
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
A Light-Weight Forwarding Plane for Content-Centric Networks

Permalink
https://escholarship.org/uc/item/8503630t

Authors
Garcia-Luna-Aceves, J.J.
Mirzazad-Barijough, Maziar

Publication Date
2016-02-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8503630t
https://escholarship.org
http://www.cdlib.org/

A Light-Weight Forwarding Plane
for Content-Centric Networks

J.J. Garcia-Luna-Aceves1,2 and Maziar Mirzazad-Barijough2
1Palo Alto Research Center, Palo Alto, CA 94304

2Department of Computer Engineering, University of California, Santa Cruz, CA 95064
Email: jj@soe.ucsc.edu, maziar@soe.ucsc.edu

Abstract—We present CCN-DART, a more efficient forwarding
approach for content-centric networking (CCN) than named data
networking (NDN) that substitutes Pending Interest Tables (PIT)
with Data Answer Routing Tables (DART) and uses a novel
approach to eliminate forwarding loops. The forwarding state
required at each router using CCN-DART consists of segments
of the routes between consumers and content providers that
traverse a content router, rather than the Interests that the
router forwards towards content providers. Accordingly, the size
of a DART is proportional to the number of routes used by
Interests traversing a router, rather than the number of Interests
traversing a router. We show that CCN-DART avoids forwarding
loops by comparing distances to name prefixes reported by
neighbors, even when routing loops exist. Results of simulation
experiments comparing CCN-DART with NDN using the ndnSIM
simulation tool show that CCN-DART incurs 10 to 20 times less
storage overhead.

I. INTRODUCTION

The leading information-centric networking (ICN) approach
can be characterized as Interest-based and consists of: popu-
lating forward information bases (FIB) maintained by routers
with routes to name prefixes denoting content, sending content
requests (called Interests) for specific content objects (CO)
over paths implied by the FIBs, and delivering content along
the reverse paths traversed by Interests.

The original content-centric networking (CCN) proposal
was the first example of an Interest-based ICN architecture
in which Interests need not be flooded and do not state
the identity of the sender. Today, named data networking
(NDN) [12] and CCNx [2] are the prevalent Interest-based
ICN approaches.

Section II summarizes the operation of the NDN and CCN
forwarding plane. Since the introduction of the original CCN
proposal, the research community (e.g., [12], [13], [14]) has
assumed that per-Interest forwarding state maintained in Pend-
ing Interest Tables (PIT), which is called a “stateful forwarding
plane” in NDN [13], is needed to allow Interests and responses
to such Interests (NDOs or negative acknowledgments) to be
forwarded without divulging the sources of Interests, and that
Interests from different consumers requesting the same content
need to be aggregated to attain efficiency.

Section III presents the design rationale for CCN-DART,
a simpler and far more efficient implementation of CCN
based on replacing per-Interest forwarding state with per-route
forwarding state. CCN-DART is an improvement over [8].

Section IV describes the operation of CCN-DART. Instead
of a PIT, a content router maintains a data answer routing table
(DART). DARTs allows routers to forward responses to Inter-
ests toward the correct neighbors who requested them, without
requiring Interests to state their origins. Routers with local
content consumers or routers that support on-path caching
maintain a requested content table (RCT) that lists the NDOs
stored locally or requested by local consumers. An Interest
in CCN-DART states the name of the requested content and
a destination-and-return token (dart). The dart is used by
forwarding routers to leave a trace of the path traversed by
the Interest using local identifiers of the previous hop and
the current hop, so that a content object (CO) or a negative
acknowledgment (NACK) can be sent back to the content
requestor, without the producer or caching site knowing the
source of the Interest.

To prevent forwarding loops, the FIBs of routers store the
hop-count distances to name prefixes from each next hop of a
name prefix. A router uses these FIB data to determine whether
it can establish a new DART entry. Section V proves that CCN-
DART eliminates forwarding loops, which we have shown can
exist and remain undetected in NDN and CCNx [6], [7].

Section VI compares the performance of CCN-DART with
NDN when either on-path caching or edge caching is used.
CCN-DART and NDN attain the same end-to-end latencies
in retrieving content, and they require similar numbers of
forwarded Interests. However, NDN requires an order of
magnitude more forwarding entries than CCN-DART. Our
results show that maintaining PITs whose sizes grow with
the number of Interests handled by routers is not necessary to
attain correct and efficient forwarding of Interests in a content-
centric network.

II. ELEMENTS OF NDN AND CCNX OPERATION

Routers in NDN and CCNx use Interests, Data packets,
and NACKs (or more generally InterestReturn packets [2])
to exchange content. An Interest is identified in NDN by the
name of the CO requested and a nonce, and in CCNx by the
name of the requested CO. A Data packet includes the CO
name, a security payload, and the payload itself. A NACK
carries the information needed to denote an Interest and a
code stating the reason for the response.

Three data structures are used to process Interests, Data
packets, and NACKs: A Content Store (CS), a FIB, and a PIT.

A CS is a cache for COs indexed by their names. With on-path
caching, routers cache the content they receive in response to
Interests they forward.

A FIB is indexed by name prefixes and is populated using
content-routing protocols or static routes. The FIB entry for
a given name prefix lists the interfaces that can be used to
reach the prefix. In NDN, a FIB entry also contains additional
information [12].

PITs are used to determine the interfaces to which Data
packets or NACKs should be sent back in response to Interests,
allow Interests to not disclose their sources, and enable Interest
aggregation. A PIT entry in NDN lists the name of a requested
CO, one or multiple tuples stating a nonce received in an
Interest for the CO and the incoming interface where it was
received, and a list of the outgoing interfaces over which the
Interest was forwarded. A PIT entry in CCNx is similar, but
no nonces are used.

When a router receives an Interest, it checks whether there
is a match in its CS for the CO requested in the Interest. The
Interest matching mechanisms differ in NDN and CCNx, with
the latter supporting exact Interest matching only. If a match
to the Interest is found, the router sends back a Data packet
over the reverse path traversed by the Interest. If no match is
found in the CS, the router determines whether the PIT stores
an entry for the same content.

In NDN, if the Interest states a nonce that differs from
those stored in the PIT entry for the requested content, then
the router “aggregates” the Interest by adding the incoming
interface from which the Interest was received and the nonce
to the PIT entry without forwarding the Interest. If the same
nonce in the Interest is already listed in the PIT entry for the
requested CO, the router sends a NACK over the reverse path
traversed by the Interest.

Interest aggregation is done in CCNx if an Interest is
received from an interface that is not listed in the PIT entry
for the requested content. A repeated Interest received from
an interface already listed in the PIT is assumed to be a
retransmission and may be forwarded. Interests traversing
forwarding loops are eventually stopped by means of a hop-
limit field included in the Interest and decremented at each
hop.

If a router does not find a match in its CS and PIT, the
router forwards the Interest along a route listed in its FIB for
the best prefix match. In NDN, a router can select an interface
to forward an Interest if it is known that it can bring content
and its performance is ranked higher than other interfaces that
can also bring content. The ranking of interfaces is done by
a router independently of other routers based on information
obtained through probing or the control plane [13].

III. CCN-DART RATIONALE

The design rationale for CCN-DART is based on a few
observations reading NDN and the original CCN design. First,
the number of content routers operating in a network is orders
of magnitude smaller than the number of COs offered in the
network. Hence, maintaining forwarding state based on the

routes going through a router–each used by many Interests–is
by nature orders of magnitude smaller than forwarding state
based on the Interests traversing a router. A stateful forwarding
plane makes sense only if Interest aggregation can reduce the
number of forwarded Interests by orders of magnitude, similar
to the additional forwarding state incurred with PITs.

Second, we have shown [6], [7] that Interest loops may go
undetected in NDN and CCN when Interest aggregation is
supported, which means that Interests need not be answered,
even when the requested content is available. Hence, the
current NDN and CCN designs must be changed [7], [9].

Third, given that edge caching has been shown to render
similar performance results than on-path caching and optimal
caching [3], [4], it is highly likely that content caching at the
edge makes the occurrence of Interest aggregation extremely
rare. In an Internet environment, the inter-arrival times of
Interests for the same content and RTTs between consumers
and producers and caches are such that content is available at
caches by the time subsequent Interests requesting the same
content arrive.

Fourth, searching a CO in the CS followed by a search of a
request for the CO in the PIT is redundant, in that the same CO
name is searched twice. A single table could be used listing
what content is stored or requested locally.

IV. CCN-DART OPERATION

Interests are retransmitted only by the consumers that origi-
nated them, rather than routers that relay Interests. Routers are
assumed to know which interfaces are neighbor routers and
which are local consumers, and forward Interests on a best-
effort basis. Given that no prior work shows that any Interest
matching policy is better than simple exact matching of
Interests, we assume that routers use exact Interest matching.

A. Information Exchanged and Stored

CCN-DART uses Interests, NACKs and Data packets to
support content exchange among routers. Our description of
these messages addresses only that information needed to
attain correct forwarding, which consists of the names of
COs, the hop counts to prefixes, and destination-and-return
tokens (darts). The terms neighbor and interface are used
interchangeably. The name of CO j is denoted by n(j), the
name prefix that is the best match for n(j) in a FIB is
denoted by n(j)∗, and Si

n(j)∗ denotes the set of neighbors
of router i considered to be next hops to prefix n(j)∗. Darts
are local identifiers used to uniquely denote routes established
between source and destination routers over which Interests,
Data packets, and NACKs are sent. Accordingly, darts can be
very small (e.g., 32 bits).

An Interest forwarded by router k requesting CO j is
denoted by I[n(j), hI(k), dartI(k)]. It states the name of the
requested CO (n(j)), the hop count (hI(k)) from k to prefix
n(j)∗, and the dart (dartI(k)) used to establish an anonymous
route back to the router that originates the Interest.

A Data packet sent in response to an Interest is denoted
by DP [n(j), sp(j), dartI(i)], and states the name of the CO

requested in the Interest being answered (n(j)), a security
payload (sp(j)) used optionally to validate the content object,
the dart (dartI(i)) from the Interest being answered, and the
CO itself. A NACK to an Interest is denoted by NA[n(j),
CODE, dartI(i)] and states the name of the CO (n(j)), a code
(CODE) indicating the reason why the NACK is sent, and the
dart (dartI(i)) from the Interest being answered. Reasons for
sending a NACK include: an Interest loop is detected, no route
is found towards requested content, and no content is found.

Router i maintains three tables: a forwarding information
base (FIBi), a data-answer routing table (DART i), and a
requested-content table (RCT i). All routers must maintain
FIBs and DARTs, and only those routers with local users and
routers supporting content caching need to maintain an RCT.

A predecessor of router i for Interests related to name prefix
n(j)∗ is a router that forwards Interest for COs with names
that are best matched by n(j)∗. Similarly, a successor of router
i for Interests related to n(j)∗ is a router to whom router
i forwards Interest regarding COs with names that are best
matched by name prefix n(j)∗.
FIBi is indexed using name prefixes. The entry for prefix

n(j)∗ consists of a set of tuples, one for each next hop to
prefix n(j)∗. The tuples for prefix n(j)∗ are ranked based on
their utility for forwarding. As a minimum, the tuple for next
hop q ∈ Si

n(j)∗ states:
1) h(i, n(j)∗, q): The distance to n(j)∗ through q.
2) a(i, n(j)∗, q): The nearest anchor of n(j)∗ through q.

DART i stores the mappings of predecessors to successors
along loop-free paths to name prefixes. The entry created for
Interests received from router p (predecessor) and forwarded
to router s (successor) towards a given anchor a of a name
prefix is denoted by DART i(a, p) and specifies:

1) ai(a, p): The anchor a for which the entry is set.
2) pi(a, p): The predecessor p of the path to ai(a, p).
3) pdi(a, p): The predecessor dart, which equals the dart received

in Interests from p forwarded towards ai(a, p).
4) si(a, p): The successor s selected by router i to forward

Interests received from p towards ai(a, p).
5) sdi(a, p): The successor dart included in Interests sent by router

i towards ai(a, p) through the successor.
6) hi(a, p): The hop-count distance to prefix a through successor

s when i establishes the DART entry.

DART entries can be removed using a least-recently used
policy or a maximum lifetime, for example. An entry in a
DART can remain in storage for long periods of time in the
absence of topology changes. The removal of a DART entry
simply causes a router to compute a new entry for Interests
flowing towards an anchor of prefixes.
RCT i serves as an index of local content as well as local

requests for remote content. It is indexed by the CO names that
have been requested by the router. The entry for CO name n(j)
states the name of the CO (n(j)), a pointer to the local storage
where the CO (p[n(j)]) is stored, and a list of zero or more
identifiers of local consumers (lc[n(j)]) that have requested the
CO. The RCT could be implemented as two separate indexes,
one for local content and one for requests for remote content.

If router i is an anchor of name prefix n(j)∗ then it stores
all the COs with names that match the name prefix. This is

denoted by n(j)∗ ∈ RCT i. If CO n(j) has been requested by
one ore more local consumers and no copy of the CO is yet
available, then n(j) ∈ RCT i, p[n(j)] = nil, and lc[n(j)] 6= φ.
On the other hand, if router i caches CO n(j), then n(j) ∈
RCT i, p[n(j)] 6= nil, and lc[n(j)] = φ.

We have shown [6], [7] that undetected Interest loops can
occur in NDN and CCNx when Interests are aggregated while
traversing routing loops resulting from inconsistencies in FIB
entries or inconsistent rankings of routes at different routers.
CCN-DART uses the same approach we proposed for the
elimination of undetected Interest loops in the context of NDN
and CCNx to prevent forwarding loops when DART entries are
created.

Dart Entry Addition Rule (DEAR):
Router i accepts I[n(j), hI(k), dartI(k)] from router k and
creates a DART entry for prefix n(j)∗ with k as its predecessor
and a router v 6= k as its successor if:

∃ v ∈ Si
n(j)∗(h

I(k) > h(i, n(j)∗, v))

Fig. 1. CCN-DART avoids forwarding loops

The distance information that must be stored in the FIBs
to implement DEAR can be obtained easily from the control
plane. Such content routing protocols as DCR [5] and NLSR
[10] are able to compute the required minimum-hop distances,
which can then be copied into the FIBs.

Figures 1(a) and (b) illustrate how using DEAR prevents
Interests from traversing loops when a multi-path routing
protocol is used and FIB entries are consistent but local
rankings of multiple routes available at each router (e.g.,
NLSR [10]) cause routing loops. The pair of numbers next to
a node in Figure 1(a) indicate the hop count from that router
to n(j)∗ over an interface and the ranking of the interface
according to the FIB of the router.

Let the triplet (v, h, r) denote an interface, its hop count
and its ranking. In Figure 1(a), FIBa states (b, 4, 1), (p, 4, 2),
(x, 6, 3), and (y, 6, 4); FIBb states (x, 6, 1), (a, 5, 2), and
(q, 3, 3); and FIBx states (a, 5, 2) and (b, 5, 1). As Figure
1(b) shows, router a receives I[n(j), hI(y) = 5, dartI(y)]
from router y at time t1 and forwards I[n(j), hI(a) = 4,
dartI(a)] to b because 5 = hI(y) > h(a, n(j)∗, b) = 4 and b
is ranked above p. Similarly, router b receives the Interest at
time t2 and accepts it because 4 = hI(a) > h(b, n(j)∗, q) = 3.
Router b uses router q as the next hop for the Interest,

because q is the highest ranked neighbor satisfying DEAR.
This example illustrates that, independently of local rankings
of multiple routes to prefixes, Interests traverse simple paths
by requiring each relaying router to satisfy DEAR.

Figures 1(c) to (e) illustrate how DEAR operates when FIBs
are inconsistent due to topology changes. Routers a and b
update their FIBs at time times t0 and t1, respectively. We
assume that the routing updates have not been processed at
routers y and a when they forward Interests at time t1 and t2,
respectively. As shown in Figure 1(d), router b must send a
NACK to router a because it does not have a neighbor with
a shorter hop count to prefix n(j)∗ than hI(a) = 4. In turn,
router a forwards a NACK to router y, and the Interest from x
also prompts a NACK from b because DEAR is not satisfied.
Within a finite time after t1, the FIBs of routers are updated to
show that prefix n(j)∗ cannot be reached and Interests from
local users for COs in that prefix cannot forwarded by routers
a, b, x and y.

By contrast, assuming NDN or CCNx in the same example
results in the Interests sent by y and x to be forwarded along
the forwarding loop involving a, b and x. Router a aggregates
the Interest from x, and router x aggregates the Interest from
y. Those Interests must then “wait to infinity” in the PITs
until their lifetimes expire or they are otherwise evicted from
the PITs. Using nonces in Interests incurs considerable PIT
storage overhead. However, denoting Interests using only CO
names as in CCNx can result in even more Interest-looping
problems. Given the speed with which FIBs are updated to
reflect correct distances computed in the control plane, false
loop detection using DEAR should be rare, and it is preferable
by far than storing PIT entries that expire only after many
seconds without receiving responses.

B. Maintaining Forwarding State

Algorithms 1 to 4 specify the steps taken by routers to
process and forward Interests, Data packets, and NACKs. The
algorithms we present assume that the control plane updates
FIBi to reflect any changes in hop counts to name prefixes
and anchors resulting from the loss of connectivity to one
or more neighbors or link-cost changes. In addition, a DART
entry is silently deleted when connectivity with the successor
or predecessor of the entry is lost, or it is not used for a
prolonged period of time.

Algorithm 1 shows the steps taken by router i to process
Interests received from local consumers. For convenience,
content requests from local consumers are assumed to be
Interests stating the name of a CO, together with an empty
hop count to content and an empty dart.

Router i first looks up its RCT to determine if the requested
CO is stored locally or a request for the CO is pending. If the
CO is stored locally, a Data packet is sent back to the user
requesting it. If a request for the same content is pending, the
name of the user is added to the list of customers that have
requested the CO. Router i sends back a NACK if it is an
anchor of name prefix n(j)∗ and the specific CO is not found

locally, or the CO is remote and no FIB entry exists for a
name prefix that can match n(j).

If possible, router i forwards the Interest through the highest
ranked neighbor in its FIB for the name prefix matching n(j).
How such a ranking is done is left unspecified, and can be
based on a distributed or local algorithm.

If a DART entry exists for the selected successor that should
receive the Interest, the existing route is used; otherwise, a
new DART entry is created before the Interest is sent. The
successor dart assigned to the new DART entry is a locally
unique identifier that must be different from all other successor
darts being used by router i.

Algorithm 1 Processing Interest from user c at router i
function Interest Source
INPUT: RCT i , FIBi , DART i , I[n(j), nil, nil];
if n(j) ∈ RCT i then

if p[n(j)] 6= nil then
retrieve CO n(j); send DP [n(j), sp(j), nil] to c

else
lc[n(j)] = lc[n(j)] ∪ c; p[n(j)] = nil (% Interest is aggregated)

end if
else

if n(j)∗ ∈ RCT i then
send NA[n(j), no content, nil] to c (% n(j) does not exist)

else
if n(j)∗ 6∈ FIBi then

send NA[n(j), no route, nil] to c (% No route to n(j)∗ exists)
else

create entry for n(j) in RCT i: (% Interest from c is recorded)
lc[n(j)] = lc[n(j)] ∪ c; p[n(j)] = nil;
for each v ∈ Si

n(j)∗ by rank in FIBi do
a = a(i, n(j)∗, v);
if ∃DART i(a, i) (si(a, i) = v) then

hI (i) = hi(a, i); dartI (i) = sdi(a, i);
send I[n(j), hI (i), dartI (i)] to v; return

else
create entry DART i(a, i):
compute SD 6= sdi(p, q) ∀DART i(p, q);
pdi(a, i) = SD; sdi(a, i) = SD;
pi(a, i) = i; si(a, i) = v; hi(a, i) = h(i, n(j)∗, v);
hI (i) = hi(a, i); dartI (i) = sdi(a, i);
send I[n(j), hI (i), dartI (i)] to v; return

end if
end for

end if
end if

end if

Algorithm 2 outlines the processing of Data packets. If the
router has local consumers that requested the content, the Data
packet is sent to those consumers based on the information
stored in RCT i. If the Data packet is received in response to
an Interest that was forwarded from router k, router i forwards
the Data packet after swapping the successor dart received in
the Data packet for the predecessor dart stored in DART i.
Router i stores the data object if caching is supported.

Algorithm 2 Processing Data packet at router i
function Data Packet Handling
INPUT: DART i , RCT i , DP [n(j), sp(j), dartI (q)];
[o] verify sp(j);
[o] if verification fails then discard DP [n(j), sp(j), dartI (q)]
if ∃DART i(a, k) (dartI (q) = sdi(a, k) ∧ pi(a, k) = i)

(% router i was the origin of the Interest) then
for each c ∈ lc[n(j)] do

send DP [n(j), sp(j), nil] to c; lc[n(j)] = lc[n(j)]− {c}
end for

end if
if ∃DART i(a, k) (dartI (q) = sdi(a, k) ∧ pi(a, k) = k ∈ Ni) then

(% Data packet can be forwarded to k:)
dartI (i) = pdi(a, k); send DP [n(j), sp(j), dartI (i)] to k

end if
[o] if no entry for n(j) exists in RCT i then

create RCT i entry for n(j): lc[n(j)] = ∅
end if

[o] store CO in local storage; p[n(j)] = address of CO in local storage

Algorithm 3 states the steps taken to handle NACKs, which
are similar to the forwarding steps taken after receiving a Data

packet. Router i forwards the NACK to local consumers if it
was the origin of the Interest, or to a neighbor router k if it has
a DART entry with a successor dart matching the dart stated
in the NACK.

Algorithm 3 Process NACK at router i
function NACK Handling
INPUT: DART i , RCT i , NA[n(j), CODE, dartI (q)];
if ∃DART i(a, k) (dartI (q) = sdi(a, k) ∧ pi(a, k) = i)

(% router i was the origin of the Interest) then
for each c ∈ lc[n(j)] do

send NA[n(j), CODE, nil] to c; lc[n(j)] = lc[n(j)]− {c}
end for
delete entry for n(j) in RCT i

end if
if ∃DART i(a, k) (dartI (q) = sdi(a, k) ∧ pi(a, k) = k ∈ Ni) then

(% NACK can be forwarded to router k:)
dartI (i) = pdi(a, k); send NA[n(j), CODE, dartI (i)] to k

end if

Algorithm 4 Processing Interest from router k at router i
function Dart Swapping
INPUT: RCT i , FIBi , DART i , I[n(j), hI (k), dartI (k)];
if n(j) ∈ RCT i ∧ p[n(j)] 6= nil then

retrieve CO n(j); send DP [n(j), sp(j), dartI (k)] to k
else

(% n(j) 6∈ RCT i ∨ p[n(j)] = nil)
if n(j)∗ ∈ RCT i then

send NA[n(j), no content, dartI (k)] to k
else

if n(j)∗ 6∈ FIBi then
send NA[n(j), no route, dartI (k)] to k

else
if ∃DART i(a, k) (pdi(a, k) = dartI (k)) then

hI (i) = hi(a, k); dartI (i) = sdi(a, k);
send I[n(j), hI (i), dartI (i)] to si(a, k)

else
for each v ∈ Si

n(j)∗ by rank in FIBi do
if hI (k) > h(i, n(j)∗, v) (% DEAR is satisfied) then

a = a(i, n(j)∗, v);
create entry DART i(a, k):
compute SD 6= sdi(p, q) ∀DART i(p, q);
hi(a, k) = h(i, n(j)∗, v);
pi(a, k) = k; pdi(a, k) = dartI (k);
si(a, k) = v; sdi(a, k) = SD;
create Interest:
hI (i) = hi(a, k); dartI (i) = sdi(a, k);
send I[n(j), hI (i), dartI (i)] to v;
return

end if
end for (% Interest may be traversing a loop)
send NA[n(j), loop, dartI (k)] to k

end if
end if

end if
end if

Algorithm 4 shows the steps needed to process an Interest
received from a neighbor router k. If the requested content is
cached locally, a Data packet is sent back. As in Algorithm 1,
router i sends back a NACK if it is an anchor of n(j)∗ and the
CO with name n(j) is not found locally, or the CO is remote
and no FIB entry exists for n(j)∗. In contrast to Algorithm 1,
Interests received from other routers are not aggregated.

If the Interest must be forwarded and an entry exists in
DART i with router k as the predecessor and dartI(k) as the
predecessor dart, then DEAR has been satisfied by a previous
Interest from k over the existing path that k is requesting
to use. Accordingly, router i simply swaps dartI(k) for the
successor dart stated in the entry in DART i and forwards
the Interest. Alternatively, if no DART entry exists with k
as a predecessor and dartI(k) as the predecessor dart, router
i tries to find a neighbor that satisfies DEAR. The highest-
ranked router v satisfying DEAR is selected as the successor
for the Interest and router i creates a successor dart different
from any other successor darts in DART i, stores an entry
with v and the new successor dart, and forwards the Interest

to v. If DEAR is not satisfied, then router i sends a NACK
back to router k.

C. CCN-DART Forwarding Example

Figure 2 illustrates how darts are used to label Interests
and associate Interests with Data packets and NACKs. In the
example, routers a , b, and x have local consumers originating
Interests, and those Interests are assumed to request COs with
names that are best matched with name prefixes for which
router d is an anchor.

The arrowheads in the links of the figure denote the next
hops stored in the FIBs of routers, and y(i) denotes the ith dart
in DART y . The figure shows the DART entries maintained at
all routers for name prefixes for which router d is an anchor,
and the RCT entries stored at routers a, b, and x. Consumers A,
C, N, and P request the same CO with name n(j), and router
a aggregates their requests and needs to send only one Interest
for n(j) towards d. Similarly, it aggregates the Interests from
consumers A, C, and Q. Similar Interest aggregation of local
requests occur at routers b and x.

Fig. 2. Interest forwarding in CCN-DART.

Router a forwards Interests intended for anchor d to
neighbor r, and routers b and x forwards their Interests to
neighbors s and c, respectively. Routers a, r, and s establish
the following mappings in their DARTs: [a; a(k)]↔ [r; a(k)]
at a, [a; a(k)] ↔ [s; r(m)] at r, and [r; r(m)] ↔ [d; s(j)]
at s. These mappings denote the route (a, r, s, d) uniquely.
Similarly, routers establish the DART mappings shown in the
figure that denote the routes (x, b, c, d) and (b, c, d).

All the Interests from consumers local to routers a, b, and x
regarding COs with names in prefixes for which d is an anchor
can be routed towards d using the same few darts shown.
Given that a Data packet or NACK specifies the successor dart
stated the Interest it answers, Data packets and NACKs can be
forwarded correctly from d (or a router caching the requested
CO along the way to d) to routers a, b, or x unambiguously.
In turn, routers a, b, and x can determine how to deliver the
responses to local consumers based on the the RCT entries
mapping each CO requested with the names of the customers
that requested them.

V. CORRECTNESS OF CCN-DART

The following theorem shows that CCN-DART prevents
Interests from being propagated along loops, independently
of whether the topology is static or dynamic or the FIBs
are consistent or not. To discuss the correctness of Interest

forwarding in CCN-DART, we say that a forwarding loop
of h hops for a CO with name n(j) occurs when Interests
requesting the CO are forwarded by routers along a cycle L =
{v1, v2, ..., vh, v1}, such that router vk receives an Interest for
CO n(j) from vk−1 and forwards the Interest to vk+1, with
1 ≤ k ≤ h, vh+1 = v1, and v0 = vh.

Theorem 5.1: Interests cannot traverse forwarding loops in
a network in which CCN-DART is used.

Proof: Consider a network in which CCN-DART is
used. Assume for the sake of contradiction that routers in a
forwarding loop L of h hops {v1, v2, ..., vh, v1} send Interests
for n(j) along L, with no router in L detecting the incorrect
forwarding of any of the Interests sent over the loop.

Given that L exists by assumption, vk ∈ L must send
I[n(j), hI(vk), dart

I(vk)] to router vk+1 ∈ L for 1 ≤ k ≤
h − 1, and vh ∈ L must send I[n(j), hI(vh), dart

I(vh)] to
router v1 ∈ L.

For 1 ≤ k ≤ h − 1, let h(vk, n(j)∗)L denote the value of
hI(vk) when router vk sends I[n(j), hI(vk), dartI(vk)] to
router vk+1, with h(vk, n(j)

∗)L = h(vk, n(j)
∗, vk+1). Let

h(vh, n(j)
∗)L denote the value of hI(vh) when router vh

sends I[n(j), hI(vh), dartI(vh)] to router v1 ∈ L, with h(vh,
n(j)∗)L = h(vh, n(j)

∗, v1).
Because no router in L detects the incorrect forwarding

of an Interest and forwarded Interests are not aggregated in
CCN-DART, each router in L must send its own Interest as a
result of the Interest it receives from the previous hop in L.
This implies that router vk ∈ L must accept I[n(j), hI(vk−1),
dartI(vk−1)] for 1 ≤ k < h, and router v1 ∈ L must accept
I[n(j), hI(vh), dart

I(vh)].
If router vk sends Interest I[n(j), hI(vk), dart

I(vk)]
to router vk+1 as a result of receiving I[n(j), hI(vk−1),
dartI(vk−1)] from router vk−1, then it must be true that
hI(vk−1) > h(vk, n(j)

∗)L = hI(vk) for 1 < k ≤ h. Similarly,
if router v1 sends I[n(j), hI(v1), dartI(v1)] to router v2 as a
result of receiving I[n(j), hI(vh), dartI(vh)] from router vh,
then hI(vh) > h(v1, n(j)

∗)L = hI(v1).
It follows from the above argument that, for L to exist and

be undetected when each router in the loop uses DEAR to
create DART entries, it must be true that hI(vh) > hI(v1)
and hI(vk−1) > hI(vk) for 1 < k ≤ h. However, this is
a contradiction, because it implies that hI(vk) > hI(vk) for
1 ≤ k ≤ h. Therefore, the theorem is true.

VI. PERFORMANCE COMPARISON

We compare the forwarding entries needed to forward Inter-
ests and responses in NDN and CCN-DART using simulation
experiments based on implementations of NDN and CCN-
DART in the ndnSIM simulation tool [1]. The NDN imple-
mentation was used without modifications, and CCN-DART
was implemented in the ndnSIM tool following Algorithms 1
to 4. The network topology consists of 200 nodes distributed
uniformly in a 100m × 100m area and nodes with distance of
12m or less are connected with point-to-point links of delay
15ms. The data rates of the links are set to 1Gbps to eliminate
the effects that a sub-optimal implementation of CCN-DART

or NDN may have on the results. All nodes are producers and
consumers at the same time, which is the worst-case scenario
for CCN-DART; and consumers generate object requests with
a Zipf distribution with parameter α = 0.7. Producers are
assumed to publish 1,000,000 different COs. Simulation runs
consist of request rates of 50 to 2000 interests per router
second, and represents the aggregate rate of Interests from
local consumers at each router.

The assumption that each router is locally attached to a
content producer and local users requesting content constitutes
the worst-case scenario for CCN-DART compared to NDN,
because it results in many more DART entries. In a realistic
deployment, only a small subset of the total number of routers
in the network are attached to local producers of content.

We considered on-path caching and edge caching. For the
case of on-path caching, every router on the path traversed by
a Data packet from the producer to the consumer caches the
CO in its content store. On the other hand, with edge caching,
only the router directly connected to the requesting consumer
caches the resulting CO.

A. Size of PITs and DARTs

Figure 3 shows the average size and standard deviation of
the number of entries in PITs used in NDN and the number of
entries in DARTs and RCTs used in CCN-DART as a function
of the total content-request rates per router. The vales shown
for RCTs represent only the number of local pending Interests;
the number of COs cached locally is not shown, given that the
number of such entries would be very large and would be the
same for NDN and CCN-DART.

Fig. 3. Size of PITs, DARTs and RCTs

As the figure shows, the size of PITs grows dramatically
as the rate of content requests increases, which is expected
given that PITs maintain per-Interest forwarding state. By
contrast, the size of DARTs remains constant with respect
to the content-request rates. The small average size of RCTs
compared to the average size of PITs indicates that the average
size of a PIT is dominated by the number of Interests a router
forwards from other routers.

For low request rates, the average number of entries in
a DART is actually larger than in a PIT. This is a direct
consequence of the fact that a PIT entry is deleted immediately
after an Interest is satisfied, while a DART entry is kept
for long periods of time (seconds) in our implementation,

independently of whether or not it is used to forward Interests.
Given the small sizes of DARTs, the cost of maintaining
DART entries that may not be used at light loads is more than
compensated by the significant reduction in forwarding state
derived from many Interests being forwarded using existing
DART entries at higher request rates. This should be the case
in real deployments, where the number of routers that are
origins of routes to prefixes is much smaller than the total
number of routers. However, optimizing the length of time
that a DART entry lasts as a function of its perceived utility
for content forwarding is an area that deserves further study.

As the total content-request rate per router increases, the
size of a PIT can be more than 10 to 20 times the size of a
DART, because a given DART entry is used for many Interests
in CCN-DART, while NDN requires a different PIT entry for
each Interest. It is also interesting to see the effect of on-
path caching compared to edge-caching. The average size of
DARTs is independent of where content is being cached, and
on-path caching in NDN does not make a significant difference
in the size of a PIT compared to edge-caching.

Fig. 4. Number of Interests received by routers

Fig. 5. Average end-to-end delays

B. Interest Traffic and End-to-End Delays
Figure 4 shows the average number of interests received

by each router in NDN and CCN-DART as a function of the
content request rates for on-path caching and edge caching.
The number of Interests received in CCN-DART is larger than
the corresponding number for NDN. However, it is clear from
the figure that the average numbers of Interests received by
each router in NDN and CCN-DART are almost the same for
all request rates.

The benefit of on-path caching is apparent for both NDN
and CCN-DART, but appears slightly more pronounced for the

case of CCN-DART. This should be expected, because CCN-
DART does not aggregate Interests and on-path caching results
in fewer Interests being forwarded.

Figure 5 shows the average end-to-end delay for NDN and
CCN-DART as a function of content-request rates for on-path
caching and edge caching. As the figure shows, the average
delays for NDN and CCN-DART are essentially the same for
all content-request rates. This should be expected, given that in
the experiments the routes in the FIBs are static and loop-free,
and the number of Interests processed by routers is similar.

VII. CONCLUSIONS

We introduced CCN-DART, an efficient approach to
content-centric networking that supports Interest forwarding
without revealing the sources of Interest and with no need to
maintain forwarding state on a per-Interest basis. CCN-DART
replaces PITs with DARTS, which establish forwarding state
for each route traversing the router over which many Interests
are multiplexed, rather than establishing state for each different
Interest using routes traversing the router.

A novel approach was introduced to eliminate forwarding
loops even when routing-table loops exist due to inconsistent
states in the FIBs. The additional information needed to
implement the new forwarding rule at each router is the
distance reported by each next hop to each name prefix. The
results of simulation experiments based on ndnSIM show that
CCN-DART is far more efficient than NDN. It incurs less than
an order of magnitude storage overhead at high loads.

REFERENCES

[1] A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM: NDN simulator
for ns-3”, University of California, Los Angeles, Tech. Rep, 2012.

[2] Content-Centric Networking Project (CCNx) [online].
http://www.ccnx.org/releases/latest/doc/technical/

[3] A. Dabirmoghaddam et al, “Understanding Optimal Caching and Op-
portunistic Caching at “The Edge” of Information-Centric Networks,”
Proc. ACM ICN 2014 Sept. 2014.

[4] S. Fayazbakhsh et al., “Less Pain, Most of the Gain: Incrementally
Deployable ICN,” Proc. ACM SIGCOMM ‘13, 2013.

[5] J.J. Garcia-Luna-Aceves, “Name-Based Content Routing in Information-
Centric Networks Using Distance Information,” Proc. ACM ICN 2014,
Sept. 2014.

[6] J.J. Garcia-Luna-Aceves, “A Fault-Tolerant Forwarding Strategy for
Interest-based Information-Centric Networks,” Proc. IFIP Networking
2015, May 2015.

[7] J.J. Garcia-Luna-Aceves and M. Mirzazad-Barijough, “Enabling Correct
Interest Forwarding and Retransmissions in a Content-Centric Network,”
Proc. ACM/IEEE ANCS ‘15, May 2015.

[8] J.J. Garcia-Luna-Aceves, “A More Scalable Approach to Content-
Centric Networking,” Proc. IEEE ICCCN ‘15, Aug. 3-6, 2015.

[9] J.J. Garcia-Luna-Aceves, “Eliminating Undetected Interest Looping in
Content-Centric Networks,” Proc. IEEE NOF ‘15, Sept. 2015.

[10] A.K.M. Mahmudul-Hoque et al., “NSLR: Named-Data Link State Rout-
ing Protocol,” Proc. ACM ICN ‘13, 2013.

[11] G. Markowsky and F.H. Moss, “An Evaluation of Local Path ID
Swapping in Computer Networks,” IEEE Trans. Commun., Vol. COM-
29, pp. 329-336, March 1981.

[12] NDN Project [online]. http://www.named-data.net/
[13] C. Yi et al., “A Case for Stateful Forwarding Plane,” Computer Com-

munications, pp. 779-791, 2013.
[14] L. Zhang et al., “Named Data Networking,” ACM SIGCOMM Computer

Communication Review, Vol. 44, No. 3, July 2014.

