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ABSTRACT

The Link State Content Routing (LSCR) protocol is pre-
sented, which supports routing over multiple paths to named
content using link-state information. LSCR uses two types
of link-state advertisements (LSAs): a Router LSA that con-
tains information about links connected to each router, and
an Anchor LSA that carries information regarding a name
prefix and the router that advertises being attached to that
name prefix, also called an anchor of the prefix. Anchor
LSAs are propagated selectively based on a diffusing mech-
anism. In contrast to prior content routing solutions based
on link-state information, LSCR allows routers to establish
multiple routes to name prefixes, without requiring each
router to know about all the instantiations of each prefix.
LSCR is shown to avoid permanent routing loops and to
have better performance compared to traditional link-state
routing protocols when a name prefix is replicated at multi-
ple sites in the network.

Categories and Subject Descriptors

C.2.2 [Network Protocols]: Routing protocols;
C.2.6 [Internetworking]: Routers

General Terms

Theory, Design, Performance

Keywords

Information-centric networks; name-based content routing;
link-state routing

1. INTRODUCTION
The current Internet architecture was designed many years

ago to address the communication needs prevailing at that
time, and focused on the need to share limited, expensive,
and static computer resources. Since then, the Internet us-
age pattern has shifted from a host-centric model to a flex-
ible content-oriented model in which users and content are
distributed and mobile.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

ICN’15, September 30–October 2, 2015, San Francisco, CA, USA.

c© 2015 ACM. ISBN 978-1-4503-3855-4/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2810156.2810173.

A number of Information-Centric Network (ICN) archi-
tectures have been developed to address the increasing de-
mand of user-generated content [9,13,19,27] in the Internet.
ICN architectures are based on location-independent content
naming rather than location-oriented host addressing. ICN
architectures are implemented based on name resolution and
name-based content routing to provide cost-efficient, mobile,
and scalable content distribution.

The most promising ICN architectures can be character-
ized as Interest-based. Content Centric Networking (CCN)
[1] and Named Data Networking [3] are the most promi-
nent Interest-based ICN architectures today. In such ar-
chitectures, content providers, i.e., producers, create named
data objects (NDOs), and publish name prefixes associated
with these content objects. A name prefix (or simply a pre-
fix), is a location-independent routable name that is asso-
ciated with a set of NDOs and advertised in the network
by the publisher. A content consumer asks for an NDO or
name prefix by sending a request, called an Interest, which
is routed along content routers toward a publisher of the
requested content. The producers or any caching sites that
have a copy of the requested NDOs satisfy the Interests and
send back the corresponding Data packets.

Each content router in the network forwards Interests ac-
cording to its Forwarding Information Base (FIB), which
stores the next hops towards name prefixes. A routing pro-
tocol is needed to maintain the routes needed to populate
the FIB entries. An important feature of many such archi-
tectures is the caching of named data objects that can be
done everywhere and for everything in the network. Design-
ing a reliable routing algorithm that cope with adding and
deleting prefixes in caches is challenging task.

Section 2 reviews prior work on name-based content rout-
ing for ICNs. As this summary reveals, no prior work has
been reported based on link-state information that enables
routers to know only subsets of the replicas of name prefixes
to support name-based content routing to the nearest prefix
replicas.

Section 3 presents LSCR (link state content routing), a
name-based content routing protocol that uses link-state in-
formation and information regarding the nearest replicas of
prefixes. LSCR relies on router names instead of IP ad-
dresses. Like other link-state routing protocols for ICNs,
LSCR uses a flooding mechanism to propagate link-state in-
formation regarding physical link characteristics and build
a map of the network topology at each router. However,
instead of flooding publisher information, as it is done in
NLSR [22] and OSPFN [23], LSCR propagates publisher in-



formation by diffusing the information selectively, based on
a distributed computation of preferred publishers. LSCR
supports both flat and hierarchical naming schemas; there-
fore, it can be implemented in different ICN architectures
with different naming policies.

Section 4 shows that LSCR computes multiple paths to
name prefixes and prevents permanent routing-table loops.
A routing table lists the shortest distances to the nearest
publishers of NDOs or name prefixes through one or multi-
ple neighbors. Section 5 analyzes the communication, stor-
age, and time complexities of LSCR, traditional link-state
routing, and loop-free distance-vector routing.

Section 6 presents the results of simulation experiments
comparing LSCR with a link-state approach similar to NLSR
and OSPFN [22, 23]. LSCR produces less communication
and computation overhead when the number of replicas in
the network is more than three. This result follows from the
fact that LSCR disseminates only partial publisher informa-
tion.

2. RELATED WORK
Several ICN architectures have been proposed to handle

name resolution and routing [7,31]. In general, these archi-
tectures adopt content routing approaches that adapt tra-
ditional routing algorithms designed for networks in which
a destination has a single instance [15]. This results in the
need to disseminate information about all replicas of pre-
fixes, rely on flooding requests to the entire network, build
a spanning tree, use source routing, or use directories and
DHTs for redirection. The rest of this section summarizes
examples of these various approaches.

Directed Diffusion [24] was one of the first proposals for
name-based routing of content. Requests for named content
(called interests) are flooded throughout a sensor network,
and data matching the interests are sent back to the issuers
of interests. DIRECT [30] is similar to directed diffusion and
provides named-based content routing in MANETs subject
to connectivity disruption.

The name-based routing protocol (NBRP) [20] was one
of the earliest proposals for name-based routing of content.
Name-prefix reachability is advertised among content routers,
and path information is used to avoid permanent loops.

CBCB (combined broadcast and content based) routing
is another early development on name-based routing of con-
tent [12]. CBCB consists of two components. A spanning
tree of the network or multiple per-source trees are estab-
lished, and publish-subscribe requests for content are sent
between consumers and producers of content over the tree(s)
established in the network.

Data Oriented Network Architecture (DONA) [26] uses
name resolution to map the flat names to corresponding IP
addresses that can be local or global.

MobilityFirst [4] relies on an external and fast name reso-
lution system called Global Name Resolution Service (GNRS)
to map the data object names to network addresses. Name
based routing in both DONA and MobilityFirst is accom-
plished using traditional IP routing and forwarding.

In Publish Subscribe Internet Technology (PURSUIT) [2,
8], each data object has a unique name that is mapped to
the publisher. A Topology Manager (TM) in the network,
that runs a link state routing protocol to discover the net-
work topology, is responsible to calculate a route between
the publisher and the consumer.

NDN [3] has adopted a traditional link-state approach to
name-based content routing. NLSR [22] and OSPFN [23] are
the two link-state content routing protocols that have been
proposed to date. In NLSR, two types of link state adver-
tisements (LSAs), AdjacencyLSA and PrefixLSA, propagate
topology and publisher information in the network. Each
router uses topology information and runs an extension of
Dijkstra’s shortest-path first (SPF) algorithm to calculate
the next hops for each router. The router then maps a pre-
fix to the name of its publisher and creates a routing table
for each name prefix. NLSR propagates information regard-
ing all replicas of all prefixes in the network and does not
provide any mechanism to rank replicas of the same prefix.

A number of content routing approaches have been de-
veloped in the context of content delivery networks (CDN)
that direct consumers to the nearest CDN sites and support
name-based content routing in the CDN using distance in-
formation [18, 29]. Other approaches use distributed hash
tables (DHT) as the name resolution tool running on top of
the existing inter-domain routing infrastructure [5,6,25].

CORD [16] combines redirection of content requests with
content routing using a publish-subscribe approach based on
a virtual DHT of directories listing the location of content.

Recently, DCR [14] was introduced to support name-based
content routing using distance information regarding the
nearest instances of NDOs or name prefixes. The main dif-
ference between DCR and prior approaches to content rout-
ing is that routers compute shortest paths to prefixes or
NDOs by disseminating distance information only for the
nearest instance of a prefix. As the next section describes,
LSCR adopts the same general approach using link-state in-
formation.

3. LSCR
We make a number of assumption in the description of

LSCR. Routers are assumed to operate and store informa-
tion correctly. Each router receives LSAs from its neighbors
correctly and processes them one at a time within a finite
time. Link costs can vary in time but cost values are always
positive. The link cost assignment and metric determination
mechanisms are beyond the scope of this paper.

Each router in the network has a unique name or identifier,
which can be flat or hierarchical and a lexicographic value
is assigned to the name.

Every piece of content in the network is a named-data
object (NDO), and a set of one or multiple NDOs can be
represented by name prefix (or simply prefix). Prefixes
can be simple and human-readable or more complicated and
self certifying, or may even be a cryptographic hash of the
content.

A router that has local access to all the content associated
with a name prefix is called an anchor of the prefix. Each
anchor of a prefix advertises the prefix as being locally avail-
able to the rest of the network. Routers and content can be
assigned flat or hierarchical names.

LSCR relies on two basic mechanisms: name resolution
and topology-based routing. Like other link-state routing
protocols [11], LSCR propagates link state advertisements
(LSAs) to create a local copy of the network topology and
a mapping schema from name prefixes to router identifiers
(ID) at each router. Based on topology and anchor informa-
tion, LSCR creates a lexicographic ordering among neigh-



bors and calculates multiple routes to the nearest replicas of
prefixes, i.e., to the nearest anchors of prefixes.

3.1 Messages and Data Structures
A link between router i and its neighbor n is denoted

by (i, n) and its cost is denoted by lin. The set containing
router i and its neighbor routers is denoted by N i. The
lexicographic value of the identifier of a neighbor router n is
denoted by |n|.

LSCR propagate two types of LSAs. ARouter LSA (RLSA)
is used to advertise the presence of a router and the state and
cost of its outgoing links. An Anchor LSA (ALSA) is used
to advertise the existence of name prefixes locally available,
which make the advertising router an anchor of the prefixes.
A sequence number is associated to each LSA to identify the
message and its order.

An RLSA can be initiated by any router that runs LSCR.
The ALSA sent by router i is denoted by RLSAi and con-
sists of the name of the router i, a message sequence number
(msni), and a list of outgoing links connected to the router
i and the cost associated with each link.

ALSAs can be initiated only by anchors of the prefixs and
intermediate routers can forward, drop, or hold these LSAs.
The ALSA sent by anchor m regarding prefix j is denoted
by ALSAm

j , and consists of the name of the anchor (m); and
one ”Prefix Update” (PUm).

PUm states the prefix name j, the sequence number that
is assigned to the prefix by the anchor (usnm

j ), and the
”ValidFlag” or vFlag indicating if name prefix j is attached
to anchor m or detached (vfm

j ).
Anchor m sends just one prefix update per ALSA because

of two considerations. First, prefixes have different lengths
and can be too large for several prefixes to fit in a single
message. Second, every intermediate router that runs LSCR
processes a received ALSA based on the prefix and decides
whether to forward or hold the ALSA. A router may forward
one ALSA with a specific prefix and hold another ALSA that
advertises a different prefix from the same anchor.

Router i maintains a Link Cost Table (LT i) storing the
cost of the link from router i to each of its adjacent routers.
Each LSCR router exchanges periodic Hello messages with
its neighbors to detect the addition or deletion of links and
routers, as well as any changes in the link cost.

A predefined parameter defines the time interval between
the transmission of two consecutive Hello messages. The
link to a neighbor is considered to be down if a router does
not receive a Hello message for a specified amount of time (a
time-out) from that neighbor. Afterward, the router sends
recovery Hello messages to detect the recovery with time
intervals relatively longer than normal Hello message inter-
val. A router cannot differentiate between a link being down
or the neighbor behind that link having failed. However,
this distinction does not affect the protocol, because in both
cases the neighbor behind a perceived link failure should
not be used to forward traffic. Each router that runs LSCR
sends an RLSA at startup and whenever it detects a change
in one of its links.

Each LSCR router maintains a Forwarding Table (FT i),
storing the set of valid next hops for each destination. The
row for destination p in FT i specifies: the name of the router
(p); the sequence number (rsn(p)) reported by router p; the
Distance List (RDi

p) consisting of the set of shortest dis-

tances from each neighbor router n ∈ N i to destination p

(rdipn); the shortest distance to router p (rdip); and the set
of neighbors that are valid next hops toward destination p
(RSi

p ).

Router i updates FT i based on RLSAs received from
other routers in the network. The RLSA form router k re-
ceived by router i is denoted by RLSAi

k. The information
stored in RLSAi

k is the router sequence number rsni
j , plus

the cost of each the links between router j and its neighbors.
Router i stores information about prefixes and their cor-

responding anchor(s) in its Prefix Table (PT i). The infor-
mation regarding prefix j is denoted by PT i

j and consist of
the name of the prefix j and the prefix anchor information
of prefix j (PAIij ).

Each entry of PAIijm consists of: the anchor m of the
prefix j; a ”valid” flag; vfjm for anchor m, which indicates
whether routerm advertises prefix j or not; and the sequence
number (snjm) reported by anchor m for prefix j.

Router i updates PT i based on ALSAs that are received
from anchors. The ALSA form anchor m received by router
i regarding prefix j is denoted by ALSAi

mj and consists of:
the name of the anchor (m), the prefix name j, the sequence
number assigned to the prefix by the anchor (usni

mj), and
the vFlag indicating if name prefix j is attached to anchor
m or detached (vf i

mj).

Router i also maintains a Routing Table (RT i) that stores
routing information for each known prefix. The information
stored in RT i regarding prefix j is denoted by RT i

j , and
consist of routing information for the nearest anchor of the
prefix j. The routing information includes: the name of
prefix j, shortest distance dij to nearest anchor of prefix j,
the set of neighbors that are valid next hops for prefix j
(Si

j), the king anchor for prefix j (ki
j), and a neighbor that

is the best next hop in the shortest path to anchor ki
j of j

(sij ∈ Si
j ). The king anchor of prefix j is the anchor with

the smallest lexicographic name among those anchors that
are at the same shortest distance to j

Router i updates PT i and RT i based on the other two ta-
bles, LT i and FT i, and the information available in ALSAs.
The ALSA received by router i sent by anchor m regarding
prefix j is denoted by ALSAi

jm. The information extracted

from ALSAi
jm is the sequence number assigned to the prefix

by the anchor (usni
jm) and the vFlag uvf i

jm.

3.2 Routing to Nearest Replicas
A router calculates the best routes to nearest copies of a

prefix in two steps. First, the router calculates valid next
hops for all the anchors that advertise that prefix. Second,
the router selects some of the neighbors from the previous
step as valid next hops to the prefix. For every anchor in
the network, the result of the first phase is a directed acyclic
graph.

3.2.1 Next-Hop Ordering Condition (NOC)

Every router keeps track of the sequence numbers reported
by the routers in the network. Whenever a router receives
an RLSA from another router, it checks the sequence num-
ber. If the message sequence number is greater than the se-
quence number stored for that router, the router updates the
topology information and also forwards it to its neighbors;
otherwise, the router drops the message. Using the sequence
number and a termination-detection mechanism similar to



the one used in OSPF prevents advertisement messages from
circulating in the network forever.

Based on the information received from other routers in
the network, router i creates the network topology NT i and
calculates the cost of a path to every destination p in the
network from each of its neighbors, as well as router i itself.
The router executes Dijkstra’s SPF algorithm (or any other
shortest-path algorithm) on the network topology to con-
struct a source graph, which constitutes shortest-path trees
to every destination from every neighbor. The results are
stored in the Distance List of the Forwarding Table (RDi

p).

The router also stores the shortest distance dip.
Router i selects a subset of its neighbors as valid next

hops to reach destination p based on the following Next-Hop
Ordering Condition (NOC), which we will show prevents
permanent routing loops from being created.

NOC: Router i can select its neighbor n ∈ N i as a valid
next hop to reach destination p if:

rdipn < ∞∧ (rdipn < rdip ∨ (rdipn = dip ∧ |n| < |i|)) (1)

Router i selects router n as next hop to reach destination
p if the neighbor n is closer to the destination or neighbor n
and router i are at the same distance to p and |n| < |i|.

Figure 1 shows an example network topology. The number
next to the node representing a router denotes the distance
from the router to destination p.

Figures 2 a,b, and c show the valid next hops for each
router to reach destinations p, q, and r, respectively. The
arrowheads point to valid next hops for each destination.
For instance, router u can be selected as next hop in routers
s and t to reach destination p, and u itself can select routers
l and f to forward messages to p.

Figure 1: Sample network

Algorithm 1 illustrates how a router updates its forward-
ing table when it receives an RLSA.We assume that a router
waits for a reasonable time after it receives the last RLSA
before it executes Algorithm 1, and that the router will not
process any other RLSAs while it is executing the algorithm.

3.2.2 King-Anchor Selection Condition (KSO)

Based on the information available in an ALSA received
by router i, the router looks up its forwarding table and
ranks the next-hops for each prefix based on their costs to

reach the anchor(s). Each router selects the king anchor of a
prefix among all the anchors it knows for the same prefix. If
two or more anchors are at the same smallest distance from
router i, the router selects the lexicographically smallest an-
chor as the king anchor. Whenever router receives a new
ALSA, i.e., an ALSA with the up-to-date sequence number
and valid flag equal to 1, the router updates its Prefix Table
and calculates the king anchor.

Algorithm 1 Update FT i

Input: RLSAi
k, LT

i, FT i

1: if rsni
k > rsn(k) then

2: rsn(k) = rsni
k

3: Create the Network Topology T i

4: Run Dijkstra’s algorithm and Update rdip
5: for (every n ∈ N i) do
6: Run Dijkstra’s algorithm on n;
7: for (every router p ∈ T i) do
8: Update rdipn
9: end for
10: end for
11: for every router p ∈ T i do
12: RSi

p := ∅

13: if rdip < ∞ then

14: for every n ∈ N i do
15: if (rdikn < rdik) ∨ (dikn = dik ∧ |n| < |i|)

then RSi
p = RSi

p ∪ {n}
16: end if
17: end for
18: end if
19: end for
20: end if

Algorithm 2 illustrates how router i updates its Prefix
Table PT i, when it receives a fresh ALSA from anchor m
regarding prefix j.

Algorithm 2 Update PT i

Input: ALSAi
mj , PT i

1: if usni
mj > sni

mj then

2: sni
mj = usni

mj

3: vf i
mj = uvf i

mj

4: end if

A router forwards an ALSA and sets the forwarded flag
if the anchor is the king anchor; otherwise it HOLDs the
LSA (i.e., it does not propagate the ALSA). If that anchor
becomes the king anchor as a result of topology changes or
because the current king anchor stops publishing the prefix,
then the router restores the ALSA, sets the forwarded flag
in the Prefix Table, and forwards the ALSA. Router keeps
track of forwarded LSAs and uses this forwarded flag infor-
mation to avoid sending duplicate ALSAs. Detach ALSAs
(ALSA with vFlag = 0) are always forwarded, regardless of
whether they come from king anchors or not.

KSO: Router i can select anchor m as the king anchor of
prefix j (i.e., ki

j) if the following statement is true:

vf i
mj = 1 ∧ ∀[a, vf i

aj ] ∈ PIij , vf i
aj = 1∧

[rdim < rdia ∨ (rdim = rdia ∧ |m| < |a|)]
(2)



Figure 2: Valid next hops to destinations: (a) destination p, (b) destination q, (c) destination r

The king anchor of a prefix is an active anchor that is the
smallest closest anchor among all active anchors of the pre-
fix. The distance to prefix j is the minimum of the distances
to anchors advertising j and is equal to the distance to the
king anchor of the prefix. Thus,

dij = Min{rdim|m ∈ PAIij} = rdiki
j
.

If no active anchor advertises prefix j or none of the active
anchors are reachable, then PAIij = ∅ and dij = ∞ and
prefix j is marked as unreachable.

Router i uses Algorithm 3 to select the king anchor of a
prefix. After selecting the king anchor, the router selects
valid next hops to it. A neighbor can be selected as valid
next hop for a prefix if it is valid next hop for the anchor
that advertise that prefix and that neighbor is closer to the
prefix or it is at the same distance but has lexicographically
smaller names.

Algorithm 3 King selection for prefix j

Input: FT i, PT i

1: ki
j := null; dij := ∞

2: for ecery m ∈ PIij do

3: if vf i
mj = 1 then

4: if rdim < dij ∨ (rdim = dij ∧ |m| < ki
j then

5: dij = rdim
6: ki

j = m
7: end if
8: end if
9: end for

3.2.3 Successor-Set Ordering Condition (SOC)

The distance from neighbor n to prefix j at router i (dijn) is
the minimum of the distances to anchors of prefix j through
n known by router i:

dijn = Min{rdimn|m ∈ PAIij} (3)

Router i selects router n as a valid next hop to prefix j if
the following statement is true:

dijn < ∞∧ (dijn < dij ∨ (dijn = dij ∧ |n| < |i|)) (4)

Router i can select its neighbor n as a next hop toward
prefix j if the neighbor is closer to the prefix than router i, or
routers i and n are at the same distance from the destination,

but neighbor n has a lexicographically smaller name than
router i.

Figure 3 shows the final state after executing LSCR as-
suming routers p, q, and r are all anchors of prefix j. The
bold lines in the figure indicate links pointing to the best
next hop of each router. For instance, both f and l offer
paths of distance two to router u. However, router f is se-
lected as the best next hop at router u toward destination
p, because |f | < |l|.

Each tuple on a link in Figure 3 represents the closest
smallest anchor and distance to that anchor through that
link. In this figure, the minimum distance from router d
to prefix j is through neighbor g and costs two. Consider
router a, router d can reach destination p in three hops via its
neighbor a, because a is a valid next hop for that destination
and also a is two hops away from prefix j (anchor p) and
|a| < |d|. These conditions satisfy Eq. 5; therefore, neighbor
a is selected as a next hop to reach prefix j.

Figure 3: Valid next hops to prefix j

Whenever a router receives an up-to-date LSA indicating
a change in the network, it executes Algorithms 1 or 2, de-
pending on whether it receives an RLSA or an ALSA, and
then executes Algorithm 4 to update its routing table.

3.3 Naming
The naming schema used in LSCR depends on the ICN

architecture in which it is implemented. A hierarchical nam-
ing schema such as the one introduced for NLSR can be



used for both routers and signaling messages. According
this schema, each router is named in the following format:
/ < network > / < site > / < router > /, where network
and site are assigned based on the network and specific site
the router belongs to and router is a unique name in that
network and site.

LSA messages use the naming schema like:
/<network>/<site>/<router>/LSCR/LSA/TypeID/
<sequence num>. The first part is the name of router initi-
ating the LSA, typeID field distinguishes betweenRouterLSA
and ALSA and sequencenum is the sequence number as-
signed by the router for that LSA.

Algorithm 4 Update RT i
j

Input: LT i, FT i, PT i, prefix j
1: Ecexute Algorithm 3;
2: if dij < ∞ then

3: for (every n ∈ N i) do
4: dnmin = ∞
5: for (every m ∈ PAIij) do

6: if rdimn < dnmin then
7: dnmin = rdimn

8: end if
9: end for
10: if dnmin < ∞ then
11: if (dijn < dij) ∨ (dijn = dij ∧ |n| < |i|) then

12: Si
j = Si

j ∪ {n}
13: end if
14: end if
15: end for
16: end if

4. CORRECTNESS OF LSCR
The following theorems prove that LSCR obtains correct

routing entries for routing to the nearest anchor of each pre-
fix, which means that routing tables do not contain any per-
manent loops. Our proofs rely on known results that se-
quence numbers can be used to determine that a link-state
update is more recent than stored information [11].

We assume that there is a finite number of link-cost and
anchor changes up to time t0, and no more changes occur
after that time. We also assume that routers can determine
which updates are more recent than others. Also, we assume
that every router has correct information about the network
topology, which can be be done in many ways for complete
or partial topology information [10,11,17].

Lemma 1. The king anchor is the same for all the routers
along the shortest path from each router to the king anchor.

Proof. The proof is by contradiction. Assume that the
shortest path Pi from router i to its king anchor of prefix j
mi

j consists of h hops and each router selects its next hop
according to Equations 3 and 4.

Let Pi = {n1, n2, S, nh}, where n1 = i, nh = mi
j , and

nk+1 ∈ RSn
m for 1 ≤ k ≤ h − 1. We know that rdim =

rdink
+rdnk

m ∀k, 1 ≤ k ≤ h−1. Assume that router np selects
router a 6= m as the king router for prefix j; therefore, either
rd

np
a < rd

np
m or rd

np
a = rd

np
m ∧ |a| < |m|.

If rd
np
a < rd

np
m then rdinp

+ rd
np
a < rdinp

+ rd
np
m . Accord-

ingly, rdia < rdim. Hence, router a is the king anchor, which
contradict our assumption that m is the king anchor.

If rd
np
a = rd

np
m ∧ |a| < |m| then rdinp

+ rd
np
a = rdinp

+

rd
np
m ∧ |a| < |m|. Therefore, rdia = rdim ∧ |a| < |m|. Again,

router a is the king anchor, which contradict our assumption
that m is the king anchor.

Lemma 2. Each router that receives an ALSA from the
closest anchor of a prefix advertises that prefix.

Proof. There are two types of ALSAs based on the vFlag
parameter. Detach LSAs (i.e., ALSAs with vF lag = 0)
are propagated in the network using the intelligent flooding
mechanism and termination detection is based on sequence
numbering. Therefore, every router receives a Detach LSA
from each anchor, including the closest one.

ALSAs with vflag = 1 are propagated using a diffusion
mechanism. Based on Lemma 1, all the routers along the
shortest path from the king anchor to the router has the
same king anchor. Based on the LSA forwarding mechanism,
each router forwards an ALSA form the king anchor.

Assume that router i did not receive any ALSA from its
new king anchor m. Also assume that the shortest path Pi

from router i to the king anchor of prefix j, mi
j , consists of

h hops. Assume that Pi = {n1, n2, S, nh} is such a path.
King anchor k is the king anchor of np, 1 ≤ p ≤ h − 1.
Also assume that a router nm ∈ Pi did not forward the
ALSA from its king anchor. This is in contradiction to the
forwarding mechanism used for ALSAs. Therefore, router i
should have received the ALSA form its king anchor.

Theorem 3. All routers in a network running LSCR must
converge to the shortest distance to their nearest anchors of
each prefix a finite time after t0.

Proof. Note that there is a finite number of prefixes and
there is a finite number of anchors for each prefix. Further-
more, each router processes and forwards each unique LSA
only once based on sequence numbers.

Without loss of generality, we focus on a specific prefix j.
The prefix can be considered as a virtual node connected to
its anchor via a virtual link. Prefix detachment and attach-
ment to the anchor can be considered as a link failure and
a link recovery, respectively. For each direction of a link,
there is one router (the head of the link) that detects and
reports the change in the link in one direction. Therefore,
for any link li, which can be a physical link or virtual link,
each router sends at most one LSA for that link after t0.

Consider an arbitrary router r0 that never terminates ex-
ecuting LSCR. That router must send an infinite number of
LSA messages after time t0.

Because the network is finite, there is a finite number of
links, and r0 must process an infinite number of LSAs for
at least one link lf . Because no changes occur after time t0,
router r0 cannot originate an infinite number of LSAs for any
adjacent think after t0. Furthermore, it is not possible for a
router to send an infinite number of messages regarding lf
as a result of receiving an infinite number of LSAs regarding
link lh. It follows that router r0 can forward an infinite
number of LSAs regardinglf only if it receives an infinite
number of LSAs regarding lf from at least one neighbor.

Accordingly, at least one of the neighbors of router r0,
call it r1, must send an infinite number of LSAs containing
updates for link lf that makes r0 process and forward an
unlimited number of LSAs. By the same token, neighbor
r1 can send an infinite number of LSAs regarding lf only if
at least one of its neighbors, call it r2, forwards an infinite



number of LSAs regarding lf to router r1. However, it is
impossible to continue the same line of argument indefinitely
because the head node of any link can generate at most one
update for that link after time t0 and the network is finite.

Therefore, LSCR can produce only a finite number of
LSAs for a finite number of link or prefix changes and must
stop within a finite time after t0.

Theorem 4. If topology information is correct at each
router, no routing-table loops can be formed if NOC is used
to select the next hops to the anchor of a prefix at each
router.

Proof. The proof is by contradiction. Assume that a
routing loop Lm for anchor m is formed at time t1 > t0 when
routers update their next-hops satisfying NOC. Assume that
Lm = {r0, r1, S, rq−1} consisting of q routers is such a loop.

We can consider Lm as a path Pm = {r0, r1, S, rq−1, rq},
where r0 = rq. Note that rdr0rq = rdr0r0 = 0 and rd

rq
m = rdr0m .

Router ni selects its next hop from RSni
m for 0 ≤ i ≤ q −

1, ri+1 ∈ RSni
m .

Based on NOC, for every router ni ∈ Pm, it must be true
that rdni

mni+1
< rdni

m or rdni
mni+1

= rdni
m and |ni+1| < |ni|.

By definition, rdni
mni+1

is the distance from n+ 1 to m cal-
culated at router i. Routers i and n have the same topology
information by assumption. Accordingly, rdni

mni+1
= rd

ni+1
m .

This results in the following:

(rd
ni+1
m < rdni

m ) ∨ (rd
ni+1
m = rdni

m ∧ |ni+1| < |ni|) (5)

Note that ∀ri ∈ Pm, rdim 6= ∞. A next hop cannot have
an infinite distance to the destination, because that would
contradict NOC. Therefore, for any two routers ru, rv ∈ Pm

and 0 ≤ u < v ≤ q we have:

(rdrvm < rdrum ∨ (rdrvm = rdrum ∧ |rv| < |ru|) (6)

The equation is valid for any two routers ru, rv ∈ Pm in-
cluding r0 and rq. Hence, it must be true that rdr0m < rd

rq
m

or rdr0m = rd
rq
m ∧ |r0| < |rq |, which contradict our assump-

tions.

Lemma 5. For every router i and its neighbor n and for
any arbitrary prefix j, it is true that dijn = dnj

Proof. The distance of router n from prefix j is the dis-
tance of router n from its king anchor: dnj = rdnkn

j
. Every

router forwards the ALSA from its king anchor; therefore,
router i is aware of anchor kn

j , and so kn
j ∈ PAIij . From Eq.

3, we have dijn = Min{rdimn|m ∈ PAIij} = rdnkn
j
. The last

equality is derived from Lemma 2, Eq. 2, and the fact that
(kn

j ∈ PAIij ∧ kn
j ∈ PAInj ). Therefore, d

i
jn = dnj .

Theorem 6. No routing-table loops can be formed if all
routers use LSCR to calculate routes to prefixes and routers
have correct topology information.

Proof. If the prefix is advertised by just one anchor,
based on Theorem 4 no loops can be formed. If more than
one anchor advertises a given prefix j, the same conclusion
can be derived using Lemma 5 and an argument similar to
the proof of Theorem 4.

5. ROUTING COMPLEXITY
We compute the communication, time, and storage com-

plexities of LSCR and compare it with the complexities of

traditional link-state routing and loop-free routing based on
distances. The communication complexity of a routing pro-
tocol is the number of messages that must be transmitted for
the routing protocol to have information required to com-
pute correct routing tables for all the destinations at each
router. The storage complexity is the amount of informa-
tion that must be stored at each router to obtain correct
routing tables. The time complexity of a routing protocol
is the maximum time needed for all routers to have correct
routing information for all destinations.

We use N and E to denote the number of routers and links
in the network, respectively. The number of distinct anchors
available in the network is denoted byD, the average number
of instances of the same destination is denoted by R, the
average number of neighbors per router is l, the network
diameter is denoted by d, and C denotes the number of
distinct prefixes in the network.

Traditional Link-State Routing (LSR):
Both network topology and prefix information are flooded

to the entire network when LSR is used. A router that runs
LSR sends adjacency LSA and prefix LSAs, one for each lo-
cal prefix, and each LSA must be sent to all the other routers
in the network. Every router stores the complete topology
information as well as all instances of all prefixes in the net-
work. Furthermore, the maximum distance between a source
and a destination is the network diameter. Accordingly, the
time, communication, and storage complexities of LSR are:

TCLSR = O(d); CCLSR = O(ERC + lEN); (7)

SCLSR = O(RC + E)

Loop-free Distance-Vector Routing:
Because of the looping problems of traditional distance-

vector routing protocols, the traditional distance-vector rout-
ing algorithms cannot be used for routing in ICNs with
multi-instantiated prefixes [15]. The Distance-based Con-
tent Routing (DCR) protocol solves this problem [14], and
maintains routes to the nearest replicas of prefixes that are
loop-free at every instant. Hence, we use this protocol as
the example of distance-vector routing.

For a given prefix, a router disseminates only its distance
to the nearest anchor of the prefix, independently of the
number of prefix replicas in the network. Hence, the infor-
mation a router stores and communicates for a given prefix
in DCR is only its distance to the nearest anchor of the pre-
fix, plus the anchor name and the latest sequence number
created by that anchor.

As the number of replicas increases, the distances from a
router to the nearest replica of a prefix decreases, and it is
always the case that the number of hops from any router to
the nearest replica of a prefix (x) is at most d hops.

DCR does not incur any routing-table loops, which means
that any routing information propagates as fast as the short-
est path between its origin and the recipient. Furthermore,
the number of messages required for all routers to have a
correct distance to a given prefix is O(E), regardless of the
number of times R the prefix is replicated. Given that there
are C prefixes in the network, the time, communication, and
storage complexities of DCR are:

TCDCR = O(x); CCDCR = O(EC); (8)

SCDCR = O(C)
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Figure 4: LSCR Performance: (a) average number of LSAs packets sent, (b) average number of operations,
(c) average number of discovered anchor and number of anchors selected for routing per prefix per node

Link-State Content Routing (LSCR):
The information required for LSCR to find correct short-

est paths to the nearest anchors of prefixes is the complete
topology, and the prefix information from the nearest anchor
(anchor name and sequence number created by that anchor).
Therefore, the storage complexity of LSCR is independent
of the number of anchors advertising each prefix.

Given that every router needs the complete topology in-
formation, the time required to receive LSAs for all links is
the time that a message traverses across the the network di-
ameter d. On the other hand, the distance from any router
to the nearest anchor of a prefix can be at most d.

The number of messages exchanged to create the com-
plete topology is O(lEN), just as with traditional link-state
routing, given that each of the N routers has l neighbors
and LSAs must be flooded. In addition, each router needs
to know its nearest anchor to each prefix and also needs
to delete anchors and even prefixes due to failures. Based
on the diffusion mechanism, LSCR only propagates specific
valid ALSAs and the communication complexity incurred for
this is just O(C). However, the communication complexity
of sending ALSAs for the deletion of a prefix is (CER),
where R is number of replicas for a given name prefix.

The storage required by LSCR consists of all the links in
the network and all the prefixes in the network. Accordingly,
the time, communication, and storage complexities of LSCR
are:

TCLSCR = O(d); CCLSCR = O(CER + lEN); (9)

SCLSCR = O(C + E)

6. PERFORMANCE COMPARISON
We compared the performance of LSCR with an optimized

version of NLSR using the SCoNET-Sim tool, which is an
NS-3 based simulator for content centric networks [28].

To eliminate the differences in performance due to sender-
initiated or receiver-initiated modalities, we implemented
LSCR and NLSR using sender-initiated signaling, in which
control messages are simply Interest messages that carry a
payload containing control information. As a result, our im-
plementation of NLSR in the simulation uses a single trans-
mission per LSA, rather than sending LSAs as a result of
Interests after neighbor routers determine the differences in

their local databases. NLSR propagates LSAs using intelli-
gent flooding.

The scenarios used in our performance comparison assume
the The AT&T core network topology, which is a realistic
ISP topology [21] consisting of 154 nodes and 184 links. A
node has 2.4 neighbors on average, and there are 14 nodes
with only one neighbor. Each node has a unique identifier
in the simulation model. The existence of a link-level pro-
tocol assures that every node detects the loss or recovery of
connectivity with its neighbor in a finite time after a router
fails to receive the proper control messages a repeated num-
ber of times. All messages, link failures, and link recoveries
are processed one at time in the order in which they occur
and within a finite time. We used a total of 210 content ob-
jects and 30 anchors that advertise prefixes in the network.
The anchors are selected randomly, and some anchors may
have some prefixes in common. On each simulation run, the
input event generated was a single link failure or recovery,
and a single prefix addition or deletion.

The performance metrics we used to compare NLSR and
LSCR were the number of messages, number of events, num-
ber of operations, and the average number of replicas per
prefix stored in each router. These metrics are measured for
five different cases: the initialization process, a link failure,
a link recovery, a prefix addition, and a prefix deletion. The
number of prefix replicas (prefix instances) is varied from
one anchor per prefix to five anchors per prefix.

Figure 4 shows the result of simulations for the number
of prefix replicas increasing from one to five. Figure 4-a
shows the number of ALSAs sent. As the number of repli-
cas increases, the number of LSAs sent in LSCR decreases,
because routers disseminate only LSAs for nearest anchors.
The number of operations is the total number of operations
performed by each protocol, and is incremented whenever an
event occurs or the statements within a for or while loop used
in the algorithms that compute shortest paths are executed.
Both LSCR and NLSR run Dijkstra’s SPF algorithm to find
shortest paths to destinations, and in both approaches SPF
is run at a node as many times as a node has neighbors.

Figure 4-c illustrates the average number of anchors that
LSCR stores for each prefix and the average number of an-
chors that are participated in routing per prefix per node.
As the number of replicas increases the number of replicas
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Figure 5: Computational overhead of LSCR: (a) prefix deletion, (b) link failure, (c) link recovery
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Figure 6: Impact of adding a new prefix: (a) average
number of LSAs packets sent, (b) average number
of operations

stored in the node also increases but even in a network in
which five anchors advertise a prefix, LSCR stores less than
two anchors on average, while NLSR stores information for
all five anchors.

Figure 5 illustrates the computational overhead of LSCR
compared to NLSR for the cases of prefix deletion, link
failure and in recovery. A link is selected randomly and
deleted from the network. After the deletion, the statis-
tics are measured once the protocols are allowed to converge
to the steady state, which means that all messages are pro-
cessed and no further changes are made to the routing tables.

Then the deleted link were added to network, i.e., the link
becomes operational, and the statistics are measured after
steady state is reached again. In the case of prefix deletion,
an anchor is selected randomly and from that anchor a pre-
fix is deleted. The performance are almost the same in all
these cases. However, LSCR has better performance when
the number of prefix replicas is larger than three.

Figure 6 shows the number of LSAs propagated and the
number of operations executed after an anchor advertises
a new prefix. In this case an anchor is selected randomly
and then it starts to advertise a prefix that is new for that
anchor. As the number of replicas increases, the number
of LSAs needed to propagate the new anchor information
decreases. The number of propagated LSAs in LSCR is al-
most half the number of LSAs in NLSR when the number
prefix instances is two. The computation overhead also de-
creases in LSCR as the number of replicas for each prefix
increases. For instance, the computation overhead of LSCR
is half the computation overhead of NLSR when the number
prefix instances is four.

7. CONCLUSION
The Link State Content Routing (LSCR) protocol was in-

troduced for name-based content routing in ICNs. LSCR
provides multiple paths to the nearest replicas of NDOs or
name prefixes. LSCR relies on full-topology information and
information about nearest prefix replicas, rather than all
prefix replicas. Therefore, its communication and storage
complexities are smaller compared to content routing ap-
proaches based on the traditional link state approach exem-
plified by NLSR and OSPFN.

Routers exchange two types of information: Topology in-
formation and anchor information. Each router builds a
complete network topology based on topology information.
A shortest-path routing algorithm is used to calculate the
distance to a given destination through each neighbor of a
router. Then neighbors are ranked lexicographically based
on their distances.

Routers that run LSCR forward anchor information se-
lectively based on a distributed computation of preferred
publishers. We showed that routes to prefixes are loop-free
once routers have correct topology information, even when
the prefixes have multiple replicas.



Although LSCR is more efficient than the traditional link-
state approach to name-based content routing, more work
is needed to attain higher efficiency. Possible approaches
include: communicating partial topology information [10],
reducing the frequency with which LSAs have to be sent
[17], and improving the way in which routers update anchor
information after resource failures.
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