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Computer Engineering Dept., Santa Cruz, CA 95064

2 Palo Alto Research Center,
3333 Coyote Hill Road, Palo Alto, CA 94304

{hari, jj}@cse.ucsc.edu

Abstract. We present a new loop-free on-demand routing protocol for
ad-hoc networks, the Labeled Successor Routing (LSR) protocol, which
identifies loop-free successors to a destination using route-request labels
(RRL). Each route request (RREQ) used during the on-demand destina-
tion search process is identified uniquely by a sequence number associated
with the issuing source address. Route replies (RREP), which traverse
loop-free paths created by RREQs, carry the associated RRL that is
stored by nodes along the created successor path to the destination.
Without requiring an additional mechanism for loop-freedom (e.g., per
destination-sequence numbers or source-routing) LSR allows neighbors
of a source to reply to RREQs, avoiding the destination being the only
node capable of replying. Simulations results for scenarios consisting of
networks of 50 and 100 mobile nodes show that LSR performs compara-
bly or better than the Dynamic Source Routing (DSR) protocol, AODV,
and the Optimized Link State Routing (OLSR) protocol.

1 Introduction

Several on-demand routing protocols have been proposed to date for mobile ad hoc
networks (MANET). Such protocols establish routes to only those destinations for
which there is traffic, and attempt to ensure loop freedom at every instant to limit
control overhead. Because of node mobility and the need to setup routes when re-
quired, all on-demand routing protocols are characterized by the use of a route
request flood to search for the destination. Each route request(RREQ) attempt
by a source for a destination is represented by an unique (source address, flood-
ing identifier) pair, to which we refer as a Route Request Label (RRL). RRLs are
required to prevent RREQs from being processed multiple times, and to set up
loop-free paths along which route replies generated by intermediate nodes or des-
tinations traverse. However, the actual establishment and maintenance of routes
in current on-demand routing protocols is independent of RRLs.
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UCSC and by the National Science Foundation under Grant CNS-0435522.

R. Boutaba et al. (Eds.): NETWORKING 2005, LNCS 3462, pp. 1096–1107, 2005.
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Current on-demand protocols use RRLs during route request floods, but use
additional mechanisms to achieve loop-free routing. For example, the dynamic
source routing protocol (DSR) [4] collects partial topology information during
the RREQ flood, and uses path information collected to source-route data pack-
ets. The feasible label routing (FLR) [5] protocol collects path information much
like DSR does, but achieves loop-free hop-by-hop routing of data packets based
on just destination addresses by assigning lexicographically ordered labels, de-
rived from path information, to nodes along a successor path to the destina-
tion. The Ad hoc On-demand Distance Vector protocol (AODV) [6] uses per-
destination sequence numbers to maintain loop-freedom.

Recent work in the MANET Working Group of the Internet Engineering
Task Force has focused on generic routing frameworks that are simple to im-
plement, deploy, and test, while additional features can be added as necessary
for improved performance. The most recent proposal as of this writing is the
Dynamic MANET On-demand [7] Routing Protocol. It is based on AODV and
allows additional capabilities to be added by allowing flexible control message
parsing; however, DYMO attempts to maintain loop-free routing using the same
per-destination-sequence numbers used in AODV. As a result, it is susceptible to
the same performance and robustness issues found in AODV, namely: (a) most
route requests have to be answered by the destination, and (b) it can suffer from
temporary loops, de-facto partitions and count-to-infinity [2, 3].

In this paper we present a new loop-free routing approach that uses the
information already needed in route requests to establish and maintain loop-free
routes, and allows nodes other than the destinations to initiate route replies.
Section 2 presents the design of the Labeled Successor Routing (LSR) protocol,
which demonstrates the use of RRLs to achieve efficient loop-free routing. The
basic idea behind LSR is very simple: A source floods a route request identified
by an unique RRL, which creates a tree rooted at the source as the RREQs are
processed only once by each node. When the RREPs traverse loop-free reverse
paths, nodes update their routing tables for the specified destination and store
the RRL. If the source stored a RRL that belonged to a different source before
issuing this new RREQ, it sequences to a new RRL; otherwise, it retains the
previously stored RRL. At a later time, the source can pick any neighbor node
that has a stored RRL that is more recent or the same as the one stored at
the source, as a loop-free successor towards the destination. Section 3 illustrates
the working of LSR with an example. Section 4 analyzes the correctness of LSR.
Section 5 compares the performance of LSR against AODV, DSR and a proactive
link state protocol ( the Optimized Link State Routing or OLSR) [1]. Section 6
provides our concluding remarks.

2 Labeled Successor Routing (LSR)

The labeled successor routing (LSR), is an on-demand protocol based on a con-
trol signaling (RREQ, RREP and RERR) similar to that used in other on-
demand routing protocols.
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Each route request label RRL is a unique pair {src, id}, where src is a node
address identifier and id is an integer created by src. The notation srcRRL

is used to refer to the value of src in a RRL. An empty RRL is denoted
by φ.

Route replies, and route requests are denoted by super-scripts req, and rep,
respectively. For a destination D, node A stores a route-request label, RRLA

D.
The successor to destination D at A is denoted by sA

D. NRRLreq
D is the neighbor-

query RRL of the request used to identify neighbors of the source that have a
loop-free path to the destination. dA

D is the distance (hop count) to the destina-
tion. lcB

A is the link cost from node A to B. DInitrep
D is carried in a RREP to

indicate whether the route reply was initiated by the destination.
The following relational operator is defined on two labels, RRL1= {src1,id1},

and RRL2= {src2,id2}, to establish ordering among RRLs:

RRL1 ≺ RRL2 if src1 = src2 ∧ id1 ≥ id2 (1)

The above relational operator allow a source to compare if a neighbor can
be chosen as a loop-free successor safely (i.e., without incurring a loop). LSR
uses the following four conditions based on this operator to maintain loop-free
paths:

ASC: (Accept Successor Condition). When node A receives a RREP from node
B for destination D, then node A sets sA

D ← B, if (i) DInitrep
D = 0,

srcRRLA
D= A, and RRLrep

D ≺ RRLA
D; or (ii) DInitrep

D = 1. If RRLA
D = φ

or srcRRLA
D �= A, then node A should accept a RREP only if DInitrep

D = 1
(i.e., generated by the destination).

SSC: (Start Successor Condition). Node I can issue a RREP responding to a
RREQ for destination D if I has an active route to D, and RRLI

D ≺
NRRLreq

D . If node I = D, then it must set DInitrep
D = 1 and issue a

RREP.
RSC: (Relay Successor Condition). Node A, on processing a RREP rep, must

relay the RREP only if DInitrep
D = 1. Node A relays a RREQ for des-

tination D only if A has not previously processed this RREQ, and sets
NRRLreq

D = φ.
USC: (Update Successor Condition). If node A must change sA

D, then it sets
dA

D ← ∞, and issues a new RREQ req. If srcRRLA
D= A, then it sets

NRRLreq
D = RRLA

D, else NRRLreq
D = φ.

USC allows a source to query its neighbors with its stored RRL to identify
any loop-free paths to the destination. If no neighbor can answer the RREQ,
then, as per RSC, the RREQ reaches the destination building a tree rooted at
the source, and the RREP generated by the destination traverses one of the
loop-free reverse paths along the tree. SSC allows neighbors to issue a reply that
can be used at the source, and ASC allows the source to safely switch successors
for a destination without causing any loops. If NRRLreq

D = φ, then the RREQ
can only be answered by the destination.
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2.1 Information Stored and Exchanged

The routing table at node A maintains the following parameters for every desti-
nation D: the successor (sA

D), the route-request label (RRLA
D), the distance (hop

count) to the destination (dA
D), lifetime of route, and the state of route entry

(rtAD): valid or invalid. If no entry for destination D exists, then it is considered
equivalent to having a null RRL (φ). Node A maintains a monotonically increas-
ing source sequence number IDA, which additionally serves as a route-request
identifier.

A RREQ consists of the tuple {dst, src, rreqid, NRRLdst,f lags}. The field
src denotes the identifier of the source that is seeking a path to the destination
(dst), the flooding identifier rreqid along with the source (src) represents the
unique route request label for this RREQ generated for a destination, NRRLdst

is the neighbor-query RRL to find neighbors of the source that have a loop-free
path to the destination. flags carries control bits.

A RREP consists of the tuple {dst, src, rreqid, RRLdst, ddst,ttl, f lags}. The
field ttl states the lifetime of the route at the node relaying the RREP, rreqid
is carried in the RREP to forward it along the reverse path to the source using
information cached for the RRL (src, rreqid), and also, if required, serves to
form the new RRL, RRLdst is the label stored at the relaying node for dst, ddst

is the distance to the destination at the relaying hop, and flags contains the
’DInit’ bit, which is set when the destination originates the RREP (if set then
RRLdst is set to φ).

The RERR is the tuple {orig, unreachdests}, where orig denotes the node
originating the route errors, and unreachdests is the list of destinations that are
not reachable at orig.

A node relaying a RREQ identified by a RRL (src, rreqid) caches the address
of the node revhop that sent the RREQ, and is used to relay a RREP received
for this (src, rreqid) pair along the reverse path. Cached entries are maintained
for a period of time that is long enough, so that all RREPs for the RREQ with
RRL (src, rreqid) will be received.

2.2 Route Maintenance

(A) Initiating a RREQ: Node A is said to be active in a route computation
for destination D (i.e., the RREQ) when it initiates a RREQ for the destination,
and the RREQ is uniquely identified by the pair (A, IDA). A node relaying a
RREQ (A, IDA) originated by another node is said to be engaged in the RREQ.
A node that is not active or engaged in a route computation for destination D
is said to be passive for that destination.

At any given time, a node can be the origin of at most one RREQ for the
same destination. The RREQ (A, IDA) terminates when either node A attains
a successor for destination D or the timer for its RREQ expires.

If node A is active or engaged for destination D and receives data packets for
the destination, it buffers those data packets. If node A is passive for destination
D and requires a route for destination D, it sets IDA ← IDA +1, reqid ← IDA,
and RREQ timer ← (2.ttl.latency) (where ttl is the time-to-live of the broadcast
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flood and latency is the estimated per-hop latency of the network). If srcRRLA
D=

A, then NRRL =RRLA
D, else NRRL =φ. Node A then issues RREQ {D, A,

reqid = IDA, NRRL}.
If node A receives no RREP after the expiry of its timer for RREQ (A, IDA)

for destination D, it sends a new RREQ with an increased ttl. If node A does
not receive a RREP for destination D after a number of attempts, a failure is
reported to the upper layer. The number of hops that a RREQ can traverse is
controlled externally from the RREQ by means of the TTL field of the IP packet
in which a RREQ is encapsulated, or by other means.

(B) Relaying RREQs: When node B receives a RREQ {D, A, rreqid =
IDA, NRRLreq

D } from node I, it first determines its own status for (A, IDA).
If B is active (i.e., B = A) or engaged (i.e., B has cached the RREQ (A, IDA))
in the computation (A, IDA), it silently drops the RREQ. Otherwise, node B is
passive. In this case, if SSC is satisfied (i.e., RRLB

D ≺ NRRLreq
D ), then node B

issues a RREP (Section 2.2 (B)). Else, if SSC is not satisfied, node B becomes
engaged and relays the new RREQ req′ with NRRLreq′

D ← φ.
A node may be engaged in multiple RREQs for the same destination, but

relays a RREQ from the same origin only once by caching the reverse hop,
revHop = I, for a given RREQ (A, IDA) it forwards.

(C) Initiating and Processing RREPs: When node I processes a RREQ {D,
A, rreqid = IDA, NRRLreq

D }, if SSC is satisfied: RRLI
D ≺ NRRLreq

D , and rtAD =
valid, it issues a RREP {D, A, IDA, RRLrep

D , drep
D , ttl} with RRLrep

D ← RRLI
D

and drep
D ← dI

D. At the destination (I = D), D sets DInitrep
D ← 1, RRLrep

D ← φ,
and drep

D ← 0.
If node A receives a RREP {D, src = S, rreqid = IDS , RRLrep

D , ttl, drep
D ,

DInit}, it updates its routing table fordestinationD asdescribed inSection2.2(D).
After updating its routing table, if A �= S and the RREP is not dropped, the node
A increments IDA, and the RREP is relayed along the reverse hop revHop which is
retrieved from the cache entry (A, IDA). The RREP is relayed with the parameters
RRLrep

D ← φ, DInitrep
D unchanged (must be one), and drep

D ← dA
D.

(D) Adding, Updating, and Maintaining Routes: When node I receives
RREP {D, A, IDA, RRLrep

D , ttl, drep
D , DInitrep

D } from neighbor B for des-
tination D, it drops the RREP silently if ASC is not satisfied; otherwise, its
routing table is updated as follows:

– Case (i), DInitrep
D = 1,

• if I �= A, then node I sets RRLI
D ← [(A, IDrep

A )].
• if I = A, and RRLrep

D ≺ RRLI
D, then node I retains the same RRLA

D;
otherwise, sets RRLI

D ← [(A, IDI)].
– Case (ii), DInitrep

D = 0, I = A, and RRLrep
D ≺ RRLA

D then node I(i.e., A)
retains the same RRLA

D.

In the next step, node I sets sI
D ← B; and updates route cost, dI

D ← drep
D +

lcB
I , where lcI

B denotes the link cost from node I to B. When DInitrep
D = 0,

nodes only switch to shorter cost paths.
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(E) Route Maintenance: Node A invalidates a route entry for destination
D, with S as the next hop, in one of the following ways: (i) No data packet is
forwarded using this route entry for active route timeout seconds (the time after
which a route-entry expired); (ii) A link-failure notification for the next hop S
is received; or (iii) A RERR is received, which indicates that D is no longer
reachable through S. A node A invalidating an entry performs the following
steps: It sets rtAD = invalid, sA

D ← φ, and dA
D ← ∞. A route entry with state

rtAD = invalid can be purged at any time, to save memory (also, applies after a
node reboot when nodes lose all state). For cases (ii), and (iii), node A sends a
RERR to all the predecessors (either as a broadcast or separate unicasts), after
determining the set of destinations affected by this event.

(F) Source Sequence Numbers: The source sequence number (IDA) at a
node A, serves the additional purpose of being the sequence number for route
requests initiated by A. Because both purposes require a a monotonically increas-
ing number (even after reboots), the IDA must be based on a 64-bit real-time
clock, which will avoid any wrap-around issues. Any repetition of the sequence
number can cause route requests to be dropped at relay nodes because of previ-
ous cached state, and if old sequence numbers are repeated in RRLs then it can
result in the formation of loops.

3 LSR Example

Figure 1 shows the directed acyclic successor graph (DASG) for destination D for
a nine-node network at different instants of time. Link costs are unity. The figure
shows, at each node for the destination D, a tuple [(src, id)/hopcount], where
(src, id) is the stored RRL, and hopcount is the distance to the destination. We
illustrate the following sequence of events.

Node A has an active flow for destination D. Initially at time t0, the routes are
not active; and at all nodes, the RRL stored for D is φ. Node A initiates a route
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Fig. 1. LSR operation - Example
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request req for destination D with parameters (D, A, rreqid = IDA = 1,
NRRL = φ). Node B upon receiving the route request (A, rreqid = 1), caches
the reverse hop (revHop= A), and relays a new RREQ req′ with (D, A, rreqid =
1, NRRL = φ). Similarly, node C relays the RREQ after caching reverse hop
B. Note that the parameter NRRL is set to φ because node B does not have
an active route and the RREQ can subsequently be answered only by the desti-
nation.

A route reply rep is generated by node D upon receipt of the RREQ. The
RREP (D, A, rreqid = 1, RRL = φ, DInit = 1) is accepted by node C as
it has DInit set. Node C sets sC

D ← D, RRLC
D ← (A, 1), dC

D←1, and relays
the RREP along the cached reverse hop. Similarly, because the RREP carries
DInit = 1, nodes A and B switch successors and update their RRL and hop-
counts for destination D as shown in Figure 1(A) at time t1.

At time t′1 > t1, link e1 fails. Node A issues another RREQ with IDA = 2,
and sets up a new successor path along nodes P, Q, and R. Similar to the previous
illustration, all the nodes switch successors and update their routing tables to set
an RRL with (A, 2) and the associated hopcount. Figure 1(B) shows the network
state at time t2 > t′1. At any time later than t′2 > t2, if link e3 fails and link e1
comes back, node A can still switch successors to node B for destination D. This
is because a RREQ carrying a NRRL =(A, 1) will be answered by node B as it
satisfies SSC, and because ASC is satisfied, node A can accept it. RRLs allow
sources to switch to neighbors irrespective of any ordering based on distances
(i.e., LDR) or path labels (i.e., FLR).

We illustrate loop-freedom in LSR with the following sequence of events after
time t′′2 > t′2. Assume node B becomes a source of data packets for destination
D, and link e2 fails. Node B sends a RERR to A informing the loss of link to
reach D. To recover from the failure of link e2, node B issues a new route request
(D, B, rreqid = 1, NRRL = φ), and on receiving a RREP from the destination
with DInit = 1, labels the path along nodes X, and Y to destination D with
RRL =(B, 1). Assume at time t′′′2 > t′′2 , link B-X fails. Regardless of whether
node B’s RERR was received by node A or not, new route requests from B
cannot be answered by node A or any node upstream of it, and consequently loop-
freedom is maintained even if RERRs cannot be reliably delivered. Figure 1(C)
shows the network state at time t3 ≥ t′′′2 .

Note that node A can still identify node C as a loop-free successor to destina-
tion D, because RRLC

D =(A, 1). Due to mobility, if node A moves closer to node
Q or node R, it can still use them as successors to the destination. To summarize
LSR’s operation in a nutshell: After issuing a route request flood identified by a
RRL, a source can identify all nodes which processed and relayed the RREP as
loop-free successors to the destination. There are two cases after which this no
longer applies: the source re-labels itself (increases to a higher sequence number
in its RRL), say node A changed RRL to (A, 3) at a later time; or the relay
nodes processed a RREP carrying a RRL from a different source, as in the case
of node B, here, which changed RRL from (A, 1) to (B, 1).
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4 Analysis

We show that LSR is loop-free at any instant and can ensure that a source can
establish a path to a destination in a stable, error-free connected network within
a finite-time. We also show that in a connected component, separated from the
destination, all nodes invalidate their routing table entries for the destination
within finite time, guaranteeing termination.

Theorem 1. LSR is loop-free at every instant.

Proof. The proof is by contradiction. Let P = {A, ..., B, n1, n2, ..., I, ...D} be a
successor path along the directed acyclic successor graph (DASG) for destination
D, which is loop-free at any time before t. At time t, let node I accept a RREP
rep from node B, which is upstream to create a loop. We show that when nodes in
LSR update their routing tables, it is not possible for I to switch successors to B.
There are two cases by which node I will process the update: Case (i), the RREP
from B has DInit = 1, which means the RREP was initiated by the destination,
and must have a traveled a loop-free reverse path by virtue of the unique source
tree built using the RREQ (src,id) pair (Theorem 2, [5], pp.49). Hence, I must
have relayed the RREP onto B, and cannot receive the RREP again. This is
a contradiction, and I can never switch successors to B. Case (ii), node I can
switch to A, if DInitrep

D = 0, and RRLrep
D = RRLB

D ≺ RRLI
D. Therefore,

nodes I and B must possess RRLs, RRLI
D =(I, ID′), and RRLB

D= (I, ID′′),
respectively, such that ID′′ ≥ ID′. If ID′′ ≥ ID′, then it means that at a time
t− < t, node B must have relayed a RREP along a reverse path to I (which
initiated the route request), and later switched to a node upstream of I. However,
for node B to apply ASC to switch successors, it must have srcRRLB

D= B which
is not possible at time t−. Hence, at a time t− < tB < t, node B could not have
switched upstream of node I unless node B or one of its downstream successor
path nodes to D was part of a RREQ flood (S, IDS), creating a loop-free reverse
path P ′. If node I belonged to this path P ′, then srcRRLI

D (tB)= S, where S �= I.
Therefore, in this case, at time tB ≤ tI ≤ t, node I cannot apply ASC to switch
successors to B. If at any time tI ≤tI+ <t, node I adopted a RRL (I, ID′′′), it
must be true that ID′′′ > ID′′ because IDI is incremented on a RREP relay.
Hence ASC will not be satisfied at time t, and no loops can be formed.

Theorem 2. In a connected component G, partitioned from destination D, all
nodes will invalidate their routing table entries for D within a finite time in the
presence of link failures and node reboots.

Proof. The one-hop neighbors of destination D, after partition, must detect the
link failure to D within a finite time using a link layer notification scheme or
otherwise (HELLO messages). Let t be the time after which the component G
is partitioned from destination D and all RREPs initiated by the destination,
with DInit = 1, have been processed by all nodes in G. Assuming default route
error (RERR) message propagation from the neighbors of D along the directed
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acyclic successor graph (DASG) for destination D in the connected component
G, we need to prove that nodes will not re-learn routes from any upstream nodes
in the directed acyclic successor graph for D after time t. There are two states,
that the nodes are in: Case (i), node A has a srcRRLA

D �= A, or RRLA
D =φ which

could also be because of a routing table state loss. By ASC, node A can update
its routing table only if DInit = 1 in the RREP. But, because the destination D
is partitioned, it is not possible to receive any new RREPs with DInit set. Case
(ii), node A has srcRRLA

D= A, and on a link failure or otherwise, it can switch to
successors that have RRL ≺ RRLA

D. However, as per the argument in Theorem
1, the nodes chosen as successors cannot be upstream of A in the DASG for
D. Therefore, RERR messages should propagate along the DASG, hop-by-hop,
within a finite time and all nodes should invalidate their routing entries in finite
time.

Theorem 3. In a stable, connected, error-free network, a source S can establish
a route to destination D within a finite time.

Proof. Let a source S start a route request req, identified by (S, IDS), for a desti-
nation D. The RREQ must carry either (i) NRRL= φ, or (ii) NRRL= (S, ID′

S),
where ID′

S < IDS . In case (i), only the destination can answer the RREQ, and
the RREQ must traverse a path P = {nk,nk−1,...,n1,D} to reach the destina-
tion. Because the RREP will carry DInit = 1(i.e., initiated by destination), all
the nodes will update their routing tables and relay the RREP along the reverse
path of P . Therefore, S will establish a path to the destination D. In case (ii),
there are two possible sub-cases: (a) a neighbor nk of S that has an active route
to D, can satisfy SSC. The RREP issued will satisfy ASC at S. Because of The-
orem 1, there must exist a valid loop-free successor path to D from nk because
the network is error-free and connected. Hence, S will establish a route to the
destination; (b) if neighbor nk does not satisfy SSC, then it resets NRRL= φ,
which means only the destination can answer the request. Hence, this case fol-
lows directly from the same argument as in Case (i). In all cases, because the
messages propagate in finite time, the source S can establish a loop-free path to
the destination D in finite time.

5 Performance

We present results for LSR over varying loads and mobility. The protocols used
for comparison are DSR, AODV, and OLSR which are very well known and
being considered in the MANET working group of the IETF. Simulations are
run in Qualnet 3.5.2. The parameters are set as in [8].

Simulations are performed on two scenarios, (i) a 50-node network with terrain
dimensions of 1500m x 300m, and (ii) a 100-node network with terrain dimensions
of 2200m x 600m. Traffic loads are CBR sources with a data packet size of 512
bytes. Load is varied by using 10 flows (at 4 packets per second) and 30 flows (at
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4 packets per second). The MAC layer used is 802.11 with a transmission range
of 275m and throughput 2 Mbps. The simulation is run for 900 seconds. Node ve-
locity is set between 1 m/s and 20 m/s. Flows have a mean length of 100 seconds,
distributed exponentially. Each combination (number of nodes, traffic flows, sce-
nario, routing protocol and pause time) is repeated for nine trials using different
random seeds. We present four metrics. Delivery ratio is the ratio of the packets
delivered per client/server CBR flow. Latency is the end to end delay measured
for the data packets reaching the server from the client. Network load is the
total number of control packets (RREQ, RREP, RERR, Hello, TC etc) divided
by the received data packets. Data hops is the number of hops traversed by each
data packet (including initiating and forwarding) divided by the total received
packets in the network. This metric takes into account packets dropped due to
forwarding along incorrect paths. A larger value for the data-hops metric corre-
sponding to a poor delivery ratio indicates that more data packets traverse more
hops without reaching the destination necessarily.

Table 1. Performance average over all pause times for 50 nodes network for 10-flows

and 30-flows

Protocol Flows Delivery Ratio Latency (sec) Net Load Data Hops

LSR 10 0.9960±0.0016 0.0174±0.0022 0.3125±0.0797 2.5983±0.1813
AODV 10 0.9945±0.0023 0.0169±0.0033 0.2700±0.0668 2.5763±0.1793
DSR 10 0.9400±0.0274 0.0411±0.0477 0.2202±0.0952 2.6775±0.1853
OLSR 10 0.8870±0.0406 0.0129±0.0017 1.9370±0.2202 2.4568±0.1754

LSR 30 0.8358±0.0444 0.6081±0.2247 2.8147±0.8116 2.8338±0.2767
AODV 30 0.7651±0.0553 1.0101±0.3564 4.4233±1.2898 2.9514±0.3241
DSR 30 0.6837±0.0590 4.7600±1.0732 0.4108±0.1401 3.6253±0.3087
OLSR 30 0.7980±0.0349 0.8834±0.3113 0.7137±0.0695 2.4781±0.1618

Table 2. Performance average over all pause times for 100 nodes network for 10-flows

and 30-flows

Protocol Flows Delivery Ratio Latency (sec) Net Load Data Hops

LSR 10 0.9910±0.0036 0.0383±0.0061 1.1618±0.3221 3.8182±0.3134
AODV 10 0.9882±0.0045 0.0366±0.0095 0.8973±0.2368 3.7441±0.2935
DSR 10 0.8760±0.0505 0.0993±0.0577 0.8599±0.3535 4.2573±0.3170
OLSR 10 0.8218±0.0637 0.0222±0.0020 11.7954±1.5754 3.5838±0.2567

LSR 30 0.6882±0.0356 0.9088±0.1508 10.8084±1.6577 4.4653±0.3530
AODV 30 0.6082±0.0517 1.4558±0.3856 18.2987±13.0698 4.7513±0.4340
DSR 30 0.6183±0.0496 5.1253±0.7820 1.2432±0.4053 6.1410±0.4999
OLSR 30 0.6126±0.0415 3.3714±0.5324 5.4231±0.6695 4.0142±0.2774

Tables 1, and 2 summarize the results of the different metrics by averag-
ing over all pause times for the 50-node and 100-node networks. The columns
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show the mean value and 95% confidence interval. LSR has a very consistent
performance across all scenarios and outperforms other protocols in most cases.
Although the average results are statistically equivalent, the confidence intervals
in most cases barely overlap.

In the highest load scenario (100 nodes, 30-flows), LSR has a packet delivery
of 0.6882 ± 0.0356, and in the 50-nodes scenario with 30-flows, LSR’s delivery
ratio shares overlapping confidence intervals with AODV and OLSR. Figure 2(a)
shows the delivery ratio for a 100-node network with 30-flows for different pause
times. Confidence intervals (95%) are shown with vertical bars in the graphs. As
reflected in the summarized average performance, LSR outperforms the other
protocols by a wide margin in the high-mobility scenarios; DSR and OLSR have
overlapping confidence intervals in the very low mobility scenarios.

In scenarios with 30-flows, LSR has a latency of 0.9088 ± 0.1508 seconds and
0.6081 ± 0.2247 seconds in the 100-nodes and 50-nodes scenario, respectively,
better than the other routing protocols on the average. Figure 2(b) shows the
data delivery latency for the 100-node network with 30-flows for different pause
times. LSR has the lowest data packet latency at high mobility, and shares
confidence intervals with AODV at low mobility.
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Fig. 2. Performance results

The data hop count of all the protocols are comparable. Hence, LSR is deliver-
ing more data packets to destinations without dropping them due to congestion-
triggered broken routes, and loops. The control overhead of LSR is better than
that of AODV in all scenarios. DSR’s and OLSR’s control overhead cannot be
directly compared since DSR uses the optimization to learn source-routes from
data packets, and OLSR’s control overhead is independent of the flows in the
network.
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6 Conclusion

We have shown that by using the same route request labels (RRL) needed as
flood identifiers (i.e., a source address and an associated sequence number), it
is possible to achieve loop-freedom even when nodes other than the destination
reply. We presented a new on-demand loop-free routing protocol, the labeled
successor routing (LSR) protocol, which labels each node processing and relaying
a reply with the RRLs it processes. The source issuing the route-request flood
can later identify the nodes that store the RRL as safe loop-free successors to
the destination. Simulation results shows that LSR outperforms the on-demand
and proactive routing protocols being addressed in the MANET Working Group
of the IETF.
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