthermore, for perfect 

conductors, δ� � 0, this expression reproduces results from other researchers as well as 
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the T = 0 value. 

For the sphere-plate configuration, using the same approach as above and the PFA, the 

force is,  

3.11 

FDEE �d� � FDE�d� º1 % 45ζ�3�π< c TT́ µµe< 8 c TT́ µµe� 8 4 δ�d "8 45ζ�3�2π< c TT́ µµe< % c TT́ µµe�(
% % � c»¼ δ��d�

¸
��� ½. 

Where c»¼ � 3c� �3 % d�⁄  and FDE�d� is eq. 2.7. For the limit of perfect conductors δ� ¥ 0, 

this expression reproduces the low temperature asymptotic behavior obtained with 

quantum field theories [60].  

For high temperatures T ¾ T́ µµ, (achieved at d = 6 µm  for T =300 K) using a 

numerical calculations, the asymptotic expression for the Casmir force is [10], 

3.12 

FDEE �d� � 8 ζ�3�4d� Rk�T c1 8 2 δ�d e. 
Where R is the radius of the sphere and this the dominant contribution for this expression 

comes form the zero term of the Matsubara frequencies. For perfect conductors this value 

reproduces known expressions [14, 61].  

3.2.2 Generalized Plasma-Like Model. 

 This model emerges due to the need to include measured features of the 

permittivity particularly the role of the core electrons into the calculation of the thermal 
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Casmir force. However the inclusion of many of these features, such as the effects of 

metal dissipation due to free electron collision, lead to the problems outlined above for 

the Drude model. This model then, avoids including those effects and remains with the 

idea that the conduction electrons are free of collisions. In this model, the effects of the 

core electrons are included. The reasoning is that since the plasma model cannot be used 

for distances larger than the plasma wavelength, to include absorption bands due to core 

electrons eq. 2.ww1 needs to be extended [62]: 

3.13 

εÀE�ω� � 1 8 ωE�ω� % � gÂωÂ� 8 ω� 8 iγÂωÂ . 
Where a group of oscillators (with strength gÂ , ωÂ resonant frequency, and relaxation 

frequencies γÂ ) with non-zero frequencies describes the core electrons and the free 

conduction electrons are described with the plasma model. The oscillator parameters are 

obtained from tabulated optical data. Note that in expression 3.13 the relaxation 

properties of the conduction electrons are not included. Moreover, to assure that this is 

not the case; researchers obtain the tabulated optical data [63] for the imaginary part of 

the permittivity and subtract from it the contribution from conduction electrons: 

3.14 

Im ÅεÆE�ω�Ç � 2n,�ω�n,,�ω� 8 ωE�γω�ω� % γ��. 
Where n,�ω� and n,,�ω� is the real and imaginary part of the index of refraction of the 

metal plates respectively, γ is the relaxation parameter, and the subscript op signifies that 



39 
 

the quantity is obtained from optical tabulated data. The value is fitted with a function 

describing an assortment of oscillators. The results lead to the parameters of each of the 

oscillators. Using eq. 3.13 and the fitting parameters, the permittivity along the imaginary 

frequency axis can be found. Another approach is to use the values of eq. 3.14 in 

combination with Kramers-Kronig relations that correspond to the generalized plasma-

like model, for this case: 

3.15 

ε�iξ� � 1 % 2π . ωImÅ εÆE�ω�Çω� % ξ�
1

� dω % ωE�ξ� . 
Then, the permittivity along the imaginary frequency axis is obtained. These two 

approaches have been typically used to compute the thermal Casmir force [13].  

 The advantage of these two approaches is that they use optical tabulated data to 

obtain the electric permittivity.  

3.3 Casmir Force with Metals Described by Drude-Type Models. 

3.3.1 Drude Model and Lifshitz’s equation. 

 The Drude model for the electric permittivity is a phenomenological theory that 

describes the movement of the conduction electrons through a background of positively 

charged ions. It assumes that under an external field the conduction electrons of the 

material will gain, on the average, a drift velocity. The conduction electrons have 

mechanisms that stop them from continually being accelerated, which is not the case for 

free electrons. Since the mechanisms are not well specified in the model, a relaxation 
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time τ that accounts for all those mechanisms is introduced. It is only in this time interval 

that the electron can move as a free electron. Using kinetic transport theory, it can be 

shown that the effect of introducing the time τ  is a frictional damping term in the 

equation of motion for the momentum per electron. However, for high frequencies,ωτ ¾
1, the effects of the frictional term are minimized and the Plasma model is recovered. 

Even when the model is not rigorous and lacks depth, to certain extent, it explains the 

macroscopic electrical conductivity and the thermal conduction in metals. Hence, it 

should be a suitable choice for the permittivity of the metal plates. Yet as we pointed out 

in the simple inspection of eq. 3.8, its place in the Lifshitz’s formulation is unclear. 

The electric permittivity then, is described in the Drude model as,  

3.16 

εÉ�ω� � 1 8 ωE�ω4ω % iγ�T�5. 
When this expression is substituted in eq. 3.8 [31, 64, 65], the high-temperature limit is 

exactly equal  to one-half of the corresponding value for the ideal metals, regardless of 

the value of the conductivity used for the real metals [66]. This large difference obtained 

for separation distances of 6µm and T = 300K has never been achieved experimentally 

for plates in thermal equilibrium. The reason is that the Casmir force is minute in that 

region and the experiments do not have enough resolution.  

For the case T ³ T́ µµ, the thermal correction for the free energy per unit area between 

two plates obtained with the Drude model, Δ�Ë�É��d, T�, is given by, 

3.17 
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Δ�Ë�É��d, T� � Δ�Ë�E��d, T� % Ë�Ì��d, T�
8 k�T16πd� . ydy

ÍÎÏ
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ÒÓ1 8 Ô
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ÎÝ .1

�  

With the condition that,  

3.18 

 γ M ξ�. 
Where Δ�Ë�E��d, T� is the thermal correction for the free energy per unit area between 

two plates obtained with the Plasma model and Ë�Ì��d, T�~ γ�T�ln�T T́ µµ⁄ �. For metals 

with perfect crystal lattices eq. 3.17 is satisfied, but for imperfect metals, where the 

residual relaxation is never zero, the condition of 3.18 is not satisfied.  

 This thermal correction has been experimentally tested only once to date and 

shown to be inconsistent with the data. The results from the experiment by [36, 67] at d < 

1µm have shown at a high a confidence level that the last term of eq. 3.17 is not correct, 

thus excluding a thermal correction due to the Drude model. In addition, this thermal 

correction has been used to calculate the Casmir entropy by Bezerra et al [68]. They 

showed that for perfect crystal lattices at T � 0, the Casmir entropy is different form 

zero. Their result for the entropy at T � 0 is given by  

3.19 
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S�É��d, 0� � k�16πd� . ydy
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� 8 k�ζ�3�16πd� "1 8 4cωEd % 12 c�ωE�d� 8 Þ ( . 
The result of this expression is a negative value. Most importantly, this result has been 

the most controversial result that has been obtained from the Drude model, since the 

consequence is that the Third law of Thermodynamics is not satisfied [13, 32, 68]. To 

solve this issue researchers have made various modifications to the Drude model. For 

instance, they have included impurities in the Drude model [33-35], which would lead to 

a nonzero gamma at zero temperature, which in turn leads to zero entropy at zero 

temperature. The result of this approach is that the entropy abruptly jumps to zero from a 

negative value at T<10-14K. However, the fact remains that perfect crystals (on which 

most condensed matter theory is based) would lead to negative entropy at zero 

temperature.,  The inclusion of the Drude model in the Lifshitz’s equation and the 

consequences of this are still a current and highly debated subject.  

3.3.2 Optical Tabulated Data and the Drude Model. 

The reason to use optical tabulated data within the Drude approach is the same as 

in the Plasma model. That is, more information about the role of the core electrons is 

needed to calculate the Lifshitz’s equation at high precisions. The optical data is the more 

complete source of information about the surfaces. In this case, however, the data for 

gold below energies of 0.125 eV is not available. To resolve this, researchers extrapolate 
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the optical data to lower frequencies using the Drude or Plasma model. Note that these 

frequencies are necessary in the Drude model.  To find the extrapolations, they use the 

imaginary permittivity of the optical data, Im °εÉ�ω�±, and the standard Kramers-Kronig 

relations to obtain the permittivity along the imaginary frequency. This permittivity still 

lacks the low frequency contribution. To obtain it, they use the following expression 

3.20 

Im °εÉ�ω�± � ωE�γω�ω� % γ��. 
Where the plasma frequency and the relaxation parameters were previously obtained 

from the optical tabulated data. Researchers typically have used the room temperature 

parameters [13],  

3.21 

ωE � 9.0eV and γ � 0.035eV. 
Researchers have compared the Drude model (eq. 3.16) results to the results 

obtained with the optical data in the Drude approach that extrapolates the low frequency 

behavior. That is, using a correction factor to the Casmir pressure due to each of these 

two approaches, at separations of d = 1µm the percent difference between these factors is 

0.14%. At d = 200nm, 100nm, and 50 nm, the difference is 2.8%, 7.7%, and 16% 

respectively. Bordag et al.  [13] attribute this increase to the Drude model of eq. 3.16 not 

considering the contribution of the interband transitions of the core electrons. This is in 

contrast to the optical data that takes them into account. 
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4 Experimental techniques to explore the Casimir effect. 

This chapter describes some of the techniques that have been used to explore the 

Casimir effect. It presents some of the related accomplishments, advantages, and 

disadvantages. It is divided into three sections; the first one describes the static deflection 

method to measure forces with an atomic force microscope (AFM), followed by a section 

that describes an AFM’s dynamic method to measure the gradient of the force. In the last 

section, a non-AFM system is briefly reviewed. Using a sphere-plate configuration, it has 

been used to indirectly, and precisely, measure the Casimir pressure between two plates.  

From detecting small ensembles of nuclei [69], to atom-by-atom manipulation [70], 

scanning probe microscopy (SPM) has proven to be a field of enormous capabilities [71]. 

This type of microscopy, initiated with the Scanning Tunneling Microscope (STM) of G. 

Binning and H. Rohrer [72], encompasses a vast number of techniques, working under 

similar principles, yet with different objectives. These principles have allowed 

researchers to locally probe several types of surfaces in different environments, such as 

air, liquid, and ultra high vacuum [71, 73, 74]. In addition, they record dynamic 

information in real-time, allowing them to measure interactions that evolve in time, such 

as chemical reactions [73]. For the first time, these two powerful characteristics led to the 

resolution of atoms on surfaces, and currently, they have strongly influenced many areas 

of science, such as biology, chemistry, physics, and engineering [75]. Due to their 

working principles, SPM techniques have proven to be reliable, highly versatile, and 

relatively simple to manufacture for more than two decades [75]. For these reasons, SPM 

techniques are well suited for Casimir force measurements. Specifically, there are 
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techniques, such as Atomic Force Microscopy, which are capable of measuring forces 

with sub-nanoNewton resolution at distances in the submicron range [76].  

4.1  Static Deflection Method  

Roy and Mohideen were the first researchers to use the advantages of the AFM in 

the Casmir field [28]. They precisely measured the Casmir force in the sphere-plate 

configuration using the static deflection method, a closely related method to the AFM's 

Contact mode [73] for surface imaging. While in the latter method the distance between 

the probe and the investigated surface is kept constant, in the static deflection method, the 

probe-surface distance is linearly modified. In both methods, however, this distance is 

modified with a segmented piezoelectric tube. In contrast to the Contact mode, the 

deflection method results in a distance dependence of a force, which is exerted on the 

probe by the surface. The probe that detects this force is a cantilever specially designed to 

Figure 4.1. Schematic diagram of the experimental setup used to measure the Casmir force by Roy 
and Mohieden  [1]. The difference between the signals from photodiode A and from photodiode B is 
proportional to the deflection of the cantilever. Note that, in Roy and Mohideen's experiment, the 
cantilever is modified by adding a metal-coated sphere. To maintain mechanical stability and to keep the 
modified cantilever electrically conductive, the cantilever is also coated with a metal. 
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bend in only one direction. This direction is perpendicular to the axis of the largest 

dimension of the probe. For Casmir force experiments, this is of the order of 102 µm, 

resulting in a cantilever’s spring constant of the order of 10Q� N m⁄  [77]. The bending of 

the cantilever results from Hooke’s law in the linear limit and is the consequence, as 

mentioned above, of a resultant force exerted by the surface. Hence, decreasing 

cantilever’s spring constant increases the force sensitivity of the AFM. The maximum 

attainable sensitivity is determined by the thermal noise driven oscillations of the 

cantilever [73].  The maximum force resolution reported in Casmir force experiments, 

using the static deflection method, is of the order of 0.5 pN [78]. A modified version of 

the static deflection method using lockin amplifier techniques has achieved a minimum 

sensitivity of 0.03 pN [23].  

To detect the bending of the cantilever, most AFM systems use a laser that is 

focused on the free end of the cantilever and a segmented photodetector that captures the 

reflected light. When bending occurs, each photodetector senses a change in the laser 

intensity they receive. The difference between the signals from each detector is 

proportional to the deflection of the cantilever.  Fig. 4.1 depicts Roy and Mohideen [28] 

schematic diagram of their experimental setup to measure the Casmir force using the 

static deflection method.  The optical technique to detect its deflection and the sub-

nanometer motion of the surface -key elements of the static deflection method- allowed 

researchers to precisely measure the Casmir force in the sphere-plate configuration.   

 This experiment was performed between an Al-coated sphere and an Al-coated 

substrate, resulting in an appreciable difference between the ideal metal model and the 
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experimental measurements. The authors concluded that the measurements needed to be 

compared to a more realistic model of the metal surface, one that included the finite 

conductivity and roughness of this surface. The success in their assumptions and the high 

resolution of the static deflection method led to a better understanding of the way virtual 

photons interact with real metals. Since these experiments, the static deflection method 

has been the experimental choice to explore the Casmir force, producing a plethora of 

achievements in the field [13]. For example, using this method, subsequent experiments 

on Au increased the precision and accuracy of the results and set the standard for various 

years [13].  In addition, to further the understanding of the interactions between virtual 

photons and real materials, they measured the Casimir force between a Au-coated sphere 

and a highly doped semiconductor [27]. These studies were performed with n-doped and 

p-doped semiconductors separately. The results were compared to the Lifshitz theory and 

good agreement was found. With similar experiments, the carrier density of the 

semiconductor was optically modified [23] using a chopped Argon laser and the lock in 

technique, as the increase in conductivity due to the absorption of light leads to variations 

in the reflection coefficients of the semiconductors on a large frequency range. This 

resulted in a modified force. The use of the lock in technique allowed a precision of 0.03 

pN, which is an order of magnitude higher than the regular static deflection method. The 

results lead to the conclusion that for a consistent comparison to the theory, the dc 

conductivity of the silicon has to be neglected in the dielectric state.  Another 

achievement of the static deflection method is in the study of diffraction-like effects in 

the Casmir field, where using a Au-coated sphere and Au-coated grating, recent 
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experiments have found a nontrivial boundary dependence of the force [55]. The large 

deviation found in the experiments could only be explained due to the force aligning the 

bottom of the sphere (the curvature provides a distance dependence) and along the 

corrugation of the grating. Furthermore, with a similar setup, except that the corrugations 

of the grating are imprinted on the Au-coated sphere, researchers used the deflection 

technique to find that the Casmir force is strongly dependant on the geometry of the 

boundaries. This force is called the Lateral Casmir force [22]. While the examples above 

were performed in high vacuum environments, the static deflection method has also been 

successful in measuring the Casmir force in liquid environments.  Munday et al. [79] 

recently claimed to have measured a repulsive Casimir force between Au-coated sphere 

and a silica substrate immersed in a Bromobenzene solution.  The results, while still 

debated [13], show the range of possibilities of the static deflection method in the 

Casimir field. Overall, this method has proven to be reliable and precise at small 

separations between the sphere and the plate, at distances < 500nm. However, its 

achievements have left many unanswered questions. Because some of these achievements 

were performed at the resolution limit of the deflection method, new high force resolution 

techniques, capable of measuring the force at separations of the order of micrometers, 

have the potential to resolve these questions.  Additionally, many new phenomena appear 

at large separation distances.  

Techniques that increase the force resolution at large distances could shed some 

light on the role thermal photons play in the Casimir effect. In addition, they might be 

able to resolve long-standing disputes about the influence that the material losses have on 
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this effect. Previous techniques that have attempted to resolve these issues were not 

successful [13]. Their resolution was not sufficient to detect these effects or their 

systematic errors were large. However, new techniques to measure the force have been 

attempted [36, 80]. Researchers have used methods from Dynamic Force microscopy 

(DFM) for this purpose. They have selected DFM over other techniques because of its 

success in other fields and essentially, because under certain conditions, it can detect 

forces of the order of sub-attoNewtons [81].  Since the minimum force attainable with the 

static deflection method is about 0.5 pN, this technique could potentially increase the 

force resolution by several orders of magnitude. While experiments using dynamic 

methods have not achieved the anticipated resolution, they have shown good progress. 

For instance, Decca et al. [2] have proved that a dynamic method, a similar version to the 

Frequency Modulation method for an AFM [71], is more sensitive than the static 

deflection method. Recently, using dynamic methods, their experiments have attained the 

smallest force resolution, being able to exclude certain thermal corrections to Lifhitz’s 

equation due to the Drude model [36]. This achievement is a first step to resolving the 

polemic regarding the material losses in the Casmir effect at non-zero temperatures.  

Jourdan et al. [39] have also used a dynamic method to explore the Casimir effect. Using 

a similar setup to that of the authors of this manuscript, they measured the Casmir force 

gradient between a Au-coated sphere and a Au-coated plate at room temperature. 

However, the results of their experiments did not indicate unusual sensitivities or a high 

precision. Iannuzzi et al. [82], for example, have used a lock in based dynamic technique 

to compare the Casimr force gradient between a Au-coated sphere and Au-substrate 
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against the same sphere and a substrate made of highly-doped Indium Tin oxide (ITO) 

[83, 84]. They used a modified commercial AFM that measures the Casmir force gradient 

and the contact potential, V0, directly and simultaneously. They measure the force 

effectively through a difference measurement and V0 with a feedback loop that keeps the 

electrostatic force continuously compensated throughout the measurements. Even when 

this technique was able to resolve a 50% reduction of the force in the new investigated 

material, ITO, it measured this value at short distances, ~120 nm. At distances of about 

200nm, the error in their measurements seems to be higher than 50%, leading to believe 

that their particular dynamic method is not fit to explore the Casmir force at large 

separation distances. Furthermore, the advantage of their technique then, seems to be 

solely the direct measurements of V0, which is in contrast to the indirect process used by 

most researchers [13]. While various experiments have used dynamic techniques to 

explore the Casmir effect, their results have not had the force resolution to contribute to 

the understanding of the force at large distances and at non-zero temperatures. Since 

these techniques have already been successful in other fields, it is paramount that 

instruments that exploit the full potential of these techniques be used in the Casmir field. 

Below, the dynamic technique used in the apparatus reported in this study is described. 

4.2 Dynamic Force Microscopy 

 When the AFM was invented c. 1986 [85], the microscopy community suggested 

various techniques, under the AFM working principles, to measure forces. [86] However, 

the simplicity of the static deflection technique made it an instant success and 
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consequently very popular [86]. At the same time, its highly local and enhanced 

resolution images in real time, which ultimately achieved atomic resolution [87], put 

other AFM techniques out of active consideration, at least for a limited time. Currently, 

many of the previously suggested techniques have attained similar results to those 

produced with AFM’s static deflection, and some of them, became task specific. Such is 

the case of a DFM technique called Frequency Modulation (FM-AFM) [88]. One of the 

methods initially known as a non-contact mode attained atomic resolution two years after 

its static counterpart [89] and was originally conceived as a technique to explore short-

range forces, even when a careful selection of the intrinsic properties of the cantilever 

allows it to be used for long-range forces. The sensing element of this technique is the 

change of resonant frequency of a periodically driven cantilever, where the change is 

proportional to the gradient of the force, while assuming that the amplitude of the 

oscillation of the cantilever is small in comparison to the range of the force. Paramount in 

this technique is that the driving frequency be kept near the resonance frequency of the 

cantilever, since the capability to detect frequency changes, with high signal to noise 

ratio, depends on this factor. To maintain that condition throughout the measurements, a 

feedback control adds every measured change in resonant frequency to the cantilever’s 

driving frequency, allowing the sensitivity to be close to its highest value throughout the 

entire measurement. While in this method the force is not directly measured, there are 

mathematical procedures that calculate the force using the measured gradient [71]. 

The technique used in the instrument reported in this manuscript is a simpler 

version of the method described above. Unlike the FM method, the cantilever is not 
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periodically driven, but it is left to resonate in response to the thermal bath surrounding it. 

While the source of the cantilever oscillation is different, the outcome is nevertheless 

equivalent i.e., the change in resonant frequency of the cantilever is proportional to the 

force gradient. The change is measured with the resonant frequencies from the recorded 

resonance peaks with and without the force present. For this purpose, we use an FFT 

Spectrum Analyzer [90], an instrument that will automatically record the oscillations of 

the cantilever, Fourier Transform the collected data, and generate a resonance peak. In 

contrast to the FM method, the capability of detecting the change in frequency is 

dependent solely on the frequency resolution of the Spectrum Analyzer. This means that 

an increase in resolution will increase the measuring time. In addition, the detection 

system of this technique consists of one sole instrument, which reduces the experimental 

complexity of this method.  Although theoretically and experimentally simpler, it is, 

conceptually, not less sensible than the FM method. Moreover, while the FM method 

requires being fine-tuned to achieve high signal to noise ratio (SNR), the method used in 

this study has a SNR defined by the Spectrum Analyzer and the signal’s detection system. 

Simplicity drove this experimental study to choose this method over other more 

established methods, and while the method has disadvantages, they are relatively minimal 

when measuring the Casimir force. The latter will be described in detail in the next 

chapter. The method’s theoretical approach is described below. 

 The dynamics of a thermally driven cantilever is described with the Langevin 

equation for a harmonic oscillator: 

Eq. SS  
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zà % γm zá % ω��z � 1m G�t�. 
 

Where ω� � Wk m⁄  is the resonant angular frequency, k is the spring constant of the 

cantilever, γ is the damping coefficient, and G(t) is the stochastic force representing the 

thermal bath where the cantilever is immersed. The solution of eq. SS is a Lorentzian 

peak centered at ω0 and a full width half maximum (FWHM) of *** [91]. The average 

oscillation amplitude is �z� � Wk�T k⁄ , which for the modified cantilevers is around 0.5 

nm at T = 300 K. In the Casimir force context, the substrate will exert a force FDE�z� on 

the modified cantilever (it has a sphere attached to it and has gone through various 

processes to make it entirely electrically conductive), hence adding an external force to 

the RHS of eq. SS. If FDE�z�  is represented in a Taylor series expansion; for small 

oscillations of the cantilever eq. SS reads,  

Eq. SS1. 

zà % γm zá % 1m 4k 8 kDE5z � 1m ÅG�t� % FDE�z � 0�Ç. 
 

Where kDE � dFDE�z� dz⁄ , that is, the equivalent of a sphere-plate spring constant is the 

gradient of the force between the sphere and the plate. Let k´µµ � k % kDE be the effective 

spring constant and ω´µµ� � k´µµ m⁄   the effective resonant (angular) frequency of the 

cantilever. Then, for  k ¾ kDE 

Eq. SS2  
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∆ω �  ω´µµ – ω�  � ω�2k  ∂FDE�z�∂z . 
The change in frequency is proportional to the force gradient. This expression is the basis 

of the technique used in this experimental study to explore the Casimir effect. An 

advantage of measuring the force gradient is that, using the Proximity Force 

Approximation (PFA) described in Chapter 2, specifically eq. 2.6, the Casimir pressure 

between two plates, äå�I�, is obtained.  

eq SS3  

På�z� � 12πR  ∂FDE�z�∂z , 
 

where R is the radius of the sphere. 

 Atomic force microscopy techniques, both static and dynamic, are powerful and 

simple techniques that have been proven to be well suited to explore the Casimir effect.  

Even though high precision measurements are experimentally challenging, to measure the 

Casimir force or its gradient, essentially the only experimental requirement is to modify 

the cantilever of an AFM. That is, a coated sphere has to be added to its free end to obtain 

a reasonably precise force measurement [92]. The rest of the AFM already has most of 

the components needed for a force measurement. For example, the optical detection 

system, for both the static and dynamic methods, has been originally devised to resolve 

minute changes of the sensing element. The plate motion, controlled with a piezoelectric 

tube, reaches sub-nanometer resolution and has a distance range larger than one 

micrometer. These features and the intrinsic properties of the cantilever were designed to 
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measure forces of the order of nanoNewtons [71], which is the magnitude of the Casimir 

force in the micrometer range. The AFM is not only experimentally ideal for force 

measurements, but also the theory of its operation is well established and robust. An 

example is the PFA, which had already been used to calculate force interactions between 

the tip of a cantilever and a substrate [71]. For Casimir force measurements between a 

sphere and a plate this approximation is essential. The simplicity and capability of these 

AFM techniques has made more people venture to measure the Casimir force with an 

AFM than with any other apparatus.[28, 79, 83, 93] It has been measured in air, vacuum, 

and most recently in liquid [79]. Another important factor is that AFMs are commercially 

available; they are simply modified and easily fabricated. Moreover, since more scientific 

achievements in the Casimir field have been produced with an AFM than with in any 

other apparatus, it would appear that the achievement payoff vs. simplicity ratio is larger 

for AFM techniques. This should indicate that they are a natural way to proceed in 

exploring the Casimir phenomena.  

4.3 Non-AFM methods. 

 Exploring different techniques or different instruments could possibly generate 

new physical phenomena. Various instruments with different techniques were intended to 

explore the Casimir effect before high precision experiments were attempted.  As was 

mentioned above, it was only then, that experiments were accurate enough to obtain 

physical insight into this effect. For this reason, attention is exclusively directed to non-

AFM techniques that have been able to accomplish this goal. For instance, techniques 
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using Microelectromechanical devices (MEMS) have produced significant scientific 

achievements in the Casimir field [2, 3, 36, 44, 94] and recently, have been used to show 

the potential technological application of the force in the nanotechnology industry [24]. 

In contrast to the AFM methods, using MEMS is a more elaborate route, since they need 

to be fabricated in a nanofabrication facility and the force detection system requires 

finely tuned electronics. The MEMS technique has nevertheless proven to be an excellent 

way to measure the Casimir force. Using DFM methods, it has achieved better force 

resolution and slightly better precision than the AFM technique [36]. So far, it is the only 

technique, besides the AFM technique, that has achieved precision results of the order of 

~1%. Due to its importance, we briefly describe this MEMS technique in the following 

subsection.  

4.3.1 MEMS technique to measure the Casimir force. 

 For the exploration of the Casimir effect, researchers have used a micromachined 

oscillator, a type of MEMS that resembles a seesaw. A schematic diagram of an 

experimental setup that uses this oscillator is shown in fig. 2.  The oscillator’s lever is 

made of a highly doped polysilicon and the fulcrum is made up of two serpentine rings, 

one on each side of the lever, anchored to a Silicon platform that is covered with a Silicon 

nitride layer. From fig. 2 it is possible to distinguish a serpentine spring on the right hand 

side of the lever; for clarity, it is not shown to be anchored to the platform in the figure. 

The dimensions of the lever in Decca et al. [36] are 500µm X 500µm by 3.5 µm thick. 

Under the lever, and placed on each side of the fulcrum, there are two polysilicon 

electrodes. The distance between them and the lever is about 2µm. To measure the 
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Casimir force, researchers hold the oscillator close to a metal-coated sapphire ball that is 

epoxy glued to an Au-coated optical fiber, allowing their point of contact to be 

electrically conductive. In addition, the radii of the balls that have been used with the 

micromachined oscillators are, for the most part, larger than in the AFM measurements. 

In Decca et al. [36, 67] the radius of the ball is R = 151.3µm, which is ~ 50% larger than 

the spheres used in the AFM experiments. It is worth noting that this experimental setup 

is more elaborate than the AFM setup, yet both have many similar features.  

Micromachined oscillators (MO) have been used to explore the Casimir effect 

with two methods, a static deflection-type, and a dynamic-type. The sensing element of 

the former is the difference between the capacitance of each electrode and the lever, 

which is non-zero because of the alternating up and down motion of the lever due to a 

force, F(θ), exerted by the ball. In addition, this difference is proportional to the 

deflection angle θ of the lever, and since it is small, it is proportional to the force F(θ).  

As with the dynamic AFM techniques, F(θ), the force between a sphere and the lever is 

Figure 4.2. Schematic diagram of the experimental setup by Decca et al. [2] A 
similar design was used by Chan et al. [3].The relevant parameters of this setup are 
shown 
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not the quantity measured in the dynamic-type method. It is the force gradient ∂F ∂θ⁄ , 

which, using eq. SS3, can be utilized to obtain the pressure between two plates. In this 

method, the gradient is measured with the FM-AFM technique described above. The 

theoretical formulation is slightly changed to account for the instrumental differences. 

Since the sensing element of the MO is proportional to the deflection angle θ, the 

equation of motion of the lever is in terms of this angle. Any force exerted on the lever 

enters in the equation as a torque. Experimentally, the only differences are  instrumental. 

The lever is periodically driven close to its resonant angular frequency by applying a 

periodic voltage on the electrodes below the lever. A force exerted on the lever produces a 

change in its resonant angular frequency. The difference ∆ωªè  between the resonant 

angular frequency with a force ω� and the one without ω� is proportional to the force 

gradient. For small oscillation amplitudes,   

Eq SS4 

 ∆ωªè � ω� 8 ω�  �  8 b�2Iω�
 ∂FDE�z�∂z . 

 

Where b is the lever arm of the oscillator, I is its moment of inertia, ω� is its resonant 

angular frequency at infinity, and ω�  is the effective angular resonant frequency of the 

oscillator. In addition, Eq. SS4 assumes that, if κ � ω��I , is the torsional spring 

constant, κ b�⁄ ¾ kDE �  ∂FDE�z� ∂z⁄ . This expression is experimentally satisfied by the 

Electrostatic force and the Casimir force at the explored distance range.  

 The rest of the procedure for this technique is the same as the one described for 
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the FM-AFM technique. 

Static and dynamic methods have successfully been used to study different 

properties of the Casimir effect, but not until the experiment by Decca et al. [95] have the 

two methods been compared in the Casimir field. Using a micromachined oscillator, they 

used the same experimental setup to quantitatively compare the static-type and dynamic-

type method. They show that the latter method has two orders of magnitude more force 

resolution than its static counterpart. This result has provided researchers with evidence 

of the potential that dynamic-type methods have in the Casimir field. Currently, using a 

micromachined oscillator, several achievements have already been attained with these 

methods. For example, in the low temperature approximation and up to separation 

distances of 700 nm, they have been used to exclude the thermal correction due to the 

Drude model [36]. They reached this conclusion from a Casimir force room-temperature 

study between a Au-coated sphere and a Au-coated plate. In addition, to understand the 

role of conductivity in real metals, these researchers have measured the Casimir force 

between copper (Cu) and Au in the sphere-plate configuration [95].  The same team has 

explored possible corrections to the PFA in the same configuration [44]. Other authors, 

using similar setups [3], have measured non-linear behavior of a periodically driven 

micromachined oscillator caused by the Casimir force. More recently, Chan et al. [94] 

studied qualitatively the diffraction-like effects in the Casimir effect. They measure the 

force between a Au-coated sphere and a highly doped Si substrate with an array of 

nanoscale rectangular corrugations. All these examples demonstrate that dynamic 

methods have a vast potential in the exploration of the Casmir effect field.  



60 
 

5 Experimental Setup and Procedures 
 

In this chapter, we present the most important features of the low-temperature atomic 

force microscope (AFM) that we designed and built to measure the Casimir force 

gradient in the sphere-plate configuration at different temperatures and as a function of 

distance. One of the most distinctive qualities of this microscope is its capability to 

precisely measure force gradients from 100 nm up to 2 µm in separation distance at 6 K 

and in a high-vacuum environment. We also present the calibrations and the procedures at 

300 K, 77 K, and 6.3 K, which are the temperatures where we have successfully 

measured the force gradient. At these temperatures, the microscope’s sensitivity allows us 

to measure the Casimir pressure for separation distances up to 800 nm. 

The structure of the chapter is the following: In the first section of this chapter, we 

describe the design of the microscope, the cantilever fabrication, and the sample 

preparation. Section II describes the detection technique to measure force gradients. In 

section III, we present the magnetically damped system that keeps the microscope 

mechanically isolated from external vibrations. Section IV corresponds to the vacuum 

system as well as the cryogenic techniques we use to cool and keep the microscope at low 

temperatures throughout the measurements. In section V, we describe the LabView code 

that controls the microscope operations as well as the tasks to measure force gradients. 

Sections VI and VII discuss the grounding and the procedures to measure force gradients 

with this microscope respectively.   
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5.1 Main Design of the Instrument. 

The instrument was designed mainly to precisely measure the Casimir force gradient 

at low temperatures and at large separation distances. It could potentially be used in the 

temperature range between 6.3K and 300K with maximum separation distances of 2 µm 

and 15 µm respectively. To achieve our purpose we built an AFM located at the end of an 

insert of a single-jacket Dewar capable of withstanding low temperatures and maintaining 

an interferometric cavity aligned from room temperature to 6.3K. The interferometric 

cavity is formed with the cleaved end of an optical fiber and the top free end of the 

microcantilever of the microscope. The random changes in the cavity length are 

correlated to the thermomechanical resonant frequency of the microcantilever, which, in 

the presence of a force, will be modified. The changes in its resonant frequency are 

detected with an interferometer-based-dynamic technique. As mentioned in chapter 4, a 

change in resonant frequency is proportional to a force gradient.  

The motion of the substrate is controlled with a 3” segmented piezoelectric tube, this 

allows us to achieve large separation between the substrate and the sphere and a high 

degree of length resolution. To detect the relative motion of the substrate with respect to 

the cleaved end of an optical fiber, we use an interferometric displacement sensor that 

uses the same principle that the interferometer from the cantilever uses.  

Reducing substrate contamination and mechanical coupling of the AFM to external 

vibrations is essential for precise Casimir pressure measurements. Consequently, the 

AFM is enclosed in a high-vacuum compatible container where it is suspended through a 

two-stage spring system that is magnetically damped. This container connects to an oil-



 

free vacuum system outside the Dewar through a stainless steel pipe that runs along the 

insert.  

A picture of the atomic force microscope that we built is shown in 

parts of the microscope are indicated

Figure 5.1. A picture of the atomic force microscope that has been used to measure the Casimir pressure at 
different temperatures. The two stage system is shown without the damping system. Note the segmented 
piezoelectric tube that controls the motion of the sample p

5.2 AFM construction

To maintain the alignment of the cantilever/optical fiber cavity in a large temperature 

range is paramount, therefore our construction material of choice for the AFM is 

Molybdenum (Mo). This material has a low thermal expansion in the range between 5 K 

to 300 K, has good electrical conductivity 

in similar instruments [97]

electrical conductivity improves the magne
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A picture of the atomic force microscope that we built is shown in Figure 
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A picture of the atomic force microscope that has been used to measure the Casimir pressure at 
different temperatures. The two stage system is shown without the damping system. Note the segmented 
piezoelectric tube that controls the motion of the sample plate.   

AFM construction . 

To maintain the alignment of the cantilever/optical fiber cavity in a large temperature 

range is paramount, therefore our construction material of choice for the AFM is 

Molybdenum (Mo). This material has a low thermal expansion in the range between 5 K 

300 K, has good electrical conductivity [96, 97], and has been shown to be appropriate 

[97]. In comparison to similar low thermal expansion materials, its 

electrical conductivity improves the magnetic damping of the two-stage spring system 

free vacuum system outside the Dewar through a stainless steel pipe that runs along the 

Figure 5.1. Various 

A picture of the atomic force microscope that has been used to measure the Casimir pressure at 
different temperatures. The two stage system is shown without the damping system. Note the segmented 

To maintain the alignment of the cantilever/optical fiber cavity in a large temperature 

range is paramount, therefore our construction material of choice for the AFM is 

Molybdenum (Mo). This material has a low thermal expansion in the range between 5 K 

s been shown to be appropriate 

In comparison to similar low thermal expansion materials, its 

stage spring system 
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that holds the microscope.   

The AFM consists of two parts: The microscope head and a cylindrical base where 

the head rests. Both parts contain important elements of the AFM: The head holds the 

modified Silicon (Si) cantilever and two optical fibers. The base holds the segmented 

piezoelectric tube that holds the Au coated sapphire plate. These two parts of the AFM 

are connected with a 1/80th thread SS vented screw that goes through the head and four 

stainless steel (SS) compression springs that regulate the distance between the base and 

the head of the AFM, therefore controlling the coarse separation distance between the 

coated sphere and the plate. Note that the threads for the SS screw are only on the base, 

leaving the head loose. We address this by joining the head and the screw together with 

two retaining rings that are attached to the screw at the top and bottom of the head. To 

stop the head from rocking we put Teflon tape between the screw and the head. To stop it 

from rotating while still allowing it to slide in z-direction we attached two L-fixtures to 

the base. They are located on both sides of the head. These previous adjustments permit 

us to twist the head of the screw to move the microscope's head up and down while only 

changing the relative vertical distance between the head of the microscope and its base.   

Since the interferometric cavity formed between the optical fiber and the cantilever 

has to be aligned for a large temperature range, the procedure we use to attach the 

modified cantilever and the optical fibers to the head of the microscope is essential.  We 

describe then, the process to attach the cantilever and after that, the process to attach the 

fibers.  

To attach the cantilever to the AFM’s head, we glue a chip with silver (Ag) epoxy on 
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to a custom Mo chip holder. The chip contains the modified cantilever. Note that 

commercial cantilevers come on the short length of small rectangular tablet or chip. This 

feature is useful for cantilever manipulation and particularly for our experiment; it allows 

us to thermally and electrically anchor the modified cantilever. Next, we screw in the chip 

holder to the AFM’s head using a custom Mo clip. The chip holder sits on a small 

piezoelectric, capable of oscillating the cantilever and changing the length of the 

interferometric cavity. However, it cannot be used to align that cavity. All the alignment 

has to be done manually and before the AFM is in its high-vacuum container. That is, we 

cannot align the cantilever with the optical fiber once the container is closed. 

The microscope has two optical fibers attached to its Mo head. One detects 

displacements of the cantilever and the other detects displacements of the Au substrate. 

The former is glued to the AFM head at only one spot with Stycast 2850-FT epoxy while 

the latter is glued near the former and at one spot with GE Varnish. We use epoxy on the 

one fiber because it has low thermal expansion in the temperature of our interest.  In 

contrast, we use Varnish on the other, because as long as the cleaved fiber end is 

perpendicular to the large-area-Au substrate the interferometric cavity will exist. In 

addition, GE Varnish is useful because it is easily removable.  

The base of the AFM contains a 3” segmented piezoelectric tube capable of moving 

in X, Y, and Z directions. The piezoelectric is glued to the Mo base with Stycast 2850FT.  

To reduce the length of the head of the AFM a third of the piezoelectric tube is inside the 

base through a vented hole. At the top of the piezoelectric tube, there is a Vespel [98] 

fixture to hold the Au substrate and electrically isolate its metallic segments. The 
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microscope is held by a two-stage spring system, this base is the bottom stage of the 

system. 

5.3 Fabrication of the modified microcantilever. 

 This section is divided into three parts: the first one describes the preparation and 

certain modifications of the cantilevers, the second one describes the cleaning procedure 

of the spheres, and the last one describes the assembly of the modified cantilever. That is, 

a cantilever with a metal-coated sphere on the bottom of its free end. In addition, this 

sphere-cantilever microstructure goes through a process that assures a minimal electrical 

resistance between the coated sphere, the cantilever, and the chip corresponding to the 

cantilever. 

5.3.1 Preparation and Modification of the Cantilevers. 

 We use commercial monocrystaline Silicon (Si) cantilevers [99] that are n-doped 

and have a specific resistance of 0.01 to 0.05 Ohm*cm. [99]We chose these cantilevers 

because their internal structure has only a small amount of internal stresses, in 

comparison to other materials like Silicon nitride (SiN3). This implies that their energy 

dissipation is small, leading to a high quality factor (Q). From these types of cantilevers, 

we use the ones with the smallest spring constant (~0.03 N/m). Many times these 

cantilevers will have some defects on their surface that will increase the energy 

dissipation. Hence, we select the ones with the least amount of these defects. The chosen 

cantilevers are cleaned with high-purity acetone and then rinsed with distilled and 

deionized water (DDW). After that, the silicon dioxide (SiO2) on the surface of the 
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cantilever is etched with a solution of Hydrofluoric acid for one minute. Finally, they are 

double rinsed in a solution of DDW. For the cantilevers to remain electrically conductive 

and free of dirt and debris, it is important to follow this recipe.   If after the process these 

cantilevers are left for more than three hours, they might already be useless for our 

purposes. This is because a native layer of SiO2 increases their resistivity and the sphere 

will not be electrically connected to the cantilever. Moreover, we have found that visible 

debris changes the Q of the cantilevers substantially, therefore, it is important to keep a 

clean environment while processing the cantilevers. Right after the cleaning and etching 

procedures, we solder Indium (In) to the sides of the chip that contains the cantilevers to 

increase the electrical conductivity throughout it. To minimize the resistivity between the 

cantilever and the Au coated sphere we repeat the cleaning and etching procedure just 

before attaching the hollow spheres to the cantilevers.  

5.3.2 Cleaning Procedure of the Spheres. 

 To maximize the sensitivity of the AFM we use hollow-soda-lime-borosilicate-

glass bubbles from 3M [100]. This choice allows the modified cantilever to have larger 

resonant frequencies, hence, as mentioned in chapter 4, higher resolution. Furthermore, 

these bubbles, on average, have few defects, have constant radii, and have removable 

debris. While these spheres are not ideal i.e. debris-free spheres that have fewer or no 

defects, we have not yet found a better choice in the market.  

The sphere cleaning procedure removes debris, mostly broken pieces of spheres, 

and organic material.  The first step of the cleaning process is to make a 10 ml solution of 

Ethanol or Isopropyl alcohol (IPA) with 1-2 ml of bubbles. This solution is thoroughly 
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mixed in a vortex mixer for about 1 minute. Then, using a pipette, the alcohol is extracted 

from the solution, leaving the solute, the bubbles, in the vial.  To remove fiercely attached 

debris, we make a solution of 10 ml solution Hydrogen peroxide (H2O2) and the rest of 

the bubbles in the vial. Using a vortex mixer, the bubble solution is mixed for about 2 

min, allowing the Oxygen released from the solution to remove debris from the bubbles. 

Once the solution is mixed, the H2O2 is extracted, leaving the bubbles to be rinsed with 

IPA or ethanol. To separate the debris from the bubbles, we centrifuge an alcohol/bubbles 

solution, (same ratio as the first alcohol solution), for 10 minutes. Finally, since there is 

debris and broken spheres at the bottom of the vial, we use a pipette to grab the bubbles 

at the top of the solution. Most of the times, these spheres have larger radii. These 

bubbles are placed in a Pyrex Petri dish to dry.  

Once dried, we select the bubbles according to their sphericity and radii. Since the 

AFM’s sensitivity is proportional to the radius of the sphere on the cantilever, using an 

optical microscope with an ocular with a calibrated scale, the bubbles with the largest 

radii are selected. To avoid systematic errors in the measurements, from that collection of 

bubbles, we choose the ones with a constant radius throughout them, making them now, 

mostly spherical. The manipulation and selection process is done with an optical fiber 

without buffer. 

The effectiveness of this process is not without problems. However, it can remove 

most of the debris and we have been able to find spheres of around 100µm radius. While 

the latter is not always the case, this process, on average, seems to have increased the 

radii of the spheres we use for the experiments.  
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5.3.3 Assembly of the Modified Cantilever. 

 The rest of the fabrication of the cantilever is done mostly under an optical 

microscope using a mixture of commercial and homemade tools for manipulating the 

spheres and the cantilevers. Once the spheres are ready, as mentioned earlier, the prepared 

cantilevers are cleaned and etched again. Using a buffer-less optical fiber and under a 

10X optical microscope, we grab a sphere from the Petri dish. The chosen sphere needs to 

have a large diameter, a smooth surface, and has to be free of debris. To attach it to the 

cantilever we use a dot of Silver Ag epoxy at the bottom of the free-end of the cantilever 

where the tip of the cantilever would be. The cantilevers we use are nevertheless tipless. 

The amount of epoxy has to be a small as possible because the resonant frequency of the 

cantilever will be higher. 

The subsequent step is to thermally evaporate Au on the sphere and at the top of 

the free end of the cantilever. The Au on the top of the cantilever has to be evaporated 

only at the tip, about 50µm from the free end. The Au coating on the sphere and 

cantilever is about 100nm thick. To coat exclusively the mentioned parts, we use two 

razor blades to sandwich the chip that has the cantilever. Their sharp edges allow us to 

coat very selectively.  

We use a homemade thermal evaporator that has a motor inside, rotating the razor 

setup and providing the sphere with a uniform Au coating. This instrument is equipped 

with a scroll pump and a turbomolecular pump that permits us to coat at about 10E-6 

Torr. To avoid a rough Au surface, the coating has to be performed slowly and at large 

distances between the evaporator’s boat and the cantilever; it takes about two hours, 3” of 



69 
 

gold wire, at a boat-cantilever distance of about 2.5” to achieve a uniform 100µm thick 

layer. To obtain these parameters, we correlated a smooth Au coating with the pressure 

buildup of the evaporator resulting from the coating process.  This correlation has 

allowed us to obtain systematically smooth Au coatings, as has been demonstrated with 

roughness and thickness studies on the coatings and carried out with a commercial AFM. 

 After the coating process, we inspect the sphere and the cantilever with a 50X and 

a 100X objectives of an optical microscope. We reject cantilevers with spheres that have 

debris on sensitive areas of their surfaces, such as where the Au-coated spheres would 

contact the Au plate. (For a sphere of R ~ 50µm, the effective area is about 15µm X 

15µm). Cantilevers having visible surface roughness on their spheres are rejected as well. 

In addition, since large coated portions of the cantilevers will decrease its quality factor, 

thus reducing microscope’s sensitivity, we reject cantilevers with more than 100µm long 

coatings on their top side. However, since small-coated portions of the cantilever will 

reduce the reflectivity of the interferometric cavity, we reject them when the top side 

coating is less than 25µm long. Irregular coatings and coated debris produce laser 

scattering, decreasing the amount of light in the interferometer cavity, modified cantilever 

with these characteristics are generally not chosen to be part of the experiment. In 

contrast, good quality modified cantilevers are kept in high vacuum while they are not in 

use, while the modified cantilever chosen for the experiment is prepared for its next 

stage. After the experimental measurements, the surface roughness of its sphere will be 

inspected with a commercial AFM.  
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5.4 Preparation of the Substrate.  

 We use a 12.7 mm Sapphire windows as substrate for the Au coating [101]. We 

chose this material for its surface quality, its hardness, its high thermal conductivity, and 

its chemical resistance.  Its roughness is ~ 0.5 nm, as checked with a commercial AFM. 

This is an important starting point for Casimir force measurements. Its chemical 

resistance is useful because it can be cleaned of all debris, coated metals or organic 

materials. However when new, the windows are sonicated in a solution of hot DDW 

water with Liquinox for 15 min, then they are rinsed and sonicated with DDW until the 

detergent has been completely removed. The next step is to sonicate them in hot acetone 

and after that in hot IPA.  To activate the surface we place the windows close to a UV 

lamp[] for 30 min. After which we insert the windows in the thermal evaporator for Au 

coating. The procedure to coat the windows is the same as the one for the cantilevers. In 

this case, however, we do not rotate the sample; only one side of the window is coated. 

When ready and before placing the coated window into the AFM, we often put the Au 

coated window in the UV lamp system for about 4 hrs. This recipe has produced 

satisfactory Au coatings. The effect of the UV exposure of the Au coating or its effect on 

the Casimir force measurements has not been thoroughly tested.  

 When the modified cantilever is prepared and assembled, as mentioned above, it 

is set on the Mo chip holder and aligned with the optical fiber. The Au coated window is 

placed on the Vespel fixture of the piezoelectric tube and the AFM is assembled. Before 

closing the AFM’s can, we solder a thin magnet wire to the Au substrate with pure 

Indium solder. Low melting point, good adhesion with Au, and lack of flux are some of 
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the features of this solder. This choice makes the soldering procedure clean and quick, in 

contrast to the more messy and lengthy processes that use Ag epoxy.  

5.5 Detection system. 

 We detect the cantilever and Au substrate displacements with two all-fiber Rugar 

type interferometers [18]. These custom-built interferometers consist of a laser diode 

pigtail with a 635 nm wavelength, various types of fiber couplers and two photodiodes. 

One photodiode detects the interferometric signal and the other one measures the laser 

power. Since all junctions between the components of the interferometer are spliced, stray 

interference and retroreflection to the laser diodes are minimized. In addition, to 

minimize laser and wavelength fluctuations we control the temperature and the power of 

the laser diodes.  Figure 5.2 has a schematic diagram of an all-fiber interferometer 

coupled to the force microscope. Specifically for the interferometer made by the 

cantilever, the interferometric signal is analyzed with a Spectrum analyzer [90] while all 

the other photodetectors are connected to digital multimeters (DMM), including those 

used for the substrate interferometer.   The advantage of this detection system, for both 

interferometers, is that only one leg of the fiber coupler needs to be introduced into the 

vacuum chamber; the rest of the components of the interferometer are outside the 

chamber and on an optical table. Due to large temperature variations in the laboratory, we 

have enclosed the optical table with 1.5” insulation board, maintaining the temperature 

variations of the table to less than half a degree. This allows us to use the optical table as 

a heat sink for the thermoelectrical coolers of the laser diodes and keeps most of the 



 

interferometer components at a relative constant temperature.

Figure 5.2. Schematic diagram of the all

5.6 Vibration Isolation

 We isolate the microscope from external sources of vibration in two ways: 

Minimizing the mechanical coupling between the Dewar and two noisy sources, the 

vacuum pumps’ system and the building vibrations, and reducing this same coupling 

between the Dewar and the microscope. Additionally, to shorten the effect of vibrational 

transients and reduce the amplitude of the AFM’s oscillations, these two ways are 

equipped with damping mechanisms. We achieve the first task supporting the Dewar with 

a four-legged base consisting of a vibration

setup is housed in a concrete pit in the basement of the Physics department. To reduce the 

coupling between the Dewar and the vacuum pumps’ system we use a wooden sand box 

with lead bricks on top of the sand. Moreover, the vacuum line connecting the sand box 
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terferometer components at a relative constant temperature.  

Schematic diagram of the all-fiber interferometer and the force microscope.
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and the insert is held to the building floor with lead-shot sand bags. Since the insert is 

attached to the Dewar, to minimize the mechanical coupling between them, we place the 

microscope on the bottom stage of a two-stage springs system connected to the insert. 

The oscillations of the bottom stage are damped with a collection of Neodymium 

magnets. This magnetically damped system reduces the mechanical vibrations from 

exterior sources. In addition, the two-stage springs have been proven to be a better option 

for decoupling the bottom stage from the exterior vibrations than the single stage 

counterpart [102]. In Figure 5.1 we show the two-stage spring system and its final setup 

with the AFM. Note that while we have reduced the effect of exterior noise sources and 

damped the AFM’s oscillations, the system still resonates. The calculated horizontal 

resonant frequency of the insert at the bottom stage is about 2 Hz. The calculated value of 

the vertical resonant frequency at the bottom stage is also about 2 Hz.  

5.7 Vacuum system. 

 The experiments are performed in a vacuum of < 10e-4 Torr at room temperature 

and around 10e-6 Torr at T = 77 K and T = 6.3K. To achieve this, the main vacuum line 

consists of an oil-free vacuum system and a long line of bellows. The vacuum system 

combines a scroll pump and a turbomolecular pump that is connected to the insert trough 

the bellows. A gate valve separates the vacuum line from the insert. The insert has a 

stainless steel pipe that runs from the top of the Dewar to the lid of the can that contains 

the microscope. At the top of the insert there is a linear and rotary motion feedthrough 

connected to a manipulator that allows us to twist the head of the screw that changes 
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coarsely the separation distance between the sphere and the substrate. Note that the 

experiments are performed while the manipulator is retracted and not in contact with the 

two-set stage springs system.  

 To measure the pressure we use two thermocouple gauges located along the 

vacuum line. One measures the pressure main vacuum line and the other one the pressure 

of the insert. At room temperature the system pressure is < 10e-4 Torr. 

At 77K and at 6.3K the main vacuum line gauge attains its minimum possible value 

~10e-4 Torr but the gauge of the insert sets at ~10e-2 Torr. The value recorded by this 

gauge is incorrect because thermocouple gauges depend on the gas temperature. This 

gauge has not been properly calibrated to work at the gas temperatures at which we use it. 

To confirm this assumption we have performed He leak tests at room temperature and 

leak rate tests when the insert valve is closed and the temperature of the system is 300K 

and 77K.  Considering the volume of our system, the results have been satisfactory for a 

system in high vacuum. One more verification of our assumption comes from the Q value 

of the modified cantilever in the microscope. That is, once the system has attained the 

base vacuum level the Q value at 77K does not present a substantial difference from the 

value at 300K. At 6.3K, this same verification is not possible because the temperature 

dependence of Q has a drastic effect [103]. Another argument in favor of our assumption 

is that the pressure inside the can at 77K and 6K should be lower than the one at room 

temperature since the can walls and the insert’s pipe act as a cryopump during the 

cooldown of the system. 
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5.8 Cryogenics. 

We use a 100 liters single-jacket Dewar to cool the insert to 77K and 6.3K. The insert 

is made mainly of Stainless Steel (SS) type 304. The reason is that it has low thermal 

conductivity and a high mechanical strength. This choice of material then reduces the 

transfer of heat from the top of the Dewar to the lid of the can. To avoid loosing 

mechanical strength, the can is made of the same material. Since it has low thermal 

conductivity, the walls and bottom of the can are very thin. While thermal radiation from 

the walls and can is not the main mechanism of heat transfer in our experiment, this is the 

most appropriate solution when, as in our case, no exchange gas is used during liquid 

Helium (LHe) cooldowns. To reduce thermal radiation and any heat flow between the top 

of the insert and the can, the insert has four Copper radiation baffles in different locations 

throughout the SS pipe of the insert. The lowest placed baffle is below the 77 K region or 

the Dewar’s “belly”. To minimize the laminar flow of the cryogenic fluid inside the 

Dewar we fit the baffles to the Dewar bore and we attached smaller copper disks to the 

baffles that fit the rest of the tubing of the insert. These baffles reduce the heat transfer by 

a factor of five and maintain an effective temperature gradient along the insert [96]. In 

our experiment, the dominant mechanism for transferring energy is thermal conduction. 

To enhance the thermal transfer from the lid to the stage where the AFM is located, we 

use a large piece of Copper for the first stage of the two-stage spring system. This Cu 

stage acts as a heat sink and allows a faster heat transfer to and from the microscope 

stage.  

For the electrical wiring of the microscope, we use bundles of twisted-pairs of magnet 



76 
 

wire that are placed from the top of the insert to the lid of the can. At the top, they are 

connected to two connectors, a D-sub connector and a low-temperature 8-pin connector. 

At the lid, the wires are introduced to the can with a homemade feedthrough, a fixture 

that is made of Bronze and Stycast 2850-FT epoxy seal [96]. The Bronze fittings have an 

Indium (In) O-ring to seal them to the SS can. Magnet wire is also used inside the can for 

the electrical connections of the AFM. For these connections, to avoid the solder flux, we 

mostly used pure In solder.  

Little was done to thermally anchor the electrical wires but some consideration was 

put in certain places where a lot of wire remained. Nevertheless, they are mostly attached 

to the metal tubing of the insert. Another reason this is not an issue is that the cooling 

power of the Dewar is high in comparison to the heat conducted through the magnet 

wires. In addition, the temperatures attained in this experiment are high for the heat from 

the wires to be a concern. 

 The optical fiber wiring is very similar to its electrical counterpart.  Four optical 

fibers are held at the top of the insert with a plastic plug and weave through the insert. To 

introduce the fibers to the can, we use the same feedthrough that was described above. 

Except that it is thinner because there are fewer fibers than wires and the epoxy seal is 

less likely to leak. 

5.8.1 Temperature Monitoring System. 

 We measure the temperature of the microscope using a Carbon-glass resistance 

temperature detector. To avoid temperature inaccuracies, we measure the resistance of the 

sensor with the four-probe technique. It has a temperature range from 1 K to 350 K and a 
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resolution of about 0.5 K.  

This sensor is located under the lip that protrudes from the head of the microscope 

and is thermally anchored with GE Varnish. This location does not permit the entire 

sensor to have physical contact with the head. This means that the 6.3K reading might not 

be accurate. Another explanation is that the heat load on the instrument is too large and 

the equilibrium temperature is 6.3K. Since the temperature reading of the sensor is about 

77.3K when the instrument is in a LN bath, we believe the second explanation is more 

likely. However, future versions of the temperature system will locate the sensor in a hole 

on the AFM head.  

5.8.2 Instrument Low Temperature Specifications and Cooling Efficiency. 

5.8.2.1  Room temperature to LN temperatures. 

Starting from room temperature, the microscope takes two liquid Nitrogen (LN) 

transfers to keep the system at 77 K for two and a half weeks. The first one is to cool the 

system and the second one to keep it at LN temperature for a long period. Since there is 

no LN level on the system, we always fill the Dewar to the top. In about two days, the 

system reaches 77 K. It is then stable and ready for measurements. This process, while 

not the most efficient, has a boil-off rate that is satisfactory for our measurements at a 

base temperature about 77K. In addition, it allows us to make several measurement runs 

because our measurements take about 72 hours.  

5.8.2.2 Room temperature to LHe temperatures. 

To cool down the instrument we follow standard procedures with a single-jacket 
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Dewar. Richardson et al. [] have described this process in detail. The purpose of this 

process is two-fold: Cool down the instrument to LHe temperatures and waste the least 

amount of LHe in the process. LHe is an expensive, non-renewable commodity.  This not 

being an unusual procedure the process is briefly recounted below. Particularities of the 

process are nevertheless highlighted. 

To save LHe it is always best to precool with LN. In our experiment, before making 

measurements at LHe temperatures, we always measure the Casmir force at LN 

temperatures. This means the instrument is always precooled. However, after the LN 

measurements we transfer LN to the Dewar to cool most of the insert. When cold, to 

purge the LN from the Dewar, it is pressurized with Nitrogen gas (N2). It is recommended 

to use a vacuum pump to remove the N2 gas from the Dewar, as any Nitrogen residue, in 

any phase, can freeze. Our instrument does not permit us to perform this step. The Dewar 

then is filled with Helium gas (He) and after that we start the transferring of LHe to the 

Dewar. 

From LN temperatures, the instrument needs about 60 liters to cool down and 60 

liters to remain at its base temperature for about a week. Ideally, this allows us to carry 

out two measurement runs. Until now, we have achieved only one measurement run. To 

maintain the temperature a base temperature of about 6.3K for one more week, one 

transfer of 60 liters of LHe is enough. 

5.9 Automisation. 

 Using the software LabView, we made various programs that control most of the 
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functions of the microscope. Two of them control and monitor the microscope’s actions 

while it is running. On of these programs is called Main.Vi. It collects the response of the 

cantilever to the thermal noise from a Spectrum analyzer through a GPIB interface. It sets 

the voltages applied between the modified cantilever and the Au substrate through a low-

noise voltage supply. Using a similar voltage source, this program controls the voltage 

applied to the piezoelectric tube that regulates the separation distance between the Au 

substrate and the sphere. In summary, when Main.Vi is running, it measures the response 

of the cantilever at different voltages between the sphere and the substrate for many 

different voltages applied to the piezoelectric tube  

The second program called CryoTemp.Vi controls the temperature and monitors the 

power of the laser diode corresponding to the cantilever interferometer. It also monitors 

the relative displacement of the Au substrate with respect to the optical fiber end. We use 

this signal to calibrate the displacements of the piezoelectric tube. In addition, this 

program monitors the temperature of the microscope, the temperature, and the power of 

the laser diode that corresponds to the interferometer of the substrate. The software 

records most of the input and output data of the system for subsequent data analysis.   

5.10 Grounding. 

It is important to avoid or minimize grounding problems of the system. Ground loops 

are the most common problem disturbing our detectors. However, non-ohmic contacts or 

loose contacts in any part of the microscope can also modify the electrostatic voltages 

between the components of the microscope. For this reason, the instruments must have 
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good solid soldering junctions. To address the ground loop problems, we choose the body 

of the microscope to be our main and only ground, which is, at the same time, the ground 

from the laboratory. The microscope's body is connected to the laboratory ground through 

the plumbing of the vacuum pump system. All electronic instruments used in the 

experiment are connected to the same lab ground. In addition, all the ground wires come 

from the ground of the microscope and are not connected at any point in between. 

Nevertheless, if the Au-coated sphere does not have the same potential as the body of the 

microscope, the electrostatic force is not going to be compensated properly and the 

Casimir measurements will not be accurate. As can be seen in the “fabrication of the 

modified cantilever” section, a great effort has been put into making sure this scenario is 

unlikely in our experiment. In conclusion, we have found that when the modified 

cantilever has minimal electrical resistance between its components, and all the electrical 

instruments used in the apparatus are grounded through the microscope, then the ground 

loops are minimized and the amount of bad contacts reduced.  

5.11 System procedures. 

 Other than experiments like Iannuzzi et al. [82], most of the procedures to 

measure the Casimir force are similar. All of them measure a force or the gradient of a 

force between a sphere and a plate. The resultant force, or its gradient, is due to the 

Casmir force and the electrostatic force between these objects. For Casmir force 

experiments, researchers modified the latter force to find the contact potential (V0), which 

is the residual potential when plate and sphere are at the same electric potential. For this 
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purpose, they set different voltages between the sphere and the plate. Since the 

electrostatic force depends quadratically on the voltage between the sphere and the plate, 

the measured force or gradient will have a parabolic dependence with respect to those 

voltages. Since the experimenters’ objective is to explore solely the Casmir effect, they 

aim to measure the force when the electrostatic force is between near compensation to 

when its strength is comparable to the Casmir force. This means that the voltages 

between the sphere and the plate are set to be around V0. Experimentally, these values are 

less than a volt away from V0. Furthermore, these voltages produce a parabola with an 

apex at V0 and the value of the Casmir force (force gradient). The curvature of the 

parabola is proportional to the strength of the electrostatic force (force gradient). Note 

that this parabola corresponds to a certain distance between the sphere and the plate. For 

other distances, the result is the Casmir force (force gradient) as a function of distance. 

Experimentally, however, the absolute distance between the sphere and the plate is not 

known precisely; only the relative changes in distance are known precisely. To find the 

absolute distance researchers use the curvatures of the parabolas at different distances. 

Since, as we mentioned above, they are proportional to the distance dependence of the 

electrostatic force. In combination with the relative distance changes, the curvature is 

used to find the absolute sphere-plane distance. Specifically researchers look for the 

average plate-sphere contact or smallest distance or z0, which when added to the relative 

distance changes yields the distance between the sphere and the plate. Different methods 

are used to obtain z0.  Once obtained, however; researchers can obtain the Casmir force 

(force gradient) as a function of distance between a sphere and a plate. Note z0 is a 
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precise value because the theoretical electrostatic force between a metallic sphere and 

metallic plate is an exact expression. 

 Our procedure is very similar to the one described above. Since it is a dynamic 

measurement, we measure the gradient of the force between a sphere and a plate. 

Essentially, we measure a resonant frequency of the modified cantilever at infinity, which 

is when no force is exerted on the sphere. After that, we measure the same frequency at 

distance where there is a force exerted on the sphere. We repeat this for several distances. 

The differences between each of these frequencies and the resonant frequency at infinity, 

in combination with the curvatures of their corresponding parabolas, result in the Casmir 

force gradient as a function of the separation between a sphere and a plate. This function 

and Eq. XX of chapter 2 yield the Casimir pressure as a function of distance between two 

plates. 

The experimental steps we follow to measure the Casimir pressure are the following:  

I. At a separation distance larger than 300 micron: We measure the resonance peak 

of the modified cantilever at infinity using the program Main.Vi while monitoring 

the status of the instrument with the program CryoTemp.Vi. To reduce random 

noise, the spectrum analyzer averages ten peaks at a resolution of 30.5 mHz and 

Main.Vi records the averaged peak. The average peak is measured around 100 

times for statistical purposes. The software running the experiments is stopped 

and data is analyzed. The resonant frequency of the modified cantilever is the 

averaged value obtained from the 100 peaks. The standard error is also obtained 

from this average. 
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II.   When step one is finished and without modifying the separation between the 

sphere and the plate. We applied a voltage of 200 mV between the sphere and the 

plate. We proceed to coarsely approach the sphere to the sample. To be able to 

separate the sample from the sphere when in contact, we reduce the sample-plate 

distance by 1 micron. During the coarse approach the sphere will contact the 

substrate, pulling the substrate away with a 500 nm step might help separate them. 

Using the coarse linear manipulator we twist the screw of the microscope to 

approach the sphere to the plate. This process is time consuming because slow 

approaches avoid the sphere crashing on the substrate or being compacted 

between the plate and the optical fiber end that forms the interferometric cavity. 

Both problems result in the cantilever being destroyed.  

III.  Once the electrostatic force gradient is detected, the resonant frequency of the 

cantilever is smaller, the manipulator is retracted and a rough estimate of the 

separation distance is calculated. That value helps us to approach the sphere 

toward the plate in an efficient manner. V0 is roughly measured by manually 

setting different voltages between the sphere and the plate and observing the 

resonance peak shift frequencies.  

RETRACTING THE LINEAR MANIPULATOR 

Since the electrostatic force has been detected, the sphere-plate distance is less 

than two µm. This means that a slight nudge on the instrument makes the sphere 

contact the plate or on the contrary, makes it move too far from the sample to 
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detect a force using the plate’s fine approach. For this reason, to retract the 

manipulator and still detect a force requires us to gently rotate the manipulator 

counterclockwise so its tip stops touching the sides of the groove on the 

microscope’s screw. Since the groove is quite small, the rotation has to be 

minimal. Once this is achieved, the manipulator has to be slid as gently as 

possible for about five inches. This stops the manipulator from contacting the 

two-stage spring system. Furthermore, the manipulator is held with a Cajon-type 

connector, tightening this fixture has to be equally gentle. If after this process, the 

cantilever still detects a force the experiment can continue. If not, the manipulator 

has to be gently set on the screw of the microscope and  the sphere-plate approach 

started once more i.e. go back to step two. 

IV.  Measuring V0: We measure the resonance peak of the modified cantilever using 

the program Main.Vi. by obtaining a averaging 10 peaks with a resolution of  121 

mHz on the spectrum analyzer . Main.Vi records it. This is performed at each of 

the nine voltages roughly used in step three. Note that the average peak has 10 

peaks averaged linearly and without overlap. This means that peak’s data are 

averaged arithmetically and that each peak’s data is independent from one 

another. 

V. Step 4 is repeated at different separation distances to roughly check the 

dependence of V0 with separation distance.  To save time this is typically 

performed at a lower resolution than in the experiment: 121 mHz. If the V0 

changes substantially with distance, we might replace the Au substrate, replace 
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the modified cantilever, replace both, or change point of sphere-plate contact. The 

circumstances of the experiment will lead us to decide the most appropriate 

option. In the case where V0 is relatively constant, we will continue the 

experiment. Before starting the experiment, we let the piezoelectric tube 

equilibrate as no precautions to minimize the drift were taken when the voltage 

was applied to it. This might take from a couple of hours to half a day. We 

monitor the status of the piezoelectric tube with the program CryoTemp.Vi.  

VI.  Start of the experiment: The Main.Vi program performs step four at different 

separation distances. The distance step between measurements and the initial 

estimated absolute distance between the sphere and the plate are set in the 

program. In addition, we set the time between steps. We use this to minimize the 

piezoelectric tube drift, as the chosen time is larger than its characteristic 

relaxation time for the distance steps being used in the experiment. The resolution 

of 30.5 mHz is also set in the program. During these measurements, the program 

CryoTemp.Vi will monitor the status of the experiment. 

VII.  During the experiment, we modify the distance step between measurements and 

the voltages applied to the substrate. The shorter the separation distances the 

smaller the distance step. Note that the Main.Vi program has to be stopped to 

change the distance step and has to be restarted with the new distance step. The 

voltages applied between the sphere and the plates are chosen so the maximum 

frequency shift is 4 Hz. This stops the peaks from moving away from the scope of 
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the Spectrum analyzer. When the sphere is close to contact the plate, the 

frequency range of the Spectrum analyzer has to be shifted constantly to allow the 

peaks to be inside that frequency range.  

VIII.  Once the resonance peak disappears or the Q changes substantially we stop the 

experiment. This means that we stop both programs. The sphere might have 

touched or is about to touch the plate. We retract the plate with the piezoelectric 

tube and, if needed, repeat the experiment when the piezoelectric tube 

equilibrates. 

IX.  After all experiments are finished the resonance frequency at infinity is measured 

as in step 1. Substantial changes in frequency between the average value in this 

step and the value in step 1 could mean that the sphere picked up or lost mass 

while in contact with the plate. To perform this step the linear manipulator has to 

be lowered and touch the screw of the microscope. This critical procedure, if 

performed carelessly, can lead to breaking the cantilever. This is because the 

sphere and the plate are at most two µm apart. If the manipulator is not lowered 

slowly or gently put on top of the screw, the cantilever or sphere might break. The 

same care should be observed when rotating the screw to separate the sphere from 

the plate. The rotation has to be in small steps, at least for one whole turn.  

X. Au-coated sphere and Au-coated plate are retrieved from the microscope to 

measure their surface roughness and their electrical conductivity. 
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6 Results and Discussion 
 

In this chapter, the main results of the experimental study of this manuscript are 

presented. The chapter is divided into three sections. In the first section, we present the 

experimental values of the Casmir pressure between two plates at T = 6.7 K.  In sections 
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Figure 6.1. Experimental and theoretical values for the magnitude of the Casmir pressure 
between two plates as a function of the sphere-plate separation distance at T = 6.7 K. The black 
crosses are the experimental values with their corresponding error bars at T = 6.7 K.  The red 
dashed line is the pressure calculated with the generalized Drude-like model with six transitions 
of the core electrons at T = 6.5 K. The green solid line is the Casmir pressure calculated with the 
generalized Plasma-like model at T = 6.5 K with six transitions of the core electrons. 



88 
 

two and three the corresponding values for T = 77 K, and T = 300 K are presented. These 

results are compared to the theoretical values of the Casmir pressure calculated using the 

generalized Plasma-like and Drude-like models at these three temperatures.   

6.1 Casimir force between two Au plates at T = 6.7 K 
 

 At this temperature, the experimental values for the Casmir pressure had 

the best agreement with the corresponding theoretical values calculated for the different 

models. The reason seems to be that the systematic errors in the experimental setup are 

minimized at this temperature. While this allowed to precisely measuring the Casmir 

pressure between two plates from 120 to 600 nm, the measurements were performed at 

distances up to 900nm. The baseline produced by the Casmir pressure measurements 

from 600 nm to 900 nm is needed to calibrate the sphere-plate separation distance. The 

dominant contribution in this distance interval is the electrostatic force between the 

sphere and the plate, which is used to obtain their absolute separation. Using this method, 

at this temperature, it resulted in a minimum separation between the sphere and the plate 

of z0
y � 119.4 nm . Using this value, measured values of the Casmir pressure are 

compared with the theoretical values as a function of the separation distance. . They are 

presented in fig. 6.1 as black crosses. . In addition to the experimental values, this figure 

contains the calculated Casmir pressure between two plates for two theoretical models of 

the plate material. The red dashed line represents the theoretical values using the 

generalized Drude-like model at T = 6.5 K and the green solid line represents the 

corresponding values for the generalized Plasma-like model at the same temperature. 

Both graphs are calculated using the process described in the subsection called: 
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Generalized Plasma-Like Model and Optical Tabulated Data and the Drude Model 

respectively. Specifically, these two curves are calculated using six transitions of the core 

electrons. 

The results presented in this report are highly promising in the range of 150 nm to 

230 nm. They have < 1 % relative random error and their degree of agreement with 

theoretical calculations at T = 6.7 K is < ±2 %. To appreciate graphically the 
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Figure 6.2. Experimental and theoretical values for the absolute Casmir pressure between two 
plates as a function of the sphere-plate separation distance. The black squares are the 
experimental values with their corresponding error bars at T = 6.7 K. The grey solid line is the 
pressure calculated with the generalized Drude-like model with six transitions of the core 
electrons at T = 6.5 K. The red solid line is the Casmir pressure calculated with the generalized 
Drude -like model at T = 6.5 K with six transitions of the core electrons. The green dashed line is 
the Casmir pressure calculated with the generalized Plasma -like model at T = 6.5 K with six 
transitions of the core electrons. 
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experimental precision of these results, in fig. 6.2 they are presented in the interval that 

ranges from 148 nm to 167 nm, in fig. 6.3, from 165 nm to 195 nm, and in fig. 6.4 from 

195 nm to 230 nm. In addition, both graphs plot the calculated values of the Casmir 

pressure between two plates for T= 6.7 K (grey solid line) and for T = 300 K (red solid 

line) using the generalized Drude-like model, and for T = 6.5 K (green dash line) for the 

generalized Plasma-like model. Note that the corresponding theoretical values for the 

latter model at T = 300 K are not in the graphs of this chapter. They have a small 

temperature variation when compared to the values of the pressure calculated with the 

generalized Drude-like model approach at T = 300 K.  Instead the latter is presented and 

compared with the experimental data at T = 6.7 K. 

6.1.1 Experimental precision of the Casimir Pressure. 
 

The relative random error per data point is calculated using the expression given 

by,  

6.1 

zäë�Iì� � ∆ä�Iì�äíîs�Iì�. 
Where äíîs�Iì�  is the experimental value and ∆ä�Iì�  is the error obtained through 

propagation of the errors of the measured quantities i.e., the resonant frequency of the 

cantilever, V0, and the curvature of the parabolas described in chapter 5. We use the 

following expression to calculate this value,  

6.2 
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∆ä�Iì� � 1� ïc Xðñ� ∆ñe� % �Xñ�Iì�ðñ�� ∆ñ��� % òñ�Iì� 8 ñ�ñ� cXðe� ∆ cðXeó�ô
) �*

. 
Where R is the radius of the sphere, k the spring constant of the modified cantilever, and 

ñ�is the resonant frequency of the modified cantilever when no force is exerted on the 

sphere (at infinite distance). In contrast, the ñ is the resonant frequency of this cantilever 

when the sphere is in a force gradient. Note that the dominant term in this expression is 

the first one on the right hand side and ∆ñ proportional to the resolution set by the 

experimenters in the Spectrum analyzer. 

 The numerical values on the right hand side of eq. 6.2 for example, at T = 6.7 K, 

are found using the procedure in step 1 of chapter 5. This procedure then, yields a mean 

value of ñ� �  3322.8345 õI , a standard error of ∆ñ� � 4.6 mHz , and a standard 

deviation for a 10 average Lorentzian peak of ∆ñ � 67.3 xõI. The value R/k is obtained 

indirectly through electrostatic calibration. 

 A discussion of the contribution of the systematic errors to the experimental 

precision is found below.  However, for the distance intervals in figs. 6.2-4, eq. 6.1 and 

eq. 6.2 obtain a relative random error for the experimental values of the Casmir pressure 

of less than 1 %.  

6.1.2 Comparison between Theory and Experiment. 
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Inspection of figs. 6.2-4 shows that the experimental values for T = 6.7 K have 
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Figure 6.3. Experimental and theoretical values for the absolute Casmir pressure between two 
plates as a function of the sphere-plate separation distance. The black squares are the experimental 
values with their corresponding error bars at T = 6.7 K. The error bars are slightly bigger than the 
squares. The grey solid line is the pressure calculated with the generalized Drude-like model with 
six transitions of the core electrons at T = 6.5 K. The red solid line is the Casmir pressure calculated 
with the generalized Drude -like model at T = 6.5 K with six transitions of the core electrons. The 
green dash line is the Casmir pressure calculated with the generalized Plasma -like model at T = 6.5 
K with six transitions of the core electrons. 
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good agreement with the calculated values of the Casmir pressure when using the 

generalized Drude-like model at T = 6.5 K 4äöë÷\í¸.øK�Iì�5. At this temperature, the 

latter values and the calculated pressures using the generalized Plasma-like model is 

larger than the sensitivity of the instrument used here. For reasons explained below, the 

experimental results ùäaîs¸.úK�Iì�û then are compared to äöë÷\í¸.øK�Iì� for the all Iì ’s. 

To achieve this, the following percent uncertainty approach is used:  

6.3 
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Figure 6.4. Experimental and theoretical values for the absolute Casmir pressure between two 
plates as a function of the sphere-plate separation distance.  The black squares are the 
experimental values with their corresponding error bars at T = 6.7 K. The grey solid line is the 
pressure calculated with the generalized Drude-like model with six transitions of the core 
electrons at T = 6.5 K. The red solid line is the Casmir pressure calculated with the 
generalized Drude -like model at T = 6.5 K with six transitions of the core electrons. The 
green dash line is the Casmir pressure calculated with the generalized Plasma -like model at T 
= 6.5 K with six transitions of the core electrons. 
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% pJý�Jiþ �i�Jýþhdidþ� �Iì� � 100 · äöë÷\í¸.øK�Iì� 8 äaîs¸.øK�Iì�äöë÷\í¸.øK�Iì� , 
Using eq. 6.3, it is shown in fig. 6.5 that for the sphere-plate separations of fig. 

6.2-4 the degree of agreement between experimental and calculated values is less than ±2 

%. To obtain this quantity, the calculated values were interpolated between 120 nm and 

1000 nm every 0.25 nm from values calculated every 5 nm. This allowed for the 

parameters of eq. 6.3 to be evaluated at effectively the same Iì.The same procedure is 
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Figure 6.5. Degree of agreement between the pressure calculated with the generalized Drude-like 
model with six transitions of the core electrons at T = 6.5 K and the experimental measurements of 
the Casmir pressure at the same temperature.  
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used to show the degree of agreement between the Casmir pressure calculated at T = 300 

K using the generalized Drude-like model 4äöë÷\í<��K�Iì�5 and äaîs¸.úK�Iì� in the same 

distance range as fig. 6.5. In this case, the pressure values obtained through interpolation 

are calculated every 0.25 nm and in the same separation distance interval as above. 

However, the interpolation uses calculated data from separation distance that is separated 

by 2 nm.   For this case, the percent uncertainty has an expression given by,  

6.4 

% pJý�Jiþ �i�Jýþhdidþ� �Iì� � 100 · äöë÷\í<��K�Iì� 8 äaîs¸.øK�Iì�äöë÷\í<��K�Iì� , 
Note that eq. 6.4 compares the calculated values at T = 300 K with the 

experimental values at T = 6.7 K. The results of this expression, as well as the ones from 

eq. 6.3, are plotted together in fig. 6.6 as a function of the sphere-plane separation 

distance. The red open circles curve is obtained with eq. 6.4 and the black open triangles 

curve with eq. 6.3. The advantage of both curves being in this figure is that a discrepancy 

between the experimental results at T = 6. 7 K and the calculated data at T= 300 K is 

emphasized. That is, the data from eq. 6.4 is a factor of about two bigger than the data 

from eq. 6.3.  Therefore, if the experimental values of the Casmir force at T = 300 K are 

obtained and compared to the pressure at T = 300 K calculated with the generalized 

Drude-like model, the instrument used here could measure, for the first time, the thermal 

effects of the Casmir effect due to materials with non-zero dissipation. Otherwise, the 

experimental results at T = 300 K will be in much better agreement with the pressure 

calculated with the generalized Plasma-like model at T = 300 K. As it can be seen from 
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figs. 6.2-4 the thermal effects in the latter case are smaller than for the pressure calculated 

with the Drude-like model.   

It is illustrative to compare some of the experimental values of the Casmir 

pressure at T = 6.7 K to the theoretical Casmir pressure between two plates calculated 

with the generalized Drude-like model at T = 77 K, as the thermal effects are more 

pronounced than in the corresponding Plasma-like model. For this purpose, in Figure 6.7 

the experimental values at T = 6.7 K from 146 nm to 160 nm are presented. The figure 

also includes the corresponding theoretical values for the Casmir pressure between two 
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Figure 6.6. Comparison between the percent uncertainty at T = 6.5 K and T = 300 
K. The values at 300 K result from the comparison between the pressure calculated 
with the generalized Drude-like model with six transitions of the core electrons at 
T = 300 K and the experimental measurements of the Casmir pressure at T = 6.5 K.
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plates at T = 77 K. In addition, the theoretical curves presented in previous figures for the 

Casimir pressure at different temperatures and for different material’s model are plotted 

as a reference. In Figure 6.7, the dark cyan solid line represents the theoretical values of 

the pressure at T = 77K calculated with the optical tabulated data for Au in the 

generalized Drude-like model.  

1.2

1.3

1.4

1.5

1.6

146.0n 148.0n 150.0n 152.0n 154.0n 156.0n 158.0n 160.0n 

 

  

 Optical w/ 6 Osc Drude  T = 77K

A
b
s
o
lu
te
 C
a
s
im
ir
 P
re
s
s
u
re
 f
o
r 
T
w
o
 P
la
te
s
 (
m
P
a
)

Sphere-Plate Separation Distance (m)

 Optical w/ 6 Osc Plasma T = 6.5K

 Optical w/ 6 Osc Drude  T = 6.5K

 Experimental Values      T = 6.7K

 Optical w/ 6 Osc Drude  T = 300K

Figure 6.7. Experimental and theoretical values for the absolute Casmir pressure between two plates 
as a function of the sphere-plate separation distance and for different temperatures. The black squares 
are the experimental values with their corresponding error bars at T = 6.7 K. The error bars are 
slightly bigger than the squares. The black solid line is the pressure calculated with the generalized 
Drude-like model with six transitions of the core electrons at T = 6.5 K. The dark cyan solid line is the 
Casmir pressure between two plates calculated using the generalized Drude-like model and at T = 77 
K. The red solid line is the Casmir pressure calculated with the generalized Drude -like model at T = 
300 K with six transitions of the core electrons. The green solid line is the Casmir pressure calculated 
with the generalized Plasma-like model at T = 6.5 K with six transitions of the core electrons. 
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Figure 6.7 underscores the difference between the measurements at T = 6.7 K and 

the calculated values of the Casmir pressure at T = 77 K and T = 300 K when the 

generalized Drude-like model is used. The degree of agreement between äaîs¸.øK�Iì� and 

the corresponding theoretical values at T = 77 K, 4äöë÷\íúúK�Iì�5 , is on the 2% 

uncertainty  range. Similar to the quantity found when comparing to äöë÷\í¸.øK�Iì�. 
However, with the current sensitivity of the instrument that is used here, this figure 

demonstrates that thermal effects of the Casimir effect might be found when comparing  

äaîs¸.øK�Iì� with äaîs<��K�Iì� and not with äaîsúúK�Iì� . This will be more significant 

below, in the discussion of the systematic errors of the measurements. This is the case 

because the instrument used in this experimental study has lower systematic errors at T = 

77 K than at T = 300 K.  This makes the former temperature a preferred environment to 

perform this type of experiments.  

The experimental values in this figure have a larger relative random error than the 

experimental values in figs. 6.2-4. Using eq. 6.1 and eq. 6.2, at about 230 nm the first 

value has 1.3 % relative random error, at about 345 nm it is 6 %, and at about 400 nm it 

has 11 %. To obtain a more precise experimental measurement, the error could be 

reduced by averaging different T = 6.7 

 

 



99 
 

K experiments, or increasing the number of averaged curves per experimental value of 

the Casmir pressure. This would reduce the statistical uncertainty of the resonant 

frequency of the cantilever. Inspection of eq. 6.2, however, shows that increasing the 
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Figure 6.8. Experimental and theoretical values for the absolute Casmir pressure between two plates as a 
function of the sphere-plate separation distance. The black square are the experimental values with their 
corresponding error bars at T = 6.7 K. The grey solid line is the pressure calculated with the generalized 
Drude-like model with six transitions of the core electrons at T = 6.5 K. The red solid line is the Casmir 
pressure calculated with the generalized Drude -like model at T = 6.5 K with six transitions of the core 
electrons. The green dash line is the Casmir pressure calculated with the generalized Plasma -like model at 
T = 6.5 K with six transitions of the core electrons. 
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resolution at which the frequency is measured is more rewarding. Additionally, a 

combination of factors, such as reducing the modified cantilever spring constant k, 

increasing the radius of the sphere, and increasing the resonant frequency ñ�  of the 

modified cantilever, can highly improve the pressure sensitivity of the microscope. This 

is one of the reasons the preparation of the modified cantilevers is vital in avoiding any 

increase of the k and reduction of the ñ�. Hollow spheres for the modified cantilever 

should be preferred as a larger mass decreases ñ�. To increase the measurement precision 

in this and other separation distance intervals, future experiments will be performed with 

higher sensitivity cantilevers. This type of cantilevers has been already studied by our 

group [104].  
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The degree of agreement between the experiment and the corresponding theory 

can be improved. Using the percent uncertainty expressions of eq. 6.3 and eq. 6.4, 

equivalent curves to Figure 6.6 was obtained in the separation distance interval of Error! 

Reference source not found.Error! Reference source not found.. These curves are 

plotted in Figure 6.9. This figure shows that, while the experimental measurements have 

good agreement with the theory, about 5% up to 320 nm, they are not sensitive enough to 

resolve the temperature dependence of the Casmir pressure between plates. 
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Figure 6.9. Comparison between the percent uncertainty at T = 6.5 K and T = 300 K. The 
values at 300 K result from the comparison between the pressure calculated with the 
generalized Drude-like model with six transitions of the core electrons at T = 300 K and the 
experimental measurements of the Casmir pressure at T = 6.5 K.  
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Figure 6.10 present the experimental values of fig. 6.1 at separation distances that 

range from 400nm to 900 nm along with its theoretical curves and the curve for the 

Casmir pressure at T = 300 K calculated using the generalized Drude-like model. Using 

eq. 6.1 and eq. 6.2, it can be shown that the precision of the experimental data is lower 

than previous data. For example, at about 426 nm the relative percent error is 17.6 %, at 
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Figure 6.10. Experimental and theoretical values for the absolute Casmir pressure between two 
plates as a function of the sphere-plate separation distance. The black square are the 
experimental values with their corresponding error bars at T = 6.7 K. The grey solid line is the 
pressure calculated with the generalized Drude-like model with six transitions of the core 
electrons at T = 6.5 K. The red solid line is the Casmir pressure calculated with the generalized 
Drude -like model at T = 6.5 K with six transitions of the core electrons. The green dash line is 
the Casmir pressure calculated with the generalized Plasma -like model at T = 6.5 K with six 
transitions of the core electrons. 
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524.2 nm it is 52.2 % nm, and at higher separation distances it goes beyond a 100 %. Fig. 

6.10, however, demonstrates the sensitivity of the instrument used here. It shows that the 

for separation distances larger than 524.2 nm the signal to noise ratio is less than 1. In 

addition, while revisiting the experimental values from fig. 6.10 it is found that for 

distances higher than 524.2 nm, where effectively the microscope does not detect any 

pressure, the random uncertainty of the experimental points is 5.3 µPa. This is about 39 

% higher than the uncertainty calculated with eq. 6.1 and 6.2, suggesting that the error 

bars are underestimated. However, this increase of the relative random error is sill less 

than 1 % in the sphere-plate separation distance that ranges from 150 to 230 nm, thus not 

affecting the main results of this manuscript.  More exploration and more data are needed 

to find the explanation for the discrepancy.  

6.1.3 Systematic Error Analysis 
 

The main sources of systematic errors are the non-equilibrated motion of the 

piezoelectric that controls the motion of the sample plate and the non-linear behavior of 

the piezoelectric. These issues are responsible for modifying the absolute separation 

distance between the sphere and the plate, leading to  a separation distance dependence of 

the V0, and making a distance dependence of z0
y. All of them modify the measured values 

of the Casmir pressure at certain separation distance. 

Systematic error due to the drift of one of the plates: The technique we use for 

measuring the Casmir pressure requires the separation distance to be constant during the 

measurement. However, the piezoelectric that controls the sample is not completely in 

equilibrium when the measurement is performed. Waiting for equilibrium would extend 
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the data acquisition time from 60 hours to 180 hours or longer, making it impractical. To 

assure that most of the contribution to the drift of the piezoelectric is negligible during 

the measurement, every time the separation distance is changed and before starting the 

measurement, the piezoelectric moving the plate is left to equilibrate for 10 minutes. This 

procedure reduces the drift to less than 0.3 nm in the following 30 minutes. However, 

during the experiment, which lasts about 60 hours, we change the separation distance 

about 50 times in different distance steps. This means, among other thing, that the drift of 

the piezoelectric plays a larger role at the end of the experiment, when the separation 

distance is has decreased the most. Its effect seems to be noticeable in the pressure 

measurements below 145 nm.  Using the minimum sphere-plate separation distance 

dependence z0
y on the relative sphere-plate separation distance, it has been estimated that 

the piezoelectric drift for the length of the experiment is about seven nm. The result is a 

change in values of the Casmir pressure.  For example, using the percent uncertainty 

approach to compare two experimental curves, one that considers the drift and one that 

does not consider it, the effect of the separation distance drift can be quantified. This 

comparison shows that at a sphere-plate separation distance of 128 nm, there is -5.9 % 

percent uncertainty, at 148 nm it is -5.7%, at 166 nm it is -4.9 %, at 177 nm it is 2.1%, 

and at 384 nm it is -23.5 %. The sign change means that the experimental curves cross 

and that the curve that does not consider the 7 nm drift is below the one that does 

consider it. In addition, the value of the percent uncertainty at 384 nm is not important 

since the error bars of both curves cross each other. The reason it is mentioned, is to show 

the behavior of both curves, where at distances higher than 300 nm the curves separate 
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from each other. Note that the contribution of the piezoelectric drift is the least at the 

separation distance that ranges between 150 nm to 230 nm. This range is where most of 

the conclusions of this experiment were drawn. To quantify this drift it is needed to 

measure the motion of the plate throughout the experiment. The device used for this 

purpose had intermittent noise during the experiment, allowing us to measure the motion 

of the plate only at the early beginning of the experiment. During the first 10 hours of the 

T = 6.7 K experiment a drift was not detected. Further inspection of this kind of 

experiments is needed 

A distance dependence of V0 is generally attributed to the non-equilibrium motion 

of the piezoelectric that controls the movement of the plate. In the T= 6.7 K experiment 

this type of dependence was found. In fig. 6.11, the dependence of V0 with respect to 

sphere-plate separation distance is shown. At about 210 nm, V0 starts decreases from a 

value of -51.7 mV in a linear manner to -60.2 mV at 119.4 nm. The change of V0 per 

nanometer is 0.07 mV/nm.   

A non-compensated V0 will produce a residual force on the plate. However, in the 

analysis, only the residual force in excess of the electrostatic force from the top of the 

parabola is measured and set equal to the Casimir force. Thus, a change in V0 is irrelevant 

as at every point only the residual force is measured.  Yet different procedures to analyze 

the data were devised to reduce the distance dependence of the V0. One of them will be 

described below. 



106 
 

 To account for this dependence, the time to perform the experiment was 

effectively reduced by a factor of two. Using measurements at each sphere-plate 

separation distance that happen earlier in time and ignoring the corresponding 

measurements that happen later in time through the data analysis, the results avoids the  

effects of any separation distance drift  which happens for the second half of the 

measurements. In addition, since the results effectively contain all the information needed 

to acquire the parameters for obtaining the Casmir pressure, this data analysis method 

does not affect the overall result.  However, this approach was not successful since its 

results reproduce the distance dependence of fig. 6.11 and the experimental values of fig. 

6.1. 

Other sources of systematic error have been explored.  
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Figure 6.11 Contact potential (V0) as a function of sphere-plate separation distance at T = 6.7 K 
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Systematic error due to cantilever deflection: The cantilever deflection due to an 

exerted force on the sphere would lead to the change of sphere-plate separation distance 

is another possible source of systematic errors.   Larger forces then, increase this 

systematic error more than smaller forces. To account for the deflection, measurement 

values with lower electrostatic forces were not included on the data analysis. However, 

the results of this analysis were not substantially different from the case where the 

bending was not accounted for in the data analysis. Therefore, the conclusion of this 

analysis was that the effect of the bending of the cantilever on the data is minimal. 

To minimize systematic errors on the T= 77 K experiments, the effect of non-

constant separation distance due to delayed equilibrium of the piezoelectric was 

considered. The method to reduce this effect was able to avoid certain features of the 

distance dependence of the V0 and z0
y.  The same method that was used for the T = 6.7 K 

experiments was used here.   The sequence in which the voltages V are applied during the 

electrostatic force measurement can be chosen to be symmetrical around V0 such that (V-

V0) alternately changes from positive to negative starting at its largest positive value. For 

example, if we applied 10 voltages and the voltage step is ∆V, the first voltage would be 

V0+9∆V, the next one V0-8∆V, and the next V0+7∆V, and so on till the applied voltage is 

V0. 

While the deviation of the experimental values at T = 6.7 K with respect to the 

theoretical curves at short distances has been attributed to systematic errors, the source of 

the error has not been found yet. As mentioned above, different methods to analyze the 

data have been tried but none of them seems to affect the results.  More exploration and 
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more T = 6.7 K data is needed to understand the systematic errors in the experimental 

setup of this manuscript at this temperature.  

6.2 Casimir force between two Au plates at T = 77 K 
 

The measurements at this temperature were not as successful as the measurements 

at T = 6.7 K. Their precision was significantly lower and the contact potential V0 is above 

100 mV. The latter suggests that the sphere or sample is in some way contaminated. This 

is because the residual potential V0 between two gold plates should be in principle be 

negligible. Furthermore, for the same sphere plate set V0 had three different values for 

three different temperatures. At T = 300 K it was ~ 70 mV, at T = 77 K, 430 mV, and at T 

= 6.7 K, it decreased to ~ 50 mV.  Even when the thermal expansion from liquid Nitrogen 

temperatures to the base temperature of the AFM is small, the change of V0 by an order 

of magnitude could imply a change in the area of region between the sphere and the plate. 

However, the change of V0 with separation distance was almost identical for both 

temperatures, suggesting that the area of closest approach remained the same or that a 

similar drift was occurring at two different temperatures. The latter was not further 

pursued because any systematic errors should be noticeably different in these two 

temperatures. In addition, since the method of analysis has been thoroughly tested, the 

authors of this manuscript believe that it will not introduce such a behavior of V0. More 

exploration is needed. The Casmir pressure measured in the case where V0 ~ 420 mV is 

shown in fig. 6.12. The experimental values are compared to the theoretical values of the 

pressure at T = 77 K calculated with the generalized Drude-like model. 
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T

he results in fig. 6.12 do not match the theoretical curve and the experimental curve does 

not have the same curvature as the latter. This indicates that systematic errors are present. 

Careful analysis of the data in the manner of the T= 6.7 K data was done and it does not 

produce satisfactory results.  In fig 6.12 the experimental data obtained at T = 77 K is 

shown. The data was analyzed with the same method that was used for the T= 6.7 K 

experiment.  

While most of the instrument standards, calibrations and measurements were 

taken at T = 77 K, there was never data as good as the data taken at T = 6.7 K. This 
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Figure 6.12. Experimental and theoretical values for the absolute Casmir pressure 
between two plates as a function of the sphere-plate separation distance for T = 77 K. The 
dark cyan solid line is the Casmir pressure between two plates calculated using the 
generalized Drude-like model at T = 77 K. The black crosses are the experimental values 
measured at T = 77 K with their corresponding error bars.  
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suggests that at T = 77 K a drift in the separation distance might be present, considerably 

altering the experimental pressure curves. An argument against the latter is that if the total 

drift is estimated with measured values of the motion of the plate, it can be used to reduce 

the effects of this systematic error. The experimental curves are nevertheless not modified 

when this is performed. This indicates that another source of a systematic error must be 

the dominant source. It has been suggested that a possible candidate for this error is an 

electrostatic effect of the cantilever fiber end on the modified cantilever. This effect is 

more prominent for shorter distances between the fiber end and the cantilever. While this 

separation is ~ 50 to 100 µm at T = 300 K, the final separation at T= 77 K might be 

different. This effect has nevertheless not shown any measurable contribution at the 

separation distance where the Casmir pressure has been measured in this experimental 

study. More exploration is needed at larger sphere-plate separation distances > 2 µm, 

where the fiber-cantilever interaction, not the sphere-plate interaction, is most dominant. 

The experiments performed at this temperature suggest that another method, one 

that minimizes the effect of the sphere plate separation distance drift, by a rapid 

collection of data, would be a better option at this temperature. FM-AFM is a very good 

candidate for the rapid measurement. 

6.3 Casimir pressure between two Au plates at T = 300 K 
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The experiments measured at this temperature showed the largest deviations with 

respect to the theoretical curves. Mechanical drift is most likely to be the dominant 

contribution of the deviation since the interferometer that measures the relative motion of 

the plate can detect large changes. Even when the drift is measured with an independent 

detector, the measurement procedure used did not allow an effective subtraction of the 

drift. An example of the experimental curves obtained at T = 300 K is in fig. 6.13. 
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Figure 6.13 Experimental and theoretical values for the absolute Casmir pressure between two 
plates as a function of the sphere-plate separation distance for T = 300 K. The triangles are the 
experimental values measured at T = 77 K. The error bars are the size of the symbols or less. The red 
solid line is the Casmir pressure between two plates calculated using the generalized Drude-like 
model at T = 300 K. The dark blue solid line is the Casmir pressure between two plates calculated 
using the generalized Plasma-like model at T = 300 K.  
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 In summary, the results at T = 6.7 K could be used to determine the thermal 

effects of the Casimir force. The reason is that they have a high degree precision due to 

the lower systematic errors resulting from the drift of the sphere-plate separation. In 

contrast, higher temperatures results do not have the expected precision. While in these 

cases, the mechanical drifts should be more significant than in the low temperature case, 

the procedure to subtract their contribution is not possible given the measurement method 

used. It is important however, that the motion of the plate is measured accurately 

throughout the separation distance where the measurements are performed. Another 

possibility is to use different methods of cantilever response to measure the Casimir 

pressure. A method that reduces the effects of mechanical drifts is the FM-AFM 

technique. In the FM-AFM technique, the data taking time is reduced by a factor of 20 

and thus the effects of drifts will be correspondingly reduced.  The instrument used in this 

experimental study is being modified to implement this technique in future experiments.  
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7 Conclusions and Future Prospects 

 We have measured the Casmir pressure between two Au plates at T = 6.7 K, T = 

77 K, and at T=300 K at a sphere-plate separation distance of 120 nm to 600 nm. This has 

been achieved through use of a variable temperature atomic force microscope that we 

built to detect the thermal effects of the Casmir force. In the sphere-plate separation 

distance from 145 nm to 230 nm, the degree of agreement between the results from the 

measurements at T = 6.7 K and the theoretical values of the Casmir pressure calculated 

with the generalized Drude-like model at T = 6.5 K is 2%. Furthermore, their relative 

random error at this separation distance is less than 1 %. In contrast, the degree of 

agreement of these same values and the theoretical values of the Casmir pressure at T = 

300 K using the Drude-like model pressure is about 4%. The large discrepancies in the 

degrees of agreement could be used to measure the thermal effects of the Casmir pressure 

predicted by the generalized Drude-like model. The outcome of these measurements 

would reveal the role played by the dissipation of the constituent material of the plates in 

the context of the Casmir effect at non-zero temperatures for real materials. In addition, 

measuring the thermal effects of the Casmir force would solve long-standing disputes 

about the model that better describes the material of the plates using the Lifshitz’s 

approach.   

 In contrast to the results at T= 6.7 K, our measurements of the Casmir pressure at 

T = 300 K and at T = 77 K had a more limited outcome. They were significantly affected 

by systematic errors, which reduced their expected precision. Mostly, these errors were 

attributed to the mechanical drift associated with the specific motion of the plate in our 
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measuring technique during the duration of the measurement. Approaches to subtract this 

drift were not successful in our measurement methodology. Different experimental 

stabilization schemes such as using feedback controls on the actuator did not achieve the 

necessary precision. We have concluded that it is more effective to avoid the drift 

altogether by using a detection method that substantially reduces the duration of the 

experiment.  A technique called frequency modulation atomic force microscopy is able to 

perform such a measurement. In addition, it has already proven to be a high sensitivity 

tool to explore the Casmir effect in our lab. This technique can not only reduce the 

systematic errors but it can also enhance the resolution of our instrument by an order of 

magnitude at T = 6.7 K. Furthermore, the modifications required for our instrument to 

employ this measuring technique are straightforward. These are the reasons why our 

future measurements will be performed with this technique. If successful, measurements 

of the Casmir pressure between two plates at three different temperatures could be 

directly compared and the thermal effects of the Casimir effect measured. 

 This sensitive technique and the capability to change the temperature of the 

sphere-plate system will make our instrument a powerful tool to explore new phenomena 

in the Casmir field. Such is the case of the Casmir effect on materials that undergo a 

phase transition with temperature. For example, it has been suggested that the study of 

Mott insulators [105] -materials that experience an abrupt change from high electrical 

resistivity to low resistivity- could help understand the role of free charge carriers in the 

Lifshitz’s approach [105]. Another example is of superconductor materials, which have 

zero resistivity below a critical temperature. Bimonte [106] has suggested that the 
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thermal effects of the Casmir effect can be explored in a sphere-plate superconductor 

cavity made of Niobium (Nb) or Au and Nb  Since phase transition of this material occurs 

at T = 9.3 K, its critical temperature falls in the temperature range of our instrument, 

making Casmir force experiments with superconductor materials simple to setup. In 

addition, during the superconductor transition, the change of the Casmir energy can be 

comparable to the condensation energy of a semiconducting film. This means that an 

increase in the value of the critical magnetic field can be measured [107]. Another 

example worth mentioning is in the study of the Casmir force dependence on non-trivial 

geometries. Recently, Maghrebi et al. [108] have calculated a large temperature 

dependence of the force between a conductive cone and a plate. This effect is observed 

for cones with similar dimensions to the tips of commercially available cantilevers. In 

summary, these examples point out that in addition to the results obtained; the instrument 

built for and described in this thesis has exceptional advantages that will be exploited to 

rapidly push the frontier of the field of Casimir effect in the near future. . 

 

 

 

 

 

 

 



 

8 Appendix A Pictures of the Laboratory
 
In this appendix the pictures of the main components of
 

 
This is the view of the floor components of the instrument. In the background is the 

optical table with the two all

strands run from the interferometer to the cryostat.  The latter is in a cement 

floor level. The pit is covered with the aluminum plates. The area where the sample and 
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Pictures of the Laboratory 

In this appendix the pictures of the main components of the instrument are presented. 

This is the view of the floor components of the instrument. In the background is the 

optical table with the two all-fiber interferometers and its components. Two optical fiber 

strands run from the interferometer to the cryostat.  The latter is in a cement 

floor level. The pit is covered with the aluminum plates. The area where the sample and 

the instrument are presented.  

 

This is the view of the floor components of the instrument. In the background is the 

fiber interferometers and its components. Two optical fiber 

strands run from the interferometer to the cryostat.  The latter is in a cement pit under the 

floor level. The pit is covered with the aluminum plates. The area where the sample and 



 

sphere are manipulated is particle

 

 
This picture shows the cryostat from the top. It includes the main vacuum 

vibration isolation system, the optical fibers, and the linear manipulator.
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is particle-free due to the home-built clean room. 

This picture shows the cryostat from the top. It includes the main vacuum 

vibration isolation system, the optical fibers, and the linear manipulator. 

.  

 

This picture shows the cryostat from the top. It includes the main vacuum line, the 

 



 

  
This picture shows a close up of the optical table and its components.
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This picture shows a close up of the optical table and its components.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This picture shows a close up of the optical table and its components. 
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