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ABSTRACT OF THE DISSERTATION 

 

Measurement Variation and Robustness in Quantitative Thoracic 

Computed Tomography 

 

by 

 

Daniel Yun Chong 

Doctor of Philosophy in Biomedical Physics 

University of California, Los Angeles, 2015 

Professor Matthew Sherman Brown, Chair 

 

Quantitative computed tomography (CT) plays a major role in large-scale, longitudinal, multi-

center clinical trials. Minimizing measurement variation by identifying robust CT imaging 

biomarkers and developing robust techniques for quantitative CT has implications for clinical trial 

management and for patient care. We investigated robustness with respect to two sources of 

measurement variation in quantitative CT: repeat-scan variation (reproducibility) and variation due 

to changing CT technical parameters. 

 In this dissertation, we conducted two separate but related studies in the area of quantitative 

CT robustness. In the first, we characterized and compared the reproducibilities of several widely-

accepted measures of emphysema by examining repeat CT images from a multi-center clinical 

trial taken one week apart. We investigated the influence of breathhold on reproducibility of 
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emphysema measures. We also investigated variations in reproducibility characteristics across 

sites. Our results have implications for multi-center clinical trials that rely on accurate and 

reproducible measures of emphysema. 

 In the second study, we investigated feature and classifier robustness with respect to slice 

thickness, reconstruction kernel, and tube current in the setting of classification of fibrotic 

interstitial lung disease (FILD). We developed a quantitative Robustness Index measure by 

examining the stability of imaging features across multiple systematic reconstructions of CT raw 

sinogram data. We proposed a novel Robustness-Driven Feature Selection (RDFS) method for 

identifying a subset of robust features, then used these features to develop a robust support vector 

classifier for lung structure and parenchymal abnormalities in FILD. We demonstrated the superior 

robustness of this classifier compared to a similar classifier that did not utilize RDFS. Our results 

have implications for improving the robustness of classifier-based CT CAD systems, which is of 

importance in multi-center clinical trials that rely on imaging biomarkers that can be generalized 

across many sites and timepoints. 
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1. Introduction 

This dissertation is an investigation into sources of variation in quantitative computed tomography 

(CT) and methods to improve the robustness of computer-aided techniques in quantitative CT. We 

focus on robustness with respect to two particular sources of variation: variation due to repeated 

image acquisition (reproducibility) and variation due to changing CT technical parameters, namely 

slice thickness, reconstruction kernel, and tube current. The purpose of this dissertation is twofold: 

first, to quantitatively characterize and compare reproducibility in commonly-used CT 

densitometric measures of pulmonary emphysema; and second, to develop a methodology for 

robust feature selection that produces a classifier model which is robust to changes in CT slice 

thickness, reconstruction kernel, and tube current in the setting of classification for fibrotic 

interstitial lung disease. 

 Since its inception, computed tomography has played an increasing role in the diagnosis 

and treatment of a variety of diseases, including lung diseases such as pulmonary emphysema and 

fibrotic interstitial lung disease. Today, quantitative CT (QCT) is firmly established as a valuable 

diagnostic and prognostic tool, and CT-derived imaging biomarkers play a major role in 

longitudinal multi-center clinical trials as a primary or secondary endpoint. It is therefore critical 

to understand the measurement variations associated with CT imaging biomarkers, particularly 

their reproducibility and their stability with regards to CT technical parameters, which can be 

extremely challenging to standardize across a large-scale study. Minimizing measurement 

variation by identifying robust CT imaging biomarkers and developing robust techniques for 

quantitative CT has implications for clinical trial management and for patient care. 
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1.1 Introduction to Computed Tomography 

Computed tomography (CT) is a medical imaging modality with high contrast and high spatial 

resolution. Initially popularized as a noninvasive method for radiologists to visualize patient 

anatomy and pathology, CT has been increasingly recognized as a powerful quantitative tool as 

well. Advances in technology have steadily improved both scanning speed and image quality, 

improving the diagnostic utility of CT and paving the way for new applications. 

 The basic principles of tomography were outlined by Johann Radon, who in 1917 

developed the mathematical techniques for recreating an image from a series of projections 

through the image [1]. Given the projection data of an image (also called the image sinogram), the 

original image can be obtained via the inverse Radon transform, which is commonly implemented 

in medical CT via filtered backprojection. This process of recovering an image from its sinogram 

is known as reconstruction. 

 As its name implies, filtered backprojection involves the use of a filter (variously referred 

to as “convolution kernel”, “reconstruction kernel”, or “reconstruction algorithm”). The purpose 

of this filter is to correct image artifacts introduced by the backprojection method. The choice of 

kernel greatly affects the reconstructed image, influencing image quality characteristics such as 

spatial resolution, contrast resolution, and noise power spectrum. In practice, CT device 

manufacturers have implemented numerous proprietary reconstruction kernels for various 

anatomies and imaging tasks. However, these kernels are optimized for visual assessment, and the 

influence of kernel selection on quantitative image analysis is not well characterized. An 

illustration of several kernels for thoracic CT is shown in Fig. 1.1. 

 In x-ray computed tomography, projections of a patient’s anatomy are taken via x-ray 

radiography. The intensity at any given image voxel therefore reflects the x-ray attenuation 
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properties at the corresponding anatomical location. Image intensity values in CT are measured on 

a graylevel scale known as the Hounsfield Unit (HU) scale, named for Sir Godfrey Hounsfield, 

the inventor of CT [1]. The Hounsfield Unit is a relative scale which is defined as follows: 

 
water

waterHU


 
1000  (1.1) 

where  represents the x-ray linear attenuation coefficient for the voxel in question and water 

represents the linear attenuation coefficient of water. Therefore, water corresponds to a CT value 

of 0 HU, while air corresponds to -1000 HU (since air is assumed to be radiotransparent, i.e. 

air = 0). By convention, low HU values are rendered as dark while high HU values are bright; 

actual intensity on a computer screen depends on the choice of window and level, which 

compresses the wide dynamic range of CT to a range that can be displayed on a digital screen by 

truncating HU values above and below the chosen limits. 

 Signal strength in CT is influenced by the number of x-ray photons captured by the detector 

relative to the number of photons given off by the x-ray source. This is essentially a counting 

problem for a random variable which is governed by the Poisson distribution. It is known that 

signal-to-noise (SNR) ratio for this distribution is proportional to the square root of N, the total 

number of photons emitted by the x-ray source. Therefore, as the number of x-ray photons 

increases, the CT signal strength increases, resulting in a corresponding decrease in image noise, 

which can be estimated by computing the standard deviation of HU values in a relatively 

homogeneous region of interest. The number of x-ray photons is controlled by the x-ray tube 

current-time product, which is commonly measured in units of milliampere-seconds (mAs). To 

summarize all these concepts, if the tube current is halved, then the image noise will increase 

roughly by a factor of √2 ≈ 1.41, resulting in an noisier image. This result is illustrated in Fig. 1.1. 
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Additionally, since tube current is directly proportional to patient radiation dose, the CT 

community has adopted the ALARA principle to keep tube currents “as low as reasonably 

achievable” while maintaining the image quality necessary for a particular diagnostic task [2]. 

 Computed tomography produces an image volume which is conventionally presented as a 

stack of 2D slabs or “slices”, each of which represents an axial cross-section of the patient’s body. 

The slices are of a finite thickness which may be specified at the time of image reconstruction, 

subject to restrictions relating to image acquisition geometry. The slices may be contiguous, 

overlapping, or separated. In the past, CT devices typically produced so-called “thick-section” 

slices of 5-10 mm, significantly larger than in-plane image resolution which is commonly below 

1mm. Advances in technology have steadily improved CT devices to the point where isotropic or 

near-isotropic images, which are often desirable for quantitation, are more commonly achievable. 

However, thinner slices also result in increased image noise since fewer photons are collected for 

each slice.  

b) a) c) d) 

Figure 1.1. Image of lung reconstructed under various CT technical factors. (a) Smooth kernel, high tube current; (b) Medium-

sharp kernel, high tube current; (c) Sharp kernel, high tube current; (d) Sharp kernel, simulated low tube current. 
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1.2 Introduction to CT Image Classification 

Classification refers to the problem of assigning a category (or class label) to a new observation 

based on patterns learned from a training set of previous observations with known categories. 

When the observations take the form of images, this problem falls under the field of computer 

vision, a discipline that concerns itself with analyzing, understanding, and perceiving digital 

images. CT image classification typically involves diagnostic categories such as healthy versus 

abnormal lung tissue or benign versus cancerous lesions. 

 Image classification can be broken down into a series of smaller tasks which make up an 

image processing pipeline. A pipeline for a typical classification problem might be comprised of 

the following steps: image acquisition, image preprocessing, feature extraction, feature selection, 

model training, and classification. We will briefly discuss each of these in turn in the context of 

CT image classification. 

 Image acquisition refers to the process of creating the image that is to be analyzed. In CT, 

this step encompasses both CT acquisition (the act of acquiring projection data for a patient) and 

reconstruction (backprojecting to obtain the CT image volume). These steps have been discussed 

in the previous section. We reiterate that the choice of technical parameters such as reconstruction 

kernel, tube current, and slice thickness will influence the resulting image, which will in turn 

impact quantitation. 

 Image preprocessing refers to any steps that must be taken in order to prepare the image 

for further analysis. These steps may include applying noise-reduction or contrast-enhancement 

filters, resampling to achieve a desired spatial resolution, and segmentation of relevant anatomy. 

Some of these steps are nontrivial research topics in their own right, but a detailed discussion is 

beyond the scope of this dissertation. 



6 

 

 Feature extraction refers to the task of computing imaging features, which are quantitative 

measures that represent image content for the purposes of classification. Some examples are first-

order descriptors such as mean, standard deviation, or median, which reflect the graylevel intensity 

distribution of the image; and second-order descriptors such as texture features, which characterize 

the spatial relationships between voxels in the image. Many different types of imaging features 

exist, and the task of selecting a set of features for a particular classification problem can be both 

science and art. Depending on the nature of the classification task, feature extraction may be 

performed globally for the image as a whole, or locally in regions of interest within the image 

volume. 

 Feature selection refers to the task of pruning the original feature space to obtain a subset 

of appropriate features. Feature extraction typically produces a large initial set of features, many 

of which may be redundant, uninformative, or susceptible to noise. It is often difficult to identify 

a priori which features will be the most useful for a given classification problem; feature selection 

techniques therefore examine the values of features in the training set to make an a posteriori 

decision. The set of selected feature values for a particular observation is referred to as a feature 

vector. 

 Model training refers to the task of tuning a machine learning algorithm based on training 

data. There are numerous classification techniques such as Bayesian classifiers, support vector 

machines, decision trees, random forests, artificial neural networks, and many, many more. Each 

of these is represented by a mathematical model which must be fit to the training data. Additionally, 

many of these techniques have parameters that influence the behavior of the classifier; these are 

frequently tuned according to the training data as well. 
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 Finally, once a machine learning algorithm has been trained, the resulting model can be 

used to classify new observations. Classification of a new observation is typically done by 

subjecting it to the same preprocessing and feature extraction steps, constructing a feature vector 

consisting of the previously-identified subset of features, then feeding this feature vector into the 

classifier model to yield a category label. By classifying a testing set of observations with known 

categories, the performance of a classifier model can be measured. 

 

1.3 Literature Review 

1.3.1 CT densitometry of emphysema 

Pulmonary emphysema, which is characterized by destruction of lung tissue and the subsequent 

replacement of lung tissue with air, manifests in computed tomography as areas of low attenuation 

[3]. In 1988, Mueller, et al, proposed the relative area of voxels below a certain image intensity 

threshold as a measure of emphysema extent [4]. Around the same time, Gould, et al, proposed a 

percentile density score for emphysema that reported the graylevel value associated with a certain 

percentage on the cumulative image intensity histogram [5]. These CT-derived measures have 

been shown to correlate well with both spirometric and histopathological assessment of 

emphysema [6-9]. 

 As a quantitative tool, densitometric measures such as relative area and percentile density 

are subject to sources of variation. In particular, CT attenuation in the lungs is known to be 

sensitive to the patient’s breathhold at the time of image acquisition, a finding that was reported 

as early as 1979 [10]. Since then, breathhold has been firmly established as one of the major 

sources of variation in lung CT densitometry [8, 11]. 
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 As a result of the dependence between lung densitometric measures and breathhold, several 

researchers have adopted volume correction of relative area and percentile density scores in order 

to account for differences in levels of inspiration between different patients or between multiple 

examinations of the same patient [11-15]. Many of these approaches essentially build a statistical 

model of the raw density score as a function of lung volume, then normalize scores by adjusting 

to a reference breathhold. Volume correction methods have been shown to improve the robustness 

of density-based emphysema scores, but other researchers have raised concerns that volume 

correction may result in diminished signal of physiological changes due to emphysema disease 

progression or treatment effect in longitudinal studies [16]. 

1.3.2 Quantitative CT approaches for fibrotic interstitial lung disease 

Fibrotic interstitial lung diseases (FILD) such as idiopathic pulmonary fibrosis (IPF) and lung 

disease associated with systemic scleroderma (SSc) are a class of diseases characterized by 

scarring of lung tissue. In computed tomography, lung abnormalities due to FILD manifest in 

several classic visual patterns such as fibrosis, ground-glass opacity, and honeycombing (Fig. 1.2). 

Assessment of disease extent has been shown to play an important role in prognosis [17, 18] and 

to correlate with independent indicators of disease such as spirometry [19, 20] and histology [21]. 

 Semiquantitative visual assessment of disease has been shown to be a strong independent 

predictor of patient survival in longitudinal studies [22]. However, visual assessment of disease is 

a difficult and subjective task, and inter- and intra-reader agreement have been identified as a 

concern [23]. Honeycombing in particular has proven to be challenging; in a multicenter 

longitudinal study for IPF, Lynch, et al, reported Cohen’s kappa scores of 0.21 and 0.31 for reader 
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agreement on the binary presence of honeycombing [17]; a visual assessment of honeycombing 

extent is likely to be even more challenging. 

 In light of these concerns, there has been a growing interest in objective, repeatable QCT 

methods for assessing FILD. In 1994, Hartley, et al, reported that mean and median lung 

attenuation were independently associated with physiological measures of IPF, laying the 

foundation for density- and histogram-based analysis of FILD [24]. This work was extended by 

Best, et al, who further examined histogram index measures and demonstrated strong associations 

between skewness and especially kurtosis with spirometric measures of IPF [25]. 

 In contrast to the above methods, a number of studies have examined classification-based 

methods to characterize FILD disease patterns. In 1999, Uppaluri, et al, proposed a method based 

on histogram features, graylevel co-occurrence matrix (GLCM) and run-length matrix (RLM) 

texture features, and fractal features [26]. Similar approaches have been proposed by numerous 

authors [27-29]. Of particular note are a three-dimensional extension of GLCM and RLM texture 

features [30], and a variation of the approach that improves performance by denoising images prior 

GG 

HC NL 

PF 

Figure 1.2. Illustration of visual disease patterns for fibrotic interstitial lung disease. (PF) pulmonary fibrosis; (GG) ground-glass 

opacity; (HC) honeycombing; (NL) normal lung parenchyma. 
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to feature extraction [31]. Many of these approaches have been shown to perform well in both 

region-of-interest and voxelwise classification tasks; some have also demonstrated value in 

longitudinal assessment of disease progression and treatment efficacy in clinical trials [29, 32]. 

Furthermore, Kim, et al, demonstrated the superiority of a texture-classification-based approach 

over histogram index measures such as kurtosis in detecting longitudinal change [33]. 

1.3.3 Robustness of quantitative methods in thoracic CT 

There are a number of technical factors chosen during CT acquisition and reconstruction, each of 

which influences the appearance and quality of the resulting images. An exhaustive examination 

of all of these is beyond the scope of this dissertation, so for the present discussion we will be 

focusing our attention on slice thickness, reconstruction kernel, and tube current. Additionally, we 

will also be discussing reproducibility, which we define to be robustness with respect to repeat-

scan variation1. 

 Reproducibility of CT lung densitometry in emphysema has been examined by several 

researchers. In 2001, Gierada, et al, published a same-day repeat-scan study consisting of 58 

candidates for lung volume reduction surgery, concluding that QCT measurements of emphysema 

are highly repeatable with no clinically important improvement from spirometric gating [34]. This 

study is significant for being one of the first emphysema repeat-scan experiments in the literature 

and for the extremely short interval between baseline and repeat scans; however, it suffers from a 

relatively small sample size, as only 29 of the subjects underwent repeat scans with identical, non-

spirometrically-gated protocols. Furthermore, the study was conducted using thick-section (8mm) 

                                                 
1 According to guidelines put forth by the Quantitative Imaging Biomarkers Alliance [53], repeat-scan variation more 

appropriately falls under the definition of repeatability, rather than reproducibility. However, for the sake of internal 

consistency, we will be using the term “reproducibility” throughout this dissertation. 



11 

 

images, which are less relevant today due to the increasing prevalence of thin-section high-

resolution CT, which is particularly common in clinical trials. 

 Since then, numerous reproducibility studies have been reported for CT lung densitometry 

with a wide range both in the number of subjects (from 10 to 100+) and in the time interval between 

repeat scans (from 2 weeks to over a year) [11, 35-39]. Perhaps in part due to concerns over 

radiation exposure, studies with short time intervals tend to involve fewer subjects as well. Larger 

sample sizes are preferred because they afford increased statistical power and generalizability of 

results; however, with longer time intervals it becomes difficult to distinguish repeat-scan 

variability from variability due to disease progression and/or treatment effect. 

 A recent study by Balagurunathan, et al, examined the reproducibility of CT imaging 

features in non-small cell lung cancer [40]. Using a 15-minute repeat-scan dataset, the authors 

evaluated a large number of 3D size, shape, and texture features according to three criteria: 

reproducibility, dynamic range, and redundancy. A final feature subset was produced by filtering 

the initial set on these criteria, and each individual feature was evaluated based on its ability to 

discriminate between two prognostic groups of tumors. This study is significant for its use of 

reproducibility as a feature selection criterion. However, it stops short of evaluating the selected 

features in a classification-based framework beyond single-feature discrimination. Moreover, 

there was no comparison between reproducible and non-reproducible features, and so the study 

fails to demonstrate the importance of selecting based on feature reproducibility. 

 Slice thickness impacts image quality in two distinct ways. First, for a given tube current, 

thinner slices result in noisier images, since the number of x-ray photons captured in each slice is 

directly proportional to the thickness of the slice. Second, thicker slices result in decreased spatial 
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resolution due to reduced sampling in the longitudinal direction combined with increased partial 

volume effect. 

 The reconstruction kernel is an essential component of the filtered backprojection method 

which is used to produce CT images. The choice of kernel has a profound impact on image quality 

by influencing spatial resolution and image noise. Broadly speaking, kernels can be described by 

their sharpness or smoothness. Sharp kernels (also referred to as enhancing or bone kernels) 

typically provide enhancement of edges at the cost of increased image noise. By contrast, smooth 

kernels (sometimes referred to as soft tissue kernels) provide increased blurring, resulting in 

decreased image noise but reduced spatial resolution. Reconstruction kernels are often chosen on 

the basis of the anatomy of interest or the imaging task at hand. 

 Studies investigating the influence of slice thickness or reconstruction kernel often make 

use of CT raw sinogram data reconstructions to produce multiple images from a single acquisition. 

This approach has the dual advantage of allowing a researcher to isolate variation due to these 

technical factors (since there is no source of repeat-scan variation) while simultaneously saving 

subjects the additional radiation exposure that a repeat-scan study would involve. Following this 

study design, numerous researchers have demonstrated that densitometric measures of emphysema 

are sensitive to the choice of slice thickness and kernel, although lung volume measurements have 

been shown to be quite robust [41-45]. 

 The effect of tube current on CT image quality is well known. Tube current, which is 

measured in units of milliampere-seconds (mAs), is directly proportional to the number of x-ray 

photons which are used to generate the image. Decreasing tube current reduces image quality (by 

increasing the Poisson noise), yielding images that appear grainier and more speckled. This has 
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been shown to have a noticeable impact on emphysema QCT, particularly at low levels of tube 

current (20 mAs or lower) [46]. 

 Compared to slice thickness and reconstruction kernel, studies investigating tube current 

are more difficult because tube current is specified at the time of image acquisition rather than 

reconstruction. However, the development of CT noise simulation algorithms, such as those 

described in [47-49], have made it possible to create simulated reduced tube current images from 

a single acquisition. Zaporozhan, et al, examined simulated low-dose CT images, reporting that 

dose reduction down to 30 simulated mAs was possible without introducing a clinically relevant 

degree of variation in a density-based emphysema index score, while a separate morphological 

analysis remained stable down to 50 simulated mAs [50]. 

 Additionally, several studies have investigated the robustness of texture features in various 

CT applications. Al-Kadi, et al, analyzed a variety of texture features including model, statistical, 

and wavelet features in lung tumors under conditions of simulated noise reduction and 

enhancement, concluding that graylevel co-occurrence matrix (GLCM) and run-length matrix 

(RLM) features were among the least robust to image noise [51]. Although this study examined 

multiple features, the feature robustness within each category was analyzed collectively, and data 

on individual features was not reported. In another study, Guggenbuhl, et al, investigated the 

robustness of GLCM and RLM features with respect to slice thickness by imaging bovine bone 

samples at multiple slice thicknesses (1, 3, 5, 8 mm), reporting significant changes in many of the 

features [52].  These and other studies illustrate the potential susceptibility of GLCM and RLM 

texture features to CT technical factors.  

 Two observations are apparent from the preceding review. The first observation is the 

importance of distinguishing between statistical significance and clinical relevance. For example, 
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Behrendt, et al, reported statistically significant differences in total lung volume across multiple 

reconstruction kernels; however, these differences were quite small (within 0.15% of the reference 

kernel), leading the authors to conclude that the finding was not clinically important [42]. Similarly, 

Zaporozhan, et al, reported statistically significant differences in emphysema measures across a 

wide range of simulated reduced tube currents, but only tube currents below 30 mAs resulted in a 

clinically relevant difference (defined to be 2% variation from the original clinical dose) [50]. 

However, we note that in the context of CT classification, it is difficult to define clinical relevance 

for imaging features because the value of an individual imaging feature is often not easily relatable 

to clinical outcome. 

 The second observation is that not all QCT measures are equally sensitive to changes in 

technical parameters, such as total lung volume versus densitometric measures of emphysema 

extent. Even among emphysema measures, the choice of HU threshold for relative area has a 

substantial impact on the measure’s sensitivity to slice thickness and kernel, with higher thresholds 

being more robust than lower ones despite still being correlated with histology [44]. In a similar 

vein, Al-Kadi has shown that some categories of texture features are more robust than others [51]. 

These findings suggest that there is value in examining robustness as a criterion for evaluating 

imaging features. 

1.4 Summary of Key Contributions 

This dissertation consists of two separate but related studies in the area of robustness of 

quantitative CT. In the first study, we examined repeat CT images taken one week apart from a 

multi-center clinical trial for chronic obstructive pulmonary disease (COPD). We characterized 

and compared several widely-accepted QCT measures of emphysema disease extent, 

demonstrating the superiority of non-volume-adjusted relative area below -950 HU from a signal-



15 

 

to-noise perspective. We also demonstrated that densitometric reproducibility is significantly 

impacted by breathhold reproduction. Lastly, we investigated reproducibility characteristics across 

multiple sites and proposed a framework for assessing each site’s performance in achieving 

reproducible breathholds. This study contributes to the field of emphysema QCT by performing 

these valuable analyses on one of the largest known short-term repeat-scan datasets for COPD.  

 In the second study, we investigated quantitative feature and classifier robustness with 

respect to slice thickness, reconstruction kernel, and tube current in the setting of CT classification 

of fibrotic interstitial lung disease (FILD). We developed a novel approach for assessing the 

robustness of imaging features by examining their stability across multiple systematic 

reconstructions of CT raw sinogram data. Leveraging this approach, we proposed a novel method 

called Robustness-Driven Feature Selection (RDFS) for identifying a subset of robust features, 

then used these features to develop a robust support vector classifier for lung structure and 

parenchymal abnormalities in FILD. We demonstrated the effectiveness of our proposed 

methodology by comparing our robust classifier to a similar classifier that did not utilize RDFS. 

To our knowledge, we were the first to propose a framework for assessing feature and classifier 

robustness in the area of FILD by systematically applying CT raw sinogram reconstructions. 

Moreover, we were the first to examine the connection between feature robustness and classifier 

robustness. 

 The rest of this dissertation is organized as follows. Our study on emphysema 

reproducibility is described in chapters 2 and 3. In chapter 2, we present a paper titled 

“Reproducibility of volume and densitometric measures of emphysema on repeated computed 

tomography with an interval of 1 week”, which we previously published in European Radiology. 
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In chapter 3, we present an extension of this study with a much larger sample size and expanded 

analysis to examine reproducibility characteristics across multiple sites.  

 Our study on quantitative feature and classifier robustness is described in chapters 4 

through 6. In chapter 4, we introduce our classification approach for FILD and investigate several 

previously-published techniques for addressing the problem of imbalanced data learning. In 

chapter 5, we develop our Robustness-Driven Feature Selection method and demonstrate its 

effectiveness at improving classifier robustness. In chapter 6, we extend our work on robustness 

to examine slice thicknesses of 3.0 mm. Lastly, in Appendix A, we examine reader agreement 

between the expert readers who provided the ground truth for this study. 
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2. Reproducibility of volume and densitometric measures of emphysema on 

repeat computed tomography with an interval of 1 week 

The following chapter is adapted from the final submitted manuscript of the paper “Reproducibility 

of volume and densitometric measures of emphysema on repeat computed tomography with an 

interval of 1 week”, by D Chong, MS Brown, HJ Kim, EM van Rikxoort, L Guzman, MF McNitt-

Gray, M Khatonabadi, M Galperin-Aizenberg, H Coy, K Yang, Y Jung, JG Goldin in European 

Radiology 2012, 22(2):287-94. 

 The final publication is available at springerlink.com. An electronic version of the paper 

may be retrieved at http://link.springer.com/article/10.1007/s00330-011-2277-1. 

 

2.1 Introduction 

Chronic obstructive pulmonary disease (COPD) is a significant cause of morbidity and mortality 

and represents a large economic and social burden worldwide, particularly in developed countries 

[1, 2]. COPD is typically diagnosed and assessed clinically via pulmonary function tests (PFT) 

such as forced expiratory volume in 1 s (FEV1) and diffusion of carbon monoxide (DLCO). 

Emphysema, a subset of COPD which is characterized by lung tissue destruction, is known to 

manifest as areas of low attenuation in computed tomography (CT) [3]. Densitometric measures 

such as density mask and percentile density were therefore proposed as quantitative means of 

assessing extent and progression of emphysema [4, 5].  These CT-derived measures have been 

shown to correlate well with emphysema assessment via PFT and histopathology [4, 6-9]. 

 More recently, CT densitometric measures have been proposed as an efficacy endpoint in 

emphysema treatment trials. The dependence between CT attenuation and level of inspiration was 

reported as early as 1979 by Robinson and Kreel [10], and differences in breath-hold became well-
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established as one of the major sources of variation in densitometric measures [6, 11]. The question 

of density measure reproducibility is therefore intimately tied to breath-hold reproducibility. When 

tracking the progression of emphysema over the course of months and years, the reproducibility 

of these measures is an important concern. In a clinical trial setting, this has both economic and 

scientific impacts – more reproducible measures lead to smaller subject populations and shorter 

study durations. 

 The purpose of this study is to assess the reproducibility of both breath-hold (as measured 

by CT lung volume) and commonly used CT densitometric measures of emphysema by evaluating 

patients in a scan-rescan setting within a strictly controlled clinical trial over a period of 1 week. 

Additionally, the relationship between the reproducibilities of density measures and breath-hold is 

investigated. 

 

2.2 Materials and Methods 

2.2.1 Patients 

The study population consisted of patients enrolled in multicenter clinical trials whose CT images 

were made available in an anonymized research database. Each of these patients gave signed 

consent with the approval of their local institutional review board to sending their anonymized 

data to a central imaging core. All patients were current or former smokers with a clinical diagnosis 

of COPD. Patients were selected for this study based on the availability of two baseline scans, and 

44 patients (17 male, 27 female, median age 56 years) were found to match this criterion. All use 

of anonymized image data was in keeping with the Health Insurance Portability and Accountability 

Act. 
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2.2.2 CT image acquisition 

All CTs were performed under the auspices of a central imaging core that provided training and 

standardized guidelines for image acquisition. Subjects underwent CT at full inspiration (total lung 

capacity, or TLC) on two occasions, with a median interval of 7 days between the two visits 

(minimum 5 days, maximum 17 days). Patients were instructed in proper breath-holding technique 

and were given the opportunity to practice before imaging. A variety of CT systems were used 

from General Electric (GE Healthcare, Little Chalfont, Buckinghamshire, UK), Toshiba (Toshiba 

America Medical Systems, Tustin, CA, USA), or Siemens (Siemens Healthcare, Erlangen, 

Germany). Devices were calibrated for air and water, as per site protocols. CT was performed 

using an X-ray tube voltage of 120 kVp, with tube currents ranging from 200 to 300 mA in the GE 

devices, 300 mA in the Toshiba ones, and 80 to 150 effective mAs for Siemens systems. 

Contiguous, thin-section imaging was performed with slice thicknesses ranging from 0.6 mm to 

1.25 mm. Images were reconstructed using a sharp algorithm of Bone (GE), FC51 (Toshiba), or 

B45f (Siemens). For each patient, the same equipment, imaging protocol, and reconstruction 

parameters were used for both the first and second visit CT with the exception of one patient, 

whose tube current differed between the two visits (300 mA and 240 mA). Additionally, a water 

phantom was imaged (with a field of view large enough to include air) using the same imaging 

protocol and system within 24 h of each patient’s CT. 

 

2.2.3 Quantitative CT Image Analysis 

The CT images were analyzed using a software package developed in-house [12, 13]. Lungs were 

segmented by an automated algorithm using a threshold of -500 HU followed by manual editing 

to correct segmentation errors. A guided semi-automatic system was used to identify the airway 
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tree, which was then used to exclude the gross airway structure from the lung segmentation, 

resulting in a region of interest (ROI) representing the lungs. The volume of the lungs was 

computed based on the size of this ROI. 

 Next, a histogram representing the distribution of Hounsfield Unit (HU) values was 

generated for the lung ROI. This histogram was used to derive two different densitometric 

measures: the relative area below -950 HU (RA950-raw) and the 15th percentile density (PD15-

raw). These densitometric measures were chosen because they have been shown to correlate well 

with histopathology [4, 14] and because the thresholds of -950 HU and the 15th percentile have 

been widely adopted in the assessment of emphysema in thin-section CT [9, 15-17]. 

 Next, relative area and percentile density values were adjusted via volume correction. 

Volume correction was performed due to the endorsement of this procedure by numerous authors 

[5, 11, 15, 17] and involved fitting the data to the mixed-effects regression model described in [5] 

to produce RA950-adj and PD15-adj, respectively. 

 

2.2.4 Statistical Analysis 

For each patient, the reproducibilities between the first and second scans of the various measures 

(volume, RA950-raw, RA950-adj, PD15-raw, PD15-adj) were assessed via the following methods. 

First, a paired t-test was used to test for a difference in means between the first and second CTs. 

Next, the concordance correlation coefficient (CCC) was used to assess the agreement between 

the measured values in the first and second CTs [18]. Lastly, Bland–Altman analysis was used to 

compute the repeatability coefficient (RC) for each measure, giving an indication of the variability 

of each measure [19]. 
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 The reproducibility of RA950-raw was compared against that of RA950-adj by using a 

robust difference-of-variances test (Brown-Forsythe’s test) to compare their RCs. The RCs of 

PD15-raw and PD15-adj were compared in a similar fashion. 

 Scatter plots of density versus volume were used to show the relationship between 

densitometric and breath-hold reproducibilities. A scatter plot was created by plotting the paired 

difference in RA950-raw against the paired difference in volume. In a similar fashion, paired 

differences in RA950-adj, PD15-raw, and PD15-adj were all plotted against the paired difference 

in volume, yielding a total of four scatter plots. Linear regression analysis was performed on each 

of these plots to evaluate the relationship between the difference in volume and each of the four 

densitometric measures. 

 Using an a priori chosen threshold of 0.25 L to represent superior breath-hold reproduction, 

the patients were divided into two subgroups based on the paired difference in CT lung volumes. 

The statistics of CCC and RC in RA950-raw and PD15-raw were computed for the two subgroups. 

Brown–Forsythe’s test was used to compare the RC of RA950-raw between the <0.25-L and 

≥0.25-L subgroups. Similarly, the RC of PD15-raw of the <0.25-L and ≥0.25-L subgroups were 

compared. 

 All data were analyzed using a combination of Microsoft Excel 2003 (Microsoft; Redmond, 

WA) and Stata 8.0 (StataCorp; College Station, TX). For statistical tests, a p value smaller than 

0.05 was considered to be significant. 
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Table 2.1. Subject baseline characteristics 

Table 2.2. Quantitative measure reproducibility characteristics 

2.3 Results 

2.3.1 Volume analysis and reproducibility 

The baseline patient characteristics for the subjects in this study are summarized in the first column 

of Table 2.1. The lung volumes demonstrated very good agreement between the first and second 

CTs (CCC=0.976; Table 2.2). The volumes had a mean difference of -0.056 L, which was not 

significantly different from zero (p = 0.279). The distribution of volumes is illustrated in Fig. 2.1. 

Measure 

Overallc 

(n = 44) 

mean ± SD 

<0.25 Ld 

(n = 33) 

mean ± SD 

≥0.25 Ld 

(n = 11) 

mean ± SD 

Volumea (L) 5.77 ± 1.54 5.93 ± 1.61 5.29 ± 1.20 

RA950-rawa (%) 16.0 ± 11.7 18.1 ± 12.3 9.4 ± 6.2 

RA950-adjb (%) 15.1 ± 9.9 --- --- 

PD15-rawa (HU) -946.3 ± 28.3 -951.3 ± 29.3 -931.2 ± 19.1 

PD15-adjb (HU) -950.4 ± 21.0 --- --- 

a Calculated directly from image histograms. b Obtained via volume correction techniques [5]. c Overall population of subjects. d 

Subgroup analysis using breath-hold reproduction threshold of 0.25 L. 

Measure n CCCa Difference 

mean ± SD 
p valueb RCc 

V (L) 44 0.976 -0.056 ± 0.336 0.279 0.672 

RA950-raw (%)      

 Overall 44 0.995 0.01% ± 1.17% 0.959 2.34% 

 <0.25 L 33 0.998 0.15% ± 0.81% 0.286 1.62% 

 ≥0.25 L 11 0.954 -0.42% ± 1.87% 0.472 3.75% 

RA950-adj (%) 44 0.996 0.22% ± 0.83% 0.083 1.65% 

PD15-raw (HU)      

 Overall 44 0.982 0.52 ± 5.29 0.516 10.59 

 <0.25 L 33 0.998 -0.67 ± 1.85 0.046* 3.70 

 ≥0.25 L 11 0.862 4.09 ± 9.53 0.185 19.07 

PD15-adj (HU) 44 0.996 -0.42 ± 1.82 0.135 3.63 

a Concordance correlation coefficient. Indicates the agreement between two sets of measurements, with perfect agreement 

yielding +1. b Paired t-test comparing difference mean to zero. c Bland–Altman repeatability coefficient, defined as RC = 2 × 

Difference SD. * p < 0.05 different from zero 
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Aside from one outlier (V = -1.49 L), all of the patients reproduced their breath-holds to within 

1 L, and the overall RC was approximately two-thirds of a liter. 

 Of the 44 subjects, 33 achieved superior breath-hold reproduction (|V| < 0.25 L), leaving 

11 subjects in the ≥0.25-L subgroup. Lung volumes were similar between the two subgroups, but 

the <0.25-L subgroup exhibited more severe emphysema as measured by both RA950-raw and 

PD15-raw (Table 2.1). 

2.3.2 Densitometric analysis and reproducibility 

The densitometric measures all exhibited very good agreement between the first and second CTs 

(CCC > 0.95; Table 2.2) with the exception of PD15-raw in the ≥0.25-L subgroup (CCC = 0.862). 

The mean differences were not significantly different from zero with the exception of PD15-raw 

in the <0.25-L subgroup (p = 0.046). The distributions of the densitometric measures are illustrated 

in Fig. 2.2. The outlier observed in the plots of RA950-raw (Fig. 2.2a, RA950-raw = -4.94%) and 

PD15-raw (Fig. 2.2c, PD15-raw = 26 HU) corresponds to the outlier in Fig. 2.1b (V = -1.49). 

 For both RA950 and PD15, the volume corrected measure exhibited a smaller RC than the 

raw measure (Table 2.3, rows 1–2). However, this difference was only significant for PD15 (p = 

0.012). For both RA950-raw and PD15-raw, the RC was significantly smaller in the <0.25-L 

subgroup than in the ≥0.25-L subgroup (p = 0.010, p < 0.001 respectively; rows 3–4). 

 Compared with RA950-raw in the overall population, the coefficient of determination R2 

decreased in the <0.25-L subgroup as well as in the volume corrected measure RA950-adj (Table 

2.4). A similar trend was observed in PD15, but the effect in PD15-adj was much more pronounced. 
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a) b) 

Figure 2.1. (a) Scatter plot illustrating distribution of lung volumes between first and second CTs. Dashed line indicates the 

identity line. (b) Bland-Altman plot illustrating distribution of lung volumes between first and second CTs. Dashed lines indicate 

± repeatability coefficient (RC = 0.67 L). 

Figure 2.2. Bland-Altman plots illustrating distribution of densitometric measures. Dashed lines indicate ±repeatability 

coefficient (RC). (a) RA950-raw (RC = 2.31%); (b) RA950-adj (RC = 1.62%); (c) PD15-raw (RC = 10.47 HU); (d) PD15-adj 

(RC = 3.76 HU). 
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Table 2.3. Comparisons of repeatability coefficients 

Table 2.4. Coefficients of determination of differences in densitometric measures against differences in volume 

 

 

2.4 Discussion 

This study offers insight into the measurement variability inherent in the patient–CT imaging chain 

by investigating CT lung volume as well as CT densitometric measures of emphysema. The values 

of CT lung volume, the relative area below -950 HU, and the volume-adjusted 15th
 percentile 

density are reproducible over a period of 1 week. This short time interval between CTs is a unique 

aspect that is crucial to the study as it minimizes the potential impact of changes in a patient’s 

anatomy or histopathology on the quantitative measures. Unlike a coffee break (same-day repeat 

imaging) study, an interval of 1 week more realistically assesses the variation due to the interaction 

between the patient and technologist rather than just CT variability. 

Comparison RC1 RC2 P valuec 

RA950-raw vs. RA950-adj (Overall group)a 2.34% 1.65% 0.193 

PD15-raw vs. PD15-adj (Overall group)a 10.59 HU 3.63 HU 0.012* 

≥0.25-L vs. <0.25-L (RA950-raw)b 3.75% 1.62% 0.010* 

≥0.25-L vs. <0.25-L (PD15-raw)b 19.07 HU 3.70 HU <0.001* 

a Comparison between raw and volume-corrected measures in the overall population (n = 44). b Comparison of raw measures 

between the ≥0.25-L (n = 12) and the <0.25-L (n = 33) subgroups. c Brown–Forsythe’s robust difference-of-variances test. 

* p < 0.05 significant difference between RC1 and RC2 

 

Measure n R2 against V 

RA950-raw (%)   

 Overall 44 0.7113 

 <0.25 L 33 0.4225 

 ≥0.25 L 11 0.8843 

RA950-adj (%) 44 0.1023 

PD15-raw (HU)   

 Overall 44 0.7526 

 <0.25 L 33 0.3052 

 ≥0.25 L 11 0.7996 

PD15-adj (HU) 44 <0.0001 
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 Our dataset revealed good breath-hold reproduction between the first and second CTs. Out 

of the 44 subjects in this study, 39 successfully reproduced their breath-holds to within 10%, and 

33 were within an even stricter standard of 0.25 L. This compares favorably with ATS and ERS 

guidelines for acceptability of TLC measurements obtained on conventional pulmonary function 

tests [20]. It seems that with a carefully controlled imaging protocol that includes detailed breath-

holding instructions, it is reasonable to expect well-reproduced TLC breath-holds from the same 

patient across multiple visits, a result that has implications for longitudinal studies that rely on full-

inspiration CT images [21, 22]. 

 

Figure 2.3. Scatter plot illustrating the relationship between density reproducibility and volume reproducibility. Solid lines 

represent lines of best fit, while dotted lines represent ±0.25 L, the threshold for superior breathhold reproduction. (a) RA950-

raw vs V; (b) RA950-adj vs V; (c) PD15-raw vs V; (d) PD15-adj vs V 
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 The PD15 measure is inherently more sensitive to changes in breath-hold than RA950. 

This is evidenced by the relatively poorer CCC demonstrated by PD15-raw in the ≥0.25-L 

subgroup (Table 2.2). Furthermore, when comparing between the ≥0.25-L and <0.25-L subgroups, 

PD15-raw demonstrated a much larger relative improvement in RC than RA950-raw (Table 2.3), 

indicating that poorer breath-hold reproduction has a much greater negative impact on the 

reproducibility of PD15-raw. Lastly, volume correction resulted in a significant improvement in 

the RC for PD15 but not for RA950 (Table 2.3). These observations indicate that the 

reproducibility of PD15 is more sensitive to changes in breath-hold. 

Figure 2.4. Representative paired images from a subject with well-reproduced breath-holds. Subject demonstrates ΔV= -0.02 L, 

ΔRA950-raw = 0.01 p.p., ΔPD15-raw = 0 HU, ΔRA950-adj = 0.12 p.p., ΔPD15-adj = -0.15 HU. 

Figure 2.5. Representative paired images from a subject with relatively poorly-reproduced breath-holds. Subject demonstrates 

ΔV = -0.63 L, ΔRA950-raw = -1.45 p.p., ΔPD15-raw = 10 HU, ΔRA950-corr = 3.49 p.p., ΔPD15-corr = 2.69 HU 
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 The linear regression analysis (Fig. 2.3, Table 2.4) reveals a strong relationship between 

breath-hold reproducibility and density reproducibility, echoing the findings of numerous studies 

[10, 11]. In particular, the linearity evident in Fig. 2.3a and c is consistent with the intuitive idea 

that larger differences in breath-holds between two CTs should lead to larger differences in 

densitometric measures as well, as illustrated in Figs. 2.4 and 2.5. Volume correction results in a 

flattening of regression lines and a reduction in the coefficients of regression R2 (Fig. 2.3b, d), 

indicating that the volume correction model successfully accounts for variation due to differences 

in volume. However, the effect was more pronounced for PD15 than RA950, a result that is 

consistent with the findings of Shaker et al., who reported [11] that PD is more robust following 

volume correction than RA. An alternate interpretation (as discussed in the previous paragraph) is 

that PD15 is more strongly correlated with breath-hold to begin with and is therefore more 

responsive to volume correction. 

 It is essential to evaluate the reproducibility of these densitometric measures in a clinical 

context as well as a statistical one. In one longitudinal study, Parr et al., followed 71 patients with 

emphysema associated with 1-antitrypsin deficiency over a period of 2 years, reporting mean 

annual progressions of +1.34 p.p., +0.97 p.p., -3.53 HU, and -1.79 HU for RA950-raw, RA950-

adj, PD15-raw, and PD15-adj, respectively [23]. These annual rates of change serve as a useful 

benchmark against which to evaluate the measures considered in our study. The statistical strength 

of a measure can be represented by its effect size, defined as the ratio of the change to detect (signal) 

to the variability associated with the measure (noise), with larger effect sizes representing greater 

statistical strength. Taking the annual rates of change from [23] as the signal and the difference 

SDs from our study (Table 2.2) as the noise yields an effect size of 1.15 for RA950-raw and 0.67 

for PD15-raw, indicating that in the absence of volume correction, RA950 does have better 
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reproducibility than PD15 from a signal-to-noise standpoint. In contrast, the volume-corrected 

effect sizes are 1.17 for RA950-adj and 0.98 for PD15-adj. Although volume correction results in 

an increase in the effect size for both RA950 and PD15, this improvement is much smaller than 

what is indicated by the RCs alone, a result which illustrates the importance of considering signal-

to-noise in variability analysis. By comparison, if the difference SD can be decreased without 

sacrificing signal (by achieving breath-hold reproduction of <0.25 L, as in our subgroup analysis), 

then the corresponding effect sizes increase to 1.65 for RA950 and 1.91 for PD15. The preceding 

discussion relies upon a number of assumptions and is not intended to replace a formal power 

analysis for a specific study. In practice, the variabilities of these measures would be much larger 

simply because there are additional sources of variation in a longitudinal study beyond the two CT 

examinations. 

 It has often been suggested that volume correction is essential for proper interpretation of 

densitometric measures [5, 11, 15]. This is motivated by the well-established finding that breath-

hold is one of the biggest sources of variation in these measures. Our data show that while breath-

hold is indeed a contributor to densitometric measure variation, volume correction may not be the 

only answer. In particular, volume correction did not lead to a statistically significant improvement 

in RC for RA950. Furthermore, for both RA950 and PD15, the volume corrected RCs are nearly 

indistinguishable from the RCs obtained in the <0.25-L subgroup, which may carry the additional 

advantage of larger effect sizes due to higher signal. Two things seem clear from these observations. 

First, when it comes to reproducibility of RA950 and PD15, volume correction is no better than 

ensuring that patient breath-holds are well reproduced to begin with. Second, RA950 is more 

robust to small variations in breath-hold (up to 1 L) than PD15, which seems to require breath-

hold reproduction to within 0.25 L. 
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 There are three important limitations of this study. First, because breath-holds were 

reproduced so well in this study, our data provide no insight into the behavior of RA950 and PD15 

over a wider range of breath-hold differences. Second, the subjects in this study exhibited 

predominantly mild to moderate emphysema, limiting the generalizability of our findings when 

considering patients suffering from more severe disease. Lastly, in a longitudinal setting, both 

breath-hold and densitometric reproducibility depend upon a number of factors that are not 

addressed in this study. In particular, lung volumes can vary widely due to disease progression, 

potential treatment effect, and inconsistent patient effort. However, we have previously reported 

that long-term reproducibility of lung volumes is feasible in multi-center trials [24]. 

2.5 Conclusion 

Our study shows that it is possible to collect patient images across multiple visits and sites with 

good breath-hold reproducibility that compares favorably with current guidelines for conventional 

measures of lung volumes. Under these conditions, RA950 showed a high reproducibility of ±2.34 

percentage points over the entire set of images. PD15 was relatively less reproducible at ±10.59 

HU, but it improved considerably with statistical volume correction or by selecting a subgroup 

with the most consistent lung volumes. However, volume correction also reduces the magnitude 

of density change between images, and careful consideration of both signal and noise is necessary 

during study design. 
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3. Reproducibility of breathhold and densitometric measures of 

emphysema in repeat thoracic computed tomography examinations in the 

setting of a multicenter clinical trial 

3.1 Introduction 

Chronic obstructive pulmonary disease (COPD) is a significant cause of morbidity and mortality 

affecting millions of individuals worldwide. COPD is often associated with emphysema, which is 

characterized by destruction of lung parenchymal tissue which has long been known to manifest 

in computed tomography (CT) scans of the lungs as areas of low attenuation [1]. CT densitometric 

assessment of emphysema has been shown to correlate well with spirometry and pathology [2-6], 

and densitometric measures such as relative area and percentile density have been proposed as 

efficacy endpoints in emphysema clinical trials. 

 In the context of emphysema treatment trials, where investigators are interested in 

measuring disease progression and treatment efficacy over time, the reproducibility of CT 

densitometric measures is of paramount importance. One of the most important factors influencing 

the measurement of CT density is the lung volume at which it is measured; as such, breathhold 

variation due to inconsistent patient effort is known to be a major factor influencing density 

reproducibility [3, 7-8]. Additional factors that influence CT density measures include CT 

technical factors, other patient-related variability, and technologist competence. Standardization 

of these factors over multiple sites and timepoints is required if CT lung density is to be useful as 

an outcome measure in clinical trials or to assess change over time in epidemiologic studies. 

 The purpose of this study was to assess the short-term reproducibility of breathhold and 

commonly-used CT densitometric measures of emphysema in a scan-rescan setting within a 
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strictly controlled multicenter clinical trial. Additionally, the variation of reproducibility 

characteristics across sites was examined. 

3.2 Materials and methods 

3.2.1 Subjects 

The study population consisted of adult subjects with an established clinical diagnosis of COPD 

who gave signed consent with the approval of a local institutional review board to send their data 

to a central imaging core. All imaging data was anonymized and used in keeping with the Health 

Insurance Portability and Accountability Act. A total of 93 subjects (35 male, 39 female, 19 

unknown) were collected for the study. The subjects’ ages ranged from 42 to 71 years, with a 

median age of 57 years. These subjects were imaged at eleven different sites, with a minimum of 

1 and a maximum of 17 subjects per site. 43 of these subjects have been reported in a previous 

publication [9]. 

3.2.2 CT image acquisition 

All CTs were performed under the auspices of a central imaging core that provided training and 

standardized guidelines for image acquisition. Subjects received CT examinations at two 

timepoints with a one week interval (median 7 days, S.D. 2.4 days). All 93 subjects were imaged 

at full inspiration (total lung capacity, or TLC) at both timepoints; corresponding full expiration 

(residual volume, or RV) scans were obtained for a subset of 85 subjects. Subjects were instructed 

on proper breathholding technique by CT imaging technologists at each site and were given the 

opportunity to practice prior to imaging. 

 A variety of CT systems were used from General Electric (GE Healthcare, Little Chalfont, 

Buckinghamshire, UK), Toshiba (Toshiba America Medical Systems, Tustin, CA, USA), and 
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Siemens (Siemens Healthcare, Erlangen, Germany).  CT devices were calibrated for air and water, 

as per site protocols. The image acquisition protocol consisted of an X-ray tube voltage of 120 

kVp, with tube currents ranging from 57 to 225 mAs. Volumetric high-resolution computed 

tomography (HRCT) was performed with slice thicknesses ranging from 0.6 to 1.25 mm, and 

images were reconstructed using a medium-sharp algorithm of Bone (GE), FC51 (Toshiba), or 

B45f (Siemens). For each subject, the same CT device, image acquisition protocol, and 

reconstruction parameters were used for both timepoints. Additionally, a water phantom was 

imaged (with a large field of view to include background air) within 24 hours of each subject’s CT 

examination to monitor device calibration. 

3.2.3 Quantitative CT image analysis 

CT image data was analyzed using an in-house software package [10]. Lungs were segmented by 

an automated region-growing algorithm using an initial threshold of -500 Hounsfield Units (HU) 

followed by manual editing to refine the segmentation. A guided semi-automatic system was used 

to identify the airway tree, which was then used to exclude gross airway structure from the lung 

segmentation, resulting in a region of interest (ROI) representing the lungs. The volume of the 

lungs was computed based on the size of the lung ROI. This CT volume was used as a proxy to 

represent the TLC and RV breathholds (TLC-V, RV-V). 

 Next, an image intensity histogram representing the distribution of HU values was 

extracted from the lung ROI. For TLC images, this histogram was used to compute the relative 

area below -950 HU (RA950-raw) and the 15th percentile density (PD15-raw). For RV images, the 

relative area below -860 HU (RA860-raw) was computed in a similar fashion. Next, for TLC only, 

RA and PD values were adjusted via a volume correction scheme (RA950-adj, PD15-adj). Briefly, 
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this method involved fitting raw density measures to a mixed-effects regression model, taking 

breathhold and timepoint as covariates [11]. 

3.2.4 Statistical analysis 

The reproducibility of each measure (TLC-V, RA950-raw, RA950-adj, PD15-raw, PD15-adj for 

TLC; RV-V, RA860-raw for RV) was assessed according to the following procedures. First, the 

concordance correlation coefficient (CCC) was computed to assess the agreement in measured 

values between the first and second timepoints [12]. Next, a paired t-test was performed to test for 

a statistically significant difference in means between timepoints. Lastly, Bland-Altman analysis 

was performed to compute the Limits of Agreement (LoA = sd 96.1 ) and Reproducibility 

Coefficient (RC = √2×1.96s) for each measure, where d  and s represent the mean and standard 

deviation of the differences between timepoints, respectively [13-15]. For both LoA and RC, 

smaller numerical values indicate a narrower range of differences between timepoints, which in 

turn is associated with better reproducibility. 

 The measures RA950-adj and RA950-raw were compared using Brown-Forsythe’s robust 

difference-of-variances test to compare their RC. The RC of PD15-adj and PD15-raw were 

compared in a similar fashion. 

 The subjects were divided into two subgroups based on the quality of their TLC breathhold 

reproducibility to assess the impact of breathholds on the reproducibility of density-based 

measurements. An a priori threshold of 0.25L was chosen to represent superior breathhold 

reproduction. The first subgroup (superior breathholds) was defined to include those subjects with 

|TLC-V| < 0.25L, while the second subgroup (normal breathholds) was defined as those subjects 

with |TLC-V| ≥ 0.25L. The reproducibility analysis described above (CCC, LoA, RC) was 

performed for the two subgroups, and Brown-Forsythe’s test was used to compare the RC of 
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RA950-raw between the <0.25L and ≥0.25L subgroups. Similarly, the RC of PD15-raw was 

compared between the <0.25L and ≥0.25L subgroups. 

 Next, the subjects were stratified according to the site where their image data was collected. 

Sites with fewer than four subjects were excluded from this portion of the analysis. Analysis of 

variance (ANOVA) was performed on the remaining sites to test for differences in baseline and 

reproducibility characteristics between the sites. Next, the median and interquartile range (IQR) 

were computed for TLC-V, RA950-raw, and PD15-raw. Sites were divided into two 

subgroups based on their ability to achieve good TLC breathhold reproduction. The first subgroup 

(excellent breathhold performance) was defined according to the following two criteria: the 

median of TLC-V not significantly different from zero (according to the Wilcoxon signed-rank 

test) and the IQR of TLC-V smaller than 0.5 L. The second subgroup (normal breathhold 

performance) was defined as any site failing either of these criteria. The site threshold of 0.5 L was 

chosen to correspond to the subject threshold of ±0.25L. The reproducibility characteristics of 

RA950-raw and PD15-raw were compared between these two site subgroups via a two-sample t-

test. 

 Linear regression analysis was used to build two different regression models for RA950-

raw. In the first model, RA950-raw was regressed against TLC-V only. In the second model, 

TLC-V was nested in site. Two different regression models were evaluated for PD15-raw in a 

similar fashion. 

 In order to put our results into a clinically relevant context, it is important to consider our 

measurements from the perspective of both signal and noise. Guyatt, et al, formalized this concept 

by defining the responsiveness index of a measurement instrument to be the ratio of clinically 

important difference to the variability in stable subjects [16]. For this purpose, we defined 
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variability to be equal to the RC for each of our measures. To establish clinically important 

difference, we examined a study that followed emphysema patients with 1-antitrypsin deficiency 

for two-years, taking their reported mean annual progression rates to be our clinically important 

difference; these rates were +1.34 p.p., +0.97 p.p, -3.53 HU, and -1.79 HU for RA950-raw, 

RA950-adj, PD15-raw, and PD15-adj, respectively [17]. 

 All data were analyzed using Microsoft Excel (Microsoft; Redmond, WA) and Stata 

(StataCorp; College Station, TX). A P value of 0.05 was considered to be significant for all 

statistical tests. 

3.3 Results 

3.3.1 CT volume reproducibility analysis 

The baseline characteristics of all of the subjects are summarized in Table 3.1, and reproducibility 

characteristics are summarized in Table 3.2. TLC lung volumes demonstrated very good 

agreement between the two timepoints, with CCC=0.954 and an RC of 1.14 L. RV lung volume  

-3

-2

-1

0

1

2

3

T
L
C

-V
 (

L
)

1 3 5 7 9 11

Mean TLC-V (L)

-3

-2

-1

0

1

2

3

R
V

-V
 (

L
)

1 3 5 7 9 11

Mean RV-V (L)


TL

C
-V

 (
L)

  


R

V
-V

 (
L)

  

Figure 3.1. Bland-Altman plots illustrating distribution of CT lung volumes between timepoints for TLC (left) and RV (right). 

For TLC, solid circles indicate superior breathhold reproduction (|TLC-V| < 0.25 L), while open circles represent normal 

breathhold reproduction (|TLC-V| ≥ 0.25 L). Dashed lines indicate limits of agreement for overall population (TLC n=93; RV 

n=85). 
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Table 3.1. Subject baseline characteristics 

Measure Breathhold 

Overall 
(n=93 TLC; n=85 RV) 

mean ± SD 

<0.25L 

(n = 67) 

mean ± SD 

≥0.25L 

(n = 26) 

mean ± SD 

TLC-V (L) TLC 5.92 ± 1.35 6.11 ± 1.44 5.44 ± 0.95 

RA950-raw (%) TLC 17.5 ± 10.8 19.0 ± 11.2 13.9 ± 8.7 

RA950-adj (%) TLC 17.7 ± 11.3 --- --- 

PD15-raw (HU) TLC -951.7 ± 26.3 -954.7 ± 26.8 -944.1 ± 24.0 

PD15-adj (HU) TLC -954.1 ± 22.7 --- --- 

RV-V (L) RV 4.00 ± 1.12 --- --- 

RA860-raw (%) RV 36.8 ± 18.6 --- --- 

Table 3.2. Quantitative measure reproducibility characteristics 

Measure N CCCa LoAb RCc P valued 

TLC-V (L) 93 0.954 (-0.78 0.82) 1.14 0.714 

RA950-raw (%)      

 Overall 93 0.985 (-3.57, 3.80) 5.21 0.591 

 <0.25L 67 0.996 (-1.90, 1.94) 2.72 0.900 

 ≥0.25L 26 0.931 (-5.97, 6.65) 8.93 0.598 

RA950-adj (%) 93 0.993 (-2.56, 2.78) 3.77 0.441 

PD15-raw (HU)      

 Overall 93 0.975 (-11.67, 11.23) 16.19 0.724 

 <0.25L 67 0.995 (-5.46, 4.96) 7.37 0.438 

 ≥0.25L 26 0.911 (-20.39, 20.15) 28.67 0.955 

PD15-adj (HU) 93 0.992 (-5.75, 5.35) 7.84 0.495 

RV-V (L) 85 0.877 (-1.00, 1.20) 1.55 0.107 

RA860-raw (HU) 85 0.922 (-13.48, 15.64) 20.60 0.185 

a Concordance correlation coefficient. b Bland-Altman limits of agreement. c Reproducibility coefficient. d Paired t-test for 

difference of means between timepoints. 

Table 3.3. Comparisons of Bland-Altman Reproducibility Coefficients for TLC density 

 Comparison of Bland-Altman RCc P valued 

All subjectsa RA950-raw 
vs 

RA950-adj 
0.077 

5.21% 3.77% 

All subjectsa PD15-raw 
vs 

PD15-adj 
<0.001* 

16.19 HU 7.84 HU 

RA950-rawb ≥0.25L 
vs 

<0.25L 
<0.001* 

8.93% 2.72% 

PD15-rawb ≥0.25L 
vs 

<0.25L 
<0.001* 

28.67 HU 7.37 HU 

a Comparison between raw and volume-corrected measures on all subjects (n=93). b Comparison of raw measures between 

normal (|TLC-V| ≥ 0.25 L; n = 26) and superior (|TLC-V| < 0.25 L; n = 67) breathhold subgroups. c Reproducibility 

coefficient. d Brown-Forsythe’s robust difference-of-variances test. *Statistically significant at 0.05. 
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reproducibility was somewhat poorer than TLC, with CCC=0.877 and an RC of 1.55 L. There was 

no significant difference in TLC-V or RV-V between the two timepoints (P=0.714 for TLC; 

P=0.107 for RV). The distributions of the CT lung volumes for TLC and RV are illustrated in 

Figure 3.1. 

 Of the overall population of 93 subjects, 67 subjects (72%) achieved superior TLC 

breathhold reproduction (|TLC-V| < 0.25 L). Compared to the normal breathhold subgroup 

(|TLC-V| ≥ 0.25 L; n = 26), the superior breathhold subgroup demonstrated larger TLC 

breathholds and more severe emphysema according to RA950-raw and PD15-raw (Table 3.1). 

3.3.2 CT densitometric reproducibility analysis 

The densitometric measures exhibited good statistical reproducibility, with all CCCs exceeding 

0.90 (Table 3.2). For all densitometric measures, there was no significant difference between 

timepoints (P > 0.400 for TLC; P = 0.185 for RV). The distributions of the densitometric measures 

are illustrated in Figure 3.2. 

 For both RA950 and PD15, volume correction resulted in a smaller value of 

Reproducibility Coefficient (RC) than the raw measure, indicating improved reproducibility 

(Table 3.3). This comparison was significant for PD15 (P<0.001) but not for RA950 (P=0.077). 

Next, the superior breathhold subgroup (<0.25L) demonstrated a statistically smaller RC than the 

normal breathhold subgroup (≥0.25L) for both RA950-raw and PD15-raw (P<0.001). 
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Figure 3.2. Bland-Altman plots illustrating distribution of densitometric measures between timepoints for TLC (top and middle) 

and RV (bottom). For TLC, solid circles indicate superior breathhold reproduction (|TLC-V| < 0.25 L), while open circles 

represent normal breathhold reproduction (|TLC-V| ≥ 0.25 L). Horizontal lines indicate limits of agreement for overall 

population (dashed lines) and superior breathhold subgroup (dotted lines). 
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3.3.3 Site performance analysis 

The total study population of 93 subjects was collected across 11 different sites. Of these, 2 sites 

had fewer than 4 subjects and were excluded from further analysis. The baseline characteristics of 

the 9 remaining sites are summarized in Table 3.4. There was no difference in baseline TLC-V or 

RA950-raw between sites, but PD15-raw was significantly different between sites (P=0.007). 

 The reproducibility characteristics of the 9 sites are summarized in Table 3.5. TLC-V, 

RA950-raw, and PD15-raw all demonstrated statistically significant difference between sites. 

Six of the sites (A, B, C, D, G, H) satisfied the criteria for excellent breathhold performance, with 

Site E failing due to having a median different from 0 (P=0.038) and Sites F and I failing due to 

having an IQR exceeding 0.5 L. RA950-raw and PD15-raw were significantly different 

between these two groups of sites (P=0.044 and P=0.033, respectively). The volume and 

densitometric reproducibilities for each site are illustrated in Figure 3.3. 

 

Table 3.4. Subject baseline characteristics stratified by site 

Site n 
TLC-V (L) 

Mean ± SD 

RA950-raw (%) 

Mean ± SD 

PD15-raw (HU) 

Mean ± SD 

A 17 5.49 ± 0.91 12.21 ± 10.46 -938.12 ± 24.97 

B 10 6.08 ± 1.19 15.11 ± 11.30 -943.30 ± 23.20 

C 14 6.54 ± 2.08 17.88 ± 14.32 -946.93 ± 30.10 

D 7 6.49 ± 1.52 14.56 ± 13.67 -940.86 ± 30.60 

E 9 5.76 ± 1.07 18.74 ± 11.15 -952.56 ± 23.68 

F 8 5.73 ± 1.29 25.22 ± 5.28 -977.25 ± 12.68 

G 13 5.91 ± 1.10 20.14 ± 7.99 -962.23 ± 20.90 

H 8 6.16 ± 1.13 21.55 ± 7.48 -964.75 ± 17.50 

I 5 4.79 ± 0.91 14.19 ± 6.86 -942.20 ± 25.40 

Aggregate 91 5.92 ± 1.34 17.44 ± 10.85 -951.13 ± 26.08 

P valuea --- 0.246 0.166 0.007* 

a ANOVA test for difference in means between sites. *Statistically significant at 0.05. 
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 Table 3.6 describes the linear regression models for RA950-raw. Compared with using 

TLC-V alone, nesting TLC-V in site resulted in a stronger model, as reflected by the adjusted 

coefficient of determination R2
adj. A similar effect was observed for PD15-raw. 

3.4 Discussion 

In this study, we compared HRCT scans performed at two different timepoints using the same 

imaging platforms. There are numerous sources of variation that influence quantitative HRCT 

reproducibility, including (but not limited to) CT acquisition and reconstruction parameters, X-ray 

and electronic noise, patient effort with respect to breathhold and motion, as well as patient 

anatomy and physiology. The strength of our study was our ability to control many of these factors, 

allowing us to focus more purely on the measurement variation inherent in the patient-CT imaging 

chain. 

Table 3.5. Summary of reproducibility stratified by site 

Site n 
Breathhold 

performance 
TLC-V (L) 

Median (IQR) 

RA950-raw (p.p.) 

Median (IQR) 

PD15-raw (HU) 

Median (IQR) 

A 17 Excellent 0.00 (0.18) 0.02 (0.94) 0.0 (3.0) 

B 10 Excellent -0.07 (0.10) 0.13 (0.63) 0.5 (3.0) 

C 14 Excellent -0.04 (0.33) -0.04 (0.92) 0.5 (3.0) 

D 7 Excellent 0.21 (0.49) 0.81 (1.49) -6.0 (9.0) 

E 9 Normala -0.13 (0.44) -0.65 (1.19) 1.0 (5.0) 

F 8 Normalb -0.11 (0.54) -0.90 (4.06) 1.5 (6.0) 

G 13 Excellent 0.12 (0.35) 0.21 (2.28) -1.0 (4.0) 

H 8 Excellent -0.02 (0.21) -0.11 (3.37) 0.0 (5.5) 

I 5 Normalb 0.17 (0.79) -0.90 (3.34) 3.0 (17.0) 

Aggregate 91 --- -0.02 (0.30) -0.02 (1.58) 0.0 (4.0) 

P valuec --- --- 0.028* 0.035* 0.049* 

a Median TLC-V different from zero. b IQR TLC-V greater than 0.5 L. c ANOVA test for difference in means between sites. 

*Statistically significant at 0.05. 

Table 3.6. Regression models for densitometric reproducibility 

Measure Covariates R2 R2
adj 

RA950-raw TLC-V 0.6839 0.6804 

RA950-raw TLC-V nested in site 0.7602 0.7335 

PD15-raw TLC-V 0.7329 0.7299 

PD15-raw TLC-V nested in site 0.7671 0.7412 
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 This study is an extension of a previously published study on breathhold and CT 

densitometric reproducibility in a multicenter emphysema treatment clinical trial [9]. Compared 

to our previous work, we have made two new key contributions. First, we more than doubled the 

size of our cohort (from 44 to 93 subjects), making this one of the largest short-term HRCT 

reproducibility datasets for emphysema in the literature. Second, we assessed the reproducibility 

of breathhold and CT density at the level of individual sites, providing insight as to how 

reproducibility characteristics can vary from site to site in the context of a multicenter clinical trial. 

 Our data reveals good breathhold reproducibility between the two timepoints. TLC 

breathholds in particular demonstrated excellent statistical and clinical reproducibility. RV 
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Figure 3.3. Box plots illustrating volume and density reproducibility, stratified by site. *Denotes sites with excellent breathhold 

performance (V median not different from 0, IQR < 0.5L). 
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breathholds were somewhat less reproducible, as is the case for conventional measures of RV lung 

function. It appears that with careful coaching of subjects, good breathhold reproducibility is 

achievable in CT even without the use of spirometric gating, echoing the findings of Gierada et al 

[18]. 

 The dependence of CT lung density on breathhold has been described by numerous authors 

[3, 7-8]. We have shown that RA950 and PD15 reproducibility can be dramatically improved 

either with well-reproduced breathholds (<0.25L) or through statistical volume-correction 

methods, a finding that is consistent with our previously reported results [9]. It should be noted 

that while volume correction can successfully improve scan-rescan reproducibility, this approach 

may diminish true signal and reduce effect size in a longitudinal setting because differences in 

breathhold may reflect physiological changes in the lungs rather than variation due to inconsistent 

patient effort [9]. 

 Based on the mean annual progression reported by Parr et al [17] and the RC from our 

study (Table 3.2), we were able to evaluate the responsiveness of the densitometric measures. In 

the overall population, RA950 demonstrated a responsiveness index of 0.26 for both RA950-raw 

and RA950-adj. Similarly, PD15 demonstrated responsiveness indices of 0.22 for PD15-raw and 

0.23 for PD15-adj. These results indicate that while volume correction does nominally improve 

the reproducibility as measured by RC, it does little to improve their responsiveness. By contrast, 

in the superior breathhold reproduction subgroup (<0.25L), the responsiveness indices of RA950-

raw and PD15-raw rose dramatically to 0.49 and 0.45, respectively. 

 It is clear that reproducibility characteristics can vary widely between sites in a multicenter 

clinical study. The interquartile range of TLC-V varied from a minimum of 0.10 L to a maximum 

of 0.79 L, and one out of the 9 sites demonstrated a statistically significant bias in TLC-V between 
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timepoints (Table 3.5). These findings could easily be missed if the data were considered in 

aggregate form only. Nevertheless, 6 out of the 9 sites (67%) achieved excellent breathhold 

performance, suggesting a role for targeted retraining of specific sites that fail performance criteria. 

Not surprisingly, breathhold performance at each site is associated with density reproduction as 

well; in the linear regression models, breathhold alone (irrespective of site) accounted for 68% and 

73% of the variation in RA950-raw and PD15-raw, respectively, while including sites as covariates 

improved the R2
adj to 73% and 74%, respectively (Table 3.6). 

 There are a number of factors that may contribute to the high variability in reproducibility 

characteristics across the sites. Numerous authors have emphasized the importance of good 

coaching to encourage patients to achieve desired breathholds [18-19], and in a multicenter study, 

it is possible that the quality of breathhold coaching differs from site to site. Additionally, we found 

statistically significant differences in baseline PD15-raw across sites (Table 3.4), and this 

difference in disease severity may be a contributing factor as well. Further investigation is needed 

with a larger number of sites and detailed site performance and compliance metrics. 

 There are two primary limitations to this study. First, the cohort consists mostly of mild to 

moderate emphysema, making it difficult to generalize our results to patients with more severe 

disease. Second, because we deliberately restricted the scope of this investigation to short term 

reproducibility with tightly controlled parameters, our results are likely to be overly optimistic in 

a longitudinal setting. Nevertheless, knowledge of a “best-case” scenario for reproducibility can 

provide valuable insight for understanding and designing multicenter clinical trials. Furthermore, 

we have previously reported the feasibility of long-term reproducibility of breathholds in 

multicenter trials [19]. 
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3.5 Conclusion 

We have demonstrated that it is possible to image a large number of patients at multiple timepoints 

across many sites while maintaining good breathhold reproducibility. Under these conditions, our 

data shows that RA950-raw is highly reproducible at with a reproducibility coefficient of 5.21 

percentage points, while PD15-raw is somewhat less reproducible with a reproducibility 

coefficient of 16.19 HU. The reproducibility of both of these measures improves considerably in 

a subset of subjects with superior breathhold reproduction, or when statistical volume correction 

is applied, although volume correction carries the drawback of potentially diminishing true signal 

and responsiveness. Furthermore, we have demonstrated that reproducibility can vary widely 

between sites, and we have proposed a framework for evaluating the performance of individual 

sites. These findings have implications for designing and managing multicenter emphysema 

clinical trials. 
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4. Comparison of Multiclass Imbalanced Data Learning Techniques in 

Classification of Interstitial Lung Disease on CT 

4.1 Introduction 

Many classification problems suffer from imbalanced data. One challenging problem is computer-

aided CT assessment of fibrotic interstitial lung disease (FILD). FILD is highly heterogeneous and 

subtle to the eye, manifesting in CT through three primary disease patterns: pulmonary fibrosis, 

ground-glass opacity, and honeycombing. In particular, honeycombing, which represents end-

stage irreparable lung disease, can occur very infrequently in some patient populations. Thus, there 

is a role for imbalanced data learning techniques in developing a computer-aided system for FILD. 

 Imbalanced data learning (IDL) techniques tend to fall under two broad categories: 

weighting and resampling [1]. In the first, training examples are assigned differing weights 

according to their class, while in the second, undersampling or oversampling is employed to 

balance minority and majority classes. While these techniques have been shown to be effective in 

addressing the class imbalance problem, the majority of published studies on IDL focus on binary 

classification, and relatively little attention has been paid to the problem in the setting of multiclass 

classification [2]. 

 The purpose of this study is twofold: first, to examine the impact of class imbalance on the 

performance of a support vector classifier on a multiclass FILD dataset; and second, to evaluate 

and compare the effectiveness of several different IDL techniques applied to this problem. 
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4.2 Materials and methods 

4.2.1 CT Imaging Data 

The study population consisted of adult subjects with an established clinical diagnosis of either 

idiopathic pulmonary fibrosis or FILD associated with systemic scleroderma. Imaging data was 

made available through an anonymized database, with signed consent from subjects and approval 

of a local institutional review board. A total of 45 subjects (12 male, 6 female, 27 unknown) were 

included in the study. Imaging data was accessed in compliance with the Health Insurance 

Portability and Accountability Act. 

 Volumetric high-resolution CTs were performed under the auspices of a central imaging 

core that provided training and standardized guidelines for imaging. A variety of imaging devices 

were used from Siemens Healthcare (Erlangen, Gemany), GE Healthcare (Little Chalfont, UK), 

Philips Healthcare (Andover, MA, USA), and Toshiba America Medical Systems (Tustin, CA, 

USA). Images were acquired at full inspiration in the prone position at 120 kVp and a tube current 

≥100 mAs, then reconstructed with a slice thickness between 1.0 to 1.25 mm and a medium-sharp 

kernel. 

 Two experienced thoracic radiologists provided cubic volumes of interest (VOIs) 

corresponding to six classes: pulmonary fibrosis (PF), ground-glass opacity (GG), honeycombing 

(HC), normal lung parenchyma (NL), airways (AIR), and vessels (VES) (see Fig. 4.1). A two-pass 

independent reading paradigm was followed. First, each reader placed VOIs with the appropriate 

class labels throughout the lungs. Next, each reader independently reviewed unlabeled copies of 

the other reader’s VOIs and assigned class labels according to their best judgment. Finally, all 

VOIs with matching labels from both readers were retained, resulting in a total of 1798 VOIs 

consisting of 564 PF, 272 GG, 42 HC, 272 NL, 294 AIR, and 354 VES. 
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4.2.2 Multiscale Feature Extraction 

For each CT image, a Gaussian blurring filter with 0.5 mm radius was applied, followed by 

isotropic resampling of the image volume at 0.5 mm. Next, for each VOI in the image, a small 

cubical subimage of size 9 voxels was extracted centered on the VOI. An image intensity histogram 

was computed on this subimage, and descriptive features were calculated on the histogram. Next, 

the subimage was adaptively rebinned to 16 graylevels, and gray-level co-occurrence matrix [3] 

and run-length matrix [4] texture features were extracted from the rebinned subimage. This process 

was repeated for subimage sizes 9, 11, and 13 and Gaussian radii 0.5, 1.0, 2.0, 4.0 mm for a total 

of twelve combinations of scalespace parameters, resulting in 792 features. 

4.2.3 Support Vector Machine Classification Pipeline 

The dataset of labeled VOIs was used to train and evaluate a multiclass support vector machine 

(SVM) classifier using a radial basis function. First, all feature values were rescaled to zero mean 

and unit variance. Five-fold stratified partitioning was applied to create five overlapping training 

folds and corresponding testing folds. An optional data resampling step was performed on each 

training fold. Next, feature selection was performed on each training fold using the SVM recursive 

feature elimination (SVMRFE) method to obtain the top 50 features [5]. Next, the optimal SVM 

parameter C and radial basis function parameter  were selected for each training fold via 

gridsearch. Finally, an SVM classifier was trained on each training fold and evaluated against its 

a b c d e f 

Figure 4.1 Illustration of lung textural and structural classes for classification task. (a) Pulmonary fibrosis (PF); (b) Ground-glass 

opacity (GG); (c) Honeycombing (HC); (d) Normal lung parenchyma (NL); (e) Airway (AIR); (f) Vessel (VES) 
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corresponding testing fold, and the confusion matrices of the five folds were aggregated to obtain 

the overall confusion matrix. 

 From this confusion matrix, classification performance was evaluated via the extended g-

mean (EGM) evaluation measure, which is an extension of the g-mean measure to a multiclass 

setting [6]. Let k denote the total number of classes and RECi be the recall of the ith class. Then, 

the extended g-mean is defined as: 
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Furthermore, since classification performance with respect to the minority class is a priority in this 

study, we also report the precision and recall of the honeycombing class (PRECHC, RECHC), which 

are defined as: 
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where TPi, FPi, and FNi denote the number of true positives, false positives, and false negatives, 

respectively, with respect to the ith class. We also examined the corresponding F-measure (FHC), 

which is the harmonic mean of recall and precision: 
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4.2.4 Class Imbalance Approaches 

Numerous IDL techniques have been proposed in the literature. In this study, we evaluated four 

different approaches: Weighted Costs (WC), Synthetic Minority Oversampling TEchnique 
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(SMOTE), SMOTE Different Costs (SDC), and Granular SVM - Repetitive Undersampling 

(GSVM-RU). Additionally, we examined a Naïve approach which used no IDL techniques. 

 In the Naïve approach, we simply trained the classifier as-is in order to establish a baseline 

classification performance with no adjustment for class imbalance. 

 In the WC approach, different costs are assigned to each class’s support vectors in order to 

balance false negatives and false positives [7-8]. We set weights to be inversely proportional to 

the one-vs-all ratio for the number of examples of each class. 

 The SMOTE approach is an oversampling technique in which synthetic minority class 

examples are generated by taking linear combinations of existing ones [1]. For this study, we 

oversampled our honeycombing class by a factor of 500%. 

 The SDC approach combines oversampling via SMOTE with the weighted class costs of 

the WC method [8]. The advantage of the combined approach is to compensate for the weaknesses 

of the individual methods: WC alone cannot account for the sparseness of the minority class in the 

feature space, whereas SMOTE alone cannot bridge the gap between the minority and majority 

examples. 

 The GSVM-RU approach is an undersampling technique in which the majority class is 

undersampled by selecting examples near the decision boundary [9-10]. Briefly, the SVM is 

trained on the full dataset, and the majority class support vectors are selected. This process is 

iterated with previously selected examples removed from the dataset on each iteration. Finally, all 

selected examples are combined to form the final undersampled majority set. For this study, we 

fixed the number of iterations to two. 
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4.2.5 Statistical Analysis 

Due to random variation introduced in the stratified partitioning, data resampling, and parameter 

selection steps of the SVM pipeline, we evaluated each IDL approach a total of seven times using 

different random seeds. We then performed Kruskal-Wallis non-parametric ANOVA to test for a 

difference in ranks between the five different approaches, focusing on EGM for overall and FHC 

for minority performance, followed by Least Squared Difference (LSD) for multiple comparisons. 

4.3 Results 

A representative confusion matrix for the Naïve approach is shown in Table 4.1. Although the 

overall performance for this model was good (EGM=0.847), the performance of the minority class 

HC suffered due to class imbalance, with a relatively large number false positives and false 

negatives. This resulted in minority class performance measures of RECHC=0.619, PRECHC=0.703, 

and FHC=0.658. 

 For comparison, a representative confusion matrix for the SDC approach is shown in Table 

4.2. The performance of this model is given by EGM=0.888, RECHC=0.786, PRECHC=0.647, and  

Table 4.2 Representative confusion matrix for SDC approach 

Predicted  PF GG HC NL AIR VES 

T
ru

th
 

PF 508 25 16 0 10 5 

GG 10 230 1 26 5 0 

HC 6 3 33 0 0 0 

NL 0 26 0 243 3 0 

AIR 4 9 0 3 273 5 

VES 2 0 1 0 1 350 

Table 4.1. Representative confusion matrix for Naïve approach 

Predicted  PF GG HC NL AIR VES 

T
ru

th
 

PF 529 14 9 0 7 5 

GG 18 216 1 32 5 0 

HC 14 0 26 0 2 0 

NL 0 27 0 242 3 0 

AIR 6 13 1 2 268 4 

VES 1 0 0 0 3 350 
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FHC=0.710. Note that while EGM, RECHC, and FHC all increased, there is a corresponding decrease 

in PRECHC, reflecting the increased number of false positives in this model. The other IDL 

approaches (with the exception of GSVM-RU) exhibited similar behavior. 

 A summary of the classification performance for the five approaches is illustrated in Table 

4.3 and Fig. 4.2. The EGM of the five approaches were significantly different (P<0.001). 

Additional post-hoc comparisons are described in Table 4.4. In summary, WC + SDC 

outperformed SMOTE, which outperformed Naïve + GSVM-RU. 

 Similarly, the FHC of the five approaches were significantly different (P=0.006). Additional 

post-hoc comparisons are described in Table 4.5. In summary, SMOTE + SDC outperformed 

GSVM-RU + Naïve, which outperformed WC. 

 

 

 

Table 4.3. Median classification performance between IDL approaches 

Approach n EGM RECHC PRECHC FHC 

Naïve 7 0.863 0.690 0.784 0.725 

WC 7 0.897 0.857 0.538 0.656 

SMOTE 7 0.883 0.762 0.727 0.748 

SDC 7 0.895 0.833 0.700 0.761 

GSVM-RU 7 0.854 0.643 0.788 0.693 
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Figure 4.2. Classification performance of imbalanced data learning approaches, sorted by rank. 

(Left) Extended G-Mean; (right) Honeycombing F-measure. 

■ Naïve 

■ Weighted cost 

■ SMOTE 

■ SDC 

■ GSVM-RU 
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Table 4.4. Comparisons of extended g-mean between IDL approaches 

EGM comparison P value 

ANOVA <0.001* 

Naïve + GSVM-RU vs SMOTE + WC + SDC <0.001* 

SMOTE vs WC + SDC 0.021* 

P value is from Kruskal-Wallis test for ANOVA or Mann-Whitney U test for two samples. *Statistically significant at 0.05. 

Table 4.5. Comparisons of honeycombing F-measure between IDL approaches 

FHC comparison P value 

ANOVA 0.006* 

WC vs GSVM-RU + SMOTE + Naïve + SDC 0.002* 

GSVM-RU + Naïve vs SMOTE + SDC 0.023* 

P value is from Kruskal-Wallis test for ANOVA or Mann-Whitney U test for two samples. *Statistically significant at 0.05. 

 

 

4.4 Discussion 

In many machine learning applications such as fraud detection, information security, and medical 

examinations, it is often the least common class that may be the most interesting. For example, in 

FILD, honeycombing represents end-stage disease and has significance with regards to patient 

prognosis. In these applications, the tendency of many classifiers to prioritize majority class 

performance at the expense of the minority class may result in unacceptable performance. These 

classifiers may systematically undercall the minority class, leading to a large number of false 

negatives but comparatively fewer false positives; in other words, low recall but high precision. 

IDL techniques are therefore necessary in order to achieve balanced performance. 

 In our study, the Naïve approach, which used no IDL techniques, demonstrated low RECHC 

and high PRECHC compared to the other approaches, which is consistent with our expectations for 

class imbalance. With the exception of GSVM-RU, the IDL approaches improved EGM, RECHC, 

and FHC by sacrificing some PRECHC (Table 4.3). The tendency of Naïve to undercall HC is 

evident in the confusion matrices for Naïve and SDC (Tables 4.1, 4.2). Similarly, an examination 
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of CT voxel-wise classification reveals that Naïve is much less likely than SDC to classify a voxel 

as HC (Fig. 4.3). 

 Based on the median performances (Table 4.3) and rank sum analysis (Table 4.4), the WC 

and SDC approaches demonstrated the best overall performance (EGM). However, SDC and 

SMOTE had the best minority performance (FHC), with WC a distant last (Table 4.5). Given these 

results, it appears that SDC offers the best balance of overall and minority performance, with 

SMOTE a close second. 

 The rank orders of EGM closely mirror RECHC, but not PRECHC. This indicates that EGM 

is inadequate to capture the performance of the classifier with respect to minority false positives. 

This is because only a relatively small number of false positives are needed to drive down minority 

class precision, and a majority class can “afford” these classification errors without sacrificing 

much recall. Ultimately, it is important to keep a close eye on minority false positives when 

evaluating classification performance. For example, the WC approach achieved very strong overall 

performance (EGM), but its PRECHC and FHC were unacceptably low (Table 4.3). 

 It is interesting that GSVM-RU was ineffective at addressing class imbalance. Unlike the 

other IDL approaches, GSVM-RU’s performance is nearly indistinguishable from Naïve. 

Although each IDL approach considered in this study was initially proposed for binary 

a b c 

Figure 4.3. Representative images illustrating voxel-wise classification of diseased lung. (a) No overlays; (b) Naïve approach;  

(c) SDC approach. Only disease classes are shown. Blue denotes pulmonary fibrosis, yellow denotes ground-glass opacity, and 

magenta denotes honeycombing. In (c), arrows denote additional honeycombing found by SDC that were missed by Naïve. 
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classification, GSVM-RU appears to suffer uniquely in a multiclass setting. This is perhaps 

because it relies on identification of support vectors to drive the undersampling process, and 

multiclass SVM classification complicates the role of the support vector. The SVM is inherently a 

binary classifier, and when multiple classes are involved, the problem is typically decomposed into 

multiple binary classification tasks aggregated via a voting scheme. Each training example may 

therefore be a support vector in all, some, or none of these binary classifiers, and hence the power 

of GSVM-RU to sample the immediate neighborhood of the decision boundary is diluted. Further 

research is needed to adapt GSVM-RU to the multiclass paradigm. 

 In conclusion, imbalanced data is a significant challenge in many applications including 

computer-aided CT assessment of fibrotic interstitial lung disease. We have demonstrated that 

classifier models that explicitly account for data imbalance can outperform those that do not, both 

in terms of overall and minority class performance. Based on our results, SDC achieves the best 

balance of overall performance and minority performance. However, false positives remain a 

concern, and more research is necessary to further refine classification performance. 
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5. Robustness-driven feature selection in classification of fibrotic interstitial 

lung disease patterns in computed tomography using 3D texture features 

The following chapter is adapted from the manuscript “Robustness-driven feature selection in 

classification of fibrotic interstitial lung disease patterns in computed tomography using 3D texture 

features” by D Chong, HJ Kim, P Lo, S Young, MF McNitt-Gray, F Abtin, JG Goldin, MS Brown. 

The manuscript has been submitted to IEEE Transactions on Medical Imaging for consideration 

for publication. 

 

5.1 Background 

Computer-aided techniques are playing an increasing role in quantitative computed tomography 

(CT). Compared to traditional manual reader approaches, computer-aided approaches offer 

numerous advantages such as reducing inter- and intra-reader variability. Unfortunately, one 

drawback is that these systems frequently suffer from lack of generalizability; an algorithm that 

performs well in a limited environment (for example, a relatively homogeneous dataset collected 

in a research setting) often fails to achieve the same level of performance when applied to a wider 

dataset (for example, all comers across multiple hospitals). This limitation has been a barrier to 

the widespread adoption of computer-aided diagnosis (CAD) systems in clinical practice. 

 There are numerous reasons why computer-aided systems may fail to generalize. In 

computed tomography, one major cause is that quantitative algorithms are often not robust to the 

choice of technical factors used during image acquisition and reconstruction. For example, in 

chronic obstructive pulmonary disease (COPD), it has been demonstrated that densitometric 

emphysema index measures based on CT Hounsfield Units can change significantly when 

computed under different kernels or slice thicknesses [1-3]. Therefore, in order to produce a truly 
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generalizable computer-aided system, it is necessary to ensure that the underlying algorithms be 

robust to variations in image acquisition and reconstruction parameters. 

 In fibrotic interstitial lung disease (FILD), CT classification approaches have been popular 

for characterizing lung parenchymal abnormalities. In particular, several studies have successfully 

applied gray-level co-occurrence matrix and run-length matrix texture features in quantitative 2D 

and 3D analysis of FILD [4-7]. These and other similar approaches have been shown to be useful 

for predicting survival and for assessing treatment efficacy in multicenter clinical trials [8, 9]. 

 CT classification of FILD is a challenging task that is made even more difficult by 

variations across different CT imaging devices or different technical parameters (such as slice 

thickness, reconstruction kernel, and tube current), which can greatly influence the appearance of 

textures on the resulting images (Fig. 5.1). One possible solution to this issue is to minimize these 

variations by prescribing a uniform CT imaging protocol; however, this approach is often 

impractical, for example in the setting of a large-scale study with multiple scanners across different 

sites, each with differing levels of compliance to the desired protocol. An alternate solution is to 

collect a very large number of images into an all-encompassing training set reflecting a wide 

variety of conditions, which will in principle allow a classifier to be trained in a comprehensive 

fashion. However, there are numerous technical, logistical, and economic obstacles to collecting 

such a large and comprehensive dataset, which is why many researchers develop CAD systems in 

a relatively limited environment. In contrast to these approaches, we propose a solution based on 

improving classifier robustness with respect to CT technical factors by using a novel feature 

selection scheme that prioritizes robust features. 
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 There has been some prior work in the area of CAD robustness in CT. In 2003, Armato, et 

al, investigated the robustness of a previously published automated CT lung nodule detection 

system on a dataset consisting of images reconstructed with two different reconstruction kernels, 

reporting that the performance of the CAD system remained similar regardless of which images 

were used in training and testing the system [10]. These promising results provide a framework 

for evaluating the robustness of other similar algorithms; however, because the investigation 

involved a preexisting CAD system, they provide no insight into how such a system might be 

designed to be robust in the first place. Furthermore, only two different reconstruction kernels were 

considered, which is insufficient to capture real-world variations in CT technical factors. 

 Reference Noisy Smooth Balanced 

PF 

    

GG 

    

HC 

    

NL 

    

Figure 5.1. Visual illustration of impact of technical factors on texture patterns found in fibrotic interstitial lung disease (FILD). 

From top to bottom: (PF) pulmonary fibrosis, (GG) ground-glass opacity, (HC) honeycombing, (NL) normal lung parenchyma. 

Four representative combinations of technical factors are shown: (Reference) 1.0 mm, B45f, Original tube current; (Noisy) 0.6 

mm, B70f, 50 mAs tube current; (Smooth) 2.0 mm, B30f, Original tube current; (Balanced) 0.6 mm, B30f, Original tube current. 
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 More recently, Balagurunathan, et al, working in the area of CT imaging features for non-

small cell lung cancer, proposed a multi-step feature selection method to identify highly 

reproducible, non-redundant features with a large biological range, using repeat-scan CT images 

in order to assess feature reproducibility [11]. Repeat-scan robustness is different from CT 

technical factor robustness which is the focus of the present study; nevertheless, their method of 

using a quantitative robustness measure as a criterion for feature selection is highly relevant, and 

we will be extending this further by building a classifier model based on the selected features. 

  This paper presents a novel feature selection algorithm called Robustness-Driven Feature 

Selection (RDFS), with the objective of producing a CT texture classifier that is robust to variations 

in slice thickness, reconstruction kernel, and tube current. We evaluate our proposed methodology 

in the setting of classification of CT disease patterns in fibrotic interstitial lung disease. We 

hypothesize that applying RDFS will yield a reduced but robust feature subset which will in turn 

produce a classifier that gives more consistent results when CT technical parameters are varied. 

Furthermore, we hypothesize that the reduced feature subset will not substantially reduce classifier 

accuracy on an independent dataset with a narrower range of CT technical parameters. 

5.2 Robustness-driven feature selection 

We propose a novel feature selection algorithm called Robustness-Driven Feature Selection 

(RDFS) in order to improve the robustness of classifiers with respect to CT technical factors 

without requiring a comprehensive training dataset. We define robustness as the ability of a 

quantitative measurement or algorithm to maintain a stable result when presented with different 

inputs subject to spurious sources of variation, such as image acquisition or reconstruction 

parameters. The key assumption underlying RDFS is that robust features produce robust classifiers. 
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5.2.1 RDFS algorithm 

The aim of Robustness-Driven Feature Selection is to produce a feature subset that is robust to CT 

technical factors. We achieve this objective through the following procedure. First, we assess the 

robustness of the features that comprise the initial feature set, assigning each feature a quantitative 

robustness index (RI). Next, we prune the feature set by discarding all features that exceed a certain 

RI threshold. This results in a robust feature subset that can then be further processed through other 

feature selection methods. A summary of this procedure is illustrated in Fig. 5.2. 

 In order to characterize the robustness of features, we rely on CT raw sinogram data, which 

allows us to take a single acquisition and reconstruct it using different combinations of technical 

parameters. By systematically reconstructing raw sinogram data collected across multiple subjects, 

we create a dataset which we designate as the multi-reconstruction dataset. This dataset is 

annotated by an expert reader with cubic volumes of interest (VOIs) that are representative of the 

RDFS 
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feature set 
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dataset 
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Initial 
feature set 
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Feature selection 

(SVMRFE) 
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Figure 5.2. Flowchart illustrating the feature selection stage of the classification pipeline for the (top) with-RDFS and (bottom) without-RDFS 

classifier models. The with-RDFS model employs Robustness-Driven Feature Selection (RDFS), which makes use of a multi-reconstruction 

dataset consisting of images that have been systematically reconstructed from CT raw sinogram data with a range of slice thicknesses, 

reconstruction kernels, and simulated reduced tube currents. This dataset is used to compute a quantitative robustness index (RI) for each feature, 

which measures the variation in feature values due to changing CT technical parameters. 
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different classes that comprise the classification task (summarized in Fig. 5.3 for FILD). Lastly, of 

the various combinations of technical parameters that comprise this dataset, we designate one 

reconstruction in particular as the “reference reconstruction”.  

5.2.2 Feature robustness index 

 The robustness index (RI) of a feature is computed directly from the multi-reconstruction 

dataset. First, the value of the feature is computed across all VOIs and reconstructions. Let xi, j 

represent the value of the feature when computed for the ith VOI under the jth reconstruction, 

where j=0 represents the reference reconstruction. We first compute the standard deviation of 

feature values within the reference reconstruction only: 
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where 0x represents the mean feature value within the reference reconstruction, and m = # of VOIs. 

PF GG HC 

AIR VES NL 

Figure 5.3. Illustration of textural and structural classes for classification of fibrotic interstitial lung disease. From left to right and top to down: 

(PF) pulmonary fibrosis; (GG) ground-glass opacity; (HC) honeycombing; (NL) normal lung parenchyma; (AIR) airways; (VES) vessels. 
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 Next, the feature values are taken as paired measurement data (xi, 0, xi, j), with the reference 

reconstruction being the first measurement and the remaining reconstructions comprising the 

second. Let di, j = xi, j – xi, 0 be the paired difference of feature values between the jth reconstruction 

and the reference reconstruction. We then compute the standard deviation of paired differences: 
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where d represents the mean difference between measurement pairs and N = (# of VOIs) × (# of 

reconstructions – 1) is the total number of measurement pairs (xi, 0, xi, j).  

 The robustness index is then defined as the ratio of the two standard deviations: 
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 The robustness index evaluates the robustness of a feature by comparing the variation due 

to changing technical factors across multiple reconstructions (SDacross) against the natural 

biological variation found within a single reference reconstruction (SDwithin). A large value of RI 

indicates that technical factor variation is large relative to biological variation, and that the feature 

is therefore non-robust. Inversely, a small value of RI implies that the feature is robust. 

 The next step is to determine the appropriate RI threshold for pruning non-robust features. 

We determined this threshold experimentally by adopting a two-fold cross-evaluation approach 

using the multi-reconstruction dataset. RDFS was performed on the first fold using a sliding scale 

of different RI thresholds. The resulting classifier model was evaluated on the second fold (details 

under section 5.4.2 Evaluation of classifier models, below). Finally, we swapped the role of the 

two folds and aggregated the classification results between the two folds. The appropriate RI 

threshold was chosen by examining the performance and the robustness of each of these models. 
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5.3 Materials 

5.3.1 CT imaging data 

The study population consisted of 99 adult subjects separated into three distinct datasets: training, 

testing, and multi-reconstruction. The training and testing datasets consisted of 45 and 42 subjects, 

respectively, with an established clinical diagnosis of either interstitial lung disease associated with 

systemic scleroderma (SSc) or idiopathic pulmonary fibrosis (IPF). The multi-reconstruction 

dataset consisted of 12 subjects with diffuse lung disease. All imaging data were anonymized and 

made available through a central imaging core lab with the approval of a local institutional review 

board and was accessed in compliance with the Health Insurance Portability and Accountability 

Act. 

 For the training and testing datasets, volumetric high-resolution CT images were collected 

for all subjects. The CTs were performed under the auspices of a central imaging core that provided 

training and prescribed standardized guidelines for image acquisition and reconstruction. A variety 

of imaging devices were used from Siemens (Siemens Healthcare, Forchheim, Germany), General 

Electric (GE Healthcare, Waukesha, WI, USA), Philips (Philips Healthcare, Cleveland, OH, USA), 

and Toshiba (Toshiba America Medical Systems, Tustin, CA, USA). Images were acquired at full 

inspiration in the prone position at 120 kVp. For the training dataset, the CT technical parameters 

were as follows: an average tube current between 100 mAs to 150 mAs; slice thickness between 

1.0 mm and 1.25 mm, inclusive; and a medium-sharp reconstruction kernel of B45f, BONE, D, or 

FC52. For the testing dataset, average tube currents ranged from 50 mAs to 350 mAs; slice 

thicknesses ranged from 0.625 mm to 2.5 mm; and a wider range of medium-smooth to sharp 

reconstruction kernels was used: B40f, B45f, B60f, B70f, BONE, B, D, and FC86. 
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 For the multi-reconstruction dataset, CT raw sinogram data were collected for all subjects. 

The CTs were performed as a part of standard clinical practice using a diffuse lung disease protocol. 

The subjects were imaged at full inspiration in the supine position at 120 kVp using a multidetector 

CT device (Definition Flash, Siemens Healthcare, Forchheim, Germany). Tube current modulation 

was used, resulting in average tube currents ranging from 211 mAs to 328 mAs per subject. The 

raw sinogram data were used to create additional reconstructions by systematically varying slice 

thickness and reconstruction kernel. In addition, simulated reduced-tube-current images were 

generated via synthetic noise, which was added to the CT raw sinogram data using a previously-

validated algorithm described in [13-15]. Three slice thicknesses (0.6, 1.0, 2.0 mm), three kernels 

(B30f-smooth, B45f-medium-sharp, B70f-sharp), and three tube currents (original tube current, 

100 mAs, 50 mAs) were used for a total of 27 reconstructions per subject. Of these, the 

reconstruction corresponding to a slice thickness of 1.0 mm, kernel of B45f, and the original tube 

current was designated as the “reference reconstruction” since these parameters corresponded most 

closely with the parameters from the training dataset. Fig. 5.1 gives a representative illustration of 

some of these reconstructions and their effect on FILD texture classes. 

5.3.2 Small volumes of interest for classifier development and assessment 

For the training and testing datasets, two experienced thoracic radiologists (JGG, FGA) provided 

a total of 4088 (2120 training, 1968 testing) cubic volumes of interest (VOIs) corresponding to six 

visually-based textural and structural classes (Fig. 5.3): pulmonary fibrosis (PF), ground-glass 

opacity (GG), honeycombing (HC), normal lung parenchyma (NL), airways (AIR), and vessels 

(VES). The readers followed a two-pass independent reading paradigm. In the first pass, each 

reader independently placed VOIs throughout the lungs corresponding to each of the above classes, 

assigning their VOIs with the appropriate class labels. In the second pass, each reader was 
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independently presented with unlabeled copies of the other reader’s VOIs and asked to assign class 

labels according to their best judgment. At the end of this reading process, each VOI had two labels, 

one from each reader. Of the total 4088 VOIs, 3443 (1798 training, 1645 testing) VOIs were 

assigned identical class labels by the two readers, resulting in an overall Cohen’s kappa of 

agreement of 0.805 (0.810 training, 0.800 testing). Training and testing of the classifier was 

performed on this agreement subset only. 

 For the multi-reconstruction dataset, VOIs were provided by one experienced thoracic 

radiologist (JGG), who annotated a total of 238 cubic VOIs corresponding to the same six classes 

as above (PF, GG, HC, NL, AIR, VES). For each subject, the VOIs were annotated on the reference 

reconstruction only, then they were propagated to the remaining 26 reconstructions. 

 In summary, the agreement subset for the training dataset consisted of 1798 VOIs, with 

individual class counts of 564, 272, 42, 272, 294, and 354 for PF, GG, HC, NL, AIR, and VES, 

respectively. Similarly, the agreement subset for the testing dataset consisted of 1645 VOIs, with 

individual class counts of 433, 266, 115, 206, 314, and 311, respectively. Finally, the multi-

reconstruction dataset had no agreement subset as it was only annotated by a single radiologist, 

and it had individual class counts of 75, 37, 23, 27, 43, and 33, respectively. 

5.4 Methods 

5.4.1 Feature extraction and support vector machine classification 

For each CT image, a Gaussian blurring filter with 0.5 mm radius was applied, followed by 

isotropic resampling of the image volume, using trilinear interpolation to produce a resampled 

image volume with 0.5 mm × 0.5 mm × 0.5 mm voxels. Next, for each radiologist-provided VOI 

in the image, a small cubical subimage of size 9 voxels was extracted centered on the VOI. An 

image intensity histogram was computed on this subimage, and first-order descriptive features 
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(mean, median, first, and third quartiles) were calculated on the histogram. Next, the subimage 

was adaptively rebinned to 16 graylevels, and 3D graylevel co-occurrence matrix (GLCM) [16-

17] and run-length matrix (RLM) [18-19] texture features were extracted from the rebinned 

subimage. These GLCM and RLM features were computed in three dimensions across 13 

directions with single-voxel spacing, and the mean and range across these directions were retained 

for each feature. This process was repeated for subimage sizes 9, 11, and 13 voxels and Gaussian 

radii 0.5, 1.0, 2.0, 4.0 mm for a total of twelve combinations of scalespace parameters, resulting 

in 792 features in all. 

 The underrepresentation of honeycombing (HC) examples was identified as a potential 

limitation in the training dataset (only 42 of 1798 VOIs). In order to account for this problem, we 

compared several different imbalanced data learning approaches, including weighted SVM costs 

[20], the synthetic minority oversampling technique (SMOTE) [21], SMOTE with different costs 

[22], and granular SVM – repetitive undersampling [23]. Of these approaches, the SMOTE with 

different costs method demonstrated the best performance when evaluated on the training dataset, 

so this is the method that we adopted for all of our experiments. Briefly, SMOTE generates 

additional synthetic examples of a minority class by taking linear combinations of existing 

examples in the feature space. In order to mitigate the impact of class imbalance we boosted the 

HC examples by 500%, bringing the number of HC examples to 252 (and increasing the total 

number of training VOIs to 2008). 

 A support vector machine (SVM) classifier was trained on our data as follows. First, all 

feature values were standardized to zero mean and unit variance. Next, feature selection was 

performed through the use of Robustness-Driven Feature Selection (RDFS) as described above. 

After RDFS, further feature selection was performed using the Support Vector Machine Recursive 
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Feature Elimination method (SVMRFE) [24] to produce a final feature subset of 50 features (Fig. 

5.2). The size of the final feature subset was chosen by evaluating a range of subset sizes from 5 

to 50, then selecting the subset size that yielded the best performance on the training dataset. The 

optimal SVM cost parameter C and radial basis function parameter  were selected via gridsearch 

with 5-fold cross validation on the training dataset [25]. Additionally, in accordance with the 

SMOTE with different costs method, we assigned individual class weights in the SVM model to 

be inversely proportional to the one-vs-all ratio for the number of training examples of each class 

as described in [22]. Finally, the SVM classifier model was trained on the training dataset using 

the selected features and parameters. Classification of multiple classes was performed using the 

one-against-one method described in [26]. Briefly, separate binary SVM classifiers were 

constructed for each pairwise combination of classes, and a voting strategy was employed to 

predict new instances. 

5.4.2 Evaluation of classifier models 

In many medical applications, sensitivity and specificity are popular measures for assessing 

classification performance. These measures can be generalized to multiple classes in a fairly 

straightforward fashion by taking each class in turn as the positive class; however, specificity in 

particular is inadequate in a multiclass setting because it depends on the total number of true 

negatives. Indeed, assuming a non-degenerate distribution of classes, it can be shown that as the 

number of classes increases, the specificity of each class approaches 1 regardless of the actual 

performance of the classifier. 

 Instead, we relied on recall and precision as our measures of class performance. Recall, 

which is identical to sensitivity, is an indication of the false negative performance of a classifier. 

In a multiclass setting, the recall of any class can be computed by considering that class to be 
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positive and taking all of the remaining classes as negatives. This class-specific recall is defined 

as 

 ii
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where TPi and FNi represent the number of true positives and false negative with respect to class 

i. Precision, like specificity, is an indication of the false positive performance of a classifier; 

however, unlike specificity, it depends on the number of true positives rather than true negatives: 
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where FPi represents the number of false positives with respect to class i. It is easy to see that 

recall and precision approach 1 as the number of false negatives and false positives, respectively, 

approach 0. 

 Next, we required a measure which would summarize the overall performance of the 

classifier in a balanced fashion. We adopted the extended g-mean (EGM) measure, which was 

suggested in [27] as a generalization of the g-mean measure to multiple classes. Let m denote the 

total number of classes. Then the extended g-mean is defined as 
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 Lastly, we required a measure which would reflect classifier robustness, that is, whether 

classification results changed as a result of the varying technical parameters found in the multi-

reconstruction dataset. Since this is essentially a question of agreement, we decided to use Cohen’s 

kappa measure for inter-reader agreement [28]. The first reader was defined to be the classification 

results with respect to the reference reconstruction, and the classification results with respect to 
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each of the 26 remaining reconstructions in turn comprised the second reader. Then, Cohen’s 

kappa is given by 

 E
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 (5.7) 

where O = (# of agreed results / total # of results) is the observed agreement between the first and 

second reader, and E is the expected agreement between the two readers due to chance. Note that 

while recall, precision, and extended g-mean all report classifier performance with respect to the 

ground truth, the kappa measure disregards ground truth and only reflects the robustness of the 

classifier as compared to the reference reconstruction. 

5.4.3 Experimental design 

We constructed two different classifier models, one that used RDFS and one that did not. We will 

refer to these classifier models as “with-RDFS” and “without-RDFS”, respectively. Aside from 

the step of pruning non-robust features via RDFS (the gray box in Fig. 5.2), every other step of the 

classification pipeline was performed in an identical fashion between the two models. 

 We performed two different experiments to compare the two classifier models. In the first 

experiment, the models were evaluated on the multi-reconstruction dataset. The purpose of this 

experiment was to demonstrate the improved robustness of the with-RDFS model when presented 

with images from a wide range of technical parameters. The robustness was evaluated by 

computing the EGM (with respect to the ground truth) for each of the 27 reconstructions, then by 

computing the kappa (with respect to the reference reconstruction) for each of the 26 non-reference 

reconstructions. We also examined agreement confusion matrices to assess how classification of 

VOIs was influenced by varying technical parameters. 
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 The classification pipeline for the first experiment was as follows. Two-fold cross 

evaluation was performed for with-RDFS. Briefly, RDFS was applied using one fold of the multi-

reconstruction dataset to produce a subset of robust features. Next, further feature selection (via 

SVMRFE), parameter tuning, and model training were done using the training dataset. Finally, the 

resulting classifier model was evaluated on the second fold of the multi-reconstruction dataset, 

then the roles of the two folds were swapped, and classifier output was aggregated between both 

folds. For without-RDFS, feature selection (via SVMRFE only), parameter tuning, and model 

training were all done on the training dataset, and the resulting classifier model was evaluated on 

the multi-reconstruction dataset. This pipeline is illustrated in Fig. 5.4. 

 In the second experiment, the two classifier models were evaluated on the standalone 

testing dataset. The purpose of this experiment was to examine whether the reduced but robust 

feature subset of RDFS resulted in decreased performance on a novel dataset consisting of a 
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Figure 5.4. Flowchart illustrating classification pipeline for first experiment (evaluation on multi-reconstruction dataset). The steps to the left of 

the dashed line indicate feature selection, which is depicted in greater detail in Fig. 5.2.  
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relatively narrow range of technical parameters. The performance was evaluated by computing the 

recall and precision of the models with respect to each of the classes, and the extended g-mean 

(EGM) measure was used to summarize overall performance. Additionally, the EGM was 

computed on a per-subject basis for both models, and EGM scores were compared pairwise across 

subjects via Westlake’s one-sided test for equivalent proportions, using an 80% limit of 

equivalence and a 0.05 level of significance. Lastly, exact binomial confidence intervals were 

computed at the 95% level for subject-wise EGM for both with-RDFS and without-RDFS. 

 The classification pipeline for the second experiment was as follows. For with-RDFS, 

RDFS was performed by using the entire multi-reconstruction dataset, then further feature 

selection (via SVMRFE), parameter tuning, and model training were done using the training 

dataset. The resulting classifier model was evaluated on the standalone testing dataset. For without-

RDFS, feature selection (via SVMRFE only), parameter tuning, and model training were all done 

on the training dataset, and the resulting classifier model was evaluated on the standalone testing 

dataset. 

 Support vector classification was performed within the environment of Weka 3.7.11 

(Waikato Environment for Knowledge Analysis, The University of Waikato, Hamilton, New 

Zealand) [29] using the implementation provided in the software package LibSVM (National 

Taiwan University, Taipei, Taiwan) [30]. Statistical analysis was performed using Microsoft Excel 

2013 (Redmond, WA, USA) and Stata (StataCorp, College Station, TX, USA) .  

5.5 Results 

5.5.1 Characterization of feature robustness 

Table 5.1 summarizes the results of the feature robustness analysis, which involved computing the 

robustness index (RI) for each feature by computing the feature across the various reconstructions 
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that comprise the multi-reconstruction dataset. Neither the training nor the standalone testing 

datasets were involved in this analysis. 

 Of the three types of features in our feature space, first-order descriptive features exhibited 

the smallest RI, indicating that they were the most robust with respect to variations in slice 

thickness, reconstruction kernel, and tube current. Furthermore, there was a trend of decreasing RI 

with increasing subimage window size and especially with increasing Gaussian blurring radius, 

indicating that features extracted at higher levels of scale were more robust. A heatmap illustrating 

RI values across the entire feature space of 792 features is shown in Fig. 5.5. This diagram 

represents RI values when computed across the entire multi-reconstruction dataset; similar trends 

were observed for both folds in two-fold cross-evaluation. 

 Fig. 5.6 shows the results of the experiment to determine an appropriate threshold for 

robustness-driven feature selection (RDFS). Both classifier performance (according to EGM) and 

agreement (according to kappa) demonstrated a decreasing trend as the RI threshold was increased 

(allowing less robust features to be included), although EGM exhibited much noisier behavior than 

kappa. Based on these results for the entire multi-reconstruction dataset, an RI threshold of 0.29 

was chosen in order to retain as many features as possible before performance and agreement start 

to decay. This threshold resulted in a robust feature subset of 292 features (37% of the initial 

feature space). Similar results were obtained for two-fold cross-evaluation. 

5.5.2 Evaluation against multi-reconstruction dataset 

The results of evaluating the with-RDFS and without-RDFS classifier models on the multi-

reconstruction dataset are summarized in Tables 5.2 and 5.3. Table 5.2 lists the classification 

performance (with respect to ground truth) as measured via the extended g-mean (EGM). On the 

reference reconstruction, the classifier models achieved a performance of 0.849 for with-RDFS 
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and 0.778 for without-RDFS. For both models, there was a trend of decreasing EGM when a 2.0 

mm slice thickness was used. Furthermore, we observed a relatively larger decrease in EGM for 

certain combinations of parameters, such as B70f and 50 mAs or 2.0 mm and B30f. 

 Table 5.3 lists the classification agreement (with respect to the reference reconstruction) as 

measured via Cohen’s kappa. Agreement varied between 0.899 to 0.989 for with-RDFS and 0.827 

to 0.968 for without-RDFS. As with the EGM measure, there was a trend of decreasing kappa for 

the 2.0 mm slice thickness as well as for certain combinations of parameters, such as B70f and 50 

mAs or 2.0mm and B30f. The with-RDFS model demonstrated higher kappa than without-RDFS 

for 24 of the 26 non-reference reconstructions. 

 Table 5.4 presents classifier agreement confusion matrices for two representative non-

reference reconstructions. Note that unlike traditional confusion matrices, the matrices shown here 

do not reflect classifier accuracy with respect to ground truth. Instead, off-diagonal entries in these 

matrices indicate VOIs which were classified differently on the indicated reconstruction than they 

were on the reference reconstruction. It can be seen that these classification disagreements 

occurred less frequently for the with-RDFS model compared to without-RDFS. 

 Fig. 5.7 summarizes the major disagreements between reference and non-reference 

reconstructions for the two classifier models. Each cell in these diagrams corresponds to a specific 

combination of technical parameters in the multi-reconstruction dataset. The entries within the 

cells represent off-diagonal entries in the corresponding classifier agreement confusion matrix. 

Only classification disagreements of three or more are depicted in this diagram. For both the with-

RDFS and without-RDFS models, the majority of disagreements occur at a slice thickness of 2.0 

mm. However, the with-RDFS model exhibits substantially fewer disagreements overall, 

indicating that it is more robust to these technical factors than the without-RDFS model. 
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Table 5.1. Robustness index of features 

Features RI mean (SD) 

First-order descriptive (n = 48) 0.179 (0.005) 

Texture-GLCM (n = 480) 0.387 (0.155) 

Texture-RLM (n = 264) 0.361 (0.130) 

  

 Gaussian radius (mm) 

Subimage size (voxels) 0.5 1.0 2.0 4.0 

9 0.550 (0.186) 0.423 (0.116) 0.346 (0.079) 0.283 (0.062) 

11 0.505 (0.182) 0.366 (0.107) 0.315 (0.069) 0.253 (0.045) 

13 0.482 (0.184) 0.339 (0.093) 0.286 (0.060) 0.242 (0.043) 

Robustness index (RI) summarized by (top) feature category and (bottom) feature scale. For feature scale, each cell represents 

n = 66 features. Smaller values of RI indicate increased robustness. 

 

Table 5.2. Classification performance of SVM models on multi-reconstruction dataset 

With-RDFS B30f B45f B70f 

Original 100mAs 50mAs Original 100mAs 50mAs Original 100mAs 50mAs 

0.6 mm 0.853 0.843 0.832 0.844 0.848 0.839 0.839 0.834 0.774 

1.0 mm 0.845 0.845 0.843 0.849 0.843 0.844 0.849 0.827 0.762 

2.0 mm 0.798 0.792 0.792 0.791 0.788 0.804 0.849 0.824 0.821 

Without-RDFS B30f B45f B70f 

Original 100mAs 50mAs Original 100mAs 50mAs Original 100mAs 50mAs 

0.6 mm 0.770 0.782 0.782 0.793 0.779 0.789 0.798 0.747 0.733 

1.0 mm 0.733 0.769 0.773 0.778 0.773 0.771 0.796 0.774 0.719 

2.0 mm 0.675 0.675 0.675 0.679 0.682 0.700 0.710 0.693 0.693 

Performance is measured via the extended g-mean (EGM) measure. The reference reconstruction is denoted with a gray background. 

 

.Table 5.3. Classification robustness of SVM models on multi-reconstruction dataset 

With-
RDFS 

   B30f    B45f    B70f 

Original 100mAs 50mAs Original 100mAs 50mAs Original 100mAs 50mAs 

0.6 mm 
0.974 

(0.951, 0.997) 
0.963 

(0.936, 0.990) 
0.958 

(0.929, 0.987) 
0.979 

(0.958, 0.999) 
0.968 

(0.943, 0.993) 
0.984 

(0.966, 1.000) 
0.921 

(0.883, 0.960) 
0.952 

(0.922, 0.983) 
0.899 

(0.855, 0.942) 

1.0 mm 
0.952 

(0.922, 0.983) 
0.953 

(0.922, 0.983) 
0.963 

(0.936, 0.990) 
--- 

0.979 
(0.958, 0.999) 

0.989 
(0.975, 1.000) 

0.947 
(0.915, 0.979) 

0.947 
(0.915, 0.979) 

0.909 
(0.868, 0.951) 

2.0 mm 
0.931 

(0.895, 0.967) 
0.920 

(0.881, 0.959) 
0.920 

(0.881, 0.959) 
0.931 

(0.895, 0.967) 
0.926 

(0.888, 0.963) 
0.947 

(0.915, 0.979) 
0.968 

(0.943, 0.993) 
0.952 

(0.922, 0.983) 
0.942 

(0.908, 0.975) 

Without-

RDFS 

   B30f B45f    B70f 

Original 100mAs 50mAs Original 100mAs 50mAs Original 100mAs 50mAs 

0.6 mm 
0.968 

(0.943, 0.993) 

0.968 

(0.943, 0.993) 

0.963 

(0.935, 0.99) 

0.942 

(0.908, 0.975) 

0.936 

(0.901, 0.972) 

0.905 

(0.863, 0.947) 

0.880 

(0.833, 0.927) 

0.894 

(0.850, 0.939) 

0.872 

(0.823, 0.920) 

1.0 mm 
0.936 

(0.900, 0.971) 

0.952 

(0.921, 0.983) 

0.946 

(0.914, 0.979) 
--- 

0.968 

(0.943, 0.993) 

0.952 

(0.921, 0.983) 

0.905 

(0.863, 0.947) 

0.926 

(0.888, 0.963) 

0.876 

(0.828, 0.924) 

2.0 mm 
0.855 

(0.804, 0.907) 

0.861 

(0.810, 0.911) 

0.850 

(0.797, 0.902) 

0.865 

(0.815, 0.915) 

0.865 

(0.815, 0.915) 

0.871 

(0.822, 0.920) 

0.860 

(0.810, 0.911) 

0.844 

(0.790, 0.897) 

0.827 

(0.771, 0.883) 

Robustness is measured via Cohen’s kappa by comparing classifier output for each non-reference reconstruction against the 

reference reconstruction (denoted with a gray background). Numbers in parentheses represent 95% confidence intervals. 
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Figure 5.5. Heatmap of robustness index (RI), which measures the variation in feature values due to changing CT technical 

parameters. The columns represent levels of scale (Gaussian blurring and subimage size) while the rows represent the features 

that were calculated for each level of scale. The color map covers the range of observed RI values, with green (RI=0.17) 

indicating very good robustness, red (RI=0.98) indicating very poor robustness, and yellow (RI=0.32) indicating the median 

value. RI values computed using the multi-reconstruction dataset (n = 12 subjects). 
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Table 5.4. Confusion matrices for SVM model robustness in multi-reconstruction dataset 


 R
E

F
E

R
E

N
C

E
 

 With-RDFS Without-RDFS 

 “Noisy”  

(0.6 mm, B70f, 50 mAs tube current) 

“Noisy”  

(0.6 mm, B70f, 50 mAs tube current) 

 PF GG HC NL AIR VES PF GG HC NL AIR VES 

PF 76      73  5  1  

GG 4 28   3  5 33 1  1  

HC 2 1 17    1  10    

NL  4  18 3   4  22   

AIR 2    48  2 2 1 1 44  

VES      32      32 

  With-RDFS Without-RDFS 

  “Smooth”  

(2.0 mm, B30f, Original tube current) 

“Smooth”  

(2.0 mm, B30f, Original tube current) 


 R

E
F

E
R

E
N

C
E

  PF GG HC NL AIR VES PF GG HC NL AIR VES 

PF 75 1     72 7     

GG  35      40     

HC 5  14  1  2 1 8    

NL  2  23    7  15 4  

AIR 1 1  1 46 1 3 3   44  

VES      32      32 

Robustness confusion matrices comparing classifier output between reference reconstruction and indicated non-reference 

reconstructions. Note that unlike traditional confusion matrices, these matrices do not reflect classifier accuracy with respect to 

ground truth. Instead, rows indicate the class labels assigned by each classifier (with-RDFS or without-RDFS) when evaluated on 

the reference reconstruction. For example, using the with-RDFS classifier model, 4 VOIs that were classified as NL on the 

reference reconstruction were instead classified as GG on the “Noisy” reconstruction (top left matrix). Cells with a value of 0 

were left blank for readability. 

 

 
Figure 5.6. Result of experiment for determining appropriate robustness index (RI) threshold for Robustness-Driven Feature 

Selection across entire multi-reconstruction dataset. Extended g-mean (EGM) is measured by assessing classification output on 

reference reconstruction against ground truth. Kappa is measured by comparing classification output on all non-reference 

reconstructions against reference reconstruction. Dashed line indicates the selected RI threshold of 0.29. 
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Table 5.5. Confusion matrices for SVM model performance in standalone testing dataset 

With-RDFS CLASSIFIED AS    

  PF GG HC NL AIR VES REC PREC 


 T

R
U

T
H

 PF 385 9 11  26 2 0.889 0.867 

GG 16 190  44 16  0.714 0.876 

HC 26  56  33  0.487 0.812 

NL  8  194 4  0.942 0.678 

AIR 1 10 2 48 253  0.806 0.757 

VES 16    2 293 0.942 0.993 

        EGM 0.778 

Without-RDFS CLASSIFIED AS  

  PF GG HC NL AIR VES REC PREC 


 T

R
U

T
H

 

PF 405 13 4 1 7 3 0.935 0.890 

GG 18 191  50 7  0.718 0.868 

HC 25 3 55 1 29 2 0.478 0.917 

NL  9  186 10 1 0.903 0.655 

AIR 5 4 1 46 257 1 0.818 0.824 

VES 2    2 307 0.987 0.978 

        EGM 0.785 

Performance confusion matrices indicate agreement between classifier output and ground truth. Rows indicate the ground truth class labels 

assigned by expert radiologists. Cells with a value of 0 were left blank for readability. REC, PREC, and EGM indicate recall, precision, and 

extended g-mean, respectively. 

 

 

Figure 5.7. Summary of classification disagreements between reference reconstruction (denoted in gray) and each other 

reconstruction for (a) with-RDFS and (b) without-RDFS classifier models. The numbers in parentheses represent the number of 

disagreements between indicated classes. For example, the bottom-left-most entry of (a) indicates that five VOIs which were 

classified as HC on the reference reconstruction were instead classified as PF on the 2.0 mm, B30f, Original tube current 

reconstruction. Disagreements consisting of fewer than three cases are not listed in the diagram 

a) 

b) 
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Table 5.6. Final feature subsets for standalone testing dataset evaluation 

With-RDFS Without-RDFS 
Q3_0.5_09 MEAN_0.5_09 

Q1_0.5_09 Q1_0.5_09 

MEAN_0.5_09 Q3_0.5_09 

Q3_0.5_11 Q1_0.5_11 

Q1_0.5_11 Q3_0.5_11 

Q3_0.5_13 Q1_0.5_13 

MEAN_0.5_13 Q3_0.5_13 

Q1_0.5_13 Q1_1.0_09 

Q1_1.0_09 Q3_1.0_09 

Q3_1.0_09 Q3_1.0_11 

Q3_1.0_11 Q1_1.0_13 

Q3_1.0_13 Q3_1.0_13 

MEDIAN_1.0_13 Q3_2.0_13 

Q3_2.0_11 MEAN_4.0_09 

Q1_2.0_13 Q3_4.0_09 

Q3_2.0_13 MEAN_4.0_11 

Q3_4.0_09 MEDIAN_4.0_11 

Q3_4.0_11 Q3_4.0_11 

MEAN_4.0_11 MEAN_4.0_13 

Q3_4.0_13 MEDIAN_4.0_13 

Q1_4.0_13 Q3_4.0_13 

MEAN_4.0_13 MEAN_GLCM_MAX_0.5_09 

MEDIAN_4.0_13 MEAN_GLCM_CONTRAST_0.5_11 

RANGE_GLCM_SUM_AVERAGE_0.5_13 RANGE_GLCM_INFO_CORRELATION_B_0.5_11 

MEAN_GLCM_SUM_VARIANCE_0.5_13 MEAN_GLCM_INFO_CORRELATION_B_0.5_13 

RANGE_GLCM_DIFF_AVERAGE_1.0_13 MEAN_GLCM_MAX_0.5_13 

MEAN_GLCM_HOMOGENEITY_1.0_13 MEAN_GLCM_SUM_VARIANCE_0.5_13 

MEAN_GLCM_ENTROPY_1.0_13 MEAN_GLCM_VARIANCE_0.5_13 

RANGE_GLCM_MEAN_1.0_13 RANGE_GLCM_ANGULAR_SECOND_MOMENT_0.5_13 

MEAN_GLCM_SUM_ENTROPY_1.0_13 RANGE_GLCM_ENERGY_0.5_13 

MEAN_GLCM_DIFF_AVERAGE_1.0_13 RANGE_GLCM_MAX_0.5_13 

MEAN_GLCM_DISSIMILARITY_1.0_13 RANGE_GLCM_SUM_ENTROPY_0.5_13 

MEAN_GLCM_DIFF_AVERAGE_2.0_11 RANGE_GLCM_SUM_VARIANCE_0.5_13 

MEAN_GLCM_MEAN_2.0_13 MEAN_GLCM_STANDARD_DEVIATION_1.0_09 

MEAN_GLCM_MEAN_4.0_11 MEAN_GLCM_SUM_AVERAGE_4.0_13 

RANGE_GLCM_SUM_AVERAGE_4.0_13 MEAN_GLCM_SUM_VARIANCE_4.0_13 

MEAN_GLCM_MEAN_4.0_13 RANGE_GLCM_DIFF_ENTROPY_4.0_13 

RANGE_GLCM_DIFF_ENTROPY_4.0_13 RANGE_RLM_LONG_RUN_HIGH_GRAYLEVEL_EMPHASIS_0.5_11 

MEAN_GLCM_SUM_AVERAGE_4.0_13 RANGE_RLM_SHORT_RUN_HIGH_GRAYLEVEL_EMPHASIS_0.5_11 

MEAN_RLM_HIGH_GRAYLEVEL_RUN_EMPHASIS_0.5_13 MEAN_RLM_GRAYLEVEL_NONUNIFORMITY_0.5_13 

MEAN_RLM_RUNLENGTH_NONUNIFORMITY_1.0_11 MEAN_RLM_LONG_RUN_HIGH_GRAYLEVEL_EMPHASIS_0.5_13 

MEAN_RLM_SHORT_RUN_HIGH_GRAYLEVEL_EMPHASIS_1.0_13 MEAN_RLM_RUN_PERCENTAGE_0.5_13 

MEAN_RLM_RUN_PERCENTAGE_1.0_13 MEAN_RLM_RUNLENGTH_NONUNIFORMITY_0.5_13 

MEAN_RLM_RUNLENGTH_NONUNIFORMITY_2.0_13 MEAN_RLM_SHORT_RUN_EMPHASIS_0.5_13 

RANGE_RLM_LONG_RUN_EMPHASIS_2.0_13 MEAN_RLM_SHORT_RUN_LOW_GRAYLEVEL_EMPHASIS_0.5_13 

MEAN_RLM_RUN_PERCENTAGE_4.0_09 RANGE_RLM_GRAYLEVEL_NONUNIFORMITY_0.5_13 

MEAN_RLM_SHORT_RUN_EMPHASIS_4.0_09 RANGE_RLM_LONG_RUN_HIGH_GRAYLEVEL_EMPHASIS_0.5_13 

RANGE_RLM_SHORT_RUN_LOW_GRAYLEVEL_EMPHASIS_4.0_11 MEAN_RLM_RUNLENGTH_NONUNIFORMITY_2.0_13 

MEAN_RLM_GRAYLEVEL_NONUNIFORMITY_4.0_13 MEAN_RLM_LONG_RUN_HIGH_GRAYLEVEL_EMPHASIS_4.0_13 

MEAN_RLM_LONG_RUN_HIGH_GRAYLEVEL_EMPHASIS_4.0_13 MEAN_RLM_LONG_RUN_LOW_GRAYLEVEL_EMPHASIS_4.0_13 

Final feature subsets used for standalone testing dataset evaluation, obtained by retaining the top 50 features according to 

SVMRFE with and without performing RDFS first. RDFS was performed on the entire multi-reconstruction dataset. For 

readability, features are divided into categories then presented in order of increasing scale. For GLCM and RLM features, MEAN 

and RANGE specify the method of resolving feature values across 13 directions in 3D. 
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5.5.3 Evaluation against standalone testing dataset 

Table 5.5 summarizes the evaluation of the with-RDFS and without-RDFS classifier models across 

the entire standalone testing dataset. These confusion matrices represent classifier accuracy against 

ground truth. The with-RDFS model exhibited slightly worse performance than without-RDFS, 

with EGM measures of 0.778 and 0.785, respectively. Class-specific performance of the two 

classifier models was very similar, with a few notable differences such as RECPF and PRECHC. 

Westlake’s equivalence test between the models was significant with an 80% limit (P=0.01), 

indicating equivalence in EGM scores across subjects. 95% confidence intervals (using the exact 

binomial method) were as follows: (0.606, 0.879) for with-RDFS; (0.659, 0.914) for without-

RDFS. 

 Table 5.6 lists the final feature subsets used by with-RDFS and without-RDFS for 

standalone testing dataset evaluation. 

5.6 Discussion  

This study focused on evaluating the novel technique of Robustness-Driven Feature Selection 

(RDFS) in the setting of CT texture classification of fibrotic interstitial lung disease (FILD). The 

primary contributions of this investigation are twofold. First, we used multiple systematic 

reconstructions of CT raw sinogram data to assess the robustness of the features that comprise our 

feature set, then used this knowledge to drive the feature selection step of the classification pipeline. 

Second, we used multiple raw sinogram reconstructions to directly evaluate the impact of varying 

CT technical factors on the output of a CT texture classifier. The use of CT raw sinogram data is 

key to this study because it allowed us to isolate variation due to technical factors without 

introducing additional scan-rescan variation (and without increasing radiation dose to our subjects). 
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 Due to the impracticality of collecting a comprehensive dataset that accurately and 

inclusively reflects real-world scenarios, most research and development of CAD systems for 

medical imaging takes place in environments of limited data. Nevertheless, it is important for these 

systems to be able to perform well not only within their own limited development environment, 

but also when exposed to the variability and unpredictability of real-world use. The RDFS 

technique offers a method to mitigate the problem of limited data by leveraging CT sinogram 

reconstructions to mimic anticipated real-world variation in CT technical factors. 

 The feature robustness investigation revealed some interesting findings. First, we showed 

that our first-order descriptive features are substantially more robust than our texture features, with 

a mean robustness index (RI) less than half that of the texture features (Table 5.1). To put in another 

way, although descriptive features comprise only a little over 6% of our total feature space, they 

make up 92% of the top 50 most robust features according to RI. This result is not entirely 

surprising; although all three of the technical factors considered in this study influence the 

distribution of graylevel values in the image, they are all mean-preserving. Therefore, first-order 

descriptive features such as mean and median are not likely to be influenced as strongly as 

measures of texture. 

 Another significant finding of the feature robustness analysis is that the robustness of 

features improved at higher levels of scale (Table 5.1). This result is twofold. First, high levels of 

Gaussian blurring improve feature robustness. It is likely that this is because the changes in 

graylevel distribution introduced by technical factors are simply getting blurred out. Second, larger 

subimage sizes improve feature robustness. Because these subimages are cubical, the 11- and 13-

voxel subimages contain 83% and 201% more voxels, respectively, than the 9-voxel subimage. It 

appears that the smaller subimages are simply too susceptible to the graylevel distribution changes 
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introduced by different technical factors, and a more macro-level scale is required to achieve 

stability in feature values. 

 It is important to note that having more robust features does not mean that these features 

will be of any value in a particular classification task. For example, applying an extremely high 

level of Gaussian blurring will certainly improve the robustness of the resulting features, but at the 

same time it will necessarily blunt their ability to discriminate between classes. In the end, what 

we desire for any classification task is a set of features that are robust to spurious sources of 

variation while retaining their sensitivity towards true physiological differences. In our study, we 

were able to achieve this balance by first applying RDFS then following up with a further feature 

selection step using SVMRFE. 

 A classifier can be considered robust if its classifier output remains stable despite spurious 

changes in its inputs. In practice, it is important for a CAD system to have both good classification 

accuracy and robustness. We captured these characteristics through the use of two metrics: the 

extended g-mean (EGM), which measures classification accuracy; and Cohen’s kappa, which 

measures classification agreement with respect to changing technical factors. A classifier could 

have good accuracy but poor robustness, for example, if it had high EGM values for only one or a 

few combinations of technical parameters, but low EGM and kappa for other combinations. 

 The without-RDFS classifier model demonstrated a substantial lack of robustness, 

particularly when presented with thicker slices of 2.0 mm. This result is not surprising as partial 

voluming combined with the smoothing effect of thicker slices can result in the loss of textural 

information. This phenomenon is evidenced by the relatively lower EGM and kappa measures at 

the 2.0 mm reconstructions (Tables 5.2 and 5.3), and by the large number of classification 

disagreements in Fig. 5.7. Interestingly, there was no corresponding decrease of robustness at 0.6 
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mm, indicating that the classifier model was only adversely affected by thicker slices, not thinner, 

at least within the range of slice thicknesses examined in this investigation. 

 The with-RDFS classifier model was substantially more robust than without-RDFS. This 

is indicated by the larger values of EGM and kappa (Tables 5.2 and 5.3) and by the smaller number 

of classification disagreements in Fig. 5.7. Some trends of reduced agreement for certain 

reconstructions were observed, but in each of these cases the impact was less than what was 

observed for without-RDFS. 

 Compared to slice thickness, reconstruction kernel and tube current did not have as strong 

of an impact on classifier agreement. However, there appears to be an interaction effect among the 

technical factors, resulting in reduced EGM and kappa for certain combinations of technical 

parameters. For example, the combination of thinner slice, sharper kernel, and/or lower tube 

current (e.g. 0.6 mm, B70f, 50 mAs) had a noticeable negative impact on both classifier models. 

Each of the technical parameters in this combination introduces more image noise, which interferes 

with the features’ efforts to capture texture information (Fig. 5.1, “Noisy” column). 

Correspondingly, the opposite combination of thicker slice, smoother kernel, and/or higher tube 

current (e.g. 2.0 mm, B30f, original tube current), which produces a smoother image with less 

image noise, also had a negative impact on classifier agreement (Fig. 5.1, “Smooth” column). By 

contrast, it can be seen that when technical parameters that have opposing effects on image noise 

are combined, they balance each other, and classifier agreement is not as strongly impacted under 

these conditions, especially for with-RDFS (Fig. 5.1, “Balanced” column). 

 The summary of disagreements (Fig. 5.7) reveals that the vast majority of disagreements 

for the with-RDFS classifier model occur between NL and GG, GG and PF, or PF and HC. An 

examination of reader variability indicated that the expert readers who provided the VOIs for this 
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study also disagreed substantially among these same pairs of classes. Furthermore, there is 

evidence suggesting that normal lung, ground-glass opacity, and fibrosis (and potentially 

honeycombing) represent a continuum of gradual change in interstitial lung disease [31], making 

strict differentiation between these classes an inherently difficult problem. It appears that this 

difficulty is reflected in the behavior of our with-RDFS classifier model. 

 When evaluated on the standalone testing dataset, the without-RDFS classifier model 

slightly outperformed the with-RDFS model (Table 5.5). This result is not surprising because the 

RDFS algorithm discards features on the basis of their robustness, inviting the possibility that some 

highly informative features may be discarded. In fact, a comparison of the final feature subsets 

(Table 5.6) reveals some systematic differences between the two models. In particular, without-

RDFS relies heavily upon GLCM and RLM features extracted at the 0.5 mm level of Gaussian 

blurring, which we have shown to be highly nonrobust (Table 5.1, Fig. 5.5). Furthermore, we 

emphasize that the difference in performance between the two models is small, and that the 

performance was statistically equivalent when compared on a per-subject basis. 

 It is important to acknowledge the composition of the standalone testing dataset. Although 

the standalone testing dataset contains images from outside the range of technical parameters of 

the training dataset, in particular for reconstruction kernel and slice thickness, these cases represent 

a minority of the dataset. For example, only 12 out of 42 cases use a nonstandard kernel (where 

“standard” is defined as a kernel found in the training dataset), and only 2 out of 42 cases use a 

slice thickness greater than 1.25 mm. We reiterate that the standalone testing dataset evaluation is 

not intended to provide further evidence of the effectiveness of RDFS at improving classifier 

robustness, but rather to uncover any potential side effects of RDFS by serving as an independent 

evaluation dataset that is more similar to the training dataset.  
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 We observe that our results illustrate a fundamental tradeoff between classifier robustness 

and accuracy. The same features that give the without-RDFS model a small edge on the standalone 

testing dataset also impair its ability to cope with the wide range of technical parameters found in 

the multi-reconstruction dataset. To put it more simply, some features that are highly sensitive to 

signal (variation between classes) are also highly sensitive to noise (variation due to technical 

factors). By applying RDFS, we were able to identify a subset of features that are almost as 

sensitive to signal while being substantially more robust to noise. The power of the RDFS approach 

lies in the ability to characterize feature robustness, which is essential for finding the most effective 

and worthwhile tradeoff for a particular classification task. 

 In this study, we developed a two-step methodology for feature selection, with the first step 

(RDFS) selecting based on feature robustness and the second step selecting based on 

informativeness. In this manner, our proposed methodology may be thought of as a composite 

feature selection method that balances two separate criteria, using the robustness index threshold 

(Fig. 5.6) as a parameter to determine the relative importance of each. Although we focused our 

investigation using SVMRFE as the second feature selection step, in general any method that 

selects informative features could be used, along with any classification method. We briefly 

examine a few other such methods in the Appendix. 

 There were several limitations to our study. Although the training and testing datasets are 

very similar to each other, the multi-reconstruction dataset has some notable differences. The 

multi-reconstruction dataset represents a general interstitial lung disease population, whereas the 

training and testing cases all come from either idiopathic pulmonary fibrosis or lung disease 

associated with systemic scleroderma. Furthermore, the multi-reconstruction images were 

acquired with supine patient positioning, unlike the training and testing images which were 
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acquired at prone. The multi-reconstruction images were annotated by a single reader, while the 

training and testing images followed a two-reader paradigm. Lastly, the reduced-tube-current 

images in the multi-reconstruction dataset were generated using a synthetic noise algorithm rather 

than true CT image noise. However, an investigation of this sort would not have been possible 

with true CT noise due to the additional variation introduced by multiple acquisitions at different 

levels of tube current and due to the ethical and practical concerns of patient radiation dose 

associated with such an approach. The synthetic noise approach used in this study has been 

previously validated [13-15]. 

 In our study, we have evaluated robustness with respect to three technical factors: slice 

thickness, reconstruction kernel, and tube current. Many other sources of variation in CT imaging 

exist, such as scan/rescan variability, imaging device manufacturer and model, and patient 

demographics. Further research will need to be done in order to improve classifier robustness in 

these areas. 

5.7 Conclusion 

We have developed a novel technique for feature selection called Robustness-Driven Feature 

Selection. Following this method, we were able to substantially improve the robustness of a 

support vector classifier for fibrotic interstitial lung disease while maintaining its performance on 

a standalone testing dataset. These results have implications for improving the generalizability of 

classifier-based CT CAD systems, which is of great importance in multicenter clinical trials that 

rely on accurate and reproducible measures. This work will ultimately help pave the way for more 

widespread adoption of these systems in clinical practice. 
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5.A. Evaluation with other feature selection and classification methods 

In the present study, we have investigated the effect of our proposed Robustness-Driven Feature 

Selection (RDFS) method in conjunction with Support Vector Machine Recursive Feature 

Elimination (SVMRFE) as a further feature selection step followed by support vector machine 

(SVM) classification. In practice, RDFS may be applied in combination with any further feature 

selection scheme and classification method. In this appendix, we briefly examine a few other 

combinations. This investigation is intended to be illustrative rather than exhaustive, to 

demonstrate the applicability of our proposed RDFS method with methods other than those 

previously discussed. 

 The experimental design for this investigation mirrors the multi-reconstruction evaluation 

from the main study. Briefly, we create two classifier models, one with and one without RDFS, 

for each combination of methods. The classification pipeline involves RDFS on the multi-

reconstruction dataset (if applicable); followed by further feature selection, parameter tuning, and 

model training on the training dataset; followed at last by evaluation on the multi-reconstruction 

dataset. Two-fold cross evaluation on the multi-reconstruction dataset is employed for RDFS. 

 We evaluate a total of six different classifier models, which we will refer to as models A 

through F. Models A and B are identical to the with-RDFS and without-RDFS models, respectively, 

examined in the main study. Models C and D use sequential floating forward selection (SFFS) as 

the further feature selection step [32], followed by SVM as the classification method. Finally, 

models E and F use random forests (RF) as the classification method [33], with no explicit further 

feature selection beyond the built-in RF feature selection. These models are summarized in Table 

5.7. 
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Table 5.7. Summary of classifier models 

Model A B C D E F 

RDFS? yes no yes no yes no 

Further feature selection SVMRFE SVMRFE SFFS SFFS none none 

Classification method SVM SVM SVM SVM RF RF 

 

 The results of evaluating the six models are presented in Table 5.8. For brevity, only 

Cohen’s kappa measures indicating classifier agreement are reported, and the confidence intervals 

have been omitted. For all models, kappa values are highest for slice thicknesses 0.6 mm and 1.0 

mm and for B30f and B45f kernels, demonstrating a noticeable deterioration at 2.0 mm and B70f 

(except perhaps when 2.0 mm and B70f are applied simultaneously). Reduced tube current does 

not appear to have a strong impact on classifier agreement except in conjunction with the B70f 

kernel. Lastly, for each pair of models (A+B, C+D, E+F), the model utilizing RDFS exhibits higher 

kappa values than the model without, most notably in those reconstructions suffering the most 

deterioration. 

 We conclude that RDFS is an effective tool for improving classifier robustness that may 

be employed in combination with a variety of feature selection schemes or classification methods. 
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Table 5.8. Robustness of classifier models on multi-reconstruction dataset 

Model A*    B30f    B45f    B70f 

Original 100mAs 50mAs Original 100mAs 50mAs Original 100mAs 50mAs 

0.6 mm 0.974 0.963 0.958 0.979 0.968 0.984 0.921 0.952 0.899 

1.0 mm 0.952 0.953 0.963 --- 0.979 0.989 0.947 0.947 0.909 

2.0 mm 0.931 0.920 0.920 0.931 0.926 0.947 0.968 0.952 0.942 

          

Model B    B30f B45f    B70f 

Original 100mAs 50mAs Original 100mAs 50mAs Original 100mAs 50mAs 

0.6 mm 0.968 0.968 0.963 0.942 0.936 0.905 0.880 0.894 0.872 

1.0 mm 0.936 0.952 0.946 --- 0.968 0.952 0.905 0.926 0.876 

2.0 mm 0.855 0.861 0.850 0.865 0.865 0.871 0.860 0.844 0.827 

          

Model C*    B30f   B45f      B70f   

 Original 100mAs 50mAs Original 100mAs 50mAs Original 100mAs 50mAs 

0.6 mm 0.958 0.952 0.942 0.953 0.952 0.937 0.900 0.921 0.872 

1.0 mm 0.952 0.936 0.942 --- 0.968 0.968 0.942 0.947 0.909 

2.0 mm 0.846 0.857 0.862 0.894 0.899 0.899 0.926 0.915 0.920 

          

Model D    B30f   B45f      B70f   

 Original 100mAs 50mAs Original 100mAs 50mAs Original 100mAs 50mAs 

0.6 mm 0.952 0.947 0.920 0.968 0.968 0.931 0.931 0.931 0.851 

1.0 mm 0.936 0.957 0.936 --- 0.989 0.942 0.931 0.904 0.850 

2.0 mm 0.784 0.784 0.784 0.800 0.789 0.795 0.719 0.707 0.701 

          

Model E*    B30f   B45f      B70f   

 Original 100mAs 50mAs Original 100mAs 50mAs Original 100mAs 50mAs 

0.6 mm 0.951 0.973 0.962 0.962 0.968 0.957 0.930 0.930 0.857 

1.0 mm 0.951 0.967 0.967 --- 0.978 0.989 0.968 0.935 0.868 

2.0 mm 0.907 0.907 0.896 0.907 0.913 0.918 0.935 0.935 0.902 

          

Model F    B30f   B45f      B70f   

 Original 100mAs 50mAs Original 100mAs 50mAs Original 100mAs 50mAs 

0.6 mm 0.956 0.956 0.957 0.967 0.957 0.957 0.908 0.897 0.809 

1.0 mm 0.962 0.940 0.962 --- 0.962 0.951 0.930 0.897 0.829 

2.0 mm 0.890 0.874 0.890 0.868 0.852 0.841 0.837 0.793 0.757 

 

Robustness is measured via Cohen’s kappa by comparing classifier output for each non-reference reconstruction against the 

reference reconstruction (denoted with a gray background). The six classifier models A-F are described in Table 5.7. *Denotes a 

classifier model that utilizes RDFS. 
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6. Robustness-driven feature selection in CT classification of fibrotic 

interstitial lung disease: The effect of 3.0 mm slice thickness 

6.1 Introduction 

In the previous chapter, we have demonstrated that the Robustness-Driven Feature Selection 

(RDFS) technique is highly effective at improving CT texture classification robustness with 

respect to slice thickness, reconstruction kernel, and tube current. In particular, we examined slice 

thicknesses of 0.6, 1.0, and 2.0 mm, and showed that the 2.0 mm slice thickness was a particular 

challenge for classifier robustness. This result raises the question of how classifier robustness 

might be affected if slice thickness is increased further. 

 The purpose of this study is to determine the extent to which RDFS is able to improve 

classifier robustness against 3.0 mm slice thicknesses. 

6.2 Materials 

6.2.1 CT imaging data 

The study population consisted of three datasets: training, multi-reconstruction, and extended 

multi-reconstruction. The training dataset consisted of 45 adult subjects with an established clinical 

diagnosis of either interstitial lung disease associated with systemic scleroderma (SSc) or 

idiopathic pulmonary fibrosis (IPF). The multi-reconstruction and extended multi-reconstruction 

datasets consisted of 12 subjects with diffuse lung disease. All imaging data were anonymized and 

made available through a central imaging core lab with the approval of a local institutional review 

board and was accessed in compliance with the Health Insurance Portability and Accountability 

Act. 
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 For the training dataset, volumetric high-resolution CT images were collected for all 

subjects. The CTs were performed under the auspices of a central imaging core that provided 

training and prescribed standardized guidelines for image acquisition and reconstruction. A variety 

of imaging devices were used from Siemens (Siemens Healthcare, Forchheim, Germany), General 

Electric (GE Healthcare, Waukesha, WI, USA), Philips (Philips Healthcare, Cleveland, OH, USA), 

and Toshiba (Toshiba America Medical Systems, Tustin, CA, USA). Images were acquired at full 

inspiration in the prone position at 120 kVp. The CT technical parameters were as follows: an 

average tube current between 100 mAs to 150 mAs; slice thickness between 1.0 mm and 1.25 mm, 

inclusive; and a medium-sharp reconstruction kernel of B45f, BONE, D, or FC52.  

 For the multi-reconstruction dataset, CT raw sinogram data were collected for all subjects. 

The CTs were performed as a part of standard clinical practice using a diffuse lung disease protocol. 

The subjects were imaged at full inspiration in the supine position at 120 kVp using a multidetector 

CT device (Definition Flash, Siemens Healthcare, Forchheim, Germany). Tube current modulation 

was used, resulting in average tube currents ranging from 211 mAs to 328 mAs per subject. The 

raw sinogram data were used to create additional reconstructions by systematically varying slice 

thickness and reconstruction kernel. In addition, simulated reduced-tube-current images were 

generated via synthetic noise, which was added to the CT raw sinogram data using a previously-

validated algorithm described in [1-3]. Three slice thicknesses (0.6, 1.0, 2.0 mm), three kernels 

(B30f-smooth, B45f-medium-sharp, B70f-sharp), and three tube currents (original tube current, 

100 mAs, 50 mAs) were used for a total of 27 reconstructions per subject. Of these, the 

reconstruction corresponding to a slice thickness of 1.0 mm, kernel of B45f, and the original tube 

current was designated as the “reference reconstruction” since these parameters corresponded most 

closely with the parameters from the training dataset. 
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 Lastly, the extended multi-reconstruction dataset consists of all of the same subjects and 

reconstructions as the multi-reconstruction dataset. In addition to these, 3.0 mm slice thickness 

reconstructions were created as well, bringing the total number of reconstructions in the extended 

multi-reconstruction dataset to 36. 

 The three datasets training, multi-reconstruction, and extended multi-reconstruction are 

summarized in Table 6.1. 

6.2.2 Small volumes of interest for classifier development and assessment 

For the training dataset, two experienced thoracic radiologists (JGG, FGA) provided a total of 

2120 cubic volumes of interest (VOIs) corresponding to six visually-based textural and structural 

classes: pulmonary fibrosis (PF), ground-glass opacity (GG), honeycombing (HC), normal lung 

parenchyma (NL), airways (AIR), and vessels (VES). The readers followed a two-pass 

independent reading paradigm. In the first pass, each reader independently placed VOIs throughout 

the lungs corresponding to each of the above classes, assigning their VOIs with the appropriate 

class labels. In the second pass, each reader was independently presented with unlabeled copies of 

the other reader’s VOIs and asked to assign class labels according to their best judgment. At the 

end of this reading process, each VOI had two labels, one from each reader. Of the total 2120 VOIs, 

Table 6.1. Characterization of datasets 

Dataset Training Multi-reconstruction Extended multi-reconstruction 

# of subjects 42 12 12 

Type of disease SSc or IPF ILD ILD 

Patient position Prone Supine Supine 

Breathhold Full inspiration Full inspiration Full inspiration 

CT manufacturer Siemens, GE, Phillips, or 

Toshiba 

Siemens Siemens 

Slice thickness (mm) {1.0, 1.25} {0.6, 1.0, 2.0} {0.6, 1.0, 2.0, 3.0} 

Reconstruction kernel B45f, BONE, D, or FC52 {B30f, B45f, B70f} {B30f, B45f, B70f} 

Tube current (mAs) ≥ 100 Original, 100, 50 Original, 100, 50 

# of reconstructions 1 27 36 

The extended multi-reconstruction dataset is a superset of the multi-reconstruction dataset. 
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1798 VOIs were assigned identical class labels by the two readers. Development and training of 

the classifier was performed on this agreement subset only. 

For the multi-reconstruction and extended multi-reconstruction datasets, VOIs were 

provided by one experienced thoracic radiologist (JGG), who annotated a total of 238 cubic VOIs 

corresponding to the same six classes as above (PF, GG, HC, NL, AIR, VES). For each subject, 

the VOIs were annotated on the reference reconstruction only, then they were propagated to the 

remaining reconstructions. 

 In summary, the agreement subset for the training dataset consisted of 1798 VOIs, with 

individual class counts of 564, 272, 42, 272, 294, and 354 for PF, GG, HC, NL, AIR, and VES, 

respectively. The multi-reconstruction datasets had no agreement subset as it was only annotated 

by a single radiologist, and it had individual class counts of 75, 37, 23, 27, 43, and 33, respectively. 

6.3 Methods 

6.3.1 Feature extraction and support vector machine classification 

For each CT image, a Gaussian blurring filter with 0.5 mm radius was applied, followed by 

isotropic resampling of the image volume, using trilinear interpolation to produce a resampled 

image volume with 0.5×0.5×0.5 mm3 voxels. Next, for each radiologist-provided VOI in the image, 

a small cubical subimage of size 9 voxels was extracted centered on the VOI. An image intensity 

histogram was computed on this subimage, and first-order descriptive features were calculated on 

the histogram. Next, the subimage was adaptively rebinned to 16 graylevels, and 3D graylevel co-

occurrence matrix [4-5] and run-length matrix [6-7] texture features were extracted from the 

rebinned subimage. This process was repeated for subimage sizes 9, 11, and 13 voxels and 

Gaussian radii 0.5, 1.0, 2.0, 4.0 mm for a total of twelve combinations of scalespace parameters, 

resulting in 792 features in all. 
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 The underrepresentation of honeycombing (HC) examples was identified as a potential 

limitation in the training dataset (only 42 of 1798 VOIs). We utilized the synthetic minority 

oversampling technique described in [8], which generates additional synthetic examples of a class 

by taking linear combinations of existing examples in the feature space. In order to mitigate the 

impact of class imbalance, we boosted the HC examples by 500%, bringing the number of HC 

examples to 252 (and increasing the total number of training VOIs to 2008). 

 A support vector machine (SVM) classifier was trained on our data as follows. First, all 

feature values were standardized to zero mean and unit variance. Next, feature selection was 

performed through the use of Robustness-Driven Feature Selection (RDFS) as described in 

Chapter 5. After RDFS, further feature selection was performed using the Support Vector Machine 

Recursive Feature Elimination method (SVMRFE) [9] to produce a final feature subset of 50 

features. The optimal SVM cost parameter C and radial basis function parameter  were selected 

via gridsearch with 5-fold cross validation [10]. Additionally, in order to further mitigate the 

impact of class imbalance, we assigned individual class weights in the SVM model to be inversely 

proportional to the one-vs-all ratio for the number of training examples of each class as described 

in [11]. Finally, the SVM classifier model was trained on the training dataset using the selected 

features and parameters. Classification of multiple classes was performed using the one-against-

one method described in [12]. Briefly, separate binary SVM classifiers were constructed for each 

pairwise combination of classes, and a voting strategy was employed to predict new instances. 

6.3.2 Experimental Design 

Three different classifier models were constructed: RDFS-2.0, RDFS-3.0, and without-RDFS. The 

RDFS-2.0 and RDFS-3.0 models differed only in which dataset was used as an input to the RDFS 

algorithm; RDFS-2.0 used the multi-reconstruction dataset, while RDFS-3.0 used the extended 
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multi-reconstruction dataset. By contrast, the without-RDFS model did not use RDFS at all. Note 

that the RDFS-2.0 and without-RDFS classifier models are respectively identical to the with-RDFS 

and without-RDFS models described in Chapter 5. The three classifier models are illustrated in 

Fig. 6.1. 

 The three classifier models (RDFS-2.0, RDFS-3.0, and without-RDFS) were evaluated on 

the extended multi-reconstruction dataset in order to directly assess their robustness under 

conditions of changing technical parameters. Classifier robustness was evaluated by computing 

the extended g-mean (EGM) with respect to ground truth for each of the 36 reconstructions, then 

by computing Cohen’s kappa with respect to the reference reconstruction for each of the 35 non-

reference reconstructions. 

 Two-fold cross evaluation was used for RDFS-2.0 and RDFS-3.0. Briefly, the 12 subjects 

that make up the multi-reconstruction dataset were separated into two folds, and the extended 

multi-reconstruction dataset was separated into two folds according to the same division of 

subjects. RDFS was applied using one fold of the multi-reconstruction dataset (extended multi-

reconstruction for RDFS-3.0). Further feature selection (via SVMRFE), parameter tuning, and 

model training were done using the training dataset. Finally, the resulting classifier models were 

evaluated using the second fold of the extended multi-reconstruction dataset. For without-RDFS, 

feature selection (via SVMRFE only), parameter tuning, and model training were all done on the 

training dataset, and the resulting classifier model was evaluated on the extended multi-

reconstruction dataset. 
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 Note that the input to RDFS differed depending on the classifier model (multi-

reconstruction for RDFS-2.0, extended multi-reconstruction for RDFS-3.0); however, model 

evaluation for all three models was performed using the extended multi-reconstruction dataset. 

The classification pipeline for the three models is illustrated in Fig. 6.1. 

 Finally, because of the potential sensitivity of RDFS to the choice of robustness index (RI) 

threshold, a range of five different RI threshold values was evaluated for both of the models. EGM 

Without-RDFS 

RDFS-3.0 RDFS-2.0 

Multi-

reconstruction 

dataset (fold 1) 

Classifier 

robustness 

evaluation 
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selection 
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Extended multi-
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Parameter  

tuning 
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Figure 6.1. Illustration of support vector classification pipeline for the three classifier models. RDFS-2.0 and RDFS-3.0 differ 

only in the input to the RDFS algorithm, and both utilize two-fold cross evaluation. Note that all three models are evaluated using 

the extended multi-reconstruction dataset. SVMRFE, parameter tuning, and model training are all done through the training 

dataset (not pictured). 
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and kappa scores are reported as the mean and standard deviation across these thresholds. No 

corresponding threshold exists for without-RDFS, so its EGM and kappa scores are simply 

reported as is. 

 Support vector classification was performed within the environment of Weka 3.7.11 

(Waikato Environment for Knowledge Analysis, The University of Waikato, Hamilton, New 

Zealand) [13] using the implementation provided in the software package LibSVM (National 

Taiwan University, Taipei, Taiwan) [14]. Statistical analysis was performed using Microsoft Excel 

2013 (Redmond, WA, USA). 

6.4 Results 

Table 6.2 summarizes the results of the feature robustness analysis for both the RDFS-2.0 and 

RDFS-3.0 approaches. Of the three types of features, first-order descriptive features demonstrated 

the smallest robustness index (RI), indicating that these features are the most robust with respect 

to variations in slice thickness, reconstruction kernel, and tube current. Furthermore, there was a 

trend of decreasing RI with increasing subimage window size and especially with increasing 

Gaussian blurring radius, indicating that features extracted at higher levels of scale were more 

robust. 

Table 6.2. Robustness index summarized by feature category, Gaussian radius, and subimage window size 

Category RDFS-2.0 RDFS-3.0 

First-order descriptive (n = 48) 0.179 (0.005) 0.220 (0.007) 

Texture-GLCM (n = 480) 0.387 (0.155) 0.482 (0.178) 

Texture-RLM (n = 264) 0.361 (0.130) 0.459 (0.178) 

   

Gaussian radius (mm) RDFS-2.0 RDFS-3.0 

0.5 (n = 198) 0.512 (0.185) 0.630 (0.236) 

1.0 (n = 198) 0.376 (0.111) 0.472 (0.130) 

2.0 (n = 198) 0.316 (0.074) 0.408 (0.087) 

4.0 (n = 198) 0.259 (0.053) 0.323 (0.058) 

   

Subimage window size (voxels) RDFS-2.0 RDFS-3.0 

9 (n = 264) 0.401 (0.156) 0.495 (0.180) 

11 (n = 264) 0.360 (0.146) 0.450 (0.180) 

13 (n = 264) 0.337 (0.142) 0.430 (0.183) 
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Figure 6.2. Result of experiment for determining appropriate Robustness Index (RI) threshold for Robustness-Driven Feature 

Selection, single fold. (a) RDFS-2.0; (b) RDFS-3.0. Dashed lines indicate range of threshold values selected for each classifier 

model. Similar trends were observed for other fold. 

 Fig. 6.2 illustrates the results of the experiment to determine an appropriate RI threshold 

for the RDFS-2.0 and RDFS-3.0 classifier models, using one fold of the cross-evaluation approach. 

Both classifier performance (according to EGM) and agreement (according to kappa) 

demonstrated a decreasing trend as feature robustness was increased (allowing less robust features 

to be included), although EGM exhibited much noisier behavior than kappa. Based on these results, 

a range of five threshold values centered at 0.325 was chosen for RDFS-2.0, and a range centered 

at 0.400 was chosen for RDFS-3.0. Similar results were obtained for the other fold. 

 The results of evaluating the RDFS-2.0, RDFS-3.0, and without-RDFS classifier models 

on the extended multi-reconstruction dataset are illustrated in Figs. 6.3 and 6.4. In summary, these 

results show that the RDFS-2.0 and RDFS-3.0 models are substantially more robust than without-

RDFS; however, they are nearly indistinguishable from each other. All three classifier models 

demonstrate similar behavior with respect to changing technical parameters. EGM and kappa both 

decrease sharply for slice thicknesses of 2.0 or 3.0 mm, although this effect is much more 

pronounced for without-RDFS. 
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Figure 6.3. Comparison of extended g-mean (EGM) for RDFS-2.0, RDFS-3.0, and without-RDFS classifier models. Each set of 

three datapoints represents one combination of technical parameters. For RDFS-2.0 and RDFS-3.0, datapoints and error bars 

indicate mean and standard deviation across five different RI thresholds. 
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Figure 6.4. Comparison of kappa measure for RDFS-2.0, RDFS-3.0, and without-RDFS classifier models. Each set of three 

datapoints represents one combination of technical parameters. For RDFS-2.0 and RDFS-3.0, datapoints and error bars indicate 

mean and standard deviation across five different RI thresholds. 
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6.5 Discussion 

Compared to RDFS-2.0, the RI values for RDFS-3.0 were higher for every category and level of 

scale (Table 6.2). This result raises an important point about the robustness index, namely that as 

a quantitative measure, the RI itself is subject to sources of variation. There are many factors that 

can influence the RI of a feature, including (but not limited to) the choice of reconstructions to 

include in the multi-reconstruction dataset; the anatomy and disease being studied; the 

demographics of the subject population; and the distribution of volumes of interest (VOIs) 

throughout the CT images. Our results indicate that including 3.0 mm slice thickness 

reconstructions increases the value of RI, and we have taken this into account by selecting different 

RI thresholds for both the RDFS-2.0 and RDFS-3.0 classifier models (Fig. 6.2). 

 The RDFS-2.0 and RDFS-3.0 classifier models are subject to variation due to the choice 

of the robustness index (RI) threshold. This variation is reflected in the standard deviations of the 

EGM and kappa scores, which are depicted as error bars in Figs. 6.3 and 6.4. The choice of RI 

threshold effectively determines how many features are retained leading into the SVMRFE step of 

the classification pipeline (Fig. 6.1). In one fold of RDFS-2.0, for example, an RI threshold of 

0.325 retains 350 features, while raising the threshold to 0.330 increases the number of retained 

features to 365 (including the same 350). With 15 additional features to choose from, SVMRFE 

may select a different subset of features, which in turn influences the behavior of the resulting 

classifier model.  

 It is significant that the robustness of the RDFS-3.0 classifier model is no better than 

RDFS-2.0. Although RDFS-3.0 incorporates additional information (in the form of 3.0 mm slice 

thickness reconstructions included in the extended multi-reconstruction dataset), this additional 

information does not result in improved classification performance or agreement. It appears that 
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no significant insight is gained by introducing 3.0 mm slice thicknesses into robustness index 

calculations. In other words, features that are robust (or nonrobust) at 2.0 mm tend to remain robust 

(or nonrobust) at 3.0 mm as well. 

 Our results show that for all three classifier models (RDFS-2.0, RDFS-3.0, and without-

RDFS), classifier performance and agreement drop sharply at 2.0 mm and especially 3.0 mm. We 

suspect that this behavior is due to the difficulty of computing 3D texture features as the image 

volume becomes increasingly non-isotropic. The CT images in the training and multi-

reconstruction datasets have sub-millimeter in-plane resolution, and all images are isotropically 

resampled to 0.5 mm voxels. This means that for the 0.6 mm and 1.0 mm slice thickness 

reconstructions, each pair of consecutive slices in the original CT image volume is longitudinally 

sampled at most two times. However, for the 2.0 mm and 3.0 mm slice thickness reconstructions, 

each slice pair is longitudinally sampled many times. Under these circumstances, there is simply 

too much loss of information due to the thicker slices. Particularly challenging are the fine textural 

patterns of pulmonary fibrosis (PF) and structural patterns of honeycombing (HC), where 

individual cysts can be smaller than 3.0 mm in size. 

 Compared to the without-RDFS classifier model, the application of RDFS substantially 

improves classification robustness. However, the fact that RDFS-3.0 did not yield any further 

improvement over RDFS-2.0 suggests that we may have reached the limit of what we can 

accomplish through robustness-improving methods alone. The decrease in performance and 

agreement between 2.0 mm and 3.0 mm is much larger than the corresponding decrease between 

1.0 mm and 2.0 mm, as Fig. 6.3 and Fig 6.4 show. Furthermore, examining the classification 

disagreements at each reconstruction for RDFS-2.0 (Fig. 6.5) reveals that the disagreements 
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become substantially more numerous at 3.0 mm. The 3.0 mm slice thickness appears to be simply 

too much for the classifier to handle. Based on these observations, we conclude that the 3.0 mm 

slice thickness is beyond the limits of acceptable input for our classifier. 

 In order to improve classification robustness with respect to the 3.0 mm slice thickness, it 

may be necessary to explore other types of features. In particular, 2D texture features may prove 

to be less sensitive to the effects of non-isotropy at thicker slices; however, this may come at the 

cost of reduced discriminative ability for the classification task. 

 One limitation of our study is that although we examined slice thickness in detail, we did 

not consider slice spacing. The extended multi-reconstruction dataset consists of CT images with 

contiguous slices, where slice spacing equals slice thickness. If the 2.0 mm and 3.0 mm images 

were reconstructed using overlapping slices, the increased longitudinal sampling might offset 

some of the information lost due to partial voluming of the thicker slices. Further research will be 

Figure 6.5. Summary of classification disagreements between reference reconstruction (noted in gray) and each other 

reconstruction for RDFS-2.0, using a robustness index threshold of 0.25. The numbers in parentheses represent the number of 

disagreements between indicated classes. For example, the top-right-most entry indicates that eight VOIs which were classified 

as NL on the reference reconstruction were instead classified as GG on the 0.6 mm, B70f, 50 mAs reconstruction. Disagreements 

consisting of fewer than three cases are not listed in the diagram. 
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necessary to understand the interaction between slice thickness and slice spacing and their effect 

on feature and classifier robustness.  

 In conclusion, using our Robustness-Driven Feature Selection framework, we have 

developed a support vector classifier that is robust to variations in slice thickness, reconstruction 

kernel, and tube current. We have demonstrated that the classifier model can handle CT images up 

to 2.0 mm in slice thickness, but not 3.0 mm. These results have implications for determining the 

limits of input for classifier-based CAD systems. 
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Appendix A. Reader agreement investigation 

A total of 4088 cubic volumes of interest (VOIs) were provided by two expert radiologists (J.G.G. 

and F.G.A.) for training, development, and evaluation of CT classifiers for fibrotic interstitial lung 

disease. These VOIs represented examples of six visually-based textural and structural classes (See 

Fig 4.1): pulmonary fibrosis (PF), ground-glass opacity (GG), honeycombing (HC), normal lung 

parenchyma (NL), airways (AIR), and vessels (VES). 

 The readers followed a two-pass independent reading paradigm. In the first pass, each 

reader independently placed VOIs throughout the lungs in regions corresponding to each of the 

above classes, assigning their VOIs with the appropriate class labels. In the second pass, each 

reader was independently presented with unlabeled copies of the other reader’s VOIs and asked to 

assign class labels according to their best judgment. At the end of this reading process, each VOI 

had two labels, one from each reader. The subset of VOIs for which the two readers provided 

identical labels was identified. Training, development, and evaluation of classifier models was 

performed on this agreement subset only. 

 Out of the original 4088 VOIs provided by the readers, 2120 were in the training dataset 

and 1968 were in the testing dataset. The two readers provided identical labels for 1798 (84.8%) 

and 1645 (83.6%) VOIs, respectively. The distributions of class labels for the VOIs are 

summarized in Fig. A.1. Of particular note is the small number of HC examples, especially in the 

training dataset. 

 Agreement between the two readers is reported in Tables A.1 and A.2. According to the 

Cohen’s kappa measure, the two readers achieved an overall agreement of 0.810 for the training 

dataset and 0.800 for the testing dataset. Kappa values for individual classes varied, with GG, HC, 

and NL below 0.800; PF between 0.800 and 0.900; and AIR and VES above 0.900. 
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Figure A.1. Distribution of VOI class labels as provided by expert readers for training and testing datasets. 

 A close examination of the confusion matrices reveals systematic differences in judgment 

between the two expert readers, particularly between certain pairs of classes. For example, when 

considering NL versus GG, Reader A tended to call NL while Reader B called GG. Similarly, for 

GG versus PF, Reader A tended to call PF while Reader B called GG. Lastly, for PF versus HC, 

Reader A tended to call HC while Reader B tended to call PF. These areas of disagreement are 

consistent with the observation that normal lung, ground-glass opacity, and fibrosis (and 

potentially honeycombing) represent a continuum of gradual change in interstitial lung disease. 

 Because of the strategy of keeping only the agreement subset of VOIs, these areas of 

disagreement are discarded, leaving only the most clear, unambiguous VOIs for classifier training 

and evaluation. The advantage of this approach is that there is no possibility of confounding the 

classifier with examples which are disputed by the expert readers. At the same time, however, the 

classifier is denied the opportunity to learn from the differences in judgment between the readers, 

leaving no insight as to how to correctly discriminate between classes inside of these “in-between” 

zones. This observation is illustrated qualitatively in Fig. A.2. 
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Table A.1. Reader agreement confusion matrices for training and testing datasets 

Training dataset 

  Reader B  

  PF GG HC NL AIR VES Total 

R
ea

d
er

 A
 PF 564 74 11 1 0 2 652 

GG 3 272 0 25 4 3 307 

HC 49 2 42 0 1 1 95 

NL 2 82 1 272 10 8 375 

AIR 3 2 0 6 294 9 314 

VES 1 4 0 5 13 354 377 

 Total 622 436 54 309 322 377 2120 

         

Testing dataset 

  Reader B       

  PF GG HC NL AIR VES Total 

R
ea

d
er

 A
 PF 433 55 10 5 3 2 508 

GG 6 266 1 10 1 0 284 

HC 54 1 115 0 0 0 170 

NL 0 120 0 206 4 3 333 

AIR 0 3 0 1 314 15 333 

VES 1 4 0 4 20 311 340 

 Total 494 449 126 226 342 331 1968 

 
Table A.2. Cohen’s kappa measures of reader agreement for training and testing datasets 

Class Training Testing 

PF 0.836 0.818 

GG 0.677 0.667 

HC 0.549 0.759 

NL 0.756 0.695 

AIR 0.911 0.916 

VES 0.926 0.912 

Overall 0.810 0.800 

 

 

Definitely NL 
NL GG PF HC 

Definitely HC 

Reader A 

Reader B 

GG HC PF NL ??? ??? ??? 

Agreement subset 

Figure A.2. Illustration qualitatively depicting the effect of discarding disagreement VOIs on the composition of the 

agreement subset. 
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Figure A.3. Screenshot of the drop-down list used by expert readers in assigning class labels to VOIs. A misclick may result in 

the assignment of an unintended class label. 

 Another area of disagreement to consider is AIR versus VES. Compared to the 

disagreements discussed previously, the number of disagreements between AIR and VES is 

relatively small. Nevertheless, this particular disagreement is significant because it is unlikely to 

arise from a difference in judgment between the two expert readers. Rather, we suspect that 

disagreements between AIR and VES arise due to user error. The labeling task calls for the reader 

to select the class label from a drop-down list, and a simple misclick can result in unintended 

assignment (Fig. A.3). The presence of user error between AIR and VES implies that other errors 

in class label assignment must exist as well. 

 Two types of misclicks can occur when assigning class labels: unintentional agreements 

and unintentional disagreements. Disagreements are less harmful to classifier training or 

evaluation because they are simply discarded under the strategy of keeping only the agreement 

subset. Agreements, on the other hand, introduce noise in the dataset. Fortunately, there are two 

reasons why unintentional agreements must be relatively rare. First, unintentional agreement can 

only occur when the two readers disagree in the first place, and we know from the base rates of 

reader agreement (84.8% and 83.6%) that this situation arises infrequently. Second, even if a reader 

intends to disagree, four out of five possible misclicks will still result in disagreement, making 

unintentional agreement still less likely. Therefore, we conclude that although the class labeling 

task is subject to user error, the impact of this error on classifier performance is minimal.  




