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A TinyOS-Enabled MICA2-Based
Wireless Neural Interface

Shahin Farshchi, Student Member, IEEE, Paul H. Nuyujukian, Aleksey Pesterev, Istvan Mody, and
Jack W. Judy* , Senior Member, IEEE

Abstract—Existing approaches used to develop compact
low-power multichannel wireless neural recording systems range
from creating custom-integrated circuits to assembling commer-
cial-off-the-shelf (COTS) PC-based components. Custom-inte-
grated-circuit designs yield extremely compact and low-power
devices at the expense of high development and upgrade costs and
turn-around times, while assembling COTS-PC-technology yields
high performance at the expense of large system size and increased
power consumption. To achieve a balance between implementing
an ultra-compact custom-fabricated neural transceiver and as-
sembling COTS-PC-technology, an overlay of a neural interface
upon the TinyOS-based MICA2 platform is described. The system
amplifies, digitally encodes, and transmits neural signals real-time
at a rate of 9.6 kbps, while consuming less than 66 mW of power.
The neural signals are received and forwarded to a client PC over
a serial connection. This data rate can be divided for recording
on up to 6 channels, with a resolution of 8 bits/sample. This work
demonstrates the strengths and limitations of the TinyOS-based
sensor technology as a foundation for chronic remote biological
monitoring applications and, thus, provides an opportunity to
create a system that can leverage from the frequent networking
and communications advancements being made by the global
TinyOS-development community.

Index Terms—Brain-machine interface, EEG, epilepsy, smart
dust, telemetry, TinyOS, wireless.

I. INTRODUCTION

RHYTHMICALLY VARYING electrical signals of large
neural populations (i.e., field potentials) can vary slowly

(1 Hz) or quickly (100 Hz). Such brain-wave activity has been
correlated to specific physiological outcomes, such as sleep,
excitation, and epilepsy. In order to quantify field-potential
brain activity, an electroencephalogram (EEG) is recorded by
measuring the potential difference between a pair of electrodes
placed in or on the brain region of interest.

Although EEG recordings are frequently performed as acute
experiments (e.g., 6 h), some studies require chronic or
longer-term measurements. For example, the study of epilepsy
requires continuous recordings to be made over a period of
several days. Conventional EEG techniques use a direct-wired
connection between the subject and the measurement tool.
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Typically, this connection consists of a bundle of fine wires that
can frequently limit animal behavior. In addition, the wired
connection prevents the environment from containing natural
elements such as tubes and tunnels. The constraints of such
direct-wired connections have the potential for skewing the
obtained results. A wireless recording system could be used to
remove the aforementioned constraints. Such a wireless neural
recording system must be capable of sensing, amplifying, and
transmitting neural signals with a sampling frequency of at
least 100 Hz/channel (for reliably capturing EEG), while being
small, low cost, lightweight, and low power. The system also
requires a receiver to receive, demodulate, and display the
transmitted neural signals.

Existing approaches to develop a wireless EEG measurement
tool have ranged from designing a custom-microfabricated
recording and telemetry system [1]–[3], to the use of commer-
cial-off-the-shelf (COTS) PC technology [4]. Each approach
has its own set of advantages and drawbacks. The advantages
of custom designing each subsystem and component of a
neural recording system include: 1) a greater degree of design
flexibility; 2) the ability to optimize each subsystem in order to
minimize power consumption, noise, and system dimensions.
Such custom-designed systems can optionally be integrated in
a hybrid CMOS-MEMS process [5] to yield neural probes with
integrated data-acquisition/transmission systems in the interest
of decreasing the overall size and increasing the signal-to-noise
ratio. However, advances can only be incorporated with a very
significant, costly, and time-intensive re-integration effort.

In contrast, designing a neural interface that uses mainstream
PC-COTS-technology, such as a scaled-down PC motherboard
with an 802.11b PCMCIA card, requires a smaller development
effort to quickly yield a relatively high level of on-board dig-
ital signal processing and networking capabilities [4]. However,
these systems are very bulky and power intensive, since they
were not originally designed for truly compact low-power ap-
plications.

A novel approach would be a compromise between custom
designing each subsystem and using PC-COTS components.
This approach would achieve a balance between low-noise and
low-power signal transmission, data communication, system
size, and networking performance.

II. EXISTING APPROACHES FOR DEVELOPING NEURAL

RECORDING TECHNOLOGIES

Song [6] was among the first to introduce a fully integrated
single-chip system for bio-data acquisition, digitization, and
telemetry. The system consists of a custom-fabricated pream-
plifier and sigma-delta ADC converter that couples one of

0018-9294/$20.00 © 2006 IEEE
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two ring oscillators, which are separated by 400 kHz, to the
output via a multiplexer circuit to create an FSK signal. The
system occupies a very small footprint (2.5 2.5 mm ), and
requires no off-chip components (except for a 2-cm antenna
and a battery) while consuming only 10 mW of power from an
external 2.5-V supply. The output signal center frequency can be
adjusted from 5 to 56 MHz. Mohseni et al. at the University of
Michigan have succeeded in demonstrating a custom-designed
and microfabricated wireless multichannel recording system
for neural-recording applications. The system [3] is capable
of amplifying, multiplexing (TDMA), and transmitting seven
channels of wideband (300 Hz to 4 kHz) neural signals over the
FM band (tunable within 94 to 98 MHz). The system features
a neural preamplifier circuit that provides ac amplification and
dc baseline stabilization. Signals are received and demodulated
by an FM receiver, and subsequently de-multiplexed, recon-
structed, and displayed by a LabView-enabled PC. The system
requires three passive external components (when operated with
batteries) that can be wire bonded to the chip, thus yielding a very
compact size (2.2 2.2 cm , excluding passive components)
that weighs 1.1 grams with a 3-V battery attached. The system
has a transmission range on the order of a few meters, and is
capable of one-way communications while consuming 2.05 mW
from the 3-V supply. This system is fabricated using an AMI
double-poly double-metal 1.5- m n-well process. DiMichele
[7] has designed and tested the individual blocks (preamplifier,
filter, VCO and PA) of a 16-channel wireless neural transmitter
that shares its basic design with that described by Mohseni
[1]–[3]. The system consumes 3.8 mA from a 4.75-V supply.

Parramon [8] has reported an inductively powered im-
plantable telemetry microsystem that measures 30 mm (ex-
cluding off-chip passive components) and consumes 24.5 mA
of current. The system receives signals by modulating the
amplitude of the inductive power supply, and transmits neural
signals at a rate of up to 468 kbps via FSK; however, the system
was not fully functional at the time publication. Subsequent
work by Irazoqui-Pastor [9] at the University of California,
Los Angeles has successfully yielded an inductively powered
single-channel wireless neural recording system. The implanted
device amplifies, frequency modulates, and transmits a single
channel of wideband neural signals to a spectrum analyzer,
which demodulates the neural signals and feeds them via the
Ethernet to a client PC (in a manner similar to [1]–[3] and [7]).
The system is very compact (5 5 10 mm ) and weighs less
than one gram. In addition, due to being inductively powered,
this custom-integrated circuit (IC) wireless neural transmitter
can remain implanted indefinitely for truly long-term chronic
experiments. This system is fabricated using the TSMC
0.35- m CMOS process. This system provides one channel of
neural signals over a 1-meter (m) transmission range.

Researchers at Duke University have taken an entirely
different approach to develop a wireless neural recording
system [4]. Since their system was originally intended for use
on owl monkeys instead of rodents, weight and power-con-
sumption considerations were not as severe. Therefore, they
decided to use existing COTS PC components to best leverage
state-of-the-art signal-processing and communication tech-
nologies. The system is capable of acquiring, digitizing (with

12-bit resolution at a 32-kHz sampling rate), multiplexing, and
transmitting 12 channels of neural signals to any 802.11b-en-
abled PC while consuming 4 W of power. The system is rather
large (5.1 8.1 12.4 cm ), while weighing in at a substantial
235 g excluding the required lithium-ion batteries which last
67 min before needing to be removed and recharged.

A different COTS-based approach, chosen by researchers at
Aachen University, consisted of attaching two discrete neural
preamplifier circuits to the inputs of a commercial-off-the-shelf
FM Stereo transmitter [10]. The system is capable of trans-
mitting two channels of single-unit activity simultaneously,
which are subsequently demodulated by a commercial FM
Stereo receiver for analysis. The discrete nature of the system
yields a package larger (2.5 1 0.5 cm ) than that of [1],
which delivers similar performance. Researchers at the Uni-
versity of Tokyo have successfully developed a similar neural
telemetry system for recording neural signals from insects
[11]. A microelectrode is attached to the miniature circuit board
(1.5 0.8 cm ) via a polyimide ribbon cable. The neural pream-
plifier circuit is a COTS instrumentation amplifier (AD627)
that provides a large input impedance for the neural signals of
interest that are to be transmitted via a COTS FM transmitter.
The system can transmit single-unit activity from insects to a
COTS FM receiver for demodulation and subsequent analysis.

Cleveland Medical Devices has commercialized a product
[12] in this space, but due to its proprietary nature, there are
not many design details available. The device operates on the
902-MHz to 928-MHz band and operates using frequency-shift
keying (FSK). However, the requirement for a bulky 9-V power
supply and relatively large size (6.4 5.1 1 cm ) and weight
( 68 g) does imply extensive use of COTS components. The
system is capable of acquiring, digitally encoding, and trans-
mitting 8 channels of EEG signals, each of which are sampled
at 250 Hz. Once again, the system is only capable of one-way
communication, although it does boast a relatively large trans-
mission range of 46 m.

III. TINYOS AND THE MICA-BASED SENSOR NETWORK

Until recently, wireless devices consisted of relatively
complex, expensive, and high-power systems, such as cell
phones, PDAs, and wireless-enabled laptops that target specific
and highly standardized applications and rely heavily on a
powerful infrastructure (e.g., such as satellites, star-network
base stations, etc.). Researchers at the University of Cali-
fornia, Berkeley opted for a new approach in wireless-system
design: one that involves low-cost embedded devices that
can be implemented for a variety of applications [13]. This
effort resulted in the development of the Mica platform: a
self-configuring multihop (mesh) network platform for re-
motely monitoring distributed low-frequency phenomena [14].
This Mica platform operates on a component-based runtime
environment called TinyOS (also developed at UC Berkeley)
that has been specifically designed to provide support for
deeply embedded systems with a minimal amount of phys-
ical hardware. Each node of this sensor network has sensing,
communication, I/O, and processing capabilities, thus allowing
it to act as a data router, sensor interface, and control point
simultaneously. The TinyOS-enabled MICA2 platform grants
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high-level applications with direct and efficient control over
low-level hardware. Consequentially, developers can optimize
performance by implementing application-specific high-level
networking and communications protocols, while controlling
low-level hardware such as the radio and ADC. This program-
ming, networking, and communication flexibility is in contrast
to other mainstream wireless communications technologies that
require the use of predefined protocols that cannot be tailored
to specific applications (e.g., low-frequency, low-duty-cycle
sensing for mesh network topographies versus wideband,
real-time data acquisition for peer-to-peer communication).

The wireless sensor nodes, which are commonly referred to
as “motes,” have been designed to operate using TinyOS and are
currently being used in wildfire-instrumentation, habitat-mon-
itoring, and global-positioning applications, to mention just a
few [15]–[17]. The data-throughput performance of the motes
is severely constrained by their ultra-low-power operation and
large-scale mesh networking capabilities. Custom data-ac-
quisition and communication protocols could increase data
throughput at the expense of increased power-consumption and
mote-to-mote networking capabilities.

The two types of motes used in this work are the MICA2
and MICA2DOT motes produced by Crossbow Technology
Inc. (San Jose, CA) [18]. A basic system schematic of the
MICA2DOT mote is displayed in Fig. 1. The MICA2DOT
has 6 input channels, each with its own 10-bit ADC. Data is
processed by a microprocessor (Atmega128, Atmel Corp., San
Jose, CA) with 512 kB of flash memory. Data transmission
to and from both the MICA2 and MICA2DOT is handled
by a 916-MHz radio (CC1000, Chipcon AS, Oslo, Norway)
via FSK. An 8.2-cm-long, solid-copper-wire whip antenna
is used on both the MICA2 and MICA2DOT motes. When
the two 1.5-V dry-cell batteries are installed, the MICA2 is
approximately the size of a matchbox (58 32 15 mm ).
The MICA2DOT uses essentially the same computational and
communication hardware as the MICA2, but in a much smaller
form-factor. The diameter of the MICA2DOT is roughly that
of a United States quarter Dollar (25 mm), and its thickness is
approximately 6 mm. An MIB510 serial PC interface is used
to allow the motes to communicate with a PC. The PC can
be configured to broadcast sensor readings directly over its
Internet connection, thus allowing any user over the Internet
to access the sensor readings. Photographs of the MICA2,
MICA2DOT, and MIB510 can be found at [18].

The work in this paper has been directed toward investigating
new software and hardware designs that can be used to en-
able one or more motes to perform multichannel wireless neural
recordings from several freely moving subjects simultaneously.
Specifically, the goals of the work presented in this paper were to
1) implement an analog neural preamplifier circuit and interface
it with the MICA2DOT mote, 2) develop a media-access-con-
trol (MAC) protocol to enable two MICA2-based motes to com-
municate at the bandwidth necessary to transmit and receive six
channels of EEG, 3) design a TinyOS component that samples
data from the analog input channels, encodes the samples in the
form of discrete data packets, and transmits them over the radio,
and 4) develop a client-side signal-reconstruction and display
application.

Fig. 1. System-level diagram of the MICA2DOT mote.

Fig. 2. Schematic diagram of the wireless neural recording system.

IV. SYSTEM DESIGN

The overall system design can be divided into two major
areas: hardware and software. A neural preamplifier circuit
is required to properly amplify and level-shift the differential
neural signals. TinyOS-software components are required to
implement data-acquisition, signal-transmission, signal-recep-
tion, and wireless media-access protocols that achieve high data
throughput. Finally, a client-side user interface is required to
properly interpret, store, and display the received waveforms. A
top-level diagram of the neural interface system is displayed in
Fig. 2, and a photograph of complete neural recording system
is displayed in Fig. 3.

A. Hardware

Each EEG channel is sensed differentially by a pair of im-
planted depth electrodes. A neural preamplifier circuit is used
to take the differential signals and amplify, level-shift, and con-
vert them into to a single-ended waveform ranging from 0 V
to the MICA2DOT-battery voltage (nominally 3 V) in order to
be properly digitized by the MICA2DOT ADC. This pream-
plifier circuit has been designed to interface directly with the
MICA2DOT mote. The heart of the neural preamplifier is an
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Fig. 3. Photograph of complete neural recording system.

Fig. 4. Neural preamplifier circuit.

instrumentation amplifier (AD627, Analog Devices Inc., Nor-
wood, MA). The gain of the AD627 is set by an external resistor
to 200, which yields a 3-V peak-to-peak output for a 15-mV
peak-to-peak input signal. This corresponds to a fixed maximum
resolution of approximately 59 V. The output has been refer-
enced to half the supply voltage by a simple resistive divider fol-
lowed by an op-amp (OPA234, Texas Instruments Inc., Dallas,
TX) configured as a voltage follower (to allow the use of a single
coin cell). To avoid high-frequency noise from being aliased into
the sampled signal, the AD627 output is followed by a simple
RC-filter. This circuit consumes less than 3 mW of power from
a single 3-V coin cell. A circuit-level schematic of the neural
preamplifier circuit is displayed in Fig. 4.

B. Software

TinyOS-software components have been written to imple-
ment data-acquisition and wireless MAC protocols for the
MICA2DOT transmitter. The MICA2 receiver operates on a
standard TinyOS component to receive packets and broadcast
them via a serial port to a PC. The MICA2DOT operates on
a custom data-acquisition component. The Chipcon CC1000
radio is set to operate at its maximum data rate (38.4 kbps for
the MICA2DOT, though the CC1000 can operate at 76.8 kbps
on the larger-form-factor MICA2), and Manchester encoding

is used for simple error recognition by encoding each logical
“1” as “01” and each logical “0” as “10.” This encoding
brings the available raw bandwidth down to 19.2 kbps for the
MICA2DOT. The radio copies data from a buffer on the Atmel
microprocessor to its send register on a per-byte basis. This
copy event is invoked by the internal clock of the radio, which
runs at a frequency equivalent to the radio transmit speed in
terms of bytes/s (i.e., 2.4 kHz for a radio transmit speed of 19.2
kbps with Manchester encoding).

The TinyOS operating system handles processes sequentially
on a per-task basis. The tasks are processed in the order in which
they are placed in the task queue. The inability to prioritize
any single task prohibits the scheduling of precise time-sensi-
tive tasks (e.g., ADC sampling) in software. ADC-sampling de-
lays lead to nonuniform sampling intervals (i.e., sampling jitter),
which result in significant distortion. An alternative would be
to invoke a hardware-based timer that would periodically issue
an interrupt to the processor. Unfortunately, setting a hardware-
based timer to sample the ADC at arbitrary periods results in
packets being dropped at the receiver end when the radio op-
erates at 19.2 kbps. Packet loss results in nonrecoverable data
loss. However, synchronizing data acquisition with radio com-
munication greatly reduces this loss.

To minimize sampling jitter and data loss, the data-acquisi-
tion component prompts the ADCs to sample data once per two
radio timer periods [i.e., 1.2 kHz to accommodate for the packet
header and cyclic redundancy check (CRC) bytes], digitize it
in the form of a 10-bit integer value, and store the 8 most sig-
nificant bits in a buffer. When 40 readings are taken, a packet
header indicating the source mote ID, packet size, final reading
ID number (for time referencing), and CRC bytes are copied to
a buffer for subsequent transmission over the radio. Data resolu-
tion can be increased to a maximum of 10-bit (as dictated by the
ADC); however, ADC sampling speed must be reduced propor-
tionally to compensate for the increased signal resolution, thus
resulting in a lower data throughput. The parsing algorithm on
the client must also be designed to properly account for then
length of each word that corresponds to a data point. Fig. 5 il-
lustrates a timing diagram for data acquisition, transmission, re-
ception, and forwarding to a client PC with a MICA2 sampling
transmitting at 2400 samples/s. By examining the top wave-
form in Fig. 5, one will notice that sampling periods are slightly
skewed when the radio starts and stops transmitting packets,
which could be an indication of a sampling event being pre-
empted by the radio-send process execution and termination.

The MAC protocols, originally developed for the MICA2
platform, were designed to facilitate multihop communication
among large (i.e., hundreds) of individual sensor nodes in an
unregulated frequency band. This large-scale networking capa-
bility came at the expense of decreased data throughput among
individual sensor nodes, due to the sensor nodes having to wait
for a random period of time before transmitting a packet. In
this work, a new MAC protocol was developed that instructs
the transmitter to send whenever the radio-transmit buffer is
full. This modification eliminates the ability of the mote to re-
ceive packets from the base station, even though it is equipped
with a receiver. For comparison, using the standard software,
experimental bench testing yielded an effective data rate of less
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Fig. 5. Timing diagram illustrating sampling events with respect to data trans-
mission and reception. The transitions of the top and second waveforms indi-
cate data-sampling and radio-transmission start/stop events from the transmit-
ting mote, respectively. The transitions of the third and fourth waveforms from
the top indicate packet reception, and UART (serial) send start/stop times on
behalf of the receiver, respectively. The third waveform indicates that a packet
is received as soon as the radio stops transmitting, while the bottom waveform
indicates that the receiver begins transmitting the packet to the PC as soon as it
is received via the UART connection.

than 700 bps. By removing the radio wait time before transmit-
ting a packet, we achieved an effective data rate of 3.84 kbps.
By synchronizing ADC signal acquisition with the processor
buffer-to-radio data transfer, we achieved a data rate of 9.6 kbps
with the MICA2DOT. The MICA2 radio can be set to operate at
76.8 kbps (as opposed to 38.4 kbps on the MICA2DOT); there-
fore, in applications where the added size of the MICA2 is not of
concern, the user can obtain double the data throughput of the
smaller MICA2DOT (i.e., 19.2 kbps) using the same methods
described above.

To maximize the recordable neural-signal bandwidth, given
our achieved data-throughput performance, we implemented
a Java-based client-side signal-reconstruction program. This
program uses digital signal processing to interpolate points in
between sampled points to achieve a tenfold improvement in
signal resolution (although it does not improve signal band-
width). The algorithm applies an eighth-order Chebyshev filter
(with a 90%-settling time of approximately 55 samples and a
cut-off frequency at half the original sampling frequency) to an
up-sampled (by a factor of 10) version of the original sampled
neural signal. The results allow the neural activity (within the
Nyquist band, which is determined by the original sampling
frequency) occurring between the sampled points to be deduced
by using the frequency-domain information encapsulated in the
original sampled signal [19].

V. EXPERIMENTAL TESTING

Experimental testing was performed in two categories: bench
testing and in-situ testing. Bench testing was performed to as-
sess the specific performance metrics of the system, such as
data rate, range, power consumption, and signal resolution. In

situ testing was used to evaluate the overall performance of the
system in its respective application environment.

A. Bench Test of System

The gain-bandwidth characteristics of the preamplifier circuit
were tested in saline by applying a sinusoid to the saline solution
and measuring the gain between the amplifier output leads and
the input leads from the saline solution. The amplifier provides
a gain of 200 at frequencies ranging from a few Hz to 1 kHz.
Note that the anti-aliasing RC filter is omitted in this test, as it
is tuned to the sampling frequency of the transmitter.

To assess the performance of the neural preamplifier circuit,
as well as the total bandwidth of the data-acquisition and
transmission system, an extracellular neural recording dataset
was used. The data was originally acquired in vivo from freely
moving rats using five four-channel MOSFET input operational
amplifiers mounted in the cable connector to remove movement
artifacts. Data were recorded wide band (0.1 Hz to 5 kHz) and
sampled at 10 kHz/channel (16 channels) with 12-bit precision.
The dataset was programmed into an arbitrary waveform gen-
erator (HP 33120A, Agilent Technologies Inc., Palo Alto, CA)
whose outputs were applied to saline. The original waveform
programmed into the HP 33120A, the signal from saline, and
the received signal (sampled at 2400 Samples/sec) are depicted
in Fig. 6. To demonstrate the usefulness of the system for
EKG recording, a 5-mV simulated cardiac signal from the HP
33120A was applied to the preamplifier with respect to ground
(Fig. 7) and sampled at 480 samples/s, while the other channels
were left open. When recording from saline, the smallest de-
tectable signal amplitude is on the order of several mV (due to
background noise); however, provided that there is no noise, the
3-V dynamic range, 8-bit resolution, and gain of 200 implies
that a 59- V signal can be detected in the presence of no
noise from the preamplifier circuit or the environment. Signals
that are output from the preamplifier circuits are multiplexed
and sampled sequentially by the single ADC on the Atmel
Atmega 128L microprocessor. This successive acquisition
method results in no noticeable signal crosstalk subsequent to
digitization. However, even if sufficient measures are taken
in creating ground planes on the preamplifier circuit board,
there is a possibility for the signals to be coupled together
at the electrode level, which is dependant on electrode and
preamplifier placement.

To measure the effect of sampling jitter on signal distortion,
a pure 200-Hz tone was sampled by one of the input channels
at a rate of 1.2 kHz (to model 2-channel operation). The energy
of the first and second harmonics were measured against that
of the fundamental frequency, which yielded a worst case total
harmonic distortion of 1.7%.

The range of the neural transmitter was tested in a noisy
laboratory environment equipped with monitors, oscilloscopes,
microwaves, IEEE 802.11b transceivers, and a refrigerator.
The system data-loss rate was assessed by measuring the total
number of packets lost/2500 transmitted (which corresponds
to approximately 100 000 data points). The measurements
were taken with two MICA2 motes each equipped with an
8.2-cm-long solid-copper-wire whip antenna. As shown in
Fig. 8, the rate of packet loss is relatively constant over a 9-m
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Fig. 6. Simulated input, amplified, and received EEGs recorded from saline.

Fig. 7. Input, amplified, and received/reconstructed 3-Hz ECG.

range. At larger distances, the data rate is highly affected by
antenna orientation and line-of-sight, which is unacceptable in
an application where readings are to be taken with moving and
interacting test subjects. Intermittent packet loss due to moving
objects between the transmitter and receiver, and changes in
antenna orientation is negligible within a 2-m range; therefore,
the ideal operating range for moving test objects in an environ-
ment with obstacles and other animals is two meters.

Power consumption was measured at 66 mW from a 3-V
cell. With two 1.5-V alkaline batteries (Panasonic Industrial, Se-
caucus, NJ), the system lasts for approximately 100 h before re-
quiring new batteries. A single 3-V cell (2L76, Energizer, Mil-
ford, CT) lasts for approximately 5 h.

Fig. 8. Data loss as a function of distance. Data loss beyond 9 meters is a func-
tion of antenna orientation and requires line-of-sight, which is unacceptable in
this application.

B. Animal Testing

The system was tested on a live rat in a typical laboratory
environment. An adult C57/Bl6 mouse (Harlan, Indianapolis,
IN) was anesthetized with 100 mg/kg ketamine, 5.2 mg/kg xy-
lazine, and 1.0 mg/kg acepromazine according to a protocol
approved by the UCLA Chancellor’s Animal Research Com-
mittee. A lengthwise incision was made along the scalp and
a small burr hole was made 2.2 mm posterior to bregma and
1.7 mm lateral to the midline. A micromanipulator was used to
place a hippocampal depth electrode (Plastics One, Roanoke,
VA) in the hippocampus at a depth of 2.0 mm. The electrode
was fixed to the skull using dental cement and the animal was
allowed to recover for 48 h before recording was performed.
The animal was anesthetized again prior to performing the ex-
periment. The implanted depth electrodes were attached to the
preamplifier circuit which was interfaced with a MICA2 mote.
A lead from the skull was tied into the AD627 reference ter-
minal, which was set to half the supply voltage. To model tem-
poral-lobe epilepsy, the animal was subsequently injected with
kainic acid at 15 mg/kg [20]. Recordings were taken differen-
tially at a rate of 480 samples/s on one of the 6 input chan-
nels. The R and C values for the anti-aliasing filter were 39
and 0.1 F, respectively. These readings were transmitted, re-
ceived, and reconstructed by a client PC. Fig. 9 depicts received
and reconstructed recordings taken from the living rodent before
and after kainic acid injection for observing normal and seizure
EEGs.

Unfortunately, the extremely low amplitude of the anes-
thetized animal’s EEGs resulted in the system only capturing
the peaks of neural activity until the animal began experiencing
seizures. This explains the ringing that is present in the recon-
structed waveforms depicted in Fig. 9. In addition, an improper
ground connection resulted in the DC bias that is present in the
recorded signals.

VI. CONCLUSION

In this paper, we have demonstrated the design of a
TinyOS-based wireless neural interface. The transmitter is
a composed of a MICA2DOT mote (commercially available
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TABLE I
WIRELESS MICROSYSTEM PERFORMANCE SUMMARY (ADAPTED FROM [1])

Fig. 9. Neural activity recorded in vivo.

from Crossbow Technology Inc. [18]) interfaced with a custom
discrete neural preamplifier circuit that consists of a Texas In-
struments OPA234, an Analog Devices AD627 instrumentation
amplifier, and seven passive components/channel. A MICA2
mote interfaced with an MIB510 gateway (both of which
are commercially available from Crossbow Technology Inc.
[18]) receives and relays the signals to a client PC via a serial
connection. The system operates on custom signal acquisition,
transmission, archiving, and hosting software for wirelessly
sensing, storing, and browsing recorded neural signals. Efforts
are being made to commercialize the custom neural preampli-
fier circuit and software to make the technology accessible to
brain researchers [21].

The system is capable of amplifying, sampling, transmitting,
and reconstructing input signals at a rate of 1200 8-bit samples/s.
This data rate allows for the reliable transmission of up to 6 EEG
channels (with sampling rate of 200 Hz/channel), simultane-
ously from live, mobile test subjects. We have tested the system
with synthesized neural signals from saline, and a live rodent.
Table I illustrates the performance metrics of this technology,
in comparison with other reported technologies. The following

issues were encountered during the development of this system
with and could severely handicap the neural interface on which
it is based.

A. Inability to Prioritize Tasks

The TinyOS release used in this work (version 1.1.3) does not
give the programmer the ability to prioritize precise time-sen-
sitive tasks, such as data acquisition. In contrast, tasks are ex-
ecuted by the order in which they are placed in a task queue.
Therefore, a task generated by hardware (i.e., a buffer copy com-
mand) could easily preempt a data-acquisition task. Delayed
data-acquisition tasks result in sampling jitter (as illustrated in
Fig. 5), which in turn result in signal distortion on the receiver
end, since the signal-reconstruction program assumes that the
time lapse between sample periods are identical and equal to the
programmed sampling period. Simply attaching a timestamp to
each sampled data point requires excessive bandwidth overhead.

B. Requirement for Synchronous Data-Acquisition and
Transmission

The factor that limits the sampling rate of the MICA2 to 2.4
kHz (rather than the 4 kHz that can be theoretically provided
by the hardware) is due to the requirement for synchronous data
acquisition and transmission. This maximizes the analog-to-dig-
ital converter (ADC) sampling rate to half the radio byte-copy
period when taking 8-bit samples. Using a radio chip that does
not copy the send buffer on a timed per-byte basis will allow
the developer to set the data-acquisition period to a value in-
dependent of the radio speed. Crossbow Technology Inc. [8]
has recently released a new class of motes called the MICAz.
These motes use the same Atmel Atmega 128 processor, with
a ZigBee-compliant (IEEE 802.15.4) transceiver that operates
at 2.4 GHz (the Chipcon CC2420). The processor only needs
to dump to the radio-send buffer once every send cycle, elimi-
nating the synchronization requirement that limits the MICA2.
The MICAz may also not be as sensitive to antenna orientation
and may not require line-of-sight. The antenna can also measure
at less than an inch (as opposed to the two-inch whip antennas
used in this work). Finally, the faster radio on the MICAz (256
kbps) allows the mote to receive messages while sampling and
transmitting at high data rates.
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C. Power Consumption Tradeoffs

The data loss due to line-of-sight obstructions and antenna
orientation becomes more pronounced as the radio power output
is decreased and the distance between two MICA2-based motes
is increased. In order to insure that the data loss was insignifi-
cant over a 2-m range, and independent of antenna orientation,
the radio transmitter power was set to its maximum setting (10
dBm). Consequently, the overall power consumption was quite
high (i.e., 66 mW). Using a radio that does not have these lim-
itations would enable the developer to lower the radio output
power level considerably for short-range applications.

This work demonstrates that the TinyOS-enabled MICA2
platform can be used as a foundation for low-power real-time
wireless biosignal recording system if 1) time-critical tasks
could be prioritized, and 2) data acquisition and transmission
need not be synchronized. In addition, using a mote equipped
with a transceiver that does not require line-of-sight and is
not sensitive to antenna orientation, could allow the developer
to set the radio output power to a lower level for short-range
communication (i.e., on the order of a meter). Such adjustments
could yield greatly reduced power consumption.
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