
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Energy Proportionality and Performance in Data Parallel Computing Clusters

Permalink
https://escholarship.org/uc/item/7zq7h4q6

Author
Kim, Jinoh

Publication Date
2011-07-20

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7zq7h4q6
https://escholarship.org
http://www.cdlib.org/

Energy Proportionality and Performance in Data
Parallel Computing Clusters

Jinoh Kim, Jerry Chou, and Doron Rotem
Lawrence Berkeley National Laboratory

University of California, Berkeley, CA 94720
{jinohkim,jchou,d rotem}@lbl.gov

Abstract—Energy consumption in datacenters has recently
become a major concern due to the rising operational costs and
scalability issues. Recent solutions to this problem propose the
principle of energy proportionality, i.e., the amount of energy con-
sumed by the server nodes must be proportional to the amount
of work performed. For data parallelism and fault tolerance
purposes, most common file systems used in MapReduce-type
clusters maintain a set of replicas for each data block. Acovering
subset is a group of nodes that together contain at least one replica
of the data blocks needed for performing computing tasks. In this
work, we develop and analyze algorithms to maintain energy
proportionality by discovering a covering subset that minimizes
energy consumption while placing the remaining nodes in low-
power standby mode. Our algorithms can also discover covering
subset in heterogeneous computing environments. In order to
allow more data parallelism, we generalize our algorithms so that
it can discover k-covering subset, i.e., a set of nodes that contain
at least k replicas of the data blocks. Our experimental results
show that we can achieve substantial energy saving without
significant performance loss in diverse cluster configurations and
working environments.

I. I NTRODUCTION

Energy consumption in scientific and commercial datacen-
ters has increased dramatically with the introduction of high-
performance, power-hungry components, such as multicore
processors, high capacity memories, and high rotational speed
disks. Therefore, the mounting costs of energy in datacenters
has recently become a major concern. It is now estimated by
EPA that in 2011 datacenters will consume up to 3% of the
total energy in the U.S., while their energy consumption is
doubling every 5 years [20]. Despite the technological progress
and the amount of capital invested, there are significant
inefficiencies in datacenters with server utilization measured
at around 6% [18]. In this paper, we focus on optimizing
energy consumption of compute clusters in datacenters, such
as MapReduce clusters [12] often used in scientific com-
putation [13]. The key idea is to achieve this by placing
underutilized components in lower power consumption states
(i.e., standby mode).

Optimizing energy consumption in datacenters introduces
several challenges. As pointed out in [23], [15], [5],hetero-
geneity of cluster nodes may be inevitable due to gradual
replacement or addition of hardware over time. The replaced
or added hardware should be “brand-new” rather than the same
as the old one. Cluster heterogeneity can also be a result of
a design choice. For example, the authors of [8] presented

a hybrid datacenter model with two-class nodes that have
different performance capabilities and power requirements for
energy efficiency. In a recent work [23], heterogeneity in a
MapReduce cluster was considered for job scheduling and
performance improvement. There are several recent research
efforts dealing with energy management for MapReduce clus-
ters [17], [16], but heterogeneity in such clusters has not
been considered yet. In this paper, we examine how energy
consumption can be further optimized by taking into account
the different power requirements of the nodes in the cluster.

Another important requirement for energy management is
energy proportionality, i.e., the ability to adjust energy con-
sumption in proportion to the given workload. As mentioned
in [3], server systems consume a substantial amount of energy
even in idle mode (over 50% of the peak), although it could be
ideally zero. Thus, a datacenter cluster still needs to consume
a great deal of energy even under a very low load (e.g., at
midnight), since the cluster nodes require substantial power
even when no real work is done. Energy-proportionality can
be a great benefit in conserving energy especially in clusters
with a high degree of load variation, such as the one described
in [7] where variations of over a factor of three between
peak loads and light loads have been observed. This paper
focuses on those two challenges, cluster heterogeneity and
energy proportionality in data parallel computing clusters.

One known approach for cluster energy saving is achieved
by powering on/off nodes in response to the current workload.
For example, we could use cluster nodes in part to handle light
loads, and save energy by deactivating the rest of the nodes
not in use. In this work, we study the problem of determining
which nodes should be activated or deactivated whenever it is
determined that workload characteristics have changed.

More specifically, this work focuses on identifying a set of
nodes that minimizes energy costs while satisfying immediate
data availability for a data set required in computing. Thisis
important since the cost of demand-based power state transi-
tions of nodes for missing data blocks is significant in termsof
both energy and performance due to the long latency needed
to transition back from standby to active mode. For example,
dehibernating (transitioning from standby to active mode)may
require 129W for a duration of 100 seconds [16], for a node
consuming 114W in idle mode. In a heterogeneous setting,
such power requirements can be different from one node to
another. To address this, we establish a power consumption

profile for each node, and use this information in locating an
optimal node set. In this paper, we refer to a group of nodes
that together contain at least one replica of the data blocks
needed for performing computing tasks as a CS (covering
subset).

For high performance computing, the degree of data avail-
ability has a critical role in determining the degree of data
parallelism [2], [12]. To consider this, we extend our node
discovery algorithms to guarantee a certain degree of data
availability. In its simplest form, our node discovery algorithm
searches for a node set holding a single replica of the data.
However, we may need a node set that has more than a
single replica for each data item for certain situations. For
example, for satisfying performance dictated by service level
requirements we may need to activate a node set containing
two replicas for supporting intermediate loads, rather than
using a node set with a single replica.

Our key contributions are summarized as follows:

• We provide mathematical analysis of minimal CS size
under the assumption of a uniform data layout as a
function of the number of data blocks. We also show
the validity of the theoretical model by simulation.

• We present node set discovery algorithms that find an
energy-optimized node set with data availability for all
required data items, for homogeneous and heterogeneous
settings.

• We extend our discovery algorithms to identify a node set
with any required degree of data availability, as a means
of energy-proportional cluster reconfiguration.

• We present our evaluation results with respect to en-
ergy consumption and performance with a rich set of
parameter settings. The results show that our techniques
can achieve substantial energy saving without significant
performance loss in most light workload environments.
Also, we show that our power-aware technique can ex-
ploit heterogeneity successfully, yielding greater energy
saving.

The paper is organized as follows. In the next section, we
briefly discuss the background for this work, including benefits
of the CS approach that activates a subset of nodes for energy
saving and introduction to several closely related studiesfor
data availability and energy proportionality. In Sections5 and
6, evaluation setup and results are presented with a rich set
of parameters in diverse working environments. We finally
conclude our paper and present some research topics for future
work in Section 7.

II. BACKGROUND AND RELATED WORK

Since our approach in this paper is based on the concept
of covering subset (CS), we first discuss the benefits of the
CS approach for energy management. We then provide a brief
summary of studies related to our work.

A. Energy benefits of CS approach

Here, we discuss energy benefits for the CS approach over
a full configuration called NPS (Non Power Saving). As in the

Fig. 1. Power state transition diagram of a node in the cluster (we omit
Power-off state.)

real life, we assume that a node requires a different power level
according to their power state, as illustrated in Figure 1. We
assumen nodes in the cluster. Thus,n nodes are involved in
computation for given jobs for NPS. For the CS approach, in
contrast, a part of nodes are involved in computation for those
jobs (i.e.,m nodes andm < n), and the othern −m nodes
are deactivated for energy saving. Thus, we can saym = αn,
where0 < α ≤ 1. We useT

(y)
x and P

(y)
x to denote the time

duration and power consumption respectively for power statey
and node setx. The variabley may take the following values
i (idle), a (Active), p (Peak) ,s (Standby),u (Activating),
and d (Deactivating). The variablex may take the values of
individual nodes or sets of nodes based on the context where
it is used. For example, it can take the valueCS to denote
the set of nodes in the covering set,NCS for the set of nodes
not in the covering set, andN to denote the set of all nodes.
We simply useT (y) and P (y) if the node (set) is obvious,
and useTx andPx if its power state does not matter. Table I
summarizes the notations used in this paper.

Now, we analyze energy consumption for the CS approach
(ECS) and NPS (ENPS). We assume that nodes are idle
initially. For the CS approach, CS nodes are active for a
time periodT

(a)
CS for computation, while non-CS nodes are

deactivated and activated again during the time period. That
is, T

(d)
NCS + T

(s)
NCS + T

(u)
NCS = T

(a)
CS . We denoteT = T

(a)
CS

for simplicity. We also assume that job completion time is
inversely proportional to the number of active nodes for a
job. Under NPS, the complete set of nodesN is active, thus,
node active time for NPS would beT (a)

N = αT
(a)
CS = αT ,

where α = m/n as defined above. To represent the power
state transitioning time, we defineβ as T (u) + T (d) = βT ,
where 0 ≤ β ≤ 1. Thus, the extreme values ofβ imply
that: if β = 0, there is zero transitioning time; and ifβ = 1,
computation time is negligible compared to transitioning time.
Figure 2 illustrates timing for both approaches in detail.

We first compute the lower bound on energy consumption
for NPS based on the above assumptions. Since it is true that
P (i) < P (a) ≤ P (p), NPS energy consumption is simply
computed as follows:

ENPS ≥ nTP (i) (1)

We can also compute the upper bound on the CS approach
(ECS), as follows:

(a) NPS Timing (b) CS Timing

Fig. 2. Timing comparison between NPS and CS approach: NPS utilizes the entire set of nodes in the cluster for a given set of jobs. In the CS approach
only CS nodes are involved in processing the jobs, while NCS nodes are hibernated during that period.

TABLE I
NOTATIONS

Symbol Description Symbol Description

N Cluster node set B Data block set
CS CS node set (CS ⊆ N) NCS non-CS node set (NCS ⊆ N)
n Cluster size b Number of data blocks
r Replication factor f Fraction of low-power nodes

P (i) Idle power T (i) Idle time
P (a) Active power T (a) Active time
P (p) Peak power T (p) Peak time
P (s) Standby power T (s) Standby time
P (u) Activating power T (u) Activating time
P (d) Deactivating power T (d) Deactivating time

ECS = mP (a)T
(a)
CS

+ (n−m)(P (d)T (d) + P (u)T (u))

+ (n−m)(P (s)(T
(a)
CS − (T (d) + T (u))))

≤ mP (p)T + (n−m)(P (p)(βT) + P (s)T (1− β))

= nT (αP (p) + (1− α)(βP (p) + (1− β)P (s)) (2)

Based on Equation 1 and 2, Figure 3 shows the ratio
between two techniques in terms oflower bound(NPS) :
upper bound(CS), as a function ofβ. For the graphs, we
plugged in the Xeon measures in Table II. It is intuitive that
ECS has a greater energy benefit with a smaller power state
transitioning time. As seen from the figure,ECS has no benefit
if β > 0.9. However, ifT is relatively large compared to the
transitioning time, energy benefits increase super-linearly. The
figure also plots energy ratio with diverseα values (i.e., as a
function of m). Intuitively, energy saving can grow up with
a smallerα (i.e., a smaller set of CS nodes), and the figure
supports the intuition.

B. Related Studies

1) MapReduce cluster energy management:The initial
work on MapReduce cluster energy management was pre-
sented in [17] based on covering subset (CS). In that work,
the CS nodes are manually determined, and one replica for
each data item is then placed in one of the CS nodes. Under
a light load, it would be possible to save energy by running
the cluster with only the CS nodes activated. To enable this,
the authors modified the existing replication algorithm, such
that the CS nodes contain a replica of each data item. Failure

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 0.2 0.4 0.6 0.8 1

R
at

io
 =

 E
N

P
S
/E

C
S

β = (T(d)+T(u))/T

α=0.1
α=0.25
α=0.33

α=0.5

Fig. 3. Impact of power state transition time: As the CS active time (T)
increases, energy benefits also increase super-linearly. Here,α is the fraction
of active nodes (i.e.,αn = the number of active nodes), andβ is a ratio
of power state transition time for node activation and deactivation toT (i.e.,

β = T (d)+T (u)

T
).

of CS nodes was not considered, and as a result, any single
node failure can make this scheme ineffective. Also, there was
no notion of energy proportionality with gradual adjustment;
rather the cluster is in either full performance mode with the
entire set of nodes activated or in energy mode with only the
CS nodes activated.

AIS (All-in Strategy) [16] is a different approach. AIS runs
the given jobs employing the entire set of nodes in the cluster
to complete them as quickly as possible. Upon completion
of the jobs, the entire set of nodes are deactivated to save
energy until the next run. This makes sense since data parallel

clusters are often used for batch-oriented computations [10].
One potential drawback is that even with small (batched) jobs,
AIS still needs to wake up the entire cluster, possibly wasting
energy. Both studies (static CS and AIS) did not consider
cluster heterogeneity, as we do in this work.

Rabbit [1] provides an interesting data placement algorithm
for energy proportionality in MapReduce clusters. The key
idea is to place data items in a skewed way across the
nodes in the cluster. More specifically, nodek stores b/k
data items, whereb is the total number of data items. Thus,
a lower-indexed node holds a larger number of data items,
this makes it possible to deactivate a higher-indexed node
safely without losing data availability. Energy proportionality
is also provided by allowing one-by-one node deactivation.
Our approach provides energy management for clusters with
the existing data layout, while Rabbit introduces its own
method of data placement for energy management. Rabbit also
does not consider possibility of cluster heterogeneity.

Cardosa et al. considered energy saving in a VM (Virtual
Machine)-based MapReduce cluster [6]. Their approach places
VMs in a timely balanced way, and finds a way to minimize the
number of nodes to be utilized, so as to maximize the number
of nodes that can be idle. Subsequently, idle nodes can be
considered as candidates for deactivation to save energy. One
essential assumption in this work, that may not be practical, is
the availability of a tool for accurate running time estimation
for VMs.

2) Minimum set cover:Minimum (weighted) set cover is
a classic NP-complete problem. In the problem, we are given
a setU of n elements and a collectionF of subsets ofU
each associated with a positive weight. A set cover ofU is a
collection of subsets,F ′, of F where the union of the subsets
in F ′ is U . The weight of a coverF ′ is the sum of the weights
of the subsets in it. The problem objective is to find a set
cover with the minimum weight. Since the exact solution to set
cover is NP-complete, a greedy set heuristic algorithm is often
used. The greedy algorithm first selects the most cost-effective
subset, i.e., the subset whose cost per element is smallest,and
adds that subset to the solution while removing the covered
elements and the subset from further consideration. This
process is repeated on the remaining subsets and elements until
all elements are covered. This simple heuristic was proven to
produce a set cover with cost at most a factor ofHn of the
minimum cost set cover, whereHn = O(logn) is the nth

harmonic number equal to1+ 1
2+· · · 1

n
, andn is the cardinality

of U [9]. A naive implementation has a run time complexity
of O(|U ||F |min(|U |, |F |)), but a linear-time implementation
is also possible [11, Ch.35].

III. N ODE SET DISCOVERY ALGORITHMS

In this section, we present our CS discovery algorithms for a
set of nodes that minimizes energy consumption subject to data
availability constraints. We assume that the data set statistics
for the next round of computation is readily available and
therefore discover the CS based on that information. This leads
to a slightly different definition of CS as compared with the

Input : Data block setB, Node setS
Output : Covering subsetC

1 U ← B;
2 F ← S;
3 C ← ∅;
4 while U 6= ∅ do
5 Select nodei ∈ F that maximizes

|U
⋂

i.getReplicaSet()|;
6 U = U − i.getReplicaSet();
7 C ← C

⋃

{i};
8 F ← F − {i};
9 end

10 returnC
Algorithm 1: FindCS(B,S)

definition in [17]. The CS used here is not a static node set,
rather it is discovered on demand based on a given list of data
blocks required for computation. Thus, our CS must contain a
replica forrequireddata items instead of theentireset of data
blocks in the cluster. Since data parallel computing platforms
are often used for batch-style processing [10], [16], the data set
can be available for the next operational time window. We first
present a basic algorithm for node discovery that searches a
minimal number of nodes for data availability, and then extend
it with an energy metric for heterogeneous settings.

A. A basic method for CS discovery

By definition, CS maintains at least one replica1 of the
required data blocks. Locating such a set is NP-complete as
it can be reduced to the well knownset coverproblem [9], as
described in the following proposition.

Proposition 3.1:A minimum CS discovery problem
CS(B,S) with B required blocks and a set of serversS
is NP-complete, the reduction is from a minimum set cover
problem SC(U,F), whereU is a universe of elements and
F is a family of subsets ofU .

Proof: We omit the proof since it is trivial.

The greedy algorithm for CS discovery is shown in Algo-
rithm 1. In the algorithm, function getReplicaSet() gives the
set of data blocks that the node contains.

Figure 4 plots the size of CS for a cluster with sizen = 1024
under two replicated environments withr = 3 and r = 5,
as a function of the number of required data blocks. As the
number of data blocks increases, the CS size also increases.
For example, withn data blocks, the CS size ranges 20–30%
of the cluster for the two replication settings. This implies
that it would be possible to have energy saving of up to
70–80% in this setting. The CS size grows to 60–80% of
the cluster for the case where the number of data blocks
is 32n, which is ≈ 2TB with the default data block size
in MapReduce [12] and Hadoop [14]. As observed in [2],
data popularity in MapReduce clusters is time-varying and

1Considering more than a single replica will be discussed in the next section
(Section IV) for energy proportionality.

 0

 20

 40

 60

 80

 100

n 2n 4n 8n 16n 32n

C
S

 S
iz

e
(%

)

Number of data blocks (n=1024)

Impact of number of data blocks (95% confidence interval < 0.5)

replication=3
replication=5

Fig. 4. CS size as a function of the number of data blocks: CS size has a
strong correlation with the number of required data blocks. For n data blocks,
CS size is 20–30% of the cluster, while it is 60–80% for32n blocks (≈ 2TB)
in two settings with replication factor 3 and 5.

skewed, and thus, there will be substantial opportunities to
see a relatively small number of data blocks as a requirement
for a certain time window.

We briefly discuss the theoretical analysis for the minimal
CS size as a function of the number of data blocks in a uniform
data distribution. Assume thatr copies of each data block are
uniformly distributed onn nodes with each node holding at
most one of ther copies. As previously defined, CS is a node
set that contains at least one replica of each of the givenb
data items.

Lemma 3.2:Let P be the probability that a randomly
selected set ofm nodes out ofn nodes is CS. Then,P is

equal to
(

1−
∏m−1

i=0

(

1− r
n−i

))b

.

Proof: The total number of ways for selectingr nodes
from the availablen nodes to hold ther replicas is

(

n
r

)

. From
these possible selections, exactly

(

n−m
r

)

do not place a copy
in the randomly selectedm nodes. We can then calculate the
probability that the selectedm nodes do not have any replica of

a data itemd1 asP ′ =
(n−m

r)
(n

r)
= (n−m)!(n−r)!

n!(n−m−r)! =
∏m−1

i=0 (1−
r

n−i
). Due to the fact that ther replicas for each of theb

data items are placed independently, we getP = (1 − P ′)b,
or P = (1−

∏m−1
i=0 (1− r

n−i
))b.

Theorem 3.3:The minimalm such that we can expect at
least one CS from any given uniform data layout satisfies:
(

n

m

)

(

1−
m−1
∏

i=0

(

1−
r

n− i

)

)b

≥ 1.

Proof: Let M = {M1,M2, · · ·,Mℓ} be the collection of
all sets of sizem selected fromn nodes. Thusℓ =

(

n
m

)

. By
Lemma 3.2, we know that the probability of eachMi to be a
CS isP . Let Xi be a random variable where,

Xi =

{

1 if Mi is a CS,

0 otherwise.

 0

 20

 40

 60

 80

 100

n 64n 256n 512n 1024n

C
S

 S
iz

e
(%

)

Number of data blocks (n=20)

Impact of number of data blocks (95% confidence interval < 0.5)

r=3 (by prob)
r=3 (by sim)

r=5 (by prob)
r=5 (by sim)

Fig. 5. Minimal CS size: This figure shows the minimal CS size obtained by
the mathematical equation in Theorem 3.3 (”by prob”) and simulation (”by
sim”). We usedn = 20 and computed CS size fromb = n to b = 1024n.

Then, the expected value ofXi, E(Xi), is equal toP . The
expected number of CS is thus,

l
∑

i=0

E(Xi) =

(

n

m

)

P

Note that this is true even though theXi’s are not indepen-
dent. Therefore, the minimalm that ensures existence of at
least one CS must satisfy

(

n
m

)

P ≥ 1.

Figure 5 shows the minimal CS size as a function of the
number of data blocks in a small system withn = 20. The fig-
ure compares the analytical results based on our probabilistic
model and simulation results, and we can see that they agree
with each other. Also, the sub-linear shape of CS size increase
over the number of blocks agrees with the mathematical work
studied in [22]. Note that we used rack-unaware replication
for simulation to assume the equivalent setting.

As described above, the problem of our node set discovery
is simply mapped to the set cover problem, and the solution is
to locate a set with the minimal size covering the data items
in question. However, in a heterogeneous environment where
nodes may have different power metrics, locating a minimal-
size set would not be sufficient. We present apower-aware
discovery algorithm as a solution for identifying an optimal
node set in a heterogeneous cluster next.

B. Power-aware (PA) discovery for heterogeneous clusters

Let us illustrate a heterogeneous cluster with a realistic
example. Suppose there are 20 nodes in a cluster with 10
Xeons and 10 Atoms with power profiles as in Table II.
We can see that Xeons consume ten times more energy than
Atoms. In such an environment, a CS with two Xeon nodes
as a minimal subset may require a greater power level than
a CS with ten Atom nodes. The former power requirement is
2 · 315W + 8 · 18W + 10 · 2W = 794W at peak, while the
latter only requires10 · 33.8W + 10 · 18W = 518W . At the
idle state, the former requires 683W and the latter does 436W.

However, any technique that naively selects low-power
nodes for CS discovery may not work that well. For example,
in the above example, if Xeons consume only half watts
than that in the table, i.e.,P (p) = 315/2W = 157.5W and
P (s) = 18/2W = 9W , whereP (p) stands for peak power and
P (s) does standby power, then the power requirement for a CS
with two Xeons becomes2 · 157.5W + 8 · 9W + 10 · 2W =
407W , which is smaller than the energy requirement for a CS
with ten Atom nodes. Hence, we need a more sophisticated
approach to locate an optimal CS in heterogeneous settings,
as discussed next. We will revisit the naive method when
discussing Figure 9.

Formally, the overall power requirement in the CS approach
is P

(a)
CS + P

(s)
NCS , whereP

(a)
CS is power for CS in active state

andP
(s)
NCS is power for non-CS nodes in standby. The energy

consumption (E) for a given period of time (T) is then simply
E = (P

(a)
CS + P

(s)
NCS) × T . If we assume thatT is fixed, our

objective in identifying CS is to minimizeP (a)
CS + P

(s)
NCS . In

other words, what we want to do here is to discover nodes for
CS whose aggregated energy consumption can be minimized
during time periodT . This can be rewritten as follows for
powerP :

P = P
(a)
CS + P

(s)
NCS

=
∑

x∈CS

P (a)
x +

∑

y∈NCS

P (s)
y

=
∑

x∈CS

(

P (a)
x + P (s)

x − P (s)
x

)

+
∑

y∈NCS

P (s)
y

=
∑

x∈CS

(

P (a)
x − P (s)

x

)

+
∑

x∈CS

P (s)
x +

∑

y∈NCS

P (s)
y

=
∑

x∈CS

(

P (a)
x − P (s)

x

)

+
∑

y∈N

P (s)
y (3)

Since the second part in Equation 3 is a constant, we can
then map the node set discovery problem in a heterogeneous
setting to aweighted set coverproblem with an energy metric
(P (a)

i −P
(s)
i) as the weight associated with each nodei. More

precisely, the goal of the node set discovery problem can be
cast as follows. LetG be the set of all possible covering
subsets for a required set of data blocks. For covering subset
g ∈ G, we define its weightw(g) as the sum of weights of
its nodes, i.e.,:

w(g) =
∑

x∈g

(

P (a)
x − P (s)

x

)

(4)

Then, our goal is to find a covering subsetq, such thatw(q) ≤
w(g) for all g ∈ G.

Proposition 3.4:A minimum CS discovery problem
CS(B,S) in a heterogeneous setting is NP-complete, and it
can be reduced to a minimum weighted set cover problem
WSC(U,F), where U is a universe andF is a family of
subsets ofU .

Proof: As in Proposition 3.1, given a CS problem
CS(B,S), we can construct a corresponding set cover prob-
lem SC(U,F), where for each setfk ∈ F , we set its weight

Input : Data block setB, Node setS
Output : Covering subsetC

1 U ← B;
2 F ← S;
3 C ← ∅;
4 while U 6= ∅ do
5 Select nodei ∈ F that minimizes

P ā

i
−P

(s)
i

|U
T

i.getReplicaSet()| ;
6 U = U − i.getReplicaSet();
7 C ← C

⋃

{i};
8 F ← F − {i};
9 end

10 C ← FindCS(B,C);
11 returnC

Algorithm 2: FindPACS(B,S)

to P
(a)
k − P

(s)
k . Let C ⊂ F be the minimum weighted set

cover ofSC(U,F). DefineC ′ = {si|ui ∈ C}, then it is easy
to seeC ′ is also the minimum weighted set of nodes covering
all blocks inB. Reversely, weighted set cover can be reduced
to the heterogeneous CS discovery problem, and the reduction
is in polynomial time.

For an active node, its power consumption can scale from
idle to peak based on workloads. That is,P (a) can vary
over time depending on jobs running on the node. Thus, it
is difficult to estimateP (a)

i for a given time period. In this
work, we simply chose the mean between these two extreme
values,P (ā)

i = (P
(i)
i +P

(p)
i)/2, and use this for weightwi for

nodei. However, this can be replaced with any other relevant
measure.

Our power-aware algorithm for node set discovery in a
heterogeneous setting is illustrated in Algorithm 2. This greedy

algorithm selects a node that minimizes P (ā)
n

−P (s)
n

|U
T

n.getReplicaSet()| .
In other words, the algorithm prefers a node with a smaller
power requirement but with a greater number of data blocks
for CS.

One interesting part in the algorithm is the addition of
line 10: after obtaining a CS set by the weighted set cover
algorithm, we run the (non-weighted) set cover algorithm once
more. We call it a “reduction” phase. We observed that this
reduction can decrease the size of CS by removing inessential
nodes. Indeed, a greedy technique yields good approximation,
but the resulted set may not be an optimal. To explain this more
in detail, here is an example. Supposer = 3 and the cluster
consists of the equal number of high-power and low-power
nodes. Then, the probability that a specific data block has no
replica in any low-power node isp = (1

2)3 = 0.125. In other
words, 12.5% of data blocks should only be found in high-
power nodes probabilistically. If we consider those essential
high-power nodes first as the elements of CS, it is possible to
eliminate some redundant low-power nodes because the high-
power nodes also keep some other data blocks. This simple
optimization helps to reduce CS size, as shown in Figure 6.

 0

 20

 40

 60

 80

 100

n 2n 4n 8n 16n 32n

C
S

 S
iz

e
(%

)

Number of data blocks (n=1024,r=3)

WCS Optimization (95% confidence interval < 0.6)

No optimization
With optimization

Fig. 6. CS Size with optimization for the power-aware algorithm: The simple
optimization reduces CS size by 2–5% by removing inessential,redundant
nodes from CS.

Figure 7 compares the power-aware CS discovery with
the basic CS method. As above, we considered two classes
of nodes, low-power (LP) and high-power (HP), based on
Table II. The two figures show CS size (Figure 7(a)) and
percentage of LP nodes (Figure 7(b)) in the resulted CS,
as a function of fraction of LP nodes in the cluster. In this
experiment, we set the number of data blocksb = n and
replication factorr = 3. We can see that the power-aware
algorithm yields a slightly bigger set for CS, but not that
significant (the max gap is smaller than 4%). Figure 7(b)
shows the power-aware algorithm takes a greater number of
LP nodes for CS. Even with 0.25 for LP fraction, around
50% of nodes in the CS are LP nodes, while it is 25%
with the basic algorithm. This power-optimized CS technique
can significantly reduce energy consumption over the basic
CS technique in heterogeneous settings, as we will show in
Section VI.

A short discussion about energy benefits of the power-aware
discovery technique over the basic algorithm. Figure 8 shows
this as a function of fraction of LP nodes with respect to energy
ratio between LP and HP. For example,E(LP)/E(HP) =
0.5 means that LP node energy consumption is 1/2 of energy
consumption of a HP node. We can see that the power-aware
discovery achieves more energy saving, as the energy ratio
between LP and HP nodes goes high. Past studies, such as [8],
[21], observed thatE(LP)/E(HP) is 1/10 or even smaller.
In such cases, it is expected that more than 42% energy saving
can be achieved over the basic CS method where LP fraction
is 0.5 (f = 0.5). All these suggest thatthe power-aware
technique is beneficial to discover CS closer to the optimal
in terms of energy efficiency.

We mainly assumed two classes of nodes, LP and HP, for
heterogeneity. In reality, however, a cluster may have more
than two generations of nodes. To consider more heteroge-
neous environments, we compose clusters with some other
classes of nodes, in addition to LP and HP, with synthetic
power values chosen based on the LP measures. We suppose

 0

 20

 40

 60

 80

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
ne

rg
y

S
av

in
g

(%
)

LP Fraction (f)

E(LP)/E(HP)=0.05
E(LP)/E(HP)=0.1

E(LP)/E(HP)=0.25
E(LP)/E(HP)=0.5

Fig. 8. Energy saving of the power-aware discovery (PA) overthe basic
algorithm (Basic): PA saves more energy where energy ratio between LP and
HP (i.e.,E(LP)/E(HP)) is smaller, and vice versa.

ML (“Medium-Low”) has twice of LP power measures, and
MH (“Medium-High”) has four times of LP measures (i.e.,
PML = 2 × PLP and PMH = 4 × PLP). Then peak power
for each class of node isP (p)

LP =25.6W, P
(p)
ML =51.2W,

P
(p)
MH =102.4W, andP (p)

HP =259.5W.
Figure 9 compares three CS discovery algorithms with

respect to aggregated peak power of CS. Here, “Naive” is
a CS discovery method that simply chooses the lowest power
nodes first in a greedy manner. For each configuration in the
figure, we assume the number of each class of node is equiv-
alent in the cluster. We consider three configurations: LP/HP,
LP/MH/HP, and LP/ML/MH/HP (i.e., four classes of nodes
in the cluster). Naive finds CS with smaller peak power than
Basic. However, the figure shows that the difference between
Naive and Basic is reduced in more heterogeneous environ-
ments: it achieves 67% of Basic in the LP/HP configuration,
but becomes 83% and 89% in the other two configurations.
In contrast, our PA algorithm shows fairly consistent results
between 62–73% of the peak power as compared with Basic.
Comparing idle power between Naive and PA to Basic shows
that Naive requires 67–89% of Basic, whereas PA requires 66–
72% of Basic, although not shown in the figure. We repeated
five times for this experiment, and report average in the figure.
The 95% confidence intervals are smaller than 3.8%.

C. Incremental CS reorganization for node failure

Here, we briefly discuss the issue of CS reorganization in
case of cluster configuration changes due to node failure. We
assume that a new CS set is constructed periodically or on
demand. Thus, any configuration change can be accounted at
every construction time. However, there may be node failures,
and as a result, some data blocks can be unavailable from
the CS set. To deal with such failure cases, it is possible to
reorganize CS incrementally by adding some nodes to keep
the CS effective. Upon detection of any failure that affects
the CS set, we can perform the CS discovery algorithm with
inputs of the missing data blocks from the CS set and a set
of non-CS nodes (i.e., NCS). The resulting set can then be
added to the CS set. The incremented set may not be optimal,

 0%

 20%

 40%

 60%

 80%

0 0.25 0.33 0.5 0.67 0.75 1

C
S

 S
iz

e

LP Fraction

Basic
Power−aware

(a) CS Size

 0%

 20%

 40%

 60%

 80%

0.25 0.33 0.5 0.67 0.75

P
er

ce
nt

ag
e

of
 L

P
 N

od
es

 in
 C

S

LP Fraction

Basic
Power−aware

(b) Percentage of low-power nodes

Fig. 7. Comparison of basic and power-aware CS discovery: Theleft-side figure compares CS size (relative to the cluster size) between Basic and PA
algorithms, and the right-side figure compares the percentageof LP nodes in CS.

 0%

 20%

 40%

 60%

 80%

 100%

 120%

LP/HP LP/MH/HP LP/ML/MH/HP

P
ea

k
P

ow
er

 o
f C

S
 (

no
rm

al
iz

ed
)

Basic
Naive
Power−aware

Fig. 9. Comparison of CS algorithms in peak power (P
(p)
CS

): The figure
plots aggregated peak power of CS in a normalized form, under three different
heterogeneous environments. LP/HP for a cluster with two classes of nodes,
LP/MH/HP for three classes of nodes, LP/ML/MH/HP for four classes of
nodes. ML and MH power values are synthetically defined:PML = 2×PLP

andPMH = 4 × PLP .

but still effective with required data availability. At theend of
the time window for which the current CS is effective, a full
reorganization is initiated to find an optimal node set for the
new set of data blocks.

Figure 10 shows an example of CS reorganization over
time under a node failure environment. We assumed that node
failure probability is 0.005 for each node at every time unit.
Probabilistically, at each time unit around 5 nodes suffer a
failure in a cluster withn = 1024. Thus, at each time step,
there would be an incremental reorganization if any CS node
suffers a failure. We assume that a failed node is recovered
after a deterministic amount of time (10 time units), and that
a full reorganization takes place at every 10 time units. In
the figure, the upper plot shows the number of nodes that do
not experience failure, while the bottom plot shows CS size
changes over time. In the upper plot, we can see that nodes
fail and recover back, and the CS size varies accordingly in
the bottom plot. As shown in the figure, CS size varies up and

 900

 950

 1000

 1050

 1100

 0 100 200 300 400 500 600 700 800 900 1000

no
n-

fa
ilu

re
 n

od
es

Time

reorganization cycle=10, failure probability=0.05, replication=5

 160
 180
 200
 220
 240
 260
 280
 300

 0 100 200 300 400 500 600 700 800 900 1000

C
S

 s
iz

e

Time

reorganization cycle=10, failure probability=0.05, replication=5

Fig. 10. CS reorganization under node failures: The top figure plots the
number of non-failure nodes, while the bottom figure shows thechanges of
CS size by incremental reorganization due to CS node failure.

down over time with incremental reorganizations (increasing
CS size) and full reorganizations (minimizing CS size) from
the bottom one.

In this section, we have discussed node set discovery for
CS that provides a single replica availability for data blocks
in requirement. This can be extended to guarantee a higher
degree of data availability, e.g., two replicas for each required
data block. In the next section, we discuss how we can achieve
this, and show how this idea can be used to provide energy
proportionality in a cluster.

IV. M ULTI -LEVEL NODE SET DISCOVERY

Here we discuss how it is possible to provideenergy pro-
portionality in this framework. In [16], the authors considered
several strategies for node deactivation for non-CS nodes to
support the CS approach. By deactivating (and activating)
nodes one by one according to the current load, it is possibleto
get energy proportionality, but as the authors indicated, there
may be load inequality between nodes because the number of
replicas for each data block may be different for a certain time.

For example, if we deactivate one node (and all the other nodes
are active), there will remainr− 1 blocks for the data blocks
kept in that node, while the other blocks are maintained based
on replication factor (r). This implies a possibility of load
imbalance. For these types of complications, we do not rely on
a node selection strategy for achieving energy proportionality.
Instead, we propose a multi-level CS discovery that gives
different degrees of data availability based on performance
requirements for the given workload.

In our multi-level CS approach, different CS levels provide
different degrees of data availability. For example, a CS set
in level 2 in our framework gives 2-replica availability forthe
required data blocks (we call itCS-2). Therefore, there can be
a series of CS sets fromCS-1 to CS-r (usually equivalent to
n). In this section, we describe how we can discover such CS
sets for a certain degree of data availability.

The problem of identifyingCS-kcan be mapped to theset
multicoverproblem with coverage factork, wherek denotes
the minimal number of times each object in question appears
in the resulting set.

Proposition 4.1:The CS-k(B,S) problem is NP-
complete, the reduction is from the set multicover problem
SMC(U,F, k), where U is a universe,F is a family of
subsets ofU , and a required coverage factork.

Proof: The reduction algorithm is the same as proof 3.4.
Since there is a one-to-one mapping between the blockbi ∈
B and the elementui ∈ U , any element that is coveredk
times inSMC(U,F, k) also appearsk times in the result set
of CS-k(B,S), and vice versa. Also, the reduction remains in
polynomial time.

In [4], the authors presented anO(k|U ||F |) time greedy
heuristic for theSMC(U,F, k) problem with an approxima-
tion factor of (1 + ln a) from optimal wherea = maxi |Fi|.

The greedy heuristic makes a selection of a new set in each
iteration. The selected set must include the max number of
elements that have not been coveredk times yet. We employ
this greedy heuristic for our multi-level CS discovery.

Figure 11 shows the CS size compared to the cluster size,
as a function of the number of data blocks in two replicated
environments (r = 3 andr = 5). As shown in the figure,CS-1
and CS-2have different sizes. For example withb = 4n and
r = 3, the CS size is around 50% and 80% of the cluster
for CS-1 and CS-2, respectively. From those sets, we can
select the one with a desired data availability while considering
the (expected) workload. By doing so, our multi-level CS
technique can be used for achieving energy-proportionality in
the cluster.

V. EVALUATION METHODOLOGIES

For evaluation, we developed a simulator based on OM-
NeT++ [19] providing a discrete event simulation framework.
We ran our simulation using the power consumption data given
in [8], [16] shown in Table II. The measurement information
does not include power requirements for node activation and
deactivation, and we simply assume they are equal to the peak

 0

 20

 40

 60

 80

 100

n 2n 4n 8n 16n 32n

C
S

-2
 S

iz
e

(%
)

Number of data blocks (n=1024,r=3)

Multi-level CS size (95% confidence interval < 0.5)

CS-1 (r=3)
CS-1 (r=5)
CS-2 (r=3)
CS-2 (r=5)

Fig. 11. Multi-level CS size: This figure plots CS size for CS-1 and CS-2
under two replicated environments,r = 3 and r = 5, as a function of the
number of data blocks. Since it satisfiessize(CS-x) < size(CS-y) for x < y,
it is possible to choose CS-i (1 ≤ i ≤ r) based on load intensity for energy
proportionality.

TABLE III
PARAMETERS

Symbol Description Default value

n Cluster size 1,024
b Number of data blocks 16n(≈ 1TB)
r Replication factor 3
f Fraction of low-power nodes 0.5
ξ Number of jobs 1000
λ Job arrival rate 0.5
χ Number of tasks n
c Average computation time 300 sec
d Average data transfer overhead 0.1
τ Task processing time Normal/c/d

power (i.e.,P (u) = P (d) = P (p)), based on the observations
in [16]. In the table,MaxThreadis the max number of threads
that can be concurrently run in the node, andCapacityrefers to
processing capacity. Thus in the table, we can see that an Atom
node can accommodate 4 concurrent tasks at max, and its
processing capacity is 0.36 of that of a Xeon. For example, if
a Xeon node can run 100 instructions for a finite time interval,
an Atom node can perform 36 instructions for that amount of
time.

We conducted experiments extensively with a diverse set
of parameters summarized in Table III. We assume data
placement follows the basic MapReduce replication properties
(hence, almost close to a uniform data layout). We then inject
a series of jobs to the simulator based on job arrival rate (λ).
We use average computation time (c) defined below as the unit
time for λ in this paper. For example, ifλ = 1 andc = 100s,
it means that a single job is enqueued in the system at every
100 seconds on average. We assume job arrival follows an
exponential distribution. Since we are more interested in light
loads for energy saving, we useλ = 0.5 by default in our
experiments, but we explore the impact ofλ as well.

Each job requiresχ parallel tasks, and task processing time
(τ) is determined by computation overhead (c), data transfer

TABLE II
POWER MODEL: SPECPOWER RESULTS FROM[8] AND NODE HIBERNATION COSTS FROM [16].

Platform P (i) P (p) P (s) T (d) T (u) MaxThread Capacity

HP (Xeon) 259.5W 315.0W 18.0W 11s 100s 8 1
LP (Atom) 25.6W 33.8W 2.0W 11s 100s 4 0.36

overhead (d), and node capacity (Capacity). We calculate
computation time in a deterministic way based onc and
node capacity by the equation:compute time = c/Capacity.
In contrast, data transfer time is determined probabilistically.
Since no previous work identified distributions for data transfer
time in data parallel computing clusters, we employ two
distribution models,normal and exponential, in this study.
For normal, we pick a random number (vn) from N(0, d),
and the data transfer time is computed bydata time =
|vn| × c/Capacity. For exponential, we select a random
number (ve) from an exponential distribution withmean = d,
and then computedata time = ve × c/Capacity. That is,
d is used to define standard deviation fornormal, while it
determines mean forexponential. Finally, a task processing
time is computed by adding those two elements, i.e.,τ =
compute time + data time. Due to randomness, tasks may
have differentτ even in a single job.

We compare the following techniques in terms of energy
consumption and average turnaround time:

• NPS, without energy management;
• AIS, All-in Strategy;
• Basic, basic CS discovery based on Algorithm 1;
• PA, power-aware CS discovery based on Algorithm 2.
NPS fully utilizes nodes in the cluster, and nodes are in idle

mode after jobs are completed. AIS also utilizes the entire set
of nodes for processing jobs, but keeps the cluster deactivated
as soon as all jobs are completed until the next job arrives.
Basic constructs CS dynamically without considerations of
node heterogeneity, while PA takes heterogeneity into account.

Initially, the entire cluster is “on” for NPS and AIS, while
only CS nodes selected by each algorithm are active for
our CS-based techniques. After completing all injected jobs
(i.e., ξ), we measured aggregated energy consumption and
average turnaround time for each technique, and compared
the measured results. We repeated each experiment ten times
and provide 95% confidence intervals.

VI. EXPERIMENTAL RESULTS

A. Impact of fraction of low-power nodes

In this experiment, we explore the impact of the fraction of
LP nodes in the cluster. We varied the fraction of LP nodes
from 0 to 1. By definition, the two extremes (i.e.f = 0 and
f = 1) refer to homogeneous settings (i.e.,f = 0 for all
high-power node setting andf = 1 for all low-power node
setting), while intermediate values off represent mixtures of
both classes of nodes.

As shown in Figure 12, PA yields the same results as
Basic for both extremes, showing around 30% energy saving

compared to NPS regardless of fraction of LP nodes in the
cluster. In contrast, we can see that PA further improves
energy saving in heterogeneous settings. Withf = 0.75, PA
improves energy saving over 50%, as shown in Figure 12(a).
For turnaround time, no significant differences among the
various techniques were observed, as in Figure 12(b). This
indicates that our PA technique can improve energy saving
with little performance loss by exploiting cluster heterogeneity.

AIS also achieves energy saving, but it is less than 20%.
One interesting observation is that AIS shows the best result
in energy saving in a cluster that only has HP nodes, yielding
40% energy saving. This is because AIS can quickly complete
a set of jobs in the queue, and then move to low-power mode
in that configuration. However, in the environment where LP
nodes exist, slower nodes (i.e., LP nodes in our experiment due
to the low capacity) can delay job completion, and it resultsin
the reduced number of opportunities to get into power-saving
mode. In the HP-only configuration (f = 0), the number of
cluster deactivation to low-power mode is 2.5–3 times greater
than the other configurations.

B. Impact of the number of data blocks

Next, we investigate the impact of the number of data
blocks since the CS size has strong correlation with this
parameter. To see this, we used a diverse set of values for
the number of data blocks, fromb = n (i.e., 64GB) to
b = 32n (i.e., 2TB). Figure 13 shows the results with respect
to both energy and performance. We can see linear increases
of energy consumption as the number of blocks increases for
CS techniques, since a greater number of data blocks results
in a larger CS. environment. Basic shows 30–60% energy
saving, while PA yields 40–70% saving with no noticeable
performance degradation.

C. Impact of job arrival rate

By default, we used job arrival rateλ = 0.5, since we are
more interested in light load environments. In this experiment,
we discuss the experimental results under varied job arrival
rates. We employed a multiple set of job arrival rates from
λ = 0.25 (for a light load) toλ = 2 (for a heavy load) in this
experiment.

Figure 14 shows energy and performance as a function of
λ. We see no significant changes between our CS techniques,
except that PA somewhat degraded in a heavy workload
environmentλ = 2. Interestingly, AIS saves energy more
well with smaller λ. This is because AIS could lengthen
deactivation periods in a light load. In this experiment, AIS
yielded around 30% energy saving whenλ = 0.25. However,

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

E
ne

rg
y

co
ns

um
pt

io
n

(%
)

Fraction of low-power nodes (f)

AIS
Basic CS

Power-aware CS

(a) Energy consumption

 0

 500

 1000

 1500

 2000

 0 0.2 0.4 0.6 0.8 1

T
ur

na
ro

un
d

tim
e

(s
ec

)

Fraction of low-power nodes (f)

NPS
AIS

Basic CS
Power-aware CS

(b) Average turnaround time

Fig. 12. Impact of fraction of low-power nodes in the cluster

 0

 20

 40

 60

 80

 100

n 2n 4n 8n 16n 32n

E
ne

rg
y

co
ns

um
pt

io
n

(%
)

Number of data blocks (b)

AIS
Basic CS

Power-aware CS

(a) Energy consumption

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

n 2n 4n 8n 16n 32n

T
ur

na
ro

un
d

tim
e

(s
ec

)

Number of data blocks (b)

NPS
AIS

Basic CS
Power-aware CS

(b) Average turnaround time

Fig. 13. Impact of the number of data blocks

little energy saving has been observed with greater job arrival
rates (λ > 0.5) for AIS.

D. Impact of computation time

We examine the impact of computation time. In addition
to c = 300s used by default, we examined the techniques
with three more computation times,c = 100s, c = 600s, and
c = 1200s to consider a diverse range of applications that
have different computation requirements. The results showed
no noticeable impact of this parameter for both energy and
performance, as plotted in Figure 15.

E. Impact of data transfer overhead

In this experiment, we employ several distribution models to
consider indeterministic data transfer overhead. As explained
in the previous section, we consider two distributions for this
— normalandexponentialdistributions. Again, we model data
transfer overhead by specifying standard deviation for normal
distribution and mean for exponential distribution. We used
d = 0.05, 0.1, 0.25 for this experiment.

Figure 16 shows the results. In the figure,Norm(d) and
Exp(d) represent normal and exponential distributions with

data transfer overheadd, respectively. For a diverse set of
distributions, we can see that ourCS-based techniques con-
sistently save energy around 30% for Basic and 40% for PA
without significant performance losses.

F. Impact of the number of tasks

We next present our evaluation results showing the impact of
the number of tasks on energy and performance. We varied the
number of tasks (χ) from n/4 to 4n (i.e.,χ = [n

4 , 4n]) for each
job. Figure 17 shows the experimental results as a function
of the number of tasks. Basic achieves 30% energy saving
as compared to NPS, and PA further improves energy saving
up to 40%. However, the CS-based techniques showed some
extent of performance degradation with the heavy workload
where χ = 4n. This result is not surprising as CS-based
techniques are designed for light workloads. Nonetheless,we
address this problem by providing the concept of multi-level
CS sets, as discussed next. As shown in the figure, AIS
yields no significant energy saving, and hence no performance
penalty.

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
ne

rg
y

co
ns

um
pt

io
n

(%
)

Job arrival rate (λ)

AIS
Basic CS

Power-aware CS

(a) Energy consumption

 0

 500

 1000

 1500

 2000

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
ur

na
ro

un
d

tim
e

(s
ec

)

Job arrival rate (λ)

NPS
AIS

Basic CS
Power-aware CS

(b) Average turnaround time

Fig. 14. Impact of job arrival rate

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

E
ne

rg
y

co
ns

um
pt

io
n

(%
)

Computation time

AIS
Basic CS

Power-aware CS

(a) Energy consumption

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 200 400 600 800 1000 1200

T
ur

na
ro

un
d

tim
e

(s
ec

)

Computation time

NPS
AIS

Basic CS
Power-aware CS

(b) Average turnaround time

Fig. 15. Impact of computation time

G. Evaluation of multi-level CS

Finally, we present performance and energy consumption
of multi-level CS sets. To see the impact more clearly, we
used a greater replication factorr = 5 and a smaller value for
the number of data blocksb = n, in this experiment. Thus
there can exist four CS sets fromCS-1to CS-4, in addition to
the entire cluster. Then we variedλ to see how the CS sets
respond to different loads.

Figure 18 shows the results. From the figure, we can see that
each CS level gives a different degree of energy saving. For
λ = 1, even with CS-4, it saves 20% of energy compared
to NPS on the average. The figure also shows thatCS-3
achieves 50% energy saving in the same setting, whileCS-2
andCS-1further increase energy saving to 70%. With regards
to performance, we can see that a lower level CS shows a
greater turnaround time. Thus, any appropriate CS can be
chosen based on load intensity to maximize energy saving
with performance guarantees.

VII. C ONCLUSIONS

Energy consumption in commercial and scientific datacen-
ters has recently become a major concern due to the rising

operational costs and scalability issues. For data parallelism
and fault tolerance purposes, most common file systems used
in MapReduce-type clusters maintain a set of replicas for each
data block.

Our basic idea in this work is to identify a subset of nodes,
called a covering subset, that can provide a required degreeof
data availability for a given set of data blocks. In this work,
we developed algorithms to maintain energy proportionality
by discovering a covering subset that minimizes energy con-
sumption while placing the remaining nodes in low-power
standby mode. In particular, we consider heterogeneity in
determining a power-optimized covering subset. For evalua-
tion, we conducted experiments with a variety of parameters,
such as job arrival rate and data transfer distribution. The
experimental results show that power management based on
our covering subset algorithms can significantly reduce energy
consumption, up to 70% compared to a non-power saving
configuration, with little performance loss. In particular, the
experimental results show that our algorithms can enhance
energy saving in a heterogeneous environment by considering
power metrics of individual nodes in the construction of a
covering subset. The results also show that our extended

 0%

 20%

 40%

 60%

 80%

 100%

 120%

Norm(0.05) Norm(0.1) Norm(0.25) Exp(0.05) Exp(0.1) Exp(0.25)

E
ne

rg
y

co
ns

um
pt

io
n

(%
)

Data transfer time distribution

AIS
Basic−CS
Power−aware−CS

(a) Energy consumption

 0

 500

 1,000

 1,500

 2,000

Norm(0.05) Norm(0.1) Norm(0.25) Exp(0.05) Exp(0.1) Exp(0.25)

T
ur

na
ro

un
d

tim
e

(s
ec

)

Data transfer time distribution

NPS
AIS
Basic−CS
Power−aware−CS

(b) Average turnaround time

Fig. 16. Impact of data transfer distribution

 0

 20

 40

 60

 80

 100

n/4 n/2 n 2n 4n

E
ne

rg
y

co
ns

um
pt

io
n

(%
)

Number of tasks (χ)

AIS
Basic CS

Power-aware CS

(a) Energy consumption

 0

 500

 1000

 1500

 2000

 2500

 3000

n/4 n/2 n 2n 4n

T
ur

na
ro

un
d

tim
e

(s
ec

)

Number of tasks (χ)

NPS
AIS

Basic CS
Power-aware CS

(b) Average turnaround time

Fig. 17. Impact of the number of tasks

algorithm can be used to provide a coarse-grained level of
energy proportionality based on covering subset with different
degrees of data availability (thus providing different degrees
of data parallelism).

In the future, we plan to also work on efficient scheduling
algorithms for activating/deactivating nodes based on antici-
patory analysis of future workloads.

ACKNOWLEDGMENTS

This work was supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research, of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

REFERENCES

[1] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and
K. Schwan. Robust and flexible power-proportional storage.In
Proceedings of the 1st ACM symposium on Cloud computing, SoCC
’10, pages 217–228, 2010.

[2] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica,
D. Harlan, and E. Harris. Scarlett: coping with skewed content popularity
in mapreduce clusters. InProceedings of the sixth conference on
Computer systems, EuroSys ’11, pages 287–300, 2011.

[3] L. A. Barroso and U. Holzle. The case for energy-proportional
computing.Computer, 40:33–37, 2007.

[4] P. Berman, B. DasGupta, and E. Sontag. Randomized approximation
algorithms for set multicover problems with applications to reverse
engineering of protein and gene networks.Discrete Appl. Math., 155(6-
7):733–749, 2007.

[5] R. Bianchini and R. Rajamony. Power and energy management for
server systems.Computer, 37(11):68–74, 2004.

[6] M. Cardosa, A. Singh, H. Pucha, and A. Chandra. Exploiting spatio-
temporal tradeoffs for energy efficient MapReduce in the cloud. Tech-
nical Report TR 10-008, University of Minnesota, April 2010.

[7] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, andR. P.
Doyle. Managing and server resources in hosting centers. InSOSP ’01:
Proceedings of the eighteenth ACM symposium on Operating systems
principles, pages 103–116, 2001.

[8] B.-G. Chun, G. Iannaccone, G. Iannaccone, R. Katz, G. Lee, and
L. Niccolini. An case for hybrid datacenters.SIGOPS Oper. Syst. Rev.,
44(1):76–80, 2010.

[9] V. Chvàtal. A greedy heuristic for the set-covering problem.Mathe-
matics of Operations Research, 4:233–235, 1979.

[10] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,
and R. Sears. MapReduce online. InProceedings of the 7th USENIX
conference on Networked systems design and implementation, NSDI’10,
pages 21–21, 2010.

[11] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[12] J. Dean and S. Ghemawat. MapReduce: simplified data processing
on large clusters. InOSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation, pages 10–
10, 2004.

[13] T. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox. MapReduce inthe clouds
for science. InCloudCom, pages 565–572, 2010.

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
ne

rg
y

co
ns

um
pt

io
n

(%
)

Job arrival rate (λ)

CS-1
CS-2
CS-3
CS-4

(a) Energy consumption

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
ur

na
ro

un
d

tim
e

(s
ec

)

Job arrival rate (λ)

CS-1
CS-2
CS-3
CS-4

CS-5 (=NPS)

(b) Average turnaround time

Fig. 18. Performance and energy consumption for multi-level CSsets

[14] Hadoop:, http://hadoop.apache.org/.
[15] T. Heath, B. Diniz, E. V. Carrera, W. Meira, Jr., and R. Bianchini.

Energy conservation in heterogeneous server clusters. InPPoPP ’05:
Proceedings of the tenth ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 186–195, 2005.

[16] W. Lang and J. M. Patel. Energy management for MapReduce clusters.
In VLDB ’10, 2010.

[17] J. Leverich and C. Kozyrakis. On the (in)efficiency of Hadoop clusters.
SIGOPS Oper. Syst. Rev., 44(1):61–65, 2010.

[18] http://www.mckinsey.com/clientservice/bto/pointofview/pdf/ revolution-
izing data center efficiency.pdf.

[19] OMNeT++ Network Simulation Framework, http://www.omnetpp.org/.
[20] http://www.federalnewsradio.com/pdfs/ epadatacenterreporttocongress-

august2007.pdf.
[21] A. S. Szalay, G. C. Bell, H. H. Huang, A. Terzis, and A. White. Low-

power amdahl-balanced blades for data intensive computing.SIGOPS
Oper. Syst. Rev., 44(1):71–75, 2010.

[22] C. Vercellis. A probabilistic analysis of the set covering problem.Annals
of Operations Research, pages 255–271, 1984.

[23] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I.Stoica.
Improving MapReduce performance in heterogeneous environments. In
OSDI, pages 29–42, 2008.

