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Abstract 

An investigation of the mechanical properties of the molten globule state of 
apomyoglobin 

 

By Phillip James Elms 

Doctorate of Philosophy in Biophysics 

University of California, Berkeley 

Professor Susan Marqusee, Chair 

 

Single molecule force spectroscopy has provided important insights into the 
properties and mechanisms of protein folding.  However, there are still many unanswered 
questions about how force affects the folding and unfolding of proteins and, in particular, 
the relationship between force and the rate-limiting transition state.   

In this thesis, I developed two protein systems to address two specific questions.  
The first question arose form previous work on E. coli RNAse H, in which a molten 
globule-like intermediate was observed to have a large distance (5 ± 1 nm) to the 
transition state.  This large distance was in sharp contrast to the smaller distances (< 2 
nm) typically observed for natively folded proteins.  This raised the question of whether 
this distance was a general property of the E. coli RNAse H intermediate or a more 
general property of a molten globule state.  To this end, I investigated the equilibrium 
molten globule state of sperm whale apomyoglobin at pH 5 under force and demonstrated 
that this state had a large distance to the transition state of 6.1 ± 0.5 nm.  Further, this 
state was shown to have a large distance to the transition state regardless of the axis of 
the applied force.  This work suggests that a large distance to the transition state is a 
general property of the molten globule state. 

The second system was developed using the SH3 domain from chicken c-Src in 
order to investigate if and how the structure of the transition state changes under force.  I 
investigated the behavior of the protein under two different force axes observing 
significant differences in the mechanical unfolding of the protein.  These experiments are 
ongoing but indicate that the change in behavior is because of a change in the structure of 
the transition state under force.  
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Finally, investigating the properties of the molten globule state revealed an error 
in previous methodology using constant force feedback experiments.  In this thesis, I 
identify and explain the origin of this error.  Further, work on the molten globule state 
required higher fidelity data and a more sophisticated approach for the analysis of the 
data.  Working with John Chodera and colleagues, we implemented novel methods for 
the analysis of the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	
  



	
   i	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

This	
  thesis	
  is	
  dedicated	
  to	
  my	
  parents,	
  Joe	
  and	
  Suzanne	
  Elms	
  

	
  

	
  



	
   ii	
  

	
  

Table of Contents	
  
	
  
List of Figures and Tables    ..........................................................................................     v 
 
Acknowledgements     .................................................................................................     vii 
	
  
_________________________________________________________________________________________________	
  
	
  
Chapter 1  Introduction     ............................................................................................       1 

1.1  Overview of thesis      .......................................................................................       1 
1.2  Role of force in biology     ................................................................................       2 

1.2.1  Force as a thermodynamic variable     .......................................................       2 
1.2.2  A review of rate theory     ..........................................................................       3 
1.2.3  The effect of force on reaction rate constants     ..............................................       5 
1.2.4  Distinguishing between equilibrium and kinetic behavior     ............................       7 
1.2.5  Questions concerning force and transition states     .........................................       7 

1.3  Single molecule experiments     ............................................................................       8 
1.3.1  Single molecule force spectroscopy     ............................................................       9 
1.3.2  Optical tweezers     .......................................................................................       9 
1.3.3  Measuring force     ........................................................................................     12 
1.3.4  Instrument overview     ..................................................................................     13 
1.3.5  Geometry of an experiment and sample preparation     ....................................     13 
1.3.6  Force control modes     ..................................................................................     13 

1.4  Considerations for the analysis of single molecule force spectroscopy data     ..........     19 
1.4.1  Precision and accuracy     ..............................................................................     20 
1.4.2  Sampling frequency     ..................................................................................     23 

1.5  Introduction to protein folding     ..........................................................................     23 
1.5.1  The role of the molten globule state in protein folding     .................................     25 

1.6  References     .......................................................................................................     28 
	
  

Chapter 2  Equilibrium force spectroscopy experiments on macromolecules:   
  The problem with force feedback experiment     .................................     31 

2.1  Introduction     .....................................................................................................     31 
2.2  Materials and methods     .....................................................................................     32 

2.2.1  Materials     ..................................................................................................     32 
2.2.2  Instrumentation     .........................................................................................     32 
2.2.3  Methods of analysis     ...................................................................................     33 
2.2.4  Partition method     ........................................................................................     33 
2.2.5  Bayesian hidden Markov model     .................................................................     33 
2.2.6  Determination of the distance to the transition state and the coincidental  

   rate constants     ....................................................................................     33 
2.2.7  Simulation     ................................................................................................     34 

2.3  Results and discussion     ......................................................................................     34 
2.4  Conclusions     .....................................................................................................     45 
2.5  References     .......................................................................................................     46 



	
   iii	
  

	
  
Chapter 3  Characterization of the equilibrium molten globule state of    
  apomyoglobin reveals a large mechanical compliance     ...................     48 

3.1  Introduction     .....................................................................................................     48 
3.2  Methods and materials     .....................................................................................     48 

3.2.1  Protein construction and purification     ..........................................................     48 
3.2.2  Optical tweezer experiments     ......................................................................     50 
3.2.3  Constant trap position analysis with a hidden Markov model     .......................     52 
3.2.4  Determination of the distance to the transition state and the coincidental   

  rate constants using a modified Bell’s model     ........................................     53 
3.2.5  Equilibrium denaturation by pH monitored by circular dichroism     .................     53 

3.3  Results     ............................................................................................................     53 
3.3.1  Equilibrium denaturation by pH monitored by circular dichroism     .................     53 
3.3.2  Unfolding and refolding of apomyoglobin at pH 7 under force     .....................     53 
3.3.3  Unfolding and refolding of apomyoglobin at pH 5 under force     .....................     57 

3.4  Discussion     .......................................................................................................     59 
3.5  Conclusions     .....................................................................................................     62 
3.6  References     .......................................................................................................     63 

 
Chapter 4  Exploring the affect of pulling axis on the transition state of    
  srcSH3     .............................................................................................     66 

4.1  Introduction     .....................................................................................................     66 
4.2  Methods and materials     .....................................................................................     69 

4.2.1  Protein purification and handle attachment     ..................................................     69 
4.2.2  Thermodynamic stability measurements     .....................................................     69 
4.2.3  Force spectroscopy experiments     .................................................................     70 
4.2.4  Equilibrium free energy determination from force ramp experiments     ............     70 

4.3  Results     ............................................................................................................     72 
4.3.1  Mechanical properties of A7C/N59C and R19C/N59C srcSH3     .....................     72 
4.3.2  Free energy determination by equilibrium chemical denaturation     .................     72 

4.4  Discussion     .......................................................................................................     75 
4.5  Future directions     ..............................................................................................     77 
4.6  References     .......................................................................................................     78 
	
  

Chapter 5  A robust approach to estimating rates from time-correlation    
  functions     ..........................................................................................     80 

5.1  Prospectus on chapters 5 and 6     .........................................................................     80 
5.2  Introduction     .....................................................................................................     81 
5.3  Results and discussion     ......................................................................................     81 
5.4  References     .......................................................................................................     89 
	
  

Chapter 6  Bayesian hidden Markov model analysis of single-molecule    
  biophysical experiments     ..................................................................     91 

6.1  Summary     .........................................................................................................     91 
6.2  Introduction     .....................................................................................................     91 
6.3  Hidden Markov models     ....................................................................................     93 

6.3.1  Preliminaries     .............................................................................................     93 



	
   iv	
  

6.3.2  Maximum likelihood hidden Markov model     ...............................................     95 
6.3.3  Bayesian hidden Markov model     .................................................................     95 

6.4  Bayesian experimental design     ...........................................................................     96 
6.5  Algorithms     ......................................................................................................     97 

6.5.1  Generating an initial model     ........................................................................     97 
6.5.2  Observable parameter estimation     ................................................................     97 
6.5.3  Transition matrix estimation     ......................................................................     99 
6.5.4  Fitting a maximum likelihood HMM     ..........................................................   100 
6.5.5  Sampling from the posterior of the BHMM     .................................................   101 
6.5.6  Updating the hidden state sequences     ...........................................................   102 
6.5.7  Updating the transition probabilities     ...........................................................   102 
6.5.8  Updating the observable distribution parameters     .........................................   104 

6.6  References     .......................................................................................................   107 
	
  

 
 



	
   v	
  

List of Figures and Tables 
 
Figure 1.1 The effect of force on a potential energy landscape     ........................       1 
Figure 1.2 Trapping a bead with an optical trap     .............................................       10 
Figure 1.3 Single beam and dual beam counter propagating optical    
  traps     ...............................................................................................       11 
Figure 1.4 Schematic of a dual beam anti-propagating optical trap    
  design     .............................................................................................       14 
Figure 1.5 Geometry of an optical tweezer experiment     ..................................       15 
Figure 1.6 Force ramp sample traces     ..............................................................       17 
Figure 1.7 Sample traces of constant force jump experiments, constant  
  force feedback hopping experiments, and constant trap position   
  experiments     ....................................................................................       18 
Figure 1.8 Overstretching of dsDNA handles     .................................................       21 
Figure 1.9 Power spectra and autocorrelation function of a free bead in   
  an optical trap     ................................................................................       24 
Figure 1.10 Model of the molten globule state of apomyoglobin     .....................       27 
 
Figure 2.1 Optical trap experimental design     ...................................................       35 
Figure 2.2 Constant trap position and constant force experimental data     ........       36 
Figure 2.3 Linear fits of the ln k verse force     ...................................................       38 
Table 2.1 Results from the linear fits of the constant force and constant   
  trap position experiments for each individual molecule     ................       39 
Figure 2.4 Illustration of the missed transition hypothesis and simulation  
  results     .............................................................................................       41 
Figure 2.5 Illustration of the number of missed transitions relative to the  
  average lifetime of a state     ..............................................................       42 
Table 2.2 Results from the linear fits of the constant force simulated    
  data     .................................................................................................       44 
 
Figure 3.1 Structure of myoglobin     ..................................................................       49 
Figure 3.2 Experimental setup in an optical tweezer     ......................................       51 
Figure 3.3 Denaturation of the N/C variant of apomyoglobin by pH    
  followed by CD    at 222 nm     ...........................       54 
Figure 3.4 Force ramp traces of the N/C and 53/C variant at pH 7    
  and pH 5     .........................................................................................       55 
Figure 3.5 Histograms of the unfolding and refolding force distribution   
  for the N/C and 53/C variants     ........................................................       56 
Figure 3.6 Sample traces of a constant trap position experiment for the   
  N/C and 53/C variants     ...................................................................       58 
Figure 3.7 Linear fits of the natural log of the rate constants as a function  
   of force     ..........................................................................................       60 
Table 3.1 Summary of the distances to the transition state and the    
  normalized position of the transition state     .....................................       62 
 
Figure 4.1 Structure of srcSH3     .......................................................................       68 



	
   vi	
  

Figure 4.2 Equilibrium denaturation of srcSH3     ..............................................       71 
Figure 4.3 Force ramp data on the srcSH3 variants     ........................................       73 
Figure 4.4 Histogram of the refolding and unfolding forces for the    
  srcSH3 variants     ..............................................................................       74 
Table 4.1 Summary of free energy determination from equilibrium chemical   
  denaturation and force ramp experiments     .....................................       76 
 
Figure 5.1 Reactive flux correlation function and implied rates from p5ab   
  hairpin single-molecule force trajectory     ........................................       84 
 
Table 6.1 Summary of important symbols and their elements     ......................       93 



	
   vii	
  

Acknowledgements	
  

I	
  have	
  been	
  very	
   fortunate	
   in	
  my	
  graduate	
   career	
   to	
   fall	
   into	
  a	
  project	
   that	
  
involved	
  working	
  in	
  two	
  labs	
  and	
  being	
  part	
  of	
  the	
  Biophysics	
  program	
  at	
  Berkeley.	
  	
  
The	
  great	
  people	
  from	
  both	
  labs	
  and	
  from	
  my	
  graduate	
  program	
  are	
  too	
  numerous	
  
to	
   thank	
   and	
   everyone	
   contributed	
   to	
   creating	
   the	
   great	
   environment	
   that	
   is	
  
Berkeley.	
  

I	
  am	
  deeply	
  indebted	
  to	
  my	
  advisor	
  Susan	
  Marqusee	
  for	
  her	
  guidance	
  and	
  the	
  
great	
  impact	
  she	
  has	
  had	
  on	
  my	
  growth	
  as	
  a	
  scientist.	
  	
  Her	
  support	
  and	
  patience	
  has	
  
been	
   invaluable.	
   	
   I	
  was	
  also	
   lucky	
   to	
  have	
  a	
   second	
  advisor	
   in	
  Carlos	
  Bustamante,	
  
whose	
  guidance	
  and	
  lab	
  provided	
  a	
  great	
  compliment	
  to	
  the	
  Marqusee	
  lab.	
  	
  Carlos	
  is	
  
always	
  striving	
  to	
  answer	
  the	
  big	
  questions	
  and	
  his	
  enthusiasm	
  is	
  infectious.	
  	
  	
  

I	
   have	
   been	
   blessed	
   to	
   have	
   such	
   great	
   labmates	
   and	
   friends	
   through	
  
graduate	
  school	
  and	
  I	
  am	
  indebted	
  to	
  all	
  the	
  members,	
  past	
  and	
  present,	
  for	
  creating	
  
a	
  great	
  environment.	
  	
  I	
  joined	
  the	
  Marqusee	
  lab	
  in	
  part	
  because	
  of	
  the	
  high	
  quality	
  of	
  
the	
   older	
   students	
   in	
   lab,	
   in	
   particular	
   Beth	
   Shank,	
   Erik	
   Miller,	
   and	
   Pete	
  Wildes.	
  	
  
Beth	
  was	
  an	
  excellent	
  mentor	
  and	
  has	
  essential	
  to	
  helping	
  me	
  make	
  the	
  transition	
  to	
  
my	
  new	
  lab	
  and	
  project.	
  	
  In	
  the	
  Marqusee	
  lab,	
  I	
  would	
  like	
  to	
  thank	
  Katelyn	
  Connell,	
  
Katie	
  Hart,	
  Geoff	
  Horner,	
  Jesse	
  Dill,	
  and	
  Rachel	
  Bernstein	
  for	
  their	
  help	
  and	
  patience	
  
with	
  my	
  incessant	
  questions.	
  	
  And	
  I	
  would	
  like	
  to	
  give	
  a	
  special	
  thanks	
  to	
  Katie	
  Tripp	
  
with	
   whom	
   I	
   had	
   many	
   passionate	
   discussions.	
   	
   In	
   the	
   Bustamante	
   Lab,	
   I	
   am	
  
particularly	
   thankful	
   for	
   having	
   worked	
   with	
   Jeff	
   Moffitt,	
   Yara	
   Meija,	
   Craig	
  
Hetherington,	
   Lacramioara	
   Bintu	
   and	
   Courtney	
   Hodges.	
   	
   They	
   provided	
   me	
   with	
  
guidance	
  and	
  helpful	
  conversations	
  whenever	
   I	
   found	
  my	
  self	
   stuck	
  on	
  a	
  problem.	
  	
  
In	
   the	
   Biophysics	
   program,	
   I	
   would	
   like	
   to	
   thank	
   Hari	
   Shroff,	
   Merek	
   Sui,	
   Derek	
  
Greenfield,	
  Dave	
  Richmond,	
  Ailey	
  Crow,	
  and	
  Dave	
  Sivak	
  for	
  their	
  advice	
  throughout	
  
graduate	
  school.	
  

I	
  would	
  also	
  like	
  to	
  give	
  a	
  special	
  thanks	
  to	
  my	
  collaborator	
  John	
  Chodera.	
  	
  He	
  
has	
  been	
  a	
  great	
  pleasure	
  to	
  work	
  with	
  and	
  without	
  his	
  contributions	
  my	
  graduation	
  
would	
  have	
  been	
  much	
  delayed	
  and	
  my	
  thesis	
  would	
  have	
  been	
  of	
  lower	
  quality.	
  

My	
  greatest	
  discovery	
  in	
  graduate	
  school	
  has	
  been	
  Katherine	
  Miller.	
  	
  She	
  has	
  
challenged	
  me,	
  making	
  me	
  a	
  better	
  person,	
  and	
  supported	
  me	
  through	
  my	
  toughest	
  
challenges.	
  	
  She	
  is	
  a	
  constant	
  reminder	
  of	
  what	
  is	
  important	
  in	
  my	
  life.	
  

Lastly,	
   I	
   would	
   not	
   be	
   here	
   if	
   it	
   had	
   not	
   been	
   for	
   the	
   continuing	
   love	
   and	
  
support	
   of	
  my	
   parents,	
   Joe	
   and	
   Suzanne	
   Elms.	
   	
   I	
   could	
   not	
   have	
   asked	
   for	
   better	
  
parents.	
  



	
   1	
  

Chapter 1  Introduction 

1.1  Overview of thesis 

In order to sustain life, many complicated process have to occur. To accomplish 
this, evolution has harnessed a variety of physical forces.  Voltage is used to facilitate the 
communication between nerve cells, and chemical gradients generate the energy needed 
to synthesize ATP, the fuel of life.  The movement of the largest animals that roam the 
world is a result of forces generated by single molecules working in concert.  To 
understand how any one of these processes is accomplished, we have to study the driving 
force behind them.  Our understanding of these processes has continued to progress with 
technological advances, which provide us with better ways to measure and manipulate 
the driving forces behind them.  Due to advances in force spectroscopy, we can now 
probe the role of mechanical force at the level of single molecules. 

During my graduate career, my research has addressed fundamental questions 
regarding the role of force in biology, focusing on how force affects the folding and 
unfolding behavior of proteins using the optical tweezers.  In my introduction, I will 
review several topics of importance to my thesis.  First, I will address the role force plays 
in biology and discuss force as a thermodynamic variable. Next, I will describe single 
molecule experiments and the instrument used in this thesis, followed by a summary of 
some of the issues to be considered when analyzing data from force spectroscopy 
experiments. Finally, I will briefly summarize some outstanding questions in the protein-
folding field that I have addressed in my thesis work. 

During my graduate work, I developed methods and evaluated the behavior of 
two protein systems under mechanical force.  My thesis will therefore consist of three 
general sections.  The first will address methodology and discuss my discovery of a 
serious flaw in previous constant force experiments and the analysis of the data.  I will 
present the work I have done to identify and explain the origin of this error as well as 
explain a better approach to the methodology and analysis (Chapter 2). 

The second section will include the work I have done on two different protein 
systems:  sperm whale apomyopglobin and chicken srcSH3 (Chapter 3 and Chapter 4, 
respectively).  Apomyoglobin was used to evaluate the mechanical properties of the 
molten globule state.  The molten globule state represents a class of partially folded states 
that are thought to represent ubiquitous intermediates during folding to the native state of 
many proteins.  My results suggest that the molten globule state unlike natively folded 
proteins has a large distance to the transition state.  Also, as opposed to natively folded 
proteins, my work suggests that the molten globule state is more isotropic - a large 
mechanical compliance is observed regardless of the direction of the applied force. 

Using the srcSH3 protein, I developed a model two-state system that has enabled 
an investigation of the effect that pulling axis has on the mechanical properties of the 
protein.  I pulled on the protein along two different axes, observing large differences in 
the unfolding forces.  Using the Crooks Fluctuation Theorem, I determined that the free 
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energy on the protein does not change with the different pulling axes that might result 
from the handle attachment, indicating that the different unfolding behavior must be due 
to differences in the transition state.  Future work using this system will characterize the 
structure of these transition states using a mutational analysis (phi-value analysis).  This 
will focus on a comparison between the different mechanisms of unfolding under force 
along different axes and in solution in the absence of force. 

In the last section (Chapter 5 and 6), I will discuss some of the work I have done 
in collaboration with John Chodera and colleagues, who have developed two novel 
approaches for identifying states and their lifetimes from single molecule experiments.  
These methods provided a more robust analysis of the data and demonstrated the 
usefulness of these methods on experimental data. 

 
1.2  The role of force in biology 

Generating or resisting force plays a crucial role in many biological processes.  
Many single protein molecules have evolved to work together to generate force and resist 
force on a macroscopic scale.  In fact, the most abundant protein in animals, collagen, 
which accounts for approximately a quarter of the total protein [1], is an important 
component in many tissues that need to resist deformation such as tendons and ligaments.  
Forces generated in muscles by the proteins myosin and actin work in concert to produce 
movement [2].  Other proteins play equally important roles such as titin which maintains 
sarcomeric structural integrity and acts as an entropic spring generating a passive force 
[3]. 

Force also plays an important role in many other cellular processes.  On the scale 
of a single cell, actin networks generate forces allowing cellular mobility [4], and 
environmental forces can play a crucial role in determining the development of stem cells 
[5].  Within a cell, proteins such as kinesin generate forces to actively transport various 
cell cargo to different regions of the cell [6].  Evidence also suggests that proteins use 
force to facilitate transport across membranes, as is the case with mitochondrial import 
[7, 8].  Further, force is also thought to play a crucial role in protein degradation in the 
case of the protease ClpXP [9].  In these last two examples, force is thought to first 
unfold a target protein before import across the membrane or into a catalytic cavity for 
degradation. 

1.2.1  Force as a thermodynamic variable 

In order to gain an understanding of how force affects a biological reaction I will 
first discuss the role of force in the thermodynamics of a system.  The first law of 
thermodynamics states that energy is extensive and therefore additive and conserved.  
Therefore any change in energy must result from either a flow of heat into or out of the 
system (dQ) or work done on or by the system (dW). 

dE = dQ + dW = TdS + F•dX       (1.1) 
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The work done on or by the system is defined by a driving force, F, multiplied by 
the extensive conjugate variable, represented by dX.  The F⋅dX term represents any two 
variables whose produce has units of energy, such as a force and distance, pressure and 
volume, voltage and charge, chemical potential and the number of molecules.  The work 
done on a system could be from a variety of forces all acting on the system at the same 
time in which case the notation would be F1⋅dX1 + F2⋅dX2 + ⋅⋅⋅. 

To illustrate how a driving force changes the energy in a system, take the example 
of a two-state reaction at equilibrium under constant temperature.  The equilibrium 
constant is a function of the free energy difference between the two states (denoted A and 
B) and is defined by the ratio of the populations in each state or equivalently by the ratio 
of the forward and reverse rate constants.   

ΔG0 = -RTlnKA-B         (1.2) 

KA-B = [A]/[B] = kB-A/kA-B                      (1.3) 

Taking this as our reference state, we can then do work on the system with a 
driving force. 

ΔG(F) = ΔG0(F=0) + FΔX(F)    (1.4) 

-RT ln Keq(F) = -RT ln Keq(F=0) - FΔX(F)    (1.5) 

After the system has equilibrated, we can then measure the new equilibrium 
constant and determine the free energy difference between the two states. 

The relationship between the free energy and the driving force need not be linear. 
Experimentally, this linear relationship between the free energy and force holds over 
small force ranges [10]. 

1.2.2  A review of rate theory 

Before discussing the effect of force on the rate of a reaction, a review of rate 
theory will be helpful.  Many chemical reactions can be described by the empirical 
relationship known as the Arrhenius equation: 

     (1.6) 

While first developed by van’t Hoff in 1884 [11], Arrhenius provided a physical 
interpretation of the relationship in 1889 [12].   Their insight was that the rate constant of 
a reaction is a product of a pre-exponential term multiplied by a Boltzmann weighted 
activation energy.  In 1910, Marcelin and Kohnstamm, Acheffer and Bransnam 
separately determined that the activation energy can be interpreted as the free energy of 
the transition state [13, 14]. 

A physical interpretation of the pre-exponential term progressed with the 
development of the collision theory of reactions in the gas phase developed by Trautz in 
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1916 [15] and Lewis in 1918 [16] , which was based on the kinetic theory of gases.  In 
this theory, reactions in the gas phase are explained by calculating the pre-exponential as 
a product of the frequency of the collisions and a steric or orientation factor, which 
accounts for reactions that require an anisotropic collision.  This introduced the idea that 
the pre-exponential can be thought of as a frequency factor or an attempt rate. 

Further progress was made in the 1930’s with the development of transition state 
theory [17].  This theory states that the reaction rate can be described by the potential 
energy landscape of the reactants and the products.  In order for a reaction to proceed, a 
high-energy activation state, or transition state, must form at the saddle point between the 
reactants and products.  The pre-exponential is the fastest the rate could occur if there 
was no energy barrier between the reactants and product and therefore can be thought of 
as the speed limit of the reaction. 

Originally, transition state theory was developed to describe simple chemical 
reactions such as the formation of H2 (H + H  H2).  As the hydrogen atoms are 
spherical and symmetric, the potential energy landscape of this simple system is defined 
by a single coordinate, the distance between the two atoms.  In this case the reaction can 
be described by the Eyring equation [18]: 

  

€ 

k =
kBT


e
ΔG +

+

kBT

     (1.7)
 

For more complex molecules and reactions, the potential energy landscape becomes more 
complicated as other coordinates become important, such as the relative orientation of 
reactants to one another. 

In a seminal paper in 1940, Kramers presented a general treatment of more 
complicated reactions in a condensed phase [19].  In this theory, Kramers models the pre-
exponential as a diffusion-limited process over a continuous coarse-grained potential 
energy landscape.  As the process is in a condensed phase, the viscosity plays an 
important role in the diffusion along this potential energy landscape.  The pre-exponential 
can then be thought of as the diffusion limit of the process or, again, as a speed limit to 
the reaction.  In Kramers’ treatment, the pre-exponential is a function of the average 
curvature of the potential well and the viscosity of the solvent.  This theory has typically 
been used for interpreting reactions involving biomolecules such as protein folding. 

In summary, an Arrhenius relationship is observed for many chemical reactions 
and two parameters can be extracted from the data, a pre-exponential and a Boltzmann 
weighted energy.  The various theories introduced above provide a physical interpretation 
of the meaning of these two parameters.  The next section will discuss the interpretation 
of rate constants as a function of force given that we can know monitor the reaction along 
a defined reaction coordinate, the end-to end extension of the molecule, in single 
molecule experiments. 
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1.2.3  The effect of force on reaction rate constants 

Often, an energy landscape is illustrated in a single dimension, collapsing a highly 
multidimensional potential energy landscape onto a single reaction coordinate.  In the 
case of a single molecule mechanical experiment, we are able to monitor a reaction of a 
single molecule along a single coordinate, the end-to-end extension of the system, and 
study the changes in rates as a function of force along this reaction coordinate.  However, 
since one is restricted to observations along a single coordinate, this can result in 
neglecting important orthogonal coordinates that are important to the reaction.  
Therefore, it is necessary to test experimentally whether this simplified model explains 
all the observed behavior and thereby determine if the end-to-end extension is a good a 
reaction coordinate for the system. 

Defining the reaction along a single coordinate, end-to-end extension, the simplest 
model of how a given applied force will affect the rate is a linear free energy relationship, 
such as the Bell relationship [20, 21], 

€ 

k(F) = kmk0 exp
Fx +

+

kBT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟                (1.8) 

where km represents the contribution of experimental parameters such as the bead size, 
trap stiffness, and other parts of the experimental system to the observed rates, k0 is the 
intrinsic rate constant of the molecule in the absence of force,  F is the force, x‡ is the 
distance to the transition state, kB is the Boltzmann constant, and T is the temperature in 
Kelvin.  This relation can be rewritten, 

€ 

ln k(F) = ln km + ln k0 +
Fx +

+

kbT         (1.9) 

Alternatively, a constant potential can be applied to a system, in which case the above 
relation is modified to,

 

€ 

k(F) = kmk0 exp
Fx +

+

+
1
2
κx2

kBT

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
   (1.10)

 

where κ is the spring constant of the system [21].  Geometrically, this algebraic 
relationship can be thought of as tilting the energy landscape around some reference 
position (Figure 1.1) [10]. 

A positive spring constant results in an increased effective barrier height, 
increasing the average lifetime of the state.  As depicted in Figure 1.1 b and c, this 
increased barrier height results for both positive and negative changes in the extension of 
the system (i.e. unfolding and folding events).  Therefore, the average lifetime of a state  
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Figure 1.1 The affect of force on a potential energy landscape. 

In a, the difference in the energy of two states is shown at two arbitrary forces 
with an effective spring constant of zero and with F2 greater than F1.  The higher force 
changes the energetics such that the more extended unfolded state is the lower energy 
state.  In b and c, the potential energy surface is shown for a positive and negative 
extension change (unfolding and folding, respectively) at various spring constants.  The 
folded state in b and the unfolded state in c are depicted at the same average force.  This 
illustrates the change in the effective barrier heights with a change in the effective spring 
constants of the system. 
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measured at an average force is dependent on the effective spring constant of the system.  
A greater spring constant will result in a longer average lifetime of the state. 

Experimentally, we can measure the average lifetime (

€ 

τ = 1/k) for a given state.  
Empirically, we can measure how the lifetimes change as a function of force and 
determine the distance to the transition state.  For the systems studied in this thesis, the 
natural log of the rate constant varies linearly over small force ranges.  A change in the 
effective spring constant, while affecting the lifetimes of the state, does not affect the 
determination of the distance to the transition state.  Geometrically, this indicates that the 
curvature of the potential energy surface is sharp and such that the distances do not 
change over the force range studies. 

1.2.4  Distinguishing between equilibrium and kinetic behavior 

With any experiment, which causes a change in the energetics of a system, it is 
important to establish if the system is at equilibrium or in a kinetic regime, which is 
ultimately a question of timing.  A system is at equilibrium if there is no hysteresis, 
meaning the macroscopic behavior of the system does not change with time.  In other 
words, the distribution of the population molecules among different energetic states or 
the average time spent by a single molecule in the different states is a reflection of the 
Boltzmann distribution.  Given a perturbation, such as a change in force, a system is 
driven out of equilibrium; the time it takes to re-equilibrate is defined by the relaxation 
time of the system.  Characterizing the equilibrium or the kinetic behavior of a system is 
therefore determined by the timing of the experiment relative to the relaxation time of the 
system.  Differentiating between equilibrium and kinetic behavior will be discussed later 
when discussing the particular types of force-control mode experiments. 

1.2.5  Questions concerning force and transition states 

The modified Bell’s model provides a simple description of how force affects a 
single transition barrier along a single dimension defined by the reaction coordinate.  
However, the potential energy landscape of a biological molecule is multiple dimensional 
with potentially important orthogonal coordinates which are not accounted for in this 
model.  In addition, as a system is perturbed, the rate limiting step or transition barrier 
could change as a function of force.  Further, within the protein folding field in particular, 
there is significant debate over whether folding kinetics is accurately described by a 
single transition state or whether a protein folds through multiple parallel pathways [22]. 

Force spectroscopy can provide insight into resolving the nature of the transition 
state and how it changes as a function of force.  This thesis discusses the transition state 
under force for protein folding and unfolding using two different two-state model 
systems, sperm whale apomyopglobin and chicken srcSH3.  First, the transition state of 
the molten globule state is studied using apomyoglobin.  Second, src SH3 is used to study 
the effect of the pulling axis on the transition state of a natively folded protein.  Both 
systems have been extensively characterized in solution in the absence of force, enabling 
the comparison to the folding and unfolding behavior under force. 
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1.3  Single molecule experiments 

Up until relatively recently, most experimental insights into chemistry and 
biology have been based on observations made on ensembles of molecules.  An inherent 
characteristic of these experiments is the determination of an average property of the 
ensemble.  Consequently, information can be lost about the distribution of the molecules 
or the diversity of behavior within the ensemble.  And in some cases, the average of a 
measured value can be misleading.  Often times in biology it is the distribution or 
fluctuations from the average that are of functional importance.  Thankfully, we now 
have techniques that allow us to detect and measure the properties of individual 
molecules [23].  With these advances, we can now address questions about the properties 
and behavior of molecules previously inaccessible. 

To illustrate the importance of single molecule experiments, consider the analogy 
of an ensemble of six-sided dice, with each die representing a molecule.  The average 
value of the ensemble of dice is 3.5, but no individual die ever has a value of 3.5.  The 
average property of the ensemble is a consequence of the behavior of the individual die; 
however, it does not reveal the range of behavior of the die.  In order to fully understand 
the system, the dice could be inspected one at a time, measuring the value of each die.  
Alternatively, a single die could be rolled many times and the value of each roll could be 
measured.  With either approach we still measure an average value of 3.5, but we gain 
additional information about the system such as the values are limited to integers between 
1 and 6 and that each integer is equally probable. 

The case of the dice illustrates two important concepts, the equipartition theorem 
and the ergodic hypothesis of thermodynamics.  For a system at equilibrium, the 
statistical average of an ensemble is the same as the average of a molecule over time.  For 
a die, each value represents a different microstate the die can populate. Each state is 
equally probable and, therefore, of equal energy.  For an ensemble of dice, 1 out of 6 dice 
will have the value of 1, etc and the statistical average of this system is: 

(1/6)•1+(1/6)•2+(1/6)•3+(1/6)•4+(1/6)•5+(1/6)•6 = 3.5 

For the experiment using a single die, we determine the average value by 
observing the behavior of the die in time, measuring many independent rolls.  In order to 
ensure that each measurement is independent, the time between each measurement should 
be longer than the relaxation time or correlation time of the system.  In the case of the 
die, the correlation time of the system is the time it takes to re-roll the dice. 

In addition to learning about the distribution and dynamics of the microstates of 
an ensemble, single molecule experiments can provide information about other 
microscopic properties of the system.  Spatial information can be obtained providing 
precise localization of molecules or distance measurements.  Experiments can exploit the 
high resolution to follow a reaction in time along a specified coordinate.  The coordinate 
probes a section of the potential energy surface, or energy landscape, over which the 
reaction proceeds. Further, intermediates or transiently populated states can be observed, 
providing new insights into the mechanism of the reaction. 
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1.3.1  Single molecule force spectroscopy 

Using an instrument such as an optical trap, an atomic force microscope (AFM), 
or a magnetic tweezer, the force and extension of a molecule can be measured [24].  In 
this method, the molecule is tethered between the probe and another surface.  By 
measuring the force on the probe and the position of the probe, the conformation of the 
molecule or the progress of a reaction can be monitored in time.  Applying force perturbs 
the energy of the system, influencing if and to what extent a reaction occur [10] (see 
section 1.1.3). For the purposes of this thesis, I will focus in this section on how force is 
applied and measured using an optical trap. 

1.3.2  Optical tweezers 

Optical traps, or tweezers, were first developed by Arthur Ashkin [25-27] when 
he demonstrated that light can apply a small force to an object and can be used to 
manipulate micron-sized or smaller objects, such as a polystyrene bead in water.  
Momentum from the light can be transferred to an object that is larger than the 
wavelength of the light by absorption, diffraction, refraction, or reflection.  In the case of 
the polystyrene bead, light refracts as it passes through the bead because of the difference 
in the refractive index of the bead and the water.  The momentum of the light changes 
resulting in an equal and opposite force according to Newton’s third law.  This 
phenomena is best explained with ray optics (Figure 1.2).  In a Gaussian-distributed 
beam, more photons are in the center of the trap.  If the bead is displaced from the center, 
there are more photons that refract creating a restoring force, which pushes the bead back 
towards the center.  Light that reflects off the surface of the bead and imparts forward 
momentum, pushing the bead slightly out of the focus in the direction of the beam 
(Figure 1.3 a).  In a given regime, the optical trap acts as a Hookean spring and the force 
is linearly proportional to the displacement from the center of the trap, 

F = κ∆x      (1.11) 

where F is the force in pN, κ is the spring constant in pN/nm, and the ∆x is the 
displacement from the center of the trap in nm. 

To create a laser trap that can measure force and extension, three general 
components are needed: a laser, optics, and a detector.  The laser produces the light used 
to make the trap, the intensity of which determines the number of photons, and therefore 
the strength of the trap.  The optical components focus the laser and allow for the 
manipulation and movement of the trap.  A position-sensitive detector measures the 
change in the trapping light by measuring the voltage that corresponds to the position and 
intensity of the light thereby measuring the force on the bead. 

There are two general instrument designs: a single beam optical trap and a dual 
beam anti-propagating optical trap (Figure 1.3).  Both have advantages and disadvantages 
and allow for different approaches to measuring the force. 
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Figure 1.2 Trapping a bead with an optical trap. 

 A Gaussian-distributed light beam is depicted in blue with the center of the trap 
marked by the dashed line.  The black arrows depict the path of the refracted light and the 
thickness of the line is proportional to the number of photons.  In a, the bead is in a 
position such that the force created from the refracting light produces a net zero force on 
the bead.  In b, the bead has been displaced up and the light refracts to create a restoring 
force in the opposite direction, shown with the blue arrow.  In c, the bead has been 
displaced down and the light refracts to create a restoring force in the opposite direction.   
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Figure 1.3 Single beam and dual beam anti-propagating optical traps. 

In a, the center of the trap and the focus of the trapping light are offset in a single 
beam optical trap because of the reflected light.  In a dual beam anti-propagating optical 
trap, if both traps are of equal strength, the reflected light produces an equal and opposite 
force.  The center of the trap and the foci of the two are therefore aligned as shown in b.   
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1.3.3  Measuring force 

There are two general approaches to measuring the force on a trapped object, each 
with its set of advantages and disadvantages.  It should be noted that both methods 
require the calibration of the detector to determine the voltage conversion factor, either 
voltage-to-distance or voltage-to-force.  The first method directly measures the total 
change in momentum of the light [28].  This requires the collection of nearly all of the 
photons used in the trap.  To ensure this, the objectives are under filled with light to 
prevent lost and scattered photons, resulting in a lower power and weaker trap.  However, 
using a dual anti-propagating geometry as described above can compensate for the  
weaken trap.  This method has the advantage that the spring constant of the trap (which 
requires prior knowledge about the size of the trapped object and the viscosity of the 
solution) does not have to be determined.  Without the spring constant, the position of the 
object in the trap is unknown.  Other methods will be discussed later for extracting 
relative extension changes. 

The second method requires the determination of the spring constant of the trap 
for each object.  A common calibration strategy is to take a power spectrum of the free 
bead in the trap [24].  A power spectrum measures the noise as a function of the sampling 
frequency, which is a product of the thermal fluctuations or Brownian noise in the 
system.  Using the equipartion theorem, the thermal noise in the system is related to the 
the average energy of our trap, 

1/2kBT = 1/2κΔx2    (1.12) 

where kB is the Boltzmann constant, T is the temperature in Kelvin, κ is the spring 
constant in pN/nm, and Δx is the displacement from the center of the trap in nm.  From 
this relationship, the spatial (δx) and force (δf) resolution can be determined. 

δx = √kBT/κ           (1.13) 

and 

δf = √κkBT           (1.14) 

Fitting the power spectrum, the corner frequency can be determined and the 
spring constant of the trap can be determined with the following equation, 

fc = κ/12π2νr         (1.15) 

where fc is the corner frequency in Hz, κ is the spring constant in pN/nm, ν is the 
viscosity of the solution in pN•sec/nm2, and r is the radius of the trapped bead.  This 
requires that the size of the object and the viscosity to be independently determined.  
With this method, the objectives are over filled and therefore more light is used to create 
a stronger trap, however, it is still weaker relative to a dual beam anti-propagating trap 
with similar laser intensities.  Given the spring constant, the position of the bead in the 
trap is also known because of Hooke’s law and therefore the extension of the molecule. 
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1.3.4  Instrument overview 

Specifically, the instrument used for the work presented in this thesis was a dual 
beam anti-propagating optical trap (Figure 1.4) [29].  For this instrument, two 
independent traps of equal stiffness are created that approach the object from opposite 
directions.  One advantage of this design is that a stronger trap is created with lower laser 
power.  For a trapped object in a single trap, the trap is weakest along the direction of the 
propagating light.  The trap is further weakened by light that is reflected off the object, 
pushing it out of the focal point of the trap.  In a dual beam counter-propagating trap, the 
reflected light from each trap compensate for each other, placing the object in the focal 
point of the traps for maximum strength.  This design also enables the force to be 
measured directly by measuring the rate of change in the momentum of the light, as 
described above. 

1.3.5  Geometry of an experiment and sample preparation 

In order to study a biological molecule with force spectroscopy, it must be 
attached to two different surfaces, one of which is the probe, either a bead in an optical 
trap or the cantilever tip of an AFM.  By changing the relative position of the two 
surfaces, forces can be applied to the molecule.  The behavior of a biological molecule is 
inferred by measuring the force and extension on the probe. 

For the experiments discussed in this thesis, the sample was attached to two beads 
(Figure 1.5).  One bead was held by suction on pipette tip and the other bead was in the 
optical trap.  As the biological molecule is small relative to the attachment surface, a 
‘handle’ consisting of functionalized dsDNA is used to tether the molecule to the beads.  
Handles provide separation between the surfaces to avoid non-specific interactions and 
provide specific attachment points to the molecule of interest. 

In the experiments presented here, the beads are functionalized with covalently 
attached strepavadin or anti-digoxigen antibody.  A PCR reaction using functionalized 
primers produces a biotin and thiol-labeled or a digoxigen and thiol-labeled 558 bp 
dsDNA handle.  These handles are then attached to the molecule of interest by annealing 
complementary strands for a nucleic acid hairpin or through disulfide bonds for proteins 
[30, 31]. 

1.3.6  Force control modes 

In force spectroscopy, there are different ways in which the force is applied to the 
sample.  The three primary force control modes are force ramp, constant force, and 
constant-trap position.  Below are brief summaries of each method. 

In the force ramp experiment, the probe is moved relative to the other surface.  
Moving the surfaces away from each other pulls on the tether, resulting in an increase in 
the force, while moving the surfaces closer together, decreases the tension on the 
molecule.  Take the example of a molecule that unfolds and folds in a two state manner.  
As the force increases, the more extended state of the molecule will become energetically  
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Figure 1.4 Schematic of a dual beam anti-propagating optical trap design. 

This schematic depicts the primary components in a dual beam anti-propagating 
optical trap.  The green and blue arrows depict the light path.  The polarized beam splitter 
differential reflects and transmits linear polarized light.  The quarter wave plate circularly 
polarizes linear polarized light.  The two lasers are differentially linear polarized 
(horizontal and vertical) which results in the circular polarization of the light by the 
quarter wave plates in opposite directions (right and left).  This reduces any interference 
between either light-beam and allows the separation of the beams to their respective 
position sensitive detectors.  Light reflects backwards (shown in the dashed line) off the 
bead (red circle) in the chamber is reflected by the polarized beam splitter to the previous 
position sensitive detector.  In this setup, most of the light (~98%) is captured allowing 
for an accurate determination of the force on the bead using a light momentum 
calculation. 
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Figure 1.5 Geometry of an optical tweezer experiment. 

The geometry of the optical trap experiments is depicted for both a nucleic acid 
hairpin and a protein system. 
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favorable and eventually unfold the molecule.  As the force decreases, the more compact 
state will become the lowest energy state and the molecule will refold.  Because 
unfolding and folding are thermally driven stochastic events, there will be a distribution 
of forces at which the molecule unfolds and folds, which reflect the underlying potential 
energy landscape of the system.By controlling the speed, the experiment can be at a 
constant pulling speed (i.e. constant change in trap position with time) or a constant 
loading rate (i.e. constant change in force with time).  The distinction between these 
variations is important because of how the energy in the system is changing in time.  As 
previously mentioned, the free energy of the system changes as a function of the force 
and affects the behavior of the molecule.  In a force ramp experiment, the force is a 
product of the spring constant, the pulling speed, and the time. 

F = κeffδx = κeffνt    (1.16) 

where κ is the spring constant in pN/nm, ν is the pulling speed in nm/sec and t is the time 
in sec.  Here, the spring constant is the effective spring constant of the entire system, 
including contributions from the trap, the handles, and the molecule of interest.  This can 
be modeled as several springs in series: 

1/κeff = 1/κtrap + 1/κhandles + 1/κmolecule   (1.17) 

with each spring constant a function of position.  In the case of the handles and the 
molecule, the spring constants are not linear functions of position.  This can result in 
nonlinear changes in the force on the system and therefore nonlinear changes in the 
energy of the system.   If a constant pulling speed is used, the loading rate is not 
necessarily constant.  A constant loading rate is a good approximation if the optical trap 
has a significantly softer spring constant relative to the other components of the system.  
Depending on the rate at which the system is perturbed (i.e. the loading rate of force per 
time) and the relaxation time of the system, either a kinetic or equilibrium behavior can 
be explored.  The behavior regime is distinguished by the presence or absence of 
hysteresis.  Examples of both types of behavior are shown in Figure 1.6. 

If a constant force can be applied to the system, the potential on the system is 
constant during the experiment and the analysis is greatly simplified.  There are two 
principal methods to sustain a constant force on a system.  The first requires an active 
feedback that adjusts the position of the trap to maintain a constant force on the system at 
times greater than the timescale of the feedback.  An alternative passive approach 
positions the bead in an optical trap where the potential of the trap is anharmonic and the 
force is constant over small displacements (± 5% over a range of 50 nm) [21].  With each 
method, the position of the trap or the bead is used to determine the state of the molecule. 

There are two variations of a constant force experiment, either a force-jump 
experiment or a hopping experiment (Figure 1.7 a, b, and c), the application of which 
depends on if the system is in a kinetic or equilibrium regime during a force ramp 
experiment.  Take the example of a molecule that unfolds in a kinetic regime.  In this 
case, the relaxation time of the system is slow relative to the loading rate of the 
experiment.  The system can be jumped to an intermediate force and a constant force can  
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Figure 1.6 Force ramp sample traces. 

Sample traces of force ramp experiments on apomyoglobin at pH 7.0 (a) and pH 
5.0 (b).  At pH 7, the behavior is in a kinetic regime as demonstrated by the hysteresis 
between the unfolding (blue) and refolding (red) events.  At pH 5.0, there is no hysteresis 
between the unfolding and folding force distribution indicating that the molecule is in an 
equilibrium regime. 
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Figure 1.7 Sample traces of constant force jump experiments, constant force- 
  feedback hopping experiments, and constant trap position   
  experiments. 

Sample traces depict the force and trap position as a function of time.  The 
unfolding and folding of srcSH3 (a and b) is shown during a force jump experiment to 
illustrate the force spike (down for unfolding and up for folding) before the feedback is 
able to restore the original force by changing the trap position.  Unfolding occurs at 
higher force and therefore the signal-to-noise ratio is better than for the low-force folding 
event.  The force and trap position are also shown for equilibrium hopping experiments 
for a constant force-feedback experiment (c) and a constant trap position experiment (d).  
Data averaged down to 1000 Hz for all traces. 



	
   19	
  

be maintained until the molecule unfolds or folds (Figure 1.7 a and b).  From this, a 
lifetime can be measured at a constant force.  By repeating this experiment and 
measuring the distribution of lifetimes, an average lifetime can be determined at the 
average force.  As the average force increases, the average lifetimes will decrease and 
from this, information such as the distance to the transition state can be determined. 

A molecule near equilibrium with little hysteresis in a force ramp experiment will 
fold and unfold many times during the experiment when held at a constant force.  
Hopping between the different conformations, many transitions are observed and the 
distribution of lifetimes can be measured.  In principle, the lifetimes for each state as a 
function of force can be determined. 

The last mode of force control is similar to a constant force experiment, in that the 
molecule hops between different conformational states.  In this experiment, a trap 
position is held constant applying a constant potential to the system.  When the molecule 
transitions to another conformational state with a different end-to-end extension, the 
average force changes (Figure 1.7 d).  Lifetimes of each state are measured as a function 
of the average force and used to extract information about the energy landscape. 

Regardless of the mode of force control, properly understanding how the force is 
changing and therefore how the energy of the system is evolving is critical to correctly 
interpret the data, i.e., the distribution of forces or lifetimes, and inferring information 
about system, such as the distance to the transition state.  Part of this thesis will address 
the origin of a previously unreported discrepancy between the measured rate constants 
and distances to the transition state from constant force and constant trap experiments. 

1.4  Considerations for the analysis of single molecule force spectroscopy data 

In this section, I will focus on the factors that need to be considered for the 
analysis of single molecule data.  This includes distinguishing the molecule of interest 
from artifacts and background in the system and characterizing the behavior of the 
molecule by correctly identifying the conformations and their lifetimes.  Protein 
unfolding will be used as an example for the purposes of illustrating the factors that are 
important to the experiment. 

The first factor is the choice of the pulling axis, or the reaction coordinate, which 
influences how force affects the reaction and therefore over what force range unfolding 
events occur. The combination of the length change of the molecule and the force at 
which the event occurs will determine the signal change associated with an event, hence 
the choice of the pulling axis dramatically affects the observable.  A priori there is no 
way to predict over what force range these events will occur for a given protein and if the 
event will occur in single cooperative step or through intermediates, or a distribution of 
apparent cooperative and sequential events. 

Another consideration is how to distinguish the relevant behavior from artifacts or 
background in the system.  The first consideration is to determine that a tether is a single 
molecule and that the measured data do not arise from multiple tethers or non-specific 
interactions between the beads.  By overstretching the DNA handles, a single tether can 
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be identified by the overstretching force (~ 67 pN) and measuring the length of the 
overstretching transition (Figure 1.8 a) [32]. 

The second is to assure that the behavior is due to a change in conformation of the 
protein of interested.  The control for the experiments presented in this thesis is to tether 
beads together with dsDNA handles without a protein.  These experiments allowed for 
the identification of an equilibrium-hopping artifact that occurs around 8 pN that is 
thought to arise from a conformation change in the attachment to the bead surface (Figure 
1.8 b).  This artifact occurred in approximately 5-10% of single tethers. 

The third is to determine that the behavior is reproducible.  As with any 
experiment, the data should be reproducible, but for single molecule experiments this 
criteria is enforced.  For any set of single molecule data, there are subsets of behaviors, 
which are rare and irreproducible given the finite amount of molecules analyzed.  These 
events are assumed to arise from interactions outside of the molecule of interest or from a 
change in the system, such the formation of a non-specific interaction during an 
experiment.  Because of this, rare events or a minority of the population of molecules that 
exhibits different behavior are ignored in the final analysis.  Using these criteria increases 
the confidence in the conclusions drawn from the average reproducible behavior from the 
single molecule experiments but it does not mean that we have captured the complete 
range of behaviors of the molecule. Working with the subset of data that is reproducible, 
the next step is to extract kinetic and thermodynamic information from the data. 

1.4.1  Precision and accuracy 

Of primary concern for any set of data is the precision and accuracy of the 
measurements.  The accuracy determines how close the measured value is to the true 
value and the precision determines the reproducibility of the value.  In this section, I 
address the accuracy and precision of the time, trap position, and force for the dual beam 
counter-propagating optical trap. 

The time resolution was determined by the sampling frequency and the hardware 
used in the design of the instrument.  Data were collected at 4 kHz and averaged down to 
1 kHz before being written to disk.  Due to hardware constraints, approximately 40% of 
the data points at 4 kHz were dropped.  Therefore, the data at 1 kHz varied from an 
average of one to four data points collected at 4 kHz and consequently approximately two 
percent of the data at 1 kHz was not reported.  The precision of the time measurements 
was therefore approximately 1 kHz but with increased noise because of the dropped data 
and the resulting inconsistent averaging of the data.  Bypassing the limiting hardware and 
recording the signal directly from the detector improved the sampling resolution to 100 
kHz, the limit of the position sensitive detector.  The signal could then be averaged down 
to the desired frequency, typically 1 kHz, giving both high accuracy and precision in the 
time measurements. 

The precision and accuracy of measuring the extension of the molecule is 
determined by how well the position of the trap in known.  As only the position of the 
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Figure 1.8 Overstretching of dsDNA handles. 

The overstretching of 558 bp dsDNA handles attached via a disulfide bond.  The 
dsDNA is shown without an artifact transition (a) and with the artifact transition at ~ 
8pN. 
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trapped bead is monitored, the absolute extension of the molecule is unknown.  Relative 
extension changes however can be determined and were inferred by measuring the 
relative changes in the position of the trap.  In the experimental design, a part of the 
trapping laser was diverted from the origin to an independent detector.  A piezo actuator 
moved the position of the origin of the laser thereby manipulating the position of the trap.  
The change in the position of the trap was then measured on the independent detector and 
provided precision in the position resolution to within 0.5 nm.  As relative changes in 
extension were measured and not absolute distances, the accuracy and precision were the 
same. 

The extension change of an unfolding event is measured by determining the trap 
position for both the folded and unfolded state at the same force.  For example, during a 
force ramp experiment, the molecule unfolds at a given force and the force decreases 
because the length of the tether increases.  The trap position continues to move and 
increase the force on the tether, pulling the molecule back to the original unfolding force.  
As the force is the same, the bead is the same distance from the center of the trap, and 
therefore, the difference in the trap position is the result of the extension change of the 
molecule at that force. 

The force precision can be defined by the variability within a single tether or by 
the variability between tethers.  The variability within a single tether can be quantified by 
measuring the reproducibility of a transition within a molecule, for example the 
overstretching transition in dsDNA or the folding and refolding rate of a molecule.  In 
each of these cases, the standard error of the mean force is within 0.05 pN with a standard 
deviation of in 0.1 pN.  However, between tethers there is much more variability.  There 
is ~3 pN variability (95% confidence interval) in the overstretching transition around 67 
pN between different fibers [32].  In other two-state systems, such as the p5ab RNA 
hairpin, there is a variability of ~0.5 pN (95% confidence interval) around 14 pN between 
equal rate constants (data will be shown later in this thesis).  The precision determines 
how the data is processed, specifically, if tethers are analyzed separately or if the data is 
pooled from different tethers and then analyzed.  Data can be pooled if the measurement 
spans a force range greater than the precision.  As will be shown later, force ramp 
experiments demonstrating hysteresis typically have unfolding force distribution that 
spans 10 or more piconewtons and therefore the data can be pooled from multiple tethers.  
For equilibrium hopping behavior, the force range is approximately one piconewton and 
therefore pooling data from multiple tethers severely affects the results of the analysis. 

The accuracy of the force measurement is calibrated by determining the voltage-
to-force conversion factor.  This calibration can then be checked through a variety of 
methods.  For the experiments presented in this thesis, the calibration of the force 
trapping the bead was routinely checked using stokes law, 

F = 6πηrν           (1.18) 

where F is the force on the bead, η is the viscosity of the fluid, r is the radius of the bead, 
and ν is velocity of the bead.  In this case, the instrument measures the force on the bead 
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as the chamber is moved with a known velocity.  Given the viscosity of the fluid, the 
radius of the bead can be calculated and compared to the known value of the bead size.  
There is a variation in the size of the beads allowing for the force to be calibrated to 
within 10%. 

1.4.2  Sampling frequency 

As stated earlier, the behavior of the molecule of interest is inferred from the 
response of the probe.  Despite the high sampling frequency of 100 kHz for position 
sensitive detectors, little information is gained by sampling at this rate as the response 
time of the bead is much slower.  This response time of the bead is defined as the 
minimum time interval at which the data is uncorrelated from the previous data.  This 
time interval can be determined with an autocorrelation function of the force or fitting the 
power spectrum of the force noise (Figure 1.9). 

Some methods of analysis, such as a hidden Markov model approach, require that 
the each measurement is independent and uncorrelated from the previous time point.  
These methods require that the data is averaged or sub-sampled down to a time interval 
greater than the response time of the bead.  One consequence of the limited response time 
of the probe is that events in the system that occur on a faster time scale will not be 
detected and any information at a higher frequency is averaged away. 

Force feedback further limits the sampling frequency.  The feedback works by 
changing the position of the trap in responding to changes in the force on the bead.  To 
avoid oscillations in the force due to an overactive feedback, the feedback is over damped 
and is typically on a time scale of an order of magnitude slower than the response time of 
the probe.  For typical experiments presented in this thesis, the corner frequencies range 
from 2.5 to 2 kHz and the feedback typically took from 200 to 100 Hz to return to the 
original force. 

In this thesis, I will discuss a previously unreported complication that arises in 
constant-force feedback experiments.  These experiments resulted in an underestimate of 
the measured rate constants of the system and an error in the determination of the 
distances to the transition state.  Part of the reason this error went unnoticed was because 
limitations in the instrument and the data were neglected in the analysis of the data 
resulting in error. 

1.5  Introduction to protein folding 

Proteins perform a large variety of functions from structural roles to catalyzing 
reactions and are important in facilitating processes such as transcription, translation, 
signaling, and transport [33].  With 20 primary amino acids, the amount of possible 
sequences available to a protein is astronomically large, and perhaps, the large variety of 
functions performed by proteins should not be all that surprising.  For example, given a 
small protein of 100 amino acids, there are 20100 different sequence combinations and this 
is not including post-translational modifications, which would further increase the 
sequence possibilities.  However, given the potential sequences available, only a subset  
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Figure 1.9 Power spectra and autocorrelation function of a free bead in an  
  optical trap. 

The autocorrelation function (a) and power spectra with fit of a free bead in an 
optical trap with an average correlation lifetime of 2.3 ms or 432 Hz.  The black line 
marks the average lifetime and corner frequency in each figure. 
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has been observed in nature.  Ultimately, the primary sequence defines the potential 
energy landscape of a polypeptide, which determines the conformations and interactions 
available to the polypeptide [34].  Natural selection works on this landscape to drive 
evolution. 

Many proteins have different sequences yet still share a similar native state 
structure.  Despite the structural similarities, these proteins can function very differently.  
One example that illustrates this point is homologous proteins from mesophiles and 
thermophiles, which have very different stabilities under the same conditions and 
function at very different temperatures despite sequence identities as high as 50% [35].  
This exemplifies the complexities of determining the relationship between the sequence 
and the energetics of a protein.  The link between sequence and structure was first 
elucidated in the 1960’s, when Anfinsen and colleagues first demonstrated that many 
proteins are able to reversibly and spontaneously fold into their native structure, 
suggesting that for many proteins, the native, functional fold is the lowest energy state 
[36].  This work provided an understanding of the thermodynamics underlying the 
process but did not resolve anything about the kinetics of the folding process. 

Regarding the kinetics of the folding process, Levinthal framed the dilemma in 
what came to be known as the Levinthal paradox [37].  The apparent paradox arose from 
the observation that single domain proteins typically fold to a relatively small native state 
ensemble on a millisecond to second time scale despite the huge number of possible 
conformations.  To further illustrate the dilemma, take the example of a small protein 
with 100 amino acids.  For this protein, there are 99 peptide bonds each with a phi and psi 
angle.  If we assume that each angle can assume only one of three discrete conformations, 
then there are be 3(2*99) or ~1094 different possible conformations.  Assuming the folding 
process was a random search of these conformations, even if the protein could explore a 
different conformation rapidly on the nanosecond to picosecond time scale, it would still 
take an astronomically long time (~ 1084 sec) to explore all the possible conformations 
and find the native state.  The conclusion from this thought experiment is that there must 
be a biased search of the conformation space and therefore a folding pathway.  It further 
suggests that the mechanism could be better understood if intermediates could be 
detected and characterized during the folding process. 

1.5.1  The role of the molten globule state in protein folding  

For many proteins, a burst-phase kinetic intermediate is detected early (less than 5 
milliseconds) during folding to the native state [38, 39].  For several proteins, this state 
was shown to be similar to a partially folded state populated under equilibrium conditions 
at low pH.  This equilibrium state, often referred to as a molten globule, appears to be a 
good experimental model for the early structures transiently populated during folding 
[39]. 

The molten globule state shares some common characteristics with natively 
folded proteins and other properties commonly associated with the unfolded state.  Using 
x-ray scattering experiments, the molten globule state has shown to be compact and have 
a radius of gyration closer to that of the native state than the unfolded state [40].  Probing 
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the amount of secondary structure with circular dichroism has demonstrated that the 
molten globule state, like native proteins, contains secondary structure, although to 
usually a lesser extent than the native state.  Unlike a natively folded protein, however, 
the molten globule state lacks fixed tertiary interactions and a well-packed hydrophobic 
core [41].  This has been demonstrated by a variety of methods.  One assay for 
characterizing a molten globule is fluorescence due to 1-anilinonaphthalene-8-
sulfonicacid (ANS).  ANS binds to a hydrophobic pocket, resulting in the increase in 
fluorescence.  For a molten globule state, ANS binding results in a higher fluorescence 
when compared with the native or unfolded state [42].  Heteronuclear single quantum 
coherence (HSQC) on a molten globule reveals poor dispersion, indicating poorly 
ordered side chains in the core of the protein [43]. 

An example of a well-characterized protein that folds through a molten globule-
like intermediate is sperm whale apomyoglobin [44].  A structural model of the molten 
globule state of apomyoglobin has been generated by hydrogen exchange experiments 
[45] which were used to probe the protection factors of backbone amide hydrogen bonds 
in secondary structure elements.  While the protection factors were significantly lower 
than those observed in the natively folded protein, the protected regions clustered in the 
residues that were part of the A, G, and H helices (Figure 1.10).  The equilibrium molten 
globule state shares many properties with early kinetic intermediate, such as the amount 
of secondary structure (~35% of the native secondary structure) and the areas protected in 
hydrogen exchange experiments (helices A, G, and H) [44].  Another example of a 
protein that populates a molten globule-like intermediate is E.coli ribonuclease H (RNase 
H) [46-48].  Like apomyoglobin, E. coli RNAse H populates an early intermediate with 
properties of a molten globule.  The role of this intermediate was investigated using the 
optical tweezers and following the folding trajectory of a single molecule, where the 
protein was observed to fold through an intermediate state that resembled the kinetic 
intermediate observed in ensemble experiments.  Further, the intermediate appeared to be 
obligatory and on-pathway [49]. 

While significant progress has been made in understanding the structural nature 
and role of molten globules in the folding process, there are still many unresolved 
questions.  Work using optical tweezers on E.coli RNase H indicated the intermediate has 
an unusually large distance to the transition state unlike natively folded proteins.   This 
result raised the question as to if this property is a universal property of molten globule 
states or specific to E.coli RNase H or the pulling axis used in the experiment.  Part of 
this thesis addresses this question, investigating the generality of this property using the 
equilibrium molten globule state of apo-myoglobin. 
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Figure 1.10 Model of the molten globule state of apomyoglobin. 

The structure of holo myoglobin is shown with the A, G, and H helices 
highlighted in red.  These helices correspond to the protected regions of the equilibrium 
molten globule and the kinetic intermediate during hydrogen exchange experiments. 
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Chapter 2  Equilibrium force spectroscopy experiments on macromolecules: The  
        problem with force feedback experiment 

2.1  Introduction 

Single molecule force spectroscopy has provided important insights into the 
properties and mechanisms of biological molecules and systems.  Here I focus on the 
frequently used approach of evaluating the force dependence of conformational changes 
at equilibrium.  I evaluate the experimental method and analysis of equilibrium folding 
and unfolding studies of macromolecules under conditions of constant force or constant 
trap position.  Using three different model systems (DNA, RNA, and protein), I 
demonstrate a previously unreported complication that arises from missed folding and 
unfolding events that are especially prominent in constant-force feedback experiments.  
These missed transitions lead to errors in calculated parameters such as the rate constants 
for the conformational transitions and the distances to the transitions state.  I elucidate the 
cause of this problem and recommend a more robust strategy for collecting and analyzing 
such equilibrium data. 

In recent years, the application of single molecule force spectroscopy to the study 
of biological molecules has provided insights unobtainable by previous methods.  These 
studies have improved our understanding of the properties and mechanisms of a variety 
of systems under force such as DNA structure [1], RNA folding [2], protein folding [3, 
4], and various molecular motors, from the initial work on kinesin [5] and myosin [6], to 
polymerases [7] and more complicated ring ATPases [8]. 

Several inherent advantages of force spectroscopy are exploited to allow for these 
novel insights. A typical experiment follows the trajectory of a single molecule in time, 
allowing for transient or rare events to be observed that would otherwise be masked when 
observing the average properties of a group of molecules in ensemble experiments.  
Applying force to a molecule perturbs the energetics of the system, influencing if and to 
what extent a conformational change occurs [9].  Finally, the reaction is measured along a 
defined reaction coordinate, the end-to-end distance of the molecule.   Landmarks along 
this reaction coordinate, such as the distance to the transition state, can be inferred by 
measuring the lifetimes of given states as a function of force, allowing for a detailed 
mapping of the energy landscape. 

Mapping this energy profile of a reaction requires the accurate identification and 
measurement of the lifetime of a given state at a given force.  The accurate analysis of 
such single molecule time trajectories has been a long standing problem and several 
strategies have been developed for identifying the states and subsequently determining 
the associated lifetimes or rate constants [10-12].  In force spectroscopy, the force-
dependence of these rate constants are typically fit using a modified Bell relationship [13, 
14], 
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where km represents the contribution of experimental parameters such as the bead size, 
trap stiffness, and handle length to the observed rates, k0 is the intrinsic rate constant of 
the molecule in the absence of force, F is the force, x‡ 

€ 

Δx ++

is the distance to the transition 
state, κ is the spring constant of the system,

€ 

kb

 kB is the Boltzmann constant, and T is the 
temperature in Kelvin.  From this simple relationship, the distances to the transition state 
barriers (x‡) are determined. 

All of this depends on an accurate determination of the rates and the effect of 
force, both of which depend critically on the type of experiment and its effect on the 
behavior of the molecule of interest. Of primary concern here is the mode of force 
control: constant force, constant trap position, or constant loading rate.  Other parameters 
that also need to be considered are the trap stiffness, bead size, tether length, viscosity, 
and the sampling frequency.  Previous work has attempted to determine the effect of 
some of these experimental parameters on the measured kinetics of a system [15, 16]; our 
evaluation of these studies, however, reveals a significant discrepancy between the results 
obtained with constant force and constant trap position experiments.  This discrepancy 
was not noted and therefore unexplained. 

Here, we revisit the effect experimental parameters have on the measurement of 
conformational lifetimes.  Using data from DNA, RNA, and protein systems in which the 
molecule folds and unfolds during either a constant force or constant trap position 
experiment, we now identify a previously unreported complication arising from constant-
force feedback experiments, and demonstrate that many of the reported properties, such 
as the rate constants as a function of force and the distance to the transition state, do not 
reflect the true behavior of the molecule of interest.  Given an understanding of this 
problem and the role of the experimental parameters, we now suggest a more robust 
strategy for collecting and analyzing single molecule force spectroscopy data. 

2.2  Materials and methods 

2.2.1  Materials 

The p5ab RNA hairpin from Tetrahymena thermophilia was provided by Jin Der 
Wen and was prepared as previously published [15].  The DNA hairpin data was 
provided by F. Ritort [17].  The wild-type myoglobin gene was provided by D. Barrick 
and the H36Q mutant of apomyoglobin was prepared as previously published [18]. 

2.2.2  Instrumentation 

The instrument used in this experiment was a dual beam counter propagating 
optical trap.  A piezo actuator controlled the position of the trap and allowed position 
resolution to within 0.5 nm with drift of less than 1 nm per minute [19].  The feedback 
controlled the position of the trap, and therefore the force on the bead and molecule, with 
a frequency of 2 kHz and a step size proportional to 10% of the force difference between 
the two states.  An average force could be maintained within 0.01 pN of the set value 
with a standard deviation of 0.1 pN at 100 Hz.  Data was collected at 4 kHz and averaged 
down to 1 kHz before being written to disk.  Due to hardware constraints, approximately 
40% of the data points at 4 kHz were dropped.  Therefore, the data at 1 kHz varied from 
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an average of one to four data points collected at 4 kHz and consequently approximately 
two percent of the data at 1 kHz was not reported.  All constant force experiments and the 
constant trap position experiments for the DNA hairpin were collected at 1 kHz.  For the 
constant trap position experiments on the RNA and protein systems, higher frequency 
data was recorded at 50 kHz by bypassing the limiting hardware and recording the 
voltage corresponding to the force on the tether directly from the position sensitive 
detectors. 

2.2.3  Methods of analysis 

For all the constant force experiments, the data were averaged down to 100 Hz for 
analysis.  For the constant trap experiments, the data was sub-sampled down to 1000 Hz 
for analysis.  Because of the limited force precision between each single molecule (+/- 
0.5 pN), they were analyzed separately. 

2.2.4  Partition methods 

Using a histogram of the data with a bin size of 0.5 nm, a partition was set to the 
minimum in the signal between the two states.  A transition was detected when the signal 
crossed this partition, defining the beginning or end of the lifetime of the state.  At a 
given average force, the rate constant for a given state was calculated by subtracting the 
sampling resolution (10 ms) off all lifetimes, and taking the inverse of the average of the 
lifetimes. 

2.2.5  Bayesian hidden Markov model 

The Bayesian hidden Markov model (BHMM) approach [12] employed 
automatically samples over likely assignments of the force measurements to the states, 
producing estimates of average forces and lifetimes characterizing each state, as well as 
confidence intervals that characterize the uncertainty in these values due to finite-sample 
statistics. After sub-sampling the force data to produce Markovian statistics (verified by 
examination of force autocorrelation functions; data not shown), the method first fits a 
maximum-likelihood HMM using standard procedures and then samples models 
consistent with the data using a Gibbs sampling strategy that assumes the force 
measurements of each state (including measurement error) are normally distributed about 
the average force for that state [12].  Here, the number of states was fixed to two after 
verifying the two-state nature of the data by inspection of the force traces.  The first 50 
HMM samples after starting from the maximum likelihood estimate were discarded to 
avoid any initial bias, and 1000 samples were generated to collect statistics on average 
forces and lifetimes, as well as generate the 95% confidence intervals reported here. 

2.2.6  Determination of the distance to the transition state and the coincidental rate 
          constants 

For a given state, a liner fit of the natural log of the rate constants at each average 
force determined the distance to the transition state using the modified Bell model.  The 
crossing point between the two fits determined the coincidental rate constant.  All 
reported fits had R2 values greater than 0.9.  The values reported were the average of at 
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least five different tethers each analyzed separately and with data collected from five to 
twenty-five different average forces. 

2.2.7  Simulation 

The simple simulation of the constant force experiments modeled the molecule 
behavior under the constant force feedback.  The simulation was run at 10 kHz and it 
assumed that the bead responded instantaneously to a change in the force.  At each time 
point, the probability of a transition at the instantaneous force was calculated using the 
kinetic parameters measured from the constant trap position experiments.  A random 
number generator determined an event and modeled the stochastic nature of folding and 
unfolding events.  The feedback controlled the position of the trap, and therefore the 
force on the bead and molecule, with a frequency of 2 kHz and a step size proportional to 
10% of the force difference between the two states.  For each set of conditions, five 
simulated experiments were averaged down to 100 Hz and analyzed using the partition 
method and fit with the modified Bell model.  For the nucleic acid system, the initial 
effective spring constant was set to 0.1 pN/nm and for the protein system the initial 
effective spring constant was set to 0.05 pN/nm, similar to the experimental conditions.  
The kinetic parameters of each system (i.e. the distance to the transition state and the 
intrinsic rate constants as a function of force) were representative of the results from the 
constant trap position experiments.  The initial rate constants and the effective spring 
constants were varied between simulations in order to test the effect of the parameters on 
the experiment.  As the purpose of this simulation was to probe the role of missed 
transitions, the simulation neglected any changes in the signal-to-noise ratio and the 
intrinsic rate constants as a function of the effective spring constant. 

2.3  Results and discussion: 

Single molecule force spectroscopy experiments were carried out using an optical 
trap.  In this set-up, a single molecule is tethered between two polystyrene beads; a 
pipette tip holds one bead (2.1 um diameter) in place by suction and a dual counter-
propagating beam optical trap manipulates the second bead (3.2 um diameter) (see Figure 
2.1). By monitoring the bead in the trap, both the force and the relative extension of the 
tether can be determined [20]. The molecule of interest (either DNA, RNA, or protein) is 
attached to the beads through functionalized dsDNA (referred to as ‘handles’).  These 
dsDNA handles provide space between both the bead surfaces and the molecule 
preventing any non-specific interactions with or between the beads from influencing the 
behavior of the molecule.  The DNA handles are attached to the target molecule at 
specific sites thereby determining the axis along which the force is applied [2, 17, 21]. 

We carried out experiments on three types of macromolecules, all previously 
studied in the optical trap: a DNA hairpin [17], the p5ab RNA hairpin [2, 15], and the 
protein sperm whale apo-myoglobin at pH5 (manuscript in preparation). All three display 
two-state folding and unfolding transitions in both constant force and constant trap 
position experiments.  In order to determine the lifetimes (and corresponding rate 
constants) at various forces, we followed many folding and unfolding events for a single 
tether in each experimental set up and repeated the experiment on multiple tethers (Figure 
2.2).
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Figure 2.1  Optical trap experimental design.   

a,  Geometry of experiments depicting bead attachment via handles to the 
macromolecule of interest.  b,  In a constant force experiment, the bead distance from the 
trap center is maintained constant by the force-feedback controlling the position of the 
optical trap.  c,  In a constant trap position experiment, the trap position is constant and as 
the molecule folds or unfolds, the bead distance from the trap center changes, resulting in 
a change in the force on the bead.   
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Figure 2.2  Constant trap position and constant force experimental data.   

a,  Trap position and force verse time for a constant trap position experiment.  b,  
Trap position and force verse time for a constant force experiment.  Data average down to 
100 Hz. 
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Each experimental setup (constant force or constant trap position) requires a 
different signal to follow the trajectory of the molecule. In a constant force feedback 
experiment, the tether becomes shorter and the force increases when the molecule folds 
and the opposite occurs during unfolding.  In order to maintain a constant force, the trap 
position moves and therefore, the extension, or trap position, reflects the conformation of 
the molecule.  In this set up, the time scale of the force feedback determines the sampling 
time resolution.  In the constant trap position experiments, when the molecule undergoes 
a folding (or unfolding) transition, the force increases (or decreases), and therefore, the 
force measurements are used to infer the state of the molecule.  In this set up, the 
sampling time resolution is limited by the response time of the bead.  This response time 
was determined experimentally by measuring the power spectrum of the force on the 
bead and determining the corner frequency of the system (which ranged between 1 kHz 
to 2.5 kHz). 

Following these signals, identification of each state and their respective lifetimes 
were determined using two different approaches.  The first is a simple partition method 
similar to those used in previous studies [2, 3, 15], where a histogram of the 
conformational signal over time shows a bimodal distribution, and a partition is set at the 
saddle point between the two peaks. A transition is defined whenever the signal crosses 
this defined partition, signaling the beginning or ending of a lifetime. Once defined, these 
lifetimes are used to calculate the average lifetime and corresponding rate constant.  
While simple and direct, this method requires clear resolution between the signals of each 
state; poor separation between the two states results in an overestimate of the number of 
transitions and a corresponding underestimate of the average lifetime of the state.  For 
data with a lower signal-to-noise ratio, a second, more sophisticated approach is needed.  
This approach employs a Bayesian hidden Markov model [12] to identify both the states 
and determine the corresponding lifetimes with estimates of the error.  For the constant-
force data, we used the simple partition model - since a comparative study on a small set 
of data showed equivalent results with each method (data not shown).  Constant trap 
position experiments, which have a lower signal-to-noise, required the BHMM method. 

The resulting rate constants as a function of force were fit using the modified Bell 
model (Figure 2.3). Because the force range over which data were collected was small (1 
to 2 pN), there is no detectable change in the distances as a function of the force (i.e. no 
change in the slope of ln k versus force), and therefore other models that account for a 
change in the distances to the transition state were not needed [22].  The resulting rate 
constants, distances to the transition state, and the rate constant at which the forward and 
reverse rate constants are equal (the coincident rate constant (kc)) are shown in Table 2.1. 

Table 2.1 demonstrates that the resulting kinetic parameters are dependent on the 
experimental set up. For each system, the coincident rate constants are lower when 
determined from the constant force experiments compared to the constant trap position 
experiments. The magnitude of this discrepancy varies depending on the molecule.  For 
the DNA and RNA hairpin, the difference is 1.8 s-1 and 2 s-1, respectively, while for the 
protein apomyoglobin, the difference is 9 s-1. The sum of the distances to the transition 
state should equal the total distance between the two states as measured directly by the  
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Figure 2.3  Linear fits of the ln k verse force. 

a and b,  Fits of the constant trap position and constant force data for the DNA 
hairpin.  c and d,  Fits of the constant trap position and constant force data for the RNA 
hairpin.  e and f,  Fits of the constant trap position and constant force data for the protein 
system. 
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Table 2.1  Results from the linear fits of the constant force and constant trap   
       position experiments for each individual molecule. 
1  Average values reported with a 95% confidence interval.   
2  Distance determined from fitting a histogram of the trap position from a constant force 
experiment with 2 Gaussian distribution and determining thedifference between the two 
centroids with a 95% confidence interval. 
3  Ratio of the calculated sum of the distances to the transition state to the experimentally 
measured distance between the two states. 
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change in extension upon undergoing a transition and consistent with a worm-like chain 
model of the macromolecule [23, 24].  Only the constant trap position experiments 
yielded distances consistent with the measured extension change (Table 2.1). However, 
for all three systems, the constant-force experiments produced a sum that was significant 
larger than the measured value (Table 2.1).  The constant force experiments 
overestimated the total distance between the two states by an average of 34% for the 
nucleic acid hairpins and 97% for the protein. 

For all three experimental systems studied, DNA, RNA and protein, the constant-
force set up yields kinetic parameters that differ from the constant trap position 
experiments.  The severity of the deviations between the values obtained in these two 
experimental set-ups depends on the specific molecule measured. Only the constant trap 
position experiments yield parameters consistent with the independently determined 
distances. 

Why do the two types of experiments yield different results? The discrepancy 
must result from the effect of the force feedback, as all other experimental variables 
(sample, trap stiffness, bead size, handle length, etc.) were the same for each set-up.  The 
discrepancy is not a result of the analysis method, as both the partition and BHMM 
method yield similar results when used to analyze the same constant force data set.  The 
ability to maintain a constant force depends on the force feedback.  Due to the finite 
limitations of the force feedback, the system can only maintain an average constant force 
on a time scale greater than 10 milliseconds.  Force fluctuations that occur at smaller time 
scales could significantly alter the measured behavior of the molecule.  If such 
fluctuations affected the behavior of the molecule, the constant force analysis would lead 
to inaccurate results.  To illustrate this, consider a molecule in the unfolded state. When 
the molecule folds, the tether becomes shorter and the bead in the trap moves, resulting in 
a transient increase in the force.  This higher force would then lead to a transient increase 
in the unfolding rate constant (Equation 2.1) which could in turn result in the molecule 
unfolding before the feedback has a chance to alter the position of the trap, resulting in a 
missed transition (Figure 2.4a). 

Such missed transitions will affect the measured kinetic parameters, resulting in 
an underestimate of the rate constants and an overestimate of the distances to the 
transition state.  Therefore, during force-feedback experiments transitions are missed 
when the molecule populates a given state for a short period relative to the time scale of 
the feedback (Figure 2.5).  A missed set of transitions to and from the short-lived state 
results in an overestimate of the lifetime of the long-lived state.  While these effects 
contribute to an overestimate of the average lifetime of both states, they have a more 
severe effect on the longer-lived state, resulting in a corresponding longer underestimate 
of its rate constant at the measured average force. 

The difference between the actual rate constant and the measured rate constant as 
a function of force is proportional to the number of missed transitions.  This difference 
becomes larger at more extreme forces when more transitions are missed to and from the 
short-lived state.  As a consequence, the measured change in the rate constants (i.e. the 
distance to the transition state) is a function of not only the average 
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Figure 2.4  Illustration of the missed transition hypothesis and simulation results. 

a,  Illustration of a missed transition during a constant force-feedback experiment.  
In blue, the actual signal from the molecule and, in red, the measured behavior of the 
molecule.  b,  In blue, the ln k v. force for the true behavior of the molecule.  In red, the 
ln k v force of the measured behavior of the molecule during a constant force experiment.  
c and d, Results from the simulation of the nucleic acid hairpin model (in red) and the 
protein model (in blue) depicting the measured behavior of the molecule as a function of 
the effective spring constant of the system (c) and the normalized rate constants (d).  The 
circles indicate the results from the simulation using parameters similar to the constant 
force experiments. 
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Figure 2.5  Illustration of the number of missed transitions relative to the average  
        lifetime of a state. 

The distributions of long (a) and short (b) lifetimes are shown for two different 
states, with the average lifetime marked by the red bar.  The difference in the average 
lifetimes represents the change that would occur for a system with a total distance 
between the two states of 20 nm and an effective spring constant of 0.1 pN/nm, similar to 
the DNA and RNA hairpin systems.  The black (a) and striped (b) regions indicate the 
number of missed transitions given a force-feedback cutoff of 10 milliseconds. 
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force, but also the number of missed transitions.  This results in an overestimate of the 
distance to the transition state (Figure 2.4b). 

The trends in our data are consistent with this missed transition hypothesis.  For 
each system, the measured hopping rates are lower in the constant force experiments than 
in the constant trap position experiments.  The distances to the transition state are larger 
in the constant force experiments than the constant trap experiments and, as previously 
mentioned, the sums of these distances in the constant force experiment are inconsistent 
with independent measurements.  The missed transition hypothesis also predicts our 
observation that the greater the coincidental rate constant (measured by the constant trap 
position experiments), the larger the error in the distances to the transition state as 
measured by the constant force experiments.  A system with a greater coincidental rate 
constant would, on average, have shorter lifetimes in both states when compared to a 
slower system.  The shorter lifetimes result in more missed transitions and a larger error 
in the distance to the transition state.  Both our DNA and RNA models have similar 
coincident rate constants and, consequently, have the same magnitude of discrepancy 
(approximately 34 %) in the total distance change relative to the value obtained by the 
constant trap position experiment.  The protein has the largest coincident rate constant 
(i.e. the fastest hopping rate) and shows the largest distance error with a difference of 
97%. 

In order to better explain the discrepancies between the constant force and 
constant trap position experiments, we carried out a simple simulation.  We evaluated 
two models, one representative of the DNA and RNA systems and the other 
representative of the protein system using kinetic parameters (the distance to the 
transition state and the intrinsic rate constants as a function of force) based on those 
measured by the constant trap position experiments.  Constant force experiments were 
then simulated using the instrumental parameters, such as the frequency and size of the 
force feedback.  These simulated data were then analyzed in the same manner as the 
experimental data.  From these simulations, we modeled the effect of the force-feedback 
and other experimental parameters, such as the intrinsic rate constants of the molecule 
(i.e. how fast the molecule hops) and the effective spring constant of the system (i.e. the 
spring constant as a function of the trap stiffness and the length of the DNA handles), on 
the measured kinetic parameters.  The results of the various simulations are shown for the 
nucleic acid hairpin model and the protein model in Figure 2.4c and 2.4d and Table 2.2. 

The simulation results support the conclusion that the discrepancy between the 
constant force and constant trap position experiments is primarily a product of missed 
transitions and the magnitude of the error is a product of the interaction of the feedback 
with the underlying dynamics of the molecule.  The simulations for both models 
produced similar distances to the transition state from their respective constant force 
experiments, validating the simulation.  Changes in the parameters of the system (i.e. the 
rate constants or the effective spring constant of the system) changed the calculated 
kinetic parameters in proportion to the number of missed transitions.  For example, 
decreasing the rate constants results in longer lifetimes and fewer missed transitions and,  



	
   44	
  

 

 

 

Table 2.2  Results from the linear fits of the constant force simulated data. 
1  Average values reported with a 95% confidence interval.   
2  Ratio of the calculated sum of the distances to the transition state to the expected sum 
of the distances to the transition states set in the initial parameters. 
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consequently, the coincident rate constants and distances to the transition state were 
closer to the true values.  Increasing the initial rate constants results in more missed 
transitions and larger deviations in the measured kinetic parameters.  A larger effective 
spring constant results in a larger change in the force and consequently a larger change in 
the lifetime of the state.  This results in more missed transitions, resulting in a larger 
deviation between the calculated and the true kinetic values. 

2.4  Conclusions 

In summary, we have identified a previously unreported complication arising 
from constant-force feedback experiments on systems that hop between two or more 
states.  This study demonstrates that the force feedback for all the systems studied result 
in an underestimate of the rate constants and an overestimate of the distances to the 
transition state.  We conclude that a constant trap position experiment with sampling 
frequency limited only by the response of the bead is the best experiment for obtaining 
the highest quality data.  When designing an experiment, a balance must be struck with 
the choice of the effective spring constant of the system. While a larger spring constant 
will increase the signal-to-noise ratio and decrease the rate constants of the system, a 
larger change in the force will occur between the two states resulting in larger changes in 
the rate constants.  If the effective spring constant is too stiff, the range over which 
lifetimes can be measured will be limited and, taken to an extreme, the system will not 
hop at all.  Further, even in a constant trap position experiment, if a system has lifetimes 
that are shorter than the response time of the bead, transitions will be missed possibly 
resulting in errors in the measured kinetic parameters.  This emphasizes the importance of 
confirming that the total measured distance change equals the sum of the distances to the 
transition state. 
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Chapter 3  Characterization of the equilibrium molten globule state of   
        apomyoglobin reveals a large mechanical compliance 

3.1  Introduction 

The mechanism of how a protein folds into its functional, native state has been a 
long-standing fundamental question in biology.  One aspect of particular interest is the 
observation that many proteins populate partially structured intermediate states during the 
folding process.  While the role and structure of these states has been hard to determine, 
many have been shown to be compact and contain secondary structure, but lack any well-
packed tertiary interactions.  This state, commonly referred to as a molten globule, is 
thought to be a model for partially folded intermediates populated during folding of many 
globular proteins [1, 2]. 

Past mechanical studies on a variety of proteins have indentified several instances 
of unfolding and folding intermediates [3-11].  Force spectroscopy on recombinant E. 
coli ribonuclease H* Q4C/V155C (herein referred to as RNase H), identified and 
characterized an intermediate state in the folding process that was similar to the molten 
globule-like intermediate observed in ensemble studies of the protein [11].  Whereas 
most natively folded proteins studied to date have a small distance to the transition state 
(less than 2 nm) [4, 7, 11-19], this intermediate has the unusual property of a large 
distance to the transition state (5 ± 1 nm), indicating a large mechanical compliance.  
This observation raised the question of whether this large compliance was a general 
property of molten globule-like states or specific to the RNase H folding intermediate. 

In order to investigate the generality of this property, we studied the mechanical 
properties of sperm whale apomyoglobin H36Q, which at pH 5.0, populates its 
equilibrium molten globule state that has been extensively characterized in previous 
studies [20-28].  We examined both the protein in both its native state at pH 7 and in the 
molten globule state at pH 5 along two different pulling axes.  While unfolding of the 
native state appears to be brittle with a small distance to the transition state, the unfolding 
of the intermediate is compliant with a relatively large distance to the transition state.  A 
large distance to the transition state was observed in both pulling axes, suggesting that the 
molten globule state is isotropic with a large compliance independent of the pulling axis. 

3.2  Methods and materials 

3.2.1  Protein construction and purification 

The plasmid, pMB413b, containing the myoglobin gene was provided by D. 
Barrick (Johns Hopkins University).  Using a PCR Quickchange protocol  (Stratagene), a 
N-terminal six Histadine tag followed by a TEV protease site and the H36Q mutation 
were inserted into the gene.  Two variants of this gene were produced with cystienes 
either at the N- and C-terminus (hereafter refereed to as the N/C variant) or at residue 53 
(A53C) and the C-terminus (hereafter refereed to as the 53/C variant) (Figure 3.1). 

The plasmid was transformed into chemically competent BL21 (DE3) pLysS 
cells.  The cells were grown in Luria Broth (200 ug/ml of ampicillian, 34 ug/ml 
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Figure 3.1  Structure of myoglobin. 

Structure of holomyoglobin (PDB ID: 1BZ6).  The regions highlighted in red 
indicates the regions of the protein that are structured in the molten globule state as 
determined by hydrogen exchange.  The pulling axis for the N/C variant (in green) and 
the 53/C variant (in blue) are indicated with the arrows. 
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chloramphenicaol) and the protein was constitutively expressed for 24 hours at 37 
degrees Celsius, allowing for the incorporation of the heme.  Cells were harvested by 
centrifugation and re-suspended in 20 mM sodium phosphate, pH 8, 300 mM sodium 
chloride, and 0.5 mM TCEP.  The cells were lysed by sonication and the soluble fraction 
was isolated by centrifugation followed by filtration through a 0.2 um filter.  This lysate 
was purified over a nickel sepharose column followed by a step elution with 20 mM 
sodium phosphate, pH 8, 300 mM sodium chloride, 0.5 mM TCEP, and 250 mM 
imidazole.  The elution was dialyzed overnight at 4 degrees Celsius against 20 mM 
sodium phosphate, pH 8, 300 mM sodium chloride, and 0.5 mM TCEP in the presence of 
TEV protease (2 mg/L) to remove the N-terminal 6x Histadine tag.  The dialysate was 
then run over a second nickel sepharose column and the flow-through was collected.  
Analysis by SDS-PAGE demonstrated that the protein was greater than 95% pure.  The 
heme was removed by a Vydac C-18 reverse phase column using 0.1 % trifluoroacetic 
acid (TFA) and eluting the protein with a linear gradient of 0.1%TFA and acetonitrile on 
a Shimadzu HPLC system.  DNA handles were attached to both holo- and apo- 
myoglobin using previously reported methods [14, 29]. 

3.2.2  Optical tweezer experiments 

The instrument used in this experiment was a dual beam counter-propagating 
optical trap [30].  The spring constant of the trap was set to 0.05 pN/nm.  A piezo 
actuator controlled the position of the trap and allowed position resolution to within 0.5 
nm [30].  An average force could be maintained to within 0.1 pN over the course of a 
typical one-minute constant trap position measurement.  Because of the limited force 
precision between fibers (+/- 0.5 pN), each fiber was analyzed separately. 

The protein was tethered between two polystyrene beads through functionalized 
dsDNA attached to the molecule at the sites of cysteine modification, thereby 
determining the axis along which the force was applied (Figure 3.2).  Further, these 
dsDNA “handles” provided space between both the bead surfaces and the molecule 
preventing any non-specific interactions with or between the beads from influencing the 
behavior of the molecule.  In this experimental setup, one bead (2.1 um diameter) is held 
in place on a pipette tip by suction and a dual beam anti-propagating optical trap 
manipulates the other bead (3.2 um bead diameter).  By monitoring the bead in the trap, 
the force on the tether and its relative extension of the tether were measured. 

The molecule was characterized by three different types of experiments: force 
ramp, force jump, and constant trap position experiments.  The unfolding and refolding 
behavior was first analyzed using force-ramp studies which involved moving the trap 
position in a cycle between 3 pN and 20 pN at a constant velocity of 100 nm/sec.  These 
force data were smoothed with a sliding window of 10 ms and the difference at intervals 
of 10 ms was determined.  The standard deviation of the difference was then calculated 
and a threshold for detection of an event was set based off the variance in this signal.  A 
99.9 % confidence threshold (3.3 σ) was set for the high signal-to-noise high-force events 
(greater than 7 pN) and a 90% confidence threshold (1.6 σ) was used for the noisier low-
force events (lower than 7 pN).  The position with the highest difference signal was  
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Figure 3.2  Experimental setup in the optical tweezer. 
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identified as the folding or unfolding event.  From this experiment, the unfolding or 
folding force distribution as a function of the loading rate and the extension change of the 
molecule as a function of force could be measured. 

For force-jump experiments, the molecule was held at a low force of 3 pN for 
several seconds to ensure that the molecule was in the folded state.  The force was then 
quickly increased to the specified force and held constant by feedback.  By adjusting the 
trap position, the feedback maintained an average force with a standard error of 0.01 pN 
of the set value.  Using the position of the trap, unfolding events were detected using a t-
test similar to previous methods [31] and used to determine the lifetime of the folded 
state of the molecule at the average force. 

During constant trap position experiments, the molecule folded and unfolded, 
hopping between two states, with many transitions observed in a single tether.  The force 
signal was used to identify the state (the higher force indicated the more compact, folded 
state) and determine its lifetime.  The trap was held at each constant trap position for one 
minute with at least ten different trap positions collected per tether. 

The holo- and apo- protein molecules were characterized by force ramp and force 
jump experiments in 10 mM Tris, pH 7, 250 mM sodium chloride, and 1 mM EDTA.  
Each tether was then held in the trap and the buffer conditions were changed to 10 mM 
sodium acetate, pH 5.0, 250 mM sodium chloride, and 1 mM EDTA.  The unfolding and 
folding behavior were then characterized by force ramp and constant trap position 
experiments at the new pH. 

Force ramp experiments at pH 7 revealed no difference in the holo- and apo- 
proteins behavior excluding the first unfolding event (data not shown) indicating that the 
non-covalently bound heme disassociates from the holo protein upon initial mechanical 
unfolding.  As only one unfolding event was observed per holo, it was impossible to 
obtain quantitative data for the unfolding behavior, although qualitatively it appeared to 
unfold at a higher force than the native apomyoglobin under these conditions. 

3.2.3  Constant trap position analysis with a Bayesian hidden Markov model 

The Bayesian hidden Markov model (BHMM) approach [32] sampled models 
over the force measurements, producing estimates of average forces and lifetimes 
characterizing each state, as well as confidence intervals that characterize the uncertainty 
in these values due to finite-sample statistics.  After sub-sampling the force data to 
produce Markovian statistics (verified by examination of force-autocorrelation functions; 
data not shown), the method first fits a maximum-likelihood HMM using standard 
procedures [33] and then samples models consistent with the data using a Gibbs sampling 
strategy that assumes the force measurements of each state (including measurement error) 
are normally distributed about the average force for that state [32].  Here, the number of 
states was fixed to two after verifying the two-state nature of the data by inspection of the 
force traces.  The first 50 HMM samples after starting from the maximum likelihood 
estimate were discarded to 'burn-in', and 1000 samples were generated to collect statistics 
on average forces and lifetimes, as well as generate the 95% confidence intervals reported 
here. 
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3.2.4  Determination of the distance to the transition state and the coincidental rate  
          constants using a modified Bell’s model 

For a given state, a liner fit of the natural log of the rate constants at each average 
force determined the distance to the transition state using a modified Bell’s model [34, 
35], 
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   (3.1) 

where km represents the contribution of experimental parameters such as the bead size, 
trap stiffness, and handle length to the observed rate, k0 is the intrinsic rate constant of the 
molecule in the absence of force, F is the force, x‡ is the distance to the transition state, κ 
is the effective spring constant of the system, kB is the Boltzmann constant, and T is the 
temperature in Kelvin.  For the constant trap position experiments, the crossing point 
between the two fits determined the coincident rate constant and force.  For the N/C 
variant, all reported fits had R2 values greater than 0.9.  Because of a lower signal-to-
noise ratio for the 53/C variant, all fits had R2 values greater than 0.7. The reported 
values were the average of at least five different fibers each analyzed separately. 

3.2.5  Equilibrium denaturation by pH monitored by circular dichroism 

The circular dichroism signal was measured as a function of pH for the N/C 
variant apomyoglobin construct.  Samples were equilibrated overnight at 25° C in 5 mM 
citrate, 250 mM sodium chloride, 0.5 mM TCEP, and 0.05 mg/ml of apomyoglobin at a 
variety of pHs ranging from 4 to 6.5.  The signal at 222 nm was averaged over 60 
seconds at 1 Hz with a 1 nm bandwidth at 25° C on an Aviv model 410 spectrometer. 

3.3  Results: 

3.3.1  Equilibrium	
  denaturation	
  by	
  pH	
  monitored	
  by	
  circular	
  dichroism	
  

In order to assure that the cysteine variants did not alter the pH-dependent 
transition to the molten globule state, pH denaturation studies were carried out by 
monitoring the circular dichroism signal at 222 nm (Figure 3.3).  The acid unfolding to 
the molten globule state for the N/C variant was similar to that for the parent protein 
(H36Q apomyoglobin) [36] confirming that at pH 5.0 the protein populates the molten 
globule. 

3.3.2  Unfolding and refolding of  apomyoglobin at pH 7 under force 

When pulled from the ends (the N/C variant), the protein unfolds and refolds with a 
notable hysteresis during a force ramp experiment at pH 7 (Figure 3.4 a).  A histogram of 
the unfolding forces at a pulling speed of 100nm/sec is bimodal with peaks centered on 
12.5 pN and 6.1 pN (Figure 3.5 a), indicating that the protein was unfolding from two 
different states.  The refolding forces were distributed in a single peak around 4.5 pN.  As  
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Figure 3.3  Denaturation of the N/C variant of apomyoglobin by pH followed by CD  
        at 222 nm. 

The native state is unfolded by pH, populating the molten globule state below pH 
5.0 as shown by the mean residue ellipticity at 222 nm as a function of pH. 
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Figure 3.4  Force ramp traces of the N/C and 53/C variant at pH 7 and pH 5. 

Force-ramp experiments are depicted showing the force as a function of the trap 
position with the pulling traces shown in blue and the relaxation traces shown in red.  
Traces from the N/C variant are shown in a and c at pH 7 and pH 5, respectively.  Traces 
from the 53/C variant are in b and d at pH 7 and pH 5, respectively. 
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Figure 3.5  Histograms of the unfolding and refolding force distribution for the N/C 
         and 53/C variants. 

The different force distributions are depicted for the unfolding (a) and refolding 
(b) for the N-terminal construct at pH 7.  Similarly, the unfolding (c) and refolding (d) 
force distribution are shown for the 53/C variant. 
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the dwell or delay time between each cycle at 3 pN was increased, the relative population 
of each peak shifted towards the high force unfolding events.  Using long wait times at 
low force, the properties of the more high-force unfolding transition were investigated 
with constant force-jump experiments.  Using a modified Bell’s model, the distance to 
the transition state from the high unfolding-force state was measured to be 1 ± 1 nm. 

The extension change of the molecule was inferred from the difference in the trap 
positions in the unfolded and folded state at the force at which the event occurred.  As the 
force on the bead is the same in each state, the bead is the same distance from the center 
of the trap.  Therefore, any change in the position of the trap reflects the change in the 
end-to-end extension of the molecule.  The measured extension change is the difference 
between the unfolded end-to-end extension and the folded end-to-end extension of the 
molecule. 

Δx(measured) = xUnfolded(wlc) - xFolded    (3.2) 

Using a worm-like chain model [37] given the persistent length (P=0.65) and 
temperature, the end-to-end extension of the unfolded state at a given force can be 
calculated assuming a contour length.  Assuming that the less compact conformation is 
completely unfolded, the contour length was calculated from the number of amino acids 
between the handle attachment points, in this case 55.4 nm.  With this end-to-end 
extension of the unfolded state, the end-to-end extension of the folded state can be 
inferred.  For both the unfolding and refolding events, the extension changes were 
consistent with the protein unfolding from a compact state with an end-to-end extension 
between the cysteines of ~2.5 nm. 

Force ramp experiments on the 53/C variant revealed hysteresis between the 
unfolding and refolding events (Figure 3.4 b) with a single unfolding force distribution 
centered around 12 pN and a refolding force distribution centered around 6.5 pN (Figure 
3.5 c and d).  The measured extension changes as a function of force were consistent with 
complete unfolding of the protein with a contour length change of 36.7 nm.  Again, this 
indicated that the protein was unfolding from a compact state with an end-to-end 
extension between the cysteines of 3.8 nm.  Using a force jump experiment, the distance 
to the transition state from the folded state was determined to be 1 nm +/- 1 nm, again 
similar to the other pulling axis. 

3.3.3  Unfolding and refolding of  apomyoglobin at pH 5 under force 

After characterizing the molecule on the optical tweezers at pH 7, the buffer was 
changed to pH 5, populating the equilibrium molten globule state of the protein.  At this 
pH, a force ramp experiment on the N/C variant showed a single unfolding and refolding 
force distribution centered on 4.5 pN, with no high force events observed (Figure 3.4 c).  
As the unfolding and folding transitions were reversible at around 4.5 pN with no 
hysteresis, a constant trap position experiment was preformed to determine the lifetimes 
as a function of the average force and the relative distances to the transition state (Figure 
3.6 a). 
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Figure 3.6  Sample traces of a constant trap position experiment for the N/C and 
        53/C variants. 

One-second sample traces of the force averaged down to 1000 Hz (in blue) during 
a constant trap position experiment for the N/C variant (a) and the 53/C variant (b).  The 
inferred trajectory of the molecule at 500 Hz is shown in red.  The accompanying 
histogram is of the force measured over one minute depicting the two observed 
populations. 
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Individual states were identified and their lifetimes were determined using the 
Bayesian hidden Markov model (see methods).  The natural log of the rate constants as a 
function of force were fit with a linear Bell’s model yielding a distance to the transition 
state from the folded state of  6.1 ± 0.5 nm and 14.9 ± 1.5 nm for the distance to the 
transition state from the unfolded state (Figure 3.7 a).  The sum of these distances was 
consistent with the measured extension change between the folded and unfolded states of 
19 ± 1 nm under a constant force experiment at 4.5 pN, congruent with a two state model. 

Working at pH 5, the 53/C variant showed a similar pattern of behavior compared 
to the N/C variant.  In force ramp experiments, the molecule unfolded and refolded at 
around 6.5 pN with no hysteresis (Figure 3.4 d).  Using a constant trap position 
experiment (Figure 3.6 b) and Bell’s model, the distances to the transition state from the 
folded and unfolded states were determined be 3.4 +/- 1.2 nm and 7.6 +/- 3.3 nm, 
respectively (Figure 3.7 b).  The sum of theses distances was consistent with the 
measured extension change of 12 +/- 1 nm measured by a constant-force experiment at 
6.5 pN. 

3.4  Discussion 

The force ramp characterization of the N/C variant at pH 7 revealed a bimodal 
distribution of cooperative unfolding events, indicating the protein was unfolding from 
two different states, one more mechanically resistant to force than the other.  
Apomyoglobin folds through an intermediate in ensemble experiments with folding from 
the intermediate to the native state occurring on the order of a second.  With short times 
spent at low force, the protein may not have had enough time to completely refold from 
the intermediate to the native state.  Hence the subsequent unfolding event, the protein 
would unfold from this intermediate state.  With longer waiting times at low force, the 
low force-unfolding event became less prevalent, which is consistent with the protein 
refolding to the presumably more mechanically resistant native state.  This pattern of 
behavior was similar to the mechanical unfolding of RNAse H, which also showed a 
bimodal distribution, unfolding from both the native state and an intermediate state [14].  
For RNase H, the native state and the intermediate state could be distinguished by their 
different extension changes.  For the N/C variant, however, the changes in the contour 
length for both the high force and low force transitions were the same.  Based on models 
of the native state and the molten globule state [20], both states are compact with the N- 
and C- termini helices contacting each other, and therefore similar extension changes 
would be expected.  Competition from the native state at pH 7 precluded a more 
quantitative characterization of the pH 7 mechanical intermediate. 

By waiting at low force for a long period time, the molecule was able to fully 
refold, allowing the mechanical characterization of the native state using a force jump 
experiment.  From these experiments, the distance to the transition state from the folded 
state was determined to be small (~ 1 nm), similar to those measured for other natively 
folded proteins [4, 7, 11-19].  This small distance indicates that the native structure is 
brittle and that a small deformation in the structure along the defined reaction coordinate, 
the end-to-end extension of the molecule, results in the unfolding of the protein. 
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Figure 3.7  Linear fits of the natural log of the rate constants as a function of force. 

The fits of the natural log of the rate constants as a function of force are shown for 
the N/C (a) and 53/C (b) variants.  Using Bell’s model, the distance to the transition state 
is proportional to the slope of the lines. 
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Characterization of the molten globule state at pH 5 revealed cooperative 
unfolding and folding at forces similar to the low force events observed at pH 7.  The 
coincidence in behavior under force between the pH 7 intermediate and the molten 
globule state indicate that the molten globule is a good model for the mechanical 
intermediate observed at pH 7. 

The constant trap experiments on the N/C variant measured a distance of 6.1 ± 0.5 
nm to the transition state from the molten globule state, which was significantly larger 
and in sharp contrast to the native state, which had a distance to the transition state from 
the folded state of 1 ± 1 nm.  These data indicate that the molten globule state is much 
more compliant and can undergo a larger deformation before reaching the transition state.  
This property is similar to the RNase H mechanical folding intermediate, which also has 
a large distance to the transition state (5 ± 1 nm), providing further evidence that the large 
distance to the transition state may be a general property of a molten globule. 

The large distance to the transition state observed for the molten globule state 
may be specific to the chosen pulling axis.  For single domain, natively folded globular 
proteins, a change in the pulling axis has been seen to result in anisotropic behavior with 
significant a change in the unfolding behavior [4, 13, 38].  For these proteins, however, 
there is little change in the distance to the transition state, which remains small, between 
0.5 and 2 nm. 

To investigate these issues, we pulled along a different axis using the 53/C 
variant.  The molten globule of this variant also showed a large distance to the transition 
state (3.4 ± 1.2 nm) much larger then the distance to the transition state from the native 
state (1 ± 1 nm).  While this distance was not as large as the distance measured for the 
N/C variant, the change in the pulling axis changed the reaction coordinate (i.e. the total 
end-to-end distance change of the molecule) and the 53/C variant end-to-end extension 
change is smaller (12 nm) than for the N-terminal construct (20 nm). 

Comparison of the different pulling axes is difficult because of the different 
reaction coordinates.  A change in the pulling axis may be forcing the protein over very 
different transition state barriers, exploring different regions of the energy landscape.  
One approach to comparing different reaction coordinates or analyzing ill-defined 
reaction coordinates has been to normalize the distance to the transition state by the total 
distance along the chosen reaction coordinate (Table 3.1).  This is analogous to 
calculating a Tanford β value [39].  Calculating such a normalized distance along the 
reaction coordinate (i.e. the ratio of the distance to the transition state to the total end-to-
end distance change) for natively folded globular proteins typically produces a value 
between 0.05 and 0.1.  For the molten globule state, we determined the relative position 
of the transition state to be 0.3 for both pulling axes.  This indicates that the large 
distance to the transition state for unfolding of the molten globule state is independent of 
the force axis. 
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Table 3.1  Summary of the distances to the transition state and the normalized 
       position of the transition state. 

 

 

3.5  Conclusions 

This work, combined with the previous work on RNase H, suggests that the large 
distance to the transition state is a general property of molten globule states.  In addition, 
the choice of pulling axis does not significantly alter this property or the mechanical 
behavior of the protein.  This suggests that the molten globule state is more isotropic than 
natively folded globular proteins, which while remaining brittle have more significant 
changes in their behavior with a change in the pulling axis.  An important consequence of 
the large distance to the transition state for the molten globule state is that it is much 
easier to unfold under force compared to natively folded protein with a small distance to 
the transition state.  One could speculate that this property may play an important role in 
biology, in particular, for proteins that are required to unfold under force. 
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Chapter 4  Exploring the affect of pulling axis on the transition state of srcSH3 

4.1  Introduction 

A primary goal of force spectroscopy experiments exploring protein folding and 
unfolding has been to elucidate the mechanism by which proteins resist force.  As stated 
earlier in this thesis, Bell’s model describes the affect of a vectorial force on a transition 
state given the barrier height and distance to the transition state along a one dimensional 
potential energy surface.  This model however does not provide any mechanistic insight, 
as the model does not contain any structural information about the rate limiting transition 
state.  Further, there is little information known about the relationship between the 
pulling axis (i.e. the reaction coordinate) and the structure of the transition state. 

Previous work in force spectroscopy exploring the effect of pulling axis has 
demonstrated that proteins have different mechanical properties (e.g. average unfolding 
force at a specific loading rate) when the force is applied along different axes.  Brockwell 
et. al. pulled on E2lip3 along two different axes and demonstrated that the two variants 
unfold at different average forces[1].  Similarly, Carrion-Vazquez et. al pulled on 
ubiquitin from different attachment points and  showed a difference in the unfolding 
force distribution[2].  More recently, Dietz et. al. unfolded GFP under force exploring the 
behavior along five different pulling axes[3].  There was significant variation between the 
average unfolding forces and distances to the transition state between the variants.  In 
addition, one of the variants did not unfold in a single cooperative step but populated an 
intermediate during the unfolding process, traversing two transition state barriers.  This 
work clearly demonstrated that the application of force along different axes changes the 
behavior of the protein under force.  This work however does not provide any insight into 
the mechanisms of unfolding or the structure of the transition state. 

One potential explanation of how a vectorial force affects the transition state of a 
protein has been supported by work done on protein translocases, such CLpXP and the 
mitochondrial import complex[4-6].  In the case of these translocases, in order for a 
protein to be transported across the narrow pore, it must first be unfolded[6, 7].  The 
proposed hypothesis suggests that the application of force by these protein complexes to 
unfold the substrate polarizes the transition state, shifting the transition state to the 
localized structure in the vicinity of the applied force. 

The clearest support for this hypothesis comes from the work on the import 
mechanism of the mitochondrial import machinery using barnase as a model substrate[5].  
The hypothesis was tested by comparing the structures of the transition state for 
unfolding by chemical denaturation and by force.  The structure of the transition state of 
the ribonuclease barnase in the absence of force had been mapped out previously using a 
mutational analysis known as phi-value analysis[8].  In this method, single amino acid 
mutations are made and the affect on the thermodynamic stability and kinetics of folding 
and unfolding are measured.  The phi-value (in the folding direction) is defined as the 
ratio between the change in the transition state free energy (ΔΔG‡-U) between the mutant 
and wild type and the change in the free energy (ΔΔGF-U) between the mutant and wild 
type. 
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φ = ΔΔG‡-U/ΔΔGF-U      (4.1) 

Typically, the values range between zero and one.  A phi-value close to zero indicates 
that the site of the mutated amino acid is not structured in the transition state (shows the 
same energetic contribution as the unfolded state) where as a phi-value close to one 
indicates that the site of the mutated amino acid is structured in the transition state (shows 
the same energetic contribution as the folded or native state). 

Using barnase as the substrate for the mitochondrial import machinery, the effect 
of mutations in barnase on the acceleration of the import rate was determined and used to 
infer the structure of the transition state.  Mutations in the N-terminal had the largest 
affect on the import process[5].  This was in contrast to the structure of the transition 
state under chemical denaturation.  These results suggested that the transition state shifted 
toward the N-terminus where the degradation tag was attached and the primary site of 
interaction with the import machinery.  This hypothesis is perhaps not that surprising 
because to unfold the protein, the unfoldase must first disrupt the local structure close to 
the site of the applied force in order to unfold the rest of the protein. 

In order to better understand the relationship between the affect of an applied 
force on the transition state of a protein, I developed a protein system to analyze with the 
optical trap to characterize the mechanical behavior and the transition state under 
different vectorial forces.  An important consideration when comparing work from force 
spectroscopy and unfoldases is that the geometry and force loading rates may be very 
different and the affects of the applied force and the mechanisms of unfolding may be 
very different.  This most obvious difference is that for unfolding in an optical trap, the 
protein is tethered at two points and a tension is applied across the molecule.  While in 
the unfoldases, the force is applied to the protein by pulling the protein from one point of 
attachment through a small pore.  Conclusions from force spectroscopy may be more 
relevant to proteins that have a force applied across the molecule and resist force in their 
biological function, such as Ig27 in muscle[9]. 

The SH3 domain from chicken c-Src domain was chosen as a model system, 
hereafter referred to as srcSH3 (shown in Figure 4.1).  SH3 has several inherent 
properties that make it a good model system for these studies.  First, it has been 
extensively characterized in ensemble experiments and, at least by optical probes such as 
CD and fluorescence, it has been shown to fold and unfold in a simple two-state manner.  
The structure of the transition state under chemical denaturation has been determined 
using a detailed phi-value analysis [10-13].  The protein is very small (65 amino acids) 
and is therefore accessible to simulation, which could be used in the future to help verify 
or interpret any experimental results. 

The structure of srcSh3 has some additional features making it a good model for 
testing the hypothesis that the transition state shift towards a localized force-bearing 
region.  The transition state for srcSH3 in the absence of force is centered on the distal 
loop and is separated from the N- and C-terminal anti-parallel β-sheet (highlighted in 
Figure 4.1a).  Under the current hypothesis, if force were applied to this β-sheet, the  
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Figure 4.1 – Structure of srcSH3. 

a, shows the structure of srcSH3 with the high phi-value (greater than 0.5) 
residues’ backbone highlighted in red. b and c depict the A7C/N59C srcSH3 variant and 
the R19C/N59C srcSH3 variant, respectively, with the pulling axis denoted by the black 
arrows. 
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transition state would shift to residues in the N- and C-terminal anti-parallel β-sheet.  
This could potentially allow the differentiation between different transition states in the 
presence and absence of force if indeed there is a change. 

If the transition state does indeed shift towards the N- and C- terminal anti-
parallel β-sheet, this system would allow us to further test if and how the axis of the 
applied force changes the transition state.  In this case, a shearing force (a force parallel 
to the β-sheet) or an unzipping force (a force perpendicular to the β-sheet) would be 
applied to the system, allowing for the behavior and transition states to be compared and 
contrasted.  The initial hypothesis is that the protein will be more mechanically resistant 
to the shearing force than the unzipping force. 

In this section, I describe the work I have done to develop the model system and 
report the initial results from force-ramp experiments.  As this project is still ongoing, I 
will also conclude with a brief description of the future work that will be done on the 
system.  

4.2  Methods and materials 

4.2.1  Protein purification and handle attachment 

In order to test this hypothesis, two srcSH3 variants were engineered with a pair 
of cysteines engineered at different sites to enable the attachment of the dsDNA handles.  
Using the Stratagene Quickchange protocol, cysteines were introduced to produce 
A7C/N59C srcSH3, the shearing force axis, and R19C/N59C srcSH3, the unzipping force 
axis (Figure 4.1 b and c).  The sites of the introduced cysteines were chosen to have a 
minimal affect on the thermodynamic stability and kinetics of the protein as shown by 
previous phi-value analysis.  The proteins were over-expressed with an N-terminal 6-his 
tag and TEV protease cleavage site using a T7 promoter system in Escherichia coli 
BL21(DE3) pLysS cells, and purified as previously published except all buffers 
contained 0.5 mM tris(2-carboxyethyl)phosphine (TCEP) to keep the cysteines reduced 
and prevent any disulfide bond formation[14].  Handles consisting of functionalized 558 
bp dsDNA were then produced by PCR and attached to the protein as previously 
published [15-17].   

4.2.2  Thermodynamic stability measurements 

To determine if the introduced cyteines affected the thermodynamic stability of 
the protein, the intrinsic fluorescence of the variants were determined via equilibrium 
denaturation with guanidinium hydrochloride (GmdCl).  The protein (1 µM) was 
equilibrated at 25 ºC overnight in 10 mM tris(hydroxymethyl)aminomethane (Tris) at pH 
7.0, 250 mM sodium chloride, 1 mM ethylenediaminetetraacetic acid (EDTA), and 1mM 
TCEP with varying concentrations of GmdCl (0 to 5 M).  The fluorescence was then 
measured between 300 and 400 nm with a FluoroMax-3.  The center of mass for the 
fluorescence signal at each denaturant concentration was then calculated by the following 
equation: 

Σ(λ∗I)/Σ(λ)     (4.2) 
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where λ is the wavelength of the light in nm and I is the intensity of the light in arbitrary 
absorbance units.  The center of mass fluorescence as a function of denaturant 
concentration was fit using a two-state model (Figure 4.2)[18].  Each measurement was 
performed 4 times.  From these data, the average Cm and average m-value were and used 
to calculate the free energy between the unfolded and folded state. 

4.2.3  Force spectroscopy experiments 

The srcSH3 tethers were attached to two beads, one held on a pipette tip and the 
other manipulated in an optical trap as previously described (Figure 1.6).  Force ramp 
experiments were preformed at a constant pulling speed of 100 nm/sec on a dual beam 
counter-propagating optical trap with a spring constant of 0.1 pN/nm collected at 1000 
Hz [19, 20].  The force was cycled between 2 and 40 pN for the A7C/N59C srcSH3 and 2 
and 20 pN for the R19C/N59C srcSH3 variant.  The force cycle ensured that an unfolding 
and refolding event were observed during each cycle. 

Unfolding and refolding forces were detected by analyzing the smoothed force 
data and detecting either an increase in the force for the refolding event or a decrease in 
the force for unfolding event.  The data was smoothed with a sliding window of 10 ms 
and the difference the signal at intervals of 10 ms was determined.  The standard 
deviation was then calculated and a threshold for detection was set based off the variance.  
A 99.9 % confidence threshold (3.3 σ) was set for the high signal-to-noise unfolding 
events and a 90% confidence threshold (1.6 σ) was used for the noisier refolding events.  
In the case of the identification of multiple events above the threshold for the refolding 
events, the event with the highest signal was selected as the transition as only one 
refolding occurred in the low force regime.  From this experiment, the unfolding or 
folding force distribution as a function of the loading rate and the extension change of the 
molecule could be measured. 

4.2.4  Equilibrium free energy determination from force ramp experiments 

Using Crooks Fluctuation Theorem [21] on the measured unfolding and refolding 
force distributions, the free energy of the protein could be determined as described in 
previous publications [17].  Briefly, the area under the force-trap position curves were 
integrated around the transition with the force bounds determined by the unfolding or 
refolding force.  The work values were then corrected for the energy of the stretching of 
the protein polymer by integrating a worm-like chain model with parameters defined by 
the distance between the cysteines and the force of unfolding or refolding.  In this case, 
the contribution of the stretching of the dsDNA handles was ignored because the 
stretching is an equilibrium transition and the work is measured between equal forces and 
therefore the dsDNA does not undergo any net conformational change [17]. 
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Figure 4.2  Equilibrium denaturation of srcSH3. 

a, depicts an equilibrium chemical denaturant melt following the center of mass 
of the fluorescence as a function of denaturation concentration of the A7C/N59C srcSH3 
variant as an example.  b, shows the fraction folded of the molecule assuming a two state 
model as a function of the denaturation concentration. 
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4.3  Results 

4.3.1  Mechanical properties of A7C/N59C and R19C/N59C srcSH3 

Force ramp experiments were preformed on both variants of srcSH3 in the optical 
trap at a constant trap speed of 100 nm/sec.   Example force-extension traces for each 
variant are shown in Figure 4.3.  In each pulling or relaxation phase, the protein was 
observed to unfold or refold in a single cooperative step.  The extension change for each 
event was consistent with the expected distance change which was was calculated using 
the following equation: 

Δx(expected) = xUnfolded(wlc) - xFolded    (4.3) 

where xUnfolded(wlc) is the end-to-end extension of the unfolded state as modeled by the 
worm-like chain model given the force, contour length, persistent length, and temperature 
[22],  xFolded is the end-to-end distance of the folded state as determined by measuring the 
distance between amino acids’ β-carbons in the crystallographic model of the protein 
(PDB ID: 1SRM).  This model assumes that the end-to-end distance of the native state is 
not deformed under force.  Expressed as the contour length, the measured contour length 
upon unfolding or folding was 18.5 ± 3.1 nm for the A7C/N59C srcSH3 variant and was 
consistent with the calculated distance change of 18.7 nm.  For the R19C/N59C srcSH3 
variant, the measured distance change was 16.0 ± 3.7 nm, which was again consistent 
with calculated distance change of 16.5 nm. 

Histograms of the unfolding and refolding force distribution of each variant are 
shown in Figure 4.4.  The average unfolding forces varied greatly between the variants 
with the shearing construct (A7C/N59C) unfolding at 27.8 ± 6.6 pN and the unzipping 
construct (R19C/N59C) unfolding at 10.2 ± 3.7 pN.  The refolding force distributions did 
not vary significantly for the shearing and unzipping variants and were 4.1 ± 0.8 pN and 
3.9 ± 0.9 pN, respectively. 

The free energy of each variant was calculated using the Crooks’ Fluctuation 
Theorem.  The free energy for the A7C/N59C variant was 5.0 ± 0.6 kcal/mol and the free 
energy for the R19C/N59C variant was 3.3 ± 0.4 kcal/mol. 

4.3.2  Free energy determination by equilibrium chemical denaturation: 

The free energy as determined by 4 independent experiments for the A7C/N59C 
srcSH3 variant was 3.9 ± 0.5 kcal/mol.  The R19C/N59C srcSH3 variant had a stability 
of 3.8 ± 0.5 kcal/mol.  The reported stability of the wild type srcSH3 was 3.7 ± 0.1 
kcal/mol [10]. 
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Figure 4.3  Force ramp data on the srcSH3 variants.  

a and b depict increasing (blue) and decreasing (red) force ramp experiments on 
the A7C/N59C and the R19C/N59C srcSH3 variants, respectively.  The refolding events 
are hard to detect on this scale because of the low signal-to-noise ratio at low forces.  The 
inset in a depicts a close up of the last refolding event. 
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Figure 4.4  Histograms of the refolding and unfolding forces for the srcSH3 
        variants. 

a and b present histograms of the unfolding (blue) and refolding (red) forces for 
the A7C/N59C and the R19C/N59C srcSH3 variants, respectively. 
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4.4  Discussion: 

Clearly, a change in the pulling axis radically changes the mechanical behavior of 
the protein, consistent with previous studies.  There are several potential explanations for 
the differing mechanical behavior of the srcSH3 variants studied.  The first hypothesis is 
that the cysteine modification and handle attachment altered the thermodynamic stability 
of the proteins and that this is the root cause of the change in behavior.  If the 
thermodynamic stability of the protein is unaffected, a second potential explanation is 
that the structure and free energy of the transition state barrier remains unchanged and the 
difference in behavior arises from the change in reaction coordinate with different 
distances to the transition state barrier.  Another possibility is that the transition states are 
different between chemical denaturation and force, but the transition state under force for 
both pulling axes are similar, and the differences in behavior arises from different 
distances to the transition state for each pulling coordinate.  Lastly, all three different 
methods of denaturation could traverse different regions of the potential energy landscape 
and proceed through different transition state barriers with different distances to the 
transition state.  The goal of this project is to differentiate between these different 
hypotheses. 

Using the equilibrium chemical denaturation experiements and the Crooks 
Fluctuation Theorem analysis of the force ramp data, the free energy of the protein 
variants was determined and used to measure the affect of the mutations and handle 
attachment on the thermodynamic stability of the protein.  The free energies of the 
A7C/N59C srcSH3 and the R19C/N59C srcSH3 were determined by both methods to 
have similar stabilities within error of each other (Table 1).  The errors in the free 
energies determined by the Crooks Flucuation Theorem are from the fits and does not 
account for errors in the measured dissipated work.  These results suggest that the 
significant variation in the mechanical behavior between the variants is not a result of a 
change in the thermodynamic stability of the proteins because of the introduced 
mutations or the attachment of the dsDNA handles. 

The refolding force distributions were equivalent, occurring around 4 pN for both 
variants.  Refolding force distributions for several different proteins at similar loading 
rates of 10 pN/sec have been shown to all occur at low forces around 5 pN [15, 17, 23].  
This is likely because despite variations in the barrier heights for the different proteins, 
the large distance to the transitions state from the unfolded state dominates the refolding 
rate as a function of the force.  In other words, given a large distance to the transition 
state, small variations in the average refolding forces account for any potential variation 
in the barrier heights. 

The mechanical unfolding force distributions for each variant were significantly 
different with a 17.6 pN difference between the average unfolding forces.  This suggests 
either the protein is traversing different transition state barriers or, on the other extreme, 
that the difference in behavior can be accounted for solely by different distances to the 
transition state.  If the distances to the transition state from the folded state for both 
variants are similar to those observed for other natively folded proteins [1-3, 15, 17, 24-
32], then they are expected to be small between 0.5 nm and 2 nm.  Given the range of  
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Table 4.1  Summary of free energy determination from equilibrium chemical  
       denaturation and force ramp experiments. 
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these expected distances, the data strongly suggests a change in the transition state 
barrier. 

The distance to the transition state can be estimated from the force ramp 
experiments; however, these methods require fitting multiple parameters (km, k0, Δx‡) to 
match the unfolding force distribution [33-35].  Therefore, these methods contain 
significant uncertainty in the reported parameters, specifically, the quantities of interest, 
the distances to the transition state.  An alternative method is to measure the average 
lifetime as a function of an average force using a constant force jump experiment.  This 
approach requires no assumptions about the pre-exponential or free energy of the 
transition state. 

4.5  Future directions 

To resolve the relationship between the transition state and an applied vectorial 
force for protein folding, phi-value and force jump experiments will be required.  This 
work is currently ongoing and is being continued by Dr. Bharat Jagannathan. 

Force jump experiments are currently being performed on the A7C/N59C 
construct and R19C/N59C construct.  Preliminary analysis suggests that the distances to 
the transition state do not account for the change in the unfolding distributions suggesting 
a change in the transition state free energy. 

Because of the intensive nature of these single molecule experiments, phi-value 
analysis has been initially targeted to a few residues.  These residues will hopefully 
enable the different hypotheses to be distinguished.  If the transition state becomes 
localized towards the terminal β-sheet, then residues, which have a high phi-value under 
chemical denaturation, may have a lower phi-value under force denaturation.  Potentially, 
this will demonstrate the change in the transition state structure under force.  Targeting 
residues in the terminal β-sheet, such as F10I and V61A will conceivably allow us to 
differentiate between the transition state structures of the shearing and unzipping force 
axes.  An important consideration is that the mutational analysis probes side chain 
interactions and not the hydrogen bonding network in the β-sheet, and so may only be 
probing one contributing aspect of the transition state.  Initial data from the phi-value 
analysis of S47A indicates a movement of the transition state upon mutation with the 
distance to the transition state increasing.  Another avenue of potential work is simulation 
work by the Pande group.  In combination with the phi-value analysis, the simulations 
could potentially lead to a clearer explanation of the structure of the transition state under 
force or suggest future experiments, such as targeting specific sites for phi-value analysis. 
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Chapter 5  A robust approach to estimating rates from time-correlation functions 

5.1  Prospectus on Chapters 5 and 6 

The next two chapters will focus on two novel approaches for identifying states 
and their lifetimes from single molecule experiments.  The chapter entitled “ A robust 
approach to estimating rates from time-correlation functions” discusses new approach for 
determining rate constants from single-molecule biophysical experiments.  The chapter 
entitled “Bayesian hidden Markov model analysis of single-molecule biophysical 
experiments” discusses the method that was used for the analysis of the constant trap 
position experiments presented in this thesis.  Both of these studies were carried out in 
collaboration with John Chodera.  These chapters represent modified versions of 
manuscripts written mostly by John – my contribution and input was as described below. 

Previous methods used for the analysis of single molecule hopping experiments 
such as the partition method [1-3], require a high signal-to-noise ratio.  Using this method 
for the analysis of constant trap position experiments, with their lower signal-to-noise 
ratio, would result in an overestimate of the number of transitions and therefore an 
underestimate of the average lifetimes of a given state.  Another way of looking at the 
problem of requiring a high signal-to-noise ratio for simpler methods to yield good rate 
estimates is whether the resolved coordinate (here, the bead position in the trap) is a good 
reaction-coordinate because there may be other relevant degrees of freedom we're not 
observing.  The observed coordinate may still be able to mostly separate the states (and 
hence be a good order parameter) but may not be an ideal reaction coordinate.  Therefore, 
a better method of analysis was required. 

Fortuitously, John Chodera, Frank Noe, Bettina Keller, Aaron Ewall-Wice and 
Nina Singhal Hinrichs were developing a novel approach for analyzing single molecule 
data using a Bayesian hidden Markov model.  Previous implementations of hidden 
Markov models rely on maximum-likelihood methods to determine the best parameters 
that fit the model, such as state identification and transition rates between states [4-6].  
However, these methods have a significant shortcoming in that they do not quantitate 
how well the maximum-likelihood parameters are determined.  The method described 
here uses a Bayesian extension of a hidden Markov model to estimate these uncertainties. 
In addition, John Chodera, William Swope, Jan-Hendrik Prinz, Frank Noe, and Vijay 
Pande were developing a second approach using a reactive flux theory-based method to 
extract rate estimates that are significantly less sensitive to the choice of the partition.  
Both of these methods are better for analyzing data with a lower signal-to-noise ratio and 
provide rate estimates despite not having an ideal reaction coordinate.  To demonstrate 
the usefulness of these methods using experimental data, we worked together in 
collaboration. 

In the following sections, I collected the data on the experimental system, the 
p5ab RNA hairpin.   Using these methods requires high fidelity data recorded at a high 
sampling frequency.  At the start of the collaboration, however, the quality and frequency 
of the data was limited.  Due to hardware constraints, the instrument dropped ~40% of 
the data points at 4 kHz, affecting the value of the data reported and resulting in 2% of 
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the data being missed at 1 kHz, as previously described.  In order to increase both the 
fidelity and frequency of the data, I bypassed the limiting hardware and collected the data 
on a second computer that recorded the voltage directly from the position sensitive 
detectors.  This allowed data to be collected up to the response time of the detectors of 
100 kHz with no dropped data. 

In collaboration with John, I then helped calibrate the voltage-to-force conversion.  
I determined below what frequency the data was uncorrelated and suitable for analysis by 
the BHMM method.  Then using the analysis software provided by John, I ran the 
analysis on the experimental analysis data. 

5.2  Introduction 

The estimation of rate constants from trajectories of microscopic systems is a 
fundamental problem in classical statistical mechanics.  Under conditions where there is a 
separation of timescales such that a microscopic rate constant exists, the reactive flux 
theory of Chandler and coworkers demonstrates how the rate constant may be extracted 
from the plateau region of the reactive flux correlation function [7, 8].  When estimating 
the rate from trajectories generated in a computed or recorded at finite intervals in a 
laboratory experiment, the reactive flux correlation function requires an empirical time 
correlation function to be numerically differentiated to obtain the rate, often introducing 
an unacceptable amount of noise in the corresponding rate estimate.  We present a 
modified version of reactive flux theory, which does not require numerical derivatives to 
be computed, allowing rate constants to be estimated directly and robustly from the time-
correlation function.  We illustrate the approach for a single-molecule force spectroscopy 
measurement of an RNA hairpin. 

5.3  Results and discussion 

Suppose we have a population of N non-interacting molecules that can occupy 
one of two conformational states, denoted A or B with defined associated indicator 
functions hA(x) and hB(x), where x denotes the molecular configurational degrees of 
freedom, such that hA(x) assumes the value of unity if the configuration x is in 
conformation A and zero otherwise; similarly, hB(x) assumes the value of unity only if x 
is in conformation B.  Together, hA(x) and hB(x) form a partition of unity, such that hA(x) 
+ hB(x) = 1 for all x in the accessible configuration space Γ of the molecule. 

If there is a separation of timescales between the short relaxation time within the 
conformational states and the long time, the system must wait, on average, in one 
conformational state before undergoing a transition to another state, the asymptotic 
relaxation behavior of an initial population of NA(0) molecules in conformation A and 
NB(0) molecules in conformation B can be described by a simple linear rate law:  

€ 

d
dt
NA(t) = −kA→B(t)NA(t)+ kB→ANB (t)    (5.1) 

where kA→B and kB→A are microscopic rate constants.  In terms of non-equilibrium 
expectations, this is equivalent to:  
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€ 

d
dt
〈hA (t)〉ne = −kA→B 〈hA(t)〉ne + kB→A 〈hB(t)〉ne    (5.2) 

where ⟨hA(t)⟩ne denotes the non-equilibrium probability of finding a given molecule in 
conformation A at time t given that the fraction of molecules that were initially in 
conformation A was ⟨hA(0)⟩ne.  (We hereafter write hA(t) as shorthand for hA(x(t)).) 

Were Eq. 5.2 to govern dynamics at all times, the expected fraction of molecules 
in conformation A as a function of time would be given by an exponential decay function: 

€ 

〈hA (t)〉ne = 〈hA 〉+[〈hA (0)〉ne − 〈hA 〉]e
−kt     (5.3) 

where the quantity k ≡ kA→B + kB→A is denoted the phenomenological transition rate 
because it is the effective rate constant that dominates the observed exponential decay 
governing the asymptotic relaxation behavior.  ⟨hA⟩ denotes the standard equilibrium 
expectation, giving the equilibrium fraction of molecules in conformation A.  Note that 
we do not expect Eq. 5.3 to hold for times t < τmol, where τmol is the timescale associated 
with relaxation processes that damp out re-crossings that occur due to imperfect 
definition of the separatrix between the reactant and product states [9]. 

Chandler (and subsequent workers) demonstrated how the phenomenological rate 
could be computed using time-correlation functions by defining the reactive flux 
correlation function kRF(t) [7, 8, 10, 11]: 

€ 

kRF (t) = −
d
dt
〈δhA(0)δhA (t)〉

〈δh
A

2 〉
     (5.4) 

where δhA(t) ≡ hA(t) − ⟨hA⟩ is the instantaneous deviation from the equilibrium 
population for some trajectory x(t). 

kRF(t) measures the flux across the boundary between A and B that is reactive, in 
the sense that the system has crossed the dividing surface between A and B at time zero 
and is located on the product side of the boundary at time t.  The reactive flux is bounded 
from above by the transition state theory estimate kTST, the instantaneous flux across the 
boundary at time t = 0, because re-crossings back to the reactant state will diminish the 
reactive flux; kRF(t) becomes identical to kTST as t → 0+.  At t larger than some τmol, the 
timescale of relaxation processes within the conformational states, thermalization 
processes will cause the molecule to be captured either in its reactant or product states 
and remain there for a long time.  As a result, the asymptotic rate constant (whose 
existence requires the presupposed separation of timescales) is only obtained at τmol < t 
≪ τrxn, where kRF(t) reaches a plateau value, decaying to zero at t ≫ τrxn with a time 
constant of τrxn [7, 8].  Subsequent work extends reactive flux theory to the case of 
multiple conformations [10, 11]. 

The reactive flux correlation function kRF(t) can, in principle, be used to estimate 
the phenomenological rate constant k and microscopic rate constants kA→B and kB→A from 
one or more observed molecular trajectories collected either in a computer experiment or 
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a laboratory experiment, but this presents several practical difficulties.  For observations 
recorded at fixed intervals in time, the time derivative of the correlation function (Eq. 
5.4) must be estimated by finite-difference methods, but the presence of statistical error 
in the estimated correlation function often produces unacceptably large noise in the 
resulting estimate of kRF(t).  Alternatively, the correlation function ⟨δhA(0)δhA(t)⟩ could 
be estimated and smoothed by fitting a polynomial to produce a smooth estimate of the 
derivative, but this introduces a bias due to the functional form of the fit that is difficult to 
quantify.  If the reaction timescales τrxn is not very long compared to the observation 
interval, then the plateau region where kRF(t) is identical to the rate may be small and 
difficult to detect before kRF(t) decays.  Lastly, alternative expressions to Eq. 5.4 exist in 
which the velocity normal to the separatrix at the time of barrier crossing is utilized 
instead of a time derivative of the empirical correlation function [7, 8], but it is difficult 
to compute this velocity computationally for complex dividing surfaces and the exact 
time of barrier crossing are generally not observed when sampling at discrete intervals. 

To illustrate several of these pathologies, we computed the reactive flux kRF(t) 
from a single-molecule force trajectory for the p5ab RNA hairpin in an optical trap.  This 
hairpin has been the subject of previous single-molecule force spectroscopy studies [12-
14], and exhibits two-state kinetics as the hairpin folds and unfolds under an external 
biasing force.  The force trace reports on the extension of the polymer within the optical 
trap; for example, as the hairpin folds, the end-to-end distance contracts, increasing the 
applied force as the polystyrene bead conjugated to the end of the polymer moves away 
from the center of the optical trap.  At the stationary trap position used for data collection, 
the hairpin makes many transitions between the two states resolvable from the measured 
force in the 60-second trajectory, populating each state nearly equally (Figure 5.1a).  Data 
was collected at 50 kHz using a dual-beam counter-propagating optical trap [15, 16], as 
previously published [14]. 

While the applied force may not be an ideal reaction coordinate—this is irrelevant 
for the estimation of the force using the reactive flux formalism.  Provided the observed 
coordinate (here, the observed force) is a suitable order parameter for resolving both 
states to some degree, the rate estimate will fall to the true rate constant after some initial 
transient relaxation time.  

Figure 5.1b and c shows the reactive flux correlation function kRF(t) (in black) 
estimated from the observed force trace sub-sampled to 1 kHz (Figure 5.1 b) or at 50 kHz 
(Figure 5.1 c).  The time-derivative in Eq. 5.4 is estimated by one-sided differences.  
When estimated from 50 kHz data (Figure 5.1 c), the rate smoothly stabilizes after a 
transient time of τmol ≈ 1 ms, but the numerical derivative introduces a great deal of noise 
into the estimate (Figure 5.1 c, inset). When estimated from 1 kHz sub-sampled data 
(Figure 5.1 b), the plateau region is very difficult to detect, and the kRF(t) falls as t reaches 
times comparable to τrxn. 

An alternative approach allows computation of the phenomenological rate without 
the need for time derivatives of the correlation function CAA(t).  This approach instead 
estimates the matrix of rate constants implied by the state-to-state transition probabilities 
for a given lag time, hence these quantities are referred to as the implied rate constants  
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Figure 5.1  Reactive flux correlation function and implied rates from p5ab hairpin 
           single-molecule force trajectory.  

a is a 60 s force spectroscopy trace of p5ab RNA hairpin recorded at 50 kHz and 
sub-sampled to 1 kHz.  b depicts the implied rate kim(t) (red) and reactive flux rate 
correlation function kRF(t) (black) from calculated from the 50 kHz force measurement 
data sub-sampled to 1 kHz.  c depicts the same as b, but with the implied rate kim(t) (red) 
and reactive flux rate correlation function kRF(t) (black) calculated from the 50 kHz data.  
Inset: Close view comparing implied rate and reactive flux rate estimates between 3-4 ms 
for 50 kHz data. 
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for an observation interval τ.  As with the reactive flux correlation function, for times τmol 
< t ≪ τrxn , the phenomenological rate constant (if it exists, by virtue of a separation of 
timescales) is recovered. 

As before, if a separation of timescales exists, relaxation behavior for times             
t > τmol is defined in terms of a rate matrix K by recasting Eq. 5.2 in matrix form: 

€ 

d
dt
p(t) =Kp(t)       (5.5) 

where p = [pA(t)pB(t)]T, with pA(t) = ⟨hA(t)⟩ne and pB(t) = ⟨hB(t)⟩ne denoting the non-
equilibrium occupation probabilities of states A and B at time t, and K is the matrix of 
rate constants: 

€ 

K =
−kA→B kB→A

kA→B −kB→A

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟      (5.6) 

The eigenvalues of K are λ1 = 0, reflecting conservation of probability mass, and             
λ2 = −(kA→B + kB→A) = −k, which governs the recovery toward equilibrium populations 
at the phenomenological relaxation rate. 

The solution to Eq. 5.5 (corresponding to Eq. 5.3) is given by: 

€ 

p(t) = eKtp(0) = T(t)p(0)    (5.7) 

where 

€ 

eA ≡ An

n!n=0

∞

∑  is the formal matrix exponential and T(t) can be identified as the 

column-stochastic transition probability matrix whose elements Tji(t) give the conditional 
probability of observing the system in conformation j at time t given that it was initially 
in conformation i at time 0. 

The elements of T(t) for a given observation interval t are conveniently given in 
terms of the correlation function: 

€ 

Tji(t) ≡
〈hi (0)hj (t)〉

〈hi 〉
≡
Cij (t)
π i

      (5.8) 

For t > τmol, we have T(t) ≈ eKt, but we can establish a one-to-one correspondence 
between the rate matrix Kim(t) implied by T(t) for any t: 

€ 

T(t) = eK im (t )t ⇔Kim (t) = t −1 logT(t)    (5.9) 

For t > τmol, all Kim(t) ≈ K, and the rates are identical to those from the reactive 
flux theory. 

Because of their relationship through the exponential (Eq. 5.9), T(t) and Kim(t) 
share the same eigenvectors uk, and their eigenvalues are also simply related [17]: 
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€ 

T(t)uk = ukuk
Kim (t)uk = λkuk
uk (t) = eλk ( t) t

      (5.10) 

An estimate of the phenomenological rate constant kim(t) for observation time t can be 
obtained from the second eigenvalue of Kim(t), which for t > τmol assumes the value of: 

€ 

−(kA→B + kB→A ) = −k :
kim (t) = −λ2 (t) = t −1 lnµ2 (t)

     (5.11) 

We note that µ2(t) can be simply expressed: 

€ 

µ2 (t) =1−[TAB(t)+TBA(t)]

=1− CAB(t)
π A

+
CBA(t)
π B

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

=1−CAB(t)
1
π A

+
1
π B

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

=1− CAB(t)
π A(1−π A )

=1− π A −CAA(t)
π A (1−π A )

 

€ 

=
CAA(t)−π A

2

π A −π A
2

=
〈δhA (0)δhA(t)〉

〈δh
A

2 〉

 

(5.12) 

This is simply the normalized fluctuation autocorrelation function for the indicator 
function hA for state A. It assumes the value of unity at t = 0 and decays to zero at large t.   

In the limit t → 0+, kim(t) reduces to the transition state theory estimate kTST.  To 
see this, we expand CAA(t) in terms of its behavior near t = 0, 

€ 

CAA(t) = CAA (0)+ t ˙ C AA (0)+O(t 2 )
= π A + t ˙ C AA (0)+O(t 2 )

    (5.13) 

and so 

€ 

µ2 (t) =1+ t
˙ C AA (0)
π A −π A

2 +O(t 2 )    (5.14) 
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Near t = 0, µ2(t) ≈ 1, allowing us to expand the argument to the logarithm appearing in 
kim(t) to first order in t about unity: 

€ 

lim
t→0+

kim (t) = lim
t→0+

− t −1 lnµ2 (t)

= lim
t→0+

− t −1[µ2 (t)−1]

= −
˙ C AA(0)

π A (1−π A )

    (5.15) 

To illustrate the estimation of the rate using the implied timescale kim(t), we again 
analyze the 60-second force trajectory of the p5ab hairpin considered above.  At high 
sampling rates (Figure 5.1 c), the rate estimates are almost identical to those from kRF(t) 
for t > τmol, though there is much less noise than in kRF(t) (inset).  At the 1 kHz sampling 
rate, however, the rate estimate from kim(t) remains stable over several times τrxn, even 
though the kRF(t) has already decayed from the plateau region. 

To estimate the rates and their uncertainties from a set of equilibrium trajectories 
Xn, we define two trajectory functionals: 

€ 

F[X]≡ hA (x0 )
G[X]≡ hA (x0 )hB (xτ )

      (5.16) 

Evaluating these functionals on a dataset of N statistically independent trajectories Xn(t), 
n = 1, . . . , N, collected from a single temperature β gives us a set of observables: 

€ 

Fn = F[Xn ]
Gn =G[Xn ]

      (5.17) 

Estimates of their expectations are given by the sample means: 

€ 

π A ≈ ˆ F = 1
N

Fn
n=1

N

∑

CAB(t) ≈ ˆ G = 1
N

Gn
n=1

N

∑
      (5.18) 

We compute the rate constant for a given observation time t (whose functional 
dependence we shall suppress) from an estimate of the second eigenvalue 

€ 

ˆ µ 2: 

€ 

ˆ k im = −t −1 ln ˆ µ 2       (5.19) 

The second eigenvalue is estimated from Eq. 5.12: 

€ 

µ2 =1− CAB(t)
π A (1−π A )

⇔ ˆ µ 2 =1−
ˆ G 

ˆ F (1− ˆ F )
    (5.20) 

The squared uncertainty in kim(t) in terms of the uncertainty in the second 
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eigenvalue µ2(t) can be estimated by simple first-order Taylor series expansion 
propagation of error: 

€ 

δ2 ˆ k im =
∂ ˆ k im
∂ ˆ µ 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2

δ2 ˆ µ =
δ2 ˆ µ 2
t 2 ˆ µ 2

2      (5.21) 

We apply the first-order Taylor propagation of error to compute the uncertainty in 

€ 

δ2 ˆ µ 2: 

€ 

δ2 ˆ µ 2 =
∂ ˆ µ 2
∂ ˆ F 
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

2

δ2 ˆ F + ∂ ˆ µ 2
∂ ˆ G 
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

2

δ2 ˆ G + 2 ∂ ˆ µ 2
∂ ˆ F 
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
∂ ˆ µ 2
∂ ˆ G 
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
δ ˆ F δ ˆ G   (5.22) 

where the derivatives are given by: 

€ 

∂ ˆ µ 2
∂ ˆ F 

=
ˆ G (1− 2 ˆ F )
ˆ F 2 (1− ˆ F )2 ;∂

ˆ µ 2
∂ ˆ G 

= +
1

ˆ F (1− ˆ F )
   (5.23) 

To estimate 

€ 

δ2 ˆ µ 2, we must first estimate the variance and covariance of the estimators 

€ 

ˆ F and 

€ 

ˆ G : 

€ 

δ2 ˆ A = var An

N
;δ2 ˆ B = var Bn

N
;δ ˆ A δ ˆ B = cov(An, Bn )

N
  (5.24) 

where the sample covariances are used to estimate varAn, var Bn, and cov (An, Bn). 

Practically, we take advantage of time-reversibility of dynamics, and use a 
slightly modified set of trajectory functionals that yield the same expectation but average 
over more snapshots from the trajectory in the case that the trajectory segments are of 
length   T > τ : 

€ 

G[X]= 1
T −τ

1
2t0=0

T−τ

∑ hA (x0 )hB(xt0+τ )+ hB(x0 )hB (xt0+τ )[ ]

F[X]= 1
T −τ

1
2t0=0

T−τ

∑ hA (x0 )+ hA (xt0+τ )[ ]
   (5.25) 

This appropriately accounts for the fact that all time origins produce equally valid 
estimates and, for systems with multiple conformational states, ensures satisfaction of 
detailed balance. 



	
   89	
  

5.4 References 

1.	
   Liphardt,	
   J.,	
   et	
   al.,	
   Reversible	
   unfolding	
   of	
   single	
   RNA	
   molecules	
   by	
  
mechanical	
  force,	
  in	
  Science.	
  2001.	
  p.	
  733-­‐7.	
  
2.	
   Woodside,	
  M.T.,	
  et	
  al.,	
  Nanomechanical	
  measurements	
  of	
  the	
  sequence-­
dependent	
  folding	
  landscapes	
  of	
  single	
  nucleic	
  acid	
  hairpins,	
  in	
  Proc	
  Natl	
  Acad	
  
Sci	
  USA.	
  2006.	
  p.	
  6190-­‐5.	
  
3.	
   Wen,	
  J.-­‐D.,	
  et	
  al.,	
  Force	
  unfolding	
  kinetics	
  of	
  RNA	
  using	
  optical	
  tweezers.	
  
I.	
  Effects	
  of	
  experimental	
  variables	
  on	
  measured	
  results,	
  in	
  Biophysical	
  Journal.	
  
2007.	
  p.	
  2996-­‐3009.	
  
4.	
   Qin,	
   F.,	
   A.	
   Auerbach,	
   and	
   F.	
   Sachs,	
  A	
   direct	
   optimization	
   approach	
   to	
  
hidden	
   Markov	
   modeling	
   for	
   single	
   channel	
   kinetics,	
   in	
   Biophysical	
   Journal.	
  
2000.	
  p.	
  1915-­‐27.	
  
5.	
   Qin,	
  F.,	
  A.	
  Auerbach,	
  and	
  F.	
  Sachs,	
  Hidden	
  Markov	
  modeling	
   for	
   single	
  
channel	
   kinetics	
   with	
   filtering	
   and	
   correlated	
   noise,	
   in	
   Biophysical	
   Journal.	
  
2000.	
  p.	
  1928-­‐44.	
  
6.	
   Schroder,	
  G.	
  and	
  H.	
  Grubmuller,	
  Maximum	
  likelihood	
  trajectories	
  from	
  
single	
   molecule	
   fluorescence	
   resonance	
   energy	
   transfer	
   experiments.	
   J	
   Chem	
  
Phys,	
  2003.	
  119(18):	
  p.	
  9920-­‐9924.	
  
7.	
   Chandler,	
  D.,	
  Statistical	
  mechanics	
  of	
  isomerization	
  dynamics	
  in	
  liquids	
  
and	
  the	
  transition	
  state	
  approximation.	
   J.	
  Chem.	
  Phys.,	
  1978.	
  68(6):	
  p.	
  2959-­‐
2970.	
  
8.	
   Montgomery,	
  J.A.,	
  Jr.,	
  D.	
  Chandler,	
  and	
  B.J.	
  Berne,	
  Trajectory	
  analysis	
  of	
  
a	
   kinetic	
   theory	
   for	
   isomerization	
   dynamics	
   in	
   condensed	
   phases.	
   J.	
   Chem.	
  
Phys.,	
  1979.	
  70(9):	
  p.	
  4056-­‐4066.	
  
9.	
   H\"anggi,	
   P.,	
   P.	
   Talkner,	
   and	
  M.	
   Borkovec,	
  Reaction-­rate	
   theory:	
   fifty	
  
years	
  after	
  Kramers.	
  Rev.	
  Mod.	
  Phys.,	
  1990.	
  62:	
  p.	
  251-­‐342.	
  
10.	
   Adams,	
  J.E.	
  and	
  J.D.	
  Doll,	
  Dynamical	
  aspects	
  of	
  precursor	
  state	
  kinetics.	
  
Surface	
  Science,	
  1981.	
  111:	
  p.	
  492-­‐502.	
  
11.	
   Voter,	
   A.F.	
   and	
   J.D.	
   Doll,	
   Dynamical	
   corrections	
   to	
   transition	
   state	
  
theory	
  for	
  multistate	
  systems:	
  Surface	
  self-­diffusion	
  in	
  the	
  rare-­event	
  regime.	
  J.	
  
Chem.	
  Phys.,	
  1985.	
  82(1):	
  p.	
  80-­‐92.	
  
12.	
   Liphardt,	
   J.,	
   et	
   al.,	
   Reversible	
   unfolding	
   of	
   single	
   RNA	
   molecules	
   by	
  
mechanical	
  force.	
  Science,	
  2001.	
  292:	
  p.	
  733-­‐737.	
  
13.	
   Wen,	
  J.-­‐D.,	
  et	
  al.,	
  Force	
  unfolding	
  kinetics	
  of	
  RNA	
  using	
  optical	
  tweezers.	
  
I.	
  Effects	
  of	
  experimental	
  variables	
  on	
  measured	
  results.	
  Biophys.	
  J.,	
  2007.	
  92:	
  
p.	
  2996-­‐3009.	
  
14.	
   Elms,	
   P.J.,	
   et	
   al.,	
   Equilibrium	
   force	
   spectroscopy	
   experiments	
   on	
  
macromolecules:	
   The	
   problem	
   with	
   force	
   feedback	
   experiments.	
   In	
  
preparation,	
  2010.	
  
15.	
   Smith,	
   S.B.,	
   Y.	
   Cui,	
   and	
   C.	
   Bustamante,	
   Optical-­trap	
   force	
   transducer	
  
that	
  operates	
  by	
  direct	
  measurement	
  of	
  light	
  momentum.	
  Meth.	
  Enzym.,	
  2003.	
  
361:	
  p.	
  134-­‐162.	
  



	
   90	
  

16.	
   Bustamante,	
   C.	
   and	
   S.B.	
   Smith.	
   Light-­force	
   sensor	
   and	
   method	
   for	
  
measuring	
  axial	
  optical-­trap	
  forces	
  from	
  changes	
  in	
  light	
  momentum	
  along	
  an	
  
optical	
  axis.	
  	
  2006.	
  
17.	
   Buchete,	
   N.-­‐V.	
   and	
   G.	
   Hummer,	
   Coarse	
   master	
   equations	
   for	
   peptide	
  
folding	
  dynamics.	
  J.	
  Phys.	
  Chem.	
  B,	
  2008.	
  112:	
  p.	
  6057-­‐6069.	
  
	
  

 



	
   91	
  

Chapter 6  Bayesian hidden Markov model analysis of single-molecule biophysical 
        experiments 

6.1  Summary 

Single-molecule experiments are now able to probe the dynamics of single 
biological macromolecules or macromolecular assemblies using a variety of techniques, 
including fluorescence measurements, fluorescent energy transfer (FRET), and optical or 
atomic force microscopy.  While able to report on the behavior of single molecules, the 
observed signal is usually only an indirect probe of molecular conformation, without the 
guarantee of a unique correspondence between the observed signal and molecular 
conformation.  This can lead to conformational states with strongly overlapping 
spectroscopic signatures, making resolution of the instantaneous molecular configuration 
difficult.  Hidden Markov models (HMMs), now a standard approach in machine 
learning, have been employed to solve this problem by using kinetic information to aid 
resolution of the observed temporal signal into a sequence of distinct conformational 
states.  These methods suffer from an important drawback: maximum-likelihood fitting 
procedures do not give a clear picture of how well the model parameters are determined 
by the data due to instrument noise and finite-sample statistics.  Here, we propose a 
solution to this problem through a simple Bayesian extension of hidden Markov model 
analysis that allows both the uncertainties in the transition rates and hidden state 
assignments to be characterized.  The method is based on Gibbs sampling, allowing it to 
be easily extended to other models of observables or to multiple observables by simply 
“plugging in” new components of the model. 

6.2  Introduction 

Recent advances in biophysical measurement have led to an unprecedented ability 
to monitor the dynamics of single biomolecules, such as proteins and nucleic acids [1].  
These experiments aim to probe the statistical, heterogeneous dynamics relevant to 
folding and function.  Recent studies have examined the conformational dynamics of 
large RNA molecules under equilibrium and nonequilibrium conditions by monitoring 
the energy transfer between two covalently attached fluorophores [2, 3]; the turnover of 
individual molecules of substrate by enzymes [4]; permeation and gating events of single 
ion channels [5]; and the fluctuation of nucleic acids under external forces in optical traps 
[6, 7] or atomic force microscopes [8]. 

Unlike corresponding ensemble experiments, where spectroscopic observables 
appear to evolve deterministically after an external perturbation (such as a laser-induced 
temperature jump) and spectroscopic fluctuations cannot generally be observed at 
equilibrium, spectroscopic probes of single molecules both in and out of equilibrium 
exhibit a great deal of stochastic fluctuation. While some of this fluctuation is 
undoubtedly due to measurement noise, some large component of this fluctuation is due 
to conformational dynamics of the molecule under study.  Often, the dynamics appears to 
be dominated by stochastic interconversions between two or more strongly metastable 
states, regions of conformation space in which the system persists for long times before 
making a transition (often accurately described by first-order kinetics) to another state (a 
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situation also observed in NMR relaxation-dispersion experiments [9] and molecular 
dynamics simulations [10]). 

While visual inspection of the dynamics may suggest the clear presence of 
multiple metastable states, characterization of these states is often difficult.  First, the 
spectroscopic observable is unlikely to correspond to a true reaction coordinate easily 
able to separate all metastable states, and second, measurement noise may further 
broaden the spectral signatures of individual states.  As a result, there is often a large 
degree of spectral overlap in the signatures of individual states [2, 3].  Attempting to 
separate these states with simple separation points can often lead to a high degree of state 
misassignment that corrupts both the distribution of observables and characterization of 
rates of interconversion between states [11].  Hidden Markov models (HMMs) [12], 
which use temporal information in addition to the observable to determine which hidden 
state the system is currently in, have provided an effective solution to this problem.  In an 
HMM, the observed signal is assumed to come from a realization of an underlying 
Markov chain, where the system makes history-independent transitions among a set of 
discrete states with probabilities governed by a transition or rate matrix.  The 
experimenter does not know which state the system is in, and can only measure some 
observable whose value is determined by a probability distribution of observables 
characterizing each state (which may overlap).  Given a set of data, maximum likelihood 
estimates (MLEs) of the model parameters (transition rates and state observable 
distributions) and sequence of hidden states corresponding to the observed data can be 
determined by standard methods [13, 14]. Unfortunately, this approach has a number of 
serious limitations.  Single-molecule experiments often suffer from limited statistics; the 
events of interest (transitions between states) may occur only a few times during the 
course of the measurement.  As a result, while the MLE may give the most likely set of 
model parameters, there may be enormous uncertainty in these parameters, and the MLE 
provides no simple way to characterize them.  These uncertainties may also be highly 
correlated, in that certain combinations of parameters may be well determined in a 
complex way, despite individual parameters being poorly determined.  The high cost 
(both in terms of instrument and experimenter time) of collecting additional data also 
means that it is not a simple task to judge how much data need be collected to test a 
particular hypothesis in a statistically meaningful way. 

Here, we present a resolution to this issue in terms of a Bayesian extension of 
hidden Markov models applicable to single molecule experiments. By sampling over the 
posterior distribution of model parameters and hidden state assignments instead of simply 
finding the most likely values, the experimenter is able to accurately characterize the 
correlated uncertainties in both the model parameters (transition rates and state 
observable distributions) and hidden state sequences corresponding to observed data.  
Additionally, prior information (either from independent measurements or physical 
constraints) can be easily incorporated.  The framework we present is based on Gibbs 
sampling [15, 16], allowing simple swap-in replacement of models for observable 
distributions, extension to multiple observables, and alternative models for state 
transitions.  Additionally, the Bayesian method provides a straightforward way to model 
the statistical outcome and assess the utility of additional experiments given some 
preliminary data, allowing the experimenter a powerful tool for assessing whether the 
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cost of collecting additional data is outweighed by their benefits. 

6.3  Hidden Markov models 

We now describe the basic theory behind the maximum likelihood estimate for a 
hidden Markov model (MLHMM) and corresponding Bayesian extension (BHMM).  
While any scheme for computing the maximum-likelihood estimator or sampling from 
the Bayesian posterior can be used to generate these models, the algorithms used in this 
work are described in detail Section 4.3.  Due to the abundance of mathematical notation, 
we summarize important symbols used throughout in Table I. 

 

Table 1 Summary of important symbols and their elements. 

 

6.3.1  Preliminaries 

Suppose we observe N independent temporal traces, where some observable O(x) 
that is a function of molecular configuration x is observed at temporal intervals ∆t.  This 
observable may be, for example, the measured force or extension of a polymer in a force 
microscopy experiment, an observed FRET efficiency, or an ion current measured by 
patch-clamp electrophysiology.  While we restrict ourselves to consideration of scalar 
functions O(x), the extension to multidimensional probes (or multiple probes) is 
straightforward. 

Let trace n be denoted by ot
(n), where t ∈ {0,1,2,...,L(n)}, collected with uniform 

sampling interval ∆t.  We allow the system under observation to either start from 
equilibrium at the beginning of the observation period (if sufficient time has been 
allowed for the system to reach equilibrium), or from an out-of-equilibrium initial 
configuration (such as preparing a protein system by mechanically unfolding it prior to 
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starting observation). 

We presume the system under study has M kinetically metastable states, in the 
sense that they persist for many observation intervals ∆t but may not represent the lowest 
free energy (most populous) state of the system.  (In the language of chemical kinetics, 
we require that the molecular relaxation time within a state τmol ≪ ∆t, but the typical 
reaction time for transitioning between states τrxn ≫ ∆t [17-19].)  We treat these as the 
hidden states of the model, because we cannot directly observe the identity of the 
metastable state in which the system resides. 

The hidden Markov model presumes the observed data O ≡ {ot
(n)}, where n = 

1,...,N and t = 0,...,L(n), was generated according to the following model dependent on 
parameters Θ ≡ {T, E} and prior information about the initial state distribution ρ(n): 

€ 

s0
(n) ~ ps0(n )

(n)

st
(n) | st−1

(n) ,T ~ Tst−1(n )st(n ) ,t ≥1

ot
(n) | st

(n),est(n ) ~ ϕ(ot
(n) | est(n ) )

 (1) 

In diagrammatic form, the observed state data o(n) and corresponding hidden state 
history s(n) can be represented 

€ 

s(n) ≡ s0
(n) → s1

(n) → s2
(n) →⋅⋅ ⋅sL(n )

(n)

↓ ↓ ↓ ↓

o(n) ≡ o0
(n) → o1

(n) → o2
(n) oL(n )

(n)

 (2) 

Here, state transitions 

€ 

(st−1
(n) → st

(n) ) are governed by the discrete transition 
probability 

€ 

Tst−1(n )st(n ) , while the “emission” of observables from each state 

€ 

(st
(n) → ot

(n) )  is 

governed by the continuous emission probability 

€ 

ϕ(ot
(n) | est(n ) ).  As an alternative to using 

the transition matrix T as a model parameter, one could instead use the rate matrix K 
related by T = eKτ. 

The initial state distribution ρ(n) (which may itself be a function of the stationary 
distribution π of T) simply reflects our knowledge of the initial conditions of the 
experiment that collected data o(n).  In the case that the experiment was prepared in 
equilibrium, ρ corresponds to the equilibrium distribution π of the model transition matrix 
T.  However, if the experiment was started out of equilibrium, perhaps restricted to some 
subset of states, then the prior might reflect simple ignorance as to which state the system 
initially started in by assigning each state in this subset an equal probability.  Here, we 
presume that either ρ is known a priori, or that it is a function of the equilibrium 
distribution π determined by T. 

The Markov property of HMMs prescribes that the probability that a system 
originally in state i at time t is later found in state j at time t + 1 is dependent only on 
knowledge of the state i, and given by the corresponding matrix element Tij of the (row-
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stochastic) transition matrix T. 

The probability that a particular value o of the observable is measured is 
dependent only on the current state s, and given by some model of the observable 
distribution for this state φ(o|es) parameterized by observable emission parameters e. 

For example, in the applications to force spectroscopy described in this paper, the 
observable denotes the measured force exerted on a bead in an optical trap, and the model 
is taken to be a simple Gaussian distribution parameterized by e ≡ {µ,σ2}: 

€ 

ϕ(o | e) =ϕ(o |µ,σ 2 ) =
1
2πσ

exp − 1
2
(o−µ)2

σ 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ . (3) 

Given the HMM process specified in Eq. 1, the probability of observing the data 
O given the model parameters Θ is therefore 

€ 

P(O |Θ) = ρs0
(n )ϕ(o0

(n) | es0(n ) )
n=1

N

∏
s
∑ Ts ( t−1)(n ) st

(n )ϕ(o0
(n) | est(n ) )

t=1

L(n )

∏  (4) 

where the sum over hidden state histories S is shorthand for 

€ 

≡
S
∑ ⋅⋅⋅

s0
(1)=1

M

∑ ⋅⋅⋅
s
L(1)
(1) =1

M

∑
s
L(N )
(N ) =1

M

∑ .  (5) 

6.3.2  Maximum likelihood hidden Markov model (MLHMM) 

The standard approach to construct an HMM from observed data is to compute 
the maximum likelihood estimator (MLE) for the model parameters Θ, which maximize 
the probability of the observed data O given the model, 

€ 

ˆ Θ = argmax
Θ
P(O |Θ)  (6) 

Once the MLE parameters Θ are determined, the most likely hidden state history 
that produced the observations O can be determined using these parameters: 

€ 

ˆ S = argmax
S

P(S |O, ˆ Θ )  (7) 

6.3.3  Bayesian hidden Markov model (BHMM) 

Instead of simply determining the model that maximizes the likelihood of 
observing the data O given the model parameters Θ, we can make use of Bayes’ theorem 
to compute the posterior distribution of model parameters given the observed data: 

€ 

P(Θ |O)∝P(O |Θ)P(Θ)  (8) 

Here, P(Θ) denotes a prior distribution that encodes any a priori information we 
may have about the model parameters Θ.  This might include both physical constraints 
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(such as ensuring the transition matrix satisfy detailed balance) and prior rounds of 
inference from other independent experiments. 

Making use of the likelihood (Eq. 4), the model posterior is then given by, 

€ 

P(Θ |O)∝P(Θ)× ρs0
(n )ϕ(o0

(n) | es0(n ) )
n=1

N

∏
S
∑ Tst−1(n )st(n )ϕ(ot

(n) | est(n ) )
t=1

L(n )

∏  (9) 

Drawing samples of Θ from this distribution will, in principle, allow the 
confidence with which individual parameters and combinations thereof are known, given 
the data (and subject to the validity of the model of Eq. 1 in correctly representing the 
process by which the observed data is generated).  However, due to the sum over all 
hidden state histories S appearing in the posterior (Eq. 9), direct sampling of the model 
parameters Θ is difficult.  Instead, we take the approach of introducing the state histories 
S as an auxiliary variable, sampling from the augmented posterior 

€ 

P(Θ,S |O)∝P(Θ)× ρs0
(n )ϕ(o0

(n) | es0(n ) )
n=1

N

∏ Tst−1(n )st(n )ϕ(ot
(n) | est(n ) )

t=1

L(n )

∏  (10) 

If we presume the prior is separable 

€ 

P(Θ) ≡ P(T)P(E) (11) 

we can sample from the augmented posterior (Eq. 10) using the framework of Gibbs 
sampling [16], in which the augmented model parameters are updated by sampling from 
the conditional distributions, 

€ 

P(S |T,E,O)∝ ρso
(n )ϕ(o0

(n) | eso(n ) )
n=1

N

∏ Tst−1(n )st(n )ϕ(ot
(n) | est(n ) )

n=1

N

∏

P(T |E,S,O) = P(T |S)∝P(T) Tst−1(n )st(n )
t=1

L

∏
n=1

N

∏

P(E |S,T,O) = P(E |S,O)∝P(E) ϕ(ot
(n) | est(n ) )

t=0

L

∏
n=1

N

∏

 (12) 

The equalities on the second and third lines reflect the conditional independence of the 
hidden Markov model defined by Eq. 1.  When only the model parameters Θ ≡ {T,E} or 
the hidden state histories S are of interest, we can simply marginalize out the 
uninteresting variables by sampling from the augmented joint posterior for {T, E, S} and 
examining only the variables of interest.  In addition, the structure of the Gibbs sampling 
scheme above allows individual components (such as the observable distribution model 

€ 

ϕ(o | e) or transition probability matrix T to be modified without affecting the structure 
of the remainder of the calculation. 

6.4  Bayesian Experimental Design 

The Bayesian treatment equips us with both a model of the parameters given data 
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(Eq. 9) and a model of the data given the parameters (Eq. 4), allowing an experimenter to 
use prior knowledge or preliminary experimental data to model the outcome of new 
experiments, and how the collection of additional experimental data can be expected to 
reduce model uncertainties.  For example, suppose we have conducted an experiment ε1, 
which yielded data O1.  Using the information from this experiment, we can model the 
probability that a yet-to-be- performed experiment ε2 will yield data O2, 

€ 

P(O2 |ε2,{O1,ε1}) = dΘP(O2 |ε2,Θ)∫ P(Θ | {ε1,O1}) 

As a simple illustration of the utility in experimental design, we assume that a prior 
observation has been made to produce observed dataset O1, and that the distribution 
P2(O2|Θ) describes the probability of observing some data O2 (from a potentially 
different observable) given the model parameters Θ.  Based on the information gathered 
from the first observation O1, the expected information content of the second experiment 
to collect O2 can be written as 

€ 

E[I(O2 |O1)]= H[P1(Θ1 |O1)]− dO2H[P2 (Θ2 |O2 ,O1)]∫ dΘ1P2 (O2 |Θ1)P1(Θ1 |O1)∫   (13) 

where H[P(Θ)]≡−∫dΘP(Θ)lnP(Θ) denotes the Shannon entropy or uncertainty of a 
distribution P(Θ).  While direct computation of Eq. 13 can be challenging, approaches 
have been developed to compute useful approximations for use in Bayesian experimental 
design [20]. 

6.5  Algorithms 

Below, we outline the algorithms we use for generating an initial model subject to 
prior constraints, computing a maximum-likelihood hidden Markov model (MLHMM), 
and sampling from the Bayesian posterior (BHMM).  A Markov model requires that each 
time point is independent and uncorrelated from the previous time point.   Therefore, the 
data must be sampled at a time interval greater than the relaxation time of the probe, such 
as the bead in an optical trap.  This relaxation time can be determined experimentally by 
determining the corner frequency of the system from a power spectrum or, alternatively, 
autocorrelation function of the signal [21]. 

6.5.1  Generating an initial model 

To initialize either computation of the MLHMM or sampling from the posterior 
for the BHMM, an initial model that respects any constraints imposed in the model prior 
P(Θ) must be selected.  Here, we employ a Gaussian observable distribution model for 
φ(o|e) (Eq. 3) and enforce that the transition matrix T satisfy detailed balance.  Physical 
systems that are not driven by an external force or energy reservoir should satisfy detailed 
balance [22], and its use has been shown to provide a large reduction in transition matrix 
uncertainty in data-poor conditions [23].  Detailed balance specifies that πiTij = πj Tji for 
all i, j, where π is the equilibrium distribution of the row-stochastic transition matrix T. 

6.5.2  Observable parameter estimation 

We first initialize the observed distributions of each state by fitting a Gaussian 
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mixture model with M states to the pooled observed data O, ignoring temporal 
information: 

€ 

P(O | π,E) = πmϕ(ot
(n) |µm ,σ m

2 )
m=1

M

∑
t=0

L(n )

∏
n=1

N

∏   (14) 

where the state observable emission probability vector E ≡ {e1,...,eM} and em ≡ {µm,σm
2} 

with µm denoting the observable mean and σm
2 the variance for state m for the Gaussian 

observable model.  The vector π is composed of equilibrium state populations {π1,…,πM} 

with πm ≥ 0 and 

€ 

πm =1
m=1

M

∑ . 

A first approximation to π and E is computed by pooling and sorting the observed 
ot

(n), and defining M indicator functions hm(o) that separate the data into M contiguous 

regions of the observed range of o of roughly equal population.  Let 

€ 

Nm ≡ hm (ot
(n) )

t=1

L(n )

∑
n=1

N

∑  

denote the total number of observations falling in region m, and 

€ 

Ntot = Nm
m=1

M

∑ .  The initial 

parameters are then computed as: 

€ 

πm = Nm /Ntot

µm = Nm
−1 ot

(n)hm
t=0

L(n )

∑
n=1

N

∑ (ot
(n) )

 (15) 

€ 

σ m
2 = Nm

−1 (ot
(n) −µm )

2hm
t=0

L(n )

∑
n=1

N

∑ (ot
(n) )  (16) 

This approximation is then improved upon by utilizing the expectation-
maximization procedure described by Bilmes [24]. 

€ 

ʹ′ π m = Ntot
−1 χm

t=0

L(n )

∑
n=1

N

∑ (ot
(n) ,E,π )

ʹ′ µ m = ( ʹ′ π mNtot )
−1 ot

(n)χm
t=0

L(n )

∑
n=1

N

∑ (ot
(n),E,π )

ʹ′ σ m
2 = ( ʹ′ π mNtot )

−1 (ot
(n) − ʹ′ µ m )

2χm
t=0

L(n )

∑
n=1

N

∑ (ot
(n) ,E,π )

 (17) 

where the function χm(o,E,π) is given by the fuzzy membership function: 

€ 

χm (o,E,π ) =
πmϕ(o | em )

π lϕ(o | el )
l=1

M

∑
 (18) 
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This iterative procedure is terminated at iteration j when the change in the parameters 
{π,µ,σ2} falls below a certain relative threshold, such as ||π[j] − π[j−1]||/||π[j]|| < 10−4. 

6.5.3  Transition matrix estimation 

Once initial state observable emission parameters E are determined, an initial 
transition matrix is estimated using an iterative likelihood maximization approach that 
enforces detailed balance [25].  First, a matrix of fractional transition counts C ≡ (cij) is 
estimated using the membership function: 

€ 

cij = χ i (ot−1
(n) ,E,π )χ j (ot

(n) ,E,π )
t=1

L(n )

∑
n=1

N

∑   (19) 

A symmetric M × M matrix X ≡ (xij) is initialized by 

€ 

xij = x ji = cij + cji  (20) 

and a vector of row sums 

€ 

xi∗ = xij
j=1

M

∑ .  (21) 

Then, the iterative procedure described in Algorithm 1 of [25] is applied.  For each 
updated iteration, we first update the diagonal elements of X: 

€ 

ʹ′ x ii =
cii (xi∗ − xii )

ci∗ − cii

 (22) 

where 

€ 

ci∗ = cij
j=1

M

∑  (23) 

followed by the off-diagonal elements: 

€ 

ʹ′ x ij = ʹ′ x ji =
−b + b2 − 4ac

2a
 (24) 

where the quantities a, b, and c are computed from X and C as 

€ 

a ≡ ci∗ − cij + cj∗ − cji
b ≡ ci∗(xj∗ − xji )+ cj∗(xi∗ − xji )− (cij + cji )(xi∗ − xij + xj∗ − xji )
c ≡ −(cij + cji )(xi∗ − xij )(xj∗ − xji )

  (25) 

Once a sufficient number of iterations j have been completed to compute a stable 
estimate of X (such as the relative convergence criteria ||X[j]−X[j−1]||/||X[j]||<10−4, the 
maximum likelihood transition matrix estimate T is computed as 
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€ 

Tij =
xij
xi

 (26) 

Note that the equilibrium probability vector π computed during the Gaussian mixture 
model fitting is not respected during this step. 

6.5.4  Fitting a maximum likelihood HMM 

The HMM model parameters Θ ≡ {T,E} are fit to the observed data O through 
use of the expectation-maximization (EM) algorithm [26].  This is an iterative procedure, 
where the model parameters are subsequently refined through successive iterations. 

During each iteration, the Baum-Welch algorithm [13] is used to compute, for 
each trace n, Ξ(n) ≡ (ξtij

(n)), which represents the probability that the system transitions 
from hidden state i at time t − 1 to hidden state j at time t, and γti(n), the probability that 
the system occupied state i at time t.  This is accomplished by first executing the forward 
algorithm, which proceeds (suppressing superscripts) as 

€ 

α tj =

pjϕ(o0 | ej ) t = 0

ϕ(ot | ej ) α( t−1)iTij
i=1

M

∑ t =1,...,L

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 (27) 

followed by the backward algorithm, 

 

€ 

βti =

1 t = L

Tijϕ(ot+1 | ej )β(t+1) j
j=1

M

∑ t = (L −1),...,0

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 (28) 

The L × M × M matrix Ξ is then computed for t = 0,...,(L−1) as 

€ 

ξ tij =α tiϕ(ot+1 | ei )Tijβ( t+1) j / αTi
i=1

M

∑  (29) 

€ 

γ ti = ξ tij
j=1

M

∑  (30) 

In practice, the logarithms of these quantities are computed instead to avoid numerical 
underflow.  

The aggregate matrix of expected transition counts C ≡ (cij) is then computed 
from the Ξ(n) computed for all traces as 

€ 

cij = ξ tij
(n)

t=0

L(n )−1

∑
n=1

N

∑   (31) 
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This count matrix is used to update the maximum-likelihood transition matrix T using the 
method of Prinz et al. [25] described in the previous section. 

The state observable distribution parameters E are then updated from the γti, using all 
trace data, as 

€ 

ʹ′ µ i =

ot
(n)γ ti

(n)

t=0

L

∑
n=1

N

∑

γ ti
(n)

t=0

L(n )

∑
n=1

N

∑

ʹ′ σ i
2 =

(ot
(n) − ʹ′ µ i )

2γ ti
(n)

t=0

L(n )

∑
n=1

N

∑

γ ti
(n)

t=0

L(n )

∑
n=1

N

∑

 (32) 

Once the model parameters have been fitted by iteration of the above update procedure to 
convergence (which may only converge to a local maximum of the likelihood), the most 
likely hidden state sequence can be determined given the observations O and the MLE 
model 

€ 

ˆ Θ  using the Viterbi algorithm [14].  Like the forward-backward algorithm 
employed in the Baum-Welch procedure, the Viterbi algorithm also has a forward 
recursion component that is applied independently to each trace n (again suppressing 
superscripts), 

€ 

ε jt =
ρ jϕ(ot | ej ) t = 0
ϕ(ot | ej )maxi εi( t−1)Tij t =1,...,L

⎧ 
⎨ 
⎩ 

Φ jt =
1 t = 0
argmaxi εi( t−1)Tij t =1,...,L
⎧ 
⎨ 
⎩ 

  (33) 

as well as a reverse reconstruction component to compute the most likely state sequence 

€ 

ˆ S , 

€ 

ˆ s t =
arg maxi εit t = L
Φ ˆ s t+1 ( t+1) t = (L −1),...,0
⎧ 
⎨ 
⎩ 

 (34) 

6.5.5  Sampling from the posterior of the BHMM 

Sampling from the posterior of the BHMM (Eq. 9) proceeds by rounds of Gibbs 
sampling, where each round consists of an update of the augmented model parameters 
{T,E,S} by sampling 

€ 

ʹ′ S |T,E,O ~ P( ʹ′ S |T,E,O)
ʹ′ T | ʹ′ S ~ P( ʹ′ T | ʹ′ S )

ʹ′ E | ʹ′ S ,O ~ P( ʹ′ E | ʹ′ S ,O)
 



	
   102	
  

where the conditional probabilities are given by Eq. 12. 

 

6.5.6  Updating the hidden state sequences 

In the first part of each sampling round, we use a modified form of the Viterbi process to 
generate an independent sample of the hidden state history S given the transition 
probabilities T, state observable distribution parameters E, and observed data O.  Like the 
Viterbi scheme, a forward recursion algorithm (Eq. 33) is applied to each trace o(n) 
separately, but instead of computing the most likely state history on the reverse pass, a 
new state history is drawn from the distribution P(s|o,T,E). The forward recursion is 
identical to the Viterbi case (Eq. 33): 

€ 

εjt =
ρ jϕ(ot | ej ) t = 0
ϕ(ot | ej )maxi εi( t−1)Tij t =1,...,L
⎧ 
⎨ 
⎩ 

 (35) 

The hidden state sequence st corresponding to observation trace o(n) is then sampled 
according to P(st|st+1, . . . , sL) in order from t = L down to t = 0: 

€ 

P(st | st+1,..., sL )∝
εst t t = L
εst tTst st+1 t = (L −1),...,0
⎧ 
⎨ 
⎩ 

 (36) 

6.5.7  Updating the transition probabilities 

If no detailed balance constraint is used and the prior P(T) is Dirichlet in each 
row of the transition matrix T, it is possible to generate an independent sample of the 
transition matrix from the conditional distribution P(T′|S′) by sampling each row of the 
transition matrix from the conjugate Dirichlet posterior using the transition counts from 
the sampled state sequence S′ [23].  However, because physical systems in the absence of 
energy input through an external driving force should satisfy detailed balance, we make 
use of this constraint in updating our transition probabilities, since this has been 
demonstrated to substantially reduce parameter uncertainty in the data-limited regime 
[23]. 

The transition matrix is updated using the reversible transition matrix sampling 
scheme of Noé [23, 27].  Here, an adjusted count matrix C ≡ (cij) is computed using the 
updated hidden state sequence S′: 

€ 

cij = bij + δi,sn ( t−1)δ j ,snt
t=1

L

∑
n=1

N

∑  (37) 

where the Kronecker δi,j = 1 if i = j and zero otherwise, and B ≡ (bij) is a matrix of prior 
pseudocounts, which we take to be zero following the work of Noé et al. [10].  Using the 
adjusted count matrix C, a Metropolis-Hastings Monte Carlo procedure [28] is used to 
update the matrix and produce a new sample from P(T′ |S′).  Two move types are 
attempted, selected with equal probability, and 1000 moves are attempted to generate a 
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new sample T′ that is approximately uncorrelated from the previous T.  Prior to starting 
the Monte Carlo procedure, the vector of equilibrium probabilities for all states π is 
computed according to 

€ 

Tπ = π  (38) 

The first move type is a reversible element shift.  A pair of states (i,j), i ≠ j , are selected 
with uniform probability, and a random number ∆ is selected uniformly over the interval 

€ 

Δ ∈ max −Tii ,−
π j

π i

Tjj

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,Tij

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

The changed elements in the proposed transition matrix T′ are then given by: 

€ 

ʹ′ T ij = Tij −Δ ; ʹ′ T ji = Tji −
π i

π j

Δ

ʹ′ T ii = Ti +Δ ; ʹ′ T jj = Tjj +
π i

π j

Δ
 

This move is accepted with probability 

€ 

Paccept (T→ ʹ′ T ) =min 1,
( ʹ′ T ij )

2 + ( ʹ′ T ji )
2

(Tij )
2 + (Tji )

2 ×
ʹ′ T ii

Tii

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

cii ʹ′ T ij
Tij

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

cij
ʹ′ T jj

Tjj

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

c jj
ʹ′ T ji

Tji

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

c ji⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
 (39) 

This move will leave the vector of stationary probabilities π unchanged. 

The second move type is a row shift.  A row i of T is selected with uniform 
probability, and a random number α chosen uniformly over the interval 

€ 

α ∈ 0, 1
1−Tii

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

and used to update row i of T according to 

€ 

ʹ′ T ij =
αTij j =1,...,M , j ≠ i
α(Tii −1)+1 j = i
⎧ 
⎨ 
⎩ 

 (40) 

This move is accepted with probability 

€ 

Paccept (T→ ʹ′ T ) =min 1,α (M −2)α (ci∗ −cii ) 1−α(1−Tii )
Tii

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

cii⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
 (41) 

The row shift operation will change the stationary distribution of π′, but it may be 
efficiently updated:  



	
   104	
  

€ 

ʹ′ π =
π i

π i +α(1−π i )
; ʹ′ π j =

απ j

π i +α(1−π i )
 

Since this update scheme is incremental, it will accumulate numerical errors over time 
that cause the updated π to drift away from the stationary distribution of the current 
transition matrix.  To avoid this, π is recomputed from the current sample of the transition 
matrix in regular intervals (here, every 100 sampling steps). 

6.5.8  Updating the observable distribution parameters 

Following the update of the transition matrix T, the observable distribution 
parameters E are updated by sampling E from the conditional probability P(E′|S′,O).  The 
conditional probability for the observable distribution parameters for state m, denoted em, 
is given in terms of the output model φ(o|e) by Bayes’ theorem: 

€ 

P(E |O,S) = ϕ(ont | est(n )
t=0

L(n )

∏
n=1

N

∏
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
P(E)   (42) 

An important choice must be made with regards to the prior, P(E). If the prior is chosen 
to be composed of independent priors for each state, as in 

€ 

P(E) = P(em )
m=1

M

∏  (43) 

then the full BHMM posterior (Eq. 9) will be invariant under any permutation of the 
states.  This behavior might be undesirable, as the states may switch labels during the 
posterior sampling procedure; this will require any analysis of the models sampled from 
the posterior to account for the possible permutation symmetry in the states.  On the other 
hand, breaking this symmetry (e.g., by enforcing an ordering on the state mean 
observables) can artificially restrict the confidence intervals of the states, which might 
additionally complicate data analysis. 

Here, we make the choice that the prior be separable (Eq. 43), which has the 
benefit of allowing the conditional probability for E (Eq. 42) to be decomposed into a 
separate posterior for each state.  For each state m, collect all the observations ot

(n) whose 
updated hidden state labels st

(n)′ = m into a single dataset 

€ 

o ≡ on{ }n=1

Nm , where Nm is the total 
number of times state m is visited, for the purposes of this update procedure.  Then, the 
observable parameters e for this state are given by 

€ 

P(e | o) = P(o | e)P(e) = ϕ(on | e)
n=1

Nm

∏
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ P(e)  (44) 

In the application presented here, we use a Gaussian output model (Eq. 3) for the state 
observable distributions P(o|e), where e ≡ {µ,σ2}, with µ the state mean observable and σ2 
the variance (which will include both the distribution of the observable characterizing the 
state and any broadening from measurement noise).  Other models (including 
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multidimensional or multimodal observation models) are possible, and require replacing 
only the observation model φ(o|e) and corresponding prior P(e). 

We use the (improper) Jeffreys prior [29] which has the information-theoretic 
interpretation as the prior that maximizes the information content of the data [30], 
(suppressing the state index subscript m), 

€ 

P(e)∝σ −1  (45) 

which produces the posterior 

€ 

P(e | o)∝σ −(N+1) exp − 1
2σ 2 (on −µ)2

n=1

N

∑
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (46) 

The conditional distribution of the mean µ is then given by 

€ 

P(µ |σ 2,o) ≡ P(µ,σ 2 | o)
dµP(µ,σ 2 | o)∫

∝ exp −
1

2(σ 2 /N )
(µ − ˆ µ )2⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (47) 

where 

€ 

ˆ µ  is the sample mean for o, the samples in state m, 

€ 

ˆ µ ≡
1
N

on
n=1

N

∑  (48) 

This allows us to update µ according to 

  

€ 

ʹ′ µ ~ N ( ˆ µ ,σ 2 /N ) (49) 

The conditional distribution of the variance σ2 is given by 

€ 

P(σ 2 | µ,o) =
p(µ,σ 2 | o)
dσ 2p(µ,σ 2 | o)∫

∝σ −(N+1) exp −
1

2σ 2 (on −µ)2

n=1

N

∑
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

∝σ −(N+1) exp −
N ˆ σ 2

2σ 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

 (50) 

where the quantity 

€ 

ˆ σ 2 , which is not in general identical to the sample variance, is given 
by 

€ 

ˆ σ 2 ≡
1
N

(on −µ)2

n=1

N

∑  (51) 

A convenient way to update σ2|µ,o is to sample a random variant y from the chi-square 
distribution with N − 1 degrees of freedom, 
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€ 

y ~ χ 2 (N −1)   (52) 

and then update σ2 as 

€ 

ʹ′ σ 2 =
N ˆ σ 2

y
 (53) 

Note that µ and σ2 can be updated in either order, but the updated values of µ or σ2 must 
be used in sampling the not-yet-updated σ2 or µ, and vice-versa. 
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