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1. Introduction and Motivation

The visual or graphical display of data as part of statistical analysis is commonly dated to
the late 18th century when Priestly and Playfair used graphics to illustrate their works. Since
Tukey’s influential Exploratory Data Analysis (Tukey, 1977), visual displays have become
increasingly important. Developments in computing power and graphics hardware and soft-
ware have been exploited to be able to handle and visualise datasets of a size and complexity
that would probably stun Tukey, let alone Playfair (Card, Mackinlay & Shneiderman, 1999).
The principles for good visual displays, such as those set out in Tufte’s classic The Visual
Display of Quantitative Information (Tufte, 1983) and the deployment of computing power
for the graphical display of statistical data have been focused on rapid data analysis and
interpretation.

For students, graphics may need to fulfil a different role. When data are displayed, often
it is the illustration of concepts through data rather than analysis of the data itself that is
important; the emphasis changes from information density to information clarity. Computer
packages offer powerful graphics capabilities for data analysis but learning to use the package
may distract from the central point of understanding the concepts (Nolan & Temple, 2003).
Sedig & Liang (2008) use the term visual cognitive tools (VCTs) for the “external mental aids
that maintain and display visual representations of information”, where ‘information’ here
means “structures, objects, concepts, ideas and problems” (Sedig & Liang, 2008, p. 147), not
just the data in an investigation. Graphical displays which are ideal for data analysis have to
be adapted for students in order to become an effective VCT to illustrate the actual processes
undertaken by the statistician or elucidate an underlying principle.

This paper presents a project to create a visual cognitive tool (VCT) for graphically illus-
trating the construction of the binomial and trinomial random vectors from the sum of inde-
pendent and identically distributed de Moivre random vectors in two and three dimensions.
We would like the students to understand how arithmetic in the real vector space (two and
three dimensions, in particular) allows for the constructive definition of multinomial random
vectors (binomial and trinomial, in particular) from the sum of ortho-normal basis vectors
chosen with equal probabilities – the so called de Moivre random vectors. We would like
the students to visually appreciate a set of realisations of the binomial and trinomial random
vector, the corresponding population and sample means, empirical sample frequencies, prob-
ability mass function and the geometric meaning of the binomial and trinomial coefficients.
Our VCT achieves these learning objectives by allowing the student to interact with graphi-
cal illustrations that formalise and extend Sir Francis Galton’s ideas from over 120 years ago.
Without our VCT only the top 2% of the students are able to appreciate the construction
by visualising on their own from the mathematical description of the construction given in
Models 1, 2, 3 and 4 of § 2.



The VCT is used in a second year Computational Statistics course in a three year B.Sc. degree
program at the University of Canterbury, New Zealand. This is comparable to a junior or
senior level course in a four year liberal arts Baccalaureate degree program with a major
in Mathematics and/or Statistics in the United States of America. Students are expected to
have already taken a 100 level Mathematics, Statistics, or Computer Science course. Students
use the VCT in the weekly laboratory sessions to have the constructively defined binomial
and trinomial random vectors that were covered during the two weekly lectures reinforced
through visual interactions. All necessary mathematical concepts for the appreciation of the
binomial and trinomial distributions in this project, including integer vector arithmetic in two
and three dimensions and the basic probability models are introduced earlier in the course
from first principles. Students of this “YouTube generation” generally respond well when the
mathematical, statistical and computational concepts that are traditionally communicated
in lectures using the predominant read/write style of teaching/learning are also concurrently
communicated in an interactive manner via visual cognitive tools in the weekly laboratories.

We start by revisiting Sir Francis Galton’s Quincunx. We formalise a probability model of
the Qunicunx as a binomial random vector that is obtained as the sum of independent and
identically (IID) distributed two-dimensional Bernoulli random vectors. We show how the
Quincunx can be used to demonstrate the binomial coefficient graphically with the paths
leading to an outcome. We extend the Quincunx in a natural manner to its three-dimensional
version called the Septcunx. The probability model for the Septcunx is the trinomial random
vector obtained as the sum of IID three-dimensional random vectors. Again, the trinomial
coefficient can be demonstrated graphically.

2. Sir Francis Galton’s Quincunx

We first quote the following words from Sir Francis Galton’s historic work, Natural Inheritance,
pp. 62-65, Macmillan, 1889. Here you will find the kernels behind the construction of our
Model 2, the Binomial(n, θ1, θ2) random vector (R~V) as the sum of n IID Bernoulli(θ1, θ2)
random vectors (R~Vs) of our Model 1, Bernoulli’s Weak Law of Large Numbers and the
Central Limit Theorem.

“Mechanical Illustration of the Cause of the Curve of Frequency. – The Curve of Frequency,
and that of Distribution, are convertible : therefore if the genesis of either of them can be
made clear, that of the other also becomes intelligible. I shall now illustrate the origin of the
Curve of Frequency, by means of an apparatus shown in Fig. 7, that mimics in a very pretty
way the conditions on which Deviation depends. It is a frame glazed in front, leaving a depth
of about a quarter of an inch behind the glass. Strips are placed in the upper part to act as a
funnel. Below the outlet of the funnel stand a succession of rows of pins stuck squarely into
the backboard, and below these again are a series of vertical compartments. A charge of small
shot is inclosed. When the frame is held topsy-turvy, all the shot runs to the upper end; then,
when it is turned back into its working position, the desired action commences. Lateral strips,
shown in the diagram, have the effect of directing all the shot that had collected at the upper
end of the frame to run into the wide mouth of the funnel. The shot passes through the funnel
and issuing from its narrow end, scampers deviously down through the pins in a curious and
interesting way; each of them darting a step to the right or left, as the case may be, every time



Figure 1: Figures from Sir Francis Galton, F.R.S., Natural Inheritance, Macmillan, 1889.

(a) FIG. 7, FIG. 8, and FIG. 9 (p. 63) (b) FIG. 2 and FIG. 3 (p. 38)

it strikes a pin. The pins are disposed in a Quincunx fashion, so that every descending shot
strikes against a pin in each successive row. The cascade issuing from the funnel broadens as
it descends, and, at length, every shot finds itself caught in a compartment immediately after
freeing itself from the last row of pins. The outline of the columns of shot that accumulate in
the successive compartments approximates to the Curve of Frequency (Fig. 3, p. 38), and is
closely of the same shape however often the experiment is repeated. The outline of the columns
would become more nearly identical with the Normal Curve of Frequency, if the rows of pins
were much more numerous, the shot smaller, and the compartments narrower; also if a larger
quantity of shot was used.

The principle on which the action of the apparatus depends is, that a number of small and
independent accidents befall each shot in its career. In rare cases, a long run of luck continues
to favour the course of a particular shot towards either outside place, but in the large majority
of instances the number of accidents that cause Deviation to the right, balance in a greater
or less degree those that cause Deviation to the left. Therefore most of the shot finds its way
into the compartments that are situated near to a perpendicular line drawn from the outlet of
the funnel, and the Frequency with which shots stray to different distances to the right or left
of that line diminishes in a much faster ratio than those distances increase. This illustrates
and explains the reason why mediocrity is so common.”

We will mathematically present these concepts in the sequel as a way of giving precise mean-
ings to Galton’s observations with his Quincunx and its three-dimensional extension to our
Septcunx. Then we show how our GUI interactively builds the binomial and trinomial distri-
butions from these historic devices. In the process we will animate how the sum of bivariate
Bernoulli and trivariate de Moivre random vectors yield the binomial and trinomial random
vectors, respectively.

We can relate a discrete probability model to the Quincunx. First, we need to introduce
simple random vectors (R~V), i.e. ordered pairs, ordered triples, or more generally ordered
m-tuples of random variables (X1, X2, . . . , Xm). We focus on elementary definitions needed



to define bivariate R~V obtained from a pair of random variables. Here is a simple example of
a discrete bivariate R~V that illustrates the notions of joint and marginal probabilities.

Example 1. Recall that a fair coin toss with the outcome Heads encoded as 1 and the outcome
Tails encoded as 0 is modelled by the Bernoulli(1/2) random variable (RV). Let X1 and X2

be a pair of IID Bernoulli(1/2) RVs each taking values in the set {0, 1} with the following
joint probabilities:

X2 = 0 X2 = 1
X1 = 0 1/4 1/4 1/2
X1 = 1 1/4 1/4 1/2

1/2 1/2 1

From the above Table we can read for instance that the joint probability P((X1, X2) = (0, 0)) =
1/4 and that the marginal probability P(X1 = 0) = 1/2.

By x := y we mean that x is equal to y by definition. Let us consider the natural two-
dimensional random vector (R~V) analogue in the real plane R2 := (−∞,∞)2 := (−∞,∞)×
(−∞,∞) of the Bernoulli(θ1) random variable with probability θ1 ∈ [0, 1] of realizing 1. A
natural possibility is to use the ortho-normal basis vectors in R2:

e1 := (1, 0), e2 := (0, 1) .

This representation utilises the laws of vector addition and subtraction, which are performed
component-wise, i.e. (x1, x2)±(y1, y2) = (x1±y1, x2±y2). Let 11A(x) be the indicator function
of set A, i.e. 11A(x) = 1 if x ∈ A and 11A(x) = 0 if x /∈ A.

Model 1 (Bernoulli(θ1, θ2) R~V). Given a parameter θ1 ∈ [0, 1] and θ2 = 1− θ1, we say that
X := (X1, X2) is a Bernoulli(θ1, θ2) random vector (R~V) if it has only two possible outcomes
from the set {e1, e2} ⊂ R2, i.e. x := (x1, x2) ∈ {(1, 0), (0, 1)}. The probability mass function
(PMF) of the R~V X := (X1, X2) with realisation x := (x1, x2) is:

f(x; θ1, θ2) := P(X = x) = θ1 11{e1}(x) + θ2 11{e2}(x) =


θ1 if x = e1 := (1, 0)
θ2 = 1− θ1 if x = e2 := (0, 1)
0 otherwise

.

We can write the Binomial(n, θ1) RV Y1 as a Binomial(n, θ1, θ2) R~V Y := (Y1, Y2), where
Y2 = n− Y1. The parameters θ1 + θ2 = 1 and θ1, θ2 ∈ [0, 1]. In the coin-tossing context, this
can be thought of keeping count of the number of Heads using Y1 and the number of Tails
using Y2 in an IID sequence of n tosses of a coin with probability θ1 of observing Heads. In
general, by means of the ordered pair (Y1, Y2), we keep count of the two possible outcomes
in an IID sequence of n trials. In the context of Galton’s Quincunx this amounts to keeping
count of the number of right and left turns made by each ball as it drops through n levels of
pegs where the probability of a right turn at each peg is independently and identically θ1.



Figure 2: Quincunx on the Cartesian plane. The outline of the columns of shot that accumulate
in the successive compartments approximates to the Curve of Frequency (Galton 1889).

(a) Ten samples (b) Thousand samples

Model 2 (Binomial(n, θ1, θ2) R~V). The Binomial(n, θ1, θ2) R~V Y := (Y1, Y2) is the sum of
n IID Bernoulli(θ1, θ2) R~Vs X1 := (X1,1, X1,2), X2 := (X2,1, X2,2), . . . , Xn := (Xn,1, Xn,2), as
follows:

Y := (Y1, Y2) = X1 +X2 + · · ·+Xn = (X1,1, X1,2) + (X2,1, X2,2) + · · ·+ (Xn,1, Xn,2)

=
n∑

i=1

(Xi,1, Xi,2) .

Binomial(n, θ1, θ2) R~V Y := (Y1, Y2), with Y2 = n − Y1 and θ2 = 1 − θ1, has the PMF given
by:

f((y1, y2);n, θ1, θ2) := P ((Y1, Y2) = (y1, y2); n, θ1, θ2) =
(
n

y1

)
θy1
1 (1− θ1)n−y1 ,

where, the binomial coefficient that gives the number of distinct paths from the origin (0, 0)
to the sample point (y1, y2) = (y1, n− y1) in the Quincunx of Figure 2 (with n = 10) is:(

n

y1

)
:=

n!
y1!(n− y1)!

.

In our depiction of Galton’s Quincunx in Cartesian coordinates, as done in Figure 2, the top
of the original mechanical Quincunx, the release point of each ball or shot, is mapped by a 90
degree rotation to the origin (0, 0) to conform to the standard ortho-normal two-dimensional



coordinate system. Figure 2 may be interpreted as simulations of a Binomial(n = 10, θ1 =
0.5, θ2 = 0.5) R~V as the ordered pair resulting from the culmination of sample trajectories
formed by the accumulating sum of n = 10 IID Bernoulli(θ1 = 0.5, θ2 = 0.5) random vectors
with outcomes, (1, 0), and (0, 1), according to probabilities, θ1, and θ2 = 1− θ1, respectively.
The blue stem plots and black asterisks perpendicular to and above the diagonal line, i.e. the
line connecting (0, 10) and (10, 0), are the density histogram of the samples and the PMF of
our Binomial(n = 10, θ1 = 0.5, θ2 = 0.5) R~V, respectively.

Note that with only 10 sample trajectories of 10 independent balls in Figure 2(a), the density
histogram of the samples depicted by blue stem plots are different from the PMF of the
Binomial(n = 10, θ1 = 0.5, θ2 = 0.5) R~V depicted by black asterisks. However, in Figure 2(b),
with 1, 000 sample trajectories, we can see that the stem plots are reaching the asterisks to
illustrate Galton’s observation: The outline of the columns of shot that accumulate in the
successive compartments approximates to the Curve of Frequency. The Curve of Frequency
referred to by Galton here is the PMF of the Binomial(n = 10, θ1 = 0.5, θ2 = 0.5) R~V denoted
by black asterisks and his reference to The outline of the columns of shot that accumulate in
the successive compartments is merely the outline formed by the top of our blue stem plots of
the density histograms. This phenomenon is formally known as convergence in distribution.

We can extend the Binomial(n, θ1) RV Y1 or the Binomial(n, θ1, θ2) R~V Y := (Y1, Y2) to its
multivariate extension, namely, the Multinomial(n, θ1, θ2, . . . , θk) R~V Y := (Y1, Y2, . . . , Yk).
The multinomial distribution can be thought of as the outcome from n independent and
identical trials where each trial results in exactly one of some fixed finite number k of possible
outcomes and the probability f(i) of outcome i ∈ {1, 2, . . . , k} in any one trial is θi, such
that,

∑k
i=1 θi = 1 and f(i) = 0 for each i /∈ {1, 2, . . . , k}. In other words, the multinomial

random vector parameterised by (n, θ), where, θ := (θ1, θ2, . . . , θk), is Y := (Y1, Y2, . . . , Yk),
such that, each Yi is the number of times that outcome i ∈ {1, 2, . . . , k} is observed in the n
independent and identical trials. Thus, the Binomial(n, θ1, θ2) R~V Y := (Y1, Y2) is nothing
but the Multinomial(n, θ1, θ2) R~V Y = (Y1, Y2), i.e. the binomial is the two-dimensional case
(k = 2) of the multinomial.

This description of the multinomial distribution as the general case of the binomial is, of
course, nothing new. What is less often seen is the equivalent of Model 2 (which showed how
the binomial distribution can be developed as the sum of n IID Bernoulli(θ1, θ2) R~Vs) for the
multinomial distribution. In Models 3 and 4 below we develop the multinomial random vector
as the sum of n IID de Moivre(θ1, θ2, . . . , θk) R~Vs, the natural multi-dimensional extension
of the Bernoulli(θ1, θ2) R~Vs.

Model 3 (de Moivre(θ1, θ2, . . . , θk) R~V). The PMF of the de Moivre(θ1, θ2, . . . , θk) random
vector X := (X1, X2, . . . , Xk) taking value x := (x1, x2, . . . , xk) ∈ {e1, e2, . . . , ek}, where the
ei’s are ortho-normal basis vectors in Rk is:

f(x; θ1, θ2, . . . , θk) := P(X = x) =
k∑

i=1

θi11{ei}(x) :=



θ1 if x = e1 := (1, 0, . . . , 0) ∈ Rk

θ2 if x = e2 := (0, 1, . . . , 0) ∈ Rk

...
θk if x = ek := (0, 0, . . . , 1) ∈ Rk

0 otherwise

,



where,
∑k

i=1 θi = 1.

Addition of n IID de Moivre(θ1, θ2, . . . , θk) R~Vs yields the Multinomial(n, θ1, θ2, . . . , θk) ran-
dom vector that is defined below.

Model 4 (Multinomial(n, θ1, θ2, . . . , θk) R~V). The Multinomial(n, θ1, θ2, . . . , θk) R~V Y :=
(Y1, Y2, . . . , Yk) is the sum of n IID de Moivre(θ1, θ2, . . . , θk) R~Vs:

X1 := (X1,1, X1,2, . . . , X1,k), X2 := (X2,1, X2,2, . . . , X2,k), . . . , Xn := (Xn,1, Xn,2, . . . , Xn,k) ,

as follows:

Y := (Y1, Y2, . . . , Yk)
= X1 +X2 + · · ·+Xn

= (X1,1, X1,2, . . . , X1,k) + (X2,1, X2,2, . . . , X2,k) + · · ·+ (Xn,1, Xn,2, . . . , Xn,k)

=
n∑

i=1

(Xi,1, Xi,2, . . . , Xi,k) .

Note that any realization y := (y1, y2, . . . , yk) of our R~V Y := (Y1, Y2, . . . , Yk) is in the set Y,
a (k − 1)-simplex:

y := (y1, y2, . . . , yk) ∈ Y := {(y1, y2, . . . , yk) : y1, y2, . . . , yk ∈ {0, 1, 2, . . .},
k∑

i=1

yi = n} ,

Thus y := (y1, y2, . . . , yk) is a k-dimensional non-negative integer vector whose components
sum to n and the PMF of Y is given by:

f(y;n, θ) := f(y;n, θ1, θ2, . . . , θk) := P(Y = y;n, θ1, θ2, . . . , θk) =
(

n

y1, y2, . . . , yk

) k∏
i=1

θyi
i ,

where the multinomial coefficient that gives the number of distinct paths from the origin
(0, 0, . . . , 0) to the sample point (y1, y2, . . . , yk) ∈ Y is:(

n

y1, y2, . . . , yk

)
:=

n!
y1!y2! · · · yk!

.

We can visualise the construction of the Multinomial(n, θ1, θ2, θ3) random vector as a sum
of n IID de Moivre(θ1, θ2, θ3) R~Vs via a three dimensional extension of the Quincunx called
the “Septcunx” and relate the number of paths that lead to a given trivariate sum (y1, y2, y3)
with

∑3
i=1 yi = n as the multinomial coefficient n!

y1!y2!y3! . In the Septcunx, balls choose from
one of three paths along e1, e2 and e3 with probabilities θ1, θ2 and θ3, respectively, in an IID
manner at each of the n levels, before they collect at buckets placed at the integral points
in the 2-simplex, Y = {(y1, y2, y3) ∈ Z3

+ :
∑3

i=1 yi = n}. Once again, we can visualise that
the sum of n IID de Moivre(θ1, θ2, θ3) R~Vs constitute the Multinomial(n, θ1, θ2, θ3) R~V as
depicted in Figure 3. For simplicity, in this project the multinomials used have θi = 1

k ,
i.e. each of the i ∈ {1, 2, . . . , k} outcomes of a single trial is equally likely. When k = 3, the
Multinomial(n, θ1, θ2, θ3) R~V Y := (Y1, Y2, Y3) is known a the trinomial R~V.



Figure 3: Septcunx on the Cartesian co-ordinates. One thousand simulated samples of the
Multinomial(n, θ1 = 1/3, θ2 = 1/3, θ3 = 1/3) R~V as the sum of n IID de Moivre(θ1 =
1/3, θ2 = 1/3, θ3 = 1/3) R~Vs over {(1, 0, 0), (0, 1, 0), (0, 0, 1)} with probabilities {θ1, θ2, θ3},
respectively are shown in subfigure (a) for n = 2 and in subfigure (b) for n = 10. The blue
lines perpendicular to the sample space of the Multinomial(n, θ1, θ2, θ3) R~V, i.e. the triangular
plane in R3 connecting (n, 0, 0), (0, n, 0) and (0, 0, n), are the density histogram of the one
thousand samples.

(a) Thousand Samples with n = 2 (b) Thousand Samples with n = 10

3. Visual Cognitive Tool for Quincunx and Septcunx

The VCT GUI requires a way to represent the binomial and trinomial distribution visually.
In this project, a directional travel analogy is used. The sequence of trials is represented as
a journey in which the outcome of any of the n trials is interpreted as the direction taken at
that point (out of k possible directions) and the final outcome can be interpreted in terms
of an end point of the journey in relation to the starting point. A multinomial random
vector Y := (Y1, Y2, . . . , Yk) is the summative effect of n distinct independent and identically
distributed directional movements. The direction analogy is interpreted as travel in orthogonal
directions. Thus, the multinomial random vector Y := (Y1, Y2, . . . , Yk) is considered as the
sum of n independent and identically distributed trials in which the result of any one trial is
ei, the i-th orthonormal basis vector (the k-dimensional vector where all elements except the
i-th are 0 and the i-th element is 1).

In keeping with the Quincunx approach, the GUI depicts a sample, when in motion (i.e. ac-
cumulating its trials, or the equivalent of dropping from peg to peg for the Quincunx), as
a ball. The GUI represents the ‘path’ taken by a particular sample or ball. For any trial



(or level or stage of the journey) m, such that 1 ≤ m ≤ n, a sample y = (y1, y2) can be
thought of as being at the point represented by

∑m
j=1 xj , where xj = (xj,1, xj,2) is one of

the ortho-normal basis vectors that is encoding the outcome of the j-th trial (i.e. xj is either
(1,0) or (0,1)). This point can be plotted on the two-dimensional Cartesian “(x, y)” coordi-
nates for each m = 1, 2, . . . , n and thus the ‘path’ of the sample plotted. This demonstrates
that different paths can lead to the same outcome in the sample space and provides a visual
interpretation of the binomial coefficient

(
n
y1

)
as the number of distinct paths that can lead

to the same destination point at level n, namely y = (y1, y2) = (y1, n− y1) =
∑n

j=1(xj,1, xj,2).
The model used in the project assumes that θ = (1

2 ,
1
2), i.e. in any trial, travel in either one

of the two orthogonal directions is equally likely.

The same approach can be taken when k = 3, the trinomial case, by plotting outcomes on the
three-dimensional “(x, y, z)” Cartesian coordinates. This works reasonably well and provides
a way to visualise the sample space of a Multinomial(n, θ1, θ2, θ3) R~V as (n+ 1)× (n+ 2)÷ 2
points on a 2-simplex (triangle) on a sloping plane. For the project GUI, θ = (1

3 ,
1
3 ,

1
3), i.e. in

any trial, travel in the “x”, “y” or “z” directions is equally likely. The representations on
Cartesian coordinates of the sample space for a multinomial random vector with number of
trials n = 10 are shown below in Figure 4 for k = 2 and k = 3. The three-dimensional
version of the Quincunx has been termed the Septcunx, along Galton’s Latin nomenclature
concerning the geometry of the graph structure underpinning the probability model.

(c) n=10 and k=2 (d) n=10, k=3

Figure 4: Binomial and trinomial sample spaces represented on Cartesian coordinates in (a)
and (b), respectively.

The trinomial GUI should convey information about the probability mass function (PMF),
i.e. we want to plot an outcome in the sample space in such a way that it also gives some sense
of the probability of that outcome. This is achieved by scaled orthogonal projections from
the plane containing the sample space. The length of the projection is proportional to the
PMF for that outcome and to the number of trials n. Similarly, the proportion of realisations



having a particular outcome can be represented by a version of the stem plot, or actually
drawing the projected line from the representation of the outcome on the sample space plane
and giving it a length proportional to the proportion of realisations having that outcome.
The representations on Cartesian coordinates of the sample space with PMF-scaling for a
multinomial random vector with number of trials n = 10 are shown below in Figure 5 for
k = 2 and k = 3.

(a) n=10 and k=2 (b) n=10, k=3

Figure 5: Binomial and trinomial PMF indicated by scaled orthogonal projection over the
sample space in (a) and (b), respectively.

We use screen shots of our GUI in action to illustrate the results of the project. This GUI
is available for download from http://www.math.canterbury.ac.nz/~r.sainudiin/codes/
quinseptcunx/. The Matlab source code for our GUI is included as associated files. These
files are commented to allow extensions of the GUI that are mentioned in § 5. The source
code is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0
New Zealand Licence. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nc-sa/3.0/nz/.

Figure 6 shows the Multnomial GUI in Quincunx (k = 2) mode, simulating first one and
then 20 realisations from a binomial random vector with n = 10, θ = (1

2 ,
1
2). The range of

the sample space is indicated with a light blue simplex (which is a 1-simplex or line for two-
dimensional coordinates (x, y)), and the area under the simplex is also filled in light blue. The
outcomes in the sample space, scaled as described above, are represented with a pentagram-
star and the proportion of the realisations resulting in each outcome in the sample space is
indicated with the stem plot. The ‘history path’ or trajectory of this random walk from the
origin (0, 0) to its final destination or outcome in the sample space is shown as a light grey
line below the simplex.

Analogous screenshots for the Multnomial GUI in Septcunx (k = 3) mode are shown below
in Figure 7, simulating first one and then 50 realisations from the trinomial random vector
with n = 10, θ = (1

3 ,
1
3 ,

1
3). The sample space is now the set of three dimensional non-negative

http://www.math.canterbury.ac.nz/~r.sainudiin/codes/quinseptcunx/
http://www.math.canterbury.ac.nz/~r.sainudiin/codes/quinseptcunx/
http://creativecommons.org/licenses/by-nc-sa/3.0/nz/
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(a) n = 10 and k = 2, one realisation completed (b) n = 10, k = 2, 20 realisations completed

Figure 6: The Multinomial GUI in Quincunx mode.

integer vectors that lie on the 2-simplex or triangle whose points sum to n.

(a) n = 10 and k = 3, one realisation completed (b) n = 10, k = 3, 50 realisations completed

Figure 7: The Multinomial GUI in Septcunx mode.

When the GUI is put into Septcunx mode a default viewing position is provided which angles
the view to try to maximise the three-dimensional effect that the GUI aims for. The user is
also provided with an additional control in the form of a slider bar which allows her/him to
interactively rotate the Septcunx plot through approximately 60 degrees about the vertical
axis. Figure 8 below shows the effect of rotating the view of the Septcunx using the slider.

4. Kinesthetic and Experimental Learning with Physical Models

A physical model of the Quincunx that was constructed in Ashman and Lawrence (2007)
is introduced to the students before the VCT Quincunx GUI. Students are invited to drop
a ball into the top of the Quincunx with their hands and asked to observe the effect their
drop (however carefully controlled) has on the trajectory and the final outcome of the ball.
They are asked to drop more than one ball to make comparisons between the realisations.



(a) Part-way through rotation (b) Towards the end of a rotation

Figure 8: The Multinomial GUI in Septcunx mode with n = 10, k = 3, and 50 replications
completed.

Such direct observations of balls that are released from a student’s own hands, as they are
dropping through the Quincunx, are no substitute for the VCT GUI. Since this activity
can take some time, the Quincunx is left in a freely accessible area where the students can
experiment, play and learn in their own time. The sensitivity in initial conditions during the
neuro-muscular controlled hand-release of the ball is pointed out as the source of randomness
that yields different trajectories. This is appreciated by students who have had some exposure
to dynamical systems and nonlinear differential equations.

However, formal mathematical constructions of binomial and trinomial random vectors that
are communicated in the traditional read/write style of teaching/learning can be visually
reinforced using our VCT GUIs. This interactive visual reinforcement of the mathematical
probability models by means of our visual cognitive tool GUI is the primary emphasis of this
paper.

In order to kinesthetically experience and learn a physical Septcunx lattice, students are
optionally provided with a chemistry molecule-building kit with tetrahedral-connectors and
connecting-tubes that are labelled by (1, 0, 0), (0, 1, 0) and (0, 0, 1). A physical model of the
Septcunx with balls dropping through the hollow tubes of the same length that are connected
by hollow tetrahedral junctions is possible if the angles made by the three tubes below each
junction are symmetrically obtuse as in the crystallographic model for the arrangement of
carbon atoms in diamond. This allows the balls to drop down to the next level due to gravity.
Students are invited to assemble such a physical Septcunx lattice with their own hands from
the connectors and tubes. This activity is meant to kinesthetically reinforce the visually
interactive animations and graphics encountered with the VCT Septcunx GUI.

5. Conclusion and Potential Modification

This project has explored how binomial and trinomial GUIs based on vector addition can be
used as visual cognitive tools (VCTs) to enhance student learning. The binomial and trinomial



(a) Dropping a ball into Quincunx (b) Constructing the Septcunx

Figure 9: A student is about to release her second ball into our physical Quincunx and another
is constructing the Septcunx lattice.

distributions are visually presented from their Quincunx and Septcunx constructions along
with their corresponding combinatorial coefficients as the number of distinct paths to reach a
given sample point. The project GUIs do this by adapting graphical displays in the following
ways:

• Break processes into steps with illustrations of each stage, highlighting important points;

• Allow the user to compare the effects of using different parameters;

• Allow the user controlled interaction with the data and displays;

• Provide the graphical data displays for the user so that the user is not distracted by the
mechanics of creation.

The binomial and trinomial GUI differs from the traditional visualisations which seem to be
available to students in at least five ways:



1. The GUI emphasises the underlying random vector model for the Bernoulli, binomial,
de Moivre and multinomial. This treatment is more consistent and general than the
more common presentation of the Bernoulli as a “trial” which may result in success or
failure, and then a binomial random variable as the sum of the successes in n Bernoulli
trials, and finally the introduction of a vector of outcomes when the multinomial is
described as a generalisation of the binomial to a situation where a trial may have more
than two outcomes.

2. The GUI allows the student to see how the binomial and trinomial arise as the sums of
Bernoulli and three-dimensional de Moivre random vectors, respectively. Many other
visual presentations of binomial concentrate on showing how the binomial reacts to
changes in n and p. Visualisations of the relationship of the binomial to the Bernoulli
also exist, including visualisations using the Galton Quincunx, but do not extend this to
the multinomial. In fact, visual treatments of the multinomial for students are relatively
uncommon and examples which attempt to model the multinomial as a sum of other
random variables/vectors even more so.

3. The GUI, like Galton’s Quincunx, enables the student to understand the curve of fre-
quency and hence the binomial coefficient by showing the binomial arising as the sum
of n Bernoulli random vectors. In particular, the GUI shows not just the ‘path’ of the
latest or current ball but also the ‘history paths’ of previous balls. Other visualisa-
tions of the Galton Quincunx seem only to show the latest ball. The history paths are
important in helping the student to understand how many different paths can lead to
each of the possible end results. When the trinomial version is shown, the student can
then see how naturally the two dimensional result extends to three dimensions, how the
‘bell’ (rather than curve) of frequency arises, and hence gain insight into the general
multinomial coefficient.

4. The GUI makes maximum use of human capabilities for visualising dimensionality. It
does this by mapping random vector dimensions to Cartesian coordinates (“(x, y)” for
the binomial, “(x, y, z)” for the trinomial) and then using projections from a sample
space represented as a simplex on a sloping plane (a 1-simplex or line for the binomial,
a 2-simplex or triangle for the trinomial) to represent the relative frequency of actual
realisations as well as the probability mass function. Other representations usually take
a bar-chart or histogram approach, using height to represent frequency or probability.
This approach would struggle to show both the three-dimensional nature of a trinomial
random vector and at the same time the curve of frequency, so that even if the binomial
is shown as two-dimensional random vector with a curve of frequency in the third
dimension, the trinomial cannot be presented consistently. The GUI discussed in this
paper uses a consistent presentation of the binomial and trinomial, which again allows
the student to see more clearly how these distributions are related as they arise from
random vector addition.

5. In our Binomial and trinomial models we set (θ1, θ2) = (1/2, 1/2) and (θ1, θ2, θ3) =
(1/3, 1/3, 1/3), respectively, in order to focus on the visual understanding of the simpler
equi-probable models. Once this understanding has been achieved it is possible to change
the source code of our VCT to set (θ1, θ2) and (θ1, θ2, θ3) to be arbitrary probabilities.



GUI design and human interaction technologies are specialised fields in their own right. This
project is intended as a demonstration of the potential for GUIs as VCTs, and the actual
GUIs created probably violate most if not all of the rules for good GUI design. Considerable
improvements could be made on the design of these GUIs as human/technology interfaces.
In addition, the programming could undoubtedly be improved and made cleaner and more
efficient.

The major disadvantage of the Cartesian coordinate representation is that it is not good
for representing k > 3 Multinomial R~Vs. An alternative representation which retains some
aspects of the travel/direction analogy but which can be adapted for higher dimensions is the
use of orbit plots or tours. An orbit plot uses multiple axes and projects a high-dimensional
representation into a number of low-order representations on the different axes (Young, Valero-
Mora and Friendly, 2006). This would be interesting to explore but is beyond the scope of
this project.

More ways in which the user can move and rotate the plot of trinomial outcomes could be
added to the Septcunx GUI. More emphasis could be given to the meaning of the multino-
mial coefficient

(
n

y1,y2,...yk

)
= n!

y1!y2!...yk! , possibly by tracking how many different paths in the
Cartesian representation of the multinomial can lead to each outcome.

The GUI could also be expanded, or different versions created, to illustrate other related
aspects. For example, with our GUI as a visual cognitive tool, one could emulate Galton’s
original purpose of the Quincunx as well as the Septcunx, its three-dimensional extension.
These include the Bernoulli’s Law of Large Numbers and the Central Limit Theorem. The
visually interactive animation of the Law of Large Numbers (LLN) and the Central Limit
Theorem (CLT) are possible in a mathematically rigourous manner for two and three dimen-
sions with our VCT since our constructive definitions of the binomial and trinomial random
vectors have appropriately embedded the probability models in the real Euclidean spaces of
dimension two and three. Thus we can animate fundamental definitions such as convergence
of random variables and random vectors that are needed to appreciate LLN and CLT for our
probability models, example cases of two basic asymptotic theorems in statistics.

We have also used the physical model of our Quincunx to illustrate basic likelihood concepts,
including maximum likelihood estimation of the probability of the right turn as in Ashman
and Lawrence (2007). With some additional work, one can provide a visual derivation of the
limiting Poisson approximation of the biased binomial distribution as well as an animated
interactive derivation of Pearson’s Chi-sqared distribution with 1 or 2 degrees of freedom
as done in Pearson (1900) along the arguments given in Knuth (1998) by starting from our
Model 4 with k = 2 or 3. Thus our VCT makes a significant step in the general direction
of rigourously animating special cases of fundamental statistical theorems in a visually in-
teractive fashion for students of the “YouTube” generation as encouraged by Professor David
Spiegelhalter of Statistical Laboratory, Cambridge University, on the 17th of July 2008 during
the 7th World Congress in Probability and Statistics that was held in Singapore.
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