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Abstract: Making statistical inference on quantities defining various characteristics of a temporally
measured biochemical process and analyzing its variability across different experimental conditions
is a core challenge in various branches of science. This problem is particularly difficult when the
amount of data that can be collected is limited in terms of both the number of replicates and the
number of time points per process trajectory. We propose a method for analyzing the variability of
smooth functionals of the growth or production trajectories associated with such processes across
different experimental conditions. Our modeling approach is based on a spline representation of
the mean trajectories. We also develop a bootstrap-based inference procedure for the parameters
while accounting for possible multiple comparisons. This methodology is applied to study two types
of quantities—the “time to harvest” and “maximal productivity”—in the context of an experiment
on the production of recombinant proteins. We complement the findings with extensive numerical
experiments comparing the effectiveness of different types of bootstrap procedures for various tests of
hypotheses. These numerical experiments convincingly demonstrate that the proposed method yields
reliable inference on complex characteristics of the processes even in a data-limited environment
where more traditional methods for statistical inference are typically not reliable.

Keywords: production trajectories; limited data; ANOVA; linear constraints; simultaneous
hypothesis tests; resampling techniques

1. Introduction

Many biological experiments involve production of certain recombinant molecule
over a period of time under different experimental conditions. Thus, the data associated
with such experiments are inherently longitudinal. One long-standing problem is to
compare these optimum trajectories across different factors or experimental conditions (or
treatments), which is a core topic of longitudinal data analysis [1–4]. In most of these studies,
the object of interest is typically the expected amount of the ingredient being measured,
and one has multiple replicates to accommodate a comprehensive ANOVA (Analysis of
Variance) approach to deal with the problem of ascribing effects of various factors.

Indeed, the traditional approach to such inferential questions has been through the
application of repeated measures designs [5–7]. However, in many real-life lab based
biological experiments, one key constraint is the number of data points or replicates that
can be obtained, due to the time, costs and resources associated with completing each
condition, particularly in scaling-up experiments.
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Furthermore, in many instances, as we discuss below, the key object of interest is
not the level of the target molecule itself but some, possibly nonlinear, functionals of the
production trajectory. For instance, this functional could be (a) the time it takes for the
accumulation of the target molecule to reach a prespecified value (to be referred to as
the “optimal time-to-harvest”); (b) the maximum production level (=the maximum of the
production trajectory); or (c) the maximum productivity, defined as the maximum of the
amount divided by time over the duration of the experiment.

1.1. Scientific Context

As a good example, butyrylcholinesterase (BChE) circulating in human blood plasma
is a tetrameric hydrolase enzyme that can be potentially used as a prophylactic and/or
therapeutic factor against organophosphorus nerve agent poisoning [8]. However, the
use of purified BChE from human blood plasma in clinical stages is limited by its cost,
which is estimated to be $20,000 per 400 mg dose [9]. Thus, recombinant human BChE
(rBChE) has been developed in several host expression systems, including transgenic rice
cell suspension cultures, to be used as an alternative source of BChE.

Our lab developed metabolically-regulated transgenic rice cell suspensions under the
rice alpha amylase 3D (RAmy3D) promoter to produce rice-made recombinant human
BChE (rrBChE) [10,11]. In nature, the RAmy3D promoter in rice cells derived from rice
seed, is suppressed in a sugar-rich environment but activated in a sugar-starved environ-
ment [12–14]. In other words, the RAmy3D promoter-based transgenic rice cell suspensions
are grown in a sugar-rich medium for production and transferred into sugar-free medium
for rrBChE production.

Biological experiments of the kind described above are both time-consuming and
expensive. A major challenge of growing plant cell suspension cultures is the slow growth
rate of plant cells compared to microbial and mammalian cells. For example, it takes
6–7 days for transgenic rice cells to reach mid-to-late exponential growth phase, followed
by the medium exchange to replace spent growth medium with sugar-free medium, and an-
other 4–5 days post-induction for rrBChE expression [10,11]. In other words, the cultivation
time of transgenic rice cell suspensions in a batch culture is 10–12 days.

When it comes to an experiment with several factors or conditions, the number
of bioreactor replicates is likely to be restricted due to time of cultivation and limited
equipment. Therefore, there might be difficulties when interpreting the data or choosing
the optimal sets of conditions. Given the cost, the information delivered by the data is
crucial, and thus we would like to understand the data in a more comprehensive way
by developing statistical methods. For instance, it will be interesting and meaningful to
characterize the production curves over time, particularly when the measurement time
points are limited in practice.

We are able to predict production quantities at any experimental time points, in addi-
tion to those at observed time points. Furthermore, statistical inference will be useful to
measure and indicate the factors’ impact on the difference among multiple experimental
conditions in terms of certain metrics. Thus, in the aforementioned rrBChE study, we
would like to provide a robust and effective statistical approach as a validated way to inter-
pret the data better and address experimental questions through a statistical framework.
For example, we can use inference procedures to determine and compare varying metrics,
such as the “optimal time-to-harvest” of each factor based on certain levels of statistical
significance, which will indicate the effect of factors behind the limited data.

Therefore, in this study, we employ novel statistical approaches to tackle limited
data to build trajectory models using previously reported bioreactor data [11] to predict
outcomes of interest, such as the “optimal time-to-harvest”, maximum rrBChE production
level and maximum productivity. In addition, estimating the trajectory of the produc-
tion level is a part of Quality by Design (QbD) [15] that is essential in biomanufacturing
where a computationally feasible statistical method is involved in modeling based on
available data.
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1.2. Statistical Challenges and Contributions

Analysis of the variability of functionals of protein production trajectories across
different experimental conditions presents several novel statistical challenges. One key
requirement is to ensure that the underlying production trajectories are monotonic (i.e., ei-
ther increasing or decreasing functions of time), without which some of the quantities of
interest are not even properly defined. At the same time, due to the limited number of
data points at which these trajectories are typically measured, it is imperative to borrow
information across trajectories in order to ensure that we have sufficient degrees of freedom
left for comparing the parameters across the factors.

Another challenge is that, due to both the limited number of data points and the
restrictions imposed by the monotonicity of production trajectories, any statistical inference
procedure that directly relies on large sample theory will have limited accuracy or may
be misleading. Moreover, since some of the parameters (functionals of the production
trajectories) or process metrics of interest are nonlinear, the standard ANOVA framework
that relies on the linear model theory does not apply.

In this paper, we primarily focus on comparing the equality of the parameters by means
of simultaneous pairwise comparisons, which can be formulated as a multiple hypothesis
testing problem. Thus, the key statistical challenge is to develop a methodology that (a)
ensures monotonicity of the fitted trajectories and (b) can handle simultaneous inference
for arbitrary functionals of the trajectories with a limited amount of data.

In order to address these challenges, we adopt the following three-pronged approach.
First, following the ideas in [16], we model the production trajectories by representing them
in a B-spline basis and incorporate the monotonicity constraint by imposing linear inequal-
ity constraints on the B-spline coefficients. We fit the trajectories by using a constrained
least squares regression procedure that is implemented through a quadratic programming
approach. Next, for statistical inference on the parameters of interest, we use bootstrap, or re-
sampling procedures. We compare the efficacies of several different versions of bootstrap,
namely, the residual bootstrap, parametric bootstrap and nonparametric bootstrap.

Finally, since we conduct simultaneous inference involving many pairwise compar-
isons, we adopt a method for imparting control on the false discovery rate (i.e., the fraction of
false detections) while constructing the simultaneous confidence intervals involving many
parameters, using a technique developed in [17]. In summary, we provide a comprehensive
framework for simultaneous statistical inference on several process metrics that are func-
tionals of biochemical production (or growth) trajectories, based on fairly limited amounts
of data, with empirical validity.

1.3. Goals of the Study

For the biological experimental study, the goal is to develop an effective and efficient
system that is able to scale-up the production of rrBChE given the costs and limited
resources. From the statistical side, one of the goals of this study is to analyze the variability
of production trajectories for a limited data set of the recombinant protein production by
using rrBChE as a model study.

Another goal is to use statistical approaches to determine the optimal time to harvest
a recombinant protein during a protein production process. A further goal is to compare
across different bootstrap procedures for their relative effectiveness in terms of statistical in-
ference when the data are limited. The last goal is achieved through an extensive numerical
simulation study mimicking the recombinant protein production experiments.

2. Results
2.1. Simulation Study

In this subsection, we present a simulation study illustrating the effectiveness of
the proposed bootstrap-based inference procedures and accuracy of the corresponding
confidence intervals. This numerical simulation also allows us to make a comparison
among the different bootstrap procedures.
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Settings: We assume the number of factors I = 3, and the time interval is (0, 9] with
number of time points J = 9. All factors share the same time points {1, 2, 3, 4, 5, 6, 7, 8, 9}.
We assume there are L = 5 basis functions for cubic B-splines with equally spaced knots.
For each time point, we have n = 5 replicates. Suppose Yijk = µi(tij) + εijk, where the noise
level is σ2

j ∈ (1, 3.5). Our main interest is the “optimal time-to-harvest” θi.
The simulated data and estimation by the standard least square procedure (with-

out constraints) and quadratic programming framework (with constraints) are shown
in Figure 1. Though the estimations using two methods are similar in our case, there is
a difference. The estimated curve by the least square procedure for factor 3 shows a decreas-
ing pattern at the last time point, while the one with constraints remains non-decreasing
(Figure S1).

Since we are interested in estimating the growth curve and “optimal time-to-harvest”,
how we fit the data matters. In addition, using the standard least square procedure may
result in oscillations in estimation. The “optimal time-to-harvest” parameter θi is of interest
with a pre-specified level c = 10.3 (Figure 2), and we use the residual (nonparametric)
bootstrap method for inference. We compute both percentile bootstrap confidence intervals
and bias-corrected and accelerated bootstrap interval (BCa) since the bootstrap sampling
distributions involving θ2 are skewed (Table 1). Both types of intervals suggest that θ1 and
θ2 are significantly different from θ3; however, we can see that BCa is slightly better than
the general ones in terms of the length of intervals.

Figure 1. Simulated data and estimation by the standard least square procedure and quadratic
programming framework for different factors; true data are denoted by different types of points; the
true curve µ(t) is marked in green; fitted curves with linear constraints are in red, while the fitted
curves by standard least square procedure are in blue (a) Factor 1, (b) Factor 2 and (c) Factor 3.

Figure 2. Fitted curves estimated with constraints (factors 1–3 are in red, blue and green, respectively);
θ̂i given by a specified level (c = 10.3) is indicated by vertical lines .
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Table 1. The Percentile Bootstrap Confidence Interval (CI) and bias-corrected and accelerated boot-
strap interval (BCa) for c = 10.3. The significance against H0 : θi = θj is in red.

CI Lower CI Upper CI Length True Mean sd

Pe
rc

en
ti

le
Bo

ot
st

ra
p

C
I θ̂bs

1 5.820 7.027 1.207 6.378 6.320 0.327
θ̂bs

2 5.892 9.000 3.108 7.387 7.739 0.995
θ̂bs

3 4.730 5.162 0.432 4.910 4.917 0.113
θ̂bs

1 − θ̂bs
2 −3.063 0.568 3.631 −1.009 −1.418 1.046

θ̂bs
2 − θ̂bs

3 0.937 4.198 3.261 2.477 2.822 1.002
θ̂bs

3 − θ̂bs
1 −2.171 −0.820 1.351 −1.468 −1.403 0.350

B
C

a

θ̂bs
1 5.640 6.568 0.928

θ̂bs
2 6.036 9.000 2.964

θ̂bs
3 4.695 5.126 0.431

θ̂bs
1 − θ̂bs

2 −3.189 0.108 3.297
θ̂bs

2 − θ̂bs
3 1.117 4.252 3.135

θ̂bs
3 − θ̂bs

1 −1.766 −0.525 1.241

2.2. Analysis of rrBChE Data

The rrBChE data is available at Dryad [18]. We have I = 8 factors labeled A to H and
primarily focus on the protein production level (ug rrBChE/g FW rice cells) after sugar
induction. We have J = 6 time points (days post-induction, dpi). Although one potential
issue is that we only have one replicate (n = 1) at each time for each factor, our framework
is able to handle this and make appropriate inferences. The observed data and estimations
are shown in Figure 3.

Figure 3. (a): The observed cell-associated rrBChE production levels in factors A to H. (b): Fitted
curves with monotonicity in factors A to H constraints.

2.2.1. “Optimal Time-to-Harvest” θi and “Optimum Stopping Time” γi

With the pre-specified level c = 40 (µg/g FW), we obtain the estimates θ̂i and make
inferences by using the parametric bootstrap method (see Figure 4a). For the “optimum
stopping time” γi, we set the level c̃ = 0.1 and repeat the procedures (see Figure 4b). We
compute the corresponding confidence intervals by using normal noise and t-distributed
noise separately. We found that the results were not sensitive to the type of noise (normal
or t-distributed) that we are used. More details about the related confidence intervals can
be found in Tables S5 and S6 in the Supplementary Materials.
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Figure 4. (a): Fitted curves with specified level (cut-off c = 40 (µg/g FW)); bootstrap confidence
intervals of θi are also shown (using t-distributed noise). (b): Fitted curves with specified level
(c̃ = 0.1); bootstrap confidence intervals of γi are also shown (using t-distributed noise).

2.2.2. Simultaneous Inference—Maximum Production Level τi

The hypotheses are:

H0 : τi = τi′ vs. Ha : τi 6= τi′

where τi = max
t

µi(t) for i = 1, . . . , I. We use the Benjamini–Hochberg procedure for FDR

control. Since the null hypothesis enables computation of estimates using the quadratic
programming framework, we use both the nonparametric (residual) bootstrap and para-
metric bootstrap (using t-distributed noise) to compute two versions of p-values. We found
that that the rankings of p-values by the two different variants of bootstrap procedures
were highly positively correlated, which means our method is robust and not sensitive to
the way we compute p-values.

All indicated significant pairs by the residual bootstrap and percentile bootstrap
CI method are shown in Tables 2 and 3. The results related to using the null bootstrap
distribution to compute p-values are shown in the Supplementary Materials (Tables S1
and S2). It is interesting to see that two versions of p-values indicate similar results from
residual bootstrap and parametric bootstrap, respectively. However, the nonparametric
(residual) bootstrap leads to a more conservative conclusion (seven to eight significant
pairs), compared to the parametric one (13 significant pairs).

Table 2. Using residual(nonparametric) bootstrap methods: False coverage-statement rate (FCR)—
Adjusted BH-Selected CIs for selected parameters indicated by the percentile bootstrap CI; All
confidence intervals above show significance against H0 : τi = τj.

p-Value by Percentile Bootstrap CI CI Lower CI Upper CI Length Mean sd Est

τ̂bs
A − τ̂bs

H <10−5 −28.059 −10.204 17.856 −19.298 3.624 −19.186
τ̂bs

B − τ̂bs
H <10−5 −25.265 −8.512 16.753 −17.707 3.213 −18.115

τ̂bs
C − τ̂bs

H <10−5 −26.081 −9.485 16.596 −18.197 3.379 −18.347
τ̂bs

D − τ̂bs
F 0.008 0.659 17.297 16.638 8.125 3.348 7.544

τ̂bs
D − τ̂bs

H <10−5 −19.830 −3.745 16.086 −12.414 3.191 −12.679
τ̂bs

E − τ̂bs
H <10−5 −24.668 −7.003 17.665 −15.496 3.489 −15.233

τ̂bs
F − τ̂bs

H <10−5 −29.730 −11.710 18.020 −20.539 3.677 −20.223
τ̂bs

G − τ̂bs
H <10−5 −24.095 −7.635 16.460 −16.482 3.187 −16.687
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Table 3. Using parametric bootstrap: False coverage-statement rate (FCR)—Adjusted BH-Selected
CIs for selected parameters indicated by the percentile bootstrap CI; All confidence intervals above
show significance against H0 : τi = τj.

p-Value by Percentile Bootstrap CI CI Lower CI Upper CI Length Mean sd Est

τ̂bs
A − τ̂bs

D 0.002 −10.778 −3.105 7.674 −6.578 1.545 −6.507
τ̂bs

A − τ̂bs
H <10−5 −23.481 −15.508 7.974 −19.277 1.731 −19.186

τ̂bs
B − τ̂bs

D 0.006 −9.552 −1.525 8.026 −5.301 1.525 −5.436
τ̂bs

B − τ̂bs
H <10−5 −22.067 −14.185 7.882 −17.999 1.653 −18.115

τ̂bs
C − τ̂bs

D 0.006 −10.075 −1.356 8.719 −5.662 1.644 −5.668
τ̂bs

C − τ̂bs
H <10−5 −22.761 −14.358 8.403 −18.361 1.709 −18.347

τ̂bs
D − τ̂bs

F 0.002 2.768 12.825 10.057 7.680 1.828 7.544
τ̂bs

D − τ̂bs
G 0.022 0.383 8.532 8.149 4.106 1.553 4.008

τ̂bs
D − τ̂bs

H 0.002 −16.687 −8.478 8.209 −12.698 1.765 −12.679
τ̂bs

E − τ̂bs
F 0.018 0.121 10.278 10.157 4.859 1.877 4.990

τ̂bs
E − τ̂bs

H <10−5 −20.403 −11.297 9.106 −15.519 1.925 −15.233
τ̂bs

F − τ̂bs
H <10−5 −25.471 −15.836 9.635 −20.378 1.872 −20.223

τ̂bs
G − τ̂bs

H <10−5 −20.893 −12.667 8.225 −16.804 1.648 −16.687

2.2.3. Simultaneous Inference—Maximum “Unweighted” Productivity ψi

We now demonstrate that a wider variety of applications can be tackled by the pro-
posed framework. For example, we can make inferences related to the maximum “un-
weighted” productivity. We consider using the maximum “unweighted” productivity

ψi := max
t

hu
i (t) (1)

as the quantity of interest, where

hu
i (t) :=

µi(t)

(t + T(c)
i )

(2)

T(c)
i is the days of cultivation before the induction.

The estimated “unweighted” productivity curves are shown in Figure 5. In this case,
since the parameter is a nonlinear function of the trajectories, it is not possible to obtain the
p-values using the null bootstrap distribution option. Instead, we use the correspondence
between hypothesis testing and finding confidence intervals.

Figure 5. Estimated “unweighted” productivity curves based on observed data. Note that
T(c) = (6, 6, 6, 7, 6, 8, 14, 8).
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We apply the same procedures that we used for the maximum production level to the
maximum “unweighted” productivity, using both the parametric bootstrap and residual
bootstrap methods. Tables S3 and S4 (in the Supplementary Material) show that residual
bootstrap method leads to more conservative results (14 significant pairs) compared to the
parametric one (21 significant pairs).

2.3. Summary of Findings
2.3.1. Comparison between Two Versions of p-Values

The results of the two bootstrap methods imply that the rankings of two versions of
p-values are highly positively correlated (≥0.96), which means that our method is robust
and not sensitive to the way in which we compute p-values.

2.3.2. Comparison of Residual Bootstrap and Parametric Bootstrap

Tables S1 and S2 may be compared for a performance of different bootstrap strategies.
First, within each table, we can see the p-values by using the null and duality of p-value
and CI are consistent based on the rank and its correlation. Second, we can see that residual
bootstrap is more conservative (Table S1 only has seven significant differences), and the
p-values are larger. We can see the main difference depends on the variability of data (the
way we generate bootstrap samples). Parametric bootstrap samples show higher variability
(we make use of the distribution assumption), while residual ones have lower variability.
This means that the residual bootstrap is more conservative, and the result is consistent
with Figure 6.

Compared to the parametric bootstrap method, the residual bootstrap method is more
conservative (see Tables S1 and S2). Comparing the parametric and residual bootstrap sam-
pling distributions for parameters (Figure 6), it is clear that the residual bootstrap method
leads to more widely spread sampling distributions, which yields larger p-values and fewer
significant testing results. Again, the residual bootstrap method is not particularly effective
when the number of factors is small. I = 8 might not be sufficient, and a choice needs to be
made to make inferences.

Figure 6. Comparison: empiricalparametric bootstrap sampling distribution and empirical residual
bootstrap sampling distribution of (a) τ̂bs

B − τ̂bs
D , which is significant in the parametric bootstrap case

but not in the residual bootstrap case. (b) τ̂bs
G − τ̂bs

H , which is significant in both cases.

3. Methods and Materials
3.1. Data Collection Method

A 5 L bioreactor (BioFlo 3000, formerly New Brunswick Scientific, Eppendorf Inc.,
Hauppauge, NY, USA) was used to study the production of rrBChE under eight different
conditions as previously described [11] and summarized in Table 4. In brief, the effects
of dissolved oxygen (DO) were conducted in factors (runs) A–E using a two-stage batch
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culture (the medium exchange was performed to replace spent sugar-rich medium with
sugar-free medium to induce the promoter).

Table 4. Conditions used in bioreactor runs A–H where the agitation rate and temperature were
maintained at 75 rpm and 27 °C, respectively, in all runs. The aeration rate was maintained at 0.2 vvm
(volume of sparged gas per working volume per minute) in runs A–F and 0.2–0.4 vvm in runs G and
H (reproduced from [11]).

Experiment %DO during Growth Phase %DO during Induction Phase Media Exchange

A 40 10 Yes
B 40 20 Yes
C 40 30 Yes
D 40 40 Yes
E 40 Uncontrolled Yes
F 40 40 No
G Uncontrolled Uncontrolled No

H 1 Uncontrolled Uncontrolled No
1 Initial sucrose concentration in the medium in run H was reduced to 15 g/L instead of 30 g/L used in other runs.
DO, dissolved oxygen.

Factors F–H were operated in single-stage batch culture (no medium exchange; pro-
duction was simply induced by sugar depletion from cellular uptake) with or without
controlling DO and using 50% of the usual initial sucrose concentration during the growth
phase. For each factor, samples were taken every day during days 0–5 post induction (dpi)
to quantify the rrBChE activity in the cell extract and culture medium using a modified
Ellman assay [19] and assuming a specific activity of 260 U/mg crude rrBChE to convert
the activity to the rrBChE production level (µg/g fresh weight of rice cells) [11].

3.2. Modeling Production Trajectories

There were I ≥ 2 factors (or treatments), and each treatment was applied to several in-
dependently chosen experimental units (bioreactors). Further, the response (e.g., the rrBChE
concentration in the bioreactor) was measured at observation times 0 < ti1 < · · · < ti J = T,
say, for J ≥ 2 (this allows the observation times to be different for different factors). Let
us denote the mean response curve (at time t ≥ 0) corresponding to the i-th factor as µi(·).
We assumed that µi(·) is a monotonically increasing function of time, over the observation
time window [0, T].

For simplicity as well as statistical efficiency, we assumed a balanced experimental
design—that is, the sample size at each observational time was the same for every treatment.
The measurement process is destructive, and thus, for any particular experimental unit, we
only have one measurement, at the time of sampling the bioreactor. Therefore, to obtain
reasonably accurate measurement for the whole trajectory, we required replicates (i.e.,
multiple experimental units) for each time tij and each treatment i.

Let n denote the number of replicates assigned to each combination (i, j), which
corresponds to a balanced design. Note that we allow n = 1 since, in practice, only limited
data are available particularly in certain biological experiments. We denote the response
from the k-th experimental unit, in the i-th factor group, measured at time tij , to be Yijk.

Yijk = µi(tij) + εijk, j = 1, . . . , J; k = 1, . . . , n; i = 1, . . . , I. (3)

where εijk are independent random variables with mean 0 and unknown, common variance
σ2 > 0. In practice, we may allow the number of time points J to depend on index i as well.

We used a basis representation approach for modeling the mean trajectories µi. In par-
ticular, we used cubic B-spline basis functions [20] for representing the functions. For each
i, assuming L cubic B-spline basis functions are used to µi(t), we can write

µi(t) = ΣL
l=1αil Bl(t), i = 1, . . . , I (4)
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where {αil} are the basis coefficients. The number L of basis functions used to model
the growth/production trajectories is a user-specified positive integer that controls the
degree of complexity of the trajectories, with larger values allowing for more complex
shapes. In practice, L may be determined by utilizing data from pilot studies through
a cross-validated linear regression procedure, which involves setting aside a random subset
of the data (referred to as “validation data”) and using it to compare the prediction errors
of the fitted trajectories corresponding to different values of L based on the “training data”.

A great advantage of the spline representation is that, since the functions Bl(·) are
non-negative, the curve µi is nonnegative provided the coefficients αil are so. A more
significant advantage, from the point of view of modeling “production curves” of the type
considered here, is that the condition that µi(t) is non-decreasing in t can be imposed by
simply requiring that

αi(l+1) ≥ αil for l = 1, . . . , L− 1 (5)

for all i [16,21]. This is a reasonable assumption for batch production of a recombinant
protein if the protein is stable in the culture medium (e.g., there is no consumption and/or
degradation of the product but simply accumulation due to production). Note that this
model is a simplified version of a more general ANOVA framework that enables quanti-
fying possible interactions between the treatments and time. In Section 4, we discuss this
possible extension to a two-factor ANOVA with potential interactions, and the associated
linear constraints.

If we ignore the inequality constraints (5), the linear model given by (3), (4) can be
fitted through an ordinary least squares procedure. The resulting estimate of µi(t) for any t
will be unbiased (i.e., the average of the estimates across all possible samples equals the true
value of the parameter) and will have an approximate Gaussian distribution for reasonably
large values of n. In this case, we can rely on the large sample theory for statistical inference
on the parameters of interest.

However, in the applications considered here, we need to consider the monotonicity
constraints (5) for modeling the production/growth trajectories. The least squares approach
to fitting the model given by (3), (4), and (5) results in a quadratic programming problem.
Though such estimates guarantee the monotonicity of the mean response curve, the esti-
mates of µi(t) incurs small but non-negligible biases, particularly when the sample sizes are
small. The monotonicity constraints on the mean trajectories and limited number of repli-
cates both limit the application of classical large sample theory in dealing with the inference
problem. Therefore, we develop a resampling-based strategy for statistical inference.

3.3. Key Parameters of Interest

We present the mathematical formulation of the inferential questions associated with
the parameters of interest mentioned earlier.

1. Optimal time-to-harvest: θi = min{t : µi(t) = c} for i = 1, . . . , I, where c is the
prespecified cut-off level. The corresponding null hypothesis representing no factor
effect on the “optimal time-to-harvest” is:

θ1 = · · · = θI . (6)

With θi = µ−1
i (c) for some given cut-off level c, we are interested in testing the one-

sided null hypotheses of the form θ1 ≥ s1, . . . , θI ≥ sI (here, the times s1, . . . , sI need
not be equal). These hypotheses translate to the linear inequality constraints:

µi(si) ≤ c for all i = 1, . . . , I (7)

Notice that, θ1 = · · · = θI is not a linear constraint.

• However, the null hypothesis θ1 = · · · = θI = s0 can be translated to the
equality constraints:
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µ1(s0) = · · · = µI(s0) = c. (8)

• A composite null hypothesis of the form sL ≤ θi ≤ sU for all i can also be
translated into linear inequality constraints

µi(sL) ≤ c ≤ µi(sU) (9)

for all i.
2. Maximum production: τi = max

t
µi(t) for i = 1, . . . , I. The regarding null hypothe-

ses are

τ1 = · · · = τI . (10)

or equivalently

µ1(Tmax) = µ2(Tmax) = · · · = µI(Tmax). (11)

where Tmax is the largest time point during the experiment.
3. Maximum “unweighted” productivity: ψi := max

t
hu

i (t), for i = 1, . . . , I, where

hu
i (t) = µi(t)

t+T(c)
i

represents “unweighted” productivity of the i-th factor and T(c)
i is

the number of days of cultivation before the induction. Here, “unweighted” means
that we do not consider the rice cell fresh or dry weight. The corresponding null
hypotheses are

ψ1 = · · · = ψI (12)

or equivalently

max
t

h1(t) = · · · = max
t

hI(t). (13)

4. Optimum stopping time: Suppose the decision to harvest is taken based on the rela-
tive gradient of µi(t) (or, gradient of log µi(t) ). Let γi = min{t ≥ Tb : µ′i(t)/µi(t) ≤ c̃}
where Tb is some constant baseline time and c̃ is a gradient threshold. We may be inter-
ested in testing hypotheses of the form γi > s0 for i = 1, . . . , I where time s0 is treated
as the same for all i for simplicity. Since µ′i(t)/µi(t) is not necessarily monotonic, this
cannot be easily reduced to a simple set of inequality constraints. However, we may
discretize time to a grid of the form Tb = T1 < · · · < Tm = s0 and then consider the
slightly relaxed form of the hypothesis

µ′i(Tj) > c̃µi(Tj) for j = 1, . . . , m, for all i. (14)

In practice, m needs to be small for the feasibility of the optimization problem.

In a more general sense, if our interest is in testing for equality of Θi where Θi is
a linear functional of µi(t), then we can design a procedure that imposes a less restrictive
null hypothesis. This applies, for example, to the case when the maximum production level
is the quantity of interest, since, under the monotonicity of µi, this is simply the value at
the maximum time point.

Specifically, suppose Θi = A(µi) where A is a linear operator taking a scalar value,
then Θi can be expressed as ∑l rlαil where rl are some known coefficients and αil represents
the l-th spline coefficient of µi(t) = ∑l αil Bl(t).

• Example 1: if Θi = µi(T), then rl = Bl(T).
• Example 2: if Θi =

∫
µi(t)dt, then rl =

∫
Bl(t)dt.

3.4. Statistical Inference Using Bootstrap

We mentioned earlier that the estimate µ̂i(t) obtained by imposing constraints (5)
or (16) is not unbiased. What matters more, however, is that we have such a limited number
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of replicates that we cannot rely on large sample theory for making inferences. In view of
this, it is imperative to adopt an inferential framework that does not depend too heavily
either on the model assumptions, the methodology, or indeed the sample sizes.

Therefore, as a possible alternative, we propose to conduct hypothesis tests or construct
confidence intervals for treatment-specific parameters. to be generically denoted by Θi (for
i-th treatment), by making use of an appropriate resampling procedure. Below, we first
describe the different types of resampling strategies that can be employed, depending on
the data available. This is followed by specific choices for constructing confidence intervals
or performing hypothesis tests involving one or many parameters.

3.4.1. Resampling Strategies

Depending on the structure and amount of available data, we have several resampling
or bootstrap strategies for computing the confidence intervals and performing hypothesis
tests for the parameters of interest. The detailed procedures can be found in Section S1 in
the Supplementary Materials.

Nonparametric bootstrap with replicates: This variant of resampling can be used
when the number of replicates n is relatively but not extremely small, and thus we are able
to construct the confidence interval for one parameter (e.g., the difference between a fixed
pair of treatments). In some instances, specifically when the null hypotheses is formed by
imposing linear equality constraints on the parameters, bootstrap sampling distribution of the
test statistic (i.e., the histogram of the statistic used for testing the hypothesis, computed
from the resampled data), under the null hypothesis can be calculated through a modified
version of the nonparametric bootstrap procedure. This is done by replacing the original
data with a set of “surrogate bootstrap data” that incorporates the constraints imposed by
the null hypothesis. This enables an efficient computation of the p-values for the hypothesis
being tested.

Residual bootstrap with or without replicates: This can be implemented whether
there are replicates or not. The core idea here is to resample the residuals from fitting
the model to the data. Note, however, that residual bootstrap is not effective particularly
when the number of factors is small (say, if I = 3, then the residual bootstrap method is
not a good option since resampling does not capture the variability adequately as there
are too few measurements to represent the true scale of variability of the data). Therefore,
in practice, one needs to make a choice of bootstrap procedures based on the design of
the experiment.

Parametric bootstrap: As an alternative to nonparametric or residual-based bootstrap,
one can use the parametric bootstrap method if the model assumptions either can be
validated (say, based on preliminary data) or if no significant departure from these is
expected. As the variance of the noise is unknown, sample variance is typically used as a
surrogate. When the number of replicates is small (e.g., n = 1), and there are only a small
number of treatments, neither nonparametric bootstrap nor residual bootstrap are feasible
resampling strategies. In this challenging setting, a parametric bootstrap approach can still
be used only if there is prior information on variability (see Section 2.2 for more details).

In the proposed parametric bootstrap procedure, the observational noise is assumed
to follow either a Gaussian distribution or a t distribution. For application to the rrBChE
data, we use a scaled t-distribution with relatively low degrees of freedom, which allows
for extreme values, thereby, reflecting the variability in the real data more effectively
(Figure 7). By comparing the confidence intervals, we can see that the results in this real
data application are similar regardless of the type of noise, thus, affirming a degree of
robustness of the proposed method.
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Figure 7. Observations, fitted curves and 500 bootstrap fitted curves for factor H; left: assuming
normal noise; and right: assuming t-distributed noise.

3.4.2. Inference for a Single Parameter

Construction of confidence intervals: We propose two methods to construct the
bootstrap confidence intervals:

1. Percentile bootstrap confidence intervals: We obtain percentile bootstrap confidence
intervals for Θi and Θi − Θj based on B bootstrap estimates of these parameters.
The intervals are constructed by using appropriate quantiles of the bootstrap estimates
{Θ̂∗bi }B

b=1 and {Θ̂∗bi − Θ̂∗bj }B
b=1, respectively.

2. Bias-corrected and accelerated bootstrap interval BCa: The percentile bootstrap confidence
interval is only first-order accurate. Additionally, it does not correct for skewness
of the sampling distribution. To address this, we use bias-corrected and accelerated
bootstrap intervals [22], denoted by BCa, which is not only second-order accurate but
also corrects for the skewness in the sampling distribution.

Computation of p-value associated with tests of hypothesis: We propose two meth-
ods of obtaining approximate p-values using bootstrap. One is the percentile-t bootstrap,
a general procedure, while the other one is a special case where the probability distribution
of the test statistic under the null hypothesis can be calculated. For a general description of
different types of bootstrap procedures and their theoretical validity, one may refer to [23].

p-value computation by percentile-t bootstrap or percentile bootstrap: The key idea behind
computation of the p-values is to use the correspondence between hypothesis testing and
confidence intervals. Specifically, the p-value is equal to η∗ where η∗ is the largest value of η
such that the 100(1− η)% confidence interval contains the value of the parameter specified
under the null hypothesis. We can make use of the percentile-t bootstrap procedure for
constructing the confidence intervals for the parameters of interest for any given confidence
level η and then “invert” these, as described above, to approximate the p-value. Alterna-
tively, we may use the percentile bootstrap procedure (arguably less accurate) instead of
percentile-t bootstrap, to compute the p-values, which incurs lower computational costs.

p-value computation under the null distribution: Instead of the indirect approach that
relies on construction of bootstrap confidence intervals, in some instances, we can use
a modified form of nonparametric bootstrap that enables generating samples under the
distribution specified by the null hypothesis. Step 5 in Section S.2 indicates the method of
computing p-values under this setup.

The key to successful application of this strategy is the ability to generate surrogate
bootstrap data from the null distribution. This is feasible for example when the null
hypotheses are specified by linear equality constraints on the parameters. It is reassuring
that, for the real data analysis, where, due to the structure of the problem, we have two
different ways of computing the p-values, viz., by inverting the bootstrap confidence
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intervals or by surrogate bootstrap data generated under the null hypothesis, the two
versions of p-values are similar.

3.4.3. Simultaneous Inference and Adjusting p-Values

When we perform simultaneous tests for multiple hypotheses of the form H0 : Θi =
Θi′ vs. H1 : Θi 6= Θi′ for several pairs of treatments 1 ≤ i < i′ ≤ I, in order to control
the familywise type I error rate (i.e., the probability of rejecting any of the null hypotheses
incorrectly), it becomes necessary to adjust the level of significance of each individual
test. This can be achieved by making use of the Bonferroni procedure or a False Discovery
Rate (FDR) control procedure [24]. In the present setting, this requires computation of
the p-values for each individual test using any one of the procedures described above,
as appropriate.

Once we obtain the bootstrap p-values for the different tests, the Benjamini–Hochberg
(BH) procedure for FDR control is used to first determine the significance level for each
pairwise test for a given level of familywise significance. With this, we can adjust the
confidence levels of the confidence intervals (False Coverage-Statement Rate (FCR)-Adjusted
BH-Selected CIs) for the parameters accordingly [17]. We describe these procedures in
Section S.3 of the Supplementary Material.

4. Conclusions

Implications for scientific investigation: The analysis presented here shows the merit
of using advanced statistical techniques for answering critical questions about the compar-
ative effectiveness of different experimental constructs in complex and expensive biological
experiments where the data availability is limited. In particular, our study shows the
capability of well-designed bootstrap methods for obtaining accurate confidence intervals
for parameters of interest. In addition, it shows that the shapes of the mean protein produc-
tion trajectories have a direct influence on the variability of the estimates of the “optimal
time-to-harvest” and related parameters.

Moreover, the simulation study shows that the specialized resampling procedures
provide a good description of this variability and therefore help experimenters to formulate
an appropriate experimental design in terms of the number of time points and replicates
for the experiment to achieve a desired level of accuracy. These assertions are further
validated by an application of the methods to analyze the rrBChE data.

Furthermore, a salient feature of our framework is that the methodology works well
even when the data are limited, and thus the standard large sample theory for statistical
inference is not applicable, which is common in complicated biological experiments. In
particular, the proposed methodology can help to suggest and validate the strategy of
designing lengthy and expensive experiments where the number of replicates is limited.
We also found that the two variants of bootstrap methods work well even when the amounts
of data are limited. Specifically, if one is more confident in the model assumption, then
parametric bootstrap is the preferred option. Otherwise, the residual bootstrap is a better
choice as it yields more conservative confidence intervals.

In addition, our model can be used to obtain the optimal set of conditions to maximize
parameters of interest, such as the optimum harvest time. When conditions are considered
discrete, our resulting model framework has capabilities to provide statistical simultaneous
inference to make comparisons. When the conditions are continuous, and the rate of change
in the optimum harvest time is to be measured, we can modify the model by treating the
optimum harvest time as a function of these conditions (treated as continuous covariates in
the model).

Then, to optimize the optimum harvest time, we look to solve an equation setting the
derivative (with respect to the conditions) of the optimum harvest time to zero. In that case,
we can still apply an appropriately modified form of our bootstrap procedure to obtain
confidence intervals for the parameters of interest. This can be also validated experimentally
if enough resources are allowed in practice.
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Finally, we discuss two possible directions in which the methodology presented here
can be further enhanced to deal with additional questions about data generated from
similar biological experiments.

Extension 1: The preceding analysis makes it clear that our framework is highly
effective particularly when multiple process metrics are of interest. In addition to the
parameters we discussed, our framework can be extended to other parameters, e.g., the
average production and average “unweighted” productivity. The average production for
the i-th factor is described as

∫ Tmax
T0

µi(t)dt where T0 is the starting point.

The corresponding null hypothesis is
∫ Tmax

T0
µ1(t)dt = · · · =

∫ Tmax
T0

µI(t)dt. Similarly,

the average “unweighted” productivity is given by
∫ Tmax

T0
µ1(t)/(t + T(c)

i )dt for the i-th

factor. The null hypothesis is:
∫ Tmax

T0
µ1(t)/(t + T(c)

i )dt = · · · =
∫ Tmax

T0
µI(t)/(t + T(c)

i )dt.
However, p-values cannot be calculated based on the null bootstrap distribution for average
“unweighted” productivity because of nonlinearity. Instead, we may adopt the percentile
bootstrap option to obtain p-values.

Extension 2: As we mentioned earlier, we used a simplified version of ANOVA
framework. This can be extended to a two-factor ANOVA framework by incorporating
the effect of the experimental condition, time and their interactions, with appropriate
constraints. Such a modified model is able to leverage the impact of different factors and
interactions of both factor and time and how different they are across factors. These are
also key interests of experimental studies. In addition to Equations (3)–(5), we incorporate
the factor effects and factor–time interaction by modeling αil as follows:

αil = β + ηi + ξl + δil , i = 1, . . . , I; l = 1, . . . , L (15)

To ensure identifiability of the parameters, we impose the following linear constraints:

I

∑
i=1

ηi = 0,
L

∑
l=1

ξl Bl(t∗) = 0

I

∑
i=1

δil = 0 for each l,
L

∑
l=1

δil Bl(t∗) = 0, for each i,

where t∗ is an arbitrary but appropriately chosen point in [0, T]. Furthermore, the con-
straints (5) are equivalent to

ξl+1 − ξl + δi(l+1) − δil ≥ 0, i = 1, . . . , I; l = 1, . . . , L− 1. (16)

The extended model given by (3), (4), (15) and (16) is a modified form of two-factor
ANOVA and can be solved by quadratic programming. Statistical inference can be con-
ducted by a natural extension of the resampling strategy proposed here.
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