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A B S T R A C T

Mercury (Hg) in the Arctic Ocean is a concern due to unusually high concentrations of monomethylmercury
(MMHg) in fish and marine animals. Increased human exposure from consumption of these animals is a sig-
nificant health concern that is related to Hg contamination in nature. Most Arctic marine Hg research has
investigated the amounts, distributions, and cycling in animals, snow, and ice, while few studies have examined
the aqueous behavior and fate of Hg in the polar ocean. Here we present the most comprehensive dataset
published to date detailing Hg speciation and distribution of elemental Hg (Hg0), dimethylmercury (DMHg), and
filtered and particulate total Hg and MMHg in the western Arctic Ocean. This data was obtained as part of the
U.S. Arctic GEOTRACES cruise (GN01) in 2015. Many water masses sampled appeared to be enriched with
anthropogenic Hg. The Transpolar Drift supplied HgT and Hg0 to the central Arctic Ocean, but not methylated
Hg. Gaseous Hg0, but not DMHg, was elevated in surface waters under the ice cover. Monomethylmercury levels,
which averaged 0.054 ± 0.050 pM, are lower than other major ocean basins, suggesting ambient MMHg levels
in western Arctic Ocean seawater do not by themselves explain anomalously high Hg in Arctic animals.

1. Introduction

Monomethlymercury (MMHg) is a bioaccumulating neurotoxin that,
at current environmental exposures, poses a health risk to humans
(Mergler et al., 2007) and wildlife (Scheuhammer et al., 2015). Human
exposure to MMHg is primarily from seafood consumption (Sunderland,
2007), and the rate and quantity of seafood consumed may predict
which individuals and populations are adversely affected by MMHg
exposure (Grandjean et al., 1995; Ha et al., 2017; Karagas et al., 2012;
Mahaffey et al., 2009; Mergler et al., 2007; Sheehan et al., 2014; Van
Oostdam et al., 2005). Exposures of women of child-bearing age are of
particular concern because MMHg can be maternally transferred to
their children while in utero and nursing (Mergler et al., 2007;
Oskarsson et al., 1996). Arctic populations have an increased risk of
accumulating high levels of MMHg. Concentrations of mercury (Hg),
mostly as MMHg, in Arctic animals are often greater than those in
animals of similar trophic status at lower latitudes (Dietz et al., 1998;
Dietz et al., 2009). There are contrasting hypothesis regarding the re-
lationship between MMHg accumulation and temperature. Some data

suggests Hg accumulation per trophic level is highest at low tempera-
tures (Lavoie et al., 2013), while other results indicate single organisms
accumulate more Hg at higher temperatures (Dijkstra et al., 2013).
Mechanisms responsible for exacerbated MMHg in Arctic biota are
unknown, although many factors have been hypothesized to contribute
to the complex cycling of Hg in the Arctic, including atmospheric Hg
depletion events (Lindberg et al., 2002; Schroeder et al., 1998; Steffen
et al., 2007), presence of snow pack (Kirk et al., 2006; St. Louis et al.,
2007) and sea ice (Beattie et al., 2014), potential for Hg methylation in
ice brine (Gionfriddo et al., 2016), and methylation in the stratified
polar mixed layer (Heimbürger et al., 2015; Lehnherr et al., 2011;
Schartup et al., 2015; Wang et al., 2018).

Exacerbating these unique Arctic Hg cycling mechanisms are an-
thropogenic Hg emissions. The relatively long atmospheric residence
time of Hg (~ 0.5–1 year, Horowitz et al., 2017; Slemr et al., 1985)
coupled to its tendency to re-volatize following deposition allows for
long range transport of the contaminant before it is deposited
(Fitzgerald et al., 1998; Mason et al., 2012; Slemr and Langer, 1992;
Swain et al., 1992). There are no large point sources of Hg in the Arctic,
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however, atmospheric transport of elemental Hg (Hg0) to the region is a
significant source of the metal (Outridge et al., 2008). Emissions from
human activities since the Industrial Revolution have increased Hg
deposition in the Arctic by a factor of three (Fitzgerald et al., 1998;
Fitzgerald et al., 2005). Mercury levels in Arctic animals have increased
over the same period of time, 92% of which has been attributed to
anthropogenic emissions (Dietz et al., 2009). Unlike other ocean basins,
Arctic Ocean mass balance estimates suggest that sources other than
atmospheric deposition may be important, including rivers, melting
permafrost, and exchange with the Pacific and Atlantic Oceans (Dastoor
and Durnford, 2014; Outridge et al., 2008; Soerensen et al., 2016;
Zhang et al., 2015). These sources supply Hg to the oceanic water
column, where it undergoes a complex series of biotic and abiotic re-
actions, forming dissolved Hg0, MMHg and dimethylmercury (DMHg).

A series of hypotheses have attempted to address the difference
between Hg cycling in the Arctic Ocean and other basins. Atmospheric
depletion events are unique to polar regions and are a large source of
Hg(II) to the Arctic environment (Schroeder et al., 1998; Steffen et al.,
2007). Riverine discharge provides another significant supply of Hg
entering the Arctic (Fisher et al., 2012), and both of these sources are
frequently used to explain recent biotic Hg trends. Delivery of Hg into
the Arctic Ocean is worsened by climate change and thawing perma-
frost, which supplements already substantial riverine Hg loads (Fisher
et al., 2013; Soerensen et al., 2016; Schuster et al., 2018). Warming air
and sea temperatures likely affect Hg cycling between the ocean, at-
mosphere and sea ice (Outridge et al., 2008). Ice-free waters increase
vertical mixing which brings MMHg and DMHg to the surface. After
mixing, DMHg can efflux from the surface ocean into the atmosphere
and be deposited as MMHg (Baya et al., 2015; Kirk et al., 2008; St. Louis
et al., 2007; St. Pierre et al., 2015). Mixing also brings MMHg to the
surface ocean, where it is likely to enter the food chain (Kirk et al.,
2008). And while it has not been directly addressed in the Arctic,
MMHg accumulation in temperate coastal food webs can largely be
attributed to methylation in near-shore and shelf sediments
(Hammerschmidt et al., 2004; Hammerschmidt and Fitzgerald, 2006a),
which may be important over the vast Arctic shelves.

Yet still, a lack of sufficient ocean data adjudicate these hypotheses.
To better understand Hg cycling in the Arctic Ocean, we measured
filtered gaseous Hg0 and DMHg, filtered total Hg (HgT) and MMHg, and
particulate total Hg (HgTPart) and MMHg (MMHgPart) in the western
Arctic Ocean. This U.S. GEOTRACES transect (GN01) was part of the
first large-scale effort to examine Hg speciation and distribution in the
Arctic Ocean. Contemporaneous GEOTRACES cruises were conducted
in the Canadian Arctic Archipelago and in the eastern Arctic Ocean.
Here, we present results of the U.S. GEOTRACES cruise in the western
Arctic Ocean.

2. Methods

2.1. Sampling

Water and particles were sampled between August 9th and October
12th, 2015 during the U.S. Arctic GEOTRACES (GN01) section (Fig. 1).
The section began in the Bering Sea and passed through the Bering
Strait, traversed the Makarov Basin, reached the North Pole (Eurasian
Basin), and returned southeast through the Canada Basin. Water sam-
ples were collected by deploying a trace-metal clean rosette attached to
a plastic-coated hydrowire fitted with 12-L Teflon-coated GO-Flo bot-
tles (Cutter and Bruland, 2012). Water was sampled at twenty-two full
depth stations (24 depths) and five marginal ice zone stations (MIZ, 3–5
depths). The MIZ was identified as the region where sea ice was loose
and broken. Immediately following rosette recovery, GO-Flo bottles
were transferred to a clean laboratory van, and filtered (0.2 μm Pall
AcroPak-200) without degassing into 2-L Teflon bottles for Hg0, MMHg,
and DMHg analysis (Lamborg et al., 2012); and into 0.25-L borosilicate
glass bottles for HgT analysis. Sample bottles were acid cleaned

(Hammerschmidt et al., 2011) and trace-metal clean techniques were
followed (Bishop et al., 2012). In addition to GO-Flo samples, seawater
from six stations was sampled at 1, 5 and 20m below the ice with a
pump and acid washed plastic tubing. Under-ice samples were collected
from on top of an ice floe, pumped under the protection of a tent and
upwind of the ship. Seawater collected this way was filtered (0.2 μm
Pall AcroPak-200) in a clean lab on board the ship and dispensed into
clean bottles for Hg analysis.

Suspended particles (1–51 μm) were sampled from 16 depths at 20
stations with McLane in situ pumps (Bishop et al., 2012; Whatman
QMA). Filters were subsampled in two 13mm diameter punches and
stored frozen until analysis (Bowman et al., 2015). The total volume of
filtered seawater varied between 16 and 164 L, with larger volumes
generally collected at deeper depths.

2.2. Mercury analysis

Elemental Hg, DMHg, and HgT were measured in a shipboard la-
boratory. Within two hours of collection, samples were purged with Hg-
free N2 gas to quantitatively strip Hg0 and DMHg from solution
(Bowman and Hammerschmidt, 2011). Bond Elut ENV (Agilent; Baya
et al., 2013) traps were used to concentrate DMHg from effluent up-
stream of Hg0-collecting gold traps (Bloom and Fitzgerald, 1988;
Bowman et al., 2016). Elemental Hg was quantified by dual Au-amal-
gamation cold vapor atomic fluorescence spectrometry (CVAFS; Bloom
and Fitzgerald, 1988), with a method detection limit of 0.04 pM. When
extra water was available, duplicate samples were analyzed for Hg0,
with a relative percent difference (RPD) of 14 ± 11 (n=8). In contrast
to previous U.S. GEOTRACES cruises, DMHg was not analyzed by gas
chromatographic-CVAFS; (Baya et al., 2013; Bloom, 1989; Bowman and
Hammerschmidt, 2011; Bowman et al., 2015; Bowman et al., 2016),
because the cold temperature of the compressed argon (stored on deck)
resulted in insufficient pressure in the gas chromatographic column.
Instead, DMHg was thermally desorbed from the Bond Elut traps,
thermally decomposed to Hg0, collected on an in-line Au trap, and
quantified via CVAFS. Calibration of at-sea measurements of Hg0, HgT,
and DMHg were performed with gaseous Hg0 standards. Trapping ef-
ficiency for each analytical Bond Elut trap was determined with an
ethylated MMHg standard (methylethylmercury; Bowman and
Hammerschmidt, 2011), that was validated against TORT-2 reference
material (lobster hepatopancreas, Canadian Research Council). The
method detection limit for DMHg was 0.012 pM, and duplicates aver-
aged 15 ± 5 RPD (n=4).

Seawater for analysis of total Hg was oxidized with bromine
monochloride (BrCl; Bloom and Crecelius, 1983) and neutralized with
NH2OH prior to reduction with SnCl2. Samples were quantified by dual
Au-amalgamation CVAFS (Bloom and Fitzgerald, 1988; Fitzgerald and
Gill, 1979). The method detection limit for HgT was 0.10 pM. Re-
producibility between analytical duplicates averaged 11 ± 5 RPD
(n=17).

While at sea, variable gas pressure in the gas chromatograph caused
irregular MMHg peak retention times, making it indecipherable from
the inorganic Hg peak. Accordingly, after purging Hg0 and DMHg from
the samples, samples ranging from 0.25 to 2 L were acidified to 1% with
sulfuric acid and shipped frozen to Wright State University for analysis.
Samples were thawed> 12 h in the dark at room temperature, acidity
neutralized with KOH, buffered with acetate, amended with ascorbic
acid (Munson et al., 2014), derivatized with sodium tetraethylborate,
and analyzed via flow injection GC-CVAFS (Bowman and
Hammerschmidt, 2011; Tseng et al., 2004). The method detection limit
was 0.025 pMMMHg for 0.22-L and 0.020 pMMMHg for 0.4-L samples.
Agreement between analytical replicates averaged 11 ± 8 RPD
(n=5).

Particulate samples were digested in 2 N HNO3 in a 60 °C water bath
for 12 h (Hammerschmidt and Fitzgerald, 2006b). Aliquots of the di-
gestate (5-mL) were analyzed for particulate MMHg by flow- injection
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GC-CVAFS (Bowman et al., 2015; Tseng et al., 2004). Sample mea-
surements were calibrated against similarly digested MMHg standards,
which were validated versus digestates of TORT-2 reference material
(lobster hepatopancreas, Canadian Research Council). For particulate
HgT, 2-mL aliquots of the same filter digestates were oxidized with BrCl
for> 12 h. Samples were neutralized with NH2OH, reduced with SnCl2,
and analyzed via CVAFS that was calibrated with aqueous Hg(II)
standards traceable to the U.S. National Institute of Standards and
Technology (Bloom and Fitzgerald, 1988). The estimated detection
limits for analysis of MMHgPart and HgTPart were 0.002 and 0.02 pM,
respectively, agreement between analytical replicates of HgTPart aver-
aged 7 ± 6 RPD (n=16). Insufficient volume and low sample con-
centration did not allow for MMHgPart duplicates. Statistical compar-
isons between water masses were performed with Mann-Whitney Rank
Sum Test.

3. Results and discussion

3.1. Physical oceanography

The Arctic Ocean is the smallest (1.56× 107 km2) and shallowest
(mean depth=1200m) ocean basin, characterized by broad con-
tinental shelves contributing to 53% of its area (Jakobsson, 2002). Salty
waters enter the Arctic Ocean from both sides of Greenland, while
fresher North Pacific water flows through the Bering Strait. The ocean
basin is split by the Lomonsov Ridge, separating the Canadian Basin
(max depth ~3800m) from the Eurasian Basin (max depth ~4200m;
Rudels, 2001). Subdivisions of the Canadian Basin include the Makarov
and Canada Basins, while the Eurasian Basin is subdivided into the
Nansen and Amundsen Basins.

The water column of the Arctic Ocean can be divided into three
distinct density layers. Polar Surface Water (PSW; σθ≤ 27.70) consists
of the fresh Polar Mixed Layer (PML,< 51m depth) and the halocline
(Fig. 2). The intermediate layer (27.70 < σθ > 30.444) is composed
of Atlantic Water (AW) and upper Polar Deep Water (uPDW). Deep
water (σθ > 30.444) results from slope convection and is differentiated
on either side of the Lomonsov Ridge as Eurasian Basin Deep Water
(EBDW) and Canada Basin Deep Water (CBDW; Rudels, 2001).

Circulation in the Arctic Ocean varies by depth. In surface and in-
termediate layers, rim currents dictate water movement. Surficial flow
is cyclonic in the Eurasian Basin and anticyclonic in the Beaufort Gyre
in the Canadian Basin. Atmospheric high pressure over the Beaufort Sea
drives the Transpolar Drift (TPD), which flows from the Laptev and East

Siberian Seas to the Fram Strait, along a similar path as the Lomonosov
Ridge (Rudels, 2001). The TPD bisects the Arctic, shuttling ice, Siberian
shelf and river water laden with nutrients and trace metals across the
basin and out through the Fram Strait (Barrie et al., 1998; Gordienko
and Laktionov, 1969; Klunder et al., 2012), though the exact path of the
TPD varies year to year due to the Arctic Oscillation index (Macdonald
et al., 2005). Intermediate waters move cyclonically throughout the
basin, with individual cyclonic cells in the Makarov, Canada, Nansen,
and Amundsen Basins. Similar to intermediate layers, deep water cir-
culation is also cyclonic, but the Lomonosov Ridge impedes a con-
tinuous rim current (Talley et al., 2011).

Riverine discharge to the Arctic Ocean delivers freshwater, nu-
trients, metals and carbon. Although the Arctic Ocean comprises only
1.4% of the world ocean volume (Jakobsson, 2002), it receives 11% of
global riverine discharge (Lammers et al., 2001). Pan-arctic rivers drain
22.4×106 km2 of land, an area of about one and a half times the size of
the Arctic Ocean (Lammers et al., 2001). Rivers average an annual
runoff of 3200 km3 per year, and most of their discharge (46–66%)
occurs during the spring freshet (Lammers et al., 2001; McClelland
et al., 2006). Although these data provide a good estimate of riverine
inflow, overall Arctic river discharge has increased since 1932, and is
expected to continue to increase with climate change (McClelland et al.,
2006; Peterson et al., 2002).

Sea ice differentiates the Arctic Ocean from other basins. First-year
ice forms in late summer in regions of open water, while multi-year ice
lasts year round. Multi-year ice exists in the central Arctic, Canadian
Basin and around Greenland. Outside the central Arctic, ice consists of
more first- than multi-year ice. The outer region of the first-year ice
makes up the Marginal Ice Zone (MIZ), where broken ice attenuates
wave energy, leading to upwelling, eddies, and jets. The MIZ typically
has higher rates of primary production than surrounding water (Talley
et al., 2011).

Water along the GN01 transect in the Bering Strait, Makarov and
Canada Basins is influenced by inflow from the Pacific and Atlantic
Oceans. With the exception of the TPD, surface water throughout this
section of the western Arctic Ocean originated from the Pacific Ocean,
entering through the Bering Strait as Bering Strait Modified Water
(BSMW), which is characterized as having lower salinity with increased
silicate and nutrients. Nutrient enrichment results from riverine dis-
charge and inputs from the shelf. In contrast to water from the Pacific,
Atlantic water is colder with a higher oxygen content. The surface water
sampled from above 85°N (Stations 30–43) was relatively young me-
teoric water with transport time of 0.5–1 year, and hypothesized to be

Fig. 1. Water-sampling stations along the U.S. GEOTRACES
western Arctic section (GN01). Transpolar drift (TPD) stations
denoted by red dots and marginal ice zone (MIZ) stations are
indicated with yellow triangles. Stations north of the MIZ
were ice covered, while stations south of the MIZ were ice-
free. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this
article.)
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transported to the central Arctic Ocean from the East Siberian Arctic
Shelf by the TPD (Kipp et al., 2018).

3.2. Filtered total Hg

Filtered HgT in seawater along the Arctic GN01 section ranged from
0.21 to 3.69 pM, and averaged 0.86 ± 0.45 pM among all depths and
locations (n=338; Table 1). Throughout the section, the highest
average concentrations of HgT were in the Bering Sea and Strait
(1.06 ± 0.59 pM, n=31; Fig. 3A) and over the Chukchi shelf
(1.06 ± 0.60 pM, n=47, where “shelf” stations have a water
depth < 200m). Water on the Chukchi shelf is more likely to be in-
fluenced by sediment resuspension and continental inputs, such as
thawing permafrost, of HgT as riverine input was insignificant along the
GN01 section in the Chukchi Sea.

Filtered HgT in the PML was variable, ranging from 0.41 to 2.9 pM.
There was no HgT enrichment in the ice-covered PML when compared
to surface water elsewhere in the section and sea ice (DiMento et al.,
2019). However, greater amounts of HgT were measured in the TPD
(1.36 ± 0.38 pM, n=21) than in the ice-capped PML (0.89 ± 0.27
pM n=13; p < 0.001). A relationship between HgT and fraction of
meteoric water (derived from δ18O, Fig. 4, Pasqualini et al., 2017)
suggests that HgT in Arctic meteoric water is 4.0 ± 1.7 pM. This es-
timate is within the range of HgT measurements in Arctic sea ice
(0.7–60.8 pM, unfiltered; Beattie et al., 2014) and Russian river water
(0.7–13.3 pM; Coquery et al., 1995), but less than Arctic Alaskan
rainwater (5–130 pM; Fitzgerald et al., 2005). It is unlikely that in-
creased HgT in meteoric water is due to ice melt, because δ18O values
indicate brine formation rather than freshening of the surface waters
(Pasquilini et al., 2017). Thus, if the HgT in meteoric water is not fully
explained by Arctic rivers and melting sea ice and associated snow, then
vertical mixing over the thawing East Siberian Shelf, as hypothesized by
Kipp et al. (2018) for 228Ra, may be the source of increased HgT in the
TPD.

Although Arctic deep waters (> 2000m) along the GN01 section
had increased HgT near the sediments, average concentrations were

lower than either deep Atlantic or Pacific Ocean waters (Bowman et al.,
2015; Bowman et al., 2016; Laurier et al., 2004; Mason et al., 1998;
Munson et al., 2015; Table 1). Filtered and particulate HgT increased
near the sediment at stations 14, 19, 26, 30, and 52 (Fig. 5), which
suggests some vertical mixing with an efflux of HgT from the sediment.
Similarly, aluminum concentrations were greater near the bottom, and
may also be resuspended from the sediments (Hatta and Measures,
2018). Sediments may be a localized source of HgT to deep Arctic
waters, but deep water averages remain low. Increased HgT at the se-
diment-water interface was observed in the Atlantic and Pacific oceans
(Bowman et al., 2015; Bowman et al., 2016). Bottom water HgT in the
Canada (0.58 ± 0.24 pM; n=38) and Eurasian Basins (0.50 ± 0.16
pM; n=6) did not differ significantly (p=0.442). These levels are in
marked contrast to those in young North Atlantic Deep Water
(1.04 ± 0.17 pM; Bowman et al., 2015), modified Pacific Deep Water
(1.25 ± 0.23 pM, Bowman et al., 2016), and Antarctic Bottom Water
in the Southern Ocean (1.35 ± 0.39 pM; Cossa et al., 2011). Deep
water in the Canada and Eurasian Basins was last ventilated about 450
and 240 years ago, respectively (Schlosser et al., 1997). As such, based
solely on age, these deep water masses are unlikely to contain much
anthropogenic Hg. Sinking particles may add anthropogenic Hg to these
water masses, however, due to low primary productivity, we would
expect particle-driven sinking of anthropogenic Hg to be low. Thus,
compared to other oceans, decreased particle pumping and little pol-
lution enhancement in the Arctic Ocean leads to lower HgT in deep
water.

Many of the shallow Arctic Ocean water masses within the GN01
section have the fingerprint of anthropogenic Hg. According to
Lamborg et al. (2014), water masses unaffected by anthropogenic Hg
inputs have a ratio of HgT to remineralized phosphate (Premin, Apparent
Oxygen Utilization divided by 170; Anderson and Sarmiento, 1994),
equal to 1.02×10−6. By extension, water masses with a HgT:Premin

ratio greater than 1.02×10−6 contain anthropogenic Hg. HgT:Premin

ratios in the upper Arctic Ocean are about double this ratio and suggest
that Hg emissions over the last 300 years have increased Hg con-
centrations (Fig. 6). Of the water masses sampled, BSMW

Fig. 2. Water temperature in the GN01 Arctic sec-
tion, with 0 and− 0.5 °C contour lines noted. Water
masses sampled are labeled, including: Polar Mixed
Layer (PML), Atlantic Water (AW), Canada Basin
Deep Water (CBDW), and Eurasian Basin Deep Water
(BDW). The Transpolar Drift (TPD) is also indicated,
extending from station 30 to station 43 in the surface
layer. Station numbers are indicated in grey num-
bering along the bathymetry.

Table 1
Summary of filtered and particulate species in the GN01 section, compared to average values from the Atlantic Ocean (aBowman et al., 2015, bMason et al., 1998),
Pacific Ocean (Bowman et al., 2016), Mediterranean Sea (Cossa et al., 2009), and Southern Ocean (Cossa et al., 2011).

Hg Species Mean ± SD (pM) Range (pM) n Atlantic Ocean (pM) Pacific Ocean (pM) Mediterranean Sea (pM) Southern Ocean (pM)

Total Hg 0.86 ± 0.45 0.21–3.69 338 0.89 ± 0.31a 0.78 ± 0.41 1.19 ± 0.48 1.33 ± 0.45
2.4 ± 1.6b

Hg0 0.20 ± 0.16 <DL–1.03 269 0.48 ± 0.31b 0.045 ± 0.061 – –
MMHg 0.054 ± 0.050 <DL–0.36 164 0.095 ± 0.098a 0.07 ± 0.06 – –
DMHg 0.040 ± 0.029 <DL–0.23 199 0.18 ± 0.12a 0.07 ± 0.07 – –

0.07 ± 0.04a

Particulate HgT 0.1 ± 0.1 <DL–0.75 141 0.038 ± 0.039a 0.075 ± 0.094 – –
0.035 ± 0.02b

Particulate MMHg 0.004 ± 0.003 <DL–0.011 17 0.0007 ± 0.001a 0.0007 ± 0.001 – –
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(2.8 ± 2.4× 10−6) and ATL (2.4 ± 0.5×10−6) contained more HgT
than would be expected from remineralization of pre-industrial parti-
culate matter alone. Water sampled from EBDW (1.4 ± 0.1× 10−6)

and CBDW (1.5 ± 0.2× 10−6) was above the 95% confidence in-
terval, suggesting the water masses have extra HgT. Deep waters in
both the Canada and Eurasian Basins exhibit the least amount of

Fig. 3. Filtered total Hg (HgT, A), elemental Hg (Hg0, B), monomethyl-Hg (MMHg, C), and dimethyl-Hg (DMHg, D) in the western Arctic Ocean. Dots indicate water
sample depth, and the numbers listed in the bathymetry indicate station number.
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anthropogenic impact, with ~1.4 times the amount of Hg we would
expect from remineralization alone. As previously discussed, sediment
resuspension supplies deep Arctic waters with Hg, however, it is un-
likely this process impacts the entirety of the deep water masses.

Pacific water entering the Bering Strait contains about the same
concentration of HgT leaving the Strait. Previous research from the
VERTEX (1986–1987) and IOC cruises (2002) reported unfiltered HgT
concentrations of 0.58 ± 0.37 pM and 0.64 ± 0.26 pM in North
Pacific upper water (Laurier et al., 2004). If we assume these upper
waters entered the Bering Strait without much alteration to HgT con-
tent, and compare these values to our Bering Strait upper water column
mean of 1.3 ± 0.81 pM (sum of filtered and particulate HgT), there has
not been an increase of HgT entering the Arctic Ocean from the North
Pacific over the last two decades. From concentrations measured in this
study and an estimate of Pacific inflow of 0.83 ± 0.66 Sv (Roach et al.,
1995), we estimate the range of HgT entering the Arctic Ocean from the
Bering Strait to be 4–71 kmol yr−1. This range encompasses previous
estimates of 20 kmol yr−1 (Outridge et al., 2008) and 27.5 kmol yr−1

(Soerensen et al., 2016). However, the flux of HgT into the Arctic Ocean
from the Bering Strait is small source compared to other sources
(Outridge et al., 2008; Soerensen et al., 2016).

3.3. Elemental Hg

Filtered Hg0 in the Arctic GN01 section ranged from below detection
limit (0.04 pM) to 1.03 pM, with an average of 0.20 ± 0.16 pM
(n=269; Table 1). Similar mean concentrations and ranges have been
reported for waters in the Canadian Arctic Archipelago, Nordic seas,
and central Arctic Ocean (Andersson et al., 2008; Kirk et al., 2008;
Sommar et al., 2007; St. Louis et al., 2007). Hg0 distributions had nu-
trient-type profiles in ice-free waters, similar to other oceans (Bowman
et al., 2015; Bowman et al., 2016; Cossa et al., 2011; Mason et al.,
1995), but ice-covered waters had a surface maximum, which may be
unique to polar seas (Fig. 5). Hg0 in BSMW (0.25 ± 0.19 pM, n=79)
suggests it may be transported into the central Arctic Ocean from the
Bering Strait and Chukchi shelf (Fig. 3B). It is possible that the broad
shallow shelves host microbes possessing merA, a gene responsible for
reducing Hg2+ to Hg0 (Summers and Sugarman, 1974; Summers and
Silver, 1978). Hg0 in PML (0.21 ± 0.19 pM, n=63) is similar to AW
(0.21 ± 0.15 pM, n=29), and deep waters contain lower levels.
Average amounts of Hg0 in CBDW (0.11 ± 0.06 pM, 21 ± 13% of HgT
as Hg0, n=27) and EBDW (0.13 ± 0.03 pM, 25 ± 8%, n=5) were
comparable, despite a water mass age difference of> 200 years. This is
in contrast to previous reports of decreasing Hg0 with increasing water
mass age (Bowman et al., 2015, 2016), suggesting that Hg0 loss me-
chanisms are slower in cold, and deep polar waters.

Surface waters at ice-covered stations had the highest Hg0 measured
along the GN01 section (Fig. 7). Hg0 in ice-covered surface waters
(< 21m, 0.37 ± 0.26 pM, n=17) were greater than in ice-free sur-
face waters (0.074 ± 0.050 pM, n=15; p < 0.001; Fig. 7). Similar
under-ice surface concentrations have been reported in the Arctic
(Andersson et al., 2008), and greater levels have been documented in
surface waters from the North Pacific, most likely due to a highly re-
ductive environment (Mason et al., 1998). Ice-covered waters were
supersaturated with Hg0 (230 ± 228%; DiMento et al., 2019). Hg0 was
a larger fraction of HgT (24 ± 13%, n=12) in ice-capped waters than
in ice-free waters (12 ± 11%, n=21; p=0.001). Greater levels of Hg0

under sea ice have been observed by others (St. Louis et al., 2007), and
may be due to limited gas exchange between the PML and the atmo-
sphere. It is unlikely that excess Hg0 results from photoreduction of Hg
(II), as sea ice reflects and attenuates much of the incident sunlight and
light transmittance to surface waters is low (4–11%; Nicolaus et al.,
2012). Photoreduction of Hg(II) is largely dependent on UV-B, which is
expected to attenuate more than PAR (Qureshi et al., 2010). Microbial
communities with the merA operon can reduce Hg2+ to Hg0, and have
been found in ice-covered Arctic waters (Poulain et al., 2007), however,
merA was not found in the GN01 section (Bowman et al., In prep.). This
suggests that microbial community diversity and irregular ice thickness
and cover might explain Hg0 variability at ice stations. In addition,
leads and breaks in ice cover may allow for degassing and contribute to
variable Hg0 content in the PML (Fig. 7).

Unlike HgT, the TPD did not significantly influence Hg0 in surface
waters. Ice-covered waters within the TPD did not contain more Hg0

(0.37 ± 0.30 pM, n=9) than ice-covered waters outside of the TPD
(0.35 ± 0.27 pM, n=6; p=1.0). But, if we consider the entire extent
of the TPD (< 100m) and not solely the surface waters, Hg0 is affected
by meteoric water. A correlation between the fraction of meteoric water
and Hg0 was found (r=0.78, p=0.0002), and the coefficient of de-
termination suggests the meteoric water is not the only factor influen-
cing Hg0 concentration (r2= 0.60; Fig. 4). Ice and an influx of meteoric
water influences Hg0 in ice-covered surface waters of the TPD, sug-
gesting that changes in ice cover and TPD flow path and time will
impact surface Hg0 in the Arctic Ocean.

3.4. Filtered MMHg

Monomethylmercury concentrations along the GN01 section ranged
from below detection limit (0.020 pM) to 0.36 pM, and averaged

Fig. 4. HgT, Hg0, MMHg and DMHg plotted versus the fraction of meteoric
water in the upper 100m of stations above 85°N (Stations 30–43), in the
Transpolar Drift (Pasqualini et al., 2017). The regression for MMHg is not
significant. The equation from the HgT regression line, y= 3.2569 x+ 0.7062,
can be used to extrapolate HgT content in 100% meteoric water.
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0.054 ± 0.050 pM (n=164; Fig. 3C; Table 1). Surface water MMHg
(0.064 ± 0.065 pM, n=44,< 51m) was about 30% lower than those
observed in the Canadian Arctic Archipelago (0.09 ± 0.04 pM, Baya
et al., 2015). Monomethylmercury averaged 0.047 ± 0.033 pM
(n=16) in CBDW and 0.030 ± 0.034 pM (n=4) in EBDW. Several
stations (i.e., 14, 26, 32, 48, 52, 57) had increased MMHg just above the
ocean floor (Fig. 5), suggesting mobilization from sediments may be a
source of MMHg to overlying water (Hammerschmidt et al., 2004;
Hammerschmidt and Fitzgerald, 2006a; Hollweg et al., 2010). The

fraction of HgT as MMHg and DMHg (%MeHg) averaged 12 ± 6%
(n=12) in the PML, 12 ± 9% (n=19) in the halocline, 16 ± 10%
(n=21) in AW, and 18 ± 17% (n=17) in deep water. Previous ob-
servations of unfiltered Arctic Ocean water in the central Arctic,
Beaufort Sea, and the Archipelago observed a %MeHg maximum in the
halocline (10–49%, 0.025–0.59 pM; Heimbürger et al., 2015; Wang
et al., 2012; Wang et al., 2018). Our observations of %MeHg (sum of
filtered and particulate) agree with previous reports, but we also ob-
serve a %MeHg maximum in AW (Fig. 5). An increase in %MeHg in AW
might result from its circulation and interaction with the Arctic's broad
shelves, where water masses might accumulate MeHg.

MMHg concentrations in the Arctic Ocean were unrelated to AOU,
unlike the Pacific Ocean (Bowman et al., 2016; Munson et al., 2015;
Sunderland et al., 2009), Southern Ocean (Cossa et al., 2011), and
Mediterranean Sea (Cossa et al., 2009; Heimbürger et al., 2010). The

Fig. 5. Filtered mercury species at ice-covered stations in the Makarov (26; station depth of 2864m) and Eurasian Basins (32; station depth of 4246m). Top panel
shows the upper 500m and the lower figures show full depth profiles. Left panels contain filtered total mercury, elemental mercury, middle panels show filtered
monomethylmercury and dimethylmercury, and right panels show total methylated mercury and the fraction of methylated mercury. All panels show dissolved
oxygen (black line).

Fig. 6. Filtered total mercury (HgT) measured in the western Arctic Ocean,
compared to remineralized phosphate. Bering Strait Modified Water and
Eurasian Basin Deep Water have HgT:P ratios greater than those in unaffected
water masses (HgT:P=1.02 ± 0.03), suggesting they contain anthropogenic
mercury. Canada Basin Deep Water and Atlantic Water lie within the 95%
confidence interval of the HgT:P ratio. The four grey symbols along the re-
gression line represent water masses without anthropogenic mercury (Lamborg
et al., 2014).

Fig. 7. Elemental Hg measurements at the shallowest depth sampled. The black
line indicates the average ice extent for the month of September 2015 (Fetterer
et al., 2017).
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lack of correlation is likely due to the absence of an oxygen minimum
zone, which is hypothesized to provide an anaerobic environment for
methylating bacteria. Ice coverage in the Arctic Ocean leads to variable
phytoplankton growth and activity (Arrigo and van Dijken, 2011;
Arrigo et al., 2012), which might also explain the lack of correlation
between MMHg and AOU, and also between MMHg and phytoplankton
pigment concentration. Phytoplankton blooms occur under single year
ice (Arrigo et al., 2012), but thick multi-year ice results in decreased
light and low primary production (Arrigo and van Dijken, 2011). Pri-
mary production under ice tends to be at a shallower depth than in open
water, which may explain irregularities in these biological proxies for
MMHg distribution. The AOU in the Arctic is advected from the broad,
nutrient-rich shelves, and has been linked with MMHg production over
the shelf and in the Canadian Arctic Archipelago (Lehnherr et al.,
2011). But the absence of correlation between MMHg and AOU in the
central ocean maxima may indicate in situ MMHg production, rather
than advection from the shelves (Heimbürger et al., 2015; Wang et al.,
2012).

Neither the TPD, nor ice cover affect MMHg in surface water of the
central Arctic Ocean (Fig. 3C). MMHg in the upper 20m of the ice-
covered TPD (0.069 ± 0.070 pM, n=13) and ice-covered waters
outside of the TPD (0.064 ± 0.024, n=3) were not greater than ice-
free waters (0.036 ± 0.009 pM, n=3; p=0.0.3, p=0.2, respec-
tively). MMHg in the upper 100m of the TPD did not exhibit a re-
lationship with meteoric water (Fig. 4). MMHg levels on the Siberian
Shelf are unknown, but if we assume concentrations are similar to the
Chuckchi Shelf (0.028 ± 0.007 pM, n=2), and use a demethylation
rate of 0.36 ± 0.09 d−1 (derived from polar marine waters, Lehnherr
et al., 2011), and the estimated transport time of TPD water from the
Siberian Shelf (6–12months; Kipp et al., 2018), then we would expect
all shelf derived MMHg to be decomposed before reaching the central
Arctic Ocean. The delivery of nutrients by the TPD likely fertilizes both
methylating and demethylating microbial communities, which may
result in variable MMHg that does not correlate with the fraction of
meteoric water. There is also the possibility of localized, under-ice
microbial communities which methylate Hg, which might explain
MMHg variability in the TPD.

MMHg in the western Arctic Ocean is less than the Atlantic Ocean
(Bowman et al., 2015) and similar to the Pacific Ocean (Bowman et al.,
2016; Table 1). One explanation for lower MMHg is the rate of de-
methylation in polar marine waters is relatively high (Lehnherr et al.,
2011). Thus, while Hg methylation may be active by microbial com-
munities under the ice and in the halocline, demethylation likely lowers
the steady-state concentration of MMHg and leads to low MMHg
throughout the western Arctic Ocean. Therefore, low MMHg con-
centrations in the western Arctic Ocean do not explain anomalous
MMHg concentrations in Arctic animals, and measurements from this
study suggest other regions should be studied for MMHg production
and assimilation into the food chain.

3.5. DMHg

DMHg ranged from below the detection limit (0.012 pM) to 0.23 pM
with an average concentration of 0.040 ± 0.029 pM (n=199;
Table 1). As with MMHg, DMHg concentrations were lower than those
measured in either the North Atlantic (Bowman et al., 2015) or the
eastern tropical Pacific (Bowman et al., 2016), but comparable to those
measured in the Canadian Arctic (Baya et al., 2015; Kirk et al., 2008; St.
Louis et al., 2007). The average ratio of MMHg:DMHg in the Arctic
Ocean was 2.1 ± 2.5 (n=108). The MMHg:DMHg ratio remained
relatively consistent from the upper 150m of the water column
(3.0 ± 4.0, n=33) through intermediate and deep waters (1.6 ± 1.4,
n=57; 1.7 ± 1.0, n=18). Upper water column mean values are si-
milar to North Pacific waters (Bowman et al., 2016; Hammerschmidt
and Bowman, 2012), but much less than in the North Atlantic (Bowman
et al., 2015). Meanwhile, the deep water mean ratio suggests that in the

Arctic Ocean, DMHg is not necessarily the dominant methylated species
below the thermocline, which has been found to be the case in other
oceans (Cossa et al., 1997; Mason et al., 1993; Mason et al., 1995).
DMHg concentrations were unrelated to pigment concentrations, AOU,
N* (a proxy for denitrification), and Premin. The mechanism for DMHg
production is unknown, but if the primary source of DMHg were from
MMHg methylation, low MMHg in the Arctic Ocean may limit DMHg.

Vertical distributions of DMHg in the Arctic Ocean (Figs. 3 and 5)
had a similar shape to other oceans, with a low surface water average
(0.024 ± 0.016 pM, n=21), a subsurface maximum in the halocline
(0.041 ± 0.024, n=45), and homogenized levels below 1000m, with
similar average concentrations in EBDW (0.034 ± 0.019 pM, n=6)
and CBDW (0.030 ± 0.017, n=22). The subsurface DMHg maxima is
more prominent in the Canada Basin, and may be partially due to AW
(0.041 ± 0.021 pM, n=28; Figs. 3D, 5). Atlantic Water increases in
density and circulates in a rim current, therefore it is possible the water
mass accumulates nutrients beneficial for MMHg formation from the
continental shelf, that are subsequently methylated to form DMHg.
Interactions with the shelf may also allow AW to accumulate organic
matter with reduced sulfide groups that are conducive to DMHg for-
mation (Jonsson et al., 2016). The maximum follows the 300 μmol kg−1

oxygen contour, whereas in other oceans, the DMHg maximum occurs
at depths with lower amounts of oxygen (Bowman et al., 2015, 2016).

Unlike Hg0, DMHg did not exhibit a surface maxima under sea ice in
the Arctic Ocean. As described above, the presence of sea ice prevents
degassing of Hg0, but DMHg was not observed to concentrate in water
under the ice in an analogous way. Ice likely prohibits DMHg evasion,
so some under ice processes must prevent the buildup of DMHg. Under
ice communities are either incapable of forming DMHg or demethyla-
tion rates are similar in magnitude to methylation rates. Demethylation
of DMHg may occur either via biotic processes, or photodecomposition
that leaves Hg0 either undisturbed or indistinguishable from high Hg0

concentrations under the ice, or a combination of all these processes.
The influx of young shelf water does not yield higher DMHg con-
centrations. The TPD had a negative effect on DMHg concentration, as
fraction of meteoric water and DMHg are inversely related with a
correlation coefficient of 0.69 (Fig. 4). An inverse relationship between
DMHg and meteoric water supports the idea that DMHg is more likely
to form in the marine water column as opposed to freshwater systems.

3.6. Particulate HgT

The average concentration of particulate HgT (HgTPart) along the
GN01 transect was 0.1 ± 0.1 pM (n=141; Table 1). HgTPart con-
centrations were greatest in surface waters, and declined with depth to
about 1000m, and were homogenous throughout deep waters (Fig. 8A).
Profiles and average concentrations of HgT in the Arctic Ocean are not
similar to those observed in the North Atlantic Ocean (Bowman et al.,
2015; Mason et al., 1998) and eastern tropical South Pacific Ocean
(Bowman et al., 2016; Table 1). The average for the Arctic Ocean is
greater than other oceans studied presumably due to both broad shelves
and riverine input, which supply HgTPart to the central Arctic. The
largest source of HgTPart to the Arctic Ocean is BSMW which had a
distinct shelf fingerprint consisting of tracers such as filtered Cd ex-
tending into the central Arctic Ocean (Personal communication, Lar-
amie Jensen, Texas A&M, and Laura Whitmore, University of Southern
Mississippi). Particulate HgT in BSMW (0.13 ± 0.15 pM, n=63) is
significantly greater than HgTpart in the central Arctic, including the
TPD (0.04 ± 0.04, n=33; p < 0.001). The relatively young age of
the TPD and the combined shelf and riverine source would suggest high
HgTPart concentrations in the TPD. However, HgTPart measured in the
TPD (0.09 ± 0.05 pM, n=14) is significantly lower than HgTPart in
the upper 100m outside of the TPD (0.22 ± 0.21 pM, n=37;
p=0.019). This is likely due to particles in BSMW, and those particles
were accumulated on the shelf.
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3.7. Particulate MMHg

Particulate MMHg (MMHgPart) concentrations varied widely, and
93% of samples were below the detection limit (0.002 pM). The average
concentration for MMHgPart in the Arctic was 0.004 ± 0.003 pM
(n=17), and MMHgPart constituted 0–86% of the HgTPart. Mean mea-
surements of Arctic MMHgPart are an order of magnitude greater than
mean values for MMHgPart in the North Atlantic Ocean (Bowman et al.,
2015) and the eastern tropical South Pacific Ocean (Bowman et al.,
2016; Table 1). The average from this study is likely an order of mag-
nitude greater due to the majority of samples falling below the detec-
tion limit, and thus the sample average is disproportionately weighted
by MMHgPart concentrations from shelf particles and few quantifiable
particles from the open ocean (Fig. 8B). Chukchi Shelf waters have high
MMHgPart concentrations, and are advected with BSMW into the open
ocean. These trends mirror those of HgTPart, indicating sources of par-
ticulate MMHg and HgT to the Arctic are the Bering Strait and Chukchi
Shelf. Some station profiles exhibited resuspension of MMHgPart in
nephloid layers, but the magnitude of resuspension varied depending
on the local bathymetry. The vertical distribution of MMHgPart was low
in the surface, with a subsurface maxima and homogeneous below
1000m, except for resuspension from the sediment or where water had
recently interacted with a sill.

Particulate MMHg in the TPD was below detection limit, and lower
than MMHgPart concentrations measured in the PML (0.003 ± 0.002
pM, n=4). One possible explanation for differences in concentration
might be a difference in particle lability due to the particle source, af-
fecting MMHgPart to a greater extent than HgTPart

. Settling rate of
particles from the Siberian Shelf might also be greater than that of
particles from the Chukchi Shelf.

4. Conclusions

Four species of Hg were analyzed in seawater from the Bering Sea
and Strait, Canada and Makarov Basins, and just over the Lomonosov
Ridge in the Eurasian Basin in the western Arctic Ocean. Total Hg
concentrations were the greatest in the Bering Sea and Strait and under
ice in the TPD. Elemental Hg in surface water was greater under the ice
than in ice-free waters, especially in the TPD. Methylated forms of Hg in
water were greater over the shelf compared to open ocean, and vertical
profiles exhibit a subsurface maxima in both MMHg and DMHg, neither
of which were related to either oxygen consumption or nutrient levels.
Unlike HgT and Hg0, the TPD was not a source of MMHg or DMHg to
the central Arctic Ocean. The Chukchi Shelf appears to be an important
source of particulate HgT and MMHg to the Arctic, and may be an
important part of the Arctic Hg food chain. All forms of filtered Hg in
the Arctic Ocean had lower average concentrations than found in either
the Atlantic or Pacific Oceans. Average particulate concentrations of
HgT and MMHg were greater than those in either the Pacific or Atlantic
Oceans, which was likely due to low concentrations in the open ocean,
most of which were below detection limit. By itself, low MMHg in the
western Arctic Ocean does not explain anomalously high Hg levels in
Arctic animals.
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