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Direct Asymmetric Amination of α-Branched Cyclic Ketones 
Catalyzed by a Chiral Phosphoric Acid

Xiaoyu Yang and F. Dean Toste*

Department of Chemistry, University of California, Berkeley, California 94720, United States

Abstract

Here we report the direct asymmetric amination of α-substituted cyclic ketones catalyzed by a 

chiral phosphoric acid, yielding products with a N-containing quaternary stereocenter in high 

yields and excellent enantioselectivities. Kinetic resolution of the starting ketone was also found to 

occur on some of the substrates under milder conditions, providing enantio-enriched α-branched 

ketones, another important building block in organic synthesis. The utility of this methodology 

was demonstrated in the short synthesis of (S)-ketamine, the more active enantiomer of this 

versatile pharmaceutical.

α-Amino cyclic ketones with a N-containing quaternary stereocenter are important building 

blocks in organic synthesis and versatile precursors to physiologically active compounds 

such as ketamine1 and tiletamine (Figure 1a).2 Additionally, β-amino alcohols, which are 

derivatives of α-amino cyclic ketones, are widely used as chiral ligands in asymmetric 

catalysis.3 The past decade has witnessed the development of direct asymmetric α-amination 

of carbonyl compounds as a useful method for the preparation of chiral amine-containing 

structures.4 Despite these advances, the majority of reported reactions rely on activated 

carbonyl compounds, such as 1,3-dicarbonyls, 2-oxindoles, α-cyanoacetates, and other 

reactive substrates.4,5 For carbonyl compounds with lower reactivity, enamine catalysis has 

been employed in the highly enantioselective amination of aldehydes6,7 and ketones8 

without substitution at the α-position.9 Alternatively, chiral α-amino ketones have been 

accessed via asymmetric amination of preactivated unsubstituted ketone equivalents, such as 

silyl enol ethers,10 metal enolates,11 and enamides.12 Terada’s chiral organosuperbase-

catalyzed amination of 2-alkyl-substituted cyclic aromatic ketones (Figure 1c)13 and 

Yamamoto’s silver-catalyzed amination of the tin enolate of 2-phenylcyclohexanone (Figure 

1b)11b stand as rare example of enantioselective amination to produce N-containing 

quaternary stereocenters.

Recently, our group reported the asymmetric fluorination of α-branched cyclic ketones 

enabled by a combination of chiral anion phase-transfer catalysis and enamine catalysis,14 a 
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rare example of asymmetric functionalization of α-branched cyclic ketones to construct 

chiral quaternary stereocenters.15 Continuing our interest in the asymmetric 

functionalization of α-branched cyclic ketones, here we report the direct asymmetric 

amination of α-branched cyclic ketones with azodicarboxylates catalyzed by a chiral 

phosphoric acid.16

We selected 2-phenylcyclohexanone as a model substrate and di-tert-butyl azodicarboxylate 

as the nitrogen source, which is widely used in asymmetric amination processes (Table 1). 

Reaction of these two components, catalyzed by (S)-TRIP (10 mol%) in xylenes (0.1 M) at 

45 °C for 60 h, produced a minor amount of the desired product; substantial starting ketone 

remained unreacted (entry 1). Other chiral phosphoric acids (TCYP, H8-TCYP, and C8-

TCYP) were also tested, and after reaction for 60 h at 45 °C, the highest enantioselectivity 

(97% ee) was generated with (R)-C8-TCYP as catalyst, albeit with low conversion (38% 

yield, entry 4). In an attempt to improve the conversion, the reaction mixture was heated at 

60 °C for 60 h; a higher yield of the product was isolated (57% yield), but with a decrease in 

enantioselectivity (91% ee, entry 5). A less sterically demanding electrophile, diethyl 

azodicarboxylate, was also employed in this reaction, providing a higher yield (60%) but a 

similar decrease in enantioselectivity (89% ee, entry 6). Utilizing a higher concentration (0.4 

M) at 45 °C improved the conversion (52% yield) after 60 h with unchanged enantio-

selectivity (entry 7). Finally, we found that running the reaction under “neat” conditions (via 

removal of the small amount of DCM after all the reagents were dissolved) gave almost full 

conversion after 60 h, and the desired product was obtained in 97% yield with 99% ee (entry 

8).17 Surprisingly, the regioselectivity of this reaction was excellent; no 6-amination or 2,6-

diamination products were isolated.

With the optimized conditions in hand, we explored the substrate scope of the reaction 

(Table 2). A range of substituted aryl groups18 were tolerated at the α-position of 

cyclohexanone, including electron-neutral, electron-donating, and electron-withdrawing 

arenes (2b–2h). Surprisingly, substrates with ortho substitution (2i, 2j), which were 

previously reported to be unsuitable for enantioselective construction of quaternary centers 

due to steric hindrance,14,15c also worked well. Additionally, the cyclopentanone analogue 

(2k) gave the desired amination product in high yield and with excellent enantio-selectivity. 

Substrates bearing heteroatoms at the 4-position of the cyclohexanone ring (2l, 2m) were 

also amenable to enantioselective amination, extending this methodology to potentially 

useful heterocyclic compounds.

Cyclic ketone substrates containing alkenyl substitution at the α-position were also explored 

(Table 3).19 The reaction proceeded well with several types of substrates, including 

trans-1,2 (2n), cis-1,2 (2p, 2q), cyclic alkenyl (2r), and simple vinyl substitution (2o). 

Substitution at the 4-positon of the cyclo-hexanone ring also gave high yield and excellent 

enantio-selectivity for products 2s and 2t. A cyclopentanone analogue yielded product 2v, 

whose absolute (S)-configuration was determined by X-ray crystallography. Seven-

membered analogue 2u formed slowly under the conditions and was obtained with lower 

enantioselectivity (72% ee). α-Phenylethynyl-substituted 1w gave the product with lower 

yield (33% yield, 93% ee) due to some decomposition of substrate under the standard 

conditions. Surprisingly, 2-methylcyclohexanone (1x) also exclusively yielded the more 
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substituted addition product, albeit with a slightly diminished enantioselectivity (86% ee). 

Increasing the size of the alkyl substituent (1y) furnished the adduct with high 

enantioselectivity (99% ee).

Initially, we envisioned a mechanism in which the phosphoric acid only mediated the 

enantioselective amination of the enol form of the ketone. Given that the chiral center of the 

starting ketone is destroyed in the keto/enol tautomerization, it seemed likely that this 

reaction was a simple dynamic kinetic asymmetric transformation; however, careful 

monitoring of the reaction showed that, in some cases, the reaction rate slowed when the 

conversion reached >50%. Therefore, milder reaction conditions (e.g., room temperature and 

lower concentration of 0.1 or 1 M) resulted in a good to excellent kinetic resolution of the 

starting ketones (Table 4).20 For example, using ketone 1z, the desired product was obtained 

in 55% yield with 93% ee, and the ketone was recovered in 45% yield with 96% ee after 60 

h stirring at rt (s-factor of 32).21 trans-Styrene-substituted substrates 1n and 1t also gave 

good to excellent kinetic resolution, affording the recovered ketones with 99% ee and 97% 

ee, respectively. This method provides an entry to chiral α-heteroaryl- and alkenyl-

substituted cyclic ketones, which are very useful building blocks in organic synthesis but 

difficult to prepare enantiomerically enriched.22

On the basis of these observations, we propose that, in addition to mediating the 

enantioselective amination, the phosphoric acid also catalyzes the enantioselective activation 

(enolization) of chiral ketones.23 While phosphoric acid protonation of carbonyl groups is a 

well-established mode of activation toward nucleophilic addition,24 enolization has rarely 

been considered. These observations suggest that it is possible to achieve the kinetic 

resolution of the ketone substrates with phosphoric acid catalysts, provided the rate of the 

electrophilic addition (amination) step is faster than that of the enolization process.

Derivatization of the enantioenriched amination products was also investigated (Scheme 1). 

Deprotection of Boc groups with TFA, followed by cleavage of the hydrazine bond using 

Raney Ni and H2, afforded the β-amino alcohol, which was then protected to afford 

benzamide 3a in 64% yield, preserving the enantio-purity, over three steps. To further 

demonstrate the utility of this method, a short synthetic route to (S)-ketamine was 

developed. Ketamine, which is on the World Health Organization’s List of Essential 

Medicines, is a drug with multiple applications, including for general anesthesia, as a pain 

killer, and for treatment of bronchospasm and bipolar depression.1 Normally pharmaceutical 

preparations of ketamine are racemic, although reports indicate that (S)-ketamine is 4 times 

more active than its (R) isomer.25 Recently, commercial preparations obtain (S)-ketamine 

via resolution of the tartaric acid salt, leaving the undesired (R) isomer as the byproduct. To 

our knowledge, only one asymmetric synthesis of (S)-ketamine, requiring nine steps, has 

been reported.26 After deprotection of the Boc of 2j, cleavage of the hydrazine bond with 

Zn/HOAc furnished norketamine (4j) in 74% yield; monomethylation under reductive 

amination conditions provided the (S)-ketamine in 52% yield with >99% ee.

In summary, we have developed a chiral phosphoric acid-catalyzed asymmetric amination of 

α-substituted cyclic ketones which generates a N-containing quaternary stereocenter. The 

reaction tolerates a range of aryl, alkenyl, alkynyl, and alkyl substitutions at the α-position, 
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different ring sizes, and modifications of the cyclohexanone ring. Kinetic resolution of the 

starting ketone was observed for some substrates under milder conditions, providing 

enantioenriched α-branched ketones. A short synthetic route to enantioenriched (S)-

ketamine was developed starting with amination product 2j, demonstrating the power of this 

methodology. More encouragingly, using similar conditions, a highly enantioselective 

Mannich reaction of α-branched cyclic ketone was also achieved, creating an all-carbon 

quaternary center, which would broaden the application of this strategy.27

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Previous work on the catalytic asymmetric synthesis of 2-aminocyclohexanone bearing a 

quaternary stereocenter.
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Scheme 1. 
Further Transformations of the α-Amino Ketone Products and Facile Synthesis of (S)-

Ketamine
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Table 2

Substrate Scope of the Asymmetric Amination of 2-Aryl Cyclic Ketonesa

a
Reactions were carried out with ketone (0.3 mmol), BocN=NBoc (0.39 mmol), (R)-C8-TCYP (0.03 mmol), and 5 Å MS (50 mg) in DCM (0.3 

mL). After removal of the solvent, the mixture was heated at 45 °C for 40–60 h. Yields are isolated yields after chromatography. Absolute 
configurations assigned by analogy with 2v (determined by X-ray crystallography) and (S)-ketimine.
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Table 3

Substrate Scope of the Asymmetric Amination of 2-Substituted Cyclic Ketonesa

a
Conditions as indicated in Table 2, except 5 mol% (R)-C8-TCYP was used.

b
ee was determined after conversion to the benzamide derivative (see Supporting Information).

c
10% catalyst was used.
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Table 4

Substrate Scope of Kinetic Resolution and Asymmetric Amination of α-Branched Cyclic Ketones

a
Reactions were carried out with ketone (0.3 mmol), BocN=NBoc (0.39 mmol), (R)-C8-TCYP (0.03 mmol), and 5 Å MS (50 mg) in DCM (0.3 

mL) for 60 h at rt.

b
Conditions as indicated as above except 5 mol% (R)-C8-TCYP and DCM (3 mL) were used for 40 h at rt.

c
Absolute configurations of recovered ketones was assigned by comparison of optical rotation of hydrogenated 1n with the literature (see 

Supporting Information).
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