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Abstract

Virtual assistants have become fixtures in everyday settings, but
most research focuses on their development rather than their
use following deployment. To facilitate study of their use in
office settings, we introduce OfficeDial, a multimodal dataset
containing audio recordings, transcriptions, eye tracking data,
and screen recordings from conversations between humans and
virtual assistants in office environments. Conversations are
paired with physical and behavioral measures of cognitive load.
We study the associations between verbal behavior and noise
level and reveal key relationships between verbal redundancy,
disfluency, and noise level. We make our new dataset available
to interested researchers to inspire further exploration.
Keywords: cognitive load, conversational agents, dataset

Introduction
Virtual assistants are pervasive across day-to-day settings. The
ways in which individuals interact with these agents and their
motivations for doing so may vary depending on environ-
mental factors such as surrounding company (e.g., exchanges
alone in the home may differ from those in a crowded ele-
vator), background task requirements (e.g., exchanges while
folding laundry may differ from those while driving on a busy
street), and ambient noise level (e.g., exchanges in a library
may differ from those in a restaurant). The latter may hold
strong implications for office use, since although noise level
may ebb and flow throughout the day it is rare to experience
long periods of silence. Noise level is known to negatively cor-
relate with task performance (Sundstrom, Town, Rice, Osborn,
& Brill, 1994), and it follows that it may negatively influence
virtual agent use in office environments.

However, despite the extensive work undertaken to develop
virtual agents for a wide range of tasks (McTear, Callejas,
& Griol, 2016; H. Chen, Liu, Yin, & Tang, 2017; Sarikaya,
2017; Gao, Galley, & Li, 2019), comparatively less work has
examined their actual use following deployment, and how that
use may be affected by factors associated with the realities of
daily living (Luger & Sellen, 2016). It is not known whether
and how noise level impacts virtual assistant use and corre-
sponding cognitive load in the office, although common sense
suggests an inverse relationship (Sundstrom et al., 1994). This
lack of understanding may contribute to negative attitudes to-
wards virtual assistants in the workplace, slowing adoption
(Hornung & Smolnik, 2021). A barrier to analyzing use of de-
ployed systems has been the absence of available, relevant data
logging interactions between virtual agents and individuals

performing workplace tasks, and corresponding measurements
of cognitive load.

We set out to fill this gap, by introducing a dataset of
recorded, transcribed conversations between a virtual agent
and 48 human subjects performing everyday workplace tasks.
Each conversation is paired with quantitative multimodal mea-
surements of cognitive load. Our contributions are as follows:
• We systematically collect data across multiple modalities

and numerous workplace tasks at varying noise levels, with
and without the aid of a virtual assistant, from 48 partici-
pants using a randomized experimental design.

• We segment and transcribe each interaction to facilitate
downstream language analyses.

• We perform statistical analyses to compare facets of cogni-
tive load between conditions, focusing on linguistic metrics.
It is our hope that this dataset will facilitate much-needed

analyses of workplace virtual assistant interactions, positively
influencing the development of future systems. We present the
findings from our experiments as a benchmark to stimulate
additional, more complex analyses of cognitive load. In the
following sections we review and compare with other prior
work in this domain, describe our data collection, experimental
design, and linguistic analysis methods, report our findings,
and establish key takeaways to guide future research.

Background
Although prior work has examined dialogue with virtual agents
and workplace cognitive load separately, no datasets exist to
facilitate joint accomplishment of those goals. We review
relevant prior work for both.

Dialogue with Virtual Agents
Intelligent virtual assistants (IVAs) are ubiquitous in many
facets of life and are commonly used to improve productivity
across various domains (Eberhart, Bansal, & Mcmillan, 2020;
Kaelin, Valizadeh, Salgado, Parde, & Khetani, 2021). High-
quality datasets documenting their use may aid in our under-
standing of their roles in our lives. However, publicly available
datasets in this area are limited in their size, linguistic diversity,
annotation, and domain coverage (Peskov et al., 2019; Farzana,
Valizadeh, & Parde, 2020; Valizadeh, Ranjbar-Noiey, Caragea,
& Parde, 2021). Previously, Rastogi, Zang, Sunkara, Gupta,
and Khaitan (2020) presented the Schema-Guided Dialogue
(SGD) dataset consisting of over 20k annotated multi-domain,
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task-oriented conversations between a human and a virtual
assistant. These conversations cover twenty domains, rang-
ing from everyday tasks to more domain-specific tasks like
banking assistance. Taskmaster-1 and Taskmaster-2 are two
other datasets that were collected using a Wizard of Oz (WoZ)
framework in which crowdsourced workers interacted with
human operators playing the “virtual assistant” (Byrne et al.,
2019). Taskmaster-1 and Taskmaster-2 contain 13k and 17k
dialogues, respectively, in the domains of restaurants, food
ordering, movies, hotels, flights, music, and sports.

In addition to these large, general datasets, Eric and Man-
ning (2017) proposed a multi-turn and multi-domain task-
oriented dialogue dataset with 3k conversations in three do-
mains appropriate for an in-car assistant, including calendar
scheduling, weather information retrieval, and point of interest
navigation. There are also other available datasets in the do-
mains of movies (Radlinski, Balog, Byrne, & Krishnamoorthi,
2019; Merdivan et al., 2020) and travel and telecommunica-
tions (Beaver, Freeman, & Mueen, 2020). However, there
are currently no available datasets collected from workplace
environments with varying noise levels. Grover, Rowan, Suh,
McDuff, and Czerwinski (2020) presented a productivity vir-
tual agent which helps users schedule and block out time on
their calendar to focus on important tasks. They evaluated the
performance of this agent through a three-week, within sub-
jects study design with 40 participants, across different work
roles in a large organization. Kim, de Melo, Norouzi, Bruder,
and Welch (2020) investigated the effects of IVA embodi-
ment on collaborative decision making, in which participants
performed a task in three conditions: (1) alone, (2) with a
disembodied virtual assistant, and (3) with an embodied as-
sistant. Recently, Li and Yang (2021) also introduced an IVA
for the manufacturing industry to handle a variety of complex
services, such as order processing and production execution.
They presented three scenarios to test the usability and flexi-
bility of the agent regarding the manufacturing environment.

Multimodal Cognitive Load Measurement
The underlying goal when using IVAs in the workplace is to
increase workers’ performance at office tasks, often by reduc-
ing their cognitive load and freeing them to focus more fully
on problems requiring their attention. This relationship be-
tween cognitive workload, or the quantified demand of a given
task on the mental resources to process information (F. Chen
et al., 2016), and performance has been found to take on an
inverted U-shape (Veltman & Jansen, 2005; Babiloni, 2019).
Measuring cognitive load is challenging; although numerous
techniques have been explored for doing so, the search for im-
proved measures remains an active area of research. Methods
proposed so far that attempt to estimate the cognitive load of
a given task include subjective, performance, behavioral, and
physiological measures (Sweller, van Merriënboer, & Paas,
2019). Given our focus on dialogue, we center our review on
behavioral measures from a linguistic perspective, and sub-
sequently leverage these measures in our work. To the best
of our knowledge, ours is the first work that focuses on ana-

lyzing the impact of noise on the behaviors associated with
workplace interactions with IVAs from this perspective.

Most prior work examining cognitive load using linguis-
tic measures has been done in the context of human-robot
interaction. For instance, Schwarz and Fuchs (2017) present
the design requirement, conceptual framework, and proof-of-
concept implementation of a system, Real-time Assessment
of Multidimensional User State (RASMUS), for evaluating
user performance as it pertains to workload, attentional focus,
and fatigue in real time. Sevcenko, Ninaus, Wortha, Moeller,
and Gerjets (2021) measure cognitive load using in-game met-
rics. In their study, users completed a given simulation and
rated their corresponding workload. The authors report these
subjective workload measures, and demonstrate that gaming
performance matches the proposed in-game metrics. Some
researchers have turned to wearable technology and physi-
ological sensors to measure workplace cognitive load. For
example, Giorgi et al. (2021) utilized wearable technologies
in place of laboratory technologies to assess mental workload,
stress, and emotional state of users during workplace tasks. In
similar work, Planke et al. (2021) developed a cyber-physical
human that provides affordable physiological sensors to mea-
sure cognitive load.

Our dataset includes physiological measurements paired
with transcribed dialogue and computed linguistic measures
of cognitive load, enabling use of this information in follow-
up studies. It is close in size and in its scope of cognitive
load measures to several other datasets focused on multimodal
cognitive load assessment. For example, ZuCo (Hollenstein et
al., 2018), ZuCo 2.0 (Hollenstein, Troendle, Zhang, & Langer,
2020), and CopCo (Hollenstein, Barrett, & Björnsdóttir, 2022)
contain eye tracking and electroencephalography (EEG) data
recorded from users reading natural sentences, and CoLoSS
(Herms, Wirzberger, Eibl, & Rey, 2018) contains speech under
cognitive load recorded in a learning task scenario. Altogether,
OfficeDial provides speech, transcriptions, eye tracking data,
and cognitive load measures based on linguistic behavior.

Methods
All of our data was collected from in-person experimental
participants conducting workplace tasks (Haghighat et al.,
2023). We note that while simulated office environments cre-
ated for lab-based data collection may differ in some ways
from actual office spaces, there is a high entry barrier to col-
lecting data from real office environments due to privacy and
intellectual property concerns. Because of this, many popu-
lar dialogue datasets, including but not limited to MultiWOZ
(Budzianowski et al., 2018), MMD (Saha, Khapra, & Sankara-
narayanan, 2018), and TreeDST (Cheng et al., 2020), fully or
partially simulate aspects of dialogue generation.

Data Collection
Participants. This work was approved by the University of
Illinois at Chicago’s Institutional Review Board (#2019–1185).
Forty-eight participants were recruited using flyers and social
media posts. Participants were screened to ensure eligibility
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based on age (at least 18 years old), auditory and visual acuity
(sufficient for typical computer and IVA use), physical ability
to use a computer, and English proficiency. Before the experi-
ment, all participants were briefed on the study and were asked
to complete the consent form and a demographic survey. Par-
ticipants ranged from 19 to 63 years old (M=26.1; SD=8.72)
and consisted of native and non-native English speakers with
different ethnic backgrounds. We surveyed participants on
current and prior IVA experience, and found that experience
varied widely: 22% of the participants stated that they never
used an intelligent virtual assistant in their daily lives, whereas
36% reported having interacted with the specific IVA platform
used in our study previously.

Apparatus. The study used the latest version of Microsoft
Cortana1 intelligent virtual assistant, and access to it was
provided through the Windows 10 built-in application installed
on a Dell desktop computer. Data collection was conducted
within a short time period (two months) to prevent the effect
of newer versions on users’ task performance. An external
microphone connected to the computer recognized the voice
commands used. Non-verbal (52 dBA) and verbal noises (60
dBA) were collected from our institution’s library and campus
cafe and were played via a Bluetooth loudspeaker. The speaker
was placed at a distance identical for all participants (∼150 cm).
The audio and screen were recorded during the experiment via
the Google Chrome built-in screen recorder.

An eye-tracking system (Dikablis Glasses 3, Ergoneers
GmbH2) was used to track and measure pupil dilation. The
D-lab Ergoneers recorded the index of cognitive activity (ICA)
at 60 Hz. The ICA, measured as a function of the number
of rapid changes in pupil dilation over a given time frame,
is known to be correlated with mental workload (Marshall,
2002). Participants’ survey responses were collected using a
10.5-inch tablet (Samsung Galaxy Tab S5e).

Task Scenarios. Three office task scenarios were developed,
and each included two sub-scenarios. We intentionally se-
lected simple, common office tasks that we expected partici-
pants to easily understand. Removing this aspect of the study
design would have reduced experimental control, making it
more difficult to conclude whether observed increases in cog-
nitive load originated from task characteristics themselves or
from (our variable of interest) introduced acoustic noise. The
tasks and sub-scenarios are defined here:
• Scenario 1: Asking an IVA to send an email.

– S1-1: Sending an email to [a fictional name] to ask for
feedback on a document sent previously.

– S1-2: Sending an email to [a fictional name] to follow up
on the previous email.

• Scenario 2: Asking an IVA to set up a timer/reminder.
– S2-1: Setting up a timer for 20 minutes.
– S2-2: Setting up a reminder to attend a meeting.

1https://www.microsoft.com/en-us/cortana
2https://www .ergoneers .com/en/mobile -eye -tracker

-dikablis-glasses-3/

Name OfficeDial ZuCo

Words 24,934 21,629
Sentences 3019 1107

Table 1: Dataset statistics for OfficeDial and ZuCo
(Hollenstein et al., 2018).

• Scenario 3: Asking an IVA to perform an internet search.
– S3-1: Searching the nearest location of a given target

store (e.g., UPS).
– S3-2: Searching the phone number of a given target loca-

tion (e.g., a university student center).
For subscenarios incorporating fictional names, participants
were assigned a random name from the fictional names: Kenny
Stone, Mehdi Lake, Dean Rice, Samantha Stevens, Kevin Silva,
Sarah Morgan, Alma Kerry, Luis Brady, and Maria Allison.
These names were selected for their diversity and ease of
pronunciation across varying linguistic backgrounds.

Experimental Design and Procedure. To investigate per-
formance and cognitive demand posed by interactions with an
IVA in a noisy environment, the study employed a 2 (system)
× 3 (noise level) design. The two systems were:
• System A: Performing tasks with the assistance of an IVA.
• System B: Performing tasks using only a keyboard and

mouse.
Although comparisons of Systems A and B pose interesting
opportunities for non-linguistic exploration (e.g., the collected
ICA measures), they naturally offer limited means for between-
system linguistic comparison. Thus, we focus our analysis in
this paper on System A conditions. We selected three noise
levels representing different noise conditions that might exist
in an office-like environment:
• N1: Silence
• N2: Non-verbal noise
• N3: Verbal noise
All participants practiced the tasks (the six reported scenarios)
before starting the experiment. They were informed that the
goal was to achieve a task completion time as short as possible
and an error rate as low as possible. The main experiment con-
sisted of two sessions: one session to perform tasks via System
A, and another session to perform tasks via System B. The
order of the sessions was counterbalanced across participants.
The order of tasks in each session was also counterbalanced
to avoid learning and order effects.

48 participants were paid for 90 minutes of participation.
Since all participants completed all conditions (although in
varying orders), this resulted in 48 recordings for each (sys-
tem) × (noise level) condition. The System A conversations
were automatically transcribed, and the transcripts were man-
ually quality-checked and edited for correctness by a member
of the study team. Each recorded interaction was matched to
its corresponding physical measures of cognitive load. In Ta-
ble 1, we present our dataset statistics in comparison to ZuCo
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(Hollenstein et al., 2018), a multimodal cognitive load assess-
ment dataset collected from users reading natural sentences.

Data Analysis

Following data collection, we employed analysis techniques
to further understand the recorded and transcribed conversa-
tions. We were primarily interested in the extent to which the
collected data could provide evidence, either in support of or
contrary to, the hypothesis that as noise level increased, so did
users’ cognitive loads when performing their tasks. Answering
this question could guide future roles and technical develop-
ment of workplace virtual assistants. We focused specifically
on analysis using linguistic measures of cognitive load, leaving
other analyses possible with this dataset (e.g., detailed inves-
tigations of saccades and pupil dilation) outside the present
scope. Likewise, more complex comparisons of user behavior
during interactions with different systems remain out of scope,
with our study focusing on System A interactions.

Linguistic measures of cognitive load are behavioral mea-
sures that provide quantifiable assessment of voluntary user
activity, as observed via spoken or written language while
performing a given task. Some linguistic features associated
with cognitive load in prior work include measures of spoken
disfluency, articulation rate, and filler and pause rates (Farzana,
Deshpande, & Parde, 2022). We selected a variety of measures
that are relevant for assessing characteristics of utterances sit-
uated in two-party dialogue, summarized in the following
subsections. Since our dataset contains conversations between
a user and an IVA, the frequencies of some categories of words
(e.g., emotion words, swear words, and words pertaining to
cognition) were extremely low, leading us to exclude mea-
surements that relied on those words. Broadly construed, our
linguistic measures assessed disfluency behaviors, verbosity,
and language complexity.

Disfluency Count. Pauses, repetitions, and corrections do
not correspond to specific meaning but are often present in
spoken dialogue, and their prevalence may correlate with cog-
nitive load (Berthold & Jameson, 1999; Müller, Großmann-
Hutter, Jameson, Rummer, et al., 2001; Khawaja, Chen, &
Marcus, 2014) or other cognitive disfunction (Farzana et al.,
2022). Unfortunately, these markers of verbal disfluency are
often absent from transcripts, making empirical studies of
these behaviors challenging (Umair, Mertens, Albert, & de
Ruiter, 2022). In conversations with IVAs, dialogues exhibit
many repetitions and self-corrections of phrases and utter-
ances. We group different forms of verbal disfluency into a
single category ([REP]) and manually insert these disfluency
tags into the transcripts, shown in the following examples:

Hi Cortana [REP] Hi Cortana [REP] Hi Cortana [REP]
Hi Cortana can you send an email.

Hey Cortana. [REP] Hey Cortana. Set up a reminder.
[REP] Hey Cortana. [REP] Hey Cortana. Set up a
reminder.

Since it has previously been observed that increased verbal
disfluency is associated with higher cognitive load (Berthold
& Jameson, 1999; Müller et al., 2001; Khawaja et al., 2014),
we anticipated that disfluency frequency would increase with
noise level (N1 → N2 → N3) in our dataset.

Verbosity. Variations in cognitive load may also manifest as
changes in verbosity, often as a result of individuals using lan-
guage as a coping mechanism to manage mental load (Sexton
& Helmreich, 2000). Prior work specifically has found ev-
idence that increased verbosity, observable as greater word
count and average number of words per sentence, correlates
with increased cognitive load. We compute two measures of
verbosity for each conversation:
• Word Count (WC): The number of words spoken by the

human participant while performing their task.
• Words Per Sentence (WPS): The average number of words

per sentence spoken by the human performing their task.
We anticipated that the trends observed in prior work would

hold true in our dataset as well.

Language Complexity. Finally, variations in cognitive load
may be associated with changes in language complexity. For
example, individuals may alter their word choice or vary
their sentence structure due to external distraction or insuf-
ficient mental processing resources, both of which may in-
fluence verbal fluency or recall (Khawaja et al., 2014). A
wide range of measures have been proposed for evaluating
language complexity, including but not limited to type-token
ratio (Chotlos, 1944; Templin, 1957; Ure, 1971), Gunning Fog
Index (Gunning, 1952), Flesch-Kincaid Grade (Flesch, 1948),
and SMOG Index (Laughlin, 1969). We describe our selected
measures of language complexity below. The measures of
language complexity fall under two broad categories: type-
token ratio provides an estimate of lexical variety or verbal
redundancy, whereas the Gunning Fog Index, Flesch-Kincaid
Grade, and SMOG Index capture lexical complexity.

Type-Token Ratio (TTR). The simplest and most common
measure of lexical variety is type-token ratio (TTR). TTR is
the ratio of unique words over total words in the given text:

TTR =
Nunique words

Nwords
(1)

We expected TTR to decrease as the noise level increased.

Lexical Complexity. In contrast to TTR which operates
without regard to word form or content, several measures con-
sider lexical complexity to be dependent on word length. The
Gunning Fog Index (Gunning, 1952) is one such measure that
originally sought to estimate the years of formal education
required to comprehend a given text, based on the ratio of com-
plex words (assumed to be those with three or more syllables)
to words in general:

GFI = 0.4×
Nwords

Nsentences
+100

Ncomplex words

Nwords
(2)
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Metric N1 N2 N3

Disf.† 1.01 ± 2.03 1.15 ± 1.98 2.71 ± 2.70
WC† 55.63 ± 54.12 57.65 ± 45.64 82.22 ± 69.00
WPS 8.62 ± 3.14 8.20 ± 2.20 8.42 ± 2.03
Terms† 30.76 ± 10.47 30.69 ± 10.48 35.25 ± 13.38
TTR† 0.67 ± 0.16 0.63 ± 0.16 0.57 ± 0.21
FKG 2.84 ± 2.13 2.50 ± 1.67 2.66 ± 1.54
SMOG 4.81 ± 2.51 4.64 ± 2.31 5.04 ± 2.34
GFI 4.55 ± 1.68 4.12 ± 1.29 4.21 ± 1.25

Table 2: Comparisons between N1, N2, and N3 using all
included measures of language complexity and standard devia-
tions. † indicates statistically significant differences (p < 0.05
with a one-way repeated measures ANOVA) in at least one
comparison under a given metric.

The closely related Flesch-Kincaid Grade (Flesch, 1948)
also incorporates syllable length as a proxy for complexity:

FKG = 0.39×
Nwords

Nsentences
+11.8×

Nsyllables

Nwords
−15.59 (3)

One final syllable-based measure of lexical complexity that has
gained popularity in numerous settings is the Simple Measure
of Gobbledygook Readability Formula (Laughlin, 1969), or
SMOG Index. Similarly to the Gunning Fog Index, the SMOG
Index assumes that complex words are those containing three
or more syllables and computes a score as follows:

SMOG =
Ncomplex words

Nsentences
×30+3 (4)

We expected that all measures of lexical complexity would
correlate inversely with noise level.

Results
We computed the specified measures for each System A condi-
tion (N1, N2, and N3) in our dataset, and present the outcomes
in Table 2. We measure statistical significance using standard
one-way repeated measures analysis of variance (ANOVA)
tests, accepting comparisons with p < 0.05 as statistically sig-
nificant. We observe statistically significant differences using
the following metrics: disfluency, WC, terms, and TTR.

The ANOVA test for disfluency resulted in F2,282 = 16.39,
Fcritical = 3.02, p < .00001. Post-hoc Tukey tests (Tukey, 1949)
produced p = 0.906 (N1, N2), p < 0.00001 (N2, N3), and
p < 0.00001 (N1, N3), illustrated in the box plot in Figure 1.
Interestingly, although we anticipated that subjects would use
more words and have a higher ratio for words per sentence
as noise level increased, only one of these hypotheses held
true. While WC correlated with noise level (F2,282 = 6.33,
Fcritical = 3.02, p < 0.01), measures of words per sentence were
too close to draw significant conclusions. As a contrast to the
earlier plot, we examine this finding further in Figure 2. Post-
hoc tests on WC revealed significant differences between (N2,

Figure 1: Disfluency for each noise level.

N3) and (N1, N3), both with p < 0.01, but not between (N1,
N2) with p = 0.98.

Our ANOVA test for TTR (F2,282 = 7.9, Fcritical = 3.02,
p < 0.001) followed a similar pattern to disfluency, indicat-
ing differences between conditions. Tukey’s post-hoc test
showed that with the exception of (N1, N2) with p = 0.291,
the cognitive loads of the other two pairs, (N1, N3) and (N2,
N3) both with p < 0.01, differed significantly, revealing an
inverse correlation with noise level. Surprisingly, analyses
performed on the lexical complexity indices did not follow
our expectations. With p = 0.41, p = 0.50, and p = 0.09, the
Flesch Kincaid Grade, SMOG Index, and Gunning Fog Index
were not found to significantly increase with increased noise
levels. Additionally, the scores for these three indices (often
also associated with education level) suggest that regardless of
noise level, understanding recorded conversations with IVAs
requires minimal education.

Discussion
The findings from our analyses convey an interesting and con-
sistent portrait of noise conditions and their associated influ-
ence on workplace use of IVAs. We find significant differences
between two or more noise conditions as measured by WC,
terms, TTR, and disfluency, with significant effects between
(N2, N3) and (N1, N3) confirmed for all four measures in a
post-hoc Tukey test. On the other hand, we did not observe
significant differences between any noise conditions using the
Flesch Kincaid Grade, SMOG Index, or Gunning Fog Index.
This contradicts previous studies (F. Chen et al., 2016), lead-
ing us to suspect that there is still much to explore among the
unique research opportunities provided by this dataset.

The clear divide between measures of verbosity and verbal
redundancy (WC, terms, and TTR) and lexical complexity
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Figure 2: Words per sentence (WPS) for each noise level.

(FKG, SMOG, and GFI) reveals a strong relationship between
noise level and required (or perceived requirement of) verbal
load, without necessitating changes to word choice itself. That
is, although individuals may adapt their syntactic structure or
conciseness based on environment or their perception of the
IVA’s ability to understand, they do not feel a complementary
need to adapt their lexicon in terms of length or complexity.
The difference observed under the disfluency measure sheds
further light on this. In many cases, the observed increase in
WC and terms and decrease in TTR as noise level increases
may result from an associated increase in verbal disfluency
at greater noise levels, as individuals are forced to repair and
repeat their utterances. For example, consider the utterance
spoken in a quiet environment (e.g., N1):

Can you set a timer for twenty minutes?

This may be compared to a counterpart in a noisy environ-
ment (e.g., N3) that interferes with spoken communication:

Can you set can you can you set a timer for twenty um
twenty minutes?

Thus, the outcomes of our analyses raise an important ques-
tion: What is necessary to promote the increased use of IVAs
in workplace environments, such that their potential benefits
can be realized? Our findings reveal several recommendations.
First, speech recognition quality is important, particularly in
noisy environments. Under-performing speech recognizers
may force users to repeat, repair, and otherwise edit their dia-
logue, reducing IVA efficiency and user experience. Second,
workplace IVAs should anticipate and incorporate effective nat-
ural language understanding methods to interpret and leverage
disfluent speech. Although preventing users from producing
disfluencies through successful automated speech recognition

may be the first form of defense against poor user experience,
users may still be likelier to produce disfluencies in noisy en-
vironments due to increased situational distraction. Finally,
IVAs should avoid anticipating simpler terms following dis-
fluency detection. Despite an observed relationship between
verbosity and noise level as measured by WC, terms, and TTR,
there is not a corresponding association between noise level
and lexical selection (as quantified by FKG, SMOG, or GFI).

Limitations

This work has three main limitations. First, the experiments do
not provide comprehensive coverage of all potential workplace
tasks. Although we developed task scenarios that are com-
mon across many office environments, it is unclear whether
the identified relationships between noise level and linguistic
measures of verbal load and language complexity would gen-
eralize to other tasks. Second, our analyses do not examine all
possible linguistic measures of verbal behavior. Although we
selected well-known measures that have historically demon-
strated interesting correlations with cognitive load (Chotlos,
1944; Flesch, 1948; Laughlin, 1969; Gunning, 1952), we may
be missing connections that are best demonstrated using other
measures. Finally, our dataset is small relative to general-
domain dialogue datasets and is limited to English. Collecting
follow-up data allowing us to study generalizability across
task and language is an intriguing avenue for future work.

Conclusion

In this work, we introduce OfficeDial, a new multimodal
dataset comprising conversations between virtual assistants
and human participants as they perform everyday office
tasks captured at varying noise levels. The dataset includes
manually-corrected transcripts, physical measures of cognitive
load (i.e., pupil dilation, saccades, and index of cognitive activ-
ity), and computed linguistic behavioral measures. We make
this dataset available for public access through Zenodo (Arvan
et al., 2023), offering a novel resource for the study of dia-
logue between humans and virtual assistants and furthermore
its intersection with cognitive load.

Through statistical analyses, we reveal interesting associa-
tions between verbal behavior and ambient noise level. Specif-
ically, we find increases in WC, terms, and disfluencies as
noise level increases, as well as an inverse relationship with
TTR. We find no significant effects using measures of lexical
complexity. This suggests that individuals adapt their overall
verbal load to handle challenges that arise at greater noise
levels when conversing with IVAs in office environments, but
they do not correspondingly simplify their word choice. It is
our hope that OfficeDial and our included analyses will inspire
other researchers to further extend our collective understand-
ing of the relationship between verbal behavior, noise level,
and cognitive load during conversations with intelligent virtual
assistants in office environments.
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