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ABSTRACT OF THE DISSERTATION

Measurements of the Casmir Pressure at Low-Temperature

by

José-Rodrigo Castillo-Garza

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, March 2011
Dr. Umar Mohideen, Chairperson

The role of material losses in the Casimir force and iterpuaration into the
Lifshitz theory of the Casimir force remains unresolved. Thisefaesults from the
modification of the zero point photon spectra due to the presence of biesnddre
problem arises when the Casimir force is calculated at nmnteenperatures for real
materials boundaries. This means that the contribution of the theihmotdns must be
added to that of the zero point photons while both contributions satisfyingleain
boundary conditions. We address this problem by dynamically megdine Casimir
pressure between two parallel plates at T = 6.7 K, T = 77 K, an®0d0 K. At these
temperatures, we have measured the Casmir pressure betweepajeltl bstrates in
the range 120 nm to 600 nm. To measure it we use a varialperegore atomic force
microscope that we designed and built at UC-Riverside. Pantigudt T = 6.7 K, the
relative percent error of the experimental values is <if #e range 150 nm to 230 nm.
In addition, these results have less than 2% degree of agreemetitenmitbrresponding
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theoretical values calculated using the generalized Drude-ldaeimThis precision is
sufficient to measure the thermal effects of the Casmisspre predicted by the
generalized Drude-like model. The outcome of these results ddBpen our
understanding of the mechanisms that virtual photons use to exchangg \eitkrreal
materials. Moreover, they are bound to have a technological impacthe

nanotechnology industry.
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1 Introduction
The Casimir force belongs to a group of forces that are indugédidictuations.

These forces have an entropic origin and are found throughout Néjufiéhéy surface
when certain characteristic parameter of the fluctuatioterge enough to interact with
distant macroscopic boundaries. When these boundaries confine the fluctuatiores
limiting the entropy in the confined space, the result is anctitteaforce between them.
This force is a consequence of the system's drive to minsuide a space. These forces
are mostly due to quantum vacuum fluctuations or thermal fluctugdpr@uantum
vacuum fluctuations, for example, have an infinite range and gseetoi the Casimir
force. In contrast, thermal fluctuations have a range that depenhks parameters of the
system and are responsible for forces of classical origirn &wecthe cases of the Critical
Casimir force [5] and the force decreasing the thickness of a superfluid H&Hejrfilm
wetting a substrate [6]. Interestingly, the Critical Casiimice has been measured in two
different systems: One of them consists of two surfacesciiafine a binary liquid
mixture close to its critical point [6]. The other is*lde film at the vicinity of the
superfluid/normal transition, where, due to finite-size scaling, titec& Casimir force
thins the film [6]. In summary, a force will attract the bounelathat confine long-range
fluctuations, either of classical or quantum origin. Additionally, thiopic nature of
these forces does not allow them to be compensated, which is in ttmesectrostatic,
magnetic, or gravitational forces, where corresponding oppositks fian result in a net
force equal to zero.

The subject of this manuscript centers on the Casimir forceekatwnetallic



surfaces, which as mentioned previously, a force that is due tqudmgum vacuum
fluctuations. These fluctuations are essential for quantum fieldi¢iseas they describe
the states that exist in the absence of sources. For thefc@uantum Electrodynamics
(QED), these states correspond to the virtual photons, and theiy enéng zero-point
energy of the electromagnetic (EM) fields. These photons areedao be responsible
for the Lamb shift, anomalous magnetic moment of the electron, the Unruh effe¢teand t
Casimir effect [7]. It has even been suggested that the zemtbgrgy of the EM fields
contributes to the cosmological constant [8]. Nevertheless, #higyref these quantum
vacuum fluctuations has been contested [9]. In part this is bedasddve not been
experimentally observed but mainly because the effects mentiopede acan be
explained without reference to these fluctuations. Such is the foasthe Casimir
phenomena, which can be explained as a relativistic quantum effect betwkiple EM
induced dipoles [7]. This view is related to the Van der Waalg$orbiowever, it will not
be described in this manuscript because it has been shown to be efuivathe
guantum vacuum fluctuations approach [7]. Since the quantum vacuum fluctydéipns
such a central role in the simplest description of many phenomera, exploration is
needed.[10]

The Casimir force is one tool to explore the quantum vacuum and thertee
of its zero-point fluctuations. In 1948, Hendrick Casimir showed heaattractive force
between parallel plates is due to the quantum vacuum fluctuationsa[lhneering
result that lead to more inquires about the nature of theseidtionts. To obtain this

result he calculated the zero-point energy inside and outside efta famed by two



parallel plates. He used the ideal metal approximatiGm), — oo, for the plates and
assumed they were at the same electrostatic potentialhdthecalculated the energy
difference between these two regions. Surprisingly, the resuatfisite value that is
independent of any renormalization function. The expression he obtainédefforce

between the plates is the following:

ro- m2he\ 1 4
07\ 240 ) d*
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Here k is denotes the Casimir force. The value d is the separastande between the
plates and A is the area of the plates. About a decade lateifskitz derived a

macroscopic theory for the Casimir force with a more réahgéw of the materials that
confine the quantum vacuum fluctuations [12]. Moreover, this includes thesetfeat

thermal photons have on the Casimir force. To be specific, using ubtudtion-

dissipation theorem, he calculated the force assuming the fdiedielectrics at a non-
zero temperature. His result is currently used to obtain theaycof Casimir force
experiments [13]. In this theoretical approach, the constituergriaaof the plates is
characterized through their electric permittivity. Their eipform is established when
the theoretical model describing the material is selected. ekample, using the
Schwinger's prescription [14], Lifshitz's approach reproduces theegsion in eq. 1
wheng(w) — o is taken before considering temperature effects. It ishamoting that a
better theoretical description of the plates will provide a betteterstanding of the

interactions between the vacuum fluctuations and real materilstn@st importance



however, is that the results obtained by Lifshitz and Casimir produced waysgtgates
the quantum vacuum from the interaction of real macroscopic objects.

These results have had a technological impact and a growangshin the micro
and nano machines community [15]. Due to the continuous miniaturization okeslevic
and the lack of control of the Casimir force, the semiconductor indasisyhad to
engineer devices with actuators -most likely a spring- tbhatpensates for this force
[16]. This approach has been used in several current working devicesrnitalways
reliable [16]. The actuators are prone to wear, loose elasifgegires, and eventually
deteriorate. The idea of replacing them is, in most casedy megossible and not cost
effective. Furthermore, continuous device miniaturization will insgetne role of the
Casimir force in these technologies [15]. For example, using Eqvtiehy d = 10 nm the
Casimir pressure is 1 atm. This means that there will neé@ t® more sophisticated
approach to dealing with this force. A possible way to achiegagho better understand
the quantum vacuum fluctuations when they are confined. This could yassblt in
the ability to control the Casimir force, which will minimiZeetneed for actuators that
compensate this force. In addition, the control of the Casimir fayakl eventually lead
to using it as the driving force behind future nano devices.

These conclusions have led researchers to setup experimentytthstquantum
vacuum through the Casimir force. Since 1958, Sparnaay [17] and others] [18v20
carried out experiments, mostly between parallel plates,athahpted to measure this
force. Unfortunately, the results of those experiments were qulitative. Either they

did not have enough force sensitivity or they had large systearatis and were unable



to provide quantitative conclusions. Nevertheless, their results provicetiah to the
field and some measurement standards that are still followed {@8ayln contrast,
recent experiments have used high-precision instruments to méasu@asimir force.
They have used instruments such as the atomic force microscéé) (R1-23]and
sensitive microelectromechanical devices (MEMS) [2, 24]. Tleswlts have achieved a
precision of around 1% with such a high accuracy that theoretmaglshcan be put to
the test. Another key factor is that the experiments performed with thesgnests have
extensive work on reducing systematic errors and surface piiepaoh the substrates.
Such efforts have allowed them to fully investigate the behavitreofjuantum vacuum
fluctuations when they are confined.

The resurgence of interest in the Casimir force dates to arddration
experiment by Lamoreaux in 1997 [25]. The instrument he used wasiant balance
that measured the Casimir force between a metal-coatedrdns plate with a similar
coating. His results, while better than those obtained in previousimegoes, were not
sufficiently precise to increase the understanding of the quantemuwe[13, 26] This is
not the case for later experiments by Mohideen et al. and theiragpés that that
followed [21-23, 27, 28]; their 1% precision is not only more than an ordeaghitude
better than the precision of Lamoreaux’s experiment, but theiraagcis higher as well.
This is because they used high-precision instruments and theis d¢atapared to more
specific models of the metal-coated plates. Their resalitained with similar lens-plate
setups, have uncovered several properties of the quantum vacuum througisithie Ca

force. For instance, they found a geometry dependence of the idrioh, accounts for



diffraction-like effects on the fluctuations and the non-additiatythe Casimir force
[22]. Furthermore, many of these precise experiments have beesd gewvards the
understanding of the interaction of the vacuum fluctuations with redérrals. For
example, since plates are intrinsically rough, they measuredulyganess and corrected
the measured force [28]. They also modified the electrical andabptroperties of the
plates to better understand the connection between the electriittivey of the plates
and the quantum vacuum fluctuations [23, 27]. This last decade has seerousim
precise Casimir force experiments that have enhanced our undergtaf the quantum
vacuum.

Although these experiments have covered much ground, there stilinsema
considerable number of paradoxes [13, 29, 30]. One of them is the role played
dissipation of the constituent material of the plates in the Qasmmcte. Dissipation,
which accounts for the relaxation processes of the conduction eledg@ngpart of the
response of any material to EM fields. Particularly at noro-mmmperatures, the
influence that the dissipation has on the material's response Imaa babject of recent
theoretical controversy [10, 13, 31, 32]. For two plates in thermal equilibrium, the dispute
arises because temperature accentuates distinct behaviors of therfaditferent models
of the plates’ electric permittivity. For example, when thdeplaare metallic, simple
models of the permittivity, such as the Drude or the Plasma moaeluce different
numerical values of the Casimir force. In addition to this highlyated difference,
Drude-type models do not reproduce the ideal metal value of the force [13]. Although this

is not universally accepted [33-35], this is not the sole detrattbese types of models.



For sufficiently low temperatures and in combination with Lifskitzpproach, they
produce large thermal corrections to the force and violate the fthaind of
Thermodynamics [13]; this is in contrast to calculating the farsig the electric
permittivity described with Plasma-type models, which have no fundamemblems.
Regardless, Drude-type models are promoted because they desambaccurately the
response of the plates' material to EM fields, especidignacompared to models such
as the Plasma model -a more phenomenological approach. Accordimg ¢competing
factions in the Casimir field, models that are more accurabelld be employed to
compare with experimental measurements. However, within the tzitslaipproach, the
current more accurate models have troublesome consequences. Simplisr doodet
have these issues; hence, the paradox.

As mentioned above, it is predicted that temperature accentddtesent
behaviors of the Casimir force for different theoretical modélthe plates; therefore,
performing experiments in a region where temperature carendeithe Casimir force is
essential. This has not been the case, however, since all experimentedraperformed
at room temperature and at separations between the pldessdhan 1 micron. With
these parameters, most experimental efforts to measueffelots of material dissipation
at non-zero temperatures on the Casimir force have not been conjisjnghe main
reason is that they have not had sufficient force resolution tot dieéethermal effects of
this force. High resolution is paramount because thermal effeatsehminute influence
on the Casimir force at room temperature, and at plates' depashtess than 6 micron.

It is only recently that a thermal correction due to the Drude hiwake been excluded



experimentally [36]. The experiment that observed it was performedrattesoperature,
between two gold (Au) coated substrates, and at distances betwesibshates of less
that 1 micron. These observations claim to be able to discerredretiwo of the
competing theories that describe the plates. However, thegksraave been contested
and it has been suggested by various researches that they aramittedefhey assert
that the accuracy of these measurements is overestimated [B@r (@searchers
advocate that these results are explained with a more rigdreaietical formulation of
the model of the constituent material of the plates [38]. It igenleeless general
consensus that more precise, higher resolution experiments anedeturesolve this
subject.

It is the purpose of this manuscript to present an experimstudl/ of the
Casimir force induced by quantum vacuum fluctuations. The objective 2&tidy is
two fold: To understand the role of material dissipation in the Gafonce at non-zero
temperatures, and to precisely measure the Casimir pressweebgwo metal plates
separated up to 1.5 micrometers. To achieve these objectives wedbasigned and
constructed a high resolution atomic force microscope capable adg@raeasurements.
This microscope functions in a high vacuum environment and at variousréanps: At
room temperature, 77 K, and at 6.7 K. Its high resolution is reachédawitynamic
technique that measures the gradient of the studied force. Pramgmiaéis shown
experimenters in this field that this gradient should be measutegdrea sphere and a
substrate, instead of between two flat plates. This microscope follows thoselpphfter

certain mathematical manipulation, the outcome of these measusecaenbe related to



the Casimir pressure between two flat plates. While sirmktruments [2, 24, 39] have
already used dynamic techniques to study the Casimir force aidhem has used them
in a low temperature environment. The advantage and particularity i asir
microscope in this environment is that it has the potential to haategmresolution than
its counterparts do at room temperature. Therefore, in principgenticroscope should
have enough resolution to distinguish between the two competing theegarding
material dissipation. In conclusion, we expect its results to sbew light on the way
the quantum vacuum fluctuations interact with the dissipative miatehat confine
them. In addition, they should allow technologists to have a cleararreiof the
scenarios devices will encounter when size scales drop far below 1 micron.

This thesis contains seven chapters. The first one is the intrmuuthe second
chapter describes a theoretical formulation of the Casmir &irzero temperature in the
plate-plate configuration and in the sphere-plate configuration.fdlleving chapter
presents the same formalism from chapter two but for the Cdenog at non-zero
temperatures. In this third chapter, we also review some niatexdels that are relevant
for the measurement of the force and present the controversidk rédwitl researchers
have obtained. In the fourth chapter, we review previous techniques to endlasur
Casmir force and some of its most relevant accomplishments. dwhliti, we present
the technique used by the authors of this manuscript to meas@agsher force and the
reasons why it has the potential to increase the force resolbyi several orders of
magnitude. The fifth chapter describes the most relevant ésatfrthe experimental

apparatus used by the authors to explore the Casmir effech dnhe sixth chapter; the



results and the analysis of the measurements are presented. Chapter 7 ctmelindsis

with a review of the accomplishments and future prospects of this experinmadtal s
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2 Casimir force at zero Kelvin

In this chapter, there are two sections with different derivatodrthe Casimir
force between parallel plates, both of them assuming that iygetature is zero. The
first section treats the material boundaries as ideal metaislar to the approach
followed by H. Casimir. The resulting expression is used in thesudbdection to briefly
describe the Proximity Force Approximation, a necessary steptain an approximate
value of the Casimir force between a sphere and a plagesdcond section contains a
derivation of Lifshitz's equation for dielectric materials and sahits properties. For
instance, it is shown that Lifshitz's equation is equal to Cdsingisult in the ideal metal
regime. Lastly, there is a brief description of a theorktaranulation that has been used
to correct the Casimir force model for plate’s roughness andfihiée conductivity. This
formulation will provide a more realistic model for the Casifaice, hence reducing the

accuracy of the experimental measurements.

2.1 Casimir Force for Ideal Metals

To obtain the Casimir force for two semi-infinite paralletpk at T = 0, it can be
assumed that they are made out of ideal me(al) (— «) and electrostatically neutral.
This defines the boundary conditions for the EM field fluctuations gti@amtum vacuum
fluctuations- between the plates. These fluctuations have an esgugyalent to the
ground state's zero point energy of a quantum harmonic oscillatmce, for
monochromatic fluctuations this energyEis = hAw/2. This means that the total zero-

point energy between the parallel plates separated by aaisth and both with side
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dimensions of .= Ly = L, is the following:

1
E(d) = z 2 Mmn _ Z N Ll
B l,m,n 2 B I, m,n e L2 L2 d? ' . .

2.1
This equation accounts for two independent polarizations of the field andisaeom
repetition; -only one polarization is included when either index i8: 2bis is the reason
for the prime at the summation.
To calculate the zero point energy outside the plates, a boxideth s, Ly, and
L, is considered. If these dimensions are taken to infinity, treepment energy inside the

box has the following expression

Lz d [} [} o 1/2
E(e) = —z(hc)—f dkxf dkyf dk, (k2 + k2 +k2)
T TJo 0 0
2.2
wherek, = 1Tl/Lx,ky = ﬂm/Ly' andk, = 1Tn/Lz. This energy is the equal to the energy

outside of the plates.
For semi-infinite plates, I>> d,U(d) = E(d) — E() is the energy to bring the

plates from infinity to a distance d from each other,
L2hc |~ (@ * n?m? 2
— ano dkxfo dky<k§+k§+ = >

1
d (o] [ee] [ee] 2
——f dkxj dky] dk, (k2 + k2 +k2) ]
TJo 0 0

U(d) =
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2.3
This expression, of two infinite quantities, can be reduced finita quantity through
various renormalization procedures. Physically, however, this is podsddause the
metal plates set a natural cutoff frequency and the cutofftim can be chosen
accordingly. This cutoff function considers that the metal platestransparent to high
frequency field fluctuations; which happens when the frequenéiésese fluctuations
are much larger than the plasma frequency of the metal sebskfa chosen cutoff
function and Eqg. 2.3, after some mathematical manipulation, resulterpaession that
does not depend on the cutoff frequency or this cutoff function. Thist rissahe

expression in eq. 2.4, the Casimir energy:

m?hc
— 2
Ud) = (—720d3>L.

2.4

This expression anB(d) = —VU(d) yield the Casimir force of Eq. 1.1.

2.1.1 Proximity Force Approximation

Precise Casimir force experiments are performed in tieegdiate configuration;
specifically, between a sphere and a plate. This configuratiomelsatsed the issues
related to maintaining two plates parallel. Its disadvantageaisthere is not an exact
theoretical expression for its Casimir energy. To overcons tesearchers have used
the Proximity force approximation (PFA) [40] to compare thlieice measurements to
the approximated expressions of the theory. This is an approxim#tedrte calculate

the averaged interaction energy between two curved objecteatzhaat their closest
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point, by a distance z. To calculate this energy, each of tigsets' surfaces is redrawn
with infinitesimal planes, located along the surfaces, and followiegtirvature of each
object. It continues by calculating the interaction energy between tthesd¢ planes, one
from each object, and facing each other. The result is thadtiten energy per unit area
between these facing planes(wWg, where w is the separation between them and the i
denotes the i-th pair of planes. This procedure continues betweerippleses for all

the planes of the objects. The sum of all the correspond(mg Erms per pair is the

total interaction energy between the two objects, V(z):
V(z) = fE(w)dS.
S

2.5
S is the total surface involved in the calculation of V(z). Thession assumes that the
interaction energy between non-facing planes is negligible aridztha small in
comparison to the radii of curvature of the objects.

The expression in Eqg. 2.5 yields the approximate value of thenCammergy
between a sphere of radius R and a plate separated by a didtambe negative
derivative of this value with respect to d is the Casimir force for the samiguerion:

Fep(d) = 2mRED,(d),
2.6
whereEp, (d) is the Casimir energy between two semi-infinite plates of eq. 2.4.
The proximity approximation, developed by Derjaguin, has been sfeltes

applied to many fields, especially, fields related to scanning protr®scopy (SPM). In
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the Casimir field however, where precision has become paramourdscless have
contested PFA [41, 42]. This is because, for the sphere-plane gatibguit introduces
a relative error of the order of d/R to the theory [43]. This tesbitained from
dimensional considerations, is less than 0.01 in current experimentsceAt r[44]
experiment however, has estimated that this value is sntaber d/R. This result
contradicts the extrapolated results of numerical calculatiams Emig et al. [41] and
Maia-Neto et al. [42] For ideal metal substrates, theseamdsers have claimed a
correction of the order d/R beyond PFA. They estimated that d/R usliy parameters
of current Casimir experiments.

Recently, using the scattering method, other researchers have coningu@asmir
energy between a sphere and a plate for non-ideal metals aerwtemperatures. They
have obtained expressions for materials described with the Dradel 45, 46], the
plasma model [45, 46], and their corresponding generalizations [46]. For H/Rhese
expressions are analytical and show large deviations from FAe These researchers
have obtained analytical expressions for the energy and numerfoalhyg strong
correlations between temperature, dissipation, and geometry. Iroadthgy have found
that their results are material dependent. For d/R < 1, thisochean attain exact values
for intense numerical calculations. That is, since the saajteniethod depends on a
multipole expansion of the partial EM waves scattered from spiate-configuration,
when the sphere plate distance is small, the amount of terthe Expansion is large.
Hence, the accuracy of this method relies on the amount of termdlie expansion are

included. Additionally, only analytical expressions (not tabulated daa)be used for
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the material properties. Since there is not a consensus of dhigaarror introduced by
PFA and an exact calculation has not been performed yet, thisiregp&l study

considers this error to be of the order of d/R.

2.2 Casimir Force for Dielectric Materials

Microscopic theories, such as Van der Waals forces for nattials, were not
able to reproduce the result of Casmir [7], eq. 1.1, between twlepaglates. They
obtained the same distance dependence, but the numerical value ys 26f80b This
disagreement is due to the assumption, within these theoried)eghatdraction of atoms
occurs only between pairs of them. This assumption is correcreiied media, but not
for dense macroscopic objects, where the interaction betweeropait@ms is modified
by the surrounding medium. To account for this, Lifshitz developed aoswpic
formalism that considers the interaction between objects througfuttteating EM
fields that are inside of them and leak outside of their boundariesTi€se fields must
be consistent with the dispersion relations of the medium and the bowoddalitions of
the objects. The result is an expression, referred to as klésfotmula, which calculates
the Casimir force between two dielectric plates at non-asmperature. For the case of
ideal metal plates at T = 0, it recovers the result of Eq. fid.fa rarefied media, at T =
0 as well, it yields the result obtained with microscopic theories.

Lifshitz's formalism has been revisited by many reseesdi@, 30], which have
obtained equivalent results with different and more modern formsliand not always

explicitly recurring to the zero-point energy between the eplatSome of these
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formalisms use Source theory [47], Green functions derivations and avaelpdrased
on the delta-functions potentials [30]. In this manuscript, Lifshitr'siwula is obtained
using the approach of Milonni [7]on the results by Van Kampeal.ef48], which,
including retardation, and effectively calculates the zero-pointggnbetween two
dielectric plates. This approach reproduces Lifshit'z formulaictric materials and is
coherent with the quantum vacuum fluctuations picture of the Casonee.f Its
disadvantage is that it does not consider the absorption of the ahaiéat is, in this
approach, the procedure to measure the energy between the diplatdsassumes only
real dielectric functions. Nevertheless, the result is thenhitf§ormula, which can be
used for materials with absorption i.e. materials with comp{e¥. The answer to this
paradox relies on a special mathematical procedure. To be able to sum the nweles bet
the plates, the calculations are performed in the complex planereBhiss in the modes
frequencyon — i§, henceg(w) — €(i§), a quantity that is always real and obtained with
the Kramers-Kronig dispersion relation. This connects the valtleedafielectric function
g(i§) to the non-zero absorption of the material. While the approadilohni is not
entirely rigorous, since it contains certain mathematical wesdas, researchers have
shown that it can be corrected. Barash and Ginzburg gave a formnzhtida of
Lifshitz’'s formula in the context of zero-point fluctuations [7JutBmost importantly,
their theory assumes the dielectric functions to be complex, wiéans it includes the

imaginary term of the permittivity related to the absorption of the mkgteria
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2.3 Lifshitz's Equation by Van Kampen et al.

To obtain the Casimir force between dielectrics plates,tbegider three parallel
layers of different dielectric media. In this approach, thegersaare characterized by
their non-local responses to fluctuating EM field$p). A schematic drawing of the

configuration of the system under study is presented in Figd ditance d between the

N
I
o
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N
I
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€1 (®)

Figure 2.1 The system under study consists of three gefimite layers of three differe
dielectric media.

exterior layers is small in comparison with the dimensions ofother 2 layers. The
fields inside each of the layers are described by the Maagektions without sources.
They are uniquely defined with the boundary conditions of this configaratrthich are
the standard conditions for stratified media.

The EM fields in these configurations have a different solutioradh elielectric
region, a periodic solution in the region between the plates (0 &) zand exponentially
decaying fields in the other regions (z < 0, z > d). Since fe¥dare semi-infinite only

the z-component of the EM fields(E) is meaningful to the Casimir problem:
Egs. QQ1
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E,(z) = Aef1?, z <0,
= BefsZ 4 Ce X2 0 < z < d,

=De Kz 7> (g,

whereK; = \/k? — ¢;(w) w?/c?, a real value, and A, B, C, and D are constants. These
constants and the continuity conditions at the boundaries define theerfi@es of the

EM fields in the three regions. The frequencies are the solubbribe following
expressions:

Egs. QQ2

(e3K; + €1K3) (3K, + &,K3)

2K3d __ 1= 0,
(e3K; — €1K3) (3K, — €,K3)

Egs. QQ3

(Kl + K3)(K2 + K3)

e?f:d —1 =0,
(K1 — K3)(Kz — K3)

where egs. QQ2 corresponds to the Transverse Magnetic modesafiiM)gs. QQ3 to
the Transverse Electrical modes (TE).
The zero-point energy associated with the frequencies, the so)uifoegs QQ2

& QQ3, for the TM and TE polarizations is,

Eq. QQ4

E(d) = %A fo " dkk [ENQ)};M ) + ZN“”TVE (k)],

where k is the wavenumber of the continuous modes and A is the atealajers. In
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this expression the modes in the x and y direction are continuous and thereforéethtegra
The sums in eq. QQ4 are over the frequencies that satisfy e@s&Q@IR3. If

these equations are defined in the complglane as f,(») and Fe(o) respectively, the

sums in eq. QQ4 are the sums of the zeros of these functiorstukefef these functions

is that their poles do not depend on the distance d. In terms of theserfsirmnd using

the Argument Principle of Complex Analysis, eq. QQ4 can be expressed farthi

Eqg. QQ5

eV Fry(®) Fre(w)
E(d) = EA (ﬁ>—fo dkk [jgcw Frng (@) dw + inTE(OJ) dwl,

where the contour C is over the imaginary axis and a semiairt¢he right half of the-
plane.F;z(w) and Frp(w) are derivatives with respect to of the functions defined
above. It is assumed that the frequencies of eq. QQ4 arsetalg the values of (o)

to be real. Since the integral over the semicircle of C doedap&nd on d, the integral is
performed along the imaginary axis. It is in this step ¢has i&. If a new function &)

= F(i&) is defined, eq.QQ5 reads,

Eqg. QQ6

h [oe] 0 [oe]
E(d) = ;-4 j dlck [ f dE 10g Gy (£ + j d¢ log GTE(E)l.
0 — o0 —oo

The force then, is,

Eqg. QQ7
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1 N 1
GTM (k, f) GTE (k, f) .

F(d) = —%Aj:odkk fowda{g[

With the purpose of showing the equivalence of this equation with Lifshitz’'s formuda, thi
approach requires the introduction of the variables,@rsl s. In terms of the variables
from eq. QQ7 have the form:

Eqg. QQ8

2

N —< 8
k* = Es(lf)c—z(Pz -1, K; = Es(lf)zp’ K, = 53(lf)c_2512,2-
Milonni has shown the equivalence between eq. QQ7 and Lifshitz's formula:

Eqg. QQ9

-1

h ® « €251 + €D €35, + €
F(d) — __zAf dppzf d§§3g§/2 ([ 391 1P €352 2P erP\/gd/c 1
2m 1 0 £351 — E1P €3Sy — &P

-1
N [wwem@/e = )
S1—=PS2—DP

This expression is reduced to the case that Hendrik Casiloidatad wherg; »
() — o andez(w) = 1, which is the ideal metal limit, substituting these vainesq.
QQ9, the force between the layers is,
Eq. QQ10

F(d) = ——" Afood wad s 2 __mhe
= Tgmat] WP B g 1T T a0ar

In addition, Eq. QQ9 is useful to derive the retarded and non-retandiesl &if the force

between the plates, as well as the forces between neutrad, gatencommonly known
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Van der Waals force.
To account for realistic properties of the dielectric lay@rd compare eq. QQ9 to
experimental results, it is necessary to include certairections, some of which are

addressed in the following section.

2.3.1 Corrections to the Model: Roughness and Finite Conductivity of the Plage
Roughness and finite conductivity corrections increase the acanirfoy models
of the Casmir force and reduce deviations between the model$@ndxperimental
counterpart. Finite conductivity corrections account for 10-20% of theefat d < 1
micrometer [43], and depending on the substrate's quality, the rouglamessfiiciently
change the force at short distances. Experimentally, this finsisdemonstrated by
Mohideen et al. [21], where they were able to discern betweerothected model and
the model predicted for perfect plates. In their study, the corrected assilghes that the
corrections are not correlated. That is, the corrected expreskithe Casimir force
considers each correction separately as a multiplicationrfaéthile this approach
proves that the corrections have a measurable effect on the diprde, 20% due to
surface roughness, it has shown that at short separations they cameteted. For this
reason, Klimchitskaya et al. [49] developed a non-multiplicative apprimaaccount for
the combined effect of conductivity and roughness corrections. Beséte Proximity
Force Approximation, this approach geometrically averages thesfbiketgveen surface
features of the plates. Specifically, each force is calculated betw® facing features of
the plates and in the average, each force is weighed by the pitghEfhaving such a

combination of features. This approach has been the method of choiesdarchers
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because current experiments measure the force at distancesadf@uinm, where the
correlation of the corrections is more significant.

Nonetheless, the assumption in the experiment of this manuscrpatighe
corrections are not correlated. This experiment measures thmilCiasce at separations
above 120 nm for substrates with roughness of about 1 nm. It has been Shpwaf
for such small roughness and separations, the approach used by éviobidd. yields

equivalent results to the non multiplicative approach.

2.3.2 Conductivity Correction: Imperfect Conductivity of the Plates.

An imperfect conductor has a finite electrical conductivity,alvhs in contrast to
the infinite conductivity of a perfect metal. Conductivity is congdein the Casimir
force picture through the permittivitieg(w), of the dielectric layers in eq. QQ9. For
the case in which two conducting plates, made of the same mateeaeparated by a
vacuum gapsi (o) = &(w) andez(w) = 1. The choice fot(w), as mentioned above, will
set the degree of realism of the theoretical model of thespldt#®wever, inspection of
the Lifshitz's formula shows that the model is effectively pressdedthe reasons are that
the force between the plates is measured at distances of thefontierometers and that
the dominant frequencies in this configuration are near c/d. Consequently, these
frequencies are in the optical and infrared range. The plaggsmse to EM fields of
these high frequencies is accurately described with the Plasdal for metals. In the
context of the Lifshitz's formulax(— i§), it has the following expression:

Eq. WW1
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2
“v

e =1+ £z
wherew, is the plasma frequency of the metal plates:
Eq. WwW2

4mNe?
2 _
wj = —
m

In this expression, N is the density of conduction electronsrénsd their effective mass.
To calculate the conductivity correction in the plasma model regesearchers

use a perturbation method that expands the force in powers of theer@l@anetration

depthdy/d of the field fluctuations [43, 51], whedg = 27Tc/wp is the skin depth of the

metal plates. Fod > 27Tc/wp, this approach is accurate and in good agreement with

numerical results using optical tabulated data for the complex ttgityi of the
constituent material of the plate. Currently, researclistsHave calculated the force for
an imperfect conductor up to the fourth powebqd.:

Eq. WW3

210

)

16 6, 52 640 2\ 63 2800 16312\ 8¢
Fop(d) = Fyp(d) 1‘?7”‘*?‘7(1 @t o \1 77350 )

whererop(d) Is the expression in eq. 1 for perfect plates, and the superscefars to
the force corrected for finite conductivity. Note that, at finster, eq. WW3 is congruent
with the idea of the plates having a finite conductivity. ThatFfs(d) < Fy,(d).
Similarly, Lambrecht et al. [52] [53]found that the force betweperfect mirrors is
always greater than the force between mirrors with and arlytheequency dependant

reflectivity.
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Since experimental measurements are between a sphere anel, agptay PFA,
the corresponding Casimir force with conductivity corrections is

Eq. WW4

F&(d) = Fgp(d) [1 - 4

5, 7282 320< n2>53 400< 163112)5‘5

dTse 7\ m0)et 3\ T 7ss0 @

Fsp(d) is the force between a sphere and a plate for perfect conductors of eq. 2.6.

2.3.3 Roughness Correction

Roughness of the plates in the Casimir force context has beabjectsof
continuous interest. There are two kinds of roughness, periodic and #tochas
Currently, there is much enthusiasm regarding roughness amdipeprrugation of the
plate, where exact formulations for the Casimir force for tisfiguration have been
obtained [53, 54]. The researchers developing these models are teatenesthe
diffraction-like effects of the zero-point fluctuations and the-additivity of the force
[53]. These effects occur when the corrugation pekiasl smaller than the separation
between the substrates d; otherwise, they are negligible. Uithg ct these effects was
triggered by an experiment, in whighd > 1, of Mohideeen et al. [55] It did not observe
the mentioned effects, but showed that there exist a non-trivial byuddpendence of
the Casimir force between a metal-coated sphere and coeti@ld grating. In a recent
experiment, Chiu et al. [56] precisely measured these effemtedre corrugated plates.

However, when the Casimir force is measured between relatiflaly surfaces,
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diffraction-like effects due to the stochastic roughness igligiele, if the amplitude is
less than 1 nm for separation distances >100 nm. This is the cHse efperimental
study reported in this manuscript. Although periodic featuresoamedfon the surface of
the plates, the value of the corresponding correction is negliggbleell. The reason is
that the correlation length of these features is much biygerthe distance between the
plates.

The roughness of the plates in the experimental study reporteid manuscript
is modeled with a pairwise summation approximation [10], a phenomécallog
approach, and a simpler method. This approximation assumes that ehactioh
between two objects is the sum of the interactions between phimfinitesimal
volumes; three or more infinitesimal volumes interactions are paosider. While
Mohideen et al. [21] followed the same approach, the following deserijptcludes
correction terms of higher order, and the roughness of eactragabsonsidered. In this
model, the roughness of the two surfaces is described by two different functions:
Egs. XX

2, = 8:f1(X4,y1) and z; = d + §,,(x3, y2).

Where$; is the rms variance of the surface features of the i-thratstnd the value d is
the mean value of the distance between the plates. Moreover, fbasiocsurface
roughness on the plates the functiffigx;,y;) } for i = 1, 2, form a distribution with
87 as its width. The distribution is normalized to one @& d. This means that the

Casimir energy between substrates, in the PFA approach, Hees d@ageraged over all
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possible values of the ith functions for each substrate. This isvadnéssuming that the

mentioned distribution is a normal distribution. Then, the Casimir foeteeen plates,

Fop, is
Eq. XX1
Fr = g ur(d
bp = —mﬁ(( ()12,

where, A is the area of the plates and the superscript r deth@teshe roughness
corrections are included in the ford#.(d) is the Casimir energy, obtained through
pairwise summation, of an induced dipole-dipole interaction. In addition,
approximately considers the non-additivity of the interaction.

For a sphere-plate configuration, eq. XX1 yields a Casimir force equal to,

Eg. XX2

2
o0 =@ 146[(2) + () |+ 5[ + ()] )
whereF,(d) is the Casimir force between a sphere and a plate for pedaductors,
the expression in eq. 2.6.

To obtain a numerical correction from eq. XX2, the rms variaAgepf each
substrate is calculated with values measured from the topograpg sifibstrates, which
is generally obtained with an atomic force microscope. Thegrapby is then,
characterized by a probability distribution, wherény is the probability of having an
area of the substrate with features of heightbr a discrete number of values, the
average distancegHs,

Eq. XX3
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n

Z(Ho —h;)vi =0,

i=1
where n is the number of areas that are obtained in the anaflybis topography. With
this same distribution the rms variance is,

Eqg. XX4
n
SEms = Z(HO — h; )ZVi-
i=1

This expression and eq. XX2 vyields the roughness correction to theniCdsice
between a sphere and a plate in the pairwise approximation, bothici Wwave a
stochastic roughness.

The expressions obtained in this chapter are an initial approdoé tes$cription
of the Casimir force between parallel plates and betwegrhere and a plane. In eq.
QQ9, Lifshitz, formula, the corrections due to surface roughnessxXXg, and the
correction due to finite conductivity, eq. WW4, create a robust fotronléhat allows
researchers to better compare their experimental resuitshe theory. However, since
experiments are performed at non-zero temperatures, it issaegeto include the
temperature in the formulism described above. Next chapter pgeselarivation of the
Lifshitz equation that includes temperature, as well as issiltee when different

permittivities are employed.
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3 Casmir Force at Finite Temperatures.

In this chapter, the Lifshitz's equation is considered for fieeperatures, and in
this context, some of the consequences of the nature of the ahafiethe confining
plates are reviewed. In the first section, using the results ¢rapter two, the Lifshitz's
equation for finite temperatures is derived. The following sea@&stribes controversial
issues related to the thermal corrections of the Casimir.fétoe Lifshitz's equation is
calculated for the competing models for the metal plates. Tdaels considered are
Plasma-type models and Drude-type models. To illustrate theowerdies of these two
approaches, this chapter ends with some arguments in favor and #ggsescompeting

approaches.

3.1 Casmir Forcefor Two Parallel Plates at Finite Temperatures,

An intuitive, Casmir-like, way to understand the temperature depesdof the
Lifshitz’s equation, eq. QQ®9, is to extend it by including thermal ptsotbmcontrast to
zero-point photons, thermal photons are the black body photons which resulth&om
plates and surroundings being at non-zero temperature. This meaithe thaergy of the
EM fluctuations inside the cavity formed by the plates correspotigetsolution to the
Maxwell equations without sources. That Ed) = ¥ hw;(1/2 + n(w))), where
n(w;) is the average number of thermal photons inside the cavity with fregue,
given by the Planck formula, and the other term corresponds t@rtbgaint energy of
the quantum fluctuation with the same frequency, as it was peeseneq. QQ9. Then,

the total energy of the EM field fluctuations inside the cavity is,
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Eqg. 3.1

. 1 1 * h(l)] eflu)l/kBT + eh(l)l/kBT
E(d) = Zlhwl (E * m> - Zl 2 <ehw1/kBT - ehwl/kBT>

Where the middle expression was multiplied by

e—h(ol/ZkBT

andkg is the Boltzmann constant and T the temperature. The superscrigh# som of

eg. 3.1 means that two polarizations are included and should not includetatrase

repeated, in a similar fashion to eq. QQ9. Eg. 3.1 is valuable beatanakes a clear
connection with the thermal photons through the Planck distribut{as), in the same
context as the Casmir’s calculation. That is, conceptually, psheinderstand the
temperature dependence of the Casmir force. Since this israir@&e approach to
describe the Casmir force at non-zero temperatures, itoi® rappropriate to use
methods, such as Lifshitz-type method, that include the nature of dtexiah of the

plates to calculate the temperature dependence of the Casmir force.

Since Lifshitz's 1956 paper [12], there have been many formal dengaof the
Lifshitz’'s equation that include the temperature dependence. To ohtaesearchers
have used different approaches. For instance, they have used sourge sitegtering
theory, quantum statistical physics, quantum field theory in theuldata formulation,
etc [57]. Milonni’'s approach [7] is based on a symmetrical ordevinfield operators,

where an explicit contribution from the vacuum fields is found —Thia sourceless
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theory equivalent to the known source theory of Swinger et al. [7hgusy. QQ7 and
¢ = —iw in Milonni’'s approach, the Casmir force between two plates ofstdmae

material(e; = €, = €) and with vacuum in betwedn; = €) is given by,

3.2
h ® * s + gp\? . -
- 2 3 —2wipd/c __
F(d) 2 Ajl dpp J;) dow ([(s — €p> e 1]
+ (S * p)z e 2wpd/c _q _1> coth ho
s+p 2kgT’
where

s = \/p2 —1+¢(w), and &= &g(w).
Where the hyperbolic cotangent term from eq. 3.1 is present inttbedapression, this
remarks, as is mentioned above, that the thermal photons and virtual pdretomduded
in this expression. To account for these photons, eq. 3.2 has to be icteyeta range
of real frequencies. This integral is better calculatettiencomplex plane, such that—
i¢, because the Argument Principle can be used. For this purpose pitthsneting that
the hyperbolic cotangent term has poles on the imaginary axis at,

3.3
. B .
w, = 2Tin = i€,
for all integers n. Note that the frequenciggare commonly referred as Matsubara
frequencies. To solve the integral a contour is chosen on thegtupguadrant of the
plane, in this way the poles in the imaginary axis are thetenys that contribute to the

integral. eq 3.1 then, can be written as,
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3.4

kgT (*. - s [(s+ep\? -
= —— ! Enpd/c _
F(d) nc3AJ; dpp Z n <[(S—Sp) ¢ !

0

2 _1
n l(s + p) ezznpd/c _ 1] >
Ss—=p

The prime on the summation of eq. 3.4 indicates that a factor of Yamoiltgily the n =

0 term.

A less intuitive yet more computationally useful approach to obtai3.8ds the
thermal Green’s functions method. The thermal green functions ofQ€y are
Grm(k &) and Gpg(k, &), which are periodic in imaginary time and have a period of
1/kgT [58]. This means that instead of an integral over the frequehiiesq. QQ?7,
there is a sum over the Matsubara frequencies of eq. 3.3. Thisotraasbn can be
formally expressed in the following way,

3.5

h de k Ti’

—_— Crd

27_[ 0 B )
n=0

Where the double arrow means that the transformation can be npedfon both

directions and the prime on the summation has the same mearabgwvas In addition,

the continuous valugtransforms into the discrete valug®f the Matsubara frequencies.

The reason eq. 3.5 is not entirely formal is that, for real materials, tleetdieproperties

may be different for non-zero temperatures from those for temoperagual to zero [13].
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Nevertheless, from eq. QQ7 the Casmir force between two m&tthe same material
(g, = &, = €) and with vacuum in betweény = ¢) for at non-zero temperatures is,

3.6

F(d) = kBTAi’jkadk[ L
T L U Gk &) T Gre(k &)

If transformation 3.5 is applied to eq. QQ9, the expression in eq. 3.4aisadh making

both methods equivalent.

Eq. 3.6 can be represented in a more physically intuitive mannems of the
Fresnel reflections coefficients calculated along the inamyg axis, where they are real.
Using the same assumptions for the plates, as in the derivation ah@.fr the case
where the plates are placed in vacuum, these coefficients can be represdriseday, t
3.7

eKs — K Ki—K

rrm(k, &) = K, + K’ and rrp(k§,) = KT K

WhereK; = /kz +%,%/c? andK = \/kz + £(i&,) £,%/c? . The expression in eq. 3.6 can

be written as,

3.8

F(d) = —ki—TAZ ’ f Kok (G177l En)e? 5 — 1)+ (12 B et — 1)),
n=0 “°

This expression is in terms of both two field polarizations andegpective reflections

coefficients. Simple inspection of eq. 3.8 results in troublesome gathy®nsequences.
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Below, they are reviewed and analyzed briefly. Moreover, integrafieq). 3.8 over the
separation distance results in the Casmir energy between twocadeplates with
vacuum in between and for finite temperatures. This result wilisee below to find, in
combination with the PFA, the force in the sphere-plate configuration.

The expression in eq. 3.8 along with a suitable electric permjttivit,,), are
commonly used to calculate the Casmir force in the plate-ptaéguration. While
choosing as(i,) does not seem to be challenging, since, as mentioned in chapter two,
the contributing frequencies are in the optical and in the infraaeder The low
frequency contribution on a first inspection of eq. 3.8 appears to be. gkhdibw
frequencies, there are two competing descriptions the Drude andaPhasdels. It is
generally accepted that the low frequency behavior of realsnate well described with
the permittivity of the Drude model. Nevertheless, regardiesise permittivity used in
the Lifshitz's equation, one has to asymptotically recover thenCaerce for ideal
metals at large separation distances as the reflectivitetdls approaches ideal behavior
for large wavelengths. Furthermore, the expressions found have tishy saell

established laws of physics.

3.1.1 Simple inspection of the Casmir Force.

For ideal metal§e — o), inspection of the expressions in eq. 3.7 result in
rrm(k €,) = 1 andrrg(k, &,) = 1 forn > 0. For the Matsubara frequency corresponding
to n =0, rrg(k &,) = 0. To avoid this discontinuity, Schwinger et al. [14] suggested that
the limite —» oo be taken first on eq. 3.8, implying that;(k,&,) = 1 andrpg(k, &) =
—1, and after that the summation over the Matsubara frequencies shqueédfdrened.

34



This prescription —called Swinger’s prescription- allowed expoassi eq. 3.8 to obtain
Casmir’s ideal metal plate value at large separatiomartiss and at T = 0. The
mathematical constraint put by this prescription on the metdbées contested by many
researchers [13, 32]. They have then, suggested other models tradbteddse metal
plates more accurately. For instance, simple models for re&lsnhave permittivities
that depend on frequency g3¢)~ 1/¢, Drude-type models are one example of them. If
substituted in eq. 3.7, in the limit of infinite conductivity, the sansedditinuity for n =0
described above is found. On the contrary, models that are intutnggly suitable, such
as Plasma-type models whef#)~ w; /8%, and where at the n=0 Matsubara frequency
the reflection coefficients are,
3.9
rrm(k,0) =1 and rpp(k 0) = -1,

when the limitw, — . That is, the Plasma-type models recover the ideal metal ca
These arguments should be sufficient to deter researchers fn@uingu Drude-type
models to describe the nature of the metal plates. However, ¢éheadilte claim, that real
metals are not well described with the Plasma-type modedssaaind statement in their
favor. It should also be pointed out that, at short separation betweplatie® where the
temperature correction for eq. 3.8 is minimal, the variation bet#eeBrude model and
the Plasma models is around 2% [59]. At larger distances, thatioarof the results
from these models is more pronounced.

Researchers have explored several options to find a suitabiétpety, one that

describes the metal as accurate as possible, while at the tsae satisfying the
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somewhat hidden constraints imposed by the Lifshitz’'s equation. Sihexpdored
models lead to different results for the thermal Casmir fik8¢ the models presented
below are the ones that support the use of tabulated optical datavdipteekeep an
open mind on the controversies of the thermal Casmir force, thiksré®m the Plasma

model and the Drude model are presented as well.

3.2 Casmir Force with Metals Described by Plasma-Type Mdels.

3.2.1 Plasma Model and Lifshitz’'s equation.

The Plasma model, eq. 2.wwl, describes the response of the freenslec the
metals without taking into account their relaxation processesectan free electron
collisions.

If the role of the core electrons are neglected and the conyetaittivity is
represented by the Plasma model, to obtain the thermal Casro@ €q. 2.wwl is
substituted in 3.8 fdF « T.¢, WherekgTos = Aic/2d, and using perturbation methods
and expanding in powers 8fd andT /T , the force is,

3.10

6 .

1/, T\* 166 457(3) / T \* 8

S RCIE) PN (L | PR O (Ul ) oo
pp(d) = Fop(D 1 +3(7—) =375 8 \Tq) | T LCSE

i=2

where{(z)is the Riemann zeta function and the coefficientre explicitly calculated in
Bordag et.al [43]. This expression is correct 36:6/0)lD < d < 2um, which are the

distances of interest for the experiment of this manuscripth&umbre, for perfect

conductorsp, = 0, this expression reproduces results from other researcherslasswel
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the T = 0 value.

For the sphere-plate configuration, using the same approach as aldothee PFA, the

force is,
3.11
@ = ry@ 1+ S ) - () a2 [ (L) (]

6 61
++ Z G ?‘1’}
i=2

Wherec] = 3¢;/(3 + i) andF,,(d) is eq. 2.7. For the limit of perfect conductégs— 0,
this expression reproduces the low temperature asymptotic behavaineobtwith
quantum field theories [60].

For high temperatureB > T.g, (achieved at d = pm for T =300 K) using a
numerical calculations, the asymptotic expression for the Casmir fdadd,is
3.12

3 8o
Fsp(d) = _WRI(BT <1 - ZE)

Where R is the radius of the sphere and this the dominant contributitnmsfexpression
comes form the zero term of the Matsubara frequencies. Fecpednductors this value

reproduces known expressions [14, 61].

3.2.2 Generalized Plasma-Like Model.
This model emerges due to the need to include measured feafutbe

permittivity particularly the role of the core electrons into thaéulation of the thermal
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Casmir force. However the inclusion of many of these featsies) as the effects of
metal dissipation due to free electron collision, lead to the probtemtised above for
the Drude model. This model then, avoids including those effects andhsemidén the
idea that the conduction electrons are free of collisions. In thisIptbdeeffects of the
core electrons are included. The reasoning is that since $maalaodel cannot be used
for distances larger than the plasma wavelength, to include absdsphids due to core
electrons eq. 2.ww1 needs to be extended [62]:

3.13

2
o) g
p j
Eop (@ =1——+Z .
gp(©) w?  Liwf - w? - iyjw
j

Where a group of oscillators (with strength w; resonant frequency, and relaxation
frequenciesy;) with non-zero frequencies describes the core electrons antrethe
conduction electrons are described with the plasma model. The osqiésameters are
obtained from tabulated optical data. Note that in expression 3.13 teatieh
properties of the conduction electrons are not included. Moreover, te dbatithis is
not the case; researchers obtain the tabulated optical dataof@Befimaginary part of

the permittivity and subtract from it the contribution from conduction electrons:

3.14

2
wpY

Im [aop(m)] = 2n'(w)n"(w) — oo(ooz—-l—yz)

Wheren'(w) andn”(w) is the real and imaginary part of the index of refractionhef t

metal plates respectively,is the relaxation parameter, and the subscript op signifies that
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the quantity is obtained from optical tabulated data. The valtited with a function
describing an assortment of oscillators. The results lead toatiaeneters of each of the
oscillators. Using eq. 3.13 and the fitting parameters, the pestgitiong the imaginary
frequency axis can be found. Another approach is to use the values 8fl4qin
combination with Kramers-Kronig relations that correspond to the gkrent plasma-
like model, for this case:

3.15

[oe)

_ 2 ( olm| sop(w) wh
s(l‘é)=1+nf Tt E du)+§—2.
0

Then, the permittivity along the imaginary frequency axis is iobth These two
approaches have been typically used to compute the thermal Casmir force [13].
The advantage of these two approaches is that they use ¢gtickted data to

obtain the electric permittivity.

3.3 Casmir Force with Metals Described by Drude-Type Mdels.

3.3.1 Drude Model and Lifshitz’s equation.

The Drude model for the electric permittivity is a phenomenoédgheory that
describes the movement of the conduction electrons through a backgroposltioely
charged ions. It assumes that under an external field the conductotroredeof the
material will gain, on the average, a drift velocity. The conducttsctrons have
mechanisms that stop them from continually being acceleratedh whnot the case for

free electrons. Since the mechanisms are not well specifidteimodel, a relaxation
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time t that accounts for all those mechanisms is introduced. It is ortysitime interval
that the electron can move as a free electron. Using kinatisgort theory, it can be
shown that the effect of introducing the times a frictional damping term in the
equation of motion for the momentum per electron. However, for hegfuénciesyt >

1, the effects of the frictional term are minimized and thesiiRa model is recovered.
Even when the model is not rigorous and lacks depth, to certain exterplains the
macroscopic electrical conductivity and the thermal conduction iralsnetlence, it
should be a suitable choice for the permittivity of the metaéplatet as we pointed out
in the simple inspection of eq. 3.8, its place in the Lifshitz’s formulation is unclear

The electric permittivity then, is described in the Drude model as,

3.16

@=1-——2__
DRI = m(m+iy(T))'

When this expression is substituted in eq. 3.8 [31, 64, 65], the high-tempdnaitiis
exactly equal to one-half of the corresponding value for tha ietals, regardless of
the value of the conductivity used for the real metals [66]. [Bnge difference obtained
for separation distances ofu@ and T = 300K has never been achieved experimentally
for plates in thermal equilibrium. The reason is that the Cafte is minute in that
region and the experiments do not have enough resolution.

For the cas& « T, the thermal correction for the free energy per unit areaceest

two plates obtained with the Drude mode}F () (d, T), is given by,

3.17
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With the condition that,
3.18

Yy <&
WhereArF®)(d, T) is the thermal correction for the free energy per unit betaeen
two plates obtained with the Plasma model &R (d, T)~ y(T)In(T/T.s). For metals
with perfect crystal lattices eq. 3.17 is satisfied, but for nfege metals, where the
residual relaxation is never zero, the condition of 3.18 is not satisfied.

This thermal correction has been experimentally tested only wncate and
shown to be inconsistent with the data. The results from the expetiyn¢36, 67] at d <
1lum have shown at a high a confidence level that the last terop 8f¥7 is not correct,
thus excluding a thermal correction due to the Drude model. In additienthévimal
correction has been used to calculate the Casmir entropy byr8eteal [68]. They
showed that for perfect crystal latticesTat 0, the Casmir entropy is different form
zero. Their result for the entropy®t= 0 is given by

3.19
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The result of this expression is a negative value. Most imubyrtahis result has been
the most controversial result that has been obtained from the Drude, miode the
consequence is that the Third law of Thermodynamics is not edtidf8, 32, 68]. To
solve this issue researchers have made various modificatidghe ©@rude model. For
instance, they have included impurities in the Drude model [33-3B¢hvwvould lead to
a nonzero gamma at zero temperature, which in turn leads to zEopye at zero
temperature. The result of this approach is that the entropy abjupids to zero from a
negative value at T<18K. However, the fact remains that perfect crystals (on which
most condensed matter theory is based) would lead to negative emtropgro

temperature., The inclusion of the Drude model in the Lifshitz's tequand the

consequences of this are still a current and highly debated subject.

3.3.2 Optical Tabulated Data and the Drude Model.

The reason to use optical tabulated data within the Drude appsthsame as
in the Plasma model. That is, more information about the role ofdlee electrons is
needed to calculate the Lifshitz’s equation at high precisidmes optical data is the more
complete source of information about the surfaces. In this casevlgwhe data for

gold below energies of 0.125 eV is not available. To resolve thigrobsss extrapolate
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the optical data to lower frequencies using the Drude or PlasydalnNote that these
frequencies are necessary in the Drude model. To find the extiaps| they use the
imaginary permittivity of the optical datan [ep(w)], and the standard Kramers-Kronig
relations to obtain the permittivity along the imaginary freqyeithis permittivity still
lacks the low frequency contribution. To obtain it, they use the following expnessi

3.20

2
(,k)pY

Im [ep(w)] = (@ 17D
Where the plasma frequency and the relaxation parameterspnean@usly obtained
from the optical tabulated data. Researchers typically hawk theeroom temperature
parameters [13],

3.21

wp = 9.0eVandy = 0.035eV.
Researchers have compared the Drude model (eq. 3.16) results rigsults

obtained with the optical data in the Drude approach that extrapdtetdow frequency

behavior. That is, using a correction factor to the Casmir peeshig to each of these

two approaches, at separations of dumlhe percent difference between these factors is

0.14%. At d = 200nm, 100nm, and 50 nm, the difference is 2.8%, 7.7%, and 16%

respectively. Bordag et al. [13] attribute this increase tdtluele model of eq. 3.16 not
considering the contribution of the interband transitions of the ceotrahs. This is in

contrast to the optical data that takes them into account.
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4 Experimental techniques to explore the Casimir effet.

This chapter describes some of the techniques that have beero usquare the
Casimir effect. It presents some of the related accomplistsn@dvantages, and
disadvantages. It is divided into three sections; the first oneilolesthe static deflection
method to measure forces with an atomic force microscope (ABNbwed by a section
that describes an AFM’s dynamic method to measure the gradidmd farce. In the last
section, a non-AFM system is briefly reviewed. Using a spheate-pbnfiguration, it has
been used to indirectly, and precisely, measure the Casimir pressure betweetdsvo pl

From detecting small ensembles of nuclei [69], to atom-by-atamipulation [70],
scanning probe microscopy (SPM) has proven to be a field of enorapaisilities [71].
This type of microscopy, initiated with the Scanning Tunnelingrdicope (STM) of G.
Binning and H. Rohrer [72], encompasses a vast number of techniques, working unde
similar principles, yet with different objectives. These priresplhave allowed
researchers to locally probe several types of surfaces imediffenvironments, such as
air, liquid, and ultra high vacuum [71, 73, 74]. In addition, they record dynamic
information in real-time, allowing them to measure interactibas ¢volve in time, such
as chemical reactions [73]. For the first time, these two polvenBracteristics led to the
resolution of atoms on surfaces, and currently, they have strorilylgriced many areas
of science, such as biology, chemistry, physics, and engineering Dtg] to their
working principles, SPM techniques have proven to be reliable, highsatie; and
relatively simple to manufacture for more than two decades FtB]these reasons, SPM
techniques are well suited for Casimir force measurements.ifiSpkg there are
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techniques, such as Atomic Force Microscopy, which are capaliteaduring forces

with sub-nanoNewton resolution at distances in the submicron range [76].

4.1 Static Deflection Method

Roy and Mohideen were the first researchers to use the aggarmhthe AFM in

the Casmir field [28]. They precisely measured the Cas$onge in the sphere-plate

Figure 4.1 Schematic diagram of the experimental setup usesetisure the Casmir force by Roy
and Mohieden [1]. The difference between the dggftam photodiode A and from photodiode B is
proportional to the deflection of the cantileveotdlthat, in Roy and Mohideen's experiment, the
cantilever is modified by adding a metalated sphere. To maintain mechanical stabilitytariceep the
modified cantilever electrically conductive, thentiever is also coated with a metal.

configuration using the static deflection method, a closelye®lmethod to the AFM's
Contact mode [73] for surface imaging. While in the lattetho@ the distance between
the probe and the investigated surface is kept constant, in the static clefteethod, the
probe-surface distance is linearly modified. In both methods, howevewistégce is
modified with a segmented piezoelectric tube. In contrast to th@aCt mode, the
deflection method results in a distance dependence of a force, whioterted on the
probe by the surface. The probe that detects this force is a cantilevalgpesigned to
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bend in only one direction. This direction is perpendicular to the axibeolargest
dimension of the probe. For Casmir force experiments, this is obrther of 16 um,
resulting in a cantilever’s spring constant of the order06f N/m [77]. The bending of
the cantilever results from Hooke’s law in the linear limtldas the consequence, as
mentioned above, of a resultant force exerted by the surface. ,Hdaceeasing
cantilever’s spring constant increases the force sensitivithefAFM. The maximum
attainable sensitivity is determined by the thermal noise droasillations of the
cantilever [73]. The maximum force resolution reported in Cafmnie experiments,
using the static deflection method, is of the order of 0.5 pN [78]odifled version of
the static deflection method using lockin amplifier techniques btlaig\eed a minimum
sensitivity of 0.03 pN [23].

To detect the bending of the cantilever, most AFM systems uasea that is
focused on the free end of the cantilever and a segmented photodist@ictaptures the
reflected light. When bending occurs, each photodetector senses & dhahg laser
intensity they receive. The difference between the signam feach detector is
proportional to the deflection of the cantilever. Fig. 4.1 depictsddolyMohideen [28]
schematic diagram of their experimental setup to measure abmiCforce using the
static deflection method. The optical technique to detect iteatieih and the sub-
nanometer motion of the surface -key elements of the statectieh method- allowed
researchers to precisely measure the Casmir force in the spheresplegeration.

This experiment was performed between an Al-coated spheramaAdicoated

substrate, resulting in an appreciable difference between thenagal model and the
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experimental measurements. The authors concluded that the meassreseded to be
compared to a more realistic model of the metal surface, onentilated the finite
conductivity and roughness of this surface. The success in teempsons and the high
resolution of the static deflection method led to a better urahelisig of the way virtual
photons interact with real metals. Since these experimentstatine deflection method
has been the experimental choice to explore the Casmir force, pr@duplethora of
achievements in the field [13]. For example, using this method, subsexpsmiments
on Au increased the precision and accuracy of the results and s&rbtard for various
years [13]. In addition, to further the understanding of the interecbetween virtual
photons and real materials, they measured the Casimir forceeneaw&u-coated sphere
and a highly doped semiconductor [27]. These studies were perforithed-gdoped and
p-doped semiconductors separately. The results were compared téstiiz theory and
good agreement was found. With similar experiments, the carrientydeofs the
semiconductor was optically modified [23] using a chopped Argon &skrthe lock in
technique, as the increase in conductivity due to the absorption oielagl# to variations
in the reflection coefficients of the semiconductors on a largguémecy range. This
resulted in a modified force. The use of the lock in technijoeedl a precision of 0.03
pN, which is an order of magnitude higher than the regular statiection method. The
results lead to the conclusion that for a consistent comparison tthebgy, the dc
conductivity of the silicon has to be neglected in the dielectradest Another
achievement of the static deflection method is in the study vachion-like effects in

the Casmir field, where using a Au-coated sphere and Au-coatathgyr recent
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experiments have found a nontrivial boundary dependence of the force [55prGee |
deviation found in the experiments could only be explained due to thediogoeng the
bottom of the sphere (the curvature provides a distance dependence)oagdhal
corrugation of the grating. Furthermore, with a similar setupe@ixthat the corrugations
of the grating are imprinted on the Au-coated sphere, reseamgbersthe deflection
technique to find that the Casmir force is strongly dependant ogeibmmetry of the
boundaries. This force is called the Lateral Casmir force [2B]le/the examples above
were performed in high vacuum environments, the static deflection metiscalso been
successful in measuring the Casmir force in liquid environmentand®y et al. [79]
recently claimed to have measured a repulsive Casimir ftveeen Au-coated sphere
and a silica substrate immersed in a Bromobenzene solution. 3iés revhile still
debated [13], show the range of possibilities of the static alefite method in the
Casimir field. Overall, this method has proven to be reliable aediggr at small
separations between the sphere and the plate, at distances < 500navetiats
achievements have left many unanswered questions. Because some of tleesenacis
were performed at the resolution limit of the deflection method, new highresotution
techniques, capable of measuring the force at separations ofdégreod micrometers,
have the potential to resolve these questions. Additionally, manyphemomena appear
at large separation distances.

Techniques that increase the force resolution at large distaaukkshed some
light on the role thermal photons play in the Casimir effect.daliteon, they might be

able to resolve long-standing disputes about the influence that theahktsses have on
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this effect. Previous techniques that have attempted to resolve itisees were not
successful [13]. Their resolution was not sufficient to detect tledfeets or their
systematic errors were large. However, new techniques teungethe force have been
attempted [36, 80]. Researchers have used methods from Dynarm& faroscopy
(DEM) for this purpose. They have selected DFM over other technlpesise of its
success in other fields and essentially, because under certaiticcmdi can detect
forces of the order of sub-attoNewtons [81]. Since the minimum &ttamable with the
static deflection method is about 0.5 pN, this technique could potenhahlgase the
force resolution by several orders of magnitude. While expetsmasing dynamic
methods have not achieved the anticipated resolution, they have shown go@sgrogr
For instance, Decca et al. [2] have proved that a dynamic metlsaajlar version to the
Frequency Modulation method for an AFM [71], is more sensitive thanstigec
deflection method. Recently, using dynamic methods, their expasrhave attained the
smallest force resolution, being able to exclude certain thecoratctions to Lifhitz's
equation due to the Drude model [36]. This achievement is a fist®teesolving the
polemic regarding the material losses in the Casmir efiegton-zero temperatures.
Jourdan et al. [39] have also used a dynamic method to explore thnarGdfgct. Using
a similar setup to that of the authors of this manuscript, thegsored the Casmir force
gradient between a Au-coated sphere and a Au-coated plateomt temperature.
However, the results of their experiments did not indicate unusuatigées or a high
precision. lannuzzi et al. [82], for example, have used a lock ird lshgeamic technique

to compare the Casimr force gradient between a Au-coated sphdrdu-substrate
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against the same sphere and a substrate made of highly-doped Indioxidé (ITO)

[83, 84]. They used a modified commercial AFM that measures th@iCsorce gradient
and the contact potential, oV directly and simultaneously. They measure the force
effectively through a difference measurement agavith a feedback loop that keeps the
electrostatic force continuously compensated throughout the meastseiieen when
this technique was able to resolve a 50% reduction of the force ineth investigated
material, ITO, it measured this value at short distances, ~120 ndistAnces of about
200nm, the error in their measurements seems to be higher than &8¥g l® believe
that their particular dynamic method is not fit to explore tlesrar force at large
separation distances. Furthermore, the advantage of their teehhig, seems to be
solely the direct measurements qf, Which is in contrast to the indirect process used by
most researchers [13]. While various experiments have used dyrnaahniques to
explore the Casmir effect, their results have not had the fesmdution to contribute to
the understanding of the force at large distances and at nonereperatures. Since
these techniques have already been successful in other fieldsparamount that
instruments that exploit the full potential of these techniquassed in the Casmir field.

Below, the dynamic technique used in the apparatus reported in this study is described.

4.2 Dynamic Force Microscopy

When the AFM was invented c. 1986 [85], the microscopy community dedgges
various techniques, under the AFM working principles, to measuresfd8&] However,

the simplicity of the static deflection technique made it artamssuccess and
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consequently very popular [86]. At the same time, its highly local enhanced
resolution images in real time, which ultimately achieved atomasolution [87], put
other AFM techniques out of active consideration, at least foniget time. Currently,
many of the previously suggested techniques have attained sheslalts to those
produced with AFM’s static deflection, and some of them, becamespesiific. Such is
the case of a DFM technique called Frequency Modulation (FM-ABB]. One of the
methods initially known as a non-contact mode attained atomic resotuto years after
its static counterpart [89] and was originally conceived achnique to explore short-
range forces, even when a careful selection of the intrpreigerties of the cantilever
allows it to be used for long-range forces. The sensing elemehisaechnique is the
change of resonant frequency of a periodically driven cantilevagravthe change is
proportional to the gradient of the force, while assuming that thglitade of the
oscillation of the cantilever is small in comparison to the rariglee force. Paramount in
this technique is that the driving frequency be kept near the resofraqoency of the
cantilever, since the capability to detect frequency changés,high signal to noise
ratio, depends on this factor. To maintain that condition throughout theireeests, a
feedback control adds every measured change in resonant frequeheyctmtilever’s
driving frequency, allowing the sensitivity to be close to igghbst value throughout the
entire measurement. While in this method the force is not direwiasured, there are
mathematical procedures that calculate the force using the measanteshf71].

The technique used in the instrument reported in this manuscriptimpéers

version of the method described above. Unlike the FM method, the cantdenet
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periodically driven, but it is left to resonate in response to the thermal bathrsding it.
While the source of the cantilever oscillation is different, dbécome is nevertheless
equivalent i.e., the change in resonant frequency of the cantilepevgsrtional to the
force gradient. The change is measured with the resonant freegiémoen the recorded
resonance peaks with and without the force present. For this purpossevan FFT
Spectrum Analyzer [90], an instrument that will automaticalbore the oscillations of
the cantilever, Fourier Transform the collected data, and gererasonance peak. In
contrast to the FM method, the capability of detecting the @angfrequency is
dependent solely on the frequency resolution of the Spectrum Analyeemme€ans that
an increase in resolution will increase the measuring timedttition, the detection
system of this technique consists of one sole instrument, which sethecexperimental
complexity of this method. Although theoretically and experimbn&impler, it is,
conceptually, not less sensible than the FM method. Moreover, whilEMhmethod
requires being fine-tuned to achieve high signal to noise 18N}, the method used in
this study has a SNR defined by the Spectrum Analyzer and the signal’sotetgstem.
Simplicity drove this experimental study to choose this method oteer more
established methods, and while the method has disadvantages, they areyrelativel
when measuring the Casimir force. The latter will be desdrin detail in the next
chapter. The method’s theoretical approach is described below.

The dynamics of a thermally driven cantilever is describet tie Langevin
equation for a harmonic oscillator:

Eqg. SS
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1
i+lz+w%z =—G(t).
m m

Wherew, = \/k/_m is the resonant angular frequency, k is the spring constant of the
cantilever,y is the damping coefficient, and G(t) is the stochastic fozpeesenting the
thermal bath where the cantilever is immersed. The solution ofS&d@ & Lorentzian
peak centered abo and a full width half maximum (FWHM) of **{91]. The average
oscillation amplitude i¢z) = \/kgT/k, which for the modified cantilevers is around 0.5
nm at T = 300 K. In the Casimir force context, the substrateewslt a forcé,(z) on

the modified cantilever (it has a sphere attached to it and hses thoough various
processes to make it entirely electrically conductive), hedden@ an external force to

the RHS of eq. SS. Hy,(z) is represented in a Taylor series expansion; for small
oscillations of the cantilever eq. SS reads,

Eg. SS1.

1 1
2+%z+a&—kwﬁ=;jqo+&gz=m}

Wherek,, = dF;,(z)/dz, that is, the equivalent of a sphere-plate spring constant is the
gradient of the force between the sphere and the platk ket k + k,, be the effective

spring constant anaZ; = ke/m the effective resonant (angular) frequency of the
cantilever. Then, fok > kg,

Eg. SS2
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Aw = Wefr— Wy

The change in frequency is proportional to the force gradient.ekpigssion is the basis
of the technique used in this experimental study to explore theniCasffect. An
advantage of measuring the force gradient is that, using the nioxForce
Approximation (PFA) described in Chapter 2, specifically eq. 2.6, tsn@r pressure
between two plate®; (z), is obtained.

eq SS3

where R is the radius of the sphere.

Atomic force microscopy techniques, both static and dynamic, arerfudvand
simple techniques that have been proven to be well suited to eXpéoasimir effect.
Even though high precision measurements are experimentally chafjetmgimeasure the
Casimir force or its gradient, essentially the only expenital requirement is to modify
the cantilever of an AFM. That is, a coated sphere has to be added to its free eanhto obt
a reasonably precise force measurement [92]. The rest éfRkealready has most of
the components needed for a force measurement. For example, tted dptection
system, for both the static and dynamic methods, has been byigieaised to resolve
minute changes of the sensing element. The plate motion, controlled wie€zoelectric
tube, reaches sub-nanometer resolution and has a distance ragaye than one

micrometer. These features and the intrinsic properties ofatitdever were designed to
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measure forces of the order of nanoNewtons [71], which is the mdgrof the Casimir
force in the micrometer range. The AFM is not only experinligntdeal for force
measurements, but also the theory of its operation is well issi@adhland robust. An
example is the PFA, which had already been used to calcalateihteractions between
the tip of a cantilever and a substrate [71]. For Casimir foreasarements between a
sphere and a plate this approximation is essential. The simg@iwitycapability of these
AFM techniques has made more people venture to measure the rCtasgaiwith an
AFM than with any other apparatus.[28, 79, 83, 93] It has been measwgdvacuum,
and most recently in liquid [79]. Another important factor is theM& are commercially
available; they are simply modified and easily fabricatedieldeer, since more scientific
achievements in the Casimir field have been produced with an ABN with in any
other apparatus, it would appear that the achievement payofingicgty ratio is larger
for AFM techniques. This should indicate that they are a natural tavgyroceed in

exploring the Casimir phenomena.

4.3 Non-AFM methods.

Exploring different techniques or different instruments could posgbherate
new physical phenomena. Various instruments with different techniceresimtended to
explore the Casimir effect before high precision experimemi® \@attempted. As was
mentioned above, it was only then, that experiments were accurabgheto obtain
physical insight into this effect. For this reason, attentiorxetusively directed to non-

AFM techniques that have been able to accomplish this goal. Fonaast@chniques
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using Microelectromechanical devices (MEMS) have produced mignif scientific
achievements in the Casimir field [2, 3, 36, 44, 94] and recently, beare used to show
the potential technological application of the force in the nanoteamaholustry [24].
In contrast to the AFM methods, using MEMS is a more elaborate, reinte they need
to be fabricated in a nanofabrication facility and the forcedliein system requires
finely tuned electronics. The MEMS technique has nevertheless pmbenan excellent
way to measure the Casimir force. Using DFM methods, it bage\aed better force
resolution and slightly better precision than the AFM technique §6far, it is the only
technique, besides the AFM technique, that has achieved precision oéshésorder of
~1%. Due to its importance, we briefly describe this MEMS teplein the following

subsection.

4.3.1 MEMS technique to measure the Casimir force.

For the exploration of the Casimir effect, researchers bhs@é a micromachined
oscillator, a type of MEMS that resembles a seesaw. A sdleemimgram of an
experimental setup that uses this oscillator is shown in figTt® oscillator’s lever is
made of a highly doped polysilicon and the fulcrum is made up of tworder@eings,
one on each side of the lever, anchored to a Silicon platform that is covered Wibra S
nitride layer. From fig. 2 it is possible to distinguish a selipergpring on the right hand
side of the lever; for clarity, it is not shown to be anchored teldtorm in the figure.
The dimensions of the lever in Decca et al. [36] are 500pum X 50Qu3mbhbum thick.
Under the lever, and placed on each side of the fulcrum, there arpolysilicon

electrodes. The distance between them and the lever is about 2umeaBore the
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Casimir force, researchers hold the oscillator close to alioeated sapphire ball that is

epoxy glued to an Au-coated optical fiber, allowing their point of axinto be

Au coated
sphere

Figure 4.2 Schematic diagram of the experimental setup by Deccd. 42] A
similar design was used by Chan et al.TBg relevant parameters of this setuf
shown

electrically conductive. In addition, the radii of the balls that Haeen used with the
micromachined oscillators are, for the most part, larger ithdine AFM measurements.
In Decca et al. [36, 67] the radius of the ball is R = 151.3um, whietb@%6 larger than
the spheres used in the AFM experiments. It is worth noting ttsaaexiperimental setup
is more elaborate than the AFM setup, yet both have many similar features.
Micromachined oscillators (MO) have been used to explore then@asifect
with two methods, a static deflection-type, and a dynamic-type.sEnsing element of
the former is the difference between the capacitance of éactrode and the lever,
which is non-zero because of the alternating up and down motion cfuwliedue to a
force, FQ), exerted by the ball. In addition, this difference is proportionatht®
deflection angleéd of the lever, and since it is small, it is proportional to thedd¥g).

As with the dynamic AFM techniques,ty( the force between a sphere and the lever is
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not the quantity measured in the dynamic-type method. It is the fpadiendF/06,
which, using eq. SS3, can be utilized to obtain the pressure betweeiates. In this
method, the gradient is measured with the FM-AFM technique desaib®ee. The
theoretical formulation is slightly changed to account for tistrumental differences.
Since the sensing element of the MO is proportional to the defieeingle®, the
equation of motion of the lever is in terms of this angle. Angdaxerted on the lever
enters in the equation as a torque. Experimentally, the only diffeseare instrumental.
The lever is periodically driven close to its resonant anguéquéncy by applying a
periodic voltage on the electrodes below the lever. A force exerted on the lesecqs a
change in its resonant angular frequency. The differAngg, between the resonant
angular frequency with a foree, and the one withoub, is proportional to the force
gradient. For small oscillation amplitudes,

Eq SS4

b? 0Fsp(2)
2lw, 0Jz

Aoy = 0w —wy = —

Where b is the lever arm of the oscillatiois its moment of inertiayp, is its resonant
angular frequency at infinity, and, is the effective angular resonant frequency of the
oscillator. In addition, Eq. SS4 assumes thatx # w?l, is the torsional spring
constantk/b* » kg, = 0Fs,(z)/0dz. This expression is experimentally satisfied by the
Electrostatic force and the Casimir force at the explored distance. rang

The rest of the procedure for this technique is the santeeasne described for
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the FM-AFM technique.

Static and dynamic methods have successfully been used to sthehendif
properties of the Casimir effect, but not until the experimerdédxca et al. [95] have the
two methods been compared in the Casimir field. Using a micronetbsrcillator, they
used the same experimental setup to quantitatively compare tibeygia and dynamic-
type method. They show that the latter method has two orders of odegniore force
resolution than its static counterpart. This result has providedrcases with evidence
of the potential that dynamic-type methods have in the Casgtdr Currently, using a
micromachined oscillator, several achievements have already ditened with these
methods. For example, in the low temperature approximation and up tatsepa
distances of 700 nm, they have been used to exclude the thermali@ordest to the
Drude model [36]. They reached this conclusion from a Casimir foa®-temperature
study between a Au-coated sphere and a Au-coated plate. Iroadthbtiunderstand the
role of conductivity in real metals, these researchers haveumsdathe Casimir force
between copper (Cu) and Au in the sphere-plate configuration [95].sdrhe team has
explored possible corrections to the PFA in the same configur@nOther authors,
using similar setups [3], have measured non-linear behavior of adpatly driven
micromachined oscillator caused by the Casimir force. MorentBg Chan et al. [94]
studied qualitatively the diffraction-like effects in the Casieffect. They measure the
force between a Au-coated sphere and a highly doped Si substthtanwarray of
nanoscale rectangular corrugations. All these examples dentensiyxa dynamic

methods have a vast potential in the exploration of the Casmir effect field.
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5 Experimental Setup and Procedures

In this chapter, we present the most important features obwemperature atomic
force microscope (AFM) that we designed and built to measureCtsmir force
gradient in the sphere-plate configuration at different temper®tand as a function of
distance. One of the most distinctive qualities of this microséspes capability to
precisely measure force gradients from 100 nm up to 2 um inasi@padistance at 6 K
and in a high-vacuum environment. We also present the calibrations and the prodedures a
300 K, 77 K, and 6.3 K, which are the temperatures where we have sutlges
measured the force gradient. At these temperatures, the microscogéisiseallows us
to measure the Casimir pressure for separation distances up to 800 nm.

The structure of the chapter is the following: In the firstisacdf this chapter, we
describe the design of the microscope, the cantilever fabricatimh,tt®e sample
preparation. Section Il describes the detection technique to mdasteegradients. In
section Ill, we present the magnetically damped system kbaps the microscope
mechanically isolated from external vibrations. Section IV epwads to the vacuum
system as well as the cryogenic techniques we use to cool and keep the micabioope
temperatures throughout the measurements. In section V, we dekerib&bliew code
that controls the microscope operations as well as the tasksasuradorce gradients.
Sections VI and VIl discuss the grounding and the procedures taredasce gradients

with this microscope respectively.
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5.1 Main Design of the Instrument.

The instrument was designed mainly to precisely measure gimi€Céorce gradient
at low temperatures and at large separation distaftcasuld potentially be used in the
temperature range between 6.3K and 300K with maximum separatiomcdstaf 2 pm
and 15 pm respectively. To achieve our purpose we built an AFM tbatathe end of an
insert of a single-jacket Dewar capable of withstanding low tempesadacemaintaining
an interferometric cavity aligned from room temperature to 6.3k ihterferometric
cavity is formed with the cleaved end of an optical fiber and dpefriee end of the
microcantilever of the microscope. The random changes in theyckrigth are
correlated to the thermomechanical resonant frequency of ttreaantilever, which, in
the presence of a force, will be modified. The changes in stsnemt frequency are
detected with an interferometer-based-dynamic technique. Asanedtin chapter 4, a
change in resonant frequency is proportional to a force gradient.

The motion of the substrate is controlled with a 3” segmentembgliectric tube, this
allows us to achieve large separation between the substratheasghere and a high
degree of length resolution. To detect the relative motion of thératéwiith respect to
the cleaved end of an optical fiber, we use an interferometgptadesment sensor that
uses the same principle that the interferometer from the cantilever uses

Reducing substrate contamination and mechanical coupling of the AFkteimal
vibrations is essential for precise Casimir pressure measuts. Consequently, the
AFM is enclosed in a high-vacuum compatible container wheresitsgended through a

two-stage spring system that is magnetically damped. Thigioentconnects to an oil-
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free vacuum system outside the Dewar through alsts steel pipe that runs along
insert.
A picture of the atomic force microscope that wéths shown inFigure5.1. Various

parts of the microscope are indice

Figure 5.1. A picture of the atomic force microscope that hasrbused to measure the Casimir presst
different temperatures. The two stage system isvsheithout the damping system. Note the segme
piezoelectric tube that controls the motion of shenple |ate.

5.2 AFM construction.

To maintain the alignment of the cantilever/optithér cavity in a large temperatu
range is paramount, therefore our construction madtef choice for the AFM i
Molybdenum (Mo). This material has a low thermgbaxsion in the range between &£
to 300 K, has good electrical conductiv[96, 97], and hs.been shown to be appropri
in similar instrument$§97]. In comparison to similar low thermal expansion mats, its

electrical conductivity improves the matic damping of the twetage spring syste
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that holds the microscope.

The AFM consists of two parts: The microscope head and a cylihbasa where
the head rests. Both parts contain important elements of the AR&head holds the
modified Silicon (Si) cantilever and two optical fibers. The blaskls the segmented
piezoelectric tube that holds the Au coated sapphire plate. Thesgarts of the AFM
are connected with a 1/8@hread SS vented screw that goes through the head and four
stainless steel (SS) compression springs that regulate thacdidtetween the base and
the head of the AFM, therefore controlling the coarse separdisbance between the
coated sphere and the plate. Note that the threads for the SSaseremly on the base,
leaving the head loose. We address this by joining the head anctdélhetegether with
two retaining rings that are attached to the screw atafve@nd bottom of the head. To
stop the head from rocking we put Teflon tape between the screw anekitheTo stop it
from rotating while still allowing it to slide in z-directionenattached two L-fixtures to
the base. They are located on both sides of the head. These previotmeadgipermit
us to twist the head of the screw to move the microscope's head uipan while only
changing the relative vertical distance between the head of the microscopelmsti

Since the interferometric cavity formed between the optitar fand the cantilever
has to be aligned for a large temperature range, the proce@uresevto attach the
modified cantilever and the optical fibers to the head of theosgope is essential. We
describe then, the process to attach the cantilever and afteththarocess to attach the
fibers.

To attach the cantilever to the AFM’s head, we glue a chip siWiter (Ag) epoxy on
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to a custom Mo chip holder. The chip contains the modified cantilever. thate
commercial cantilevers come on the short length of small rgaf@ntablet or chip. This
feature is useful for cantilever manipulation and particularlytorexperiment; it allows
us to thermally and electrically anchor the modified cantilever. Nextcueevsn the chip
holder to the AFM’s head using a custom Mo clip. The chip holder sita emall

piezoelectric, capable of oscillating the cantilever and chgngfie length of the
interferometric cavity. However, it cannot be used to align thatycaill the alignment

has to be done manually and before the AFM is in its high-vacuumimeentahat is, we
cannot align the cantilever with the optical fiber once the container is closed.

The microscope has two optical fibers attached to its Mo heaeé d&tects
displacements of the cantilever and the other detects displatszofethe Au substrate.
The former is glued to the AFM head at only one spot with StR&s0-FT epoxy while
the latter is glued near the former and at one spot with GEstaMie use epoxy on the
one fiber because it has low thermal expansion in the tempecitune interest. In
contrast, we use Varnish on the other, because as long as the dibaveend is
perpendicular to the large-area-Au substrate the interferamednity will exist. In
addition, GE Varnish is useful because it is easily removable.

The base of the AFM contains a 3” segmented piezoelectriccagsble of moving
in X, Y, and Z directions. The piezoelectric is glued to the Mo bateStycast 2850FT.
To reduce the length of the head of the AFM a third of the pieaioe tube is inside the
base through a vented hole. At the top of the piezoelectric tube, itha Vespel [98]

fixture to hold the Au substrate and electrically isolate niistallic segments. The
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microscope is held by a two-stage spring system, this lsaiee ibottom stage of the

system.

5.3 Fabrication of the modified microcantilever.

This section is divided into three parts: the first one descthme preparation and
certain modifications of the cantilevers, the second one desdnbetetaning procedure
of the spheres, and the last one describes the assembly of theechodiftilever. That is,
a cantilever with a metal-coated sphere on the bottom ofeésdnd. In addition, this
sphere-cantilever microstructure goes through a process thatsassminimal electrical
resistance between the coated sphere, the cantilever, and theokgponding to the

cantilever.

5.3.1 Preparation and Modification of the Cantilevers.

We use commercial monocrystaline Silicon (Si) cantilevers {88 are n-doped
and have a specific resistance of 0.01 to 0.05 Ohm*cm. [99]We chase dhetilevers
because their internal structure has only a small amount ofhahtestresses, in
comparison to other materials like Silicon nitride (§iNrhis implies that their energy
dissipation is small, leading to a high quality factor (Q). Frbase types of cantilevers,
we use the ones with the smallest spring constant (~0.03 N/m)y kfaes these
cantilevers will have some defects on their surface that wdtease the energy
dissipation. Hence, we select the ones with the least amountsefdeéects. The chosen
cantilevers are cleaned with high-purity acetone and thendrimsth distilled and

deionized water (DDW). After that, the silicon dioxide (§i®@n the surface of the
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cantilever is etched with a solution of Hydrofluoric acid for onaute. Finally, they are
double rinsed in a solution of DDW. For the cantilevers to remaatrelally conductive
and free of dirt and debris, it is important to follow this recigéafter the process these
cantilevers are left for more than three hours, they mighadyrdoe useless for our
purposes. This is because a native layer of 8i€reases their resistivity and the sphere
will not be electrically connected to the cantilever. Moreoverhave found that visible
debris changes the Q of the cantilevers substantially,ftinerat is important to keep a
clean environment while processing the cantilevers. Right aftesi¢leing and etching
procedures, we solder Indium (In) to the sides of the chip that cotit@msntilevers to
increase the electrical conductivity throughout it. To minimineeresistivity between the
cantilever and the Au coated sphere we repeat the cleaning aitygtcocedure just

before attaching the hollow spheres to the cantilevers.

5.3.2 Cleaning Procedure of the Spheres.

To maximize the sensitivity of the AFM we use hollow-sodeaeliporosilicate-
glass bubbles from 3M [100]. This choice allows the modified cantilevéave larger
resonant frequencies, hence, as mentioned in chapter 4, higher reséluttbermore,
these bubbles, on average, have few defects, have constant radii, anérhavable
debris. While these spheres are not ideal i.e. debris-free sphatehave fewer or no
defects, we have not yet found a better choice in the market.

The sphere cleaning procedure removes debris, mostly broken pfes@seres,
and organic material. The first step of the cleaning praséssmake a 10 ml solution of

Ethanol or Isopropyl alcohol (IPA) with 1-2 ml of bubbles. This solutgothoroughly
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mixed in a vortex mixer for about 1 minute. Then, using a pipette, thbealis extracted
from the solution, leaving the solute, the bubbles, in the vial. To remove fietzhed
debris, we make a solution of 10 ml solution Hydrogen peroxid®JHand the rest of
the bubbles in the vial. Using a vortex mixer, the bubble solutionxsedrfor about 2
min, allowing the Oxygen released from the solution to remove debrsthe bubbles.
Once the solution is mixed, the,®b is extracted, leaving the bubbles to be rinsed with
IPA or ethanol. To separate the debris from the bubbles, wefagatan alcohol/bubbles
solution, (same ratio as the first alcohol solution), for 10 minuteslly; since there is
debris and broken spheres at the bottom of the vial, we use a pipgttbtthe bubbles
at the top of the solution. Most of the times, these spheres haer kadii. These
bubbles are placed in a Pyrex Petri dish to dry.

Once dried, we select the bubbles according to their sphericiyadindSince the
AFM'’s sensitivity is proportional to the radius of the sphere onctrdilever, using an
optical microscope with an ocular with a calibrated scale pthables with the largest
radii are selected. To avoid systematic errors in the measumts, from that collection of
bubbles, we choose the ones with a constant radius throughout them, makingthem
mostly spherical. The manipulation and selection process is done rwitbtizal fiber
without buffer.

The effectiveness of this process is not without problems. Howéean remove
most of the debris and we have been able to find spheres of aroynd f&iflus. While
the latter is not always the case, this process, on averages sedave increased the

radii of the spheres we use for the experiments.
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5.3.3 Assembly of the Modified Cantilever.

The rest of the fabrication of the cantilever is done mostly uadepptical
microscope using a mixture of commercial and homemade tools fopuhatmg the
spheres and the cantilevers. Once the spheres are ready, as mentiomgthegtepared
cantilevers are cleaned and etched again. Using a buffeoéisal fiber and under a
10X optical microscope, we grab a sphere from the Petri dish. The chosen sphete needs
have a large diameter, a smooth surface, and has to be free ef @elaitach it to the
cantilever we use a dot of Silver Ag epoxy at the bottom ofrdeednd of the cantilever
where the tip of the cantilever would be. The cantilevers wearesaevertheless tipless.
The amount of epoxy has to be a small as possible because thexrdéssmaency of the
cantilever will be higher.

The subsequent step is to thermally evaporate Au on the spheretheday of
the free end of the cantilever. The Au on the top of the cantilewetohbe evaporated
only at the tip, about %0n from the free end. The Au coating on the sphere and
cantilever is about 100nm thick. To coat exclusively the mentiondd, pge use two
razor blades to sandwich the chip that has the cantilever. Ther stiges allow us to
coat very selectively.

We use a homemade thermal evaporator that has a motor insidegriftatrazor
setup and providing the sphere with a uniform Au coating. This instrus\e@cfuipped
with a scroll pump and a turbomolecular pump that permits us to tadoat 10E-6
Torr. To avoid a rough Au surface, the coating has to be perfostoedy and at large

distances between the evaporator’s boat and the cantilever;sitalag&et two hours, 3” of
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gold wire, at a boat-cantilever distance of about 2.5” to achieve ermmfO@m thick
layer. To obtain these parameters, we correlated a smooth Angcwéih the pressure
buildup of the evaporator resulting from the coating process. Thislatame has
allowed us to obtain systematically smooth Au coatings, as hasdeesmnstrated with
roughness and thickness studies on the coatings and carried out with a condskétcial
After the coating process, we inspect the sphere and thesgantith a 50X and
a 100X objectives of an optical microscope. We reject cantileviéhsspheres that have
debris on sensitive areas of their surfaces, such as wherautbheafed spheres would
contact the Au plate. (For a sphere of R ~ 50um, the effectieeisrabout 15um X
15um). Cantilevers having visible surface roughness on their splrereejected as well.
In addition, since large coated portions of the cantilevers willedse its quality factor,
thus reducing microscope’s sensitivity, we reject cantilevetts mvore than 100pum long
coatings on their top side. However, since small-coated portiottseofantilever will
reduce the reflectivity of the interferometric cavity, vegect them when the top side
coating is less than 25um long. Irregular coatings and coateds deroduce laser
scattering, decreasing the amount of light in the interferometer canatlified cantilever
with these characteristics are generally not chosen to tieopdahe experiment. In
contrast, good quality modified cantilevers are kept in high vacuumhe Wiay are not in
use, while the modified cantilever chosen for the experimentegaped for its next
stage. After the experimental measurements, the surfagbress of its sphere will be

inspected with a commercial AFM.
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5.4 Preparation of the Substrate.

We use a 12.7 mm Sapphire windows as substrate for the Au cfiditig We
chose this material for its surface quality, its hardnes$igh thermal conductivity, and
its chemical resistance. Its roughness is ~ 0.5 nm, as chedked gommercial AFM.
This is an important starting point for Casimir force measungsnelts chemical
resistance is useful because it can be cleaned of all debaigdcmetals or organic
materials. However when new, the windows are sonicated in acsolotihot DDW
water with Liquinox for 15 min, then they are rinsed and sonicatdd DIXW until the
detergent has been completely removed. The next step is totedhia in hot acetone
and after that in hot IPA. To activate the surface we plaesevthdows close to a UV
lamp([] for 30 min. After which we insert the windows in the thdrexaaporator for Au
coating. The procedure to coat the windows is the same as therdhe tantilevers. In
this case, however, we do not rotate the sample; only one side winith@w is coated.
When ready and before placing the coated window into the AFM, tea plt the Au
coated window in the UV lamp system for about 4 hrs. This recipephaduced
satisfactory Au coatings. The effect of the UV exposure oRtheoating or its effect on
the Casimir force measurements has not been thoroughly tested.

When the modified cantilever is prepared and assembled, aonezhabove, it
is set on the Mo chip holder and aligned with the optical fiber. Tihecated window is
placed on the Vespel fixture of the piezoelectric tube and the KkFddsembled. Before
closing the AFM’s can, we solder a thin magnet wire to thesAlbstrate with pure

Indium solder. Low melting point, good adhesion with Au, and lack of flexsame of
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the features of this solder. This choice makes the soldering precgldan and quick, in

contrast to the more messy and lengthy processes that use Ag epoxy.

5.5 Detection system.

We detect the cantilever and Au substrate displacements vathlkfiber Rugar
type interferometers [18]. These custom-built interferometersist of a laser diode
pigtail with a 635 nm wavelength, various types of fiber couplerst@ndphotodiodes.
One photodiode detects the interferometric signal and the other asimee the laser
power. Since all junctions between the components of the interferometer aed,sgiliay
interference and retroreflection to the laser diodes are mieimiin addition, to
minimize laser and wavelength fluctuations we control the teryerand the power of
the laser diodes. Figure 5.2 has a schematic diagram ofi-flbea interferometer
coupled to the force microscope. Specifically for the interfetemenade by the
cantilever, the interferometric signal is analyzed with ac8pm analyzer [90] while all
the other photodetectors are connected to digital multimetersM()DMcluding those
used for the substrate interferometer. The advantage of tletidatsystem, for both
interferometers, is that only one leg of the fiber coupler neette introduced into the
vacuum chamber; the rest of the components of the interferometeyutsiee the
chamber and on an optical table. Due to large temperature variatitveslaboratory, we
have enclosed the optical table with 1.5” insulation board, maintaihengemperature
variations of the table to less than half a degree. This allows uge the optical table as

a heat sink for the thermoelectrical coolers of the laser siade keeps most of the
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interferometer components at a relative constant éeatyre
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Figure 5.2.Schematic diagram of the -fiber interferometer and the force microsct

5.6 Vibration Isolation .

We isolate the microscope from external sourcesvibfation in two ways
Minimizing the mechanical coupling between the Dewad two noisy sources, tl
vacuum pumps’ system and the building vibratiomsj aducing this same coupli
between the Dewar drthe microscope. Additionally, to shorten the efffef vibrational
transients and reduce the amplitude of the AFMsillasions, these two ways a
equipped with damping mechanisms. We achieve thetéisk supporting the Dewar w
a four-legged baseonsisting of a vibratic-damping pad and a thick wood board. 1
setup is housed in a concrete pit in the basenfehed®hysics department. To reduce
coupling between the Dewar and the vacuum pumpsesywe use a wooden sand |

with lead brickson top of the sand. Moreover, the vacuum line coting the sand bo

72



and the insert is held to the building floor with lead-shot sand bagse #e insert is
attached to the Dewar, to minimize the mechanical coupling bettheen, we place the
microscope on the bottom stage of a two-stage springs sysiemeated to the insert.
The oscillations of the bottom stage are damped with a collectioNeoflymium
magnets. This magnetically damped system reduces the mexthaifiations from
exterior sources. In addition, the two-stage springs have been prdvemtoetter option
for decoupling the bottom stage from the exterior vibrations thansitngle stage
counterpart [102]. In Figure 5\e show the two-stage spring system and its final setup
with the AFM. Note that while we have reduced the effectxtéreor noise sources and
damped the AFM’s oscillations, the system still resonates. CBheulated horizontal
resonant frequency of the insert at the bottom stage is aboutTheizalculated value of

the vertical resonant frequency at the bottom stage is also about 2 Hz.

5.7 Vacuum system.

The experiments are performed in a vacuum of < 10e-4 Torr atteyoperature
and around 10e-6 Torr at T = 77 K and T = 6.3K. To achieve this, the naiomdine
consists of an oil-free vacuum system and a long line of belldtws vacuum system
combines a scroll pump and a turbomolecular pump that is connectednesdtidrough
the bellows. A gate valve separates the vacuum line from thd.ifi$e insert has a
stainless steel pipe that runs from the top of the Dewar tadtloé the can that contains
the microscope. At the top of the insert there is a linear and/notation feedthrough

connected to a manipulator that allows us to twist the head ofctbes shat changes
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coarsely the separation distance between the sphere and thetsulb&ita that the
experiments are performed while the manipulator is retractedi@nd contact with the
two-set stage springs system.

To measure the pressure we use two thermocouple gauges lolcatgdthee
vacuum line. One measures the pressure main vacuum line and thenethiee pressure
of the insert. At room temperature the system pressure is < 10e-4 Torr.

At 77K and at 6.3K the main vacuum line gauge attains its minimusihp@wvalue
~10e-4 Torr but the gauge of the insert sets at ~10e-2 Torr. Therealugled by this
gauge is incorrect because thermocouple gauges depend on the gaatteep€his
gauge has not been properly calibrated to work at the gas temperatungshatve/use it.
To confirm this assumption we have performed He leak tests at teoperature and
leak rate tests when the insert valve is closed and the teomgeoétthe system is 300K
and 77K. Considering the volume of our system, the results have befacsaty for a
system in high vacuum. One more verification of our assumption coomagtie Q value
of the modified cantilever in the microscope. That is, once th&esyhas attained the
base vacuum level the Q value at 77K does not present a substéieiance from the
value at 300K. At 6.3K, this same verification is not possible bedéwseemperature
dependence of Q has a drastic effect [103]. Another argumeaaton 6f our assumption
is that the pressure inside the can at 77K and 6K should be loweththane at room
temperature since the can walls and the insert’s pipe actcaagopump during the

cooldown of the system.
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5.8 Cryogenics.

We use a 100 liters single-jacket Dewar to cool the ingeffK and 6.3K. The insert
is made mainly of Stainless Steel (SS) type 304. The reastrati it has low thermal
conductivity and a high mechanical strength. This choice of mhtien reduces the
transfer of heat from the top of the Dewar to the lid of the Ganavoid loosing
mechanical strength, the can is made of the same materiaé ®ihas low thermal
conductivity, the walls and bottom of the can are very thin. Whilerthleradiation from
the walls and can is not the main mechanism of heat transfer @xperiment, this is the
most appropriate solution when, as in our case, no exchange gas guusgdliquid
Helium (LHe) cooldowns. To reduce thermal radiation and any leatietween the top
of the insert and the can, the insert has four Copper radiatifi@shiafdifferent locations
throughout the SS pipe of the insert. The lowest placed bsfflelow the 77 K region or
the Dewar’s “belly”. To minimize the laminar flow of the ogenic fluid inside the
Dewar we fit the baffles to the Dewar bore and we attachedler copper disks to the
baffles that fit the rest of the tubing of the insert. Thesddsaféduce the heat transfer by
a factor of five and maintain an effective temperature gradilemyg the insert [96]. In
our experiment, the dominant mechanism for transferring eneiipgnsial conduction.
To enhance the thermal transfer from the lid to the stage wher&RM is located, we
use a large piece of Copper for the first stage of the tagesspring system. This Cu
stage acts as a heat sink and allows a faster heat trémsdiad from the microscope
stage.

For the electrical wiring of the microscope, we use bundles staddpairs of magnet
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wire that are placed from the top of the insert to the lid ofctre At the top, they are
connected to two connectors, a D-sub connector and a low-temperatare@ipector.
At the lid, the wires are introduced to the can with a homemadihfeeigh, a fixture
that is made of Bronze and Stycast 2850-FT epoxy seal [96]. Tmzdfittings have an
Indium (In) O-ring to seal them to the SS can. Magnet wirests @sed inside the can for
the electrical connections of the AFM. For these connections, to thegblder flux, we
mostly used pure In solder.

Little was done to thermally anchor the electrical wires buates consideration was
put in certain places where a lot of wire remained. Nevedbgetbey are mostly attached
to the metal tubing of the insert. Another reason this is notsae is that the cooling
power of the Dewar is high in comparison to the heat conducted throughaiieet
wires. In addition, the temperatures attained in this experimertigh for the heat from
the wires to be a concern.

The optical fiber wiring is very similar to its electricunterpart. Four optical
fibers are held at the top of the insert with a plastic plug aav&through the insert. To
introduce the fibers to the can, we use the same feedthroughabatescribed above.
Except that it is thinner because there are fewer fiberswiras and the epoxy seal is

less likely to leak.

5.8.1 Temperature Monitoring System.
We measure the temperature of the microscope using a Cadssnrgkistance
temperature detector. To avoid temperature inaccuracies, wenadas resistance of the

sensor with the four-probe technique. It has a temperature ramgel fK to 350 K and a
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resolution of about 0.5 K.

This sensor is located under the lip that protrudes from the head of the microscope
and is thermally anchored with GE Varnish. This location does notitp#ren entire
sensor to have physical contact with the head. This means that the 6.3K reading might not
be accurate. Another explanation is that the heat load on the instnsmeaotlarge and
the equilibrium temperature is 6.3K. Since the temperature reatlihg sensor is about
77.3K when the instrument is in a LN bath, we believe the second explaigamore
likely. However, future versions of the temperature systemlogéte the sensor in a hole

on the AFM head.

5.8.2 Instrument Low Temperature Specifications and Cooling Efficiency

5821 Room temperatureto LN temperatures.

Starting from room temperature, the microscope takes two liquicbdén (LN)
transfers to keep the system at 77 K for two and a half weekdfirshone is to cool the
system and the second one to keep it at LN temperature for péoiogl. Since there is
no LN level on the system, we always fill the Dewar to the tn about two days, the
system reaches 77 K. It is then stable and ready for measusenis process, while
not the most efficient, has a boil-off rate that is satisfgctor our measurements at a
base temperature about 77K. In addition, it allows us to make seveaslirement runs

because our measurements take about 72 hours.

5.8.2.2 Room temperature to LHe temperatures.

To cool down the instrument we follow standard procedures with a gauket
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Dewar. Richardson et al. [] have described this process in delalplirpose of this
process is two-fold: Cool down the instrument to LHe temperaamdswvaste the least
amount of LHe in the process. LHe is an expensive, non-renewabieazbty  This not
being an unusual procedure the process is briefly recounted belowulaattes of the
process are nevertheless highlighted.

To save LHe it is always best to precool with LN. In our expenimbefore making
measurements at LHe temperatures, we always measure #mirCfarce at LN
temperatures. This means the instrument is always precooled.veipvadter the LN
measurements we transfer LN to the Dewar to cool most ofneeti When cold, to
purge the LN from the Dewatr, it is pressurized with Nitrogen gaks [(Ns recommended
to use a vacuum pump to remove thegds from the Dewar, as any Nitrogen residue, in
any phase, can freeze. Our instrument does not permit us to perferstep. The Dewar
then is filled with Helium gas (He) and after that wetstae transferring of LHe to the
Dewar.

From LN temperatures, the instrument needs about 60 liters to cool aod 60
liters to remain at its base temperature for about a wedeklly, this allows us to carry
out two measurement runs. Until now, we have achieved only one meastiramerlo
maintain the temperature a base temperature of about 6.3K for omeweek, one

transfer of 60 liters of LHe is enough.

5.9 Automisation.

Using the software LabView, we made various programs that conosi of the
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functions of the microscope. Two of them control and monitor the mmpe&: actions
while it is running. On of these programs is called Main.Vi. ltect$ the response of the
cantilever to the thermal noise from a Spectrum analyzer th@@JPIB interface. It sets
the voltages applied between the modified cantilever and thsuBstrate through a low-
noise voltage supply. Using a similar voltage source, this progratrotothe voltage
applied to the piezoelectric tube that regulates the separattamck between the Au
substrate and the sphere. In summary, when Main.Vi is runhimgasures the response
of the cantilever at different voltages between the sphere andutbstrate for many
different voltages applied to the piezoelectric tube

The second program called CryoTemp.Vi controls the temperatdrenanitors the
power of the laser diode corresponding to the cantilever interferortesdso monitors
the relative displacement of the Au substrate with respebetoyitical fiber end. We use
this signal to calibrate the displacements of the piezoaletibe. In addition, this
program monitors the temperature of the microscope, the temperatdréyeapower of
the laser diode that corresponds to the interferometer of the sebSthe software

records most of the input and output data of the system for subsequent data analysis.

5.10Grounding.

It is important to avoid or minimize grounding problems of the sys@mund loops
are the most common problem disturbing our detectors. However, non-abmacts or
loose contacts in any part of the microscope can also modifylébostatic voltages

between the components of the microscope. For this reason, the instramishtisave
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good solid soldering junctions. To address the ground loop problems, we thebsely

of the microscope to be our main and only ground, which is, at the samehe ground
from the laboratory. The microscope's body is connected to the laboratory groumgh throu
the plumbing of the vacuum pump system. All electronic instruments wusede
experiment are connected to the same lab ground. In addition, glidined wires come
from the ground of the microscope and are not connected at anyipdi@tween.
Nevertheless, if the Au-coated sphere does not have the samegbaietiie body of the
microscope, the electrostatic force is not going to be compenpateérly and the
Casimir measurements will not be accurate. As can be sette itfiabrication of the
modified cantilever” section, a great effort has been put intongadire this scenario is
unlikely in our experiment. In conclusion, we have found that when the modified
cantilever has minimal electrical resistance betweeroitgponents, and all the electrical
instruments used in the apparatus are grounded through the microscoghgetgeound

loops are minimized and the amount of bad contacts reduced.

5.11 System procedures.

Other than experiments like lannuzzi et @2], most of the procedures to
measure the Casimir force are similar. All of them raeas force or the gradient of a
force between a sphere and a plate. The resultant force, aadierg, is due to the
Casmir force and the electrostatic force between these tebjEor Casmir force
experiments, researchers modified the latter force to find the contactiglgtég)t which

is the residual potential when plate and sphere are at the szstree @otential. For this
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purpose, they set different voltages between the sphere and the piae. tise
electrostatic force depends quadratically on the voltage bettheesphere and the plate,
the measured force or gradient will have a parabolic dependenceegjtbct to those
voltages. Since the experimenters’ objective is to exploreystiiel Casmir effect, they
aim to measure the force when the electrostatic force isebatwear compensation to
when its strength is comparable to the Casmir force. This mimmisthe voltages
between the sphere and the plate are set to be arguitpérimentally, these values are
less than a volt away fromgVFurthermore, these voltages produce a parabola with an
apex at \ and the value of the Casmir force (force gradient). The curvatutbeof
parabola is proportional to the strength of the electrostatic {éocee gradient). Note
that this parabola corresponds to a certain distance between the aptiehe plate. For
other distances, the result is the Casmir force (force grddis a function of distance.
Experimentally, however, the absolute distance between the sphetieeapldte is not
known precisely; only the relative changes in distance are knowisglgecio find the
absolute distance researchers use the curvatures of the pawbdifisrent distances.
Since, as we mentioned above, they are proportional to the distarer@depe of the
electrostatic force. In combination with the relative distacltenges, the curvature is
used to find the absolute sphere-plane distance. Specificallyralesesalook for the
average plate-sphere contact or smallest distancg which when added to the relative
distance changes yields the distance between the sphere andehBiffiatent methods
are used to obtainyz Once obtained, however; researchers can obtain the Casmir force

(force gradient) as a function of distance between a sphere aradea Igbte z0 is a
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precise value because the theoretical electrostatic foreeedeta metallic sphere and
metallic plate is an exact expression.

Our procedure is very similar to the one described above. Sircea ilynamic
measurement, we measure the gradient of the force between a apdeee plate.
Essentially, we measure a resonant frequency of the modifidteeantt infinity, which
is when no force is exerted on the sphere. After that, we methgusame frequency at
distance where there is a force exerted on the sphere. We ttepdat several distances.
The differences between each of these frequencies and the rdsega@ncy at infinity,
in combination with the curvatures of their corresponding parabolast iese Casmir
force gradient as a function of the separation between a spheaeptatd. This function
and EqXX of chapter 2 yield the Casimir pressure as a function of distagteveen two
plates.

The experimental steps we follow to measure the Casimir pressure o#othiang:

l. At a separation distance larger than 300 micron: We measuresitigance peak
of the modified cantilever at infinity using the program Mainwiile monitoring
the status of the instrument with the program CryoTemp.Vi. To redcatom
noise, the spectrum analyzer averages ten peaks at a resolution wiH0&nd
Main.Vi records the averaged peak. The average peak is measurad affl
times for statistical purposes. The software running the expstamis stopped
and data is analyzed. The resonant frequency of the modified cantiéethe
averaged value obtained from the 100 peaks. The standard errar btsed

from this average.
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When step one is finished and without modifying the separation eetie
sphere and the plate. We applied a voltage of 200 mV between the spihéhne a
plate. We proceed to coarsely approach the sphere to the sdmle.able to
separate the sample from the sphere when in contact, we redwsasrtple-plate
distance by 1 micron. During the coarse approach the sphereonthot the
substrate, pulling the substrate away with a 500 nm step might help sejpanate t
Using the coarse linear manipulator we twist the screwhefnicroscope to
approach the sphere to the plate. This process is time consumingebsitaus
approaches avoid the sphere crashing on the substrate or being eompact
between the plate and the optical fiber end that forms thdarderetric cavity.

Both problems result in the cantilever being destroyed.

Once the electrostatic force gradient is detected, the restyregnency of the
cantilever is smaller, the manipulator is retracted and ahr@sgjmate of the
separation distance is calculated. That value helps us to approasphiae
toward the plate in an efficient mannery ¥ roughly measured by manually
setting different voltages between the sphere and the plate andindgpste

resonance peak shift frequencies.

RETRACTING THE LINEAR MANIPULATOR

Since the electrostatic force has been detected, the spheradisiaince is less
than twoum. This means that a slight nudge on the instrument makes the spher

contact the plate or on the contrary, makes it move too far frensample to
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detect a force using the plate’s fine approach. For thisomeas retract the
manipulator and still detect a force requires us to gently ret@&enanipulator
counterclockwise so its tip stops touching the sides of the groove on the
microscope’s screw. Since the groove is quite small, the rotatasnto be
minimal. Once this is achieved, the manipulator has to be sligeady as
possible for about five inches. This stops the manipulator from contatieng
two-stage spring system. Furthermore, the manipulator is h#idawCajon-type
connector, tightening this fixture has to be equally gentle. If #itemprocess, the
cantilever still detects a force the experiment can continutfthe manipulator
has to be gently set on the screw of the microscope and the-pfdterapproach
started once more i.e. go back to step two.

Measuring \: We measure the resonance peak of the modified cantilevey usin
the program Main.Vi. by obtaining a averaging 10 peaks with autgsolof 121
mHz on the spectrum analyzer . Main.Vi records it. This is paddrat each of
the nine voltages roughly used in step three. Note that the aysragehas 10
peaks averaged linearly and without overlap. This means that peai’'sarda
averaged arithmetically and that each peak’s data is indepenadent dne

another.

Step 4 is repeated at different separation distances to yougtdck the
dependence of ¢ with separation distance. To save time this is typically
performed at a lower resolution than in the experiment: 121 mHthelf\p

changes substantially with distance, we might replace the Auratghseplace
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VI.

VII.

the modified cantilever, replace both, or change point of sphere-plati@ct The
circumstances of the experiment will lead us to decide the npmsbm@iate
option. In the case where Vis relatively constant, we will continue the
experiment. Before starting the experiment, we let the piezoeletube
equilibrate as no precautions to minimize the drift were takieenvthe voltage
was applied to it. This might take from a couple of hours to halbya We

monitor the status of the piezoelectric tube with the program CryoTemp.Vi.

Start of the experiment. The Main.Vi program performs step &udifferent
separation distances. The distance step between measuremerite aniial
estimated absolute distance between the sphere and the platet anetise
program. In addition, we set the time between steps. We use thigitoize the
piezoelectric tube drift, as the chosen time is larger thancliaracteristic
relaxation time for the distance steps being used in the experifrtee resolution
of 30.5 mHz is also set in the program. During these measurertten{srogram

CryoTemp.Vi will monitor the status of the experiment.

During the experiment, we modify the distance step between measuseand
the voltages applied to the substrate. The shorter the separatiancessithe
smaller the distance step. Note that the Main.Vi program has stobped to
change the distance step and has to be restarted with the stamceistep. The
voltages applied between the sphere and the plates are chosen sxithamm

frequency shift is 4 Hz. This stops the peaks from moving aveay fhe scope of
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VIII.

the Spectrum analyzer. When the sphere is close to contact tiee thle
frequency range of the Spectrum analyzer has to be shiftecotingo allow the

peaks to be inside that frequency range.

Once the resonance peak disappears or the Q changes substartisibp the
experiment. This means that we stop both programs. The sphere raight h
touched or is about to touch the plate. We retract the plate withigheelectric

tube and, if needed, repeat the experiment when the piezoelectric tube

equilibrates.

After all experiments are finished the resonance frequencyiaity is measured

as in step 1. Substantial changes in frequency between the avalagen this
step and the value in step 1 could mean that the sphere picked up oag¢sst m
while in contact with the plate. To perform this step the lineamipulator has to

be lowered and touch the screw of the microscope. This critical canegeif
performed carelessly, can lead to breaking the cantilever. i$hecause the
sphere and the plate are at most fwo apart. If the manipulator is not lowered
slowly or gently put on top of the screw, the cantilever or spheghtrbreak. The
same care should be observed when rotating the screw to sgparaphere from

the plate. The rotation has to be in small steps, at least for one whole turn.

Au-coated sphere and Au-coated plate are retrieved from theosoope to

measure their surface roughness and their electrical conductivity.
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6 Results and Discussion

In this chapter, the main results of the experimental stdidiiis manuscript are
presented. The chapter is divided into three sections. In theditgbn, we present the

experimental values of the Casmir pressure between two plales 6.7 K. In sections
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Figure 6.1 Experimental and theoretical values for the magie of the Casmir rpssur
between two plates as a function of the spipdme separation distance at T = 6.7 K. The |
crosses are the experimental values with theiresponding error bars at T = 6.7 K. The
dashed line is the pressure calculated with themgdined Druddike model with six transitior
of the core electrons at T = 6.5 K. The green doligl is the Casmir pressure calculated witt
generalized Plasma-like model at T = 6.5 K withts&nsitions of the core electrons.
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two and three the corresponding values for T = 77 K, and T &30@ presented. These
results are compared to the theoretical values of the Casrsgupeecalculated using the

generalized Plasma-like and Drude-like models at these three temgeratur

6.1 Casimir force between two Au plates at T =6.7 K

At this temperature, the experimental values for the Casnssyre had
the best agreement with the corresponding theoretical values tedictda the different
models. The reason seems to be that the systematic errorserpéremental setup are
minimized at this temperature. While this allowed to precisebasuring the Casmir
pressure between two plates from 120 to 600 nm, the measuremeatperermed at
distances up to 900nm. The baseline produced by the Casmir pressuoeemeats
from 600 nm to 900 nm is needed to calibrate the sphere-plate sapaliatance. The
dominant contribution in this distance interval is the electrostatice between the
sphere and the plate, which is used to obtain their absolute sapatksing this method,
at this temperature, it resulted in a minimum separation bettieesphere and the plate
of z; = 1194nm. Using this value, measured values of the Casmir pressure are
compared with the theoretical values as a function of the sepadistance. . They are
presented in fig. 6.1 as black crosses. . In addition to the experimeluias, this figure
contains the calculated Casmir pressure between two plategofoheoretical models of
the plate material. The red dashed line represents the tlabretilues using the
generalized Drude-like model at T = 6.5 K and the green solidrépessents the
corresponding values for the generalized Plasma-like model aathe temperature.

Both graphs are calculated using the process described in the subsemited:
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Generalized Plasma-Like Model and Optical Tabulated Datath@dDrude Model
respectively. Specifically, these two curves are calculated) s transitions of the core

electrons.

1.54 = Experimental Values T= 6.7K .
— Optical w/ 6 Osc Drude T = 6.5K
1.4 ——— Optical w/ 6 Osc Drude T = 300K

Optical w/ 6 Osc Plasma T = 6.5K

1.34

1.24

1.14

1.04

Absolute Casimir Pressure for Two Plates (mPa)

I v I v I v I
150.0n 155.0n 160.0n 165.0n

Sphere Plate Separation Distance (m)

Figure 6.2 Experimental and theoretical values for the absoltésmir pressure between
plates as a function of the sphelate separation distance. The black squares a
experimental values with ¢lir corresponding error bars at T = 6.7 K. The geld line is th
pressure calculated with the generalized Drilde-model with six transitions of the c¢
electrons at T = 6.5 K. The red solid line is thes@ir pressure calculated with the geneealiz
Drude {ike model at T = 6.5 K with six transitions of there electrons. The green dashed lii
the Casmir pressure calculated with the generalRledma like model at T = 6.5 K with s
transitions of the core electrons.

The results presented in this report are highly promising iratige of 150 nm to
230 nm. They have < 1 % relative random error and their degregreénaent with

theoretical calculations at T = 6.7 K is < 2 %. To appreciatgphycally the
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experimental precision of these results, in fig. 6.2 they aepted in the interval that
ranges from 148 nm to 167 nm, in fig. 6.3, from 165 nm to 195 nm, and in fiffoth4
195 nm to 230 nm. In addition, both graphs plot the calculated values of ther Cas
pressure between two plates for T= 6.7 K (grey solid line) and 01300 K (red solid
line) using the generalized Drude-like model, and for T = 6.5 K (gilash line) for the
generalized Plasma-like model. Note that the corresponding ticabredlues for the
latter model at T = 300 K are not in the graphs of this chapteey have a small
temperature variation when compared to the values of the presscuéatesl with the
generalized Drude-like model approach at T = 300 K. Instead tkeimpresented and

compared with the experimental data at T = 6.7 K.

6.1.1 Experimental precision of the Casimir Pressure.

The relative random error per data point is calculated usingxe@ssion given

6.1

AP(Zi)

6Pr(Zl') = P (Z)
exp\<i

Where P,,,(z;) is the experimental value amd’(z;) is the error obtained through
propagation of the errors of the measured quantities i.e., the resmwpency of the
cantilever, \§, and the curvature of the parabolas described in chapter 5. We use the
following expression to calculate this value,

6.2
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WhereR is the radius of the spherdethe spring constant of the modified cantilever, and
fois the resonant frequency of the modified cantilever when no feregerted on the
sphere (at infinite distance). In contrast, fhis the resonant frequency of this cantilever
when the sphere is in a force gradient. Note that the dominanirtéms expression is
the first one on the right hand side akflproportional to the resolution set by the
experimenters in the Spectrum analyzer.

The numerical values on the right hand side of eq. 6.2 for examfles ét7 K,
are found using the procedure in step 1 of chapter 5. This procedureiéh@s aymean
value of f, = 3322.8345 Hz, a standard error oif, = 4.6 mHz, and a standard
deviation for a 10 average Lorentzian pealk pf= 67.3 mHz. The valueR/k is obtained
indirectly through electrostatic calibration.

A discussion of the contribution of the systematic errors to ¥peremental
precision is found below. However, for the distance intervalggm $.2-4, eq. 6.1 and
eq. 6.2 obtain a relative random error for the experimental valueg @asmir pressure

of less than 1 %.

6.1.2 Comparison between Theory and Experiment.
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Figure 6.3 Experimental and theoretical values for the absolDasmir pressure between
plates as a function of the sphere-plate separdt&iance. The black squares are the experin
values with their corresponding error bars at T.ZI6. The error bars are slightly bigger than
squares. The grey solid line is the pressure catiedlwith the generalized Drutike model witt
six transitions of the core electrons at T = 6.5 K. Theéselid line is the Casmir pressure calcul
with the generalized Drudéike model at T = 6.5 K with six transitions of tkere electrons. Tl
green dash line is the Casmir pressure calculatidtie generalized Plasmiike model at T = 6.
K with six transitions of the core electrons.

Inspection of figs. 6.2-4 shows that the experimental values o617 K have
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good agreement with the calculated values of the Casmir presdae using the
generalized Drude-like model at T = 6.5(RDrude6.5K(zi)). At this temperature, the

latter values and the calculated pressures using the gener@lemda-like model is

v T T T T T T T T T T
*  Experimental Values T =6.7K
—— Optical w/ 6 Osc Drude T = 6.5K

—— Optical w/ 6 Osc Drude T = 300K]|
Optical w/ 6 Osc Plasma T = 6.5K

0.40-

0.354

Absolute Casimir Pressure for Two Plates (mPa)

v T v v v v v
195.0n 200.0n

v v v
210.0n 215.0n 220.0n 225.0n

Cnhara-Diata Qanaratinn Nickanra fm)

v
205.0n

Figure 6.4 Experimental and theoretical values for the absolLasmir pressure between
plates as a function of the sph@ilate separation distance. The black squares te
experimental values with their corresponding errarsbat T = 6.7 K. The grey solid line is
pressure calculated with the generalized Drilde-model with six transitions of the c«
electrons at T = 6.5 K. The red solid line is thas@ir pressure ocallated with th
generalized Drudelike model at T = 6.5 K with six transitions of tlvere electrons. Tl
green dash line is the Casmir pressure calculaitédthe generalized Plasmiéke model at ~
= 6.5 K with six transitions of the core electrons.

larger than the sensitivity of the instrument used here. For reagptened below, the

experimental resultéPExp&m(zi)) then are compared ®),,4065x(2;) for the allz;’s.

To achieve this, the following percent uncertainty approach is used:

6.3
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P z;) — P Z;
% percent uncertainity (z;) = 100 - brudee sk (2) = Prps sk ()

)

PDrude6.5K (Zi)

Using eq. 6.3, it is shown in fig. 6.5 that for the sphere-plate sep@saii fig.

N

| ‘ | ‘ | ‘ | 2
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Figure 6.5 Degree of agreement between the pressure caduweith the generalized Drudi&e
model with six transitions of the core electrond at 6.5 K and the experimental measuremer
the Casmir pressure at the same temperature.

6.2-4 the degree of agreement between experimental and caluahtes is less than £2
%. To obtain this quantity, the calculated values were interpolatecdetl20 nm and
1000 nm every 0.25 nm from values calculated every 5 nm. This alldarethe

parameters of eq. 6.3 to be evaluated at effectively the zahie same procedure is
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used to show the degree of agreement between the Casmir pradsulated at T = 300
K using the generalized Drude-like ModBh,,qe300x (21)) andPgype.7x(2;) in the same
distance range as fig. 6.5. In this case, the pressure vala@seobthrough interpolation
are calculated every 0.25 nm and in the same separation distdecali as above.
However, the interpolation uses calculated data from separatianabsthat is separated
by 2 nm. For this case, the percent uncertainty has an expression given by,

6.4

P Z: _P 7.
% percent uncertainity (z;) = 100 - brude3ook (Zi) = Prxpe.sk (i)

)

PDrude300K(Zi)

Note that eq. 6.4 compares the calculated values at T = 300 K with the
experimental values at T = 6.7 K. The results of this expressamelhas the ones from
eq. 6.3, are plotted together in fig. 6.6 as a function of the sphere-gdpaeation
distance. The red open circles curve is obtained with eq. 6.4 and ¢tkeopkn triangles
curve with eq. 6.3. The advantage of both curves being in this figurd & discrepancy
between the experimental results at T = 6. 7 K and the cadutktta at T= 300 K is
emphasized. That is, the data from eq. 6.4 is a factor of about twer biggn the data
from eq. 6.3. Therefore, if the experimental values of the @denge at T = 300 K are
obtained and compared to the pressure at T = 300 K calculatedheitheneralized
Drude-like model, the instrument used here could measure, forghérfie, the thermal
effects of the Casmir effect due to materials with non-ziissipation. Otherwise, the
experimental results at T = 300 K will be in much better emgent with the pressure

calculated with the generalized Plasma-like model at T =K308s it can be seen from
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figs. 6.2-4 the thermal effects in the latter case are smaller thdrefpréssure calculated

with the Drude-like model.

It is illustrative to compare some of the experimental valueshef Casmir

’o\a 5 v ' L ' L ' L) ' 5
2 4- o 44
% d 100*(PDrudeBOOK-PExp6.7K)/PDrude300K

5 34 100*(PDrudeG.5K-PExp6.7K)/PDrude6.5K -3
Q 4

S5 2 2
c 4

Q

© 14 41
<)

% 0l A

v I v I v I
0.16 0.18 0.20 0.22
Sphere-plate separation distance (um)

Figure 6.6.Comparison between the percent uncertainty at ’5Keand T = 30
K. The values at 300 K result from the comparisetwieen the pressure calcule
with the generalized Drudée model with six transitions of the core elecisoa
T = 300 K and the exgsimental measurements of the Casmir pressure=a8.5 K

pressure at T = 6.7 K to the theoretical Casmir pressure betweeplates calculated
with the generalized Drude-like model at T = 77 K, as the thegfiatts are more
pronounced than in the corresponding Plasma-like model. For this purposgjne &7
the experimental values at T = 6.7 K from 146 nm to 160 nm are pedséiite figure

also includes the corresponding theoretical values for the Casesisure between two
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plates at T = 77 K. In addition, the theoretical curves presami@evious figures for the
Casimir pressure at different temperatures and for differenérial’'s model are plotted

as a reference. In Figure 6.7, the dark cyan solid line reprebentiseioretical values of

= Experimental Values T = 6.7K
——— Optical w/ 6 Osc Drude T = 6.5K
—— Optical w/ 6 Osc Drude T = 77K

—— Optical w/ 6 Osc Drude T = 300K
Optical w/ 6 Osc Plasma T = 6.5K 1

= = = =
w Ea ul (@]
1 1 1 1

Absolute Casimir Pressure for Two Plates (mPa)

=
N
N

I I I I I I I L}
146.0n 148.0n 150.0n 152.0n 154.0n 156.0n 158.0n 160.0n
Sphere-Plate Separation Distance (m)

Figure 6.7.Experimental and theoretical values for the absol@smir pressure between two pl
as a function of the sphepate separation distance and for different tentpeea. The black squa
are the experimental values litheir corresponding error bars at T = 6.7 K. Eneor bars ai
slightly bigger than the squares. The black safié Is the pressure calculated with the genere
Drude-like model with six transitions of the cotearons at T = 6.5 K. The dark cyaalid line is th
Casmir pressure between two plates calculated ukangeneralized Drudée model and at T =
K. The red solid line is the Casmir pressure cal@d with the generalized Drudée model at T :
300 K with six transitions of the core electronbeTgreen solidine is the Casmir pressure calcul:
with the generalized Plasma-like model at T = 6.%ith six transitions of the core electrons.

the pressure at T = 77K calculated with the optical tabulated fieit Au in the

generalized Drude-like model.
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Figure 6.7 underscores the difference between the measuseshdnt 6.7 K and
the calculated values of the Casmir pressure at T = 77 K and300 K when the

generalized Drude-like model is used. The degree of agreemem ey, s (z;) and

the corresponding theoretical values at T = 77(B’Drude77,<(zl-)), is on the 2%
uncertainty range. Similar to the quantity found when comparin®,tQiee.sx(2i)-
However, with the current sensitivity of the instrument that i Usere, this figure
demonstrates that thermal effects of the Casimir effeghinie found when comparing
Prxpe.sk(2i) With Pgyp300x(2;) @and not withPg,,,77(z;) . This will be more significant
below, in the discussion of the systematic errors of the measuienidis is the case
because the instrument used in this experimental study hasdgstematic errors at T =
77 K than at T = 300 K. This makes the former temperature argrdfenvironment to
perform this type of experiments.

The experimental values in this figure have a larger relatindam error than the
experimental values in figs. 6.2-4. Using eqg. 6.1 and eq. 6.2, at about 230 firstthe
value has 1.3 % relative random error, at about 345 nm it is 6 %, abdwt400 nm it
has 11 %. To obtain a more precise experimental measurementirahecauld be

reduced by averaging different T = 6.7
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K experiments, or increasing the number of averaged curves pernegptai value of
the Casmir pressure. This would reduce the statistical tandgr of the resonant

frequency of the cantilever. Inspection of eq. 6.2, however, shows thatsngy the

0.304 m  Experimental Values T =6.7K 4
i Optical w/ 6 Osc Drude T = 6.5K |
0.25 — Optical w/ 6 Osc Drude T = 300K

Optical w/ 6 Osc Plasma T = 6.5K
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Figure 6.8 Experimental and theoretical values for the abso@asmir pressure between two plates
function of the spherplate separation distance. The black square arexperimental values with th
corresponding error bars at T = 6.7 K. The greydsohe is the pressure calculated with the genere
Drudeiike model with six transitions of the core eledisoat T = 6.5 K. The red solid line is the Ca:
pressure calculated with the generalized Drude +fifodel at T = 6.5 K with six transitions ofetlcore
electrons. The green dash line is the Casmir presaiculated with the generalized Plasiiiee-model a
T = 6.5 K with six transitions of the core electson
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resolution at which the frequency is measured is more rewardidditionally, a
combination of factors, such as reducing the modified cantilevengsmonstantk,
increasing the radius of the sphere, and increasing the reswoaguericyf, of the
modified cantilever, can highly improve the pressure sensitivith@fmicroscope. This

is one of the reasons the preparation of the modified cantilevetalisn avoiding any
increase of thé&k and reduction of thg,. Hollow spheres for the modified cantilever
should be preferred as a larger mass decrggasés increase the measurement precision
in this and other separation distance intervals, future experiméhbewerformed with
higher sensitivity cantilevers. This type of cantilevers hanledready studied by our

group [104].
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The degree of agreement between the experiment and the corregptrediry
can be improved. Using the percent uncertainty expressions of eq. 6.3 afdi,eq.

equivalent curves to Figure 6.6 was obtained in the separation distéewal ofError!
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Figure 6.9.Comparison between the percent uncertainty at T5=K6and T = 300 K. Tt
values at 300 K result from the comparison betwten pressure calculated with
generalized Drudéke model with six transitions of the core electsat T = 300 K and tl
experimental measurements of the Casmir pressire &5 K.

Reference source not found.Error! Reference source not fod.. These curves are
plotted in Figure 6.9. This figure shows that, while the experiah@néasurements have
good agreement with the theory, about 5% up to 320 nm, they are not sesiingh to

resolve the temperature dependence of the Casmir pressure between plates.
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Figure 6.10 present the experimental values of fig. 6.1 at sepadattances that
range from 400nm to 900 nm along with its theoretical curves and thie tur the

Casmir pressure at T = 300 K calculated using the generdaete-like model. Using
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Figure 6.10.Experimental and theoretical values for the alieoiasmi pressure between t
plates as a function of the sph@late separation distance. The black square ar
experimental values with their corresponding elrars at T = 6.7 K. The grey solid line is
pressure calculated with the generalized Drukie-lnodel with six transitions of the ¢
electrons at T = 6.5 K. The red solid line is thes@ir pressure calculated with the genera
Drude like model at T = 6.5 K with six transitions of there electrons. The green dash lir
the Casmir pressure calculated with the generalPladmalike model at T = 6.5 K with s
transitions of the core electrons.

eg. 6.1 and eq. 6.2, it can be shown that the precision of the expericheatéd lower

than previous data. For example, at about 426 nm the relative percerns €r7.6 %, at
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524.2 nmitis 52.2 % nm, and at higher separation distances it goes lael0ddo. Fig.
6.10, however, demonstrates the sensitivity of the instrument usedtisrews that the
for separation distances larger than 524.2 nm the signal to nosesréss than 1. In
addition, while revisiting the experimental values from fig. 6.1@sifound that for
distances higher than 524.2 nm, where effectively the microscopendbetetect any
pressure, the random uncertainty of the experimental points |2a.3This is about 39
% higher than the uncertainty calculated with eq. 6.1 and 6.2, suggéwitnipe error
bars are underestimated. However, this increase of theveetatndom error is sill less
than 1 % in the sphere-plate separation distance that range4%0 to 230 nm, thus not
affecting the main results of this manuscript. More explonagind more data are needed

to find the explanation for the discrepancy.

6.1.3 Systematic Error Analysis

The main sources of systematic errors are the non-equilibratednnudt the
piezoelectric that controls the motion of the sample plate andaihdinear behavior of
the piezoelectric. These issues are responsible for modifyinglibelute separation
distance between the sphere and the plate, leading to a sepasiioneddependence of
the b, and making a distance dependence)oAll of them modify the measured values
of the Casmir pressure at certain separation distance.

Systematic error due to the drift of one of the plates: Tbienique we use for
measuring the Casmir pressure requires the separation diggameeonstant during the
measurement. However, the piezoelectric that controls the sanptg completely in

equilibrium when the measurement is performed. Waiting for equifibrvould extend
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the data acquisition time from 60 hours to 180 hours or longer, makingrégtical. To
assure that most of the contribution to the drift of the piezoalastnegligible during
the measurement, every time the separation distance is charmyéefare starting the
measurement, the piezoelectric moving the plate is left to lbgui for 10 minutes. This
procedure reduces the drift to less than 0.3 nm in the following 30 esindbwever,
during the experiment, which lasts about 60 hours, we change the sepaliatance
about 50 times in different distance steps. This means, amongdlotiggrthat the drift of
the piezoelectric plays a larger role at the end of the erpatj when the separation
distance is has decreased the most. Its effect seems riotibeable in the pressure
measurements below 145 nm. Using the minimum sphere-plateatepadistance
dependence, on the relative sphere-plate separation distance, it has bematestithat
the piezoelectric drift for the length of the experiment is aBeuen nm. The result is a
change in values of the Casmir pressure. For example, usingetbent uncertainty
approach to compare two experimental curves, one that considetsfttend one that
does not consider it, the effect of the separation distancecdrftbbe quantified. This
comparison shows that at a sphere-plate separation distance niml2Bere is -5.9 %
percent uncertainty, at 148 nm it is -5.7%, at 166 nm it is -4.9 %/ anm it is 2.1%,
and at 384 nm it is -23.5 %. The sign change means that the espi&lirourves cross
and that the curve that does not consider the 7 nm drift is below théhanedoes
consider it. In addition, the value of the percent uncertainty at 384 mat isnportant
since the error bars of both curves cross each other. The ressoreittioned, is to show

the behavior of both curves, where at distances higher than 300 nm ke saparate
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from each other. Note that the contribution of the piezoelectrit idrihe least at the
separation distance that ranges between 150 nm to 230 nm. Thissraviggze most of
the conclusions of this experiment were drawn. To quantify thi¢ idrié needed to
measure the motion of the plate throughout the experiment. The desadefor this

purpose had intermittent noise during the experiment, allowing us tsuneethe motion
of the plate only at the early beginning of the experiment. Duhi@dirst 10 hours of the
T = 6.7 K experiment a drift was not detected. Further ingpeadf this kind of

experiments is needed

A distance dependence of ¥ generally attributed to the non-equilibrium motion
of the piezoelectric that controls the movement of the plate. ITth@.7 K experiment
this type of dependence was found. In fig. 6.11, the dependencevathvrespect to
sphere-platseparation distance is shown. At about 210 ngstafts decreases from a
value of -51.7 mV in a linear manner to -60.2 mV at 119.4 nm. The changg pdrV
nanometer is 0.07 mV/nm.

A non-compensatedoMvill produce a residual force on the plate. However, in the
analysis, only the residual force in excess of the electrodtatie from the top of the
parabola is measured and set equal to the Casimir force. Thus, a chaggeimelévant
as at every point only the residual force is measured. fWeteatt procedures to analyze
the data were devised to reduce the distance dependence @f theevof them will be

described below.
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To account for this dependence, the time to perform the experimast
effectively reduced by a factor of two. Using measurementeaah sphere-plate

separation distance that happen earlier in time and ignoring thesgonding

~ T v T v T T T
b
N
o -0.0454 -
> %
\ %\ % A
-0.050 4 i " X -
D /
o \%/%-%
-0.055 4 4
—e— Contact Potential (V) as a function
-0.060 S of the sphere plate separation 1

T T T T T T T T T
0.0 200.0n 400.0n 600.0n 800.0n 1.0p

Separation Distance (m)

Figure 6.11Contact potential () as a function of sphere-plate separation distahde= 6.7 K

measurements that happen later in time through the dataiandtgsresults avoids the
effects of any separation distance drift which happens fors#doend half of the
measurements. In addition, since the results effectively contahreahformation needed
to acquire the parameters for obtaining the Casmir pressusegddta analysis method
does not affect the overall result. However, this approach wasioccessful since its
results reproduce the distance dependence of fig. 6.11 and the exparvakies of fig.
6.1.

Other sources of systematic error have been explored.
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Systematic error due to cantilever deflection: The cantildefiection due to an
exerted force on the sphere would lead to the change of spheres@paration distance
is another possible source of systematic errors. Largeesfatwen, increase this
systematic error more than smaller forces. To accounthtodeflection, measurement
values with lower electrostatic forces were not included on thee ataalysis. However,
the results of this analysis were not substantially differeminfthe case where the
bending was not accounted for in the data analysis. Therefore, theistoncoof this

analysis was that the effect of the bending of the cantilever on the data iminim

To minimize systematic errors on the T= 77 K experimentsetfeet of non-
constant separation distance due to delayed equilibrium of the pidroel@as
considered. The method to reduce this effect was able to avoithdedtures of the
distance dependence of thg dhdz,. The same method that was used for the T = 6.7 K
experiments was used here. The sequence in which the voltages V are applegethduri
electrostatic force measurement can be chosen to be sypahataund Y such that (V-
V) alternately changes from positive to negative starting darngjest positive value. For
example, if we applied 10 voltages and the voltage stap,ishe first voltage would be
Vot+9AYV, the next one ¥8AV, and the next W7AV, and so on till the applied voltage is
Vo.

While the deviation of the experimental values at T = 6.7 K waspect to the
theoretical curves at short distances has been attributed émayst errors, the source of
the error has not been found yet. As mentioned above, different methoddyize dha
data have been tried but none of them seems to affect the radoits.exploration and
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more T = 6.7 K data is needed to understand the systematic erribves €xperimental

setup of this manuscript at this temperature.

6.2 Casimir force between two Au plates at T =77 K

The measurements at this temperature were not as succedskllraeasurements
at T = 6.7 K. Their precision was significantly lower and the contact patéfitis above
100 mV. The latter suggests that the sphere or sample is in sayreomwtaminated. This
is because the residual potential Metween two gold plates should be in principle be
negligible. Furthermore, for the same sphere plate ségd¥ three different values for
three different temperatures. At T = 300 K it was ~ 70 mV, at77 K, 430 mV, and at T
= 6.7 K, it decreased to ~ 50 mV. Even when the thermal expansiotidrochNitrogen
temperatures to the base temperature of the AFM is smatthdrege of \ by an order
of magnitude could imply a change in the area of region between the sphere antéthe pla
However, the change of jVwith separation distance was almost identical for both
temperatures, suggesting that the area of closest approach retha@rszame or that a
similar drift was occurring at two different temperaturese Tatter was not further
pursued because any systematic errors should be noticeably ndifferéhese two
temperatures. In addition, since the method of analysis has been thyrtesgéd, the
authors of this manuscript believe that it will not introduce subbhavior of \§. More
exploration is needed. The Casmir pressure measured in the @seWh 420 mV is
shown in fig. 6.12. The experimental values are compared to the thabvatues of the

pressure at T = 77 K calculated with the generalized Drude-like model.

108



~ 1.0 T T T T T T 1.0
©
o
E
]
£ 0.8 —+— Experimental Values T = 77K 0.8
[ Optical w/ 6 Osc Drude T = 77K
o
3
=
S 06 0.6
<
=
@
<
a 0.4- 0.4
E
(7]
[}
o
o 0.2 0.2
5
°
("]
2
< I

0.0 L e e 0.0

T T T T T T T T T T I T I
0.0 200.0n  400.0n 600.0n  800.0n 1.0u 1.2u

Sphere-Plate Separation Distance (m)

Figure 6.12. Experimental and theoretical values for the absoldasmir pressu
between two plates as a function of the sphere@eparation distance for T = 77 ®he
dark cyan solid line is the Casmir pressure betwkem plates calculated using
generalized Drudéke model at T = 77 K. The black crosses are tkgedamental value
measured at T = 77 K with their corresponding ebams.

he results in fig. 6.12 do not match the theoretical curve and theragpé&al curve does

not have the same curvature as the latter. This indicates #taisyic errors are present.
Careful analysis of the data in the manner of the T= 6.7 K dasadane and it does not
produce satisfactory results. In fig 6.12 the experimental alzttined at T = 77 K is
shown. The data was analyzed with the same method that was ugbd for 6.7 K

experiment.

While most of the instrument standards, calibrations and measuremergs

taken at T = 77 K, there was never data as good as the dataataken 6.7 K. This
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suggests that at T = 77 K a drift in the separation distandet imégpresent, considerably
altering the experimental pressure curves. An argument against theslitd if the total
drift is estimated with measured values of the motion of the plate, it carth¢éouseduce
the effects of this systematic error. The experimental curves aeeimeless not modified
when this is performed. This indicates that another source otenstsc error must be
the dominant source. It has been suggested that a possible cafwldhig error is an
electrostatic effect of the cantilever fiber end on the matlii@ntilever. This effect is
more prominent for shorter distances between the fiber end andrtiewer. While this
separation is ~ 50 to 10@n at T = 300 K, the final separation at T= 77 K might be
different. This effect has nevertheless not shown any measwabtgbution at the
separation distance where the Casmir pressure has been meaasitis experimental
study. More exploration is needed at larger sphere-plate sepadasitances > 2um,
where the fiber-cantilever interaction, not the sphere-plate interactionstsdmminant.
The experiments performed at this temperature suggest that amatierd, one
that minimizes the effect of the sphere plate separation destdnft, by a rapid
collection of data, would be a better option at this temperatureAIFM is a very good

candidate for the rapid measurement.

6.3 Casimir pressure between two Au plates at T = 300 K
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The experiments measured at this temperature showed the egedions with
respect to the theoretical curves. Mechanical drift is méstylito be the dominant
contribution of the deviation since the interferometer that meatheesglative motion of
the plate can detect large changes. Even when the driftasunegl with an independent
detector, the measurement procedure used did not allow anweffeatitraction of the

drift. An example of the experimental curves obtained at T = 300 K is in fig. 6.13.

- 15 . . . 15

o.

£

o

] i i

= A Experimental values T =300 K

o Optical w/6 Osc Drude T = 300 K

g 1.0 — Optical w/6 Osc PlasmaT=300K {1

£

e

[

- -4

=

(V]

(0]

[

1=

o

» 0.5 405

£

a

]

&)

p |

d

2

o

(7] N R N

2 0.0 —A———A—d————a— 4 400
1 1

' T T T T T T T
400.0n 600.0n 800.0n
Sphere-Plate Separation Distance (m)

. T .
200.0n

Figure 6.13 Experimental and theoretical values for the absolDasmir pressure between
plates as a function of the sphgilate separation distance for T = 300 K. The triesgre th
experimental values measured at T = 77 K. The &acs are the size of tkgmbols or less. The r
solid line is the Casmir pressure between two platculated using the generalized Drlide-
model at T = 300 K. The dark blue solid line is tbasmir pressure between two plates calcu
using the generalized Plasma-like model at T =00
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In summary, the results at T = 6.7 K could be used to determinthé¢hmal
effects of the Casimir force. The reason is that they hawgh degree precision due to
the lower systematic errors resulting from the drift of tphese-plate separation. In
contrast, higher temperatures results do not have the expectedopred/hile in these
cases, the mechanical drifts should be more significant than lowhimperature case,
the procedure to subtract their contribution is not possible given thgunggnent method
used. It is important however, that the motion of the plate is unegsaccurately
throughout the separation distance where the measurements arenedrf@mother
possibility is to use different methods of cantilever response tsune the Casimir
pressure. A method that reduces the effects of mechanidtd drithe FM-AFM
technique. In the FM-AFM technique, the data taking time is redogesd factor of 20
and thus the effects of drifts will be correspondingly reduced. The instrument used in thi

experimental study is being modified to implement this technique in futureirepes.
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7 Conclusions and Future Prospects

We have measured the Casmir pressure between two Au plates@? K, T =
77 K, and at T=300 K at a sphere-plate separation distance of 120 nm to 600 nm. This has
been achieved through use of a variable temperature atomic fazoescope that we
built to detect the thermal effects of the Casmir forcethi sphere-plate separation
distance from 145 nm to 230 nm, the degree of agreement betweasultie from the
measurements at T = 6.7 K and the theoretical values of #maiCpressure calculated
with the generalized Drude-like model at T = 6.5 K is 2%. Funtbee, their relative
random error at this separation distance is less than 1 %. Irasioritie degree of
agreement of these same values and the theoretical values afstimér Gressure at T =
300 K using the Drude-like model pressure is about 4%. The largepdiscies in the
degrees of agreement could be used to measure the thermal effiie Casmir pressure
predicted by the generalized Drude-like model. The outcome of theasunements
would reveal the role played by the dissipation of the constituemriadadf the plates in
the context of the Casmir effect at non-zero temperaturegébmaterials. In addition,
measuring the thermal effects of the Casmir force would dolvg-standing disputes
about the model that better describes the material of the plateg the Lifshitz’'s
approach.

In contrast to the results at T= 6.7 K, our measurements ofadmiCpressure at
T=300Kand at T =77 K had a more limited outcome. They sigregficantly affected
by systematic errors, which reduced their expected precisiortlyMibese errors were
attributed to the mechanical drift associated with the speuiditon of the plate in our
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measuring technique during the duration of the measurement. Appreachuract this
drift were not successful in our measurement methodology. Diffeerpérimental
stabilization schemes such as using feedback controls on the adidatot achieve the
necessary precision. We have concluded that it is more effectivavoid the drift
altogether by using a detection method that substantially redheeduration of the
experiment. A technique called frequency modulation atomic forceostiopy is able to
perform such a measurement. In addition, it has already provenadigé sensitivity
tool to explore the Casmir effect in our lab. This technique can ngtreduce the
systematic errors but it can also enhance the resolution ohstturnent by an order of
magnitude at T = 6.7 K. Furthermore, the modifications required fornstnument to
employ this measuring technique are straightforward. Thes¢hareeasons why our
future measurements will be performed with this technique. If safide measurements
of the Casmir pressure between two plates at three diffeeemperatures could be
directly compared and the thermal effects of the Casimir effect megasu

This sensitive technique and the capability to change the temmeerett the
sphere-plate system will make our instrument a powerful tootgtmee new phenomena
in the Casmir field. Such is the case of the Casmir effeahaterials that undergo a
phase transition with temperature. For example, it has been sugtiedtéide study of
Mott insulators [105] -materials that experience an abrupt chinge high electrical
resistivity to low resistivity- could help understand the roléreé charge carriers in the
Lifshitz’'s approach [105]. Another example is of superconductor mistewaich have

zero resistivity below a critical temperature. Bimonte [10@s suggested that the
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thermal effects of the Casmir effect can be explored in arsfhate superconductor
cavity made of Niobium (Nb) or Au and Nb Since phase transition of this materias occur
at T = 9.3 K, its critical temperature falls in the tempaetrange of our instrument,
making Casmir force experiments with superconductor materiaiplesito setup. In
addition, during the superconductor transition, the change of the Cassengy can be
comparable to the condensation energy of a semiconducting film. Tdaasnthat an
increase in the value of the critical magnetic field cannesasured [107]. Another
example worth mentioning is in the study of the Casmir forpemigence on non-trivial
geometries. Recently, Maghrebi et al. [108] have calculatedrge Igemperature
dependence of the force between a conductive cone and a plate. &tlissetibserved
for cones with similar dimensions to the tips of commerciallyilabke cantilevers. In
summary, these examples point out that in addition to the resultaahténe instrument
built for and described in this thesis has exceptional advantadesiliiae exploited to

rapidly push the frontier of the field of Casimir effect in the near future. .

115



8 Appendix A Pictures of the Laboratory

In this appendix the pictures of the main composeithe instrument are present:

This is the view of the floor components of thetiasent. In the background is t
optical table with the two &«fiber interferometers and its components. Two @ptiiber
strands run from the interferometer to the cryosidte latter is in a cemepit under the

floor level. The pit is covered with the aluminunates. The area where the sample
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sphere are manipulatésiparticle-free due to the home-built clean room

Cryostat

This picture shows the cryostat from the top. kludes the main vacuuiline, the

vibration isolation system, the optical fibers, dhd linear manipulatc
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