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Resource allocation for semi-elastic applications
with outage constraints in cellular networks

Chao Yang and Scott Jordan University of California, Irvine
Email: Chao.Yang@uci.edu, sjordan@uci.edu

Abstract—We consider resource allocation for semi-elastic ap-
plications, such as mobile video-conferencing, which require a
maximum outage. We represent the performance of a session by
a sigmoid utility function of the average bit rate over a time
window consisting of many slots. The goal is to maximize the
total expected utility of all active users. A principal challenge is
the difference in time scales: outage is measured over sessions
while average bit rate is measured over a time window such as
a group of pictures. We propose that these differences in time
scale can be elegantly addressed by shadow prices: a price per
unit average rate over each time window and a price per unit
outage. We further propose that the price per unit average rate
depends on combined pathloss and shadowing, but not on fast
fading. We show that resources can be efficiently allocated if
the base station chooses prices based on total demand and the
users respond by choosing average rates. The performance of our
algorithm is illustrated by simulation results.

Keywords—mobile video-conferencing, sigmoid utility, outage,
resource allocation

I. INTRODUCTION

Video applications constitute a rapidly increasing portion
of the total traffic on cellular networks. It is now estimated
that video comprises one third of downstream North American
mobile Internet access peak period traffic [1]. Most of this
video traffic is streaming encoded using either Adobe Flash or
MPEG. Some of this video traffic is video conferencing1, e.g.
Apple’s FaceTime for iPhones and Skype’s video conferencing
application for smartphones. Fourth generation (4G) cellular
networks will integrate voice, video, and data applications
using packet switching.

Resource allocation for video applications has received great
attention in recent years. For such applications, variable bit rate
video encoding algorithms are typically used, e.g. MPEG. As
a consequence, resource allocation should take into account
application characteristics when best-effort packet switching
would not result in acceptable performance. A few papers
have proposed modeling the performance of video applications
using a sigmoid utility function of the rate of the connection,
i.e. utility is convex at rates less than a threshold and concave
at rates above that threshold [2]. A number of papers model
utility as a function of instantaneous rate, and thus propose
resource allocation algorithms based on instantaneous rate
[3][4][5][6][7][8][9][10]. For instance, in [7], we considered
the case in which utility is a semi-elastic function of the

1In “video conferencing”, we include conversions using both audio and
video amongst two or more parties.

rate achieved in each time slot. We proposed a near-optimal
algorithm that iteratively finds optimal shadow prices for power
and rates, and uses these shadow prices to allocate power and
subcarriers.

However, we have argued that for video encoded using
group-of-picture structures, e.g. MPEG, utility should be rep-
resented as a sigmoid function of the average rate over each
group-of-pictures [11]. Thus the algorithms in [3][4][5][6][7]
are not suitable to video conferencing. Since a group-of-
pictures comprises many time slots, resource allocation based
on average rate over each group-of-pictures can exercise con-
siderably greater flexibility than resource allocation based on
instantaneous rate, and thereby achieve better results. Below
we will propose that utility be formulated as a sigmoid
function of the average rate over a preceding time window
consisting of many slots. This dependence on average rate
over a time window, however, creates a challenge. Since
users are mobile, channels are highly variable. There is thus
significant uncertainty about a user’s channel within the next
time window, and hence about achievable average rate over
the time window. A key resource allocation design problem
consists of how to consider a user’s current channel and
likely future channels. In [11], we considered the case in
which utility is a sigmoid function of the average bit rate
over multiple time slots, motivated by video conferencing, and
showed that greedy allocation to maximize incremental utility
in the current time slot can be implemented in a distributed
fashion by an exchange of price and demand amongst users,
the network, and an intermediate power allocation module. We
proposed resource allocation that considers both the average
rate achieved so far and the future expected rate, and showed
how the future expected rate can be estimated by modeling
the probability that a user will be allocated a subcarrier in a
future time slot.

However, video conferencing applications have a second key
performance metric that has not been considered. Users view
connections as unacceptable if the average rate drops below
a minimum threshold too often. Such a notion of outage is
common when modeling voice applications, and thus resource
allocation for voice often obeys constraints on the probability
that the instantaneous rate falls below a minimum threshold
[12][13][14][15][16]. We argue here that for video encoded
using group-of-picture structures, e.g. MPEG, outage occurs
when the average rate over the group-of-pictures, not the
instantaneous rate, falls below a minimum threshold2. This

2For video streaming using MPEG, the utility shape is still sigmoid.
However, further study is required to determine the length of the time window.
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calls for an approach to resource allocation that considers both
utility and outage based on the average rate over the group-
of-pictures. None of the prior literature on resource allocation
for video using sigmoid utility functions, including our prior
papers [7] and [11], considered outage.

The existence of an outage constraint poses a challenge
to resource allocation. For best-effort applications, commonly
represented by concave utility functions, outage is not an issue
and total utility is maximized by allocating few resources to
users with poor channels. For inelastic applications such as
voice, commonly represented by step utility functions, outage
constraints are satisfied by allocating resources to maintain a
strict minimum threshold rate for each user whenever possi-
ble. For semi-elastic applications such as video conferencing,
however, neither approach is optimal. The minimum rate
requirement isn’t as strict for semi-elastic applications as for
inelastic applications. There is a benefit to allocating fewer
resources to users with poor channels, but not so few as to
violate the outage constraint. The key question is when and
how much to compensate for a user’s poor channel.

The major contributions of this paper are:

1) Formulating power and subcarrier allocation as an opti-
mization problem with a metric of total user utility as a
sigmoid function of the average rate over each group-
of-pictures, and with outage constraints. Evaluation of
utility over sliding windows is novel. The introduction
of an outage constraint in such a setting is also novel.

2) Solution of a non-causal version of the optimization
problem, and illustration of the structure of the solution.
We illustrate how the usual shadow prices for rate and
power now depend on the length of the time window
over which utility is evaluated, and how shadow costs
can be associated with outage constraints.

3) Transformation of the optimization problem into a
causal problem that can be efficiently solved. We il-
lustrate how the shadow prices for average rate and
outage can be combined to elegantly determine power
and subcarrier allocation, by transforming the objective
functions using statistical averages and by determining
the combined price as a function of a user combined
pathloss and shadowing, which is nearly constant during
the time window over which utility is evaluated.

4) We propose an iterative algorithm that determines
power and subcarrier allocations based on quantization
of combined pathloss and shadowing. We illustrate how
this approach can maximize utility subject to long-
term average outage constraints, how the use of a time
window impacts the solution, and how these policies
differ from alternate resource allocation policies.

The rest of this paper is as follows. In section II, we
define a user’s channel, rate, and utility. We also provide
some background theory and knowledge. In section III, we
consider a non-causal version of the problem. In section IV,
we pose a simpler causal problem and propose a new optimal
solution. Finally, in section V the performance of our algorithm
is illustrated by numerical simulation results.

II. SYSTEM AND UTILITY MODEL

Our approach is to construct a link layer model, and to
abstract the key elements of other layers. The physical layer
is abstracted in the first subsection, and the network through
application layers are abstracted in the next subsection. The
goal is to obtain a model simple enough to lead to an under-
standable optimization problem, and to allow us to formulate
reasonable link layer resource allocation algorithms.

A. System Model
We consider a single cell downlink Orthogonal Frequency-

Division Multiple Access (OFDMA) system serving K users
with N subcarriers. The bandwidth B of each subcarrier
is assumed to be less than the coherence bandwidth of the
channel so that the channel response can be considered flat.

The physical layer is abstracted using a common model
for the relationship between channel, power, and instantaneous
rate, see e.g. [17][18][19][20]. The instantaneous rate of user
k on subcarrier n in time slot t is:

rk,n,t(pk,n,t) = B log2

(
1 + pk,n,t

|Hk,n,t|2

σ2 + I

)
(1)

where pk,n,t is the power allocated, |Hk,n,t|2 is the composite
channel gain, σ2 is the noise power, and I is the average
inter-cell interference power3. The channel gain |Hk,n,t|2 =
α2
k,n,tγk,tPLk,t is composed of fast fading α2

k,n,t which
changes significantly in sequential time slots, slow fading
and shadowing γk,t which changes little in sequential time
slots but may change significantly during a few seconds, and
pathloss PLk,t which depends on user position and changes
significantly during tens of seconds. Fast fading on different
subcarriers is assumed to be independent to each other. The
total instantaneous rate of user k in time slot t is the sum of
the user’s instantaneous rate over all subcarriers:

Rk,t =
N∑
n=1

rk,n,t (2)

Our notation is summarized in Table I.

B. Utility Model
There are several metrics used to evaluate the performance

of real-time video. Many papers have proposed that network
resources should be allocated to maximize the average peak
signal to noise ratio (PSNR), see e.g. [25][26], sometimes
subject to long term average rate constraints, see e.g. [27][28].
However, real-time voice and video are often evaluated by the
delay and delay jitter of the stream. Some researchers have
proposed replacing long term average rate constraints with
some type of delay deadline, see e.g. [29] which minimizes
wireless resource usage subject to statistical delay and loss

3See e.g. [21][22] for the dependence of average inter-cell interference upon
the interference power spectral density. Alternatively, one may model time-
dependent inter-cell interference based on activity in neighboring cells, see

e.g. [23][24]. In a real system,
|Hk,n,t|2

σ2+I
would be replaced by the measured

signal to interference plus noise ratio (SINR).
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TABLE I. NOTATION

Notation Description
K number of users
N number of subcarriers
W number of time slots in a time window
t current slot number
M number of slices in the partition of combined pathloss

and shadowing
B subcarrier bandwidth
P downlink power of base station
Pr outage constraint
S

′
k average rate of user k at maximum average utility
Uk utility function of user k
γk,t shadowing of user k
PLk,t pathloss of user k
ψk,t, ψk , ψm

k combined pathloss and shadowing of user k
α2

k,n,t, α2
k,n fast fading of user k

|Hk,n,t|2, |Hm
k,n|

2 composite channel fading of user k
pk,n,t, pmk,n allocated power to user k on subcarrier n
rk,n,t, rmk,n instantaneous rate of user k on subcarrier n
Rk,t, Rm

k instantaneous rate of user k in one slot
Sk,t, Sk , Sm

k average rate of user k within preceding time window
µ, µt power price
βk,t, βm

k average rate price
I and σ2 interference power and noise power

constraints, [30] which maximizes concave utility subject to
delay constraints, [31] which minimizes the expected end-to-
end distortion subject to delay constraints, and [32] which
minimizes the error propagation of a group of pictures subject
to delay constraints.

However, video encoding algorithms often use a group of
pictures as a central concept, and intentionally vary the bit rate
over different frames within this group. As a consequence,
delay and delay jitter within a group of pictures becomes
less important, as the decoder will often intentionally delay
packet processing until a frame is received. The most im-
portant performance metric becomes the number of packets
received within a group of pictures. Some papers have thus
adopted throughput as the primary performance metric for
video, and often proposed that utility of multimedia appli-
cations be modeled as a sigmoid function of the throughput
[2][33][3][4][34][35]. A sigmoid utility function also reflects
the layered coding structure of MPEG video. The initial
convex portion reflects the average rate required to transmit
the base video layer. The concave portion reflects the use of
incremental average rate to transmit enhancement layers; every
additional enhancement layer increases user satisfaction, but
with decreasing returns.

Here we adopt throughput as the primary performance
metric. However, since performance depends on the number of
packets received within a group of pictures, we have previously
proposed to model user utility as a sigmoid function of the
average rate over a time window consisting of W time slots
[11], as pictured in Fig 1. For video, the time window is likely
to be chosen to be one group of pictures.

As our approach is to construct a link layer model, the
network through application layers including the video se-
quence, the video encoder and decoder, RTP, TCP or UDP,
packet transmission, routing, and packet fragmentation are
abstracted using a utility function that depends only on the
average throughput over a time window of W time slots. The

power of this model is that it can lead to optimization problems
at the link layer that in turn result in reasonable link layer
resource allocation algorithms. This abstraction presumes that
the video encoder/decoder is capable of prioritizing packets
within a time window, and that either it signals packet priority
to the link layer or dynamically responds to packet receptions
and losses. In the former case, a video encoder/decoder may
use layered coding and set the priority of a packet based on
the video layer, and the link layer may transmit packets within
a time window in priority order rather than temporal order.
In the latter case, a video encoder may itself transmit packets
within a time window in priority order, based on feedback from
the video decoder or from RTP about received and dropped
packets. In either case, we posit that the resulting quality
can thus be abstracted into a single variable – the number of
packets received within a time window – rather than on which
packets are received, packet loss, packet delay, packet delay
jitter, etc. The utility function thus describes the perceived
performance of the video stream, and its shape depends on
how effectively the video encoder/decoder encode information
and determine packet priority.

In time slot t, denote the average rate of user k during
the previous W time slots by Sk,t =

∑t
τ=t−W+1Rk,τ/W .

The utility of user k is assumed to be a function Uk(Sk,t)
which maps the average throughput achieved in W time slots
to the level of the satisfaction perceived by the application
[11]. There exists an inflection point Sfk such that Uk is
convex for Sk,t < Sfk and concave for Sk,t > Sfk . We
denote the average rate at the maximum average utility by
S

′

k, namely S
′

k = argmaxSk,t
Uk(Sk,t)/Sk,t. This shape is

thought to reflect the nature of the compression techniques
used in semi-elastic applications, which are designed to adjust
to fluctuations provided that short-term throughput remains
above a threshold, but which do not fail gracefully when short-
term throughput falls below that threshold.

Uk

Sk,tSk
f Sk’

 Fig. 1. A sigmoid utility function

III. NON-CAUSAL PROBLEM AND SOLUTION

We first consider a non-causal system in which at the
beginning of T >> W time slots the network knows the
future channel gains of each user in each time slot. While
knowledge of future information is clearly unrealistic, it will
provide guidance to design algorithms for causal systems.
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A. Optimization problem
Denote the power allocation by p = {pk,n,t, ∀k, n, t}. Each

subcarrier can be allocated to at most one user, thus denote the
feasible set of power and subcarrier allocations by A = {p s.t.
∀t, n, pk,n,t > 0 for at most one user k}. The utility generated
per unit average rate is maximum at S

′

k. Thus, it is reasonable
to assume that a compression algorithm would be designed on
the assumption that the average rate is maintained above this
threshold4. A user is thereby considered to be in outage during
time slot t if and only if Sk,t < S

′

k. The proportion of time
that user k is in outage is the number of time slots that user
k obtains an average rate lower than the target average rate
divided by the total number of slots [36], and is denoted by

Pr(Sk,t < S
′

k) =
1

T

T∑
t=1

1
(
Sk,t < S

′

k

)
(3)

where 1() is an indicator function.
The system objective is presumed to be to maximize the

total user utility within T slots5 under constraints that the total
transmitted power in each time slot not exceed the available
P and that the outage probability is within a certain threshold
Pr:

max
p∈A

1

T

T∑
t=1

K∑
k=1

Uk(Sk,t) (4)

s.t.
K∑
k=1

N∑
n=1

pk,n,t ≤ P ∀t; pk,n,t ≥ 0 ∀k, n, t

Pr(Sk,t < S
′

k) ≤ Pr ∀k

B. Optimal resource allocation
Because future channel gains are assumed known in this

non-causal problem, allocations of power and subcarriers can
be made jointly for all users and all time slots in a single
decision. This allows full consideration of the variation of
channel for each user from time slot to time slot and of the
average bit rate during each group-of-pictures achieved as a
result of allocations made in each time slot.

However, the direct solution of problem (4) requires solving
KNT fixed point equations. We are thus motivated to solve
a dual problem. The idea, used previously for strictly concave
utility functions [7][37][38], is to separate the determination
of each user’s average rate (Sk,t) and the allocation of in-
stantaneous power (p) using a set of intermediate variables
d = {dk,t, ∀k, t} as bounds on the achieved rates. This
decomposition can be used to allow the instantaneous power
to be determined on a faster time scale than average rate.
The allocated instantaneous power can then depend on the
current channel and recent channels, allowing the user’s rate
over longer time scales to depend on the channel distribution;
see e.g. [38] for more information about the general approach

4Alternatively, one might assume that Sf
k is a reasonable threshold.

5For simplicity of notation, we presume that the user has been in the system
since time t = −(W − 2), so that Sk,t is defined at t = 1.

and the resulting duality gap and see e.g. [7] for one example
of such a decomposition. A similar decomposition can be
applied to sigmoid utility functions. The problem (4) can be
transformed into:

max
p∈A,d

1

T

T∑
t=1

K∑
k=1

Uk (dk,t) (5)

s.t. Sk,t ≥ dk,t, ∀k, t
K∑
k=1

N∑
n=1

pk,n,t ≤ P, pk,n,t ≥ 0, ∀k, n, t

Pr(Sk,t < S
′

k) ≤ Pr ∀k,

It is easier to search for the optimal shadow prices and to let
them determine the optimal resource allocation than to directly
search for the optimal power and subcarrier allocations. This
can be done by posing a dual problem, see e.g. [39]. The
Lagrange of (5) is given by:

J(d, p,λ,µ,ν)

=
1

T

T∑
t=1

K∑
k=1

Uk(dk,t)+

T∑
t=1

K∑
k=1

λk,t (Sk,t−dk,t)

+
T∑
t=1

µt

(
P −

K∑
k=1

N∑
n=1

pk,n,t

)

+
K∑
k=1

νk

(
Pr − Pr(Sk,t < S

′

k)
)

(6)

where λ = {λk,t, ∀k, 1 ≤ t ≤ T} are the Lagrangian
multipliers associated with the average rate constraints, µ =
{µt, 1 ≤ t ≤ T} are the Lagrangian multipliers associated with
the power constraints, and ν = {νk, ∀k} are the Lagrangian
multipliers associated with the outage constraints.

The dual function is then given by:

J(λ,µ,ν) = max
p∈A,d

J(d, p,λ,µ,ν) (7)

and the dual problem is to optimally choose the Lagrangian
multipliers:

J
∗
= min
λ,µ,ν

J(λ,µ,ν) s.t. λ ≽ 0,µ ≥ 0,ν ≽ 0 (8)

First-order necessary conditions for solution of problem (7)
depend on the derivatives ∂J/∂p [40], which in turn depend on
the derivatives ∂Pr(Sk,t < S

′

k)/∂p. However, Pr(Sk,t < S
′

k)
is the sum of several indicator functions, and thus these
partial derivatives are not always defined. Alternatively, one
could exhaustively search amongst all possible p; however,
the computational complexity of this approach is very high.
Thus we propose replacing the outage probability constraint
Pr(Sk,t < S

′

k) ≤ Pr ∀k in (5) by a constraint on the
interpolation of the indicator function:

1

T

T∑
t=1

max
(
0, 1− Sk,t/S

′

k

)
≤ Pr, ∀k (9)
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Denote the time slots that user k is in outage by Ok =
{t|Sk,t < S

′

k}. Then the revised version of the Lagrangian
equation (6) is:

J(d, p,λ,µ,ν) (10)

≈ 1

T

T∑
t=1

K∑
k=1

Uk(dk,t)+

T∑
t/∈Ok

K∑
k=1

λk,t (Sk,t−dk,t)

+
T∑

t∈Ok

K∑
k=1

[(
λk,t +

νk
TS

′
k

)
Sk,t−λk,tdk,t

]

+

T∑
t=1

µt

(
P −

K∑
k=1

N∑
n=1

pk,n,t

)
+

K∑
k=1

νk

(
Pr − |Ok|

T

)
The number of time slots that user k is in outage, |Ok|, is a

discontinuous function of the set of allocated powers for user
k, {pk,n,t, ∀n, t}. At the points at which J(d, p,λ,µ,ν) is
continuous, i.e. ∂|Ok|/∂p = 0, the first order conditions can
be used to show that the optimal power allocation is:

pk,n,t =

(
Bβk,t
µt ln 2

− σ2 + I

|Hk,n,t|2

)+

(11)

and that subcarrier n should be allocated to the user

argmax
k

Φk,n,t (12)

where

Φk,n,t = βk,tB

[
log2

(
Bβk,t
µt ln 2

|Hk,n,t|2

σ2 + I

)]+

− µt

(
Bβk,t
µt ln 2

− σ2 + I

|Hk,n,t|2

)+

(13)

where βk,t = λk,t + 1(t ∈ Ok)νk/(TS
′

k) and βk,t =∑t+W−1
τ=t βk,τ/W .
The target average rate is

dk,t = max

{
S

′

k, argmax
dk,t

[Uk(dk,t)/T − βk,tdk,t]

}
(14)

The Lagrangian multipliers µ can be interpreted as shadow
costs for power, λ as shadow costs for average rate for users
not in outage, and ν as shadow costs associated with the outage
constraints. Thus βk,t can be interpreted as a shadow cost for
average rate for user k in slot t; it is comprised of λk,t plus
an outage price νk when a user is in outage. Equation (14)
states that the system allocates rates so as to maximize total
user surplus, defined as total user utility minus total user cost.

If user k is charged a price of βk,t per unit average rate, then
equation (11) states that power should be allocated according
to a water-filling algorithm using the average shadow cost for
average rate over the next W time slots. Equation (12) states
that subcarriers should be allocated so as to maximize the
system’s profit from subcarrier n, defined as the revenue from
selling average rate minus the cost of power.

The replacement of the outage probability constraint in (5)
by the constraint (9) on the interpolation of the indicator func-
tion will likely result in some outage probabilities that exceed
the outage threshold. This can be addressed by iteratively
increasing the shadow costs ν until each user’s outage satisfies
the outage constraint.

IV. CAUSAL PROBLEM AND SOLUTION

With an understanding of the structure of the optimal
resource allocation, we now turn to the causal resource allo-
cation problem. The major challenge to constructing a causal
resource allocation policy is that the resource allocation policy
described by (11)-(14) requires determination of the average
rate prices {βk,t}, which depends on the outage prices {νk}.
However, in the non-causal formulation, these prices requires
knowledge of future channel information which is clearly
impossible in real systems with mobile users. The challenge is
thus how to replace knowledge of future channel information
by knowledge solely of current channel information and a
distribution of the channel over time. This should be done
in a manner that attempts to compensate for a user’s poor
channel and thereby guarantees outage performance. In this
section, we propose basing the average rate price βk,t on
a user’s combined pathloss and shadowing, which is nearly
constant during time window W , thus avoiding the need to
consider future fast fading. We then transform the problem (4)
to consider an infinite time horizon using statistical averages,
and propose to reserve an average rate margin for users with
poor combined pathloss and shadowing to guarantee outage
performance.

A. Components of a user’s channel
Before crafting a causal optimization problem, it is worth-

while to consider the various components of a user’s channel,
and how resource allocation should depend upon each of them.
Recall that the channel gain |Hk,n,t|2 = α2

k,n,tγk,tPLk,t is
composed of fast fading α2

k,n,t, slow fading and shadowing
γk,t, and pathloss PLk,t. We classify fading as “fast” if and
only if the correlation between fading at times t and t +W
is small enough so that it can be considered independent, and
we classify the fading as “slow” otherwise.

This classification helps in two manners. First, using these
definitions, the fluctuations in fast fading will largely average
out during a time window, whereas fluctuations in slow fading,
shadowing, and pathloss will not. This is useful from an ana-
lytical perspective. Second, consider the available knowledge
of these components: fast fading, slow fading, shadowing, and
pathloss. It is reasonable to presume that the base station will
know the joint distribution of each of these components for
each user conditioned on mobile speed, and will also know
the distribution of user locations and speeds. Knowledge by
the base station of the instantaneous channel requires feedback
from the user’s handset. Commonly, feedback will commu-
nicate the instantaneous channel gain, and further analysis
may estimate individual components, see e.g. [41]. However,
because the purpose of the average rate price is to allocate
resources during a time window to maximize utility as a
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function of throughput achieved during a time window, it
is worthwhile to distinguish fast fading (which will largely
average out during a time window) and other components
(which will not).

We turn to the question of how resource allocation should
depend upon each of these channel components. One approach
is to compensate for a user’s entire channel gain. There are
two reasons for this approach. First, if the system objective is
to equalize SINR amongst users, then compensation achieves
this objective. Second, if outage is defined solely a function
of instantaneous rate, then compensation may be required to
satisfy the outage constraints. However, if the system objective
is not to equalize SINR and if outage is based on the average
rate achieved over a longer time period, then compensation is
neither optimal nor required.

For instance, many papers consider an objective of maxi-
mizing total user throughput, and propose allocating power ac-
cording to a water-filling algorithm using a power price. Water-
filling is based on instantaneous channel gain, but it achieves a
higher total user throughput than equalization of SINR, since it
uses power more effectively. Our goal is maximizing total user
utility. We thus will propose a water-filling algorithm using the
average shadow cost for average rate over the next W time
slots, rather than based on instantaneous channel gain. As a
consequence, it will make sense to distinguish between fast
fading and other channel components for purposes of utility
maximization.

Furthermore, in our model, a user is considered to be in
outage during time slot t if and only if Sk,t < S

′

k. This is
a different type of constraint than considered in papers that
model other applications. When outage is defined solely as a
function of instantaneous rate, then instantaneous fast fading
is a contributor to outage. In contrast, if outage depends on
the average rate achieved over a time window, then since
the fluctuations in fast fading will largely average out during
a time window, outage depends only on the distribution of
fast fading, not on instantaneous values. As a consequence, it
will also make sense to distinguish between fast fading and
other channel components for purposes of satisfying outage
constraints.

Our approach is thus to take into account the entire chan-
nel gain when determining power and subcarrier allocation,
presuming that feedback provides this information. However,
we will not attempt to provide compensation for fast fading,
because compensation does not maximize total utility and is
not necessary to satisfy long-term outage constraints. Instead,
we will propose that the power and subcarrier allocation should
be determined by the power price µt and a version of the
average rate price βk,t. The power price µt will depend on the
instantaneous channel gain, because it is used to ensure that
allocated power does not exceed available power in each time
slot. In contrast, although the average rate price will depend
on instantaneous slow fading, shadowing, and pathloss, it will
only depend on the distribution of fast fading. The average rate
price will be used to allocate resources during a time window
to maximize utility as a function of throughput achieved during
a time window. The average rate price will also be sufficient to
ensure that outage constraints are satisfied, since outage also

only depends on the distribution of fast fading.

B. A causal problem using statistical averages
To formulate a causal resource allocation policy, we propose

to consider each βk,t as a single decision variable, rather than
using separate decision variables λk,t and νk. We then propose
to use (11)-(12) to determine power and subcarrier allocations.
Since average rate should be allocated on a slower timescale
than power and subcarriers, we similarly propose to use (14)
to determine target rates for each user, but with βk,t replaced
by βk,t, i.e.

dk,t = max

{
S

′

k, argmax
dk,t

[Uk(dk,t)/T − βk,tdk,t]

}
(15)

As discussed above, we will require knowledge of the
distribution of users’ channels. Define a random variable α2

k,n
representing fast fading for user k on subcarrier n; denote
α2 = {α2

k,n, ∀k, n}. It often assumed the fading distribution
is known, see e.g. [42][43][44], often following a Rayleigh
distribution [45]. If the fading distribution is unknown, it can
be estimated in real time, see e.g. [46][47], although this adds
additional complexity. Errors introduced by estimation errors
are important, but are outside the scope of this paper.

Combine slow fading, shadowing, and pathloss for user
k into a single random variable ψk, whose distribution is
presumed known; denote ψ = {ψk, ∀k}. Similarly, it is often
assumed that these distributions are known.

Correspondingly, it will be helpful to think of the power
allocations as random variables pk,n and the achieved average
rates as random variables Sk that are functions of the random
variables α2 and ψ and of the resource allocation policy.

A key question is what to base the decision variables
{βk,t,∀k, t} upon. The fluctuations in fast fading will largely
average out during a group-of-pictures, whereas fluctuations
in slow fading, shadowing, and pathloss will not. Thus the
average rate price is principally influenced by combined path
loss and shadowing, and not by fast fading. We propose that
βk,t should be a function of ψk, denoted βk(ψk). The decision
variables {βk,t, ∀k, t} are thus determined by a choice of a set
of functions {βk(ψk), ∀k}. Thus, within a group of pictures,
a user can in some sense wait for a good channel on the basis
of fast fading, but not on the basis of slow fading, shadowing,
and pathloss. However, combined slow fading, shadowing and
pathloss can be considered by the resource allocation algorithm
in a manner that substantially affects the resulting outage.

It remains to specify the optimization metric and constraints
to use for determination of these functions. The optimization
metric can be written as a statistical average over an infinite
time horizon:

1

T

K∑
k=1

T∑
t=1

Uk(Sk,t) →
K∑
k=1

Eα2,ψUk(Sk) (16)

The resource allocation policy is determined by
{βk(ψk),∀k}. Denote the set of shadowing and pathlosses
for all users except user k by ψ−k = {ψk̂,∀k̂ ̸= k}. User’s
k’s achieved average rate Sk depends not only on its ψk
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but also upon other users’ shadowing and pathlosses and on
all users’ fast fading. Since fast fading will largely average
out over a group-of-pictures, the expectation over α2 can be
brought inside the utility function without loss of accuracy.
Other users’ shadowing and pathlosses affect the resource
allocation through determination of the power price µk,t,
but consideration of them in determination of the resource
allocation policy {βk(ψk), ∀k} is too complex; thus we also
propose to bring this portion of the expectation inside the
utility function:

Eα2,ψUk(Sk) ≈ Eψk
Uk(Eα2,ψ−k

Sk) (17)

Similarly, the total power can be written as a statistical
average over an infinite time horizon:

1

T

T∑
t=1

K∑
k=1

N∑
n=1

pk,n,t →
K∑
k=1

Eψk

N∑
n=1

Eα2,ψ−k
(pk,n) (18)

and the outage probability can be written as a statistical
average over an infinite time horizon:

Pr(Sk,t < S
′

k) → Eψk
Prα2,ψ−k

(Sk < S
′

k) (19)

The optimization problem using statistical averages is thus
to determine the set of functions {βk(ψk),∀k} that maximize
the average utility subject to an average power constraint and
to probability of outage constraints on each user:

max
{βk(ψk),∀k}

K∑
k=1

Eψk
Uk(Eα2,ψ−k

Sk) (20)

s.t.
K∑
k=1

Eψk

N∑
n=1

Eα2,ψ−k
(pk,n) ≤ P

Eψk
Prα2,ψ−k

(Sk < S
′

k) ≤ Pr, ∀k

C. Quantization
The optimization problem in (20) is causal. Offline, it

requires determination of the set of average rate price func-
tions {βk(ψk),∀k}. Then online, these functions are used in
conjunction with (11)-(12), with βk,t replaced by βk(ψk), to
determine power and subcarrier allocations. The remaining is-
sue is that {βk(ψk), ∀k} are continuous functions, and there is
no straightforward manner to optimize them. In this subsection,
we thus propose that ψk be quantized.

We assume that the distribution of ψk is independent of k.
Partition the domain of ψk into M slices, with the lower bound
of slice m denoted by ψm. This will allow the determination
of {βk(ψk), ∀k} to be reduced to determination of a finite set
{βmk , ∀k,m}, where βmk substitutes for βk(ψm).

Denote the probability of slice m by qm = Pr(ψk =
ψm). When in slice m, denote the corresponding channel by
|Hm

k,n|2 = α2
k,nψ

m
k .

With this quantization, the equation that determines user
rates (15) is transformed into:

dmk = max{S
′

k, argmax
dmk

[Uk(d
m
k )qm − βmk d

m
k ]} (21)

and the equation that determines power allocation (11) is
transformed into:

pmk,n =
Bβmk
µ ln 2

− σ2 + I

|Hm
k,n|2

(22)

where µ is the Lagrangian multiplier associated with the
average power constraint in (20). The equation that determines
subcarrier allocations (12) is transformed into:

argmax
k

Φmk,n (23)

where

Φmk,n = βmk B

[
log2

(
Bβmk
µ ln 2

|Hm
k,n|2

σ2 + I

)]+

− µ

(
Bβmk
µ ln 2

− σ2 + I

|Hm
k,n|2

)+

(24)

Denote the resulting average rate for user k while in slice
m by Smk . The optimization problem thus becomes:

max
{βm

k ,∀k,m}

K∑
k=1

M∑
m=1

Uk(Eα2,ψ−k
Smk )qm (25)

s.t.
K∑
k=1

M∑
m=1

N∑
n=1

Eα2,ψ−k

(
pmk,n

)
qm ≤ P

M∑
m=1

Prα2,ψ−k
(Smk < S

′

k)qm ≤ Pr, ∀k

D. Algorithm
In this subsection, we outline an algorithm that may be used

to iteratively solve problem (25). We start with calculation of
the expected average rate Eα2,ψ−k

Smk . Denote the instanta-
neous rate of user k on subcarrier n while in slice m by rmk,n.
Then:

Eα2,ψ−k
Smk =Eα2,ψ−k

Rmk =
N∑
n=1

Eα2,ψ−k

(
rmk,n

)
(26)

=
N∑
n=1

Eα2B log2

(
1 + pmk,n

α2
k,nψ

m

σ2 + I

)
Pr{n⇒ k,m}

where Pr{n ⇒ k,m} is the probability that subcarrier n
is assigned to user k given that user k is in slice m. For a
given βmk and µ, the equation that calculates the probability is
derived in Appendix 1.

Similarly, the average power in (25) can be expressed as:
M∑
m=1

K∑
k=1

N∑
n=1

Eα2(pmk,nPr{n⇒ k,m})qm (27)

The average rate of user k while in slice m, Smk , is a sum
over multiple time slots of the sum over multiple subcarriers
of rmk,n. In Appendix 2, we use the Central Limit Theorem to
approximate this sum, conditioned on ψ−k, by a Gaussian dis-
tribution: Smk,ψ−k

∼ N (NEα2(rmk,n|ψ−k), N · (δmk,ψ−k
)2/W )
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 Fig. 2. Use of an average rate margin shifts the distribution of average rate
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k

where Smk,ψ−k
is the average of user k in slice m for a given

of ψ−k and N · (δmk,ψ−k
)2/W is the variance. Removing

the conditioning on ψ−k thus gives that Smk is a mixture
Gaussian distribution, with the number of terms equal to
the number of possible values for ψ−k, i.e. MK−1. The
calculation of the mean value of Smk only requires knowledge
of Pr{n ⇒ k,m}, whose expansion includes Mk−1 terms.
However, the calculation of the outage probability requires
the tail probability of each the terms. If MK−1 is too large,
then the calculation of this tail probability is cumbersome;
in this case, we propose increasing the target average rate
from S

′

k to S̄k = ηS
′

k where η ≥ 1 is a margin sufficient to
ensure acceptable outage. By varying η, the probability density
function of Smk can be adjusted as shown in Fig.2, allowing
the outage requirement to be satisfied.

The offline portion of the iterative algorithm needs to choose
{βmk , ∀k,m} based on distribution of combined shadowing
and pathloss ψk and the distribution of fast fading α2 so as
to maximize total average utility. Let i denote the iteration
number. The average rate price for user k in slice m, βmk ,
should be set in conjunction with a corresponding target
average rate dm,ik so that user k’s expected average rate is equal
to its target average rate. This requires an offline estimation of
the power price µ.

We propose a subgradient method with bounds to iteratively
update {βmk ,∀k,m}:

βm,i+1
k =max[min(βm,ik +siP (d

m,i
k −Eα2,ψ−k

(Rm,ik )), β
m

k ), β]
(28)

where siP is a suitable step size, dm,ik is the target average
rate at iteration i, the lower bound β can be set to a small
suitable constant, and the upper bound β

m

k can be set to a
small multiple of λ

m

k where λ
m

k can be derived from (21) as

λ
m

k = qmdUk(Sk,t)/dSk,t|(Sk,t = S
′

k) (29)

The outage price is included in βmk . If βmk > λ
m

k , then the
outage price of user k given slice m is νmk = βmk − λ

m

k . The
target average rate dm,ik is determined by

dm,ik = max

{
Sk, argmax

dm,i
k

[Uk(d
m,i
k )qm − βmk d

m
k ]

}
, (30)

The iteration is terminated when:

βm,i+1
k −βm,ik <ρ ∀k (31)

or Eα2,ψ−k
(Rm,i+1

k )=Eα2,ψ−k
(Rm,ik ) ∀k

where ρ is a small constant.
For the update of µ, we propose a bisection algorithm:

If
M∑
m=1

K∑
k=1

N∑
n=1

Eα2,ψ−k

(
pmk,n

)
qm − P > 0,

then µi+1 = (µi + µi)/2, µi+1 = µi, µi+1 = µi

else µi+1 = (µi + µi)/2, µi+1 = µi, µi+1 = µi (32)

where the initial lower bound µ0 can be set to a small suitable
constant and upper bound µ0 can be set to a big suitable
constant. The iteration for µ is terminated when:

µi+1 − µi < ϵ (33)

where ϵ is a small constant. The offline algorithm is outlined
in Table II.

The average rate margin can be set according to the outage
performance. It includes two steps. The first step can be
completed off-line. We propose to approximate the mixture
distribution of Smk using a skewed gaussian distribution [48].
This produces a reasonably good fit, since although the number
of terms in the mixture gaussian distribution is very large,
the overall distribution remains fairly smooth. (The estimation
method of the variance of Smk , i.e. of δmk , is shown in Appendix
3.) We start with η = 1. Then the outage of Smk is estimated
as follows:

Prα2,ψ−k
(Smk < Sk) = F

(
S̄k − Eα2,ψ−k

Smk√
2δmk

)
(34)

− 1

6
f

(
S̄k − Eα2,ψ−k

Smk√
2δmk

)
· skew

where skew is the skewness [48], i.e. the third standardized
moment, of Smk . The outage is then increased in steps of ∆η
and the outage estimates of Smk updated using (34) until the
estimated average outage

∑M
m=1 Prα2,ψ−k

(Smk < S
′

k)qm is
below Pr. The second step is online adjustment. We observed
the actual outage, and if the estimated η is insufficient to meet
the desired threshold, then it can be further increased in steps
of ∆η until the threshold is met.

At the end of the offline algorithm, we have determined
{βmk ,∀k,m}. We discard µ, since it will be recalculated in
the online algorithm based on actual demand. The complexity
of subgradient updates is polynomial in the dimension of the
dual problem, and thus the complexity of the offline algorithm
is polynomial in the number of users K.

Then online, these functions are used in conjunction with
(11)-(12) to determine power and subcarrier allocations. This
online algorithm allocates resources slot by slot based on in-
stantaneous ψk,n,t and fast fading αk,t. While the quantization
means that only a limited set of average rate prices are deter-
mined in the offline algorithm, we can improve performance
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TABLE II. OFFLINE ALGORITHM TO SELECT THE AVERAGE RATE
PRICES {βm

k }

Initialize µ0 = µ0, and βm
k = β ∀k

Repeat
Repeat

Calculate total expected power by (27)
Update µ using (32)

Until (33)
Calculate dm,i

k by (30)
Update β using (28)

Until (31)
{βm

k } are stored.

TABLE III. ONLINE ALGORITHM TO ALLOCATE RESOURCES

Every slot, initialize µ0
t = µ0

t
Update user’s pathloss and get the approximation of β̄k,t ∀k by
equation (35)
Repeat

Allocate subcarrier and power by (11) and (12)
Update µt using (32), but with µ changed to µt

Until (33)

using a user’s actual ψk,t by interpolating between neighboring
βmk . At current slot ψk,t = γk,tPLk,t, then an interpolated
average rate price can be set to:

βk,t ≈


βmk − (βmk − βm−1

k ) · ψk,t − ψm

ψm−1 − ψm

, if ψm < ψk,t < ψm−1, or ψk,t < ψM

βmk − (βm+1
k − βmk ) · ψk,t − ψm

ψm − ψm+1
, if ψk,t > ψ1

(35)
if ψk,t and ψm are expressed in dB.

The power price µt can be iteratively updated
to satisfy the power constraint in each slot using a
similar bisection algorithm as in equation (32), but
with

∑M
m=1

∑K
k=1

∑N
n=1Eα2,ψ−k

(
pmk,n

)
qm changed

to
∑K
k=1

∑N
n=1 pk,n,t and µ changed to µt. The online

algorithm is outlined in Table III. The online algorithm is a
standard water filling algorithm, and hence its complexity is
linear in the total number of subcarriers N [49]. The updating
of the power price µt is done at the base station. If N = 1000
and K = 40, we have tested that for a given set of average
rate prices {βk,t, ∀k}, the online algorithm typically needs
20-30 iterations to converge. Thus the computational cost of
the online algorithm may be acceptable in OFDMA systems.

V. SIMULATION RESULTS

In this section, we examine the performance of the proposed
iterative algorithms via simulation. We adopt the parameters
of an OFDMA scenario as described in the 3GPP standard
[41]. The system bandwidth is 10MHz and total number of
subcarriers is 1000. The base station transmission power is
46dBm with an antenna gain of 15 dbi. The inter-cell distance
is 750m. We assume 40% of the total resources are assigned to
video users, with the remaining 60% assigned to data and voice
users. Thus the total number of subcarriers for video users is
N = 400 and the power constraint P = 42dbm. All users

move at a constant speed of 10km/h, with direction determined
by a random walk [50]. The pathloss is determined by:

PLk=128.1+37.6 log10(lk)+21 log10(fc/2.0) dB (36)

where lk is the distance from the user to the base station in
kilometers and fc = 2 is the central frequency in Ghz. If users
stay in the cell for a long period of time and/or if users’ speed
is high enough, these users are approximately uniformly dis-
tributed in the cell. Thus the cumulative distribution function
of lk is

F (lk) =
l2k − l2min
l2max − l2min

(37)

where lmin = 0.01km is the minimum distance to base
station and lmax = 0.25km is the radius of the cell. The
shadowing follows a lognormal distribution with mean value
0dB and variance 10dB [41]. Based on these distributions, one
can derive the distribution of ψk. The domain of log(ψk) is
partitioned into M = 45 slices. The step size of the first 30
slices is 1.9dB and that of the last 15 slices is 1.2dB.

Fast fading is assumed to follow a Rayleigh distribution, and
thus the gain of fast fading follows an Exponential distribution
with mean value 1 [45]. The length of one time slot is 1 ms
[51]. If we consider a significant phase change to be π/4, then
the coherence time is 3.4ms (see e.g. [52], pg. 31). Thus in
the simulation, we generate fast fading every 3ms independent
of previous fading.

We model the interference by:

I=10P/10/N ·10·10−(PLedge+Losspenetration−Gainantenna)/10 ·0.8
(38)

where PLedge is the pathloss at the edge of one cell,
Losspenetration = 10db is loss from penetration, and
Gainantenna = 15db is the antenna gain. The resulting
interference I on each subcarrier is 2.8495 ∗ 10−9mW.

The thermal noise on each subcarrier is

σ2 = 10N0/10 ·B = 3.9811 ∗ 10−14mW (39)

where N0 = −174dbm/Hz is the thermal noise density, and
B = 10000Hz is the bandwidth of each subcarrier. Because
I ≫ σ2, we set the sum of interference and thermal noise on
each subcarrier I + σ2 = 2.8495 ∗ 10−9mW.

All users have the same utility function, given by:

Uk(Sk,t) =

{
a(Sk,t/4)

2, if Sk,t < 240kbps

c(Sk,t/4 + b)1/3, else
(40)

where a = 4/5 ∗ (2/5)1/3/(12/5)2, b = −2, c = 4/5 and
Sk,t is expressed in units of 100kbps. The average rate at the
maximum average utility S

′

k = 300 kbps. We allow 3% outage,
i.e. Pr = 0.03. We set the moving speed of each user as 10
km/h and simulate 45 minutes of real time.

We adopt common MPEG parameters: a video encoded at
30 frames per second using a group-of-pictures consisting of
12 frames [53]. We set the length of the time window equal
to one group-of-pictures, resulting in W = 133. We set the
average rate margin step size ∆η = 0.03.
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The simulation parameters result in a system that is near
capacity. To illustrate the competition between users for re-
sources, consider the following particular situation: (1) 40
users are uniformly distributed in the cell; (2) they have mean
and constant shadowing, slow fading, and fast fading; and (3)
each subcarrier is allocated the same power. Suppose that the
goal is to allocate subcarriers to maximize the minimum rate.
Then the user with the minimum rate achieves Sk = 298 kbps,
and most users achieve a rate near 320kbps. However, when
mobility, fading, and shadowing are incorporated, the average
rates vary in time, and thus satisfying outage requirements is
more difficult.

Because all users have the same utility function, we consider
the average outage over all users. The estimated outage and
actual outage performance is listed in Table IV. For a fixed
average rate margin η, as the number of users increases,
the average outage increases. Thus as the number of users
increases, η needs to increase to satisfy the average outage
requirement. For all cases except for K = 52, the off-
line estimated η is sufficient to satisfy the average outage
constraint. However, when K = 52, the system approaches
its capacity limit and the off-line estimated η is not sufficient
to guarantee the average outage requirement; in this case, the
online adjustment increases η to bring the observed average
outage below the required threshold.

Recall that the outage constraint is a bound on the expected
outage for each user. Individual users will experience outage
over the duration of their connections that vary from their
expected outage dependent upon the user’s actual shadowing
and pathloss during their connection. In Fig. 3, we show
the distribution of user’s outage for three combinations of
number of users K and rate margin η: (28,1.00), (42,1.06),
and (54,1.12). As discussed above, the distribution of Smk can
be adjusted using the rate margin, and thus the average outage
correspondingly depends on the rate margin. For comparison,
the figure shows the distribution of user’s outage for K = 42
when the rate margin η = 1.00, which is not sufficient to meet
the average outage constraint.

The right column of Table IV also shows the 3rd percentile
and 97th percentile of outage. The variation in outage amongst
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users is decreasing with the connection duration, and would
converge to zero as the connection duration increases to
infinity, since the outage would converge to its expected value.
However, for finite connection durations, the 97th percentile
outage often slightly exceeds the 3% bound on the expected
outage for each user. If one wanted to further reduce the
percentage of users who experience greater than 3% outage
during their connection, one might be able to accomplish this
by further increasing the rate margin (by an amount that is
decreasing with the connection duration); however, this will
come at the cost of a reduction in the average utility.

The average rate prices βm are shown in Fig. 4 as a function
of the slice number m for two scenarios. When βm > λ̄, the
outage price is greater than 0. At higher slices, ψm decreases
due to combined slow fading, shadowing, and pathloss, and
the resulting outage price increases.

The total utility as a function of the number of users K
is shown in Fig. 5. Total utility is an increasing concave
function of the number of users within the considered range,
indicating that users are generally in the concave portion
of their utility curves. We also plot the expected utility in
the optimization metric in (25) that results from the offline
algorithm, labelled in the figure as “Expected Utility”. The
real utility is slightly above the expected utility, which shows
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TABLE IV. AVERAGE RATE MARGIN AND OUTAGE

Number of Users Estimated η Estimated Average Online adjusted η Real Average 3rd Percentile 97th Percentile
Outage Outage

24 1.00 0.014 1.00 0.018 0.015 0.022

26 1.00 0.016 1.00 0.021 0.016 0.024

28 1.00 0.019 1.00 0.022 0.018 0.026

30 1.00 0.021 1.00 0.025 0.020 0.028

32 1.00 0.025 1.00 0.028 0.023 0.032

34 1.00 0.029 1.00 0.029 0.024 0.033

36 1.03 0.018 1.03 0.022 0.018 0.028

38 1.03 0.022 1.03 0.026 0.021 0.032

40 1.03 0.027 1.03 0.028 0.023 0.033

42 1.06 0.021 1.06 0.024 0.019 0.028

44 1.06 0.024 1.06 0.025 0.020 0.029

46 1.06 0.027 1.09 0.026 0.020 0.030

48 1.09 0.028 1.09 0.026 0.022 0.030

50 1.09 0.030 1.09 0.028 0.023 0.031

52 1.09 0.029 1.12 0.025 0.019 0.031

54 1.12 0.029 1.12 0.029 0.024 0.034
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Fig. 6. Total utility under various policies

that only small errors are introduced by the statistical average
model using quantization. The difference can be explained as
follows. When we estimate total utility in the offline algorithm,
we use a fixed estimated power price µ. However, the online
algorithm updates the power price µt every time slot, thereby
more efficiently utilizing knowledge of the channel fading of
each user and providing a performance gain.

For comparison, in Fig. 6, we also plot the utility that would
be earned from a policy that allocates resources without regard
to the time window, i.e. it attempts to maximize average utility
of instantaneous rate. This is labelled in the figure by W = 1.
The difference between the W = 1 and W = 133 curves
represents the increase in utility gained by allocating resources
in a more flexible manner within a group-of-pictures. When
W = 1, a user evaluates application performance based on the
instantaneous rate of one time slot. Thus, when the channel in
a time slot is poor, the system must decide whether to allocate
a very large amount of power and subcarriers. In contrast when
W = 133, when a channel is poor the system may examine
past achieved rates and likely future rates within the time

window, and often will allocate power and subcarriers in a
more moderate and efficient manner. As the number of users
increases, the advantage of allocating resources over a longer
time window increases, since the larger number of users results
in a wider variety of channel qualities.

In Fig. 6, we also compare the utility for W = 133 with
outage pricing to the utility that would be earned from a
policy that allocates resources using a window W = 133
but without outage pricing, i.e. ν = 0. The existence of an
average rate margin decreases the total utility across the entire
range of number of users shown. The average rate margin
is used to allocate additional power and subcarriers to users
who would otherwise violate outage constraints. The result
of this policy is that users with poor channels who are in
danger of achieving rates less than S

′

k during a time window
will see improved performance, but this comes at the cost of
decreased performance for users with rates above S

′

k. Together,
this results in lower utility but decreased outage. With the
increasing of total user number, the gap between two curves
also increases. This is because more users will be in outage
and more resources need to be allocated to users with poor
channels. The performance loss of users with rates above S

′

k
also increases.

To further understand the effect of the choice of window
size, in Fig. 7 we plot the total user utility versus the number
of users for a variety of window sizes. We would expect that
total user utility should be increasing with the window size.
We might also expect that total user utility should be concave
in the window size, i.e. the marginal benefit decreasing as
the window size increases, at least when the window size
exceeds the correlation time of fast fading. The simulation
results confirm that utility is increasing with window size;
however, the differences between the utility resulting from
window sizes of 33, 99, and 133 are too small (compared
to confidence intervals) to judge the prediction of decreasing
returns.

In Fig. 8, we illustrate the average utility per user versus
the number of users, as well as the 3rd and 97th percentile
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of user utility. As the number of users increases, the resources
allocated to each user decreases and thus these three values all
decrease. The gaps between these three curves mostly depends
on the length of time a user resides in the system, rather than
on the number of users.

The resulting outage under each policy is shown in Table
V, also as a function of the number of users. As expected,
the probability of outage increases with the number of users.
If the average rate margin were removed, i.e. W = 133 and
ν = 0, we found above that total utility increases. This occurs,
however, at the cost of increased outage. Indeed, when K =
32 the average outage has exceeded the 3% threshold. For
comparison, the table also shows the outage that would result
from a policy that allocates resources without regard to the
time window, i.e. W = 1. Above we found that this approach
decreases utility due to the lack of flexibility of allocating
resources within a time window. Here we find that it severely
violates the 3% outage constraint even when K = 32.

Finally, we compare our algorithm with other two policies
commonly used in the literature: (1) allocating the same
average resources to each user and (2) allocating resources
so that each user achieves the same average rate. (These two
polices are described in detail in Appendix 4.) We set K = 32
and show the average rate in each slice achieved under each
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Fig. 9. Average rate under various policies

policy in Fig 9. The average outage under the policy using an
average rate margin is 0.028, as previously shown in Table
V. The policy of allocating the same average resources to
each user results in a lower average rate both for users in
low numbered and in high number slices, and also results in
an average outage of 0.052. The policy of allocating resources
so that each user achieves the same average rate results in
a nearly steady average rate among different slices, and also
results in an average outage of 0.051. Both of these commonly
used policies thus result in an average outage that exceeds the
desired outage threshold. In addition, both achieve lower total
user utility than our algorithm. The average resource allocation
policy underachieves because average power allocation cannot
fully utilize channel knowledge, and the average rate resource
allocation policy underachieves because it attempts to be fair
between users in different slices rather than to maximize total
utility.

VI. CONCLUSION

In this paper, we consider resource allocation for mobile
video-conferencing applications. We model the utility of such
applications as a function of the average rate within a group-of-
pictures. The goal is to maximize the total expected user utility
subject to outage constraints. The key challenge is how to a
design resource allocation algorithm that satisfies the outage
constraints under user mobility.

First, we pose and solve a non-causal problem in which
all future channel information is known. We solve the dual
optimization problem, and obtain the optimal power and
subcarrier allocations. We find that these allocations could
be implemented if the network charged the user a price per
unit average rate and the user selected the average rate that
maximized its surplus. However, the optimal price per unit
average rate is the sum of a shadow cost for average rate for
users not in outage and a shadow cost associated with the
outage constraints. The problem is that the latter outage price
can only be determined with knowledge of all future channel
information.

We then turn to posing and solving a causal problem. To
formulate a causal resource allocation policy, we propose
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TABLE V. OUTAGE UNDER VARIOUS POLICIES

Number of Users
W=133 W=1 W=133, ν = 0

Average Outage η Average Outage η Average Outage

24 0.018 1.00 0.044 1.00 0.023

26 0.021 1.00 0.048 1.00 0.025

28 0.022 1.00 0.052 1.00 0.027

30 0.025 1.00 0.055 1.00 0.032

32 0.028 1.00 0.060 1.00 0.037

34 0.029 1.00 0.062 1.00 0.041

36 0.022 1.03 0.060 1.03 0.044

38 0.026 1.03 0.070 1.03 0.048

40 0.028 1.03 0.078 1.03 0.059

42 0.024 1.06 0.089 1.06 0.057

44 0.025 1.06 0.109 1.06 0.060

46 0.026 1.06 0.121 1.06 0.067

48 0.026 1.09 0.130 1.09 0.072

50 0.028 1.09 0.140 1.09 0.077

52 0.025 1.09 0.155 1.09 0.081

54 0.029 1.12 0.170 1.12 0.088

basing the average rate price entirely on a user’s channel
and transforming the problem using statistical averages over
an infinite time horizon. We illustrate how the average rate
prices can be set as a function of the combined shadowing
and pathloss, and how to quantize these variables to make the
computation feasible. An average rate margin is reserved to
satisfy the outage constraint. We give an example of online and
offline algorithms that can iteratively determine near-optimal
resource allocations.

The performance of our algorithm is illustrated by simula-
tion results that show that the proposed algorithm efficiently
determines resource allocations that satisfy average outage
probability constraints, and that only small errors are intro-
duced by the statistical average model using quantization. We
find that a significant increase in total utility can be achieved
by allocating resources in a more flexible manner within a
group-of-pictures. The existence of outage constraints limits
the capacity of the system. Simulation results quantify both
these limits and the reduction in total utility sacrificed in order
to satisfy outage constraints.

There are several extensions of this work that would be
interesting. Perhaps the most important may be an extension
from the single cell analysis provided here to an analysis that
considers multiple cells. There is a deep and rich research
literature on resource allocation for circuit-switched wireless
networks that proposes methods to move network capacity to
where it is most needed. However, it remains much less clear
how resource can be shifted in packet-switched networks from
lightly loaded to more heavily loaded cells to support semi-
elastic applications such as video conferencing. We expect
that such an extension would involve two elements. First,
a model is required for the effect of inter-cell interference
on utility, through its effect on throughput over a group-of-
pictures. Second, an algorithm is required based on the ability
of a network to shift capacity on a time scale matched to utility,
user mobility, and connection duration.
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VII. APPENDIX 1

Denote

ζk =
Bβmk
µ ln 2

|Hm
k,n|2

σ2 + I
(41)

The subcarrier allocation is determined by (23), which can
be reorganized into:

Φmk,n=
βmk B

ln 2


[
ln

(
Bβmk
µ ln 2

|Hm
k,n|2

σ2 + I

)]+
+
µ ln 2

Bβmk

σ2 + I

|Hm
k,n|2

−1


=
βmk B

ln 2

{
[ln (ζk)]

+
+

1

ζk
− 1

}
(42)

Consider another user k̂ in slice m̂. If user k is allocated
subcarrier n, then

Φmk,n > Φm̂
k̂,n

=
βm̂
k̂
B

ln 2

{[
ln
(
ζk̂
)]+

+
1

ζk̂
− 1

}
(43)

or equivalently

Φmk,n ln 2/B/β
m̂
k̂

+ 1 >
[
ln
(
ζk̂
)]+

+
1

ζk̂
(44)

Directly solving this equation is complex. Consider
the following approximation. Define y = ln(ζk̂). If
Φmk,n ln 2/B/β

m̂
k̂

+ 1 < 1.267, then a Taylor expansion gives:

ln
(
ζk̂
)
+

1

ζk̂
= y + e−y ≈ 1 +

y2

2
= 1 +

[
ln(ζk̂)
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(45)

else

ln
(
ζk̂
)
+

1

ζk̂
≈ ln(1 + ζk̂) (46)

Substituting (45) and (46) into (44), if user k is allocated
subcarrier n, then:

g
(
|Hm

k,n|2
)
> |Hm̂

k̂,n
|2 (47)

where the function g(|Hm
k,n|2) is given by:

e

√
2ϕm

k,n ln 2/B/βm̂
k̂ (σ2 + I)µ ln 2/B/βm̂

k̂

, if Φmk,n ln 2/B/β
m̂
k̂
+1<1.267

(eϕ
m
k,n ln 2/B/βm̂

k̂
+1 − 1) · (σ2 + I)µ ln 2/B/βm̂

k̂
, else

Consider all the possible combined pathloss and shadowing
of user k̂:

Pr(Φmk,n > Φm̂
k̂,n

)

=

M∑
m̂=1

Pr
(
Φmk,n > Φm̂

k̂,n

∣∣ψk̂ = ψm̂
)
qm̂
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Pr
(
g(|Hm

k,n|2) > |Hm̂
k̂,n

|2
∣∣ψk̂ = ψm̂

)
qm̂ (48)

Because the fading of all users are independent, the proba-
bility user K is allocated subcarrier n is

K∏
k̂ ̸=k

Pr(Φmk,n > Φm̂
k̂,n

) (49)

Thus for a given βmk and µ:

Pr{n⇒ k,m} (50)

=

K∏
k̂ ̸=k

(
M∑
m̂=1

Pr
(
g(|Hm

k,n|2)> |Hm̂
k̂,n

|2
∣∣ψk̂=ψm̂)qm̂

)

VIII. APPENDIX 2
Define Smk,ψ−k

as the average rate of user k in slice m for
a given set of ψ−k. The probability that user k is allocated
subcarrier n for a given ψ−k is

Pr{n⇒k,m,ψ−k}=
K∏
k̂ ̸=k

[
Pr
(
g(|Hm

k,n|2)> |Hm̂
k̂,n

|2
∣∣ψk̂)] (51)

The average rate of user k on subcarrier n for a given set
of ψ−k is

Eα2

(
rmk,n|ψ−k

)
(52)

= Eα2

{[
B log2

(
1 + pmk,n

α2
k,nψ

m

σ2 + I

)]
Pr{n⇒ k,m,ψ−k}

}
Correspondingly its second moment is:

Eα2

(
(rmk,n)

2|ψ−k
)

(53)

= Eα2


[
B log2

(
1 + pmk,n

α2
k,nψ

m

σ2 + I

)]2
Pr{n⇒ k,m,ψ−k}


and thus its variance is

(δmk,ψ−k
)2 = Eα2

(
(rmk,n)

2|ψ−k
)
− [Eα2

(
rmk,n|ψ−k

)
]2 (54)

Because Rmk =
∑N
n=1 r

m
k,n, by the Central Limit Theorem,

the distribution of Rmk for a given set of ψ−k is approximately
N
(
NEα2

(
rmk,n|ψ−k

)
, N · (δmk,ψ−k

)2
)

. Because Sk,t =∑t
τ=t−W+1Rk,τ/W , by the Central Limit Theorem, the dis-

tribution of Sk,t is approximately N (NEα2(rmk,n|ψ−k), N ·
(δmk,ψ−k

)2/W ). Removing the conditioning on ψ−k, Smk gives
a mixture Gaussian distribution with the number of terms equal
to the number of possible values for ψ−k, i.e. MK−1.

IX. APPENDIX 3
The variance is estimated based on {βmk ,∀k,m} and µ.

Denote Ω = {ψ−k} as the set of all possible values of ψ−k.
Then the variance of the mixture distribution is

(δmk )2 (55)

=
∑
Ω

[
(Eα2(Smk |ψ−k)− Eα2,ψ−k

Smk )2+ (δmk,ψ−k
)2
]
Pr(ψ−k)
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where Pr(ψ−k) is the probability of a specific set of ψ−k.
If MK−1 is too large, the calculation of (55) is cumbersome.

Equation (55) includes two parts. The second part can be
approximated as follows:∑

Ω

Pr(ψ−k)(δ
m
k,ψ−k

)2 (56)

≈ N

W

{
Eα2,ψ−k

(
(rmk,n)

2
)
− [Eα2,ψ−k

(
rmk,n

)
]2
}

where the average rate of user k on subcarrier n is given in
(26), and its second moment is:

Eα2,ψ−k

(
(rmk,n)

2
)

(57)

= Eα2


[
B log2

(
1 + pmk,n

α2
k,nψ

m

σ2 + I

)]2
Pr{n⇒ k,m}


The first part is the variance of the mean average rate. We

propose to consider limited terms rather than all MK−1 terms.
To reduce the complexity, here we consider two situations: all
K − 1 users are in the same slice and all K − 1 users are
equally distributed in two slices. Based on this sampling, the
variance of the mean average rate can be roughly estimated.
Combining with equation (56), the approximation of equation
(55) can be calculated.

X. APPENDIX 4
Average resource allocation:
Step 1: pk,n,t = P/N, ∀k, n.
Step 2: C = {n| subcarrier n has not been assigned},

B = {k|user k has not been assigned any subcarriers}.
k̄ = argmink∈B ψk,t.

Step 3: Allocate subcarrier argmaxn∈C rk̄,n to user k̄.
Denote the subcarriers allocated to user k as Chk.

Step 4: Repeat step 3 until user k̄ has been allocated ⌊K/N⌋
subcarriers or C is empty.

Step 5: Repeat step 2-4, until B is empty.

Average rate allocation:
Step 1: Run average resource allocation algorithm, and get

the subcarrier allocation result Chk.
Step 2: Set ∆P to be a small step size, Rk,t = 0, pk,n,t =

0 ∀k, n, and k̄ = argmink Rk,t.
Step 3: Allocate power ∆P to user k̄ on subcarrier

argmaxn∈Chk̄
∆rk̄,n where ∆r̄k,n = [rk̄,n(pk̄,n + ∆P ) −

rk̄,n(pk̄,n)].
Step 4: Update P = P−∆P and pk̄,n = pk̄,n+∆P . Repeat

steps 2 and 3 until P = 0.
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