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ABSTRACT OF THE DISSERTATION

Advanced Non-Krylov Subspace Model Order Reduction Techniques for Interconnect
Circuits

by

Boyuan Yan

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2009

Dr. Sheldon X.-D. Tan, Chairperson

Model order reduction (MOR) is an efficient technique to reduce the complexity of dy-

namical systems while producing a good approximation of the input and output behavior.

Classical MOR approaches such as Krylov subspace and truncated balanced realization

methods have been well developed in the areas of system, control, and applied math for

general systems in state-space equations. In recent years, MOR techniques using Krylov

subspace algorithm have been studied intensively in the field of electronic design automa-

tion (EDA) for interconnect analysis.

Interconnects in integrated circuits (IC) can be extracted as RLC circuits, which are

described by a class of state-space equations with special structure properties such as sym-

metry, positive semi-definiteness and sparsity. As a result, to reduce the complexity of

interconnect circuits, we can take advantage of the special structures to simplify the clas-

sical MOR methods. On the other hand, there are also some special requirements for

interconnect reduction: scalability to large problems, passivity and structure preserving,

and application to circuits with massive ports. In this thesis, we present several non-Krylov
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subspace MOR techniques for interconnect analysis.

First, we present new methods based on classical balanced truncation for interconnect

analysis: we generalize the simultaneous diagonalization algorithm for first-order balanced

truncation to overcome the high computing costs; we also propose a passive second-order

balanced truncation technique (and its fast version) to preserve both passivity and structure

information inherent to circuit formulation.

Second, we propose two new methods to perform passive reduction: we present new

algorithm based on the Caratheodory extension, which has a similar computational cost

as the Krylov subspace based methods but ensures the passivity of reduced model without

any restriction on the internal structure of state-space equation; we also propose the concept

of conditional passivity and a method to generate frequency band-limited passive reduced

models.

Finally, we work on long-standing problem of reducing interconnect circuits with mas-

sive ports. We propose a decentralized MOR scheme, where a multi-input multi-output

(MIMO) system is decoupled into a number of subsystems in terms of outputs. The de-

coupling process and terminal reduction are based on the relative gain array (RGA), which

measures the degree of interaction of each input-output pair. The reduction scheme can

lead to passive reduction and is suitable for resistive coupling dominatant networks like

power grids and substrate networks.
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Chapter 1

Introduction

1.1 Background

Circuit simulation tasks in the field of electronic design automation (EDA), such as the

accurate prediction of interconnect effects at the board and chip level, or analog circuit

analysis with full accounting of parasitic elements, may require the solution of large lin-

ear networks. These networks can become extremely large, especially when circuits are

automatically extracted from layout, or contain models of distributed elements, such as

transmission lines, ground planes, antennas, and other three-dimensional structures. The

use of SPICE-like simulators would be inefficient or even prohibitive for such large prob-

lems.

Model order reduction (MOR) is an efficient technique to reduce the complexity of dy-

namical systems while producing a good approximation of the input and output behavior.

Classical MOR approaches such as Krylov subspace and truncated balanced realization

methods have been well developed in the areas of system, control, and applied math for

general systems in state-space equations. In recent years, MOR techniques using Krylov
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subspace algorithm have been studied intensively in the field of EDA for interconnect anal-

ysis.

Interconnects in integrated circuits (IC) can be extracted as RLC circuits, which are

described by a class of state-space equations with special structure properties such as sym-

metry, positive semi-definiteness and sparsity. As a result, to reduce the complexity of

interconnect circuits, we can take advantage of the special structures to simplify the clas-

sical MOR methods. On the other hand, there are also some special requirements for in-

terconnect reduction: scalability to large problems, passivity and structure preserving, and

application to circuits with massive ports.

From formulation point of view, MOR techniques in the field of EDA can be classified

into first-order based methods (using modified nodal analysis, MNA) and second-order

based methods (using nodal analysis, NA). Existing methods mainly project the original

system onto a subspace. In terms of projection subspace, these approaches are divided into

two broad categories, namely moment matching based methods (Krylov subspace methods)

and balanced truncation based methods. In the former case, the system is projected onto a

subspace to match dominant moments while in the latter case the system is projected onto

a subspace both easily controllable and easily observable.

1.2 Krylov subspace methods and existing problems

Moment matching based approaches have been a great success in the past due to its ef-

ficiency and scalability [17, 50, 22, 40, 19, 53]. Due to the introduction of Krylov sub-

space [17, 50, 22], implicit moment matching can be performed in a projection framework

with very good numerical stability. As a result, moment matching idea [45] can be applied
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to very large-scale problems. Another reason for the success is that, when applied to a

special class of systems (like interconnect circuits in MNA formulation), those methods

can be modified to preserve passivity [40, 19, 53]. So the advantages of Krylov-subspace

methods are as follows:

(1) Take advantage of sparsity: fast and applicable to very large-scale problems.

(2) Take advantage of structure: preserve passivity and reciprocity for circuits in certain

formulations

While suitable for reduction of large-scale circuits, Krylov subspace methods have the

following drawbacks:

(1) The reduced model is not as compact as desired

(2) Lack of passivity guarantees for general structure system

(3) Degrades as the number of inputs increases

The three problems have not been solved well, which motivated the study in this the-

sis: We propose two fast balanced truncation methods via double gramian approximation

to mitigate problem (1). For problem (2), we present a positive-real rational interpolation

based model reduction via Carathéodory extension. We also propose the concept of condi-

tional passivity and a method to generate frequency band-limited passive reduced models.

All existing MOR methods suffer from problem (3) more or less, which is inherent to the

centralized formulation. In this study, we propose a decentralized framework to decompose

a centralized system with massive ports.
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1.3 Non-Krylov subspace solutions

1.3.1 Fast balanced truncation via double gramians approximation

While suitable for reduction of large-scale circuits, Krylov subspace methods may generate

models not as compact as desired. Therefore, another approach, truncated balanced realiza-

tion (TBR), or balanced truncation (BT), which has been well developed in the control com-

munity [38, 20, 30, 1], has been studied intensively recently [32, 33, 31, 42, 43, 49, 44, 54].

The classical balanced truncation approaches [38, 30] produce nearly optimal models with

controllable a priori global error bound [20]. More recently, algorithms [42] based on

positive-real balanced truncation were presented to compute guaranteed passive reduced

models of controllable accuracy, which is highly appreciated by posing no constrains on

the internal structure of the state-space. So the advantages of balanced truncation methods

are as follows:

(1) Generate compact models with wideband accuracy

(2) Positive-real versions can preserve passivity for system in general formulation

However, those classical methods are too expensive to directly apply to large-scale

problems due to the cubic cost to solve two Lyapunov equations or Riccati equations and

the eigenvalue problem. The main drawbacks of the balanced truncation are as follows:

(1) Can not take advantage of sparsity and very expensive O(n3)

(2) Can not take advantage of structure and preserve structure for circuits in certain

formulations

(3) Degrades as the number of inputs increases (less sensitive than Krylov subspace

method)

There has been significant effort devoted to mitigate this difficulty recently, which has
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led to two classes of approximate balanced truncation methods. The first class is based on

the approximate balancing by iterative low rank solution of Lyapunov equation [32, 33, 31,

58, 62, 54]. The second class is based on the low rank gramian approximation [43, 49, 44].

Both classes of methods seek to find the dominant subspace of one approximate gramian.

For example, in PMTBR [43], the system is reduced by projecting onto the approximate

dominant controllable subspace without explicitly computing the gramian, which can be

obtained much more cheaply by using singular value decomposition (SVD). Although no

rigorous global error bounds exist as the classical method, those methods often produce

a better approximation over a wide frequency range than Krylov subspace methods at the

similar cost. In addition, one gramian based methods can take advantage of structure to

preserve passivity like Krylov subspace methods.

However, considering only one gramian can lead to large errors as both controllability

and observability gramians and their corresponding subspaces can be quite different for

general interconnect circuits as shown in [54]. Both classes of methods have difficulty in

considering both gramians as this requires the eigendecomposition of the product of two

gramians, which is a n × n matrix, where n is the size of the problem. Hence the resulting

method will have the similar computational cost, which is O(n3), of solving Lyapunov

equations in the standard balanced truncation method.

In this study, we propose two fast balanced truncation methods to consider both grami-

ans at the cost similar to Krylov subspace methods. The first solution is proposed for

general dynamic system, where the system is balanced in terms of two approximate first-

order gramians as achieved in the classical balanced truncation methods. This method is

very accurate but can not preserve passivity and structure. The second solution is proposed

for circuits in second-order formulation, where the system is balanced in terms of two ap-

5



proximate second-order gramians. While less accurate, this method can preserve passivity,

structure, reciprocity inherent to RLC circuits.

Solution 1: double first-order gramians approximation

The first solution can balance a first-order system in general structure in terms of two ap-

proximate gramians as achieved in the classical balanced truncation method. The proposed

algorithm is based on a generalized SVD-based balancing scheme such that the dominant

subspace of the approximate gramian product can be obtained in a very efficient way with-

out explicitly forming the gramians. The novelty of the new method is that we can keep the

similar computing costs of the single gramian method. Experimental results on a number

of published benchmarks show that the proposed method is much more accurate than the

single gramian method with similar computing costs.

Solution 2: double second-order gramians approximation

While positive-real balanced truncation methods [42] can preserve passivity without posing

any constrains on the internal structure of the state-space, this generality is less appreciated

for RLC reduction, where special internal structure is available to preserve passivity less

expensively. Also less appreciated is that structure information inherent to RLCK circuits

such as symmetry, positive semi-definiteness and sparsity, cannot be preserved.

As we know, a linear circuit can be equivalently formulated in the form of a first-order

system or a second-order system. In fact, it is better to formulate an RLC circuit as a

second-order system. One reason is that all matrices in NA are not only positive semi-

definite but also symmetric, which makes it easy to preserve structure information inherent

to RLC circuits like reciprocity [48]. Another reason is that while the inductance matrix in
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MNA is usually very large and dense, the susceptance matrix in NA is diagonally dominant

and can be sparsified by a simple truncation method without disrupting the positive definite-

ness [53]. However, in the past several years, while second-order moment-matching based

approaches have been successfully developed from ENOR [48] to SAPOR [53], second-

order TBR-type methods still remain an open problem. In this study,

In this study, we propose a novel model order reduction approach, SBPOR (Second-

order Balanced truncation for Passive Order Reduction), which is the first second-order

balanced truncation method proposed for passive reduction of RLCK circuits. By exploit-

ing the special structure information in the circuit formulation, second-order Gramians are

defined based on a symmetric first-order realization in descriptor from. As a result, SBPOR

can perform the traditional balancing with passivity-preserving congruency transformation

at the cost of solving one generalized Lyapunov equation. Owing to the second-order

formulation, SBPOR also preserves the structure information inherent to RLCK circuits.

We further propose, SOGA ( Second-Order Gramian Approximation version of SBPOR),

to mitigate high computational cost of solving Lyapunov equation. Experimental results

demonstrate that SBPOR and SOGA are globally more accurate than the Krylov subspace

based approaches.

1.3.2 Carathéodory extension and waveform shaping

Krylov subspace methods can no preserve passivity for general systems. In order to pre-

serve passivity for system with arbitrary internal structure, the positive realness of the trans-

fer function of reduced system should be enforced. Toward this goal, algorithms [42] based

on positive-real balanced truncation were presented to compute guaranteed passive reduced

models of controllable accuracy. However, those methods are too expensive to directly ap-
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ply to large-scale problems due to the cubic cost.

In this study, we present a novel rational interpolation based reduction framework for

reducing the dynamic systems described in any internal structure. The new method is based

on the Carathéodory extension, which ensures the interpolating function is passive without

any restriction on the circuit structure. It has similar moment matching properties and

similar computational cost as the Krylov subspace based reduction methods. Experimen-

tal results demonstrate that the proposed method can be orders of magnitude faster than

the positive-real balanced truncation approach for reducing general structure systems with

comparable and even better results.

In addition, we propose a new approach to enforcing the passivity of a reduced system

of general passive linear time invariant circuits. Instead of making the reduced models

passive for infinite frequencies, the new method works on the signal waveform driving

reduced models. It slightly shapes the waveforms of the signal such that the resulting signal

spectra are band limited to the frequency range in which the reduced system is passive. As

a result, the reduced models only need to be band-limited passive (also called conditionally

passive), which can be achieved much easier than traditional passivity for a reduced system.

1.3.3 Decentralized framework

Unfortunately, the efficiency of model order reduction degrades as the number of ports

increases. The reason for the degradation is fundamental and does not depend on any par-

ticular reduction algorithm [18]. For Krylov-subspace based algorithms, the cost associated

with model computation is directly proportional to the number of inputs, i.e. to the number

of columns in the transfer function matrix. For example, in the PRIMA algorithm [40], if

only two (block) moments are to be matched at each port, and the network has 1000 ports,
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the resulting reduced model will have 2000 states. Similarly, in the TBR algorithm, for

systems with many inputs, many states may be needed because of the high dimension of

the controllable subspace.

There has been significant effort devoted to mitigating this difficulty recently, which

has led to two classes of approaches. The first class takes advantage of the information of

input signal. An extended Krylov subspace (EKS) method was proposed [55], which con-

structs a transformation matrix based on the dynamics of the circuit as well as the source

excitations. More recently, an approximated truncated balanced realizations (TBR) proce-

dure was proposed [49, 44] to obtain compact reduced models by exploiting the correlation

information of input signals. However, since the modeling process depends on the input

signal, once the pattern of input signal has been changed, the model needs to be rebuilt.

More important, they become less useful when input information is unavailable a priori.

The second type of approaches [16, 18, 35, 34] are based on the SVD of matrix-valued

transfer function. The pioneering work is SVDMOR method [16, 18], which exploits the

fact that the matrix transfer function may be numerically low rank. However, since a full

matrix-valued transfer function is rarely low rank, it is still hard to obtain a compact model.

The reason for the degradation is that existing approaches are based on a centralized

framework, where each input-output pair is implicitly assumed to be equally interacted and

the matrix-valued transfer function has to be assumed to be fully populated. In this paper, a

decentralized model order reduction scheme is proposed, where a multi-input multi-output

(MIMO) system is decoupled into a number of subsystems and each subsystem corresponds

to one output and several dominant inputs. The decoupling process is based on the rela-

tive gain array (RGA), which measures the degree of interaction of each input-output pair.

Our experimental results on a number of interconnect circuits show that most of the input-
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output interactions are usually insignificant, which can lead to extremely compact models

even for systems with massive ports. The reduction scheme is very amenable for paral-

lel computing and localized simulation as each decoupled subsystem can be reduced and

simulated independently.

1.4 Contribution of this thesis

The next Chapter provides an in-depth overview of the model reduction methods for linear

dynamic system. The rest of the dissertation contains the following major contributions:

Chapter 3 and 4 are dedicated to mitigating the existing problem 1 of Krylov subspace

methods. In the Chapter 3, we generalize the simultaneous diagonalization algorithm for

first-order balanced truncation to overcome the high computing costs. In the Chapter 4,

we propose a second-order balanced truncation technique (and its approximate version) to

preserve both passivity and structure information inherent to circuit formulation.

Chapter 5 and 6 are dedicated to mitigating the existing problem 2 of Krylov subspace

methods. In the Chapter 5, we present a MOR technique based on the Carathéodory ex-

tension, which has similar computational cost as the Krylov subspace based methods but

ensures the passivity of reduced model without any restriction on the internal structure of

state-space equation. In the Chapter 6, we propose the concept of conditional passivity and

a method to generate band-limited passive reduced models.

A solution of existing problem 3 is presented in Chapter 7. To make the existing MOR

methods applicable to interconnects with massive ports, a decentralized MOR scheme is

proposed, where a multi-input multi-output (MIMO) system is decoupled into a number of

subsystems in terms of outputs. The decoupling process is based on the relative gain array

10



(RGA), which measures the degree of interaction of each input-output pair. The reduction

scheme is very amenable for localized simulation and parallel computing as each decoupled

subsystem can be reduced and simulated independently.

Conclusion ends the dissertation.
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Chapter 2

Model order reduction techniques for

dynamical systems

2.1 Model order reduction in a nutshell

2.1.1 Dynamic system models

The behavior of linear time-invariant (LTI) systems in many engineering problems can be

described by state-space equations in descriptor form (E, A, B, C, D)

Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

(2.1)

where E, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n, D ∈ Rp×p, x(t) ∈ Rn, u(t), y(t) ∈ Rp.

When E equals identity matrix I , the state-space equations become the standard form
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(A, B, C, D)

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

(2.2)

In fact, many LTI systems can also be described by a set of second-order differential equa-

tions (M, D, K, B, C)

Mq̈(t) + Dq̇(t) + Kq(t) = Bu(t)

y(t) = Cq(t)

(2.3)

where M, D, K ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n,u(t), y(t) ∈ Rp, q(t) ∈ Rn. The behavior

of the systems can be completely characterized by the state-space equations. However, in

some cases, we are only interested in the input-output behavior. In such cases, transfer

functions are needed. The transfer function associated with the first-order system (2.1) in

the Laplace domain is given by

H(s) = C(sE − A)−1B (2.4)

which becomes

H(s) = C(sI − A)−1B (2.5)

for a standard system (2.2). For the second-order model (2.3), the transfer function is given

by

H(s) = C(Ms2 + Ds + K)−1B (2.6)
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2.1.2 Passivity

Passivity is an important property of many physical systems. Passive systems can not

produce energy internally. When modeling passive systems, non-passive reduced models

may generate unbounded responses in transient simulation. For linear dynamic system,

passivity requires the transfer functions to be positive-real when the input and output signals

are port voltages and currents. For scattering-parameter (s-parameter) systems, passivity

requires bounded-real for s-parameter matrices.

Necessary and sufficient condition

The system is passive if and only if its transfer function H(s) is positive real [6], which

means

(1) H(s) is analytic for Re(s) > 0

(2) H(s) = H(s) for s ∈ C

(3) H(s) + H(s)H ≥ 0 for Re(s) > 0

(2.7)

where H denotes complex conjugate, HH denotes Hermitian (complex conjugate and trans-

pose), and ≥ 0 denotes positive semi-definiteness in a matrix context.

Sufficient condition

Given a dynamic system model, if the system matrices are positive semi-definite and the

input matrix and output matrix equal, then the state-space model is in a passive form [27,
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40, 48]:

for first-order model (2.1), A, E are positive semi-definite and B = CT

for second-order model (2.3), M, D, K are positive semi-definite and B = CT (2.8)

In such a passive form, the transfer function will be positive-real, which means the system

is passive. This sufficient condition is important because RLCK circuits can be formulated

into such a passive form. Since the passive form can be inherited by the reduced model via

an orthogonal projection, passivity can be easily preserved [27, 40, 48, 19, 53, 44, 60].

2.1.3 Model order reduction

The complexity of the system can be characterized by the size, n, of the model. In electrical

engineering, civil engineering, or aeronautics, the size, n, is often very, even prohibitively,

large that many analysis and design problems can not be solved within a reasonable com-

puting time. Model order reduction is the technique to solve this problem by constructing

a reduced model Hr(s) of size r � n

Erẋ(t) = Arx(t) + Bru(t)

y(t) = Crx(t) + Du(t)

(2.9)

where Er, Ar ∈ Rr×r, Br ∈ Rr×p, Cr ∈ Rp×r, D ∈ Rp×p, x(t) ∈ Rr, u(t), y(t) ∈ Rp, for

the first-order model (2.1), or

Mrq̇(t) + Drq(t) + Kr

∫
q(t) = Bru(t)

y(t) = Crq(t)

(2.10)
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where Mr, Dr, Kr ∈ Rr×r,Br ∈ Rr×p, Cr ∈ Rp×r, u(t), y(t) ∈ Rp, q(t) ∈ Rr, for the

second-order model (2.3).

Such a low order system will have approximately the same output y as the original

system to the input u of interest. The transfer functions are often used as a metric for

approximation. If ‖H(s)−Hr(s)‖ < ε in some appropriate norm, for some given allowable

error ε and frequency range of interest s, the reduced model is accepted as accurate.

In addition, it is important to preserve system properties like stability and passivity in

model order reduction. Given a passive system, we hope the reduced system is also passive.

Otherwise, the reduced system may cause nonphysical behavior when it is simulated with

other subsystems even if it is stable.

Currently, most model order reduction methods are projection based. Given two pro-

jection matrices W, V ∈ Rn×r, for the first-order model (2.9), we have

Er = W T EV Ar = W T AV Br = W TB Cr = CV (2.11)

and for the second-order model (2.10), we have

Mr = W T MV Dr = W T DV Kr = W TKV Br = W T B Cr = CV (2.12)

where W is the left projector and V is the right projector.

Typically, W and V span useful subspaces. Different choices of W and V will result in

different model reduction approaches (Krylov subspace based methods, balanced trunca-

tion methods, etc). If W �= V , the projection is an oblique (Petrov-Galerkin) projection. If

W = V , the projection is an orthogonal (Galerkin) projection. Usually, oblique projection

is better in terms of accuracy as both subspaces are used (e.g. PVL [17] and TBR [38]).
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However, orthogonal projection is widely used in practice because it can be used to pre-

serve important properties like passivity for systems with special state-space formulation

(e.g.PRIMA [40] and PMTBR [44]).

2.2 Krylov subspace methods (moment-matching)

2.2.1 Moments

Given a state-space model in descriptor form (E, A, B, C, D) in (2.1), the transfer func-

tion moments H (0)(s0), H
(1)(s0), . . . , at the frequency point s0 are defined as terms in the

Taylor series of the transfer function H(s) near the point s0

H(s) = H(0)(s0) + H(1)(s0)(s − s0) + H(2)(s0)(s − s0)
2 + . . . (2.13)

The moments are directly related to the matrices of derivatives of the transfer function:

H(k)(s0) =
1

k!

dk

dsk
H(s)|s=s0 (2.14)

and for the state-space model (E, A, B, C, D) in (2.1), we can take the derivative of transfer

function

H(k)(s0) = C((A − s0E)−1E)k(A − s0E)−1B (2.15)
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2.2.2 Two-sided Krylov subspace method

The Krylov subspace Km(A,R) generated by a matrix A and matrix R, of order m, is the

space spanned by the set of vectors (R,AR,A2R, . . . ,Am−1R). Given

Km((s0E − A)−1E, (s0E − A)−1B) ⊆ colsp(V ) (2.16)

and

Km((s0E − A)−T ET , (s0E − A)−T CT ) ⊆ colsp(W ) (2.17)

, if the reduced system Hr(s) is obtained by an oblique projection (W TEV, W T AV, W T B, CV, D),

then we have

H(k)(s0) = H(k)
r (s0), k = 0, . . . , 2m (2.18)

where Hr(s0) denotes mth moments of the transfer function of the reduced system. This

method is called two-sided Krylov subspace method and W and V can be constructed by

numerical algorithms like Lanczos [17] or two-sided Arnoldli.

2.2.3 One-sided Krylov subspace method

Another implementation is to use only one Krylov subspace V and the reduced system

Hr(s) is obtained by an orthogonal projection (W T EV, W T AV, W T B, CV, D). Then we

have

H(k)(s0) = H(k)
r (s0), k = 0, . . . , m (2.19)

This method is called one-sided Krylov subspace method and V can be constructed by

Arnoldli algorithm. Compared with two sided case, one sided Krylov subspace method is
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less accurate. However, if the state-space model is in a passive form [27, 40], one sided

Krylov subspace can be relied to preserve passivity.

2.3 Balanced truncation methods

In this section, we review the classical balanced truncation methods developed in the con-

trol community for general dynamic systems.

2.3.1 Lyapunov balancing

Lyapunov balancing was introduced to the system and control society by [38]. Given a

stable minimal linear time invariant (LTI) system in standard state-space form (A, B, C, D)

in (2.2), the controllability gramian X and observability gramian Y are as follows

X =
∫ ∞
0

eAτBBT eAT τdτ Y =
∫ ∞
0

eAT τCT CeAτdτ (2.20)

It is easy to verify that they are the unique symmetric positive definite solutions to the

Lyapunov equations

AX + XAT + BBT = 0

AT Y + Y A + CT C = 0

(2.21)

The controllability and observability gramians X and Y are related to the energy demanded

to control and observe the system.
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Controllability

Given any state x0 at t = 0, if the system is controllable, there is a signal u(t) with the

smallest energy (measured by L2 norm)

‖u(t)‖2 =

√∫ 0

−∞
uT (t)u(t)dt (2.22)

which could drive the system from zero initial condition at t = −∞ to x0. Assuming

x(−∞) = 0, the zero-state response is

x(t) =

∫ t

−∞
eA(t−τ)u(τ)dτ (2.23)

The controllability gramian X is connected to the solution of the minimum L2 norm prob-

lem

minu∈L2[−∞,0]‖u(t)‖2
2

subject to x(0) =
∫ 0

−∞ e−Aτu(τ)dτ = x0

(2.24)

The solution to this problem is

u(t) = BT e−AT t

(∫ 0

−∞
e−AτBBT e−AT τdτ

)−1

x0 = BT e−AT tX−1x0 (2.25)

So the minimal energy needed to reach x0 is

‖u(t)‖2
2 = xT

0 X−1x0 (2.26)

Now the optimization problem becomes a quadratic form, which means the size of the

eigenvalues of X describes how much input energy is needed to control the associated state
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eigenvector. In other words, if x0 is picked as one of the eigenvectors of X , the energy

needed in the input will be exactly the inverse of the corresponding eigenvalue. As a result,

the largest eigenvalue will correspond to the state easiest to control.

Observability

Observability shares the similar definition of controllability. Given any state x0 at t = 0,

we want to observe how much energy (measured by L2 norm) there will be from the output

signal if the system is released from x0 with zero input for t ≥ 0. The observability gramian

Y is related to the solution of the maximum L2 norm problem

maxy∈L2[0,+∞]‖y(t)‖2
2

subject to x(0) = x0

(2.27)

The zero-input response is

y(t) = Cx(t) = Cx(0)eAt (2.28)

The L2 norm of the output signal when the system is released from x0 is

‖y(t)‖2
2 = xT

0

(∫ ∞

0

eAT tCT CeAtdt

)
x0 = xT

0 Y x0 (2.29)

which means the size of the eigenvalues of Y describes how much output energy is pro-

duced when the associated state eigenvector is in free evolution. In other words, if x0 is

picked as one of the eigenvectors of Y , the energy observed in the output will be exactly the

corresponding eigenvalue. As a result, the largest eigenvalue will correspond to the state

easiest to observe.
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Balanced truncation

Given a dynamic system, the state-space representation is not unique. Any nonsingular

linear transformation x = T x̃ can be applied to the system (A, B, C, D) to obtain a new

state-space representation (Ã, B̃, C̃, D)

˙̃x(t) = Ãx̃(t) + B̃u(t)

y(t) = C̃x̃(t) + Du(t)

(2.30)

where

Ã = T−1AT B̃ = T−1B C̃ = CT (2.31)

Such a transformation is known as a similarity transformation, which does not change the

input-output behavior of the system. It is easy to see both representations (A, B, C, D) and

(Ã, B̃, C̃, D) have the same transfer function H(s).

A balanced realization is a special state-space representation, where the controllability

and observability gramians are diagonal and equal. The balancing transformation can be

computed by calculating the eigenmodes of the gramian product XY

XY = TΛT−1 (2.32)

It can be seen that the eigenvetors of XY are the basis vectors that describe the balancing

transformation as follows. From (2.20) and (2.31), we obtain the following expressions for

the gramians of the transformed system

X̃ = T−1XT−T ; Ỹ = T TY T (2.33)
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For a balanced system, we require X̃ = Ỹ = Σ, where Σ is a diagonal matrix. From (2.33),

we can write

T−1X = ΣT T ; Y T = T−T Σ (2.34)

or

T−1XY T = Σ2 (2.35)

which means the transformation T , which balances the system, contains the eigenvectors

of the gramian product XY as its columns.

From the gramian expression (2.32) and (2.35), it can be seen that the the eigenvalues

λi contained in the diagonal matrix Λ are positive real numbers, and σi =
√

λi are known

as the Hankel singular values of the system. The eigenvectors of XY correspond to states

through which the input is transmitted to the output. The magnitudes of the Hankel singular

values describe the relative importance of these states and are independent of the particular

realization of the system. States corresponding to the small Hankel singular values are

difficult to control and difficult to observe. Such states are less involved in the energy

transfer from inputs to outputs.

Therefore, a general idea of balanced truncation is to transform the system into a bal-

anced form (Ã, B̃, C̃, D), where the states which are difficult to control are also difficult to

observe, and to discard the parts of the dynamics that correspond to those week states. We

may partition Σ into

Σ =

⎡
⎢⎣ Σ1 0

0 Σ2

⎤
⎥⎦ , (2.36)
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and conformally partition the transformed matrices as

Ã =

⎡
⎢⎣ Ã11 Ã12

Ã21 Ã22

⎤
⎥⎦ ; B̃ =

⎡
⎢⎣ B̃1

B̃2

⎤
⎥⎦ ; C̃ =

[
C̃1 C̃2

]
(2.37)

The reduced model of order r (Ar, Br, Cr, D) is obtained by taking the r × r, r × p, q × r

leading blocks of Ã, B̃, C̃, respectively

Ar = Ã11 Br = B̃1 Cr = C̃1
(2.38)

This truncation leads to a balanced reduced-order system (Ar, Br, Cr, D).

The most desirable property of TBR method is that the reduced model has bounded

error throughout all the frequency domain. Specifically, the error in the transfer function of

the order r approximation is bounded by [20]

‖H(s) − Hr(s)‖ ≤ 2
n∑

i=r+1

σk (2.39)

To summarize, the standard balanced truncation algorithm flow chart [30] is shown in

Fig. 2.1. An approach with improved numerical properties may be found in [47].

Balancing in descriptor form

Given a state-space model in descriptor form (E, A, B, C, D) in (2.1), if the matrix E is

singular, the system may not be proper. In this case, there are infinite eigenvalues and the

transfer function can be represented as a sum of proper transfer function and a matrix of
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ALGORITHM: STANDARD BALANCED TRUNCATION METHOD

Input: H : (A, B, C, D)
Output: Hr : (Ar, Br, Cr, D)

1. Compute X > 0 and Y > 0

2. Cholesky factorization X = LxL
T
x and Y = LyL

T
y

3. Compute SVD UΣV = LT
y Lx

4. Compute T = LxV Σ−1/2 and T−1 = Σ−1/2UT LT
y

5. Compute the balanced realizations Ã = T−1AT ,B̃ = T−1B,C̃ = CT .

6. Truncate to form the reduced system (Ar, Br, Cr, D)

Figure 2.1: Balanced truncation algorithm.

polynomials

G(s) = Gp(s) +
∑
i>0

Gis
i (2.40)

where Gp(s) is a matrix of proper rational functions of s. The proper and polynomial parts

of the transfer function can be separated by the projection of the system onto deflating sub-

spaces of the pair (E, A) corresponding to finite and infinite eigenvalues, respectively [52].

The polynomial terms should be exactly preserved by the reduced system and the proper

rational term Gp(s), where E is nonsingular, can be reduced by classical balanced trunca-

tion.

Given the system in descriptor form with nonsingular E, controllability and observabil-

ity gramians [54] can be computed by solving generalized Lyapunov equations

EXAT + AXET + BBT = 0

ET Y A + AT Y E + CT C = 0

(2.41)
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Similarly, we want to find a matrix T to perform a similarity transformation to diagonalize

the product XY . After the similarity transformation, the system is balanced. We may

conformally partition the transformed matrices as

T−1ET =

⎡
⎢⎣ Ẽ11 Ẽ12

Ẽ21 Ẽ22

⎤
⎥⎦ T−1AT =

⎡
⎢⎣ Ã11 Ã12

Ã21 Ã22

⎤
⎥⎦

T−1B =

⎡
⎢⎣ B̃1

B̃2

⎤
⎥⎦ CT =

[
C̃1 C̃2

] (2.42)

and (Ẽ11, Ã11, B̃1, C̃1, D) is the reduced order system. In fact, this reduction is mathemat-

ically equivalent to performing balanced truncation on the system (E−1A, E−1B, C, D).

However, the computation steps are numerically better conditioned via generalized Lya-

punov equations.

Balancing from a projection point of view

Note that, an alternative interpretation of balanced truncation is to project the system onto

a subspace both easily controllable and easily observable, which is just the dominant

eigenspace of the matrix XY corresponding to the r largest eigenvalues. If we partition

T and T−1 as

T−1 =

⎡
⎢⎣ W T

W̃ T

⎤
⎥⎦ ; T =

[
V Ṽ

]
(2.43)

and substitute (2.43) into (2.42), then we have

Ẽ11 = W T EV ; Ã11 = W TAV ; B̃1 = W T B; C̃1 = CV (2.44)
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which unifies the balancing and truncating operations into one projection step. Since the

left projector W and right projector V are not equal generally W �= V , the projection is an

oblique projection.

Balancing a symmetric system

Given a state-space model in descriptor form (E, A, B, C, D) in (2.1), the state-space

model is symmetric if

E = AT E = ET B = CT (2.45)

In this symmetric case, both Lyapunov equations (2.41) are the same and both gramians are

equivalent Y = X . Since the gramian X is symmetric, it is orthogonally diagonalizable,

i.e., there exists T−1 = T T such that T T XT = Σ. Then, we have

T TXXT = T T XTT TXT = Σ2 (2.46)

which means, in this symmetric case, the eigenspace of gramian product XX is exactly

the eigenspace of each gramian X . In this case, we only need to project onto the dominant

eigenspace of one gramian. Since either gramian is symmetric, the left projector W and

right projector V are equal, W = V and the projection (2.44) becomes an orthogonal

projection

Ẽ11 = V T EV ; Ã11 = V T AV ; B̃1 = V T B; C̃1 = CV (2.47)
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2.3.2 Riccati balancing

Lyapunov balancing preserves the stability of the system, but passivity might not be pre-

served. To keep the passivity properties of a system, Riccati balancing [13] is needed. If

a system (A, B, C, D) is positive real (passive), it will satisfy the positive real (PR) equa-

tions [21]

AP + PAT = −BlB
T
l

PCT − B = −BlD
T
l

−D − DT = −DlD
T
l

(2.48)

where P = P T > 0. A dual pair of positive real equations are as follows

AT Q + QA = −CT
r Cr

QB − CT = −CT
r Dr

−D − DT = −DT
r Dr

(2.49)

where Q = QT > 0. The above equations can be rewritten as a dual pair of Riccati

equations, and then solved for P and Q

AP + PAT + (PCT − B)(D + DT )−1(CP − BT ) = 0

AT Q + QA + (QB − CT )(D + DT )−1(BT Q − C) = 0

(2.50)

Riccati balancing can now be achieved by substituting (P, Q) with (X, Y ) in the balanced

truncation algorithm. Since the reduced system also satisfies the (PR) equations, passivity

is preserved. Riccati balancing has been applied to interconnect reduction in the positive-

real TBR (PR-TBR) method [42].

Similar to Lyapunov balancing, Riccati balancing also has physical interpretations in
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terms of energy. Let s(u(t), y(t)) be the supply function, which describes the rate at which

power is supplied to the system and typically is defined such that s(u(t), y(t)) > 0 implies

a positive amount of energy input, while s(u(t), y(t)) < 0 means energy is extracted from

the system back to the environment. When the system inputs and outputs are currents

or voltages, i.e., when the system transfer function represents impedance or admittance

matrices, we may use the supply function s(u(t), y(t)) = u(t)T y(t).

The input energy gramian P is associated with the following optimization problem

inf

(∫ 0

−∞
s(u(t), y(t))dt

)
= xT

0 P−1x0 (2.51)

which minimize the amount of energy that must be injected into the system, in order to

control the system to state x0 at time 0. In this setting, the sizes of the eigenvalues of

R describe how much energy is needed to control the associated state eigenvector. Small

eigenvalues of P implies that a large amount of energy is needed to reach the associated

mode.

Similarly, the output energy gramian Q is associated with the following optimization

problem

sup

(
−

∫ ∞

0

s(u(t), y(t))dt

)
= xT

0 Qx0 (2.52)

which maximize the amount of energy which can be extracted from the system in free

evolution from x0 at time 0. Also, the sizes of the eigenvalues of Q describe how much

energy can be extracted from the system in free evolution. Small eigenvalues of Q implies

that a small amount of energy can be extracted from the associated model.
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For the positive-real case, the error bound is given by [10]

‖H(s) − Hr(s)‖ ≤ λmax(D + DT )

n∑
i=r+1

2σk

(1 − σk)2
(1 +

k∑
j=1

2σj

1 − σj
)2 (2.53)

2.3.3 Second-order balancing

Consider a second-order LTI stable system (M, D, K, B, C) in (2.3) with M assumed

to be nonsingular, the general idea of reducing the second-order system is to transform

the second-order system into the equivalent first-order system, from which the balancing

matrices are obtained. The second-order gramians [37] were defined based on the first-

order realization in a standard state-space form (A,B, C) (2.2) with 2n-dimensional state

xT = [qT q̇T ], where

A =

⎡
⎢⎣ 0 I

−M−1K −M−1D

⎤
⎥⎦ ; B =

⎡
⎢⎣ 0

M−1B

⎤
⎥⎦ ; C =

[
P Q

]
(2.54)

The first-order realization has the same input-output behavior as the second-order system.

Although a first-order MOR approach, like classic balanced truncation [38], can be applied

to reduce (2.54), the reduced model is no longer a second-order. To perform the reduction

directly on the second-order equations (2.3), one needs to define gramians for second-order

systems. Similar to the first order gramian definition (2.24), the second order controllability

gramian definition is based on the following optimization problem [37]

minq̇(0)∈Rn,u∈L2[−∞,0]

(∫ 0

−∞ uT (t)u(t)dt
)

subject to Mq̈(t) + Dq̇(t) + Kq(t) = Bu(t); q(0) = q0

(2.55)

30



which minimizes the necessary energy to reach the given q0 over all past inputs u ∈
L2[−∞, 0] and initial q̇(0) ∈ Rn. First, we minimize the energy over all past inputs

u ∈ L2[−∞, 0], the solution of which has been available based on the optimization problem

related to the first-order gramian (2.24)

minq̇(0)∈Rn(minu∈L2[−∞,0]

(∫ 0

−∞
uT (t)u(t)dt

)
) = minq̇(0)∈Rn(xT

0 X−1x0) (2.56)

If we compatibly partition the controllability gramian of the first-order realization (2.54) X
and its inverse X−1 as

X =

⎡
⎢⎣ R1 R2

RT
2 R3

⎤
⎥⎦ ; X−1 =

⎡
⎢⎣ R̃1 R̃2

R̃T
2 R̃3

⎤
⎥⎦ (2.57)

then we minimize the energy over initial q̇(0) ∈ Rn

minq̇(0)∈Rn(xT
0 X−1x0) = minq̇0∈Rn(

[
qT
0 q̇T

0

]⎡
⎢⎣ R̃1 R̃2

R̃T
2 R̃3

⎤
⎥⎦

⎡
⎢⎣ q0

q̇0

⎤
⎥⎦) (2.58)

By annihilating the gradient, we can obtain the minimum energy qT
0 (R̃1 − R̃2R̃

−1
3 R̃T

2 )q0.

Since R̃1 − R̃2R̃
−1
3 R̃T

2 is the Schur complement of R̃3, we have R̃1 − R̃2R̃
−1
3 R̃T

2 = R−1
1

and

minq̇(0)∈Rn(xT
0 X−1x0) = qT

0 R−1
1 q0 (2.59)

So the optimum for the problem (2.55) is qT
0 R−1

1 q0 and thus the controllability gramian of

the second-order system is X2 = R1. Similarly, the second-order observability gramian
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definition is based on the following optimization problem

maxq̇(0)∈Rn,y∈L2[0,∞]

(∫ ∞
0

yT (t)y(t)dt
)

subject to Mq̈(t) + Dq̇(t) + Kq(t) = Bu(t), q(0) = q0

(2.60)

If we compatibly partition the observability gramian of the first-order realization (2.54) as

Y =

⎡
⎢⎣ N1 N2

NT
2 N3

⎤
⎥⎦ (2.61)

then the observability gramian of the second-order system is Y2 = N1. The eigenvalues

of the gramian product X2Y2 are invariant under a similarity transformation. Let W and

V be the dominant left and right eigenvectors of the gramian product X2Y2. A reduced

second-order model can be obtained as follows (Mr, Dr, Kr, Br, Cr) in which

Mr = W T MV ; Dr = W T DV ; Kr = W TKV ; Br = W T B; Cr = CV (2.62)

However, in order to preserve the symmetry and stability of the original system, an orthog-

onal projection is performed in [37] as follows

Mr = V T MV ; Dr = V T DV ; Kr = V T KV ; Br = V T B; Cr = CV (2.63)

where the equations are left multiplied by V instead of W . Unfortunately, since W �= V for

a non-symmetric system (2.54), the resulting gramian product X2Y2 will not be balanced

and accuracy is sacrificed. In fact, this issue has been resolved [60], which is to be presented
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in the following section, where second-order systems are in a symmetric form

M = MT ; D = DT ; K = KT ; B = CT (2.64)

2.4 RLC circuit equations

RLC circuits are a special class of dynamic systems. Corresponding circuit formulations

are dynamic system models with special internal structures. In this section, we present first

and second-order circuit formulations.

Second-order circuit formulation (C, G, Γ, B)

The nodal analysis(MNA) circuit equations are shown as follows

Cv̇(t) + Gv(t) + Γ
∫

v(t) = Bi(t)

y(t) = BT v(t)

(2.65)

where i(t), y(t) ∈ Rp are input currents and output voltages; v(t) ∈ Rn are nodal voltages;

G, C, Γ ∈ Rn×n are matrices of conductance, capacitance and susceptance respectively;

B ∈ Rn×p is the input matrix and its transpose BT ∈ Rp×n is the output matrix. An impor-

tant property in second order formulation is that the system matrices are both symmetric

and positive semi-definite

C = CT ≥ 0 G = GT ≥ 0 Γ = ΓT ≥ 0 (2.66)

which means the formulation fulfills both the sufficient conditions of passivity (2.8) and

the symmetric conditions (2.64) for second-order systems.
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First-order passive circuit formulation (C,G,B)

The modified nodal analysis(MNA) circuit equations are shown as follows

Cẋ(t) = −Gx(t) + Bi(t)

y(t) = BT x(t)

(2.67)

where

C =

2
64

C 0

0 L

3
75 G =

2
64

G E

−ET 0

3
75 B =

2
64

B

0

3
75 (2.68)

The matrices have the following properties:

C = CT ≥ 0 G + GT ≥ 0 (2.69)

Hence the formulation is in a passive form described by the sufficient conditions of passiv-

ity (2.8). However, such a formulation is not in a symmetric form (2.45) because G is not

symmetric.

First-order symmetric circuit formulation (Cs,Gs,B)

It is easy to see the formulation(2.68) can be rewritten into a symmetric formulation (Cs,Gs,B)

Csẋ(t) = −Gsx(t) + Bi(t)

y(t) = BT x(t)

(2.70)

where

Cs =

⎡
⎢⎣ C 0

0 −L

⎤
⎥⎦ Gs =

⎡
⎢⎣ G E

ET 0

⎤
⎥⎦ B =

⎡
⎢⎣ B

0

⎤
⎥⎦ (2.71)
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Since both Gs and Cs are symmetric, this formulation falls into the class of systems in de-

scriptor form (2.1) with additional symmetric conditions (2.45). However, since Gs and Cs

are no longer positive semi-definite, the sufficient conditions of passivity (2.8) are violated.

It is easy to verify the formulations (2.67), (2.70) and (2.65), have the same transfer

function

H(s) = BT (Cs + G + Γ/s)−1B (2.72)

Hence they are equivalent in terms of input-output behavior and either (2.67) or (2.70) can

be viewed as a first-order realization of (2.65).

There is always a tradeoff in the first-order circuit formulation, either symmetric (im-

plying accuracy) or positive semi-definite (implying passivity). Both can be obtained si-

multaneously only when the circuits are RC/RL circuits, where the formulations (2.65),

(2.67),and (2.70) equal

Cv̇(t) = −Gv(t) + Bi(t)

y(t) = BT v(t)

(2.73)

with C = CT ≥ 0 and G = GT ≥ 0.
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Chapter 3

Fast first-order balanced truncation via

double gramians approximation

The classical balanced truncation approaches [38, 30] produce nearly optimal models with

controllable a priori global error bound [20]. However, those classical methods are too

expensive to directly apply to large-scale problems due to the cubic cost to solve two

Lyapunov equations. There has been significant effort devoted to mitigate this difficulty

recently, which has led to two classes of approximate balanced truncation methods. The

first class is based on the approximate balancing by iterative low rank solution of Lya-

punov equation [32, 33, 31, 62, 54]. The second class is based on the low rank gramian

approximation [43, 49, 44].

The low rank gramian approximation methods were proposed in [58, 43]. In [58], both

controllability and observability gramians are computed in a sampling based method and

eigendecomposition is performed on the product of the two gramians to compute the pro-

jection matrix, which is still very expensive. In [43], which is called the PMTBR method,

only controllability gramian is computed in a similar sampling way and the system is re-
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duced by projecting onto the approximate dominant controllable subspace only, which can

be obtained much more cheaply by using singular value decomposition (SVD). Although

no rigorous global error bounds exist as the classical method, those methods often produce

a better approximation over a wide frequency range than Krylov subspace methods at the

similar cost.

As shown in [54], considering only one gramian can lead to large errors as both control-

lability and observability gramians and their corresponding subspaces can be quite different

for general interconnect circuits. Considering both gramians requires eigendecomposition

of the product of two gramians, which is a n×n matrix, where n is the size of the problem.

Hence the resulting method will have the similar computational cost, which is O(n3), of

solving Lyapunov equations in the standard TBR method.

In this section, we propose a fast balanced truncation method where the system is bal-

anced in terms of two approximate gramians as achieved in the classical balanced trunca-

tion method. The novelty of the new method is that we can keep the similar computing

costs of the single gramian method. The proposed algorithm is based on a generalized

SVD-based balancing scheme, which is the extension of the classical balanced truncation

method [30], where the balancing transformation is determined through the SVD of the

product of Cholesky factors of gramians without explicitly forming the gramian product.

In the proposed method, instead of Cholesky factors, different factors are applied such that

the dominant invariant subspace of the approximate gramian product can be obtained in

a very efficient way without explicitly forming the gramians. Experimental results on a

number of published benchmarks show that the proposed method is much more accurate

than the single gramian approximation method at the similar computing cost.
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3.1 Gramian approximation method

To mitigate high computing costs of classic BT methods for solving large problems in

VLSI design, gramian approximation methods have been proposed, where the approximate

dominant subspace of a gramian can be obtained in a very efficient way.

3.1.1 Gramian expression in frequency domain

Given the state-space model (A, B, C, D), in frequency domain, the controllability gramian

X can be computed from the expression

X =
1

2π

∫ +∞

−∞
(jωI − A)−1BBT (jωI − A)−Hdw (3.1)

and the observability gramian Y can be computed from the expression

Y =
1

2π

∫ +∞

−∞
(jωI − AT )−1CT C(jωI − AT )−Hdw (3.2)

where superscript H denotes Hermitian transpose.

3.1.2 Single gramian approximation

Willcox proposed the sampling-based method to compute the approximate gramians to

avoid the Lyapunov equations[58]. But the method can not avoid the expensive eigende-

composition of the gramian product. To mitigate this problem, Phillips proposed single

gramian approximation method (PMTBR) [44], where the approximate dominant subspace

of controllability gramian (3.1) can be obtained in a very efficient way.
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Specifically, let ωk be kth sampling point. If we define

zck
= (jωkI − A)−1B (3.3)

then X can be approximated as

X̂ =
∑

wkzck
zH

ck
= ZcW

2ZH
c (3.4)

where Zc = [zc1 , zc2, . . . , zcN
] and W a diagonal matrix with diagonal entries Wkk =

√
wk.

The weight wk may come from a specific numerical quadrature method. In fact, we can set

wk = 1. Since X̂ is symmetric, it is orthogonally diagonalizable. If we perform the SVD

on

Zc = UΣV T (3.5)

then we have

X̂ = ZcZc
H = UΣ2UT =

[
U1 U2

]⎡
⎢⎣ Σ2

1 0

0 Σ2
2

⎤
⎥⎦

⎡
⎢⎣ UT

1

UT
2

⎤
⎥⎦ (3.6)

where UT U = I . If the quadrature rule is accurate, X̂ will converge to X and the dominant

eigenspace of X̂ converges to the dominant eigenspace of X by perturbation analysis of

invariant subspaces. As a result, the dominant eigenvectors U1 can be used as the projection

matrix and the reduced model (Ar, Br, Cr, D) can be obtained as

Ar = UT
1 AU1 Br = UT

1 B Cr = CU1
(3.7)

Note that the method does not need to form the n× n gramian ZcZ
H
c explicitly and neither

does it need to perform the eigenvalue decomposition at the cost of O(n3). Instead, it only

performs the SVD on a n × Np thin matrix Zc instead (Np � n).
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Given N sampling points and p inputs, the cost of SVD on matrix Zn×Np is O(n(Np)2).

In addition, it takes N matrix factorizations and Np matrix solves. The total cost is

O(n(Np)2 + Nnβ + Npnα) (typically, 1.1 ≤ β ≤ 1.5 and 1 ≤ α ≤ 1.2 for circuits) [44],

which is dominated by O(Nnβ) < O(n2).

Note that, the same procedure can be performed based on observability gramian (3.2)

as well if we define zok
= (jωkI − AT )

−1
CT and perform an SVD on Zo = [zo1 , . . . , zoN

].

3.1.3 Existing problems

PMTBR only uses controllability gramian and it works well for symmetric systems where

both controllability and observability gramians are the same. But it may not work well for

general unsymmetrical systems like RLC interconnect systems as shown in [54].

To consider two gramians, the most straightforward way is to compute X̂ = ZcZ
H
c

and Ŷ = ZoZ
H
o respectively and perform an eigendecomposition on the product X̂Ŷ [58].

However, the eigendecomposition has to be performed on a n × n full matrix X̂Ŷ , which

still has the computational order of O(n3).

Another possible way is to use cross-gramian XCG, which contains both controllabil-

ity and observability information in a single matrix. In the frequency domain, XCG is

expressed as

XCG =
1

2π

∫ +∞

−∞
(jωI − A)−1BC(jωI − A)−1dw (3.8)

which can be approximated as X̂CG =
∑

zck
zH

ok
= ZcZ

H
o . In this case, we do not need to

compute X̂ , Ŷ , and X̂Ŷ . However, to determine the dominant subspace of XCG, we still

need to perform an eigendecomposition on a n × n full matrix ZcZ
H
o .
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3.2 New double gramian approximation method

In this section, we present the new double gramians approximation method.

3.2.1 Classical SVD-based balancing algorithm

In classical balanced truncation [38], the most straightforward way to determine the bal-

ancing transformation T is to perform an eigendecomposition of the gramian product XY

and T is the invariant subspace.

However, in practice, an SVD-based method was proposed in [30], where the balanc-

ing transformation T is determined through computing the singular value decomposition

(SVD) of a certain product of matrices without explicitly forming the gramian product. The

algorithm is shown in Fig. 3.1.

In this algorithm, given the controllability gramian X > 0 and observability gramian

Y > 0, the Cholesky factors are computed first. Let Lc and Lo denote the lower triangular

Cholesky factors of the gramians X and Y

X = LcL
T
c Y = LoL

T
o

(3.9)

Then the singular value decomposition of the product of the Cholesky factors is computed

as

LT
o Lc = UΣV T (3.10)

where UT U = I and V T V = I . The balancing transformation T and T−1 are given as

T = LcV Σ−1/2 T−1 = Σ−1/2UT LT
o

(3.11)
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Therefore, instead of explicitly forming the gramian product XY and performing an eigen-

CLASSICAL SVD-BASED BALANCING METHOD:
Input: H : (A, B, C, D)
Output: Hr : (Ar, Br, Cr, D)

1. Compute X > 0 and Y > 0
2. Cholesky factorization X = LcL

T
c and Y = LoL

T
o

3. Compute SVD of UΣV = LT
o Lc

4. Compute T = LcV Σ−1/2 and T−1 = Σ−1/2UT LT
o

5. Compute the balanced realizations Ã = T−1AT ,B̃ = T−1B,C̃ = CT
6. Truncate to form the reduced system (Ar, Br, Cr, D)

Figure 3.1: Classical SVD-based balancing method.

decomposition, the invariant subspace T can be determined in a less expensive and more

efficient way in the classical balanced truncation algorithm.

3.2.2 Generalized SVD-based balancing algorithm

In this paper, we propose a generalized SVD-based balancing scheme. In the classical

SVD-based balancing algorithm, the Cholesky factors are used. However, we show that

Cholesky factors are not the only choice to compute the balancing transformation. In fact,

there is no restriction on the structure of matrix factors at all. We first show the following

result:

Theorem 1 Assume the gramians X and Y can be factorized as

X = ZcZ
T
c Y = ZoZ

T
o

(3.12)

where Zc and Zo are matrix factors with arbitrary structure. Then the singular value de-
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composition of the product of the factors is computed as

ZT
o Zc = UΣV T (3.13)

where UT U = I and V T V = I .

In this case, the balancing transformation T and T −1 are given as

T = ZcV Σ−1/2 T−1 = Σ−1/2UT ZT
o

(3.14)

Given (3.12) and (3.13), it can be shown that T −1 is an inverse matrix of T in (3.14)

T−1T = (Σ−1/2UT ZT
o )(ZcV Σ−1/2)

= Σ−1/2UT (ZT
o Zc)V Σ−1/2

= Σ−1/2UT (UΣV T )V Σ−1/2

= Σ−1/2(UT U)Σ(V T V )Σ−1/2

= Σ−1/2ΣΣ−1/2

= I

(3.15)

and T is exactly the invariant subspace of gramian product XY (2.35)

T−1XY T = (Σ−1/2UT ZT
o )(XY )(ZcV Σ−1/2)

= (Σ−1/2UT ZT
o )(ZcZ

T
c )(ZoZ

T
o )(ZcV Σ−1/2)

= Σ−1/2UT (ZT
o Zc)(Z

T
c Zo)(Z

T
o Zc)V Σ−1/2

= Σ−1/2UT (UΣV T )(V ΣUT )(UΣV T )V Σ−1/2

= Σ−1/2ΣΣΣΣ−1/2

= Σ2

(3.16)
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Therefore, the factors of gramians are no longer limited to Cholesky factors.

3.2.3 New double gramians approximation method

Now, we apply the proposed generalized SVD-based balancing algorithm for double grami-

ans approximation.

Let ωk be kth sampling point. If we define

zck
= (jωkI − A)−1B

zok
= (jωkI − AT )

−1
CT

(3.17)

then X and Y can be approximated as

X̂ =
∑

zck
zH

ck
= ZcZ

H
c

Ŷ =
∑

zok
zH

ok
= ZoZ

H
o

(3.18)

where Zc = [zc1 , zc2, . . . , zcN
] and Zo = [zo1 , zo2, . . . , zoN

] .

According to the generalized SVD-based balancing algorithm, Zc and Zo can be used

as the factors to compute the balancing transformation T . We perform a singular value

decomposition on

ZH
o Zc = UΣV H (3.19)

Notice that, given N sampling points and p inputs and q outputs, Zc and Zo are n ×

Np and n × Nq matrices, respectively, where Np � n and Nq � n. Assume m =

max(Np, Nq), the dimension of matrix ZT
o Zc is smaller than m × m and the cost of SVD
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is O(m3), which is much smaller than O(n3) when m � n. Then we have

Zo
HZc =

[
U1 U2

]⎡
⎢⎣ Σ2

1 0

0 Σ2
2

⎤
⎥⎦

⎡
⎢⎣ V T

1

V T
2

⎤
⎥⎦ (3.20)

where U1 and V1 are dominant subspace corresponding to the first r largest singular values

Σ1. Then the right projection matrix and left projection matrix are given by

Tr = ZcV1Σ
−1/2
1 Tl = Σ

−1/2
1 UT

1 ZT
o

(3.21)

Tr and Tl are n×r and r×n matrices respectively, corresponding to the dominant invari-

ant subspace of the approximate gramian product X̂Ŷ . The reduced model (Ar, Br, Cr, D)

can be obtained as

Ar = TlATr Br = TlB Cr = CTr (3.22)

The resulting double gramians approximation algorithm, called DGA, is given in Fig. 3.2.

Given N sampling points and p inputs and q outputs, assume m = max(Np, Nq), the

cost of SVD on matrix ZT
o Zc is O(m3) as analyzed before. In addition, it takes 2N matrix

factorizations and pN +qN matrix solves to obtain Zc and Zo, and O(pqn) to obtain ZT
o Zc.

The total cost is O(m3 + 2Nnβ + (p + q)Nnα + pqn) (typically, 1.1 ≤ β ≤ 1.5 and

1 ≤ α ≤ 1.2 for circuits). As m � n, the cost is still dominated by O(2Nnβ), which is

about twice the cost of single gramian approximation method PMTBR [44] but still in the

same growth order. In fact, the cost of DGA is less than twice the cost of PMTBR as the

cost of SVD process in DGA is O(m3), which is much less than O(n(Np)2) in PMTBR,

where Np ≤ m and m � n.

Practically, we notice that PMTBR uses incremental QR on Zc to find the project ma-
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trix. But it will have the same computational costs of SVD on Zc. Incremental QR can be

used for the proposed method on ZT
o Zc also.

We want to emphasize that although the proposed method is slower than the PMTBR

as DGA computes two approximate gramians, it does not mean that PMTBR will achieve

the same accuracy of the proposed method if both have the exactly same computing costs

(for instance PMTBR samples twice of the DGA method). The proposed method addresses

the fundamental problem of using only single gramians in the PMTBR-like method.

NEW DOUBLE GRAMIANS APPROXIMATION METHOD (DGA):
Input: H : (A, B, C, D)
Output: Hr : (Ar, Br, Cr, D)

1. Select N sampling points zk(k = 1, 2, . . . , N)
2. Compute Zc = [zc1 , zc2, . . . , zcN

] where zck
= (jωkI − A)−1B

3. Compute Zo = [zo1 , zo2, . . . , zoN
] where zok

= (jωkI − AT )
−1

CT

4. Perform SVD on matrix Zo
HZc = UΣV T

5. Compute right projection matrix Tr and left projection matrix Tl as Tr =

ZcV1Σ
−1/2
1 and T T

l = Σ
−1/2
1 UT

1 ZT
o

6. Project onto the dominant invariant subspace of the approximate gramian
product Ar = TlATr, Br = TlB, Cr = CTr

Figure 3.2: New double gramians approximation method (DGA).

3.2.4 Practical Implementation

Descriptor systems

A special class of dynamic systems is the RLC interconnect circuit described by state-space

equations in descriptor form

Cẋ(t) = −Gx(t) + Bu(t)

y(t) = Lx(t)

(3.23)
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In this case, the controllability gramian and observability gramian can be obtained from

generalized Lyapunov equations [54, 44] and the frequency domain expressions are [44]

X = 1
2π

∫ +∞
−∞ (jωC + G)−1BBT (jωC + G)−Hdw

Y = 1
2π

∫ +∞
−∞ (jωC + GT )−1LT L(jωC + GT )−Hdw

(3.24)

As a result, zck
’s and zok

’s in Fig. 3.2 will be replaced by

zck
= (jωkC + G)−1B zok

= (jωkC + GT )
−1

LT (3.25)

Just as PMTBR, the complications present in applying standard balanced truncation to

problems with singular descriptor matrix C vanish in the proposed method.

Passivity

Similar to classical balanced truncation [30], the proposed double gramians approximation

method does not preserve the passivity for general dynamical systems. But post-passivity-

enforcement process can be carried out to ensure the passivity [12, 54], which is out of

scope of this paper.

3.3 Experimental results

In this section, we present experimental results on four benchmark examples used in pub-

lished papers, which are NOT symmetric. The proposed double gramians approximation

method, called DGA, is compared with existing single gramian approximation method

PMTBR and Krylov subspace method PRIMA at the same reduced order. Note that, the

sampling points (total number and their locations) for both DGA and PMTBR are exactly
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Table 3.1: Reduction CPU time comparison of PMTBR and DGA (seconds).

n 152 1520 150002
DGA 0.014597 0.06298 8.810724

PMTBR 0.008164 0.03228 5.070467

the same.

3.3.1 Two RLC lines

The first and second examples are RLC lines used in [54] (in Fig.2 and Fig.4). The two

RLC lines are of the same order 1502 but with different topologies. In both examples, input

signal u(t) is the voltage at the first node and output is the current flowing through the

voltage source. The state vector consists of node voltages, inductor currents, and currents

through the voltage source. The MNA formulation for the two lines results in two systems

(G, C, B, L) with unsymmetric matrices G. In both examples, the parameters are R =

0.1, L = 2, C = 15 and the reduced orders are set to be 10.

The results for the first and second RLC lines are shown in Fig. 3.3(above) and Fig. 3.3(below),

respectively. Clearly, we see that DGA is much more accurate that PMTBR and PRIMA in

both examples. The reason why PRIMA’s results are quite off is that it approximates only

dominant controllable states [54]. We then compare the CPU time of DGA and PMTBR.

The reduction CPU times are shown in Table 3.1, where the n is the order of the RLC line

and the reduced order is 10. From Table 3.1, we can see, the reduction time of DGA is

less than twice the reduction time of PMTBR. This is because DGA is much less expensive

than PMTBR in the SVD process although DGA has to take twice matrix factorizations

and solving.

48



10
−3

10
−2

10
−1

10
0

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

Frequency (rad/sec)

M
ag

ni
tu

de
 (

dB
)

The first RLC line

 

 

Original

DGA

PMTBR

PRIMA

10
−3

10
−2

10
−1

10
0

−100

−50

0

50

Frequency (rad/sec)

M
ag

ni
tu

de
 (

dB
)

The second RLC line

 

 

Original

DGA

PMTBR

PRIMA

Figure 3.3: Comparison results on the two RLC line examples.

3.3.2 A transmission line model

The third example is a transmission line model from [32, 9], which is not symmetric and

has an order of 256. There are 2 inputs and 2 outputs in this model, which results in a 2× 2

transfer matrix H(s). The reduced orders are 30.

The results for the diagonal terms h11(s) and h22(s) of H(s) are shown in Fig. 3.4(above)

and Fig. 3.4(below), respectively. For this unsymmetric example, the proposed DGA

method produces the best wideband approximation again. PRIMA is very accurate in low

frequency range but not accurate beyond 1011 rad/sec. DGA is much more accurate than
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PMTBR also in this case.
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Figure 3.4: Comparison result on the transmission line example.

3.3.3 An international space station example

In addition to interconnect modeling, model reduction is being used to generate compact

models of various dynamic systems [54]. The forth example is a structural model of compo-

nent 1r (Russian service module) of the International Space Station from [9]. This example

is also not symmetric and has an order of 270. There are 3 inputs and 3 outputs in this

model, which results in a 3 × 3 transfer matrix H(s). The reduced orders are 25.
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The results for the diagonal term h22(s) and the off diagonal term h32(s) are shown in

Fig. 3.5(above) and Fig. 3.5(below), respectively. The same conclusion can be drawn here.

PRIMA is only accurate in low frequency range, which can match up to about 10 rad/sec

for h22(s) and about 1 rad/sec for h32(s). However, DGA still has the excellent wideband

accuracy and the performance is much better than PMTBR.
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Figure 3.5: Comparison result on the ISS example.
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Chapter 4

Second-order balanced truncation for

passive order reduction of RLC circuits

and its fast version

Model order reduction (MOR) is an efficient technique to reduce the circuit complexity

while producing a good approximation of the input-output behavior when an RLCK circuit

is formulated in the second-order form, inductance (or partial inductance) will be repre-

sented in its inverse form, which is called susceptance. Susceptance coupling are shown

to be more localized than inductance coupling and its matrix is diagonally dominant like

capacitance matrix [14]. Hence, susceptance matrix can be sparsified much easily without

loss of stability, which, however, is difficult in general for the inductance matrix [24]. The

new susceptance element (called ”K” element) can be stamped back into the circuit matrix

using the SPICE-compatible equivalent circuits [25]. Model order reduction techniques

for second-order systems, which are more suitable for reducing RLCK circuits, have been

developed in the past [48, 53].
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However, existing second-order MOR techniques are mainly based on Krylov-subspace

methods, which in general have difficulties to generate reduced models with global ac-

curacy. Therefore, another approach, truncated balanced realization (TBR), or balanced

truncation (BT), which was originally developed in the control community [38], has been

studied intensively for interconnect reduction recently [42, 44, 49, 56, 57, 59]. The idea of

TBR method is to first transform an original system into a new coordinate such that each

state in this coordinate is equally controllable and observable before the consequent trun-

cation of the weak states. To perform the passive reduction, positive-real TBR (PR-TBR)

was applied in [42], which solves more expensive quadratic matrix equations. PR-TBR has

no constrains on the internal structure of the state-space equations. But it also does not

preserve any structure information inherent to RLCK circuits such as symmetry, positive

semi-definiteness and sparsity, during the reduction process. Another issue is that existing

balanced truncation techniques for interconnect reduction are first-order based and cannot

handle RLCK circuits formulated as second-order systems.

In the control literature [37], Meyer and Srinivasan introduced a second-order balanced

truncation method where second-order gramians are defined based on Moore’s first-order

balanced truncation method. However, in order to preserve the stability of original system,

congruency transformation instead of similarity transformation is performed. As a result,

the transformed system is not really balanced, which sacrifices the accuracy.

In this section, we propose a new balanced truncation method, SBPOR (Second-order

Balanced truncation for Passive Order Reduction), for passive reduction of RLCK circuits.

By exploiting the symmetric positive definiteness of the system matrices in the second-

order circuit formulation, the new approach resolves the issue existing in [37] by defining

second-order gramians based on a symmetric first-order realization. As a result, balancing
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and reduction can be achieved via only congruency transformation without any accuracy

degradation. In contrast to the first-order balanced truncation approaches, SBPOR can also

preserve the structure information inherent to RLCK circuits and only needs to solve one

linear matrix equation instead of two quadratic matrix equations. Furthermore, to miti-

gate the high computational cost of solving Lyapunov equation, a Second-Order Gramian

Approximation version, SOGA, is proposed to generalize the existing first-order gramian

approximation technique PMTBR [44] to second-order systems.

4.1 The SBPOR Algorithm

In this section, we introduce the new second-order balanced truncation method SBPOR and

its gramian approximation version.

4.1.1 Symmetric realization in descriptor form

Consider a second-order LTI stable system

Mq̈(t) + Dq̇(t) + Kq(t) = Bu(t)

y(t) = Pq(t) + Qq̇(t)

(4.1)

where u(t) ∈ Rp, y(t) ∈ Rq, q(t) ∈ Rn, B ∈ Rn×p, P, Q ∈ Rq×n, M, D, K ∈ Rn×n with

M assumed to be nonsingular.

The general idea of reducing the second-order system is to transform the second-order

system first into the equivalent first-order system, from which the balancing matrices are

obtained. To this end, the second-order gramians in [37] were defined based on the first-

order realization in a standard state-space form (2.1) with 2n-dimensional state xT =
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[qT q̇T ], where

A =

⎡
⎢⎣ 0 I

−M−1K −M−1D

⎤
⎥⎦ , B =

⎡
⎢⎣ 0

M−1B

⎤
⎥⎦

C =

[
P Q

] (4.2)

As mentioned before, RLCK circuits can be formulated in a second-order form (4.1)

with special structure M = C, D = G, K = Γ, P = 0, Q = BT

Cq̈(t) + Gq̇(t) + Γq(t) = Bu(t)

y(t) = BT
2 q̇(t)

(4.3)

where u(t), y(t) ∈ Rp are input currents and output voltages; ˙q(t) ∈ Rn are nodal voltages;

G, C, Γ ∈ Rn×n are matrices of conductance, capacitance and susceptance respectively and

C = CT > 0, G = GT ≥ 0, Γ = ΓT ≥ 0; B ∈ Rn×p is the input matrix and its transpose

BT ∈ Rp×n is the output matrix. Note that C is assumed to be invertible [37, 29].

The key idea in this paper is that instead of using the first-order realization (4.2), we

choose another first-order realization in descriptor form [29] with 2n-dimensional state

xT = [qT , q̇T ]

E ẋ(t) = Ax(t) + Bu(t)

y(t) = BT x(t)

(4.4)

where

E =

⎡
⎢⎣ −Γ 0

0 C

⎤
⎥⎦ ,A =

⎡
⎢⎣ 0 −Γ

−Γ −G

⎤
⎥⎦ ,B =

⎡
⎢⎣ 0

B

⎤
⎥⎦ (4.5)

Note that, since C, G, Γ are all symmetric, it follows A = AT , E = ET , which means such

a first-order realization is symmetric.
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Controllability and observability gramians in descriptor form can be computed from

a pair of generalized Lyapunov equations [49]. However, in this symmetric case, both

gramians are equal and only one equation is to be solved

EXAT + AXET + BBT = 0 (4.6)

If we compatibly partition the gramians as

X = Y =

⎡
⎢⎣ R S

ST F

⎤
⎥⎦ (4.7)

then the second-order gramians are also equal

X2 = Y2 = R (4.8)

Since gramian is symmetric, R is orthogonally diagonalizable, i.e., there exists T −1 = T T

such that

T T RT = Σ (4.9)

As a result, the second-order gramian product RR can be orthogonally diagonalized as

T T RRT = (T T RT )(T TRT ) = (Σ)2 (4.10)

Note that the eigenspace of the gramian product is exactly the eigenspace of each gramian.
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If we partition the matrices in (4.9) as

⎡
⎢⎣ V T

1

V T
2

⎤
⎥⎦R

[
V1 V2

]
=

⎡
⎢⎣ Σ1 0

0 Σ2

⎤
⎥⎦ (4.11)

where Σ1 contains the first r largest eigenvalues of gramian R and V1 are corresponding

eigenvectors, a reduced model can be obtained as follows

Crq̈(t) + Grq̇(t) + Γrq(t) = Bru(t)

y = BT
2rq̇(t)

(4.12)

where Cr = V T
1 CV1, Gr = V T

1 GV1, Γr = V T
1 ΓV1, Br = V T

1 B. This kind of transforma-

tion is known as congruency transformation, which preserves symmetry and definiteness of

matrices such that Cr = CT
r ≥ 0, Gr = GT

r ≥ 0, Γr = ΓT
r ≥ 0, implying the reduced-order

system has guaranteed stability, passivity, and reciprocity [53]. The basic algorithm flow

for SBPOR is given in Fig. 4.1.

4.1.2 Second-order gramian approximation

We also propose a second-order gramian approximation technique to mitigate high compu-

tational cost. Practically, we find that Γ can easily become singular, which will make both

A and E in (4.5) singular. To mitigate this problem, we propose a little different symmetric

realization. If we define xT = [ET
l qT , q̇T ], we have the following new realization:

Cẋ(t) = −Gx(t) + Bu(t)

y(t) = BT x(t)

(4.13)
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ALGORITHM 1: SBPOR
Input: C, G, Γ, B
Output: Cr, Gr, Γr, Br

1. Form the symmetric first-order realization in descriptor form (4.4)

2. Solve EX TAT + AXET + BBT = 0 for X
3. Partition X as:

X =

[
R S
ST F

]

4. Compute SVD of the second-order gramian:

R =
[

V1 V2

] [
Σ1 0
0 Σ2

] [
V T

1

V T
2

]

5. Form the reduced model as

Cr = V T
1 CV1, Gr = V T

1 GV1, Γr = V T
1 ΓV1, Br = V T

1 B

Figure 4.1: The SBPOR algorithm.

where

C =

⎡
⎢⎣ −L−1 0

0 C

⎤
⎥⎦ ,G =

⎡
⎢⎣ 0 ElL

−1

L−1El
T G

⎤
⎥⎦ ,B =

⎡
⎢⎣ 0

B

⎤
⎥⎦ (4.14)

Here El is the incidence matrix for inductor matrix L in the modified nodal analysis (MNA)

formulation and Γ = ElL
−1El

T . We remark that ElL
−1 will not have zero rows for a

physical system as Elq is actually a vector of a branch vector potential [61]. So G will not

be singular, required by our new SOGA algorithm, for any physical system that has DC

paths to ground for any node.

Since C, G, L are all symmetric, such a first-order realization is also symmetric and the

second-order gramian measures the contribution of the node voltages q̇ = v with respect to

the transfer function.

For first-order system in descriptor form (4.13), the gramian X can be computed from

58



the expression in frequency domain [49]

X =
1

2π

∫ +∞

−∞
(jωC + G)−1BBT (jωC + G)−Hdw (4.15)

Let ωk be kth sampling point over the frequency range of interests. If we define

zk = (jωkC + G−1)B (4.16)

then X̂ can be approximately computed as

X̂ =
1

2π

∑
zkz

H
k = ZZH (4.17)

where Z is a matrix whose columns are zk. If we partition ZH =

[
ZH

1 ZH
2

]
and

compatibly partition the approximated gramian as

X̂ =

⎡
⎢⎣ R̂ Ŝ

ŜT F̂

⎤
⎥⎦ =

⎡
⎢⎣ Z1Z

H
1 Z1Z

H
2

Z2Z
H
1 Z2Z

H
2

⎤
⎥⎦ (4.18)

then the approximated second-order gramian is F̂ , which can be diagonalized as

F̂ = Z2Z
H
2 = (ÛΣ̂V̂ )(Û Σ̂V̂ )T = Û Σ̂2ÛT =

[
Û1 Û2

]⎡
⎢⎣ Σ̂2

1 0

0 Σ̂2
2

⎤
⎥⎦

⎡
⎢⎣ ÛT

1

ÛT
2

⎤
⎥⎦ (4.19)

Therefore, Û1 will be used to perform the reduction as in the SBPOR method. The SOGA

algorithm is presented in Fig. 4.2.
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ALGORITHM 2: SOGA
Input: C, G, Γ, B
Output: Cr, Gr, Γr, Br

1. Start from the symmetric first-order realization (4.13)

2. Do until satisfied:

3. Select a frequency points sk

4. Compute zk = (skC + G)−1B

5. Form Zk = [z1, z2, . . . , zk] and partition Zk =

[
Zk1

Zk2

]

6. Compute the SVD of the matrix Zk2. If the error is satisfactory, go to
Step 7. Otherwise, go to Step 2.

7. Form the projection matrix Û1 from the singular vectors of Zk, dropping
ones corresponding to small singular values below a desired tolerance,
and form the reduced model as

Cr = ÛT
1 CÛ1, Gr = ÛT

1 GÛ1, Γr = ÛT
1 ΓÛ1, Br = ÛT

1 B

Figure 4.2: The SOGA algorithm.

4.2 Experimental results

In this section, we show examples that illustrate the effectiveness of proposed SBPOR

method and compare it with existing relevant MOR approaches.

4.2.1 Comparison with first-order TBR

Given a circuit in the form (4.3), we first compare SBPOR with the first-order TBR method.

Note that the order q in the reduced models reduced by SBPOR on (4.3) will correspond

to the order of 2q in the reduced models by the first-order TBR method performed on

equivalent first-order realization (4.2). We choose a small circuit for the purpose of il-

lustration so that both impedances and real parts can be compared at all possible reduced
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orders. The RLCK circuit has 4 nodal voltages and thus has a dimension of 4 in a second-

order formulation. The equivalent first-order realization has a dimension of 8. As shown in
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Figure 4.3: Comparison with the first-order TBR method (performed on linearied first-
order system).

Fig. 4.3(a),(b),(c), SBPOR outperforms standard TBR at each reduced order (q=1,2,3). This

can be explained from the ‘energy’ distribution of singular values as shown in Fig. 4.3(d),

where the second-order singular values decay much faster than the first-order ones. The

passivity of reduced models can be tested from the real parts. As expected, SBPOR

can guarantee the passivity of reduced models while standard TBR cannot. As shown

in Fig. 4.3(a),(b),(c), only in Fig. 4.3(c), the real part of TBR reduced model is positive at

all frequencies and thus the reduced model is passive. Note that standard TBR applied to
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the equivalent first-order realization(2.54) also results in a first-order reduced model and

thus is not a second-order MOR approach available. We just use it as a criterion to show

the accuracy of our new approach.

4.2.2 Comparison with SAPOR

In the second example, we want to compare our method with moment-matching based

second-order MOR approach SAPOR [53]. The example is an RLCK circuit, which has

100 nodal voltages. The reduced second-order model has a dimension of 2. As shown in
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Figure 4.4: Comparison with Krylov-based second-order MOR method SAPOR [53].

Fig. 4.4(a), SBPOR is globally accurate at all frequencies while SAPOR has very good

local behavior around DC (the expansion point of SAPOR is 0.01 Hz) but behaves so bad

at other frequencies. The error is shown in Fig. 4.4(b), where the maximum absolute error

for SBPOR is about 10 but for SAPOR is almost 100.

4.2.3 Comparison with existing second-order TBR

In this part, we want to compare the new method, SBPOR, with existing technique [37] in

the control literature, which we name TBR2. The example is an RLCK circuit with 100
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nodal voltages and the reduced dimension is 10. In Fig. 4.5(a), we can see that SBPOR

outperforms TBR2 obviously. As shown in Fig. 4.5(b), the maximum absolute error for

SBPOR is smaller than 10 while it is almost 100 for TBR2. The reason is that the system

in TBR2 is not really balanced and thus the accuracy is sacrificed.
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Figure 4.5: Comparison with the existing second-order TBR method [37].

4.2.4 Comparison of SOGA with SAPOR

The original model is an RLCK circuit with 1000 nodes in a second-order formulation. The

reduced model has an order of 11 (q = 11). As shown in Fig. 4.6, SOGA produces a better

approximation than SAPOR over a wide frequency band (the expansion point of SAPOR

is 1 Hz). The computational cost of SOGA is almost the same as that of SAPOR given the

same reduction order. The reduction CPU times of several mesh-structured RLC examples

are shown in Table 4.1, where the n is the number of nodes and the reduced order is 10.
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Figure 4.6: Accuracy comparison between SOGA and SAPOR.

Table 4.1: Reduction CPU time comparison of SOGA and SAPOR (seconds).

n=640 n=1000 n=2680 n=4380
SOGA 3.257 6.875 25.24 602.63

SAPOR 1.438 3.420 21.42 580.57
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Chapter 5

Positive-real rational interpolation based

reduction via Carathéodory extension

Model order reduction (MOR) by Krylov subspace methods have been proved to be an

efficient technique to reduce the complexity of interconnects [45, 17, 50, 40, 19]. For

passive reduction of the interconnect circuits, existing approaches, however, require that

the system must be formulated into the passive form, a state-space representation with

positive semi-definite system matrices and the same input and output mapping matrices.

The passivity is ensured by the congruency transformation, which can preserve the passive

form in the reduced model. Those restrictions are generally satisfied for interconnects

modeled as RLC circuits. However, many passive systems are not conveniently put into

such a form [42].

In fact, passivity is more generally characterized by the positive realness of the transfer

function [6]. The system is passive if and only if its transfer function H(s) is positive
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real [6], which means

(1) H(s) is analytic for Re(s) > 0

(2) H(s) = H(s̄) for s ∈ C

(3) H(s) + H(s)H ≥ 0 for Re(s) > 0

where H denotes complex conjugate, HH denotes Hermitian (complex conjugate and trans-

pose), and ≥ 0 denotes positive semi-definiteness in a matrix context.

In order to preserve passivity for system with arbitrary internal structure, the positive

realness of the transfer function of reduced system should be enforced. Toward this goal,

several methods have been proposed in the past several years, which can be divided into

two categories.

The first class is represented by positive-real truncated balanced realization (PRTBR)

algorithms [42, 56] Those algorithms are based on truncated balanced stochastic realization

developed in the control community [13, 21]. Different from classical TBR [38], Lur’e

equations or algebraic Riccati equations are needed to be solved in those algorithms instead

of Lyapunov equations. However, their high computational cost O(n3) (n is the order of

the system to be reduced) makes them infeasible for large-scale systems in practice.

More recently, the second class methods were proposed by Antoulas [2] and Sorensen [51].

The methods are based on an observation that if the transfer function of reduced model pre-

serves a subset of the spectral zeros of the original system and admits the same values as

the original system in the mirror points of the preserved spectral zeros, the transfer function

of reduced system is also positive real. However, to obtain spectral zeros or the correspond-

ing invariant subspace of the original system, generalized eigenvalue problem needs to be

solved, which is also very expensive for large-scale applications. In addition, it is not clear
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how to select spectral zeros to be preserved.

Over the last several years, a new theory of positive real analytic interpolation with

complexity constraint has been developed for both scalar and matrix interpolating function

(or interpolant for short) in discrete-time setting [8, 7, 15, 4, 3]. The problem is to interpo-

late prescribed values and successive derivatives on a given set of points in the unit disc by

means of a strictly positive real rational function in the unit disc. One special case is the

Carathéodory extension, which specifies the interpolation conditions at the origin up to a

number of derivatives.

Usually, there are an infinite number of interpolants fulfilling the interpolation condi-

tions, which are parameterized by the spectral zeros of the interpolants. Given a set of

spectral zeros, the interpolant can be determined by an optimization problem. Actually,

any interpolant satisfying the interpolation conditions with derivatives meets our needs

well, which means we do not need to preserve the spectral zeros of the original system. As

a result, a special case, central or maximum entropy solution, is of particular interest to us,

which can be determined by solving a linear system of equations instead of the optimization

problem.

In this section, we propose a novel Carathéodory extension based model reduction

scheme. The new method, called CEMOR, can generate guaranteed passive reduced models

of dynamic systems with arbitrary internal structure and formulations. The reduced model

will agree with the original model up to a number of moments at an expansion point. In

the proposed method, we first choose an expansion point and compute the moments of the

original system at that point as the interpolation conditions with derivatives. Then we trans-

form the interpolation conditions to the discrete-time domain, obtain the central solution of

Carathéodory extension, and transform the interpolant back to the continuous-time domain
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as the reduced system. The proposed rational interpolation method is as efficient as Krylov

subspace methods but can generate guaranteed passive reduced models for systems with

arbitrary internal structure.

5.1 Carathéodory extension

In this section, we present the classical Carathéodory extension problem, which is derived

in discrete-time domain, and how it is related to our reduction problem.

5.1.1 Problem statement

Given a scalar sequence (w0, w1, . . . , wm), the Carathéodory extension problem with de-

gree constraint amounts to determinating any function f(z) satisfying the following three

conditions:

(1) f(z) fulfills the interpolation constraints:

f (k)(0)

k!
= wk(k = 0, 1, . . . , m) (5.1)

(2) f(z) is strictly positive real, i.e., f is analytic in the closed unit disc D̄, where

(D = {z : |z| < 1}), and Ref(z) > 0 for all z ∈ D̄,

(3) f is rational and the degree (degf(z)) ≤ m.

There exists an interpolant for the interpolation problem with derivative constraints if
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and only if a symmetric Toeplitz matrix

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2w0 w1 . . . wm

w1 2w0
. . .

...

...
. . . . . . w1

wm . . . w1 2w0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.2)

is nonnegative definite.

Note that, if (w0, w1, . . . , wm) are the moments of a high order system in discrete-time

domain, f(z) can be the transfer function of a reduced system of order m and the reduced

system must be passive as f(z) is positive real.

5.1.2 Determination of interpolating function

The complete parameterization of the set of interpolating functions was developed by

Byrnes and Lindquist [8, 7] Assume that there exists a bijective (one-to-one and onto)

map between the set of pairs of real polynomials

{(α(z), β(z)) : deg(α(z)) ≤ m, deg(β(z)) ≤ m} (5.3)

α(0) �= 0, β(0) �= 0

where

f(z) =
β(z)

α(z)
=

β0 + β1z + · · ·+ βmzm

α0 + α1z + · · · + αmzm
(5.4)

and the set of real stable polynomials

{ρ(z) : deg(ρ(z)) = m, ρ(z) �= 0, ∀z ∈ D̄} (5.5)
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where

ρ(z) = ρ0 + ρ1z + · · ·+ ρmzm (5.6)

where deg() gives the degree of a polynomial. A stable polynomial here means that all

the roots are outside the unit circle (similar to the right-hand plane in the continuous-time

domain). In fact, Φ(z), the spectral density of f(z), is given by

Φ(z) = f(z) + f(z−1) = α(z)β(z−1)+α(z−1)β(z)
α(z)α(z−1)

= ρ(z)ρ(z−1)
α(z)α(z−1)

(5.7)

The bijectivity implies that the roots of ρ(z), which are the zeros of spectral density, so-

called spectral zeros, are the characterizing factor. In other words, if a set of spectral

zeros is assigned, f(z) can be uniquely determined satisfying the three conditions at the

same time. Specifically, the computation of an interpolant f(z) from ρ(z) amounts to an

optimization problem minα∈SmJρ(α)

Jρ(α) = αT Pα − 2 < log(α(z)), ρ(z)ρ(z−1) > (5.8)

where

α =

⎡
⎢⎢⎢⎢⎢⎣

α0

...

αm

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

(m+1)×1 (5.9)

and α(z) should be in the region Sm:

Sm = {α(z) : α0 + α1z + · · ·+ αmzm �= 0, α0 > 0, ∀z ∈ D̄} (5.10)
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where < f(z), g(z) >= 1
2π

∫ π

−π
f ∗(eiθ)g(eiθ)dθ defines the inner product of two functions

f(z) and g(z). If the coefficients are real, f∗(z) = f(z−1), which is the case for our

problem.

5.1.3 Maximum entropy solution

Now, let us consider the central or maximum entropy solution, i.e. the special case of

the problem in which all the spectral zeros are assigned at infinity. In this special case,

ρ(z)ρ(z−1) = 1, and hence < log(α(z)), ρ(z)ρ(z−1) >= log(α0). Consequently, the

objective function becomes

J1(α) = αT Pα − 2log(α0) (5.11)

Since the Toeplitz matrix P is positive definite, J1 is strictly convex. Hence, there is at

most one minimum. To determine this possible minimum, set the gradient equal to zero to

obtain

�J1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2w0 w1 . . . wm

w1 2w0
. . .

...

...
. . . . . . w1

wm . . . w1 2w0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0

α1

...

αm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/α0

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (5.12)

which can be written as Pα = e 1
α0

, where e = [1, 0, . . . , 0]T . Note that, since α0 =

eT α = eT P−1e 1
α0

, we have

α0 =
√

eT P−1e (5.13)

With α0, α (defined in (5.9)) is the unique solution of a linear system of equations (5.12)

because P is positive definite.
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In fact, there is an alternative way to compute α(z), which is less expensive. Defining

ϕi = αi/α0 for i = 1, 2, . . . , m, we obtain

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2w0 w1 . . . wm−1

w1 2w0
. . .

...

...
. . . . . . w1

wm−1 . . . w1 2w0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1

ϕ2

...

ϕm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1/α0

w2

...

wm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
w0 w1 . . . wm

] [
1 ϕ1 . . . ϕm

]T

= 1
a2
0

(5.14)

Hence, we obtain the well-known normal equation, which can be solved quickly using the

Leyinson algorithm [46] at the cost of O(m2).

Finally, given α(z), β(z) can be solved by

α(z)β(z−1) + α(z−1)β(z) = ρ(z)ρ(z−1) (5.15)

where ρ(z)ρ(z−1) = 1 due to the maximum entropy solution. Identifying coefficients of

the same power in z, we can come up with the following linear equations

(

2
666666664

α0 α1 . . . αm

α1 . . . αm 0

...
. . .

. . .
...

αm 0 . . . 0

3
777777775

+

2
666666664

α0 α1 . . . αm

0 α0 . . . αm−1

...
. . .

. . .
...

0 . . . 0 α0

3
777777775
)

2
666666664

β0

β1

...

βm

3
777777775

=

2
666666664

1

0

...

0

3
777777775

(5.16)

which can also be written as (Hα + Tα)β = e. The first matrix Hα in the left-hand side is

a Hankel matrix whose first column is α and whose elements are zero below the first anti-

diagonal. The second matrix Tα in the left-hand side is a Toeplitz matrix whose first row is

α and whose elements are zero below the diagonal. By solving the linear equations, β(z)
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can be obtained from α(z) and we obtain the interpolant f(z), which can be the transfer

function of a reduced model in the discrete-time domain.

5.2 New reduction method: CEMOR

We present the new model reduction method based on single-input single-output system

h(s). However, the results can be generalized to multi-input multi-output case as shown in

the next section. We first give overall flow of the algorithm and then present the important

steps in detail.

5.2.1 Algorithm flow

In CEMOR, steps 1 to 3 compute the moments from the original circuits and perform the

scaling as required by the new method. Step 4 and Step 10 transform the information

between continuous and discrete-time domains. Steps 6 to 8 compute the reduced model

f(z) in the discrete-time domain.

5.2.2 Frequency scaling

We choose a positive real expansion point σ ∈ R+. Typically, the point chosen in higher

dynamic frequency range will result in a more compact model. Now we normalize the

expansion point to 1 by frequency scaling

h(s) = D + C(sE − A)−1B = D + C(
s

σ
(σE) − A)−1B (5.17)
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ALGORITHM: CEMOR
Input: h : (E, A, B, C, D)
Output: hr : (Er, Ar, Br, CrDr)

1. Choose an expansion point σ ∈ R+

2. Perform frequency scaling to normalize the expansion point to 1
by (5.19)

3. Generate moments at normalized expansion point 1 by (5.21)

4. Transform moments to discrete-time domain by (5.25)

5. Compute Toeplitz matrix using (5.2)

6. Check P for nonnegative-definite property. If not, go back to step 1 with
a new expansion point σ or go back to step 5 to get a Toeplitz matrix with
less moments

7. Solve (5.12) or (5.14) to obtain α(z)

8. Solve (5.16) to obtain β(z)

9. Realize f(z) by any canonical form

10. Transform interpolant back to continuous-time domain by (5.28)

11. Perform reverse frequency scaling by (5.29)

Figure 5.1: The CEMOR algorithm flow.

which results in the following system with expansion point σ̃ = 1

h(s̃) = D + C(s̃Ẽ − A)−1B (5.18)

where s̃ = s/σ and

Ẽ = σE (5.19)

Scaling the expansion point to 1 will ensure a good numeral condition in the bilinear trans-

formation process.
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5.2.3 Moment generation and passive condition

Given the dynamic system (5.18) and the expansion point σ̃ = 1, defining

A = (A − σ̃Ẽ)−1Ẽ R = −(A − σ̃Ẽ)−1B (5.20)

the moments at the expansion point have the following formula

m0 = CR + D mi = CAiR(i ≥ 1) (5.21)

For the reduced model hr(s), we require

(1) hr(s) fulfills the interpolation constraints:

h
(k)
r (σ̃)

k!
= mk(k = 0, 1, . . . , r) (5.22)

(2) hr(s) is strictly positive real, i.e., h(s) is analytic in the right-hand plane {s :

Re(s) ≥ 0} and Re(hr(s)) > 0 for all {s : Re(s) ≥ 0},

(3) hr(s) is rational and deg(hr(s)) ≤ r.

If hr(s) satisfies the three conditions, it is the transfer function of the desired reduced

model, which is passive and accurate to the rth moment of the original transfer function.

5.2.4 Transformation to discrete-time domain

The Carathéodory extension problem considered in the previous section is assumed to find

the mapping f(z) from the unit disc onto the right half-plane. In the continuous-time

domain, we need to find a transfer function hr(s) from the right half-plane to right half-

plane. In this case, we need to transform the interpolation data (interpolation point and
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moments) from right-hand plane to unit disc first.

So we need a bilinear transformation, which maps the right-half plane {s : Re(s) > 0}

to the unit disc {z : |z| < 1} and maps interpolation point s = 1 to z = 0. The following

bilinear transformation will achieve this [4].

z(s) = −s+1
s+1

s(z) = −z+1
z+1

(5.23)

Under the bilinear transformation, we have f(z) = hr(s(z)) and f(0) = hr(1). Given

f(k)(0)
k!

= wk
h
(k)
r (1)
k!

= mk (5.24)

for (k = 0, 1, . . . , r), the derivatives f (k)(0) is related to the derivatives h
(k)
r (1) as follows

w0 = m0

wk = 1
k!

∑k
l=1

(
k
l

)
mk−l+1(k − l + 1)!(s(1)(0))

k−l
s(l)(0)

(5.25)

The coefficients
(

k
l

)
are binomial coefficients, which fulfill the recursive formula

(
k
l

)
= 1(l = 1, k)(

k
l

)
= 2k−l

l

(
k−1
l−1

)
+

(
k−1

l

)
(1 < l < k)

(5.26)

The term s(l)(0) is obtained by

s(l)(0) = 2(−1)1l! (5.27)

Now we can use the Carathéodory extension method in the previous section to obtain f(z)
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from w0, . . . , wr.

5.2.5 Transformation back to continuous-time domain

Given the transfer function f(z), it can be realized by any canonical state-space form

(Af , Bf , Cf , Df ). which can be transformed back to continuous-time domain by the fol-

lowing transformation derived from (5.23) [41]

Ar = (I − Af)(I + Af)
−1 Br = −2(I + Af )

−1Bf

Cr = Cf(I + Af)
−1 Dr = −Cf (I + Af)

−1Bf + Df

(5.28)

So the reduced model is given by (Er, Ar, Br, Cr, Dr), where

Er =
1

σ
Ir (5.29)

is the inverse process of the frequency scaling in (5.19).

5.2.6 Complexity analysis

Note that, the cost to generate moments is O(nα) which is similar to Krylov subspace

methods (α depends on the sparsity of the system and 1 < α < 2 for most cases of

interest). The rest procedures only require O(r3), where r is the order of reduced system.

Since r << n, the cost is dominated by O(nα).
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5.3 Extension to MIMO systems

Given a interpolation point z0 = 0 and a set of m matrix-valued interpolation values

(W0, W1, . . . , Wm) ⊂ Rp×p, where W0 is assumed to be symmetric (nonsymmetric case

can be transformed to be symmetric as shown at the end of the section), the matrix-valued

Carathéodory extension problem with degree constraint amounts to determinating any func-

tion F (z) of order r = mp fulfilling the interpolation constraints

1

k!
F (k)(0) = Wk(k = 0, 1, . . . , m) (5.30)

F (z) is strictly positive real, i.e., F (z) is analytic in the closed unit disc D̄ and

Re(F (z)) =
1

2
(F (z) + F (z−1)T ) > 0 (5.31)

for all z ∈ D̄. There exists an interpolant for the interpolation problem with derivative

constraints if and only if a symmetric block Toeplitz matrix

Π =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

W0 + W T
0 W T

1 . . . W T
m

W1 W0 + W T
0

. . .
...

...
. . . . . . W T

1

Wm . . . W1 W0 + W T
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.32)

is nonnegative definite. In the MIMO case, the cost function (5.8) is generalized as

JP (α) = trace(RTΠR) − 2 < log( det( R(z))), ρ(z)ρ(z−1) > (5.33)
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where

R =

⎡
⎢⎢⎢⎢⎢⎣

R0

...

Rn

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

p(m+1)×p (5.34)

and R0 is assumed to be upper triangular matrix. R0, . . . , Rn are coefficients of the p × p

matrix polynomial

R(z) = R0 + R1z + · · ·+ Rnzn (5.35)

which is the generalization of α(z) in scalar case. Similarly, as for central solution, where

ρ(z)ρ(z−1) = 1, the objective function becomes

J1(α) = trace(RTΠR) − 2log(det(R0)) (5.36)

Setting the gradient of J1 equal to zero, we obtain

ΠR = ER−T
0 (5.37)

where E = [I, 0, . . . , 0]T . Note that, since R0 = ETR = ETΠ−1ER−T
0 , we have

R0R
T
0 = ETΠ−1E (5.38)

By performing Cholesky factorization, we can obtain R0. With R0, R is the unique solution

of a linear system of equations (5.37) because Π is positive definite. Similar to the scalar

case (5.14), the coefficients of R(z) can also be solved by a matrix-version of the Levinson

algorithm.
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The spectral density of F (z) can be factorized as follows

Φ(z) = F (z) + F (z−1) = V (z−1)T V (z) (5.39)

which is the generalization of (5.7) in scalar case. V (z) = ρ(z)R(z)−1 is the spectral

factor of Φ(z). For maximum-entropy solution, we have ρ(z) = 1 and V (z) = R(z)−1,

which can be realized by canonical form. Given any minimal realization of V (z)

V (z) = zCv(I − zAv)
−1Bv + Dv (5.40)

there is a unique F (z) satisfying (5.39) [3]

F (z) = 2z(BT
v XAv + DT

v Cv)(I − zAv)
−1Bv + BT

v XBv + DT
v Dv (5.41)

where X is the unique solution to the Lyapunov equation

AT
v XAv − X + CT

v Cv = 0 (5.42)

Note that instead of O(n3), the cost of the Lyapunov equation here is O((mp)3), which is

not expensive because pm � n.

For nonsymmetric W0, perform SVD on W0 as W0 = USZT and transform Wi to W̃i

by W̃i = UT WiZ such that W̃0 is symmetric. After obtaining the interpolant F̃ (z) from

W̃i, the interpolant F (z) from Wi can be obtained as F (z) = UF̃ (z)ZT .
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5.4 Experimental results

The proposed method has been implemented in Matlab 7.0 and tested on an Intel quad-

core workstation with 16GB memory. The example is from [51], which is an RLC ladder

network of order n = 201. The state variables are as follows: In general, n is odd and

x2i−1 is the voltage across capacitor Ci for i = 1, 2, . . . , (n + 1)/2, while x2i is the current

through inductor Li for i = 1, 2, . . . , (n − 1)/2. Two resistors R1 and R2 are placed at

either end of the ladder as shown in Fig. 5.2. for an order n = 5 example. The input is the

voltage source ant the output is the port current. All the capacitors and inductors have unit

vale while R1 = 1/2, R2 = 1/5. For general model of order n, the state-space equation

has the following form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 . . . 0 0

−1 0 1 . . . 0 0

0 −1 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 1

0 0 0 . . . −1 −5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

...

0

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

[
0 0 0 . . . 0 −2

]
, D = 1

(5.43)

As in [51], the reduced order is also chosen to be 20 and the expansion point is 1Hz.

R2 L2 L1

C3 R1C1C2

y

u

Figure 5.2: RLC ladder of order 5
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The performance is compared with positive-real TBR (PRTBR) reduced model of the same

order. As shown in Fig. 5.3, CEMOR is much more accurate than PRTBR in the frequency

range of interest from 0.01Hz to 10Hz. Although PRTBR is more accurate beyond 10Hz,

the error for CEMOR is less than −100dB beyond 10Hz , which can be ignored. In

fact, compared with the results shown in [51], CEMOR is also better than the methods via

interpolation of spectral zeros [51] in this example.

We remark that PRTBR in theory has global error bound and can be applied to sys-

tem with any internal structure as the positive real property is explicitly enforced in the

Lur’e equations. But practically, in addition to the high cost, this method has very stringent

demands on the numerical condition of system matrices and are tricky to implement in a

stable way [44]. As a result, the performance in practice may not be as good as expected.

CEMOR can be viewed as a PRIMA-like reduction technique for general structure sys-

tems. It is extremely efficient and much less demanding on the numerical condition of the

examples at the cost of lacking the global error bound.
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Figure 5.3: Frequency responses.

Finally, we compare the CPU time of CEMOR and PRTBR. The reduction CPU times

are shown in Table 5.1, where the n is the order of the ladder and the reduced order is 20.
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Table 5.1: Reduction CPU time comparison of CEMOR and PRTBR (seconds).

n CEMOR PRTBR Speedup
201 0.438 3.844 8.776
401 0.687 31.688 46.125

1001 3.556 560.988 157.745
2001 7.031 11717.136 1666.494

From Table 5.1, we can see, PRTBR is very slow and infeasible for large-scale applications

while CEMOR is very efficient. The speedup will go up for larger circuits. Actually for

circuits larger than 4K, PRTBR can’t finish in reasonable time.
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Chapter 6

Passive modeling of interconnects by

waveform shaping

Although projection based MOR methods are very successful, their applications are mainly

limited to RLC circuits. Many high-speed circuits, like RF surface acoustic wave (SAW)

filters, spiral inductors, high-speed transmission lines, are still modeled by using measured

data (like Scattering parameters) due to many high frequency effects and the freqency de-

pendency of circuit parameters. Another issue with projection based MOR methods is that

they become very inefficient for reducing circuits with many terminals in terms of both

computational costs and reduced model sizes [26]. The main reason for lost efficiency lies

in the fact that with more terminals, more transfer functions are needed to compute and

more poles will be used for each increased order of block moments, which is not necessary

as polese are system information and should not depend on the terminals.

For generating general-purpose compact models from many measured and simulated

data, fitting methods based on least square rational approximation in frequency domain are

still widely used [23]. One critical issue in such a modeling process is to preserve the pas-
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sivity of the original system in the reduced models. Existing approaches like PRIME [39]

enforce the passivity by physically realizing each pole/residue (conjugate pole pair) term

in the fractional form using Foster’s synthesis method. If a pole/residue term can’t be real-

ized, it is discarded. As a result, PRIME can lead to very large errors. The latest approach

to this general passivity enforcement problem is based on the convex programming (CP)

approach by using the state-space representation of the system [12]. The passivity is en-

forced by using semi-definite constraints during a semi-definite (convex) optimization. But

the CP based method suffers very high computational costs and can optimize circuits with

less than about 20 poles and 20 terminals in a typical computation setting (on latest Intel

Pentium 4 CPU with 1GB memory).

In this section, we propose a new passivity enforcement approach for general purpose

modeling of passive linear circuits. Our new method is based on the observation that most

of interconnect circuits like clock trees, substrate, packing, RF passives, and transmission

lines are lossy and their frequency responses behave like a band-pass or low-pass filter

in general. As a result, the models for those passive systems need not to be passive for

all frequencies, as required by traditional passivity enforcement methods. Practically they

need only to be passive for a limited bandwidth in which most of the signal energy is

concentrated.

Instead of making the reduced models passive for all frequencies, the new method

works on the signals going into the reduced models to enforce the passivity. The idea

is to slightly shape the waveforms of the signals such that the resulting spectra are ban-

dlimited to the frequency range in which the reduced system is passive. As a result, the

reduced models only need to be band-limited passive, which we call conditionally passive

in this paper and can be achieved much easier than traditional passivity for a reduced sys-
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tem. We propose two approaches to band-limit (shape) the waveforms. The first method

is based on frequency domain fast Fourier transform (FFT) and inverse FFT to explicitly

shape the waveforms. The second method is based on insertion of passive low-pass filters

(LPF) into the reduced models to implicitly shape the waveforms. For the second method,

we analyze the delay and distortion effects introduced by using low-pass filters and propose

methods to mitigate the delay effects. Experimental results on several interconnect circuits

demonstrate the effectiveness of the proposed methods.

6.1 Conditional passivity and conditional positive-realness

In this section, we analyze the relationship of a system’s transient responses and its input

signals in terms of passivity. We show that a non-passive system can still behave like a

passive system when its input signals are band-limited. Such systems can be defined as the

conditionally passive and its network functions are conditionally positive-real.

Passivity is an important property of many physical systems. A passive network does

not generate energy. If the reduced order model (ROM) loses its passivity, it may lead to

unbounded responses in transient simulation, which means new energy has been generated

in this network.

Fig. 6.1 shows a transient simulation result of a non-passive circuit under a sinusoidal

excitation.

O. Brune [6] has proved that the admittance and impedance matrix of an electrical

circuit consisting of an interconnection of a finite number of positive R, positive C, positive

L, and transformers are passive if and only if their rational functions are positive real. A
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Figure 6.1: Transient response of a non-passive circuit.

network with admittance matrix function Y(s) is said to be positive real iff

(1) Y(s) is analytic, for Re(s) > 0

(2) Y(s) = Y(s̄) , for Re(s) > 0

(3) Y(s) + Y(s)H ≥ 0 , for Re(s) > 0

Condition (1) means that there are no unstable poles (poles lying on right-half-plane

(RHP) in s-domain). Condition (2) refers to system that has real response. And condition

(3) is equivalent to the real part of Y(s) having a positive semi-definite matrix at all fre-

quencies. In other words, the real parts of all the eigenvalues of the H(s) must be equal

to or larger than zero. But condition (3) is difficult to satisfy as it requires the checking of

frequency responses from DC to infinity.

We know for a passive system, its admittance matrix Y (s) needs to be positive real

(Re{Y (s)} is positive definite) for all frequencies. However, when the Y (s) is not positive

real for some frequency ranges, will the system always exhibit non-passive behavior in the

time domain as shown in Fig. 6.1? Actually the answer depends on the spectrum (energy)

of the input signal. If the input signal is band-limited to the frequency range where the
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reduced model is positive real, then the system will still behave passively as the original

system.

This can be illustrated by the following example. Fig. 6.2 shows the frequency re-

sponses of a RLC circuit and its reduced model. The two circuits match well below 15Ghz.

Above 60Ghz, the real part of the transfer function of the reduced model becomes negative

as shown in Fig. 6.2(a), which means the system becomes non passive. When a sinusoidal

input signal of 10Ghz is applied to both systems, we get the exact responses in the time

domain as shown in Fig. 6.3. However, if we apply a sinusoidal signal of 60Ghz, the

time-domain responses of the original system and the reduced system will be dramatically

different as shown in Fig. 6.4. The response of the reduced system actually explodes.
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Figure 6.2: Frequency responses of a reduced model and its original RC circuit.

We note that many ideal input signals like Dirac delta function δ(t), unit step function

u(t) = 1, t ≥ 0, u(t) = 0, t < 0, and unit ramp function f(t) = t, t ≥ 0, f(t) = 0, t < 0,

have an infinite spectrum of frequencies. For example, for Dirac delta function, L(δ(t)) =

1, where L(X) means taking the Laplace transform of function X . So δ(t) has a constant

spectrum for all frequencies and it can easily make any non-passive system to exhibit the

non-passive behavior as shown in [28]. The Laplace transform of unit step function and unit
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Figure 6.3: Transient responses of a reduced model and its original RC circuit.

ramp function is 1/s and 1/s2 respectively. When those signals are applied to a non-passive

system, non-passive behavior can be easily observed as shown in [40].

However, such ideal signals do not exist in the real world. Most of the active transis-

tors, passive interconnects, RF passive components, and transmission lines exhibit limited

bandwidth due to unavoidable capacitive loss, which implies that signal generated by and

propagated through those systems will bear limited bandwidth. This situation will become

worse as we move to the deep sub 100nm technology. So for realistic signals, we can build

a reduced system which is only passive for the given frequency range and the resulting

system will still be passive as far as the simulation is concerned. For this purpose, we

introduce the conditional passivity and conditional positive-realness.

A network with admittance matrix function Y(s) is said to be conditionally positive
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Figure 6.4: Transient responses of a reduced model and its original RC circuit.

real iff

(cpr1) Y(s) is analytic, for Re(s) > 0

(cpr2) Y(s) = Y(s̄) , for Re(s) > 0

(cpr3) Y(s) + Y(s)H ≥ 0 , for Re(s) > 0

0 ≤ Im(s) ≤ 2πfmax

In other words, Y(s) will be positive real for the given frequency range [0, fmax].

The main benefit for a reduced system to be conditionally passive is that conditional

passivity can be much easier to achieve than strict passivity. Many existing frequency

domain rational fitting methods [23, 36] can be used to do this with much more scalable

computational costs than the convex programming method [12]. On the other hand, we put

more constraints on the signals driving the conditionally passive systems: we need to make

sure that the signal spectrum is band limited such that its bandwidth is within the positive
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real bandwidth of the reduced system. In the following section, we present two methods to

achieve this requirement.

6.2 Passivity enforcement by waveform shaping

In this section, we discuss two methods to band-limit a signal by slightly shaping its wave-

form. Note that based on the Fourier transform, if a signal is finite in time, its spectrum ex-

tends to infinity frequency, and if its bandwidth is finite, its duration is infinite in time. For

a practical non-periodic time-limited signal like switching currents in the signal lines due

to transistor switching, one can never band limit such a signal from a strictly mathematical

point of view. But practically we can make the out-of-band frequency energy sufficiently

small compared to the in-band frequency energy such that the out-of-band energy will not

stimulate the non-passive behavior of the system.

6.2.1 FFT and IFFT based waveform shaping

The first method is based on the fast Fourier transform (FFT) and inverse fast Fourier trans-

form (IFFT). The idea is to first transform the original transient signal into the frequency

domain. Since in FFT (or discrete Fourier transform, DFT), we treat the non-periodic sig-

nal as a periodic signal, the resulting signal’s spectrum becomes discrete. Then we truncate

those frequencies beyond fmax, which is given. After this, we perform the inverse FFT on

the truncated spectrum to get the time domain waveform of the shaped signal (we only take

the waveform in one period). The whole process is illustrated in Fig. 6.5 and the algorithm

is outlined in Fig. 6.6.

Fig. 6.7(a)and Fig. 6.7(b) show a ramp signal and its spectrum. The shaped waveform
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Figure 6.5: The algorithm flow of FFT and IFFT based waveform shaping.

FFT IFFT WAVEFORMSHAPING( ) {
Sample input data with Fs;
Fast Fourier Transform

X0(k) =
∑N

j=1 x0(j)w
(j−1)(k−1)
N ;

Spectrum Truncation
If fk < fmax or fk > Fs − fmax,
X1(k) = X0(k);
If fmax < fk < Fs − fmax,
X1(k) = 0;

Inverse Fast Fourier Transform
x1(j) = (1/N)

∑N
k=1 X1(k)w

−(j−1)(k−1)
N ;

return vector: x1 of length N ;
}

Figure 6.6: The algorithm of FFT and IFFT based waveform shaping.

with the cut-off frequency fmax = 10Ghz and the corresponding truncated spectrum are

shown in Fig. 6.7(c) and Fig. 6.7(d). The shaped waveform with the cut-off frequency

fmax = 2Ghz and the corresponding truncated spectrum are shown in Fig. 6.7(e) and

Fig. 6.7(f). In general, the spectrum truncation does not change significantly the waveform

characteristics like delay and slew etc. As we truncate high frequency components, the

shaped waveform shows some undershoots and overshoots in Fig. 6.7(e). Those small

undershoots and overshoots do not affect delay and timing of the shaped waveform when

it propagates through the reduced model. If we truncate the spectrum at a higher frequency

such as 10GHz, we find that the resulting waveform is almost the same as the original
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one, which is shown in Fig. 6.7(c). This demonstrates that if the cutoff frequency is high

enough, the distortion caused by truncating can be tolerated.

The drawback of the explicit waveform shaping method using FFT and IFFT is that

it takes extra computational costs to process the signals. The computational costs are

O(nlog2(n)), where n is the number of sampling points.
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Figure 6.7: A ramp signal shaped at different frequencies.
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6.2.2 Low-pass filter based waveform shaping

The second method is based on the implicit waveform shaping by adding passive low-pass

filters between the input signal and the reduced system as shown in Fig. 6.8. In this way,

we guarantee that the signals through the reduced system are band-limited.

Notice if we have a few input terminals (as for many interconnect circuits like clock

trees or clock meshes), adding a few filters at those terminals will not increase the sizes of

the reduced models significantly.

Figure 6.8: Low pass filter based waveform shaping.

Since the filter can be passively realized by LC ladder, it can be combined with the

reduced model to function as a passive model. Therefore, we can conveniently use this

new model in current simulation software such as Spice.

However, we need to look at several issues associated with this method before we use it.

First, the low-pass filter can also distort the input signals as different frequency components

may be delayed differently. Second, the introduction of low-pass filter can introduce delay.

In the following, we discuss methods to mitigate those two problems.

Mitigation of distortion problems

The phase function and the resulting group delay function of a filter have profound time

domain ramifications as they have a direct effect on the waveform shape of the output
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signals. As a result, we choose Bessel filter family due to its good time domain property. A

Bessel filter has a linear phase characteristic over the pass-band of the filter, which implies a

constant time delay over the pass-band of the filter (see Fig. 6.9) so that the phase distortion

in the filtering process can be avoided. From Fig. 6.9(a), we can see a constant time delay

from DC to the normalized frequency 1 when the order (n) of filter is higher than 3. In

addition, its step response exhibits negligible overshoot and ringing.
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Figure 6.9: Group-delay characteristic and magnitude response for different order Bessel filters (normal-
ized frequency).

However, a gradual roll-off (longer decay range) is the price we have to pay for a good

time domain property. Fortunately, we can compromise it by increasing the order of the

filter (see Fig. 6.9(b)) at the cost of larger reduced models. Another way is to increase the

passive frequency range so that the filter has sufficient reduction of spectrum (again at the

cost of larger reduced models).

Mitigation of delay problems

Another issue we have to take into consideration is the time delay caused by the filter. Three

factors can influence the time delay: the prototype, the order, and the cutoff frequency of
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a filter. Among them, the cutoff frequency is the dominant factor because the delay is

inversely proportional to the cutoff frequency of a filter.

Actual Delay =
Normalized Delay

Actual Corner Frequency (fc)
(6.1)

For example, for the eighth order Bessel filter, the normalized delay is 2.703s. If the

cutoff frequency is as high as 20GHz, the actual delay could be as small as 0.135ns.

Hence, if the cutoff frequency is sufficiently high, the group delay caused by the filter

can be made sufficiently small compared to the delay of the original circuit so that such a

delay can be ignored.

6.3 Experimental results

In this section, we present some experimental results on two interconnect circuits from

our industry partner. All the experimental results are conducted on a computer with AMD

Athlon(64) 3800+ 2.41Ghz CPU and 500MB DDR memory. The conditional passivity is

achieved by using the minimum square fitting method on the required transfer functions

with poles computed from projection based methods like PRIMA. This fitting method can

make the reduced models accurate to the given maximum frequency and ensure the passiv-

ity of the models in the given frequency range.

The first example is a RC circuit with 210 nodes and 3 terminals. In this experiment,

we use a steep square waveform as the input signal, as shown in Fig. 6.10(a). We apply

this signal to the original model, the reduced model, and the LPF (low-pass filter) based re-

duced model. The output waveforms of these three models are shown in Fig. 6.10(b)(c)(d),

respectively.
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The reduced model is conditionally passive: the passivity of the model can only be

preserved at the frequency range from DC to 15GHz. Since a steep square waveform

contains high frequency components beyond this range, we can observe the erratic time-

domain behavior caused by energy generated at high frequencies, as shown in Fig. 6.10(c).

However, by eliminating those high frequency components by LPF, the output wave-

form of the LPF based reduced model (Fig. 6.10(d)) matches the output waveform of the

original model (Fig. 6.10(b)) with little discrepancy. Therefore, the LPF based reduced

model can function as a passive model at all frequencies.

In addition, we compare the qualities of Bessel LPF based reduced model and Ellipse

LPF based reduced model in Fig. 6.11. The Fig. 6.11(a) and Fig. 6.11(b) show the tran-

sient responses from the original circuit due to the square input waveform. Fig. 6.11(c)

and Fig. 6.11(d) show the transient responses from Bessel LPF based reduced model while

Fig. 6.11(e) and Fig. 6.11(f) are the transient responses from Ellipse based reduced mod-

els using the same filter order. So the results clearly show that the Bessel LPF reduced

model is superior to the Ellipse based models. As shown in (Fig. 6.11(d)(f)), Bessel LPF

based reduced model can effectively avoid the overshoots and ringings. This result further

demonstrates the rational of our choice for Bessel LPF over other types of LPFs.

The second example is a RC circuit (168 nodes) with 132 terminals (14 drivers and

118 receivers). This circuit does not have much to reduce due to large number of terminals

compared to the number of nodes. But it serve as an example that the convex programming

method fails to optimize due to the large terminal count. Still we use fitting method to

do the frequency domain reduction and make the reduced models accurate to 50Ghz. We

use a steep square waveform as shown in Fig. 6.12(a) as the inputs. We apply this signal

to the original model, the reduced model, and the LPF based reduced model. The output
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waveforms of these three models are shown in Fig. 6.12(b)(c)(d), respectively.

By eliminating high frequency components by LPF. The results are similar: output

waveforms from the LPF based reduced model (Fig. 6.12(d)) match well the original model

(Fig. 6.12(b)). But the simple reduced models lead to erratic time-domain behavior due to

its non-passivity at high frequencies as shown in Fig. 6.12(c).

The experimental results also show that the output of LPF based reduced model exhibits

less ringing than the output of original model. This is because the ringing is caused by high

frequency components of input signal and many of those components are eliminated by

LPF in the reduced model. If the those ringings are of interests, we can observe more of

them by increasing the frequency range of the reduced models.
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Figure 6.10: The comparison of responses of different models in time domain for the first example.
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Figure 6.11: Comparison in time domian between reduced models based on Bessel filters and Ellipse
filters.
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Figure 6.12: The comparison of responses of different models in time domain for second example.

100



Chapter 7

Decentralized model order reduction of

linear networks with massive ports

The efficiency of model order reduction degrades as the number of ports increases. The

reason for the degradation is fundamental and does not depend on any particular reduc-

tion algorithm [18]. For Krylov-subspace based algorithms, the cost associated with model

computation is directly proportional to the number of inputs, i.e. to the number of columns

in the transfer function matrix. For example, in the PRIMA algorithm [40], if only two

(block) moments are to be matched at each port, and the network has 1000 ports, the result-

ing reduced model will have 2000 states. Similarly, in the TBR algorithm, for systems with

many inputs, many states may be needed because of the high dimension of the controllable

subspace.

In this section, we propose a decentralized model order reduction scheme where a

whole MIMO circuit is decoupled into a number of MISO circuits based on the input-

output interactions and each circuit is reduced individually. The decoupling process is

guided using the relative gain array (RGA) [5], which measures the degree of interaction
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of each input-output pair. Our method is based on the observation that for an output ter-

minal, not all the input terminals are relevant, and this relevance is determined by their

relative gains. As a result, an MIMO system can be naturally partitioned into many MISO

systems and the traditional passivity-preserving model order reduction can be performed

on these MISO systems. The new reduction algorithm, termed DeMOR, can perform very

efficient reduction on MIMO systems.

7.1 Measurement of interaction

Relative Gain Array (RGA) is a matrix of interaction measures for all possible single-

input single-output (SISO) pairings in an MIMO LTI system [5]. This concept has found

widespread utility in process control, and as a system robustness measure. The RGA thus

indicates the preferable variable pairings in a decentralized control system based on inter-

action considerations.

For a system H(s) with p inputs and p outputs, there will be p×p relative gain elements

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ11 λ12 . . . λ1p

λ21 λ22 . . . λ2p

· · · · · · · · ·

λp1 λp2 . . . λpp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.1)

and the relative gains between an output yi and an input uj are given by

λij =
gij |u
gij |y =

(yi/uj) |u
(yi/uj) |y (7.2)

where gij is the gain of the respective transfer function hij . A simple 2× 2 coupled system
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is shown in Fig. 7.1.

11g

12g

21g

22g

1u

2u

1y

2y

Figure 7.1: A coupled 2 × 2 system.

First, assume that all inputs except uj remain constant, a step change in input uj of

magnitude uj will produce a change yi in output yi. Thus, the gain between uj and yi

when the other inputs are kept constant is given by

gij|u =
yi

uj
|u (7.3)

which can be viewed as an open loop gain with respect to other inputs.

Second, when keeping all the outputs except yi constant, a step change in input uj of

magnitude uj will result in another change in yi. In this process, other outputs will also

be affected due to cross-coupling. In order to keep them constant, we need to adjust other

inputs correspondingly, which will also contribute to the change in y i. The gain under the

new set of conditions is denoted by

gij |y =
yi

uj
|y (7.4)

which can be viewed as a closed loop gain with respect to other inputs.
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Although the above gains are between the same pair of variables, they may have differ-

ent values because they have been obtained under different conditions. If interaction exists,

the change in yi due to a change in uj for the two cases (when other inputs and when other

outputs are kept constant), will be different. The ratio,

λij =
gij |u
gij|y

(7.5)

defines the relative gain between the output yi and input uj.

There are two extreme cases: first, if λij = 0, yi is NOT influenced by uj at all; second,

if λij = 1, closed loop gain is equal to open loop gain, which means the interaction from

other inputs is zero and yi is influenced by uj ONLY.

In fact, by taking the absolute value of each RGA element and taking the inverse for

those larger than 1, the scaled elements will fall into the range of [0, 1]

λij = |λij|(|λij| ≤ 1)

λij = 1
|λij |(|λij| > 1)

(7.6)

The larger the scaled number is, the more important the corresponding input will be. Usu-

ally, most input-output pairs are magnitude-wise insignificant and their corresponding val-

ues are close to zero. For a given output i, the contribution of each input can be easily

compared and those inputs can be arranged in a descending order in terms of their contri-

bution. Usually, one output is only predominately influenced by a small number of inputs

only.

The steady-state relative gain array of the system H(s) at DC can be computed as
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follows

Λ(H) = H(0)◦H(0)−T (7.7)

where ◦ denotes element-by-element multiplication (often called the Hadamard or Schur

product), and H−T is the transpose of H−1. For systems with non-square tranfer matrix,

we can use peudoinverse instead

Λ(H) = H(0)◦(H(0)T )+ (7.8)

7.2 Decentralized model order reduction

An interconnect circuit can be formulated as the following state-space form using modified

nodal analysis (MNA)

Cẋ(t) = −Gx(t) + Bu(t)

y(t) = LT x(t)

(7.9)

where C, G ∈ Rn×n, B, L ∈ Rn×p, and in which x(t) is the state vector, and u(t) and y(t)

represent the input and output, respectively. Typically, we have p � n. Model reduction

algorithms seek to produce a smaller system

C̃ ˙̃x(t) = −G̃x̃(t) + B̃u(t)

ỹ(t) = L̃T x̃(t)

(7.10)

where C̃, G̃ ∈ Rr×r, B̃, L̃,∈ Rr×p. Order r is much smaller than the original order n, i.e.

r � n, but the output y(t) and ỹ(t) are approximately equal for inputs u(t) of interest.
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For the interconnect circuit in (7.9), the transfer function is

H(s) = LT (Cs + G)−1B (7.11)

and the steady-state gain H(0) is the DC gain HDC

HDC = LT G−1B (7.12)

The RGA can be computed as

Λ(H) = HDC◦HDC
−T (7.13)

with RGA, we can decompose the whole system into a set of subsystems, each of which

corresponds to one output.

For the ith decentralized model, the projection matrices Vi is constructed so that the

columns span a spatial dominant Krylov subspace Km(A, Ri), where

A = (G + sC)−1C Ri = (G + sC)−1Bi (7.14)

In this approach, instead of all the inputs, Bi is only composed of the dominant inputs

corresponding to the ith output. The ith reduced model is obtained by

C̃i = V T
i CVi, G̃i = V T

i GVi, B̃i = V T
i B, L̃i = V T

i L (7.15)

Note that, for ith reduced model, only the ith output (the output corresponding to the ith

row of the output matrix LT
i ) is valid.
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In this projection framework, although more emphasis has been placed on energy trans-

fers from dominant inputs, the energy transfers from other inputs are still coarsely pre-

served. Different from existing Krylov subspace methods, where only principle compo-

nents in terms of frequency is considered, the new method tales into consideration princi-

pal components in terms of both frequency (temporal) and spatial information to reduce the

system complexity. The DeMOR algorithm is shown in Fig. 7.2. When modeling passive

DECEMTRALIZED MODEL ORDER REDUCTION (DEMOR):
Input: H : (G, C, B, L)

Output: H̃i : (G̃i, C̃i, B̃i, L̃i)(i = 1, . . . , p)

1. Solve GM = B for M0

2. Compute HDC = LT M0

3. Compute relative gain array Λ(H) = HDC◦HDC
−T

4. Scale the RGA values to the range of [0, 1]
5. Set the threshold ε
6. For output i (i = 1, . . . , p)

Determine the corresponding dominant input matrix Bi

Model order reduction using PRIMA to obtain H̃i

C̃i = V T
i CVi, G̃i = V T

i GVi, B̃i = V T
i B, L̃i = V T

i L
where colspan(Vi) = Km((G + sC)−1C, (G + sC)−1Bi)

Figure 7.2: Decemtralized model order reduction (DeMOR).

systems which cannot produce energy internally, it is desired that the reduced models also

be passive. Otherwise, the reduced models may cause nonphysical behavior when used in

later simulations, such as by generating energy at high frequencies that causes erratic or

unstable time-domain behavior. Now we show such nonphysical behavior can be avoided

in each DeMOR reduced model.

For example, for the ith reduced model, we have

C̃i + C̃T
i ≥ 0 G̃i + G̃T

i ≥ 0 Li = Bi
(7.16)
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Therefore, the ith reduced model is provably passive [40], which means nonphysical be-

havior will not be observed in any output of the ith reduced model when used in later

simulations. Since the output to be used in the ith reduced model in DeMOR is just one

of such outputs (the ith output), there will be no nonphysical behavior in simulations with

DeMOR reduced models.

7.3 Localized modeling scheme for power grid analysis

Fast analysis of power grid networks has been a challenging problem for many years. The

huge size renders circuit simulation inefficient and the large number of inputs further limits

the application of existing Krylov-subspace macromodeling algorithms. However, strong

locality has been observed that two nodes geometrically far have very small electrical im-

pact on each other because of the exponential attenuation. However, no systematic ap-

proaches have been proposed to exploit such locality.

In this section, we propose a novel modeling and simulation scheme, which can au-

tomatically identify the dominant inputs for a given observed node in a power grid net-

work. This enables us to build extremely compact models by projecting the system onto

the locally dominant Krylov subspace corresponding to those dominant inputs only. The

resulting simulation can be very fast with the compact models if we only need to view the

responses of a few nodes under many different inputs. Experimental results show that the

proposed method can have at least 100X speedup over SPICE-like simulations on a number

of large power grid networks up to 1M nodes.
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7.3.1 Locality of an RC mesh

We first show that RC meshes modeling power grid networks have strong local property.

The locality of RC mesh can be evaluated from the relative gain array. Given a 21× 21 RC

mesh, each node is viewed as an input and the relative gains from each node to the central

node coordinate (11, 11) are plotted in Fig. 7.3. It is easy to see the nodes closer to the

central node will have more impact. In addition, the node is only predominately influenced

by a small number of inputs nearby, which validates the observation in [11]. As a result,

RGA is a valid locality indicator to identify the most dominant inputs for a given output.

With locality, we build a locally dominant reduction subspace (to be explained below) for a

few observing nodes of interest, regardless of the size of the network, the number of inputs,

and the patterns of input signals.
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Figure 7.3: Locality illustration of an RC mesh.

7.3.2 Localized compact models at DC and wide frequency range

A localized model of a power grid network can be formulated as follows

Cv̇(t) = −Gv(t) + Bi(t)

y(t) = LT
o v(t)

(7.17)
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where C, G ∈ Rn×n are capacitance and conductance matrices respectively, B ∈ Rn×p is

the input matrix, v(t) ∈ Rn and i(t) ∈ Rp are the node voltage vector and input current

vector.

Note that Lo ∈ Rn×q is the output matrix corresponding to q nodes we are measuring.

In our problem, we are only interested in a few nodes. The corresponding transfer function

is

H(s) = LT
o (Cs + G)−1B (7.18)

and the steady-state gain H(0) becomes the DC gain HDC

HDC = LT
o G−1B (7.19)

In this case, HDC is not a square matrix, then pseudoinverse of HT
DC , (HT

DC)
+

is used to

compute the RGA

Λ(H) = HDC◦(HDC
T )+ (7.20)

Now, we show that the RGA evaluated at DC (s = 0) is sufficient for other frequencies.

The reason is that a power grid network can be deemed as a cascaded low-pass RC filter and

for the low-pass filter, the attenuation of high frequency components is much faster than the

attenuation of low frequency components, which means high frequency components tend

to be more localized and a decision based on DC is conservative. So the results of RGA at

DC are actually valid for all the frequency range for those RC networks.

In Fig. 7.4, we show that as the frequency increases (DC (top), 1G(middle), 100G(bottom)),

RGA values become more locally concentrated around a few nodes for each output node.
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Figure 7.4: RGA computed at different frequencies.

7.3.3 Locally dominant Krylov subspace method

For the localized model, the projection matrix Vdomi is constructed so that the columns span

a Krylov subspace Km(A, Rdomi), where

A = G−1C, Rdomi = G−1Bdomi (7.21)

In our approach, instead of all the inputs, Bdomi is only composed of a small number of

dominant inputs corresponding to those outputs of interest. This leads to the newly pro-
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posed locally dominant Krylov subspace reduction:

C̃loc = V T
domiCVdomi, G̃loc = V T

domiGVdomi

B̃loc = V T
domiB, L̃loc = V T

domiLo

(7.22)

where colspan(Vdomi) ⊆ Km(A, Rdomi). If we are interested in a number of nodes, then the

system is projected onto a subspace which is the union of the locally dominant subspaces

of those nodes. We remark that if the nodes of interests are limited to one local region,

the order of reduced model may not increase even if more nodes are to be measured. The

reason is that those nodes share many inputs (thus their subspaces). The proposed locally

dominant Krylov subspace algorithm is shown in Fig. 7.5.

Our new method can be viewed by exploiting both temporal and spatial information

to reduce the system complexity. Existing Krylov-subspace methods only take into con-

sideration frequency (thus temporal) information. A reduction can be achieved because

the frequency components are not viewed as equally important and only the dominant fre-

quency subspace is preserved. However, those methods fail to consider spatial information

and all the inputs are implicitly assumed to be equally important and fully preserved. In

fact, if we focus on a few nodes or a local region, most inputs are insignificant owning to

strong locality. As a result, the new approach can generate much more compact models

than the existing temporal-only reduction methods.

7.3.4 Computational complexity analysis

For an RC circuit of order n and with p ports, it will take O(nβ) to compute the DC moment

HDC as matrix G is very sparse in general, where, typically, 1 ≤ β ≤ 1.5 for a n×n sparse

matrix.
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THE NEW LOCALLY DOMINANT KRYLOV SUBSPACE SIMULATION ALGO-
RITHM:
Input: G, C, B, u(t), set of observation nodes
Output: transient waveform at the observation nodes

1. Solve GM0 = B for M0 (DC moment)
2. Compute HDC = Lo

T M0

3. Compute RGA Λ(H)=HDC◦(HT
DC)+

4. Scale the RGA values to the range of [0, 1] and arrange them in a de-
scending order in terms of the contribution to each output

5. For those outputs of interests, determine the corresponding dominant in-
put matrix Bdomi based on RGA

6. Compute localized reduced models by projection
7. Compute transient response on the reduced models for u(t)

Figure 7.5: The locally dominant Krylov subspace simulation method for power grid net-
work analysis.

The computation of pseudoinverse is based on the singular value decomposition (SVD)

of the matrix HDC
T , which is a p × q matrix, where q is the number of nodes we are

interested in. Since we are only interested in a small number of nodes, we have q � p and

the cost is O(q2p). Assume that p � n as this is the typical case, the reduction process is

still dominated by O(nβ).

The localized model will take about O(nr2+rnα+nβ) to reduce using Krylov-subspace

method, where r is the reduced order and 1 ≤ α ≤ 1.2 for sparse matrices. nβ is the same

cost as the computation of the DC moment. The transient simulation of the reduced system

takes about O(r3 + r2m) where m is the number of time steps in time domain.

Since the reduced order r is a very small number, the total cost is still dominated by

O(nβ), which is one DC solution of the original network. The reduced models can be used

for many inputs without further solving the network again.
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7.3.5 Partitions of input signals for RGA computation

To efficient compute RGA values for an RC mesh network, we find that we will be better

off if we can compute RGA for current source inputs only (without voltage source inputs)

as the two types of the signals are quite different in terms of magnitude.

Given a power grid network, as shown in Fig. 7.6, there are a small number of voltage

sources and a huge number of current sources. The voltages supplies are DC with a constant

value and the current sources are pulse currents generated when the gates are switching.

Assume that we are interested in a particular node, the voltage responses at that node

can be decomposed into two parts owning to superposition:

V = Vvoltage + Vcurrent (7.23)

where the first part is the responses of DC voltage sources, which is static, and the second

part is the responses of independent current sources, which is dynamic. And the power grid

network can be decomposed into two parts correspondingly, which are shown in Fig. 7.7

and Fig. 7.8.

DC DC

DC DC

Figure 7.6: Power grid model
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DC DC

DC DC

Figure 7.7: Power grid model: static part

Figure 7.8: Power grid model: dynamic part

Vvoltage is static and it can be easily obtained via one DC analysis as shown in Fig. 7.7

because the number of voltage inputs is small and the conductance matrix is sparse. To

compute the RGA, we only use the dynamic part shown in Fig. 7.8, which can give better

indication of the RGA among all the current inputs.

7.4 Experimental results

The proposed method has been implemented in Matlab 7.0 and tested on an Intel quad-core

workstation with 16GB memory.
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The first example is a simple RC mesh (R = 1Ω and C = 1pf ) with 1600 nodes. We

verify the reduction accuracy in the time domain and frequency domain. 33 current sources

are applied to the circuit, each of which generates a series of pulses of unit magnitude. The

voltage responses at those input nodes are to be observed. The RGA value is shown in

Fig. 7.9. We can see that the most input-output pairs are magnitude-wise insignificant and

their corresponding values are close to zero.
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Figure 7.9: Degree of interaction measured by RGA.

First, we take a look at the transient responses at port 1. From Fig. 7.10, we see that

port 1 is only dominately interacted with itself. The RGA values of other inputs are lower

than the threshold value, 0.1. In this case, a reduced model of order 7 can match the

original output well (we only build one reduced model for port 1). The results of PRIMA,

SVDMOR, and DeMOR are shown in Fig. 7.10 by using the same order. We notice that

SVDMOR dose not work well. The reason is that DC matrix has full rank, which is usually

the case for a complete matrix-valued transfer function. The frequency response at port 1

from all inputs (i.e. |∑p
j=1 h1j(s)|) is also shown in Fig. 7.10 (the bottom one).

Now, we take a look at another port, the port 12, which is in the center of the circuit.

From the RGA values for port 12, there are three dominant inputs: input 8, input 12, and

input 16. A reduced model of order 12 is needed for a good match, where four moments
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Figure 7.10: Relative gains (top), time-domain (middle) and frequency-domain responses
at port 1 (bottom) for an RC circuit.

of the corresponding inputs are matched. The reduction results of PRIMA, SVDMOR, and

DeMOR are compared in Fig. 7.11.

DeMOR is quite suitable for analyzing a number of nodes in a local region. We can

perform the RGA analysis for all those nodes and find their dominant inputs. Typically,

those nodes to be observed may share a very small number of dominant inputs, which is

the case for power grid networks where input sources are not attached to every node to be

observed.

In the second example, we have a power grid network with 10000 nodes and 1000 even

distributed current sources. Now we are interested in the transient responses for 500 nodes
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Figure 7.11: Relative gains (top), time-domain (middle) and frequency-domain responses
at port 12 (bottom) for an RC circuit.

in a local region. The results of RGA of the circuit are shown in Fig. 7.12. We can see, the

distribution of those nodes in terms of dominant inputs are very concentrated, which means

a large number of nodes share only a small number of dominant inputs. For each node,

we choose the most dominant input. Since many inputs are shared, the redundant ones are

eliminated. As a result, 25 representative inputs are identified for the 500 nodes and only

2 moments are matched for each input, which results in a reduced model of order 50. The

transient responses of the 500 nodes, however, can be well approximated by the localized

reduced model.

Fig. 7.13 shows the transient responses at one of the 500 nodes. Given the same reduced
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Figure 7.12: Degree of interaction measured by RGA.
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Figure 7.13: The simulation results of the part of the grid.

order, DeMOR can match the original response well, but there is still noticeable error for

SVDMOR.
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Chapter 8

Conclusion

In this thesis, we have proposed several non-Krylov subspace model order reduction tech-

niques to mitigate three existing problems of Krylov subspace methods.

First, Krylov subspace methods can not generate models as compact as desired. To

mitigate this problem, we have proposed two solutions based on fast balanced truncation

via gramian approximation at the similar cost as the Krylov subspace methods. Different

from existing single gramian approximation, our methods take into consideration of both

gramians, which results in compact models with global accuracy. The first-order solution

is very accurate for general structure systems and the second-order solution can preserve

both passivity and structure information inherent to RLC circuit formulation.

Second, Kryov subspace methods are lack of passivity guarantees for general struc-

ture systems. In this study, a novel rational interpolation has been proposed to generate

guaranteed passive reduced models for general structure dynamic systems. The proposed

method is based on the maximum entropy solution of Carathéodory extension problem,

which is as efficient as Krylov subspace methods with similar moment-matching property.

Experimental results have demonstrated that CEMOR can be orders of magnitude faster
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than the positive-real TBR approach for reducing general structure systems with compara-

ble accurate reduced models. We have also proposed the concept of conditional passivity

and a method to generate frequency band-limited passive reduced models. Such relaxation

makes the circuit passive modeling work much easy using fitting based methods for general

structure systems.

Finally, Kryov subspace methods degrade dramatically as the number of inputs is in-

creased. In this study, we have proposed a novel approach resolve the long-standing prob-

lem of model order reduction of linear networks with many ports. The new method, termed

DeMOR, adopts a decentralized reduction scheme, where a whole MIMO circuit is de-

coupled into a number of MISO circuits based on the input-output interactions and the

order of each circuit is reduced separately. But different from existing approaches, a ter-

minal reduction process is carried out with the aid of the relative gain array (RGA), which

measures the degree of interaction of each input-output pair. As a result, efficient passive

reduction of each subsystems become possible and so does the whole system. The pro-

posed method is suitable for resistance-dominant interconnects like on-chip power grid,

substrate planes. DeMOR can lead to extremely compact models for those systems with

massive ports compared with the traditional MOR methods. Experimental results have

demonstrated the advantage of the proposed method compared to existing approaches.
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