Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory
Title
STRENGTH AND PERMEABILITY TESTS ON ULTRA-LARGE STRIPA GRANITE CORE

Permalink

https://escholarship.org/uc/item/828823g3
Author
Thorpe, R.
Publication Date
2009-03-27

SWEDISH-AMERICAN COOPERATIVE PROGRAM ON RADIOACTIVE WASTE STORAGE IN MINED CAVERNS IN CRYSTALLINE•ROCK

RECEIVED
LAWRENCE
AUG 31

KENTS SECTION
 Technical Information Report No. 31
 STRENGTH AND PERMEABILITY TESTS ON ULTRA-LARGE STRIPA GRANITE CORE

R. Thorpe, D. J. Watkins, W. E. Ralph, R. Hsu, and S. Flexser

Lawrence Berkeley Laboratory

TWO-WEEK LOAN COPY

University of California Berkeley, CA 94720

This is a Library Círculating Copy September 1980 which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Dívísion, Ext. 6782

A Joint Project of

Swedish Nuclear Fuel Supply Co.
Fack 10240 Stockholm, Sweden
Operated for the Swedish
Nuclear Power Utility Industry

Lawrence Berkeley Laboratory
Earth Sciences Division
University of California
Berkeley, California 94720, USA
Operated for the U.S. Department of
Energy under Contract W-7405-ENG-48

STRENGTH AND PERMEABILITY TESTS ON ULTRA-LARGE STRIPA GRANITE CORE

R. Thorpe, D.J. Watkins, W.E. Ralph, R. Hsu, and S. Flexser
Lawrence Berkeley Laboratory University of California Berkeley, CA 94720

September, 1980

This work was supported by the Assistant Secretary for Nuclear Energy, Office of Waste Isolation of the U.S. Department of Energy under contract W-7405-ENG-48. Funding for this project is administered by the Office of Nuclear Waste Isolation at Battelle Memorial Institute.

PREFACE

This report is one of a series documenting the results of the SwedishAmerican cooperative research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a large crystalline rock mass as a geologic repository for nuclear waste. This program has been sponsored by the Swedish Nuclear Power Utilities through the Swedish Nuclear Fuel Supply Company (SKBF), and the U.S. Department of Energy (DOE) through the Lawrence Berkeley Laboratory.

The principal investigators are L.B. Nilsson and 0. Degerman for SKBF, and N.G.W. Cook, P.A. Witherspoon, and J.E. Gale for LBL. Other participants will appear as authors of the individual reports.

Previous technical reports in this series are listed below.

1. Swedish-American Cooperative Program on Radioactive Waste Storage in Mined Caverns by P.A. Witherspoon and 0. Degerman. (LBL-7049, SAC-01).
2. Large Scale Permeability Test of the Granite in the Stripa Mine and Thermal Conductivity Test by Lars Lundstrom and Haken Stille. (LBL-7052, SAC-02).
3. The Mechanical Properties of the Stripa Granite by Graham Swan
(LBL-7074, SAC-03).
4. Stress Measurements in the Stripa Granite by Hans Carlsson (LBL-7078, SAC-04).
5. Borehole Drilling and Related Activities at the Stripa Mine by P.J. Kurfurst, T. Hugo-Persson, and G. Rudolph (LBL-7080, SAC-05).
6. A Pilot Heater Test in the Stripa Granite by Hans Carlsson (LBL-7086, SAC-06).
7. An Analysis of Measured Values for the State of Stress in the Earth's Crust by Dennis B. Jamison and Neville G.W. Cook (LBL-7071, SAC-07).
8. Mining Methods Used in the Underground Tunnels and Test Rooms at Stripa by B. Andersson and P.A. Halen (LBL-7081, SAC-08).
9. Theoretical Temperature Fields for the Stripa Heater Project by T. Chan, Neville G.W. Cook, and C.F. Tsang (LBL-7082, SAC-09).
10. Mechanical and Thermal Design Considerations for Radioactive Waste Repositories in Hard Rock. Part I: An Appraisal of Hard Rock for Potential Underground Repositories of Radioactive Waste by N.G.W. Cook; Part II: In Situ Heating Experiments in Hard Rock: Their Objectives and Design by N.G.W. Cook and P.A. Witherspoon (LBL-7073, SAC-10).
11. Full-Scale and Time-Scale Heating Experiments at Stripa: Preliminary Results by N.G.W. Cook and M. Hood (LBL-7072; SAC-11).
12. Geochemistry and Isotope Hydrology of Groundwaters in the Stripa Granite: Results and Preliminary Interpretation by P. Fritz, J.F. Barker, and J.E. Ga7e (LBL-8285, SAC-12).
13. Electrical Heaters for Thermo-Mechanical Tests at the Stripa Mine by R.H. Burleigh, E.P. Binnall, A.O. DuBois, D.O. Norgren, and A.R. Ortiz (LBL-7063, SAC-13).
14. Data Acquisition, Handling, and Display for the Heater Experiments at Stripa by Maurice B. McEvoy (LBL-7062, SAC-14).
15. An Approach to the Fracture Hydrology at Stripa: Preliminary Results by J.E. Gale and P.A. Witherspoon (LBL-7079, SAC-15).
16. Preliminary Report on Geophysical and Mechanical Borehole Measurements at Stripa by P. Nelson, B. Paulsson, R. Rachiele, L. Andersson, T. Schrauf, W. Hustrulid, 0. Duran, and K.A. Magnussen (LBL-8280, SAC-16).
17. Observations of a Potential Size-Effect in Experimental Determination of the Hydraulic Properties of Fractures by P.A. Witherspoon, C.H. Amick, J.E. Gale, and K. Iwai (LBL-8571, SAC-17).
18. Rock Mass Characterization for Storage in Nuclear Waste in Granite by P.A. Witherspoon, P. Nelson, T. Doe, R. Thorpe, B. Paulsson, J.E. Gale, and C. Forster (LBL-8570, SAC-18).
19. Fracture Detection in Crystalline Rock Using Ultrasonic Shear Waves by K.H. Waters, S.P. Palmer, and W.F. Farrell (LBL-7051, SAC-19).
20. Characterization of Discontinuities in the Stripa Granite--Time Scale Heater Experiment by R. Thorpe (LBL-7083, SAC-20).
21. Geology and Fracture System at Stripa by A. Olkiewicz, J.E. Gale, R. Thorpe, and B. Paulsson (LBL-8907, SAC-21).
22. Calculated Thermally Induced Displacements and Stresses for Heater Experiments at Stripa by T. Chan and N.G.W. Cook (LBL-7061, SAC-22).
23. Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture by P.A. Witherspoon, J. Wang, K. Iwai and J.E. Gale (LBL-9557, SAC-23).
24. Determination of In-Situ Thermal Properties of Stripa Granite from Temperature Measurements in the Full-Scale Heater Experiments: Methods and Primary Results by J. Jeffry, T. Chan, N.G.W. Cook and P.A. Witherspoon (LBL-8424, SAC-24).
25. Instrumentation Evaluation, Calibration, and Installation for Heater Tests Simulating Nuclear Waste In Crystalline Rock, Sweden by T. Schrauf, H. Pratt, E. Simonson, W. Hustrulid, P. Nelson, A. DuBois, E. Binnall, and R. Haught (LBL-8313, SAC-25).
26. Part I: Some Results from a Field Investigation of Thermo-Mechanical Loading of a Rock Mass When Heater Canisters are Emplaced in the Rock by M. Hood. Part II: The Application of Field Data from Heater Experiments Conducted at Stripa, Sweden for Repository Design by M. Hood, H. Carlsson, and P.H. Nelson (LBL-9392, SAC-26).
27. Progress with Field Investigations at Stripa by P.A. Witherspoon, N.G.W. Cook, and J.E. GaTe (LBL-10559, SAC-27).
28. A Laboratory Assessment of the Use of Borehole Pressure Transients to Measure the Permeability of Fractured Rock Masses by C. Forster and J.E. GaTe (LBL-8674, SAC-28).
29. Thermal and Thermomechanical Data for In Situ Heater Experiments at Stripa, Sweden by T. Chan, E. Binnal1, P. Nelson, 0. Wan, C. Weaver, K. Ang, J. Braley, and M. McEvoy (LBL-11477, SAC-29).
30. The Effect of Radon Transport in Groundwater Upon Gamma Ray Borehole Logs by P.H. Nelson, R. Rachiele, and A. Smith (LBL-11180, SAC-30).
Page
PREFACE iii
LIST OF FIGURES ix
LIST OF TABLES xiii
NOMENCLATURE xv
ABSTRACT xix
31. INTRODUCTION 1
32. DESCRIPTION OF SAMPLE 4
33. TESTS ON SMALL DIAMETER CORES 10
34. PRELIMINARY FALLING-HEAD PERMEABILITY TESTS 12
35. EXPERIMENTAL PROCEDURES AND APPARATUS 19
5.1 Large Triaxial Testing Machine 19
5.2 Experiment Design 19
5.3 Hydraulic and Load Control Systems 26
5.4 Core Instrumentation 26
5.5 Data Acquisition 31
5.6 Data Reduction 32
36. TEST RESULTS AND INTERPRETATION 33
6.1 Mechanical Behavior 33
6.1.1 Macroscopic Load-Deformation Behavior 33
6.1.2 Decomposition of Load-Deformation Response 41
6.1.2.1 Fractures Perpendicular to the Core Axis 42
6.1.2.2 Fractures Inclined to the Core Axis 49
6.1.2.3 Parameters for Mechanical Closure of Fractures 53
6.1.3 Strain Gauge Data 56
6.1.4 Time-Dependent Mechanical Behavior 59
6.1.4.1 Macroscopic Time-Dependent Deformation 59
6.1.4.2 Time-Dependent Behavior of Individual Fractures 61
6.2 Coupled Hydraulic-Mechanical Behavior 64
6.2.1 Applicability of Darcy's Law 64
6.2.2 Macroscopic Stress-Flow Relationship 67
6.2.3 Relationship Between Flow and Fracture Deformations 72
37. CONCLUSIONS AND RECOMMENDATIONS 76
7.1 Mechanical Behavior 76
7.2 Coupled Hydraulic-Mechanical Behavior 78
ACKNOWLEDGMENTS 80
REFERENCES 81
Page
APPENDIX I: Sample Preparation 84
APPENDIX II: Fracture Mapping and Characterization 94
APPENDIX III: Petrography of Ultra-Large Core 99
APPENDIX IV: Tests on 5.2 cm Diameter Cores 121
APPENDIX V: Falling-Head Tests 135
APPENDIX VI: Control, Instrumentation and Data Acquisition Equipment 149
APPENDIX VII: Test Data on Engineering Units 165

-ix-
 LIST OF FIGURES

Page
1.1 U7tra-large Stripa core 3
2.1 Location of core hole 5
2.2 In-situ sample orientation 5
2.3 Fractures in core 6
2.4 Surface of fracture B 8
2.5 Surface map - fracture B 8
4.1 Schematic of falling-head permeability test 1.3
4.2 Borehole fracture log, injection intervals and falling-head test results 14
4.3 External seepage from central borehole 15
5.1 Large triaxial testing machine 2.0
5.2 Schematic of test arrangement 21
5.3 Axial stress-history applied to sample 24
5.4 Data gathering and control schematic 27
5.5 Instrument locations - Stripa core 29
5.6 Instrumented Stripa core 30
6.1 Macroscopic stress-strain record, with calculated strain at center of core 34
6.2 Post-failure fracture map 36
6.3. Plot of downward normal vector to plane of sample top 37
6.4 Macroscopic axial and circumferential stress-strain data 40
6.5 Calculated overall displacements at $80^{\circ}, 90^{\circ}$, and 130° 43
6.6 Fracture C displacements ($\mathrm{E}=60 \mathrm{GPa}$) 43
6.7 Fracture B displacements ($E=60 \mathrm{GPa}$) 45
6.8 Fracture A displacements $(E=60 \mathrm{GPa})$ 4.5
6.9 Calculated macroscopic and fracture displacements at 310° orientation ($\mathrm{E}=60 \mathrm{GPa}$) 46
Page
6.10 Calculated macroscopic and fracture displacements at 190° orientation ($E=60 \mathrm{GPa}$) 46
6.11 Calculated macroscopic and fracture displacements at 80° orientation ($E=60 \mathrm{GPa}$) 47
6. 12 Plots of downward normal vectors to fracture displacement planes 48
6.13 Vertical displacements on fractures E and $F(E=60 \mathrm{GPa})$ 50
6.14 Vertical and horizontal displacements on fracture D ($\mathrm{E}=60 \mathrm{GPa}$) 52
6.15 Calculated normal displacement versus shear stress for fracture D 54
6.16 Calculated normal displacement versus normal stress for fracture D 54
6.17 Stress-strain data from strain gauges opposite inclined fractures 57
6.18 Stress-strain data from strain gauges near inclined fractures 57
6.19 Axial stress versus time since start of load ramps 60
6.20 Macroscopic axial strain versus time 60
6.21 Circumferential strain versus time 60
6.22 Calculated center displacement versus time for fracture A ($\mathrm{E}=60 \mathrm{GPa}$) 62
6.23 Calculated center displacement versus time for fracture B ($\mathrm{E}=60 \mathrm{GPa}$) 62
6.24 Calculated center displacement versus time for fracture C ($\mathrm{E}=60 \mathrm{GPa}$) 62
6.25 Calculated shear displacement versus time for fracture D ($\mathrm{E}=60 \mathrm{GPa}$) 63
6.26 Calculated normal displacement versus time for fracture D ($\mathrm{E}=60 \mathrm{GPa}$) 63
6.27 Measured overall flow rate versus differential pressure head 66
Page
6.28 Calculated single-fracture hydraulic conductivity versus axial stress, compared with previously published data 71
6.29 Measured and calculated overall flows-per-unit-head versus axial stress 74
A1.1 Core as recovered from rib of entry 85
A1.2 Dimensions of core before capping 87
A1. 3 Top cap reinforcement 89
A1.4 Bottom cap reinforcement 90
A1.5 Dimensions of capped core 93
A2.1 Stereograph of major fracture poles in Stripa core 98
A3.1 Chlorite-filled fracture from top surface of ultra-large core 111
A3.2 Fractures associated with fracture B of ultra-large core 113
A3.3 Veinlets of sericite, with lesser chlorite, forming in perithitic microcline grain; near dominant fracture B of ultra-large core 115
A3.4 Pervasive fracturing and alteration of matrix minerals to sericite and chlorite 116
A3. 5 Fault gouge 118
A4. 1 Typical uniaxial compression test record for intact Stripa granite 124
A4.2 Mohr diagram for intact Stripa granite 127
A4.3 Mohr diagram for healed fractures in Stripa granite 127
A4.4 Key to figures A4.5-A4.11 132
A4.5 Map of Sample S1 133
A4.6 Map of Sample S2 133
A4.7 Map of Sample S3 133
A4.8 Map of Sample S4 133
A4.9 Map of Sample T1 134
Page
A4.10 Map of Sample T2 134
A4.11 Map of Sample 55 134
A5.1 Borehole packer unit for falling-head tests 136
A5.2 Results of falling-head tests Nos. 1 and 7 139
A5.3 Results of falling-head tests Nos. 2 and 9 139
A5.4 Results of falling-head tests Nos. 3, 10 and 11 140
A5.5 Results of falling-head tests Nos. 4 and 8 140
A5.6 Results of falling-head tests Nos. 5 and 6 141
A5.7 Results of falling-head tests Nos. 12 and 13 142.
A5.8 Results of falling-head tests Nos. 3, 14, and 16 142
A6.1 Mounted LVDT 155
A6. 2 Exploded view of LVDT unit 156
A6. 3 Assembled LVDT unit 157
A6. 4 LVDT orientation references 157
A6.5 LVDT for measuring axial deformation 159
A6. 6 Girth gauge 161
A6. 7 LVDT damaged by corrosion 163

LIST OF TABLES

Page
3.1 Uniaxial and triaxial test data for naturally fractured and intact 5.2 cm diameter cores of Stripa granite 11
4.1 Inferred flow-paths from various sections of the center borehole 16
5.1 Axial-stress levels and differential pressures for permeability tests 24
6.1. Psuedo-elastic properties computed from overall stress-strain record of Fig. 6.5 40
6.2 Parameters for mechanical closure of fractures 55
6.3 Results and computed overall hydraulic parameters from stress- flow tests on ultra-large Stripa core 65
6.4 Computation of overall flow parameters based on parallel-plate models of fractures B and D 70
A1.1 Concrete for Stripa core end caps 91
A2.1 Ultra-large Stripa core - axial borehole log 96
A3.1 Electron microprobe analysis of chlorite grains from sample of Stripa granite from 4.60 m level in borehole N 1 in time-scale drift 100
A3.2 Excerpts of chemical analyses of some representative biotites from granitic rocks 100
A3.3 X-ray fluorescence major element analysis of relatively fracture-free sample from $\sim 0.4 \mathrm{~m}$ level in core OH 1 BH E7 in full-scale drift 102
A3.4 X-ray diffraction peaks of whole fracture filling from fracture C, ultra-large core 103
A3. 5 X-ray diffraction peaks of chlorite-enriched separate from fracture forming top surface of ultra-large core 104
A3.6 Errors in d-spacing read from diffraction films 106
A4.1 Description of 5.2 cm diameter sample 122
A4. 2 Results of indirect tension tests on small core sections 124
A4.3 Summary of previous laboratory strength data for intact Stripa granite 128
A5.1 Flow parameters computed from falling-head test results 145
A5.2 Approximate matrix permeabilities 148
A6.1 Principal instrumentation and control equipment 150
A6.2 Strain gauge mounting procedure 153
A6.3 LVDT locations and orientations 158
A6.4 Data channel assignments 164

NOMENCLATURE

A Angle between fracture and horizontal
A Constant (fracture closure parameter)
A Cross-sectional area of flow
A Cross-sectional area of core
A Distance between LVDT anchors
$A_{m} \quad$ Initial head (extrapolated)
$A_{s} \quad$ Area of standpipe
B Angle between fracture plane and LVDT axis
c Cohesion intercept (Mohr envelope)
d d-spacing (x-ray diffraction)
E Young's modulus
g Acceleration due to gravity
h_{1} Head-loss
$h_{m} \quad$ Hydraulic head
$h_{0} \quad$ Initial head
$h_{z} \quad$ Corrected head
$I_{S} \quad$ Point-load strength index
k Coefficient of permeability
$\mathrm{k}_{\mathrm{f}} \quad$ Fracture permeability
$k_{m} \quad$ Permeability of unstressed rock matrix
$k_{r m}$ Equivalent rock mass permeability of sample
L Length of flow
L. Length of interval between packers

P Axial load
Q Flow rate
Q/Dh Flow-per-unit-head
Re Reynolds number
r_{1} Radius of borehole
r_{2} Radius of core
s Length between packers
t Time
t Constant (fracture closure parameter)
$\mathrm{t}_{\mathrm{m}} \quad$ Time
u Approximate shear displacement
$V_{m c}$ Maximum aperture closure
$x \quad$ Angle between fracture plane and core axis
B Angular coordinate (anti-clockwise from orientation line)
$\Delta \mathrm{d} \quad$ Error in reading of d-spacing
$\Delta h \quad$ Differential hydraulic head
$\Delta v \quad$ Change in aperture
$\Phi \quad$ LVDT displacement
$\varepsilon_{\theta} \quad$ Circumferential strain
$\varepsilon_{z} \quad$ Vertical (axial) strain
$\theta \quad$ Angular coordinate (clockwise from orientation line)
$\mu \quad$ Dynamic viscosity
$\checkmark \quad$ Poisson's ratio
$\xi \quad$ Initial stress
$\rho \quad$ Fluid density
$\sigma \quad$ Stress
$\sigma_{1} \quad$ Axial stress
$\sigma_{3} \quad$ Confining pressure7^{--}。
$\sigma_{n} \quad$ Axial or normal stress
$\tau \quad$ Shear stress
$\phi \quad$ Angle of internal friction
$\psi \quad$ Angle between fracture plane and core axis
2b Absolute fracture aperture
2θ Location of x-ray diffraction peak

Abstract

This report presents the results of laboratory tests on a 1 meter diameter by 2 meters high sample of granitic (quartz monzonite) rock from the Stripa mine in Sweden. The tests were designed to study the mechanical and hydraulic properties of the rock. Injection and withdrawal permeability tests were performed at several levels of axial stress using a borehole through the long axis of the core. The sample was pervasively fractured and its behavior under uniaxial compressive stress was very complicated. Its stress-strain behavior at low stresses was generally similar to that of small cores containing single healed fractures. However, this large core failed at a peak stress of 7.55 MPa , much less than the typical strength measured in small cores. The complex failure mechanism included a significant creep component. The sample was highly permeable, with flows-per-unit head ranging from 0.11 to $1.55 \mathrm{~cm}^{2} / \mathrm{sec}$. Initial application of axial load caused a decrease in permeability, but this was followed by rapid increase in conductivity coincident with the failure of the core. The hydraulic regime in the fracture system was too intricate to be satisfactorily modeled by simple analogs based on the observed closure of the principal fractures. The test results contribute to the data base being compiled for the rock mass at the Stripa site, but their proper application will require synthesis of results from several laboratory and in situ test programs.

1. INTRODUCTION

An inactive iron ore mine at Stripa, Sweden is the site of a group of experiments designed to evaluate the suitability of deep granitic rock as repositories for nuclear waste. The work is sponsored by the SwedishAmerican Cooperative Project on Radioactive Waste Storage in Mined Caverns in Crystalline Rock (Witherspoon and Degerman, 1978). The program has two principal elements: investigation of subsurface hydrology (Gale and Witherspoon, 1979) and study of the thermomechanical response of the rock to heat sources emplaced in the floor of mine entries (Cook and Witherspoon, 1978).

Analysis and interpretation of the data gathered from the large-scale in situ experiments require knowledge of the mechanical and hydraulic properties of the rock mass. Fracture systems in rock play a dominant role in its behavior and, often, as with the mine at Stripa, evaluation of its properties requires the synthesis of data from many different in situ and laboratory techniques. Traditionally, laboratory tests have been performed on samples of rock with dimensions of several centimeters. However, there is convincing evidence that the mechanical properties of rock are size dependent (Jaeger, 1966; Pratt et al., 1972), and the potential for a similar "size effect" in experimental determination of the hydraulic properties of fractures has been observed (Witherspoon et al., 1979). Thus, it is important to obtain measurements on rock samples with dimensions much closer to those of practical concern, namely meters rather than centimeters.

Laboratory tests to investigate the mechanical properties of the Stripa rock (Swan, 1978) and to study flow in fractures (Witherspoon, Wang et al., 1979) have been performed on standard-sized samples, and further investigations
are in progress (Witherspoon, Watkins, et al., 1979). This report presents the results of laboratory tests on a large cylindrical sample of rock from the Stripa mine. Figure 1.1 shows the approximately 1 meter diameter by 2 meters high core after preparation for testing and placement of reinforced concrete end caps.

The objectives of the test program were: 1) to investigate the strength and mechanical behavior of the sample under uniaxial compression, and 2) to study the hydraulic properties (permeability) of the sample, including the coupled relationship between the hydraulic properties and the applied axial stress. Because the sample was highly fractured, both its hydraulic and mechanical properties were complex. It was possible to quantify its general macroscopic properties, but detailed analysis, particularly of the hydraulic properties of the fracture system, was generally restricted to qualitative and semi-quantitative procedures. However, the tests generated a large volume of data that should serve as a valuable resource for further research on the behavior of fractured rock masses.

CBB 796-8236.

Fig. 1.1 Ultra-large Stripa core.

2. DESCRIPTION OF SAMPLE

The sample was recovered from the granitic formation in the Hagconsult drift at the 360 m level. The core was cut from the rib of the entry by a slot drilling technique such that its long axis was oriented approximately horizontal. Figure 2.1 shows the location of the sampling site relative to the sites of the in-situ thermo-mechanical and hydrology experiments on the 335 m level. Details of the coring technique and of preparation of the sample for testing are given in Appendix I.

The granitic rock in the Stripa mine is pervasively fractured (Thorpe, 1979; Olkiewicz et al., 1979). The sample was intersected by two principal sets of fractures and a large number of secondary discontinuities with lengths and spacings ranging from the scale of the core to the microscopic. Fractures observable by the naked eye were mapped by using a plastic overlay and by logging a 7.62 cm diameter hole drilled through the long axis of the core. These procedures and a detailed description of the fracture geometry and characteristics are given in Appendix II. Figure 2.3 shows the fractures traced on a development of the surfaces of the sample together with the 10 g of the core drilled along the axis of the sample.

There were two dominant fracture sets in the core. One, consisting of the fractures designated A, B and C in Fig. 2.3, formed essentially continuous surfaces oriented approximately normal to the core axis; members of the other, designated D, E and F in Fig. 2.3, were generally discontinuous and were oriented at 25° to 30° to the long axis of the core. Figure 2.2 shows the approximate in situ orientation of the core and dominant fracture sets. The bearing of the core axis was $\mathrm{S} 14^{\circ} \mathrm{W}$ and it plunged downward at 15°.

Fig. 2.1 Location of core hole.

Fig. 2.2 In-situ sample orientation.

Fig. 2.3 Fractures in core.

An orientation line on the surface of the core was located 341° clockwise (19° anticlockwise) from the top when looking down the core hole. All geometrical relationships in the core were defined relative to its axis and this orientation line.

During preparation, the core was inadvertently separated at fracture B (see Fig. 2.4). The two halves were successfully re-seated so that, to the naked eye, the sample was in the same condition as before the separation. However, significant changes in the hydraulic properties of fracture B must have occurred. While the core was separated, the fracture surface was inspected and mapped. This surface was uniformly coated with a loose brownish dust, which is thought to have been transported into the voids by drilling fluid. There was no depositional pattern in the dust that might suggest localized flow paths through the fracture. Because the dust was considered foreign matter that might have prevented accurate re-seating, it was carefully removed with a vacuum cleaner. This process did not disturb the thin layer of hardened dark green chlorite mineralization adhering to the surfaces of the fracture.

As shown in Fig. 2.5, the surface of fracture B was intersected by traces of the major inclined fractures designated D, E and F in Fig. 2.3. These intersecting fractures formed en-echelon scarps with relief of 1 to 2 cm along one edge of the core (foreground in Fig. 2.4). The height of these scarps diminished across the core and, in the case of fractures E and F, no clear traces were visible on the opposite side (background in Fig. 2.4). This observation is consistent with the external fracture map (Fig. 2.3) that shows these fractures to be discontinuous across the diameter of the core.

Fig. 2.4 Surface of fracture B.

Fig. 2.5 Surface map - fracture B.

The geology of the Stripa mine has been described by 0lkiewicz et al. (1979). According to these authors, the sampling site shown in Fig. 2.1 is about 20 m horizontally from where the granite contacts the synclinal leptite formation that contains the ore body. The rock in which the thermo-mechanical and hydrology experiments are located was found to be principally composed of massive granites and monzogranites. As part of the work described in this report, a petrographic study was conducted on the ultra-large core to determine its specific mineral composition. The results are reported in Appendix III. The major minerals of the rock matrix were found to be quartz, plagioclase and microcline. Their relative abundance (73.8% silica) indicated that the sample was formed of quartz monzonite rather than a true granite. The specific gravity of the rock matrix was 2.65. The fracturefilling minerals were predominately chlorite and sericite. The two principal fracture sets were not generally distinguishable on the basis of these minerals. However, in some portions of the inclined fractures (D, E, and F) where a significant thickening of the filling material occurred, calcite was prominent.

3. TESTS ON SMALL DIAMETER CORES

To provide a basis for design of the test program for the ultra-large core and to assess the range and sensitivity requirements of the instrumentation, a series of strength tests was performed on 5.2 cm diameter cores of Stripa granite. These small diameter samples were obtained from boreholes drilled in the mine as part of the general research activities at Stripa (Kurfurst et al., 1978). Because they were sampled from several different locations in the mine, they were not specifically representative of the rock from which the core was extracted, but they were considered sufficiently similar for the purpose of this study. A series of compressive and tensile tests was performed on intact specimens and samples containing fractures at various orientations to the long axis of the sample. The principal results are summarized in Table 3.1. Test procedures are described in Appendix IV, which also compares these data with results of tests performed by others on small intact samples of Stripa granite. As a linear approximation, the lower-bound Mohr's envelope for the intact rock was found to have a cohesion intercept $\mathrm{c}=2.50 \mathrm{MPa}$ and an angle of friction, ϕ, of 60°. For samples containing well-filled, healed fractures, these parameters were typically c = 7.3 MPa and $\phi=55^{\circ}$. The average elastic modulus measured in compression tests was about 55 GPa for intact samples, and similar results were obtained for samples containing well-healed fractures.

Table 3.1. Uniaxial and triaxial test data for naturally fractured and intact Stripa granite (52 mm diam. core).

Specimen number	Type of test	Confining pressure, $\sigma_{3} \mathrm{MPa}$	Failure stress, σ_{1} (MPa)	Tangent modulus (GPa)	Total strain at failure (\%)	Initial nonlinear strain (\%)

Fractured specimens

S1	Triaxial comp.	6.90	247.8	58.81	0.50	0.06
S2	Triaxial comp.	3.45	210.5	56.48	0.47	0.10
S3	Triaxial comp.	0	82.2	53.16	0.30	0.07
S4	Uniaxial comp.	0	156.6	74.61	0.42	0.14
S5	Triaxial comp.	6.90	151.2	46.06	0.41	0.08
T1	Direct tension	--	2.6	--	--	--
T2	Direct tension	--	4.1	--	--	--

Intact specimens

S6	Direct tension	--	9.7	--	--	--
S7	Direct tension	--	7.1	-	-	-
S8	Triaxial comp.	6.90	329.4	48.04	0.72	0.04
S9	Triaxial comp.	3.45	264.2	52.86	0.63	0.12
S10	Uniaxial comp.	0	208.2	52.81	0.49	0.06
S11	Uniaxial comp.	0	178.3	54.54	0.48	0.12

4. PRELIMINARY FALLING HEAD PERMEABILITY TESTS

Because of the pervasive fractures in the ultra-large Stripa core, a series of preliminary tests were performed to assess the general magnitude of flow rates that would be encountered in the final test configuration. In addition, it was important to identify the primary flow paths through the rock and to estimate the relative permeabilities of the different fracture zones in the core. For these purposes a simple falling-head test, shown schematically in Fig. 4.1, was used. Data for computing injection head and flow rate were taken directly from observations of water-level change in the standpipe. Several tests were performed with the rubber packers located over different lengths and different sections of the borehole. The principal results are summarized in Figs. 4.2 and 4.3 and Table 4.1. Details of the test procedure, data analysis, and a more extensive discussion of the results are presented in Appendix V.

Figure 4.2 presents the results of the falling-head tests in the normalized form $Q / \Delta h$ (flow-per-unit-head) where Q is flow rate and Δh is the head loss between the injection interval and the periphery of the sample. The figure also shows the relationship between the test intervals and the major fractures logged in the center borehole. The test intervals were overlapped to determine the relative flow contributions of each major fracture. Values of flow-per-unit head range from $2 \times 10^{-7} \mathrm{~cm}^{2} / \mathrm{sec}$ in test interval No. 1 , where the rock is free of significant fractures, to approximately $1.0 \mathrm{~cm}^{2} /$ sec in interval No. 2, which includes fracture B. During each falling-head test, observations were made of the pattern of seepage on the surface of the core. Fig. 4.3 was developed by superposition of the observations for each test; thus, it is an approximate representation of the pattern that would

XBL 801-7787

Fig. 4.1 Schematic of falling-head permeability test.

Fig. 4.2 Borehole fracture log, injection intervals and falling-head test results. Long-interval tests are shown by broken line.

Table 4.1. Inferred flowpaths from various sections of the center borehole.

Test No.	Borehole interval (m)	Fracture flowpaths*
1	0.114-0.286	(D7)-D-B
2	0.904-1.076	B
3	1.390-1.562	(F) -C-E (F)-B
4	1.278-1.450	C-EF-B
5	1.124-1.300	(E^{\prime}) - B
6	1.010-1.186	(E)-B
7	0.800-0.976	(E^{\prime}) ?-A
8	0.624-0.800	(A)-D-B-DE-C
9	0.470-0.646	D-B-DE-C
10	0.360-0.536	$\left(D^{\prime}\right)-(D)-B-(D)(E)-C$
11	0.214-0.390	$\left(D^{\prime}\right)-(D)-(B)-(D)(E)-C$
12	0.229-0.581	(D) -B-F
13	1.304-1.656	$C-D(E)(F)-B$
14	1.043-1.395	$C C^{\prime}-(E)-B$
15	0.590-0.942	D-B-DEF-C
16	0.492-0.844	(A) -FE-B-DEF-C

*Explanation:
X - flow on major fracture "X," as delineated by Fig. 4.3.
X' - minor fracture parallel to major fracture "X," but not necessarily visible on exterior of core; may also indicate seepage through intact rock onto fracture "X."
(X) - inferred path - flow does not exit on fracture "X."
XY - flow on parallel fractures "X" \& "Y," with majority of flow on "X."
occur during flow into the entire length of the borehole. Individual flowpaths from discrete sections of the borehole can be inferred from these results and are presented in Table 4.1.

Analysis of the results indicated that fracture B, opened during sample preparation, was the dominant flowpath influencing the hydraulic regime in the core, and that the fractures were hydraulically interconnected in a complex manner. In addition, there is evidence that flowpaths within a specific fracture do not have simple geometries. It is reasonable to assume that the fracture-filling materials form impermeable contact zones over some portions of the fracture surfaces and that flowpaths are influenced by the presence of the linear scarp-like features (Fig. 2.4) formed where one fracture is offset by a member of another fracture set. These effects were seen where water exited from the core in a jet-like fashion, such as at the isolated high-flow zones on fracture C shown in Fig. 4.3.

Analysis of the falling-head test data provided estimates of the coefficient of permeability of the unstressed rock matrix $\left(k_{m}\right)$. In this context the term "matrix" means an interval in the borehole that was not intersected by a fracture that could be identified as a major flow conduit. It is not intended to imply that these portions of the sample were totally free of discontinuities. Estimated values of k_{m} ranged from 10^{-5} to $10^{-7} \mathrm{~cm} /$ sec. Because of uncertainties regarding boundary conditions in the fallinghead tests and the simplifying assumptions made in the analyses, the test results are primarily qualitative. Also, the falling-head tests were performed under zero applied load. Changes in the relative conductivity of the flowpaths were anticipated when the core was later subjected to axial
stress. In general terms, fractures oriented normal to the axis of a core close under axial load, while steeply inclined fractures exhibit shear dilatancy. However, the falling-head tests provide useful data regarding the general hydraulic characteristics of the core, the probable geometries of the principal flowpaths, and at least a first-order estimate of fracture conductivities and matrix permeability.

5. EXPERIMENTAL PROCEDURES AND APPARATUS

5.1 Large Triaxial Testing Machine

The Stripa core was tested at the University of California's Rockfill Testing Facility in Richmond, California. Figure 5.1 shows the large triaxial vessel being positioned over the core. The equipment in the lower left was used to control water pressure during permeability testing. The triaxial vessel was originally designed for testing rockfill materials (Becker, et al., 1972). The vessel can accommodate cylindrical samples up to approximately 1 meter diameter by 2.5 meters high. Maximum working pressure in the vessel is 5.2 MPa . Axial (deviatoric) loads are applied to the sample through a 45.7 cm diameter piston driven by a servo-controlled hydraulic actuator with a 106.7 cm internal diameter. Maximum axial load capacity is 17.8 MN.

5.2 Experiment Design

The test procedure was designed to study both the load-deformation behavior on the sample and its hydraulic characteristics. The test arrangement is shown schematically in Fig. 5.2.

The permeability of the sample was studied in two modes: (1) divergent, steady-state flow outward from the center borehole through the rock into the triaxial vessel (injection tests) and (2) convergent, steady-state flow from the triaxial vessel into the central borehole (withdrawal tests). To maintain uniform hydraulic boundary conditions around the sample and to eliminate air trapped in the flowpaths through the sample, the tests were performed with the triaxial vessel filled with pressurized water.

CBB 802-2028

Fig. 5.1 Large triaxial testing machine.

XBL 809-5921

Fig. 5.2 Schematic of test arrangement.

The vessel was initially filled from the local domestic supply and de-aired by applying a vacuum to the top of the vessel for a period of several hours. To keep any remaining air in solution, the vessel was then pressurized to approximately 1400 kPa . To saturate the sample, this pressure was maintained for 24 hours before testing started and held close to 1400 kPa throughout the test program.

For the injection tests, de-aired water was pumped through a pipe passing through the triaxial vessel wall and into the borehole. As shown in Fig. 5.2, the top and bottom of the borehole were sealed by rubber packers. Water flowing through the rock into the vessel was carried away through a second pipe equipped with a back-pressure regulator set to maintain a constant pressure in the vessel. Steady-state conditions were achieved by regulating the injection pressure so as to maintain a constant, predetermined differential head, Δh, between the pressure in the borehole and that in the vessel. This head difference was measured between two small-diameter, no-flow monitoring tubes. One tube was carried through the upper packer in the borehole, terminating at the mid-height of the sample, and the other was connected directly to the inside of the vessel.

At the start of each series of divergent tests, de-aired water was injected into the sample under a very low differential head between the borehole and the triaxial vessel. The differential pressure was then increased to the desired test value and the equipment adjusted to establish steady-state flow conditions. Values of differential head, flow rate, and axial load recorded under these conditions were used to analyze the permeability characteristics of the sample. Subsequent divergent permeability
tests in a series were then performed in a similar manner at the same axial stress level after adjusting the differential head to a new, preselected value. After completing a series of divergent tests, the flow through the sample was carefully reduced to zero before reversing the direction of flow and initiating convergent permeability tests, which were conducted similarly to the divergent tests. As discussed in Appendix VI, because of the high permeability of the Stripa core and the characteristics of the fluid control equipment, considerable difficulty was experienced in achieving controlled steady-state conditions for differential heads in excess of approximately 40 kPa . This limited the number of permeability tests performed at each axial stress level to those listed in Table 5.1. As shown in Fig. 5.3, the time required to perform a series of permeability tests at a given stress level varied between 1.5 and 3 hours so that the total duration of testing exceeded 10 hours. For convergent flow conditions, a similar procedure was used, with water being injected into the triaxial vessel and withdrawn from the top of the borehole.

The mechanical properties of fractured rock and the hydraulic properties of fractures are sensitive to effective stress history (Jaeger and Cook, 1976; Witherspoon, Amick, et al., 1979). It was, therefore, necessary to design the tests so that water pressures induced in the void spaces within the core during permeability tests were small relative to the total axial stress applied to the sample. Based on practical considerations related to the resolution of the pressure control and flow measuring equipment, a limit of 350 kPa was set for the differential pressure applied between the center borehole and the exterior of the core. During the performance of the tests, the maximum differential pressure actually applied was 41.3 kPa . Thus

Table 5.1. Axial-stress levels and differential pressures for permeability tests.

Test No.	Axial Stress Level* (MPa)	Test Mode	Nominal Differential Pressure** (kPa)
1	0	Divergent	3.4
	0	Divergent	3.4
2	0.85	Divergent	10.3
	0.85	Convergent	-17.2
	2.89	Divergent	15.9
	2.89	Divergent	27.6
	2.89	Divergent	17.9
	2.89	Convergent	-10.3
	5.56	Divergent	41.3
	5.56	Divergent	20.7
	5.56	Convergent	-20.7
	5.56	Convergent	-41.3
	7.40	Divergent	10.3

*Assumes cross-sectional area of $6940 \mathrm{~cm}^{2}$.
**Actual (measured) values varied--see Table 6.3.

Fig. 5.3 Axial stress history applied to sample.
changes in effective stress induced during the permeability tests were judged to have had minimal influence on the experimental results.

Using the above procedures, the test program took the form of a modified unconfined compressive strength test in which the continuous monotonic increase in axial loading was interrupted while the load was held constant and permeability tests performed. In this way it was possible to study both the stress-strain characteristics of the sample and the relationship between axial stress and permeability (stress-flow characteristics).

This procedure is similar to that followed by previous investigators such as Bernaix (1969), Witherspoon et al. (1977), Iwai (1976), and Gale (1975). The axial-stress history applied to the sample is shown in Fig. 5.3. The rate of loading of approximately $0.5 \mathrm{MPa} / \mathrm{min}$ was chosen in general accordance with the guidelines of the International Society for Rock Mechanics (ISRM) for triaxial strength-testing of rock specimens (ISRM, 1978). Selection of the axial stress amplitudes at which the load was held constant for permeability tests was based on the anticipated form of the stresspermeability relationship and the estimated strength of the core. Because the sample was tested in unconfined compression, it was anticipated that the presence of the steeply inclined fractures D, E, and F would result in the sample being considerably weaker than indicated by strength tests on smalldiameter samples of intact rock. For these reasons, permeability tests were conducted at several relatively modest axial stress levels to ensure that adequate permeability data were obtained. The nominal stress-levels at which these tests were conducted are listed in Table 5.1. Permeability tests at higher axial stresses and during repeated cycles of loading and
unloading were originally planned but were precluded by gross shear failure of the sample, which occurred at a peak axial stress of 7.55 MPa (Fig. 5.3).

5.3 Hydraulic and Load Control Systems

Figure 5.4 shows a schematic representation of the data gathering and control equipment used for the test program. De-aired water for the permeability tests was provided by an air-actuated reciprocating pump. The differential pressure across the sample was maintained by a pressure regulator controlled by electronic feedback from a differential pressure transducer. The pressure in the triaxial vessel was similarly controlled by feedback from an absolute pressure transducer. The capability to reverse the direction of flow through the sample, for conversion from divergent to convergent permeability tests, was provided by a manually operated four-way valve. Flow rates were measured by an impeller-type flow meter supplemented by a flow totalizer. Auxiliary measurements of water temperature and absolute borehole pressure were also made.

Axial load was applied to the sample by the 45.7 cm diameter loading piston driven by the servo-controlled hydraulic actuator. As shown in Fig. 5.2, loads were transferred from the piston to the sample through a series of crush plates and loading platens designed to minimize eccentric and nonuniform loading. Axial loads were measured by a load-cell mounted in the end of the loading piston. Details of the load and fluid control equipment are given in Appendix VI.

5.4 Core Instrumentation

The core was instrumented to measure its gross axial and radial deformation under uniaxial loading and to monitor the change in aperture of the

Fig. 5.4 Data gathering and control schematic.
principal fractures during the progress of the test. Linear variable differential transformers (LVDT's) mounted between anchor points drilled into the rock were used to measure these deformations. Because limited space was available for pressure feed-throughs to carry signal conductors thorugh the base of the triaxial vessel, it was not possible to fully instrument all the major fractures in the sample, and only 27 instruments were mounted. Figure 5.5 shows the instrument locations relative to the major surface fractures, and each instrument's identification number. Figure 5.6 is a photograph of the instrumented core. Details of the instrument construction, mounting techniques, and their precise orientations are presented in Appendix VI.

Overall axial deformation was measured by LVDT Nos. 19, 20, and 21 mounted between anchors near the top and bottom of the sample. These anchor locations were selected so as to detect tilting of the top of the sample due to shear deformation on the steeply inclined fractures and to minimize localized effects of fractures near the anchor points. Radial deformation was measured at the mid-height of the sample by LVDT No. 18, which was attached to a girth gauge mounted around the circumference of the core. Displacements across fractures were monitored by LVDT's No. 1 through 17. Their locations were selected according to the anticipated mode of sample deformation, based on the preliminary falling head tests, and on the relative contribution of the major fractures to the permeability of the core. On major fractures, where shear deformation was judged to be probable, orthogonal pairs of LVDT's were mounted to allow resolution of deformations into directions normal and parallel to the fracture plane. Single LVDT's were oriented normal to the fracture plane where significant shear motion was not anticipated or only a first-order check on fracture deformation was required.

Fig. 5.5 Instrument locations - Stripa core.

CBB 802-2032

Fig. 5.6 Instrumented core.

Because the sample was so pervasively fractured, there were few places where strain gauges could be suitably mounted to measure localized strains in the rock matrix. Four such gauges, nevertheless, were cemented, at two locations, to the rock. Two (Nos. 25 and 27 in Fig. 5.5) were set where perturbations of the stress field from major fractures were anticipated to be small, while two others, Nos. 24 and 26 , were mounted on a spot surrounded by major fractures, so as to provide a general indication of the influence of fractures on the strain field. Axial strain was measured by the vertically oriented gauge in each pair, and circumferential strain by the horizontally oriented gauges.

5.5 Data Acquisition

The data acquisition system used for the test program is shown schematically in Fig. 5.4 and details of the system components are given in Appendix VI. A total of 34 signal channels were scanned using a programmable data logger, and the data was stored in digital form on a magnetic tape cassette. Hardcopy of the data was obtained from a printing terminal that al so served as a control console. To provide a direct indication of sample behavior during testing, gross sample deformation was plotted as a function of axial load in real-time analog form on an XYY recorder. Outputs from the flow meter, absolute borehole pressure, and differential pressure transducers were also plotted in analog form on a strip chart recorder. These records were used to obtain mean values of flow rate and differential head for analysis of the permeability tests. Data obtained from the flow meter was supplemented by data recorded manually using a stop watch and the flow totalizer.

Data from the test instrumentation were recorded throughout the test. The maximum scan rate capabilty of the data acquisition system was one complete scan of all 34 data channels in 30 seconds. This scan rate was maintained throughout, except during periods when the axial load was held constant. During these periods, the scan rate was reduced to a maximum of one sweep per minute to limit the data to a manageable quantity.

5.6 Data Reduction

The data gathered during the test program in raw digital voltage form were reduced to engineering units using instrument calibrations obtained from tests performed immediately before the triaxial vessel was closed over the core. These computations were performed using a Tektronix 4051 mini-computer, and the results were stored on magnetic tape in a format suitable for computer-aided data analysis. Copies of this tape have been retained as a source of data for future study. A hardcopy record of the data in the form of engineering units is provided in Appendix VII.

6. TEST RESULTS AND INTERPRETATION

The core's pervasive fracturing made both its mechanical and hydraulic behavior extremely complex. While its general macroscopic behavior could be interpreted by standard analytic procedures, a complete quantitative analysis of the contribution of individual fractures to the overall behavior, and of the relationship between stress-induced changes in fracture geometry and changes in hydraulic conductivity, was not possible. By making certain simplifying assumptions, however, reasonable qualitative and semi-quantitative interpretations of sample behavior could be made. It is important to remember that the core was tested in unconfined, uniaxial compression and that the stress, displacement, and hydraulic boundary conditions of such a test are not generally representative of the boundary conditions in an in situ rock mass. Despite these limitations, the test results provide valuable insights into the behavior, under controlled laboratory conditions, of naturally fractured ultra-large rock samples of much greater complexity than previously attempted. The test results may also be used as a source of empirical data for evaluation and testing of numerical and other analytic models.

6.1 Mechanical Behavior

6.1.1 Macroscopic Load-Deformation Behavior

The macroscopic load-displacement response of the core is illustrated by Fig. 6.1, which plots compressional strain, measured by the axial LVDT units that spanned the height of the core, against the applied axial stress. Assuming plane sections through the core remain planar, the displacement at the center of the core can be calculated by using data from these three LVDTs to define the plane of displacements. This is shown by the solid

Fig. 6.1 Macroscopic stress-strain record, with calculated strain at center of core.
curve in Fig. 6.1. Strain along the central axis of the sample has been calculated by dividing the displacement by 1.30 meters, the distance between the anchor points for these instruments. According to the figure, the uniaxial strength of the sample was 7.4 MPa and the strain at failure was about 0.06%. Based on this data alone, the pre-failure tangent modulus for the sample as a whole would be 52.3 GPa . Because of the known heterogeneity of the core, however, and the effects of sampling disturbance, these parameters may be low relative to the rock mass behavior in situ.

To better understand the failure mode and the complete load-deformation response, a map of the post-failure fracturing on the surface of the core was prepared (Fig. 6.2). Much of the induced fracturing followed the major pre-existing joints, most notably along inclined fracture D. Near LVDT No. 20, fracture D strongly controlled the fracturing, which is intuitively consistent with the continuity and transmissivity observed in the fallinghead tests (see Section 4). On the other side of the core, where the trace of fracture D becomes poorly defined, the induced fracture pattern is less continuous. Thus, it appears that the observed overall failure mode was a combination of shearing failure in the Mohr-Coulomb sense and brittle fracturing typical of uniaxial failure of intact rock specimens. Determination of which mechanism predominated is difficult due to lack of displacement data from the "brittle" zone of the core opposite LVDT No. 20. Based strictly on the three axial LVDT displacements, however, it appears likely that slip along D caused appreciable tilting of the sample. An indication of this is given in Fig 6.3, which plots the horizontal-direction cosines, of the downward normal vector to the plane formed by the top of the sample. Assuming the plane defined by the three LVDTs was perfectly horizontal prior

XBL 808-11475
Fig. 6.3 Plot of downward normal vector to the plane of the top of the sample. X and Y axes are horizontal direction cosines.
to load application, the figure shows that gradual tilting occurred in the direction of LVDT No. 19 during loading to 2.89 MPa . At higher loads, tilting shifted toward LVDT No. 20 , which measured vertical displacement over a portion of the core intersected by the major inclined fractures. The pronounced tilting in this direction prior to failure was most probably due to shearing along fracture D. Load eccentricity computations, based on data from the load cell instrumentation, showed that the position of the load vector during the test was slightly off-center and within the quadrant between LVDT Nos. 19 and 20. This is generally consistent with the tilting of the normal vector in Fig. 6.3.

The effect of measurement scale on the observed stiffness and strength of rock has been discussed by a number of investigators, most recently by Heuze (1980). Test results from the large Stripa core provide additional evidence of the importance of the "size effect," but on a scale rarely attempted in laboratory testing of naturally jointed rock samples. The unconfined uniaxial strength of the core was only about 5% of the average strength obtained from tests on small samples reported in Appendix IV. Similarly, the axial strain at failure was only 10% to 20% of the average failure strain for small samples (see Table 3.1). To attribute these differences solely to a "size effect" may be misleading because the effects of sampling disturbance, among other factors, can have a substantial effect on the measured properties of rock. The ultra-large core was recovered from the rock mass using techniques specifically designed to avoid disturbance of the fractures. The small samples were recovered from boreholes and suffered rougher handling. It is probable that only the sections of core containing the strongest fractures survived intact and this is reflected in the results
of the strength tests on the small cores.

Strains in the small fractured samples, computed as the change in length divided by the total length, were generally linear with axial stress up to the point of failure; therefore, single tangent moduli could be estimated from the loading curves. The average of these values (see Table A4.3, Appendix IV) was 57.8 GPa . The calculated stress-strain curve for the central axis of the large core, as shown in Fig. 6.1, is distinctly nonlinear. However, tangent moduli can be estimated at points along the curve near each point at which stress was held constant during the test. These are listed in Table 6.1. The highest is 52.3 GPa , within the low range of values found for the small fractured samples. The initial stress-strain behavior of the small cores were also nonlinear with low tangent moduli. These comparisons suggest that the pre-failure properties of the large core were similar in general character to the properties of the small fractured samples. Development of the more linear portion of the stress-strain curve was preempted in the large core by failure along the adversely oriented inclined fractures.

Figure 6.4 shows a plot of the circumferential, or girth, strain (ε_{θ}) computed from LVDT No. 18 and the overall axial strain from Fig. 6.1. Poisson's ratios for different stress levels were estimated by dividing the tangent slope of the girth curve by that of the axial curve. Several such ratios are shown in Table 6.1. The zero reading at $\sigma_{1}=0.85 \mathrm{MPa}$ is believed to result from initial sticking of the girth gauge wire. The other values, particularly the ratio 1.28 computed for the 5.55 MPa stress-level, are much greater than would be expected from assumptions of elastic behavior.

Table 6.1. Pseudo-elastic properties computed from overall stress-strain record, Fig. 6.1.

Axial stress (MPa)	Tangent modulus (GPa)	Slope of girth strain curve (GPa)	Poisson's ratio, ν
0.85	7.1	$\infty *$	$0 *$
2.89	23.0	-47.1	0.49
5.55	45.2	-35.4	1.28
7.55	$52.3 * *$	$\infty *$	$0 *$

* Anomalous reading due to LVDT sticking. **From unload curve.

Fig. 6.4 Macroscopic axial and circumferential stress-strain data.

As will be discussed later, these anomalous values can be attributed to the shear behavior associated with the inclined fractures.

6.1.2 Decomposition of Mechanical Response

The large Stripa core was instrumented in such a way that its gross deformation could be approximately decomposed into the separate contributions of major discontinuities and the intact rock matrix. This decomposition aids understanding of the macroscopic behavior of the rock mass and is necessary for analysis of flow through a system of discrete fractures. Due to the complexity of the fracture system, evaluation of fracture deformations was limited to the major fractures labeled A through F in Fig. 6.2.

As originally installed, LVDTs were provided to measure deformation at three points, spaced 120° apart, for each of the fractures A, B, and C. However, several LVDT's malfunctioned due to the pressure-sealing problems described in Appendix VI. This left fractures B and C with only two points of measurement each. In order to "replace" the missing data and make a reasonable estimate of the fracture deformations, the overall axial displacement and tilt plane computations discussed in Section 6.1.1 were used. Assuming that, prior to failure, plane sections remained planar, the overall displacement at any location around the circumference of the core could be calculated from the equation of the tilt plane. Overall displacements were thus calculated for the $\theta=80^{\circ}$ and $\theta=130^{\circ}$ locations. As shown in Fig. 6.2, these locations approximately coincide with the positions of vertical LVDTs mounted across the principal fractures. Data for the $\theta=190^{\circ}$ locations were obtained directly from LVDT No. 19. The total overall deformations were reduced by an amount equal to the estimated strain in the rock
between the principal fractures. This gave the deformation due to the fractures alone. The resulting curves are shown in Fig. 6.5. Estimate of strains in the rock matrix were based on an assumed modulus of 60 GPa , close to the average of values obtained from the small core tests. The presence of a large number of secondary fractures in the rock separating the major fractures in the large core suggests that this assumed modulus may be somewhat high. However, any resulting error is small because a 15% decrease in the assumed modulus only affects the values plotted on Fig. 6.5 by about 5%. The calculated curve for the $\theta=130^{\circ}$ location indicates upward movement of that section of the core relative to the center. This behavior is judged to be real from consideration of the failure kinetics of the core. Failure involved tilting by the upper part of the core.

6.1.2.1 Fractures Perpendicular to Core Axis. From the curves on

Fig. 6.5, displacements at the location of LVDT No. 14, which malfunctioned on fracture C, could be estimated. As shown in Fig. 6.9, this was done by subtracting the reading from LVDTs No. 1, 3, and 11 from the $\theta=130^{\circ}$ fracture deformation curve on Fig. 6.5. Displacements obtained from functioning LVDTs were adjusted for intact rock strain between the anchor points. A malfunction of LVDT No. 11 prevented the extension of the calculated curves beyond an axial stress of 5.56 MPa . Taking the measured and calculated displacements at the $\theta=80^{\circ}, 190^{\circ}$ and 310° peripheral locations, the closure at the center of fracture C (average closure) could be calculated. These results are plotted on Fig. 6.6. The shape of the center displacement curve suggests that after initial closure the normal displacement across the fracture reversed. Because this implies release of load, it does not accurately represent the actual deformation that occurred but may be con-

XBL B08-11434
Fig. 6.5 Calculated overall displacements at $80^{\circ}, 190^{\circ}$, and 310°. Orientation angles measured counterclockwise from the match line. Linear elastic rock strain ($E=60 \mathrm{GPa}$) has been subtracted to yield "fracture" deformations.

Fig. 6.6 Fracture C displacements (E=60 GPa).
sidered a lower bound to the closure of fracture C.

A similar approach was used to estimate the average closure of fracture B. This involved reconstructing displacements at the location of LVDT No. 13 , which failed at the start of the test. This was done by subtracting the adjusted readings of LVDT Nos. 2 and 5 from the calculated overall displacement on Fig. 6.5 for the $\theta=190^{\circ}$ location (LVDT No. 19). This decomposition is shown in Fig. 6.10. The resulting stress-displacement curves for fracture B are shown on Fig. 6.7. In this case the estimated center closures are more accurate as there was less uncertainty in reconstructing data for "missing" LVDTs. Extension of the curve above the 5.56 MPa stress level was not possible, due to the malfunctioning of LVDT No. 11. Al so in Fig. 6.7 are data from LVDT No. 6 that recorded significant fracture displacement (up to 0.08 mm) approximately in the plane of fracture B. This is an indication of shearing along the fracture and emphasizes the complex response of the core to uniaxial loading.

All three LVDTs mounted across fracture A apparently functioned proper1y. The pertinent stress displacement curves are shown on Fig. 6.8.

No decompositon of the overall displacement was necessary at the $\theta=80^{\circ}$ location because LVDT Nos. 7, 9, 10, 16, and 17 all performed well. However, when the measured displacements across fractures A, D, B, E, and C were added as shown in Fig. 6.11, their sum was about 20\% larger than the calculated overall fracture compression. Fracture F does not enter the computation, and deformation of fracture A has been included with that of fracture D via LVDT No. 7. All fracture measurements were adjusted for strains in the intact rock between the anchor points; and as previously discussed, the

Fig. 6.7 Fracture B displacements (E=60 GPa).

Fig. 6.8 Fracture A displacements ($E=60 \mathrm{GPa}$).

Fig. 6.9 Calculated macroscopic and fracture displacements at 310° orientation ($\mathrm{E}=60 \mathrm{GPa}$).

Fig. 6.10 Calculated macroscopic and fracture displacements at 190° orientation.

XBL 808-11437

Fig. 6.11 Calculated macroscopic and fracture displacements at 80° orientation ($\mathrm{E}=60 \mathrm{GPa}$). Fracture F displacement also shown.
choice of modulus can account for a 20% underestimation on the overall fracture deformation.

There are two possible explanations for the discrepancy. First, a systematic error in the LVDT instrumentation could have produced a cumulative discrepancy when the several fracture readings are added and compared to the single overall value. No such systematic error has been found in the instrumentation system. The second and more plausible explanation involves the assumption of uniform planar deformation of individual fractures and the core as a whole. Due to such features as the intersection of fractures D and B at $\theta=80^{\circ}$ (see Fig. 6.2), local deformation fields may be discontinuous. For example, due to nonplanar deformation, the closure of fracture B at the location of LVDT No. 20 may have been less than or greater than that measured at LVDT No. 17, which was about 25 cm on the other side of fracture D. As
discussed later, measurements from strain gauges in the vicinity of LVDT No. 20 and the $B-D$ fracture intersection seem to support this explanation.

Figure 6.12 is a plot of the horizontal components (direction cosines) of the downward normals to planes defined by the fracture displacements in Figs. 6.6, 6.7, and 6.8. For uniform tilting of the core, these diagrams should be similar to Fig. 6.3, which plots the orientation of the overall tilting. In this case all fracture planes perpendicular to the core would initially be expected to tilt toward LVDT No. 19, and thereafter in the direction of LVDT No. 20. The projection of the downward normals should correspondingly move in the opposite direction. As indicated by Fig. 6.12, this trend is generally apparent for the fracture data; however, the downward normal for fracture A moves back in the direction of LVDT No. 19 at

Fig. 6.12 Plots of downward normal vectors to fracture displacement planes.
the higher loads. Since this is contrary to the movement of the overall vector in Fig. 6.3, it appears that the closure of fracture A was nonuniform. The motions of the normals to fractures B and C are more consistent with the motion indicated on Fig. 6.3 and therefore the displacements on these fractures probably more closely approximated the assumption of uniform planar deformation.
6.1.2.2 Fractures Inclined to the Core Axis. As indicated by data obtained from the girth gauge (LVDT No. 18), significant lateral expansion of the sample occurred as a result of shear displacement on the inclined fractures. Fractures B and D were primarily responsible, as is evident from the post-failure fracture map (Fig. 6.2). No post-failure opening of either fracture E or F was visible, but they did compress nonlinearly in the vertical direction, as shown on Fig. 6.13. Both curves in the figure represent fracture deformations only, each curve having been corrected for intact rock strain between the LVDT anchor points. The nearly vertical portions of the curves indicate that after some initial movement these fractures stabilized and had no significant influence on the deformation behavior of the sample at higher stresses. However, at low stresses, particularly below 2 MPa , the fractures introduced considerable nonlinear and inelastic behavior. Nonrecoverable displacements of about 0.10 and 0.05 mm were measured for fractures E and F, respectively. Since no systematic errors are believed to be involved, Fig. 6.13 illustrates that even apparently well-healed fractures can cause deviations in the linear elastic behavior of a rock mass.

XBL 808-11473

Fig. 6.13 Vertical displacments on fracture E and $F(E=60 \mathrm{GPa}$).

Figure 6.14 is a plot of the horizontal and vertical displacements across fracture D, together with the horizontal, or approximate shear displacements, on fracture B. It was noted earlier that the girth gauge (LVDT No. 18) apparently gave anomalous readings in the early stages of loading. The non-zero responses of LVDT Nos. 6 and 8 were not compatible with the overall measurement from LVDT No. 18, which showed no displacement below 1 MPa axial stress. After LVDT No. 18 began to move, however, it displaced rapidly relative to the fracture gauges. This suggests that the initial sticking was recovered as loading progressed. Another explanation for the discrepancy between the fracture data and the girth displacement is that a rotational component of shearing was active on the inclined fractures. This is difficult to substantiate, however, due to lack of sufficient LVDTs to measure the lateral movements of all fractures.

All the curves in Fig. 6.14 for fracture D are nonlinear and clearly indicate slip along the fracture. The nature of fracturing around LVDT No. 3 (see Fig. 6.2) suggests that the failure mode was more complex than simple shear. Displacements measured by LVDT No. 7 showed that a major portion of the deformation due to axial loading was recovered on unloading. This apparent behavior may have been influenced by the reinforced concrete end cap. The cap bridged across fracture D and remained attached to portions of the sample that remained intact after the shear failure. Neglecting any possible rotational components, approximate shear and normal displacements, u and Δv, can be calculated for fracture D from:

$$
\begin{align*}
u & =1 / 2\left(\delta_{7} \cdot \cos 25^{\circ}+\delta_{3} \cdot \cos 35^{\circ}\right)-\delta_{8} \cdot \cos 65^{\circ} \tag{6.1}\\
\Delta v & =1 / 2\left(\delta_{7} \cdot \sin 25^{\circ}+\delta_{3} \cdot \sin 35^{\circ}\right)+\delta_{8} \cdot \sin 65^{\circ} \tag{6.2}
\end{align*}
$$

Fig. 6.14 Vertical and horizontal displacements on fracture D.
where ϕ_{n} is reading from LVDT No. n, corrected for rock strain between anchor points, and the angles are the acute angles between the fracture and the LVDT's (see Appendix VI). Shear and normal stresses on the fracture, τ and σ_{n}, can be estimated as

$$
\begin{equation*}
\tau=(P / A) \cdot \cos 30^{\circ} \tag{6.3}
\end{equation*}
$$

and $\sigma_{n}=(P / A) \cdot \sin 30^{\circ}$,
where P is the axial load, A is the cross-sectional area of the core, and 30° is the approximate angle between fracture D and the core axis. Resulting stress-displacement relationships for the fracture are shown in Figs. 6.15 and 6.16. The negative (extension) normal displacements shown on Fig. 6.16 indicate shear dilatency. Because of the uncertain boundary conditions in regard to shear stiffness and the fact that the normal stress was not constant, an estimation of shear stiffness and peak shear strength was unwarranted. When considering the hydraulic conductivity of fracture D, however, Fig. 6.16 is useful in that it relates the apparent fracture aperture to the applied stress.

6.1.2.3 Parameters for the Mechanical Closure of Fractures. Goodman

 (1976) used the following equation to describe the normal deformation of a discontinuity:$$
\begin{equation*}
\frac{\sigma_{n}-\xi}{\xi}=A\left(\frac{\Delta v}{v_{m c}-\Delta v}\right)^{t} \quad, \quad\left(\Delta v<v_{m c}\right) \tag{6.5}
\end{equation*}
$$

where ξ is the initial (seating) stress, Δv is the measured change in aperture from the initial condition, $V_{m c}$ is the maximum possible closure of the fracture, and A and t are constants. Estimates of $V_{m c}$ obtained from Figs. $6.6,6.7,6.8$ and 6.16 are listed in Table 6.2. These data provide only

Fig. 6.15 Calculated shear stress versus shear displacement for fracture D.

Fig. 6.16 Calculated normal displacement versus normal stress for fracture D.

Table 6.2. Parameters for mechanical closure of fractures [derived by Eq. (6.5)],

Fracture	$V_{\mathrm{mc}}(\mathrm{mm})^{*}$	$\left.\mathrm{MPa}^{\xi}\right)^{* *}$	A	t
A	0.08	0.02	6.9	1.8
B	0.30	0.03	3.9	1.6
C	0.15	0.04	1.2	1.1
D	~ 0.1	0.03	1.0	1.0
*Estimate of stress-displacement curves.				
**Approximate weight of rock above fracture divided by cross-sectional area				
of core.				

rough approximations and should be regarded as accurate to only within 10 to 30%. Logarithmic plotting of the fracture closure data in the form of Eq. (6.5) was used to obtain the constants A and t, which are also listed in Table 6.2.

6.1.3 Strain Gauge Data

As described in Section 5.4, two pairs of strain gauges were affixed to the core at the locations shown on Fig. 6.2. As is common practice for uniaxial testing, the gauges were mounted axially and circumferentially, with the assumption that these are the principal strain directions. Because of the prominent discontinuities, this assumption was questionable for the Stripa core. It would have been preferable to use three gauges at each location so that the magnitude and direction of the principal strains, and thus stresses, could be calculated. This was not possible due to the limited number of available electrical feedthroughs into the triaxial vessel. Strain gauges No. 24 and 26 were mounted near the intersections of the principal fracture sets and No. 25 and 27 were located opposite this position on a relatively unfractured portion of the sample.

By assuming that the stress field at the gauge locations corresponded to uniformly uniaxial loading, the two sets of strain-gauge data were plotted in the form of stress-strain curves on Figs. 6.17 and 6.18. The strains plotted on these figures are half the apparent strains calculated from the output voltages gathered during the test. The reason for this discrepancy is that strains based on the raw outputs would imply that the modulus of the rock matrix in the sample was very much less than that measured in our tests (Appendix IV), or obtained by others, for Stripa granite. If a reasonable

Fig. 6.17 Stress-strain data from strain gauges opposite inclined fractures (Gauge Nos. 25 and 27).

XBL 808-11517
Fig. 6.18 Stress-strain data from strain gauges near inclined fractures (Gauge Nos. 24 and 26).
value is assumed for the modulus, axial stresses inferred from the raw data are almost exactly twice those computed from the known axial loading. Although a careful check of the instrumentation did not find any systematic error, it is suspected that such an error was present. We have therefore elected to present the strain-gauge data in the form shown in the figures. The unmodified data are preserved in the records compiled in Appendix VII.

The axial stress-strain curve on Fig. 6.17 for the location opposite the fractured section of the core is linear over each load segment with a slope (E) of approximately 57 GPa . The average slope of the lateral strain data is -225 GPa , which indicates a Poisson's ratio, v, of 0.25 . Since these values of E and v agree with those obtained from small samples, it indicates that the stresses in the mid-section of the core, away from the major discontinuities, are uniaxial. This agrees with an intuitive judgment based on the core and fracture geometries.

However, near fractures D and E, the stress field was more complex, as is evident from the nonlinear and nonelastic form of the curves in Fig. 6.18. Calculated tangent stiffnesses from the various loading segments vary from about 30 GPa at the start of loading to over 100 GPa near failure. Also, the apparent Poisson's ratio from these two gauges is less than 0.11. These anomalous values indicate that the discontinuities significantly perturbed the local state of stress at this location. The apparent artificially high calculated modulus suggests that the actual vertical stress at this point was lower than that assumed in Fig. 6.18. This could be due either to nonuniform stress distribution across this portion of the core or reorientation of the principal stress directions.

As discussed in Section 6.1.2.1, the strain gauge data support the inference that fracture B did not close uniformly, particularly near its intersection with fracture D. Data from the vertical strain gauge near this location indicate that the axial stress here was lower than the mean applied uniaxial stress. This suggests that fracture B closed less at a point near LVDT No. 20 than at LVDT No. 17, which is on the other side of the D-B fracture intersection.

6.1.4 Time-Dependent Mechanical Behavior

From the stress-strain curves presented in the previous sections, it can be seen that during the period when the axial load was held constant, there were noticeable time-dependent deformations at all scales of measurement.

Figure 6.19 is a modified version of Fig. 5.3 in which the zero point of the abscissa represents the time at which any loading or unloading ramp was started. The figure provides a useful reference for the following discussion.
6.1.4.1 Macroscopic Time-Dependent Deformation. Figures 6.20 and 6.21 display the creep behavior of the macroscopic axial and circumferential deformations. The dashed portions of the curves represent strain during loading or unloading, and the solid portions are the creep strain during periods of constant load. Immediately after a load level is reached, deformation continues, but the rate gradually decreases and resembles transient or primary creep. Following the primary creep phase (for the first three load levels), the deformation approaches a steady-state rate of increase which resembles secondary creep, although the rates are very low. The strain rate for the first load level, $14 \times 10^{-6} / \mathrm{hr}(0.0182 \mathrm{~mm} / \mathrm{hr})$, is higher

Fig. 6.19 Axial stress versus time since start of load ramps.

Fig. 6.20 Macroscopic axial strain versus time.

Fig. 6.21 Circumferential strain versus time.
than that for the second and third levels, $3.3 \times 10^{-6} / \mathrm{hr}(0.0040 \mathrm{~mm} / \mathrm{hr})$. Close examination of the first three curves indicates that the strain rate approached zero near the ends of the periods when loads were held constant. This means that the sample stabilized under the smaller loads, although the time required to reach stability increased as the load was raised.

Curve 4 in Figs. 6.20 and 6.21 represents creep during failure. The irregularities in the curve immediately following the peak strain are probably due to portions of the core being unloaded during a progressive failure process. However, curve 5 of Fig. 6.20 extends beyond the original (zero) strain. This is misleading because it suggests the average core height increased after failure. An explanation for this anomaly lies in a probable lack of uniformity in the absolute post-failure displacement readings. Figure 6.21 shows that the overall girth displacements were similar to those measured axially, except that a large amount of permanent set is shown in the record. This was due to the non-recoverable shear and normal deformations on the major fractures.
6.1.4.2 Time-dependent behavior of individual fractures. The transient deformations calculated for the fractures perpendicular to the axis are shown in Figs. 6.22, 6.23, and 6.24. Curves 4 and 5, describing failure and post-loading creep, are missing from Figs. 6.23 and 6.24 because LVDT No. 11 malfunctioned. These data are generally similar to the curves in Fig. 6.20, except that fracture A does not show the erratic failure and unloading response.

Figures 6.25 and 6.26 are the time-dependent shear and normal deformation for the inclined fracture D. Both show predominantly primary-creep

XBL 808-11525
Fig. 6.24 Calculated center displacement versus time for fracture C ($E=60 \mathrm{GPa}$).

Fig. 6.25 Calculated shear displacement versus time for fracture $D(E=60 \mathrm{GPa}$).

Fig. 6.26 Calculated normal displacement versus time for fracture D ($E=60 \mathrm{GPa}$).
behavior until the load level corresponding to curve 4, where shearing and opening of the fracture accelerated. The creep rate gradually decreased and the sample was apprently tending toward a stable condition under the constant maximum applied load. This may be due to the post-failure residual strength of the sample. Unloading had little effect, since shearing displacements were essentially non-recoverable. A relatively large permanent set of nearly 0.9 mm was recorded for the shear displacement on this fracture, and that in the normal direction was about -0.3 mm (opening).

6.2 Coupled Hydraulic-Mechanical Behavior

The results of the divergent and convergent flow tests performed at the several stress levels are summarized in Table 6.3. The number of tests it was possible to conduct in practice was less than optimal, but the data base is sufficient for study of the general characteristics of the coupled hy-draulic-mechanical properties of the sample. Questions of interest are (a) the general applicability of Darcy's law, (b) the relationship between macroscopic flow parameters and axial stess, and (c) the relationship between measured fracture deformations and changes in the flow parameters.

6.2.1 Applicability of Darcy's Law

In order to check the applicability of Darcy's law in this instance, it suffices to show that there is a linear relationship between the steady isothermal flow and the pressure head. For this purpose, Fig. 6.27 plots the measured flow rate Q against the applied pressure differential Δh for each of the flow tests. Although the data are too sparse to draw firm conclusions, the deviation from the linear assumption appears to be small. The slight divergence from linearity that is present could be due to turbulent effects

Table 6.3. Results and computed overall hydraulic parameters from stress-flow tests on ultra-large Stripa core.

Flow Test No.	Axial Stress (MPa)	Test Mode	Differ- ential Head, Δh (cm H2O)	Steady-State Flow Parameters					
				$\left\lvert\, \begin{aligned} & \text { Flowrate } \\ & (1 / \mathrm{min}) \end{aligned}\right.$	$\begin{aligned} & \mathrm{Q} / \Delta \mathrm{h} \\ & \left.\mathrm{~cm}^{2} / \mathrm{sec}\right) \end{aligned}$	${ }_{(10-3 \mathrm{~cm} / \mathrm{sec})}^{\mathrm{krm}^{*}}$	$\begin{aligned} & 2 \mathrm{~b}^{* *} \\ & (\mathrm{~cm}) \end{aligned}$	$\begin{aligned} & \mathrm{k}_{\mathrm{f}} \dagger \\ & (\mathrm{~cm} / \mathrm{sec}) \end{aligned}$	$\begin{aligned} & \operatorname{Re} \quad \dagger \dagger \\ & \left(x \quad 10^{4}\right) \end{aligned}$
1	0	DIV	28.1	2.61	1.548	5.25	0.027	14.64	2.17
		DIV	28.1	2.61	1.548	5.25	0.027	14.64	2.17
2	0.85	DIV	96.4	2.92	0.505	1.71	0.018	6.93	2.43
		CONV	-186.4	-3.94	0.352	1.19	0.016	5.44	3.28
3	2.89	DIV DIV	156.2 273.6	1.93 2.99	0.206 0.182	0.70 0.62	0.014 0.013	3.81 3.53	1.61 2.49
		$\begin{aligned} & \text { DIV } \\ & \text { CONV } \end{aligned}$	$\begin{array}{r} 152.6 \\ -109.7 \end{array}$	1.82 -1.06	0.199 0.166	$\begin{aligned} & 0.68 \\ & 0.56 \end{aligned}$	0.013 0.012	$\begin{aligned} & 3.72 \\ & 3.30 \end{aligned}$	$\begin{aligned} & 1.52 \\ & 0.88 \end{aligned}$
4	5.56	DIV DIV	422.7 211.7	3.48 1.95	0.137 0.154	0.46 0.52	0.012 0.012	2.93 3.16	2.90 1.62
		$\begin{aligned} & \text { CONV } \\ & \text { CONV } \end{aligned}$	$\begin{aligned} & -216.6 \\ & -427.7 \end{aligned}$	$\begin{aligned} & -1.52 \\ & -2.73 \end{aligned}$	$\begin{aligned} & 0.117 \\ & 0.106 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.011 \\ & 0.011 \end{aligned}$	$\begin{aligned} & 2.60 \\ & 2.46 \end{aligned}$	$\begin{aligned} & 1.26 \\ & 2.27 \end{aligned}$
5	7.40	DIV	103.4	3.64	0.587	1.99	0.019	7.67	3.03

[^0]

XBL 808-11523
Fig. 6.27 Measured overall flowrate versus differential pressure head.
at the fracture boundaries. Using a single-fracture model the upper-bound Reynolds numbers were calculated and are given in Table 6.3. Louis (1969) has suggested that turbulent flow can be present in natural fractures at such high Reynolds numbers.

The apparent differences between divergent and convergent flow shown by Fig. 6.27 are further indications of the complexity of the hydraulic properties of the core. The absolute slopes of the divergent data are generally higher than those for the convergent, as shown by the $Q / \Delta h$ values in Table 6.3. Such behavior is probably due to the opening of fractures by internal pressure and their closure upon external pressurization. Bernaix (1969) has proposed a similar test as an index measurement of degree of rock fissuring, but his recommended pressure gradients are much greater than those employed here. In the present context, the inclined set of fractures are most likely responsible for the divergent flow being higher than the convergent, since they would tend to have been opened preferentially by the tangential tension generated by outward flow from the borehole.

6.2.2 Macroscopic Stress-Flow Relationship

Assuming Darcy's law is applicable, the equivalent rock mass permeability of the core is

$$
\begin{equation*}
k_{r m}=\frac{(Q / \Delta h)\left(\ln r_{2 / r_{1}}\right)}{4 \pi s} \tag{6.6}
\end{equation*}
$$

where Q is the flow rate through the core, Δh is differential pressure head between the borehole and outside the core, r_{2} is 47 cm , the outside radius of the core, r_{1} is 3.8 cm , the radius of the borehole, and s is 118 cm , the spacing between packers in the borehole. Computed values of k_{rm} are listed
in Table 6.3. Equation (6.6) assumes the flow through the fractured sample could be equated with radial flow through an equivalent porous medium over a core length of 118 cm . That is, porosity is assumed to be uniformly distributed throughout the rock. It would also model the permeability of a rock mass with an impermeable matrix but with fractures oriented normal to the borehole and spaced at 118 cm .

Results of the falling-head tests reported in Section 4 indicate that fracture B accounts for over 90% of the flow through the core. It is therefore reasonable, at least for conditions of low axial stress, to adopt the "fractured rock" model described by Eq. (6.6) in the present context. The fracture permeability, k_{f}, for such a single-fracture model has been derived by a number of authors (see, for example, Snow, 1965; Louis, 1969; Noorishad et al., 1971; and Witherspoon et al., 1977) as:

$$
\begin{equation*}
k_{f}=\frac{\rho_{f}}{12 \mu} \quad g(2 b)^{2} \tag{6.7}
\end{equation*}
$$

where $2 b$ is the apparent (absolute) aperture of the fracture, ρ_{f} is the fluid density, μ is the dynamic viscosity, and g is the acceleration due to gravity. In the case of radial fracture flow,

$$
\begin{equation*}
k_{f}=\frac{(Q / \Delta h)\left(\ln r_{2 / r_{1}}\right)}{4 \pi b} \tag{6.8}
\end{equation*}
$$

Combining (6.7) and (6.8) yields

$$
\begin{equation*}
2 b=\left[\frac{\left(\frac{12 \mu}{\rho_{f} g}\right)(Q / \Delta h)\left(\ln ^{r_{2}} / r_{1}\right)}{2 \pi}\right]^{1 / 3} \tag{6.9}
\end{equation*}
$$

Substituting (6.9) into (6.8) gives the equation relating k_{f} to direct laboratory data:

$$
\begin{equation*}
k_{f}=\left[\frac{(Q / \Delta h)^{2}\left(1 n^{r_{2 / 2}}\right)^{2}}{\left(\frac{12 \mu}{\rho_{f} g}\right)(2 \pi)^{2}}\right]^{1 / 3} \tag{6.10}
\end{equation*}
$$

Equations (6.6) and (6.8) indicate that the relationship between k_{f} and $k_{r m}$ is:

$$
\begin{equation*}
k_{r m}=\left(\frac{2 b}{s}\right) k_{f}, \tag{6.11}
\end{equation*}
$$

or

$$
\begin{equation*}
k_{r m}=\frac{1}{s}\left[\left(\frac{12 \mu}{\rho_{f g}}\right) k_{f}^{3}\right]^{1 / 2} \tag{6.12}
\end{equation*}
$$

Values of 2 b and k_{f} calculated from the test data are listed in Table 6.4. In this connection, the packer spacing s is analogous to the spacing between parallel fractures with apertures of $2 b$ in the equivalent rock mass.

The Reynolds numbers given in Table 6.3 were calculated by the equation

$$
\begin{equation*}
\operatorname{Re}=\frac{\rho Q}{\pi \mu r_{1}}, \tag{6.13}
\end{equation*}
$$

which was derived by Baker (1955) and used by Witherspoon et al. (1977) to give maximum values for flow into a fracture at the borehole wall.

Figure 6.28 compares the values of k_{f} from Table 6.4 with previous stress-flow results obtained by Iwai (1976), Pratt, Swolfs, et al. (1977), and Witherspoon et al. (1977). Pre-failure data for the ultra-large core are two orders of magnitude higher than the referenced data, although the rate of decrease in k_{f} with stress is similar to that found by Pratt et al. These differences can be attributed to differences in the mechanical properties, weathering, filling materials and other characteristics of the fractures tested in the various programs.

Table 6.4 Computation of overall flow parameters based on parallel-plate models of fractures B and D.

Flow Test No.	Axial Stress (MPa)	Changes in aperture* $\Delta v(\mathrm{~cm})$		Results using initial apertures from flow datatt					Results using initial apertures from displacement datattt				
		B**	D \dagger			Fractu		Overall	Fractu	E B	Fractur	D	
				Aperture (cm)	$\begin{aligned} & (Q / \Delta h)_{B} \\ & (\mathrm{~cm} / \mathrm{sec}) \end{aligned}$	Aperture (cm)	$\begin{aligned} & (\mathrm{Q} / \Delta \mathrm{h}) \\ & (\mathrm{cm} / \mathrm{sec}) \end{aligned}$	$\begin{gathered} (Q / \Delta h)_{B+D} \\ \mathrm{~cm} / \mathrm{sec} \end{gathered}$	Aperture (cm)	$\begin{aligned} & (Q / \Delta h)_{B} \\ & \mathrm{~cm} / \mathrm{sec} \end{aligned}$	Aperture (cm)	$\begin{aligned} & (Q / \Delta h)_{D} \\ & \mathrm{~cm} / \mathrm{sec} \end{aligned}$	$\begin{aligned} & (Q / \Delta h)_{B+D} \\ & \mathrm{~cm} / \mathrm{sec} \end{aligned}$
1	0	0	0	0.022	0.900	0.011	0.100	0.984	0.03	2.219	0.01	0.082	2.301
2	0.85	0.85	0.0052	0.008	0.042	0.006	0.018	0.060	0.016	0.337	0.0048	0.009	0.346
3	2.89	0.020	0.007	0.002	0.001	0.004	0.005	0.006	0.01	0.082	0.003	0.002	0.084
4	5.56	0.024	0.0055	0	0	0.005	0.010	0.010	0.006	0.018	0.0045	0.007	0.025
5	7.40	~ 0.026	-0.202	0	0	0.213	794	794	0.004	0.005	0.0302	2.263	2.268

*Average values for center of fracture; closure is positive.
**From Fig. 6.7.
tFrom Fig. 6.16.
$\dagger \dagger F$ rom preliminary flow test results; Fig. 4.2.
tttFrom Figs. 6.7 and 6.16 for B and D, respectively.

XBL808-11520

Fig. 6.28 Calculated single-fracture hydraulic conductivity versus axial stress, compared with previously published data.

6.2.3 Relationship Between Flow and Fracture Deformations

A definite linkage between the overall flowrate and measured fracture deformations would be difficult to establish for the Stripa core due to the complicated flowpaths illustrated in Fig. 4.3 and Table 4.1. However, if it is assumed that fracture B remained the dominant flowpath even at higher stresses, then a simplified analysis can be made. According to results of the preliminary flow testing, the inclined fracture D was the second most conductive. The flow-per-unit-head, Q/Dh, for this fracture was approximately 10% of that for fracture B. Fracture C followed this by nearly another order of magnitude decrease. Therefore, in the following discussion only fractures B and D are considered. The approach is to estimate values of the overall flow per unit head based on fracture deformation measurements, then to compare these with the measured values of $Q / \Delta h$.

A correct numerical simulation of the core and its discontinuities would necessarily be three-dimensional; however, for present purposes the flow system can be grossly simplified by assuming that fractures D and B are hydraulically independent and that each can be analytically modeled as paral-lel-plate conduits. While this assumption ignores the intersection of these fractures, it is legitimate from the standpoint of their relative hydraulic conductivities. In other words, errors introduced in the characterization of fracture D are at least an order of magnitude less than those for fracture B. Although flow on fracture D may not have been truly radial, this further simplfication is made and we assume that the distance over which the pressure head is dissipated is equal to the radius of the core. Given these assumptions, the connection between the mechanical fracture data and hydraulic behavior is then given by Eq. (6.9). By rearranging (6.9) and assuming
a linear $Q / \Delta h$ relationship, the total flow parameter is the sum of contributions from n parallel fractures:

$$
\begin{equation*}
\left.(Q / \Delta h)_{\text {total }}=\frac{-2 \pi}{12 \mu} \log _{e} r_{2} / r_{1}\right) \quad \sum^{n}(2 b)_{i}^{3} \tag{6.14}
\end{equation*}
$$

Because of the cubic relationship, the crucial factor in applying Eq. (6.14) is the magnitude of the fracture aperture, $2 b$. With the changes in apertures given by Figs. 6.7 and 6.15 , the absolute apertures of the two fractures were estimated in two ways. First, estimated asymptotes to the curves in Figs. 6.6 and $6.15, V_{m c}$, were taken as the initial (no load) fracture apertures. According to Table 6.3, these were estimated to be 0.3 mm and 0.1 mm for B and D, respectively. Subtracting the respective values of Δv from these numbers then gave the absolute apertures listed in Table 6.4.

In the second method, apertures were estimated through the use of the preliminary flow test data presented in Fig. 4.2, Section 4. Values of $Q / \Delta h$ for fractures B and D were about 0.9 and $0.1 \mathrm{~cm}^{2} / \mathrm{sec}$, and by Eq. (6.9) these correspond to apertures of 0.22 and 0.11 mm , respectively. Absolute apertures were then computed as described above, and these estimates are also listed in Table 6.4.

Using Eq. (6.14) for a single fracture, flows-per-unit-head were calculated from the absolute apertures and listed in Table 6.4 for fractures B and D. For each level of axial stress these flows were then summed according to Eq. (6.14) to give estimates of the overall Q/Dh. Figure 6.29 compares these with the average measured $\mathrm{Q} / \Delta \mathrm{h}$ values listed in Table 6.3. Both the calculated zero-stress values of $Q / \Delta h$ are near the measured values.

Fig. 6.29 Measured and calculated overall flows-per-unit-head versus axial stress. Simple two-fracture model assumed.

However, the changes in Q/Dh calculated from the LVDT data diverge significantly from the measured data. This is probably due to the inadequacy of the simplified model to represent the complexity of the flow regime.

The simplified model, that considered flow only through two separated fractures, could not account for the full complexity of the actual hydraulic regime. It is also probable that the flow on fracture B was not uniformly radial. There was evidence of shear deformation on fracture B, which may have affected its hydraulic properties in ways that could not be accounted for by a simple one-dimensional closure of parallel plates.
7. CONCLUSIONS AND RECOMMENDATIONS

The tests conducted on the sample of granitic Stripa rock demonstrated the feasibility of retrieving, preparing, and testing ultra-large core specimens of naturally fractured rock. The pervasively fractured nature of the core complicated its mechanical and hydraulic behavior. For this reason, the test data does not lend itself easily to quantitative study of the basic phenomena controlling the mechanical and hydraulic behavior of discrete fractures. However, the sample was representative of a highly fractured rock mass and thus was typical of the complex material frequently encountered in the practical engineering design of underground facilities.

7.1 Mechanical Behavior

The macroscopic stress-strain response of the core was markedly nonlinear, but the tangent modulus of deformation measured prior to failure was 52.3 GPa, which is within the range obtained from small diameter samples of Stripa granite. The peak unconfined compressive strength of the core was 7.55 MPa, and failure occurred at 0.06% strain. These values are much less than those obtained from tests on small diameter cores of the type typically used in laboratory tests. At low stress levels, however, the deformation response of small samples was also nonlinear, and for conditions prior to failure the macroscopic axial stress-strain response of the large core was approximately similar at comparable levels of stress and strain. The weakness of the large core was clearly related to the adverse orientation of major fractures relative to the direction of loading. The shear strength of such fractures increases markedly with confining pressure. The unconfined conditions in the test arrangement reported here are not generally representative of the stress field in the rock mass around underground openings.

It is therefore misleading to attribute the relative weakness of the large core solely to a "size effect." To fully describe the properties of such a fractured rock mass, it is necessary to perform a complete series of experiments that include tests over the appropriate range of confining pressures. In evaluating test results it is also necessary to consider other factors that influence sample strength, such as sample disturbance, heterogeneity, anisotropy, fracture orientation, and stress history.

The test program provided the opportunity to study the relationship between the macroscopic deformation behavior of the core and the localized displacements occurring on fractures and within the intact rock. It was found that, at locations on the core remote from major discontinuities, the assumption of a simple uniaxial stress field is reasonably accurate. However, there was evidence of significant perturbation of the stress field close to fractures and their intersections, particularly near discontinuities under shear loading. The near-field state of stress has a controlling effect on fracture behavior and consequently on the macroscopic behavior of a rock mass. In tests where measured parameters are sensitive to the deformation behavior of fractures, it is recommended that sufficient instrumentation be provided to define the state of stress in close proximity to the fractures. This is particularly important to the study of the coupling between the hydraulic and mechanical properties of fractured rock.

The number of instruments mounted on the core was large compared to that used in conventional tests. Even so, they were insufficient to provide a detailed description of its complex behavior under load. Several instruments failed in service and this further limited the available data. Im-
proved instrument designs (particularly for LVDTs) are required if they are to operate reliably when immersed under water in the triaxial vessel. The number of feed-throughs for instrument signal conductors also needs to be increased. However, there is a practical limit to the number of instruments that can be used and this should always be considered in sample selection and experiment design.

7.2 Coupled Hydraulic-Mechanical Behavior

Compared to results from previous studies of the permeability of fractured rock, the permeability of the large Stripa core was more than two orders of magnitude greater. This observation must be considered in its proper context if inferences are to be drawn about the hydraulic properties of the rock mass in the Stripa mine. The boundary conditions applied to a sample in uniaxial compressive tests are not, in general, similar to those acting on an element of rock located at some arbitrary point around an underground opening. Fully defining the coupling between stress and fluid flow would require performing many additional tests to model the complete range of conditions prevailing in the rock mass. Such tests would consider the relationship between fracture orientations and the direction of principal stresses. Only in rare instances is such comprehensive testing possible. For practical design, rock mass properties are estimated by synthesis of data from different laboratory and in situ testing techniques. Applied in this way, the permeability data obtained from the ultra-large core tests could provide a basis for estimating the hydraulic properties of rock close to the ribs of the underground entries at Stripa.

The large core was by necessity sampled from the rock immediately adjacent to an underground opening. These zones suffer disturbance due to
blasting and stress changes resulting from the excavation. Rock further away from the opening is less influenced by these effects and its in situ permeability may be less than that of our sample. One of the principal fractures in the core was separated during preparation. Other disturbances must have occurred during coring, shipping and handling. All these effects can be expected to have altered the hydraulic properties of the core and probably increased its permeability relative to its in situ condition. Because fracture conductivity is a function of the cube of the aperture, it can be assumed that sample disturbance has a major influence on the measured hydraulic properties of fractured rock. Little, if any work, has been done to investigate these effects. There is need for research to investigate the magnitude of error introduced by sample disturbance and to develeop techniques by which its effects may be minimized or accounted for.

The hydraulic regime within the test sample was modeled through a simplified parallel plate analogy. This required gross simplifying assumptions to be made with respect to: flow paths in the core; the geometry of the fracture system, and of flow within specific fractures; absolute fracture apertures; and the hydraulic boundary conditions. Flows-per-unit-head (Q/ Δh) calculated from this model, using fracture apertures estimated from measurements of fracture closure, were at least an order of magnitude lower than measured values of $Q / \Delta h$. This result suggests that flow through natural fracture systems as complex as those in the large Stripa core is not amenable to quantitative analysis by simplified analogs. However, the test program has nevertheless yielded a data base that should be valuable to the development and verification of more advanced models, including computer-aided numerical techniques.

The Rockfill Testing Facility in Richmond, California is the property of the California Department of Water Resources (DWR) and is operated under lease by LBL. Mr. William D. Hammond is the DWR's technical representative. His enthusiastic cooperation materially assisted the research program. Professor John Gale of the University of Waterloo provided major guidance in experiment design and Mr. Clarence Chan of the University of California freely contributed experienced advice in the area of test procedure and equipment design. Many individual members of the staff of LBL and the University of California contributed to the project effort, notably J.B. Greer, W.E. Canaday, and R. Hall (electronics and instrumentation), M.C. Moebus, I.W. Lee and R.W. Davies (mechanical equipment), G.C. Pelatowski (illustration), and L.L. Egenberger, B. Jones and L.T. Armetta (report preparation). This project was sponsored by the U.S. Department of Energy through the Office of Nuclear Waste Isolation, Battelle Memorial Institute, under Contract W-7405-ENG-48. M.R. Wigley acted as project manager for the Office of Nuclear Waste Isolation. His support for the work is gratefully acknowledged.

REFERENCES

American Concrete Institute (ACI). 1977. "Recommended Practice for Selecting Proportions for Normal and Heavyweight Concrete." (ACI 211.1-77).

Andersson, B. and P.A. Halen. 1978. Mining Methods Used in the Underground Tunnels and Test Rooms at Stripa. Lawrence Berkeley Laboratory Report LBL-7081, SAC-08, Berkeley, California.

Anamet Laboratories, Inc. 1980. Chemical Analysis and Compound Identification of Deposits. Lab No. 380.439. BerkeTey, California.

Baker, W.J. 1955. "Flow in Fissured Formations." Proceedings Fourth Petroleum Congress, Rome, Vol. II, pp. 379-393.

Becker, E., C.K. Chan and H.B. Seed. 1972. Strength and Deformation Characteristics of Rockfill Materials in Plane Strain and Triaxial Compression Tests, Geotechnical Engineering Report No. 72-3, University of California, Berkeley.

Bernaix, J. 1969. "New Laboratory Methods of Studying the Mechanical Properties of Rocks." Int1. J. Rock Mech. Min. Sci., 6, p. 43.

Bouwer, H. 1978. Groundwater Hydrology. McGraw-Hill, Inc. pp. 113-117.
Broch, E. and J.A. Franklin. 1972. "The Point Load Test." Int. J. Rock Mech. Min. Sci., 9, pp. 669-697.

Cook, N.G.W., and P.A. Witherspoon. 1978. Mechanical and Thermal Design Considerations for Radioactive Waste Repositories in Hard Rock. Part II: In Situ Heating Experiments in Hard Rock: Their Objectives and Design. LBL-7073, SAC-10, UC-70. Berkeley, California.

Deer, W.A., R.A. Howie, and J. Zussman. 1962. Rock Forming Minerals. Longmans, Green \& Co., Ltd., London.

Gale, J.E. 1975. A Numerical, Field and Laboratory Study of Flow in Rocks With Deformable Fractures. Ph.D. Thesis, Department of Civil Engineering, University of California, Berkeley, California.

Gale; J.E. and P.A. Witherspoon. 1979. An Approach to the Fracture Hy drology at Stripa: Preliminary Results. LBL-7979, SAC-15. BerkeTey, California.

Goodman, R.E. 1976. Methods of Geological Engineering in Discontinuous Rock. West Publishing Co., St. Paul, Minn.

Hebert, A.J. and K. Street, Jr. 1973. A Nondispersive Soft X-ray Fluorescence Spectrometer for Quantitative Analysis of the Major Elements in Rock and Minerals. Lawrence Berkeley Laboratory Report LBL-1616, Berkeley, California.

Heuzé, F.E. 1980. "Scale Effects in the Determination of Rock Mass Strength and Deformability." Rock Mechanics, 12, pp. 167-192.

Hsu, R. and D.J. Watkins. 1979. Calibration of Load Cell-Rockfill Test Facility. University of California, Richmond, California.

International Society for Rock Mechanics (ISRM). 1978. Suggested Methods For Determining the Strength of Rock Materials in Triaxial Compression. Pergamon Press, London, England.

Iwai, K. 1976. Fundamental Studies of Fluid Flow Through a Single Fracture. Ph.D. Thesis, Department of Civil Engineering, University of California, Berkeley, California.

Jaeger, J.C. 1966. "The Brittle Fracture of Rocks." Proceedings of the Eighth Rock Mechanics Symposium. American Institute of Mining Engineers, University of Minnesota, Minneapolis, Minnesota.

Jaeger, J.C. and N.G.W. Cook. 1976. Fundamentals of Rock Mechanics, 2nd edition. Chapman and Hall, London.

Kurfurst, P.J., T. Hugo-Persson and G. Rudolph. 1978. Borehole Drilling and Related Activities at the Stripa Mine. LBL-7080, SAC-05. Berkeley, California.

Lambe, T.W. 1951. Soil Testing for Engineers. John Wiley and Sons, New York, pp. 52-60.

Louis, C. 1969. A Study of Groundwater Flow in Jointed Rock and its Influence on the Stability of Rock Masses. Imperial College Rock Mechanics Research Report No. 10. London, England.

Noorishad, J., P.A. Witherspoon, and T.L. Breke. 1971. A Method for Coupled Stress and Flow Analysis of Fractured Rock Masses. Geotechnical Engineering Report No. 71-6, University of California, Berkeley.

01kiewicz, A., J.E. Gale, R. Thorpe, and B. Paulsson. 1979. Geology and Fracture System at Stripa. LBL-8907, SAC-21, UC-70. Berkeley, California.

Pratt, H.R., A.D. Black, W.S. Brown, and W.F. Brace. 1972. "The Effect of Specimen Size on the Mechanical Properties of Unjointed Diorite." Intl. J. Rock Mech. Min. Sci., 9, pp. 513-529.

Pratt, H., T.A. Schrauf, and L. Bills. 1977. Summary Report - Thermal and Mechanical Properties of Granite - Stripa, Sweden. Terra Tek Report no. TR 77-92. Salt Lake City, Utah.

Pratt, H.R., H.S. Swolfs, W.F. Brace, A.D. Black and J.W. Handin. 1977. "Elastic and Transport Properties of In Situ Jointed Granite." Intl. J. Rock Mech. Min. Sci. Geomech. Abstr. 14: 35-45.

Snow, D.T. 1965. A Parallel Plate Model of Fractured Permeable Media. Ph.D. Thesis, Department of Civil Engineering, University of California, Berkeley, California.

Swan, G. 1978. The Mechanical Properties of Stripa Granite. LBL-7074, SAC-03. Berkeley, California.

Thorpe, R. 1979. Characterization of Discontinuities in the Stripa Granite --Time Scaled Heater Experiment. Lawrence Berkeley Laboratory Report LBL-7083, SAC-20. Berkeley, California.

Witherspoon, P., C. Amick, J. Gale. 1977. Stress-Flow Behavior of a Fault Zone with Fluid Injection and Withdrawal. Report to U.S. Geological Survey. Department of Mining Engineering, University of California, Berkeley.

Witherspoon, P.A., C.H. Amick, J.E. Gale, and K. Iwai. 1979. Observations of a Potential Size-Effect in Experimental Determination of the Hydraulic Properties of Fractures. LBL-8571, SAC-17. Berkeley, California.

Witherspoon, P.A., and 0. Degerman. 1978. Swedish-American Cooperative Program on Radioactive Waste Storage in Mined Caverns Program Summary. LBL-7049, SAC-01. Berkeley, California.

Witherspoon, P.A., J.S.Y. Wang, K. Iwai, and J.E. Gale. 1979. Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture. LBL-9557, SAC-23. Berkeley, California.

Witherspoon, P.A., D.J. Watkins, N.G.W. Cook, M. Hood, and J.E. Gale. 1979. "Laboratory Investigations on the Hydraulic and Thermomechanical Properties of Crystalline Rock." Proceedings, National Waste Terminal Storage Program Information Meeting. October 30 - November 1, 1979. Office of Nuclear Waste Isolation, Columbus, Ohio, pp. 19-25.

APPENDIX I

SAMPLE PREPARATION

A1.1 SAMPLING AND TRANSPORT

The cylindrical core (94 cm diameter by 166 cm long) was recovered by a slot drilling technique that has been described by Andersson and Halen (1978). A 64 mm diameter pilot hole was first drilled to a depth of 25 cm into the rib of the entry. This hole was then extended to 160 cm depth with a 35 mm bit, such that an anchor bolt could be installed through the long axis of the core. A pretensioning load of 100 kgm was applied to the bolt to hold the core in compression. Coring of the sample was done by percussion drilling a series of 52 peripheral holes, to form a slot, cylindrically around the pilot hole. Each hole was made with a 51 mm diameter drill, held in place by a guide which followed the previously drilled hole. The first peripheral hole ("first hole") was used to define an orienting base line for the geometry of the core and its fracture system. With the slot completed, the core broke along a pre-existing fracture at the bottom of the hole and was pulled from the rib, as shown in Fig. Al.1. After removal from the core hole, the sample was protected by a cage of steel reinforcing bars, packed in rubber and timber padding, and crated for shipment to the U.S. (gross shipping weight 4000 kg .).

A1. 2 CORE DIMENSIONS BEFORE PREPARATION

The gross dimensions of the core were approximately 94 cm diameter and 166 cm mean length. The slot drilling technique gave the core a fluted appearance (see Fig. 1.1). The flutes had a typical cord length of 50 mm and a depth of 18 mm . The dimensions of the core deviated somewhat from a right cylindrical prism. At any point along the axis the section deviated from a

XBB-788-10480

Fig. A1.1 Core as recovered from rib of entry.
circular form by about $\pm 2 \mathrm{~cm}$ across a chord through the center, and the mean diameter at the top of the core was some 2 cm greater than the diameter at the bottom. For present purposes, however, it may be assumed that the core is a right cylindrical prism of 93.7 cm mean diameter measured inside the flutes. The top of the core formed by the rib of the underground entry had an irregular surface approximately normal to the long axis. The bottom of the core was formed by a natural fracture oriented at about 15° to the normal of the axis. The 35 mm diameter hole through the center of the core deviated from this axis by approximately 2°. The principal core dimensions are shown in Fig. A1.2.

A1.3 PREPARATION FOR TESTING

As delivered to the test facility, the core was crated in a horizontal orientation supported by a timber cradle designed to prevent rolling. After removal of the reinforcing bar cage, the core was firmly strapped to the cradle using cargo banding and wire ropes padded by 2.5 cm by 2.5 cm wood battens. All lifting loads during core preparation were applied to the wooden cradle so that no significant tensile or bending stresses were applied to the core.

Before standing upright, the bottom of the core was sandblasted to remove a thin layer of fracture filling material adhering to the surface. The core was rotated into the vertical, bottom up, orientation using a five-ton monorail crane and wire rope rigging. To avoid damage to the unprotected top of the core, the sample was lowered into a sandbox containing 30 cm deep sand. The support cradle and cargo banding were then removed from the core. To avoid undesirable stress concentrations and minimize the

Fig. A1.2 Dimensions of core before capping.
thickness of the end cap, a portion of the bottom of the core was cut away as shown in Fig. Al.2. This portion of the rock was removed by drilling 2.2 cm diameter holes at 15 cm centers horizontally into the core and driving in feather wedges to split off the rock. Considerable difficulty was experienced during this procedure due to the fractures in the core. The feather wedges split away rock only as far as the nearest discontinuity so that many successive cycles of hole drilling and wedging were required. The inclined fracture surfaces tended to force the bit off line. This resulted in excessive damage to the bits. A rotary hammer and carbide-tipped masonry bits were used initially. These bits gave rapid hole penetration, but the carbide tips tended to fracture easily. Diamond core bits had longer life but were also subject to excessive wear. Typical diamond bit life was 1.5 meters of hole.

To test the core under uniaxial loading it was necessary to construct flat and parallel caps at each end of the core. These were constructed from reinforced concrete. They were designed as simple slabs requiring only nominal reinforcement in concrete designed for a 28 -day strength of 41.4 $M N / m^{2}$. The arrangement of the reinforcement for both caps is shown in Figs. Al. 3 and A1.4. To provide a safe means of handing the core the bottom cap was also provided with a system of lifting eyes. The compression steel was anchored by epoxy cement into 2.2 cm diameter holes drilled a minimum of 10 cm into the core. The concrete mix was designed in accordance with ACI standard 211.1-77 (ACI, 1977). The mix proportions and the 28 -day strength are given in Table Al.1.

NOTES:
BARS - GRADE 60 DEFORMED
MESH- GRADE 40 PLAIN
XBL 796-6404

Fig. A1. 3 Top cap reinforcement.

DIMENSIONS IN cm
ELEVATION A-A

NOTES:

$$
\begin{aligned}
& \text { BARS - GRADE } 60 \text { DEFORMED } \\
& \text { MESH - GRADE } 40 \text { PLAIN }
\end{aligned}
$$

Fig. A1.4 Bottom cap reinforcement.

Table A1.1. Concrete for Stripa core end caps.

Materials

Sand:	Olympia Gr
Coarse aggregate:	1.27 cm to
Cement:	Type I \& I
Air entrainment:	None
Nominal slump:	$7.5-10.0$
Proportions per cubic meter	
Water (net)	216.55 Kg.
Cement	528.61 Kg.
Coarse agg. (dry)	944.92 Kg.
Sand (dry)	643.70 Kg.

28-Day strength
40.88 MN/m2*

Elastic modulus
$1.55 \times 10^{4} \mathrm{MN} / \mathrm{m}^{2 *}$ (for axial stress less than $20 \mathrm{MN} / \mathrm{m}^{2}$)
*Mean of three tests using 7.62 cm dia. by 15.24 cm cylinders.

Because the core was not a perfect right cylinder, the long axis was arbitrarily assumed to be parallel to the axis of the first peripheral hole drilled during core recovery. This "first hole" was then used as a reference datum for measurements. To ensure that the surface of the end cap was normal to the axis, a $60 \mathrm{~cm} \times 60 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ thick aluminum plate, supported at three points by stiff modeling clay, was set on the end of the core with its surface carefully oriented normal to the axis of the "first hole." The plywood cap mold was constructed using this plate as a reference surface.

To ensure a good bond between the cap concrete and the rock, the surface of the core was treated with a custom-designed epoxy cement.* Subsequent coring through the concrete/rock joint showed that a good bond was achieved.

The bottom cap was allowed to cure under damp cloth covers for a period of seven days before the mold was removed. The surface of the cap was then lapped flat using a commercial terrazo grinder. Using the cradle and rigging system, the core was then upended into a top-up orientation and the top cap cast in a manner similar to the bottom cap; care being taken to ensure that the surfaces of both caps were flat and parallel.

For permeability testing, a 7.62 cm diam hole was required through the axis of the core. This hole was drilled using a 7.62 cm diam diamond coring bit mounted in a drill press. Because the original 35 mm rock bolt hole through the core deviated from the axial direction by about 2°, it was not possible to drill the 7.62 cm diam hole normal to the end caps, but directional drilling reduced the deviation from the axial direction to 1.3°.

[^1]To avoid damage to the core during handling, an axial compression of approximately $48 \mathrm{KN} / \mathrm{m}^{2}$ was applied to the core through a 19.1 mm diam. anchor bolt set in the axial borehole. Despite these precautions, the sample was separated across fracture B as the result of a rigging accident. See Section 2 and Figs. 2.3, 2.4 and 2.5.

The final configuration of the capped core is shown in Figs. 1.1 and A1.5. The net weight of the prepared core was determined to be 3628.7 kg using a $22,700 \mathrm{~kg}$ hydraulic dynamometer.

PLAN
DIMENSIONS IN cm
XBL796-6402

Fig. Al. 5 Dimensions of capped core.

APPENDIX II

FRACTURE MAPPING AND CHARACTERIZATION

A2.1 SURFICIAL FRACTURE MAPPING

The surface expression of the fractures in the ultra-large core were mapped by wrapping the core in a sheet of clear plastic, upon which the fractures were traced. The ends of the core were mapped on separate overlays. Since the bottom surface was actually a chlorite-coated fracture, it was sandblasted before mapping in order to expose fracture traces. The resulting one-to-one maps were then photographically reduced and traced to produce the fracture layouts shown in Fig. 2.3. In general, fractures appeared to be about a millimeter or less wide. The major fractures are designated A through F in Fig. 2.3. Several apparently open zones could be observed in the major fractures.

Determination of fracture mineralization during mapping was limited to simple observation. The dominant fracture mineralization appeared to be chlorite judging from the appearance of exposed fractures on the ends of the sample. Discontinuous bands of mica with thickness of about a centimeter were present, and two lenses of light green mineralization (possibly altered muscovite) were exposed on fractures A and C.

For testing purposes, the orientations of discontinuities relative to the core axis were of primary importance. These orientations can be determined from Fig. 2.3 by use of the local coordinate system shown. Two parameters define the orientation of a planar surface in a cylindrical core: (1) The apparent dip direction relative to a known reference line, and
(2) the minimum angle between the apparent dip vector in the fracture plane and the core axis. The former is given by the clockwise angle (looking down the hole) between the lower lip of the plane and the reference line (first slot hole). This angle can be scaled from the β axis in the figure. The angle α between the plane and the core axis can be measured directly at the inflection point of the sinusoidal fracture trace, i.e., the acute angle between the tangent at this point and the vertical axis is the α angle.

A2.2 FRACTURE CHARACTERIZATION FROM AXIAL BOREHOLE

The core obtained from drilling the 7.62 cm diameter hole through the center of the sample was logged to gain additional fracture characterization data. The \log is given in Table A2.1, and a schematic profile of the borehole fractures is shown in Fig. 2.3. Fractures are described according to the following:
(1) Depth of center of fracture relative to top of concrete cap.
(2) Type: Natural or induced, open or closed.
(3) Orientation-angles α and β relative to orientation line on exterior of sample.
(4) Infilling material; type of mineral, thickness, color, and surface characteristics.

Only the more prominent of the numerous hairline fractures were logged. In general, the logged fractures were naturally occurring and open upon retrieval.

An attempt was made to correlate, on an observational basis, the major fractures mapped on the exterior of the sample with features in the center core and to delineate potential flow paths. It was possible to geometrical-

Table A2.1. Ultra-1arge Stripa core - axial borehole log core diameter 70 mm .

Depth	Fracture type					B°	α°	Infilling		Color	Surface* Roughness	Slickensiding	Remarks
	$$	$\begin{aligned} & \text { O} \\ & \text { U } \\ & \text { 弟 } \\ & \hline \end{aligned}$	$\begin{aligned} & c \\ & \underset{y}{\circ} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { D } \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$				Type	$\begin{gathered} \text { Thickness } \\ \mathrm{mm} \end{gathered}$				
0.23													pth Ref. to Top of Concrete Cap.
0.32													Top of Granite
0.34													Bottom of Original 64 mm Hole
0.40	x		x			305	30	K, C	1	LT. GR.	2	-	Truncated by Another Fracture
0.41	x		x			295	60	K, C	<1	LT. GR.	3	-	Lower Half Lost; Curved
0.42	x		x			305	30	K, C	1	LT. GR.	2	-	Truncated by Another Fracture
0.44	x		x			295	55	K, C	1	LT. GR.	1	-	Only Thru. Half Core
0.60	x		x			345	40	K	1	DK. GR.	1	?	Planar (Fracture D)
0.74				x		0	15	C?	1	W.			Incipient
0.75	x		x			270	70	K, C	<1	LT. GR.	5	-	Curved (Fracture A)
0.79	x		x			270	60	K, C	<1	LT. GR.	1	-	Only Thru. Half Core
0.79	x		x			265	80	K, C	<1	LT. GR.	1	-	
0.84	x		x			~ 280	40	C	<1	W, LT. GR.	1	Slight	Vertical
0.88	x		x			. 320	80	C	<1	W.	2		
0.99	\times		x			275	75	K,C	1	W, DK. GR.	2	$B \sim 290$	Drill Mud: Faint Slickenside (Fracture B)
1.03 1.07		x		x		345	~25	C?	< 1	W, LT. GR.	2-4	-	0 ff set $1 / 2 \mathrm{~cm}$?
1.09	x		x			330	~ 25	K, C	<1	BL, W.	2-4	-	Offset 2 cm ; Part Open (Fracture E)
1.16		x	x										
1.28 1.28	x		x			20	30	K,C	1	BL, W.	2	-	Part Open
1.32	x	x	x			~100	~ 70	?	<1	?	1	-	4 parallel Fractures 1.31-1.33
1.35	x		x			~ 90	75	C, K	<1	LT. GR. W.	1	-	4 parallel Fractures 1.31-1.33
1.38	x		x			-	90						(Fracture C)
1.47	x	x	x			340	20	K,C	1	BL, W.	5	?	(Fracture F)
1.77		x			x								Several Ind. Fracs. 1.51 to 1.77 Bottom of Granite; Sand blasted

K - Chlorite, C - Calcite, Lt. Gr. - Light Green, Dk. Gr. - Dark Green, W. - White, B1. - Blue,
*Numbers are subjective estimates of relative roughness.
ly correlate six of these, labelled A through F in Fig. 2.3 and Table A2.1. Fractures A, B and C were continuous through the sample, and therefore easy to locate in the center borehole. Fractures D, E, and F, although apparently discontinuous, were correlated with features in the center core. However, the connection remains somewhat uncertain from the observational standpoint.

As discussed in Section 2, fracture B was accidentally opened during sample preparation. This provided the opportunity to map its surface features. The results were given in Figs. 2.4 and 2.5.

A2.3 INTERPRETATION

The dominant fractures in the core had two basic orientations. One set of principal fractures was approximately normal to the core axis (A, B and C in Fig. 2.3) and formed three essentially continuous surfaces with α angles between 75° and 90°. A fourth member of this set of fractures formed the bottom surface of the core before it was cut away during sample preparation. This surface exhibited slight traces of slickensiding.

The second dominant fracture set (D, E and F) was steeply inclined with $\alpha=25^{\circ}$ to 30°. These fractures were ususally discontinuous and had a wide distribution of trace lengths. Where their surfaces were exposed, no slickensiding could be detected but, as discussed in Section 2, they produced offsets of $1-2 \mathrm{~cm}$ on fracture B. It is not clear whether they were originally created by shearing or were extension fractures subjected to subsequent shear displacement. It is also uncertain whether the deformation occurred rapidly while the rock was plastic or resulted from long-term creep.

From the relative orientations of the fractures given in Fig. 2.3, their absolute orientations can be determined if the hole direction is known. Figure A2.1 is a stereographic projection showing the poles of fractures B, C, D, and the bottom surface of the core. The Z^{\prime} vector designates the downward axis of the core hole. The fractures normal to the core axis, such as A in Fig. 2.3, correspond to the pervasive set of steeply dipping fractures in the Stripa mine reported by 01 kiewicz et al. (1979) and Thorpe (1979). The fractures inclined to the axis, such as D in Fig. 2.3, correlate with the extension fracturing that is roughly perpendicular to the tabular granite body and to the direction of in situ principal stress (Thorpe, 1979).

\hat{z}^{\prime} - downward direction of core hole
XBL 797-6617

Fig. A2.1 Stereograph of major fracture poles in Stripa core.

APPENDIX III
 PETROGRAPHY OF ULTRA-LARGE CORE

To study the petrography of the ultra-large Stripa core, six thin sections were prepared from material sampled from the core, and two samples of fracture fillings and the mineral separates thereof were studied using x-ray diffraction photographs and diffractograms. These were supplemented by five thin sections from rock gathered in the full-scale and timescale heater experiment drifts (see Fig. 2.1), five x-ray diffraction patterns of samples from the full-scale drift, an electron microprobe analysis of various minerals in a sample from the full-scale drift, and a soft x-ray flourescence chemical analysis of another sample from the full-scale drift. The specific gravity of the rock forming the large core was determined from a 1040 gm sample cut from the bottom of the core. This was done by weighing the sample in air and in water. The specific gravity was 2.65 and the unit weight $2648.84 \mathrm{~kg} / \mathrm{m}^{3}$.

A3.1 ANALYTIC RESULTS

A3.1.1 Electron Microprobe

The abundance of the four major oxides in chlorite were obtained from a sample from the time-scale drift, using an electron microprobe. Other elements analyzed were $\mathrm{Na}, \mathrm{Ca}, \mathrm{Zr}$, and U ; their oxides were generally present only in trace amounts (<0.1 wt.\%). The results are given in Table A3.1. The total percentage by weight of analyzed oxides was $\sim 85.5 \%$. Added to the $10-13 \% \mathrm{H}_{2} \mathrm{O}$ by weight commonly reported in chlorites, the total is $95-98 \%$. These results can be compared with representative analyses of biotites from granite rocks compiled by Deer et al. (1962) given in Table A3.2.

Table A3.1 Electron microprobe analysis of chlorite grains in sample of Stripa granite from 4.60 m level of borehole NI in time-scale drift.

Data averaged over 30 points		
Element	Weight $\%$	Std. Deviation
0	34.24	1.02
	6.25	0.33
SiO_{2}	24.99	0.95
$\mathrm{Al}_{2} \mathrm{O}_{3}$	19.09	0.65

*Total iron expressed as Fe 0 . Oxidation state of iron unknown.

Table A3.2. Excerpts of chemical analyses of representative biotites from granitic rocks (Deer et al., 1962).

	1.	2.	3.	4.
Total Fe as $\mathrm{Fe0}$	22.84	30.23	33.66	23.82
	MgO	8.23	4.23	0.95
	SiO_{2}	34.64	37.17	35.40
	$\mathrm{Al}_{2} \mathrm{O}_{3}$	16.30	14.60	11.82

1. Anal. 9, quartz monzonite, Scotland
2. Anal. 11, granite, S. California
3. Anal. 12, granite, Ireland
4. Anal. 7, granodiorite, S. California

A3.1.2 Chemical Analysis

A whole rock chemical analysis was obtained for a sample from the full-scale drift using a multiple anode soft x-ray fluorescence spectrometer (Hebert and Street, 1973). The sample was first ground to a fine powder, then fused with a LiBO_{2} flux and poured to form a glass disc.

The analysis in Table A3.3 is an average of two analyses of this sample. Errors are computed as 2% of reported values for relatively abundant oxides, except for $\mathrm{Na}_{2} \mathrm{O}$ for which a 5% error is used. This corresponds roughly to one standard deviation. For oxides of very low abundance, values are more approximate, as noted, and in these cases the errors signify only the variation between the two analyses.

A3.1.3 X-ray Diffraction

Tables A3.4 and A3.5 give the results of x-ray diffraction analyses of samples from fracture C and the top surface of the core, respectively. Patterns were made with a Debye-Scherrer powder camera, CuK α radiation, and Ni filter. Peaks are designated strong (s), medium (m), or weak (w), as qualitative estimates of line densities in the x-ray photographs. The weakest peaks are not listed.

In order to index these patterns to prominent d-spacings of specific minerals, separates enriched in various of the fracture-filling minerals were analyzed first. These included separates enriched in quartz, feldspars, and muscovite (i.e. chorite separated out), and a separate enriched in epidote, from fractures in cores in the full-scale drift. Prior diffraction analysis of these separates was necessary because variations in d-spacings and relative peak strengths occur in response to variations in chemical composition

Table A3.3. X-ray fluorescence major element analysis of relatively fracture-free sample from $\sim 4.0 \mathrm{~m}$ level in core $0 \mathrm{H1}$ BH E7 in full-scale drift.

Element	Weight \%
$\mathrm{Na}_{2} \mathrm{O}$	4.14 ± 2.1
Mg0	$\sim 0.2 \pm 0.7$
$\mathrm{Al}_{2} \mathrm{O}_{2}$	14.24 ± 0.28
SiO_{2}	73.83 ± 1.48
$\mathrm{K}_{2} \mathrm{O}$	4.65 ± 0.09
Ca 0	0.85 ± 0.02
TiO_{2}	$\sim 0.3 \pm 0.2$
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	<0.05
MnO	$\sim 0.03 \pm 0.01$
Fe0	0.96 ± 0.02
Total	98.90

Table A3.4. X-ray diffraction peaks of whole fracture filling from fracture C, ultra-large core. Dominant minerals are quartz, muscovite (sericite), plagioclase, and fluorite. Some chlorite also present. (Composite of 2 readings.)

Strength*	2θ (degrees)	$d(\AA)$	d-spacings of minerals (\AA)
m-S	8.87-8.90	9.94-9.98	Muscovite 9.95
m-s	12.50-12.53	7.07-7.08	Chlorite 7.05-7.08
w	19.75-19.85	4.473-4.495	Muscovite 4.47-4.48
m-s	20.83-20.90	4.250-4.264	Quartz 4.26
w	22.10-22.13	4.018-4.022	Plagioclase 4.03
S	26.63-26.70	3.339-3.347	Quartz 3.343
w-m	27.75-27.80	3.209-3.215	Plagioclase 3.20 or Muscovite 3.20
w-m	28.08	3.178	Plagioclase 3.18
w	28.30-28.35	3.148-3.153	Fluorite 3.153 or Plagioclase 3.15
w-m	34.90-34.95	2.567-2.571	Muscovite 2.56-2.57
m	36.53-36.58	2.456-2.460	Quartz 2.458
m	39.53	2.280	Quartz 2.282
m	42.43-42.48	2.128-2.130	Quartz 2.128
m-s	47.00-47.05	1.930-1.933	Fluorite 1.931
m-s	50.15-50.18	1.818-1.819	Quartz 1.817
w-m	54.90	1.672	Quartz 1.672
w-m	55.78-55.80	1.647-1.648	Fluorite 1.647
m-s	59.95-60.00	1.542-1.543	Quartz 1.541
m	67.70-67.78	1.383-1.384	Quartz 1.382
m	68.18-68.20	1.375	Quartz 1.375

[^2]Table A3.5. X-ray diffraction peaks of chlorite-enriched separate from fracture forming top surface of ultra-large core. (Composite of 2 readings.)

Strength*	2θ (degrees)	$d(\AA)$	d-spacings of chloritest (\AA)
m-S	6.33-6.40	13.8-13.9	a) 14.1 b) 14.0
S	12.50-12.53	7.06-7.09	a) 7.05 b) 7.08
W	18.93-18.95	4.683-4.688	a) 4.67 b) 4.681
S	25.33-25.35	3.513-3.516	a) 3.52 b) 3.523
m	34.30-34.38	2.609-2.614	a) 2.601 b) 2.619
m	34.88-34.98	2.565-2.572	a) 2.554 b) 2.574
m	36.48-36.53	2.460-2.463	a) 2.454 b) 2.469
m	37.43-37.53	2.397-2.403	a) 2.392
m	39.58-39.63	2.274-2.277	a) 2.266
m-s	45.00-45.05	2.012-2.014	a) 2.009
W	48.10-48.15	1.890-1.892	a) 1.882 b) 1.893
S	59.23-59.28	1.559-1.560	a) 1.551 b) 1.560
W	60.83	1.523	a) 1.513 b) 1.523

$\star \mathrm{s}=$ strong; $\mathrm{m}=$ medium; $\mathrm{w}=$ weak
†Two varieties of chlorite have d-spacings closest to those of Stripa chlorite: a) thuringite, with somewhat lower d-spacings; and b) bavalite, with somewhat higher d-spacings. Both are somewhat richer in Fe , and poorer in Mg, than the Stripa chlorite as given in Table A3.1.
in several of these minerals, particularly in the chlorites, but also, to a lesser degree, in the feldspars and muscovite. (In addition to these, a nearly pure separate of pyrite was prepared from a fracture in the full-scale drift, and the identification of pyrite was confirmed by diffraction.)

Samples were prepared for diffraction by grinding, washing, and then sieving for the $230-320$ mesh ($62 \mu \mathrm{~m}-44 \mu \mathrm{~m}$) fraction. Mineral separates were then obtained by heavy liquid separation in bromoform and/or by use of the Frantz isodynamic magnetic separator.

The error in reading of diffraction films $(\Delta 2 \theta)$ was less than 0.1°. This corresponds to decreasing errors in d-spacing ($\Delta \mathrm{d}$) with increasing 2θ (or decreasing d), shown in Table A3.6.

A3.2 MINERALOGY OF THE UNFRACTURED GRANITIC MATRIX

The term "matrix" is used here to refer to the primary minerals which crystallized from a granitic melt. The major constituents of the matrix were quartz, plagioclase, and microcline, in order of abundance. Together these comprised $90-95 \%$ of the unfractured rock. The remainder included two phases of mica, muscovite and biotite, the latter completely altered to chlorite. Garnet was also present in trace amounts, as were tiny grains, probably zircon, within the chloritized biotite.

A3.2.1 Quartz and Feldspars

Quartz and both feldspars commonly occurred in grain sizes up to $2-3 \mathrm{~mm}$, but also occurred in finely intergrown aggregates. Quartz was unaltered, but the feldspars were commonly partially or completely altered.

Table A3.6. Errors in d-spacing read from diffraction films.

$\frac{d}{14.0 \AA}$	$\frac{\Delta d^{*}}{0.22 \AA}$
10.0	0.11
7.0	0.05
3.0	0.01
1.5	0.002

* Corresponding to $0.1^{\circ} \Delta 2 \theta$.

Plagioclase, the Na-rich feldspar, generally contained small grains or patches of sericite alteration (a textural variety of muscovite), and occasionally small patches of calcite alteration. Where not obviously altered, plagioclase still had a dusty appearance in thin section, probably due to the growths of minute alteration products. 01 igoclase ($70-90 \mathrm{~mol} . \% \mathrm{Na}$; $10-30 \mathrm{~mol} . \% \mathrm{Ca}$) was the probable variety of plagioclase present, judging from occurrences in chemically similar granitic rocks, and from x-ray diffraction evidence.

Microcline, the K-rich feldspar, generally occurred with the crosshatch twinning characteristic of this mineral. It was perthitic to microperthitic (terms relating to the intergrowth of thin bands of the Na-rich feldspar) within the microcline host due to the slow cooling of the granitic pluton. The degree of coarseness of these intergrowths is a rough indicator of the size (and hence the rate of cooling) of the pluton; here it suggests a pluton of small to medium dimension (Deer et al., 1962). The microcline often included sericitic alteration along cleavage planes and in patches. It was less abundant but similar to the alteration in plagioclase. Also, the dusty appearance ubiquitous in the plagioclase grains was absent in the microcline, which, like quartz, was clear.

A3.2.2 Micas

The mica minerals were distributed in the matrix as isolated grains generally 0.1 to 1.0 mm in size, or more commonly in somewhat larger intergrowths of both micas. The white mica, muscovite, was clear and unaltered, or was progressively altered to chlorite or (rarely) epidote along cleavage planes. The dark mica originally crystallized as biotite, but was subse-
quently thoroughly replaced by dark green chlorite. An occasional paler brown grain, or part of a grain, was the only direct evidence that this mica was originally biotite. However, chlorite is not recognized to crystallize from a melt, whereas it is a common pseudomorphous hydrothermal alteration product of biotite in granitic rocks, where its composition is often related to that of the original biotite (Deer et al., 1962).

The percentage by weight of Fe 0 and MgO obtained from chemical analysis may be used as indices for biotite from granitic rocks. As shown by Tables A3.1 and A3.2, these values are roughly comparable in the Stripa chlorite and the granitic biotites. (Biotites in other types of rocks generally have far lower Fe 0 and higher Mg0 values). This chemical correlation provides more direct evidence for the growth of chlorite at Stripa directly from biotite of the original granitic matrix, probably with little chemical change.

A3.2.3 Trace Minerals

The trace minerals of the matrix included garnet and probably zircon. Garnet occurred as isolated anhedral grains 0.5 to 1.0 mm in size which were not quite isotopic. They were probably spessartine-almandine ($\mathrm{Mn}-\mathrm{Fe}$) garnets. Grains of zircon occurred in the chloritized biotite, commonly surrounded by strong pleochroic haloes due to inclusion in the zircon of elements of U or Th decay series. The identification of zircon is somewhat uncertain optically, as the grains are very small and often altered (possibly metamict from radiation damage). However, zircon is a common trace mineral in granitic biotite, and several grains analyzed on the microprobe (from the same sample as that analyzed in Table A3.1) gave high counts of zirconium.

A3.2.4 Chemical Composition

The chemical composition of the granitic matrix is difficult to ascertain as it is cut almost everywhere by networks of fine fractures. However, a suitable, nearly fracture-free sample was located in a core from the full-scale drift. The silica content of 73.8%, obtained by soft x-ray fluorescence (Table A3.3), shows the rock to be a quartz monzonite, rather than a granite in the strict sense. (Strictly speaking, "granite" refers to the most siliceous member of the granitic family, while quartz monzonite is one step less siliceous. In the loose sense, however, "granite" is an appropriate term for any granitic rock, and for simplicity is so used here.) This designation is also consistent with the relative abundances, of quartz and feldspars in the rock matrix. These relative abundances, however, show some variation in different samples, so that the single analysis in Table A3.3 should be taken as an approximation.

A3.3 MINERALOGY OF FRACTURE FILLINGS

An outstanding characteristic of the Stripa granite is the degree to which it is fractured. It would be difficult to draw a line greater than a few millimeters long anywhere in the rock which does not cross a fracture of some sort, and in many places the original matrix minerals are thoroughly riddled with fractures down to the finest scale.

Thin sections from the ultra-large core were examined, as well as core sections from the time-scale and full-scale drifts, where thicker fractures are more abundant. Considering the rock mass around the experiment sites as a whole, several types of fractures could be distinguished microscopically on the basis of their predominant mineralogy. Most commonly these
fracture-filling materials were found intergrown, particularly on thicker fractures, so that the distinctions between fracture types was somewhat artificial. However, in some fine fractures in the ultra-large core, the mineralogy was sufficiently distinct to make a preliminary classification.

The most common type of fracture was filled mainly with chlorite. They occurred in tiny veinlets 0.1 mm or less in width, and in fractures up to several centimeters. All but the finest of these were megascopically black or nearly so. On first inspection, they appeared to be uniformly dark chlorite. However, this was seldom the case; the chlorite in these fractures was nearly always complexly intergrown with an assortment of other minerals. Chief among these was quartz, which was almost as abundant as chlorite in these fractures and which occurred as tiny grains of about the same size as the chlorite grains (generally <<0.1 mm). Plagioclase grains of similar size occurred less commonly. Both these and the quartz grains appeared to have grown in place in the smaller chloritic fractures (up to 1 or 2 mm , roughly), although in wider chloritic fractures there was clearly much material from the original matrix which had been broken and included with the chlorite. Also, pyrite was intergrown in these chlorite fractures, either disseminated or along veinlets of its own, and there were occasional patches of calcite and fluorite (Fig. A3.1).

A second common type of fracture occurred, generally as very thin yellow-green veins. These were predominantly sericite (fine-grained muscovite) in a distinctive growth habit of fine sheath-like aggregates. Usually, these fractures were no wider than 0.3 mm ; apparently wider fractures tended to be dominated by chlorite. Intergrown with the sericite, but of much

Fine grained quartz

Fig. A3.1 Chlorite-filled fracture from top surface of ultra-large core. Chlorite occurs with and without finely-intergrown quartz. Accessory minerals are fluorite and plagioclase. Plane polarized light. 40X magnification.
lesser abundance, were disseminated grains of pyrite, and prisms of epidote which were somewhat altered, probably to a clay mineral (Fig. A3.2). Also intergrown, though less abundantly still, were fluorite and calcite.

Finally, a third type of fracture filling was that dominated by epidote. Epidote was found only in one sample from the full-scale drift, and not in the ultra-large core. Nevertheless, epidote may well be present in the core. The reason for this ambiguity is that unless seen in the microscope these epidote fractures are difficult to identify. Their light green color is shared in some cases by chlorite-dominated fractures that may have an abundance of sericite or clay and very fine fault gouge material, and probably by other types of fracture fillings as well (one example from the ultra-large core is discussed below). Thus, fractures predominantly filled with epidote, though they may be fairly abundant, were not as common as would be expected from hand specimens alone. Even microscopically, epidote proved difficult to identify. This was due in part to a general clay alteration that often obscured the small prisms (<0.1 mm). Also, the epidote itself is unusual optically, with very low birefrigence and anomalous extinction. These properties may indicate an Fe-poor species of epidote, but this would be unusual since it co-exists with Fe-rich chlorite. The only reason it can be called epidote with certainty is that an x-ray diffraction pattern was obtained on the above-mentioned fracture sample, enriched in light green grains, from the full-scale drift. The peaks remaining after the quartz and feldspar peaks were deleted identify the mineral as epidote.

XBB 7910-14878

Fig. A3.2 Fractures associated with fracture B of ultra-large core. Prominent fracture (left) is filled with sericite and lesser epidote; sericite-filled veinlets branch off from it. Pyrite-filled fracture (right) merges with sericite-filled fracture below photo. Cross-polarized light. 40X magnification.

A3.4 INTERPRETATION OF FRACTURE MINERALOGY AND TEXTURES

The common occurrence of chlorite and sericite in the Stripa granite as both fracture fillings and as alteration products of the matrix minerals suggests that fracture formation may be related to that alteration. This relationship was in fact borne out by textural relations in thin section. For instance, the sericitic alteration of feldspars along edges or along internal cleavage planes very commonly became through-going and graded imperceptibly into sericite veins (Fig. A3.3). This fine veining in turn graded into more pervasive fracturing, so that fractures became continuous across several grains. (Often such fractures terminated in patches of coarse micas of the granitic matrix.) This was common around sericite fractures, where small continuous veinlets merged to fill a more continuous, wider fracture. In the vicinity of thicker fracturing this could be even more pervasive, until the matrix material was so riddled and shattered into a chaotic network of fractures that the orignal grains were no longer recognizable (Fig. A3.4).

Another line of evidence of the close genetic relationship of fracture formation and matrix alteration came from observation of chlorite growth. Muscovite in the matrix was often altered on edges and along cleavage planes to chlorite, and in more fractured areas was thoroughly altered. This parallels the more complete conversion of the original biotite to chlorite. Similarly within fractures, intergrowths of chlorite and sericite were more common than growths of one or the other alone. In many cases it is apparent that chlorite replaced sericite (hence the artificiality of the distinction between these two "types" of fractures). In the alteration of feldspar, chlorite could be seen replacing the sericite that formed as the initial

XBB 7910-14879

Fig. A3.3 Veinlets of sericite with lesser chlorite, forming in perthitic microcline grain; near dominant fracture B of ultra-large core. Cross-polarized light. 40X magnification.

XBB 7910-14880

Fig. A3.4 Pervasive fracturing and alteration of matrix minerals to sericite and chlorite. From a several-cm-wide fracture zone, 8.35 m level in core 0 H1 BHE16 in full-scale drift. Cross-polarized light. 40X magnification.
feldspar alteration product (a complication not included in the earlier discussion of matrix mineralogy). In all these contexts, sericite alteration and subsequent formation of sericite fractures was followed or accompanied by replacement to chlorite. Also, both epidote and calcite occurred as alteration products as well as in fractures: epidote on occasion as tiny grains along muscovite cleavages, and calcite as patches within plagioclase.

There was also a connection found in the larger fractures in the timescale and full-scale drifts with movement along the fracture surfaces. Thin sections of several fractures $1-2 \mathrm{~cm}$ or more in width from the full-scale and time-scale drifts showed unmistakable signs of fault gouge. In one sample a black chloritic fracture contained abundant broken quartz and feldspar crystals, and thin bands of highly comminuted, or mylonitized debris. In another sample (see Fig. A3.5), a lighter green fracture was composed of lenses of rounded quartz and feldspars, in a mass of comminuted debris, sericite, chlorite, and brown clay.

A3. 5 CORRELATION OF FRACTURE TYPES WITH THE DOMINANT FRACTURES OF THE ULTRA-LARGE CORE

The major fractures in the ultra-large core are mapped on Fig. 2.3. Six thin sections from the core were examined. Five were from rock drilled from the borehole through the center. One included fracture C, three included or were adjacent to fracture B, and one included a major inclined fracture. Diffraction measurements on two samples were obtained from the surface of the core: one from a light green lens in fracture C, the other from the chloritic fracture surface forming the top of the core.

XBB 7910-14881

Fig. A3.5 Fault gouge consisting of broken grains of quartz and feldspars included in finely ground material, brown clay, chlorite, and sericite. Darker areas are richer in clay, while lighter areas contain coarser grains and are richer in chlorite and sericite. Fine fracture (upper portion of photo) is filled with quartz, chlorite, and sericite. From 1-2 cm-wide light-green fracture, 8.97 m level in core OV2BHE3 in time-scale drift. Plane polarized light. 20X magnification.

The first set of fractures (A through C), although continuous through the core, was typically very fine when seen in thin sections. The mineralogy was either sericite- or chlorite-dominated, and in places is a mixture of both. The lowest of these, fracture C, contained a band $3-5 \mathrm{~cm}$ in width containing numerous semi-continuous light green fractures or lenses up to 1 or 2 mm wide, within a darker chloritic fracture. These were originally thought to be epidote. One such lens was sampled; its diffraction pattern showed the major constituents to be quartz, sericite, feldspar, and fluorite, with a lesser amount of chlorite (Table A3.4). As mentioned above, fractures that appear to be filled with epidote can be deceptive. These lenses were too inaccessible to make thin sections, so epidote may or may not be abundant elsewhere along fracture C, and it may not even be a lesser component of this particular lens. (Most minerals must be major constituents of a diffraction sample in order to show up clearly on the resulting pattern.) A second diffraction pattern, from the thicker chloritic fracture that formed the top of the core, is presented in Table A3.5. Here chlorite was concentrated in the sample, and the resulting pattern is composed nearly entirely of chlorite peaks.

The inclined fractures (D through F), although discontinuous, were in places considerably thicker than the first set. They al so showed some displacement, up to 1 or 2 cm , of the horizontal fractures that intersect them. Mineralogically, these fractures were for the most part similar to the other set, as they were filled with chlorite, with some thin light green sericite portions as well. But where they were thicker, up to several millimeters in places, they were filled with distinct calcite lenses within chlorite borders, and often with parallel growths of a light green filling
(sericite or epidote). Unfortunately, as with the lenses in fracture C, it was not possible to chisel coherent pieces of these thicker fractures for thin sections.

APPENDIX IV

TESTS ON 5.2 CM DIAMETER CORES

A4.1 SELECTION AND PREPARATION OF SPECIMENS

Seven fractured and six unfractured core specimens were tested. All were 52 mm diameter, but their lengths varied from 13 to $15 \mathrm{~cm}(2.5$ to 3.0 length/diameter ratio). Samples were selected from core from various boreholes drilled to install extensometers for the full-scale heater experiment. They were selected on the basis of their suitability for the type of test, i.e., either the core section was unfractured or it contained a principal fracture oriented perpendicular to the core axis for the direct tension test or an inclined fracture for the compression test. The range of fracture inclination for the compression tests was 20° to 35° relative to the long axis of the core. The specimens used are described in Table A4.1.

Specimens were taken from longer sections of intact core by point-load tension tests applied several centimeters beyond the desired end of the specimen. The core sections were then cut with a diamond saw to the approximate final sample size, and the ends of the specimens were milled to within 0.05 mm of parallel ($0.001 \mathrm{~mm} / \mathrm{mm}$ diameter).

The surface of the fractured samples were mapped before and after testing. These maps are given in Figures A4.4 through A4.11. All samples were tested in an air-dried, unsaturated state, and tests were done at room temperature.

Table A4.1. Description of 5.2 cm diameter samples.

Specimen number	Locat borehole number	depth (m)	Type of test	Length (cm)	Diameter (cm)	Natural fracture orientation (${ }^{\circ}$ from axis)
S1	E20	9.17	Triaxial comp.	15.14	5.17	34
S2	E14	2.82	Triaxial comp.	15.24	5.17	31
S3	E13	3.52	Uniaxial comp.	15.33	5.18	18
S4	E12	9.53	Uniaxial comp.	15.23	5.20	22
S5	E12	9.90	Triaxial comp.	15.23	5.20	30
T1	E12	5.05	Direct tension	15.35	5.20	80
T2	E12	5.48	Direct tension	15.22	5.18	85
S6	E13	1.41	Direct tension	15.24	5.18	Intact
S7	E13	1.57	Direct tension	15.24	5.18	Intact
S8	E13	1.74	Triaxial comp.	15.26	5.18	Intact
S9	E10	1.26	Triaxial comp.	15.04	5.21	Intact
S10	E10	1.50	Uniaxial comp.	15.06	5.20	Intact
S11	E10	1.65	Uniaxial comp.	14.80	5.21	Intact

A4.2 TEST PROCEDURES AND RESULTS

A4.2.1 Indirect "Point Load" Tension Test

This test provides an index of rock strength. The method consists of loading in a section of rock core across its diameter by means of a pair of spherical-headed platens. The apparatus and procedure used were similar to those described by Broch and Franklin (1972). The point load strength index, I_{S}, is computed as $I_{S}=P / D^{2}$, where P is the failure load and D is the distance between the loading platens (diameter of the core in this case). I_{S} is not the true tensile strength, since a large compressional stress component is involved in the loading. However, it does provide a useful comparison of the tensile strength of intact rock samples with those containing healed fractures. Results of the point load tests are given in Table A4.2. Although the number of tests was not large, these data indicate that the fractures substantially reduced the strength of the rock.

A.4.2.2. Uniaxial compression tests

Uniaxial compression tests were performed on two fractured samples and two intact samples. No confinement was applied, except for several rubber bands which helped hold the specimens together after failure. A 7414 kN (160,000 1b) Riehle test machine was used for loading, and its lack of stiffness generally prevented following sample response past the peak load. Loading platens were made of smooth steel, with no special friction reducers. Overall deformation of a sample was measured with an LVDT. The basic test data consisted of a load-deformation curve, a typical example of which is shown on Fig. A4.1. The modulus of elasticity was computed from the slope of the best linear fit through the higher load portions of the curve.

Table A4.2. Results of indirect tension tests on small core sections (52 mm diam).

Borehole number	Depth (m)	Point-load strength index I_{S} (MPa)
Intact granite (ave. $=11.31 \mathrm{MPa}$)		
E20	9.28	13.68
E14	2.91	11.43
E14	2.72	9.35
E13	3.67	9.18
E12	9.64	11.26
E12	10.00	11.61
E12	9.81	11.09
E12	6.62	12.84
Naturally fractured granite (ave. $=4.68 \mathrm{MPa}$)		
E12	5.12	5.37
E12	4.97	2.42
E12	5.57	6.24

Fig. A4.1 Typical uniaxial compression test record for intact Stripa granite.

Results of the uniaxial compression tests have been summarized in Table 3.1. The failure mode of the intact granite was typical of lowductility rock: exterior spalling preceded failure, as evidenced by many longitudinal fractures. These fractures intersected the ends of the 13 cm specimen ($\mathrm{S}-11$), but failed to do so in the longer 15 cm specimen ($S-10$). As expected, failures of the samples containing healed fractures were generally confined to the inclined fracture surfaces. Sample S-3 broke wholely along its fracture, while sample S-4 developed longitudinal fracturing in addition to failure along its pre-existing healed fracture.

A4.2.3 Triaxial Compression Tests

Two intact and three naturally fractured specimens were tested in triaxial compression. The test machine was the same as described above, and the triaxial cell was of a standard single-piston design without spherical bearing plates for the axial load. Confining pressures were 3.45 and 6.90 MPa. Axial displacement was measured by an LVDT mounted outside the triaxial cell and a correction made for strain in the piston. Results of the triaxial tests were presented in Table 3.1. For the samples with healed fractures, S-1, S-2, and S-5, failure predictably occurred along the inclined preexisting weaknesses. In most cases, incipient, axially oriented fractures were also seen in the failed cores. Only in sample S-2 did a failure surface extend through intact rock and intersect the end of the sample.

A4.2.4 Direct Tension Tests

Two specimens each of intact and naturally fractured rock were tested in direct tension. The load was applied with the Riehle test machine through a pair of moment-reducing eyebolts connected to each end of the sample. The
linkage at an end of the sample was made through a threaded aluminum cylinder glued with epoxy to the rock. Axial alignment was maintained during gluing by clamping the sample and the end pieces onto a metal channel section. Because of the number of linkages in the loading apparatus, the sample deformation could not be accurately measured, hence no tensile moduli were computed. The two naturally fractured specimens contained fractures oriented roughly perpendicular to the applied load, and in each case failure occurred on these planes. Both intact samples failed at the epoxy end connections; the true rock strengths, therefore, are higher than those measured by the tests. The results have been listed in Table 3.1.

A4.3 INTERPRETATION OF RESULTS

A4.3.1 Ultimate Strength

The relative strengths of the intact and fractured granite are represented by Mohr diagrams in Figs. A4.2 and A4.3, which contain all the data from Table 3.1. Figure A4.2 also includes data from previous tests on Stripa granite reported by Pratt et al. (1977) and Swan (1978), which are listed in Table A4.3. The intact rock strength curve is constructed as the tangent envelope to the Mohr circles. According to the Mohr-Coulomb strength criterion, the curve is expressed linearly as

$$
\begin{equation*}
\tau=c+\sigma \tan \phi, \tag{A4.1}
\end{equation*}
$$

where c is the cohesion intercept, ϕ is the angle of internal friction, τ is the shear stress, and σ is the compressive stress. Over the low stress range in Fig. A4.2, c and ϕ are approximately 25 MPa and 65°, respectively. For conservatism, the average tensile strength circle has been used in this construction.

Fig. A4. 2 Mohr diagram for intact Stripa granite.

Fig. A4.3 Mohr diagram for healed fractures in Stripa granite.

Table A4.3. Summary of previous laboratory strength data for intact Stripa granite.

Type of test	$\begin{aligned} & \sigma_{3} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \sigma_{\text {ofailure }}^{(M P a r e} \end{aligned}$	Young's modulus (GPa)	Reported by
Uniaxial compression	0	214 ± 24	52.3 ± 6.5	Pratt et al. (1977)
Uniaxial compression	0	207.6 ± 31.4	69.4 ± 6.6	Swan (1978)
Triaxial compression	5	308.5 ± 9.8	75.4 ± 1.8	Swan (1978)
Triaxial compression	10	372 ± 25.6	77.2 ± 0.9	Swan (1978)
Triaxial compression	20	470 ± 6.3	82.2 ± 2.2	Swan (1978)
Triaxial compression	30	530.3 ± 14.0	83.2 ± 0.6	Swan (1978)
Brazilian tensile strength	0	13.3 ± 1.4	--	Pratt et al. (1977)
Brazilian tensile strength	0	15.0 ± 1.8	--	Swan (1978)

The mean fracture strength curve (dashed line) shown in Fig. A4.3 is also roughly parabolic, having been drawn as a best fit through points of stress determined according to the inset in the figure. Upper- and lowerbound fracture strengh envelopes have also been constructed. Comparison of Figs. A4.2 and A4.3 indicates that the presence of fractures decreased the strength of the rock. The point-load test data showed a comparable reduction in tensile strength.

The results obtained from the tests on the small diameter cores were used to make an estimate of the unconfined, uniaxial compressive strength of the ultra-large core. To calculate failure stresses, the fracture-strength envelope for the small cores can be approximated by the Mohr-Coulomb criterion with c equal to 7.3 MPa and ϕ equal to about 55°. For uniaxial compression, the theoretical stresses on a plane inclined at ψ degress to the core axis are:

$$
\begin{equation*}
\sigma=\sigma_{1} \sin \psi^{2}=\frac{\sigma_{1}}{2} \quad(1-\cos 2 \psi) \tag{A4.2}
\end{equation*}
$$

and $\quad \tau=\sigma_{1} \sin \psi \cos \psi=\frac{\sigma_{1}}{2} \sin 2 \psi$.
Substituting (A4.2) and (A4.3) into (A4.1) gives the maximum axial stress

$$
\begin{equation*}
\sigma_{1}=\frac{2 c}{[\sin 2 \psi-\tan \phi(1-\cos 2 \psi)]} \tag{A4.4}
\end{equation*}
$$

The three most prominent inclined fractures in the large core were oriented at $\psi=28^{\circ}$. Substituting this value, along with the above c and ϕ values, into (A4.4) gives $\sigma_{1}=73.2 \mathrm{MPa}$. Because other fractures in the large core, although less continuous, were inclined from 10° to 30° to its long axis, it was conservative to assume that the plane of weakness was oriented at $\psi=45-\phi / 2=17.5^{\circ}$. Substituting this into (A4.4) gives $\sigma_{1}=46.3 \mathrm{MPa}$.

As reported in Section 6.1.1, the actual uniaxial strength of the large core was only 7.4 MPa. This large discrepancy illustrates the difficulty of predicting the strength of large blocks of rock from tests performed on small core samples.

A4.3.2 Deformation

As in the prediction of strength, estimation of the large core's deformation characteristics was dependent upon its similarity to the small jointed samples. The tangent moduli in Table 3.1 showed little difference between fractured and intact rock. This suggests that these natural fractures were effectively closed and did not influence the elastic modulus. Similar observations from tests on other rock have been discussed by Jaeger and Cook (1976). Therefore, if it were assumed that the deformation behavior of the small samples was similar to that of the large sample, the elastic modulus of the large core should have been about 55 GPa , which is the average of values listed in Table 3. This compares with a tangent modulus of 52.3 GPa computed for the large core just prior to failure.

Nonlinearity can be introduced in the initial portion of a stress-strain curve by microfissure closure (Jaeger and Cook, 1976). Because deformation measurements were not made directly on the samples, the test data from the small cores were affected by the end conditions and the loading platens. The magnitude of these errors was estimated from a test using a machined aluminum specimen. Based on these tests, the initial measured strains due to microfracture closure in the small samples were reduced by 0.06%, to correct for testing errors.

The amount of closure of the fractures normal to the long axis of the large core was difficult to predict from the small core test and was complicated by the accidental opening of fracture B. However, as proposed by Goodman (1976), an upper bound estimate could be made from the thickness of filling material in the joints. There were three main perpendicular fractures in the large core, and their filling thicknesses add up to about 4 mm . Initial closure of these fractures was expected to be highly nonlinear and nonelastic, generating a hyperbolic load-displacement function (Goodman, 1976).

Based on the above assumptions, the estimated total axial deformation of the large core under an axial stress of 24 MPa was then the summation of:

Closure of major perpendicular fractures $\sim 4 \mathrm{~mm}$
Microfissure closure $\sim 6 \times 10^{-4} \times 1524 \mathrm{~mm} \quad \sim 0.9 \mathrm{~mm}$
Elastic displacement $\sim(24 \mathrm{MPa} / 55 \mathrm{GPa}) \times 1524 \mathrm{~mm} \sim 0.7 \mathrm{~mm}$
Total for large core $\quad \sim 5.6 \mathrm{~mm}$
This represents an overall strain of 0.36%.

As described in Section 6.1.1, the actual failure strain of the large core was only 0.06%, due to failure at low stress along the steeply inclined fractures. By simple linear interpolation, data from tests on the small cores would have predicted a strain of some 0.11% in the large core at a failure stress of 7.55 MPa .

KEY TO FIGURES

XBL 7911-12892

Fig. A4.4 Key to Figures A4.5 to A4.11.

Fig. A4.5 Map of sample S1.

Fig. A4.7 Map of sample S3.

SAMPLE S2

Fig. A4.6 Map of sample S2.

SAMPLE 54

Fig. A4.8 Map of sample S4.

SAMPLE TI

Fig. A4.9 Map of sample T1.

SAMPLE T 2

Fig. A4.10 Map of sample T2.

SAMPLE S5

Fig. A4.11 Map of sample S5.

APPENDIX V
 FALLING-HEAD TESTS

The purposes, experimental procedures, and principal results of the falling-head tests were summarized in Section 4. Additional details and analysis are given in this appendix.

A5.1 PACKER DESIGN

A simple packer system was designed for the falling-head tests. The assembled unit is shown in Fig. A5.1 Each packer consisted of six 7.62 cm diameter by 1.27 cm thick rubber rings threaded over a mandrel. The packers were sealed against the borehole walls by radial expansion from axial compression applied through a nut on the mandrel. Compression was transmitted from the upper to lower packer through a perforated pipe slid over the mandrel. The interval between the packers could be adjusted by changing the length of the perforated pipe.

The packers were tested under air pressure in a 7.6 cm diameter clear plastic pipe. When installed by compressing the packers with a 30 Nm torque a complete seal was formed under 200 kPa air pressure. To allow for the roughness of the walls, this torque was doubled when the packers were installed in the borehole. As a further check on packer performance, the system was tested in a 2.6 cm diameter borehole in a block of Sierra white granite. In this test, it was also possible to directly observe any leakage past the packers. None was visible under injection pressures up to 250 kPa . Water flow into the interval was about 3×10^{-4} liters $/ \mathrm{min}$, which corresponds to a rock permeability of $10^{-6} \mathrm{~cm} / \mathrm{sec}$. These tests demonstrated the reliability of the packer design. The same basic design was used for the perme-

CBB 798-11027
Fig. A5.1 Borehole packer unit for falling-head tests.
ability tests in the triaxial vessel. In those tests the upper and lower packers were installed independently and a nylon tube was passed through the upper packer to measure water pressure in the interval.

A5.2 TEST PROCEDURE

The test arrangement is shown schematically in Fig. 4.1. After setting the packers at a predetermined location in the borehole, de-aired water was injected into the interval from an elevated standpipe connected to the packer system by a flexible hose. The flow rate was calculated from the rate of fall in head and the area of the standpipe. Three clear plastic standpipes of nominal diameters $6.4,19$ and 44 mm were used so that suitable flowrates could be selected as appropriate for the changing conductivities of the different borehole intervals.

The true pressure in the interval was found by correcting the total head in the standpipe for losses upstream from the interval. The relationship between head loss, h_{1}, and flowrate, Q, was determined empirically and found to be:

$$
\begin{equation*}
h_{1}=0.557 Q^{1.472} \tag{A5.1}
\end{equation*}
$$

This calibration gave only approximate losses, and at flowrates greater than several liters per minute the true injection pressure was uncertain. The maximum flow the system could supply was about 3 liters/min, which was less than the "take" of the whole sample. Because this high conductivity prevented the borehole from remaining full of water during the installation of the packer, it was necessary to purge the interval of air via a tube passing through the top packer.

Two packer spacings of 0.172 m and 0.352 m were used. The short intervals were chosen relative to the major fractures so as to limit flow to only one or possibly two fractures. Tests with the longer intervals included more fractures in relation to the major fractures logged in the center borehole. By overlapping the intervals, the relative flow contributions of major fractures could be determined.

A5.3 TEST RESULTS AND ANALYSIS

Each of the injection intervals in Fig. 4.2 correspond to the chronological test numbers shown. Test results are plotted in semilog form of head against time in Figs. A5.2 to A5.8. Several injection cycles were made for each test and the curves in the figures are from the final cycles of the tests. This selection was somewhat subjective, but because the degree of saturation of the core probably increased as successive subtests were run, it can be assumed that constant saturation conditions were approached. The core was not immersed in water, and full saturation was probably not reached. However, based on the usual interpretation of similar tests on soils (Lambe, 1951), a linear logarithmic rate of falling head was taken to indicate a constant degree of saturation. The curves shown on Figs. A5.2 to A5.8 are generally quite linear, and the results are therefore considered sufficiently accurate for comparing the hydraulic properties of the different borehole intervals.

To make these comparisons, the analysis assumed that Darcy's law applied. In modified form this can be stated as:

$$
\begin{equation*}
Q / \Delta h=k(A / L), \tag{A5.2}
\end{equation*}
$$

where k is the coefficient of permeability, Q is the flow rate, Δh is the

Fig. A5.2 Results of falling-head tests Nos. 1 and 7.

Fig. A5.3 Results of falling-head tests Nos. 2 and 9.

XBL 801-7778
Fig. A5.4 Results of falling-head tests Nos. 3, 10 and 11.

Fig. A5.5 Results of falling-head tests Nos. 4 and 8.

Fig. A5.6 Results of falling-head tests Nos. 5 and 6.

XBL 801-7783
Fig. A5.7 Results of falling-head tests Nos. 12 and 13.

Fig. A5.8 Results of falling-head tests Nos. 14, 15 and 16.
head loss (in this case equal to the pressure in the interval), A is the cross-sectional area of flow and L is the length of the flowpath. Because of the geometric complexity of the fracture system in the large Stripa core, results were expressed in the normalized form $\mathrm{Q} / \Delta \mathrm{h}$, the flow-per-unit-head. This avoids determination of A and L. The flow rate Q is found from the volume change in the standpipe per time interval:

$$
\begin{equation*}
Q=(\Delta h / \Delta t) a_{s}, \tag{A5.3}
\end{equation*}
$$

where h and time, t, are measured during the test, and a_{s} is the area of the standpipe. The linear portion of the curves shown in the figures can be represented by

$$
\begin{equation*}
h_{m}=a_{m} b_{m}^{t} \tag{A5.4}
\end{equation*}
$$

The coefficient a_{m} is equal to the extrapolated initial head h_{0} in meters and b_{m} is given by

$$
\begin{equation*}
b_{m}=\left(h_{m} / h_{0}\right)^{1 / t_{m}}, \tag{A5.5}
\end{equation*}
$$

where t_{m} is the time in seconds since $t=0$, and h_{m} is the corresponding head in meters. Both values are chosen arbitrarily from the curve representing the measured data. The head in the injection interval must be calculated by

$$
\begin{equation*}
h_{c}=h_{m}-h_{1}, \tag{A5.6}
\end{equation*}
$$

where h_{c} is the corrected head, h_{m} is the measured head, and h_{1} is the head loss according to Eq. (A5.1). For many of these tests, the head losses were less than a centimeter, so $h_{c} \simeq h_{m}$. For flow rates greater than 0.1 liters/min, losses were more significant. For these cases corrected data are shown on Figs. A5.2 through A5.8. Since the corrected head data are also linear on the semilog graph, they too can be represented in the form of
(A5.4). Since (A5.4) is continuous, Eq. (A5.3) can be written:

$$
\begin{equation*}
Q=a_{s}\left(d h_{m} / d t\right)=a_{s}\left(a_{m} b_{m}^{t} \log _{e} b_{m}\right) \tag{A5.7}
\end{equation*}
$$

Substituting into (A5.2) gives:

$$
\begin{equation*}
Q / \Delta h=\frac{a_{s} a_{m} b_{m}^{t} \log _{e} b_{m}}{a_{c} b_{c}^{t}} \tag{A5.8}
\end{equation*}
$$

The figures show the measured and corrected curves to be parallel, so $b_{m}=b_{c}$. (Nonparallel curves would indicate unsteady flow conditions). Converting to base 10 logarithms, and substituting for a_{m}, a_{c}, and b_{m}, we get:

$$
\begin{equation*}
Q / \Delta h=2.3 a_{s}\left(h_{o m} / h_{o c}\right)\left[\frac{\log _{10}\left(h_{o m} / h_{m}\right)}{t_{m}}\right] \tag{A5.9}
\end{equation*}
$$

where $h_{0 m}$ and $h_{0 c}$ are extrapolated heads at $t=0$ for the measured and corrected curves, and (t_{m}, h_{m}) is an arbitrary point on the curve fitted to the measured data.

Values of Q/ Δh computed using Eq. (A5.9) are listed in Table A5.1 and were presented graphically in Fig. 4.2. Interpretations of flowpaths inferred during the falling head-tests were given in Table 4.1 and Fig. 4.3.

A5.4 INTERPRETATION

A5.4.1 Primary Flowpaths

The preceding analysis clearly indicates the dominance of fracture B as a flowpath through the sample. Its flow resistance was less than that of the falling-head apparatus; hence its $Q / \Delta h$ value in Table A5.1 (Test No. 2) is probably an underestimate. Fracture B was accidentally disturbed during sample preparation. The analysis of the falling-head test results assumes that the fracture aperture remained constant as the water pressure in the

Table A5.1. Flow parameters computed from falling-head test results.

Test no.	$\begin{aligned} & \text { Standpipe } \\ & \text { area } \\ & \left(10^{-4} \mathrm{~m}^{2}\right) \end{aligned}$	Borehole interval (m)	Measured heads (m)		Measured time, t_{m} (min)	Corrected head, $h_{o c}$ (m)	$\begin{aligned} & \mathrm{Q} / \Delta \mathrm{\Delta h} \\ & \left(\mathrm{~m}^{2} / \mathrm{s}\right) \end{aligned}$	Flowrate for head of 1 m ($1 / \mathrm{min}$)
1	2.95	0.114-0.286	4.65	4.6	520	4.65	1.2×10^{-10}	7.2×10^{-6}
2	15.42	0.904-1.076	5.09	3.5	0.62	1.1	7.2×10^{-5}	4.3
3	0.283	1.390-1.562	4.43	4.0	87	4.43	5.5×10^{-10}	3.3×10^{-5}
4	15.42	1.278-1.450	4.65	4.0	3	4.5	1.3×10^{-6}	0.078
5	0.283	1.124-1.300	4.29	4.1	1190	4.29	1.8×10^{-11}	1.1×10^{-6}
6	0.283	1.010-1.186	4.32	4.25	220	4.32	3.5×10^{-11}	2.1×10^{-6}
7	2.95	0.800-0.976	4.66	4.5	72	4.66	2.4×10^{-9}	1. 4×10^{-4}
8	15.42	0.624-0.800	4.67	2.5	2.67	3.65	7.7×10^{-6}	0.46
9	15.42	0.470-0.646	4.75	2.5	2.47	3.55	8.9×10^{-6}	0.53
10	0.283	0.360-0.536	4.49	2.5	224	4.49	1.2×10^{-9}	7.2×10^{-5}
11	0.283	0.214-0.390	1.62	1.0	205	1.62	1.1×10^{-9}	6.6×10^{-5}
12	15.42	0.229-0.581	4.92	2.5	3.82	4.15	5.4×10^{-6}	0.32
13	15.42	1.304-1.656	4.65	2.5	6.25	4.4	2.7×10^{-6}	0.16
14	15.42	1.043-1.395	4.30	2.5	15.8	4.25	8.9×10^{-7}	0.53
15	15.42	0.590-0.942	4.93	2.5	2.74	3.75	8. 4×10^{-6}	0.50
16	15.42	0.492-0.844	4.54	2.5	2.25	3.50	8.8×10^{-6}	0.53

borehole changed. Witherspoon et al.(1977) have shown that fracture conductivity is sensitive to small changes in stress. Changes in effective stress as the water level in the standpipe fell were of relatively small magnitude but are a potential source of error, affecting the absolute values of $Q / \Delta h$ given in Table A5.1.

A5.4.2 Overall Flow

To estimate the macroscopic flow characteristics of the core, an upper bound for $\mathrm{Q} / \Delta \mathrm{h}$ was found using Eq. (A5.1) and the sum of the flow rates computed for the major flowpaths. Representing the total flow for 1 m head by tests 2,13 , and 16 , we have:

$$
\mathrm{Q} / \Delta h_{\text {total }}=(4.3+0.16+0.53 \text { liters } / \mathrm{min})(1 \mathrm{~m})=0.8 \mathrm{~cm}^{2} / \mathrm{sec}
$$

This approach probably overestimates the conductivity, due to duplication of flowpaths. As evident from Table 4.1, virtually all the tests involve fractures intersecting fracture B, hence proper treatment of the problem would require three-dimensional modeling of the flow network.

A5.4.3 Matrix Permeability

The use of $Q / \Delta h$ to compare the hydraulic characteristics of different sections of the core avoids the difficulty of defining discrete flowpaths and boundary conditions. However, it is usually preferable to estimate the coefficient of permeability directly. This was possible for tests 1, 3, 5, $6,7,10$, and 11 , in which no major fractures intersected the injection interval. We can assume that flow immediately adjacent to the borehole was essentially through the rock matrix itself. The matrix permeability, k_{m}, can be estimated by Bouwer's (1978) slug-test procedure for partially penetrating wells in unconfined aquifers. Applied to our test configuration,

$$
\begin{equation*}
k_{m}=\left[\frac{r^{2} \log _{e}\left(R_{e} / r\right)}{2 L}\right] \frac{\log _{e}\left(h_{0} / h_{t}\right)}{t}, \tag{A5.10}
\end{equation*}
$$

where $r=$ borehole radius $=0.038 \mathrm{~m}, \mathrm{~L}=$ interval length, $h_{0}=$ initial head in standpipe, $h_{t}=$ head at time t in standpipe, $t=$ elapsed time since h_{0}, and $R_{e}=$ effective radial distance while the head difference is dissipated. When the injection interval is small compared to the size of the aquifer, the empirical relation between R_{e} and the geometry and boundary conditions of the system reduces to

$$
\begin{equation*}
\log _{e}\left(R_{e} / r\right)=\frac{L / r}{(A+6 B)} \tag{A5.11}
\end{equation*}
$$

For L / r less than about 5, A and B are approximately 1.7 and 0.2 , respectively. For the short-interval tests (numbers 1 through 11), L = 172 mm and $r=38 \mathrm{~mm}$, which by (A5.11) gives $\mathrm{R}_{\mathrm{e}}=190 \mathrm{~cm}$. This is about the same as the distance to major fractures from the low-flow intervals; therefore, for practical purposes the shape of the actual flow regime should be similar to that of the homogeneous matrix model assumed here. Table A5.2 summarizes the matrix permeabilities computed with $\mathrm{R}_{\mathrm{e}}=20 \mathrm{~cm}$. Because of the uncertainty in this parameter, k_{m} is estimated to range from 10^{-5} to $10^{-7} \mathrm{~cm} / \mathrm{sec}$.

Table A5.2. Approximate matrix permeabilities.

Test no.	Borehole interval	h_{0} $(\mathrm{~m})$	h_{t} (m)	t (min)	k_{m} $(\mathrm{cm} / \mathrm{s})$
1	$0.114-0.286$	4.65	4.6	520	9.1×10^{-7}
3	$1.390-1.562$	4.43	4.0	87	5.3×10^{-5}
5	$1.124-1.300$	4.29	4.1	1190	1.7×10^{-6}
6	$1.010-1.186$	4.32	4.25	220	3.3×10^{-6}
7	$0.800-0.976$	4.66	4.5	72	2.2×10^{-5}
10	$0.360-0.536$	4.49	2.5	224	1.1×10^{-4}
11	$0.214-0.390$	1.62	1.0	205	1.0×10^{-4}

APPENDIX VI

CONTROL, INSTRUMENTATION, AND DATA ACQUISITION EQUIPMENT

The purpose and general design of the instrumentation, load control, fluid pressure control and data acquisition systems used to test the ultralarge Stripa core were described in Section 5. A system schematic was shown in Fig. 5.4 and the instrumented core was shown in Figs. 5.5 and 5.6. This appendix provides additional details of the equipment used and its performance during the test program.

A6.1 INVENTORY OF PRINCIPAL EQUIPMENT

The principal equipment used for the tests is inventoried in Table A6.1 by manufacturer and, where appropriate, by model and serial number.

A6.2 AXIAL LOAD CONTROL

Axial loading was controlled by electrical feedback servo-control of the triaxial machine's hydraulic actuator. Feedback was from a load cell mounted in the end of the loading piston (Hsu and Watkins, 1979). The load cell is equipped with four full-bridge and four half-bridge strain gauges. One full bridge was used for servo-control of axial load and was balanced for maximum control resolution. A second full bridge provided an independent measure of absolute axial load. The half bridges checked the eccentricity of the load across two orthogonal diameters of the loading piston.

A6.3 FLUID PRESSURE AND FLOW CONTROL
The operation of the fluid pressure and flow control system was described in Section 5.3. Difficulty was experienced in maintaining steady control of pressures and flows at the high flow rates and low differential

Table A6.1. Principal instrumentation and control equipment.

Item	Manufacturer	Model	Serial No.
Accumulator	Greer Hydraulics	30A-1WS	--
Bridge Excitation (Load Cell)	Power Designs	Power Supply 2050	F405055
Bridge Excitation (Strain Gauges)	Baldwin-Lima-Hamilton	Custom	--
Controller (Back Pressure)	Terra Tek	2013	--
Controller (Diff. Pressure)	Terra Tek	2013	--
Servo Controller (Actuator)	Terra Tek	2050	--
Signal Conditioner (Load-Actuator Servo)	Terra Tek	2085	--
Cable (Instrumentation Signal)	Baldwin-Lima-Hamilton	103998-1	--
Cable (Trunk Signal)	Columbia Wire	$\begin{aligned} & \text { C6046 } \\ & \text { C6044 } \end{aligned}$	-
Date Logger	Fluke	2240 A	069017
Flow Meter	Flow. Technology	OmniFlow FTM-N20-LUS	8503075
Flow Totalizer	Flow Technology	7010AA3	AA79010004
Function Generator (Actuator Servo)	Exact	340	19303
Load Cell	Baldwin-Lima-Hamilton	Custom	--
$\operatorname{LVDT}(\mathrm{DC})$	Schaevitz Engineering	$\begin{aligned} & \text { HPD125(}+0.16 \mathrm{~cm}) \\ & \text { HPD150(} \pm 0.31 \mathrm{~cm}) \end{aligned}$	$\begin{aligned} & 3 \text { digits* } \\ & 4 \text { digits* } \end{aligned}$
Power Supplies(LVDT)	Micro Power	9040	--
Power Supply \& Signal Cond. (Flowmeter)	Flow Technology	PRI-102AA2	1E7901-0004
Power Supply \& Signal Cond. (Abs. Press. Trans.)	Baldwin-Lima-Hamilton	Custom	--
Power Supply \& Signal Cond.(Abs.Press.Trans.)	Terra Tek	2013 (cont inued	t page)

Table A6.1 (continued)

Item	Manufacturer	Model	Serial No.
Power Supply \& Signal Cond.(Diff.Press.Trans.)	Validyne	CD-23-1181	50836
Pump	S.C. Hydraulic Engineering	1.50	14510
Back Pressure Regulator	Terra Tek	--	--
Diff. Pressure Regulator	Terra Tek	(modified)	--
Absolute Pressure Trans.	Baldwin-Lima-Hamilton	GP-CG	20934
Absolute Pressure Trans.	Dynisco	PT310JA-1M	113917
Diff. Pressure Trans.	Validyne	DP215TL	37693
Signal Cond. \& Digital Output(Thermocouple)	Analog Devices	AD2036/J1121	7908
Printer Terminal	Teletype	43 Basic KSR	848039896
Tape Cassette	TechTran	8400	10498
Strain Gauges (on sample)			
Thermocouple	Terra Tek	--	--
XYY Recorders	Hewlett-Packard	7046A	$\begin{aligned} & \text { 1914A05816 } \\ & 1739 \text { A03877 } \end{aligned}$
Strip Chart Recorder	Soltec	1330/46/3415	792375

[^3]pressures called for in the test program. The pressure pulses generated by the air-activated recipocating pumps could not easily be attenuated. This tended to produce undesirable pulsing feedback from the pressure transducers to the pressure controllers. The problem was partially eliminated by placing the pressure transducers at the maximum possible distance downstream of the pumps, although a large phase-lag between the input pressure signal to the controller and the actual pressure at the control point resulted. It was thus not an entirely satisfactory solution. The pressure controllers were themselves a source of uncontrolled oscillation. They were of the upper-and-lower-set-point type. When the pressure in the vessel fell below set point they caused the back pressure regulator to close suddenly, causing a disruption of flow, which was immediately followed by a rise in vessel pressure, and reopening of the back pressure regulator. This process was further complicated by elastic expansion and contraction of the triaxial vessel in response to the pressure changes. The oscillatory pattern of flow that resulted could be kept to an acceptably small amplitude only through a tedious and time-consuming series of fine adjustments to the control equipment. It is recommended that in future designs of such equipment, use of non-reciprocating pumps and fully continuous servo-control of pressure regulators be considered.

A6.4 INSTRUMENTS MOUNTED ON THE CORE

A6.4.1 Strain Gauges

The type of strain gauge used for the tests and the procedures used to mount them on the core are given in Table A6.2.

Table A6.2. Strain gauge mounting procedure.

A6.4.2 LVDTS

A6.4.2.1 LVDTs Across Fractures
The DC-LVDT's were mounted in a system of clamps (see Fig. A6.1) that acted as a universal joint for precise alignment of the LVDT core in the body. Deformation was measured between pairs of 1.27 cm diameter stainless steel or aluminum anchors set with epoxy into holes drilled about 5 cm into the rock. To prevent leaks through the electrical cables, brass mechanical seals constructed from standard Swageloc tubing unions were used to form the cable to LVDT coupling. To prevent jamming of the LVDT core in the body and to minimize alignment errors from the motion of fractures normal to the LVDT axis, the cores were connected to the anchors through a short section of brass wire, soft soldered to the core extension rods. Each core was then centered in the LVDT body by a Teflon guide that also served to prevent debris falling into the body. This arrangement is shown in Figs. A6.2 and A6.3.

The locations of the LVDTs on the core were given in Fig. 5.5. Their orientations relative to the fractures at these points are given in Fig. A6.4 and in Table A6.3.

A6.4.2.2. Total Axial Deformations

Overall axial deformation was measured by LVDTs mounted on aluminum bars approximately 1.3 m long and anchored near the top and bottom of the core in a manner similar to that for LVDTs measuring fracture deformation. The arrangment is shown in Fig. A6.5.

CBB 803-3607
Fig. A6.1 Mounted LVDT.

XBB 803-3793A

Fig. A6. 2 Exploded view of LVDT unit.

Fig. A6. 3 Assembled LVDT unit.

Fig. A6.4 LVDT orientation references.

Table A6.3. LVDT locations and orientations.

* See Fig. A6.4 for illustration of angles A and B.

CBB 802-2036

Fig. A6.5 LVDT for measuring axial deformation.

A6.4.2.3 Girth Gauge

Radial deformation was measured by an LVDT mounted between the ends of a spring-tensioned cable. As shown in Fig. A6.6, the cable was stretched over a series of grooved low-friction pulleys mounted at 25 cm centers around the circumference of the core. The pulleys were mounted on curved aluminum base plates epoxyed onto the fluted surface of the core.

A6.4.2.4 LVDT Performance

Difficulty was encountered during the test program due to failure of the LVDT seals. LVDT's designed for complete immersion in pressurized fluids are not available from manufacturers. Water pressures in the triaxial vessel ranged between 1350 and $2050 \mathrm{kPa}(200-300 \mathrm{psi})$. The seal system shown in Fig. A6. 2 was basically similar to those used successfully in previous work with a small number of units. In the present application, the total number of units required was much greater, and the reliability of the LVDT system as a whole was poor. With maximum care in assembly, it was possible to seal most of the units. Failures were generally associated with the nylon seals around the LVDT body. These occurred because: 1) the positive pressure imbalance on the seal was of opposite sense to that for which the seal was designed, and 2) tightening the retaining nut sufficiently to form a reliable seal bent the body of the LVDT and resulted in damage to its internal components.

Leaks into the LVDT signal cable resulted in grounding of the power supply and signal conductors. Large leaks also allowed water to penetrate into the cable and flow into the pressure feed-through junction box. This resulted in generalized short-circuiting of the instrumentation system.

CBB 802-8022

Fig. A6. 6 Girth gauge.

Tracing the source of leaks to individual LVDT's was difficult and time consuming, for $\mathrm{it}_{\text {iv }}$ required complete depressurization and disassembly of the triaxial vessel. Also, due to the congested nature of the electrical junction box and the delicacy of the electronic components, repair of leaks frequently involved extensive secondary damage to the system. In some cases leaks through the seals were insufficient to produce a detectable flow through the cable to the exterior of the triaxial vessel. In other cases repeated re-sealing of the LVDT units caused damage to the conductor insulation. Either of these conditions could result in a short of the power supply to the body of the LVDT. On completion of the test program the LVDT units were inspected and some were found to have been damaged by electrolytic corrosion resulting from short circuits. Most of these exhibited only minor etching of metal surfaces and no significant malfunction resulted. In others, notably LVDT No. 14, the brass connection wire was completely dissolved and the instrument was encrusted with galvanic products. The appearance of this LVDT is shown in Fig. A6.7. Analyses of the deposits by energy-dispersive x-ray and x-ray diffraction techniques showed them to be aluminum hydroxide, copper, copper oxide, zinc hydroxide carbonate, calcium carbonate and minor amounts of other compounds compatible with corrosion of the brass and aluminium in a tap water environment (Anamet Laboratories, 1980). A fully engineered, custom-built LVDT sealing system is currently being developed to eliminate these problems in future test programs.

A6.5 DATA ACQUISITION

The data acquisition system has been described in Section 5.5 and Fig. 5.4. The data channel assignments used for recording instrument outputs, together with the instrument ranges and calibrations are given in Table A6.4.

CBB 802-2026

Fig. A6.7 LVDT Damaged by corrosion.

Table A6.4. Data channel assignments.

Channel No.	Transducer	Range	Calibration
0	Flowmeter (0mniflow)	0.7-7.5 1/m	2 liters/min/volt
1	LVDT\#1(Schaevitz)	$\pm 0.16 \mathrm{~cm}$.	-0.3375 mm/V
2	LVDT\#2(Schaevitz)		-0.3149 mm/V
3	LVDT\#3(Schaevitz)	"	-0.3056 mm/V
4	Not Used	--	--
5	LVDT\#5(Schaevitz)	$\pm 0.16 \mathrm{~cm}$	-0.3110 mm/V
6	LVDT\#6(Scahevitz)	$\pm 0.31 \mathrm{~cm}$	-0.6195 mm/V
7	LVDT\#7 (Schaevitz)	$\pm 0.16 \mathrm{~cm}$	-0.3411 mm/V
8	LVDT\#8(Schaevitz)		-0.3092 mm/V
9	LVDT\#9 (Schaevitz)	"	-0.3137 mm/V
10	LVDT\#10(Schaevitz)	"	-0.3240 mm/V
11	LVDT\#11(Schaevitz)	$\pm 0.31 \mathrm{~cm}$	-0.6303 mm/V
12	LVDT"12(Schaevitz)	$\pm 0.16 \mathrm{~cm}$	-0.3097 mm/V
13	LVDT\#13(Schaevitz)	$\pm 0.31 \mathrm{~cm}$	-0.6408 mm/V
14	LVDT\#14 (Schaevitz)		-0.6237 mm/V
15	Not Used	--	--
16	LVDT\#16(Schaevitz)	$\pm 0.31 \mathrm{~cm}$	-0.6379 mm/V
17	LVDT\#17(Schaevitz)		-0.5876 mm/V
18	LVDT\#18(Schaevitz)	"	-0.5953 mm/V
19	LVDT\#19 (Schaevitz)	"	-0.6161 mm/V
20	LVDT\#20(Schaevitz)	"	-0.6122 mm/V
21	LVDT\#21(Schaevitz)	" 16	-0.6284 mm/V
22	LVDT\#22(Schaevitz)	$\pm 0.16 \mathrm{~cm}$	-0.3104 mm/V
23	Load Cell (Bridge \#1)	*	
24	Strain Gauge \#24	2\%	674.45 micro-strain/mV
25	Strain Gauge \#25		
26	Strain Gauge \#26	"	"
$\begin{array}{r}27 \\ \hline 8\end{array}$	Strain Gauge \#27	${ }^{\prime \prime}$	$69 \mathrm{kPa} / \mathrm{mV}$
28 29	Abs. Pres. (Dynesco)	$0-6900 \mathrm{kPa}$	$6.9 \mathrm{kPa} / \mathrm{mV}$
29 30	Diff. Pres. (Validyne)	$\pm 552 \mathrm{kPa}$	${ }^{+}{ }^{+}$
30 31	Abs. Pres. (BLH)	0-3450 kPa	$92.8 \underset{\star}{\mathrm{kPa} / \mathrm{mV}}$
31 32	Load Cell ($1 / 2 \mathrm{Bridge}$	A) *	* ${ }^{*}$
32 33	Load Cell (1/2 Bridge $\mathrm{B}^{\text {(}}$	B)	*
33 34	Load Cell ($1 / 2$ Bridge	*	*
34 35	Load Cell (1/2 Bridge D)	J) ${ }_{-600^{\circ}-760^{\circ} \mathrm{C}}$	$\stackrel{*}{*}{ }^{\circ} \mathrm{O} 605{ }^{\circ} \mathrm{C} / \mathrm{HV}$
35	Thermocouple	$-60^{\circ}-760^{\circ} \mathrm{C}$	$0.5605{ }^{\circ} \mathrm{C} / \mathrm{\mu V}$

[^4]
APPENDIX VII

TEST DATA IN ENGINEERING UNITS

The raw-voltage outputs gathered from the instrumentation during testing were recorded in digital form on magnetic tape. The raw data was reduced to the form of engineering units with the aid of a Tektronix 4051 computer. The following pages document the complete test record in Standard International (SI) units. The record is organized chronologically by successive datalogger scans. The same data has been recorded on magnetic tape using a Tektronix 4051 computer. The tape record has been organized in an array format suitable for direct input in computer-aided analysis.

STRENGTH AND PERMEABILITY TESTS ON ULTRA-LARGE

STRIPA GRANITE CORE (Engineering Units Data)
This appendix contains instrumentation output gathered from a laboratory test program performed on a 1.89 meter high by 1.04 meter diameter cylindrical sample of quartz-monzonite rock recovered from the iron-ore mine at Stripa Sweden. The data is presented in engineering units.

The purpose of the test was to obtain the strength (unconfined compressive) and deformation (stress-strain) characteristics of the sample and to study the permeability of the core at different states of axial stress.

The core was placed in the triaxial vessel on 22 February 1980. After several attempts the vessel was sealed against leaks at a pressure of 1380 kPa and the core was tested on 20 March 1980. Axial load was applied to the sample at a rate of 11203 Newtons/minute but the loading ramp was interupted at four stages when the load was held constant while withdrawal and injection permeability tests were performed. The following summarizes the test program:

Time hr:min:sec	Duration hr:min:sec	Action
11:28:19-11:46:19	00:18:00	Initiate data gathering; zero load; vessel pressurizing
11:49:57-12:32:42	00:42:45	Zero load injection test
12:42:20-13:41:26	00:59:06	Lower piston; apply seating load
13:42:10-13:54:10	00:12:00	Loading to 0.85 MPa
14:03:16-14:53:22	00:50:06	Permeability testing at 0.85 MPa axial stress
14:58:20-15:26:16	00:27:56	Loading from 0.85 to 2.89 MPa
15:31:27-17:03:33	01:32:06	Permeability testing at 2.89 MPa axial stress
17:13:03-18:19:02	01:05:59	Loading from 2.89 to 5.55 MPa
18:22:35-19:58:47	01:36:12	Permeability testing at 5.55 MPa axial stress
20:18:36-20:55:05	00:36:29	Loading from 5.55 MPa to failure at 7.5 MPa peak axial stress
21:08:49-21:12:49	00:04:00	Permeability test on failed sample
21:19:50-21:42:31	00:22:41	Sample unloading
21:47:04-23:07:36	01:20:32	No load; vessel draining End of data gathering

Each instrument can be identified by its respective index number as shown below：

Index	Instrument	Units
	Time Base	day：hr：min：sec
1	Flow Meter	liters／min
2	LVDT \＃1（deformation）	mm
3	LVDT \＃ 2 （deformation）	mm
4	LVDT \＃ 3 （deformation）	mm
5	LVDT \＃ 5 （deformation）	mm
6	LVDT \＃ 6 （deformation）	mm
7	LVDT \＃ 7 （deformation）	mm
8	LVDT 8 （deformation）	mm
9	LVDT \＃ 9 （deformation）	mm
10	LVDT \＃10（deformation）	mm
11	LVDT \＃11（deformation）	mm
12	LVDT 非12（deformation）	mm
13	LVDT ${ }^{13}$（deformation）	mm
14	LVDT \＃14（deformation）	mm
15	LVDT \＃16（deformation）	mm
16	LVDT \＃17（deformation）	1 mm
17	LVDT \＃18（deformation）	mm
18	LVDT \＃19（deformation）	mm
19	LVDT \＃20（deformation）	mm
20	LVDT \＃21（deformation）	mm
21	LVDT \＃22（deformation）	mm
22	Load Cell（axial stress）	MPa
23	Strain Gage 非24	microstrain
24	Strain Gage 非25	microstrain
25	Strain Gage \＃26	microstrain
26	Strain Gage 非27	microstrain
27	Press．Trans（Abs．Vessel）	KPa
28	Press．Trans（Differential）	KPa
29	Press．Trans（Abs．Borehole）	KPa
30	Load Cells（Eccentricity）	cm
31	Thermocouple	degrees C

Scan \# 7

20:11:40:19

10	1 pm	2-4.0E-4	mm	3	0.0021	mm	$43.0 \mathrm{E}-4$	mm	$53.0 \mathrm{E}-4$	mm	$6 \quad 0$	mm	7 3.0E-4	mm
8-0.0013	mm	9-0.0013	mm	10	0	mm	110	mm	12-0.0022	mm	13-0.1878	mm	140.2812	mun
150	mm	16-6.0E-4	mm	17	0	mm	18-0.0013	mina	19-0.0013	mm	$20 \quad 0$	mm	21-4.0E-4	mm
$22 \quad 0$	MPa	230	ms	24	-6.8	ms	250	ms	260	ms	271374	KPa	28-1.779	KPa
291335	$\mathbf{K P a}$	300	cm	31	21.8	dC								
$\begin{aligned} & S \operatorname{can} \# 8 \\ & 20: 11: 42: 19 \end{aligned}$														
10	1 pm	2-4.0E-4	mm	3	0.0025	mm	4 3.0E-4	mm	$53.0 \mathrm{E}-4$	mm	$6 \quad 0$	mm	7 3.0E-4	mm
8-1.0E-3	mm	9-0.0016	mm	10	0	mm	11-7.0E-4	mm	12-0.0019	mm	13-0.1878	mm	140.3311	mm
150	mm	160	mm		-6.0E-4	mm	18-0.0019	mm	19-0.0013	mm	$20 \quad 0$	man	21-4.0E-4	mm
220	MPa	23 0	ms	24	-6.8	ms	250	ms	260	ms	271365	KPa	28-1.779	KPa
291326	KPa	300	cm	31	21.9	dC								
$\begin{aligned} & \text { Scan } \# \quad 9 \\ & 20: 11: 44: 19 \end{aligned}$														
10	1 pm	2-4.0E-4	mm	3	0.0025	mm	4 3.0E-4	mm	$53.0 \mathrm{E}-4$	mm	6-7.08-4	mm	$76.0 \mathrm{E}-4$	mm
8-1.0E-3	man	9-0.0013	mm	10	0	ma	110	mm	12-0.0013	mm	13-0.1833	mm	140.2818	mm
150	mm	160	mm	17	0	mm	18-0.0013	mm	19-0.0013	mm	200	mm	21-7.0E-4	mm
220	NPa	230	ms	24	-6.8	ms	250	ms	260	ms	271372	KPa	28-1.814	KPa
291333	$\mathbf{K P a}$	$30 \quad 0$	cm	31	21.7	dC								
$\begin{aligned} & \text { Scan } \$ 10 \\ & 20: 11: 46: 19 \end{aligned}$														
10	1 pm	2-4.0E-4	mm	3	0.0025	mm	$43.0 \mathrm{E}-4$	am	$5 \quad 0$	mm	$6 \quad 0$	mm	$76.0 \mathrm{E}-4$	mm
8-1.0E-3	mm	9-0,0016	mm	10	0	mm	110	mm	12-0.0019	mm	13-0.1948	mm	140.3723	mm
150	mm	160	mm	17	0	mm	18-0.0019	mm	19-0.0013	mm	$20 \quad 0$	mm	21-4.0E-4	mm
220	MPa	230	ms	24	-6.8	ms	250	ms	260	ms	271371	KPa	28-1.814	KPa
291332	KPa	300	cm	31	21.7	dC								

Scan 14

20:12:14:33

1	2.525	1 pm	$2-7.0 \mathrm{E}-4$	mm	3	0.0034	mm
$8-1.0 \mathrm{E}-3$	mm	$9-0.0022$	mm	10	0	mm	
15	0.0012	mm	16	0.0017	mm	17	0
22	0	MPa	23	0	ms	24	0
29	1316	KPa	30	0	cm	31	19.6
29	15 dC						

20:12:15: 3 12.334 lp 8-1.0E-3 mm $\begin{array}{ll}15 & 0.0012 \mathrm{~mm} \\ 22 & 0 \mathrm{mPa}\end{array}$ $29 \quad 1314 \mathrm{KPa}$ Scan \#16 20:12:15:33

1	2.049 lpm
$8-0.0013$	mm
15	0.0012 mm
22	0 MPa
29	1323 KPa

scan $\# 17$
20:12:16: 3

1	2.659	1 pm
$8-1.0 \mathrm{E}-3$	mm	
15	0.0012	mm
22	0	MPa
29	1327 KPa	

$2-7.0 \mathrm{E}-4$	mm	3	0.0034	mm	
$9-0.0022$	mm	10	0	mm	
16	0.0017	mm	17	0	mm
23	0	ms	24	-6.8	ms
30	0	cm	31	19.7	dC

Scan $\$ 18$
20:12:16:33

1	2.854	1 pm
$8-0.0013$	mm	
15	0.0012	mm
22	0	MPa
29	1332	KPa
can	19	
$0: 12: 17: 3$		
1	2.848	1 pm
$8-1.0 \mathrm{E}-3$	mm	
15	0.0012	mma
22	0	MPa
29	1342	KPa

$2-7.0 \mathrm{E}-4$	mm	3	0.0034	mm	
$9-0.0022$	mm	10	0	mm	
16	0.0017	mm	17	0	mm
23	0	ms	24	-6.8	ms

4	0	mm	$5-4.0 \mathrm{E}-4$	mm	6	0.0012	mm	7	0.0023	mm
11	0.0025	mm	120.0058	mm	$13-0.2339$	mm	14	1.884	mm	
$18-0.0031$	mm	$19-0.0013$	mm	20	0	mm	$21-7.0 \mathrm{E}-4$	mm		
25	-6.7	ms	26	0	ms	27	1374 KPa	28	0.698	KPa

$2-7.0 \mathrm{E}-4$	mm	3	0.0034	mm
$9-0.0022$	mm	10	0	mm
16	0.0023	mm	17	0
mm				
23	0	ms	24	-6.8
30	0	cm	31	19.7
		dC		

4	0	mm	$5-4.0 \mathrm{E}-4$	mm	60.0012	mm	7	0.002	mm
110.0018	mm	120.0055	mm	$13-0.2352$	mm	14	1.9426	mm	
$18-0.0031$	mm	$19-0.0013$	mm	20	0	mm	$21-7.0 \mathrm{E}-4$	mm	
25	-6.7	ms	26	0	ms	27	1380 KPa	28	1.326

Scan $\# 20$
20:12:17:33

1	2.415	1 pm
$8-1.0 \mathrm{E}-3$	mm	
15	0.0012	mm
22	0	MPa
29	1338	KPa

$2-7.0 \mathrm{E}-4$	mm	3	0.0034	mm	
$9-0.0026$	mm	10	0	mm	
16	0.0017	mm	17	0	mm
23	0	ms	24	-3.3	ms
30	0	cm	31	19.6	dC

4	0	mm	$5-4.0 \mathrm{E}-4$	mm	6	0.0012	mm	7	0.002	mm
110	0.0025	mm	120.0052	min	$13-0.2346$	mm	14	2.0262	mm	
$18-0.0037$	mm	$19-0.0013$	mm	20	0	mm	$21-7.0 \mathrm{E}-4$	mm		
25	-6.7	ms	26	0	ms	27	1366 KPa	28	0.907	KPa

Scan \#21
20:12:18: 3

$$
\begin{array}{rrr}
1 & 2.392 & \mathrm{lpt} \\
8-0.0013 \\
15 & 0.0012 \\
22 & 0 \mathrm{mP}
\end{array}
$$

$29 \quad 1325 \mathrm{KP}$

$2-7.0 \mathrm{E}-4$	mm	3	0.0034	mm	
$9-0.0022$	mm	10	0	mm	
16	0.0023	mm	17	0	mm
23	0	ms	24	-3.5	ms
30	0	cm	31	19.7	dC

| 4 | 0 | mm | $5-4.0 \mathrm{E}-4$ | mm | 60.0012 | mm | 7 | 0.002 | mm |
| :--- | ---: | :--- | ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 110.0025 | mm | 120.0049 | mm | $13-0.2307$ | mm | 14 | 2.02 | mm | |
| $18-0.0031$ | mm | $19-0.0013$ | mm | 20 | 0 | mm | $21-7.0 \mathrm{E}-4$ | mm | |
| 25 | -6.7 | ms | 26 | 0 | ms | 27 | 1351 KPa | 28 | 0.942 KPa |

Scan \# 30
**Coincedence point on Soltec Record:

12.461	1 pm	2-7.0E-4	mm	3	0.0034	mm	$4 \quad 0$	mm	5-4.0E-4	mm	60.0018	mm	7	0.002	mm
8-1.0E-3	mm	9-0.0026	mm	10	0	mm	110.0025	mm	120.004	mm	13-0.232	mm		1.81 .54	mm
150.0012	mm	160.0023	mm	17	0	mm	18-0.0037	mm	19-7.0E-4	mm	20-7.0E-4	mm		$7.0 \mathrm{E}-4$	mm
220	MPa	230	ms	24	-6.8	ms	$25 \quad-6.7$	ms	260	ms	27.1372	KPa	28	0.977	KPa
291345	KPa	300	cm	31	19.6	dC									
$\begin{aligned} & S \operatorname{can} \text { \# } 31 \\ & 20: 12: 26: 42 \end{aligned}$															
12.628	1 pm	2-7.0E-4	mm	3	0.0034	mm	$43.0 \mathrm{E}-4$	mm	5-4.0E-4	mm	60.0018	mm	7	0.003	mm
$8-1.0 \mathrm{E}-3$	mm	9-0.0026	mm	10	0	mmo	110.0031	mm	120.0037	mm	13-0.2333	min		1.7387	mm
150.0012	mm	160.0023	mm	17	0	mm	18-0.0037	mm	19-0.0013	mm	$20 \quad 0$	mm		7.0E-4	mm
220	MPa	230	ms	24	-0.8	ms	$25-6.7$	ms	260	ms	271375	KPa	28	1.081	KPa
291334	KPa	300	cm	31	19.6	dC									
$\begin{aligned} & \text { Scan } \# 32 \\ & 20: 12: 28: 42 \end{aligned}$															
12.486	1 pm	2-7.0E-4	mm	3	0.0034	mm	40	mm	5-4.0E-4	mm	60.0018	mm.	7	0.0027	mm
8-1.0E-3	mm	9-0.0026	mm	10	3.0E-4	mm	110.0031	mm	120.0043	mm	13-0.2397	mm	14	1.6651	mm
150.0012	mm	160.0023	mm		6.0E-4	mm	18-0.0037	mm	19-0.0013	mm	200	mm		7.0E-4	mm
220	MPa	$23 \quad 5.9$	ms	24	0	ms	$25-6.7$	ms	260	ms	271362	KPa	28	1.186	KPa
291321	KPa	$30 \quad 0$	cm	31	19.6	dC									
Scan \# 33															
12.254	Ipm	2-7.0E-4	mmom	3	0.0031	mm	40	mm	5-4.0E-4	mm	60.0018	mm	7	0.0027	mm
8-1.0E-3	mm	9-0.0026	mm	10	0	mm	110.0031	mm	120.0046	mm	$13-0.239$	mm	14	1.6832	mm
150.0012	mm	160.0029	mill		6.0E-4	mm	18-0.0037	mm	19-0.0013	mm	$20 \quad 0$	mm		7.0E-4	mm
220	MPa	230.8	ms	24	0	ms	$25-6.7$	ms	260	ms	271361	KPa	28	0.942	KPa
291320	KPa	30.0	cm	31	19.6	dC									
Scan \# 34															
**End of flow test at 0.5 ps 20:12:32:42															
1 1	1 pm	2-7.0E-4	mm	3	0.0034	mm	40	mm	5-4.0E-4	mm	60.0018	mm	7	0.0027	mm
8-1.0E-3	mm	9-0.0026	mm	10	0	mm	110.0031	mm	120.0052	mm	13-0.2371	min	14	1.7231	min
150.0012	mm	160.0029	mm	17	0	mm	18-0.0037	mim	19-0.0013	mm	$20 \quad 0$	mm		$1.0 \mathrm{E}-3$	mm
220	MPa	230	ms:	24	0	ms	$25-6.7$	ms	260	ms	271363	KPa	28	1.047	KPa
291322	KPa	300	cm	31	19.7										

**STRENGTH AND PERMEABILITY TESTING ON ULTRA-LARGE																
**STRIPA GRANITE CORE (Engineering Units Data)																
**12:42:20-13:41:26 **Lower piston; apply seating load																
Scan \#35																
$20: 12: 42: 20$																
1001 pm	2-7.0E-4	mm	3	0.0031	mm	4	0	mm	5-4.0E-4	mm	6	0.0018	mm	7	0.003	mm
8-1.0E-3 mm	9-0.0022	mm	10	0	mm		0.0031	mm	120.0027	mm		-0.239	mm		1.9826	mm
$156.0 \mathrm{E}-4 \mathrm{~mm}$	160.0029	mm	17	0	mm		-0.005	mm	19-0.0013	mm		7.0E-4	mm		$7.0 \mathrm{E}-4$	mm
$22 \quad 0 \mathrm{MPa}$	$23 \quad 6.5$	ms	24	0	ms	25	-0.2	ms	$26 \quad 6.5$	ms	27	1327	KPa	28	-1.5	KPa
$29 \quad 1290 \mathrm{KPa}$	300	cm	31	19.7	dC											
Scan \# 36																
20:12:44:20																
$1 \quad 01 \mathrm{pm}$	2-7.0E-4	mm	3	0.0031	mm	4	0	mm	5-4.0E-4	mm	6	0.0018	mm		0.0034	mm
$8-7.0 \mathrm{E}-4 \mathrm{~mm}$	9-0.0022	mm	10	0	mm		0.0031	mm	120.0012	mm		-0.241	mm		1.9214	mm
$156.0 \mathrm{E}-4 \mathrm{~mm}$	160.0029	mm	17	0	mm	18-	0.0056	mm	19-0.0013	mm		7.0E-4	mm		7.0E-4	mm
220 MPa	$23 \quad 6.7$	ms	24	5.9	ms	25	0	ms	$26 \quad 6.7$	ms	27	1327	KPa	28	-1.5	KPa
291290 KPa	300	cm	31	19.7	dC											

$\begin{aligned} & \text { Scan } 37 \\ & 20: 12: 46: 20 \end{aligned}$													
10	1 pm	2-7.0E-4	mm	30.0031	mm	40	mm	5-4.0E-4	mm	60.0018	mm	70.0034	mm
8-7.0E-4	mm	9-0.0022	mm	10.0	mm	110.0031	mm	$129.0 \mathrm{E}-4$	mm	13-0.2397	mm	141.8572	mm
15 6.0E-4	mm	160.0029	mm	17-6.0E-4	mm	18-0.0056	mm	19-0.0013	mm	20-7.0E-4	mm	21-7.0E-4	mm
220	MPa	23 6.7	ms	$24 \quad 0.8$	ms	250	ms	$26 \quad 6.7$	ms	271327	KPa	$28-1.5$	KPa
291290	KPa	300	CII	3119.8	dC								
$\begin{aligned} & \text { Scan } 38 \\ & 20: 12: 48: 20 \end{aligned}$													
10	1 pm	2-7.0E-4	mm	30.0031	mm	4 - 0	mim	5-4.0E-4	mm	60.0012	mm	70.0034	mm
8-1.0E-3	mm	9-0.0026	mm	100	mm	110.0031	mm	120.0034	mm	13-0.2397	mm	141.8684	mm
150.0012	mm	160.0029	mm	170	mm	18-0.005	mm	19-0.0013	m	20-7.0E-4	mm	21-7.0E-4	mm
220	MPa	$23 \quad 6.7$	ms	240	ms	250	ms	$26 \quad 6.7$	ms	271327	KPa	$28-1.5$	RPa
291290	RPa	$30 \quad 0$	cII	$31 \quad 19.9$	dC								
$\begin{aligned} & \text { scan } \# 39 \\ & 20: 12: 50: 20 \end{aligned}$													
10	1 pm	2-7.0E-4	mm	30.0031	mm	40	mm	5-4.0E-4	mm	60.0018	mm	70.0034	mm
8-7.0E-4	mm	9-0.0026	mm	100	mm	110.0031	喵	120.004	mm	13-0.2422	mm	141.8684	mm
$156.0 \mathrm{E}-4$	mm	160.0029	mm	170	mm	18-0.005	mm	19-0.0013	mm	20-0.0013	mm	21-7.0E-4	mm
22.0	MPa	2366	ms	$24 \quad 5.9$	ms	250	ms	$26 \quad 6.7$	ms	271327	KPa	$28-1.5$	KPa
291290	KPa	300	cm	3119.8	dC								
$\begin{aligned} & 5 \operatorname{can} \neq 40 \\ & 20: 12: 52 ; 20 \end{aligned}$													
	1 pm	2-7.0E-4	mm	30.0031	mm	$4 \quad 0$	mm	5-4.0E-4	mm	60.0012	mm	70.0037	mm
8-7.0E-4	mm	9-0.0022	mm	100	mm	110.0025	mm	120.0024	mm	$13-0.248$	mm	141.8622	mm
150.0012	mm	160.0023	mm	170	mm	18-0.005	mm	19-0.0013	mm	20-7.0E-4	mm	21-7.0E-4	mm
220	MPa	$23 \quad 6.7$	ms	$24 \quad 6.7$	ms	256	ms	266.7	ms	271326	KPa	$28-1.5$	KPa
291290	KPa	300	cm	$31 \quad 19.7$	dC								
$\begin{aligned} & \text { Scan } \# 41 \\ & 20: 12: 54: 20 \end{aligned}$													
10	1pm	2-7.0E-4	mm	30.0031	mm	40	mm	5-4.0E-4	mm	60.0018	mm	70.0037	mm
8-7.0E-4	m	9-0.0026	mm	$10 \quad 0$	mm	110.0031	mm	120.0027	mm	13-0.2487	mm	141.8036	mm
15 6.08-4	man	160.0029	mm	17-6,0E-4	mm	18-0.0056	mm	19-0.0013	mm	20-7.0E-4	mm	21-7.0E-4	mm
220	MPa	$23 \quad 6.7$	ms	$24 \quad 6.7$	ms	256.8	ms	$26 \quad 6.7$	ms	271326	KPa	$28-1.5$	KPa
291289	KPa	300	cm	3119.8	dC								
$\begin{aligned} & \text { Scan } 42 \\ & 20: 12: 56: 20 \end{aligned}$													
10	1 pm	2-7.0E-4	mim	30.0031	mm	40	mm	5-4.0E-4	mm	60.0018	mm	70.0037	mm
8-1.0E-3	mam	9-0.0022	mm	100	mm	110.0025	min	120.0027	mm	13-0.2467	mm	141.8784	mm
150.0012	mm	160.0029	mim	17-6.0E-4	mm	18-0.005	mm	19-0.0013	mm	20-7.0E-4	mm	21-7.0E-4	mm
220	MPa	$23 \quad 6.7$	ms	$24 \quad 6.7$	ms	250.8	ms	$26 \quad 6.7$	ms	271326	KPa	$28-1.5$	KPa
291289	KPa	300	cm	$31 \quad 19.7$	dC								
Scan \# 43													
20:12:58:20													
10	1 pm	2-7.0E-4	mm	30.0031	mm	40	mm	5-4.0E-4	mm	60.0012	mm	70.0037	mm
8-1.0E-3	tum	9-0.0022	mm	100	mm	110.0025	mm	120.0027	mm	13-0.2531	mm	141.9663	mm
$156.0 \mathrm{E}-4$	mm	160.0023	mm	170	mm	18-0.005	mm	19-0.0013	mm	20-7.0E-4	mm	21-7.0E-4	mm
22 0	MPa	$23 \quad 6.7$	ms	$24 \quad 6.7$	ms	250	ms	$26 \quad 6.7$	ms	271326	KPa	$28-1.5$	KPa
291289	KPa	$30 \quad 0$	Cm	3119.6	dC								
$\begin{aligned} & \text { Scan } * 44 \\ & 20: 13: 0: 20 \end{aligned}$													
10	1 pm	2-7.0E-4	mm	30.0031	mm	$4 \quad 0$	mm	5-4.0E-4	mm	60.0018	mm	70.0037	mm
8-7.0E-4	mm	9-0.0022	mm	100	mm	110.0025	mm	120.0037	um	13-0.2448	mm	141.8928	mm
150.0012	min	160.0023	mm	17-6.0E-4	mm	18-0.005	mm	19-0.0013	nm	20-7.0E-4	mm	21-7.0E-4	mm
220	MPa	2312.7	ms	$24 \quad 6.7$	ms	256	ms	26 6.7	ms	271326	KPa	$28-1.5$	KPa
291289	KPa	300	cm	3119.8	dC								

Scan \# 45

$\begin{aligned} & \text { Scan \#53 } \\ & 20: 13: 21: 26 \end{aligned}$													
10	$\mathrm{l}^{\text {pm }}$	2-0,0085	mm	30.0021	mm	4-0.0092	mm	5-7.0E-4	mm	60.0105	mm	7-0.0058	mm
8-0.0028	mm	9-0.0044	mm	10-4.0E-4	mm	1.1-0.00\$7	mm	120.0037	mon	13-0.2608	mm	141.8404	mm
15-0.0083	mm	16-0.0394	mim	17 5.0E-4	min	18-0.0081	mm	19-0.0356	mim	20-0.0685	mm	21-0.0016	mm
220	MPa	2312.7	ms	$24 \quad 6.7$	ms	250.8	m8	$26 \quad 13.5$	m8	271309	KPa	$28-1.5$	KPa
291274	KPa	$30 \quad 0$	cm	31.19 .6	dc								
$\begin{aligned} & \text { Scan } \# 54 \\ & 20: 13: 23: 26 \end{aligned}$													
10	1 pm	2-0.0085	mm	30.0021	mm	4-0.0092	mm	5-7.0E-4	mm	60.0111	mm	7-0.0062	mm
8-0.0031	mm	9-0.0048	min	10-4.0E-4	mm	11-0.0057	mill	120.0058	mm	13-0.2634	mm	141.7768	mm
15-0.009	mm	16-0.0435	mm	17 5.0E-4	mm	18-0.0093	mm	19-0.0392	mm	20-0.0761	mm	21-0.0016	mm
220	MPa	$23 \quad 13.5$	ms	$24 \quad 6.7$	ms	25 0	ms	$26 \quad 13.5$	ms	271310	KPa	$28-1.5$	KPa
291274	KPa	$30 \quad 0$	cm	31. 19.7	dC								
Scan * 55 **Seating load applied.$20: 13: 25: 26$													
10	1pm	2-0.0102	mm	30.0015	mm	4-0.0199	mm	5-1.0E-3	mm	60.0099	mill	7-0.0133	mm
8-0.0041	mm	9-0.0066	mm	10-4.0E-4	mm	11-0.0076	mm	120.0058	mm	13-0.2679	mm	141.7138	mm
15-0.0173	mm	16-0.0764	mm	17 5.0E-4	mm	18-0.021	mm	19-0.0729	mm	$20-0.127$	mm	21-0.0031	mm
220.04	MPa	$23 \quad 13.5$	ms	$24 \quad 6.7$	ms	$25-11.8$	ms	2613.5	ms	271322	KPa	$28-1.5$	KPa
29. 1285	KPa	30 0	cm	3119.6	dC								
Scan * 56 **Begin load record: 20:13:27:26													
10	1 pm	2-0.0108	m	30.0012	mm	4-0.0217	mm	5-0.0013	mm	60.0099	mm	7-0.0154	mm
8-0,0041	mm	9-0.0069	mm	10-7.0E-4	mm	11-0.0076	mm	120.0043	\%	13-0.2724	mm	141.6763	mm
15-0.0185	mm	16-0.0823	mm	17 5.0E-4	mm	18-0.0259	mm	19-0.0796	mm	20-0.1364	mm	21-0.0038	mm
$22 \quad 0.04$	MPa	2313.5	ms	$24 \quad 6.7$	ms	$25-13.5$	ms	2613.5	ms	271321	KPa	$28-1.5$	KPa
291285	KPa	$30 \quad 0$	cm	3119.6	dC								
$\begin{aligned} & \text { Scan } \# 57 \\ & 20: 13: 29: 26 \end{aligned}$													
10	1pm	2-0.0108	mm	30.0012	mm	4-0.0217	mm	5-0.0013	min	60.0099	mm	7-0.0154	mm
8-0.0041	mim	9-0.0069	mm	10-7.0E-4	mm	11-0.0076	mm	120.0046	mm	$13-0.273$	mm	141.6146	mm
15-0.0185	mm	16-0.0817	घ	17 5.0E-4	mm	18-0.0265	mm	19-0.0802	mm	20-0.137	min	21-0.0038	mm
220.04	MPa	$23 \quad 13.5$	ms	$24 \quad 6.7$	ms	$25-13.5$	ms	$26 \quad 13.5$	ms	271322	KPa	$28-1.5$	KPa
291285	KPa	$30 \quad 0$	cm	3119.7	dc								
$\begin{aligned} & \text { Scan } 58 \\ & 20: 13: 31: 26 \end{aligned}$													
10	1 pm	2-0.0108	mm	30.0012	mm	4-0.0217	mim	5-0.0013	mm	60.0099	mm	7-0.0154	mm
8-0.0041	mm	9-0.0069	mm	10-7.0E-4	mm	11-0.0076	mm	120.004	mmm	$13-0.273$	mm	141.6265	mm
15-0.0185	mm	16-0.0823	mm	17 5.0E-4	mm	18-0.0265	mm	19-0.0802	mm	20-0.137	mm	21-0.0038	mm
220.04	MPa	2313.5	ms	$24 \quad 6.7$	ms	$25-13.5$	ms	$26 \quad 13.5$	ms	271322	KPa	$28-1.5$	KPa
291286	KPa	$30 \quad 0$	cm	3119.5	dC								
$\begin{aligned} & \text { Scan } 59 \\ & 20: 13: 33: 26 \end{aligned}$													
$1 \quad 0$	1 pm	2-0.0112	mm	30,0012	mm	4-0.0217	mpm	5-0.0013	mm	60.0099	mm	7-0.0154	mm
8-0.0041	mim	9-0.0073	mm	10-4.0E-4	mm	11-0.0076	mm	120.0046	mm	13-0.2672	mm	141.594	mm
15-0.0185	mm	16-0,0823	${ }^{\text {mm }}$	17 5.0E-4	mm	18-0.0265	mm	19-0.0809	mm	20-0.137	mm	21-0.0038	mm
220.04	MPa	2313.5	ms	$24 \quad 6.7$	ms	$25-13.5$	ms	$26 \quad 13.5$	ms	271323	KPa	$28-1.5$	KPa
291286	KPa	300	cm	$31 \quad 19.7$	dC								
$\begin{aligned} & \text { Scan }{ }^{20} \\ & 20: 13: 35: 26 \end{aligned}$													
10	1 pm	2-0.0108	mm	30.0012	mm	4-0.0217	mm	5-0.0013	mm	60.0099	mm	7-0.0154	mm
8-0.0041	mm	9-0.0069	mm	10-7.0E-4	mm	11-0.0076	mm	120.0049	mm	13-0.2743	mim	141.5878	mm
15-0.0185	mm	16-0.0823	mm	17 5.0E-4	mm	18-0.0272	mm	19-0.0802	mm	20-0.1364	mm	21-0.0038	mm
220.04	MPa	2313.5	ms	$24 \quad 6.7$	ms	$25-13.5$	ms	$26 \quad 13.5$	ms	271323	KPa	$28-1.5$	KPa
291286	KPa	$30 \quad 0$	cm	$31-19.4$	dC								

$20: 13: 37: 26$					
10	1 pm	2-0.0108	mm	30.0012	mm
8-0.0041	mm	9-0.0069	mm	10-7.0E-4	mm
15-0.0185	mm	16-0.0823	mm	$17.5 .0 \mathrm{E}-4$	mm
220.04	MPa	$23 \quad 13.5$	ms	$24 \quad 6.7$	ms
291286	KPa	$30 \quad 0$	cm	$31 \quad 19.5$	dC
Scan \#1 62					
10	lpm	2-0.0108	mm	3 9.0E-4	mm
8-0.0041	mm	9-0.0073	mm	10-7.0E-4	mm
15-0.0185	mm	16-0.0823	mm	$175.0 \mathrm{E}-4$	mm
220.04	MPa	$23 \quad 19.4$	ms	$24 \quad 6.7$	ms
291286	KPa	$30 \quad 0$	cm	$31 \quad 19.5$	dC
$\begin{aligned} & \text { Scan } \begin{array}{l} \text { Sc } 63 \\ 20: 13: 41: 26 \end{array} \end{aligned}$					
10	1 pm	2-0.0112	mm	$39.0 \mathrm{E}-4$	mm
8-0.0041	mm	9-0.0073	mm	10-7.0E-4	mm
15-0.0185	mm	16-0.0823	mm	17 5.0E-4	mm
$22 \quad 0.04$	MPa	$23 \quad 20.2$	ms	$24 \quad 12.7$	ms
291287	KPa	$30 \quad 0$	cm	3119.6	dC

4-0.0217	mm	5-0.0013	mm	60.0092	mm	7-0.0154	mm
11-0.0076	mm	120.004	mm	13-0.2724	mm	141.5672	mm
18-0.0272	mm	19-0.0802	mm	20-0.137	mm	21-0.0038	mm
$25-19.4$	ms	26 13.5	ms	271323	KPa	$28-1.5$	KPa
4-0.0217	mm	5-0.0013	mm	60.0092	mm	7-0.0154	mm
11-0.0076	घ1m	120.0037	mm	13-0.2743	mm	141.7094	mm
18-0.0272	mm	19-0.0809	mm	20-0.137	mm	21-0.0038	m
$25-14.3$	ms	$26 \quad 13.5$	ms	271323	KPa	$28-1.5$	KPa

$4-0.022$	mm	$5-0.0013$	mm	60.0092	mm	$7-0.0154$	mm
$11-0.0076$	mm	120.0037	mm	$13-0.2749$	mm	141.6701	mm
$18-0.0278$	mm	$19-0.0809$	mm	20	-0.137	mm	$21-0.0041$
$25-13.5$	ms	26	13.5	ms	27	1323 KPa	28
-1.5	KPa						

**Strength and permeability testing on ultra-large
**STRIPA GRANITE CORE (Engineering Units Data)
**13:42:10-13:54:10
**Loading to 0.85 MPa
Scan \# 64
**Start loading:
20:13:42:10

1	0	$l \mathrm{pm}$	$2-0.0112$	mm	3	$9.0 \mathrm{E}-4$
$8-0.0041$	mm	$9-0.0073$	mm			
$15-0.0185$	mm	$16-0.0823$	mm	$10-7.0 \mathrm{E}-4$	mm	
22	0.04	MPa	23	20.2	ms	24
29	1287	KPa	30	0	cm	13.5

Scan \# 65
20:13:42:40

1	0	1 pm	$2-0.0112$	mm	$39.0 \mathrm{E}-4$	mm
$8-0.0044$	mm	$9-0.0069$	mm	$10-7.0 \mathrm{E}-4$	mm	
$15-0.0185$	mm	$16-0.0823$	mm	17	$5.0 \mathrm{E}-4$	mm
22	0.02	MPa	23	20.2	ms	24
29	1285	KPa	30	0	cm	13.5

Scan \# 66
20:13:43:10

$1 \quad 0$	1 pm	2-0.0105	mm	30.0012	mm	4-0.0181	mm	5-1.0E-3	mm	60.0105	mm	7-0.0133	mm
8-0.005	mm	9-0.0066	mm	10-7.0E-4	mm	11-0.0076	mm	120.0021	mm	13-0.2717	mm	141.6626	mm
15-0.0179	mm	16-0.0747	mm	17 5.0E-4	mm	18-0.0247	mm	19-0.0729	mm	20-0.1245	mm	21-0.0031	mm
$22 \quad 0.02$	MPa	$23 \quad 20.2$	ms	$24 \quad 13.5$	ms	$25-3.4$	ms	$26 \quad 16.7$	ms	271318	KPa	$28-1.5$	KPa
291282	KPa	300	cm	3119.6	dC								
Scan \# 67													
20:13:43:40													
$1 \quad 0$	1 pm	2-0.0102	mm	30.0018	mm	4-0.0144	mm	5-7.0E-4	mm	60.0105	mm	7-0.0116	mm
8-0.0053	mm	9-0.0063	mm	10-7.0E-4	mm	11 -0.007	mm	120.0021	mm	13-0.2724	mm	141.6745	mm
15-0.0166	mm	16-0.0653	mm	17 5.0E-4	mm	18-0.0204	mm	19-0.0643	mm	20-0.1087	mm	21-0.0028	mm
220	MPa	$23 \quad 20.2$	ms	$24 \quad 13.5$	ms	25 0	ms	$26 \quad 20.2$	ms	271316	KPa	$28-1.5$	KPa
291280	KPa	$30 \quad 0$	cm	3119.6	dC								

10	1 pm	2-0.0098	mm	30.0015	mm	4-0.0129	mm	5-7.0E-4	mm	60.0105	mm	7-0.0103	mm
8-0.0053	mm	9-0.006	mm	10-7.0E-4	mm	$11-0.007$	mm	120.0034	0	13-0.273	mm	141.6957	m
15-0.0154	mm	16-0.0612	mm	17 5.0E-4	mm	18-0.0185	mm	19-0.0594	mm	20-0.1006	mm	21-0.0025	mm
220	MPa	$23 \quad 20.2$	ms	2413.5	ms	250	ms	$26 \quad 20.2$	ms	271316	KPa	$28-1.5$	KPa
291280	KPa	300	cm	3119.4	dC								
$\begin{aligned} & \text { Scan } \ddagger 69 \\ & \text { 20:13:44:40 } \end{aligned}$													
10	1 pm	2-0.0105	mm	30.0012	mm	4-0.0199	mm	5-1.0E-3	mm	60.0099	mm	7-0.0147	mm
8-0.0053	mon	9-0.0069	mm	10-7.0E-4	mm	11-0.0076	mm	120.0037	mm	13-0.2711	mm	141.7007	mm
15-0.0192	mm	16-0.0888	mm	17 5.0E-4	mm	18-0.037	mim	19-0.0876	mm	20-0.1477	mim	21-0.0041	mm
220.1	MPa	23 23.9	ms	2413.5	ms	$25-13.5$	ms	$26 \quad 17$	ms	271329	KPa	$28-1.43$	KPa
291293	KPa	300	cm	3119.6	dC								
$\begin{aligned} & \text { Scan } \# 70 \\ & 20: 13: 45: 10 \end{aligned}$													
10	1pm	2-0.0304	mm	3-0.0117	mm	4-0.0642	mm	5-0.0184	mm	60.0099	mm	7-0.0556	mm
$89.0 \mathrm{E}-4$	min	9-0.0129	mm	10-0.0033	mm	$11-0.007$	mm	120.004	mm	$13-0.273$	min	141.682	mm
15-0.0275	mim	16-0.1599	mm	17 5.0E-4	mm	18-0.1097	mm	19-0.1659	mm	20-0.2621	mm	21-0.0078	mm
$22 \quad 0.3$	MPa	$23 \quad 30.6$	ms	$24 \quad 17$	ms	$25-43.8$	m6	2610.2	ms	271339	KPa	$28-1.43$	KPa
291302	KPa		cm	3119.6	dC								
Scan \# 71													
20:13:45:40													
$1 \quad 0$	1 pm	2-0.049	mm	3-0.0318	mm	4-0.0963	mm	5-0.0336	mm	60.0136	1 m	7-0.0959	mm
80.0074	mm	9-0.0179	mm	10-0.0062	mm	11-0.0045	mm	120.0046	mm	13-0.2717	mm	141.6738	mm
15-0.0339	mim	$16-0.221$	mm	170	mm	18-0.1904	mm	19-0.2418	mm	20-0.3613	mim	21-0.0115	mm
220.6	MPa	$23 \quad 33.7$	ms	$24 \quad 20.2$	ms	$25-67.5$	ms	263.5	m8	271343	KPa	$28-1.535$	KPa
291306	KPa	$30 \quad 2.4$	cm	3119.5	dC								
Scan \# 72													
20:13:46:10													
10	1 pm	2-0.0544	mm	3-0.0381	mm	4-0.1058	mm	5-0.0383	mm	60.0154	mm	7-0.1089	mm
80.0092	mim	9-0.0195	mm	10-0.0075	mm	11-0.0026	mm	120.0043	mm	13-0.2743	mm	141.6807	mm
15-0.0364	mm	16-0.2427	mm	17 5.0E-4	mm	18-0.2249	mm	19-0.2725	mm	20-0.3984	mm	21-0.0131	mm
$22 \quad 0.76$	MPa	$23 \quad 33.7$	ms	$24 \quad 20.2$	ms	$25-77.6$	ms	$26-3.3$	ms	271344	KPa	28-1.535	KPa
291306	KPa	$30 \quad 2.4$	cm	3119.6	dC								
Scan \# 73													
20:13:46:40													
10	1 pm	2-0.0568	mm	3-0.0404	mm	4-0.1097	$\underline{m m}$	5-0.0402	mm	60.0154	mm	7-0.1143	m
80.0105	mm	9-0.0204	min	10-0.0081	mm	11-0.0019	mm	120.003	mm	13-0.2762	minl	141.6888	mm
15-0.0377	mm	16-0.248	mm	17 5.0E-4	mm	18-0.2366	mm	19-0.2829	mm	20-0.4097	mm	21-0.0137	mm
$22 \quad 0.81$	MPa	$23 \quad 33.7$	ms	$24 \quad 20.2$	ms	$25-80.9$	mS	$26-6.8$	ms	271345	KPa	$28-1.535$	KPa
291307	KPa	$30 \quad 2.5$	cm	3119.5	dC								
Scan \# 74													
20:13:47:10													
10	1 pm	2-0.0584	mm	3-0.0422	mm	4-0.1113	mm	5-0.0411	mm	60.0161	mm	$7-0.117$	mm
80.0111	mm	9-0.0207	mm	10-0.0081	mm	11-0.0013	mm	120.0034	mm	13-0.2743	mm	141.7038	mm
15-0.0383	mm	16-0.2515	mm	17 5.0E-4	mm	18-0.2428	mm	19-0.2884	mm	20-0.416	mim	21-0.014	mm
$22 \quad 0.81$	MPa	$23 \quad 33.7$	ms	$24 \quad 20.2$	ms	$25-80.9$	ms	26-6.8	ms	271345	KPa	28-1.535	KPa
291307	KPa	$30 \quad 2.6$	cm	3119.5	dC								
Scan \# 75													
1.0	1 pm	2-0.0588	mm	3-0.0426	mm	4-0.1119	mm	5-0.0414	mm	60.0161	mm	7-0.1177	mm
80.0111	mm	9-0.0207	mm	10-0.0081	mm	11-0.0013	mm	120.0034	mm	13-0.2743	mm	141.7231	mm
15-0.0383	mm	16-0.2527	mm	$175.0 \mathrm{E}-4$	mm	18-0.2446	mm	19-0.2902	mm	20-0.4179	mm	$21-0.014$	mm
$22 \quad 0.79$	MPa	$23 \quad 33.7$	ms	$24 \quad 20.2$	ms	$25-80.9$	ms	$26-6.8$	ms	271345	KPa	$28-1.535$	KPa
291307	KPa	$30 \quad 2.5$	cm	3119.6	dC								

**STRENGTH AND PERMEABILITY TESTING ON ULTRA-LARGE
**STRIPA GRANITE CORE (Engineering Units Data)
**14:03:16-14:53:22
**Permeability testing at 0.85 MPa axial stress
Scan 89
**Approximate steady flow at 10.3 KPa (1.5 psi) injection: 20:14: 3:16

12.619	1 pm	2-0.0625	mm	3-0.0457	mm	4-0.1165	mm	5-0.0433	mm	60.0179	mm	7-0.1235	mm
80.0148	mm	9-0.0226	mm	10-0.0088	mm	11 6.0E-4	mm	120.008	mm	13-0.2865	mm	141.7281	m
15-0.0402	mm	16-0.2556	mm	170.0017	mm	18-0.2582	mn	19-0.3031	mm	20-0.4292	min	21-0.0153	mm
220.85	MPa	$23 \quad 27$	ms	$24 \quad 13.7$	ms	$25-94.2$	ms	$26-13.5$	ms	271354	KPa	2810.257	KPa
291336	KPa	$30 \quad 1.9$	cm	3119.9	dC								
Scan \# 90													
20:14: 4:16													
12.626	1pm	2-0.0628	mm	3-0.0457	mm	4-0.1168	mm	5-0.0433	mm	60.0179	mm	7-0.1235	mm
80.0151	mm	9-0.0226	mm	10-0.0085	mm	110	mm	120.0083	mm	13-0.2884	mm	141.7437	mm
15-0.0402	mim	16-0.2556	mm	170.0017	mm	18-0.2588	mm	19-0.3037	mm	20-0.4292	mm	21-0.0153	mm
$22 \quad 0.85$	MPa	$23 \quad 27$	ms	$24 \quad 13.5$	ms	25-94.4	ms	$26-13.5$	ms	271366	KPa	288.896	KPa
291335	KPa	$30 \quad 2.3$	cm	3119.8	dC								

Scan \# 91
20:14: 5:16

1	2.726	1 pm
8	0.0151	mm
$15-0.0402$	mm	
22	0.85	MPa
29	1349 KPa	

$$
\begin{array}{rll}
2-0.0628 & \mathrm{~mm} & \\
9-0.0226 & \mathrm{~mm} & 1 \\
16-0.2556 & \mathrm{~mm} & 1
\end{array}
$$

Scan \# 92
20:14: 6:16

1	2.856
8	0.0154
$15-0.0402$	
22	0.87
29	1332
Scan $\#$	93
$20: 14:$	$7: 16$

$$
9-0.0226 \mathrm{~mm}
$$

$$
\begin{array}{rrr}
3 & -0.046 & \mathrm{~mm} \\
10-0.0085 & \mathrm{~mm} \\
17 & 0.0017 & \mathrm{~mm} \\
24 & 13.5 & \mathrm{~ms} \\
31 & 19.8 & \mathrm{dC}
\end{array}
$$

$$
\begin{array}{rrrrrr}
16-0.2562 & \mathrm{~mm} & 17 & 0.0017 & \mathrm{~mm} \\
23 & 27 & \mathrm{~ms} & 24 & 13.5 & \mathrm{~ms} \\
30 & 2 & \mathrm{~mm} & 21 & 10 \mathrm{~g} & \mathrm{dr}
\end{array}
$$

20:14: 7:16

1	2.726	1 pm
8	0.0157	mm
$15-0.0402$	mm	
22	0.85 MPa	
29	1334 KPa	

$$
\begin{array}{rrrr}
2-0.0632 & \mathrm{~mm} & \\
9-0.0226 & \mathrm{~mm} & 1 \\
16-0.2562 & \mathrm{~mm} & 1 \\
23 & 27 & \mathrm{~ms} & 2 \\
30 & 2.2 & \mathrm{~cm} & 3
\end{array}
$$

an \# 94
20:14: 8:16

1	2.844	1 pm
8	0.0157	mm
$15-0.0402$	mm	
22	0.85	MPa

$\begin{array}{ll}22 & 0.85 \mathrm{MPa} \\ 29 & 1346 \mathrm{KPa}\end{array}$ Scan \# 95
20:14: 9:16

1	2.653	1 pm
8	0.016	mm
$15-0.0402$	mma	
22	0.87	MPa
29	1348	KPa
Scan	96	
$20: 14: 10: 16$		
1	2.731	1 pm
8	0.016	mm
$15-0.0402$	mm	
22	0.85	MPa
29	1325	KPa

$2-0.0635$	mm	$3-0.0463$	mm	
$9-0.0229$	mm	$10-0.0088$	mm	
$16-0.2562$	mm	17	0.0023	mm
23	27	ms	24	13.5
30	2	cm	31	19.9
ms				
		dC		

$\left.\begin{array}{rrrrl}2-0.0635 & \mathrm{~mm} & 3-0.0463 & \mathrm{~mm} \\ 9-0.0229 & \mathrm{~mm} & 10-0.0088 & \mathrm{~mm} \\ 16-0.2562 & \mathrm{~mm} & 170.0023 & \mathrm{~mm} \\ 23 & 27 & \mathrm{~ms} & 24 & 13.5 \\ 30 & 1.7 & \mathrm{~cm} & 31 & 20\end{array}\right) \mathrm{dC}$

Scan 97
20:14:11:16

1	2.672	1 pm
8	0.016	mm
$15-0.0402$	mm	
22	0.85	MPa
29	1338	KPa
Scan	年	98
$20: 14:$		
12	2.16	
8	2.622	1 pm
15	0.0163	mm
$15-0.0402$	mm	
22	0.87	MPa
29	1351	KPa

30

$$
2-0.0628 \mathrm{~mm}
$$

$$
3-0.046 \text { mim }
$$

$2-0.0635$	mm	$3-0.0463$	mm	
$9-0.0229$	mm	$10-0.0088$	mm	
$16-0.2562$	mm	17	0.0023	mm
23	27	ms	24	13.5
30	2.1	cm	31	20

$$
\begin{array}{rrr}
4-0.1171 & \mathrm{~mm} \\
11 & 6.0 \mathrm{E}-4 & \mathrm{~mm} \\
18 & -0.26 & \mathrm{~mm} \\
25 & -94.4 & \mathrm{~ms} \\
& & \\
& \ddots & \\
4-0.1171 & \mathrm{~mm} \\
11 & 0.0012 & \mathrm{~mm} \\
18 & -0.26 & \mathrm{~mm} \\
25 & -94.4 & \mathrm{~ms}
\end{array}
$$

$$
\begin{array}{rr}
5-0.0436 & \mathrm{~mm} \\
120.0092 & \mathrm{~mm} \\
19-0.3043 & \mathrm{~mm} \\
26 & -13.5
\end{array} \mathrm{~ms} .
$$

$$
\begin{array}{r}
60.0185 \mathrm{~mm} \\
13-0.2941 \\
20-0.4298 \\
\mathrm{~mm} \\
27 \quad 1352 \mathrm{mPa}
\end{array}
$$

$$
\begin{array}{r}
7-0.1239 \\
141.7443 \\
21-0.0153 \\
28 \quad 9.55 \\
28
\end{array}
$$

$$
\begin{array}{rrrrrr}
3-0.046 & \mathrm{~mm} & 4-0.1171 & \mathrm{~mm} & \\
10-0.0085 & \mathrm{~mm} & 11 & 0.0012 & \mathrm{~mm} & 1 \\
17 & 0.0017 & \mathrm{~mm} & 18 & -0.26 & \mathrm{~mm} \\
24 & 13.5 & \mathrm{~ms} & 25 & -94.4 & \mathrm{~ms} \\
2
\end{array}
$$

$$
\begin{array}{rrrrrr}
5-0.0436 & \mathrm{~mm} & 60.0179 & \mathrm{~mm} & 7-0.1239 & \mathrm{~mm} \\
120.0083 & \mathrm{~mm} & 13-0.2941 & \mathrm{~mm} & 141.7075 & \mathrm{~mm} \\
19-0.3043 & \mathrm{~mm} & 20-0.4298 & \mathrm{~mm} & 21-0.0153 & \mathrm{~mm} \\
26 & -18.5 & \mathrm{~ms} & 27 & 1366 \mathrm{KPa} & 28 \\
26 & 9.733 \mathrm{KPa}
\end{array}
$$

$4-0.1174$	mm	$5-0.0439$	mm	60.0185	mm	$7-0.1239$	mm		
11	$6.0 \mathrm{E}-4$	mm	120.0071	mm	13	-0.298	mm	14	1.7131
18	-0.26	mm	$19-0.3043$	mm	$20-0.4305$	mm	$21-0.0153$	mm	
25	-94.4	ms	26	-20.3	ms	27	1378	KPa	28
				8.582 KPa					

$4-0.1174$	mm	$5-0.0439$	mm	60.0185	mm	$7-0.1239$	mm
110.0012	mm	120.0064	mm	$13-0.2999$	mm	141.7368	mm
$18-0.2607$	mm	$19-0.3043$	mm	$20-0.4305$	mm	$21-0.0153$	mm
25	-94.4	ms	26	-15.3	ms	27	1365

4-0.1174	mm	5-0.0439	mm	60.0185	mm	7-0.1239	mm
110.0012	mm	120.0055	mm	13-0.3018	mm	141.7387	nm
18-0.2613	mm	19-0.3049	Itm	20-0.4305	mm	21-0.0153	mm
$25-94.4$	ms	$26-18.5$	ms	271355	KPa	288.791	KPa

Scan 作 99
**Stop flow:

Scan 非107							
20:14:53:22							
1	0.006	1 pm	$2-0.0672$	mm	$3-0.0489$	mm	
8	0.0173	mm	$9-0.0229$	mm	$10-0.0101$	mm	
$15-0.0441$	mm	$16-0.2662$	mm	17	0.0065	mm	
22	0.85	MPa	23	27	ms	24	13.5
29	1306	KPa	30	2.2	cm	31	22.6

**STRENGTH AND PERMEABILITY TESTS ON ULTRA-LARGE
**STRIPA GRANITE CORE (Engineering Units Data)
**14:58:20-15:26:16
**Loading from 0.85 MPa to 2.89 MPa
Scan \#108
**Initial readings:

$20: 14: 58: 20$						
1	0	lpu	$2-0.0672$	mm	$3-0.0489$	mm
8	0.017	mm	$9-0.0229$	mm	$10-0.0101$	mm
$15-0.0447$	mm	$16-0.2662$	mm	17	0.0065	mm
22	0.85	MPa	23	27	ms	24
29	1305	KPa	30	2.2	cm	31

$4-0.1229$	mm	
11	0	mm
$18-0.2779$	mm	
25	-87.6	ms

$5-0.0461$	mm	60.0185	mm	$7-0.1327$	mm	
120.0068	mm	$13-0.3352$	mm	14	3.644	mm
$19-0.3227$	mm	$20-0.4437$	mm	$21-0.0153$	mm	
26	-13.5	ms	27	1343 KPa	28	-1.5 KPa

**Resume loading:
20:15: 0:28

san 非111

20:15: 1:28

10	1 pm	2-0.0699	mm	3-0.052	mm	4-0.1281	mm	5-0.0486	mm	6	0.0204	mm	7-0.1399	mm
80.0179	mm	9-0.0236	mm	10-0.0107	mm	$116.0 \mathrm{E}-4$	mm	120.0058	mm	13	-0.348	mm	143.6945	mm
15-0.0447	mm	16-0.2727	mm	170.0065	mm	18-0.297	mm	19-0.338	mm	20	-0.46	mm	21-0.0162	mm
221.1	MPa	$23 \quad 33.7$	ms	$24 \quad 17$	ms	$25-94.4$	ms	$26-20$	ms	27	1344	KPa	$28-1.465$	KPa
291307	KPa	301.6	cm	3121.7	dC									
Scan \#112														
20:15: 1:58														
10	1 pm	2-0.0773	mim	3-0.0596	mm	4-0.1388	mm	5-0.0538	mm	6	0.0241	mm	7-0.1559	mm
80.0219	mm	9-0.0251	mm	10-0.012	mm	110.0018	m	120.0061	mm		-0.3473	mm	143.6615	mm
15-0.046	mm	16-0.2868	mm	$17 \quad 0.016$	mm	18-0.3303	mm	19-0.368	mm		-0.4927	mm	21-0.0171	mm
$22 \quad 1.36$	MPa	$23 \quad 33.7$	ms	$24 \quad 20.2$	ms	$25-104.5$	ms	$26-30.2$	ms	27	1345	KPa	$28-1.5$	KPa
291309	KPa	$30 \quad 1.8$	cm	$31 \quad 21.7$	dC									
Scan \#113														
20:15: 2:28														
10	1 pm	2-0.0841	mm	3-0.0662	mm	4-0.1486	mm	5-0.0576	mm	6	0.0278	mm	7-0.1713	mm
80.0275	mm	9-0.0267	mm	10-0.0137	mm	110.0025	mm	120.0068	mm		-0.3499	mm	143.6883	mm
15-0.0479	$\mathrm{mm}^{\text {m }}$	16-0.3009	mm	170.0321	mim	18-0.3623	mm	19-0.3986	mm		-0.5247	mm	21-0.0184	mm
221.6	MPa	$23 \quad 37.3$	ms	$24 \quad 23.7$	ms	$25-114.7$	ms	$26-40.2$	ms	27	1346	KPa	$28-1.5$	KPa

$\begin{aligned} & \text { Scan 非114 } \\ & \text { 20:15: } 2: 58 \end{aligned}$													
10	lpm	2-0.0895	mm	3-0.0715	mm	4-0.1562	mm	5-0.0607	mm	60.0315	mm	7-0.1846	mm
$8 \quad 0.033$	nm	9-0.028	mm	10-0.0153	mm	110.0031	mm	120.0064	mm	13-0.3499	mm	143.7525	mm
15-0.0504	$\mathrm{mm}^{\text {m }}$	$16-0.312$	mm	170.0476	mm	18-0.3894	mm	19-0.4255	mm	20-0.5492	mm	21-0.0196	mm
$22 \quad 1.84$	MPa	$23 \quad 40.4$	ms	$24 \quad 26.9$	mS	$25-124.8$	ms	$26-50.5$	ms	271347	KPa	$28-1.5$	KPa
291311	KPa	$30 \quad 1.8$	cm	3121.5	dC								
Scan \#115													
20:15: 3:28													
10	1 pm	2-0.0946	mm	3-0.0766	mm	4-0.1632	mm	5-0.0632	mm	$6 \quad 0.034$	mm	7-0.1969	mm
80.0405	mm	9-0.0289	mm	10-0.0166	mm	110.0037	mm	120.0061	mm	13-0.3473	mm	143.7987	man
15-0.0523	mm	16-0.3214	mm	170.0625	mm	18-0.4128	mm	19-0.4494	mm	$20-0.57$	mm	21-0.0208	mm
$22 \quad 2.07$	MPa	$23 \quad 40.4$	ms	$24 \quad 26.9$	ms	$25-131.5$	ms	$26-57.2$	ms	271347	KPa	$28-1.5$	KPa
291311	$\mathbf{K P a}$	$30 \quad 1.8$	cm	3121.6	dC								
Scan ${ }^{\text {\% }} 116$													
20:15: 3:58													
10	1 pm	2-0.0989	mm	3-0.0807	mm	4-0.1693	Imm	5-0.0647	mm	60.0371	mm	7-0.2098	mm
80.0479	mm	9-0.0302	mm	10-0.0179	mm	110.0044	mm	120.0061	mm	13-0.3505	mm	143.7338	mm
15-0.0536	mm	16-0.3297	mm	170.0785	mm	18-0.4332	mm	19-0.4708	mm	20-0.5894	mm	21-0.0215	mm
$22 \quad 2.29$	MPa	$23 \quad 40.4$	ms	$24 \quad 26.9$	ms	$25-138.3$	ms	$26-64$	ms	271348	KPa	$28-1.5$	KPa
291312	KPa	$30 \quad 1.5$	cm	3121.5	dC								
Scan \#117													
20:15: 4:28													
180	1 pm	$2-0.103$	mm	3-0.0844	mm	4-0.1754	mm	5-0.0666	mm	60.0396	mm	7-0.2224	mm
80.0562	mm	9-0.0311	mm	10-0.0188	mm	110.0044	mm	120.0064	mm	13-0.3518	mm	143.6958	mm
15-0.0555	mm	16-0.3379	mm	$17 \quad 0.097$	mm	18-0.4529	mm	19-0.4916	mm	20-0.6077	mim	21-0.0224	mm
$22 \quad 2.53$	MPa	$23 \quad 40.4$	ms	$24 \quad 30.4$	ms	$25-145$	ms	$26-74$	ms	271349	KPa	28-1.535	KPa
291312	KPa	$30 \quad 1.4$	cm	3121.6	dC								
Scan \#118													
20:15: 4:58													
10	lpm	$2-0.107$	mm	3-0.0879	mm	4-0.1806	mm	5-0.0678	mm	60.0421	mm	7-0.2344	mm
80.0643	mm	9-0.032	mm	10-0.0201	mm	110.005	mm	120.0064	mm	13-0.3512	mm	143.6827	mm
15-0.0568	mm	16-0.3443	mm	170.1136	mm	18-0.4714	mm	19-0.5124	mm	20-0.6234	mm	$21-0.023$	mm
$22 \quad 2.76$	MPa	$23 \quad 40.4$	ms	$24 \quad 33.7$	ms	$25-151.7$	ms	$26-84.2$	ms	271349	KPa	$28-1.5$	KPa
$29 \quad 1313$	KPa	$30 \quad 1.4$	cm	3121.5	dc								
Scan \#119													
20:15: 5:28													
10	1 pm	2-0.1094	mm	3-0.0901	mm	4-0.1843	mm	5-0.0688	mm	60.0439	mm	7-0.2422	mm
80.0704	mm	9-0.0327	mm	10-0.0208	mm	110.005	mm	120.0064	mm	$13-0.355$	mm	143.6558	mm
15-0.0568	mm	16-0.3485	mm	170.1244	mm	18-0.4819	$\underline{m m}$	19-0.5241	mm	20-0.6322	mm	21-0.0236	mm
$22 \quad 2.89$	MPa	$23 \quad 44.1$	ms	$24 \quad 33.7$	ms	25-155.1	ms	$\begin{array}{ll}26 & -87.7\end{array}$	ms	271350	KPa	28-1.535	KPa
$29 \quad 1314$	KPa	$30 \quad 1.4$	cm	3121.5	dC								
Scan 120													
20:15: 5:58													
10	1 pm	2-0.1101	mm	$3-0.091$	mm	4-0.1855	mm	5-0.0691	mm	60.0433	min	7-0.2446	mm
80.0732	mim	9-0.033	mm	10-0.0208	mm	110.005	mm	120.0068	mm	13-0.3589	mm	143.6265	mm
15-0.0568	mm	16-0.3496	mm	170.1273	mm	18-0.4862	mm	19-0.5277	mm	20-0.6347	mm	21-0.0236	mim
$22 \quad 2.89$	MPa	2343.5	ms	$24 \quad 33.7$	ms	25-155.1	ms	$26-90.9$	ms	271350	KPa	$28-1.535$	KPa
$29 \quad 1314$	KPa	$30 \quad 1.2$	cm	$31 \quad 21.4$	dC								
Scan \#121													
20:15: 6:28													
10	1 pm	2-0.1104	mm	3-0.0914	mm	4-0.1861	mm	5-0.0691	mm	60.0439	mm	7-0.2456	mm
80.0742	mm	9-0.033	mm	10-0.0208	mm	110.005	mm	120.0068	mm	13-0.3601	mm	143.6272	mm
15-0.0568	mam	16-0.3502	mm	170.1235	cur:	18-0.488	mm	19-0.529	mm	20-0.6353	mm	21-n.'	
$\cdots 2.89$	MPa	2340.4	ms	$\begin{array}{ll}24 & 33.7\end{array}$	ms	25-155.1	ms	26-94.4	ms	271351	KPa	28-1.535	KPa
291315	KPa	301	cm	$31 \quad 21.4$	dC								

20:15: 8:16													
10	1 pm	2-0.1111	mm	3-0.0917	mm	4-0.1871	mm	5-0.0694	mm	60.0439	mm	7-0.2473	mm
$8 \quad 0.076$	mm	9-0.033	mm	10-0.0208	mm	110.0056	mm	120.0071	mm	13-0.3672	mm	143.5336	mm
15-0.0568	mm	16-0.3514	mm	170.1297	mm	18-0.4899	mm	19-0.5308	.mm	20-0.6359	mm	21-0.0239	mm
$22 \quad 2.89$	MPa	$23 \quad 40.4$	ms	$24 \quad 33.7$	ms	25-155.1	ms	$26-94.4$	ms	271351	KPa	$28-1.535$	KPa
291315	KPa	$30 \quad 1.2$	cm	3121.3	dC								
Scan \#123 $^{\text {d }}$													
20:15:10:16													
10	lpm	2-0.1118	mm	3-0.092	mm	4-0.188	mm	5-0.0694	mm	60.0439	mm	7-0.248	mm
80.0769	mm	9-0.033	mm	10-0.0205	mm	110.005	mm	120.0074	mm	$13-0.364$	mm	$14 \quad 3.387$	mm
15-0.0568	mm	16-0.3514	mm	170.1303	mm	18-0.4905	mm	19-0.532	mm	20-0.6372	mm	21-0.0239	mm
$22 \quad 2.89$	MPa	$23 \quad 40.4$	ms	$24 \quad 33.7$	ms	$25-155.1$	ms	26-94.4	ms	271352	KPa	28-1.535	KPa
291316	KPa	$30 \quad 1.3$	cm	$31 \quad 21.2$	dC								
Scan $⿰ 124$													
20:15:12:16													
10	1pm	2-0.1121	mm	3-0.092	mm	4-0.1886	mm	5-0.0694	mm	60.0439	mm	7-0.249	mm
80.0782	mm	$9-0.033$	mm	10-0.0208	mm	110.0056	mm	120.0068	mm	13-0.3691	mm	142.1248	mm
15-0.0568	mm	$16-0.352$	mm	170.1315	mm	18-0.4911	mm	19-0.5332	mm	20-0.6384	mm	21-0.0243	mim
$22 \quad 2.89$	MPa	$23 \quad 40.4$	ms	$24 \quad 33.7$	ms	25-155.1	ms	$26-94.4$	ms	271352	KPa	28-1.535	KPa
291316	KPa	$30 \quad 1.3$	cm	3121.1	dc								
Scan \#125													
20:15:14:16													
1.0	1 pm	2-0.1124	mm	3-0.092	mm	4-0.1889	mm	5-0.0694	mm	60.0433	mm	7-0.2494	mm
80.0788	mm	9-0.033	mm	10-0.0208	mm	110.005	mm	120.0064	mm	13-0.3736	mm	142.0181	mm
15-0.0568	mm	16-0.3526	mm	170.1315	mm	18-0.4911	mm	19-0.5338	mm	20-0.6391	mm	21-0.0243	mm
$22 \quad 2.89$	MPa	$23 \quad 40.4$	ms	$24 \quad 33.7$	ms	25-155.1	ms	$26-94.4$	ms	271352	KPa	28-1.535	KPa
291316	KPa	301.3	cm	3121	dC								
Scan \#126													
20:15:16:16													
10	1 pm	2-0.1124	mm	$3-0.092$	mm	4-0.1895	mm	5-0.0694	mm	60.0433	mm	7-0.2497	mm
80.0794	mm	9-0.0333	mm	10-0.0208	mm	110.005	mm	120.0064	mm	13-0.3749	mm	141.8684	mm
15-0.0568	mm	16-0.3526	mm	170.1315	mm	18-0.4911	mm	19-0.5345	mm	20-0.6397	mm	21-0.0243	mm
$22 \quad 2.89$	MPa	$23 \quad 40.4$	ms	$24 \quad 33.7$	ms	25-155.1	ms	26-94.4	ms	271353	KPa	28-1.535	KPa
$29 \quad 1317$	KPa	$30 \quad 1.3$	cm	3120.9	dC								
Scan \#127													
20:15:18:16													
10	lpm	2-0.1128	mm	$3-0.092$	mm	4-0.1898	mm	5-0.0694	mm	60.0433	mm	7-0.2501	mm
80.0797	mim	9-0.0333	mm	10-0.0208	mm	110.0056	mm	120.0058	mm	13-0.3736	mm	141.8734	mm
15-0.0568	mm	16-0.3532	mm	170.1321	mm	18-0.4911	mim	19-0.5351	mm	20-0.6403	mm	21-0.0243	mm
$22 \quad 2.89$	MPa	$23 \quad 40.4$	ms	$24 \quad 27.7$	ms	$25-155.1$	ms	26-94.4	ms	271353	KPa	$28-1.535$	KPa
291317	KPa	301.2	cm	3120.7	dC								
Scan \#128													
20:15:20:16													
10	1 pm	2-0.1128	mm	3-0.092	mm	4-0.1901	mm	5-0.0694	mm	60.0433	mm	7-0.2504	mm
80.08	mm	9-0.0333	mm	10-0.0208	mm	110.005	mm	120.0055	mm	13-0.3781	mm	141.7574	mm
15-0.0568	mm	16-0.3532	mm	170.1327	mm	18-0.4917	mm	19-0.5357	mma	20-0.6416	mm	21-0.0243	man
$22 \quad 2.91$	MPa	$23 \quad 40.4$	ms	$24 \quad 26.9$	ms	25-155.1	ms	26-94.4	ms	271353	KPa	28-1.535	KPa
291317	KPa	$30 \quad 1.5$	cm	$31 \quad 20.7$	dC								
Scan $\$ 129$													
20:15:22:16													
10	1pm	2-0.1131	mm	3-0.092	mm	4-0.1904	mm	5-0.0694	mm	60.0433	mm	7-0.2504	mm
80.0807	mm	9-0.0333	mm	10-0.0208	mm	110.005	mm	120.0049	mm	13-0.3819	mm	141.7387	mm
15-0.0568	mm	16-0.3538	mm	170.1351	mm	18-0.4917	mm	19-0.5357	mm	20-0.6428	mm	21-0.0243	mm
$22 \quad 2.89$ MP	MPa	$23 \quad 40.4$	ms	$24 \quad 32.9$	ms	25-155.1	ms	$26-94.4$	ms	271354	KPa	28-1.535	KPa
291318	KPa	301.5	cm	3120.6	dC								

$\begin{aligned} & \text { Scan } \# 130 \\ & 20: 15: 24: 16 \end{aligned}$												
$1 \quad 0.1 \mathrm{pm}$	2-0.1135	mm	$3-0.092$	mm	4-0.1907	mm	5-0.0694	mm	60.0439	mm	7-0.2504	mm
80.081 mm	9-0.0333	mm	10-0.0208	mm	110.0056	mm	120.0058	mm	$13-0.38$	mm	141.5516	mm
15-0.0568 mm	16-0.3538	mm	170.1351	mm	18-0.4917	mm	19-0.5357	mm	20-0.6435	mm	21-0.0239	mm
$22 \quad 2.9 \mathrm{MPa}$	$23 \quad 40.4$	ms	$24 \quad 27.7$	ms	25-155.1	ms	$26-94.4$	ms	271354	KPa	$28-1.57$	KPa
$29 \quad 1318 \mathrm{KPa}$	301.5	cm	3120.6	dC								
Scan 非31												
20:15:26:16												
$1 \quad 01 \mathrm{pm}$	2-0.1165	mm	3-0.092	mm	4-0.191	mm	5-0.0694	mm	60.0433	mm	7-0.2508	mm
80.081 mm	9-0.033	mm	10-0.0208	mm	110.0056	mm	12-0.2286	mm	13-0.4524	mm	140.8781	mm
15-0.0568 mm	16-0.3538	mm	170.1351	mm	18-0.4923	mm	19-0.5277	mm	20-0.6441	mm	21-0.0277	mm
$22 \quad 2.9 \mathrm{MPa}$	$23 \quad 46.4$	ms	$24 \quad 32.9$	ms	$25-143.3$	ms	26-88.6	ms	271354	KPa	$28-1.57$	KPa
291318 KPa	$30 \quad 1.7$	cm	3120.5	dC								
**STRENGTH AND PERMEABILITY TESTS ON ULTRA-LARGE												
**STRIPA GRANITE CORE (Engineering Units Data)												
**15:31:27-17:03:33												
**Permeability testing at 2.89 MPa axial stress												
Scan \#132												
$\cdots \star$ Initial readings:												
20:15:31:27												
10.006 lpm	2-0.1172	mm	3-0.092	mm	4-0.1916	mm	5-0.0694	mm	60.0433	mm	7-0.2511	mm
80.0819 mm	9-0.0333	mm	10-0.0208	mm	110.005	mm	12-0.2624	mm	$13-0.48$	mm	140.6654	mm
15-0.0568 mm	16-0.3543	mm	170.1351	mm	18-0.4917	mm	19-0.5302	mm	20-0.6454	mm	$21-0.028$	mm
$22 \quad 2.89 \mathrm{MPa}$	$23 \quad 47.2$	ms	$24 \quad 33.7$	ms	$25-141.6$	ms	$\begin{array}{lll}26 & -87.7\end{array}$	ms	271393	KPa	$28 \quad 26.06$	KPa
$29 \quad 1376 \mathrm{KPa}$	301.5	cm	$31 \quad 20.4$	dC								
Scan \#133												
**Approximate steady flow at $15.9 \mathrm{KPa}(23 \mathrm{psi})$ injection:												
20:15:43: 4												
11.8731 pm	2-0.1182	mm	3-0.092	mm	4-0.1923	mm	5-0.0697	mm	60.0433	mm	7-0.2511	mm
80.0868 mm	9-0.0346	mm	10-0.0208	mm	110.0056	mim	12-0.2682	mmm	$13-0.503$	mm	140.3099	mm
15-0.0568 mm	16-0.3543	mm	$17 \quad 0.144$	mm	18-0.4917	mm	19-0.5375	mm	20-0.646	mm	$21-0.028$	mm
$22 \quad 2.9 \mathrm{MPa}$	2347.2	ms	$24 \quad 33.7$	ms	25-141.6	ms	$\begin{array}{ll}26 & -87.7\end{array}$	ms	271373	KPa	2815.629	KPa
$29 \quad 1358 \mathrm{KPa}$	301.6	cm	3120.5	dC								
Scan \#134												
20:15:44: 4												
11.836 lpm	2-0.1185	mm	$3-0.092$	mm	4-0.1926	mm	5-0.0694	mm	60.0433	mm	7-0.2508	mm
80.0871 mm	9-0.0342	mm	10-0.0208	mma	110.0056	mun	12-0.2689	mm	13-0.5037	mm	140.4165	mm
15-0.0568 mm	16-0.3543	mm	$17 \quad 0.144$	mm	18-0.4917	mm	19-0.5375	mm	20-0.646	mm	$21-0.028$	mm
$22 \quad 2.9 \mathrm{MPa}$	$23 \quad 47.2$	ms	$24 \quad 33.7$	ms	$25-141.6$	ms	$26-87.7$	ms	271346	KPa	2815.489	KPa
$29 \quad 1331 \mathrm{KPa}$	$30 \quad 1.6$	cm	3120.5	dC								
Scan $⿰ 1135$												
20:15:45: 4												
18.8341 pm	2-0.1185	mm	3-0.092	mm	4-0.1923	mm	5-0.0694	mm	60.0433	mm	7-0.2508	mm
80.0875 mm	9-0.0342	mm	10-0.0208	mm	110.0056	mm	12-0.2723	mm	13-0.505	mm	140.4446	mum
15-0.0568 mm	16-0.3543	mm	170.1446	mm	18-0.4917	mm	19-0.5381	mm	20-0.646	mm	$21-0.028$	mm
$22 \quad 2.89 \mathrm{MPa}$	$23 \quad 47.2$	ms	$\begin{array}{ll}24 & 33.7\end{array}$	ms	$25-141.6$	ms	$26-87.7$	ms	271373	KPa	2816.048	$\mathrm{KPa}^{\text {a }}$
$29 \quad 1345 \mathrm{KPa}$	$30 \quad 1.6$	cm	3120.5	dC								
Scan $\geqslant 136$												
20:15:46: 4												
$1 \quad 1.817 \mathrm{lpm}$	2-0.1185	mm	3-0.092	mm	4-0.1926	mm	5-0.0694	mm	60.0433	mm	7-0.2508	mm
80.0875 mm	9-0.0342	mm	10-0.0208	mm	110.0056	mm	12-0.2713	mm	13-0.5069	mm	140.3592	mm
15-0.0568 mm	16-0.3543	mm	170.147	man	18-0.4917	mm	19-0.5381	mm	20-0.646	mm	$21-0.028$	mm
$22 \quad 2.9 \mathrm{MPa}$	23 47.2	ms	$24 \quad 33.7$	ms	25-141.6	ms	$\begin{array}{ll}26 & -87.7\end{array}$	ms	271368	KPa	2815.245	KPa
$29 \quad 1353 \mathrm{KPa}$	$30 \quad 1.7$	cm	3120.5	dC								

$\begin{aligned} & \text { Scan \#137 } \\ & 20: 15: 47: 4 \end{aligned}$													
11.828	1 pm	2-0.1185	mm	$3-0.092$	mm	4-0.1926	mm	5-0.0697	mm	60.0433	mm	7-0.2508	mm
80.0878	nim	9-0.0342	mm	10-0.0208	mm	110.0062	mm	12-0.2747	mm	13-0.5075	mm	140.4452	mm
15-0.0568	mm	16-0.3543	mm	170.1476	mm	18-0.4923	ma	19-0.5375	mm	20-0.646	mm	$21-0.028$	mm
$22 \quad 2.89$	MPa	$23 \quad 47.2$	ms	$24 \quad 33.7$	ms	25-141.6	ms	$\begin{array}{ll}26 & -87.7\end{array}$	ms	271359	KPa	2815.734	KPa
291332	KPa	301.6	cm	3120.5	dC								
Scan \#138													
20:15:48: 4													
11.815	1 pm	2-0.1185	mm	3-0.092	mm	4-0.1926	mm	5-0.0694	mm	60.0433	m	7-0.2508	mm
80.0881	mm	9-0.0342	mm	10-0.0208	mm	110.0056	mm	12-0.2754	mm	13-0.5075	mm	140.2806	mm
15-0.0568	mm	16-0.3543	mm	170.1476	mm	18-0.4917	mm	19-0.5387	mm	20-0.6454	mm	$21-0.028$	mm
$22 \quad 2.9$	MPa	$23 \quad 47.2$	ms	$24 \quad 33.7$	ms	25-141.6	ms	$26-87.7$	ms	27. 1367	KPa	2815.594	KPa
291353	KPa	301.7	cm	3120.5	dC								
20:15:49: 4													
11.861	1 pm	2-0.1185	mm	$3-0.092$	mm	4-0.1926	mm	5-0.0694	mm	60.0433	mm	7-0.2508	mm
80.0881	mm	9-0.0346	mm	10-0.0208	mm	110.0062	mm	12-0.2661	mm	13-0.5082	mm	140.1783	mm
15-0.0568	mm	16-0.3543	mm	170.1482	mm	18-0.4917	mm	19-0.5406	mm	20-0.646	mm	21-0.0283	mm
$22 \quad 2.89$	MPa	$23 \quad 47.2$	ms	$24 \quad 33.7$	ms	25-141.6	ms	$26-87.7$	ms	271364	KPa	2815.524	KPa
291336	KPa	$30 \quad 1.5$	cm	3120.6	dC								
Scan \#140													
**Approximate steady flow at 27.5 KPa (4 psi) injection:													
12.789	1 pm	2-0.1189	mm	3-0.092	mm	4-0.1929	mm	5-0.0697	mm	60.0433	man	7-0.2501	mm
80.0899	ma	9-0.0346	mm	10-0.0208	mm	110.0069	mm	12-0.2593	mm	13-0.5139	mm	140.0548	mm
15-0.0568	mm	16-0.3543	mm	170.1505	mm	18-0.4917.	mm	19-0.5436	mm	20-0.646	mm	$21-0.028$	mm
22.2 .9	MPa	$23 \quad 47.2$	ms	$24 \quad 33.7$	ms	25-141.6	ms	$26-94.1$	ms	271360	KPa	2824.839	KPa
291345	KPa	301.6	cm	3120.6	dC								
Scan \#141													
20:15:56:39													
12.781	1 pm	2-0.1189	mm	$3-0.092$	mm	4-0.1929	mm	5-0.0697	mm	60.0433	mm	7-0.2501	mm
80.0899	mm	9-0.0346	mm	10-0.0208	mm	110.0069	mm	12-0.2617	mm	13-0.5146	mm	14-0.1092	mm
15-0.0568	mm	16-0.3543	mm	170.1505	mm	18-0.4917	mm	19-0.5424	mm	20-0.646	mm	21-0.0283	mm
$22 \quad 2.89$	MPa	$23 \quad 47.2$	ms	$24 \quad 33.7$	ms	$25-141.6$	ms	$26-89.4$	ms	271389	KPa	2826.548	KPa
291375	KPa	301.6	cm	3120.6	dC								
Scan \#142													
20:15:57:39													
12.517	lpm	2-0.1192	mm	3-0.0923	mm	4-0.1929	mm	5-0.0697	mm	60.0439	mm	7-0.2501	mm
80.0902	mm	9-0.0346	mm	10-0.0208	mm	110.0069	mm	12-0.2543	mm	13-0.5152	mm	14-0.2127	mm
15-0.0568	mm	16-0.3543	mim	170.1505	mm	18-0.4917	mm	19-0.5412	mm	20-0.646	mm	$21-0.028$	man
$22 \quad 2.89$	MPa	$23 \quad 47.2$	ms	$24 \quad 33.7$	ms	25-141.6	ms	$\begin{array}{ll}26 & -87.7\end{array}$	ms	271365	KPa	$28 \quad 24.35$	KPa
291349	KPa	301.6	cm	3120.6	dC								
Scan 非143													
20:15:58:39													
12.798	1 pm	2-0.1192	mm	3-0.092	mm	4-0.1929	mm	5-0.0697	mm	60.0439	mm	7-0.2501	mm
80.0905	Imm	9-0.0349	mm	10-0.0208	mm	110.0069	mm	12-0.262	mm	13-0.5152	mm	14-0.2277	mm
15-0.0568	mm	16-0.3543	mm	170.1511	ma	18-0.4917	mm	19-0.5424	mm	20-0.646	mm	$21-0.028$	mm
$22 \quad 2.9$	MPa	$23 \quad 47.2$	ms	$24 \quad 33.7$	ms	25-141.6	ms	$26-87.7$	ms	271354	KPa	2826.339	KPa
291355	KPa	$30 \quad 1.6$	cm	3120.6	dC								

Scan 非152

20：16：9：25

$1 \quad 1.774$	1 pm	2－0．1195	mm	3－0．092	mm	4－0．1935	mm	$5 \quad-0.07$	mm	60.0439	mm	7－0．2504	mm
80.0912	mm	9－0．0349	mm	10－0．0208	mm	110.0075	mm	12－0．2614	mm	13－0．5235	mm	14－0．3094	mm
15－0．0575	mm	16－0．3543	mm	170.1529	mm	18－0．4923	mm	19－0．5443	mm	20－0．6466	mm	$21-0.028$	mm
$22 \quad 2.89$	MPa	2352.3	ms	$24 \quad 33.7$	ms	$25-134.9$	ms	$26-87.7$	mS	271386	KPa	2815.629	KPa
291360	KPa	301.7	cm	$31 \quad 20.7$	dC								
Scan $⿰ ⿰ 三 丨 ⿰ 丨 三 一 153$													
20：16：13： 2													
10.006	1 pm	2－0．1195	mm	3－0．0923	mm	4－0．1935	mm	$5 \quad-0.07$	mm	60.0439	mm	7－0．2508	mm
80.0912	mm	9－0．0346	mm	10－0．0208	mal	110.0075	mm	12－0．2862	mm	13－0．5274	mm	14－0．3368	mm
15－0．0575	mm	16－0．3543	mm	170.1529	mm	18－0．4929	mm	19－0．5467	mm	20－0．6466	mm	$21-0.028$	mm
$22 \quad 2.9$	MPa	$23 \quad 53.9$	ms	$24 \quad 33.7$	ms	$25-134.9$	ms	$26-87.7$	ms	271351	KPa	$28 \quad 0.174$	KPa
291319	KPa	$30 \quad 1.6$	cm	$31 \quad 20.7$	dC								

＊＊Approximate steady flow at $10.3 \mathrm{KPa}(1.5 \mathrm{psi})$ withdrawal： 20：16：56：10

1	0.873	1 pm	$2-0.1205$	mm	$3-0.0958$	mm
8	0.0881	mm	$9-0.0342$	mm	$10-0.0211$	mm
$15-0.0581$	mm	$16-0.3579$	mm	17	0.1571	mm
22	2.89	MPa	23	53.9	ms	24
29	1217	KPa	30	1.7	cm	31

Scan 非155
＊＊Stop flow：
20：16：58：33

10.006	1 pm	2－0．1205	mm	3－0．0958	mm	4－0．1959	mm	5 5－0．07	mm	60.0433	mm	7－0．2559	mm
80.0881	mm	9－0．0346	mm	10－0．0211	mm	110.0056	mm	12－0．2812	mm	13－0．5492	mm	14－0．3574	mm
15－0．0575	rm	16－0．3579	mm	170.1571	mm	18－0．4985	mm	19－0．5577．	mm	20－0．6523	mm	$21-0.028$	mm
$22 \quad 2.9$	MPa	$23 \quad 53.9$	ms	2440.4	mS	25－140．9	mS	$\begin{array}{ll}26 & -87.7\end{array}$	ms	271341	KPa	$28-1.57$	KPa
291306	KPa	$30 \quad 1.6$	cil	3119.8	dC								
Scan \＃156													
20：16：59：33													
10.006	1 pm	2－0．1205	mm	3－0．0958	mm	4－0．1959	mm	$5 \quad-0.07$	Im	60.0433	mm	7－0．2559	mm
80.0881	mm	9－0．0342	mm	10－0．0211	mm	110.0056	mm	12－0．2843	mm	13－0．5498	mm	14－0．4135	mm
15－0．0575	mm	16－0．3579	mm	170.1571	mm	18－0．4985	mm	19－0．5571	mm	20－0．6523	mm	21－0．028	mm
$22 \quad 2.9$	MPa	$23 \quad 53.9$	ms	$24 \quad 40.4$	ms	25－141．6	ms	$26-87.7$	mS	271341	KPa	28－1．535	KPa
$29 \quad 1306$	KPa	301.6	cm	3119.8	dC								
Scan \＃157													
20：17：0：33													
10.003	1 pm	2－0．1205	mm	3－0．0958	mm	4－0．1959	mm	$5 \quad-0.07$	mm	60.0433	mm	7－0．2562	mm
80.0881	mm	9－0．0342	mm	10－0．0211	mm	110.005	mm	12－0．2887	ma	13－0．5504	mm	14－0．3942	mm
15－0．0575	mm	16－0．3579	mm	170.1571	mm	18－0．4979	mm	19－0．5583	mm	20－0．6523	mm	$21-0.028$	mm
$22 \quad 2.9$	MPa	$23 \quad 53.9$	ms	$24 \quad 40.4$	ms	$25-136.6$	ms	$26-87.7$	ms	271341	KPa	28－1．535	KPa
291307	KPa	$30 \quad 1.6$	cm	3119.8	dC								
Scan \＃158													
20：17：1：33													
10.003	1 pm	2－0．1205	mm	3－0．0958	mm	4－0．1959	mm	$5 \quad-0.07$	mm	60.0433	mm	7－0．2562	mm
80.0881	mm	9－0．0342	mm	10－0．0211	mm	110.005	mm	12－0．2862	mm	13－0．5504	mm	14－0．4198	mm
15－0．0581	mm	16－0．3579	mm	170.1571	mm	18－0．4985	mm	19－0．5602	mm	20－0．6523	mm	$21-0.028$	mm
$22 \quad 2.9$	MPa	$23 \quad 53.9$	ms	$24 \quad 40.4$	ms	25－134．9	ms	$\begin{array}{ll}26 & -87.7\end{array}$	ms	271341	KPa	$28-1.57$	KPa
291306	KPa	301.6	cm	$31 \quad 19.8$	dC								
Scan flis9													
20：17：2：33													
10.006	1 pm	2－0．1205	mm	3－0．0955	mm	4－0．1959	mm	$5 \quad-0.07$	mm	60.0433	mm	7－0．2562	mm
80.0878	mm	9－0．0346	mm	10－0．0211	mm	110.0056	mm	12－0．2905	mm	13－0．5511	mm	14－0．4304	mm
15－0．0581	mm	16－0．3579	mm	170.1571	man	18－0．4979	mm	$19-0.562$	mm	20－0．6523	mm	21－0．028	mm
$22 \quad 2.89$	MPa	$23 \quad 53.9$	ms	$24 \quad 40.4$	ms	$25-134.9$	ms	26－82．7	ms	$27 \quad 1341$	KPa	$28-1.57$	KPa
291306	KPa	$30 \quad 1.6$	cm	$31 \quad 19.8$	dC								

$\begin{aligned} & \text { Scan } ⿰ ⿰ 三 丨 ⿰ 丨 三 一 160 \\ & 20: 17: 3: 33 \end{aligned}$												
10.0031 pm	2－0．1205	mm	3－0．0955	mm	4－0．1959	mm	$5 \quad-0.07$	mm	60.0433	mm	7－0．2562	mm
80.0881 mm	9－0．0346	mm	10－0．0211	mm	110.0056	mm	12－0．2967	mm	13－0．5517	mm	14－0．4572	mm
$15-0.0575 \mathrm{~mm}$	16－0．3579	mm	170.1571	mm	18－0．4985	mm	19－0．5608	mm	20－0．6523	mm	$21-0.028$	mm
$22 \quad 2.9 \mathrm{MPa}$	$23 \quad 53.9$	ms	$24 \quad 40.4$	mS	$25-134.9$	mS	$26-86$	ms	271341	KPa	28－1．605	KPa
$29 \quad 1307 \mathrm{KPa}$	$30 \quad 1.6$	cm	3119.8	dC								
＊＊STRENGTH AND PERMEABILITY TESTING ON ULTRA－LARGE												
＊＊STRIPA GRANITE CORE（Engineering Units Data）												
＊＊17：13：03－18：19：02												
＊＊Loading from 2.89 MPa to 5.55 MPa												
Scan 非61												
＊＊Initial conditions：												
20：17：13： 3												
1001 pm	2－0．1205	mm	3－0．0955	mm	4－0．1962	mm	$5 \quad-0.07$	mm	60.0439	mm	7－0．2562	mm
80.0881 mm	9－0．0346	mm	10－0．0211	mm	110.0056	mm	12－0．2843	mm	13－0．5575	mm	14－0．4871	mm
15－0．0581 mm	16－0．3579	mm	170.1571	mm	18－0．4985	mm	19－0．562	mm	20－0．6523	mon	$21-0.028$	mm
$22 \quad 2.9 \mathrm{MPa}$	2353.9	ms	$24 \quad 40.4$	ms	25－134．9	ms	$\begin{array}{ll}26 & -87.7\end{array}$	ms	271343	KPa	$28-1.57$	KPa
$29 \quad 1308 \mathrm{KPa}$	$30 \quad 1.5$	cm	3119.8	dC								
Scan $\# 162$												
＊＊Resume loading：												
$1 \quad 0 \quad 1 \mathrm{pm}$	2－0．1209	mm	3－0．0955	mm	4－0．1962	mm	$5-0.07$	mm	60.0433	mm	7－0．2559	mm
80.0878 mm	9－0．0346	mm	10－0．0211	mm	110.0056	mm	$12-0.28$	mm	13－0．5575	mm	14－0．4753	mm
$15-0.0581 \mathrm{~mm}$	16－0．3579	mm	170.1571	mm	18－0．4985	mm	19－0．5608	mun	20－0．6523	mm	$21-0.028$	mm
22.2 .89 MPa	$23 \quad 59.3$	ms	$24 \quad 40.4$	ms	25－134．9	ms	26－82．5	ms	271343	KPa	28－1．605	KPa
$29 \quad 1309 \mathrm{KPa}$	$30 \quad 1.6$	cm	3119.8	dC								
Scan \＃163												
20：17：14：42												
10 lpm	2－0．1209	mm	3－0．0955	mm	4－0．1962	mm	$5 \quad-0.07$	mm	60.0439	mm	7－0．2559	mm
80.0881 mm	9－0．0346	mm	10－0．0211	mm	110.0056	mm	12－0．2781	mm	13－0．5575	mm	14－0．4859	mm
$15-0.0581 \mathrm{~mm}$	16－0．3579	mm	170.1571	mm	18－0．4985	mm	19－0．5608	mm	20－0．6523	mm	$21-0.028$	mm
22.2 .92 MPa	2357	ms	$24 \quad 43.9$	ms	$25-134.9$	ms	$26-81$	ms	271344	KPa	$28-1.605$	KPa
$29 \quad 1309 \mathrm{KPa}$	$30 \quad 1.6$	cm	3119.8	dC								
Scan \＃164												
20：17：15：12												
101 pm	2－0．1216	mm	3－0．0961	mm	4－0．1971	mm	5－0．0703	mm	60.0439	mm	7－0．2583	m
80.0893 mm	9－0．0346	mm	10－0．0214	mm	110.0056	mm	12－0．2785	mm	13－0．5575	mm	14－0．4828	mm
$15-0.0581 \mathrm{~mm}$	16－0．3585	mm	170.1571	mm	18－0．5034	mm	19－0．5663	mm	20－0．6567	mm	21－0．0283	mm
$22 \quad 3.05 \mathrm{MPa}$	$23 \quad 57.6$	ms	$24 \quad 43.7$	ms	25－138．3	mS	$26-84.2$	ms	271343	KPa	$28-1.57$	KPa
$29 \quad 1308 \mathrm{KPa}$	301.5	cm	3119.8	dC								
Scan \＃165												
20：17：15：42												
$1 \quad 0{ }^{1 \mathrm{pm}}$	2－0．1236	mm	3－0．0977	mm	4－0．1996	mm	5－0．0706	mm	60.0452	mm	7－0．2654	mm
$8 \quad 0.094 \mathrm{~mm}$	9－0．0352	mm	10－0．0218	mm	110.005	min	12－0．2769	mm	13－0．5575	mm	14－0．5008	mm
15－0．0581	16－0．3602	mm	170.1648	mm	18－0．5139	mm	19－0．5773	mm	20－0．6655	mm	21－0．0286	mm
$22 \quad 3.27 \mathrm{MPa}$	$23 \quad 60.7$	ms	$24 \quad 43.9$	ms	25－141．6	ms	$26-90.9$	ms	271342	KPa	$28-1.57$	KPa
$29 \quad 1308 \mathrm{KPa}$	$30 \quad 1.4$	cm	3119.8	dC								
Scan 阶166												
20：17：16：12												
100 lpm	2－0．1266	mm	3－0．0999	mm	4－0．203	mm	5－0．0713	mm	$6 \quad 0.047$	mm	7－0．2753	mm
80.1011 mm	9－0．0358	mm	10－0．0224	mm	110.005	mm	12－0．2822	$\underline{m m}$	13－0．5581	mm	14－0．5008	mm
15－0．0581 mm	16－0．3637	um	170.1773	mm	18－0．5268	mm	19－0．5938	mm	20－0．6768	mm	21－0．0289	mm
223.51 MPa	$23 \quad 60.7$	ms	$24 \quad 47.2$	ms	$25-145$	ms	$26-97.7$	ms	271342	KPa	28－1．535	KPa
$29 \quad 1307 \mathrm{KPa}$	$30 \quad 1.4$	cm	3119.8	dC								

$\begin{aligned} & \text { Scan } \# 167 \\ & 20: 17: 16: 42 \end{aligned}$													
10	1 pm	2-0.1297	mm	$3-0.103$	mm	4-0.2072	mm	5-0.0722	mm	60.0489	mm	7-0.2876	mm
$8 \quad 0.11$	mm	9-0.0364	mm	10-0.0234	mm	110.0056	mm	12-0.2868	mm	13-0.5581	mm	14-0.5065	mm
15-0.0587	mm	16-0.3679	mm	170.1958	mm	18-0.5422	mm	19-0.6128	mm	$20-0.69$	mm	21-0.0292	mm
$22 \quad 3.76$	MPa	2360.7	ms	$24 \quad 50.7$	ms	25-151.7	ms	26-107.7	ms	271341	KPa	28-1.535	KPa
291307	KPa	$30 \quad 1.4$	cmi	$31 \quad 19.8$	dC								
Scan \#168													
20:17:17:12													
10	1 pm	$2-0.133$	mm	3-0.1058	mm	4-0.2121	mm	5-0.0731	mm	60.0514	mm	7-0.3012	mm
80.1221	mm	9-0.0374	mm	$10-0.024$	mm	110.0056	mm	12-0.2868	mm	13-0.5581	mm	14-0.5027	mn
15-0.0587	mm	16-0.372	mm	170.2178	mm	18-0.5576	mm	$19-0.633$	mm	20-0.7044	mm	21-0.0298	mm
224.01	MPa	$23 \quad 64.3$	ms	$24 \quad 53.9$	ms	25-158.5	ms	26-121.2	ms	271341	KPa	$\begin{array}{ll}28 & -1.57\end{array}$	KPa
291306	KPa	$30 \quad 1.4$	cm	3119.9	dC								
Scan \#169													
20:17:17:42													
10	1pm	2-0.1357	mm	$3-0.109$	mm	4-0.217	mm	5-0.0741	mm	60.0532	mm	7-0.3156	mm
80.1351	mm	9-0.0383	mm	$10-0.025$	mm	110.0062	mm	12-0.2877	mm	13-0.5594	mm	14-0.5127	mm
15-0.0587	mm	16-0.3773	mm	170.241	mm	18-0.5737.	mm	19-0.6557	mm	20-0.7176	mm	21-0.0308	mm
224.26	MPa	$23 \quad 67.4$	ms	$24 \quad 53.9$	ms	25-165.2	ms	26-131.4	ms	271340	KPa	$28-1.57$	KPa
291306	KPa	301.4	cm	3119.8	dC								
Scan \#170													
20:17:18:12													
	1 pm	2-0.1384	mm	3-0.1115	mm	4-0.2222	mm	5-0.0747	mm	60.0557	mm	7-0.3306	mm
80.1496	mm	9-0.0393	mm	10-0.0256	mm	110.0069	mm	12-0.2881	mm	13-0.5601	mm	14-0.5264	mm
15-0.0587	mm	$16-0.382$	mm	170.2678	mm	18-0.5897	mm	19-0.6795	mm	20-0.7308	mm	21-0.0314	mm
$22 \quad 4.52$	MPa	$23 \quad 67.4$	ms	$24 \quad 57.4$	ms	$25-172$	ms	26-138.2	ms	271340	KPa	$28-1.57$	KPa
291305	KPa	$30 \quad 1.3$	cm	3119.8	dC								
Scan 1171													
20:17:18:42													
$1 \quad 0$	1 pm	2-0.1415	mm	3-0.1147	mm	4-0.2277	mm	5-0.0753	mm	60.0582	mm	7-0.3493	mm
80.1663	mm	9-0.0405	mm	10-0.0263	mm	110.0075	mm	12-0.2887	mm	13-0.5601	mm	$14-0.527$	mm
15-0.0587	mm	16-0.3872	mm	170.2946	mm	18-0.6051	mm	19-0.7046	mm	20-0.744	mm	$21-0.032$	mm
$22 \quad 4.77$	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	$25-178.7$	ms	26-144.9	ms	271339	KPa	28-1.605	KPa
291305	KPa	$30 \quad 1.3$	cm	3119.8	dC								
Scan \#172													
20:17:19:12													
10	1 pm	2-0.1435	mm	3-0.1175	mm	4-0.2329	mm	5-0.0762	mm	60.0607	mm	7-0.3664	mm
80.1815	mm	9-0.0418	mm	10-0.0269	mm	110.0088	mm	12-0.2847	mm	13-0.5607	mm	14-0.5302	mm
15-0.0587	mm	16-0.3919	mm	170.3267	mm	18-0.6199	mm	19-0.7291	mm	20-0.7566	mm	$21-0.033$	mm
$22 \quad 5.03$	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	$25-182.1$	ms	$26-154.9$	ms	271338	KPa	$28-1.57$	KPa
291304	KPa	$30 \quad 1.3$	cm	3119.8	dC								
Scan ${ }^{\text {P173 }}$													
20:17:19:42													
10	1 pm	2-0.1455	mm	$3-0.12$	mm	4-0.2372	mm	5-0.0765	mm	60.0625	mm	7-0.3838	mm
80.1963	mm	9-0.0427	mm	10-0.0269	mm	110.0094	mm	12-0.2877	mm	13-0.5613	mm	14-0.5308	mm
15-0.0581	mm	16-0.3961	mm	170.3583	mm	18-0.6346	mm	19-0.7548	mm	20-0.7685	mm	21-0.0336	mm
$22 \quad 5.29$	MPa	$23 \quad 67.4$	ms	$24 \quad 64.2$	ms	$25-185.5$	ms	26-165.1	ms	271338	KPa	$28-1.57$	KPa
291303	KPa	$30 \quad 1.2$	cm	3119.8	dC								
Scan \#174													
20:17:20:12													
10	1 pm	2-0.1475	mm	3-0.1225	mm	4-0.2415	mm	5-0.0775	mm	60.0644	mm	7-0.4022	mim
80.2121	mim	9-0.0433	mm	10-0.0273	mm	110.0107	mm	12-0.2834	mm	13-0.5613	mm	14-0.522	mm
15-0.0575	mm	16-0.3996	mm	170.3922	mm	18-0.647	mm	19-0.7799	mm	20-0.7779	mm	21-0.0342	mm
$22 \quad 5.55$	MPa	$23 \quad 67.4$	ms	$24 \quad 67.4$	ms	25-188.8	ms	26-175.1	ms	271338	KPa	$28-1.64$	KPa
291303	KPa	$30 \quad 1.2$	cm	3119.9	dC								

Scan \#175

10	1 pm	2-0.1489	mm	3-0.1235	mm	4-0.2436	mm	5-0.0775	mm	$6 \quad 0.065$	mm	7-0.4111	
80.2207	mm	9-0.0433	mam	10-0.0273	mm	110.0113	mm	12-0.2865	mm	13-0.5613	mm	14-0.5158	
15-0.0575	mm	16-0.4019	mm	170.4125	mm	18-0.6531	mm	19-0.7952	mm	20-0.7817	mm	21-0.0342	
225.55	MPa	2367.4	ms	$24 \quad 67.4$	ms	25-188.8	ms	26-182.1	ms	271338	KPa	$28-1.64$	KPa
291304	KPa	$30 \quad 1.2$	cm	3119.8	dC								
$\begin{aligned} & \text { Scan } \# 176 \\ & 20: 17: 21: 12 \end{aligned}$													
10	1 pm	2-0.1496	mm	3-0.1238	mm	4-0.2451	mm	5-0.0778	mm	60.0656	mm	7-0.4148	mm
80.2251	[im	9-0.0433	mm	10-0.0273	mm	110.0113	mm	12-0.2893	mm	$13-0.562$	mm	14-0.5196	mm
15-0.0575	mm	16-0.4031	mm	170.4202	mm	18-0.6544	mm	19-0.7995	mm	$20-0.783$	mm	21-0.0345	mm
$22 \quad 5.55$	MPa	$23 \quad 67.4$	ms	$24 \quad 67.4$	ms	25-188.8	ms	26-182.1	ms	271339	KPa	28-1.605	KPa
291304	KPa	$30 \quad 1.2$	cm	3119.8	dC								
Scan ${ }^{\text {d }} 177$													
20:17:21:42													
10	1pm	2-0.1499	mm	3-0.1241	mm	4-0.2457	man	5-0.0778	mm	60.0656	mm	7-0.4179	mm
80.2275	mm	9-0.0433	mm	10-0.0273	mm	110.0107	mm	12-0.2908	mm	13-0.562	mm	14-0.5164	mm
15-0.0568	mm	16-0.4037	mm	170.4256	mm	18-0.6556	mm	19-0.8008	mm	20-0.7842	mm	21-0.0345	mm
225.55	MPa	$23 \quad 67.4$	ms	$24 \quad 67.4$	ms	25-188.8	ms	26-182.1	ms	271339	KPa	28-1.605	KPa
291305	KPa	$30 \quad 1.2$	cm	3119.8	dC								
Scan ${ }^{\text {\# }} 178$ \%*Monitor at 5.55 MPa													
20:17:23: 2													
10	1 pm	2-0.1506	mm	3-0.1244	mm	4-0.247	mm	5-0.0778	mm	60.0656	mm	7-0.4223	mm
80.2322	mm	9-0.0436	mm	10-0.0273	mm	110.0126	mm	$12-0.28$	mm	$13-0.562$	mm	14-0.5183	
15-0.0568	mm	16-0.4043	mm	170.4387	mm	18-0.6568	mm	19-0.8075	mm	20-0.7855	mm	21-0.0345	mm
$22 \quad 5.55$	MPa	$23 \quad 67.4$	ms	$24 \quad 67.4$	m6	$25-188.8$	ms	26-182.1	ms	271340	KPa	28-1.605	KPa
291306	KPa	$30 \quad 1.2$	cm	3119.9	dC								
Scan 11179													
20:17:25: 2													
10	1 pm	2-0.1519	mm	3-0.1247	mm	4-0.2482	mm	5-0.0778	mm	60.0656	mm	7-0.4271	mm
80.2365	mm	9-0.0436	mm	10-0.0273	mm	110.0126	mm	12-0.2766	mm	13-0.5626	mm	14-0.5433	mm
15-0.0562	mm	16-0.4049	mm	170.4541	mm	18-0.6587	mm	19-0.8136	mm	20-0.7867	mm	21-0.0345	mm
225.55	MPa	$23 \quad 67.4$	ms	$24 \quad 61.5$	tis	$25-188.8$	ms	26-182.1	ms	271341	KPa	28-1.605	KPa
$29 \quad 1307$	KPa	$30 \quad 1.2$	cm	3119.8	dC								
Scan \#180													
20:17:27: 2													
10	1 pm	2-0.1529	mm	3-0.1251	mm	4-0.2491	mm	5-0.0781	mm	60.0656	mm	7-0.4305	m
80.2399	mm	9-0.0436	mm	10-0.0273	mm	110.0126	mm	12-0.267	mm	13-0.562	mm	14-0.5308	mm
15-0.0568	mm	16-0.4049	mm	170.4631	mm	18-0.6599	mm	19-0.8136	mm	20-0.788	mm	21-0.0345	mm
225.55	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	$25-188.8$	ms	$26-188$	ms	271342	KPa	28-1.605	KPa
291307	KPa	$30 \quad 1.2$	cm	3119.8	dC								
Scan ${ }^{\text {P181 }} 1$													
20:17:29: 2													
10	1pm	2-0.154	mm	3-0.1254	mm	4-0.2494	mm	5-0.0781	mm	60.0656	mm	7-0.4329	mm
80.2421	mm	9-0.0433	mm	10-0.0273	mm	110.0126	mm	12-0.2707	mm	13-0.5633	mm	14-0.5433	mm
15-0.0562	mm	16-0.4055	man	170.4672	mm	18-0.6605	mm	19-0.8161	mm	20-0.7893	mm	21-0.0345	mm
$22 \quad 5.55$	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	$25-188.8$	ms	$26-183$	ms	271343	KPa	28-1.605	KPa
$29 \quad 1308$	KPa	$30 \quad 1.2$	cm	3119.8	dC								
Scan \#182													
20:17:31: 2													
10	Ipm	2-0.1546	mm	3-0.1257	mm	4-0.2503	mm	5-0.0781	mm	60.0656	mm	7-0.4346	mm
80.2439	mm	9-0.0436	mm	10-0.0273	mm	110.0132	mm	12-0.2763	mm	13-0.5645	mm	14-0.5408	mm
15-0.0562	mm	16-0.4055	mm	170.472	mm	18-0.6618	mm	19-0.8179	mm	20-0.7899	mm	21-0.0345	mm
225.55	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	25-188.8	ms	$26-188$	ms	271343	KPa	$28-1.57$	KPa
291309	KPa	$30 \quad 1.2$	cm	$31 \quad 19.9$	dC								

$\begin{aligned} & S \operatorname{can} \# 183 \\ & 20: 17: 33: 2 \end{aligned}$													
10	1 pm	2-0.1553	mm	3-0.1257	mm	4-0.2509	mm	5-0.0781	mm	60.0656	mim	7-0.4363	mm
80.2455	mm	9-0.0436	mm	10-0.0273	mm	110.0132	mm	12-0.2794	mm	13-0.5645	mm	14-0.5395	nm
15-0.0562	mm	16-0.406	mm	170.4756	nm	18-0.663	mm	19-0.8191	mm	20-0.7899	mm	21-0.0345	min
225.55	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	$25-188.8$	ms	$26-188.9$	ms	271344	KPa	28-1.605	KPa
291310	KPa	301.2	cm	3119.9	dC								
Scan \#184													
20:17:35: 2													
10	1 pm	$2-0.156$	mm	3-0.1257	mm	4-0.2512	mm	5-0.0781	mm	60.0656	mm	7-0.4377	mm
80.2464	mm	9-0.0436	mim	10-0.0273	mm	110.0126	mm	12-0.2862	mm	13-0.5658	mm	14-0.5351	mm
15-0.0562	mm	16-0.406	mm	170.4791	mm	18-0.663	mm	19-0.8228	mim	20-0.7905	mm	21-0.0348	mm
$22 \quad 5.55$	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	25-188.8	ms	26-188.9	ms	271345	KPa	28-1.605	KPa
291311	KPa	301.1	cIII	3119.8	dC								
Scan \#185													
20:17:37: 2													
10	lpm	2-0.1563	mm	3-0.126	mm	4-0.2518	mm	5-0.0784	mm	60.0656	mm	7-0.4387	mm
80.2476	mm	9-0.0436	mm	10-0.0273	mm	110.0126	mim	12-0.2874	mom	13-0.5665	mm	14-0.5351	mm
15-0.0555	mm	16-0.4066	mm	170.4821	mm	18-0.6642	mm	19-0.8277	mm	20-0.7905	mm	21-0.0348	mm
$22 \quad 5.55$	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	25-188.8	ms	26-188.9	ms	271346	KPa	28-1.605	KPa
291311	KPa	301.1	cm	3119.8	dC								
Scan \#186													
20:17:39: 2													
1.0	1 pm	$2-0.157$	mm	$3-0.126$	mm	4-0.2521	mm	5-0.0784	mm	60.0656	mm	7-0.4397	mm
80.2486	mm	9-0.0436	mm	10-0.0273	mm	110.0132	mm	12-0.2921	mm	13-0.5671	mm	14-0.5065	mm
15-0.0555	mm	16-0.4066	mm	170.4851	mm	18-0.6642	mm	19-0.8301	mm	20-0.7911	mm	21-0.0348	mm
$22 \quad 5.57$	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	$25-188.8$	ms	26-188.9	ms	271346	KPa	$28-1.57$	KPa
$29 \quad 1312$	KPa	301.1	cm	3119.8	dC								
Scan \#187													
20:17:41: 2													
10	1 pm	2-0.1577	mm	$3-0.126$	mm	4-0.2528	mm	5-0.0784	mm	60.0656	mm	7-0.4407	mm
80.2492	mm	9-0.0436	mm	10-0.0273	mm	110.0132	mm	12-0.2949	mm	13-0.5677	mm	14-0.5482	mm
15-0.0562	mm	16-0.4072	mm	170.4869	mm	18-0.6648	mm	19-0.8307	mm	20-0.7911	mm	21-0.0348	mm
$22 \quad 5.55$	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	25-188.8	ms	$26-188.9$	ms	271347	KPa	28-1.605	KPa
$29 \quad 1312$	KPa	$30 \quad 1.1$	cm	3119.9	dC								
Scan \#188													
20:17:43: 2													
10	1 pm	$2-0.158$	mm	3-0.1263	mm	4-0.2531	mm	5-0.0784	mm	60.0656	mm	7-0.4414	n
80.2498	mm	9-0.0436	mm	10-0.0273	mm	110.0132	mm	12-0.2884	mm	13-0.5677	mm	14-0.5719	mm
15-0.0555	mm	16-0.4066	mm	170.4881	mm	18-0.6655	mm	19-0.8314	mm	20-0.7911	mm	21-0.0348	mm
225.55	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	25-188.8	mS	26-188.9	ms	271348	KPa	28-1.605	KPa
291313	KPa	301.1	cm	3119.8	dC								
Scan ${ }^{\text {1 } 189}$													
20:17:45: 2													
10	1 pm	2-0.1583	mm	3-0.1263	mm	4-0.2534	mm	5-0.0784	mm	60.0656	mm	7-0.4425	mm
80.2504	mm	9-0.0436	mm	10-0.0273	mm	110.0132	mm	12-0.285	mm	13-0.5684	mm	14-0.5183	m
15-0.0555	mm	16-0.4072	mm	170.4898	mm	18-0.6655	mm	19-0.8326	mm	20-0.7918	mm	21-0.0348	mm
$22 \quad 5.55$	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	$25-188.8$	ms	26-188.9	ms	271348	KPa	$28-1.605$	KPa
291314	KPa	$30 \quad 1.2$	cm	3119.8	dC								
Scan ${ }^{1} 190$													
20:17:47: 2													
10	1 pm	2-0.1587	mm	3-0.1263	mm	4-0.2537	mm	5-0.0784	mm	60.0662	mm	7-0.4431	mm
$8 \quad 0.251$	mm	9-0.0436	mm	10-0.0273	mm	110.0126	mm	12-0.2862	mm	$13-0.569$	mm	14-0.4959	mm
15-0.0555	mm	16-0.4072	mm	170.491	mm	18-0.6661	mm	19-0.8344	mm	20-0.7918	mm	21-0.0345	mm
225.55	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	$25-188.8$	ms	26-194.7	ms	271349	KPa	$28-1.57$	KPa
291314	KPa	301.1	cm	3120	dC								

$1 \quad 0$	1 pm	$2-0.159$	mm	3-0.126	mm	4-0.254	mm	5-0.0784	mm	60.0656	mm	7-0.4435 mm
80.2517	mm	9-0.0436	mm	10-0.0273	mm	110.0132	mm	12-0.2874	mm	$13-0.569$	mm	14-0.5027 mm
15-0.0555	mm	16-0.4072	mm	170.4922	mm	18-0.6661	mm	19-0.8332	mm	20-0.7918	mm	21-0.0348 mm
$22 \quad 5.55$	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	25-188.8	ms	$26-189.8$	ms	271349	KPa	$28-1.605 \mathrm{KPa}$
291315	KPa	301.1	cm	3120	dc							
Scan \#192												
20:17:51: 2												
10	1 pm	2-0.1594	mm	3-0.1263	mm	4-0.254	mm	5-0.0787	mm	60.0656	mm	7-0.4442 mm
$8 \quad 0.252$	mm	9-0.0436	mm	10-0.0273	mm	110.0132	mm	12-0.2859	mm	13-0.5697	mm	$14-0.5152 \mathrm{~mm}$
15-0.0555	mm	16-0.4072	mm	170.4928	mm	18-0.6667	mm	19-0.835	mm	20-0.7918	mm	21-0.0348 mm
225.55	MPa	2367.4	ms	$24 \quad 60.7$	ms	25-188.8	ms	26-188.9	ms	271350	KPa	$28-1.57 \mathrm{KPa}$
$29 \quad 1315$	KPa	301.1	cm	3120	dC							
Scant193 20 de												
20:17:53: 2												
10	1 pm	2-0.1597	mm	3-0.1263	mm	4-0.2543	mm	5-0.0787	mm	60.0662	mm	7-0.4445 mm
80.2523	mm	9-0.0436	mm	10-0.0273	mm	110.0132	mm	$12-0.285$	mm	13-0.5697	mm	14-0.527 ıum
15-0.0562	mm	16-0.4078	mm	170.494	mm	18-0.6667	mm	19-0.8338	mm	20-0.7918	mm	21-0.0348 mm
$22 \quad 5.57$	MPa	2367.4	ms	$24 \quad 60.7$	ms	25-188.8	ms	$26-188.9$	ms	271351	KPa	$28-1.605 \mathrm{KPa}$
291316	KPa	301.1	cm	3120	dC							
Scan 194												
20:17:55: 2												
10	1 pm	2-0.1597	mm	3-0.1263	mm	4-0.2546	mm	5-0.0784	mm	60.0656	mm	7-0.4452 mm
80.2529	mm	9-0.0436	mm	10-0.0273	mm	110.0126	mm	12-0.2912	mm	13-0.5703	mm	14-0.5638 mm
15-0.0555	mm	16-0.4078	mm	170.4952	mm	18-0.6667	mm	19-0.8338	mm	20-0.7924	mm	21-0.0348 mm
$22 \quad 5.55$	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	$25-188.8$	ms	$26-188.9$	ms	271351	KPa	$28-1.57 \mathrm{KPa}$
291316	KPa	301.1	cm	3120	dC							
Scan \#195												
20:17:57: 2												
10	1 pm	$2-0.16$	mm	3-0.1263	mm	4-0.2549	mm	5-0.0787	mm	60.0656	mm	7-0.4455 mm
80.2532	mm	9-0.0436	mm	10-0.0273	mm	110.0126	mm	$12-0.297$	mm	13-0.571	mm	$14-0.5426 \mathrm{~mm}$
15-0.0555	mm	16-0.4078	mm	170.4958	mm	18-0.6667	mm	19-0.835	mm	20-0.7924	mm	21-0.0348 mm
$22 \quad 5.55$	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	25-188.8	ms	26-188.9	ms	271351	KPa	$28-1.605 \mathrm{KPa}$
$29 \quad 1317$	KPa	301.1	cm	3120	dC							
Scan $⿰ 1960$												
20:17:59: 2												
10	1 pm	2-0.1604	mm	3-0.1263	mm	4-0.2552	mm	5-0.0787	mm	60.0656	mm	$7-0.4462 \mathrm{~mm}$
80.2535	mm	9-0.0436	mm	10-0.0273	mmı	110.0132	mm	12-0.3088	mm	13-0.5716	mm	14-0.5457 mm
15-0.0555	mm	16-0.4078	mm	170.4964	mm	18-0.6673	mm	19-0.8381	mm	20-0.793	mm	21-0.0348
$22 \quad 5.57$	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	25-188.8	ms	26-194.7	ms	271352	KPa	$28-1.605 \mathrm{KPa}$
$29 \quad 1317$	KPa	301.1	cm	3120	dC							
Scan 非197												
20:18: 1: 2												
10	1 pm	2-0.1607	mma	3-0.1263	mm	4-0.2552	mm	5-0.0787	mm	60.0662	mm	7-0.4465 mm
80.2538	mm	9-0.0436	mm	10-0.0273	mm	110.0126	mm	12-0.3029	mm	13-0.5716	mm	$14-0.5638 \mathrm{~mm}$
15-0.0555	mm	16-0.4078	mm	170.4976	mm	18-0.6673	mm	19-0.8399	mm	20-0.793	mm	21-0.0348 mm
$22 \quad 5.57$	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	25-188.8	ms	$26-189.8$	ms	271352	KPa	$28-1.605 \mathrm{KPa}$
291318	KPa	$30 \quad 1.2$	cm	3120	dC							
Scan ${ }^{\text {P198 }}$												
20:18: 3: 2												
10	1 pm	2-0.1607	man	3-0.1263	mm	4-0.2555	mm	5-0.0787	mm	60.0662	mm	7-0.4472 mm
80.2544	man	9-0.0436	mm	10-0.0273	mm	110.0132	mm	12-0.302	mm	13-0.5722	mm	$14-0.5663 \mathrm{~mm}$
15-0.0555	mm	16-0.4078	mm	170.4988	mm	18-0.6679	mm	19-0.8399	mm	$20-0.793$	mm	21-0.0348 mm
$22 \quad 5.57$	MPa	$\begin{array}{ll}23 & 67.4\end{array}$	ms	$24 \quad 60.7$	ms	25-188.8	ms	26-188.9	ms	271353	KPa	28-1.605 KPa
291318	KPa	301.1	cm	$31 \quad 19.9$								

Scan \＃199
20：18：5： 2

10	1pm	2－0．161	mm	3－0．1263	mm	4－0．2555	mm	5－0．0787	mm	60.0662	mm	7－0．4479	mm
80.2548	mm	9－0．0436	mm	10－0．0273	mm	110.0126	mm	12－0．3023	mm	13－0．5729	mm	14－0．5875	mm
15－0．0555	$\underline{m m}$	16－0．4084	mm	$17 \quad 0.5$	mm	18－0．6679	mm	19－0．8418	mm	20－0．7937	mm	21－0．0348	mm
$22 \quad 5.55$	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	25－188．8	ms	$26-188.9$	ms	271353	KPa	28－1．605	
291319	KPa	301.1	cm	3120	dC								
Scan \＃200													
20：18：7： 2													
10	1pm	2－0．1614	mm	3－0．1263	mm	4－0．2555	mm	5－0．0787	mm	60.0662	mm	7－0．4483	mm
80.2554	mm	9－0．0436	mm	10－0．0273	mm	110.0132	mm	12－0．2921	mma	13－0．5735	mm	14－0．5663	mm
15－0．0555	mm	16－0．4084	mm	170.5006	mm	18－0．6679	mm	19－0．8405	mm	20－0．793	mm	21－0．0348	mm
225.55	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	$25-188.8$	ms	26－188．9	ms	271354	KPa	28－1．605	KPa
291319	KPa	$30 \quad 1.2$	cm	3119.9	dC								
Scan $⿰ ⿰ 三 丨 ⿰ 丨 三 一 201$													
20：18：9： 2													
10	lpm	2－0．1614	mm	3－0．1263	mm	4－0．2558	mm	5－0．0787	mm	60.0662	mm	7－0．4489	mm
80.2557	mm	9－0．0436	mm	10－0．0273	mm	110.0132	mm	12－0．2973	mm	13－0．5742	mm	14－0．5788	mm
15－0．0555	mm	16－0．4084	mm	170.5023	mm	18－0．6685	mm	19－0．8424	mm	20－0．793	mm	21－0．0348	mm
$22 \quad 5.57$	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	$25-188.8$	ms	$26-194.7$	ms	271354	KPa	$28-1.57$	KPa
291319	KPa	$30 \quad 1.2$	cm	3119.9	dC								
Scan \＃202													
20：18：11： 2													
10	1 pm	2－0．1617	mm	3－0．1263	mm	4－0．2558	mm	5－0．0787	mm	60.0662	mm	7－0．4493	mm
80.2563	mm	9－0．0436	mm	10－0．0269	mm	110.0126	mm	12－0．2859	mm	13－0．5735	mm	14－0．5551	mm
15－0．0555	mm	16－0．4084	mm	170.5029	mm	18－0．6685	mm	19－0．8405	mm	20－0．7937	mm	21－0．0348	mm
$22 \quad 5.57$	MPa	$23 \quad 67.4$	ms	$24 \quad 60.7$	ms	$25-188.8$	ms	26－195．6	ms	271355	KPa	$28-1.57$	KPa
291320	KPa	301.1	cm	3119.9	dC								
Scan \＃1203													
20：18：13： 2													
10	1 pm	2－0．1617	mm	3－0．1263	mm	4－0．2561	mm	5－0．0787	mm	60.0662	mm	$7-0.45$	mm
80.2566	mm	9－0．0436	mm	10－0．0273	mma	110.0119	mm	12－0．2887	mm	13－0．5748	mm	14－0．5651	mm
15－0．0555	mm	16－0．4084	mm	170.5035	mm	18－0．6685	mm	19－0．8405	mm	20－0．7937	min	21－0．0348	mm
$22 \quad 5.57$	MPa	$23 \quad 67.4$	ms	$24 \quad 54.7$	ms	25－188．8	ms	26－195．6	ms	271355	KPa	28－1．605	KPa
291320	KPa	301.1	cm	3119.9	dC								
Scan \＃204													
20：18：15： 2													
10	lpm	2－0．1621	mm	3－0．1266	mm	4－0．2561	mm	5－0．0787	mm	60.0662	mm	7－0．4503	mm
80.2569	mm	9－0．0436	mm	10－0．0273	mm	11－1．1642	mm	12－0．2899	mm	13－0．5748	mm	14－0．5626	mm
15－0．0555	mm	16－0．4084	mm	170.5047	mm	18－0．6692	mm	19－0．8418	mm	20－0．7937	mm	21－0．0348	mim
$22 \quad 5.55$	MPa	$23 \quad 67.4$	ms	$24 \quad 59.9$	ms	$25-188.8$	ms	$26-189.8$	ms	271356	KPa	28－1．605	KPa
291321	KPa	$30 \quad 1.2$	cm	3119.8	dC								
Scan \＃1205													
20：18：17： 2													
10	1 pm	2－0．1621	mm	3－0．1263	mm	4－0．2561	mm	5－0．0787	mm	60.0662	mm	7－0．4506	mm
80.2572	mm	9－0．0436	mill	10－0．0273	mm	11－1．2405	mm	12－0．2788	mm	13－0．5748	mm	14－0．5501	mm
15－0．0555	mm	16－0．4084	mm	170.5059	mm	18－0．6692	mm	19－0．8405	mm	20－0．7943	mm	21－0．0348	mm
$22 \quad 5.55$	MPa	$23 \quad 67.4$	ms	$24 \quad 54.7$	ms	25－188．8	ms	26－188．9	ms	271356	KPa	$28-1.57$	KPa
291321	KPa	301.1	cm	3119.8	dC								
Scan \＃206													
20：18：19： 2													
10	1 pm	2－0．1624	mm	3－0．1263	mm	4－0．2564	mm	5－0．0787	mm	60.0662	mm	$7-0.451$	mm
80.2575	mm	9－0．0436	mm	10－0．0269	mm	11－1．2663	mm	12－0．2871	mm	13－0．5748	mm	$14-0.547$	mm
15－0．0555	mm	16－0．409	man	170.5065	mm	18－0．6692	mm	19－0．8436	mm	20－0．7943	mm	21－0．0348	mm
$22 \quad 5.57$	$\mathrm{MPa}^{\text {a }}$	$23 \quad 67.4$	ms	$24 \quad 59.9$	ms	$25-188.8$	ms	26－194．7	mS	271357	KPa	28－1．605	KPa
291321	KPa	301.1	cm	19.8	dC								

＊＊STRIPA Granite CORE（Engineering Units Data）$\star \approx 18: 22: 35-19: 58: 47$												
＊＊Permeability testing at 5.55 MPa axial stress												
Scan \＃207												
20：18：22：35												
10.9411 pm	2－0．1627	mm	3－0．1263	mm	4－0．2567	mm	5－0．0787	mm	60.0662	mm	7－0．452	mm
80.2588 mm	9－0．044	mm	10－0．0269	mm	11－1．2631	mm	12－0．2608	mm	13－0．5767	mm	14－0．567	min
15－0．0555 mm	16－0．409	mm	170.5107	mm	18－0．6698	mm	19－0．8454	mm	20－0．7943	mm	21－0．0348	mm
$22 \quad 5.57 \mathrm{MPa}$	2361.1	ms	$24 \quad 54.4$	ms	25－188．8	ms	$26-195.6$	ms	271370	KPa	$28 \quad 9.315$	KPa
$29 \quad 1349 \mathrm{KPa}$	$30 \quad 1.2$	cm	$31 \quad 19.8$	dC								
Scan 非208												
20：18：24：35												
13.291 pm	2－0．1631	mm	3－0．1263	mm	4－0．2567	mm	5－0．0787	mm	60.0662	mm	7－0．452	mm
80.2603 mm	9－0．044	mm	10－0．0269	mm	11－1．2682	mm	12－0．2577	mm	13－0．5767	mm	14－0．5763	mm
15－0．0555 mm	16－0．409	mm	170.5131	mm	18－0．6698	mm	19－0．8454	mm	20－0．7943	mm	21－0．0348	mm
$22 \quad 5.57 \mathrm{MPa}$	2366.6	ms	$24 \quad 59.9$	ms	25－188．8	ms	26－195．6	ms	271352	KPa	2857.562	KPa
$29 \quad 1364 \mathrm{KPa}$	301.2	cm	$31 \quad 19.9$	dC								
Scan 非209												
＊＊Unsteady flow．												
14.2621 pm	2－0．1631	mm	3－0．1263	mm	4－0．2567	mm	5－0．0787	mm	60.0662	mm	$7-0.452$	mm
80.2622 mm	9－0．044	mm	10－0．0273	mm	11－1．2833	mm	12－0．2503	mm	13－0．5774	mm	14－0．5726	mm
15－0．0555 mm	16－0．409	mm	170.5148	mm	18－0．6698	mm	19－0．8454	mm	20－0．7943	mm	21－0．0348	mm
$22 \quad 5.55 \mathrm{MPa}$	$23 \quad 67.4$	ms	$24 \quad 54.7$	ms	25－188．8	ms	26－195．6	ms	271407	KPa	2859.376	KPa
$29 \quad 1428 \mathrm{KPa}$	301.1	cm	3120	dC								
Scan \＃110												
20：18：28：35												
13.4291 pm	2－0．1634	mm	3－0．126	mm	4－0．2567	mm	5－0．0787	mm	60.0662	mm	7－0．4513	mm
80.2637 umin	9－0．0443	mm	10－0．0273	mm	11－1．2934	mm	12－0．2583	mm	13－0．5774	mm	14－0．5757	mm
15－0．0549 mm	16－0．409	mm	170.5172	mm	18－0．6698	mm	19－0．8442	mm	20－0．7943	mm	21－0．0348	mm
$22 \quad 5.57 \mathrm{MPa}$	$23 \quad 67.4$	ms	$24 \quad 59.9$	ms	25－188．8	ms	26－195．6	ms	271381	KPa	2840.398	KPa
291384 KPa	$30 \quad 1.2$	cm	3120.1	dC								
Scan \＃211												
\％＊Unsteady flow．												
13.3411 pm	2－0．1637	mm	3－0．126	mm	4－0．257	mm	5－0．0787	mm	60.0662	mm	$7-0.451$	mm
80.2646 mm	9－0．0443	mm	10－0．0273	mm	11－1．3035	mm	12－0．2698	mm	13－0．5786	mm	14－0．5738	mm
15－0．0549 ma	16－0．409	mm	170.519	mm	18－0．6698	mm	$19-0.843$	mm	20－0．7943	mm	21－0．0348	mm
$22 \quad 5.57 \mathrm{MPa}$	$23 \quad 61.5$	ms	$24 \quad 54.7$	ms	$25-188.8$	ms	26－195．6	ms	271361	KPa	2840.956	KPa
$29 \quad 1366 \mathrm{KPa}$	301.2	cm	3120.2	dC								
Scan 非12												
20：18：32：35												
13.315 lpm	2－0．1637	mm	3－0．126	mm	4－0．257	mm	5－0．0787	mm	60.0668	mm	$7-0.451$	mm
80.2656 mm	9－0．0443	mm	10－0．0273	mm	11－1．3066	mm	12－0．2624	mm	$13-0.578$	mm	$14-0.58$	mm
15－0．0549 mm	16－0．409	mm	170.5214	mm	18－0．6698	mm	19－0．8436	mm	20－0．7943	mm	21－0．0348	mm
$22 \quad 5.55 \mathrm{MPa}$	2366.6	ms	$24 \quad 53.9$	ms	25－188．8	ms	26－195．6	ms	271372	KPa	2842.421	KPa
$29 \quad 1375 \mathrm{KPa}$	$30 \quad 1.2$	cm	$31 \quad 20.2$	dC								
Scan \＃213												
＊＊Approximate steady flow at $41.4 \mathrm{KPa} \mathrm{(} 6 \mathrm{psi}$ ）injection： 20：18：33：45												
18.32 lpm	2－0．1641	mm	3－0．126	mm	4－0．257	mm	5－0．0787	mm	60.0668	mm	7－0．4506	mm
80.2659 mm	9－0．0443	mm	10－0．0269	mm	11－1．306	mm	12－0．2614	mm	13－0．5786	mm	14－0．5532	mm
15－0．0549 mm	16－0．409	mm	170.522	mm	18－0．6704	mm	19－0．8442	mm	20－0．7943	mm	21－0．0348	mm
$22 \quad 5.55 \mathrm{MPa}$	2362	ms	$24 \quad 53.9$	ms	25－188．8	ms	$26-195.6$	ms	271372	KPa	2842.247	KPa
$29 \quad 1376 \mathrm{KPa}$	301.2	cm	3120.2	dC								

$\begin{aligned} & \text { Scan } \\ & 20: 18: \end{aligned}$	$\begin{aligned} & 1214 \\ & : 35: 45 \end{aligned}$														
1	3.355	1 pal		2-0.1641	mm	3-0.126	mm	4-0.257	mm	5-0.0787	mm	60.0668	mm	7-0.451	mm
8	0.2665	mm		9-0.0446	mm	10-0.0269	mm	11-1.3054	mm	12-0.2636	mm	13-0.5786	mm	14-0.5663	mm
	-0.0549	mm		6-0.409	mm	170.5232	mm	18-0.6698	mm	19-0.8436	mm	20-0.7943	mm	21-0.0348	mm
22	5.57	MPa	23	360.7	ms	$24 \quad 53.9$	ms	25-194.8	ms	26-195.6	ms	271360	KPa	2842.735	KPa
29	1380	KPa	30	O 1.2	cra	3120.3	dC								
Scan ${ }^{\text {\% }} 215$															
20:18:37:45															
1	3.309	1 pm		2-0.1648	mm	3-0.1263	mm	4-0.257	mm	5-0.0787	mm	60.0668	mm	7-0.451	mm
8	0.2671	mm		9-0.0443	mm	10-0.0269	mm	11-1.3066	mm	12-0.2651	mm	13-0.5793	mm	$14-0.58$	m
	-0.0549	mm	16	6-0.409	mm	170.5244	mm	18-0.6698	mm	19-0.8454	mm	20-0.7943	mm	21-0.0348	mm
22	5.55	MPa	23	360.7	ms	$24 \quad 53.9$	ms	25-195.6	ms	26-195.6	ms	271365	KPa	2842.491	KPa
29	1369	KPa	30	01.1	cm	3120.3	dC								
Scan \#1216															
20:18:39:45															
1	3.396	1 pm		2-0.1658	mm	3-0.126	mm	4-0.257	mm	5-0.0787	mia	60.0668	mm	7-0.4513	mm
	0.2674	mm		9-0.0443	mm	10-0.0269	mm	$11-1.306$	mm	12-0.2679	mm	13-0.5793	mm	14-0.5825	mm
	0.0549	mm		-0.409	mm	170.5256	mm	18-0.6704	mm	19-0.8461	mm	20-0.7943	mm	21-0.0348	mm
22	5.57	MPa	23	360.7	ms	$24 \quad 53.9$	ms	25-195.6	ms	26-201.5	ms	271367	KPa	2820.339	KPa
29	1359	KPa	30	1.2	cm	$31 \quad 20.4$	dC								
Scan 隹217															
**Approximate steady flow at 20.7 KPa (3 psi) injection:															
$20: 18:$	$: 41: 4$														
1	1.832	1 pm		2-0.1661	mm	3-0.126	mm	4-0.257	mm	$5-0.079$	mm	60.0668	mm	$7-0.451$	mm
8	0.2674	mm		9-0.0443	mm	10-0.0269	mm	11-1.3029	mm	12-0.2732	mm	13-0.5799	mm	14-0.5888	mm
	-0.0549	mm		-0.409	mm	170.5256	mm	18-0.671	min	19-0.8461	mm	20-0.7943	mm	21-0.0348	mm
22	5.55	MPa	23	66.2	ms	$24 \quad 53.9$	ms	25-195.6	ms	26-196.9	ms	271346	KPa	2821.141	KPa
29.	1338	KPa	30	1.2	cm	3120.4	dC								
Scan \#218															
20:18:43: 4															
1	1.852	1 pm		2-0.1668	mm	3-0.1263	mm	4-0.257	man	5-0.0787	mm	60.0668	mm	7-0.4513	mm
	0.2674	mm		9-0.0443	mm	10-0.0269	mm	11-1.306	mm	12-0.272	mm	13-0.5799	mm	14-0.605	mm
	-0.0549	mm		-0.409	mm	170.5262	mm	18-0.6704	mm	19-0.8461	mm	20-0.7943	mm	21-0.0348	mm
22	5.55	MPa	23	61.5	ms	$24 \quad 53.9$	ms	25-195.6	ms	26-195.6	ms	271356	KPa	$28 \quad 21.56$	KPa
29	1335	KPa	30	1.2	cm	3120.4	dC								
Scan 非219															
20:18:45: 4															
1	1.854	1pn		2-0.1671	mm	3-0.1263	mm	4-0.257	mm	$5-0.079$	mm	60.0668	mm	7-0.4513	mm
8	0.2674	mm		9-0.0446	mm	10-0.0269	mm	11-1.3123	mm	12-0.2695	mm	13-0.5806	mm	14-0.6013	mm
	-0.0555	man	16	-0.409	mm	170.5268	mm	18-0.671	mm	19-0.8448	mm	20-0.7943	mm	21-0.0351	mm
22	5.55	MPa	23	60.7	ms	$24 \quad 53.9$	ms	25-195.6	ms	$26-201.5$	ms	271356	KPa	2820.827	KPa
29	1334	KPa	30	1.1	cm	$31 \quad 20.5$	dC								
Scan \#220															
$* *$ Change to withdrawal; unsteady flow.20:18:54:23															
1	1.114	1 pm		-0.1685	mm	3-0.1266	mm	4-0.257	mm	5-0.079	mm	60.0668	mm	$7-0.454$	mm
	0.2671	mm		-0.0443	mm	10-0.0266	min	11-1.3167	mm	12-0.2884	mm	13-0.5806	rm	14-0.6162	mm
	0.0555	mm		-0.409	mm	170.5279	mm	18-0.6728	mm	19-0.8497	mm	20-0.7943	mm	21-0.0351	mm
22	5.55	MPa	23	60.7	ms	$24 \quad 53.9$	ms	25-195.6	ms	26-202.4	ms	271374	KPa	2851.562	KPa
29	1272	KPa	30	1.1	cm	$31 \quad 20.4$	dC								
Scan ${ }^{\text {F221 }}$															
20:18:56:23															
1	1.178	1 pm		-0.1688	mm	3-0.1266	mm	4-0.257	mm	$5-0.079$	mm	60.0675	mm	7-0.4551	mm
8	0.2663	mm		-0.0443	mm	10-0.0269	mm	11-1.3148	mm	12-0.2936	mm	13-0.5812	mm	14-0.6168	mm
	0.0549	mm	16	-0.409	mm	170.5279	mm	18-0.6728	mm	19-0.8522	mm	20-0.7943	mm	21-0.0351	mm
22	5.55	MPa	23	60.7	ms	$24 \quad 53.9$	ms	25-195.6	ms	26-202.4	ms	271367	KPa	$28 \quad 0.314$	KPa
29	1335	KPa	30	1.2	cm	3120.3	dC								

20:18:58:23												
11.1641 pm	2-0.1691	mum	3-0.1266	mm	4-0.2573	mn	5-0.079	mm	60.0668	mm	7-0.4554	mm
80.2668 mm	9-0.0446	nm	10-0.0266	mm	11-1.3117	mm	12-0.2958	mm	13-0.5812	mm	14-0.6243	mm
15-0.0549 mm	16-0.409	mm	170.5279	mm	18-0.6735	mm	19-0.8528	mm	20-0.7943	mm	21-0.0351	mm
$22 \quad 5.57 \mathrm{MPa}$	$23 \quad 60.7$	ms	2453.9	ms	25-195.6	ms	26-202.4	ms	271333	KPa	280.593	KPa
291301 KPa	$30 \quad 1.2$	cm	$31 \quad 20.3$	dC								
Scan \#223												
20:19: 0:23												
11.189 lpm	2-0.1695	mm	3-0.1266	mm	4-0.2573	mm	5-0.079	mm	60.0668	mm	7-0.4561	mm
80.2662 mm	9-0.0446	mm	10-0.0269	mm	11-1.3155	mm	12-0.2955	mm	13-0.5825	mm	14-0.6187	mm
15-0.0549 mm	16-0.4096	mm	170.5279	mm	18-0.6735	mm	19-0.8528	mm	20-0.7943	mm	21-0.0351	mm
$22 \quad 5.58 \mathrm{MPa}$	$23 \quad 60.7$	ms	$24 \quad 53.9$	ms	$25-195.6$	ms	26-202.4	ms	271353	KPa	2860.248	KPa
$29 \quad 1250 \mathrm{KPa}$	301.1	cm	3120.3	dC								
Scan $\begin{aligned} & \text { 224 }\end{aligned}$												
**Unsteady flow:												
20:19: 2:23												
$1 \quad 1.11 \mathrm{lpm}$	2-0.1695	mm	3-0.1273	mm	4-0.2576	mm	5-0.079	mm	60.0675	mm	7-0.4564	mm
80.2665 mm	9-0.0443	mm	10-0.0269	mm	11-1.3148	mm	12-0.3017	mm	13-0.5825	mm	14-0.6218	mm
$15-0.0549 \mathrm{~mm}$	16-0.4096	mmt	170.5333	mm	18-0.6741	mm	19-0.854	mm	20-0.7943	mm	21-0.0351	mm
$22 \quad 5.55 \mathrm{MPa}$	$23 \quad 60.7$	ms	$24 \quad 53.9$	ms	25-195.6	ms	26-202.4	ms	271338	KPa	281.954	KPa
$29 \quad 1304 \mathrm{KPa}$	301.1	cm	3120.2	dC								
Scan \#225												
20:19: 4:23												
$1 \quad 1.377 \mathrm{lpm}$	2-0.1698	mm	3-0.1279	mm	4-0.258	mm	5-0.079	mm	60.0668	mm	7-0.4571	mm
80.2665 mm	9-0.0443	mm	10-0.0266	mm	11-1.3129	mm	12-0.3011	mm	13-0.5825	mm	$14-0.625$	mm
$15-0.0549 \mathrm{~mm}$	16-0.4096	mm	170.5357	mm	18-0.6741	mma	19-0.8534	mm	20-0.7949	mm	21-0.0351	mm
$22 \quad 5.55 \mathrm{MPa}$	2366.6	ms	$24 \quad 53.9$	ms	$25-195.6$	ms	26-202.4	ms	271335	KPa	284.989	KPa
291300 KPa	301.1	cm	3120.2	dC								
Scan ${ }^{\text {2 }} 226$												
**Unsteady flow:												
20:19: 6:23												
11.5391 pm	2-0.1702	mm	3-0.1273	mm	4-0.258	mm	5-0.0793	mm	60.0668	mm	7-0.4575	man
80.2665 mm	9-0.0446	man	10-0.0269	mm	11-1.3085	mm	12-0.3237	mm	13-0.5825	mm	14-0.6299	mm
15-0.0549 mm	16-0.4096	mm	170.5357	mm	18-0.6741	mm	19-0.854	mm	20-0.7943	mm	21-0.0351	mm
225.55 MPa	$23 \quad 61.5$	ms	$24 \quad 53.9$	ms	$25-195.6$	ms	26-202.4	ms	271415	KPa	2817.722	KPa
$29 \quad 1361 \mathrm{KPa}$	301.1	cm	3120.2	dC								
Scan ${ }^{\text {t227 }}$												
20:19: 8:23												
$1 \quad 1.7861 \mathrm{pm}$	2-0.1702	mm	3-0.1269	mam	4-0.258	mm	5-0.0793	mm	60.0675	mm	7-0.4575	mm
80.2662 mm	9-0.0446	mm	10-0.0269	mm	$11-1.306$	mm	$12-0.32$	mm	13-0.5818	mm	14-0.6287	mm
$15-0.0549 \mathrm{~mm}$	16-0.4102	mm	170.5357	mm	18-0.6747	mm	19-0.854	mm	20-0.7943	mm	21-0.0348	min
$22 \quad 5.55 \mathrm{MPa}$	$23 \quad 60.7$	ms	$24 \quad 53.9$	ms	25-195.6	ms	26-202.4	ms	271431	KPa	2819.536	KPa
$29 \quad 1374 \mathrm{KPa}$	301.1	cm	3120.1	dC								
**Unsteady flow:												
20:19:10:23												
11.8051 pm	2-0.1702	mm	3-0.1269	mm	4-0.258	mm	5-0.079	mm	60.0668	mm	7-0.4575	mm
80.2659 mmt	9-0.0446	mm	10-0.0266	mm	11-1.3035	mm	12-0.3054	mm	13-0.5818	mm	14-0.6231	mm
15-0.0549 mma	16-0.4102.	mm	170.5357	mm	18-0.6747	mm	19-0.8552	mm	20-0.7949	mm	21-0.0348	mm
$22 \quad 5.57 \mathrm{MPa}$	$23 \quad 66.6$	ms	$24 \quad 53.9$	ms	$25-195.6$	ms	26-202.4	ms	271420	KPa	2819.99	KPa
$29 \quad 1362 \mathrm{KPa}$	301.1	cm	3120.1	dC								
Scan \#229												
20:19:12:23												
1.1641 pm	2-0.1705	mm	3-0.1269	mm	4-0.258	mm	5-0.0793	mm	60.0675	mm	7-0.4575	mm
80.2662 mm	9-0.0446	mm	10-0.0269	mm	11-1.3003	mm	12-0.297	mm	13-0.5825	ma	14-0.6231	mm
15-0.0549 ma	16-0.4102	mm	170.5357	mm	18-0.6747	mm	19-0.8571	mm	20-0.7943	mm	21-0.0348	mm
$22 \quad 5.57 \mathrm{MPa}$	$23 \quad 67.4$	ms	$24 \quad 53.9$	ms	25-195.6	ms	26-202.4	ms	271402	KPa	$\begin{array}{ll}28 & 19.85\end{array}$	KPa
$29 \quad 1344 \mathrm{KPa}$	301.1	cm	31 20.1	dC								

Scan $⿰ ⿰ 三 丨 ⿰ 丨 三 一 230$
＊＊Approximate steady flow at 20.7 KPa （ 3 psi ）withdrawal：
20：19：15： 2

11.273	1 pm	2－0．1705	mm	3－0．1269	mm	4－0．2583	mm	5－0．0793	mm	60.0675	mm	7－0．4578	mm
80.2662	man	9－0．0443	mm	10－0．0269	mm	11－1．2984	mm	12－0．2936	mm	13－0．5825	mm	14－0．6237	mm
15－0．0549	mm	16－0．4102	mm	170.5357	mm	18－0．6747	mm	19－0．8583	mm	20－0．7949	mm	21－0．0351	mm
$22 \quad 5.57$	MPa	$23 \quad 61.3$	ms	2453.9	ms	25－195．6	ms	26－202．4	ms	271382	KPa	2818.629	KPa
291328	KPa	301.1	cm	3120	dC								
Scan 非231													
20：19：17： 2													
11.442	1 pm	2－0．1705	mm	3－0．1269	mm	4－0．2583	mm	5－0．079	mm	60.0668	mm	7－0．4578	mm
80.2662	mm	9－0．0443	mm	10－0．0269	mm	11－1．2991	mm	12－0．2939	man	13－0．5831	mm	14－0．6181	mm
15－0．0549	mm	16－0．4102	mm	170.5357	mm	18－0．6747	mm	19－0．8583	mm	20－0．7949	mm	21－0．0348	mm
$22 \quad 5.55$	MPa	$23 \quad 60.7$	ms	$24 \quad 53.9$	ms	$25-195.6$	ms	26－202．4	ms	271384	KPa	2818.734	KPa
291331	KPa	301.1	cm	3120	dC								
Scan \＃232													
20：19：19： 2													
11.807	1 pm	2－0．1705	mm	3－0．1269	mm	4－0．2583	mm	5－0．079	mm	60.0668	mm	7－0．4578	mm
80.2662	mm	9－0．0443	mm	10－0．0269	mm	11－1．2984	mm	12－0．2936	mm	13－0．5831	mm	14－0．6162	mm
15－0．0549	mm	16－0．4107	mm	170.5357	mm	18－0．6747	mm	19－0．8589	mm	20－0．7949	mm	21－0．0351	mm
225.55	MPa	2360.7	mis	$24 \quad 53.9$	ms	25－195．6	ms	26－202．4	ms	271409	KPa	2820.059	KPa
291351	KPa	301.1	cm	3119.9	dC								
Scan 非233													
20：19：21： 2													
11.164	1 pm	2－0．1708	mm	3－0．1269	mm	4－0．2583	mm	5－0．0793	ram	60.0668	mm	7－0．4581	mm
80.2662	nm	9－0．0446	mm	10－0．0269	mm	$11-1.301$	mm	12－0．293	mim	13－0．5831	mm	14－0．6087	mm
15－0．0549	mm	16－0．4107	mm	170.5357	mm	18－0．6747	mm	19－0．8595	mm	20－0．7949	mm	21－0．0351	mm
$22 \quad 5.57$	MPa	2360.7	ms	$24 \quad 53.9$	ms	25－195．6	ms	26－202．4	ms	271390	KPa	$28 \quad 19.92$	KPa
291332	KPa	301.1	cm	3119.9	dC								
Scan \％ 234													
20：19：23： 2													
11.148	1 pm	2－0．1708	mm	3－0．1269	mm	4－0．2583	mm	5－0．079	mm	60.0675	mm	7－0．4581	mm
80.2662	mm	9－0．0443	mm	10－0．0269	mm	11－1．2984	mm	12－0．2961	mm	13－0．5838	mm	14－0．6119	mm
15－0．0549	mm	16－0．4107	mm	170.5357	mm	18－0．6753	mm	19－0．8595	mm	20－0．7949	mm	21－0．0351	mm
$22 \quad 5.57$	MPa	$23 \quad 66.6$	ms	$24 \quad 53.9$	ms	$25-195.6$	ms	$26-202.4$	ms	271376	KPa	$28 \quad 19.78$	KPa
291319	KPa	301.1	cm	3119.8	dC								
Scan \＃1235													
20：19：25： 2													
11.18	lpm	2－0．1712	mm	3－0．1273	mm	4－0．2586	mm	5－0．0793	mm	60.0675	mm	7－0．4585	mm
80.2662	mm	9－0．0443	mm	10－0．0266	mm	11－1．2984	mm	12－0．2964	mm	13－0．5838	mm	14－0．6087	mm
15－0．0549	mm	16－0．4107	mm	170.5357	mm	18－0．6753	mm	19－0．8601	mm	20－0．7949	mm	21－0．0348	mm
$22 \quad 5.57$	MPa	$23 \quad 61.5$	ms	$24 \quad 53.9$	ms	25－201．5	ms	$26-202.4$	ms	271361	KPa	2819.327	KPa
291306	KPa	301.1	cm	3119.8	dC								
Scan \＃236													
20：19：45：31													
$1 \quad 1.117$	1 pm	2－0．1729	mm	3－0．1266	mm	4－0．2601	mm	5－0．0797	mm	60.0681	mm	7－0．4605	mm
80.2671	mm	9－0．0446	mm	10－0．0269	mm	11－1．2713	mm	12－0．3104	mm	$13-0.587$	mm	14－0．6193	mm
15－0．0543	mm	16－0．4119	mm	$17 \quad 0.55$	mm	18－0．6784	mm	19－0．8614	mm	20－0．7974	mm	21－0．0351	mm
$22 \quad 5.55$	MPa	$23 \quad 60.7$	ms	$24 \quad 47.3$	ms	$25-195.7$	ms	26－202．4	ms	271314	KPa	$28 \quad 13.78$	KPa
291267 KP	KPa	301.1	cm	$31 \quad 19.6$	dC								
Scan 非237													
20：19：48：43													
11.275	1 pm	2－0．1729	mm	3－0．1266	mm	4－0．2604	mm	5－0．0797	mm	60.0681	mm	7－0．4609	mm
80.2668	mm	9－0．0449	mm	10－0．0269	mm	11－1．2739	mm	12－0．2992	mm	13－0．587	mm	$14-0.625$	mm
15－0．0543	mm	16－0．4119	mm	170.5506	mm	18－0．679	mm	19－0．8614	mm	20－0．7974	mm	21－0．0351	mm
225.55	MPa	$23 \quad 60.7$	ms	$24 \quad 47.2$	ms	25－201．8	ms	26－202．4	ms	271469	KPa	2817.897	KPa
14	KPa	301.1	cm	3119.6	dC								

Scan \＃238
＊＊Approximate steady flow at $41.4 \mathrm{KPa}(6 \mathrm{psi})$ withdrawal： 20：19：56：47

＊＊STRENGTH AND PERMEABILITY TESTS ON ULTRA－LARGE
$* * S T R I P A$ GRANITE CORE（Engineering Units Data）
＊＊20：18：36－20：55：05
＊＊Loading from 5.55 MPa to failure at 7.5 MPa peak axial stress

＊＊Initial conditions：

$20: 20: 18: 36$						
1	0	1 pm	$2-0.1742$	mm	$3-0.1276$	mm
8	0.2677	mm	$9-0.0449$	mm	$10-0.0266$	mm
$15-0.0543$	mm	$16-0.4125$	mm	17	0.55	mm
22	5.55	MPa	23	60.7	ms	24
29	1304	KPa	30	1.1	cm	31
20.2	ms					

Scan $\# 241$
＊＊Resume loading：
20：20：19：24

10	1 pm	2－0．1742	mm	3－0．1276	mm	4－0．2607	mm	5－0．0797	mm	60.0681	mm	7－0．4626	mm
$8 \quad 0.268$	mm	9－0．0449	mm	10－0．0266	mm	11－1．2821	mm	12－0．298	mm	13－0．5927	mm	14－0．5308	mmm
15－0．0543	mom	16－0．4119	mm	170.55	mm	18－0．6796	mm	19－0．8644	tim	20－0．798	mm	21－0．0351	mm
$22 \quad 5.55$	MPa	$23 \quad 60.7$	ms	$24 \quad 47.2$	ms	25－202．3	ms	$26-206.9$	ms	271338	KPa	$28-1.5$	KPa
291304	KPa	301.1	cm	3121.8	dC								
$\begin{aligned} & \text { Scan } ⿰ ⿰ 三 丨 ⿰ 丨 三 一 242 \\ & 20: 20: 19: 54 \end{aligned}$													
10	1 pm	2－0．1742	mm	3－0．1279	mm	4－0．261	min	5－0．0797	mm	60.0681	mm	7－0．4643	mim
80.2687	mm	9－0．0452	mm	10－0．0269	mm	11－1．2846	mm	12－0．2258	mm	13－0．5883	mm	14－0．504	mm
15－0．0549	mm	16－0．4125	mm	170.5506	mm	18－0．6827	mm	19－0．8571	mm	20－0．8006	mm	21－0．0351	mm
$22 \quad 5.67$	MPa	$23 \quad 60.7$	ms	$24 \quad 50.7$	ms	25－202．3	ms	$26-209.1$	ms	271338	KPa	$28-1.5$	KPa
291303	KPa	301.1	cm	3121.7	dC								
$\begin{aligned} & \text { Scan } \# 243 \\ & 20: 20: 20: 24 \end{aligned}$													
1.0	1 pm	2－0．1769	mm	3－0．1295	mm	4－0．2622	mm	5－0．0797	mm	60.0687	mm	7－0．4704	mm
80.2733	mm	9－0．0455	mm	10－0．0269	mm	11－1．2858	mm	12－0．2865	mm	13－0．5915	mm	$14-0.509$	mim
15－0．0543	mm	16－0．4131	mm	170.5631	mm	18－0．6901	mm	19－0．8754	mm	20－0．8062	mm	21－0．0354	mm
225.91	MPa	$23 \quad 64.3$	ms	$24 \quad 53.9$	ms	25－205．7	ms	$26-212.3$	mS	271337	KPa	$28-1.5$	KPa
291302	KPa	301	cm	3121.7	dC								
$\begin{aligned} & \text { Scan \#244 } \\ & 20: 20: 20: 54 \end{aligned}$													
10	1 pm	2－0．1806	mm	3－0．131	mm	4－0．2644	mm	$5-0.08$	mm	60.0699	mm	$7-0.482$	mm
80.2817	ma	9－0．0462	mm	10－0．0269	mm	11－1．2739	mm	12－0．3113	mm	13－0．5934	mm	14－0．5258	mm
15－0．0543	mm	16－0．4143	mm	170.5839	mm	18 －0．7	mm	19－0．903	mm	20－0．8144	mm	21－0．0361	mm
$22 \quad 6.16$	MPa	$23 \quad 63.8$	ms	$24 \quad 57.4$	ms	25－212．4	ms	$26-222.3$	ms	271336	KPa	$28-1.5$	KPa
291301	KPa	$30 \quad 1$	cm	3121.6	dC								

Scan 非245

20:20:21:24

1	0	1 p
8	0.2937	m
$15-0.0543$	m	
22	6.42	MP

$\begin{array}{ll}22 & 6.42 \mathrm{MPa} \\ 29 & 1300 \mathrm{KPa}\end{array}$

Scan $\ddagger 246$

20:20:21:54

1	$0 \quad 1 \mathrm{pm}$	
8	0.3076	mm
$15-0.0536$	mm	
22	6.68	MPa
29	1299	KPa

$2-0.1911$	mm	
$9-0.0471$	mm	
$16-0.4196$	mm	
23	67.4	ms
30	1	cm

$3-0.1348$	mm	
$10-0.0273$	mm	
17	0.6488	mm
24	60.7	ms
31	21.6	dC

$2-0.2022$	mm	$3-0.1373$	mm
$9-0.0474$	mm	$10-0.0273$	mm
$16-0.4231$	mm	17	0.7024
23	63.8	ms	24
30	64.2	ms	
30	1	cm	31
	21.5	dC	

$4-0.2708$	mm	$5-0.0806$	mm	60.0749	mm	$7-0.5407$	mm	
$11-1.2726$	mm	$12-0.3131$	mm	$13-0.594$	mm	$14-0.5121$	mm	
$18-0.7345$	mm	$19-0.9832$	mm	$20-0.8351$	mm	21	-0.037	mm
$25-222.5$	ms	$26-249.3$	ms	27	1333 KPa	28	-1.64	KPa

| $4-0.2045$ | mm | $5-0.0809$ | mm | 60.0805 | mm | $7-0.6372$ | mm |
| ---: | :--- | ---: | :--- | ---: | ---: | ---: | ---: | ---: |
| $11-1.2694$ | mm | $12-0.3135$ | mm | $13-0.594$ | mm | $14-0.5233$ | mm |
| $18-0.7579$ | mm | $19-1.0707$ | mm | $20-0.8295$ | mm | $21-0.0379$ | mm |
| $25-215.8$ | ms | $26-272.5$ | ms | 27 | 1335 KPa | $28-1.605 \mathrm{KPa}$ | |

Scan \#249

20:20:23:24

1	0	$l \mathrm{pm}$
8	0.5105	um
$15-0.0243$	mm	
22	7.39	MPa
29	1301 KPa	

$2-0.3494$	mm	$3-0.1496$	mm	
$9-0.0465$	mm	10	-0.024	mm
$16-0.4454$	mm	17	1.2345	mm
23	60.7	ms	24	74.2
30	1.2	cm	31	21.2

$4-0.1819$	mm	$5-0.0809$	mm	60.0842	mm
$11-1.2638$	mm	$12-0.3063$	mm	$13-0.594$	mm
$18-0.7745$	mm	$19-1.1552$	mm	$20-0.8131$	mm
25	-209	ms	$26-293.3$	ms	27

$7-0.7126$	mm	
$14-0.5451$	mm	
$21-0.0382$	mm	
28	-1.57	KPa

$4-0.1706$	mm	$5-0.0806$	mm	60.0854	mm	$7-0.7508$	mm
$11-1.2657$	mm	$12-0.3147$	mm	$13-0.594$	mm	$14-0.5582$	mm
$18-0.7782$	mm	$19-1.1956$	mm	$20-0.7987$	mm	$21-0.0382$	mm
25	-209	ms	26	-300	ms	27	1337

$4-0.1648$	mm	$5-0.0809$	mm	6	0.086	mm	$7-0.7723$	mm
$11-1.2688$	mm	$12-0.315$	mm	$13-0.5947$	mm	$14-0.5489$	mm	
$18-0.7794$	mm	$19-1.2176$	mm	$20-0.7886$	mm	$21-0.0382$	mm	
25	-209	ms	$26-303.5$	ms	27	1337	KPa	28

$4-0.1617$	mm	$5-0.0806$	mm	60.0854	mm	$7-0.7863$	mm
$11-1.2669$	mm	$12-0.284$	mm	$13-0.5927$	mm	$14-0.5227$	mm
$18-0.7801$	mm	$19-1.2299$	mm	$20-0.7823$	mm	$21-0.0379$	mm
25	-209	ms	$26-303.5$	ms	27	1338	KPa

$\begin{aligned} & \text { Scan } \\ & 20: 20 \end{aligned}$	$\begin{aligned} & \text { 非253 } \\ &): 25: 24 \end{aligned}$													
1	0	1 pm	2－0．3845	mm	3－0．1528	mm	4－0．1596	mm	5－0．0806	mim	$6 \quad 0.086$	mm	7－0．7979	mm
3	0.6042	mm	9－0．0458	mm	10－0．0214	mm	11－1．2739	mm	12－0．2992	mm	13－0．5934	mm	$14-0.527$	mm
15	0.0159	mm	16－0．4572	mm	171.5625	mm	18－0．7801	mm	19－1．2397	mm	20－0．7779	mm	21－0．0379	mm
22	7.39	MPa	$23 \quad 57.6$	ms	2474.2	ms	$25-209$	ms	26－303．5	ms	271338	KPa	$28-1.5$	KPa
29	1303	KPa	$30 \quad 1.3$	cm	3121	dC								
Scan \＃1254														
20：20：25：54														
1	0	1 pm	2－0．3869	mm	3－0．1531	mm	4－0．1577	mm	5－0．0806	mm	60.086	mm	7－0．8074	mm
8	0.6147	mm	9－0．0458	mm	10－0．0211	mm	11－1．2745	mm	12－0．3107	mm	13－0．594	mm	14－0．5588	mm
15	0.021	mm	16－0．4583	mm	171.5994	mm	18－0．7801	mm	19－1．2495	mm	20－0．7742	mm	21－0．0379	mm
22	7.39	MPa	$23 \quad 60.7$	ms	$24 \quad 70.7$	ms	$25-209$	ms	$26-303.5$	ms	271338	KPa	$28-1.5$	KPa
29	1304	KPa	$30 \quad 1.3$	cm	3121	dC								
$\begin{aligned} & \text { Scan } ⿰ ⿰ 三 丨 ⿰ 丨 三 一 255 \\ & 20: 20: 26: 24 \end{aligned}$														
1	0	1 pm	2－0．3889	mm	3－0．1531	mm	4－0．1562	mm	5－0．0806	mm	$6 \quad 0.086$	mm	7－0．8149	mm
3	0.6234	mm	9－0．0455	mm	10－0．0208	mm	11－1．2707	mm	$12-0.32$	mm	13－0．5947	mm	14－0．5688	mm
15	0.0261	mm	16－0．4595	mm	171.625	mm	18－0．7801	mm	19－1．2574	mm	20－0．7717	mm	21－0．0379	mm
22	7.39	MPa	$23 \quad 57$	ms	$24 \quad 67.4$	ms	$25-209$	ms	26－303．5	ms	271338	KPa	$28-1.535$	KPa
29	1304	KPa	301.3	cm	3121	dC								
Scan ${ }^{\text {\＃}}$ 256														
20：20：27：19														
1	0	1pm	2－0．3916	mm	3－0．1534	mm	4－0．1538	min	5－0．0806	mm	$6 \quad 0.086$	mm	7－0．8258	mm
8	0.636	mm	9－0．0455	mm	10－0．0208	mm	11－1．2701	mm	12－0．3085	mm	13－0．594	mm	$14-0.557$	mm
15	0.0318	mun	16－0．4607	mm	171.6685	mm	18－0．7801	mm	19－1．2666	mm	20－0．7679	mm	21－0．0379	mm
22	7.39	MPa	2359	ms	$24 \quad 67.4$	ms	$25 \quad-209$	ms	26－303．5	ms	271339	KPa	28－1．535	KPa
29	1304	KPa	$30 \quad 1.3$	cm	3120.9	dC								
Scan \＃1257														
20：20	：28：19													
1	0	1 pm	2－0．3939	mm	3－0．1537	mm	4－0．1516	mm	5－0．0806	mm	$6 \quad 0.086$	mm	7－0．8368	mm
8	0.6487	mm	9－0．0455	mm	10－0．0205	mm	11－1．2631	mm	12－0．3162	mm	13－0．5947	mman	14－0．5395	mm
15	0.0382	mom	16－0．4342	min	171.7119	mm	18－0．7801	mm	19－1．277	mm	20－0．7629	mm	21－0．0376	mm
22	7.4	MPa	$23 \quad 60.7$	ms	2467.4	ms	$25-209$	ms	$26-308.5$	ms	271340	KPa	28－1．535	KPa
29	1305	KPa	$30 \quad 1.3$	cm	3120.9	dC								
Scan 非258														
20：20：29：19														
1	0	1 pm	2－0．3987	mm	3－0．154	mm	4－0．1486	mm	5－0．0803	mm	$6 \quad 0.086$	mm	7－0．8521	mm
8	0.6673	mm	9－0．0455	mm	10－0．0201	mm	11－1．2587	mm	12－0．3196	mm	13－0．594	mm	14－0．5258	mm
15	0.0522	mm	16－0．4254	mm	171.7774	mm	18－0．7801	mm	19－1．2935	mm	20－0．756	mm	21－0．0376	mm
22	7.39	MPa	$23 \quad 55.5$	ms	2467.4	ms	$25-209$	ms	26－305．3	ms	271340	KPa	$28-1.5$	KPa
29	1305	KPa	$30 \quad 1.3$	cm	3120.8	dC								
Scan \＃259														
20：20：30：19														
1	0	lpm	2－0．4034	mm	3－0．154	mm	4－0．1449	mm	$5-0.08$	mm	$6 \quad 0.086$	mm	7－0．8743	mm
8	0.696	mm	9－0．0449	mm	10－0．0198	mm	11－1．2518	mm	12－0．3175	mm	13－0．5947	mm	14－0．5383	mm
15	0.0727	mm	16－0．4231	mm	171.8548	mm	18－0．7794	mm	19－1．3131	mm	20－0．7484	mm	21－0．0376	mm
22	7.39	MPa	$23 \quad 53.9$	ms	$24 \quad 67.4$	ms	$25-209$	ms	$26-303.5$	ms	271340	KPa	28－1．535	KPa
29	1305	KPa	$30 \quad 1.3$	cra	$31 \quad 20.8$	dC								
Scan \＃260														
20：20：31：19														
1	0	1 pm	2－0．3825	mm	3－0．154	mm	4－0．1406	mm	5－0．0797	mm	$6 \quad 0.086$	mm	7－0．9016	mm
8	0.7322	min	$9-0.044$	mm	10－0．0192	mm	11－1．2594	mm	12－0．3097	mm	13－0．5947	mm	14－0．5358	mm
15	0.0988	mm	16－0．4225	mm	171.9566	mm	18－0．7776	mm	19－1．3352	mm	20－0．739	mm	$21-0.037$	mm
22	7.4	MPa	$23 \quad 53.9$	ms	$24 \quad 67.4$	ms	$25-209$	ms	26－303．5	ms	271341	KPa	28－1．535	KPa
29	1306	KPa	$30 \quad 1.4$	cm	3120.7	dC								

Scan \#261

20:20:32:19

1	0	1 pm	2-0.3757	mm	3-0.1543	mm
8	0.7625	mm	9-0.0433	mm	10-0.0188	mm
15	0.1211	mm	16-0.4225	mm	172.0524	mm
22	7.39	MPa	$23 \quad 53.9$	ms	$24 \quad 67.4$	s
29	1306	KPa	$30 \quad 1.4$	cm	$31 \quad 20.7$	dC
Scan ${ }^{\text {F }}$ 262						
20:20:33:19						
1	0	1 pm	$2-0.373$	mm	3-0.1543	mm
3	0.7922	mm	9-0.0424	mm	10-0.0185	mm
15	0.1415	mm	16-0.4219	mm	172.1405	mm
22	7.4	MPa	$23 \quad 53.9$	ms	$24 \quad 62.3$	ms
29	1306	KPa	$30 \quad 1.4$	cm	3120.6	dC
Scan \#263						
20:20:34:19						
1	0	1pm	2-0.3713	mm	3-0.1543	nm
8	0.8154	mm	9-0.0418	mm	10-0.0182	num
15	0.16	min	16-0.4219	mm	172.2191	mm
22	7.4	MPa	$23 \quad 53.9$	ms	$24 \quad 60.7$	ms
29	1306	KPa	$30 \quad 1.4$	cm	3120.5	dC

| $4-0.1366$ | mm | $5-0.0793$ | mm | 6 | 0.086 | mm | $7-0.9244$ | mm |
| ---: | :--- | ---: | ---: | :--- | ---: | ---: | ---: | ---: | ---: |
| $11-1.2524$ | mm | $12-0.3169$ | mm | $13-0.5947$ | mm | $14-0.5283$ | mm | |
| $18-0.7751$ | mm | $19-1.3554$ | mm | $20-0.7308$ | mm | $21-0.0367$ | mm | |
| 25 | -209 | ms | $26-303.5$ | ms | 27 | 1341 KPa | $28-1.535$ | KPa |

4	-0.129	mm	$5-0.0787$	mm	6	0.086	mm	$7-0.9626$	mm
11	-1.26	mm	$12-0.315$	mm	$13-0.5947$	mm	$14-0.5252$	mm	
$18-0.7696$	mm	$19-1.3927$	mm	$20-0.7157$	mm	$21-0.0361$	mm		
25	-209	ms	$26-303.5$	ms	27	1341	KPa	28	-1.535

$4-0.1259$	mm	$5-0.0787$	mm	60.0854	mm	$7-0.9763$	mm
$11-1.2575$	mm	$12-0.3135$	mm	$13-0.5947$	mm	$14-0.5245$	mm
$18-0.7677$	mm	$19-1.4056$	mm	$20-0.7107$	mm	$21-0.0361$	mm
25	-209	ms	$26-303.5$	ms	27	1341	KPa

$4-0.1232$	mm	$5-0.0784$	mm	60.0854	mm	$7-0.9882$	mm
$11-1.2613$	mm	$12-0.2893$	mm	$13-0.594$	mm	$14-0.5395$	mm
$18-0.7646$	mm	19	-1.416	mm	$20-0.7063$	mm	$21-0.0357$
25	-209	ms	$26-303.5$	ms	27	1340 KPa	28

Scan 非266
**Monitor at 7.4 MPa axial stress: 20:20:45: 5

1	0	1 pm	2-0.3615	mm	3-0.1553	mm	4-0.0865	mm	5-0.0753	mal	60.0848	mm	7-1.1199	mm
8	1.0708	mm	9-0.038	mm	$10-0.015$	mm	$11-1.272$	mm	12-0.302	mm	13-0.5959	mm	14-0.5744	mm
15	0.4388	mm	16-0.4196	mm	173.4923	mm	18-0.7283	mm	$19-1.58$	mm	20-0.3676	mm	21-0.0342	mm
22	7.39	MPa	$23 \quad 53.9$	ms	2454.1	ms	25-215.6	ms	$26-297$	ms	271322	KPa	$28-1.5$	KPa
29	1288	KPa	$30 \quad 1.5$	cm	3120.1	dC								
Scan \#167														
20:20	:47: 5													
1	0	1 pm	2-0.3619	mm	3-0.155	mm	4-0.0813	mm	5-0.0747	mm	60.0848	mm	7-1.1359	mm
8	1.1104	mm	9-0.038	mm	10-0.0146	mm	11-1.2808	mm	12-0.311	mm	13-0.5966	mm	14-0.595	mm
15	0.4726	mm	16-0.419	mm	173.6602	mm	18-0.7215	mm	19-1.6002	um	20-0.3312	mul	21-0.0342	mm
22	7.4	MPa	$23 \quad 53.9$	ms	2453.9	ms	25-215.8	ms	26-290.9	ms	271323	KPa	$28-1.5$	KPa
29	1288	KPa	$30 \quad 1.5$	cm	3120.1	dC								
Scan \#268														
20:20:49: 5														
1	0	1 pm	2-0.3619	mm	3-0.155	mm	4-0.0783	mm	5-0.0744	mm	60.0848	mm	7-1.1461	mm
8	1.1339	min	9-0.038	mm	10-0.0146	mm	11-1.2808	min	12-0.3172	mm	13-0.5966	mm	14-0.5869	mm
15	0.4936	mm	16-0.419	mm	173.7531	ma	18-0.7172	mm	19-1.6125	mm	20-0.3123	mm	21-0.0342	mm
22	7.4	MPa	$23 \quad 48$	ms	$24 \quad 53.9$	ms	$25-215.8$	ms	$26-290$	ms	271323	KPa	$28-1.5$	KPa

$\begin{aligned} & \text { Scan } \\ & 20: 20 \end{aligned}$	$\begin{aligned} & \$ 269 \\ & : 51: 5 \end{aligned}$													
1	0	1 pm	2－0．3622	mm	3－0．155	mm	4－0．0761	mm	5－0．0741	mm	60.0848	mm	7－1．154	mm
8	1.1528	mm	9－0．038	mm	10－0．0143	mm	11－1．2713	mm	12－0．3125	mm	13－0．5966	num	14－0．5988	mm
15	0.5096	mm	16－0．419	mm	173.8304	mm	18－0．7135	mm	19－1．6223	mm	20－0．3017	mm	21－0．0339	mm
22	7.4	MPa	$23 \quad 47.2$	ms	$24 \quad 53.9$	ms	$25-215.8$	ms	$26-290$	ms	271323	KPa	$28-1.5$	KPa
29	1289	KPa	$30 \quad 1.5$	cm	3120.1	dC								
Scan ${ }^{\text {2 }} 270$														
20：20：53： 5														
1	0	1 pm	2－0．3622	mm	3－0．1547	mm	4－0．074	mm	5－0．0737	mm	60.0848	mm	7－1．1608	mm
8	1.1695	nm	$9-0.038$	mm	10－0．0143	mm	11－1．2802	mm	12－0．3268	mm	13－0．5972	mm	14－0．5713	mm
15	0.523	mm	16－0．419	mm	173.9043	mm	18－0．7098	mm	19－1．6308	mm	20－0．2954	mm	21－0．0339	mm
22	7.4	MPa	$23 \quad 47.2$	ms	$24 \quad 53.9$	ms	25－215．8	ms	$26-290$	ms	271324	KPa	$28-1.5$	KPa
29	1289	KPa	301.5	cm	3120	dC								
Scan $\$ 271$														
20：20：55： 5														
1	0	lpm	2－0．3622	mm	3－0．1547	mm	4－0．0712	mm	5－0．0734	mm	60.0842	mm	7－1．1697	mm
8	1.193	mm	$9-0.038$	mm	10－0．0143	mm	11－1．2764	mm	12－0．3172	mm	13－0．5966	mm	14－0．5919	mm
15	0.5396	mm	16－0．419	mm	173.9793	mm	18－0．7055	mm	$19-1.64$	mm	20－0．2941	mm	21－0．0336	mm
22	7.4	MPa	$23 \quad 47.2$	ms	$24 \quad 53.9$	ms	$25-215.8$	ms	$26-290$	ms	271324	KPa	$28-1.5$	KPa
29	1289	KPa	301.5	cm	$31 \quad 20$	dC								
＊＊STRENGTH AND PERMEABILITY TESTS ON ULTRA－LARGE ＊＊STRIPA GRANITE CORE（Engineering Units Data） $\star * 21: 08: 49-21: 12: 49$ ＊＊Permeability testing on failed sample														
Scan $⿰ ⿰ 三 丨 ⿰ 丨 三 一 272$ ＊＊Approximate steady flow at $10.3 \mathrm{KPa}(1.5 \mathrm{psi})$														
20：21：8：49														
1	3.364	lpm	2－0．3649	mm	3－0．1525	mm	4－0．0599	mm	5－0．0722	mm	60.0842	mm	7－1． 2034	mm
8	1.2879	mm	9－0．0389	mm	10－0．014	mm	11－1．2827	mm	12－0．3283	mm	13－0．5985	mm	14－0．5713	mm
15	0.6065	mm	16－0．4184	mm	174.3203	mm	18－0．679	mm	19－1．6816	mm	20－0．2797	mm	21－0．0333	mm
22	7.4	MPa	$23 \quad 47.2$	ms	$24 \quad 47.3$	ms	$25-215.8$	ms	$26-290$	ms	271377	KPa	$28 \quad 0.419$	KPa
29	1341	KPa	$30 \quad 1.6$	cm	3120.1	$d C$								
Scan \＃273														
20：21：10：49														
1	3.313	1 pm	2－0．3646	mm	3－0．1525	mm	4－0．0584	mm	5－0．0719	mm	60.0842	mm	7－1． 2065	mm
8	1.2953	mim	9－0．0393	mm	10－0．014	mm	11－1．2884	mm	12－0．3354	mm	13－0．5991	mm	14－0．6081	mm
15	0.6123	mm	16－0．4184	mm	174.3507	mm	18－0．6765	mm	19－1．6853	mm	20－0．2797	mm	$21-0.033$	mm
22	7.4	MPa	$23 \quad 47.2$	ms	$24 \quad 47.2$	ms	25－209．9	ms	$26-290$	ms	271365	KPa	$28 \quad 0.349$	KPa
29	1330	KPa	$30 \quad 1.6$	cm	3120.1	dc								
Scan \＃274														
20：21：12：49														
1	0.009	1 pm	2－0．3646	mm	3－0．1525	mm	4－0．0575	mm	5－0．0719	mm	60.0842	mm	7－1．2106	mm
8	1.3027	mm	9－0．0393	mm	$10-0.014$	mm	11－1．2758	mm	12－0．3234	mm	13－0．5985	mm	14－0．5994	mm
15	0.618	mim	16－0．4178	mm	174.3817	mm	18－0．6747	mm	19－1．6902	mm	20－0．279	mm	$21-0.033$	mm
22	7.42	MPa	$23 \quad 47.2$	ms	$24 \quad 47.2$	ms	$25-215$	ms	$26-290$	ms	$27 \quad 1326$	KPa	28－1．151	KPa
29	1292	KPa	$30 \quad 1.6$	cm	$31 \quad 20.1$	dC								

＊＊STRENGTH AND PERMEABILITY TESTS ON ULTRA－LARGE
＊＊STRIPA GRANITE CORE（Engineering Units Data）
＊＊12：19：50－21：42：31
＊＊Sample unloading

Scan 非275
r＊Monitor at 7.4 MPa axial load：
20：21：19：50

1	0	1 pm	2－0．3646	mm	3－0．1525	mm	4－0．0538	mm	5－0．0716	mm	60.0842	mm	7－1．2219	
8	1.3259	min	9－0．0396	mm	10－0．014	mm	11－1．2625	mm	12－0．3069	mm	13－0．5908	mm	1411.0768	
15	0.6359	mm	16－0．4178	mm	174.4733	mm	18－0．6692	mm	19－1．7031	$\pi \mathrm{m}$	20－0．2778	mm	$21-0.033$	
22	7.4	MPa	$23 \quad 47.2$	ms	$24 \quad 47.2$	ms	$25-209.2$	ms	26－283．5	ms	271330	KPa	28－1．395	
29	1295	KPa	301.6	cm	31.20 .1	dC								
Scan \＃276														
20：21：20：20														
1	0	1 pa	2－0．3639	mm	3－0．1525	mm	4－0．0535	mm	5－0．0716	mm	60.0842	min	7－1．2225	mm
8	1.3275	mm	9－0．0396	mm	10－0．014	mm	11 －1．26	mm	12－0．3073	mm	13－0．5902	mm	1411.5339	mm
15	0.6372	mm	16－0．4178	mm	174.4775	mm	18－0．6685	mm	19－1．7043	mm	20－0．2778	mm	21－0．0326	mm
22	7.4	MPa	23 47．2	ms	$24 \quad 47.2$	ms	$25-209$	ms	26－283．3	ms	271330	KPa	$28-1.361$	
29	1295	KPa	301.6	cm	3120.1	dC								
Scan $⿰ ⿰ 三 丨 ⿰ 丨 三 277$														
20：21：20：50														
1		1 pm	2－0．3639	mm	3－0．1525	mm	4－0．0532	mm	5－0．0716	mm	60.0842	mm	7－1．2236	mm
8	1.3287	mm	9－0．0396	mm	$10-0.014$	mm	11－1．2581	mm	12－0．3122	mm	13－0．5902	mm	1411.6094	n
15	0.6384	mm	16－0．4178	mm	174.4817	mm	18－0．6679	mm	19－1．7049	mm	20－0．2778	mm	$21-0.033$	mm
22	7.4	MPa	$23 \quad 47.2$	ms	$24 \quad 47.2$	ms	$25-209$	ms	26－283．3	ms	271330	KPa	28－1．395	KPa
29	1295	KPa	301.6	cm	3120.1	dC								
Scan 非278														
20：21：21：20														
1		1 pm	2－0．3639	mm	3－0．1525	mm	4－0．0529	mm	5－0．0716	mm	60.0842	mm	7－1．2239	mm
8	1.3303	mm	9－0．0396	mm	10－0．0137	mm	11－1．2531	mm	12－0．3104	mm	13－0．5908	mm	1411.6593	m
15	0.6397	num	16－0．4184	mm	174.4846	mm	18－0．6679	mm	19－1．7055	min	20－0．2778	mm	21－0．0326	mm
22	7.4	MPa	$23 \quad 47.2$	ms	$24 \quad 47.2$	ms	25－209	mS	26－283．3	ms	271330	KPa	28－1．361	KPa
29	1295	KPa	$30 \quad 1.6$	cm	$31 \quad 20.1$	dC								
Scan \＃279														
20：21：21：50														
1	0	lpm	2－0．3639	mm	3－0．1528	mm	4－0．0529	mm	5－0．0716	mm	60.0842	mm	7－1．2253	mm
8	1.3318	mm	9－0．0396	mm	10－0．0．137	mm	11－1．2543	mm	12－0．3066	mm	13－0．5908	mm	1411.7466	mm
15	0.641	mm	16－0．4184	mm	174.4906	．mm	18－0．6673	mm	19－1．7086	mm	20－0．2778	mm	21－0．0326	mm
22	7.49	MPa	$23 \quad 47.2$	ms	$24 \quad 47.2$		$25-212.4$	ms	$26-283.3$	ms	271330	KPa	28－1．326	$\mathbf{K P a}$
29	1295	KPa	$30 \quad 1.6$	cm	3120.1	dc								
Scan 非280														
20：21：22：20														
1	0	1 pm	2－0．3656	mm	3－0．1531	mm	4－0．0523	mm	5－0．0713	mm	60.0842	mm	7－1．2294	mm
8	1.3355	mm	9－0．0396	mm	$10-0.014$	mm	11－1．2537	mm	12－0．3069	mm	13－0．5908	mm	1411.7029	mm
15	0.6435	mm	16－0．4178	mm	174.5025	mm	18－0．6673	mm	19－1．7123	mm	20－0．2778	mm	21－0．0326	mm
22	7.5	MPa	$23 \quad 47.2$	ms	$24 \quad 47.2$	ms	$25-212.4$	ms	$26-286.5$	ms	271330	KPa	$28-1.361$	KPa
29	1295	KPa	301.6	cm	3120.1	dC								
Scan \＃281														
20：21：22：50														
1	0	1 pm	2－0．3663	mm	3－0．1531	mm	4－0．052	mm	5－0．0716	mm	60.0842	mm	7－1．2314	mm
8	1.3383	mm	9－0．0399	mm	10－0．0137	mm	11－1．2568	mm	12－0．3042	mm	13－0．5902	mm	1411.6717	mm
15	0.6454	mm	16－0．4178	mm	174.5132	mm	18－0．6679	mm	19－1．7147	mm	20－0．2778	mm	21－0．0326	mm
22	7.5	MPa	$23 \quad 47.2$	ms	2447.2	ms	$25-209$	ms	$26-290$	ms	271330	KPa	28－1．395	KPa
29	1295	KPa	301.6	cm	3120.1	dC								
Scan \＄282 20.1 de														
20：21：25：1														
1	0	1 pm	2－0．3666	mm	3－0．1531	mm	4－0．0508	mm	5－0．0713	mm	60.0842	mm	7－1．2355	mm
8	1.346	mam	9－0．0399	mm	10－0．0137	mm	11－1．2631	mm	12－0．2946	mm	13－0．5908	tum	1411.7347	min
15	0.6525	mm	16－0．4178	mm	174.5406	mm	18－0．6648	mm	19－1．7196	mm	20－0．2746	mm	21－0．0326	mm
22	7.37	MPa	$23 \quad 47.2$	ms	$24 \quad 47.2$	ms	$25-209$	ms	$26-284.1$	ms	$27 \quad 1327$	KPa	$28-1.047$	KPa
29	1293	KPa	$30 \quad 1.6$	cm	3120.1	dC								

$\begin{aligned} & \text { Scan } \\ & 20: 21 \end{aligned}$	$\begin{aligned} & \text { /291 } \\ & : 29: 31 \end{aligned}$													
1	0	1 pm	2-0.3187	mm	3-0.1405	ma	4-0.0434	mm	5-0.0691	mm	60.0799	mm	7-1.1369	mm
8	1.325	mm	9-0.0349	mm	10-0.0091	mm	11-1.2568	mm	12-0.0285	mm	13-0.5485	mm	1410.0827	mm
15	0.6518	mm	16-0.4066	mm	174.5287	mm	18-0.594	mm	19-1.5996	mm	20-0.2212	mm	21-0.0246	mm
22	5.16	MPa	$23 \quad 33.7$	ms	$24 \quad 30.2$	ms	$25-172$	ms	26-219.3	ms	271339	KPa	$28-1.43$	KPa
Scan \ddagger 292 20.1 cm 20 de														
20:21:30: 1														
1		1 pm	2-0.3106	mm	3-0.1389	mm	4-0.0428	ma	5-0.0691	mm	60.0792	mm	7-1.1233	mm
8	1.321	mm	9-0.0342	mm	10-0.0085	mm	11-1.2568	mm	12-0.0273	mm	13-0.5479	mm	149.9592	mm
15	0.6518	mm	16-0.4049	mn	174.5198	mm	18-0.5854	mm	19-1.5843	mm	20-0.2143	mm	21-0.0243	mm
22	4.9	MPa	$23 \quad 33.7$	ms	$24 \quad 26.9$	ms	$25-165.2$	ms	26-212.6	ms	271340	KPa	$28-1.43$	KPa
29	1305	KPa	$30 \quad 2.2$	cm	3120	dC								
Scan $\ddagger 293$ (20.2 cm														
20:21:30:31														
,	0	lpm	2-0.3021	mm	3-0.1373	mm	4-0.0422	mm	5-0.0685	mm	$6 \quad 0.078$	mm	7-1.109	mm
8	1.317	mm	9-0.0336	mm	10-0.0081	mm	11-1.2499	mm	12-0.0257	mm	13-0.5472	mm	149.9305	mm
15	0.6512	mm	16-0.4031	mm	174.5067	mm	18-0.5761	mm	19-1.5672	mm	20-0.2074	mm	21-0.0239	mm
22	4.64	MPa	$23 \quad 33.7$	ms	$24 \quad 26.9$	ms	25-158.5	ms	26-202.6	ms	271342	KPa	28-1.465	KPa
29	1307	KPa	$30 \quad 2.3$	cra	3120	dC								
Scan \#294														
20:21:31: 1														
1		1 pm	2-0.2927	mm	3-0.1358	mm	4-0.0416	mm	5-0.0685	mm	60.0774	mm	7-1.0936	mm
8	1.3129	mm	9-0.0327	mm	10-0.0075	mm	11-1.2505	mm	12-0.0245	mm	13-0.5466	mm	149.9068	mm
15	0.6499	nm	16-0.4008	mm	174.4888	mm	18-0.5669	mm	19-1.5494	mm	20-0.1999	mm	21-0.0233	mm
22	4.39	MPa	$23 \quad 33.7$	ms	$24 \quad 26.9$	ms	$25-151.7$	ms	26-192.4	ms	271344	KPa	28-1.465	KPa
29	1308	KPa	$30 \quad 2.3$	cm	3120	dC								
Scan \#295														
20:21:31:31														
1	0	1 pm	2-0.2826	mm	3-0.1339	mm	4-0.0413	mm	5-0.0681	mm	60.0761	mm	7-1.0776	mm
8	1.308	mm	9-0.0317	mm	10-0.0068	mm	11-1.2499	mm	12-0.0242	mm	13-0.546	mm	149.9087	mm
15	0.6493	mm	16-0.399	mm	174.4721	mm	18-0.557	mm	19-1.5311	mm	20-0.1929	mm	$21-0.023$	mm
22	4.13	MPa	$23 \quad 33.7$	ms	$24 \quad 23.4$	ms	$25-145$	ms	26-185.6	ms	271345	KPa	28-1.465	KPa
29	1310	KPa	$30 \quad 2.4$	cm	3120	dC								
20:21:32: 1														
1	0	1 pm	2-0.2714	mm	3-0.132	mm	4-0.041	mm	5-0.0681	mm	60.0749	mm	7-1.0605	mm
8	1.3027	mm	9-0.0311	mm	10-0.0065	mm	11-1.2562	mm	12-0.0242	mm	13-0.5453	mm	149.9168	mm
15	0.648	mm	16-0.3966	mm	174.4525	mm	18-0.5459	mm	19-1.5115	mm	20-0.1854	mm	21-0.0224	mm
22	3.87	MPa	$23 \quad 33.7$	ms	$24 \quad 20.2$	ms	$25-138.3$	ms	26-175.6	ms	271347	KPa	$28-1.43$	KPa
29	1311	KPa	$30 \quad 2.5$	cm	3120	dC								
$\begin{aligned} & \text { Scan \#297 } \\ & 20: 21: 32: 31 \end{aligned}$														
1	0	1 pm	2-0.2603	mm	3-0.1301	mm	4-0.0407	mm	5-0.0678	mm	60.0743	mm	7-1.0421	mm
8	1.2969	mm	9-0.0302	mm	10-0.0059	mm	11-1.2537	man	$12-0.023$	mm	13-0.5447	mm	149.8862	mm
15	0.6454	mm	16-0.3943	mm	174.4328	mm	18-0.5348	mm	19-1.4894	mm	20-0.1791	mm	21-0.0221	mm
22	3.62	MPa	$23 \quad 33.7$	ms	$24 \quad 20.2$	ms	$25-131.5$	ms	$26-165.4$	ms	271348	KPa	28-1.395	KPa
29	1313	KPa	$30 \quad 2.6$	cm	3120	dc								
Scan \#1298														
20:21:33: 1														
1	0	1 pm	2-0.2481	mm	3-0.1279	mm	4-0.0404	mm	5-0.0678	mm	60.073	mm	7-1.0233	mm
8	1.2907	mm	9-0.0292	mm	10-0.0052	mm	11-1.255	mm	12-0.0227	mm	13-0.5447	mm	149.8706	mm
15	0.6416	mm	16-0.3914	mm	174.4096	mm	18-0.5237	mm	19-1.4674	mm	20-0.1735	mm	21-0.0218	mm
22	3.38	MPa	$23 \quad 33.7$	ms	$24 \quad 20.2$	ms	25-124.8	ms	26-158.6	ms	271349	KPa	$28-1.43$	KPa
29	1314	KPa	$30 \quad 2.7$	cm	3120	dC								

Scan \#299														
20:21:33:31														
1	0	lpm	2-0.2367	mm	3-0.126	mm	4-0.0404	mm	5-0.0675	mm	60.0718	mm	7-1.0053	mm
8	1.2839	min	9-0.0283	mm	10-0.0046	mm	11-1.2531	mm	12-0.0214	mm	13-0.544	mm	149.8026	ma
15	0.6378	mm	$16-0.389$	mm	174.3846	mm	18-0.5127	mm	19-1.446	mm	20-0.1678	mm	21-0.0212	mm
22	3.15	MPa	$23 \quad 30.1$	ms	$24 \quad 16.7$	ms	$25-118$	ms	26-148.6	ms	271350	KPa	$28-1.43$	KPa
29	1315	KPa	302.8	cm	3120	dC								
Scan \#300														
20:21:34: 1														
1		1 pm	2-0.2245	mm	3-0.1238	mar	4-0.0401	mm	5-0.0672	mm	60.0706	mm	7-0.9862	mm
8	1.2768	nun	9-0.0277	mm	10-0.0039	mim	11-1.2518	mm	12-0.0211	mm	13-0.5434	mm	149.7534	mm
15	0.6327	mm	16-0.3861	mm	174.3596	mm	18-0.501	min	19-1.4233	mm	20-0.1622	mm	21-0.0208	mm
22	2.92	MPa	$23 \quad 27$	ms	$24 \quad 13.5$	ms	$25-111.3$	ms	$26-138.4$	ms	271351	KPa	$28-1.43$	KPa
29	1316	KPa	$30 \quad 2.9$	cm	3120	dc								
Scan ti301														
20:21:34:31														
1	0	1pm	$2-0.212$	mm	3-0.1219	mm	4-0.0401	mn	5-0.0669	mm	60.0693	mm	7-0.9654	mm
8	1.269	mm	$9-0.027$	mm	10-0.0033	mm	11-1.2486	mm	12-0.0223	mm	$13-0.544$	mm	148.4923	mm
15	0.6263	mm	16-0.3831	mm	174.3281	mm	18-0.4886	mm	19-1.3976	mm	20-0.1578	mm	21-0.0205	mm
22	2.69	MPa	$23 \quad 30.6$	ms	2413.5	ms	25-104.5	ms	26-128.4	ms	271352	KPa	$\begin{array}{ll}28 & -1.43\end{array}$	KPa
29	1316	KPa	303	cm	3120	dc								
Scan \#302														
20:21:35: 1														
1	0	1 pm	2-0.1989	min	3-0.1194	mm	4-0.0398	mm	5-0.0663	mm	60.0681	mm	7-0.9432	mm
8	1.2594	mm	9-0.0264	mm	10-0.0026	mm	11-1.2461	mm	12-0.0223	mm	13-0.544	mm	147.8493	mm
15	0.6187	mm	16-0.3796	mm	174.2906	mm	18-0.4757	mm	19-1.3701	mn	20-0.1534	mm	21-0.0199	mm
22	2.46	MPa	$23 \quad 30.1$	ms	2413.5	ms	$25-97.7$	ms	$26-118.2$	ms	271353	KPa	$28-1.43$	KPa
29	1317	KPa	$30 \quad 3.2$	cm	3120	dC								
Scan \#303														
20:21:35:31														
		1 pm	$2-0.185$	mm		mm								
	1.2468	mm	9-0.0258	mm	$10-0.002$	mm	11-1.2442	mm	12-0.0214	mm	13-0.5434	mm	147.7683	mm
15	0.6091	mmi	16-0.3755	mm	174.2513	mm	18-0.4609	min	19-1.3388	mm	20-0.1496	mm	21-0.0196	mum
22	2.23	MPa	$23 \quad 27$	ms	$24 \quad 13.5$	ms	$25-91$	ms	$26-108.2$	ms	271353	KPa	$28-1.43$	KPa
29	1317	KPa	$30 \quad 3.3$	cm	3119.9	dC								
Scan \#304														
20:21:36: 1														
1	0	1 pm	2-0.1712	mm	3-0.114	mm	4-0.0395	mm	5-0.0647	mm	60.0644	mm	7-0.892	mm
8	1.2301	mm	9-0.0251	mm	10-0.0017	mam	11-1.2455	mm	12-0.0205	man	13-0.5428	mm	147.7539	mm
15	0.597	mm	16-0.3714	mm	174.2007	mm	18-0.4455	mm	19-1.3046	mm	20-0.1477	mm	21-0.0193	mm
22	2	MPa	$23 \quad 27$	ms	2410	ms	$25-84.3$	ms	$26-94.7$	ms	271353	KPa	$28-1.43$	KPa
29	1317	KPa	$30 \quad 3.4$	cm	3120	dC								
Scan f3305														
20:21:36:31														
1	0	1 pa	2-0.1567	mm	3-0.1106	mm	4-0.0389	mm	5-0.0638	mm	60.0625	mm	7-0.8613	mm
8	1.2069	mm	9-0.0245	mm	10-1.0E-3	mm	11-1.2524	mm	12-0.0192	mm	13-0.5421	mm	147.7695	mam
15	0.5829	mm	16-0.3667	mm	174.1346	mm	18-0.4282	nua	19-1.2648	um	20-0.1471	mm	21-0.0187	mm
22	1.78	MPa	$23 \quad 27$	ms	$24 \quad 10.2$	ms	$25-77.6$	ms	$26-84.5$	ms	271353	KPa	$28-1.395$	KPa
29	1317	KPa	$30 \quad 3.6$	cm	3120	dC								
Scan \#306														
20:21	:37: 1													
1	0	1 pm	2-0.1432	mm	3-0.1065	mm	4-0.0385	mm	5-0.0616	mm	60.06	mm	7-0.8272	mm
8	1.1784	mm	9-0.0239	mm	10-4.0E-4	mm	11-1.2562	mm	12-0.0189	mm	13-0.5421	mm	147.7976	mm
15	0.5644	mm	16-0.3608	mm	174.0513	mm	18-0.4079	mm	19-1.2195	man	20-0.1471	mm	21-0.0181	mm
22	1.55	MPa	$23 \quad 27$	ms	2410	ms	$25-70.8$	ms	$26-74.5$	ms	271352	KPa	28-1.326	KPa

$\begin{aligned} & \text { Scan } \\ & 20: 21 \end{aligned}$	$\begin{aligned} & i \neq 307 \\ & 1: 37: 31 \end{aligned}$													
1		1 pm	$2-0.131$	mm	3－0．1018	mm	4－0．0376	mm	5－0．0585	mm	60.0569	mm	7－0．7883	mm
8	1.1438	mm	9－0．0233	mm	$103.0 \mathrm{E}-4$	mm	11－1．2556	mm	12－0．0177	mm	13－0．5415	mm	147.8188	mm
15	0.5434	mm	16－0．3532	mm	173.9584	mm	18－0．3839	mal	19－1．1656	mm	20－0．1477	mm	21－0．0171	mm
22	1.32	MPa	$23 \quad 27$	ms	2410.2	ms	$25-64.1$	，ms	$26-61$	ms	$27 \quad 1351$	KPa	28－1．151	KPa
29	1316	KPa	$30 \quad 3.9$	cm	3119.9	dC								
Scan ${ }^{\text {F }} 308$														
20：21：38： 1														
1	0	lpm	2－0．1195	mm	3－0．0955	mm	4－0．0364	mm	5－0．0542	mm	60.0532	mm	7－0．7419	mm
8	1.1011	mm	9－0．0229	mm	10 9．0E－4	mm	$11-1.255$	mm	12－0．018	mm	13－0．5415	mm	147.8231	mm
15	0.5192	mmm	16－0．3426	mm	173.8477	mm	18－0．3531	mm	19－1．1019	mm	$20-0.149$	mm	21－0．0162	mm
22	1.06	MPa	$23 \quad 27$	ms	2413.5	ms	$25-57.3$	ms	$\begin{array}{ll}26 & -50.7\end{array}$	ms	271350	KPa	28－1．116	KPa
29	1314	KPa	304.1	cm	3119.9	dC								
Scan \＃309														
20：21：38：31														
1		1 pm	2－0．1104	mm	3－0．0863	mm	4－0．0346	mm	5－0．0461	mm	60.0495	mm	7－0．6826	mm
8	1.047	mm	9－0．022	mm	100.0016	mm	11－1．2518	mm	12－0．0171	mm	13－0．5408	mm	147.8188	mm
15	0.4911	mm	16－0．325	mm	$17 \quad 3.706$	mm	18－0．3075	mm	19－1．0211	mm	20－0．1508	mm	21－0．0149	mm
22	0.77	MPa	$23 \quad 27$	ms	24.10	ms	$25-47.2$	ms	$\begin{array}{ll}26 & -40.7\end{array}$	ms	271346	KPa	28－1．047	KPa
29	1311	KPa	$30 \quad 4.8$	cm	3120	dC								
Scan \＃310														
20：21：39： 1														
1		1 pm	2－0．1037	mm	3－0．0722	mm	$4-0.03$	mm	5－0．0296	mm	$6 \quad 0.047$	mm	7－0．6065	mm
8	0.9814	mm	9－0．0198	mm	100.0022	mm	11－1．2505	mm	12－0．0155	mm	13－0．5402	mm	147.8287	mm
15	0.4586	mm	16－0．2968	mm	173.5471	mm	18－0．2373	mm	19－0．9146	mm	20－0．1502	mm	21－0．0125	mm
22	0.47	MPa	23.27	ms	$24 \quad 6.7$	ms	$25-37.1$	ms	26－27．2	ms	271340	KPa	28－1．012	KPa
29	1305	KPa	$30 \quad 5.9$	cm	3119.9	dC								
Scan \＃311														
20：21：39：31														
1	0	1pm	2－0．0949	mm	3－0．0545	mm	4－0．0193	mm	50.0087	mm	60.0483	min	7－0．5107	mm
8	0.9029	mm	9－0．0164	mm	100.0029	mm	11－1．2499	mm	12－0．0149	mm	13－0．5402	mm	147.8431	mm
15	0.4273	mun	16－0．2451	mm	173.3763	mm	18－0．1227	mm	19－0．7714	mm	20－0．1119	mm	$21-0.009$	mm
22	0.21	MPa	$23 \quad 23.3$	ms	$24 \quad 6.7$	ms	$25-23.6$	ms	$26-13.8$	ms	271326	KPa	28－0．977	KPa
29	1291	KPa	$30 \quad 9.8$	cm	3119.9	dC								
Scan \＃312														
20：21：40：1														
1	0	1pm	2－0．0834	mm	3－0．0451	mm	4－0．0065	mm	50.0279	mm	60.0718	mm	7－0．3957	mm
8	0.8871	mm	$9-0.012$	mm	100.0038	mm	11－1．2512	nim	12－0．0146	mm	13－0．5396	mm	147.8512	mm
15	0.419	mm	16－0．1311	mm	173.2965	mm	180.0073	man	19－0．6079	mm	20－0．0107	mm	$21-0.005$	mm
22	0.02	MPa	$23 \quad 20.2$	ms	$24 \quad 10.2$	ms	$25-6.8$	ms	$26-6.8$	ms	271311	KPa	28－1．047	KPa
29	1276	KPa	300	cm	$31 \quad 20$	dC								
Scan $⿰ ⿰ 三 丨 ⿰ 丨 三 313$														
20：21：40：31														
1	0	1 pm	$2-0.078$	mm	3－0．0429	mm	4－1．0E－3	mara	$5 \quad 0.031$	mm	60.0966	mm	7－0．3272	mm
8	0.9054	mm	9－0．0098	mm	100.0042	mm	11－1．2486	mm	12－0．0146	mm	13－0．5389	mm	147.8618	mm
15	0.4254	mm	16－0．0441	mm	173.2929	mm	180.0991	mm	19－0．4953	mm	$20 \quad 0.064$	mm	21－0．0022	mm
22	0	MPa	$23 \quad 20.2$	ms	2413.5	ms	$25 \quad 6.7$	ms	$26-6.8$	ms	$27 \quad 1300$	KPa	28－1．047	KPa
29	1267	KPa	$30 \quad 0$	cm	3119.9	dC								
Scan 7 F314														
20：21：	：41： 1													
1	0	lpm	$2-0.073$	mm	$3-0.04$	mm	40.0061	mm	50.0335	mm	60.1102	mm	7－0．3125	mm
8	0.9134	mm	9－0．0095	mm	100.0045	nm	11－1．2512	mm	12－0．0158	mm	13－0．5389	mm	147.8687	mm
15	0.4273	mm	16－0．0288	mm	173.3019	ma	180.1355	mm	19－0．4788	mm	200.0923	man	21－0．0019	mm
22	0	NPa	$23 \quad 20.2$	ms	$24 \quad 13.5$	ms	$25 \quad 10.2$	ms	$26-6.8$	ms	271291	KPa	28－1．047	KPa
29	1257	KPa	$30 \quad 0$	cm	3119.9	dC								

Scan $\# 315$

20:21.41:3

1	0	1 pm	2-0.0716	mm	3	-0.04	mm
8	0.9156	mm	9-0.0095	mm	10	0.0045	mm
15	0.4267	mm	16-0.0294	mm	17	3.3054	mm
22	0	MPa	23 20.2	ms	24	13.5	ms
29	1249	KPa	$30 \quad 0$	cm	31	19.9	dC
Scan \#316							
20:21:42: 1							
1	0	lpm	2-0.0709	mm		-0.0397	mm
8	0.9162	mm	9-0.0095	mm	10	0.0045	mm
15	0.4267	mm	16-0.0277	mim	17	3.3066	mm
22	0	MPa	$23 \quad 20.2$	ms	24	13.5	ms
29	1241	KPa	$30 \quad 0$	cm	31	19.8	dC
Scan \#317							
20:21:42:31							
1	0	1 pm	2-0.0706	mm	3	-0.04	mm
8	0.9165	mm	9-0.0095	mm	10	0.0045	mm
15	0.426	mm	16-0.0259	mm	17	3.3078	mm
22	0	MPa	$23 \quad 20.2$	ms	24	13.5	ms
29	1233	KPa	$30 \quad 0$	cm	31	19.9	dC

**STRENGTH AND PERMEABILITY TESTS ON ULTRA-LARGE **STRIPA GRANITE CORE (Engineering Units Data) **21:47:04-23:07:06
**No load; vessel draining

Scan $\# 318$

20:21:47:

1	0	1 pm	2-0.0686	mm	3	-0.04	mm	40.0146	mm	50.0382	mm	60.1133	mm	7-0.2924	mm
8	0.9162	mm	9-0.0091	mm	10	0.0051	mm	11-1.2253	mm	12-0.0131	mm	13-0.5357	mm	147.9129	min
15	0.4254	mm	16-0.0177	mm	17	3.3102	mm	180.1429	mm	19-0.4806	mm	200.1187	mm	21-0.0016	mm
22	0	MPa	$23 \quad 26.7$	ms	24	19.8	ms	$25 \quad 6.8$	ms	260	ms	271244	KPa	$28-1.5$	KPa
29	1206	KPa	$30 \quad 0$	cm	31	19.7	dC								
$\begin{aligned} & \text { Scan } \$ 319 \\ & 20: 21: 47: 34 \end{aligned}$															
1	0	lpm	2-0.0682	mm	3	-0.04	mm	40.0158	mm	50.0382	mm	60.1133	mm	$7-0.291$	mm
8	0.9165	mm	9-0.0088	mm	10	0.0051	mm	11-1.2297	mm	12-0.0127	mm	13-0.5351	mm	147.9073	mm
15	0.4248	mm	16-0.0177	mm	17	3.3126	mm	180.1435	mm	19-0.4794	mm	$20 \quad 0.12$	mm	21-0.0013	mm
22	0	MPa	$23 \quad 27$	ms	24	20.2	ms	$25 \quad 6.8$	ms	$26 \quad 3.2$	ms	271071	KPa	28-1.291	KPa
29	1040	KPa	30 0	cm	31	19.7	dC								
Scan ${ }^{\text {d }} 320$															
20:21:47:59															
1	0	1 pm	2-0.0679	mm	3	-0.041	mm	40.0168	mm	50.0385	mm	60.1139	mm	$7-0.291$	mm
8	0.9171	mm	9-0.0082	mm	10	0.0055	mm	11-1.2253	mm	12-0.0115	mm	13-0.5351	mm	147.9055	mm
15	0.4241	mm	16-0.0171	mm	17	3.3155	mm	180.1441	mon	19-0.4781	mm	200.1212	mm	21-0.0013	mm
22	0	MPa	$23 \quad 27$	ms	24	20.2	ms	256.8	ms	$26 \quad 6.7$	ms	27917	KPa	28-1.151	KPa
29	893	KPa	300	cm	31	19.7	dC								
Scan \#321															
20:21:49:59															
1	0	1 pm	2-0.0676	mm		0.0378	mm	40.0223	mm	50.0388	mm	$6 \quad 0.117$	mm	7-0.2937	mm
8	0.9267	mm	9-0.0076	mm	10	0.0061	mm	11-1.2159	mm	12-0.0115	mm	130.5568	mm	147.9254	
15	0.419	mm	16-0.0159	mm	17	3.3334	mm	180.1466	mum	19-0.4745	mm	200.1262	mm	21-1.0E-3	
22	0	MPa	$23 \quad 27$	ms	24	26.1	ms	$25 \quad 6.8$	ms	$26 \quad 12.6$	ms	27580	KPa	28-0.802	KPa
29	579	KPa	300	cm	31	19.8	dC								

\therefore - .																	
Scan \#322																	
20:22: 1:43																	
		1 pmi	2-0.0659	mm		-0.0388	mm		0.0223	mm	50.0407	mm		0.1158	mm	7-0.2804	mm
8	0.9156	mm	9-0.0082	mm	10	0.0058	mm	11-1	-1.2241	mm	12-0.0124	min		-0.4249	mm	147.9603	mm
15	0.4177	mm	$16-0.01$	mm	17	3.3352	mm		0.1472	mm	19-0.4714	mm	20	0.1288	mm	21-0.0013	mm
22	0	MPa	$23 \quad 20.3$	ms	24	13.8	ms	25	6.8	ms	$26 \quad 6.9$	ms	27	1366	KPa	$28-1.64$	KPa
29	1329	KPa	300	cm	31	21.1	dC										
Scan \#323																	
**Piston suspended; vessel draining:																	
20:22:22:36																	
1		1 pm	2-0.0638	mm		-0.0246	mm		0.0366	mm	50.0413	mm	6	0.1245	mm	7-0.2924	mm
	0.9357	mm	9-0.0051	mm	10	0.0067	mm	11-1	1.2398	mm	12-0.0165	mm	13	0.6183	mm	147.8587	mm
15	0.4005	mm	16-0.0059	mm	17	3.381	mm		0.1521	mm	19-0.4641	mm	20	0.1457	mm	21 6.0E-4	mm
22		MPa	$23 \quad 20.2$	ms	24	26.7	ms	25	0.1	ms	$26 \quad 20$	ms	27	-1	KPa	$28-0.733$	KPa
29	3713	KPa	300	cm	31	-0.8	dC										
Scan 非324																	
20:22:27:36																	
1	0	1 pm	2-0.0638	mm		-0.0246	mm		0.0366	mm	50.0413	mm	6	0.1201	mm	7-0.3006	mm
	0.9304	mm	9-0.0051	mm		0.0067	mm	11-1	1.2367	mm	12-0.0161	mm	13	0.6144	mm	147.8568	mm
15	0.3967	mm	16-0.0147	mm	17	3.3816	mm		0.1429	mm	19-0.4788	mm	20	0.1413	mm	21 3.0E-4	mm
22	0	MPa	$23 \quad 26.7$	ms	24	33.4	ms		0	ms	$26 \quad 20.2$	ms	27	19	KPa	$28-0.837$	KPa
29	3713	KPa	300	cm	31	-0.1	dc										
Scan \#1325																	
20:22:32:36																	
1	0	1 pm	2-0.0638	mm		-0.0249	mm		0.0375	mm	50.0419	mm	6	0.1201	mm	7-0.3057	mm
	0.9283	mm	9-0.0054	mm		0.0064	mm	11-1	1.2581	mm	12-0.0075	mm	13	0.6029	mm	147.8699	mm
15	0.3929	mm	16-0.0235	mm	17	3.3769	mm		0.1312	mm	19-0.4977	mm	20	0.1319	mm	$213.0 \mathrm{E}-4$	mm
22	0	MPa	$23 \quad 20.5$	ms	24	33.7	ms		-6.4	ms	$26 \quad 13.8$	ms	27	-20	KPa	$28-0.837$	KPa
29	3560	KPa	300	cm	31	0.2	dC										
Scan \#326																	
20:22:37:36																	
1	0	1 pm	2-0.0638	\pm		-0.0249	mm		0.0388	mm	50.0425	mm	6	0.1108	1 mm	$7-0.306$	mm
8	0.9286	mm	9-0.0054	mm		0.0071	mm	11-1	1.2499	mm	120.0012	mm		0.6048	mm	147.9055	mm
15	0.3916	mma	16-0.0241	mm	17	3.3769	mm		0.1269	mm	19-0.5032	mm	20	0.1256	mm	21-0.0019	mm
22	0	MPa	$23 \quad 20.2$	ms	24	27.2	ms		-6.7	ms	$26 \quad 13.5$	ms	27	-2	KPa	28-0.802	KPa
	3713	KPa	300	cm	31	-0.4	dC										
Scan ${ }^{\text {3 }} 327$ (${ }^{\text {a }}$																	
20:22:42:36																	
1	0	1 pm	2-0.0591	mm		-0.023	mm		0.0458	mm	50.0475	mm	6	0.1059	mm	7-0.2988	mm
8	0.9369	mm	90.0043	mm		0.0103	mm		1.2316	mm	120.0114	mm		0.6048	mm	147.8955	mm
15	0.3897	mm	16-0.0235	mm	17	3.6602	mm		0.178	mm	19-0,4371	mm	20	0.1677	mm	210.0034	mum
22	0	MPa	$23 \quad 0.9$	ms	24	20.5	ms		38.1	ms	$26 \quad 0.7$	ms	27	-1	KPa	28-0.802	KPa
29	3713	KPa	30 0	cm		-0.3	dc										
Scan ${ }^{\text {P }}$ 328																	
1	0	lpm	2-0.0601	mm		-0.0284	mm		0.0452	mm	50.0466	mm		0.1053	mm	$7-0.305$	mm
8	0.936	mm	9-7.0E-4	mm	10	0.01	mm	11	-1.226	mm	120.008	mm	13	0.6003	mm	147.9048	mm
15	0.3865	mm	16-0.0235	mm	17	3.415	mm		0.1854	mm	19-0.4341	mm	20	0.1771	mm	$213.0 \mathrm{E}-4$	mm
22	0	MPa	$23 \quad 12.9$	ms	24	26.6	as		40.5	ms	$26 \quad 6.4$	ms	27	-2	KPa	28-0.767	KPa
29	3713	KPa	300	cm	31	-0.2	dC										
Scan 非329																	
20:22:52:36																	
1	0	lpm	2-0.0601	mm		-0.0256	mm		0.0464	mm	50.0469	mm	6	0.1028	mm	7-0.3057	mm
8	0.9351	mm	9-0.0013	mm	10	0.01	mm	11-1	1.2253	mm	120.0071	mm	13	0.5978	mm	147.9092	mm
15	0.3865	mm	16-0.0247	mm	17	3.4322	mm	18	0.1799	mm	19-0.4432	mm	20	0.1715	mm	21 6.0E-4	mm
22		MPa	$23 \quad 13.5$	ms	24	26.9	ms	25	40.5	ms	$26 \quad 13.1$	ms	27	-2	KPa	$28-0.802$	KPa
29	3713	KPa	300	cm	31	-0.2	dC										

```
1
Scan ##330
20:22:57:36
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 0 & lpm & 2-0.0598 & mm & 3-0.0476 & m & 40.0485 & mm & 50.0481 & mm & 6 & 0.1034 & m & \(7-0.305\) & mm \\
\hline 8 & 0.9335 & mm & 9-4.0E-4 & mm & 100.0103 & mm & 11-1.2165 & mm & 120.0086 & mm & 13 & 0.5958 & mm & 147.9042 & mm \\
\hline 15 & 0.3839 & mm & 16-0.0247 & mm & 173.4405 & mm & 180.1823 & mm & 19-0.4279 & mm & 20 & 0.169 & mm & 210.0015 & mm \\
\hline 22 & 0 & MPa & \(23 \quad 13.5\) & ms & \(24 \quad 26.9\) & ms & 25 34.1 & ms & 267.1 & ms & 27 & 12 & KPa & \(28-0.837\) & KPa \\
\hline 29 & 3713 & KPa & \(30 \quad 0\) & cm & \(31-0.4\) & dC & & & & & & & & & \\
\hline an & \#331 & & & & & & & & & & & & & & \\
\hline \multicolumn{16}{|l|}{:23: \(2: 36\)} \\
\hline 1 & 0 & lpm & 2-0.0598 & mm & 3-0.0577 & mm & 40.0491 & mm & 50.0481 & mm & 6 & 0.1028 & mm & 7-0.3053 & m \\
\hline 8 & 0.9326 & mm & 9-4.0E-4 & mm & 100.0103 & mm & \(11-1.214\) & mm & 120.0086 & mm & 13 & 0.5958 & mm & 147.9142 & mm \\
\hline 15 & 0.3839 & mm & 16-0.0247 & mm & 173.5102 & mm & 180.1774 & mm & 19-0.4243 & mm & 20 & 0.1583 & \(\underline{m m}\) & 210.0015 & mm \\
\hline 22 & 0 & MPa & 2313.5 & ms & \(24 \quad 26.9\) & ms & 25155.5 & ms & 2619.5 & ms & 27 & -6 & KPa & \(28-0.837\) & KPa \\
\hline
\end{tabular}
Scan #332
**Last scan!
20:23: 7:36
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 0 & 1 pm & 2-0.0598 & mm & 3-0.0605 & mm & 40.0494 & mm & 5 & 0478 & mm & 6 & 0.0978 & mm & & -0.306 & \\
\hline 8 & 0.8411 & nm & 9-4.03- & \(1 .\). & ic 0.01 & mina & 11-1.2178 & mm & 12 & 0.0086 & mm & 13 & 0.5952 & mm & 14 & 7.9404 & \\
\hline 15 & 0.3839 & mm & 16-0.0241 & mm & 173.5102 & nim & 180.1743 & mm & & . 4206 & mm & 20 & 0.1558 & mm & 21 & 0.0015 & mm \\
\hline 2 & & Pa & \(23 \quad 58.5\) & ns & \(24 \quad 39.8\) & ms & 251366.5 & ms & 26 & 65 & ms & 27 & & KPa & 28 & . 8 & \\
\hline
\end{tabular}
```


[^0]: *From Eq. (6.6)
 **From Eq. (6.9)
 tFrom Eq. (6.10)
 t†From Eq. (6.13)

[^1]: *Sinmast AS15-epoxy for bonding wet concrete to rock supplied by Sinmast of California, Inc., 350 West Cutting Blvd., Richmond, CA 94802.

[^2]: * $s=$ strong; $m=$ medium; $w=$ weak.

[^3]: * See Table A6.3.

[^4]: * See Hsu and Watkins (1979).
 $\dagger \Delta p=[34.886$ (output in V) - 0.6977] kPa .

