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ORIGINAL ARTICLE

Targeted resequencing of the microRNAome and 3′UTRome
reveals functional germline DNA variants with altered
prevalence in epithelial ovarian cancer
X Chen1,2,9, T Paranjape3,9, C Stahlhut1, T McVeigh4, F Keane5, S Nallur3, N Miller4, M Kerin4, Y Deng6, X Yao6, H Zhao2,7,8,
JB Weidhaas3 and FJ Slack1

Ovarian cancer is a major cause of cancer deaths, yet there have been few known genetic risk factors identified, the best known of
which are disruptions in protein coding sequences (BRCA1 and 2). Recent findings indicate that there are powerful genetic markers
of cancer risk outside of these regions, in the noncoding mRNA control regions. To identify additional cancer-associated, functional
non-protein-coding sequence germline variants associated with ovarian cancer risk, we captured DNA regions corresponding to all
validated human microRNAs and the 3′ untranslated regions (UTRs) of ~ 6000 cancer-associated genes from 31 ovarian cancer
patients. Multiple single-nucleotide polymorphisms in the 3′UTR of the vascular endothelial growth factor receptor/FLT1, E2F2 and
PCM1 oncogenes were highly enriched in ovarian cancer patients compared with the 1000 Genome Project. Sequenom validation
in a case–control study (267 cases and 89 controls) confirmed a novel variant in the PCM1 3’UTR is significantly associated with
ovarian cancer (P= 0.0086). This work identifies a potential new ovarian cancer locus and further confirms that cancer resequencing
efforts should not ignore the study of noncoding regions of cancer patients.

Oncogene (2015) 34, 2125–2137; doi:10.1038/onc.2014.117; published online 9 June 2014

INTRODUCTION
Ovarian cancer is the most lethal gynecological cancer.1 The high
death rate is primarily due to patients presenting with advanced
disease due to vague symptoms that delay diagnosis and a lack of
well-known risk factors. Although there is a familial-inherited risk
component for ovarian cancer risk, historically very few genetic
abnormalities identified (BRCA1- and BRCA2-coding sequence
mutations2) have been associated with a meaningful increased
risk for the disease. Such previously identified inherited mutations
associated with cancer risk all reside in the protein-coding region
of the DNA, and account for only 3% of all cancers (ACS, 2010).
Attempts to find new meaningful inherited mutations have taken
global approaches such as genome-wide association studies, but
these studies have found exclusively non-functional variants that
may only be associated with regions of DNA that harbor the
functional variants,3,4 resulting in only small effect sizes that are
not clinically useful.3,4 Although cancer genome resequencing
projects have identified a few additional genetic alterations in
individual patient tumors, the success of these research programs
has been limited, possibly because of the rarity of mutations that
result in such complex phenotypic changes as oncogenesis, or
because of their focus on protein-coding sequences.5–8

MicroRNAs (miRNAs) provide a powerful new avenue to the
discovery of functional genetic risk factors in cancer. MiRNAs have
been found to be altered in all cancer types studied, including

ovarian cancer.9,10 Owing to the importance of miRNA functions in
development and growth, as well as their ability to target
hundreds of genes simultaneously, single miRNA disruptions can
enhance oncogenesis and hence, mutations in miRNA genes, and
in their binding sites in cancer genes, are proving powerful in
cancer risk assessment.11–13 A recent study of reported single-
nucleotide polymorphisms (SNPs) in miRNAs found a relatively low
level of sequence variation in functional regions of miRNAs.11

Several such polymorphisms have been identified and appear to
be deleterious in cancer, making them likely candidates for causal
variants.14–17,18 It has also been shown that there are genetic
variations within the 3′ untranslated regions (3′UTRs) of cancer
genes and in some cases, the variations specifically alter miRNA-
binding sites.15 The first discovered and best studied mutation of
this class is a functional 3′UTR inherited mutation in KRAS
(rs61764370), which has been shown to be a risk factor for
multiple cancers, including ovarian cancer.15,19,20

Given the existence of relatively rare, functional variants in
miRNAs and their binding sites in target genes, we chose to
systematically sequence germline genomic DNA obtained from
ovarian cancer patients to discover additional functional variants
associated with cancer in the miRNA regions and 3′UTRs of
cancer-related genes. Our workflow consisted of capturing
these regions using NimbleGen’s sequence capture technology
using a custom developed hybridization array followed by
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high-throughput paired-end sequencing to identify genetic
variations using individual genomic DNA samples from ovarian
cancer patients. The sequencing data sets for our patients were of
high quality and we applied stringent quality control and filtering
to ensure the accuracy of variant identification. We next used a
network-wide analysis to focus on those genes with variation in
their sequence and their expression in ovarian tumors. Subse-
quently, a subset of the known and novel variants was validated
using Sequenom technology in a case–control cohort. We have
identified multiple novel and known variants both in miRNA genes
as well as in the 3′UTR of cancer-related genes. Many of the
variants in the 3′UTRs were also found to lie in target sites for
miRNAs. A case–control validation of a subset of these mutations
confirms significant enrichment of one of these variants in ovarian
cancer patients. Our results demonstrate the existence of
additional functional genetic variation located in the noncoding
regions of the DNA that may help identify individuals at increased
genetic risk for developing ovarian cancer.

RESULTS
Target enrichment and high-throughput sequencing of miRNA
genes and 3′UTRs of cancer genes
We generated and analyzed targeted high-throughput sequencing
data sets of ~ 700 miRNAs and 3’UTRs of ~ 6000 cancer-associated

genes to pinpoint sequence variants associated with ovarian
cancer (Figure 1a). The ovarian cancer population we studied
comprised of 31 women of European descent, high-risk, ovarian
cancer patients identified through the Yale Cancer Genetics Core,
who were expected based on personal and family history to have a
potential inherited cancer risk. Patients were selected to be
without other known genetic lesions associated with ovarian
cancer (OC) risk such as BRCA mutations2 or the KRAS-variant
(rs61764370),15,20 in order to enrich for novel variants. Six samples
known to carry the KRAS-variant were included as positive controls.
We used a target gene capture procedure to obtain sequences

enriched in all 718 of the known human miRNA genes in
miRBase 14 and 3’UTRs of cancer-associated genes from cancer
patients. First, genomic DNA isolated from saliva or blood
specimens was separately sheared to fragments compatible with
Illumina/Solexa sequencing systems. Second, the individual
genomic DNA was denatured and hybridized to a custom DNA
NimbleGen array21–23 carrying sequences complementary to the
718 known miRNA genes (miRBase 14) and 3’UTRs of 5424 genes
(obtained from the list of cancer genes in The Cancer Genome
Atlas: http://cancergenome.nih.gov/). Finally, the captured DNA
was eluted and processed through standard Solexa sequencing.24

We successfully performed gene capture, and large-scale
paired-end sequencing with ~ 500X coverage per sample, and
the majority of sequencing reads were mapped to the target
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Figure 1. (a) Workflow for our integrated study of miRNAs and targeted genes. Targeted sequencing of miRNAs and 3′UTRs was performed on
31 ovarian cancer patients. These target regions were also extracted from the whole genome sequencing of the 1000 Genome project was
used as controls to detect known and novel variants. To select functional and significant variants, we consider the allele frequency difference
between cases and controls, differential expressed genes from gene expression profiling and miRNA-3′UTR-predicted target pairs. Finally,
functional variants were validated by Sequenom in a larger corhort. (b) Allele frequency of known SNPs, patient samples versus the 1 KG
database (European and all populations).

Targeted resequencing of the microRNAome and 3′UTRome
X Chen et al

2126

Oncogene (2015) 2125 – 2137 © 2015 Macmillan Publishers Limited

http://cancergenome.nih.gov/


regions (TRs) by aligner BWA25 (see Materials and methods,
Supplementary Table 1).

Identification of known and novel genetic variants. Variations to
the consensus genotype were called with Samtools (version
0.1.11).26 To increase the quality of variant calls, the read depth
threshold was set to 10. With this, each sample contained ~ 9000
SNPs passing the threshold compared with the reference
genome hg18 downloaded from the University of California,
Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu/;
Supplementary Table 2). Almost all of the samples have around
300 SNPs in pre-miRNA regions and 8500 other SNPs with a read
depth of at least 10.
We successfully detected the KRAS-variant in the six cases where

we had previously genotyped this SNP.20 To determine
whether SNPs identified in our patient samples corresponded to
SNPs found in previous ovarian cancer studies, we compared our
SNP list with the cancer-associated SNPs reported in 12 papers.27–39

From a total of 94 SNPs (Supplementary Table 3), 28 were identified
by our study as well. A few of them, such as rs10719 (RNASEN,
P-value= 0.006), rs12889916 (SSTR1, P-value= 0.011), rs7499
(COL18A1, P-value= 0.028) and rs7869402 (TLR4, P-value= 0.039),
have statistically different allele frequencies (P-valueo0.05) from
normal populations present in the 1000 Genome Project (1
KG; Table 1), which indicated that our studies successfully identified
certain known ovarian cancer-associated SNPs.
To determine how many novel SNPs were discovered in our

sequencing data, the SNPs were compared with the dbSNP
database (ver. 135)40 and the 1000 Genomes Project (1 KG) (SNP
calls are based on 1092 individuals from the 20101123 sequence
and alignment release of the 1000 genomes project; 379
individuals from European population.).41 We defined ‘novel SNPs’
as those not reported in dbSNP or 1 KG. We found approximately
50 novel SNPs in pre-miRNA regions and 900 novel SNPs in 3′UTRs
per sample (Table 2a and Supplementary Table 4), which
constitutes almost 5–10% of total SNPs identified from each

patient, consistent with the identification rate of novel SNPs in
other studies.42 To determine the mutation properties of 3′UTR
and miRNA regions, we compared our results with mutations in
1 KG by transition vs transversion (Ti/Tv rate) and substitution rate.
We found that miRNAs have similar mutation properties to 1 KG,
whereas 3′UTR regions are prone to have more transversions. A-G
and T-C are frequent substitution types, but SNPs in our samples
have more balanced substitutions between A and G and between
T and C (Supplementary Figure 1), which further demonstrated
that the sequencing of our samples was of high quality.
For known SNPs, we compared the allele frequency of SNPs

with the frequency in 1 KG or dbSNP. The frequencies across all
populations were obtained for all 24 834 known SNPs and the
frequencies over the European population (which was the
population used for this resequencing project) were obtained
for 19 093 SNPs. The vast majority of SNPs have a very similar
frequency between our patients and the ‘normal’ people from
1 KG, either all populations or European only, but 1 KG European
population presents more similarity with the patients, as our
patients are from this population (Figure 1b). However, certain
SNPs presented with a much higher frequency in either our cases
or the 1 KG controls, and are candidates to be associated with
ovarian cancer (Figure 1b, Table 2b and Supplementary Table 5).
For known SNPs in the 1 KG project, we performed Fisher’s exact
test on alleles in our patient samples and European population in
1 KG to test if the SNPs are associated with ovarian cancer. Within
19 093 known SNPs in the European population, 143 SNPs have a
P-value less than 5 × 10− 6; within 3665 novel SNPs (the novel
allele at least appears twice in patient samples), 724 SNPs have an
allele frequency more than 10%. For example, known and novel
SNPs in the 3′UTR of HMGA1 (known SNP P-value = 2.28E-49; novel
SNP allele frequency = 37.40%), an oncogene mis-expressed in
ovarian cancer,43 are enriched in the patient samples and are
candidates for alleles with causal roles in ovarian cancer.
Interestingly, HMGA1 is also shown to have somatic mutations
causally implicated in microfollicular thyroid adenoma and various

Table 1. Enrichment of previously described ovarian cancer SNPs

SNP ID Gene ID Chr Pos Ref Freq in DB Alt Freq P-value

rs10719 RNASEN chr5 31437204 A 0.530 G 0.710 0.006
rs12889916 SSTR1 chr14 37749831 T 0.208 C 0.355 0.011
rs7499 COL18A1 chr21 45756756 G 0.465 A 0.323 0.028
rs7869402 TLR4 chr9 119517853 C 0.091 T 0.016 0.039
rs7957 TNFRSF10D chr8 23049312 T 0.218 C 0.113 0.058
rs12245 KRAS chr12 25249917 A 0.550 T 0.435 0.092
rs8065843 FLJ35220 chr17 76024941 G 0.686 T 0.790 0.095
rs4245739 MDM4 chr1 202785465 C 0.784 A 0.694 0.117
rs1126772 SPP1 chr4 89123210 A 0.188 G 0.258 0.188
rs9920 CAV1 chr7 115987328 T 0.044 C 0.081 0.199
rs895819 hsa-mir-27a chr19 13808292 T 0.358 C 0.274 0.225
rs720014 DGCR8 chr22 18478882 T 0.214 C 0.274 0.272
rs12900401 SMAD3 chr15 65273644 C 0.037 T 0.065 0.294
rs17147016 UGT2A3 chr4 69829815 T 0.257 A 0.194 0.303
rs12010722 RPS6KA3 chrX 20080448 C 0.302 T 0.242 0.330
rs16869269 RRM2B chr8 103288805 T 0.094 C 0.129 0.375
rs680 IGF2 chr11 2110210 T 0.717 C 0.774 0.391
rs2248718 ATP6V1C1 chr8 104151483 C 0.111 T 0.145 0.411
rs2910164 hsa-mir-146a chr5 159844996 C 0.619 G 0.677 0.426
rs3757 DGCR8 chr22 18479331 G 0.212 A 0.258 0.431
rs17749202 WNT11 chr11 75575022 T 0.205 C 0.226 0.636
rs11169571 ATF1 chr12 49500032 T 0.342 C 0.323 0.788
rs2075993 E2F2 chr1 23708951 A 0.417 G 0.435 0.795
rs10900596 MDM4 chr1 202789080 T 0.573 C 0.597 0.795
rs12190214 ALDH5A1 chr6 24643187 C 0.072 A 0.081 0.801
rs6505162 hsa-mir-423 chr17 25468309 A 0.511 C 0.516 1.000
rs3917328 IL1R1 chr2 102160973 C 0.041 T 0.032 1.000
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benign mesenchymal tumors in the COSMIC database.44 Besides
HMGA1, two other genes, FGFR2 and TLX3 with known SNPs near
the top of our list, have causally implicated somatic mutations in
non-small cell lung cancer (NSCLC), endometrial cancer (FGFR2)
and T-cell acute lymphocytic leukemia (TLX3), respectively.

GATK45 UnifiedGenotyper was used to further comfirm the SNPs
called by Samtools. Among 24 834 known SNPs called by
Samtools, 22 483 (90%) were called as SNPs and 492 (~2%) were
called as indels in GATK; among 13 030 novel SNPs called by
Samtools, 3421 (26%) were called as SNPs and 2255 (17%) were

Table 2a. The top 20 of the list of novel SNPs residing in miRNA-binding sites ranked by allele frequency

Gene Chr Pos Ref Alt Freq Targeted microRNA

HS2ST1 chr1 87345928 G AT 0.565 hsa-miR-3148
DDX17 chr22 37211649 T A 0.516 hsa-miR-3145
UGT2B15 chr4 69547273 G A 0.484 hsa-miR-545*, hsa-miR-376c
THOC4 chr17 77439146 G A 0.484 hsa-miR-4311, hsa-miR-186, hsa-miR-3121
SLC2A12 chr6 134350481 A G 0.452 hsa-miR-2054
SOX4 chr6 21705732 C T 0.452 hsa-miR-186, hsa-miR-3133
NT5C2 chr10 104836975 A G 0.419 hsa-miR-3128, hsa-miR-196a*
FABP7 chr6 123146836 C T 0.387 hsa-miR-3163, hsa-miR-340, hsa-miR-452
CUL4A chr13 112967273 C T 0.387 hsa-miR-3148, hsa-miR-891a
CUL4A chr13 112967272 T AC 0.387 hsa-miR-3148, hsa-miR-891a
ARSJ chr4 115042086 T A 0.387 hsa-miR-3163, hsa-miR-142-5p, hsa-miR-873, hsa-miR-1252,

hsa-miR-1286, hsa-miR-548c-3p, hsa-miR-548l
SNCA chr4 90865526 G A 0.371 hsa-miR-4311
GIGYF1 chr7 100117074 A T 0.371 hsa-miR-4282, hsa-miR-548c-3p
RND3 chr2 151034403 C A 0.371 hsa-miR-548p, hsa-miR-495, hsa-miR-376a*, hsa-miR-7-2*,

hsa-miR-7-1*, hsa-miR-3065-5p, hsa-miR-3121, hsa-miR-410
HMGA1 chr6 34321614 T C 0.371 hsa-miR-495,hsa-miR-7-2*,hsa-miR-7-1*,hsa-miR-3065-5p
MMP11 chr22 22456467 T A 0.355 hsa-miR-4264,hsa-miR-2053,hsa-miR-223,hsa-miR-4328,hsa-miR-500,

hsa-miR-29b-1*
BASP1 chr5 17329847 A C 0.355 hsa-miR-4307, hsa-miR-129-5p
ELAVL3 chr19 11423309 C T 0.355 hsa-miR-511
MAP4K4 chr2 101874911 G A 0.323 hsa-miR-501-5p
HMGA1 chr6 34321585 C T 0.323 hsa-miR-196a, hsa-miR-542-3p, hsa-miR-196b, hsa-miR-3148, hsa-miR-3125

Abbreviations: Alt, alternative nucleotide; Chr, chromosome; Freq, allele frequency; Pos, genomic position; Ref, reference nucleotide.
Italic indicates genes differentially expressed in ovarian cancer. The entire list is shown in Supplementary Table 4.

Table 2b. The top 20 of the list of known SNPs residing in miRNA-binding sites ranked by P-value

Gene Chr Pos Ref Alt Db freq Freq P-value Targeted microRNA

IL18 chr11 111519362 C G 0.98 0.032 4.68E−74 hsa-miR-1178, hsa-miR-505, hsa-miR-4253, hsa-miR-1226*, hsa-
miR-4260

INPP5B chr1 38100173 C T 1 0.258 5.02E−62 hsa-miR-34c-5p, hsa-miR-34a, hsa-miR-449b, hsa-miR-449a
EIF3A chr10 120785256 G T 1 0.355 2.06E−52 hsa-miR-200c, hsa-miR-23b, hsa-miR-130a*, hsa-miR-23a,

hsa-miR-371-5p
HMGA1 chr6 34321274 T C 1 0.387 2.28E−49 hsa-miR-4297
ESRRA chr11 63840689 A G 1 0.452 1.76E−43 hsa-miR-600, hsa-miR-148b*, hsa-miR-627, hsa-let-7a-2*,

hsa-miR-4294, hsa-miR-593, hsa-let-7g*, hsa-miR-493*,
hsa-miR-924, hsa-miR-3121

MTFMT chr15 63081112 G A 1 0.484 1.25E−40 hsa-miR-548d-3p, hsa-miR-1323, hsa-miR-548x, hsa-
miR-548o

BCKDHB chr6 81110585 C T 0.82 0.032 2.42E−38 hsa-miR-4253, hsa-miR-612, hsa-miR-654-5p, hsa-miR-1285,
hsa-miR-762, hsa-miR-541

IDO2 chr8 39992635 T C 1 0.532 1.89E−36 hsa-miR-4307, hsa-miR-183*, hsa-miR-548c-3p,
hsa-miR-551b*, hsa-miR-570

CACNB2 chr10 18870675 T C 0.77 0.032 5.43E−33 hsa-miR-552
PPP1R14B chr11 63768801 G C 1 0.597 4.72E−31 hsa-miR-1228*, hsa-miR-886-5p, hsa-miR-3144-5p
MAD2L1 chr4 121200662 T C 0.71 0.016 1.63E−29 hsa-miR-3074, hsa-miR-181c, hsa-miR-625*, hsa-miR-144*,

hsa-miR-181a, hsa-miR-410, hsa-miR-181b
ZNF28 chr19 57993057 T C 0.91 0.290 5.79E−28 hsa-miR-3165
RAB7L1 chr1 204004404 T C 0.91 0.290 5.79E−28 hsa-miR-541*, hsa-miR-1976
PSPH chr7 56046588 T C 0.74 0.065 4.53E−27 hsa-miR-105*
FGFR2 chr10 123231486 T C 1 0.677 1.50E−24 hsa-miR-152, hsa-miR-764, hsa-miR-552, hsa-miR-148a
ALPK1 chr4 113582830 C T 0.65 0.032 1.71E−23 hsa-miR-219-2-3p, hsa-miR-216a
AGPS chr2 178113035 A G 0.81 0.194 4.19E−23 hsa-miR-656, hsa-miR-410
VHL chr3 10168683 T G 0.7 0.081 1.13E−22 hsa-miR-4284, hsa-miR-484
ZNF665 chr19 58359449 C T 0.6 0.016 5.48E−22 hsa-miR-125a-3p
TLX3 chr5 170671441 G A 0.71 0.113 7.40E−21 hsa-miR-578, hsa-miR-525-3p, hsa-miR-103-2*

Italic ones are genes differentially expressed in ovarian cancer. The entire list is shown in Supplementary Table 5.
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called as indels in GATK (Supplementary Tables 4). This showed
that variant calling programs have very high concordance on
known SNP calling, but they have lower reliability in novel variant
calling. We noticed that some SNPs have very small P-values
comparing cases to controls. We suspect that this might be due to
mapping and/or SNP calling biases and errors from either 1 KG or
our own patient samples, or due to poor matching between
cancer patients and 1 KG controls.

MiRNA target site prediction and gene expression analysis. We
predicted the targets of all human miRNAs in miRBase v14

(including 5p, 3p and star miRNAs) by miRanda46 and
TargetScan,47 and then compared targets with SNPs called from
our samples. Of 24 834 distinct, known SNPs, 14 084 of them are
within predicted miRNA-binding sites; of 13 030 distinct, novel
SNPs, 7023 of them are within miRNA complementary sites.
Almost half of SNPs are at putative miRNA complementary sites.
To further evaluate the function of these SNPs, we obtained a list
of differentially expressed genes in ovarian cancer from three
independent gene microarray studies.48–50 These studies identi-
fied 259, 2048 and 568 differentially expressed genes, respectively
(77, 726 and 144 genes were examined in this study). Within them,
the numbers of genes having SNPs (for novel ones, we only
considered those with more than one alternative allele in cases)
from our patient samples are 65 (357 SNPs), 642 (3921 SNPs) and
109 (575 SNPs; Table 3), respectively. To check if the SNPs are
enriched in differentially expressed genes compared with all
sequenced cancer genes, we considered the average number of
SNPs per gene. The fold changes of the average number of SNPs
per gene are 1.02, 1.18 and 1.00 for three gene sets compared
with all sequenced genes. So the SNPs are comparatively enriched
in the largest differentially expressed gene set; however, they are
not enriched in the other two.
In Table 4, we show the top differentially expressed genes

identified by at least two microarray studies, and the genes that
have SNPs at miRNA target sites (Supplementary Table 6a for
differentially expressed genes with SNPs, Supplementary Table 6b
for the SNP list in genes identified by at least two differential
expression microarrays). We note some very important cancer-
associated genes in this table, including the oncogenes FLT1 (P-
value = 4.36E-13, encoding the vascular endothelial growth factor

Table 3. SNPs in differentially expressed genes

Authors No. of
patients

Microarray
platforms

No. of
DE

genes

No. of
genes
having
SNPs

No. of
genes
having
SNPs in
miRNA
target

Chien et al.50 10 cDNA-DASL 259 65 54
Bowen et al.49 12 Oligonucleotides 2048 642 590
Ramakrishna
et al.48

68 Oligonucleotides 568 109 98

Abbreviations: cDNA-DASL, cDNA-mediated annealing, selection, exten-
sion, and ligation; DE, differentially expressed; miRNA, microRNA; SNP,
single-nucleotide polymorphism. For novel SNPs, we only considered those
that have more than one alternative alleles in patient samples.

Table 4. SNPs in differentially expressed genes (identified in at least two studies) having SNPs in miRNA targets

(a) Known SNPs (top 10 in the list shown in Supplementary Table 6a), ranked by P-value

Gene Chr Pos Ref Alt Db freq Freq P-value Targeted miRNAs

FLT1 chr13 27840450 T C 0.97 0.677 4.36E−13 hsa-miR-664*
E2F2 chr1 23706198 G T 0.53 0.097 6.07E−12 hsa-miR-4278
GNAS chr20 56919207 C T 0.01 0.081 1.69E−03 hsa-miR-105*,hsa-miR-876-5p,hsa-miR-4273
SKIL chr3 171593223 T A 0.88 0.742 4.90E−03 hsa-miR-140-3p
BIRC5 chr17 73731801 T C 0.4 0.258 3.01E−02 hsa-miR-936
FLT1 chr13 27859409 T A 0.01 0.048 4.39E−02 hsa-miR-660
BIRC5 chr17 73733023 T C 0.68 0.548 4.83E−02 hsa-miR-4325
FLT1 chr13 27858593 T A 0.5 0.371 6.37E−02 hsa-miR-1285
FLT1 chr13 27860757 A T 0.53 0.403 6.39E−02 hsa-miR-548a-3p, hsa-miR-582-3p, hsa-miR-553,

hsa-miR-548e, hsa-miR-223*
BIRC5 chr17 73732965 A G 0.69 0.581 8.85E−02 hsa-miR-764, hsa-miR-3127

(b) Novel SNPs. Top nine (SNP appearing at least twice) in the list shown in Supplementary Table 6b , ranked by allele frequency

Gene Chr Pos Ref Alt Freq miRanda

FLT1 chr13 27772664 A C 0.081 hsa-miR-603
PTX3 chr3 158643893 G T 0.065 hsa-miR-4307,hsa-miR-452*,hsa-miR-335*,hsa-miR-340,

hsa-miR-190b,hsa-miR-33a*,hsa-miR-567,hsa-miR-190
FLT1 chr13 27861284 A T 0.048 hsa-miR-218
FLT1 chr13 27859961 G A 0.048 hsa-miR-548u
FLT1 chr13 27860592 T G 0.032 hsa-miR-135a
INPPL1 chr11 71627495 G T 0.032 hsa-miR-205
E2F2 chr1 23706194 A T 0.032 hsa-miR-4278
DNMT3B chr20 30860677 A T 0.032 hsa-miR-569, hsa-miR-935, hsa-miR-145, hsa-miR-590-3p, hsa-miR-4282
SYNE1 chr6 152484598 T C 0.032 hsa-miR-485-3p, hsa-let-7a-2*, hsa-miR-181d, hsa-miR-511, hsa-miR-655,

hsa-miR-889, hsa-let-7g*, hsa-miR-493*, hsa-miR-1183, hsa-miR-2054,
hsa-miR-548c-3p, hsa-miR-181b

Abbreviations: miRNA, microRNA; SNP, single-nucleotide polymorphism.
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Figure 2. The SNPs and indels identified in our EOC cases. All novel SNPs and indels identified in EOC cases and only those known variants
that were found to be enriched in EOC cases compared with reference European population controls from the 1000 Genomes Project were
mapped to their relative positions in the 3′UTR of (a) E2F2, (b) FLT1 (three separate 3′UTR transcripts) and (c) PCM1 genes, respectively. The
solid line represents a SNP, dashed line represents an indel, red indicates novel SNP/indel, blue is known SNP/indel and the height of the bar
represents the fold enrichment of known SNPs/indels in our EOC cases vs reference European population controls from the 1000 Genomes
Project or the allele frequency of novel SNPs in cases. The bar with a circular end represents SNPs within high confidence miRNA
complementary sites, which are shown in the black bar. The asterix indicates the novel variant in the PCM1 3′UTR found to be significantly
enriched in EOC cases.
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receptor 1 tyrosine kinase), and E2F2 (P-value = 6.07E-12, encoding
a key transcription factor responsible for the G1-S transition). In
fact, we found multiple known and novel SNPs as well as variants
within the E2F2 and FLT1 3′UTRs that were highly enriched in our
cancer patients (Figures 2a and b). Another gene, PCM1, with
multiple known and novel variants with relatively high allele
frequency in cancer patients, was also in the list (Figure 2c). The
genes in this category were also screened for evidence of somatic
mutations in cancers. The third gene in the list, GNAS, was found
to contain mutations affecting pituitary adenoma.
Gene ontology analysis of differentially expressed SNP-

containing genes putatively targeted by miRNAs revealed that
the putative ovarian cancer-related genes involve kinase activity,
nucleoside binding, metabolic process and cell cycle control. Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis
showed the genes function in pathways in cancer (adjusted
P-value= 5.528− 13), cell cycle (adjusted P-value= 8.045− 5) and
small-cell lung cancer (adjusted P-value= 8.892− 5; Table 5).

Validation of candidate variants with Sequenom and Sanger
sequencing. We tested 2 known and 19 novel SNPs
(Supplementary Table 7) by Sequenom for validation in a
prospectively collected clinically completely annotated case–
control study (n= 356, 267 cases and 89 controls) by criteria as

described in the Materials and methods section. Interestingly,
most of our novel SNPs were detected in the control group,
showing that 1 KG project may be under-reporting these variants,
possibly due to low coverage. Univariate analysis was performed
with χ2 test and logistic regression, and then multivariate
logistic regression was performed with age, and cancer-related
mutation status (KRAS-variant and BRCA) as covariates to test
whether the SNP allele is significantly associated with disease.
From the 21 SNPs, one novel variant in gene PCM1 (chr8
17931372) was significantly associated with ovarian cancer
patients (χ2 P-value of 0.0086). Multivariate analysis results further
confirmed the association between this biomarker and disease
risk, after adjusting age and KRAS/BRCA mutation status (Table 6,
Figure 2c).
To further test the variant within a sample subgroup without

known risk factors for ovarian cancer such as BRCA and KRAS-
variant, we performed univariate and multivariate analyses for
samples that do not carry BRCAmutations or the KRAS-variant. The
PCM1 variant is even more significantly associated with ovarian
cancer patients in this subgroup (Fisher’s exact P-value of
0.0014; Table 6C). Sanger sequencing of 256 samples (142 cases
and 114 controls) was used to corroborate the data from the
Sequenom validation (Supplementary Figure 2). This allele was
also found in three of four ovarian cancer cell lines sequenced.
CaOV3 and BG1 are homozygous for the ATTT insertion, IGROV1 is
homozygous for the ATTT deletion and SKOV3 is heterozygous for
the ATTT insertion.
To also evaluate if this variant may be a risk for other cancers,

such as breast cancer, we subsequently evaluated this variant
in a separate cohort (Supplementary Table 8) of prospectively
collected clinically completed annotated Irish breast cancer cases
(n= 377) and controls (n= 372), but did not find any significant
association with breast cancer overall or with any specific
molecular subtype (χ2 P-value = 0.434; Supplementary Table 8).
This finding further demonstrates the specific association of this
novel variant with ovarian cancer.
We next evaluated the association of the PCM1 variant with

resistance to platinum chemotherapy and overall survival in
ovarian cancer patients. The PCM1 variant was not found to be
associated with platinum resistance as analyzed by univariate and
multivariate models (adjusted for histology, grade and stage,
Supplementary Table 9a and b). In the overall survival analysis,
both stage and histology (serous vs other types) were statistically
significant predictors of differences in survival by univariate
analysis. After adjusting for stage, age and histology, the effect of
the PCM1 variant on overall survival was not statistically significant
(P= 0.078 Table 7). Next, we tested whether this novel variant was
associated with a particular tumor type, grade, stage or histolgy
and found that the variant was most prevalent in malignant mix
mullerian tumors (Supplementary Table 10).
To test if the 3′UTR variant could affect regulation of the PCM1

gene, we subcloned 1741 bp of the PCM1 3′UTR downstream of
luciferase in a reporter plasmid. This region of the 3′UTR showed
1.5-fold repression of reporter gene expression compared with an
empty vector control in the CaOV3 ovarian cancer cell line, and
6.2-fold repression in the MCF-7 breast cancer cell line (Figure 3a).
This repression was not significantly affected by the presence of
the ATTT variant insertion in the 3′UTR. To focus on a potential
regulatory role for the ATTT insertion, we focused on the region of
the 3′UTR immediately upstream and downstream of the location
of the ATTT insertion. Accordingly, we generated luciferase
reporters with an insert containing from 342 nt upstream to
249 nt downstream of the position of the variant, either contain-
ing the insertion (PCM1 SF1 ATTT Variant) or lacking it (PCM1 SF1).
Expression of the reporter lacking the insertion was significantly
upregulated relative to empty vector in CaOV3 ovarian cancer cells
(Figure 3b). This upregulation was also observed in MCF-7 breast
cancer cells (Figure 3b), HeLa cervical cancer cells and A549 lung

Table 5. GO and KEGG pathway analysis for differentially expressed
genes with SNPs and putative miRNA targets

Term P-value Benjamini

GO molecular function
GO:0004672 ~protein kinase activity 1.61E−10 1.52E−07
GO:0004713 ~protein tyrosine kinase
activity

1.71E−07 8.10E−05

GO:0001883 ~purine nucleoside
binding

2.99E−07 9.43E−05

GO:0030554 ~ adenyl nucleotide
binding

4.05E−07 9.57E−05

GO:0001882 ~nucleoside binding 4.37E−07 8.26E−05

GO biological process
GO:0006796 ~phosphate metabolic
process

6.73E−12 2.30E−08

GO:0006793 ~phosphorus metabolic
process

6.73E−12 2.30E−08

GO:0042127 ~ regulation of cell
proliferation

1.12E−09 1.91E−06

GO:0022403 ~ cell cycle phase 4.51E−09 5.14E−06
GO:0009725 ~ response to hormone
stimulus

5.94E−09 5.08E−06

GO cellular component
GO:0031012 ~ extracellular matrix 5.41E−06 0.002361673
GO:0000793 ~ condensed
chromosome

8.42E−06 0.001838134

GO:0005604 ~basement membrane 1.32E−05 0.00192431
GO:0005578 ~proteinaceous
extracellular matrix

1.70E−05 0.001851468

GO:0005829 ~ cytosol 7.08E−05 0.006167834

KEGG pathway
hsa05200:Pathways in cancer 5.53E−13 1.00E−10
hsa04110:Cell cycle 8.05E−05 0.007254812
hsa05222:Small-cell lung cancer 8.89E−05 0.005350669
hsa00330:Arginine and proline
metabolism

0.001255698 0.055269935

hsa04510:Focal adhesion 0.001294948 0.045824355

Abbreviations: GO, gene ontology; miRNA, microRNA; SNP, single-
nucleotide polymorphism. Only top five terms in each category are shown.
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cancer cells (Supplementary Figure 3). Notably, reporter upregula-
tion is partially (CaOV3, HeLa) or completely (MCF-7, A549) lost in
reporters containing the ATTT insertion (Figure 3b, Supplementary

Figure 1). These results indicate that the ATTT insertion has the
potential to cause mis-regulation of PCM1 expression, and may
constitute a ‘functional’ variant.

Table 6. The PCM1 variant is associated with ovarian cancer using a recessive model

(a) Univariate analysis by χ2 test and logisitic regression for all samples

Table of case by PCM1 P-value

Case PCM1

0+1 2 Total

Case 202 65 267 0.0086
71.89% 86.67%

Control 79 10 89
28.11% 13.33%

Total 281 75 356

Analysis of maximum likelihood stimates

Parameter DF Estimate Standard error Wald χ2 Pr4χ2

Intercept 1 1.4053 0.1823 59.3983 o .0001
PCM1 ATTT insertion 1 0.4665 0.1823 6.5449 0.0105

Odds ratio estimates

Effect Point estimate 95% Wald confidence limits

PCM1 2 vs 0+1 2.542 1.244 5.195

(b) Multivariate analysis for all samples controlled for KRAS/BRCA mutation status and age

Analysis of maximum likelihood estimates

Parameter DF Estimate Standard error Wald χ2 Pr4χ2

Intercept 1 2.6208 0.7100 13.6244 0.0002
PCM1 ATTT

insertion
1 0.4461 0.1834 5.9161 0.0150

KV or BRCA
mutation

0 1 0.0318 0.1530 0.0431 0.8356

Age 1 − 0.0202 0.0110 3.4010 0.0652

Odds ratio estimates

Effect Point estimate 95% Wald confidence limits

PCM1 2 vs 0+1 2.441 1.189 5.009
KV or_BRCA_mutation 0 vs 1 1.066 0.585 1.941
Age 0.980 0.959 1.001

(c) Univariate analysis by Fisher’s exact test and logisitic regression, and multivariate analysis for samples without KRAS/BRCA mutation controlled
for age

Models (samples w/o KRAS/BRCA) Fisher’s exact test Univariate logistic regression Multivariate logistic regression

P-value 0.0014 0.0033 0.0034
OR 3.790 3.805 3.804
95% CI 1.529–11.307 1.677–10.261 1.672–10.277

Abbreviations: CI, confidence interval; DF, degrees of freedom; OR, odds ratio. 0: homozygous ATTT deletion, 1: heterozygous ATTT insertion, 2: homozygous
ATTT insertion.
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DISCUSSION
In this work, we took a unique approach to identify genetic
variations associated with ovarian cancer risk. We discovered a
new variant in the PCM1 3′UTR that has been missed by prior

efforts, is likely functional and is signficantly enriched in ovarian
cancer patients, suggesting that it represents a potential new
ovarian cancer risk loci. PCM1, pericentriolar material 1, is a
centrosomal protein that shows dynamic distribution during the

Table 7. The PCM1 variant is not associated with overall survival in ovarian cancer

Type 3 tests

Effect DF Wald χ2 Pr4χ2

Age 1 5.0475 0.0247
Stage_yale__X_means_ 3 8.7872 0.0323
PCM1 variant 1 3.1046 0.0781
Histo 1 0.0836 0.7725

Analysis of maximum likelihood estimates

Parameter DF Parameter estimate Standard error χ2 Pr4χ2 Hazard ratio Label

Age 1 0.02907 0.01294 5.0475 0.0247 1.029 Age
Stage_yale__X_means_1 1 0.11009 0.74131 0.0221 0.8819 1.116 Stage yale (X means neoadjuvant) 1
Stage_yale__X_means_2 1 − 2.02514 0.75154 7.2611 0.0070 0.132 Stage yale (X means neoadjuvant) 2
Stage_yale__X_means_3 1 − 0.42677 0.25765 2.7436 0.0976 0.653 Stage yale (X means neoadjuvant) 3
PCM1 ATTT insertion 1 0.52038 0.29534 3.1046 0.0781 1.683 rs17931372 ATTT insertion
Histo other 1 − 0.16139 0.55834 0.0836 0.7725 0.851 Histo Other

Multivariate analysis adjusted for age, stage and histology.
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Figure 3. (a) The ATTT insertion mediates differential regulation of the PCM1 3′UTR. A luciferase reporter construct containing the PCM1 3′UTR
(PCM1) is significantly repressed in CaOV3 and MCF-7 cells, relative to empty vector (psiCHECK2). This repression is maintained in a luciferase
reporter containing the PCM1 3′UTR variant containing the ATTT insertion (PCM1 ATTT variant). (b) Luciferase reporters containing ~ 600 nt of
the PCM1 3′UTR comprising the region flanking the position of the ATTT insertion were generated, either lacking the ATTT insertion
(PCM1 SF1) or containing the insertion (PCM1 SF1 ATTT variant). PCM1 SF1 is significantly upregulated relative to empty vector (psiCHECK2) in
CaOV3 and MCF-7 cells. This repression is partially lost in CaOV3 cells and completely lost in MCF-7 cells in PCM1 SF1 ATTT variant. Plotted:
mean± s.d.; n= 3; **Po0.01, Student’s t-test.
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cell cycle and exhibits a distinct cell cycle-dependent association
with the centrosome complex.51 Expression of the PCM1 gene and
its intracellular sublocalization are altered in papillary thyroid
carcinoma.52 Abberations of the gene have also been associated
with atypical chronic myeloid leukemia and T-cell lymphoma.51–54

Furthermore, PCM1 has been shown to be differentially expressed
in ovarian cancer patients,49,55,56 supporting the validity of our
finding.
Based on strong evidence that 3′UTRs and miRNAs have a

critical role in oncogenesis, our study was a hypothesis-driven
investigation of these regions through sequencing of the non-
protein-coding regions/3′UTRs of ~ 6000 cancer genes and ~ 700
validated miRNA genes in 31 ovarian cancer patients. We further
focused only on those genes with known varied expression in
ovarian cancer, and applied bioinformatics to identify variants in
predicted miRNA-binding sites. We found a significant number of
novel variants not previously identified in any existing database.
We further validated both the existance of a group of these
variants as well as their enrichment in ovarian cancer using a
case–control cohort and the Sequenom platform.
Our findings indicate that there are potentially numerous

additional potential inherited markers of ovarian cancer risk in
these previously poorly explored regions of the genome.57,58 In
particular, our functional variant in the 3′UTR of the known cancer
gene PCM1 was enriched in ovarian cancer patients and even
more significantly enriched in patients without other known
genetic risks for ovarian cancer. Although PCM1 is known to be
mis-expressed in ovarian cancer, this is the first report of a 3′UTR
DNA variant in PCM1 that could alter its expression. In addition, we
identified variants in other important oncogenes, such as FLT1,
which encodes a member of the vascular endothelial growth
factor receptor family of receptor tyrosine kinases. This protein has
an important role in angiogenesis, a key hallmark of ovarian
cancer,59 and is a target of ovarian cancer therapy.60 We will
continue to further validate the variants identified in our study, to
both confirm their existence (considering the possibility of false
positives of variant calling algorithms), their enrichment in ovarian
cancer patients, as well as their function and association with
clinical factors.
Although compared with large genome-wide association

study data sets, our sample sets are small, we used hypothesis-
directed investigation of specific regions of the genome. Our
validation study set confirmed the existance of many of these
novel variants, as well as their enrichment in ovarian cancer
patients as well as biological function. Since existing data on 3’UTR
variants indicates that their function often leads to altered
outcome in cancer patients, it is critical to use well clinically
annotated data sets, without ascertainment bias, as is found in
most larger genome-wide association study-based data sets, to
both discover and validate them. That said, further validation
studies in the appropriate, clinically well annotated and non-
biased data sets will further confirm our findings.
Our data further confirm the paradigm that the non-protein-

coding regions of the genome must be included in resequencing
projects and in DNA screening to better predict individual cancer
risk, and that functional 3′UTR variants must be confirmed on
appropriately data sets. Such approaches as described in this
comprehensive analysis of variation in miRNA genes and 3’UTR
regions have the potential to identify new markers that predict
risk in diseases beyond ovarian cancer.

MATERIALS AND METHODS
Ethics statement
Complete clinical data and DNA from women diagnosed with EOC were
included from different institutions as described previously20 under
individual International Review Board approvals.

Patient samples. The data for ovarian cancer patients are described in
Supplementary Table 11. Patients were drawn from a study described
previously.20 Importantly, patients in this study were all prospectively
collected, with complete clinical annotation, avoid selection bias as frequently
found with other patient cohorts. The number of sequenced individuals is
within an acceptable range used previously to obtain significant results.61–63

Meanwhile, in our study, we used these 31 patients identify variants of
interest for a larger case–control validation. Samples 2, 3, 8,11, 20 and 31
were known to carry the KRAS-variant and were included as positive controls.
The data for Irish breast cancer cases are described in Supplementary Table 8.
The controls were normal healthy subjects of Irish decent with ages ranging
between 60 and 98 years with the median age being 70 years.

Evaluating 3′UTR and miRNA gene resequencing using NimbleGen Sequence
Capture Arrays Gene selection. The total of all 718 human miRNAs from
miRBase v14, a searchable database of published miRNA sequences and
annotation,64 was selected for resequencing. Cancer-related genes were
obtained from the cancer gene list of The Cancer Genome Atlas. The
coordinates of these 718 miRNA genes and 5437 3′UTRs covering a total
9 681 943 bp TR of interest were identified and submitted to Roche
Diagnostics (Indianapolis, IN, USA) for custom array design using the 2.1 M
(2.1 M probes) HX1 NimbleGen sequence capture array. The coordinates
included the sequence of the pre-miRNAs plus an additional 200 bp of
flanking sequences in order to cover the regulatory sequences as well as
aid with efficient capture. Regions for 45 miRNA genes could not be
covered on the NimbleGen array (Supplementary Table 12).

Sample preparation. The genomic DNA samples were quantified on a
Nanodrop, and analyzed for quality and purity by gel electrophoresis.
Genomic DNA was separately sheared to fragments compatible with the
Solexa sequencing system. Next the individual genomic DNA was
denatured and hybridized to our custom NimbleGen DNA array carrying
sequences complementary to the 3′UTRs and miRNA genes of interest.
Finally, the captured DNA was eluted and processed through standard
high-throughput sequencing on an Illumina platform at the core
sequencing laboratory at the Yale Center for Genome Analysis. Individual
samples were run per well of the flow cell along with a standard positive
control using a read length of 74 bp. All of these samples were sequenced
by paired-end sequencing.

NimbleGen individual data analysis. Individual targeted sequencing reads
were mapped to the reference genome using Burrows-Wheeler Aligner
(BWA).25 Each of the patient samples had more than 60 million sequenced
reads (Supplementary Table 1). As expected, all of the samples had a high
percentage of mappable reads. Approximately 95% of reads could be
mapped to the reference human genome when three mismatches but no
gaps were allowed. For paired-end sequencing reads, we also excluded the
reads mapped with clipping before subsequent analyses. The number of
reads in TRs and the average of coverage were determined. It has been
claimed that 30X coverage is sufficient to identify SNPs from resequencing
data.26 Our results showed that our samples have a high percentage of reads
mapping to TRs and have excellent coverage, about 500-fold (Supplementary
Table 1). Most of the TRs were covered with a sufficient number of reads; a
few positions or genes were not well captured by NimbleGen technology.

Consensus genotype calling and SNP association test. To infer which alleles
are represented at a certain position according to the aligned reads, we
performed consensus genotype calling. Based on the fact that sequencing
data have errors and biases and the human is a diploid species, the
consensus genotype should distinguish real heterozygous alleles from
those resulting from errors and biases. A widely used method, Samtools,26

calls the consensus genotype with a Bayesian model that incorporates
correlated errors and diploid sampling. Samtools was able to achieve high
sensitivity for our individual sequencing data. We used default settings to
call the SNPs and then applied filtering of raw SNP calls with parameters
-d8 -D10000 -11e-5 -20 -41e-7. Then, to further control the false positive
rates, we discarded SNPs less than 4 bp away from a potential indel (called
from gapped mapping results) or covered by less than 10 reads. If there
were more than two SNPs in a 10-bp window, we discarded them all. As in
our subsequent Sanger sequencing effort we discovered that one of the
variants initially called as a SNP by Samtools was infact an indel, we used
the GATK45 to confirm the SNP calling results from Samtools. We
preprocessed the reads mapped to the human genome by indel
realignment, base quality recalibration and duplicates removal. Then the
processed reads were subjected to UnifiedGenotyper in GATK to call
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variants on all the patient samples simutaneously. We only retained SNPs
and indels without missing calls from any sample. The GATK calling results
are present in Supplementary Table 4. For known SNPs in the 1 KG project,
we performed Fisher’s exact test on alleles in patient samples and the
European population in 1 KG to test if SNPs are associated with ovarian
cancer. For novel SNPs, we only considered SNPs those appear at least
twice in the patient samples, as there is the possibility for false positive
calls in novel SNPs, especially when only one allele is called as novel SNP.
However, novel SNPs (not found in 1 KG or dbSNP) may contain a large
number of false positives because of region complexity or sequence
composition, so further investigation is needed to validate the existence of
these putative novel SNPs.

MiRNA target prediction and gene expression analysis. miRNA targets were
predicted by two computational prediction programs—miRanda46 and
TargetScan,47 with default settings. The genomic locations of putative
binding sites were obtained from the prediction results and then matched
with SNPs identified in the patients’ samples. Three independent gene
expression studies were used to extract differentially expressed genes in
ovarian cancer. The gene lists were obtained from results of microarray
analysis in three original papers. Gene ontology analysis and KEGG
pathway analysis were conducted on differentially expressed genes with
SNPs and putative miRNA targets with DAVID bioinformatics resources.65,66

SNP selection and genotyping for validation set. Twenty-one (19 novel and
2 known) SNPs with evidence for association with ovarian cancer were
tested by Sequenom genotyping in a case–control study. SNPs were
selected based on the minor allele frequency of ⩾ 8% in ovarian cancer
patients, with a predicted miRNA-binding site at the SNP location and
primer compatibility in multiplex genotyping on the Sequenom platform.
Additionally for the known SNPs they had to be enriched in the patients
with Fisher Exact test P-value less than 1 × 10− 4 and a differential fold
change of ⩾ 2 compared with the European controls in the 1 KG database.
FLT1 and E2F alleles failed the Sequenom primer design. SNPs were
genotyped using the Sequenom MassArray system (Sequenom, San Diego,
CA, USA) according to the manufacturer’s instructions using 10 ng of
genomic DNA. The validation cohort consisted of 267 ovarian cancer
patients and 89 controls, mostly caucasians.67 The controls were healthy
subjects without a prior history of any cancer. Appropriate positive and
negative control samples were included on the plates along with the
samples to ensure genotyping accuracy. In every case, Sequenom
successfully identified the correct allele (data not shown).

Statistical analysis. Patient charateristics were presented using descriptive
statistics. χ2 test and univariate logistic regression were performed to
investigate the assocation between SNP with ovarian cancer. Odds ratio
was calculated with 95% confidence interval. Multivariate logistic
regression model was built to estimate the SNP association with ovarian
cancer by taking into account age and KRAS/BRCA mutation status. χ2 test
was then used to estimate the association between the PCM1 variant with
resistance to platinum chemotherapy, followed by a multivariate logistic
regression model adjusted for histology, grade and stage. Log-rank test
and Cox proportional-hazards model were used to test the significance of
PCM1 in the prediction of overall survival time.

Sanger sequencing. A genomic fragment of ~ 623 bp surrounding the
novel variant identified in PCM1 3′UTR was PCR amplified using the
forward and reverse primers, PCM1-PCR-F: 5′-TTCCCTGCGAGGACATT
TAC-3′ and PCM1-PCR-R: 5′- GGCCAGCTCATTATTTTAGGC-3′ from genomic
DNA using KOD hot start polymerase. The PCR product was then verified
on by agarose gel electrophoresis and ~ 70 ng of T-SAP-ExoI-digested
product was sequenced using the above primers as well as a second set of
nested primers; P-SEQ-F: 5′- CGGAGTTCTTATCCAGGTGCT-3′ and P-SEQ-R:
5′-TGAATGCCTAACCCTTCAGC-3′. This variant in PCM1 was initially called as
a SNP by Samtools, but after Sanger sequencing it was identified to be a 4-
nt ATTT insertion corresponding to the reference allele (version hg18).

Luciferase reporter construct generation. The 3′UTR of PCM1 was amplified
from human genomic DNA by PCR using primers PCM1-UTR-F: 5′-
atgcagCTCGAGgcccatccattaggccagtc-3′ and PCM1-UTR-R: 5′-cagattGCG
GCCGCctcaacctgcataaagttctctct-3′. The PCR product was isolated and
cloned between the XhoI-NotI sites of psiCHECK2 (Promega, Madison, WI,
USA). This product contained the ATTT insertion, yielding psiCHECK-PCM1
ATTT variant. To create psiCHECK-PCM1, the ATTT insertion was deleted by

primer extension mutagenesis with psiCHECK-PCM1 ATTT variant as
template. The 5′ fragment was generated using primers PCM1-UTR-F
and PCM-Del-RA: 5′-GATTAATAGCAGCTGTAACACCAGTCAAGCAATTTTGAT
AAGG-3′. The 3′ fragment was generated using primers PCM-Del-FB: 5′-C
CTTATCAAAATTGCTTGACTGGTGTTACAGCTGCTATTAATC-3′ and PCM1-
UTR-R. The full-length 3′UTR was obtained by PCR with primers PCM1-
UTR-F and PCM1-UTR-R in the presence of the 5′ and 3′ fragments as
templates. This product was cloned between the XhoI-NotI sites of
psiCHECK2 to produce psiCHECK-PCM1.
To generate reporters flanking the region ~ 300 nt upstream and

downstream of the ATTT insertion in PCM1, this region of the PCM1 3′UTR
was amplified from psiCHECK-PCM1 or psiCHECK-PCM1 ATTT variant to
generate psiCHECK-PCM1 SF1 and psiCHECK-PCM1 SF1 ATTT variant,
respectively. The PCR product was generated with primers PCM1SF-F:
5′-atgcagCTCGAGccctgcgaggacatttactg-3′ and PCM1-UTR-R: 5′-cagattGCG
GCCGCctcaacctgcataaagttctctct-3′. The PCR products were isolated and
cloned between the XhoI-NotI sites of psiCHECK2 to yield the final
reporters.

Luciferase assays. Twenty-four hours before transfection, CaOV3 cells
were seeded in antibiotic-free media in 12-well plates, at a density of
30 000 cells/well. One hundred nanogram of reporter was transfected
using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA), according to the
manufacturer’s instructions. Twenty-four hours after transfection, luciferase
activity was assayed using the Dual Luciferase Reporter Assay (Promega)
and a Glomax-Multi+ Plate Reader (Promega), following the manufacturer’s
instructions. After subtracting background measurements, Renilla lucifer-
ase activity intensity (IRluc) was normalized over firefly luciferase activity
(IFluc). The fold change expression of the reporters relative to psiCHECK2
was calculated as: (IRluc Reporter /IFluc Reporter)/(IRluc psiCHECK2/IFluc
psiCHECK2). The assay was repeated least three times for each reporter and
the P-value was calculated by Student’s t-test.
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