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ABSTRACT OF THE DISSERTATION

A Power Reduction Technique Through Dynamic Runtime Algorithm For CMOS
VLSI Circuits

by

Syed Md. Jaffrey Al-Kadry

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2012

Dr. Philip Brisk, Chairperson

All digital circuits have design margins for delay and power consumption. This

thesis introduces an algorithm that exploits the design margin for delay to reduce power

consumption instead, through the novel application of body bias to the transistors on

the critical path. A runtime circuit monitors the activity of critical paths, and applies

body bias to transistors on non-critical paths for specific input vectors where the value

computed by the critical path is a don’t care. In sub-100 nm CMOS devices, the

application of adaptive body bias reduced leakage power while slightly increasing the

signal propagation delay. When a portion of the circuit does not use up the whole

clock cycle, the available slack can be used to reduce leakage power dissipation without

compromising performance.
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Chapter 1

Introduction

Reducing leakage power has been an important challenge for VLSI circuit de-

signers for a long time. Current integrated circuits (ICs) in the market today leak con-

siderably more power than the theoretical minimum; thus, there are many opportunities

to reduce different aspects of leakage through innovative research. The leading industrial

trend for performance optimization is aggressive scaling; unfortunately, scaling increases

leakage current. As a result, the total power consumption of ICs is steadily increasing

and approaching the maximum acceptable limits suggested by the ITRS Roadmap [1].

Up to 40% of the total power consumed by a high-performance microprocessor can be

attributed to leakage [2].

MOS devices leak current due to sub-threshold leakage, gate oxide leakage, and

junction leakage. Process optimization has enabled IC designers to reduce the threshold

voltage to around 200 mV today via miniaturization, however, sub-threshold leakage can

exceed 50% of the total power consumption of an IC. Unless high-k solutions become

widespread, digital CMOS circuits will inevitably pay the cost of high leakage power,

whereas, analog circuits do not suffer nearly as much [3]
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. Circuit design involves tradeoffs between delay and power. Historically, designers have

chosen to expend an increasing amount of current to speed up circuits, with the ground

current budget or allowable temperature acting as limits. If device-level improvements

cannot be obtained, the next step is move to the block or behavioral levels for optimiza-

tions. Researchers constantly strive to find suitable margins in other design parameters

that can be sacrificed in order to reduce leakage.

This thesis describes a novel circuit-level scheme that allows the delay margin

to be exploited for energy reduction at runtime using body biasing. Body biasing is

a technique that improves efficiency by reclaiming lost performance of margins due to

variations [4]. If a circuit computes an output earlier than needed, we change the body

bias of the MOS device to reduce the leakage current and thus save power. This thesis

introduces an algorithm to detect the activity of a circuit at runtime and determines

whether or not a sufficient timing margin exists in the delay scenario that body biasing

can exploit. Doing so significantly reduces the power consumed during that cycle of

execution; aggregated over time, a significant energy savings is achieved.

1.1 Thesis Layout

This thesis is composed of seven chapters:

Chapter 1, introduces the current work and problem statement.

Chapter 2, presents background and motivation for the proposed scheme; it describes

how design margins controlling values can be exploited to change the bottleneck of a

circuit, which provides an opportunity to save power.

Chapter 3 introduces leakage power and describes a methodology to reduce it through

a body bias circuit, and develops a relationship between body bias, power, and delay;
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the chapter also discusses the application of body bias to control leakage and speed.

Chapter 4 presents three examples of mainstream arithmetic circuits whose power can

be reduced by applying our scheme; circuits to implement forward and reverse body

biasing are described.

Chapter 5 summarizes an algorithm that identifies opportunities for power reduction

via body biasing in general circuits; the key step is to exploit controlling logic that

minimizes the operation time of the circuit under consideration. Pseudocode for the

algorithms is provided and its time complexity is analyzed.

Chapter 6 describes our experimental setup and results. The simulation infrastructure

is described, results are presented, and data is analyzed. A practical approach to circuit

layout involving body biasing is described as well.

Chapter 7 suggests directions for future work, including opportunities to improve the

methods and techniques presented in this thesis by incorporating them with other related

issues.

Chapter 8 summarizes the work and concludes the thesis.
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Chapter 2

Background And Motivation

2.1 Background: Design Margins

Process, voltage, and temperature (PVT) variations significantly complicate

delay specification for CMOS circuits, and statistical analysis is required to ensure a

proper design flow. Slow devices with random threshold voltage variation may cause

the arrival time of signals to diverge significantly from design-time assumptions and

expectations. Circuit designers must ensure that even the slowest signal arrives at its

output long before it is required.

One approach to reduce the uncertainty associated with random delay is to add

redundancy, ensuring that at least one copy of a circuit behaves according to design-time

assumptions; however, an over-design of delay specification is always preferable, i.e., the

circuit must behave properly and achieve high speeds regardless of the state of the

system and across all possible signal combinations. When parallel data bits propagate

through the logic levels of circuits, their timing must be equalized; if one particular

bit is slower than the others, then the remaining bits must be slowed down to ensure

synchronous circuit behavior, i.e., the clock speed is determined by the arrival time of
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the slowest bit.

Although critical path analysis is mature, the fundamental nature of the prob-

lem has changed due in no small part to the physical properties of deep sub-micron

CMOS technologies, and PVT variations in particular. For example, different rise and

fall times of logic gates cause the timing of each path in the circuit to be partly de-

pendent on the logic state; changing the state may change which path is critical[5]. In

particular, the slowest timing path may be inactive for a large number of all possible

logic states. We aim to exploit this low activity factor in this thesis.

In VLSI circuits, PVT variations, which have arisen due to technology minia-

turization, significantly complicate specification and design. Static timing analysis has

become more critical, but increasingly difficult to perform effectively. Traditional static

timing analysis is too pessimistic, and has been replaced by statistical static timing anal-

ysis to compensate for the higher level of variation; however, statistical static timing

analysis is computationally intensive and does not easily scale for large circuits. That

being said, it is possible to address certain constraints and achieve some specific goals by

exploiting knowledge of the slowest data paths and their activity factors. For example,

circuit redesign to exploit the available timing margins can save power, as described in

the remainder of this thesis.

2.2 Controlling Value

For any combinational logic gate or netlist, a Controlling Value at the input

refers to a subset of inputs that can alone determine the output logic state irrespective

of all other inputs, for at least some values. For example, if an input to an AND gate is a

logical zero (controlling value), then the output of the AND gate will be zero, regardless
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of the values of the other bits. In other words, a controlling value effectively renders

all other inputs as don’t cares. In general, AND, OR, NAND, and NOR gates have

controlling values, while XOR and XNOR gates do not. In this thesis, we will exploit

controlling values to enable us to ignore the don’t care inputs, which will lead to power

saving as a result.

2.3 Time Margin Detection and Utilization

The data propagation time for a given circuit varies, depending on the input

vector. Our scheme requires us to find input vectors that have the shortest possible

propagation time, which occur commonly in real-life applications; these vectors enable

us to identify controlling values, which produce stable logic states far faster than the

worst-case path in the circuit. We exploit this time margin to reduce power by switching

the body bias of the circuit to slow it down.

The basic idea is to find a controlling value at the nodes of the longest timing

path in a netlist. If we can recognize such a controlling value, we set the logic of the next

stage immediately, and do not wait for the other signals to arrive, as they will not affect

the output. To reduce power, we adjust the body bias of the circuit that produces the

other signals to slow them down; the signal values that arrive are incorrect, however, the

controlling values effectively “suppress” the incorrect signals, ensuring that the errors

do not propagate to the output of the logic stage.

As an example, suppose that the final gate in a combinational logic path is a

NAND. One of the NAND inputs is a controlling signal, and the other input is produced

by a large logic function that has a much higher timing delay than the controlling signal.

If the controlling signal is zero, then the output of the NAND gate is one, regardless of
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the value of the other input. We can therefore slow down the logic that computes the

other input’s value by adjusting the body bias. Even if the value computed is incorrect,

the mistake will never propagate beyond the NAND gate, due to the controlling value.

Somewhat more generally, suppose that the delay of the longest path has a

delay of T1; the designers will set the period of the cock accordingly. If a controlling value

can be found, then, in favorable situations, the delay can be reduced to T2<T1, which

provides a margin of T1-T2 that we can exploit. In sub-100 nm processes, Adaptive

Body Biasing is one such technique that can exploit this margin to reduce energy. Body

biasing affects the logic path that computes the controlling values as well. Therefore,

it is important that we do not slow down the path beyond the margin outlined above;

otherwise, errors will occur, and performance will suffer.

The ability to effectively identify controlling values is the fundamental innova-

tion that lends credence to the feasibility of this thesis.
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Chapter 3

Literature Review On Power

Minimization

3.1 Sub-threshold Leakage

In deep sub-micron technologies, shrinking CMOS transistors has led to an

increase in the contribution of leakage to total power consumption; in the past, dynamic

switching power was a larger contributor than leakage to total power consumption,

however, this is no longer the case. Today, leakage may contribute up to 50% of total

power consumption in a typical microprocessor [6]. The ITRS roadmap indicates that

there are many possibilities to reduce leakage current, which occurs primarily in the

source and drain of a MOS device. Leakage depends on the sub-threshold characteristic

of MOS as well as the threshold voltage VTH [7].

There are several sources of leakage in a MOS device. The four most significant

sources are:

1. Sub-threshold current
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Figure 3.1: Leakage components in a MOS structure

2. Junction leakage

3. Gate-induced drain leakage (GIDL)

4. Gate-leakage

Figure 3.1 depicts the leakage components in a generic MOS structure. Our

work focuses primarily on the sub-threshold leakage current, which is the current that

flows between the source and drain when the gates-to-source voltage is below the thresh-

old. The sub-threshold region is often called the weak inversion region [8]; although

beyond the scope of this work, weak inversion is a widely used and efficient operating

mode in analog applications [9]. In a digital circuit, this current is viewed as parasitic

leakage in a state where there would be no current under ideal circumstances. Leakage

current depends on sub-threshold voltage and temperature. Although it is possible to

implement temperature tracking schemes in CMOS, it is generally easier to design and

fabricate circuits to manipulate the threshold voltage.

After fabrication, the threshold voltage, VTH , of a transistor can be manipu-

lated by changing the body-to-source voltage. In bulk MOSFETs, the formula for VTH

is:
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Figure 3.2: Leakage path in forward body bias

VTH = VTH0 + γ(
√
|2φF − VBS | −

√
|2φF |), (3.1)

where

γ =
tox
εox

√
2εsiqNA, (3.2)

φF =
kT

q
ln
NA

Ni
, (3.3)

φF is the work function potential, VBS is the body-to-source potential differ-

ence, γ is the body effect, and VTH0 is the device threshold without any body bias

applied. If a negative voltage is applied to the substrate in an NMOS transistor, the

depletion width is increased so that a higher gate voltage would be required to form

an inversion layer channel under the gate, which increases VTH . This effect is called a

reverse body bias (RBB); similarly, applying a positive voltage at the body will reduce

VTH , which is called a forward body bias (FBB).

Applying body bias without limits in either direction can negative affect per-
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formance. The forward bias is limited by the flow of leakage current across the P-N

junction. A potential latch-up scenario is also present under FBB, as Figure 3.2 shows.

The thyristor-like P-N-P-N junction causes a runaway effect, and eventually breaks

down. Oowaki et al. show that up to 0.5V FBB can be applied without inducing a

latch-up [10]. The RBB limit is set by high leakage and the breakdown of the reverse

biased drain-body junction during burn-in [11]. Within these limits, both RBB and

FBB can be used to improve performance. FBB can boost the clock frequency, while

RBB can reduce active leakage.

The following equation relates the delay of logic propagation to the drain cur-

rent:

Td = 1/4× CLVDD(1/IDn + 1/IDp), (3.4)

where IDn and IDp are the drain currents of NMOS and PMOS, which are

manipulated by VBS . Thus, adjusting the source-to-body voltage can modulate the

signal propagation time through the circuit. Figure 3.3 shows the relationship between

leakage current and propagation delay: a linear increase in delay yields an exponential

reduction in leakage current.

The following equation governs sub-threshold leakage current:

Isubds = I0.
W

L
.e

(
Vgs−VTH−Voff

nVT
)
.(1− e(−

Vds
VT

)
), (3.5)

The overdrive voltage, Vod, is the voltage applied at the gate in excess of VTH ,

and governs the speed of switching strength. Due to device scaling, both VTH and Vod

are decreasing due to ESD requirements and reliability issues. Lowering the threshold

voltage tends to increase the leakage current; thus, leakage current, and its contribution
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Figure 3.3: Effect of threshold voltage reduction on delay and leakage

to total power consumption, tend to increase with further device scaling.

On the other hand, increasing VTH would reduce the leakage current, but in-

crease delay. The relationship between VTH and delay is given by the following equation:

td = 2CLVdd/(β)(Vdd − VTH)α, (3.6)

and plotted in Figure 3.3. Thus, decreasing VTH by applying body bias can

reduce the propagation delay, td.

Our work focuses on the Berkeley Predictive Technology Model [12] and we

run HSPICE simulations to determine the optimal body bias for a given technology,

and to characterize the leakage and delay behavior.
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3.2 Power Reduction Through Adaptive Body Bias

Adaptive Body Bias (ABB) refers to the process by which either a forward or

reverse body bias (FBB or RBB) can be applied. Researchers have found that FBB is

useful for process-variation immunity [13] ,[11] and for aggressively scaled low- temper-

ature CMOS circuits at the 10 nm gate length and 1.5 nm oxide thickness [14]. RBB,

meanwhile, can reduce overall leakage and maximize efficiency.

The optimal RBB value to minimize leakage in a given technology depends

on many factors [12]; the performance improvement in the active mode of a device by

applying RBB includes reduced sensitivity to VTH , frequency response, and the short

channel effect [15], [16]. To best exploit these parameters, it is necessary to determine

the correct level of body bias to apply with appropriate resolution.

ABB [15] [6] employs a bias generator circuit to find an optimal solution over

different technology generations. Under the 65nm predictive model, the devices are

found to work slower under RBB in comparison to zero body bias (ZBB). Monotoni-

cally increasing the delay with RBB suggests that an optimal body bias voltage should

be chosen on the basis of the allowable increase in signal propagation delay. As noted

previously, a linear increase in propagation delay yields an exponential reduction in

leakage current. This provides the opportunity to bias the transistors in a manner

that significantly reduces leakage power consumption while minimally impacting perfor-

mance.

Many techniques have been applied to reduce the power consumption of digital

circuits. One approach uses pre-computation to turn off portions of a circuit to reduce

dynamic power consumption, and guarding to reduce the leakage current. The pre-

computation circuit detects inputs prior to the calculation, and determines whether

13



Figure 3.4: Effect of substrate bias on leakage components for a 70 nm predictive tech-
nology [17]

or not certain parts of a circuit will affect the output, given the specific input vector

[18]. When this occurs, the pre-computation circuit can disable the clock signal to the

unneeded portion of the circuit to reduce switching activity; this is called signal gating

[19]. Guarding is similar, but completely turns off a portion of the circuit to reduce

leakage power [20].

The optimal choice of body bias is highly dependent on the technology at

hand. The next section will show that FBB reduces leakage as a result of the BTBT

tunneling effect in smaller technologies. Our objective, however, is not to manipulate

the threshold; instead, our goal is to apply ABB to reduce power when opportunities

exist to slow down portions of the circuit that do not affect the outputs, for commonly

occurring input vectors. Similar to the works cited above, a pre-detection circuit will

identify conditions where certain input variables do not affect the outputs, and ABB will

be applied to appropriate portions of the logic accordingly. This will slow down these

regions of the circuit to reduce power consumption; however, since the values produced

by this subset of logic are effectively don’t cares (for a given input vector); any errors

induced by the slower propagation delay will not be visible to the circuit outputs.
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3.3 Leakage Characteristics of 45nm CMOS

The leakage characteristics of CMOS devices change dramatically as devices

scale, especially in the sub-100nm region; in these modern technologies, the band-to-

band tunneling (BTBT) leakage at the source-drain junction and the overall gate leakage

are highly sensitive to scaling [21]. Body bias voltage has an optimal range at which the

leakage is low. FBB increases the sub-threshold leakage, while RBB increases BTBT;

both cases increase total leakage.

Figure 3.5 illustrates the effect of substrate bias on leakage components for a

predictive 45nm technology, which follows the trend of real fabrication data [21]: the

minimum leakage current, as a function of body bias, is achieved at 30% of the normal

supplied voltage for NMOS, and 0.7 VDD, as expected, for PMOS. Without changing

the circuit structure, leakage power consumption can be minimized if the substrate is

switched to the optimal voltage.

Figure 3.5: 45nm CMOS characteristics of Idrain
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Figure 3.6: 50nm CMOS characteristics of Idrain

as depicted by Neau et al. [21]

3.4 Adaptive Leakage Control and Speed

As noted previously, applying body bias to reduce leakage increases the gate

delay. We investigate this relationship using an inverted. We found that delay does not

increase as rapidly as leakage decreases. We have shown that if NMOS body bias voltage

increases from 0 to 0.3V, the gate delay will increase by 5.5%, while the gate leakage

reduces by 36.5% [22]. This mechanism can be exploited in two separate contexts. In a

static context, it can be applied to non-critical paths in the circuit where a 5.5% increase

will not cause them to become critical. In a dynamic context, which is the primary focus

of this work, it can be applied to paths that do not affect the circuit outputs for specific

input vectors; a pre-computation detection circuit detects these input vectors and applies

FBB to the appropriate paths accordingly. A separate ABB circuit will create and

control the substrate biasing. In Figure 3.7, a substrate voltage selector circuit switches

the body of the main circuit, depending on the signal computed by the pre-computation

circuit. The subsequent sections will describe the ABB circuit, pre-computation schemes

for three arithmetic circuits: a comparator, adder, and multiplier, and an algorithm that
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identifies pre-computation schemes for combinational logic networks.

Figure 3.7: Basic idea of pre-computation-based adaptive body bias control
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Chapter 4

Adaptive Body Bias Circuit:

Example

As discussed in the previous chapter, there are two types of body bias: reverse

body bias (RBB) and forward body bias (FBB). If both options are available, then we

refer to their collective exploitation as Adaptive Body Bias (ABB). The term zero body

bias (ZBB) refers to the default case, where no body bias is applied.

4.1 Reverse Body Bias Circuit

There are several implementations of RBB already in the market [25]. RBB

requires a voltage level that is above the supply and below the ground potential since the

body bias voltage must be greater than the potential of the source terminal for PMOS

and below the potential of the source terminal for NMOS; in other words, the body

must be connected to V DD + δV and V SS − δV respectively. If these two potentials

are provided by an external source, then some I/O pads must be dedicated to provide

them; in this case, it suffices to connect those bodies to those pads. On the other hand,
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Figure 4.1: Self-adjusting threshold voltage scheme

some chips produce these ”beyond the rails” potentials internally, and do not require an

external body bias. They use two extra bus lines that are routed throughout the chip,

but do not connect to any I/O pads.

Figure 4.1 depicts a self-adjusting threshold (SAT) voltage scheme, as suggested

by Tadahiro et al. [26]. The SSB circuit generates the required bias voltage, and a

leakage monitoring scheme (LCM) turns it on and off, depending on a reference current

which is compared to the leakage [27].

As leakage increases, more charge is pumped out of the substrate and VTH

increases. When IleakLCM becomes smaller than Iref , the LCM stops the SSB. By

intermittently turning this circuit off and on, a target value of VTH can be achieved.

Since the SAT cannot reduce standby power dissipation, it can only reduce activate

power. To reduce standby power, it is possible to switch the body bias between RBB

and ZBB using an SPR (Figure 4.2) circuit and Switch scheme [28]. The advantage of

this approach is that it can switch the substrate voltage within 0.1µs.
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Figure 4.2: Standby power reduction scheme

Figure 4.3 shows an on-chip bias solution, which is costly in terms of area

and driving current requirements; however, it does not offset the gain. Rather than

employing complex circuitry, a simple charge pump, although larger in size, can be

employed. P-channel transistors of the diode configuration are connected in series; their

intermediate nodes are switch by two out-of-phase signals, φ1 and φ2, which alternately

turns on each transistor and transfers charge from the P-well to VSS. After several

pulses, the charge depletion from the P-well yields a voltage lower than VSS. This

circuit is widely used in DRAMs and E2PROMs. The time required to generate the

bias depends on the size of the P-well along with its capacitance; the driving current

penalty is approximately 100µA [26]. We have used implemented this charge pump and

used it in our studies; we have found that it is a reasonable means by which to generate

bias.
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Figure 4.3: Charge pump circuit [26]

4.2 Forward Body Bias Circuit

External bias can be used in certain cases to generate the reference voltage of

a circuit. An on-chip bias circuit scaled to the supply voltage is generally preferred,

because it allows us to track the variation of fabrication of parameters within the main

certain. We present a novel body bias circuit which can be used to apply adaptive

leakage control on the body of one or more transistors.

Figure 4.4: Forward body bias (FBB) circuit
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The fundamental challenge is to generate the necessary body bias voltage that

can apply to both PMOS and NMOS transistors. If the body bias control circuit controls

a single transistor then the solution is straightforward; however, this is unrealistic due

to the area overhead. Instead, our body control circuit provides body bias for hundreds

of transistors at once; therefore, an aggregated tradeoff must be made involving its area,

drive, and leakage issues.

Figure 4.4 shows an FBB body bias control circuit. Transistors M5 and M6

are used to set the desired values of bias body voltages at nodes “pbias” (for PMOS)

and “nbias” (for NMOS). Transistors M1, M2, M3 and M4 switch the nodes “pbias”

and “nbias” to either rails or to the body bias values generated by the circuit. Without

loss of generality, if control signal “pwrsave = 1 ”, then M1 and M cut off and M2

and M3 open; this creates a DC path through M2, M3, M5 and M6. Similarly, when

“pwrsave = 0 ”, a path is opened between M1, M4, M5, and M6. The circuit shown in

Figure 4.4 is a conceptual illustration; a realistic implementation would require a drive

capability of the generated voltage pbias and nbias. Since this circuit needs to drive the

large capacitances of the P-well and N-well, a charge pump is connected to these nodes;

it is similar to the pump circuit described above.

Figure 4.5: Forward body bias (FBB) circuit using band gap reference [29]
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For BiCMOS process a Band Gap reference is readily available which is immune

to process, supply voltage, and temperature (PVT) variations. A scaled version of the

Band Gap can be used to generate the optimal body bias. If an NPN transistor is not

available in a true CMOS process, the use of substrate PNP can generate a reasonably

usable Band Gap circuit. Banba et al. [29] proposed a 450mV FBB circuit from the

scaled band gap analog circuit and connected it to a digital circuit using an isolation

technique. As shown in Figure 4.5, the bias voltage is generated and converted to a

proportional current through a PMOS transistor. This current is steered and mirrored

in another PMOS transistor to generate the same voltage across the gate to source, and

is also used as a bias voltage for the substrate of the main circuit. A similar approach

is applied to NMOS, except the MOS and reference voltages are complemented with an

NMOS transistor and a ground reference; a buffer is also inserted to ensure isolation

and to provide a high drive strength. The buffer can be implemented using a simple

differential amplifier whose output connects to one of its input. The capacitor improves

the noise performance and stability, but impacts the switching time of the substrate.

4.3 Activity Factor

Theoretically, the ratio of time of “pwrsave = 1 ” to total running time directly

determines how much leakage power is saved by the Adaptive Body Switching. The

following equation shows their relationship:

TotalPRleakage% = Tpwrsave%× avgPRleakage% (4.1)

In equation 4.1, TotalPRleakage% is the total leakage power reduction in the whole

running time, Tpwrsave% is the ratio for time of “pwrsave = 1 ” to total running time,

and avgPRleakage% is the average of leakage power reduction for all input vectors that
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makes “pwrsave = 1 ” . Therefore, if the average of leakage power reduction for each

input vector is about 20% and the ratio for time of “pwrsave = 1 ” is 50%, then ideally

the total leakage power reduction in the whole running time is about 10%. If the leakage

power is 40% of the total power, the total power reduction will be 4%. So it can be seen

that the amount of power save is not only depending on the leakage current contribution

of the devices but also the activity factors of the circuits.

4.4 Application of ABB to Arithmetic Circuits

Pre-computation is a well-established technique that can reduce dynamic power

consumption. We use pre-computation to selectively detect situations where part of a

circuit can be turned off during a given clock cycle, without affecting the output. Rather

than explicitly putting these sub-circuits to sleep, we apply body bias to reduce power,

which slows down the signal propagation; timing errors that may occur as a result do

not propagate to any observable outputs. Our implementation uses pre-computation-

based forward body bias control, as shown in Figure 3.7. After the pre-computation

logic block detects and input vector that can be exploited, it sends a pwrsave” signal

to the bias circuit. If “pwrsave = 1 ” , the ABB circuit sets the substrate voltages of

transistors in the original circuit to the bias voltage values; otherwise, normal substrate

voltages are applied.

Here, we describe three examples

4.4.1 Example 1: 8-bit Comparator

Our first example is an n-bit comparator circuit, e.g., greater-than or less-

than. The basic idea is to split the circuit two parts: the most significant part (MSP),
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consisting of m bits; and the least significant part (LSP) consisting of n−m bits. Let A

and B be the values being compared. If MSPA = MSPB, then the comparison result

of LSPA and LSPB will determine the output of the comparator; we can detect quite

quickly that the MSP does not affect the output.

Let d be the delay of the comparator circuit, and dMSP and dLSP be the re-

spective delays of the MSP and LSP respectively. Under normal synchronous operation,

d = dMSP + dLSP , which is the delay of the critical path. Given our pre-computation

scheme, the answer will be known after time dLSP , as the MSP will not affect the out-

put. Nonetheless, the clock period of the entire system is greater than or equal to d.

Thus, we have a timing budget of d − dMSP available for exploitation. Through the

application of body bias, we slow down the LSP to save power; as long as the biased

delay does not exceed d, the correct values will appear at the comparator outputs at the

end of the current cycle.

On the other hand, if MSPA 6= MSPB, then the MSP alone will determine the

output of the comparator, and the LSP output (and carry-propagation into the MSP)

do not affect the output of the circuit. Therefore, we can ignore the LSP output and

apply body bias to the MSP to reduce energy, as long as the delay of the biased MSP

does not exceed d.

Figure 4.6 shows an 8-bit example, with m = 4. In this example, A =

00001010 and B = 00001110 are stored in registers R1 and R2 respectively. The pre-

computation circuit detects that MSPA = MSPB = 0000. In the following cycle, the

pre-computation circuit sends signal pwrsave = 1 so that the ABB control circuit biases

the LSP. Concurrently, the comparison of LSPA = 1010 and LSPB = 1110 is executed

under the biased voltage, as controlled by the ABB circuit. The multiplexer selects the
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Figure 4.6: Pre-computation-based ABB control applied to a comparator

LSP output and forwards it to the output of the comparator circuit.

Similarly, if A = 10111010 and B = 00001110, then MSPA 6= MSPB, so body

biasing can be applied to the MSP circuit, and the LSP output is ignored.

The reduction in power consumption depends highly on the value of m, which

balances delay and power. Additionally, there is a tradeoff between the cost of the

pre-computation circuit and the power reduction of the comparator. Lastly, there are

many different conditions that a pre-computation-based ABB circuit could detect; this

example used one specific case, but many others are possible.

4.4.2 Example 2: 32-bit Carry-Propagate Adder

Carry-propagate adders are fundamental digital VLSI circuits. When designing

the functional units of a data-path, the word length is usually based on the maximum

dynamic range of the input data, which may be much larger than actual data ranges

[23]. For example, consider an n-bit ripple carry adder. If we know that the precision

of the circuit will never exceed mn for a certain time period during the execution of an

26



application, then it suffices to guard the n −m most significant bits, as their outputs

are always zero; however, this approach offers no savings when full precision is required.

Figure 4.7(a) shows a 32-bit carry-propagate adder split into two 16-bit parts,

once again called MSP and LSP. If the MSPs of inputs A and B are all zeroes, then the

LSPs (including the LSP carry-out) will wholly determine the output of the computation.

Therefore, we can apply body bias to the LSPs to save energy, while slowing down their

operation, effectively converting the 32-bit adder to a slowed down 16-bit adder. As the

MSP produces no usable outputs, it can be slowed down using body biasing as well.

The multiplexer (MUX) placed between the LSP and MSP and the XNOR gate ensure

correct output behavior when the LSP propagates a carry-out into the MSP.

Pre-computation can also identify situations where the MSP and/or LSP of

both inputs remain the same in two consecutive clock cycles, as shown in Figure 4.7(b).

Let A(t), B(t), A(t + 1) and B(t + 1) denote the values of inputs A and B (stored in

registers R1 and R2 respectively) at times t and t + 1 respectively. As an example,

suppose that: A(t) = 512A1111, A(t + 1) = A1FF1111, B(t) = F9F08000, and B(t +

1) = 50008000. In this case, the respective LSPs of both A and B remain the same, so

the outputs of the LSP circuits will be the same as well. Therefore, it suffices to apply

body biasing to the LSP circuits to reduce power.

4.4.3 Example 3: 16× 16-bit Multiplier

Multipliers are another common arithmetic circuit used in digital VLSI. Here,

we use a 16× 16 -bit carry save adder (CSA) array multiplier, where a carry-propagate

adder sums the final result. We split the multiplier into three basic units, (*), (**),

and (***), as shown in Figure 4.8. The pre-computation logic is based on the following

observation: if the highest m bits of both operands are all zero, then the highest 2m bits
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of the output are also zero; in essence, the circuit performs a (16 −m) × (16 −m)-bit

operation, rather than exploiting the full precision. The reduced-precision operation

can be slowed down through the application of body bias without affecting the outputs,

which reduces power.

Similar to the adder, when the m LSP or MSP bits of both operands remain

the same during two consecutive clock cycles, the m low-order bits of the multiplier,

and the internal carry-out bits, remain unchanged. Thus, body bias can be applied

to the internal circuitry that performs the lower-order m×m-bit operation, leading to

a reduction in energy, as slowing down the computation does not adversely affect the

observable outputs.

This approach easily generalizes to other multiplier structures as well, however,

the primary difference is that way that internal carries are handled; addressing this issue

is left open for future work.

4.5 Pre-computation Block

Each of the three components described above requires a slightly different pre-

computation block, depending on the input conditions that we wish to check. Figure

4.10(a) presents the generic structure of the pre-computation block when only the current

cycle’s inputs are considered, while Figure 4.10(b) presents the generic structure of the

block when the current and previous cycle’s inputs are considered; this circuit requires an

additional register stage on its output. Both circuits employ a hierarchical NAND/NOR

tree structure. The primary difference is that consider two cycle’s worth of inputs

doubles the total number of inputs to the tree.

Without loss of generality, assume that the registers used in a system containing
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the 32-bit carry-propagate adder are sensitive to the rising edge of a synchronous clock.

The delay between data in consecutive cycles is 1 cycle, and the signal “pwrsave” sent

by pre-computation must be available before the rising edge of the clock; thus, the

register used in the pre-computation block should be sensitive to the falling edge of the

synchronous clock. Figure 4.9 shows the timing diagram of the pre-computation circuit.
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Figure 4.7: Pre-computation-based ABB Control applied to a 32-bit carry-propagate
adder
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Figure 4.8: Pre-computation-based ABB control applied to a 16× 16-bit multiplier

Figure 4.9: Timing diagram of the 32-bit carry-propagate adder’s clock cycle
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Figure 4.10: Implementations of pre-computation block
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Chapter 5

Algorithms

5.1 Algorithm For Timing Improvement

The pre-computation circuits described the in the preceding chapter were de-

signed to meet the needs of a set of specific arithmetic components. We desire a gener-

alized methodology to identify opportunities to apply body biasing to any logic circuit,

and to automatically generate the pre-computation circuit in response. This chapter

describes our general approach.

Chapter 3 discussed the concept of controlling logic values for certain types of

gates in a standard library: AND, OR, NAND, NOR, INV. These gates share a unique

property that any one of the inputs can deterministically set the state of the output.

Once a controlling input is identified, the other input states can be ignored, and their

arrival times become immaterial (Figure 5.1). When a controlling input for a specific

gate is detected, the arrival time of that gate is equal to the arrival time of the controlling

input, ignoring all other fanins.

The algorithms described in this chapter are implemented in C++, and are
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Figure 5.1: Propagation of control logic

integrated with the ABC [24] tool for simulation and verification purposes. The first

step is to map the circuit to a standard cell library. Second, we identify the critical path;

we use a straightforward topological sort for this purpose. When body bias is applied,

other paths may become critical as well (but only for specific input patterns that are

detected by the pre-computation circuit). Figure 5.2 shows an example; in this case,

the critical path is BCDF.

Unlike traditional critical path analysis, we want to identify other slow paths

that may still have a timing margin that can be exploited for power reduction; moreover,

the timing a specific path will vary, depending on the controlling inputs that we can

find.

The next step is to simulate the logic and timing of the circuit together. For an

n-input circuit, there are 2n possible different input vectors; thus, it is computationally

costly to enumerate all possible inputs. To prune the search space, we consider each

input individually. We set the logic state of each input to zero (and then one) to see

if the input is a controlling input to any of the gates that follow. If it is a controlling

input, the first level of the circuit’s logic state is known, and is then used to determine

the logic state of the second level. We propagate this method to reach the output (figure
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Figure 5.2: Backtracking a critical path

5.3). If any input controls the logic state of the original critical path, then it is safe

to ignore the arrival time of all branches to that particular gate; thus, for the specific

value of the controlling input under consideration, the critical path through the gate is

reduced.

For example, in figure 5.3, the number in parentheses shows the signal prop-

agation delay through each gate. Ignoring the pre-computation and body bias switch

logic at the bottom of the Figure, critical path delay is 17; however, the fourth input,

at the bottom of the Figure, is a controlling input, when its value is zero. When this

occurs, the delay of the circuit becomes 5, which is the delay of the NAND gate; this

saves 12 units of time, during which we can detect the controlling logic’s value, and then

slow down the longer critical path by applying body bias, thereby saving power.

The process described in the preceding paragraph is repeated for each input,

and for values of 0 and 1. In principle, the process could enumerate all combinations of

inputs, and all possible values of controlling vectors for each group of selected inputs;
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Figure 5.3: Detection of control logic and switching the body bias of the circuit to slow
it down and save power

however, this approach would have an exponential time complexity in terms of the

number of inputs. After processing each input individually, we choose the input (and

value) that yields the fastest timing path as our controlling logic input.

Next, we consider every possible pair of inputs and apply the same method-

ology; here, there are 4 possible input combinations (00, 01, 10, 11) that could act

as controlling values for each pair of inputs. To limit the runtime of our algorithm,

we do not search for larger input combinations. After processing each pair of inputs,

we once again choose the input pair (and value) that yields the fastest timing path as

our controlling logic input. In general, pairs of inputs yields shorter timing paths than

considering individual inputs, however, the overall benefit varies from circuit-to-circuit.

5.1.1 An Alternate Approach

An alternative approach to identify controlling inputs and their controlling

values is to start with the nodes in the netlist, and search backward. Here, we examine

each node and look for a controlling input. Once a controlling input to each gate is

found, the preceding gate can be tracked for its controlling input. This process repeats
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recursively from the primary outputs to the primary inputs of the circuit. Alternatively,

the search can limit its focus to nodes on the critical path of the circuit, or nodes only on

near-critical paths. Imposing a controlling condition on a particular node can reduce the

signal propagation time in the circuit. This approach offers that advantage that multiple

controlling inputs and values for a specific node can be identified at once. Thus, it is

easier to find large groups of controlling inputs in this fashion, rather than exhaustively

enumerating all combinations of a fixed number of inputs and searching for gates that

each combination controls.

If we examine each of the nodes of a potentially slow path and look for the

controlling input we can quickly determine if there is combination of inputs that can

reduce the arrival time. For a given node, the controlling inputs (and every controlling

value that they may take) create a condition that the pre-computation logic can detect;

when this condition is true, body biasing is applied to the chosen path. The pre-

computation detector computes its output much faster than the critical path of the

circuit; therefore, it can dynamically switch the body of all transistors on the critical

path to slow them down and reduce leakage current. The designer must make sure that

the ABB switching does not add more delay than it saved on the critical path’s control;

we ensure that this condition is true at all times.

Pseudocode for the algorithm is presented below in Algorithm 1:
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Algorithm 1 Algorithm for arrival time reduction using control value search

Logic⇐ 0

for each input vector do

for each fan-out do

if gate = control gate then

Logic out = predefined output

Tpropagation = Truncated

else

Update Tpropagation by adding

end if

if Output Node Reached then

Save Total Tpropagation and exit

else

Go to next fanout

end if

end for

Compare propagation time and save lowest one

end for

Logic⇐ 1

Go to next input vector
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Chapter 6

Simulations And Analysis

6.1 Simulation Results and Setup

We built and tested the bias generator circuit independently from the logic

circuits, and we report their power and performance separately. The bias generator

circuit is small enough to evaluate using SPICE, whereas, the benchmark circuits are

too large and are not in an appropriate format for SPICE simulation; it is simply not

computationally feasible to analyze the benchmark circuits in this way.

A second challenge is that power consumption and delays depend highly on

the state. For an n-input circuit, there can be 2n states, and the power consumption

between the states can vary by a factor as large as 3; thus, reporting average power for

a specific circuit is useless. Instead, power data could be provided for a given activity

factor and a signal probability distribution; however this is computationally costly. To

address this concern, we simulated a statistically significant number of states for each

benchmark circuit, and report the averages.

To estimate power reduction, we use a heuristic. First, we count the number

of cells in a benchmark circuit after technology mapping to a standard library. For each

39



cell, we know the average power reduction that can be achieved by adjusting the body

bias. Therefore, we multiply the total cell count by the power saved to approximate the

total reduction in power consumption.

Our simulations ensured that the amount of delay added by body biasing is

far less than the timing margin, which ensures correct circuit behavior; secondly, we

ensured that the body bias circuit has sufficient drive capability to swing the body bias

in real-time. We verified these two properties through extensive simulation.

Figure 6.1: Power Reduction in 32 bit Full Adder

The transistor-level simulations were based on a 45nm BSIM4 predictive model[8].

The spice models are taken from the ASU Predictive Technology Model (PTM) group

[8] with permission. HSPICE simulations were conducted on the ISCAS 89 benchmarks

using this model. Our technology mapper converts the benchmark files to a netlist of

library cells; the library cells are custom designed IP blocks (by us) which are extended

with additional inputs and silicon for body bias control and adaptation.

After mapping, we convert each circuit to a SPICE file. A series of stimuli
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is applied to the inputs and we measured the power consumption. We used exhaustive

search to find the critical path, identify controlling values, and measure power consump-

tion. Body bias was then applied and propagation delay and power consumption were

measured as well. The data reported is the power saved by body biasing and how much

delay is introduced as a result. For example, HSPICE simulations of a 32-bit adder and

a 16x16-bit multiplier are performed at the transistor level. Figures 6.1 and 6.2 show the

comparison on the leakage power of the full-adder and the multiplier with and without

body biasing for different input vectors. Typical savings in power range from 20-25%

for a 32-bit adder, and 14-20% for a 16x16 multiplier.

Our critical path analysis algorithm treats each circuit as a black box; we ran

the algorithm on different ISCAS 89 benchmark circuits. We fund that there were signif-

icant opportunities for power savings under a wide variety of input logic combinations.

Our algorithm was implemented in C++ on a Windows PC, and was done within the

ABC logic synthesis framework, customized for testing.

Figure 6.2: Power Reduction in 16 bit Multiplier
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Circuit Name
Delay of 

Critical Path

Delay After 

Applying 

Algorithm

% 

improvement

s6669 18.8 14.3 23.93

s444 6.8 5.1 25

s5378 12.4 10 19.35

s38417 18.4 12.6 31.52

c2670 15.7 12.3 21.65

i10 30.8 14.79 51.98

s9234_1 22.1 13.4 39.36

Table 6.1: Comparison of Improvement in Different Circuit

Figure 6.3: Improvement in Delay By The Scheme

Figure 6.3 shows the reduction in critical path delay after applying our algo-

rithm to each circuit; the improvement in delay is greater than 20% for all of the circuits

we tested. The improvement varies from one circuit to another depending primarily on

their respective size, the presence of non-controllable XOR and XNOR gates, and the

overall circuit topology. That being said, our tool was always able to identify portions of

a circuit where controlling values can be found; moreover, it was always able to identify

a timing margin that could be exploited to reduce power via body bias adjustments.

Next, we investigate delay and power tradeoffs using FBB. We simulate an
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Table 6.2: Power and Delay data for FBB on Basic Cells

inverter chain in HSPICE using a 65nm Berkeley Predictive Model as a motivating

example. All simulations are done at a temperature of 100 C, which is the approximate

temperature of an actual circuit. We found that introducing 5% delay reduced leakage

power by more than 30%; it is important to note that this inverter chain required

mapping to appropriate standard cells in our library that have been modified to support

ABB.

Our library contains AND-OR-INVERT, OR-AND-INVTER, 3-input NOR

and NAND, and many other gates. We simulated each gate using the model described

above, and we observed reduced leakage when given an FBB of 200mV. The delay in-

crease varied from cell to cell; we report the worst possible case here. An FBB voltage

of 200 mV adds a maximum of 5% delay with respect to zero body bias (ZBB); the

leakage current reduction was 23-33%.

These experiments demonstrate that identifying controlling values can reduce

the arrival time of critical bits by at least 19.35%; however, only a maximum of 10%

delay is added with a small FBB voltage of 200 mV, resulting in power savings of at

least 23%. Figure 6.4 and Table 6.2 show the results of the simulations.

Our scheme imposes an area penalty for the body bias circuit and pre-detection
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Figure 6.4: Power Saving for Basic Gates From ZBB to ABB of 200mV

logic; however, the power savings and speedup attained by our approach are easily

justified. In static simulations, pre-computation-based ABB control logic largely reduces

the leakage power in a digital VLSI circuit. The power consumption of a given circuit

varies, depending on the different input vectors; for an adder or multiplier, the leakage

power reduction is still approximately 20%. Thus, for a static circuit, we achieve a

20-25% reduction in total power.

We performed dynamic simulations at frequencies of 100MHz and 50MHz. Ta-

ble 6.3 compares the power reduction in one clock cycle and multiple sequential cycles

separately using the same input vectors for both frequencies. The simulation demon-

strates that our approach has a greater effect on the multiplier than the adder; this

indicates that larger circuits are more likely to benefit from our techniques than smaller

ones. On the other hand, the operating frequency also has a large influence on the

efficiency of power reduction using this scheme. Since the bias circuit is less sensitive

when the system works at a lower frequency, the pre-computation-based ABB scheme
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Power Reduction Clock 

Type 

Work 

Frequency 

(MHz) 

32bit FA 16*16 

MUL 

100 0.41% 2.56% One Cycle 

50 0.75% 3.49% 

100 0.51% 2.97% Sequential 

Cycles 50 1.06% 3.73% 

!

Table 6.3: Comparison of Power Reduction for Inputs Pre-computation at Different
Frequencies

is more effective; however, the ratio of leakage power to total power is relatively small,

which limits the power consumption that can be achieved using our technique.

To investigate the influence of the number of bits of MSP m on dynamic power

reduction, and the corresponding increase in critical path delay, we performed some ex-

periments on a 32-bit adder (n=32bit) and a 16x16-bit multiplier (n=16bit) at 100MHz.

Table 6.4 lists the simulation results. Our results demonstrate that the FBB circuit saves

more power when the number of bits of MSP m are larger than one half of the full range

of the number of bits; the delay of the adder increases, while the delay of the multiplier

remains almost unchanged; however, increasing m increases the power consumed by the

pre-computation logic. In general, our simulation results suggest that, if a circuit has

1uW to 10uW dynamic power reduction, then the increase in critical path delay due to

our body biasing scheme is 0.01ns to 0.1ns.

We simulate the FBB circuit performance on the 32 bit adder to investigate

the relationship between the amount of ”pwrsave” signal switching and the total power

reduction in a specified period of 500ns, as shown in Table 6.5; the experiment employs

the same input pattern as before. Decreasing the amount of switching generally leads to
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32bit FA 16*16 MUL Cycle 

Type 

m 

PR Delay PR Delay 

n/2 0.41% 4.26% 2.56% 2.81% One 

2n/3 3.96% 1.92% 3.83% 2.86% 

n/2 0.51% 3.91% 2.97% 1.39% Sequential 

2n/3 0.66% 0.84% 3.25% 1.39% 

!

Table 6.4: Comparison of Power Reduction Delay for One Cycle and Sequential Cycles
Separately

No. of Switching 50 26 6 2 0 

PR of 32bit FA 1.27% 1.98% 2.55% 3.01% 4.13% 

!

Table 6.5: Relationship Between Number of Switching and Power Reduction

greater reductions in total power consumption. As mentioned earlier, if the percentage

of leakage power is as large as 40% of total power, then the upper bound of the ideal

total power reduction is 4%, which is close to the simulation results for the non-switching

situation.

Table 6.6 compares the power consumption of the FBB circuit, the pre-computation

circuit, the adder and the multiplier; the results indicate that the pre-computation-based

FBB control scheme is reasonable, but tradeoffs involving the power consumption of dif-

ferent components need to be considered. Moreover, if the pre-computation-based FBB

control is used in conjunction with pre-computation-based guarding technology[19], then

additional power could be saved; we estimate that the savings would be approximately

35.1% for the 32-bit adder.

Next we investigate the switching power consumption of the standard library
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Cell Name Power Consumption in Micro-Watts 

FBB Circuit for Full Adder 5.22 

Pre-computation Logic 5.82 

32-bit Full Adder MSP 14 

32-bit Full Adder LSP 26.3 

16!16 CSA Array Multiplier 921 

!

Table 6.6: Total power consumption

cells that we developed. Our library consists of INV, NAND2, NOR2, AOI21, and

XORA. For each cell, we measure leakage and switching power. We performed measure-

ments with and without body bias. Figure 6.5 shows the leakage power performance of

standard cell library and Figure 6.6 shows the switching power.

Figure 6.5: Standard Cell Leakage Power Comparison with and without body Bias

As expected, leakage power is reduced far more than switching power. Figure

6.7 shows the amount of power consumed by switching the body in each standard cell;

body switching power consumption is nominal compared to leakage and switching power
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Figure 6.6: Standard Cell Switching Power Comparison with and without body Bias

consumption. Moreover, it is important to note that the body is not switched as often

as the logic, as it is controlled by the pre-computation circuit; therefore, the impact of

this particular phenomenon has a relatively small impact on total power consumption

within the cell.

Figure 6.7: Body Switching Power

Although switching the body bias in each standard cell saves power, a delay
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penalty is introduced; however, the amount of delay that is added depends on the com-

plexity and structure of the standard cell design. Figure 6.8 shows that the additional

delay introduced is small, at most 10% in the worst case. In contrast, Table 6.1 reported

a 19% improvement in propagation delay for different benchmark circuits. Thus, we can

conclude that adjusting the body bias does not adversely affect delay, when used in

conjunction with our timing improvement algorithm.

Figure 6.8: Standard Cell Delay

The area overhead associated with the body bias and predictor circuit is ap-

proximately 10% in terms of transistor count; however, this figure depends on the com-

plexity and transistor count of the benchmark circuits. For a larger scheme and fast

operations, intermediate charge pumpers may be required to enable a quick substrate

voltage swing; this will increase the speed of the circuit at the cost of additional area.

A detailed investigation of these tradeoffs is beyond the scope of this work.
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6.2 Layout Implementation

CMOS circuit layout is important for successful chip fabrication; it is tedious,

rigorous, and complicated, and many otherwise unforeseen issues regarding the netlist

manifest themselves once the circuit is laid out. We use Tanner L-Edit 13.0 for layout

in our experiments. We target a generic 65nm technology obtained from Cadence [30].

Our motivation is to demonstrate that the area penalty incurred by our scheme

is not significantly. We perform standard cell layout with and without the proposed body

biasing scheme, and compare the two to observe the area penalty, which is well below

the 15% threshold we claimed earlier. Our results include screenshots of the laid out

standard cells.

Standard cell layout is a semi-automated process; when there are no errors, the

entire process is automated; however, standard library cells must be manually designed,

first, in order to facilitate automatic layout. Different technology nodes and fabs use

different standard library cells to implement a given circuit. Each technology node,

therefore, requires its own manual layout phase. Standard cells are introduced into the

place-and-route (PNR) tools to connect them properly.

During fabrication, mask generation for photolithography is a crucial step.

During layout, it is important to remember that the mask generation and chemical

vapor deposition (CVD) processes used during fabrication have their own constraints

and limitations. Therefore, each manufacturer provides design rule checks (DRCs) for

the layout to ensure that the fabricated circuit matches the layout. The PNR tools

always capture the DRC efficiently, but the manually-designed standard cells must also

obey DRC rules. We check each standard cell in our library manually, to verify that no

DRC errors are present.
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Figure 6.9: VDD and VSS position along with body pickup in a standard CMOS circuit

Another important phase is layout vs. schematic (LVS). After completing the

layout, the circuit must be checked to ensure that if there is a one-to-one match with the

netlist; this ensures that the layout is a faithful representation of the netlist. PNR tools

are aware of the process and ensure that LVS checking does not generate any errors.

Standard cells maintain a standard rectangular shape, with a 2:1 aspect ratio;

for complicated cells, this aspect ratio is compromised. PMOS transistors are placed at

the top and NMOS transistors at the bottom. The power rails (supply and ground) are

placed at the top and bottom of all cells, to facilitate side-by-side placement. Figure 6.9

shows a standard CMOS logic circuit, which demonstrates the power rail position and

layout placement of PMOS, NMOS, and other layers.

We assume a double Metal single Poly technology process. Power and ground
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Figure 6.10: Internal and External Metal Routing

routing use Metal 2, while internal routing is done using Metal 1. Inter-cell connections

are usually done using Metal 1 (light blue), but may use Metal 2 (dark blue) in case

of conflicts. Figure 6.10 presents an example. The standard cells have a power rail at

the top edge and a ground rail at the bottom edge, which reduces the routing penalty.

Each standard cell has dedicated ports for input, output, pbody, nbody, and substrate

pickups.

A common practice is to keep all logic cells at the same height, but to vary their

width. This wastes space for smaller cells (e.g., inverters), because the DRC requirement

is much less; however, it improves connectivity with other cells. Placing common points

(body, power, ground) side-by-side, common wells are merged seamlessly without extra

metal routing or DRC requirements. Figures 6.11 and reffig: same height snap illustrate
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Figure 6.11: Standard cells with same height not joined together

this scenario.

It is common practice to provide an extra layer of metal routing (Metal 1 and

2 in parallel) for power and ground. This helps the elevated level of currents present in

these nodes, builds up a higher power supply capacitance, and provides quieter ground

and rails against nearby switching activity. The arrow in Figure 6.13 illustrates this

approach to routing.

Poly routing is kept as small as possible due to gate capacitance. Metal is

frequently used instead of poly routing, even within a cell; however, this is kept aligned

as much as possible, to assist with interconnectivity between cells and to reduce area.

Figure 6.14 demonstrates this approach.

Any unabated issues within standard cells, such as the usage of wider metals

where there is node sharing, avoiding sharp bends for narrow wires (135 degrees instead

of 90 degrees), the use of extra contact/VIA at input and output nodes, etc., will

propagate throughout the chip. We have made a conscientious effort to keep these
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Figure 6.12: Standard cells with same height joined together

Figure 6.13: Extra metal used in supply and ground
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Figure 6.14: Less Poly routing at gates
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Figure 6.15: Inverter Layout Comparison

issues in mind when designing our standard cells. Figures 6.15 and 6.19 depict some of

our standard cells with and without support for body biasing.

To summarize, Table 6.7 reports the area penalty for use of a dedicated body

port out, as required by our scheme. This includes the complete layout area penalty for

extra body pickup, placement, and routing. The area penalty for most of the standard

cells ranges from 9-12%, plus an additional overhead of at most 1% to account for extra

pbias and nbias throughout the chip after the entire circuit is placed and routed.

Lastly, we must account for the overhead of the body bias circuit. This varies,

depending on which approach to the design of this circuit is taken. Chapter 3 showed

that many state-of-the-art body bias circuits are used in industry, and in most cases,
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Figure 6.16: Buffer Layout Comparison

Figure 6.17: NAND gate Layout Comparison
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Figure 6.18: AND-OR-Invert gate Layout Comparison

Figure 6.19: NOR gate Layout Comparison
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Table 6.7: Comparison on Total Area

the publications that introduced these circuits claim an area overhead of less than 10%.

Conservatively, we assume that that area overhead will never exceed 15%. Our work

uses the circuit shown in Figure 4.4, which has limited drive power, but an area penalty

of less than 5%.
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Chapter 7

Future Directions

The algorithm introduced in this thesis was successful for most of the test cases

we tried. We believe that the general approach can be extended for further leakage

minimization. If the search for control values can help to improve timing and to expand

slack time, there may be some potential for adjustable body bias-aware IP core design.

In particular, our approach suggests that there are benefits to create logic structures

that are cascades of logic gates, with known controllable inputs. Thus, the pre-detection

logic and body biasing generation circuit can be integrated into the IP core. This way,

our approach can be generalized to platform-based design, in a way that eliminates the

need for SoC architects to worry about the underlying details.

Another challenge is to develop algorithms that can identify control points

larger than individual gates and controlling input groups larger than 1 or 2 bits in a

tractable amount of time. Ideally, such an approach would sidestep the costly enumer-

ation methods that were presented and used in this thesis. Moreover, the likelihood of

saving power would be increased if we could find a larger number of controlling input

vectors that can be exploited, as opposed to looking at just one or two input bits and
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gates at a time.

Another research direction is to define a dynamic library for technology map-

ping. The concept of a dynamic cell library not new, but our goal would be based

entirely on power optimization. The basic idea is to search for margins that are cre-

ated during the mapping of circuits to standard cells. To reduce leakage, the use of

transistors in stacks are very common. Stacking reduces the leakage loss by reducing

the sub-threshold and overdrives, and stacks are present in many designs as a natural

consequence. Transistors are historically stacked under the assumption of equal proba-

bility among input vectors, i.e., similar transistors are stacked [31]; however, the activity

factors vary from path to path, as our research has shown. Our proposal is that the

choice of the transistor should be consistent with the signal probability incidences and

available time margin of the signal path.

The feasibility of the aforementioned approach is buttressed by the observation

of signal probability propagation through the various paths of a circuit [32]. For example,

consider a 2-input NAND gate with inputs A and B. If A has a signal probability

higher than B, then reducing leakage along the path that computes A will yield a

greater reduction in power than reducing leakage along the path that computes B. If

B has a larger time margin than A, then B will have a greater opportunity for leakage

reduction through the substrate bias. Moreover, for the same NAND gate, we can find

a combination of different size and substrate bias for the transistors, and take this into

account during technology mapping. Current technology mappers do not take these

factors into account, and are therefore sub-optimal for power.

In fact, this is an argument for larger standard cell libraries that provide many

different implementations of each cell, especially in terms of stack combinations that are

consistent with power optimization as described above. Such a library would contain
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the same basic gates, but with combinations of different types of MOS, some of which

are optimized for speed or area, while others are optimized for different body biases.

This will create a large design space that can be explored during mapping, but will

yield better overall performance and power. The mapper would need to consider each

gate, its input logic, and the timing margin, and take these factors into account when

choosing a library cell. To bring this idea to fruition, extensive work must be done to

choose the best possible combination of library cells. Of course, limitations imposed by

fabrication and manufacturing capabilities must also be taken into account.

One final research direction is to examine the change in heat generation that

results from body bias shifting. It would be necessary to look closely at the block level

to determine the relationship between the statistical distribution of power and input

logics [33]. A path-based statistical timing analysis and examination of the crucial

parameters responsible for heat generation would be performed, with the overall goal

being to optimize the parameters to reduce the amount of heat that would be generated

in common use cases. The amount of parameter variation due to heat generation is

large. It is difficult to control such a high range of variation with proposed body biasing

scheme only. Other techniques may be used in conjunction with the current one to

increase effectiveness.
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Chapter 8

Conclusions

We have introduced a systematic design methodology for deep sub-micron

CMOS technology that dynamically applies substrate bias to reduce power consumption

of digital circuits. Controlling input values are detected for specific nodes on the critical

path. These controlling inputs are non-critical, and certain values allow the output of

the node to be computed in a manner that is independent of the critical path; the output

is therefore computed much faster. When this occurs, forward body bias can be applied

to transistors on the critical path to reduce power, as doing so slows down the signal

propagation; the slow signal is not problematic because it does not affect the output of

the node in question. The total reduction in power consumption depends on the circuit

and the probability that controlling input values occur dynamically; however, we have

found that the approach is successful in most of our test cases.

Based on our experience, we list the following conclusions, which comprise the

outcomes of this research effort:

1. Substrate biasing can effectively reduce the power consumption of a circuit; the

application of substrate biasing in conjunction with input-sensitive dynamic pre-
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detection logic further increases the efficiency.

2. The reduction in power depends on the activity factor of the circuit; it is not

possible to enumerate all possible delay vs. power scenarios for large circuits, but

random input simulation yielded favorable results.

3. Circuits dominated by AND, OR, NAND, and NOR gates benefit significantly

from our scheme; circuits dominated by XOR and XNOR gates do not, because

they have no controlling inputs. Composite library gates such as OR-AND-INV

or AND-OR-INV are not feasible, unless we search for two or more controlling

inputs.

4. The area penalty, including the additional cost of routing, was quite small: no

larger than 15% for all of our benchmarks.

5. The substrate switching delay was small based on our simulations, however, the

actual delay could be much larger than our simulation values when parasitic ex-

traction is applied to a fabricated chip.

6. Our approach is simpler and smaller (in terms of on-chip area) than complicated

loop-based tracking techniques for body bias voltage; however, the more compli-

cated approaches do have the potential to achieve further power reductions.

7. Our approach performs best on circuits with long logic depth, and a large number

of non-critical inputs, which are good candidates to be controlling inputs. Our

approach is less effective on circuits where all paths are balanced.

8. Temperature control using our technique is not feasible, as we do not employ loop

tracking. Moreover, the range of temperature variation is much higher than the

range our scheme can cover.
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9. The primary challenge to implement the scheme is the careful design of the charge

pump and the buffer stages that follow the body bias generator. The area penalty

and power consumption increase significantly with the drive capability of this

circuit.

Altogether, we believe that the advantages of this scheme significantly outweigh

its drawbacks, and that our scheme can be successfully implemented in modern deep

sub-micron CMOS technologies.
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Appendix A

Sample Blif File AND Mapping

This is the netlist for one of the benchmark circuits from the ISCAS 89 that was
mapped during our experimentation.

First, we describe the circuit prior to mapping:

.model s444

.inputs G0 G1 G2

.outputs G118 G167 G107 G119 G168 G108

\text{

.latch G11_in G11 0

.latch G12_in G12 0

.latch G13_in G13 0

.latch G14_in G14 0

.latch G15_in G15 0

.latch G16_in G16 0

.latch G17_in G17 0

.latch G18_in G18 0

.latch G19_in G19 0

.latch G20_in G20 0

.latch G21_in G21 0

.latch G22_in G22 0

.latch G23_in G23 0

.latch G24_in G24 0

.latch G25_in G25 0

.latch G26_in G26 0

.latch G27_in G27 0

.latch G28_in G28 0

.latch G29_in G29 0

.latch G30_in G30 0

.latch G31_in G31 0

.names G12 G13 [25]

00 1

.names G11 [25] [26]

69



01 1

.names G14 [26] [27]

10 1

.names G0 G11 [28]

00 1

.names [27] [28] G11_in

01 1

.names G11 G12 [30]

11 1

.names G12 [30] [31]

10 1

.names G11 [30] [32]

10 1

.names [31] [32] [33]

00 1

.names G0 [33] [34]

00 1

.names [27] [34] G12_in

01 1

.names G13 [30] [36]

11 1

.names G13 [36] [37]

10 1

.names [30] [36] [38]

10 1

.names [37] [38] [39]

00 1

.names G0 [39] [40]

00 1

.names [27] [40] G13_in

01 1

.names G12 G13 [42]

11 1

.names G11 [42] [43]

11 1

.names G14 [43] [44]

11 1

.names G14 [44] [45]

10 1

.names [43] [44] [46]

10 1

.names [45] [46] [47]

00 1

.names G0 [47] [48]

00 1

.names [27] [48] G14_in

01 1

.names G31 [27] [50]

00 1
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.names G16 G17 [51]

00 1

.names G15 [51] [52]

01 1

.names [50] [52] [53]

00 1

.names G18 [53] [54]

11 1

.names G15 [50] [55]

10 1

.names G15 [55] [56]

10 1

.names [50] [55] [57]

00 1

.names [56] [57] [58]

00 1

.names G0 [58] [59]

00 1

.names [54] [59] G15_in

01 1

.names G16 [55] [61]

11 1

.names G16 [61] [62]

10 1

.names [55] [61] [63]

10 1

.names [62] [63] [64]

00 1

.names G0 [64] [65]

00 1

.names [54] [65] G16_in

01 1

.names G16 [50] [67]

10 1

.names G15 [67] [68]

11 1

.names G17 [68] [69]

11 1

.names G17 [69] [70]

10 1

.names [68] [69] [71]

10 1

.names [70] [71] [72]

00 1

.names G0 [72] [73]

00 1

.names [54] [73] G17_in

01 1

.names G15 G16 [75]
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11 1

.names G17 [50] [76]

10 1

.names [75] [76] [77]

11 1

.names G18 [77] [78]

11 1

.names G18 [78] [79]

10 1

.names [77] [78] [80]

10 1

.names [79] [80] [81]

00 1

.names G0 [81] [82]

00 1

.names [54] [82] G18_in

01 1

.names G20 G21 [84]

00 1

.names G19 [84] [85]

01 1

.names [54] [85] [86]

10 1

.names G22 [86] [87]

11 1

.names G19 [54] [88]

11 1

.names G19 [88] [89]

10 1

.names [54] [88] [90]

10 1

.names [89] [90] [91]

00 1

.names G0 [91] [92]

00 1

.names [87] [92] G19_in

01 1

.names G20 [88] [94]

11 1

.names G20 [94] [95]

10 1

.names [88] [94] [96]

10 1

.names [95] [96] [97]

00 1

.names G0 [97] [98]

00 1

.names [87] [98] G20_in

01 1
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.names G20 [54] [100]

11 1

.names G19 [100] [101]

11 1

.names G21 [101] [102]

11 1

.names G21 [102] [103]

10 1

.names [101] [102] [104]

10 1

.names [103] [104] [105]

00 1

.names G0 [105] [106]

00 1

.names [87] [106] G21_in

01 1

.names G19 G20 [108]

11 1

.names G21 [54] [109]

11 1

.names [108] [109] [110]

11 1

.names G22 [110] [111]

11 1

.names G22 [111] [112]

10 1

.names [110] [111] [113]

10 1

.names [112] [113] [114]

00 1

.names G0 [114] [115]

00 1

.names [87] [115] G22_in

01 1

.names G2 G23 [117]

00 1

.names G2 G23 [118]

11 1

.names [117] [118] [119]

00 1

.names G0 [119] G23_in

01 1

.names G20 G21 [121]

01 1

.names G0 G23 [122]

01 1

.names [121] [122] [123]

11 1

.names G19 [123] [124]
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01 1

.names G21 G22 [126]

10 1

.names G19 G20 [125]

10 1

.names G23 [125] [127]

01 1

.names [126] [127] [128]

11 1

.names G0 G24 [129]

01 1

.names [128] [129] [130]

01 1

.names [124] [130] [131]

00 1

.names G22 G23 [132]

00 1

.names [125] [132] [133]

11 1

.names G24 [133] [134]

10 1

.names G19 G20 [135]

00 1

.names G23 [135] [136]

11 1

.names G22 G23 [137]

11 1

.names [136] [137] [138]

00 1

.names G0 G21 [139]

01 1

.names [138] [139] [140]

11 1

.names [134] [140] G25_in

01 1

.names G19 G22 [142]

01 1

.names G0 [142] [143]

01 1

.names G0 [108] [144]

01 1

.names [143] [144] [145]

00 1

.names [129] [139] [146]

00 1

.names [145] [146] G26_in

11 1

.names G21 G24 [148]

00 1
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.names [125] [148] [149]

11 1

.names G21 G22 [150]

00 1

.names G24 [150] [151]

01 1

.names G0 [151] [152]

00 1

.names [149] [152] [153]

01 1

.names G0 G22 [154]

01 1

.names [135] [154] [155]

11 1

.names [146] [155] [156]

10 1

.names [131] [156] [157]

00 1

.names G17 [157] [158]

01 1

.names [131] [156] [159]

10 1

.names [158] [159] G28_in

00 1

.names [122] [126] [161]

11 1

.names G21 G22 [162]

01 1

.names G0 [162] [163]

01 1

.names [161] [163] [164]

00 1

.names G20 [164] [165]

00 1

.names G19 [165] [166]

01 1

.names [130] [166] [167]

00 1

.names [131] [167] [168]

00 1

.names G17 [168] [169]

01 1

.names [131] [167] [170]

10 1

.names [169] [170] G29_in

00 1

.names G20 G21 [172]

10 1

.names G0 G24 [173]
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00 1

.names [172] [173] [174]

11 1

.names G19 [174] G30_in

11 1

.names G1 G31 [176]

00 1

.names G1 G31 [177]

11 1

.names [176] [177] [178]

00 1

.names G0 [178] G31_in

01 1

.names [131] G24_in

0 1

.names [153] G27_in

0 1

.names G27 G118

1 1

.names G29 G167

0 1

.names G25 G107

1 1

.names G28 G119

0 1

.names G30 G168

1 1

.names G26 G108

1 1

.end

After mapping to our defined library, the blif representation is as follows:

.model C:\abc70930\examples\s444

.inputs G0 G1 G2 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 G24 \

G25 G26 G27 G28 G29 G30 G31

.outputs G118 G167 G107 G119 G168 G108 n19 n24 n29 n34 n39 n44 n49 n54 n59 \

n64 n69 n74 n79 n84 n89 n94 n99 n104 n109 n114 n119

.default_input_arrival 0 0

.gate inv1 a=G29 O=G167

.gate inv1 a=G28 O=G119

.gate inv1 a=G11 O=n53

.gate inv1 a=G14 O=n54_1

.gate nor2 a=G13 b=G12 O=n55

.gate aoi21 a=n55 b=n53 c=n54_1 O=n56

.gate nor3 a=n56 b=G11 c=G0 O=n19

.gate xorb a=G12 b=G11 O=n58

.gate nor2 a=n56 b=G0 O=n59_1

.gate nand2 a=n59_1 b=n58 O=n60

.gate inv1 a=n60 O=n24
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.gate inv1 a=G13 O=n62

.gate nand2 a=G12 b=G11 O=n63

.gate xorb a=n63 b=n62 O=n64_1

.gate nand2 a=n64_1 b=n59_1 O=n65

.gate inv1 a=n65 O=n29

.gate nand3 a=G13 b=G12 c=G11 O=n67

.gate xorb a=n67 b=n54_1 O=n68

.gate nand2 a=n68 b=n59_1 O=n69_1

.gate inv1 a=n69_1 O=n34

.gate inv1 a=G0 O=n71

.gate inv1 a=G12 O=n72

.gate nand3 a=n62 b=n72 c=n53 O=n73

.gate aoi21 a=n73 b=G14 c=G31 O=n74_1

.gate inv1 a=G15 O=n75

.gate inv1 a=G16 O=n76

.gate inv1 a=G17 O=n77

.gate nand3 a=n77 b=n76 c=n75 O=n78

.gate nand2 a=n78 b=G18 O=n79_1

.gate oai21 a=n79_1 b=n74_1 c=n71 O=n80

.gate nand2 a=n74_1 b=G15 O=n81

.gate inv1 a=G31 O=n82

.gate nand2 a=n73 b=G14 O=n83

.gate nand2 a=n83 b=n82 O=n84_1

.gate nand2 a=n84_1 b=n75 O=n85

.gate aoi21 a=n85 b=n81 c=n80 O=n39

.gate oai21 a=n74_1 b=n75 c=G16 O=n87

.gate nand3 a=n84_1 b=n76 c=G15 O=n88

.gate aoi21 a=n88 b=n87 c=n80 O=n44

.gate nand2 a=G16 b=G15 O=n90

.gate oai21 a=n90 b=n74_1 c=G17 O=n91

.gate inv1 a=n90 O=n92

.gate nand3 a=n92 b=n84_1 c=n77 O=n93

.gate aoi21 a=n93 b=n91 c=n80 O=n49

.gate nand2 a=n92 b=G17 O=n95

.gate oai21 a=n95 b=n74_1 c=G18 O=n96

.gate nor2 a=G18 b=n77 O=n97

.gate nand3 a=n97 b=n92 c=n84_1 O=n98

.gate aoi21 a=n98 b=n96 c=n80 O=n54

.gate inv1 a=G19 O=n100

.gate inv1 a=G20 O=n101

.gate inv1 a=G21 O=n102

.gate nand3 a=n102 b=n101 c=n100 O=n103

.gate nand4 a=n78 b=G22 c=G18 d=n103 O=n104_1

.gate oai21 a=n104_1 b=n74_1 c=n71 O=n105

.gate oai21 a=n79_1 b=n74_1 c=G19 O=n106

.gate inv1 a=n79_1 O=n107

.gate nand3 a=n107 b=n84_1 c=n100 O=n108

.gate aoi21 a=n108 b=n106 c=n105 O=n59

.gate nand3 a=n78 b=G19 c=G18 O=n110
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.gate oai21 a=n110 b=n74_1 c=G20 O=n111

.gate nor2 a=G20 b=n100 O=n112

.gate nand3 a=n112 b=n107 c=n84_1 O=n113

.gate aoi21 a=n113 b=n111 c=n105 O=n64

.gate nand2 a=G20 b=G19 O=n115

.gate inv1 a=n115 O=n116

.gate nand3 a=n116 b=n78 c=G18 O=n117

.gate oai21 a=n117 b=n74_1 c=G21 O=n118

.gate nor2 a=n115 b=G21 O=n119_1

.gate nand3 a=n119_1 b=n107 c=n84_1 O=n120

.gate aoi21 a=n120 b=n118 c=n105 O=n69

.gate nand3 a=G21 b=G20 c=G19 O=n122

.gate inv1 a=n122 O=n123

.gate nand3 a=n123 b=n78 c=G18 O=n124

.gate oai21 a=n124 b=n74_1 c=G22 O=n125

.gate nor2 a=n122 b=G22 O=n126

.gate nand3 a=n126 b=n107 c=n84_1 O=n127

.gate aoi21 a=n127 b=n125 c=n105 O=n74

.gate inv1 a=G2 O=n129

.gate inv1 a=G23 O=n130

.gate oai21 a=n130 b=n129 c=n71 O=n131

.gate aoi21 a=n130 b=n129 c=n131 O=n79

.gate nor2 a=G23 b=G22 O=n133

.gate nand4 a=G21 b=n101 c=G19 d=n133 O=n134

.gate inv1 a=G24 O=n135

.gate nor2 a=n135 b=G0 O=n136

.gate nand2 a=n136 b=n134 O=n137

.gate nor2 a=G20 b=G19 O=n138

.gate nand4 a=G23 b=G21 c=n71 d=n138 O=n139

.gate nand2 a=n139 b=n137 O=n84

.gate aoi21 a=n133 b=n112 c=n135 O=n141

.gate nand2 a=n138 b=G23 O=n142

.gate nand2 a=G23 b=G22 O=n143

.gate nand4 a=n142 b=G21 c=n71 d=n143 O=n144

.gate nor2 a=n144 b=n141 O=n89

.gate nor2 a=G24 b=G21 O=n146

.gate inv1 a=n146 O=n147

.gate nand2 a=n116 b=n71 O=n148

.gate nand2 a=G22 b=n71 O=n149

.gate oai21 a=n149 b=G19 c=n148 O=n150

.gate aoi21 a=n147 b=n71 c=n150 O=n94

.gate aoi21 a=n146 b=n112 c=G0 O=n152

.gate oai21 a=n147 b=G22 c=n152 O=n99

.gate nand2 a=n84 b=G17 O=n154

.gate inv1 a=n138 O=n155

.gate oai22 a=n146 b=G0 c=n155 d=n149 O=n156

.gate nand2 a=n156 b=n154 O=n104

.gate nand3 a=G22 b=n102 c=n71 O=n158

.gate inv1 a=G22 O=n159
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.gate nand4 a=n159 b=G21 c=n71 d=G23 O=n160

.gate nand2 a=n160 b=n158 O=n161

.gate nand2 a=n161 b=n138 O=n162

.gate nand2 a=n162 b=n137 O=n163

.gate nand2 a=n163 b=n154 O=n109

.gate nor2 a=n148 b=n147 O=n114

.gate inv1 a=G1 O=n166

.gate oai21 a=n82 b=n166 c=n71 O=n167

.gate aoi21 a=n82 b=n166 c=n167 O=n119

.gate buf a=G27 O=G118

.gate buf a=G25 O=G107

.gate buf a=G30 O=G168

.gate buf a=G26 O=G108

.end
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Appendix B

Simulation Setup Sample

Here, we present a sample spice file to illustrate how the standard library cells
were simulated to obtain power and delay data.

*************************test_bias_aoi21.sp**********************

*********************

.GLOBAL gnd!

.SUBCKT AOI21_1 X A1 A2 B pbias nbias vd1

MPB X B N1 pbias pmos L=0.045U W=0.225U M=1

MPA2 N1 A2 vd1 pbias pmos L=0.045U W=0.225U M=1

MPA1 N1 A1 vd1 pbias pmos L=0.045U W=0.225U M=1

MNB X B gnd! nbias nmos L=0.045U W=0.225U M=1

MNA2 N2 A2 gnd! nbias nmos L=0.045U W=0.225U M=1

MNA1 X A1 N2 nbias nmos L=0.045U W=0.225U M=1

.ENDS

x1 o1 vg1 vg2 vg3 pbias nbias AVDD / AOI21_1

x3 o2 o1 vdd gnd! pbias nbias vdd / AOI21_1

x4 o2 o1 vdd gnd! pbias nbias vdd / AOI21_1

x5 o2 o1 vdd gnd! pbias nbias vdd / AOI21_1

x6 o2 o1 vdd gnd! pbias nbias vdd / AOI21_1

*MPA2 X2 X vd1 pbias pmos L=0.045U W=0.460U

*MNA2 X2 X gnd! nbias nmos L=0.045U W=0.180U

vvd1 VDD 0 0.7

vvg1 vg1 0 pwl(0 0 360p 0 360.001p 0.7 720p 0.7

+720.001p 0 1080p 0 1080.001p 0.7 1440p 0.7 1440.001p 0 1800p 0)

vvg2 vg2 0 0.7

vvg3 vg3 0 0

*vg2 A2 0 0

rs1 AVDD vdd 1

*XI1 in1 in2 pbias nbias inv M=1

*XI2 in2 in3 pbias nbias inv M=1

*RL in3 0 1k
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vp1 vdd pbias 0$pwl(0 0 360p 0 360.001p 0.2 720p 0.2 720.001p 0

+1080p 0 1080.001p 0.2 1440p 0.2 1440.001p 0 1800p 0)

vn1 nbias gnd! 0$pwl(0 0 360p 0 360.001p 0.2 720p 0.2 720.001p 0

+1080p 0 1080.001p 0.2 1440p 0.2 1440.001p 0 1800p 0)

*.option runlvl=0

*.OPTIONS POST PROBE

.probe i(rs)

.MODEL pmos pmos LEVEL=54

.MODEL nmos nmos LEVEL=54

.OP

*.DC Vnbias 0 2 0.00001

.tran .01p 2n

.PRINT TRAN POWER I(Rs)

*.PRINT DC I(r0) I(r1) I(r2) I(r3) V(op) v(op2) I(Rs)

*Vin vin gnd! DC 0

*Vvcc vcc gnd! DC 0.9

*Vnbias vnbias gnd! 0

.MEAS TRAN PAVG AVG power FROM = 360ps TO = 1079ps

.temp 100

.END

* PTM 45nm Metal Gate / High-K

.model nmos nmos level=54 +version = 4.0

*****model omitted for simplicity**********

******************end of file******************************
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Appendix C

Coding Implementation

The following piece of code implements the main algorithm presented in the thesis;

it was implemented in Berkeley’s ABC tool [20], which is open source and performs logic synthesis

and validation.

\footnotesize

/************** [JK] start************************/

// print the network in this method.

int Abc_PrintMap(Abc_Frame_t * pAbc){

FILE* fp;

Abc_Obj_t * pNode, * pDriver, * pWorstOut;

Vec_Ptr_t * vNodes;

Vec_Ptr_t * vCritical;

Abc_Ntk_t * pNtk;

int i, DelayCur, fForward=1, Direction=0;

Abc_Time_t * pTime;

float tArrivalMax;

Mio_PinPhase_t PinPhase;

Mio_Pin_t * pPin;

Abc_ManTime_t * pManTime;

if(pAbc->pNtkCur == NULL)

return 1;

fp = fopen("critical_output.txt", "w");

//print network name

fprintf(fp, "Network Name: %s\n\n", pAbc->pNtkCur->pName);

assert( Abc_NtkIsMappedLogic(pAbc->pNtkCur) );

Abc_NtkTimePrepare( pAbc->pNtkCur );

vNodes = Abc_NtkDfs( pAbc->pNtkCur, 1 );

tArrivalMax = -ABC_INFINITY;

fprintf(fp, "********The List of Primary Outputs********\n\n");

for ( i = 0; i < vNodes->nSize; i++ )

{

pNode=vNodes->pArray[i];
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Abc_NodeDelayTraceArrival_AA(pNode);

if(pNode->fMarkA==1)

continue;//if it is not a primary output do nothing

pTime = Abc_NodeArrival(pNode);

fprintf(fp, "%s\t\t%f\n",Abc_ObjName(pNode),pTime->Worst);

if ( tArrivalMax < pTime->Worst )

{

tArrivalMax = pTime->Worst;

pWorstOut=pNode;

}

}

Vec_PtrFree( vNodes );

// get the latest arrival times

pNode = pWorstOut;

fprintf(fp, "\n\n***********End of POs*********\n");

fprintf(fp, "\n\n The critical path is: \n");

while(pNode!=NULL)

{

pTime = Abc_NodeArrival(pNode);

fprintf(fp, " ====> %s",Abc_ObjName(pNode));

printf(" ====> %s,[%f]",Abc_ObjName(pNode),pTime->Worst);

if(pTime->Fall<pTime->Rise)

{

if ( pNode->fMarkC == 0 )

(

pNode= pNode->pWorstFaninRise;

}

else

(

pNode= pNode->pWorstFaninFall;

Direction=0;

}

}

else

(

if ( pNode->fMarkC == 0 )

(

pNode= pNode->pWorstFaninFall;

}

else

(

pNode= pNode->pWorstFaninRise;

Direction=1;

}

}
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}

fclose(fp);

return 0;

}

//method for show_map to create the map first and then call print routine.

int Abc_CommandMapAndPrint( Abc_Frame_t * pAbc, int argc, char ** argv )

int fError;

fError = Abc_CommandMap(pAbc, argc, argv );

if(Abc_PrintMap(pAbc)==0)

printf("\nWrite to the file (critical_output.txt) is successfull\n");

return fError;

}

/************************** [JK] end**********************************/

/***************************[AA] start********************************/

void Abc_NodeDelayTraceArrival_AA( Abc_Obj_t * pNode )

(

Abc_Obj_t * pFanin;

Abc_Time_t * pTimeIn, * pTimeOut;

float tDelayBlockRise, tDelayBlockFall;

Mio_PinPhase_t PinPhase;

Mio_Pin_t * pPin;

Abc_ManTime_t * pManTime;

int i;

// start the arrival time of the node

pTimeOut = Abc_NodeArrival(pNode);

pTimeOut->Rise = pTimeOut->Fall = -ABC_INFINITY;

// go through the pins of the gate

pPin = Mio_GateReadPins(pNode->pData);

//pNode->fMarkA=0;

Abc_ObjForEachFanin( pNode, pFanin, i )

(

pFanin->fMarkA=1;

pTimeIn = Abc_NodeArrival(pFanin);

// get the interesting parameters of this pin

PinPhase = Mio_PinReadPhase(pPin);

tDelayBlockRise = (float)Mio_PinReadDelayBlockRise( pPin );

tDelayBlockFall = (float)Mio_PinReadDelayBlockFall( pPin );

// compute the arrival times of the positive phase

if ( PinPhase != MIO_PHASE_INV ) // NONINV phase is present

(

pNode->fMarkC = 0;

if ( pTimeOut->Rise < pTimeIn->Rise + tDelayBlockRise )

(

pTimeOut->Rise = pTimeIn->Rise + tDelayBlockRise;

pNode->pWorstFaninRise=pFanin;
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}

if ( pTimeOut->Fall < pTimeIn->Fall + tDelayBlockFall )

(

pTimeOut->Fall = pTimeIn->Fall + tDelayBlockFall;

pNode->pWorstFaninFall=pFanin;

}

}

if ( PinPhase != MIO_PHASE_NONINV ) // INV phase is present

(

pNode->fMarkC = 1;

if ( pTimeOut->Rise < pTimeIn->Fall + tDelayBlockRise )

(

pTimeOut->Rise = pTimeIn->Fall + tDelayBlockRise;

pNode->pWorstFaninRise=pFanin;

}

if ( pTimeOut->Fall < pTimeIn->Rise + tDelayBlockFall )

(

pTimeOut->Fall = pTimeIn->Rise + tDelayBlockFall;

pNode->pWorstFaninFall=pFanin;

}

}

pPin = Mio_PinReadNext(pPin);

}

pTimeOut->Worst = ABC_MAX( pTimeOut->Rise, pTimeOut->Fall );

}

/**************************[AA] end****************************/

//////[JK] FOR IDENTIFYING THE EFFECT OF SIDE INPUTS//////////

void Abc_CheckLogic( Abc_Frame_t * pAbc )

(

FILE* fp;

Abc_Obj_t * pNode, * pDriver, * pWorstOut;

Vec_Ptr_t * vNodes, * vCritical;

int i, DelayCur, fForward=1, Direction=0;

Abc_Time_t * pTimeIn, * pTimeOut, * pTime;

float Min_tArrivalMax=2, tArrivalMax = -ABC_INFINITY;

Mio_PinPhase_t PinPhase;

Mio_Pin_t * pPin;

Abc_ManTime_t * pManTime;

fp = fopen("critical_nodepath.txt", "w");

Abc_NtkTimePrepare( pAbc->pNtkCur );

vNodes = Abc_NtkDfs( pAbc->pNtkCur, 1 );

assert( Abc_NtkIsMappedLogic(pAbc->pNtkCur) );

/////get new worst timing//////

Min_tArrivalMax = PropLogic(pAbc);
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//fprintf(fp,"%d\n\n",vNodes->nSize);

printf("There are %d internal nodes apart from PIs

\n\nPrimary outputs are\n",vNodes->nSize);

for ( i = 0; i < vNodes->nSize; i++ )

(

pNode=vNodes->pArray[i];

if(pNode->fMarkA==1)

continue;

Abc_NodeDelayTraceArrival_AA(pNode);

pTime = Abc_NodeArrival(pNode);

//fprintf(fp, "%s\t\t%f\t%f\n",Abc_ObjName(pNode)

,pTime->Worst,pTimeOut->Worst);

//printf("%s\t\t%f\t%f\n",Abc_ObjName(pNode)

,pTime->Worst,pTimeOut->Worst);

if ( tArrivalMax < pTime->Worst )

(

tArrivalMax = pTime->Worst;

pWorstOut=pNode;

}

}

pNode = pWorstOut;

fprintf(fp, "\n\n***********End of POs*************\n");

fprintf(fp, "\n\n The critical path is: \n");

printf("\n\n The critical path is: \n");

while(pNode!=NULL)

(

pTime = Abc_NodeArrival(pNode);

fprintf(fp, " ====> %s,[%f]",Abc_ObjName(pNode),pTime->Worst);

printf(" ===> %s,[%f]",Abc_ObjName(pNode),pTime->Worst);

//pTime = Abc_NodeArrival(pNode);

if(pTime->Fall<pTime->Rise)

(

if ( pNode->fMarkC == 0 )

(

pNode= pNode->pWorstFaninRise;

}

else

(

pNode= pNode->pWorstFaninFall;

Direction=0;

}

}

else

(

if ( pNode->fMarkC == 0 )

(
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pNode= pNode->pWorstFaninFall;

}

else

(

pNode= pNode->pWorstFaninRise;

Direction=1;

}

}

}

fprintf(fp, " \n\n %f",Min_tArrivalMax);

printf(" \n\nwith constant input this reduces to %f\n\n",Min_tArrivalMax);

fclose(fp);

}

char ** Min_PI1,** Min_PI2,** Min_PO,** Min_PO_LOCAL;

int Min_Log1, Min_Log2;

/////////////////////////[jk]////////////////////////

float PropLogic(Abc_Frame_t * pAbc)

(

Abc_Obj_t * pFanout, * pFanin, * pNode, *pPi1,*pPi2;

Abc_Time_t * pTimeIn, * pTimeOut, * pTime;

Vec_Ptr_t * vNodes, * vCritical;

float tDelayBlockRise, tDelayBlockFall,tArrivalMax = -ABC_INFINITY;

float Min_tArrivalMax = ABC_INFINITY ;

Mio_PinPhase_t PinPhase;

//Mio_Gate_t * pRoot;

Mio_Pin_t * pPin;

Abc_ManTime_t * pManTime;

int i,PI_iter1,PI_iter2,Node_iter, Logic1, Logic2;

vNodes = Abc_NtkDfs( pAbc->pNtkCur, 1 );

Abc_ClearTimeLogic(pAbc);

Abc_NtkForEachPi( pAbc->pNtkCur, pPi1, PI_iter1)

%//iterating over each primary input of the circuit

(

//printf("\nPI1=%s\n",Abc_ObjName(pPi1));

Logic1=0;

while(Logic1<2) //going the whole process first with 0 and then with 1

(

pPi1->fMarkB = Logic1;

Abc_NtkForEachPi( pAbc->pNtkCur, pPi2, PI_iter2)

%//iterating over each primary input of the circuit

(

if(pPi1!=pPi2)

( //printf("\nPI2=%s\n",Abc_ObjName(pPi2));

Logic2=0;

while (Logic2<2)
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(

pPi2->fMarkB = Logic2;

%//setting the logic of the current PI to 0 or 1

//printf("Logic = %d\t",Logic);

for ( Node_iter = 0; Node_iter < vNodes->nSize; Node_iter++ )

%//Node iteration for logic propagation

(

pNode=vNodes->pArray[Node_iter];

pNode->fMarkB=2;

pTimeOut= Abc_NodeArrival(pNode);

pPin = Mio_GateReadPins(pNode->pData);

Abc_ObjForEachFanin( pNode, pFanin, i )

(

pFanin->fMarkA=1;

%// flag for this loop for time adjust is visited

%and for POs this is not visited as Fanin

Set_logic_based_delay(pNode,pPin,pFanin);

pTimeOut = Abc_NodeArrival(pNode);

pTimeOut->Worst = ABC_MAX( pTimeOut->Rise, pTimeOut->Fall );

pPin = Mio_PinReadNext(pPin);

}//end of fanin iteration

if(pTimeOut->Worst>tArrivalMax)

(

tArrivalMax = pTimeOut->Worst;

Min_PO_LOCAL=Abc_ObjName(pNode);

}

//printf("%s\t%f\n",Abc_ObjName(pNode),pTimeOut->Worst);

}//end of node iteration

if(Min_tArrivalMax >= tArrivalMax)

%//remember the best critical condition

(

Min_tArrivalMax = tArrivalMax;

Min_PI1=Abc_ObjName(pPi1);

Min_PI2=Abc_ObjName(pPi2);

Min_PO=Min_PO_LOCAL;

Min_Log1=Logic1;

Min_Log2=Logic2;

}

//printf("Logic2 = %d\t",Logic2);

Logic2++;//changing the logic2, occurring only once
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}//end of logic2 iteration

}

}//end of PI2 iteration

//printf("Logic1 = %d\t",Logic1);

Logic1++; //changing the logic1, occurring only once

}//end of logic1 iteration

}//end of PI1 iteration

printf("\n\n Max Arrival Time = %f\n

Primary Input Id = %s\t%s\n

Logic of this node = %d\t%d\n\n

and the output node is %s\n"

,Min_tArrivalMax,Min_PI1,Min_PI2,Min_Log1,Min_Log2,Min_PO);

return Min_tArrivalMax;

}

void Abc_ClearTimeLogic(Abc_Frame_t * pAbc)

(

int i;

Vec_Ptr_t * vNodes;

Abc_Obj_t * pNode;

Abc_Time_t * pTimeOut;

Abc_NtkTimePrepare( pAbc->pNtkCur );

vNodes = Abc_NtkDfs( pAbc->pNtkCur, 1 );

assert( Abc_NtkIsMappedLogic(pAbc->pNtkCur) );

////clearing everything

for ( i = 0; i < vNodes->nSize; i++ )

(

pNode=vNodes->pArray[i];

pTimeOut = Abc_NodeArrival(pNode);

pTimeOut->Rise = pTimeOut->Fall = ABC_INFINITY;

pNode->fMarkB=2;

}

////////////////////////////

}

void Abc_ctrl_logic(Abc_Obj_t * pNode,Abc_Obj_t * pFanin)

(

Mio_Gate_t * pRoot;

pRoot=pNode->pData;

if(pFanin->fMarkB==0 && !strncmp( pRoot->pName, "and", 3 ))

pNode->fMarkB=0;

else if ( pFanin->fMarkB==1 && !strncmp( pRoot->pName, "or", 2 ) )

pNode->fMarkB=1;

else if ( pFanin->fMarkB==0 && !strncmp( pRoot->pName, "nand", 4 ) )
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pNode->fMarkB=1;

else if ( pFanin->fMarkB==1 && !strncmp( pRoot->pName, "nor", 3 ))

pNode->fMarkB=0;

else if ( pFanin->fMarkB==0 && !strncmp( pRoot->pName, "inv", 3 ))

pNode->fMarkB=1;

else if ( pFanin->fMarkB==1 && !strncmp( pRoot->pName, "inv", 3 ))

pNode->fMarkB=0;

else if ( !strncmp( pRoot->pName, "buf", 3 ) )

pNode->fMarkB = pFanin->fMarkB ;

}

void Set_logic_based_delay

(Abc_Obj_t *pNode,Mio_Pin_t *pPin,Abc_Obj_t *pFanin)

{

float tDelayBlockRise = (float)Mio_PinReadDelayBlockRise( pPin );

float tDelayBlockFall = (float)Mio_PinReadDelayBlockFall( pPin );

Mio_PinPhase_t PinPhase = Mio_PinReadPhase(pPin);

Abc_Time_t *pTimeIn,* pTimeOut;

pTimeIn= Abc_NodeArrival(pFanin);

pTimeOut = Abc_NodeArrival(pNode);

pTimeOut->Rise = pTimeOut->Fall = -ABC_INFINITY;

Abc_ctrl_logic(pNode,pFanin);

//pTimeOut = Abc_NodeArrival(pFanin);

if (pNode->fMarkB !=2)

{

if ( PinPhase != MIO_PHASE_INV ) // NONINV phase is present

{

pNode->fMarkC = 0;

if(pFanin->fMarkB==1)

{

pTimeOut->Rise = pTimeIn->Rise + tDelayBlockRise;

pTimeOut->Fall = -ABC_INFINITY;

pNode->pWorstFaninRise=pFanin;

}

else if(pFanin->fMarkB==0)

{

pTimeOut->Fall = pTimeIn->Fall + tDelayBlockFall;

pTimeOut->Rise = -ABC_INFINITY;

pNode->pWorstFaninFall=pFanin;

}

else{}

}

if ( PinPhase != MIO_PHASE_NONINV ) // INV phase is present

{
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pNode->fMarkC = 1;

if(pFanin->fMarkB==0)

{

pTimeOut->Rise = pTimeIn->Fall + tDelayBlockRise;

pTimeOut->Fall = -ABC_INFINITY;

pNode->pWorstFaninRise=pFanin;

}

else if(pFanin->fMarkB==1)

{

pTimeOut->Fall = pTimeIn->Rise + tDelayBlockFall;

pTimeOut->Rise = -ABC_INFINITY;

pNode->pWorstFaninFall=pFanin;

}

else{}

}

}

else

{

// compute the arrival times of the positive phase

if ( PinPhase != MIO_PHASE_INV ) // NONINV phase is present

{

pNode->fMarkC = 0;

if ( pTimeOut->Rise < pTimeIn->Rise + tDelayBlockRise )

{

pTimeOut->Rise = pTimeIn->Rise + tDelayBlockRise;

pNode->pWorstFaninRise=pFanin;

}

if ( pTimeOut->Fall < pTimeIn->Fall + tDelayBlockFall )

{

pTimeOut->Fall = pTimeIn->Fall + tDelayBlockFall;

pNode->pWorstFaninFall=pFanin;

}

}

if ( PinPhase != MIO_PHASE_NONINV ) // INV phase is present

{

pNode->fMarkC = 1;

if ( pTimeOut->Rise < pTimeIn->Fall + tDelayBlockRise )

{

pTimeOut->Rise = pTimeIn->Fall + tDelayBlockRise;

pNode->pWorstFaninRise=pFanin;

}

if ( pTimeOut->Fall < pTimeIn->Rise + tDelayBlockFall )

{

pTimeOut->Fall = pTimeIn->Rise + tDelayBlockFall;

pNode->pWorstFaninFall=pFanin;

}

}

}
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}

//////////////Recreating the worst situation/////////////////

int Abc_WorstCaseRecreate(Abc_Frame_t * pAbc)

{

Abc_Obj_t * pFanout, * pFanin, * pNode, *pPi1,*pPi2;

Abc_Time_t * pTimeIn, * pTimeOut, * pTime;

Vec_Ptr_t * vNodes, * vCritical;

float tDelayBlockRise, tDelayBlockFall,tArrivalMax = -ABC_INFINITY;

float Min_tArrivalMax = ABC_INFINITY ;

Mio_PinPhase_t PinPhase;

//Mio_Gate_t * pRoot;

Mio_Pin_t * pPin;

Abc_ManTime_t * pManTime;

int i,PI_iter1,PI_iter2,Node_iter, Logic1, Logic2;

//char ** Min_PI1,** Min_PI2,** Min_PO,** Min_PO_LOCAL;

Abc_NtkTimePrepare( pAbc->pNtkCur );

vNodes = Abc_NtkDfs( pAbc->pNtkCur, 1 );

Abc_NtkForEachPi( pAbc->pNtkCur, pPi1, PI_iter1)

%//iterating over each primary input of the circuit

{

if(Abc_ObjName(pPi1)!=Min_PI1)

continue;

Logic1=Min_Log1;

pPi1->fMarkB = Logic1;

Abc_NtkForEachPi( pAbc->pNtkCur, pPi2, PI_iter2)

%//iterating over each primary input of the circuit

{

if(Abc_ObjName(pPi2)!=Min_PI2)

continue;

Logic2=Min_Log2;

pPi2->fMarkB = Logic2;

for ( Node_iter = 0; Node_iter < vNodes->nSize; Node_iter++ )

%//Node iteration for logic propagation

{

pNode=vNodes->pArray[Node_iter];

pNode->fMarkB=2;

pTimeOut= Abc_NodeArrival(pNode);

pPin = Mio_GateReadPins(pNode->pData);

Abc_ObjForEachFanin( pNode, pFanin, i )

{

Set_logic_based_delay(pNode,pPin,pFanin);

pTimeOut = Abc_NodeArrival(pNode);

pTimeOut->Worst = ABC_MAX( pTimeOut->Rise, pTimeOut->Fall );

pPin = Mio_PinReadNext(pPin);
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}//end of fanin iteration

if(pTimeOut->Worst>tArrivalMax)

{

tArrivalMax = pTimeOut->Worst;

Min_PO_LOCAL=Abc_ObjName(pNode);

}

}//end of node iteration

}//end of PI2 iteration

}//end of PI1 iteration

}

//int ObjPropagateLogic( Hop_Obj_t * pObj, Vec_Vec_t * vLevels, int Level )

//{

// Vec_Ptr_t * vSuper;

// Hop_Obj_t * pFanin;

// int fCompl, i;

// // store the complemented attribute

// fCompl = Hop_IsComplement(pObj);

// pObj = Hop_Regular(pObj);

// // constant case

// if ( pObj->fMarkB<3 )

// {

// return pObj->fMarkB;

// }

// // PI case

// if ( Hop_ObjIsPi(pObj) )

// {

// fprintf( pFile, "%s%s", fCompl? "!" : "", pObj->pData );

// return pObj->fMarkB;

// }

// // AND case

// Vec_VecExpand( vLevels, Level );

// vSuper = Vec_VecEntry(vLevels, Level);

// Hop_ObjCollectMulti( pObj, vSuper );

// fprintf( pFile, "%s", (Level==0? "" : "(") );

// Vec_PtrForEachEntry( vSuper, pFanin, i )

// {

// Hop_ObjPrintEqn( pFile,Hop_NotCond(pFanin, fCompl),vLevels,Level+1);

// if ( i < Vec_PtrSize(vSuper) - 1 )

// fprintf( pFile, " %s ", fCompl? "+" : "*" );

// }

// fprintf( pFile, "%s", (Level==0? "" : ")") );

// return;

//}

//

//////////////////////////////[JK] End ////////////////////////
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