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An eQTL mapping approach reveals that rare
variants in the SEMA5A regulatory network impact
autism risk
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To date, genome-wide single nucleotide polymorphism (SNP) and copy number variant (CNV) association
studies of autism spectrum disorders (ASDs) have led to promising signals but not to easily interpretable
or translatable results. Our own genome-wide association study (GWAS) showed significant association to
an intergenic SNP near Semaphorin 5A (SEMA5A) and provided evidence for reduced expression of the
same gene. In a novel GWAS follow-up approach, we map an expression regulatory pathway for a GWAS can-
didate gene, SEMA5A, in silico by using population expression and genotype data sets. We find that the
SEMA5A regulatory network significantly overlaps rare autism-specific CNVs. The SEMA5A regulatory net-
work includes previous autism candidate genes and regions, including MACROD2, A2BP1, MCPH1,
MAST4, CDH8, CADM1, FOXP1, AUTS2, MBD5, 7q21, 20p, USH2A, KIRREL3, DBF4B and RELN, among
others. Our results provide: (i) a novel data-derived network implicated in autism, (ii) evidence that the
same pathway seeded by an initial SNP association shows association with rare genetic variation in ASDs,
(iii) a potential mechanism of action and interpretation for the previous autism candidate genes and genetic
variants that fall in this network, and (iv) a novel approach that can be applied to other candidate genes for
complex genetic disorders. We take a step towards better understanding of the significance of SEMA5A path-
ways in autism that can guide interpretation of many other genetic results in ASDs.

INTRODUCTION

Autism spectrum disorders (ASDs) are neurodevelopmental
diseases that affect social and communication skills as well
as developmentally appropriate behaviors with an onset in
early childhood and are strongly genetic. The genetic basis
for autism is supported by twin studies (1–5) and familial cor-
relation in autism-related traits (6–9). Several genome-wide
association studies (GWASs) have identified common single
nucleotide polymorphism (SNP) and rare copy number
variant (CNV) association signals (10–23). However, it is
still a challenge to identify the autism susceptibility genes
underlying these associations. SNP association signals often
fall into intergenic chromosomal regions or show linkage
disequilibrium (LD) extending across multiple variants or
genes. CNVs associated with disease often contain multiple
genes, among which it has been difficult to identify which

gene(s) affect risk for ASDs. Limited sample size puts studies
at low power to detect any given locus of modest effect size
(as are common in replicated GWAS signals) or to assign patho-
genicity to any given rare or unique CNV (of which excess
numbers are present in neurodevelopmental disease).

Functional enrichment analysis has been performed on
several large data sets, but to date the broad categories impli-
cated, such as ubiquitinylation, microtubule cytoskeleton, gly-
cosylation, CNS development/adhesion, cellular proliferation,
projection and motility, and GTPase/Ras signaling (18,23),
have neither shown consistent signals across data sets nor
led to changes in our interpretation of additional genetic
signals. Traditional pathway analyses have several major lim-
itations. First, annotation is based on prior knowledge, which
is incomplete in the area of developmental neurobiology as
well as biased by well-studied processes. It is designed to
identify a novel association with a known entity but not to
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generate novel networks. Second, the categories implicated in
autism to date, such as synaptic genes, are often so broad [e.g.
more than 1000 synapse proteins are identified in mammals
(24)] as to make it unlikely that any given gene in the
pathway or category would have a high suspicion of influen-
cing risk. In order to overcome these limitations, we propose
a data-driven network analysis using rich expression and
genetic resources and application of these results to disease
data sets of interest for ASDs.

The genome-wide significant signal in our previous GWAS
on the Autism Genetic Resource Exchange and National Insti-
tute for Mental Health (AGRE-NIMH) multiplex family
sample was with an intergenic SNP �80 kb upstream of the
SEMA5A gene (17). The SEMA5A gene encodes an axonal
guidance protein important in neurodevelopment (25). We
and others previously showed down-regulation of SEMA5A
expression in lymphoblastoid cell line (LCL), blood and
brain samples of individuals with ASDs compared with con-
trols (17,26). However, the associated SNP was not sufficient
to explain the consistently reduced expression of SEMA5A, as
this SNP has a low minor allele frequency. We therefore
hypothesized that additional regulators of SEMA5A might
exist, and if so, could be ASD susceptibility candidates.

In this study, we have examined our hypothesis using
in silico expression quantitative trait locus (eQTL) mapping,
or identification of genetic loci associated with SEMA5A
expression levels, to define an empirical genetic regulatory
network for SEMA5A. This includes both primary SEMA5A
eQTL regions and secondary eQTL (‘eQTL2’) master regula-
tory regions. Subsequent permutation-based analyses were
used to test whether the SEMA5A regulatory network (as a
whole) is associated with ASDs in large genome-wide data
sets. Our approach provides a robust way to find novel suscep-
tibility genes and a network contributing to complex disease
with heterogeneous causes, such as ASDs. This novel data-
derived network can inform our understanding of the patho-
physiology of ASDs, as well as aid in interpretation of past
and future genetic data.

RESULTS

SEMA5A eQTL mapping

Our previous genome-wide study identified an intergenic SNP
near SEMA5A associated with autism as well as reduced expres-
sion of SEMA5A in autism. However, the associated SNP (and
its LD proxies) near the SEMA5A locus on chromosome 5p15
could not explain the reduced expression of SEMA5A. There-
fore, we sought to identify other genetic regulators of
SEMA5A expression that might be important in ASD suscepti-
bility. First, we mapped eQTLs for SEMA5A in a control
(CEU) LCL expression and genetic data set. Using SCAN
(www.scandb.org) (27), we identified 12 SNPs near the
SEMA5A locus on chromosome 5 with 10212 , P , 1024

and considered these to comprise cis eQTLs. More surprisingly,
we identified 908 autosomal SNPs in trans associated with
SEMA5A expression (1028 , P , 1024) (Supplementary Ma-
terial, Table S1). The 920 SNPs were divided into 245 independ-
ent (.1 Mb apart) eQTL clusters (Supplementary Material,
Table S1). The eQTL positions were mapped onto genes to

identify likely eQTL genes. For eQTL clusters not directly over-
lapping any genes, we chose the single gene nearest to either of
the outer SNPs. This resulted in a total of 321 eQTL-associated
genes: 87 eQTLs overlapping a single gene, 18 eQTLs overlap-
ping two or more genes, and 140 eQTLs not overlapping a gene
for which the nearest gene was selected. Our top 10 SEMA5A
eQTLs with smallest minimum P are presented in Table 1. A
hierarchical clustering of expression of eQTL genes revealed
10 major gene clusters (Fig. 1, Supplementary Material,
Fig. S1), and SEMA5A was located in one of the clusters, asso-
ciated closely with 15 other genes (MAST4, FOXP1, MBD5,
C9orf30, DNMT3A, EVC, GPR45, GSX1, IPO8, NSF,
PROKR1, TRAF2, TXNL1, ZBED5, ZNF100).

SEMA5A eQTL2 mapping

Because we had identified such an extensive trans-regulatory
network associated with SEMA5A expression, we considered
the possibility that a small number of upstream ‘master regula-
tors’ controlled this network. In order to identify putative master
regulators, we performed eQTL mapping for expression level of
each of the eQTL-associated genes (above) using the same
strategy as our SEMA5A eQTL mapping. After obtaining a list
of eQTLs for the available expression profiles for 202
eQTL-associated genes, we looked for overlap, specifically
regions associated with multiple SEMA5A eQTLs. We call
these SEMA5A secondary eQTLs (eQTL2s), as they were the
eQTLs of the eQTLs of SEMA5A. Twelve eQTL2s were identi-
fied as associated (P , 1024) with the expression of 10 or more
primary SEMA5A eQTL genes (Table 2, Fig. 1). These 12
regions all contain strong gene regulatory candidates, such as
known transcription regulators or genes containing DNA-
binding domains (RARB, AUTS2, THRB, RFPL4B, FOXI2,
ZNF521, LMO3, SHPRH), or major regulatory signaling
pathway genes (GNAI1, MAGI2, NRG3, MARCKS, CTGF,
GHITM, DOCK1, SS18, RERGL, TCL1A, BDKRB2, ANGPT4).
Thus, they seem likely candidates for master regulators influen-
cing transcription of multiple genes and ultimately impacting
SEMA5A expression downstream.

Common variant association between SEMA5A eQTLs
and autism

In addition to the identification of an extensive regulatory
network for SEMA5A, we wanted to test our original hypoth-
esis that examining regulators of SEMA5A expression would
uncover novel association with ASD risk. We used the original
AGRE-NIMH data set in which the GWAS association near
SEMA5A was detected as well as two largely independent
autism GWAS data sets (Table 3): the Autism Genome
Project (AGP) and Simons Simplex Collection (SSC-V1).
We tested the association of combined SEMA5A eQTL
regions with autism as a single set. We extracted all SNPs gen-
otyped in each data set within the 245 eQTL clusters (1 Mb
flank on each side) and performed a set-based transmission
disequilibrium test (TDT), as implemented in PLINK (28).
The combined eQTL SNPs showed significant set-based asso-
ciation in AGRE-NIMH (P ¼ 0.020) and AGP (P ¼ 0.002),
but not SSC-V1. A control data set (NHGRI-VU type 2 dia-
betes) did not show evidence for association. In order to be
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certain the observed association was not an artifact of our
eQTL regions being particularly gene dense, we performed
a permutation test and found that the eQTL regions are
not more gene dense than equivalent genomic regions

(Supplementary Material, Table S1). In addition, to ascertain
whether the P-values derived from gene-dropping in PLINK
were truly adequate to test such a large set of potential var-
iants, we performed a permutation-based test using 245

Table 1. Top 10 SEMA5A eQTLs regions with smallest minimum P

Chromosome Start End eQTL genea Left geneb Right genec # SNPsd P-valuee

5 8 432 269 10 486 082 SEMA5A MTRR SNORD123 9 2 × 10212

18 44 894 006 46 979 045 MIR4320,MYO5B ACAA2 CCDC11 24 2 × 1028

9 9 471 065 11 471 205 PTPRD JMJD2C MPDZ 2 3 × 1028

14 22 917 791 24 973 124 CBLN3,KHNYN,NFATC4,NYNRIN CMTM5 HCD1 5 5 × 1028

4 167 781 602 169 841 939 – SPOCK3 ANXA10 12 7 × 1028

18 6 084 612 8 084 612 LAMA1 ARGHGAP28 LRRC30 1 2 × 1027

20 39 042 867 41 132 741 – CHD6 PTPRT 3 2 × 1027

12 3 363 712 5 374 681 – FGF23 FGF6 4 3 × 1027

11 11 310 553 13 324 688 MICALCL MICAL2 PARVA 5 4 × 1027

1 206 278 586 208 290 185 KCNH1 HHAT RCOR3 8 5 × 1027

The top 10 eQTL regions with the smallest association P-value are shown here with their chromosome locations, overlapping or nearest Refseq genes, number of
SNPs along with the smallest P-value in each eQTL regions. The coordinates are based on human genome assembly NCBI36/hg18.
aeQTL gene that is located in the eQTL cluster. A “–” indicates that no gene overlaps the eQTL cluster.
beQTL gene that is located on the left side (p-terminal) of the eQTL cluster.
ceQTL gene that is located on the right side (q-terminal) of the eQTL cluster. Selected eQTL gene(s) bolded for each region.
dNumber of SNPs that are located in the eQTL cluster.
eMinimum P-value of association test of SEMA5A expression in the eQTL cluster.

Figure 1. Gene clustering in the SEMA5A expression network. This figure presents a hierarchical clustering using 1- |r| (r, Pearson’s correlation coefficient) as a
measurement of distance (see Supplementary Material, Fig. S1). The number of clusters is set to 10. eQTLs are shown in purple (with LCL expression data
available) and grey (with no LCL expression data available). eQTL2 loci are shown in green with their chromosomal band position indicated, and their connec-
tions to the corresponding eQTL genes in green. SEMA5A is shown in pink, with its edge to eQTL nodes in blue. The accession number for the gene-expression
data deposited in Gene Expression Omnibus is GSE7851 (80). Only the CEU sample (N ¼ 87) data are used to map the network here.
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equivalent random genomic regions, which showed that the
PLINK P-values were inflated, despite relatively low overall
genomic inflation in our data sets (lAGRE-NIMH ¼ 1.021;
lAGP ¼ 1.018; lSSC-V1 ¼ 1.006). Our permutation-based esti-
mate suggested no association with the full set of SEMA5A
eQTLs in any of the three data sets (PAGRE-NIMH ¼ 0.44;
PAGP ¼ 0.44; PSSC-V1 ¼ 0.93, Table 4).

Common variant association between SEMA5A eQTL2s
and autism

Similarly, we performed a set-based analysis of association
using our permutation-derived estimates of significance
between SEMA5A eQTL2 loci and autism to determine
whether our putative master regulators are independently

Table 2. eQTL2 regions associated with ≥10 SEMA5A eQTL-associated genes

Chromosome Start End eQTL2 genea Left geneb Right genec # eQTLsd

3 23 923 519 25 923 519 – THRB RARB 15
6 113 135 490 115 228 177 – RFPL4B MARCKS 21
6 145 745 143 147 745 143 GRM1 SHPRH STXBP5 10
6 131 752 893 133 752 893 MOXD1 CTGF STX7 10
7 67 061 612 69 123 105 – STAG3L4 AUTS2 21
7 78 622 933 80 637 549 GNAI1 MAGI2 CD36 16
10 83 617 431 85 632 820 NRG3 SH2D4B GHITM 14
10 127 974 317 129 978 367 DOCK1 FAM196A FOXI2 18
12 16 596 504 18 601 788 – LMO 3 RERGL 12
14 94 338 625 96 338 625 – TCL1A BDKRB2 10
18 20 354 815 22 448 785 – ZNF521 SS18 18
20 1 1 788 405 – FAM110A ANGPT4 10

The 12 eQTL2 regions are shown here with chromosome location, overlapping and/or nearest Refseq genes, number of associated eQTLs for each eQTL2 region.
The coordinates were based on human genome assembly NCBI36/hg18.
aeQTL2 gene that is located in the eQTL2 cluster. A “–” indicates that no gene overlaps the eQTL2 cluster.
beQTL2 gene that is located on the left side (p-terminal) of the eQTL2 cluster.
ceQTL2 gene that is located on the right side (q-terminal) of the eQTL2 cluster.
dNumber of eQTLs that are associated with the eQTL2 cluster.

Table 3. SNP and CNV data sets

Data set Sourcea Platform # Subjects # Families # Markers

SNP data sets
Primary AGRE-NIMH Affymetrix 5.0 1756 1033 multiplex 345 429
Replication AGP-1M Illumina 1M 1330 1369 simplex and multiplex 842 215

SSC-V1 Illumina 1M 691 698 simplex 839 246
Meta-analysis Imputed Mixed microarray 4222 3444 simplex and multiplex 634 151
Control NHGRI-VU Illumina 1M 769 Case–control 1 199 187

Data set Sourceb Platform # Subjects # Families

CNV data sets
Primary AGP-10K Affymetrix 10K 196 173 multiplex

CIHR Affymetrix 550K 427 427 simplex and multiplex
AGRE-ACC (exonic) Illumina 550 2542 1802 simplex and multiplex
AGRE Illumina 550 1683 943 simplex and multiplex
AGP-1M Illumina 1M 996 876 simplex and multiplex
SSC Illumina 1M 1124 1124 simplex
ACRD Mixed microarray – –

Control DGV Mixed microarray – –
WTSI Agilent 105K 450 –

Five SNP data sets were used for common polymorphism association analysis. The genotyping platform, number of subjects, number of families and number of
high quality markers are shown. Seven autism and two control CNV data sets were used for rare variant association analysis. The genotyping platform, number of
subjects and number of families are shown.
aAGRE-NIMH: combined data sets from AGRE (Autism Genetic Resource Exchange, www.agre.org) and NIMH (National Institute for Mental Health, collections
of DNA from multiplex and simplex families with ASD by the NIMH Autism Genetics Initiative) (17). AGP-1M: Autism Genome Project (http://www.autism
genome.org/) (20). SSC-V1: Simons Simplex Collection V1 Public Cohort (https://sfari.org/simons-simplex-collection) (83). Imputed: imputed data sets based on
AGRE-NIMH, AGP, SSC-V1 and AGRE-CHOP. NHGRI-VU: Vanderbilt University NUgene Project type 2 diabetes SNP data set (dbGap: phs000237.v1.p1))
(89).
bAGP-10K: Autism Genome Project CNV data set (15); CIHR: Marshall et al. CNV data set (13); AGRE-ACC: Bucan et al. CNV data set (14); AGRE: Autism
Genetic Resource Exchange CNV data set identified by PennCNV (82); AGP-1M: Pinto et al. CNV data set (23); SSC: Sanders et al. CNV data set (12); ACRD:
CNV data set from the Autism Chromosome Rearrangement Database (ACRD) (84); DGV: CNV control data set from the DGV (86); WTSI: Conrad et al. CNV
control data set (29).
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associated with autism risk. Association was found at P ¼
0.03 for the set of SNPs in the top eQTL2 regions in the
AGRE-NIMH data set using the permutation-based set ana-
lysis (Table 4). In the AGP and SSC-V1 replication data
sets, we found no association for the set of eQTL2 SNPs
(Table 4). The eQTL2 SNP set was not significantly associated

with an unrelated phenotype in the control NHGRI-VU type 2
diabetes data set.

Meta-analysis for SNP association with autism

We performed genotype imputation in order to combine these
three autism data sets and carry out meta-analysis. This com-
bined data set has the following desirable features: (i) the
existing autism data sets use different genotyping platforms,
and imputation can test the same set of markers in the com-
bined data sets; (ii) in a combined data set we can eliminate
any sample overlap across data sets and include additional
AGRE families genotyped on a different platform (22), and
(iii) we achieve greater statistical power through the increase
in sample size. We performed a meta-analysis for SEMA5A
eQTLs and eQTL2s, and we did not observe association
(eQTL P ¼ 0.20; eQTL2 P ¼ 0.40). In order to be consistent
with the combined test for CNVs (described below), we also
performed a test for the combined SEMA5A eQTL and
eQTL2 regulatory regions and observe near-significant associ-
ation with ASDs based on this imputed data set, with P ¼ 0.06
(Table 4).

Rare variant association between SEMA5A regulatory
network and autism

Among our initial eQTL and eQTL2 regions, we recognized
several loci that overlapped autism linkage regions, CNVs or
point mutations previously observed in autism. Thus, we
wanted to formally test the possibility that rare variation in
the SEMA5A regulatory network might contribute to autism
risk. In order to do this, we developed a permutation test util-
izing published CNV data in ASDs. From the published results
tables of the large genome-wide CNV studies in autism
(Table 3), we derived lists of autism-specific CNVs [not
observed in controls or less than 80% overlap with records
in Database of Genomic Variants (DGV)] and tested
whether they significantly overlap with the joint list of
SEMA5A eQTLs and eQTL2s compared with equivalent
genomic regions and compared with other eQTL regions
defined in the same way sampled from all RefSeq genes.
Due to the limited number of autism-specific CNVs, we
decided to test SEMA5A eQTL and eQTL2 regions as a com-
bined regulatory network in order to maximize power. One of
the largest subsets from DGV (Wellcome Trust Sanger Insti-
tute, WTSI) (29) was tested in addition to the complete
DGV record as control data sets. Four of the seven autism
data sets showed significant overlap of autism-specific CNVs
with SEMA5A eQTL and eQTL2 regions at P , 0.05
(Table 5). This provides strong evidence that rare autism
CNVs in our eQTL and eQTL2 regions are associated with
autism. The overlap between CNVs in ACRD and eQTL and
eQTL2 regions is displayed in Figure 2 (and Supplementary
Material, Table S1). Although the other three autism data
sets did not have significant P-values, the odds ratios are ele-
vated compared with the permuted data sets. In testing .50
top GWAS candidate genes with eQTL networks ranging
from 18 to 330 eQTLs from unrelated phenotypes, we did
not observe any eQTL networks associated in 4/7 autism

Table 4. Set-based TDT test in autism SNP data sets

Data set Sourcea P-valueb

eQTLs eQTL2s

Primary
With rs10513025 AGRE-NIMH 3.8 × 1021 2.0 3 1022

Exclude rs10513025 AGRE-NIMH 4.4 × 1021

Replication AGP-1M 4.4 × 1021 1.3 × 1021

SSC-V1 9.3 × 1021 9.3 × 1021

Meta-analysis Imputed 2.0 × 1021 4.0 × 1021

6.0 × 1022

Control NHGRI-VU 7.2 × 1021 2.6 × 1021

The result from a set-based TDT test of our SEMA5A eQTL and eQTL2 regions
is shown here for our primary (with and without the original GWAS associated
SNP), replication and control data sets. The combined eQTL and eQTL2

regions were used to perform a set-based TDT test in the meta-analysis data set.
aAGRE-NIMH: combined data sets from AGRE (Autism Genetic Resource
Exchange, www.agre.org) and NIMH (National Institute for Mental Health,
collections of DNA from multiplex and simplex families with ASD by the
NIMH Autism Genetics Initiative) (17). AGP-1M: Autism Genome Project
(http://www.autismgenome.org/) (20). SSC-V1: Simons Simplex Collection
V1 Public Cohort (https://sfari.org/simons-simplex-collection) (83). Imputed:
imputed data sets based on AGRE-NIMH, AGP, SSC-V1 and AGRE-CHOP.
Both the P-values for separate test (above) and combined tests (below) are
shown in the table. NHGRI-VU: Vanderbilt University NUgene Project type 2
diabetes SNP data set (dbGap: phs000237.v1.p1)) (89).
bPermutation-based P-value from set-based association tests of SEMA5A
eQTLs and eQTL2s. P-values , 0.05 are bolded.

Table 5. CNV analysis in autism and control data sets

Data set Sourcea #CNVsb Overlap%c ORd P-valuee

Primary AGP-10K 175 30% 1.1 3.73 × 1021

CIHR 262 30% 1.6 5.00 3 1024

AGRE-ACC
(exonic)

315 20% 1.1 4.41 × 1021

AGRE 6303 20% 1.1 2.02 × 1021

AGP-1M 960 21% 1.3 1.31 3 1022

SSC 2,756 20% 1.2 4.38 3 1022

ACRD 355 29% 1.4 2.00 3 1024

Control DGV 36 095 12% 1 6.88 × 1021

WTSI 2248 12% 0.6 9.95 × 1021

The result of permutation analysis of rare variant data sets is presented here.
aAGP-10K: Autism Genome Project CNV data set (15); CIHR: Marshall et al.
CNV data set (13); AGRE-ACC: Bucan et al. CNV data set (14); AGRE:
Autism Genetic Resource Exchange CNV data set by PennCNV; AGP-1M:
Pinto et al. CNV data set (23); SSC: Sanders et al. CNV data set (12); ACRD:
CNV data set from the Autism Chromosome Rearrangement Database (ACRD)
(84); DGV: CNV control data set from the DGV (86); WTSI: Conrad et al CNV
control data set (29).
bThe total number of autism-specific CNVs.
cThe percentage of CNVs that overlap SEMA5A eQTLs and eQTL2s.
dOdds ratio calculated in comparison with the median permutation overlapping
CNV number.
eP-value from permutation tests of SEMA5A eQTLs and eQTL2s. P-values ,

0.05 are bolded.
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CNV data sets (data not shown), suggesting that our results are
specific to the SEMA5A eQTL network.

DISCUSSION

Previous genome-wide studies in autism have identified candi-
date genomic regions associated with autism risk (10–23).

However, it is not easy to identify the autism susceptibility
genes in these regions because the associated variants are
rarely unambiguously tied to a single gene via a straightfor-
ward mechanism. Thus, we designed a novel approach based
on genetic and expression data.

We performed in silico mapping of eQTLs and eQTL2s for
a GWAS candidate gene, SEMA5A (17), in order to define an

Figure 2. ASD-associated CNVs and SNPs overlap SEMA5A eQTL and eQTL2 regions. The large circle shows CNVs, SNPs, eQTL and eQTL2 regions for the
whole genome. To obtain a more detailed view, small circles (from chromosome 1 to chromosome 22) are provided in the supplementary information (Supple-
mentary Material, Fig. S1) to show CNVs, SNPs, eQTL and eQTL2 regions for each chromosome. From the outside to the inside of each circle, each sub-circle
correspondingly shows: (i) chromosome coordinates with bands highlighted. (ii) eQTL and eQTL2 regions are represented by each stroke. eQTL regions are
indicated by purple, while eQTL2 regions are indicated by yellow. Overlapping eQTL and eQTL2 regions are combined. (iii) Significant SNPs identified in
the meta-analysis are shown in green. For each SNP, the significance by TDT is highlighted by the length of the stroke on each glyph. From longest to shortest:
P , 0.0001; P , 0.001; P , 0.01; P , 0.05. The total number of SNPs shown here is 3584. The P-value for the combined eQTL and eQTL2 set-based TDT test
in the meta-analysis is 0.06. (iv) CNVs in the ACRD (Autism Chromosome Rearrangement Database) (84) that overlap with eQTLs and eQTL2s are shown
in red. The total number of CNVs in ACRD is 371, and 104 of them (27%) overlap with one of the eQTL and eQTL2 regions. The median overlapping
number of 10 000 permutations is 80. The P-value is 0.0004 with OR ¼ 1.5.
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empirical regulatory network (Fig. 1). We identified associ-
ation between rare autism-specific CNVs and the combined
eQTL and eQTL2 regions. Although several individual data
sets did not provide evidence for association, we cannot rule
out low power or heterogeneity due to sampling strategies,
and we find the weight of the CNV evidence overall to be
strong and consistent.

We observed little evidence for association between
common polymorphisms in this regulatory network and
autism. A single data set showed association with eQTL2

regions, and the meta-analysis showed near-significant asso-
ciation with autism. These results in contrast to the strong evi-
dence from CNVs could simply reflect the genetic architecture
of autism, which to date has shown stronger and more consist-
ent evidence for CNV contribution to ASD risk. Although
autism has been shown to have a polygenic SNP contribution,
it is relatively modest (20,30–33). These data could also
reflect a stronger magnitude of effect for CNVs on gene ex-
pression compared with SNPs (34–38).

Our approach, in fact, relies on two significant assumptions
which we know are likely to be imperfect. First, the expression
and genetic data set used for eQTL mapping were not derived
from the tissue of interest nor from affected individuals. Al-
though recent work suggests that eQTL enrichment in
autism GWAS is stronger in the brain than in LCLs (39), we
are focused on a specific candidate gene network, and there-
fore require larger data sets than are currently available for
the brain or from individuals with ASDs. Based on previous
literature suggesting that although absolute expression level
may vary across tissue, genetic regulation of expression is
similar in primate blood and brain and relevant autism genes
can be identified in LCLs (40–46), we make the assumptions
that genetic polymorphisms exert their influence on expression
ubiquitously where genes are expressed and that the same rela-
tionships observed in normal expression variation in controls
will be affected in the disease state of autism. Thus, we are
limited to identification of tissue-independent and disease-
status independent relationships between genetic variation
and expression level. Second, for our eQTL2 mapping, we
do not truly know which gene each primary SEMA5A eQTL
acts through (or that it acts through a gene at all) and as a con-
servative unbiased approach have used physical proximity to
select eQTL-associated genes, although other approaches
such as expression pattern or correlation might introduce
less noise into the network to be tested for association.
Because we have identified association between genetic vari-
ation in the eQTL and eQTL2 regions and ASD susceptibility
under the current design, our assumptions must hold some val-
idity, although we surmise that we have missed some import-
ant aspects of the network.

In the new wave of exome and genome sequencing to iden-
tify rare sequence variants associated with common, complex
disease, it remains an open question whether common poly-
morphism risk loci likely to have modest individual effects
(e.g. subtle expression differences) and rare variants that
might have stronger individual effect (e.g. hemizygosity for
deletion of multiple genes or protein coding changes) will
act in the same pathways. Our novel pathway was entirely
defined based on (i) SNP association signal in an autism
data set and (ii) SNP data in control LCL expression

experiments. Together, these data suggest that rare CNVs
show association with autism in a gene expression regulatory
pathway defined by SNPs. This pathway might be used to in-
terpret rare variant data, for example, rare CNV or sequence
variants overlapping this empirically derived network might
have greater a priori likelihood to be pathogenic. Examples
of previously identified rare variants that fall into this
network are translocations in AUTS2 (eQTL2) in autism
(47–51) and mental retardation (52), linkage regions on
chromosome 7q21 (53–55) and 20p (eQTL2) (17), point muta-
tions in CADM1 (eQTL) (56), exonic deletion, point mutation
and chromosomal abnormalities in FOXP1 in autism (51,57–
59), duplications of MCPH1 (eQTL) (60,61), duplication or
deletion of MBD5 (eQTL) (51,62–64), deletions of MAST4
(eQTL) (16), CDH8 (eQTL) (65), A2BP1 (eQTL) in autism
(10,66,67), rare variants in KIRREL3 (eQTL) (51), rare com-
plete knockouts in DBF4B, de novo deletion and loss of func-
tion of USH2A in autism (68). Likewise, the overall network
evidence might be used to prioritize sub-genome-wide signifi-
cant SNP signals within these regions for follow-up or make
functional interpretation more clear. For example, SNP associ-
ation was seen near 6q22 (eQTL2) and several regions over-
lapping eQTLs (chromosomes 2, 4, 5, 11, 13, 20 and 21 and
a genome-wide-significant region near MACROD2) (17,20).
In addition, previous data have shown reduced expression
of RELN (eQTL) in autism brain tissue (see Supplementary
Material, Table S1) (69).

Semaphorins comprise a large family of molecular cues crit-
ical to neural development and also having a variety of func-
tions outside the nervous system. SEMA5A is a transmembrane
semaphorin, whose receptor is plexin-B3 (PLXNB3) (70),
encoded on the X chromosome. Little is known about the spe-
cific function of SEMA5A, although it appears to play a neuro-
developmental role in axonal guidance and neurite outgrowth
(71,72). In mouse endothelial cells, SEMA5A plays general
roles in downregulating apoptosis (through Akt), increasing
migration (through Met tyrosine kinases) and controlling the
extracellular matrix (through matrix metalloproteinase 9)
(73). An initial SEMA5A knock-out mouse on the 129/Sv/
NMRI background showed embryonic lethality (74), and a
more recent knock-out mouse on the mixed B6/129P2 back-
ground found several genotype by sex effects and behavioral
differences, but no differences in cognition or social behavior
compared with C57BL/6J control mice (75). Recently, a study
in primary human neuronal progenitors from control subjects
detected increased expression in SEMA5A at the time point
of neuronal differentiation and this was coordinately regulated
with other ASD candidate genes (76). Our study provides add-
itional testable information about a putative regulatory
network of SEMA5A, along with support from genetic vari-
ation data that it is important in autism risk. In fact, these
data suggest the novel hypothesis that SEMA5A is the
common downstream effector for all the genes in this
network and that autism CNVs in this network act through
modulation of SEMA5A expression. A definitive test of this
hypothesis might be in a cellular model of ASDs, such as
induced pluripotent stem cell (iPSC) derived neurons. If
patient-specific iPSCs were generated from individuals with
various CNVs in the SEMA5A network defined here and defi-
cits at the neuronal level could be corrected by upregulation of
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SEMA5A, our hypothesis would be substantiated. If this hy-
pothesis is indeed proven by further testing, it suggests a
new understanding of the biology of autism, as well as new
directions for biomarker and treatment targets in ASDs. Con-
struction of networks underlying core endophenotypes can
make it possible to identify the fundamental biological pro-
cesses that are responsive to genetic or environmental perturb-
ation and can lead directly to alteration of disease risk, as has
been successfully done for metabolic traits (77,78).

In conclusion, our novel approach successfully took a
GWAS-identified candidate gene, SEMA5A, and garnered evi-
dence for rare genetic variant risk in its regulatory network.
These data can be used in interpretation of SNP association
data, as well as interpretation of rare variants. In sum, our
study provides a novel framework for identifying the genetic
loci that are likely to contribute to autism risk, and the
general approach can be extended to other complex heritable
disorders.

MATERIALS AND METHODS

Data sets

eQTL mapping
In the SCAN database (http://www.scandb.org/) (27), LCL ex-
pression and genetic experimental data from samples of Euro-
pean descent (CEPH from Utah; CEU) were used to map
autosomal eQTLs. The published expression data were gener-
ated using the Affymetrix Human Exon 1.0 ST Array (79,80).
The autosomal SNP genotype data were generated on multiple
experimental platforms by the HapMap Project (www.
hapmap.org/) (81). The SNP positions were based on dbSNP
129 from NCBI.

SNP data sets
Autism sample banks and consortia have been used to perform
past or ongoing GWAS studies (Table 3). These include
Autism Genetic Resource Exchange (AGRE, www.agre.org)
(82), National Institute for Mental Health (NIMH, collections
of DNA from multiplex and simplex families with ASD by the
NIMH Autism Genetics Initiative), Simons Simplex Collec-
tion (SSC-V1, https://sfari.org/simons-simplex-collection, V1
Public Cohort) (83) and Autism Genome Project (AGP, http
://www.autismgenome.org/) (15). These data sets are not com-
pletely independent due to partial sample overlap. The AGRE-
NIMH GWAS data set was generated by the Broad Institute of
MIT and Harvard and Johns Hopkins Center for Complex
Disease Genomics on Affymetrix platforms and includes
1756 affected individuals in 1033 multiplex families with
345 429 high quality markers (17). The SSC-V1 data set was
genotyped on the Illumina 1M array at Yale University.
Before quality control, there were 1 231 154 markers. We
removed all markers with (i) .4% missingness, (ii) minor
allele frequency (MAF) ,1%, (iii) Hardy–Weinberg equilib-
rium (HWE) P-value less than 1026, and (iv) markers with
MAF ,5% and .0.5% missingness. The final SSC-V1 data
set includes data on 698 families with a single child affected
with ASDs and 839 246 high-quality markers genotyped.
The AGP data set was genotyped at Translational Genomics
Research Institute (TGEN) and available via dbGAP

(phs000267.v1.p1). The quality control steps are: (i) remove
SNPs not on chromosomes 1 to 22, and (ii) the following
SNPs are removed due to bad genotyping quality as assessed
by visual examination of intensity plots: rs12117357,
rs2196826, rs2071004, rs1709905 and rs10419948. The final
AGP data set includes 1369 families genotyped for 842 215
markers on Illumina 1M, approximately evenly divided
between multiplex and simplex families. From the AGP,
SSC-V1 and AGRE-NIMH SNP data sets, a combined SNP
data set was generated by imputation (see Materials and
Methods for meta-analysis protocol used in imputation).
Additional AGRE families genotyped on an Illumina 550K
platform from Children’s Hospital of Philadelphia (AGRE-
CHOP) were included in the imputation (22). This imputed
data set eliminated any overlapping samples and was used
for SNP meta-analysis.

Our control SNP data set was the Vanderbilt University
NUgene Project: type 2 diabetes SNP data set (NHGRI-VU),
available via dbGap (phs000237.v1.p1). This case–control
study had 769 cases and 615 controls with 1 199 187 high-
quality markers genotyped on Illumina 1M.

CNV data sets
Seven autism and two control data sets were analyzed here.
Six published autism data sets included: 175 CNVs from the
AGP-10K data set on Affymetrix 10K (15), 277 CNVs from
the CIHR data set on Affymetrix 550K (13), 315
exon-overlapping CNVs from the AGRE-ACC data set on
Illumina HumanHap550 (14), 1020 CNVs from the AGP-1M
data set on Illumina 1M (23), 3077 CNVs from the SSC
data set on Illumina 1M (12) and 371 CNVs from the
Autism Chromosome Rearrangement Database (ACRD) on
mixed platforms (84).

Because the full AGRE-ACC CNV calls were not available
in the Supplementary Materials, we performed CNV calling
using the raw data from the AGRE portion of this data set
and obtained 4719 CNVs as the seventh autism data set. We
applied a hidden Markov model (HMM) implemented in
PennCNV (85) to detect CNVs in the AGRE data set. We
kept the corresponding parameters the same as Bucan et al.
(14) to make results comparable. A total of 3554 samples
meeting the following criteria were included for individual
CNV calling: (i) standard deviation for autosomal log R
ratio values (LRR_SD) less than or equal to 0.28; (ii)
median B Allele Frequency (BAF_median) larger than or
equal to 0.45 and less than or equal to 0.55; (iii) fraction of
markers with BAF values between 0.2 and 0.25 or 0.75 and
0.8 (BAF_drift) less than 0.002. We then utilized the family
information to perform trio CNV calling for more accurate
boundaries. Two additional filtering steps were used to
remove CNVs in the repetitive regions: (i) CNVs with more
than 50% overlap with four immunoglobulin regions (IGLC1
22q11.22, IGHG1 14q32.33 and IGKC 2p11.2, and the T
cell receptor constant chain locus 14q11.2); (ii) CNVs
within centromeric and telomeric regions (500 kb flanking
windows were added).

Finally, a further filtering process was performed to all the
autism data sets to retain autism-specific CNVs with: (i) less
than 80% overlap with any variant in the DGV, (ii) greater
than 1 kb length, and (iii) on autosomes. The DGV
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(variation.hg18.v10.nov.2010) contained 27 113 autosomal
CNVs in the healthy population (86) and was used as a
control data set. The WTSI data set (29), one of the largest
data set components of the DGV, with 2331 autosomal
CNVs was tested separately as the second control in order to
have a control data set with uniform methods and CNV
calling.

Analysis methods

Genotype imputation and meta-analysis protocol
First, the phased Hapmap Phase III data set was obtained from
http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02_
phaseIII/HapMap3_r2/ as reference genotypes. Because of
population diversity in the autism data sets, we attempted to
separate individuals into different populations to improve im-
putation performance. To accomplish this, each autism data
set was merged with the Hapmap data set for identity-by-state
clustering and individuals were assigned to one of the five im-
putation panels based on visual inspection of clustering. The
five imputation panels used were built from combinations of
the Phased Hapmap III samples. The panels were as follows,
Panel 1: CEU + TSI; Panel 2: ASW, LWK, MKK, YRI;
Panel 3: JPT, CHB, CHD; Panel 4: MEX; Panel 5: GIH.

Imputation was carried out using the BEAGLE software
(http://faculty.washington.edu/browning/beagle/beagle.htm

l#download) (87).
Before the imputation, each autism data set was subjected

to stringent quality control and then prepared into subsets of
10 000 continuous SNPs and 300 individuals for feasibility
of computation. Each consecutive SNP subset overlapped at
least 1000 SNPs. The same chromosomal position cutoffs
were applied to the corresponding imputation panel. Geno-
types imputed in two SNP subsets were discarded from the
subset where its location was closer to the edge to minimize
edge effects. All SNPs were aligned to a common strand to
ensure imputation accuracy using the BEAGLE strand switch-
ing utility (http://www.stat.auckland.ac.nz/~browning/beagle/
strand_switching/strand_switching.html). Imputed genotypes
with a posterior probability ,0.9 were set as uncalled. After
imputation, SNPs that met the following criteria were
removed: (i) Mendelian error rate .1% and (ii) HWE
P-value , 1 × 10210. In addition, SNPs in AGRE-NIMH
(Affymetrix) and AGRE-CHOP data sets with a call rate
,98% and SNPs in SSC-V1 data set with a call rate ,95%
were removed. Finally, four data sets were merged and only
SNPs with a combined call rate .95% were retained.

After imputation, commonly genotyped SNPs were extracted
from the imputed AGRE-NIMH, AGRE-CHOP, SSC-V1and
AGP data sets. A DerSimonian–Laird random-effects meta-
analysis was used to perform a meta-analysis based on the set-
based TDT results for each SNPs in the eQTL and eQTL2

regions (88). We implemented our meta-analysis routines in
the Python programming language (www.python.org) and it is
available upon request.

eQTL mapping and definition
In order to identify eQTLs for a given gene expression trait
(SEMA5A or primary eQTL-associated gene expression
level), we performed association mapping in SCAN with

available CEU LCL expression and genotype data using the
default threshold of P , 1024. The eQTL SNPs were orga-
nized into clusters according to their genomic position. In
order to define independent loci, we walked along the chromo-
somes and considered any consecutive SNP with a distance of
less than 1 Mb to be within the same locus or cluster and a
consecutive SNP with a distance of greater than 1 Mb from
the nearest SNP to be a new eQTL cluster. The eQTL
gene(s) were assigned to each eQTL cluster as the RefSeq
gene(s) overlapping the cluster or the single nearest Refseq
gene to the eQTL region if none overlapped. We obtained
the expression data for eQTL genes used in SCAN through
Gene Expression Omnibus (GSE7851) (80), which included
87 CEU samples. We then performed a hierarchical clustering
(Methods described in Supplementary Material, Fig. S1) of
this data set with 1-|r| (r, Pearson correlation) as a measure-
ment of distance. In addition, we selected more than 50 top
GWAS hits from a variety of human traits, including hyperten-
sion, hair color, longevity, HIV-1 control, bone mineral density,
prostate cancer, breast cancer, leukemia and heart disease
(http://hugenavigator.net/HuGENavigator/gWAHit.do). We
mapped the eQTL networks for each of these GWAS candidate
genes in a similar way as we did for the SEMA5A gene.
The eQTL networks (with 18–350 eQTLs) were used in our
rare variant analysis to determine whether the association with
autism CNVs was specific to the SEMA5A network.

Set-based SNP analysis and replication
In the first step, we identified all high-quality SNPs within the
eQTL and eQTL2 regions (including a 1 Mb flank in each dir-
ection) in each SNP data set. Each data set has different SNP
markers directly assayed, therefore the set of SNPs used for
association analysis was different across data sets, but no
bias in allele frequency or other characteristics was carried
over from the SCAN eQTL data set. We then performed a set-
based TDT for these markers as implemented in PLINK (28).
This consisted of a TDT for all SNPs in each data set, and de-
termination of the LD structure. In each set, the most signifi-
cant SNP was selected (P , 0.05) and then the second most
significant SNP was included after removing SNPs in LD
(r2 ≥ 0.5) with already selected markers. This was repeated
until all SNPs with P , 0.05 were identified. The test statistic
was calculated as the mean of single SNP test statistics. In the
PLINK implementation of this test, the alleles of each parent
were randomly dropped to offspring with a 50:50 probability
to obtain a permuted data set and calculate a P-value.
However, after discovery that these P-values were inflated in
our data, we derived a permutation-based P comparing the
test statistic from the SEMA5A eQTL set with test statistics
from 100 sets of random genomic regions with the same
size as SEMA5A eQTLs.

Permutation CNV analysis
We first did a gene density test of this SEMA5A network to
ensure that our CNV burden analysis would not be biased
by eQTL and eQTL2 regions tending to be gene dense. This
was achieved by comparing the number of genes in eQTL
and eQTL2 regions with random genomic regions of similar
length (10 000 permutations). Due to the relative small size
of eQTL2 regions and relatively few autism-specific CNVs,
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we combined the eQTL and eQTL2 regions to obtain adequate
power for our CNV analysis. The contribution of the SEMA5A
regulatory network to autism was assessed by estimating the
rare CNV burden in this pathway. In each of the nine CNV
data sets, we first calculated the total number of CNVs that
overlapped with our SEMA5A eQTL and eQTL2 regions. In
the second step, random regions with same length to these
eQTL and eQTL2 regions were sampled from the autosomal
genome. Permuting segments with the same length corrects
for the difference of CNV size among data sets, because
large CNVs have a higher probability of overlap with the
random regions. Again, a total number of CNVs that over-
lapped with these random regions was computed. This was
repeated for 10 000 permutations and the corresponding
P-value was calculated. Based on the median overlapping
number in the permutations, we calculated the odds ratio of
overlap for each data set. In order to exclude bias in regions
defined by GWAS eQTL data, we performed an additional
control. We mapped eQTLs for all RefSeq genes in SCAN
and performed a similar permutation test using randomly
selected eQTL regions (instead of any genomic region)
defined in the same way and with similar size to SEMA5A
eQTL regions. The resulting P-values for each autism data
set were similar to those derived using genomic regions, so
these data are not shown.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.

ACKNOWLEDGEMENTS

We thank all of the families who have participated in and con-
tributed to the public resources that we have used in these
studies. We thank the authors of the published CNV data
sets/databases used in our analysis and our colleagues at
UCSF for their comments on the manuscript. We thank
Dr Nancy Cox at University of Chicago and Drs Steve Ham-
ilton and Jane Gitschier at UCSF for helpful advice.

The collection of data and biomaterials that participated in
the National Institute of Mental Health (NIMH) Autism Gen-
etics Initiative has been supported by National Institute of
Health grants MH52708, MH39437, MH00219 and
MH00980; National Health Medical Research Council grant
0034328; and by grants from the Scottish Rite, the Spunk
Fund, Inc., the Rebecca and Solomon Baker Fund, the
APEX Foundation, the National Alliance for Research in
Schizophrenia and Affective Disorders (NARSAD), and the
endowment fund of the Nancy Pritzker Laboratory (Stanford);
and by gifts from the Autism Society of America, the Janet
M. Grace Pervasive Developmental Disorders Fund, and fam-
ilies and friends of individuals with autism. The NIMH collec-
tion Principal Investigators and Co-Investigators were: Neil
Risch, Richard M. Myers, Donna Spiker, Linda J. Lotspeich,
Joachim F. Hallmayer, Helena C. Kraemer, Roland
D. Ciaranello, Luigi Luca Cavalli-Sforza (Stanford University,
Stanford); William M. McMahon and P. Brent Petersen (Uni-
versity of Utah, Salt Lake City). The Stanford team is indebted
to the parent groups and clinician colleagues who referred

families and extends their gratitude to the families with indivi-
duals with autism who were partners in this research. The col-
lection data and biomaterials also come from the Autism
Genetic Resource Exchange (AGRE) collection. This
program has been supported by a National Institute of
Health grant MH64547 and the Cure Autism Now Foundation.
The AGRE collection Principal Investigator is Daniel
H. Geschwind (UCLA). The Co-Principal Investigators
include Stanley F. Nelson and Rita M. Cantor (UCLA),
Christa Lese Martin (Univ. Chicago), T. Conrad Gilliam (Col-
umbia). Co-Investigators include Maricela Alarcon (UCLA),
Kenneth Lange (UCLA), Sarah J. Spence (UCLA), David
H. Ledbetter (Emory) and Hank Juo (Columbia).

We gratefully acknowledge the resources provided by the
Autism Genetic Resource Exchange (AGRE) Consortium
and the participating AGRE families. The Autism Genetic Re-
source Exchange is a program of Autism Speaks and is sup-
ported, in part, by grant 1U24MH081810 from the National
Institute of Mental Health to Clara M. Lajonchere (PI).

We are grateful to all of the families at the participating
SFARI Simplex Collection (SSC) sites, as well as the principal
investigators (A. Beaudet, R. Bernier, J. Constantino, E. Cook,
E. Fombonne, D. Geschwind, R. Goin-Kochel, E. Hanson,
D. Grice, A. Klin, D. Ledbetter, C. Lord, C. Martin,
D. Martin, R. Maxim, J. Miles, O. Ousley, K. Pelphrey,
B. Peterson, J. Piggot, C. Saulnier, M. State, W. Stone,
J. Sutcliffe, C. Walsh, Z. Warren, E. Wijsman).We appreciate
obtaining access to phenotypic data on SFARI Base. Approved
researchers can obtain the SSC data set described in this study
by applying at https://base.sfari.org.

The AGP data sets used for the analysis described in this
manuscript were obtained from dbGaP at http://www.ncbi.
nlm.nih.gov/gap through dbGaP accession number,
phs000267.v1.p1. Submission of the data, phs000267.v1.p1,
to dbGaP was provided by Dr Bernie Devlin on behalf of
the Autism Genome Project (AGP). Collection and submission
of the data to dbGaP were supported by a grant from the
Medical Research Council (G0601030) and the Wellcome
Trust (075491/Z/04), Anthony P. Monaco, P.I., University of
Oxford.

Control data used in this study were provided by the
NUgene Project (www.nugene.org). Funding support for the
NUgene Project was provided by the Northwestern Univer-
sity’s Center for Genetic Medicine, Northwestern University,
and Northwestern Memorial Hospital. Assistance with pheno-
type harmonization was provided by the eMERGE Coordinat-
ing Center (Grant number U01HG04603). This study was
funded through the NIH, NHGRI eMERGE Network
(U01HG004609). Funding support for genotyping, which
was performed at The Broad Institute, was provided by the
NIH (U01HG004424). Assistance with phenotype harmoniza-
tion and genotype data cleaning was provided by the eMERGE
Administrative Coordinating Center (U01HG004603) and
the National Center for Biotechnology Information (NCBI).
The data sets used for the analyses described in this manu-
script were obtained from dbGaP at http://www.ncbi.nlm.nih.
gov/gap through dbGaP accession number phs000237.v1.p1.

Conflict of Interest statement. None declared.

Human Molecular Genetics, 2013, Vol. 22, No. 14 2969

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt150/-/DC1


FUNDING

This work is supported by a Young Investigator Award
(17379) from NARSAD/Brain and Behavioral Research Foun-
dation and L.A.W. is supported by the International Mental
Health Research Organization.

REFERENCES

1. Bailey, A., Lecouteur, A., Gottesman, I., Bolton, P., Simonoff, E.,
Yuzda, E. and Rutter, M. (1995) Autism as a strongly genetic
disorder—evidence from a British twin study. Psychol. Med., 25, 63–77.

2. Folstein, S. and Rutter, M. (1977) Infantile-autism—genetic study of 21
twin pairs. J. Child Psychol. Psychiatry, 18, 297–321.

3. Steffenburg, S., Gillberg, C., Hellgren, L., Andersson, L., Gillberg, I.C.,
Jakobsson, G. and Bohman, M. (1989) A twin study of autism in
Denmark, Finland, Iceland, Norway and Sweden. J. Child Psychol.
Psychiatry, 30, 405–416.

4. Constantino, J.N., Zhang, Y., Frazier, T., Abbacchi, A.M. and Law, P.
(2010) Sibling recurrence and the genetic epidemiology of autism.
Am. J. Psychiatry, 167, 1349–1356.

5. Hallmayer, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B.,
Torigoe, T., Miller, J., Fedele, A., Collins, J., Smith, K. et al. (2011)
Genetic heritability and shared environmental factors among twin pairs
with autism. Arch. Gen. Psychiatry, 68, 1095–1102.

6. Constantino, J.N., Hudziak, J.J. and Todd, R.D. (2000) The genetic
structure of reciprocal social behavior: support for a population based
approach to genetic studies of autism. Am. J. Med. Genet., 96, 480–480.

7. Constantino, J.N., Gruber, C.P., Davis, S., Hayes, S., Passanante, N. and
Przybeck, T. (2004) The factor structure of autistic traits. J. Child
Psychol. Psychiatry, 45, 719–726.

8. LeCouteur, A., Bailey, A., Goode, S., Pickles, A., Robertson, S.,
Gottesman, I. and Rutter, M. (1996) A broader phenotype of autism: the
clinical spectrum in twins. J. Child Psychol. Psychiatry, 37, 785–801.

9. Muhle, R., Trentacoste, S.V. and Rapin, I. (2004) The genetics of autism.
Pediatrics, 113, E472–E486.

10. Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T.,
Yamrom, B., Yoon, S., Krasnitz, A., Kendall, J. et al. (2007) Strong
association of de novo copy number mutations with autism. Science, 316,
445–449.

11. Levy, D., Ronennus, M., Yamrom, B., Lee, Y.H., Leotta, A., Kendall, J.,
Marks, S., Lakshmi, B., Pai, D., Ye, K. et al. (2011) Rare de novo and
transmitted copy-number variation in autistic spectrum disorders. Neuron,
70, 886–897.

12. Sanders, S.J., Ercan-Sencicek, A.G., Hus, V., Luo, R., Murtha, M.T.,
Moreno-De-Luca, D., Chu, S.H., Moreau, M.P., Gupta, A.R., Thomson,
S.A. et al. (2011) Multiple recurrent de novo CNVs, including
duplications of the 7q11.23 Williams syndrome region, are strongly
associated with autism. Neuron, 70, 863–885.

13. Marshall, C.R., Noor, A., Vincent, J.B., Lionel, A.C., Feuk, L., Skaug, J.,
Shago, M., Moessner, R., Pinto, D., Ren, Y. et al. (2008) Structural
variation of chromosomes in autism spectrum disorder. Am. J. Hum.
Genet., 82, 477–488.

14. Bucan, M., Abrahams, B.S., Wang, K., Glessner, J.T., Herman, E.I.,
Sonnenblick, L.I., Retuerto, A.I.A., Imielinski, M., Hadley, D., Bradfield,
J.P. et al. (2009) Genome-wide analyses of exonic copy number variants
in a family-based study point to novel autism susceptibility genes. PLoS
Genet., 5, 12.

15. Szatmari, P., Paterson, A.D., Zwaigenbaum, L., Roberts, W., Brian, J.,
Liu, X.Q., Vincent, J.B., Skaug, J.L., Thompson, A.P., Senman, L. et al.
(2007) Mapping autism risk loci using genetic linkage and chromosomal
rearrangements. Nat. Genet., 39, 319–328.

16. Weiss, L.A., Shen, Y.P., Korn, J.M., Arking, D.E., Miller, D.T., Fossdal,
R., Saemundsen, E., Stefansson, H., Ferreira, M.A.R., Green, T. et al.
(2008) Association between microdeletion and microduplication at
16p11.2 and autism. N. Engl. J. Med., 358, 667–675.

17. Weiss, L.A., Arking, D.E., Daly, M.J. and Chakravarti, A. (2009) A
genome-wide linkage and association scan reveals novel loci for autism.
Nature, 461, 802–808.

18. Glessner, J.T., Wang, K., Cai, G.Q., Korvatska, O., Kim, C.E., Wood, S.,
Zhang, H.T., Estes, A., Brune, C.W., Bradfield, J.P. et al. (2009) Autism
genome-wide copy number variation reveals ubiquitin and neuronal
genes. Nature, 459, 569–573.

19. Maestrini, E., Pagnamenta, A.T., Lamb, J.A., Bacchelli, E., Sykes, N.H.,
Sousa, I., Toma, C., Barnby, G., Butler, H., Winchester, L. et al. (2010)
High-density SNP association study and copy number variation analysis
of the AUTS1 and AUTS5 loci implicate the IMMP2L-DOCK4 gene
region in autism susceptibility. Mol. Psychiatry, 15, 954–968.

20. Anney, R., Klei, L., Pinto, D., Regan, R., Conroy, J., Magalhaes, T.R.,
Correia, C., Abrahams, B.S., Sykes, N., Pagnamenta, A.T. et al. (2010) A
genome-wide scan for common alleles affecting risk for autism. Hum.
Mol. Genet., 19, 4072–4082.

21. Ma, D.Q., Salyakina, D., Jaworski, J.M., Konidari, I., Whitehead, P.L.,
Andersen, A.N., Hoffman, J.D., Slifer, S.H., Hedges, D.J., Cukier, H.N.
et al. (2009) A genome-wide association study of autism reveals a
common novel risk locus at 5p14.1. Ann. Hum. Genet., 73, 263–273.

22. Wang, K., Zhang, H.T., Ma, D.Q., Bucan, M., Glessner, J.T., Abrahams,
B.S., Salyakina, D., Imielinski, M., Bradfield, J.P., Sleiman, P.M.A. et al.
(2009) Common genetic variants on 5p14.1 associate with autism
spectrum disorders. Nature, 459, 528–533.

23. Pinto, D., Pagnamenta, A.T., Klei, L., Anney, R., Merico, D., Regan, R.,
Conroy, J., Magalhaes, T.R., Correia, C., Abrahams, B.S. et al. (2010)
Functional impact of global rare copy number variation in autism
spectrum disorders. Nature, 466, 368–372.

24. Collins, M.O., Husi, H., Yu, L., Brandon, J.M., Anderson, C.N.G.,
Blackstock, W.P., Choudhary, J.S. and Grant, S.G.N. (2006) Molecular
characterization and comparison of the components and multiprotein
complexes in the postsynaptic proteome. J. Neurochem., 97, 16–23.

25. Adams, R.H., Betz, H. and Puschel, A.W. (1996) A novel class of murine
semaphorins with homology to thrombospondin is differentially expressed
during early embryogenesis. Mech. Dev., 57, 33–45.

26. Melin, M., Carlsson, B., Anckarsater, H., Rastam, M., Betancur, C.,
Isaksson, A., Gillberg, C. and Dahl, N. (2006) Constitutional
downregulation of SEMA5A expression in autism. Neuropsychobiology,
54, 64–69.

27. Gamazon, E.R., Zhang, W., Konkashbaev, A., Duan, S.W., Kistner, E.O.,
Nicolae, D.L., Dolan, M.E. and Cox, N.J. (2010) SCAN: SNP and copy
number annotation. Bioinformatics, 26, 259–262.

28. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R.,
Bender, D., Maller, J., Sklar, P., de Bakker, P.I.W., Daly, M.J. et al.
(2007) PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet., 81, 559–575.

29. Conrad, D.F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y.J.,
Aerts, J., Andrews, T.D., Barnes, C., Campbell, P. et al. (2010) Origins
and functional impact of copy number variation in the human genome.
Nature, 464, 704–712.

30. Anney, R., Klei, L., Pinto, D., Almeida, J., Bacchelli, E., Baird, G.,
Bolshakova, N., Bolte, S., Bolton, P.F., Bourgeron, T. et al. (2012)
Individual common variants exert weak effects on the risk for autism
spectrum disorderspi. Hum. Mol. Genet., 21, 4781–4792.

31. Klei, L., Sanders, S.J., Murtha, M.T., Hus, V., Lowe, J.K., Willsey, A.J.,
Moreno-De-Luca, D., Yu, T.W., Fombonne, E., Geschwind, D. et al.

(2012) Common genetic variants, acting additively, are a major source of
risk for autism. Mol. Autism, 3, 9.

32. Devlin, B., Melhem, N. and Roeder, K. (2011) Do common variants play a
role in risk for autism? Evidence and theoretical musings. Brain Res.,
1380, 78–84.

33. Devlin, B. and Scherer, S.W. (2012) Genetic architecture in autism
spectrum disorder. Curr. Opin. Genet. Dev., 22, 229–237.

34. Henrichsen, C.N., Chaignat, E. and Reymond, A. (2009) Copy number
variants, diseases and gene expression. Hum. Mol. Genet., 18, R1–R8.

35. Nord, A.S., Roeb, W., Dickel, D.E., Walsh, T., Kusenda, M.,
O’Connor, K.L., Malhotra, D., McCarthy, S.E., Stray, S.M., Taylor, S.M.
et al. (2011) Reduced transcript expression of genes affected by inherited
and de novo CNVs in autism. Eur. J. Hum. Genet., 19, 727–731.

36. Luo, R., Sanders, S.J., Tian, Y., Voineagu, I., Huang, N., Chu, S.H., Klei,
L., Cai, C., Ou, J., Lowe, J.K. et al. (2012) Genome-wide transcriptome
profiling reveals the functional impact of rare de novo and recurrent CNVs
in autism spectrum disorders. Am. J. Hum. Genet., 91, 38–55.

37. Gamazon, E.R., Nicolae, D.L. and Cox, N.J. (2011) A study of CNVs as
trait-associated polymorphisms and as expression quantitative trait loci.
PLoS Genet., 7, e1001292.

2970 Human Molecular Genetics, 2013, Vol. 22, No. 14



38. Henrichsen, C.N., Vinckenbosch, N., Zollner, S., Chaignat, E.,
Pradervand, S., Schutz, F., Ruedi, M., Kaessmann, H. and Reymond, A.
(2009) Segmental copy number variation shapes tissue transcriptomes.
Nat. Genet., 41, 424–429.

39. Davis, L.K., Gamazon, E.R., Kistner-Griffin, E., Badner, J.A., Liu, C.,
Cook, E.H., Sutcliffe, J.S. and Cox, N.J. (2012) Loci nominally associated
with autism from genome-wide analysis show enrichment of brain
expression quantitative trait loci but not lymphoblastoid cell line
expression quantitative trait loci. Mol Autism, 3, 3.

40. Hu, V.W., Frank, B.C., Heine, S., Lee, N.H. and Quackenbush, J. (2006)
Gene expression profiling of lymphoblastoid cell lines from monozygotic
twins discordant in severity of autism reveals differential regulation of
neurologically relevant genes. BMC Genomics, 7, 118.

41. Jasinska, A.J., Service, S., Choi, O.W., DeYoung, J., Grujic, O., Kong,
S.Y., Jorgensen, M.J., Bailey, J., Breidenthal, S., Fairbanks, L.A. et al.

(2009) Identification of brain transcriptional variation reproduced in
peripheral blood: an approach for mapping brain expression traits. Hum.
Mol. Genet., 18, 4415–4427.

42. Hu, V.W., Nguyen, A., Kim, K.S., Steinberg, M.E., Sarachana, T., Scully,
M.A., Soldin, S.J., Luu, T. and Lee, N.H. (2009) Gene expression
profiling of lymphoblasts from autistic and nonaffected sib pairs: altered
pathways in neuronal development and steroid biosynthesis. PLoS ONE,
4, e5775.

43. Baron, C.A., Liu, S.Y., Hicks, C. and Gregg, J.P. (2006) Utilization of
lymphoblastoid cell lines as a system for the molecular modeling of
autism. J. Autism Dev. Disord., 36, 973–982.

44. Sarachana, T., Zhou, R., Chen, G., Manji, H.K. and Hu, V.W. (2010)
Investigation of post-transcriptional gene regulatory networks associated
with autism spectrum disorders by microRNA expression profiling of
lymphoblastoid cell lines. Genome Med., 2, 23.

45. Nishimura, Y., Martin, C.L., Vazquez-Lopez, A., Spence, S.J.,
Alvarez-Retuerto, A.I., Sigman, M., Steindler, C., Pellegrini, S., Schanen,
N.C., Warren, S.T. et al. (2007) Genome-wide expression profiling of
lymphoblastoid cell lines distinguishes different forms of autism and
reveals shared pathways. Hum. Mol. Genet., 16, 1682–1698.

46. Nguyen, A., Rauch, T.A., Pfeifer, G.P. and Hu, V.W. (2010) Global
methylation profiling of lymphoblastoid cell lines reveals epigenetic
contributions to autism spectrum disorders and a novel autism candidate
gene, RORA, whose protein product is reduced in autistic brain. FASEB
J., 24, 3036–3051.

47. Sultana, R., Yu, C.E., Yu, J., Munson, J., Chen, D.H., Hua, W.H., Estes,
A., Cortes, F., de la Barra, F., Yu, D.M. et al. (2002) Identification of a
novel gene on chromosome 7q11.2 interrupted by a translocation
breakpoint in a pair of autistic twins. Genomics, 80, 129–134.

48. Huang, X.L., Zou, Y.S., Maher, T.A., Newton, S. and Milunsky, J.M.
(2010) A de novo balanced translocation breakpoint truncating the Autism
Susceptibility Candidate 2 (AUTS2) gene in a patient with autism.
Am. J. Med. Genet. A, 152A, 2112–2114.

49. Beunders, G., Voorhoeve, E., Golzio, C., Pardo, L.M., Rosenfeld, J.A.,
Talkowski, M.E., Simonic, I., Lionel, A.C., Vergult, S., Pyatt, R.E. et al.
(2013) Exonic deletions in AUTS2 cause a syndromic form of intellectual
disability and suggest a critical role for the C terminus. Am. J. Hum.
Genet, 92, 210–220.

50. Nagamani, S.C., Erez, A., Ben-Zeev, B., Frydman, M., Winter, S., Zeller,
R., El-Khechen, D., Escobar, L., Stankiewicz, P., Patel, A. et al. (2012)
Detection of copy-number variation in AUTS2 gene by targeted exonic
array CGH in patients with developmental delay and autistic spectrum
disorders. Eur. J. Hum. Genet, 21, 343–346.

51. Talkowski, M.E., Rosenfeld, J.A., Blumenthal, I., Pillalamarri, V.,
Chiang, C., Heilbut, A., Ernst, C., Hanscom, C., Rossin, E., Lindgren,
A.M. et al. (2012) Sequencing chromosomal abnormalities reveals
neurodevelopmental loci that confer risk across diagnostic boundaries.
Cell, 149, 525–537.

52. Kalscheuer, V.M., FitzPatrick, D., Tommerup, N., Bugge, M., Niebuhr,
E., Neumann, L.M., Tzschach, A., Shoichet, S.A., Menzel, C., Erdogan, F.
et al. (2007) Mutations in autism susceptibility candidate 2 (AUTS2) in
patients with mental retardation. Hum. Genet., 121, 501–509.

53. IMGSAC (1998) A full genome screen for autism with evidence for
linkage to a region on chromosome 7q. International Molecular Genetic
Study of Autism Consortium. Hum. Mol. Genet., 7, 571–578.

54. IMGSAC (2001) A genomewide screen for autism: strong evidence
for linkage to chromosomes 2q, 7q, and 16p. Am. J. Hum. Genet., 69,
570–581.

55. Badner, J.A. and Gershon, E.S. (2002) Regional meta-analysis of
published data supports linkage of autism with markers on chromosome 7.
Mol. Psychiatry, 7, 56–66.

56. Zhiling, Y., Fujita, E., Tanabe, Y., Yamagata, T., Momoi, T. and Momoi,
M.Y. (2008) Mutations in the gene encoding CADM1 are associated
with autism spectrum disorder. Biochem. Biophys. Res. Commun., 377,
926–929.

57. Hamdan, F.F., Daoud, H., Rochefort, D., Piton, A., Gauthier, J., Langlois,
M., Foomani, G., Dobrzeniecka, S., Krebs, M.O., Joober, R. et al. (2010)
De novo mutations in FOXP1 in cases with intellectual disability, autism,
and language impairment. Am. J. Hum. Genet., 87, 671–678.

58. O’Roak, B.J., Deriziotis, P., Lee, C., Vives, L., Schwartz, J.J., Girirajan,
S., Karakoc, E., Mackenzie, A.P., Ng, S.B., Baker, C. et al. (2011) Exome
sequencing in sporadic autism spectrum disorders identifies severe de
novo mutations. Nat. Genet., 43, 585–589.

59. Palumbo, O., D’Agruma, L., Minenna, A.F., Palumbo, P., Stallone, R.,
Palladino, T., Zelante, L. and Carella, M. (2012) 3p14.1 de novo
microdeletion involving the FOXP1 gene in an adult patient with autism,
severe speech delay and deficit of motor coordination. Gene, 516, 107–113.

60. Ozgen, H.M., van Daalen, E., Bolton, P.F., Maloney, V.K., Huang, S.,
Cresswell, L., van den Boogaard, M.J., Eleveld, M.J., van’t Slot, R.,
Hochstenbach, R. et al. (2009) Copy number changes of the
microcephalin 1 gene (MCPH1) in patients with autism spectrum
disorders. Clin. Genet., 76, 348–356.

61. Glancy, M., Barnicoat, A., Vijeratnam, R., de Souza, S., Gilmore, J.,
Huang, S.W., Maloney, V.K., Thomas, N.S., Bunyan, D.J., Jackson, A.
et al. (2009) Transmitted duplication of 8p23.1–8p23.2 associated with
speech delay, autism and learning difficulties. Eur. J. Hum. Genet., 17,
37–43.

62. Chung, B.H., Mullegama, S., Marshall, C.R., Lionel, A.C., Weksberg, R.,
Dupuis, L., Brick, L., Li, C., Scherer, S.W., Aradhya, S. et al. (2011)
Severe intellectual disability and autistic features associated with
microduplication 2q23.1. Eur. J. Hum. Genet., 20, 398–403.

63. Talkowski, M.E., Mullegama, S.V., Rosenfeld, J.A., van Bon, B.W., Shen,
Y., Repnikova, E.A., Gastier-Foster, J., Thrush, D.L., Kathiresan, S.,
Ruderfer, D.M. et al. (2011) Assessment of 2q23.1 microdeletion
syndrome implicates MBD5 as a single causal locus of intellectual
disability, epilepsy, and autism spectrum disorder. Am. J. Hum. Genet.,
89, 551–563.

64. Cukier, H.N., Lee, J.M., Ma, D., Young, J.I., Mayo, V., Butler, B.L.,
Ramsook, S.S., Rantus, J.A., Abrams, A.J., Whitehead, P.L. et al. (2012)
The expanding role of MBD genes in autism: identification of a MECP2
duplication and novel alterations in MBD5, MBD6, and SETDB1. Autism

Res., 5, 385–397.

65. Pagnamenta, A.T., Khan, H., Walker, S., Gerrelli, D., Wing, K., Bonaglia,
M.C., Giorda, R., Berney, T., Mani, E., Molteni, M. et al. (2011) Rare
familial 16q21 microdeletions under a linkage peak implicate cadherin 8
(CDH8) in susceptibility to autism and learning disability. J. Med. Genet.,
48, 48–54.

66. Martin, C.L., Duvall, J.A., Ilkin, Y., Simon, J.S., Arreaza, M.G., Wilkes,
K., Alvarez-Retuerto, A., Whichello, A., Powell, C.M., Rao, K. et al.

(2007) Cytogenetic and molecular characterization of A2BP1/FOX1 as a
candidate gene for autism. Am. J. Med. Genet. B Neuropsychiatr. Genet.,
144B, 869–876.

67. Davis, L.K., Maltman, N., Mosconi, M.W., Macmillan, C., Schmitt, L.,
Moore, K., Francis, S.M., Jacob, S., Sweeney, J.A. and Cook, E.H. (2012)
Rare inherited A2BP1 deletion in a proband with autism and
developmental hemiparesis. Am. J. Med. Genet. A, 158A, 1654–1661.

68. Lim, E.T., Raychaudhuri, S., Sanders, S.J., Stevens, C., Sabo, A.,
Macarthur, D.G., Neale, B.M., Kirby, A., Ruderfer, D.M., Fromer, M.
et al. (2013) Rare complete knockouts in humans: population distribution
and significant role in autism spectrum disorders. Neuron, 77, 235–242.

69. Fatemi, S.H., Snow, A.V., Stary, J.M., Araghi-Niknam, M., Reutiman,
T.J., Lee, S., Brooks, A.I. and Pearce, D.A. (2005) Reelin signaling is
impaired in autism. Biol. Psychiatry, 57, 777–787.

70. Artigiani, S., Conrotto, P., Fazzari, P., Gilestro, G.F., Barberis, D.,
Giordano, S., Comoglio, P.M. and Tamagnone, L. (2004) Plexin-B3 is a
functional receptor for semaphorin 5A. EMBO Rep., 5, 710–714.

71. Matsuoka, R.L., Chivatakarn, O., Badea, T.C., Samuels, I.S., Cahill, H.,
Katayama, K., Kumar, S.R., Suto, F., Chedotal, A., Peachey, N.S. et al.

(2011) Class 5 transmembrane semaphorins control selective Mammalian
retinal lamination and function. Neuron, 71, 460–473.

Human Molecular Genetics, 2013, Vol. 22, No. 14 2971



72. Kantor, D.B., Chivatakarn, O., Peer, K.L., Oster, S.F., Inatani, M.,
Hansen, M.J., Flanagan, J.G., Yamaguchi, Y., Sretavan, D.W., Giger, R.J.
et al. (2004) Semaphorin 5A is a bifunctional axon guidance cue regulated
by heparan and chondroitin sulfate proteoglycans. Neuron, 44, 961–975.

73. Sadanandam, A., Rosenbaugh, E.G., Singh, S., Varney, M. and Singh,
R.K. (2010) Semaphorin 5A promotes angiogenesis by increasing
endothelial cell proliferation, migration, and decreasing apoptosis.
Microvasc. Res., 79, 1–9.

74. Fiore, R., Rahim, B., Christoffels, V.M., Moorman, A.F. and Puschel,
A.W. (2005) Inactivation of the Sema5a gene results in embryonic
lethality and defective remodeling of the cranial vascular system. Mol.
Cell Biol., 25, 2310–2319.

75. Gunn, R.K., Huentelman, M.J. and Brown, R.E. (2011) Are Sema5a
mutant mice a good model of autism? A behavioral analysis of sensory
systems, emotionality and cognition. Behav. Brain Res., 225, 142–150.

76. Konopka, G., Wexler, E., Rosen, E., Mukamel, Z., Osborn, G.E., Chen,
L., Lu, D., Gao, F., Gao, K., Lowe, J.K. et al. (2011) Modeling the
functional genomics of autism using human neurons. Mol. Psychiatry, 17,
202–214.

77. Chen, Y., Zhu, J., Lum, P.Y., Yang, X., Pinto, S., MacNeil, D.J., Zhang,
C., Lamb, J., Edwards, S., Sieberts, S.K. et al. (2008) Variations in DNA
elucidate molecular networks that cause disease. Nature, 452, 429–435.

78. Emilsson, V., Thorleifsson, G., Zhang, B., Leonardson, A.S., Zink, F.,
Zhu, J., Carlson, S., Helgason, A., Walters, G.B., Gunnarsdottir, S. et al.
(2008) Genetics of gene expression and its effect on disease. Nature, 452,
423–428.

79. Duan, S., Huang, R.S., Zhang, W., Bleibel, W.K., Roe, C.A., Clark, T.A.,
Chen, T.X., Schweitzer, A.C., Blume, J.E., Cox, N.J. et al. (2008) Genetic
architecture of transcript-level variation in humans. Am. J. Hum. Genet.,
82, 1101–1113.

80. Zhang, W., Duan, S., Kistner, E.O., Bleibel, W.K., Huang, R.S., Clark,
T.A., Chen, T.X., Schweitzer, A.C., Biume, J.E., Cox, N.J. et al. (2008)

Evaluation of genetic variation contributing to differences in gene
expression between populations. Am. J. Hum. Genet., 82, 631–640.

81. Gibbs, R.A., Belmont, J.W., Hardenbol, P., Willis, T.D., Yu, F.L., Yang,
H.M., Ch’ang, L.Y., Huang, W., Liu, B., Shen, Y. et al. (2003) The
International HapMap Project. Nature, 426, 789–796.

82. Geschwind, D.H., Sowinski, J., Lord, C., Iversen, P., Shestack, J., Jones,
P., Ducat, L. and Spence, S.J. (2001) The Autism Genetic Resource
Exchange: a resource for the study of autism and related neuropsychiatric
conditions. Am. J. Hum. Genet., 69, 463–466.

83. Fischbach, G.D. and Lord, C. (2010) The Simons simplex collection: a
resource for identification of autism genetic risk factors. Neuron, 68,
192–195.

84. Xu, J., Zwaigenbaum, L., Szatmari, P. and Scherer, S.W. (2004)
Molecular cytogenetics of autism. Curr. Genomics, 5, 347–364.

85. Wang, K., Li, M.Y., Hadley, D., Liu, R., Glessner, J., Grant, S.F.A.,
Hakonarson, H. and Bucan, M. (2007) PennCNV: an integrated hidden
Markov model designed for high-resolution copy number variation
detection in whole-genome SNP genotyping data. Genome Res., 17,
1665–1674.

86. Iafrate, A.J., Feuk, L., Rivera, M.N., Listewnik, M.L., Donahoe, P.K., Qi,
Y., Scherer, S.W. and Lee, C. (2004) Detection of large-scale variation in
the human genome. Nat. Genet., 36, 949–951.

87. Browning, B.L. and Browning, S.R. (2009) A unified approach to
genotype imputation and haplotype-phase inference for large data sets of
trios and unrelated individuals. Am. J. Hum. Genet., 84, 210–223.

88. DerSimonian, R. and Laird, N. (1986) Meta-analysis in clinical trials.
Control Clin. Trials, 7, 177–188.

89. McCarty, C.A., Chisholm, R.L., Chute, C.G., Kullo, I.J., Jarvik, G.P.,
Larson, E.B., Li, R., Masys, D.R., Ritchie, M.D., Roden, D.M. et al.
(2011) The eMERGE Network: a consortium of biorepositories linked to
electronic medical records data for conducting genomic studies. BMC
Med. Genomics, 4, 13.

2972 Human Molecular Genetics, 2013, Vol. 22, No. 14



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /JPXEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /JPXEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




