Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title Nuclear Data Sheets for A = 166

Permalink https://escholarship.org/uc/item/8bc009m8

Author Baglin, Coral M

Publication Date 2008-08-01

Peer reviewed

Comments Dataset for $A = 166^*$

CORAL M. BAGLIN

Nuclear Science Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720, USA

Abstract: Nuclear structure data pertaining to all known A=166 nuclides (Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt) have been compiled and evaluated, and incorporated into the ENSDF data file. This evaluation for A=166 supersedes the previous publication (E.N. Shurshikov and N.V. Timofeeva, *Nuclear Data Sheets* **67**, 45 (1992) (literature cutoff date 1 October 1990)) and the revision by C.M. Baglin of ¹⁶⁶W (literature cutoff date 16 April 2000). It includes literature available by 1 March 2008. Subsequent to the previous evaluation, ¹⁶⁶Gd has been observed for the first time and the first observations of excited states in ¹⁶⁶Tb, ¹⁶⁶Go and ¹⁶⁶Ir have been reported; also, knowledge of collective structure in ¹⁶⁶Dy, ¹⁶⁶Ho, ¹⁶⁶Er, ¹⁶⁶Th, ¹⁶⁶Yb, ¹⁶⁶Lu, ¹⁶⁶Hf, and ¹⁶⁶Ta has been considerably expanded. However, the structure suggested here for ¹⁶⁶Re is highly tentative and a further, more detailed study of α decay into (and out of) ¹⁶⁶Re could be informative.

Cutoff Date: Data received by 1 March 2008 have been evaluated.

- General Policies and Organization of Material: See the January issue of the *Nuclear Data Sheets* or http://www.nndc.bnl.gov/nds/NDSPolicies.pdf.
- Acknowledgments: The evaluator is grateful to the reviewer of this mass chain for a thorough reading of the manuscript and for constructive comments; the evaluator also thanks the XUNDL database compilers (D. Reed, M. Lee, B. Singh) for initial data entry for 10 publications.
- General Comments: Uncertainties of absolute γ -ray intensities are calculated using the method of Browne (1986Br21).

Throughout this evaluation, rotational band parameters are calculated from the standard energy equation:

 $E(J,K) = E_0 + A[J(J+1) + \delta_{K,1/2}(-1)^{J+1/2}a(J+1/2)] + BJ^2(J+1)^2$

where \mathbf{A} is given in keV, \mathbf{B} is given in eV, and the decoupling constant \mathbf{a} is dimensionless. When not explicitly stated, \mathbf{B} is assumed to be 0. The minimum number possible of the lowest energy levels was used to calculate each set of parameters, unless noted otherwise.

Theoretical conversion coefficient data are from relativistic Dirac-Fock calculations using the frozen-orbital approximation (2005KiZT).

* This work was supported by the Director, Office of Science, Office of Nuclear Physics of the U.S. Department of Energy under contracts DE-AC03-76SF00098 and DE-AC02-05CH11231.

Adopted Levels

Q(β⁻)=3360 SY; S(n)=6000 SY; S(p)=11130 SY; Q(α)=-2070 SY 2003Au03. Uncertainty in Q(β⁻), S(n), S(p), Q(α) is 600, 780, 920 and 780, respectively (2003Au03). Production: 15.5 MeV proton-induced fission of ²³⁸U; JAERI-ISOL on-line mass separation of products; plastic scin and Ge detectors for x and γ detection (2005Ic02).

¹⁶⁶Gd Levels

Comments

E(level)	Jπ	T _{1/2}	
0.0	0+	4.8 s 10	$\%\beta^{-}=100.$

 $J\pi$: g.s. of even-even nucleus. T_{1/2}: from $\gamma(t)$ in 2005Ic02.

Adopted Levels, Gammas

$$\begin{split} & Q(\beta^-)=4695 \ 70; \ S(n)=5170 \ SY; \ S(p)=8580 \ SY; \ Q(\alpha)=-1540 \ SY \ 2003Au03,2007Ha57. \\ & \text{Uncertainty in S(n), S(p), } Q(\alpha) \ is \ 220, \ 510 \ and \ 310, \ respectively \ (2003Au03). \\ & Q(\beta^-): \ 4695 \ 70 \ from \ 2007Ha57 \ (see \ also \ 2006HaZT) \ cf. \ 4830 \ 100 \ from \ 2003Au03. \ Uncertainty \ includes \ statistical \ uncertainty \ and \ 60-keV \ systematic \ uncertainty \ from \ the \ Fermi-Kurie \ plot \ method. \\ & \text{Production: } \ ^{238}\text{U}(p,F) \ E=15.5 \ MeV, \ Gas-jet \ coupled \ JAERI-ISOL \ (1996Ic01,2005Ic02). \end{split}$$

¹⁶⁶Tb Levels

Cross Reference (XREF) Flags

A $^{166}Gd\ \beta^-$ Decay

E(level) [†]	Jπ	XREF	T	Comments
0.0	(2-)‡	А	25.1 s <i>21</i>	$\beta^{-1}=100.$ T _{1/2} : weighted average of 21 s <i>β</i> (1996Ic01; β(t) and X(t)), 25.6 s 22 (2005Ic02; y(t))
$\begin{array}{rrrrr} 40.00 & 16 \\ 158.80 & 16 \\ 694.8 & 3 \\ 1015.50 & 23 \end{array}$	(–)	A A A A		J π : 40 γ not E1 to (2–); 40 γ in prompt coincidence with γ feeding the 40 level.

 $^\dagger\,$ From least-squares fit to Eq.

[‡] The g.s. configuration is likely to be $(\pi \ 3/2[411]) \otimes (v \ 1/2[521])$ based on $J\pi(g.s.)=3/2+$ for neighboring Tb isotopes and $J\pi(g.s.)=1/2-$ for the N=101 isotones ¹⁶⁹Er, ¹⁷¹Yb and ¹⁷³Hf, so $J\pi=1-$ or 2- is expected for ¹⁶⁶Tb; log $f^{lu}t<8.5$ to 2+ and (3-), log ft=6.8 (log $f^{lu}t=8.5$ 3) to 4+.

 $\gamma(^{166}Tb)$

E(level)	$_{\rm E\gamma^{\dagger}}$	$\underline{ I\gamma^{\dagger}}$	Comments
40.00	40.0 2	100	Mult.: not E1 from intensity balance at the 40 level in β^- decay.
158.80	118.8 2	100 27	
	158.8 2	100 27	
694.8	536.0 2	100	
1015.50	975.5 <i>3</i>	84 21	
	1015.5 3	100	

[†] From ¹⁶⁶Gd β^- decay.

166 Gd β^- Decay 2005Ic02

Parent ¹⁶⁶Gd: E=0.0; J π =0+; T_{1/2}=4.8 s *10*; Q(g.s.)=3360 syst; $\%\beta^-$ decay=100. Sources from ²³⁸U(p,F), E=15.5 MeV; gas-jet transport; JAERI-ISOL on-line separator; Ge detectors; measured E γ , I γ , K x ray, $\gamma(t)$, $\gamma\gamma$ coin, γ -K x ray coin.

¹⁶⁶Tb Levels

E(level) [†]	Jπ‡	T _{1/2} ‡
0.0	(2-)	21.5 s <i>21</i>
40.00 16	(–)	
158.80 16		
694.8 <i>3</i>		
1015.50 23		

 $^\dagger~$ From least-squares fit to Eq.

[‡] From Adopted Levels.

β^- radiations

Εβ-	E(level)	Ιβ-	Log ft	Comments
(2345) (2665) (3360 [†])	1015.50694.80.0	< 0 . 3	>8.5	Ιβ ⁻ : upper limit assuming transition is first-forbidden unique.

 † $\,$ Existence of this branch is questionable.

$\gamma(^{166}Tb)$

Eγ [†]	E(level)	$I\gamma^\dagger$	Comments
40.0 2	40.00	23 6	Mult.: not E1 from intensity balance at the 40-keV level.
118.8 2	158.80	22 6	
158.8 2	158.80	22 6	
536.0 2	694.8	37 12	
975.5 <i>3</i>	1015.50	84 21	
1015.5 3	1015.50	100	

[†] From 2005Ic02.

¹⁶⁶Gd β⁻ Decay 2005Ic02 (continued)

Adopted Levels, Gammas

 $\label{eq:Q(b)} Q(\beta^-) = 486.8 \ 10; \ S(n) = 7043.5 \ 4; \ S(p) = 9220 \ SY; \ Q(\alpha) = -728 \ 4 \ 2003 Au03.$ Uncertainty in S(p) is 200 (2003Au03).

¹⁶⁶Dy Levels

Cross Reference (XREF) Flags

- A ¹⁶⁵Dy(n, γ) E=thermal
- $\begin{array}{c} B & {}^{164}\text{Dy}(t,p) \\ C & {}^{118}\text{Sn}({}^{164}\text{Dy},{}^{116}\text{Sn}\gamma) \end{array}$
- $D^{-166} Tb\ \beta^-$ Decay

E(level) [†]	Jπ‡	XREF	T	Comments
0	0+	ABCD	81.6 h <i>1</i>	%β ⁻ =100.
				$J\pi$: g.s. of even-even nucleus; L(t,p)=0.
				T _{1/2} : weighted average from 81.8 h <i>2</i> (1962Gu03) and 81.46 h <i>20</i> (1963Ho15). Others: 80.2 h <i>5</i> (1960He09), 82 h (1950Bu30), 81 h (1949Ke22).
76.587 [#] 1	2 + §	ABCD		$J\pi$: E2 77 γ to 0+ g.s
253.5278 [#] 14	4 + §	ABCD		
526.9670 [#] 25	6 + §	A C		
857.163 [@] 4	(2)+	AB D		Jπ: M1(+E2) 781γ to 2+ 77; band assignment.
892.0 # 10	8 + §	С		
928.729 [@] 4	(3)+	A D		Jπ: E2(+M1) γ to 2+ 77 and to 4+ 254; band assignment.
1023.434 [@] 4	(4)+	AB		Jπ: M1+E2 770γ to 4+ 254; E2 947γ to 2+ 77; band assignment.
1029.903& 4	(2-)	A D		Jπ: γ to (3)+ 929 and to (2)+ 857 in γ band.
1095.210& 4	(3-)	AB D		
1141.266@ 13	(5+)	А		
1149a	0 +	В		$J\pi$: $L(t,p)=0$.
1180.854& 4	(4-)	Α		
1189.387 4	(2+,3,4-)	Α		Jπ: 159γ to (2-) 1030; 166γ to (4+) 1023.
1208 ^a	(2+)	В		
1274		В		E(level): for contaminated line.
1334		В		E(level): for contaminated line.
1341.0 [#] 15	10+8	С		
1351		В		E(level): for contaminated line.
1515		В		
1556		В		
1616		В		
1645		в		
1674		в		
1770		в		
1864		в		
1868.0# 18	12+§	С		
1891		В		
2029		в		
2048		В		
2069.7 3	(≤3−)	D		Jπ: log $ft \approx 5.4$ in β ⁻ decay from (1-,2-) ¹⁶⁶ Tb.
2120		в		
2183		в		
2252		в		
2311		В		
2383		В		
2467.0# 20	14+§	С		
3119.0?# 22	(16+)§	С		

† From least-squares fit to Eγ, assigning 1 keV uncertainty to Eγ data for which the authors did not state an uncertainty, except for levels observed only in (t,p) reaction.

 \ddagger Based on the systematics for band structures of the even Dy isotopes, unless otherwise noted.

\$ Established J π for the g.s. and 76 level combined with known E2 multipolarity for the J=4 to J=2 177-keV transition and a regular sequence of level energies enable the assignment of definite $J\pi$ to g.s. band members with J≤14.

[#] (A): $K\pi=0+$ band (1998Wu04). A=12.80, B=-0.0063.

[@] (B): $K\pi=2+\gamma-vibrational band$ (1988Ka44). A=12.05, B=-0.0065.

& (C): $K\pi$ =(2-) band. A=11.13, B=-0.013. Possible octupole band analogous to that in ¹⁶⁴Dy.

^a (D): $K\pi=0+$ band (1988Bu08). A=9.8 if B=0.

		_	Adopted I	.evels, Gamma	as (continued)
				γ(¹⁶⁶ Dy)	_
E(level)	$E\gamma^{\dagger}$	Iγ [‡]	Mult.§	α	Comments
76.587	76.587 1	100	E2	7.51	
253.5278	176.941 1	100	E2	0.357	
526.9670	273.439 2	100	E2	0.0859	
857.163	780.571 6	88 17	M1 (+E2)	0.0074 23	
	857.156 11	100 22	[E2]	0.00422	
892.0	365 [#]				
928.729	675.218 9	13.7 27	E2(+M1)	0.011 4	
	852.128 8	100 19	E2(+M1)	0.0061 18	
1023.434	769.907 <i>6</i>	100 21	M1 + E2	0.0077 24	
	946.850 15	65 13	E2	0.00341	
1029.903	101.175 1	4.4 8	[E1]	0.299	Iy: from (n,γ) E=thermal. Other I (101γ) :I (173γ) =13 4:100 13 in β^- decay.
	172.738 1	100 10	[E1]	0.0716	
1095.210	166.479 3	738	[E1]	0.0789	
	238.062 4	100 10	[E1]	0.0309	
1141 . 266	614.302 26	9.6 17			
	887.734 15	100 21			
1180. 854	85.644 2	1.6 8			
	157.421 3	12.3 8			
	252.124 3	100 10			
1189. 387	94.178 1	2.8 18			
	159.492 4	5.5 9			
	165.95 1	17.4 18			
	260.652 2	100 9			
1341 . 0	449#	100			
1868.0	5 2 7 [#]	100			
2069.7	1039.8 <i>3</i>	100			Ey: from β^- decay.
$2\ 4\ 6\ 7\ .\ 0$	599 [#]	100			
3119.0?	652 ^{#@}	100			

Branching from β^- decay is in good agreement with that from (n, $\!\gamma\!).$

§ From subshell ratios and/or α (K)exp in (n, γ) E=thermal. # From ¹¹⁸Sn(¹⁶⁴Dy,¹¹⁶Sn γ); uncertainty unstated by authors.

[@] Placement of transition in the level scheme is uncertain.

$^{166}_{66}$ Dy₁₀₀-3

Adopted Levels, Gammas (continued)

Level Scheme

Intensities: relative photon branching from each level

$^{166}Tb~\beta^{-}$ Decay 1996As05,1996Ic01

Parent ¹⁶⁶Tb: E=0.0; $J\pi$ =(2-); $T_{1/2}$ =25.1 s 21; Q(g.s.)=4695 70; $\%\beta^-$ decay=100. 1996As05: ¹⁶⁶Tb produced from ²³⁸U(p,F), E(p)=16 MeV; on-line isotope separator coupled to gas-jet transport system; plastic scintillator β detector, low-energy photon spectrometer (FWHM=0.61 keV at 122 keV), HPGe detector (FWHM=1.8 keV at1.33 MeV); measured Ey, Iy, singles β and γ spectra, β - γ coin, $\gamma\gamma$ coin, $T_{1/2}$ from $\beta(t)$, $\gamma(t)$, $\beta\text{-gated}\ K\ x\ ray(Dy)(t).$ See 1996Ic01 for preliminary report of these data.

¹⁶⁶Dy Levels

E(level))†	$J\pi^{\ddagger}$
0.0		0+
76.58	6	2 +
253.71	22	4 +

¹⁶⁶Tb β⁻ Decay 1996As05,1996Ic01 (continued)

¹⁶⁶Dy Levels (continued)

E(level) [†]	_Jπ [‡]
856.99 19	(2)+
928.48 20	(3)+
1029.76 20	(2-)
1094.6 3	(3–)
2069.6 4	(<3-)

[†] From least-squares fit to Εγ.
[‡] From Adopted Levels.

β^- radiations

Eβ-		E(level)	Ιβ-‡	Log ft	Comments
(2630	70)	2 0 6 9 . 6 1 0 9 4 . 6 2 5 3 . 7 1 7 6 . 5 8 0 . 0	25 <i>15</i>	5.43	av $E\beta = 1039$ 32.
(3600	70)		12 <i>7</i>	6.33	av $E\beta = 1481$ 32.
(4440	70)		9 <i>5</i>	8.461u25	av $E\beta = 1840$ 32.
(4620	70)		41 <i>24</i>	6.23	av $E\beta = 1948$ 33.
(4700§	70)		< 57 [†]	>6.1	av $E\beta = 1948$ 33.

† 7% +50-7 (1996As05).

Absolute intensity per 100 decays.
§ Existence of this branch is questionable.

γ(¹⁶⁶Dy)

Iv normalization: from $\%(173\gamma)=26$ 13 (1996As05).

Eγ	E(level)	$I\gamma^{\dagger}$ §	Mult.‡	α	Comments
76.58 <i>6</i>	76.58	33 <i>5</i>	E2	7.52	$\alpha(K)=2.01$ 3; $\alpha(L)=4.24$ 7; $\alpha(M)=1.018$ 15; $\alpha(N+)=0.255$ 4. $\alpha(N)=0.228$ 4; $\alpha(O)=0.0271$ 4; $\alpha(P)=8.59\times10^{-5}$ 13.
101.29 11	1029.76	13 4	[E1]	0.298	$\alpha(K)=0.249$ 4; $\alpha(L)=0.0386$ 6; $\alpha(M)=0.00846$ 13; $\alpha(N+)=0.00219$ 4. $\alpha(N)=0.00192$ 3; $\alpha(O)=0.000262$ 4; $\alpha(P)=1.150\times 10^{-5}$ 17.
166.04 17	1094.6	176	[E1]	0.0795	$\alpha(K)=0.0669 \ 10; \ \alpha(L)=0.00984 \ 14; \ \alpha(M)=0.00215 \ 3; \ \alpha(N+)=0.000564 \ 8.$
172.75 11	1029.76	100 13	[E1]	0.0716	$\alpha(N) = 0.000492 \ 7; \ \alpha(O) = 6.87 \times 10^{-5} \ 10; \ \alpha(P) = 3.31 \times 10^{-6} \ 5.$ $\alpha(K) = 0.0603 \ 9; \ \alpha(L) = 0.00884 \ 13; \ \alpha(M) = 0.00193 \ 3; \ \alpha(N+) = 0.000506 \ 8.$ $\alpha(N) = 0.000442 \ 7; \ \alpha(O) = 6.18 \times 10^{-5} \ 9; \ \alpha(P) = 3.00 \times 10^{-6} \ 5.$
					16 (19) 10 (19) 10 (10) 10 (10) 10 (10) 10 (10) 10 (10) 10 (19) (19) (19) (19) (19) (19) (19) (19)
177.13 21	253.71	25 7	E2	0.356	$ \begin{array}{l} \alpha(\mathbf{K}) = 0.227 \ \ 4; \ \alpha(\mathbf{L}) = 0.0989 \ \ 15; \ \alpha(\mathbf{M}) = 0.0233 \ \ 4; \ \alpha(\mathbf{N}+) = 0.00592 \ \ 9. \\ \alpha(\mathbf{N}) = 0.00526 \ \ 8; \ \alpha(\mathbf{O}) = 0.000658 \ \ 10; \ \alpha(\mathbf{P}) = 1.054 \times 10^{-5} \ \ 16. \end{array} $
238.2 5	1094.6	27 12	[E1]	0.0309	$\alpha(\mathbf{K}) = 0.0261 \ 4; \ \alpha(\mathbf{L}) = 0.00374 \ 6; \ \alpha(\mathbf{M}) = 0.000817 \ 13; \alpha(\mathbf{N}+) = 0.000215 \ 4. \alpha(\mathbf{N}) = 0.000187 \ 3; \ \alpha(\mathbf{O}) = 2.65 \times 10^{-5} \ 4; \ \alpha(\mathbf{P}) = 1.346 \times 10^{-6} \ 20$
780 5 3	856 99	65 15	M1(+E2)	0 0074 23	$a(1) = 0.0001070, a(0) = 0.00 \times 10^{-1}, a(1) = 1.040 \times 10^{-1} 0.0001070$
851.8 3	928.48	23 9	E2 (+M1)	0.0061 18	
857.0 3	856.99	74 20	[E2]	0.00422	
1039.8 <i>3</i>	2069.6	97 26			

[†] Photon intensity relative to $I(173\gamma)=100$ 13. On this scale, I(Dy K x ray)=69 5 (1996As05).

[‡] From Adopted Gammas.
 [§] For absolute intensity per 100 decays, multiply by 0.26 13.

$^{166}\text{Tb}\ \beta^-$ Decay 1996As05,1996Ic01 (continued)

¹¹⁸Sn(¹⁶⁴Dy,¹¹⁶Snγ) 1998Wu04

E=790 MeV; GAMMASPHERE array (100 Ge detectors); CHICO array of position-sensitive avalanche counters (to detect both Dy-like and recoiling Sn-like particles); measured Ey, yy coin.

¹⁶⁶Dy Levels

E(level) [†]	Jπ‡	Comments
0.0 [§]	0+	
76.6 [§]	2 +	E(level): rounded value from Adopted Levels.
253.6 [§]	4 +	
527.6 [§]	6+	
892.6 [§]	8+	
1341.6 [§]	10+	
1868.6 [§]	12+	
2467.6§	14+	
3119.6?§	(16+)	

 $^\dagger\,$ From Ey assuming E=76.6 from Adopted Levels for the first excited state.

[‡] Authors' values based on apparent band structure. § (A): $K\pi$ =0+ g.s. band.

$\gamma(^{166}Dy)$

$E\gamma^{\dagger}$	E(level)
177	253.6
274	527.6
365	892.6
449	1341.6
527	1868.6
599	2467.6
652 [‡]	3119.6?

[†] From 1998Wu04; uncertainty unstated by authors.

[‡] Placement of transition in the level scheme is uncertain.

¹¹⁸Sn(¹⁶⁴Dy,¹¹⁶Snγ) 1998Wu04 (continued)

(A) Kπ=0+ g.s. band.

 $^{16\,6}_{6}\mathrm{Dy}_{100}$

¹¹⁸Sn(¹⁶⁴Dy,¹¹⁶Snγ) 1998Wu04 (continued)

¹¹⁸Sn(¹⁶⁴Dy,¹¹⁶Snγ) 1998Wu04 (continued)

¹⁶⁴Dy(t,p) 1988Bu08

1988Bu08: E=17 MeV; 98.43% ¹⁶⁴Dy target; Enge split-pole magnetic spectrograph with photographic emulsions (FWHM=15-20 keV); measured E(level), angular distributions (θ(lab)=7.5° to 67.5° in 7.5° steps), differential cross section.

¹⁶⁶Dy Levels

E(level)	$J\pi^\dagger$	$\underline{L^{\ddagger}}$	$d\sigma/d\Omega(30^\circ)~\mu b/sr^{\mbox{\$}}$	Comments
0.0#	0+	0	220	$J\pi$: from L=0.
77#	2 +		17	
254 #	4 +		12	
858 [@]	2 +		4	
1024@	(4+)		11	
1096			3	
1149&	0 +	0	31	$J\pi$: from L=0.
1208&	(2+)		3	
1274				$d\sigma/d\Omega(30^\circ)$ µb/sr: obscured.
1334				$d\sigma/d\Omega(30^{\circ})$ µb/sr: obscured.
1351				$d\sigma/d\Omega(30^\circ)$ µb/sr: obscured.
1515			4	
1556			26	
1616			4	
1645			2	
1674			2	
1770			6	
1864			4	
1891			5	
2029			10	
2048			7	
2120			15	
2183			2	
2252			8	
2311			10	
2383			5	

 $^\dagger\,$ Authors' suggested values based on observed $\sigma(\theta),$ and deduced band structure, except as noted.

‡ From DWBA analysis of angular distributions.

§ $d\sigma/d\Omega(30^{\circ}) \ \mu b/sr$; uncertainty $\approx 20\%$.

(A): $K\pi = 0 + band$.

[@] (B): $K\pi=2+\gamma-vibrational$ band.

& (C): Possible $K\pi=0+$ band.

¹⁶⁵Dy(n,γ) E=thermal 1990Ka21,1988Ka44

Other: 1965Sc09.

1990Ka21: ¹⁶⁴Dy target; bent-crystal diffraction spectrometer. See also 1988Ka44, 1984KeZV, 1983KeZS.

¹⁶⁶Dy Levels

E(level) [†]	$J\pi^{\ddagger}$	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡
0.0§	0+	928.736# 4	(3)+	1180.858 [@] 4	(4-)
76.587 [§] 1	2 +	1023.437# 4	(4)+	1189.390 4	(2+,3,4-)
253.5280 [§] 14	4 +	1029.894@ 4	(2-)	(7043.5 4)	3+,4+&
526.9672 [§] 25	6+	1095.213@ 4	(3-)		
857.156 # 4	(2)+	1141.266# 13	(5+)		

[†] From least-squares fit to $E\gamma$.

‡ From Adopted Levels.

§ (A): $K\pi = 0 + g.s.$ band.

(B): $K\pi=2+\gamma$ -vibrational band (1988Ka44).

@ (C): $K\pi = (2-)$ band.

& s-wave capture by $7/2 + {}^{165}$ Dy.

$\gamma(^{166}Dy)$

$E\gamma^\dagger$	E(level)	Iγ‡	Mult.§	α	Comments
76.587 1	76.587	113 25	E2	7.51	Mult.: L1/L2=0.095 12, L1/L3=0.080 12 (1983KeZS).
85.644 # 2	1180.858	2 1			
$94.178^{\#}$ 1	1189.390	3 2			
101.175 ^{@c} 1	1029.894	6 1	[E1]	0.299	
157.421# 3	1180.858	15 1	. ,		
159.492# 4	1189.390	6 1			
165.950 10	1189.390	19 2			
166.479 3	1095.213	73 8	[E1]	0.0789	
172.738 1	1029.894	137 13	[E1]	0.0716	
176.941 1	253.5280	801 86	E2	0.357	Mult.: L1/L2=0.56 2 (1984KeZV); α(K)exp=0.26 12 (1983KeZS).
238.062 4	1095.213	100 10	[E1]	0.0309	
252.124 3	1180.858	122 12			
260.652 2	1189.390	109 10			
273.439 2	526.9672	208 20	E2	0.0859	Mult.: L1/L2=1.04 8 (1984KeZV).
614.302# 26	1141.266	11 2			
x662.455 11		72 14			
675.218 9	928.736	71 14	E2(+M1)	0.011 4	Mult.: α(K)exp=0.0064 11 (1984KeZV).
769.907 <i>6</i>	1023.437	189 39	M1 + E2	0.0077 24	Mult.: α(K)exp=0.0050 5 (1984KeZV).
780.571 6	857.156	203 40	M1 (+E2)	0.0074 23	Mult.: α(K)exp=0.0043 5 (1984KeZV).
852.128 8	928.736	520 100	E2(+M1)	0.0061 8	Mult.: α(K)exp=0.0037 4 (1984KeZV).
857.156& 11	857.156	231 50	[E2]	0.00422	
887.734 15	1141.266	115 24			
946.850 15	1023.437	122 24	E2	0.00341	Mult.: α(K)exp=0.0024 4 (1984KeZV).
^x 953.810 ^a 26		77 16			
^x 1225.25 ^a 4		187 39			
x1256.62a <i>15</i>		261 77			Eγ: 1988Ka44 show Eγ=1256.10 <i>9</i> (assigned to ¹⁶⁵ Dy by 1990Ka21) but give an Iγ value that matches that for the 1256.6γ in 1990Ka21. The evaluator assumes that the wrong Eγ was listed in 1988Ka44.
^x 1570.60 ^a <i>13</i>		77 18			
6789.6 ^b 4	(7043.5)				
6968.0 ^b 10	(7043.5)				

[†] From 1990Ka21, except as noted.

 ‡ Photon intensity per 1×10⁵ neutron captures in ¹⁶⁴Dy. From table 2 of 1990Ka21. Values from 1988Ka44 differ slightly, but

evaluator presumes that the data in 1990Ka21 supersede those in 1988Ka44.

From ce data in 1983KeZS and 1984KeZV; authors normalized their α (K)exp data assuming α (K)(E2 theory)=0.0035 for the 857 γ .

[#] From list of unassigned and unplaced γ 's from 164 Dy(n, γ) E=thermal (1990Ka21, table 2).

 $^{@}$ 1990Ka21 place this γ from a 1482 level in 165 Dy; however, a γ of this energy is expected in 166 Dy accompanying the 173 γ from

the 1030 level, as in 166 Tb β^- decay. The evaluator, therefore, tentatively places it from the 1030 level of 166 Dy.

& $E\gamma=857.146$ 11 in 1988Ka44 is presumed to be a misprint.

Footnotes continued on next page

¹⁶⁵Dy(n,γ) E=thermal 1990Ka21,1988Ka44 (continued)

$\gamma(^{166}Dy)$ (continued)

^a Unplaced and unassigned in table 2 of 1990Ka21 but attributed to ¹⁶⁶Dy in 1988Ka44.
 ^b From 1983KeZS. Only two primary gammas are reported; I(6968)/I(6790=0.4.

^c Placement of transition in the level scheme is uncertain.
 ^x γ ray not placed in level scheme.

¹⁶⁵Dy(n,γ) E=thermal 1990Ka21,1988Ka44 (continued)

¹⁶⁵Dy(n,γ) E=thermal 1990Ka21,1988Ka44 (continued)

Level Scheme

Intensities: I γ per 100 neutron captures in $^{164}\text{Dy}.$

 $^{16\,6}_{6}\mathrm{Dy}_{100}$

Adopted Levels, Gammas

$Q(\beta^{-})=1854.7 \ g; \ S(n)=6243.64 \ 2; \ S(p)=6747.9 \ g; \ Q(\alpha)=180 \ 40 \ 2003Au03.$

¹⁶⁶Ho Levels

Cross Reference (XREF) Flags

	A ¹⁶⁵ Ho(n B ¹⁶⁷ Er(t, C ¹⁶⁵ Ho(n	a,γ) E=thermal α) μγ) E=2 keV		Е ¹⁶⁶ Dy β ⁻ Decay F ¹⁶⁷ Er(d, ³ He) G ¹⁶⁶ Ho IT Decay (185 μs)
	D ¹⁶⁵ Ho(d	,p)		H 165 Ho(n, γ) E=thermal: $\gamma\gamma$ Coin
E(level) [†]	Jπ	XREF	T _{1/2}	Comments
0.0#	0 -	AB E GH	26.824 h 12	$\%\beta^{-}=100.$
				$\begin{split} & T_{1/2}: \text{ weighted average of } 26.74 \text{ h } 5 \text{ (1966Da04)}, 26.79 \text{ h } 3 \\ & \text{ (1968Ne02)}, 26.83 \text{ h } 3 \text{ (1974Ry01)}, 27.00 \text{ h } 4 \text{ (1976Ra32)}, \\ & 26.827 \text{ h } 5 \text{ (1989Ab05)}, 26.794 \text{ h } 23 \text{ (2002Un02}; \text{ supersedes} \\ & 26.7663 \text{ 44} \text{ (1994Co02 and 1992Un01)}). \text{ Others: 1946Bo25}, \\ & 1949Co15, 1949Gr01, 1950An12, 1958Co76, 1963Fu17, 1963Ho15. \\ & J\pi: J \text{ measured by atomic beam (if } J > 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
5.969& 12	7 –	AB D F	1.20×10^3 y 18	$\beta^{-}=100.$
				 μ=3.60 5 (1980Al34); Q=-3 3 (1981Ma43). Jπ: cross section fingerprint at 3 angles for 3 band members in (d,p) and (d,³He). E(level): calculated by 1978Ba78.
54 2201# 7	2	ARCD ECH	2 44 pc 12	T _{1/2} : from 1965Fa01. Other: 1952Bu18. μ, Q: from static nuclear orientation. Other μ: 3.60 <i>16</i> (1981Kr12), 3.65 <i>13</i> (1981Ma43) from static nuclear orientation.
J4.2371 /	2 -	ADED FGI	3.44 115 12	$μ = +0.006 \ H^{2} (1973 Bard).$ μ: from IPAC. Jπ: E2 54γ to 0 - g.s. T _{1/2} : from ¹⁶⁶ Dy β ⁻ decay.
82.4707 [@] 20	1 -	ABCD F H	≤ 0.3 ns	$T_{1/2}$: from ¹⁶⁶ Dy β ⁻ decay. Jπ: M1 82γ to 0- g.s.
137.729 ^{&} 13	8 -	AB D F		J π : from σ fingerprint in (d,p) and (t, α).
171.0738 [@] 12	3 –	ABCD FGH		J π : M1 117 γ to 2– 54; (d,p) cross section fingerprint.
180.467 [#] 3	4 -	ABCD F H		J π : E2 126 γ to 2– 54; (d,p) cross section fingerprint.
190.9021 ^a <i>20</i>	3+‡	A CD FGH	185 μs <i>15</i>	%1T=100. J π : E1 137 γ to 2- 54; E1 20 γ to 3- 171; (d, p) cross section fingerprint. T _{1/2} : from 1965Bj03. Others: 214 µs 10 (1960Al27); 158 µs 14 (1964KaZZ): 207 µs (1965Mc03): see also 1961Kr01. 1962En04.
260.6625 ^a 23	4 + ‡	A CD H	≤ 0.5 ns	J π : M1 707 to 3+ 190; (d, p) cross section fingerprint. T _{en} : from (n, r) E=thermal.
263.7876 ^b 24	5 +	ABCD F H	≤0.5 ns	$J_{1,2}$: Constant (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
286.96 ^{&} 13	9 -	AB D F		T_{12}^{2} (rota (a,)) of the matrix XREF: D(287.5).
295.085 ^c 9	(6)+	A D F	1.10 ns 15	$J\pi$: E1 289 γ to 7- 6; J=(6+) from σ in (d,p).
296.8 12	(1-,6-)	С		$J\pi$: from (n, γ) E=2 keV. E(level) from (d ³ He)
329.774 [@] 4	5 –	ABCD F H		J π : (M1) 149 γ to 4-181; J π =(2- or 5-) from (n, γ) E=2 keV; (d,p) cross section fingerprint.
348.257 ^a 3	5 +	A CD F H		J π : M1(+E2) 88 γ to 4+ 261; (d,p) cross section fingerprint.
371.985 ^d 3	4 + ‡	A CD H	≤ 0.2 ns	$J\pi \colon (d,p)$ cross section fingerprint; $M1(+E2)$ $\gamma's$ to $4+$ 261 and 5+ 264.
373.092 <i>8</i>	(1)-	A H	≤0.2 ns	$T_{1/2}$: from (n,γ) E=thermal. J π : M1 291 γ to 1- 82; fit to a band.
375.3 14	(6+)	b F		$T_{1/2}$: from (n, γ) E=thermal. XREF: F(380.2).
				$J\pi$: from σ in (t, α) .
377.806# 4	(6-)	Ab d		E(level): from (t, α). J π : (E2) 197 γ to 4- 180; continuation of 2- band.

¹⁶⁶Ho Levels (continued)

E(level) [†]	Jπ	XREF	T _{1/2}	Comments
379 547b 1	6+	A d		In: hand assignment
381 23 16	0+	n u		Jw. band assignment.
416 086D 6	2_	лс н	<0 2 ns	I_{π} : M1 334v to 1 - 82: M1 245v to 3 - 171
410.0001 0	2 -	АС П	20.2 113	F(level): from (d p)
				T = from (n, y) E-thermal
423 651 ^C 10	(7+)	A D		$I_{1/2}$. Hom (H,)) E-cherman.
426 025 ¹ 6	1+	A DF		I_{π} : log f_{t-5} 1 from 0+
430 031g <i>4</i>	2+	ABC FH	<02 ns	$I\pi$: M1 239v to 3+: I=2 from v(A) for primary feeding level
100.001- 1	2		20.8 115	$T_{1,0}$: from (n, γ) E=thermal.
431.239 ^r 6	(5) -	А		$J\pi$: 425y to 7-6: E1 167y to 5+264; band assignment.
453.771 ^a 4	(6) +	A D F H		$J\pi$: M1(+E2) 106 γ to (5)+ 348; fit to a band.
464.501 ⁱ 6	2 +	A CD		$J\pi$: M1(+E2) 38 γ to 1+ 426; (d,p) cross section fingerprint.
470.841 ^d 3	5 +	A CD		$J\pi$: M1, E2 99 γ to 4+ 371; (d,p) cross section fingerprint.
475.680P 7	(3) –	A CD H	≤0.2 ns	$J\pi$: M1 305 γ to 3-171; 103 γ to (1)-373; fit to a band.
				$T_{1/2}$: from (n, γ) E=thermal.
481.846g 4	3+	ABC F H	≤0.2 ns	XREF: H(483.1).
				J π : (d,p) cross section fingerprint; J=3,4 from 5761 $\gamma(\theta)$ in
				(pol n,γ) E=thermal.
				$T_{1/2}$: from (n, γ) E=thermal.
514.362 ^b 7	(7+)§	AB D		A / 10/
521.982 ⁱ 6	3+	A CD H		$J\pi$: (d,p) cross section fingerprint.
529.816 ^r 8	(6-)	Α		Jπ: 267γ to 5+ 264; 524γ to 7- 6; 99γ to (5-) 431; band
				assignment.
543.672 ^h 4	2 -	A C H		Jπ: E2 544γ to 0- g.s.
547.934g 5	4 +	ABCD F H		$J\pi$: (d,p) cross section fingerprint; (M1) 199.7 γ to 5+ 348.
557.65 [@] 7	(7-)	AB		$J\pi$: continuation of 0- band; σ in (t,α) .
558.571 ⁿ 4	4 +	A CD F		$J\pi$: J=4 from $\gamma(\theta)$ for primary γ feeding this level in (pol
				n, γ); M1(+E2) 210 γ to 5+ 348.
562.890P 7	4 -	A CD H		Jπ: M1 392γ to 3- 171; M1 233γ to 5- 329.
567.624 ^f 7	(1+)	A D		$J\pi$: γ 's to 1+,(2+), (1)-, energy fit to the band.
577.208 ^a 7	7 +	A D		$J\pi$: (d,p) cross section fingerprint.
588.083d 7	6 +	A D		$J\pi$: (d,p) cross section fingerprint.
592.501 <i>9</i>	(3+)	ABCD F H		$J\pi$: (3,4+) from (n, γ) E=2 keV; band assignment.
595.726e 15	(1-)	Α		Jπ: 594γ to 0– g.s.; 120γ to (3)– 476; band assignment.
597.015h 4	(3) –	A C H		Jπ: M1+E2 543γ to 2-54; γ to 5
$598.448^{1}6$	4 +	A CD H		$J\pi$: (d,p) cross section fingerprint.
605.047 ¹ 7	2 +	A CD		$J\pi$: (d,p) cross section fingerprint.
628.418 <i>13</i>	(2-,3-)	A C		$J\pi$: 255 γ to (1)- 373; 437 γ to 3+ 191; π =- from (n, γ) E=2 keV.
634.3148 <i>6</i>	5 +	ABCD F		$J\pi$: (d,p) cross section fingerprint.
638.2354 <i>9</i>	(2-)	AC		$J\pi$: 265 γ to 1-373; 116 γ to 3+522; 467 γ to 3-171; π =(-) from
044 00F 0	~			$(\mathbf{n}, \boldsymbol{\gamma}) = \mathbf{E} \mathbf{E} \mathbf{k} \mathbf{e} \mathbf{V}$.
644.291 6	7-	A D		$J\pi$: band assignment supported by cross section in (d,p).
651.5 8	(3+,4-)	Н		$J\pi$: 304 γ to (5)+ 348; 597 γ to 2- 54.
654 919D 14	(5.)			E(level): from (n, γ) E=thermal: $\gamma \gamma$ coin.
657 005D 11	(5+)			$J\pi$: 404 y to 5+ 191, 500 y to (0)+ 295, band assignment.
037.993F 11	(3-)	ас п		$J\pi$: $\pi = (-)$ from (fi, γ) $E = 2$ KeV; 102γ to (3) - 470; 328γ to 3 - 330;
650 018 /	(0)			III [0 a Dand.]
662 160 f 8	(0-)			$J\pi$: (d n) cross section findernrint
668 005h 6	(4) =	лс н		I_{π} : M1 488% to A_{-} 180: 614% to 2_{-} 54: 197% to 5_{+} 471
671 7491 12	$(4)^{-}$			π : π =
683 805 ^e 5	(3) -	AC		π : M1(+F2) 140v to 2-544 possible 423v to 4+ 261; band
	(0)			assignment.
693 388 17	$(2 \ 3 \ 4)$	Δ		$1\pi \cdot 212 \times t_0 3 + 482 \cdot 96 \times t_0 (3) = 597$
693 638 ¹ 7	5+	A CD		$I\pi$: (d n) cross section fingernrint: (2+ or 5+) from (n v) F-2
		n ob		keV: γ to 3+ and 3- and 5+.
701.5 16		н		$J\pi$: γ to (5-) 330.
		.1		$E(\text{level})$: from (n, γ) $E=$ thermal: $\gamma\gamma$ coin
704.9629 14	(3-)	A C		$J\pi$: 109 y to 1-596; 533 y to 3-171; π =(-) from (n.y) E=2 keV:
	(- /			band assignment.
715.4 8		Н		XREF: H(717.0).
				E(level): from Ey in (n, γ) E=thermal: $\gamma \gamma$ coin.

$^{166}\mathrm{Ho}$ Levels (continued)

E(level) [†]	Jπ	XREF	Comments
1-			
718 ^K 3	+	В	$J\pi$: L(t, α)=2 for 7/2+ target.
710 270 11	(4)		E(level): from (t, α) .
719.370* 11 721 08U 15	(4) + (6+)	АСГП	$J\pi$: M1(+E2) 450% to 5+ 204, 57% to 5+ 602, band assignment.
721.38-13 793 939d 19	(0+)		$J\pi$: transitions to 6+ and (7+); hand assignment
725 68 ⁸ 4	(2-)	A C	$J\pi$: 643y to 1-82: 554y to 3-171: π =(-) from (n y) E=2 keV: hand assignment
732.513g 16	(2)	AB F	$J\pi$: band assignment.
736.430 ^f 9	4+	A CD	Jπ: (d,p) cross section fingerprint.
742.02 ^e 3	(4-)	A C	Jπ: 198γ to 2- 544; 412γ to 5- 330; band assignment.
757.707h <i>18</i>	(5-)	A C H	$J\pi :$ 161 γ to (3)– 597; 380 γ to (6–) 378; band assignment.
760.345 ^t 7	(3-)	A C	J\pi: 217 γ to 2– 544; 430 γ to 5– 330; band assignment.
769.78J 4	(5+)	A Cd H	J π : 248 γ to 3+ 522; 390 γ to 6+ 380; (2+ or 5+) from (n, γ) E=2 keV.
771.94 ⁿ 8	(6+)	Cd	J π : transitions to 5+ and 5-; π from (n, γ) E=2 keV; band assignment.
774.522 ^s 16	(1-)	A	Jπ: 116γ to (0-) 659; 91γ to (3-) 684; band assignment.
788.618P 11	(6-)	A	$J\pi$: transitions to 4- and 5-; band assignment.
792.7894 <i>12</i>	(4-)	A	$J\pi$: 1557 to (2-) 638; 6127 to 4- 180; band assignment.
801. 4	0 +	Б	$F(laval)$: from (t, α)
806.561 5	(5+)	ACTH	$J\pi$: 325y to 3+ 482; 336y to 5+ 471; (2+.5+) from (n,y) E=2 keV.
807.011 ⁱ 8	6+	A D f	$J\pi$: (d.p) cross section fingerprint: γ to 5+.
815.1390 10	3 +	A CD H	J π : J=3 from $\gamma(\theta)$ for primary γ feeding level in (pol n, γ); 389 γ to 1+ 426; M1(+E2)
			257γ to 4+ 559.
819.06 ^k 20		BDF	E(level): from (d,p).
824.62 4	(3-,4-)	A CD H	J π : π =(-) from (n, γ) E=2 keV; 634 γ to 3+ 192; 563 γ to 4+ 261.
832.197 ^f 9	5 +	A CD	J π : (d,p) cross section fingerprint.
837.717 ^t 8	(4-)	A CD	J π : transitions to 4+ and (4)–; π from (n, γ) E=2 keV; band assignment.
848.46 ^u 21	(7+)	A D	$J\pi$: 553 γ to (6)+ 295; band assignment.
856* 6	2 +	В	$J\pi$: from (t,α) cross section fingerprint.
858 1 15	(-)	C	E(level): from (1,0). $E(\text{level})$ $ \pi^{*} $ from (1,0) $E=2$ keV
860.7 15	(-)	C	$E(\text{level}), J\pi$: from (n, $\gamma) E=2$ keV.
868.24 ^S 14	(4-)	A C	XREF: C(867.1).
			J π : π =(-) from (n, γ) E=2 keV; 539 γ to 5- 330; 392 γ to (3)- 476; band assignment.
870.13 5	(4-,5-,6-)	A C H	XREF: C(868.7)H(873.6).
			J π : π =(-) from (n, γ) E=2 keV; γ to 5+ 634.
876.37 22	(3-)	AC H	XREF: C(874.8)H(873.6).
070 0 10		C	J π : π =(-) from (n, γ) E=2 keV; 790 γ to 1-82; 547 γ to 5-330.
881 0405 20	3 (_)	лс н	$E(\text{rever}): \text{from}(\Pi, \gamma) = 2 \text{ KeV}.$ $\text{YPEF} \cdot C(\textbf{281, 6}) + (\textbf{281, 0})$
001.040 20	5()	n e n	J π : J=3 from $\gamma(\theta)$ for primary γ feeding level in (pol n. γ); 799 γ to 1-82.
883.94j <i>5</i>	(6+)	А	J π : transitions to (4+) and possibly to (5+); band assignment.
885.371 ^m 21	+	ABCD F	XREF: B(884.0)C(884.4).
			J π : 217 γ to (4)- 668; L(t, α)=2 for 7/2+ target.
891.134^{0} 13	(4+)	A CD	XREF: C(890.0).
		_	$J\pi$: transitions to 3+ and (5+); band assignment.
895.5 6		D	E(level): from (d,p).
902.2 10 905 544V 10	(2+)	с л ср. н	E(level): from (n, γ) E=2 keV. I π : 476 γ to 2+ 430: 734 γ to 3- 171: band assignment
910 491 4	(2+) (6+)	A D	$J\pi$: hand assignment
915Z 3	(7+)§	В	$E(\text{level})$: from (t,α) .
925.21W 16	(5+)	A CD F	E(level): from (d,p).
			J π : band assignment.
935.12 ^t 4	(5-)	А	J π : band assignment.
942.524^{t} 15	(6+)	A	Jπ: band assignment.
945.86 ^K 5		ABC	XREF: B(946).
947.1 6		Н	Jπ: transitions to 2- and 3 E(laval): from (n x) E-thermal: xy coin
951.1.3		AC	Elievery, from (II, 7) E=thermal, 77 torn.
953.4 11	(3-,4-)	н	J π : transitions to 2- and 5
	. ,		E(level): from (n,γ) E=thermal: γγ coin.
961.08 ^V 6	3+	A CD H	$J\pi:~535\gamma$ to $1+~426;~701\gamma$ to $4+~261;~band~assignment.$
976.1Y 5	1 +	BC H	XREF: B(974)C(976.1)H(973.7).
			$J\pi$: from (t, α) cross section fingerprint.

¹⁶⁶Ho Levels (continued)

E(level) [†]	Jπ	XREF	Comments
978.55 24		A CD	XREF: A(977.2).
070 0 10			E(level): from (d,p).
979.8 10	(5+)		$J\pi$: from $(n, \gamma) = 2$ keV.
996 8 8	(3+)	а сы сы	XREF. C(998.8)
550.0 5	(4+,3,0+)	сп	$I\pi$: 736y to 4+ 261: 544y to (6)+ 454
			$E(\text{level})$; from (n, γ) E=thermal: $\gamma\gamma$ coin.
1004.84 5	(23 -)	A CD H	XREF: C(1003.5).
	,		$J\pi$: 634 γ to 1- 372; 824 γ to 4- 180.
1006 ^m 4		В	
1010.68 18	(3-,4,5-)	ACDFH	$J\pi$: transitions to 3-171 and 5-330.
1016.23 15	(2,3,4-)	A C H	Jπ: 961γ to 2- 54; 825γ to 3+ 191; primary γ from 3-,4
1019.2 5		A C	
1023.3 7		A C H	$J\pi$: transitions to 3+ 191 and to 4- 180.
			E(level): from (n, γ) E=thermal: $\gamma\gamma$ coin.
1026.1 5		A C	
1028.7 15		Н	E(level): from (n, γ) E=thermal: $\gamma \gamma$ coin.
1029.0 <i>12</i>	$(\mathbf{A}, \mathbf{b})^{\dagger}$		E(level): from (n, γ) E=thermal: $\gamma\gamma$ coln.
1030.38 5	(4+)+(0-1-2-)	BC H	XREF: 0(1032.3).
1033.0 0	(0-,1,2-)	ыс п	$I\pi^{-9}$ 982y to 2 = 54 1036y to 0 = σ^{-8}
			E(level); from (n y) $E=$ thermal: yy coin
1038.4 ^w 3	(6+)	A D	E(level); from (d,p).
			$J\pi$: band assignment.
1045.7 15		С	E(level): from (n,γ) E=2 keV.
1054.87 22		A CD H	
1060.5 2		С Н	E(level): from (n, γ) E=2 keV.
1062.7 9	2,4	A C H	J\pi: 2,4 from primary $\gamma(\theta)$ (1979Bo08). However, deexciting gammas proposed in (n,γ)
			E=thermal: $\gamma\gamma$ coin feed 5+ and 4- and 1- levels, so some must have been misplaced.
			E(level): from (n,γ) E=thermal: $\gamma\gamma$ coin.
1066 ^y 5	3+	В	$J\pi$: from (t,α) cross section fingerprint.
1077.2 2	o.†	C II	E(level): from (n, γ) E=2 keV.
1086.4 3	3 +	A CD H	E(level): from $(n, \gamma) = 2$ KeV.
1090.7. 15		E	$E(\text{level})$: from (f), γ) $E=2$ KeV. E(level): from (d ³ He)
1097 450 5	(6+)	ABCD H	$XRFF \cdot B(1091)C(1096 3)D(1098 6)H(1099 8)$
1001.10 0	(01)	11202 11	$J\pi$: 837y to (5)+ 264; hand assignment. However, 624y to (3)- 476; this suggests that
			624γ is misplaced or that 1097 level is a doublet.
1114.67 3	(5-)	A CD H	$J\pi$: 943 γ to 3-171, 661 γ to (6+) 454. J=3,(5) from primary $\gamma(\theta)$ in (pol n, γ)
			(1979Bo08).
1118.7 10		С Н	E(level): from (n,γ) E=2 keV.
1121.41 7	(3-,4-)	AbC H	XREF: b(1126).
			J π : 704 γ to 2- 416, 792 γ to (5-) 330.
1131.0 3		AbCD	XREF: b(1126).
1134.97 11		AC H	
1137.79 12		A CD H	
1141.3 <i>3</i>		A FH	$\mathbf{F}(1,\dots,1)$, from (t,n)
1146.70 4	1.		$E(\text{level})$. Irolli (t, α). VDEE: $D(1148.5)$
1140.7. 4	1+	ABCD	AREF. D(1140.3). In: from (1 α) cross section fingernrint
			E(level): from (d n)
1153.0 5		С	$E(\text{level})$; from $(n, \gamma) E=2 \text{ keV}$.
1154.84 4	(3,4)	AC H	$J\pi$: possible gammas to 3- and 3+ and 4- and 4+.
1158.5 10		С	E(level): from (n,γ) E=2 keV.
1161.35 3	(4+) ‡	A CD H	J\pi: 732 γ to 2(+) 430, 831 γ to (5-) 330, 899 γ to (5)+ 264.
1168.4 11	(4+,5+)	D H	E(level): from (d,p).
			J π : 714 γ to (6+) 454, 977 γ to 3+ 192.
1174.9 5	_	A D	
1190.13 ^{tt} 4	2 +	ABD H	J π : trom (t, α) cross section fingerprint. 713 γ to (3)- 476, 929 γ to 4+ 261.
1199.4 13		A	
1202.11 14			АКЕГ; U(1403). Урег. b(1905)
1214.93 23		A	AULT. 0(1600).
		••	

¹⁶⁶Ho Levels (continued)

E(level) [†]	Jπ	XREF	Comments
1217.2 3		A D	
1221.61 13		A	
1226.9 15		D	E(level): from (a,p) .
1230.04 4		A	
1234.80 $121240.70^{\alpha} 6$	3.+		I_{π} from (t a) cross section fingernrint
1244 24 7	01	A D	
1248.19 10		A	
1252.65 14		А	
1256.87 12		Α	
$1\ 2\ 6\ 3\ .\ 8\ 4\ 4$		A D	
1271.44 19		A D	
1272.0 ^β 20	(6+)§	В	$E(level)$: from (t, α) .
1280.7 18		D	E(level): from (d,p).
1289.29 11		A D	
1293.79 7		A	
1298.45 /		A D	
1301.07 9	4+		I_{π} : from (t α) cross section fingerprint
1310 54 15	1 +	A D	5 <i>x</i> . from (i, <i>a</i>) cross section migerprint.
1318.0 3		A	
1322.0 3		Α	
1327.55 21		A D	
1332.1 6		Α	
1334.5 21		D	E(level): from (d,p).
1338.75 6		A d	
1343.06 8		A d	
1349.93 5		A D	
1355.02 5		Ab	XREF: b(1356).
1338.8 22		вD	$\begin{array}{l} \mathbf{K}(1 3 5 0). \\ \mathbf{F}(1 0 1 0) \\ \mathbf{F}(1 0 1 0) \\ \mathbf{F}(1 0 1 0) \\ \mathbf{F}(1 0 1 0 1 0) \\ \mathbf{F}(1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0$
1362.73 11		А	
1367.31 16		A D	
1371.4 10		Α	
1376.81 6		A D	
1380.15^{α} 19	5 +	AB D	XREF: B(1379)D(1382.6).
			$J\pi$: from (t, α) cross section fingerprint.
1387.75 5		A D	
1391.93 11		A	
1390.77 7			
1405 8 3		A	
1415.80^{β} 4	(7+)	AB D	
1421.48 13		Α	
1429.80 7		A D	XREF: D(1426).
1433 . 64 12		A D	
1440 3		D	E(level): from (d,p).
1448.92 5		A D	XREF: D(1445).
1458.8 5		A D	
1461.6 4		AB	
1463.91 14		A D	
1407.3 5		A A D	
1474.4 6		A	
1478.49 13		Ab	XREF: b(1487).
1487.15 13		Ab D	XREF: b(1487).
1494.59 18		Ab	XREF: b(1487).
1498.1 4		A D	
1505.5 3		A D	
1510.60 7		Ab D	XREF: b(1519).
1521.2 4		Ab	XREF: b(1519).
1520.86 17			AKEF: D(1519).
1332.12 0		A D	

¹⁶⁶Ho Levels (continued)

E(level) [†]	Jπ	XREF	Comments
1527 62 11		A D	
1537.02 11			
1540.5 5		Δ	
1547.49 12		A D	
1552.95 13		A	
1558.90 17		A D	
1560 ^η 5	(6-) [§]	В	
1561.04		А	
1566.5 5		Α	
1570.75 7		A D	
1576.89 12		A D	
1588.79 13		Ab	XREF: b(1585).
1592.47 18			XREF: D(1383).
1603 81 15			XREF: b(1604)
1606.25 24		Ab	XREF: b(1604).
1614.0 4		A d	
1616.0 3		A d	
1620.3 3		Ab D	XREF: b(1628)D(1623).
1628.1 4		Ab	XREF: b(1628).
1629.9 3		Ab	XREF: b(1628).
1635.51 9		Ab d	XREF: b(1628).
1638.97 16		A d	
1644.49 <i>15</i> 1655 0 5		AB D	
1657.5 3		Ad	
1661.57 21		A	
1666.15 9		А	
1671.64 8		А	
1676.69 12		A D	
1681.2 5		A	
1683.5 4		A	
16921 A	(7-) §	A D B D	
1695.01 7	(,)-	A D	
1704.31 8		A D	
1710.6 3		А	
1713.24 23		А	
1716.65 20		A D	
1723.8 6		A D	
1731.10 11		A D	$\mathbf{V}_{\mathbf{D}} \in \mathbf{E}$, $\mathbf{D}(1, 2, 4, 0)$
1742.20 12			XKEF: B(1/43).
1756 8 6		A	
1759.6 3		A D	
1763.59 9		A D	
1769.46 18		А	
1776.76 7		A D	
1785.5 3		Ab D	
1788 5		b D	E(level): from (d,p).
1794.10 15		AD	
1805.5 3		A	
1816.98 9		А	
1823.86 10		Α	
1829.53 24	-	Α	
1834 ^η	(8-)§	В	
1835.60 16		A	
1838.6 11		A	
1851.1 3		A	
1854.98 13		A	
1859.34 11		Α	

¹⁶⁶Ho Levels (continued)

E(level) [†]	$J\pi$	XREF	Comments
1864.8 6		A	
1870.3 4		A	
1876.86 9		A	
1882.99 18		A	
1890.85 11		A	
1895.28 11		A	
1898.96 15		A	
		A A	
1914.0 4		Α	
1919 32 15		Δ	
1928 17 10		Δ	
1933.09 16		A	
1938.88 10		A	
1945.97 16		А	
1950.87 12		А	
1954.3 7		Α	
1957.52 21		Α	
1960.67 14		Α	
1969.8 <i>3</i>		A	
1972.9 8		A	
1975.5 4		A	
1978.33 18		A	
1985.98 14		Α	
1995.37 16	(S	A	
1998 6	(9–)8	В.	
1998.94 20		A	
2004.89 10		A	
2010.77 13		A A	
2013.07 21		Α	
2023.0 3		A	
2025.63 19		A	
2029.8 3		А	
2032.02 23		А	
2037.44 17		Α	
2040.4 3		A	
2051.3 4		A	
2054.4 3		A	
2056.7 5		A	
2058.7 3		A	
2062.1 5		A	
2065.20 15		A	
2072.60 20		A	
2073.3 2		A	
2011.12 23		Α	
2090 96 20		Α	
2094.4 4		A	
2098.37 15		A	
2103.7 4		А	
2105.7 6		Α	
2109.2 6		Α	
2111.7 4		Α	
2115.82 23		A	
2118.7 5		Α	
2122.5 3		Α	
2127.47 18		Α	
2131.19 16		A	
2137.2 4		A	
2139.3 5		A	
2145.43 17		A A	
2148.5 3		A	

¹⁶⁶Ho Levels (continued)

E(level) [†]	XREF	Comments
2151.68 16	А	
2157.34 14	Ab	XREF: b(2160).
2161.1 3	Ab	XREF: b(2160).
2163.80 24	Ab	XREF: b(2160).
2167.7 4	А	
2169.8 4	А	
2172.1 5	А	
2180.0 3	А	
2182.92 22	Α	
2193.20 15	А	

and for the 48.303 γ and 232.286 γ , both of which fit their placement particularly poorly. However, it should be noted that 28 of the remaining 570 E γ data deviate by at least 3 σ from the least-squares prediction and, of those, 12 deviate by at least 5 σ .

[‡] Spin from the angular distribution measurements of the primary γ transition (1979Bo08).

§ From comparison of $\sigma(exp)$ and $\sigma(calc)$ in (t, α) .

- # (A): $K\pi=0-$, $\alpha=0$ (π 7/2[523])-(ν 7/2[633]) band. A=9.0 B=-1.2×10⁻³. J π established by (d,p) cross section fingerprint for J=1 through 5 members of this configuration.
- @ (B): $K\pi=0-$, $\alpha=1$ (π 7/2[523])-(ν 7/2[633]) band. A=8.9, B=-1.6×10⁻³. See comment on signature partner of this band.
- & (C): Kπ=7-, (π 7/2[523])+(v 7/2[633]) band. Jπ established by (d,p) cross section fingerprint for J=7 through 9 members of this configuration.
- a (D): $K\pi=3+$, (π 7/2[523])-(ν 1/2[521]) band. A=8.7, B=2.2×10⁻³. J π established by (d,p) cross section fingerprint for J=3 through 7 members of this configuration.
- b (E): $K\pi = 5+$, $(\pi \ 3/2[411]+\nu \ 7/2[633])+(\pi \ 7/2[523]+\nu \ 3/2[521])$. A=14.45, B=-4.5×10⁻².
- ^c (F): $K\pi=6+$, $(\pi 7/2[523])+(v 5/2[512])$ band. A=9.1 if B=0.
- d (G): Kπ=4+, (π 7/2[523])+(v 1/2[521]) band. A=9.9 if B=0. Jπ established by (d,p) cross section fingerprint for J=4 through 6 members of this configuration.
- e (H): $K\pi=1-$, ($\pi 1/2[411]$)+($\nu 1/2[521]$) band.
- f (I): K π =1+, (π 7/2[523])-(ν 5/2[523]) band. A=9.65, B=-3.7×10⁻³. J π established by (d,p) cross section fingerprint for J=1 through 5 members of this configuration.
- g (J): $K\pi$ =2+, (π 3/2[411]- ν 7/2[633])+(π 7/2[523]- ν 3/2[521]). A=9.1, B=-26.6×10⁻³. J π established by (d,³He) cross section fingerprint for J=3 through 6 members of this configuration.
- h (K): K\pi=2-, (π 7/2[523])-(ν 7/2[633])+Q_{22} band. A=8.9, B=-1.3\times10^{-3}.
- i (L): Kπ=1+, (π 7/2[523])-(v 5/2[512]) band. A=9.4 if B=0. Jπ established by (d,p) cross section fingerprint for J=1 through 6 members of this configuration.
- j (M): K = 3+, (1/2[411])-(v 7/2[633]) band.
- k (N): π =+ band 1 (1982De37). Configuration not known; the K π =3+ configuration assigned in (t, α) (1982De37) is now assigned to a different sequence of levels.
- l (0): $K\pi=4+$, (π 1/2[411])+(ν 7/2[633]) band. Configuration from (t, α) data (1982De37).
- m (P): π =+ band 2 (1982De37). Configuration not known; the K π =4+ configuration assigned in (t, α) (1982De37) is now assigned to a different sequence of levels.
- n (Q): K\pi=4+, (π 7/2[523])+(v 1/2[510]) band.
- 0 (R): K = 3+, (π 7/2[523])-(v 1/2[510]) band.
- p (S): K\pi=1-, (π 3/2[411])-(v 1/2[521]) band.
- q (T): $K\pi{=}2{-},~(\pi~3/2\,[411]){+}(\nu~1/2\,[521])$ band.
- r (U): $K\pi=5-$, $(\pi 7/2[523])+(v 7/2[633])-Q_{22}$ band.
- ^s (V): $K\pi=0-$, $(\pi 1/2[411])-(v 1/2[521])$ band.
- t (W): K\pi=3- band. Configuration (π 1/2[541])-(ν 7/2[633]) or (π 1/2[411])+(ν 5/2[512]).
- u (X): $K\pi=6+$, (π 7/2[523])+(ν 5/2[523]) band.
- v (Y): $K\pi=2+$, $(\pi \ 7/2[523])-(v \ 3/2[521])$ band.
- W (Z): $K\pi=5+$, $(\pi 7/2[523])+(v 3/2[521])$ band.
- x (a): $K\pi=0+$, $\alpha=0$ (π 7/2[404])-(ν 7/2[633]) band. Configuration from (t, α) data (1982De37). J π established by (t, α) cross section fingerprint for J=0 through 3 members of this configuration.
- y (b): $K\pi=0+$, $\alpha=1$ (π 7/2[404])-(ν 7/2[633]) band. Configuration from (t, α) data (1982De37). See comment on signature partner band.
- ^Z (c): $K\pi = 7+$, $(\pi 7/2[404]) + (v 7/2[633])$ band. Configuration from (t, α) data (1982De37).
- α (d): Kπ=1+, (π 5/2[413])-(ν 7/2[633]) band. Configuration from (t,α) data (1982De37). Jπ established by (t,α) cross section
- fingerprint for J=1 through 5 members of this configuration.

		_				
				γ(¹⁶⁶ Ho)		
E(level)	$E\gamma^{\dagger}$	$I\gamma^{\dagger \ddagger}$	Mult. [†]	α	I(γ+ce)	Comments
54.2391	54.2392 7	100	E2#	31.3		B(E2)(W,u) = 198 7.
82.4707	28.242 9	4.1 2	M1 #	16.9 <i>9</i>		B(M1)(W.u.) \geq 0.021. Other data: E γ =28.227 5, I γ =8.2 6 in IT decay
197 790	82.470 <i>2</i>	100 10	M1 [#]	4.55		B(M1)(W.u.)≥0.020.
171.0738	88.60 [@] 3	0.19	[E2]	4.466		
11110100	116.835 1	100 10	M1	1.673		
180.467	(9.39)				1160 94	$I(\gamma+ce)$: from intensity balance at 180 level in (n,γ) E=thermal.
	126.228 3	100 10	E2	1.200		
190.9021	10.43 2	0.19 3	[E1]	27.2		$B(E1)(W.u.) = 1.4 \times 10^{-9} 2.$
	19.840 6	4.0 3	E1	4.79		$B(E1)(W.u.) = 4.3 \times 10^{-9} 5.$
	136.662 2	100 10	E1	0.1378		$\alpha(K)=0.116; \ \alpha(L)=0.0175; \ \alpha(M)=0.00384; \ \alpha(N+)=0.00108.$
						$B(E1)(W.u.)=0.33\times10^{-9}$ 3.
260.6625	69.7604 <i>14</i>	100 11	M1	7.37		$B(M1)(W.u.) \ge 0.015.$
263.7876	89.599 <i>13</i> (3.12)	3.6 5	[E1]	0.424		Eγ: from level energy difference. Transition unobserved, but expected.
						I(γ +ce): =1580 270 from intensity balance at 263 level in (n, γ) E=thermal. However, this leads to P(M2)(W n) (258x)>60 and
						B(M2)(W.u.)(72.9 γ)>300, both of which exceed RUL (assuming α (72 γ)=9.62, α (258 γ)=0.844). I(γ +ce)(3.1)=17.5×10 ⁴ would be needed to reduce
						$B(M2)(W.u.)(258\gamma)$ to 1.
	72.8859 15	77 15	E2	9.62		
	257.81 2	100 15	M2	0.844		
286.96	280.99 <i>10</i> 289 120 <i>15</i>	100	F1	0 0196		$B(E1) = 0.83 \times 10^{-5} 15$
329.774	149.307 3	100 10	(M1)	0.835		B(E1)=0.03×10 13.
	158.702 9	1.4 3				
348 . 257	(18.49)					
	87.5946 16	100 10	M1 (+E2)	4.2 5		
271 085	157.344 8	16.9 24	M1 (, E2)	2 00 1		
371.985	111 324 2	738 545	M1(+E2) M1(+E2)	2.094		
	181.086 5	100 11	(M1)	0.487		$B(M1)\downarrow \ge 0.57 \times 10^{-2}.$
373.092	201.95 3	2.9 6				
	290.61 3	100 10	M1	0.1337		$B(M1)(W.u.) \ge 0.39 \times 10^{-2}.$
377.806	48.0315 7	53 9	(50)			
270 547	197.339 8	100 15	(E2)	0.255		
575.547	115.759 <i>3</i>	76 11				
	373.47 7	100 16				
416.086	(43.00)					
	245.007 7	656	M1	0.212		$B(M1)(W.u.) \ge 2.6 \times 10^{-3}.$
	333.63 2	100 15	M1	0.0925		$B(M1)(W.u.) \ge 1.6 \times 10^{-3}.$
423.651	128.566 5	100 15				
	139.89 3 285.81& e	7.1 ZI				
426.025	343.51 3	10.0 16	(E1) [#]	0.01281		Iy: weighted average from β^- decay and (n,γ) E=thermal.
	371.75 <i>3</i>	83 7	E1 [#]	0.01060		Iy: weighted average from β^- decay and (n, γ) E=thermal.
	425.99 3	100 13	E1 [#]	0.0070		Iγ: weighted average from β ⁻ decay and (n,γ) E=thermal.
430.031	169.45 <i>3</i>	0.48	MI	0 000		$P(M1)(W_{12}) > 0.65 + 10^{-2}$
	239.140 11	100 10	IVI I	0.226		$D(W1)(W.U.) \ge 0.03 \times 10^{-2}$.

$\gamma(^{166}Ho)$ (continued)

E(level)	$E\gamma^{\dagger}$	$I\gamma^{\dagger \ddagger}$	Mult. [†]	α	Comments
491 990	167 450 5	70 0	F1		
431.239	107.450 2	100 20	EI		
453 771	425.50 5 105 517 A	100 20	M1 (+F2)	9 97 5	
455.771	193 107 6	36 4	WII (+E£)	2.21 5	
464 501	38 493 6	25 0 15	M1(+F2)	90 80	
1011001	48 303 4	2 2		00 00	
	91.407 13	6.6 13			
	273.64 7	11.8 22			
	293.42 8	5.2 10			
	410.27 2	100 20			
470.841	91.286 13	13 <i>3</i>			
	98.8572 15	100 11	M1,E2	2.82 13	
	122.577 4	16 3			
	175.73 4	5.4 16			
	207.04 2	7.1 11			
	279.79 10	5.4 16			
475.680	(59.60)				
	102.55 4	0.6	[E2]	2.57	$B(E2)(W.u.) \ge 24.$
	304.60 2	100 10	M1	0.1179	$B(M1)(W.u.) \ge 0.35 \times 10^{-2}$.
	420.7 6	6.2 19			
481.846	51.8155 7	5.98	[M1]	2.83	B(M1)(W.u.)≥0.030.
	109.887 18	0.51 13	[M1]	1.99	$B(M1)(W.u.) \ge 0.27 \times 10^{-3}.$
	221.174 9	100 10	(M1)	0.280	$B(M1)(W.u.) \ge 0.66 \times 10^{-2}$.
	291.04 8	3.1			
514.362	134.815 6	86 21			
	250.49 9	100 20			
521.982	57.517 8	100 19			
	95.953 <i>2</i>	38 4			
	261.31 7	13 4			
	341.57 <i>3</i>	20 4			
529.816	98.572 <i>16</i>	8.0 16			
	150.268 8	22 3			
	234.79 5	10			
	266.53 ^{&} 5	< 58 &			
	524.2 <i>3</i>	100 20			
543.672	113.644 4	4.7 7			Other I(114γ):I(489γ)=10.7 <i>12</i> :100 5 from 2007ChZX in (n,γ) E=thermal.
	170.584 15	1.6 3			
	363.1 <i>3</i>	1.6			Other I(363γ):I(489γ)=2.5 8:100 5 from 2007ChZX in (n,γ) E=thermal.
	489.39 5	100 9	E2+M1	0.025 9	
	543.66 20	75 19	E2	0.01275	Other $I(544\gamma)$: $I(489\gamma)$ =87 4:100 5 from 2007ChZX in (n, γ) E=thermal. I γ =1667 500 in (n, γ) E=thermal: $\gamma\gamma$ coin is grossly discrepant.
547. 934	66.103 7	25 5			
	175.98 2	8.8 18			
	199.710 8	100 10	(M1)	0.371	
	287.24 3	21 3			Other I(287 γ):I(200 γ)=11.7 <i>17</i> :100 <i>6</i> from 2007ChZX in (n, γ) E=thermal.
	357.04 4	368			
	376.91& 14	< 18 &			
557.65	179.882 ^a 4	100 ^a 33	(M1, E2)	0.42 8	
	227.88 7	13.3			
558.571	76.7255 14	498			
	83.049& 14	<17 ^{&}			
	186.582 6	72 8	E2+M1	0.38 7	
	210.300 6	77 13	M1 (+E2)	0.26 6	
	263.36 5	31 5			
	297.90 <i>3</i>	100 20	M1 (+E2)	0.10 3	
	367.54 16	18			
562.890	87.193 15	3.5 11			
	146.808 8	8.4 12			

$\gamma(^{166}\text{Ho})$ (continued)

E(level)	$E\gamma^{\dagger}$	${}_{I}\gamma^{\dagger}{}^{\ddagger}$	Mult. [†]	<u>α</u>	Comments
562.890	233.112 14	56 <i>5</i>	M1	0.243	Other I(233γ):I(392γ)=75 <i>8</i> :100 <i>10</i> from 2007ChZX in (n,γ) E=thermal.
	382.8 2	4.4			
	391.89 4	100 10	M1	0.0605	
	508.4 8	25 7			Other Iy: 75 20 from (n, γ) E=thermal: $\gamma\gamma$ coin.
567.624	103.116 15	40 6			
	137.51 [@] 2	15 5			
	141.599 7	100 10			
	151.533 <i>9</i>	62 <i>9</i>			Other I(152γ):I(141γ)=36 <i>10</i> :100 <i>21</i> from 2007ChZX in (n,γ) E=thermal.
	194.529 10	100 15			
577.208	123.437 5	< 96			
	229.00 ^{&} 7	< 5 5 &			
	313.48° 6	100 [∞] 33			
588.083	117.264 ^{&} 3	100 % 10			
	134.34 3	10 3			
	216.16 5	10 3			
592.501	162.452 10	3.1 6			
	331.88 3	12.9 19			
	401.56 6	100 14	(M1, E2)	0.043 15	
	412.1 2	< 3.5 °C			
595.726	120.06 2	2.5 8			
	179.882ª 4	13ª 4			
	512.74 3	100 20			
507 015	593.8 /	10			
597.015		2.04			
	121 48 3	2.0 4			
	132 472 17	0.25			
	166 983 5	4 9 5			
	181 086 5	299			
	224.01 15	0.29			
	267.19 5	8.0 17			
	416.47 5	23 5			
	425.99 3	6.9 20			
	542.86 20	100 26	E2+M1	0.019 7	
598.448	76.4663 14	85 <i>8</i>			
	134.00 3	2.5			
	268.15 9	18 5			
	408.89 6	60§ 31			Iγ: from I(409γ):I(427 from 598 level)=0.5 <i>1</i> :0.83 <i>20</i> in (n,γ) E=thermal: γγ coin and I(427γ) here.
	418.08 18	50 15			
005 047	427.0 2	100			
003.04/	83.049∝ 14	< 2 0 4			
	140 544 10	36 1			
	170 032 6	100 16	(M1 F2)	0 43 8	
	188.98 3	28 6	(111, 112)	0.40 0	
	231.957 14	96 20			
	433.92 18	68			Other I(434 γ):I(232 γ)=38 5:100 22 from 2007ChZX in (n γ) E=thermal
628.418	84.742 14	6.7 20			(-, ,) =
	152.71 3	4.2 8			
	198.31& 5	< 5 &			
	212.30 & 6	< 8.0 ^{&}			
	255.37 <i>3</i>	15 3			
	437.3 <i>3</i>	10			
	457.37 7	100 20			
634 . 314	46.232 4	60 10			
	75.753 16	35 10			
	86.359 11	50 13			
	152.45 3	8.0 25			
	180.545 5	100 15	(M1, E2)	0.42 8	

$\gamma(^{166}\text{Ho})$ (continued)						
E(level)	${ m E}\gamma^{\dagger}$	$I\gamma^{\dagger \ddagger}$	Mult. [†]	α	Comments	
638.235	94.643 11	67 10				
000.200	116.197 13	20 5				
	173.47 12	6.7				
	208.34 4	22 3				
	265.12 5	60 13				
	467.3 3	100 30				
644.29	114.50 ^{&} 3	< 5 &				
	213.04 6	5				
	506.8 <i>3</i>	100				
651.5	304.18 7	1008 38				
054 010	596.68 6	508 13				
654.818	96.265 20	3.3 10				
	183.96 4	8.3 23				
	201.08 3	0.7 13 10 3				
	306 49 3	40 8				
	359.7 2	13 4				
	394.5 [@] 2	17				
	463.9 3	100 20				
657.995	182.302 16	13.7 21	[E2]	0.3329		
	328.245 15	100 10				
	477.4 3	27			Other Ιγ: I(477γ):I(328γ)=23 8:100 23 in (n,γ)	
					E=thermal: γγ coin.	
659.01	285.81 ^{&} 8	100&				
662.169	94.529 11	15 4				
	118.49 2	11				
	197.677 10	74 11				
	232.286 9	100 19				
	230.31 × 8	<14~				
	240.07 2 172 2 5	74 15 59				
	607.7 7	41				
668.005	70.988 10	14 3				
	120.36 3	0.8				
	124.350 15	3.1 6				
	186.147 6	9.2 14				
	192.33 2	5.4 11				
	197.11 5	2.3				
	295.99 <i>8</i>	3.1 9				
	338.20 4	11.5 18				
	487.58 6	100 15	M1	0.0343		
	496.9 2	23			Other In 107 20 in (n .) E thermal means a second	
	613.8 4	54 10			that γ is contaminated in that reaction.	
671.749	(16.97)					
	113.17 2	2.7				
	123.81 2	1.3				
	189.89 5	1.3				
	218.00 6	5.3				
	241.70 3	0.7 13				
	323 42 7	16.3				
	411.09 3	100 31				
683.805	86.765 11	29 7				
	135.883 4	29 4				
	140.117 5	100 11	M1 (+E2)	0.91 9		
	201.95 3	14 3				
	219.44 6	23 6				
	253.78 <i>3</i>	34 7				
	267.82 9	31 6				
	423.39 ^{&} 18	< 4 6 ^{&}				
693.388	96.381 20	100 30				
	211.53 6	50				

$\gamma(^{166}Ho)$ (continued)

E(level)	$\underline{} E \gamma^{\dagger}$	Iγ ^{†‡}	Mult. [†]	Comments
693.638	95.190.3	100 16		
000.000	171.67 3	12.0 24		
	512.7a 3	12 ^a		
701.5	369.6 [§] 10	100 [§]		
704.962	99.584 ^{&} 16	<4.1 ^{&}		
	107.71 3	5.0 13		
	109.241 12	5.0 10		
	161.42 2	5.0 10		
	229.00 ^{&} 7	<10.8%		
	274.77 7	22 4		
	288.60 /	20		
715 4	555.55 715 48 8	100 30		
719 370	57 19 1	9 4		
110.070	248 77 9	3 5 7		
	347.24 8	11.8 24		
	455.60 6	100 15	M1 (+E2)	
721.98	426.89 15	100		
723.239	135.15 2	100 30		
	208.90 4	75 15		
725.68	97.253 ^{&} 20	<3.3 ^{&}		
	182.044	4		
	309.59 6	224		
	352.28 12	29 6		
	554.3° 4	100 31 80 27		
732 513	98 200 15	50 13		
102.010	$155.42^{\&}$ 3	< 50%		
	278.69 10	100 30		
736.430	74.261 9	41 14		
	131.41 3	4.6		
	137.99 4	3.2		
	214.442 9	100 14	M1 (+E2)	
	260.75 5	73 11		
	406.83 16	59 12		
	475.8-5	<08		
742 02	113 644 4	17 6 24		
	145.00 3	2.4		
	198.31& 5	3.5&		
	266.53 ^{&} 5	< 3 4 &		
	412.1& 2	< 8 5 &		
	481.31 8	100 20		
757.707	99.584 ^{&} 16	< 50 ^{&}		
	160.63 2	80 16		
	209.69 4	40 12		
	380.1 2	100 30		
	577 0& 3	<1680 ^{&}		
760.345	92.355 13	9.8.20		
	163.352 7	100 10		
	216.85 6	7.8		
	430.31 18	2 5		
	499.5 4	< 2 0		Line is complex in (n,γ) E=thermal (1967Mo05).
	570.0 <i>3</i>	39		
760 78	579.9 7	98 <i>59</i>		
109.18	247.08 9 316 10 0	4.3 <i>13</i> 19 0		
	390.0 2	26 6		
	509.0 <i>2</i>	100		
771.94	117.264 ^{&} 3	< 88 ^{&}		
	423.39 ^{&} 18	< 6 4 ^{&}		
	442.17 8	100 28		

$\gamma(^{166}Ho)$ (continued)

E(level)	${f E}\gamma^\dagger$	Iγ ^{†‡}	Mult. [†]	Comments
774 590	00 700 5	0.0		
114.322	90.720 5	30		
	358 4 3	45		
	401.31 10	100 27		
788.618	130.641 16	11		
	225.722 9	78 11		
	458.74 22	100 33		
792.789	154.71 3	8.3 17		
	195.687 14	27 4		
	230.11 5	10.0 20		
	317.28 3	73 10		
	376.91 ^{&} 14	< 4 8 &		
	612.0 5	100		
806.56	324.74 7	18 3		
	335.61 8	100 19		lγ: branching may be overestimated; independent (n,γ) E=thermal studies report lγ data that differ by an order of magnitude.
	433.9 9	2.4 8		
007 011	546.0 5	3.2 10		
807.011	113.373 3	27 4		
615.159	222.034 /	37 4 13 7	M1(+E2)	
	267 19 5	47 10	MI (+E2)	
	350.61 12	11.7 23		
	385.0 2	6.7		
	388.8 <i>3</i>	13 5		
	442.9 3	67 20		Iγ: 62 8 from (n, γ) E=thermal: γγ coin.
	485.2 [@] 10	13 5		$E\gamma$, I γ : from (n, γ) E=thermal: $\gamma\gamma$ coin. Placement is considered doubtful because it implies M2 multipolarity which seems unlikely.
	554.3 ^a 3	25 ^a 8		Iy: 28 5 from (n, γ) E=thermal: $\gamma\gamma$ coin.
	624.0 4	100 30		Iy: 100 8 from (n, γ) E=thermal: $\gamma\gamma$ coin.
824.62	266.03 5	358		
	563.38 5	368 7		
	633.5 4	100 30		
832.197	95.767 3	75 8		
	170.09 ^{cc} 3	< 8 ···································		
	233.79 5	67 20		
	652 2 7	01 20		Ev: from (n v) E=thermal: vv coin
837.717	169.712 5	100 8		
	577.0& 3	< 3 3 3 &		
848.46	553.37 21	100		
868.24	305.36 15	70 20		
	392.2 5	55 15		
	538.6 4	100 30		
870.13	235.80 5	100		
	816.1 ^{§@} 4	8		Placement tentatively suggested by evaluator; Εγ is not consistent with placement from 876 level, but (n,γ) E=thermal: γγ coin establishes that it deexcites a level in the vicinity of 873.6.
876.37	450.3 <i>3</i>			Reported only in (n,γ) E=thermal; not accompanied in that reaction by any of the transitions deexciting this level in (n,γ) E=thermal: γx coin
	546.6 [§] 5	100 [§] 20		
	614.6 [§] 9	208 7		
	692.4 [§] 7	20 [§] 7		
	790.0 [§] 10	33§ <i>13</i>		
881.040	155.42 ^{&} 3	< 1.2 &		
	242.90 2	65 <i>12</i>		
	404.7 6	19 8		
	620.5 ^{9@} 7	208 7		Reported in (n, γ) E=thermal: $\gamma\gamma$ coin only; may deexcite a different level in the vicinity of the 882 level.
	690.2 ^{§@} 4	238 7		Reported in (n, γ) E=thermal: $\gamma\gamma$ coin only; may deexcite a different level in the vicinity of the 882 level.
	709.6 <i>6</i>	54 15		

$\gamma(^{166}Ho)$ (continued)

E(level)	${ m E}\gamma^{\dagger}$	$I\gamma^{\dagger \ddagger}$	Comments
881 040	798 6 4	100 31	
0011010	827.1 3	73 23	
883.94	114.50 ^{&} 3	< 50 &	
	164.57 4	100 30	
	212.30 ^{&} 6	< 2 4 0 &	
885.371	191.961 11	100 15	
801 124	217.23 6	31	
851.154	236.31& 8	< 56&	
	519.08 7	§	Iγ: see comment on 626.6γ.
	626.6 [§] 7	§	Iγ: I(627γ):I(519γ)=0.4 1:1.2 4 in (n, γ) E=thermal: γγ coin.
905 . 544	145. 228 7	54 4	
	312.90 8	46 15	
	475.8 ^{&} 3	< 58 &	
	714.7 2	100 31	
910 49	$191 \ 12^{\circ} \ 3$	9.2 27	
925.21	206.15& 2	<10%	
	661.0 6	100 30	
935.12	97.253 ^{&} 20	< 75&	
	174.77 4	100	
942.524	110.327 12	100 20	
045 96	206.15 ^{\com} 2	<145	
945.80	187.93 5 774 98 3	54§ 8	
01111	892.4 [§] 5	100\$ 23	
953.4	624.6 [§] 10	100 [§] 40	
	898.1 [§] 10	80 [§] 40	
961.08	534.9 4	100	Not observed in (n,γ) E=thermal: $\gamma\gamma$ coin. Placement from 961 level established by $\gamma\gamma$ coin; however, γ could have an additional placement.
	542.8 8	2.0 7	
	700.8 3 875 0§@ 0	20 7	Ly: from $I_{4}(701x)$ here and $I(701x) \cdot I(976x) - 100$ 15:29 15 in (p.y) E-thermal: xy
	073.30 3	000	coin. However, placement requires M2 multipolarity for this γ so it is shown
0.7.0 1	000 08 10	1008 10	as uncertain.
970.1	$889.2^{3} I0$	60\$ 20	
985.20	$170.09^{\&}$ 3	<100	
	215.44 9	100	
	313.48& 6	< 1600 &	
996.8	543.5 10	100 42	
	624.2 5	50 17	
1004 84	130.1 10 634 38 8	128 1	
1001.01	824.3 [§] 4	40 \$ 8	
	950.0 [§] 4	100 [§] 20	
1010.68	679.9 8	100 29	
	838.1 6	71 14	
1016.23	596.1 ^{§@} 7	100\$ 42	$\mathrm{E}\gamma$: somewhat low for this placement, so placement is shown as uncertain.
	825.18 11	508 17	
1023 3	831 3§ 12	67§ 33	
	842.8 [§] 7	100 \$ 33	
1028.7	552.6 [§] 9	1008	
1029.0	599.5 [§] 4	100 [§] <i>19</i>	
1000 05	765.3§ 11	158 8	
1030.38	600.8 7	18 5	In from I (940 m) I (040 m) 9 9 0.1 1 9 m (n m) E al annu l marche. Branch al and
	081.130 0	0U ³ 14	17: ITUMI 1(0407):1(9487)=2.2 9:1.1 3 IN (N,7) E=TNETMAL: 77 COIN. BEANCH SHOULD have been seen in other studies, but was not
	701.1 5	12 4	Soon soon in other searces, but was not.
	770.5 4	46 15	
	839.9 7	100 31	
	849.5 7	12 4	
$\gamma(^{166}Ho)$ (continued)

E(level)	$E\gamma^{\dagger}$	$I\gamma^{\dagger \ddagger}$	Comments
1030 38	858 0 5	31 8	
1035 8	664 3§ 8	118.3	
100010	952.4 [§] 9	54§ 23	
	981.6§ 9	118 6	
	1036.2 [§] 8	100§ 9	
1054.87	999.6 [§] 11	1008	
1060.5	689.1 [§] 1	100 [§] 8	
	798.1 [§] 9	3.8 [§] 19	
1062.7	368.45 ^{&} 16		
	586.1§ 2	558 7	
	646.18 2	1008 12	
	716.08 7	148 4	
	734.08 7	883	
	871.88 9	2.73 14	
	881.13 9	6.83 27	
	979.3 ³ 7	123 4	
1086 4	368 45 ^{&} 16	150 5	
1000.4	715.6 [§] 3	100§ 20	
	826.8§ 9	30\$ 10	
	894.0 [§] 9	20 [§] 10	
	906.9 [§] 7	40 [§] 10	
	916.1 [§] 7	40 [§] 10	
	1034.3 [§] 7	50 [§] 20	
1097.45	623.6 ^{§@} 8	83§ 33	
	753.1 [§] 10	100§ 50	
	836.8 [§] 8	50§ 17	
1114.67	567.58 5	118 3	
	661.3 ⁸ 2	1008 10	
	743.18 10	1.48 7	
	765.98 3	228 3	
	033.73 3 043 28 0	2 8 7	
1118 7	595 9 [§] @ 14	100\$	Evaluator tentatively places y from this level rather than the 1114.7 level
			because it fits this placement better.
1121.41	704.4 [§] 9	100 [§] 38	·
	791.9 [§] 11	63§ 25	
	940.0 [§] 6	100 [§] 25	
	949.2 [§] 6	75 [§] 25	
1134.97	761.5§ 6	50§ 13	
	873.98 6	1008 25	
	942.28 7	388 13	
1107 70	951.48 12	508 13	Ey also consistent with placement from the 1131.0 level.
1137.79	957.48 5	1005	
1141.5	683 4§ 4	1008 17	Ev fits placement poorly, may deexcite the 1159 level instead
1101.01	701.7 [§] 9	67 [§] 28	Effiles placement poorly, may accore the rise level instead.
	787.1§ 4	78§ 17	$E\gamma$ fits placement poorly; may deexcite the 1159 level instead.
	806.5 [§] 7	44§ 17	, , , , , , , , , , , , , , , , , , , ,
	825.5 \$ 11	28§ 11	
	892.1 [§] 8	228 11	
	983.3 [§] 6	33§ 11	
	1099.0 [§] 5	44§ 11	
1161.35	612.7 [§] 6	838 22	
	732.18 5	1008 22	
	813.38 6	568 17	
	831.38 7	613 17	
	981 08 7	288 B	
	989 68 3	838 17	
1168.4	713.6 [§] 6	100 \$ 25	
	976.9§ 7	178 4	
1190.13	712.6§ 7	63§ 25	

$\gamma(^{166}Ho)$ (continued)

E(level) $E\gamma^{\dagger}$ $I\gamma^{\dagger \ddagger}$

1190.13 928.7[§] 5 100[§] 25

 $^\dagger~$ From (n, $\gamma)$ E=thermal, unless otherwise noted.

 \ddagger Relative photon intensity normalized to 100 for strongest photon branch deexciting each level.

§ From 165 Ho(n, γ) E=thermal: $\gamma\gamma$ coin.

 $^{\#}$ From $^{166}\text{Dy}\ \beta^-$ decay.

Placement of transition in the level scheme is uncertain.

& Multiply placed; undivided intensity given.

^a Multiply placed; intensity suitably divided.

(A) Kπ=0-, α=0
 (π 7/2[523])
 -(ν 7/2[633]) band.

(B) $K\pi=0-$, $\alpha=1$ (π 7/2[523]) -(ν 7/2[633]) band.

(C) Kπ=7-, (π 7/2[523]) +(ν 7/2[633]) band. (D) Kπ=3+, (π 7/2[523])
 -(ν 1/2[521]) band.

(E) $K\pi=5+$, (π 3/2[411]+ ν 7/2[633]) +(π 7/2[523]+ ν 3/2[521]). (F) $K\pi=6+$, (π 7/2[523]) +(ν 5/2[512]) band. (G) $K\pi=4+$, (π 7/2[523]) +(ν 1/2[521]) band.

(H) K π =1-, (π 1/2[411])+(ν 1/2[521]) band.

(I) $K\pi = 1+$, $(\pi 7/2[523]) - (v 5/2[523])$ band.

(J) $K\pi = 2+$, (π 3/2[411]- ν 7/2[633]) +(π 7/2[523]- ν 3/2[521]). (K) K π =2-, (π 7/2[523])-(ν 7/2[633])+Q₂₂ band.

(L) K π =1+, (π 7/2[523])-(ν 5/2[512]) band. (M) K π =3+, (π 1/2[411])-(ν 7/2[633]) band. (N) π=+ band 1 (1982De37).

CITATION: Nuclear Data Sheets (1992)

(O) Kπ=4+, (π 1/2[411])
 +(ν 7/2[633]) band.

(P) π=+ band 2 (1982De37) . (Q) K π =4+, (π 7/2[523])+(ν 1/2[510])

band.

(R) K π =3+, (π 7/2[523])-(v 1/2[510]) band. (S) $K\pi=1-$, (π 3/2[411]) -(ν 1/2[521]) band. (T) $K\pi = 2-$, $(\pi 3/2[411]) + (v 1/2[521])$ band.

(U) Kπ=5-, (π 7/2[523]) +(ν 7/2[633])-Q₂₂ band. (V) K π =0-, (π 1/2[411])-(ν 1/2[521]) band.

(W) Kπ=3- band.

(X) Kπ=6+, (π 7/2[523]) +(v 5/2[523]) band.	(Y) Kπ=2+, (π 7/2[523])-(ν 3/2[521]) band.	(Ζ) Κπ=5+, (π 7/2[523]) +(v 3/2[521]) band.	(a) Kπ=0+, α=0 (π 7/2[404])-(? n 7/2[633]) band.	(b) Kπ=0+, α=1 (π 7/2[404]) -(ν 7/2[633]) band.
--	---	--	--	---

(c) Kπ=7+,	(d) $K\pi = 1+$, (π 5/2[413])	(e) Kπ=6+,	(f) Kπ=6-,
(π 7/2[404])	-(v 7/2[633]) band.	$(\pi 5/2[413])$	(π 5/2[532])
+(v 7/2[633])		+(v 7/2[633])	+(v 7/2[633])
band.		band.	(9-) band . 1998

(8-)	1834
(7-)	1692

(6-) 1560

		Adopted Levels,	Gammas (continued)	
	Bar	nds for ¹⁶⁶ Ho		
(A)	(B)	(C)	(D)	(E)

. .

. .

CITATION: Nuclear Data Sheets (1992)

	Ado	pted Levels, Gammas (con	itinued)	
		Bands for ¹⁶⁶ Ho		
(G)	(H)	(I)	(J)	(K)

CITATION: Nuclear Data Sheets (1992) From NNDC(BNL) program ENSDAT

	Adopted	Levels, Gammas (continued))			
		Bands for ¹⁶⁶ Ho				
(M)	(N)	(0)		(P)		
		(6+)				
	187.93				+	
114.50 164.57 212.20 (5.)	——/	191 12	(5+)	917.99		(6)
(K)		+ (4)+				(0+)
{H} {L}		57,19				11
$\begin{array}{c} 247.68^{-1} \\ (H) \\ (H)$		324.74 335.61				
(5189,89) 390.0 (*218.00)	•••••••	347 24		•••••••	423.39	41
12 91 . 88		455.60				83
{†4''1'.09 {}} {}}		, , , , , , , , , , , , , , , , , , ,			186.582	30
$ \begin{array}{c} S_1 \\ S_2 \\ S_3 \\ C \\ C \\ \end{array} $						403
(B)						/
(E)		-/////			····· /····	·····
{ B } V					·····¥·····	k
(B)						
(A)						
(C)						

Adopted Levels, Gammas (continued)

Level Scheme

Intensities: relative photon branching from each level

- & Multiply placed; undivided intensity given
- @ Multiply placed; intensity suitably divided

2+		10, 20		[] []	2	000	2007	23. 49.			₩. ⁹ 0.	∧.&	Z	~																			1190-13	
(4+.5+)	<u>)-</u>	<u>~</u>	6.0	00	0.00	0,0,0 0,00,0	NA.	0.0	\sim	نې <u>د</u> ې د	~^	~	<i>6</i> ,6	20.8	20,	·	- ·	0.0		-													$\int \frac{1160.10}{1168.4}$	
(4+)	\downarrow	+ -)``` 	పి లా	88	001	0.0	389	3°%	8%;%	<i>6</i> 8	20	17	, q, c	<u>-</u> زې د	10	ప్రాహి స్టార్ట్	20	<u>م</u> ر،	?~?	\$.;						_						∫ _{1161.35}	
(3,4)	/						Ī٦	Ħ		Ŧ	Ē	ە ە 	ട്ട	8.00	<u></u>	200	00	5.00	<u>^</u> ???	200		505	~	200	2,0,	00	,	÷	• • ;	_		_	1154.84	
										1					= -, -		ານ ∓≖t	0,0	~~~	6		30	0= ~ ~~~	200	0,0	00	? <u></u> _~	a, 9	, ^ 	-	8.00	 =1)	1141.3	
]///[- % ~		692	23	\$V^	, <u>6</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	بې ج	000	ج_د	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1137.79	
][[[]	Ħ								干	H				-			H	H			Ŧ			H	Ŧ٩	5000	\$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	22.0	5.0	<u></u>		1134.97	
(3-,4-)	J/// X /																									T					Ê		1121.41	
(5.)	////				Ħ					=												÷			Ħ								1118.7	
(5-)	///E									=																				-		≣\\'	1007.45	
3	′∥∔									+					-		H					÷								-		=\'	1097.45	
2.4	″ ±									+												-											1062 7	
~, 1	′₫							T		Ŧ		T	T								Ħ				Ħ		Ħ	Ħ	Ħ				1002.1	
(6+)	-									=																							910.49	
(6+)																						-											883.94	
(-)										1												÷											860.7	
(4-)	_									1												-											837.717	
3+	=		+					Ħ		ŧ	Ħ	Ħ			=			Ħ	Ħ	Ħ	+	÷	=		Ħ		#						815.139	
(4-)	=									=																				-			792.789	
(5+)	-		-							=					-															-			769.78	
(4-)										\pm												-											742.02	
+	-																					÷				∕∕∕							718	
(2,3,4)	-									+					_							÷				_				╞	w		693.388	
(m)	#									#												÷												
(5+)	=									ŧ															Ħ								654.818	
(2-,3-)	=	Ħ	=	=	Ħ	Ħ	Ħ	Ħ		=	Ħ	Ħ	Ħ		╞		Ħ	Ħ	Ħ	Ħ	Ħ	ŧ	=		Ħ	-	Ħ	Ħ	Ħ	+			628.418	
2+																																	605.047	
7+	=									圭															Ħ								577.208	
4+	=	Ħ				╞	V I	Ħ		ŧ	Ħ	Ħ			-		H	Ħ	Ħ		+	-			Ħ								547.934	
3+	+						_			Ŧ							1×					-								_			521.982	
(3)-	-	+	-					ŦŦ		+	Ħ	Ŧ			-			H	Ħ			-	-		Ħ		+			-			475.680	10.0
5+	\downarrow	\downarrow						\square														*			\square		\square						470.841	≤0.2 ns
(6)+	`#	-	¥					Ħ		=		Ħ			-			Ħ	Ħ	V-	Ħ				Ħ					-			453.771	
2+																																	430.031	<0 2 ns
2-					Ħ					Ŧ		Ħ				P	V						-				T		7				416.086	≤ 0.2 HS < 0.2 ns
4.																																	971 005	20.2 113
4+	-	=			Ħ			Ħ		ᢖᡳᡄ		Ħ						Ħ			Ħ						Ħ	Ħ	-				248 257	≤0.2 ns
5-	\neg	+				¥		++	1	<u> </u>		++	+		-			\mathbb{H}	¥		++		_		-	-	++		¥				329 774	
0		-	_		T.			++	¥			++			-			Ħ			-							 ¥					020.114	
5+	+	_						++				++						\square			_		_			_	++	_					263 7876	
4+	$\sqrt{1}$				\downarrow																~				۲.								260.6625	≤0.5 ns
				T	<u> </u>			T	_			T												T	¥ —									≤0.5 ns
3+																																	190.9021	105
4-)	ļ										11		,										↓				Ļ					180.467	185 µs
3-	Ľ		1	. V				★		_		' ¥	<u>* '</u>		-			∲—					-	/ ·			1						171.0738	
ō																																	107 700	
8-																						_				-	+						137.729	
1-																										\rightarrow	<u> </u>						82.4707	≤0.3 ns
2-							V																<i></i>			V							54.2391	3 44 ns
																						•											_	0.11 115
0-															~																		0.0	00 00 / 1
														- 1		164	2																	20.824 h

Adopted Levels, Gammas (continued)

Level Scheme (continued)

Intensities: relative photon branching from each level

& Multiply placed; undivided intensity given

@ Multiply placed; intensity suitably divided

Adopted Levels, Gammas (continued)

Level Scheme (continued)

Intensities: relative photon branching from each level

& Multiply placed; undivided intensity given

@ Multiply placed; intensity suitably divided

Level Scheme (continued)

Intensities: relative photon branching from each level

- & Multiply placed; undivided intensity given
- @ Multiply placed; intensity suitably divided

Adopted Levels, Gammas (continued)

Level Scheme (continued)

Intensities: relative photon branching from each level

& Multiply placed; undivided intensity given

@ Multiply placed; intensity suitably divided

Adopted Levels, Gammas (continued)

Level Scheme (continued)

Intensities: relative photon branching from each level

- & Multiply placed; undivided intensity given
- @ Multiply placed; intensity suitably divided

¹⁶⁶₆₇Ho₉₉

Adopted Levels, Gammas (continued)

Level Scheme (continued)

Intensities: relative photon branching from each level

- & Multiply placed; undivided intensity given
- @ Multiply placed; intensity suitably divided

Adopted Levels, Gammas (continued)

Level Scheme (continued)

Intensities: relative photon branching from each level

& Multiply placed; undivided intensity given

@ Multiply placed; intensity suitably divided

Adopted Levels, Gammas (continued)

Level Scheme (continued)

Intensities: relative photon branching from each level

& Multiply placed; undivided intensity given

@ Multiply placed; intensity suitably divided

¹⁶⁶Dy β⁻ Decay 1979Ba40,1967Mo05

Parent ¹⁶⁶Dy: E=0.0; $J\pi$ =0+; $T_{1/2}$ =81.6 h 1; Q(g.s.)=486.8 10; % β ⁻ decay=100. The values of the angular correlation coefficients for the 28.23 γ -54.239 γ cascade are A_2 =-0.242 15, A_4 =+0.031 34; these are in agreement with a 1(D)2(Q)0 spin sequence for the cascade (1979Ba40).

¹⁶⁶Ho Levels

E(level) [†]	Jπ‡	T_1/2	Comments
0 0	0 -	26 824 h 12	T: from Adopted Levels
54.2391 10	2 -	3.44 ns 12	g=0.034 5 (1979Ba40).
			$T_{1/2}$: from β (ce 54.24 γ)(t) (1961Ge14 scin s ce). Other: 1950Mc22.
82.4695 19	1 –	≤0.3 ns	$T_{1/2}$: from β (ce 82.47 γ)(t) (1961Ge14 scin s ce).
373.13 10	(1) –		
425.987 18	1 +		

 $^\dagger~$ From least-squares fit to Ey.

[‡] From Adopted Levels.

β^- radiations

Eβ measured by 1949Ke22, 1950Bu30, 1960He09, 1960Ge12, 1962Gu03.

Eβ-	E(level)	Iβ ^{-†‡}	Log ft	Comments				
(60.8 10)	425.987	1.17 18	5.25 7	av $E\beta = 15.60$ 27.				
(113.7 10)	373.13	0.016 5	7.94 14	av $E\beta = 29.87 \ 28.$				
399 5	82.4695	976	5.91 3	av $E\beta = 118.43$ 33.				
				Eβ is weighted average from 400 8 (1960Ge12 s); 402 5 (1960He09 s); 385 <i>10</i> (1962Gu03 scin β-γ). Iβ from 1960Ge12 (Iβ=99 6 from intensity balance).				
(432.6 10)	54.2391	5 5	7.21u 5	av $E\beta = 141.26$ 34.				
				I β^- : from intensity balance. I β <0.3 if log $f^{Iu}t$ >8.5.				
481 10	0.0	< 4	>7.6	av $E\beta = 146.22$ 35.				
				Eβ,Iβ from 1960He09 (Iβ≤2 from intensity balance).				

[†] From intensity balance, unless otherwise noted.

[‡] Absolute intensity per 100 decays.

γ(¹⁶⁶Ho)

 $\beta^ \gamma$ coin, $\gamma-\gamma$ coin: 1960Ge04, 1960He09, 1960Ru05, 1962Gu03.

 $I\gamma \ normalization: \ The \ intensity \ normalization \ (0.138 \ 7) \ is \ based \ on \ I(82.47\gamma)=13.8\% \ 7 \ (1981Se09). \ I\gamma$

normalization=0.131 β if $\Sigma(I(\gamma+ce)$ to g.s.)=100%.

$E\gamma^{\dagger}$	E(level)	I㇧	Mult.	<u>α</u>	Comments
28.227 5	82.4695	8.2 6	M1	17.02	$\alpha(L)=13.29$ 19; $\alpha(M)=2.94$ 5; $\alpha(N+)=0.786$ 11.
					$\alpha(N)=0.682 \ 10; \ \alpha(O)=0.0989 \ 14; \ \alpha(P)=0.00551 \ 8.$
					Mult.: from L1:L2:L3=100:9.3:1.6 (1960Ge04); 100 3:9.5 (1960Ru05);
					100 24:7.6 24:<4 (1964Br10).
					Eγ: from 1964Br10.
54.239 1	54.2391	5.9 9	E2	31.3	$\alpha(L)=24.0$ 4; $\alpha(M)=5.81$ 9; $\alpha(N+)=1.457$ 21.
					$\alpha(N)=1.305 \ 19; \ \alpha(O)=0.1519 \ 22; \ \alpha(P)=0.0001670 \ 24.$
					Mult.: from L1:L2:L3:M2:M3:M4=3.4 20:89 5:100 5:19 2:20 2:1.1 2
					(1964Br10). Others: 1960Ge04, 1960Ru05.
82.470 2	82.4695	100	M1	4.55	$\alpha(K)=3.82$ 6; $\alpha(L)=0.569$ 8; $\alpha(M)=0.1257$ 18; $\alpha(N+)=0.0337$ 5.
					$\alpha(N)=0.0292$ 4; $\alpha(O)=0.00424$ 6; $\alpha(P)=0.000237$ 4.
					Mult.: from K:L1:L2:L3:M1=100:13.7:1.2:0.19:3.4 (1960Ge04);
					100 8:11.6 7:0.99 11:0.13 4 (1964Br10).
290.66 10	373.13	0.10 3	M1	0.1336	$\alpha(K)=0.1126 \ 16; \ \alpha(L)=0.01639 \ 23; \ \alpha(M)=0.00361 \ 5;$
					$\alpha(N+)=0.000968 14.$
					$\alpha(N)=0.000839$ 12; $\alpha(O)=0.0001222$ 18; $\alpha(P)=6.91\times 10^{-6}$ 10.
					Mult.: from Adopted Gammas.
343.51 3	425.987	0.4 1	(E1)	0.01281	$\alpha(K) = 0.01085 \ 16; \ \alpha(L) = 0.001538 \ 22; \ \alpha(M) = 0.000337 \ 5;$
					$\alpha(N+)=8.93\times10^{-5}$ 13.
					$\alpha(N) = 7.77 \times 10^{-5}$ 11; $\alpha(O) = 1.104 \times 10^{-5}$ 16; $\alpha(P) = 5.72 \times 10^{-7}$ 8.
					Mult.: from α(K)exp<0.038 (1964Br10).

		16	⁶ Dy β ⁻ D	ecay 1979]	Ba40,1967Mo05 (continued)
				γ(¹⁶⁶ Η	Io) (continued)
$E\gamma^{\dagger}$	E(level)	Iγ [‡] §	Mult.	α	Comments
371.75 <i>3</i>	425.987	3.8 <i>8</i>	E1	0.01060	$\begin{split} &\alpha(\mathrm{K}) \!=\! 0.00898 \ 13; \ \alpha(\mathrm{L}) \!=\! 0.001267 \ 18; \ \alpha(\mathrm{M}) \!=\! 0.000278 \ 4; \\ &\alpha(\mathrm{N} \!+\!) \!=\! 7.36 \!\times\! 10^{-5} \ 11. \\ &\alpha(\mathrm{N}) \!=\! 6.40 \!\times\! 10^{-5} \ 9; \ \alpha(\mathrm{O}) \!=\! 9.12 \!\times\! 10^{-6} \ 13; \ \alpha(\mathrm{P}) \!=\! 4.77 \!\times\! 10^{-7} \ 7. \end{split}$
					Mult.: from α(K)exp=0.0088 25 (1964Br10).
425.99 <i>3</i>	425.987	4.2 9	E1	0.00770	$ \begin{array}{l} \alpha({\rm K}) = 0.00653 \ 10; \ \alpha({\rm L}) = 0.000914 \ 13; \ \alpha({\rm M}) = 0.000200 \ 3; \\ \alpha({\rm N}+) = 5.32 \times 10^{-5} \ 8. \end{array} $
					$\alpha(N)=4.62\times10^{-5}$ 7; $\alpha(O)=6.61\times10^{-6}$ 10; $\alpha(P)=3.50\times10^{-7}$ 5.
					Mult.: from α(K)exp=0.0065 18 (1964Br10).

 † $\,$ From 1967Mo05, unless otherwise noted.

[‡] From 1979Ba40 for Eγ<100. Other Iγ are from 1964Br10 normalized to Iγ(82γ)=100 with authors' ΔIγ(82γ)=20% added in quadrature to the uncertainties for Eγ>100. Measured Iγ are I(28.23γ):I(54.24γ):I(82.47γ)=8.2 6:5.9 9:100 (1979Ba40); I(82.47γ):I(290.66γ):I(343.51γ):I(371.75γ):I(425.99γ)=100 20:0.12<: 0.4 1:3.8 3:4.2 3 (1964Br10); I(290.66γ):I(343.51γ):I(371.75γ):I(425.99γ)=0.097 16:0.43 9:3.4 5:(4.2 6) (1967Mo05).

§ For absolute intensity per 100 decays, multiply by 0.138 7.

166 Dy β^{-} Decay 1979Ba40,1967Mo05 (continued)

¹⁶⁶Ho IT Decay (185 μs) 1965Bj03

Parent $^{166} Ho:$ E=190.9021 20; J\pi=3+; $T_{1/2} {=} 185 \ \mu s \ 15; \ \% IT \ decay {=} 100.$

¹⁶⁶Ho Levels

E(level)	$J\pi^{\dagger}$	T _{1/2}	Comments
0.0	0 –	26.824 h 12	T _{1/2} : from Adopted Levels.
54.239 <i>2</i>	2 –	3.44 ns 12	T1/2: from Adopted Levels.
171.072 4	3 –		
190.904 4	3+	185 μs <i>15</i>	T _{1/2} : from 1965Bj03. Others: 214 μs <i>10</i> (1960Al27); 158 μs <i>14</i> (1964KaZZ); 207 μs (1965Mc03); see also 1961Kr01. 1962En04.

[†] From Adopted Levels.

γ(¹⁶⁶Ho)

$I(K x ray) + I(54.2\gamma) = 24 4.$

I γ normalization: I γ was normalized against the conversion electron spectrum by assuming (I(K x ray)+I γ (54.2 γ)) = ω (K) Σ I(ce(K)) + I(54.2 γ) with ω (K)=0.93.

Eγ§	E(level)	Ιγ ^{†#}	Mult.‡	α	Comments
19.840 6	190.904	73	E1	4.79	$\alpha(L)=3.74$ 6; $\alpha(M)=0.847$ 12; $\alpha(N+)=0.206$ 3. $\alpha(N)=0.185$ 3; $\alpha(O)=0.0204$ 3; $\alpha(P)=0.000514$ 8. ce(L)<<130 (1965Bj03). Ev: from Adouted Gammas.
54.239 <i>2</i>	54.239	3.0 5	E2	31.3	$\alpha(L)=24.0$ 4; $\alpha(M)=5.81$ 9; $\alpha(N+)=1.457$ 21. $\alpha(N)=1.305$ 19; $\alpha(O)=0.1519$ 22; $\alpha(P)=0.0001670$ 24. [γ : calculated from the intensity of the L line using $\alpha(L)$ (E2 theory). ce(L)=73 15.
116.835 <i>3</i>	171.072	13 5	M1	1.673	$\alpha(K)=1.406\ 20;\ \alpha(L)=0.209\ 3;\ \alpha(M)=0.0460\ 7;\ \alpha(N+)=0.01233\ 18.$ $\alpha(N)=0.01069\ 15;\ \alpha(O)=0.001555\ 22;\ \alpha(P)=8.71\times10^{-5}\ 13.$ $ce(K)=16\ 3$ and $ce(L)=3.0\ 6\ (1965Bj03).$
136.662 4	190.904	50 10	E1	0.1378	$ \begin{aligned} &\alpha(K) = 0.1155 \ 17; \ \alpha(L) = 0.01749 \ 25; \ \alpha(M) = 0.00385 \ 6; \ \alpha(N+) = 0.001007 \ 14. \\ &\alpha(N) = 0.000880 \ 13; \ \alpha(O) = 0.0001210 \ 17; \ \alpha(P) = 5.50 \times 10^{-6} \ 8. \\ &ce(K) = 7 \ 2 \ and \ ce(L) = 1.1 \ 2 \ (1965Bj03). \end{aligned} $

[†] From 1965Bj03, except as noted.

[‡] From Adopted Gammas, unless otherwise noted.

§ From 165 Ho(n, γ) measured by 1965Bj03.

Absolute intensity per 100 decays.

¹⁶⁵Ho(n,γ) E=thermal 1967Mo05,1984Ke15,2000Pr03

Other measurements: 1958Sk59, 1959Dr75, 1959Jo33, 1960Al27, 1961Es02, 1961Kr01, 1963Gi03, 1963Or02, 1973He15, 1973PrZI, 1979Bo08, 1988Ba79, 1989Du03, 2003ChZS, 2007ChZX.

Includes (pol n, γ) E=0.065 eV.

 $J\pi(target)=7/2-.$

 $\sigma_n{=}61.2$ 11 (2006MuZX). Abundance($^{165}{\rm Ho}){=}100\%.$

2. 2007ChZX: provides an evaluation of experimental data including new Eγ and elemental cross section measurements using Ge(Li) detector for 148 primary and 73 secondary transitions (herein referred to as 'Budapest data', and taken from the EGAF section of the CD that is part of this publication). Supersedes 2003ChZS.

2000Pr03: three-crystal pair spectrometer, FWHM=5.5 keV at 6.5 MeV; calibration based on S(n) and pattern of primary transitions to several well-established low-lying levels; measured Εγ, γγ coin; deduced band structure.

1984Ke15: >99.9% Ho target; Ge detector inside quadrisected NaI(Tl) annulus (FWHM=3.1-4.5 keV for E γ =4000-6200); measured E γ , I γ for 270 transitions with E γ >4050; ¹⁴N(n, γ) reaction used for calibration.

1979Bo08: (pol n,γ); polarized E=0.065 eV neutrons and polarized single-crystal ¹⁶⁵Ho target; measured γ(θ) for 15 primary gammas; deduced J.

1967Mo05: 99.8% Ho target; measured primary Eγ, Iγ using Ge(Li) detector as two-escape pair spectrometer (FWHM=8.0 keV; Eγ=5000-6200); measured secondary Eγ, Iγ using Riso curved-crystal spectrometer (Eγ=30-750) or Iγ using Ge(Li) detector (Eγ=70-550); measured conversion electrons (E=29-500) using Elephant spectrometer at Munich (FWHM=0.6% at 100 keV, 0.3% at 200 keV; thick source) and the Studsvik β⁻ spectrometer (FWHM=0.2%; thin source). The level scheme includes refinements made by 2000Pr03 to the schemes proposed by 1967Mo05 and others, in which γ

The level scheme includes refinements made by 2000Pr03 to the schemes proposed by 1967/Mo05 and others, in which placements were based on the Ritz principle (somewhat unreliable at this level density); γγ coin data from 2000Pr03 led to the placement or relocation of many transitions and the elucidation of a number of additional bands.

¹⁶⁶Ho Levels

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2}	$E(level)^{\dagger}$	Jπ‡	T _{1/2}
0.0 ^a	0 – ^x	26.824 h ^y 12	416.086P 6	2 -	≤0.2 ns§
5.969 ^b 12	7 –	1.20×10^3 y 18	423.651 ^e 10	7+	
54.2391a 7	2 -		426.025k 6	1 +	
82.4707a 20	1 -		430.031 <i>j</i> 4	2 + Z	≤0.2 ns§
137.729b <i>13</i>	8 -		431.239 ^r 6	5 –	
171.0738a <i>12</i>	3 –		453.771 ^c 4	6 +	
180.467 ^a 3	4 -		464.501 ^k 6	2+	
190.9021 ^c 20	3 + #		470.841 ^f 3	5 +	
260.6625 ^c 23	4 + #	≤0.5 ns§	475.680P 7	3 –	≤0.2 ns [§]
263.7876 ^d 24	5 +	≤0.5 ns§	481.846 <i>j</i> 4	$3 + \alpha$	≤0.2 ns [§]
286.96 ^b 13	9 -		514.362d 7	7+	
295.085° <i>9</i>	6 +	1.10 ns § 15	521.982 ^k 6	3+	
329.774 ^a 4	5 -		529.816 ^r 8	6 -	
348.257 ^c 3	5 +		543.672 ⁱ 4	2 –	
371.985 ^f 3	4 + #	≤0.2 ns§	547.934 <i>j</i>	4 +	
373.092P 8	1 –	≤0.2 ns§	557.65 ^a 7	7 –	
377.806a 4	6 –		558.571 ⁿ 4	4 + #	
379.547d 4	6+		562.890P 7	4 –	

E(level) [†]	$J\pi^{\ddagger}$	E(level) [†]	$J\pi^{\ddagger}$	E(level) [†]	$J\pi^{\ddagger}$
567.624h 7	1+	1016.23 15		1448.92 5	
577.208 ^c 7	7+	1019.2 5		1458.8 5	
588.083f 7	6 +	1023.4 23		1461.6 4	
592.501 ¹ 9	3+	1026.1 5		1463.91 14	
595.726g 15	1 –	1030.38 ^v 3	4 +	1467.3 5	
597.015 ¹ 4	3 –	1054.87 22		1471.7 4	
598.448 ^K 6	4 +	1061.788 22	2,4 [#]	1474.4 6	
605.047^{11} 7	2+		3#	1478.49 13	
628.4185 <i>13</i>	2 – E .		6+ 2 (5)#	1487.15 13	
634.314J D	5 + 4	1114.07 3	3,(3)"	1494.59 18	
644 29r 6		1131 0 3		1505 5 3	
654.818^{n} 14	5+	1134.97 11		1510.60 7	
657.995P 11	5 -	1137.79 12		1521.2 4	
659.01^{8} 4	0 -	1141.3 3		1526.86 17	
662.169 ^h 8	3+	1146.7 4		1532.12 6	
668.005 ⁱ 6	4 -	1154.84 4		1537.62 11	
671.746 ¹ <i>12</i>	4 +	1161.35 <i>3</i>	4 #	1540.9 5	
683.805g 5	3 -	1174.9 5		1544.4 10	
693.388 <i>17</i>	(2+)	1190.13 4		1547.49 12	
693.638 ^R /	5 + 2	1199.4 13		1552.95 13	
704.9024 14 719 370m 11	$3-4+\beta$	1202.11 14		1561 0 4	
721 98 ^u 15	6 +	1214 93 23		1566 5 5	
723.239f 19	7+	1217.2 3		1570.75 7	
725.68 ^s 4	2 –	1221.61 13		1576.89 12	
732.513 ^j <i>16</i>	6 +	1230.04 4		1588.79 <i>13</i>	
736.430 ^h 9	4 +	1234.86 12		1592.47 18	
742.028 <i>3</i>	4 -	1240.70 6		1599.98 <i>9</i>	
757.707 ¹ 18	5 –	1244.24 7		1603.81 15	
760.345 7	3 -	1248.19 10		1606.25 24	
709.78° 4 771 94n 8	5+ 6+	1252.09 14		1614.0 4	
774.5228 16	1-	1263.84 4		1620.3 3	
788.618P 11	6 -	1271.44 19		1628.1 4	
792.7899 <i>12</i>	4 –	1289.29 11		1629.9 <i>3</i>	
806.56 ^m 5	5 +	1293.79 7		1635.51 9	
807.011 ^k 8	6+	1298.45 7		1638.97 <i>16</i>	
815.1390 10	3 + #	1301.07 9		1644.49 15	
824.62 <i>4</i>	3 -	1304.81 13		1655.0 5	
832.1971 <i>9</i>	5+	1310.54 15		1657.5 3	
837.71758	4 - 7	1318.0 3		1666 15 0	
868.24 ^S 14	4 -	1327.55 21		1671.64 8	
870.13 5	(-)	1332.1 6		1676.69 12	
876.37 22		1338.75 6		1681.2 5	
881.040 ^s 20	3 – #	1343.06 8		1683.5 4	
883.941 <i>5</i>	6 +	1349.93 5		1687.3 5	
885.345 20	(3+)	1355.02 5		1695.01 7	
891.1240 12	4+	1362.73 11		1704.31 8	
$905.544 \vee 10$	2 + #	1367.31 16		1710.6 3	
910.49? ^m 4	(6+)			1718 85 20	
925.0" 5 935 19t 1	3+ 5-	1370.81 0		1710.05 20	
942.524 ^h 15	6+	1387.75 5		1731.10 11	
945.86 5		1391.93 11		1742.26 12	
951.1 <i>3</i>		1396.77 7		1752.4 3	
961.08 ^v 6	3 +	1401.77 11		1756.8 6	
977.2 7		1405.8 3		1759.6 3	
979.8 10		1415.80 4		1763.59 9	
985.20° 8	5 +	1421.48 13		1769.46 18	
				1776.76 7	
1010.00 10		1 1400.04 12		1/03.3 3	

¹⁶⁶Ho Levels (continued)

-

			¹⁶⁶ Ho Lev	vels (continued)	
E(level) [†]	Jπ [‡]	E(level) [†]	Jπ [‡]	E(level) [†]	J π [‡]
1794.18 15		1957.52 21		2090.96 20	
1798.8 4		1960.67 14		2094.4 4	
1805.5 3		1969.8 <i>3</i>		2098.37 15	
1816.98 9		1972.9 8		2103.7 4	
1823.86 10		1975.5 4		2105.7 6	
1829.53 24		1978.33 18		2109.2 6	
1835.60 16		1985.98 12		2111.7 4	
1838.6 11		1995.37 16		2115.82 23	
1842.99 9		1998.94 20		2118.7 5	
1851.1 3		2004.89 10		2122.5 3	
1854.98 13		2010.77 13		2127.47 18	
1859.34 11		2015.07 21		2131.19 16	
1864.8 6		2017.6 4		2137.2 4	
1870.3 4		2023.0 3		2139.3 5	
1876.86 9		2025.63 19		2145.43 17	
1882.99 18		2029.8 3		2148.5 3	
1890.85 11		2032.05 23		2151.68 16	
1895.28 11		2037.44 17		2157.34 14	
1898.96 15		2040.4 3		2161.1 3	
1907.67 11		2051.3 4		2163.80 24	
1914.0 4		2054.4 3		2167.7 4	
1916.3 6		2056.7 5		2169.8 4	
1919.32 15		2058.7 3		2172.1 5	
1928.17 10		2062.1 5		2180.0 3	
1933.09 16		2065.20 15		2182.92 22	
1938.88 10		2072.60 20		2193.20 15	
1945.97 16		2075.3 5		$(6243.714^{@}8)$	3-,4-&
1950.87 12		2077.77 21			
1954.3 7		2087.76 18			

¹⁶⁵Ho(n,γ) E=thermal 1967Mo05,1984Ke15,2000Pr03 (continued)

[†] From least-squares fit to E γ , excluding data for multiply placed transitions and for the 48.303 γ and 232.286 γ , both of which fit their placements particularly poorly. However, it should be noted that 28 of the remaining 570 E γ data deviate by at least 3 σ from the least-squares prediction and, of those, 12 deviate by at least 5 σ . The latter are noted in comments on the relevant γ .

⁺ Recommended value from 2000Pr03, unless otherwise noted; based on transition multipolarity and deduced band structure.

§ From 1978Sc10.

 $^{\#}\,$ Spin from the angular distribution measurements of the primary γ feeding level (1979Bo08).

[@] From least-squares fit to $E\gamma$ (cf. S(n)=6243.64 2 in 2003Au03).

- & s-wave capture on $J\pi=7/2-$ target.
- a (A): $K\pi=0-$, $(\pi 7/2[523])-(v 7/2[633])$ band.

b (B): $K\pi = 7-$, $(\pi 7/2[523]) + (v 7/2[633])$ band.

^c (C): $K\pi=3+$, $(\pi 7/2[523])-(v 1/2[521])$ band.

d (D): $K\pi = 5 + band$. Configuration: $(\pi 3/2[411] + v 7/2[633]) + (\pi 7/2[523] + v 3/2[521])$.

e (E): $K\pi=6+$, (π 7/2[523])+(ν 5/2[512]) band.

f (F): $K\pi=4+$, (π 7/2[523])+(ν 1/2[521]) band.

g (G): $K\pi = 1-$, $(\pi 1/2[411]) + (\nu 1/2[521])$ band.

h (H): $K\pi=1-$, $(\pi \ 1/2[411])+(v \ 1/2[521])$ band.

i (I): $K\pi = 2-$, $(\pi 7/2[523]) - (v 7/2[633]) + Q_{22}$ band.

j (J): $K\pi = 2 + band$. Configuration: $(\pi 3/2[411] - \nu 7/2[633]) + (\pi 7/2[523] - \nu 3/2[521])$.

- k (K): $K\pi = 1+$, $(\pi 7/2[523]) (v 5/2[512])$ band.
- l (L): $K\pi=3+$, (π 1/2[411])-(ν 7/2[633]) band.
- ^m (M): $K\pi = 4+$, $(\pi \ 1/2[411]) + (v \ 7/2[633])$ band.
- ⁿ (N): $K\pi = 4+$, $(\pi 7/2[523]) + (v 1/2[510])$ band.
- ⁰ (O): $K\pi=3+$, $(\pi 7/2[523])-(v 1/2[510])$ band.
- ^p (P): $K\pi=1-$, $(\pi \ 3/2[411])-(v \ 1/2[521])$ band.
- 9 (Q): $K\pi=2-$, $(\pi \ 3/2[411])+(v \ 1/2[521])$ band.
- r (R): $K\pi=5-$, $(\pi 7/2[523])+(v 7/2[633])-Q_{22}$ band.
- ^s (S): $K\pi=0-$, $(\pi 1/2[411])-(v 1/2[521])$ band.
- t (T): $K\pi=3-$ band. Configuration ($\pi 1/2[541]$)-($\nu 7/2[633]$) or ($\pi 1/2[411]$)+($\nu 5/2[512]$).
- ^u (U): $K\pi = 6+$, (π 7/2[523])+(ν 5/2[523]) band.
- V (V): K\pi=2+, (m 7/2[523])–(v 3/2[521]) band.
- W (W): $K\pi=5+$, $(\pi 7/2[523])+(v 3/2[521])$ band.
- x From Adopted Levels.

Footnotes continued on next page

¹⁶⁶Ho Levels (continued)

y From Adopted Levels.

 Z 2 or possibly 4 from 5812 $\gamma(\theta),$ not 4 from 5812 γ circular polarization (1979Bo08).

α J=3,4 from 5761γ(θ) (1979Bo08).

 $\beta~4~or~possibly~3~from~5523\gamma(\theta)$ (1979Bo08).

γ(¹⁶⁶Ho)

I γ normalization: from 1967Mo05. If, instead, one obtained I γ normalization by requiring that $\Sigma(I(\gamma+ce)$ to g.s.)=100, a value of 1.02 9 would be obtained, in excellent agreement with the normalization recommended by 1967Mo05. The ratio R=I γ (2007ChZX, 'Budapest data')/I γ (1967Mo05) varies widely but, if cases where the intensities differ by at least a factor of 3 are removed from consideration, the average value of R is 0.93 for secondary lines and 1.10 for primary transitions. Some, but not all, of the inconsistencies may stem from the poorer energy resolution of the 2007ChZX measurement or from the presence of unidentified impurities. For the strong 116.8 γ , 136.7 γ , 5181 γ , 5212 γ and 5813 γ , I γ (2007ChZX)/I γ (1967Mo05) is 0.83 9, 0.85 10, 0.95 9, 1.04 11 and 0.93 8, respectively. With the adopted normalization, the total observed primary γ intensity is 16%.

Eγ	E(level)	Iγ [†] c	Mult. [‡]	α	I(γ+ce) ^c	Comments
(3.1)	263.7876				4.1 7	Εγ: from level energy difference; transition expected but not observed
						(see 1978Ba78).
						$I(\gamma+ce):$ from $I(\gamma+ce)$ imbalance at 264
						level.
(9.393)	180.467				12.3 10	Eγ: from level energy difference;
						transition expected but not observed (see 1978Ba78).
						$I(\gamma+ce)$: from $I(\gamma+ce)$ imbalance at 180 level.
10.43 [@] 2	190.9021	0.052& 9	[E1]	27.2		$\alpha(L)=21.0$ 4; $\alpha(M)=5.02$ 8; $\alpha(N+)=1.158$ 18.
						α (N)=1.059 <i>16</i> ; α (O)=0.0972 <i>15</i> ; α (P)=0.00186 <i>3</i> .
(16.97)	671.746					
(18.483)	348 . 257					$E\gamma$: from level energy difference; γ
						expected but not observed.
$19.840^{@}6$	190.9021	1.09& 9	E1	4.79		$\alpha(L)=3.74$ 6; $\alpha(M)=0.847$ 12;
						$\alpha(N+)=0.206$ 3.
						$\alpha(N) = 0.185 \ 3; \ \alpha(O) = 0.0204 \ 3;$
						$\alpha(P) = 0.000514 \ 8.$
		0.0408				Mult.: from Adopted Gammas.
28.242 9	82.4707	0.040^{∞} 3	MI	16.99		$\alpha(L) = 13.27 \ I 9; \ \alpha(M) = 2.93 \ 5;$
						$\alpha(N+)=0.785 II.$
						$\alpha(\mathbf{N}) = 0.081 \ 10; \ \alpha(\mathbf{O}) = 0.0987 \ 14; \ \alpha(\mathbf{P}) = 0.00551 \ g$
						$\alpha(\mathbf{r}) = 0.00551 \ \delta.$
x 2 7 1 9@ 1		0 0148 2				Placement from 605 and 672 lovals rejected
57.42 4		0.014- 5				in 2000Pr03.
38.493 6	464.501	0.34 2	M1 (+E2)	90 80		$\alpha(L)=7.E1$ 7; $\alpha(M)=16$ 15; $\alpha(N+)=4$ 4.
						$\alpha(N)=4$ 4; $\alpha(O)=0.4$ 4; $\alpha(P)=0.0013$ 10.
						Iγ: from 1989Du03. Other: 0.30 <i>9</i> (1967Mo05).
						Mult.: from α(L1)exp=4.6 27 (1967Mo05)
						using Iy value of 1989Du03.
						Other Eγ: 38.492 8 (1989Du03).
(42.994)	416.086					$E\gamma$: from level energy difference; γ
						expected but not observed.
46.232 ^b 4	634 . 314	0.12 2				Iγ: from 1989Du03. Other: 0.02 (1967Mo05).
48.0315 7	377.806	0.17 3				
48.303 ^{§ba} 4	464.501	0.03				
51.8155 7	481.846	0.23 3	[M1]	2.83		
53 3434 7	597 015	0 0 9 0 1 4				

$\gamma(^{166}\text{Ho})$ (continued)						
$\mathrm{E}\gamma^\dagger$	E(level)	Iγţc	Mult.‡	α	Comments	
54.2392 7	54.2391	2.50 25	E2	31.3	$\begin{split} &\alpha(L)=24.0 \ 4; \ \alpha(M)=5.81 \ 9; \ \alpha(N+)=1.457 \ 21. \\ &\alpha(N)=1.305 \ 19; \ \alpha(O)=0.1519 \ 22; \ \alpha(P)=0.0001670 \ 24. \\ &Mult.: \ from \ L12:L3:M:N=20:20:14:2 \ (1973PrZI); \\ &\alpha(L12)exp=7.8 \ 31, \ \alpha(L3)exp=7.8 \ 31, \ \alpha(M)exp=5.9 \ 29, \\ &\alpha(N)exp=0.8 \ 5 \ (1973PrZI). \ \alpha(L3)exp=14 \ 5, \\ &L2:L3:M:N=125 \ 38:138 \ 41:54 \ 16:16 \ 5 \ (1967Mo05). \end{split}$	
57.190 [#] 10	719.370	0.16				
57 517 8	521 982	0.07			Placement from 725 level rejected in 2000Pr03.	
×57.83§ 2	521.562	0.02				
(59.594)	475. 680				E γ : from level energy difference; γ expected but not observed.	
66.103 7	547. 934	0.20 4			Other: Eγ=66.31 8, Iγ=0.18 3 ('Budapest data', 2007ChZX).	
69.7604 <i>14</i>	260.6625	2.8 3	M1	7.37	$ \begin{aligned} &\alpha(K) = 6.19 \ g; \ \alpha(L) = 0.926 \ 13; \ \alpha(M) = 0.205 \ 3; \\ &\alpha(N+) = 0.0548 \ 8. \\ &\alpha(N) = 0.0475 \ 7; \ \alpha(O) = 0.00690 \ 10; \ \alpha(P) = 0.000386 \ 6. \\ &L12:M:N = 5:<1:<1 \ (1973PrZI); \ \alpha(L12)exp = 1.9 \ 10 \\ &(1973PrZI); \ \alpha(L1)exp = 0.47 \ 20 \ from \ 1967Mo05 \ and \\ &0.80 \ 15 \ quoted \ by \ 1967Mo05 \ from \ other \ work. \\ &Other: \ E\gamma = 69.79 \ 4, \ I\gamma = 1.76 \ 10 \ ('Budapest \ data', \\ &2007ChZX). \end{aligned} $	
70.988 10	668.005	0.18 4				
					$\begin{split} &\alpha(N+)=0.353\ 5.\\ &\alpha(N)=0.316\ 5;\ \alpha(O)=0.0371\ 6;\ \alpha(P)=9.27\times10^{-5}\ 13.\\ &Mult.:\ from\ \alpha(L2)exp=2.8\ 15,\ \alpha(L3)exp=4.5\ 24\\ &(1967Mo05)\ one\ obtains\ mult=E2(+M1),\ \delta>1.6.\ The\\ &level\ scheme\ requires\ \Delta J=2.\ E1+M2\ would\ require\\ &\delta>1.2\ and\ thus\ is\ excluded\ by\ RUL.\\ &Other:\ E\gamma=72.89\ 7,\ I\gamma=0.27\ 5\ ('Budapest\ data',\ 2007ChZX). \end{split}$	
74.261b <i>16</i>	736.430	0.09 3			Placement from 979 level rejected in 2000Pr03. Other: Eγ=74.93 <i>6</i> , Iγ=0.50 <i>5</i> ('Budapest data', 2007ChZX); discrepant data suggest presence of an impurity and/or a multiplet in that study.	
75 985 8	891 124	0.070 21 0.070 21				
76.4663 ^b 14	598.448	0.34 3			Placement from 947 level rejected in 2000Pr03.	
76.7258b 14	558.571	0.19 3			Other: Eγ=76.69 <i>β</i> , Iγ=0.53 <i>5</i> (Budapest data', 2007ChZX); possibly an unresolved doublet. Placement from 1023 level rejected in 2000Pr03.	
x78.871 <i>12</i> 82.470 <i>2</i>	82.4707	0.05 0.97 <i>10</i>	M1	4.55	$\begin{split} &\alpha(K) = 3.82 \ 6; \ \alpha(L) = 0.569 \ 8; \ \alpha(M) = 0.1257 \ 18; \\ &\alpha(N+) = 0.0337 \ 5. \\ &\alpha(N) = 0.0292 \ 4; \ \alpha(O) = 0.00424 \ 6; \ \alpha(P) = 0.000237 \ 4. \\ &Mult.: \ from \ \alpha(L1) exp = 1.0 \ 5 \ (1973 PrZI); \\ &\alpha(K) exp = 2.8 \ 14, \ \alpha(L1) exp = 0.5 \ 3 \ (1967 Mo05). \\ &Other: \ E_{Y} = 82.49 \ 5. \ I_{Y} = 0.68 \ 5 \ ('Budapest \ data', 2007 ChZX). \end{split}$	
83.049be <i>14</i>	558.571	0.050e 15			Placement from 1087 level rejected in 2000Pr03.	
	605 . 047	0.050 ^e 15			Placement from 1087 level rejected in 2000Pr03.	
84.468 ^b 10	379.547	0.13 3			Other Εγ: 84.68 7, Ιγ=0.229 26 ('Budapest data', 2007ChZX); possibly for unresolved doublet. Placement from 348 level rejected in 2000Pr03.	
84.742 14	628.418	0.040 12			J	
86.359 11	634.314	0.100 25				
86.765 ^b 11	683.805	0.100 25			Placement from 1097 level rejected in 2000Pr03.	
87.193 15	562.890	0.040 12				

	$\gamma(^{166}$ Ho) (continued)								
$E\gamma^{\dagger}$	E(level)	Iγ [†] c	Mult. [‡]	α	Comments				
87.5946 <i>16</i>	348.257	1.24 12	M1 (+E2)	4.2 5	$\alpha(K)=2.3$ g; $\alpha(L)=1.5$ 10; $\alpha(M)=0.35$ 25; $\alpha(N+)=0.09$ 6. $\alpha(N)=0.08$ 6; $\alpha(O)=0.010$ 6; $\alpha(P)=0.00013$ 7. K:L1:M=100 30:21 10:9 5 and $\alpha(K)\exp=3.0$ 10 (1967Mo05). Other: E $\gamma=87.47$ 4, $I\gamma=1.14$ 6 ('Budapest data', 2007ChZX).				
88.60 3	171.0738	0.03	[E2]	4.466					
89.599 <i>13</i>	260.6625	0.100 15	[E1]	0.424	$\alpha(\mathbf{K}) = 0.352 \ 5; \ \alpha(\mathbf{L}) = 0.0564 \ 8; \ \alpha(\mathbf{M}) = 0.01245 \ 18; \\ \alpha(\mathbf{N}+) = 0.00323 \ 5. \\ \alpha(\mathbf{N}) = 0.00283 \ 4; \ \alpha(\mathbf{O}) = 0.000380 \ 6; \ \alpha(\mathbf{P}) = 1.580 \times 10^{-5} \ 23.$				
90.720b <i>15</i>	774.522	0.04			Other: Eγ=90.8 7, Ιγ=0.026 23 ('Budapest data', 2007ChZX).				
91.286 ^b 13	470.841	0.070 18			Placement from 1115 level rejected in 2000Pr03.				
91.407 13	464.501	0.090 18							
92.355 ^b 13	760.345	0.050 10							
x92.8198 15		0.05							
94.529 11	662.169	0.040 12							
94.643ª 11	638.235	0.20 3			Other: $E_{\gamma}=94.87$ 9, $1\gamma=0.25$ 4 ('Budapest data', 2007ChZX).				
95.1905 3	693.638	0.25 4							
95.953b 2	521.982	0.120 12			Other: Εγ=95.78 <i>11</i> , Ιγ=0.18 <i>3</i> ('Budapest data', 2007ChZX).				
96.265 20	654.818	0.020 6							
96.381 20	693.388	0.020 6							
97.253be <i>20</i>	725.68	0.015e							
	935.12	0.015^{e}							
98.200 ^b 15	732.513	0.030 8			Placement from 1023 level rejected in 2000Pr03.				
98.572 ^D 16	529.816	0.040 8			Placement from 905 level rejected in 2000Pr03.				
98.8572 15	470.841	0.56 6	MI , E2	2.82 13	$\alpha(\mathbf{K})=1.7$ 6; $\alpha(\mathbf{L})=0.9$ 6; $\alpha(\mathbf{M})=0.21$ 14; $\alpha(\mathbf{N}+)=0.05$ 4. $\alpha(\mathbf{N})=0.05$ 3; $\alpha(\mathbf{O})=0.006$ 4; $\alpha(\mathbf{P})=9.\times10^{-5}$ 5. $\alpha(\mathbf{L}12)\exp<2$ (1973PrZI); $\alpha(\mathbf{L}12)\exp=0.6$ 4 (1967Mo05). Other: E _Y =98.86 5, I _Y =0.43 3 ('Budapest data',				
x		0.045			2007ChZX).				
^99.2938 14	704 069	0.015							
99.38455 10	704.902	0.0208 5							
102 55 4	475 680	0.020 5	[E2]	2 57					
103.116 15	567.624	0.052 8	[20]	2.01					
×104.295 15		0.049 7							
105.517 4	453.771	0.52 5	M1 (+E2)	2.27 5	$\alpha(K)=1.4$ 5; $\alpha(L)=0.7$ 4; $\alpha(M)=0.16$ 10; $\alpha(N+)=0.040$ 24.				
					$\alpha(N)=0.035\ 21;\ \alpha(0)=0.0044\ 23;\ \alpha(P)=8.\times10^{-3}\ 4.$ K/L12=9 6 and $\alpha(K)\exp=2.6\ 10\ (1967Mo05).$ Other: Ey=105.54 5, Iy=0.377 26 ('Budapest data',				
x106.869 4		0.160 24			2007ChZX). Placement from 655 level rejected in 2000Pr03. Other: Εγ=107.07 <i>19</i> , Ιγ=0.108 <i>24</i> ('Budapest data',				
					2007ChZX).				
×107.181 16		0.040 8							
107.71a 3	704.962	0.030 8		0 00 (
108.199 2	371.985	0.85 9	MI (+E2)	2.09 4	$\alpha(\mathbf{X}) = 1.3 \ 5; \ \alpha(\mathbf{L}) = 0.0 \ 4; \ \alpha(\mathbf{M}) = 0.14 \ 5; \ \alpha(\mathbf{L}+) = 0.036 \ 21.$ $\alpha(\mathbf{N}) = 0.032 \ 19; \ \alpha(\mathbf{O}) = 0.0040 \ 21; \ \alpha(\mathbf{P}) = 7. \times 10^{-5} \ 4.$ $\alpha(\mathbf{L}12) \exp = 0.26 \ 14 \ (1967 \text{Mo05}).$ Other: E $\gamma = 108.22 \ 5, \ 1\gamma = 0.64 \ 5 \ ('Budapest \ data', 2007 \text{CbZV})$				
109.241b <i>12</i>	704,962	0.030 6			SUUTOILAJ.				
109.887 18	481.846	0.020 5	[M1]	1.99					
110.327 ^b 12	942.524	0.040 8			Placement from 658 level rejected in 2000Pr03.				
111.324 2	371.985	0.63 6	M1 (+E2)	1.91	$\alpha(K)=1.2 \ 4; \ \alpha(L)=0.5 \ 3; \ \alpha(M)=0.12 \ 8; \ \alpha(N+)=0.032 \ 18.$ $\alpha(N)=0.028 \ 16; \ \alpha(O)=0.0035 \ 18; \ \alpha(P)=7.\times10^{-5} \ 4.$ Mult.: $\alpha(K)exp=1.8 \ 8, \ K:L12=178 \ 71:36 \ 18 \ (1967Mo05).$ Other: $E\gamma=111.30 \ 4, \ 1\gamma=0.47 \ 3 \ ('Budapest \ data', 2007ChZX)$				

			γ(¹⁶⁶	Ho) (continu	ued)
$E\gamma^{\dagger}$	E(level)	Iγ [†] c	Mult.‡	α	Comments
×112 869 <i>12</i>		0 020 6			Placement from 832 level rejected in 2000Pr03
112.005 12 113 178b 2	671 746	0.020 0			ratement from 052 lever rejected in 20001105.
113.173~ 2 113.272b 2	807 011	0.02			
112 6448 4	542 672	0.120 18			Other: Ex-112 62 6 In-0 108 22 ('Budanest data'
115.044° 4	545.072	0.150 25			2007ChZX).
	742.02	0.150 2			
114.50 ^{be} 3	644.29	0.010			
	883.94	0.010			
115.167 4	597.015	0.090 14			
115.51 ^D 3	774.522	0.01			Placement from 885 level rejected in 2000Pr03.
115.759 ^b 3	379.547	0.34 5			
116.197 ^b 13	638.235	0.060 15			
116.835 1	171.0738	15.8 16	M1	1.673	$\alpha(K) = 1.406 \ 20; \ \alpha(L) = 0.209 \ 3; \ \alpha(M) = 0.0460 \ 7; \ \alpha(N+) = 0.01233 \ 18.$
					$\begin{split} &\alpha(N) = 0.01069 \ 15; \ \alpha(O) = 0.001555 \ 22; \ \alpha(P) = 8.71 \times 10^{-5} \ 13. \\ &K:L1:M:N = 100 \ 15:15 \ 2:4.7 \ 14:1.6 \ 5 \ (1967Mo05); \\ &K:L1:L2:L3 = 100 \ 15:13 \ 2:1.7 \ 5:<0.9 \ (1967Mo05, thin source); \\ &K:L1:L2:M:N = 24:5:2:<1 \ (1973PrZI). \\ &\alpha(K) \exp = 1.5 \ 4, \ \alpha(L12) \exp = 0.29 \ 15, \ \alpha(M) \exp = 0.13 \ 6, \\ &\alpha(N) \exp < 0.06 \ (1973PrZI). \\ &Other: E\gamma = 116.84 \ 4, \ I\gamma = 13.0 \ 6 \ ('Budapest \ data', \\ &2007CbZV \end{split}$
					2007CnZX).
117.264 ^e 3	588.083	0.20 2			
	771.94	0.200 ^e 20			
x118.41 3		0.02			Placement from 925 level rejected in 2000Pr03.
118.49 2	662.169	0.03			
^x 118.78 5		0.02			
120.06 ^b 2	595.726	0.020 6			Placement from 668 level rejected in 2000Pr03.
120.36 ^{§ba} <i>3</i>	668.005	0.01			
121.48 ^b 3	597.015	0.01			
122.577 ^b 4	470.841	0.090 18			Placement from 598 level rejected in 2000Pr03.
122.89 <i>2</i>		0.01			
123.437 5	577.208	0.100 15			Other: Εγ=123.25 <i>19</i> , Ιγ=0.11 <i>3</i> ('Budapest data', 2007ChZX).
123.81 2	671.746	0.01			,
124.350 15	668.005	0.040 8			
126.228 3	180.467	1.06 11	E2	1.200	$\alpha(K) = 0.601 \ 9; \ \alpha(L) = 0.460 \ 7; \ \alpha(M) = 0.1105 \ 16; \ \alpha(N+) = 0.0280 \ 4.$
					$\alpha(N)=0.0249$ 4; $\alpha(O)=0.00300$ 5; $\alpha(P)=2.56\times10^{-5}$ 4. K:L2:L3=100 30:29 14:29 14; $\alpha(K)\exp=0.74$ 24 (1967M005). Other: E γ =126.21 5, I γ =0.89 6 ('Budapest data', 2007CbZV)
128 566b 5	423 651	0 140 21			"
129.353 7	605.047	0.080 16			Other: Εγ=129.19 16; Ιγ=0.15 3 ('Budapest data',
100 0416 10	700 010	0.01			200/CnZX).
130.6415 16 131.41 3	788.618 736.430	0.01			Other: Ey=131.27 4, Iy=0.15 4 ('Budapest data',
					2007ChZX); discrepancy suggests presence of an impurity in this study.
131.759 5	137.729	0.140 21			
132.472 ^b 17	597.015	0.03			Other: Ey=132.35 18, Iy=0.17 3 ('Budapest data', 2007ChZX): may not have resolved a close doublet
134.00 ^{§b} <i>3</i>	598.448	0.01			Other: Ey=133.89 15; I γ =0.19 3 ('Budapest data', 2007ChZX); may be a multiplet, but I γ suggests the presence of an impurity as well in this study.
134.34 3	588.083	0.020 6			See comment on 134.0 y.
134.815 ^b 6	514.362	0.060 15			Placement from 693 level rejected in 2000Pr03. See comment on 134.0y
135 15b 2	793 990	0 040 19			see comment on 101.01.
125 992 4	123.233	0.040 12			
133.883 4	083.805	0.100 15			

			<u>γ(166</u>	Ho) (continu	ued)
$E\gamma^\dagger$	E(level)	$I^{\gamma \dagger c}$	Mult. [‡]	α	Comments
136.662 2	190.9021	27.5 <i>28</i>	E1	0.1378	$\begin{split} &\alpha({\rm K}) \!=\! 0.1155 \ 17; \ \alpha({\rm L}) \!=\! 0.01749 \ 25; \ \alpha({\rm M}) \!=\! 0.00385 \ 6; \\ &\alpha({\rm N}\!+\!) \!=\! 0.001007 \ 14. \\ &\alpha({\rm N}) \!=\! 0.000880 \ 13; \ \alpha({\rm O}) \!=\! 0.0001210 \ 17; \ \alpha({\rm P}) \!=\! 5.50 \!\times\! 10^{-6} \ 8. \end{split}$
					K:L12:M:N=4:1:<1:<1 (1973PrZI); K:L12=9.8 <i>12</i> :1.1 <i>2</i> (1967Mo05); α (K)exp=0.16 <i>6</i> , α (L12)exp=0.039 <i>23</i>
					(1973Pr21). Other: Εγ=136.67 4, Ιγ=23.3 11 ('Budapest data',
137.09§ <i>3</i>		0.01			2007ChZX).
137.51bf 2	567.624	0.020 6			
137.99b <i>4</i>	736.430	0.007			Placement from 558 level rejected in 2000Pr03. Other: Eγ=138.85 22, Ιγ=0.11 4 ('Budapest data', 2007ChZX); discrepancy suggests presence of an impurity in this study.
140.117 ^b 5	683.805	0.35 4	M1+(E2)	0.91 9	$\alpha(K) \exp = 0.86 \ 28 \ (1967M005).$ $\alpha(K) = 0.64 \ 20; \ \alpha(L) = 0.21 \ 9; \ \alpha(M) = 0.048 \ 21;$ $\alpha(N+) = 0.012 \ 6.$
					$\alpha(N)=0.011$ 5; $\alpha(O)=0.0014$ 5; $\alpha(P)=3.6\times10^{-5}$ 17. Placement from 662 level rejected in 2000Pr03.
					Other: Εγ=140.14 7, Ιγ=0.43 5 ('Budapest data', 2007ChZX).
140.544 10	605.047	0.090 10			
41.599 7	567.624	0.130 13			Other: Eγ=141.55 14; Ιγ=0.15 3 ('Budapest data', 2007ChZX).
43.41 2		0.015 5			Placement from 815 level rejected in 2000Pr03.
45.00 3	742.02	0.02			
45.228 ^b 7	905.544	0.140 10			Other: Eγ=145.27 <i>12</i> ; Iγ=0.093 <i>18</i> ('Budapest data', 2007ChZX).
46.808 8	562.890	0.095 14			Other: Eγ=146.61 16, Iγ=0.061 16 ('Budapest data', 2007ChZX).
149.307 <i>3</i>	329.774	4.2 4	(M1)	0.835	$\alpha(K)=0.702$ 10; $\alpha(L)=0.1037$ 15; $\alpha(M)=0.0229$ 4; $\alpha(N+)=0.00614$ 9.
					α(N)=0.00532 8; α(O)=0.000774 11; α(P)=4.34×10 ⁻⁵ 6. K:L12:M:N=5:1:<1:<1 (1973PrZI); K:L1=66 10:9.5 24 (1967Mo05); α(K)exp=1.2 5, α(L12)exp=0.2 1 (1973PrZI). α(K)exp=0.68 19 and 0.66 12 (thin source) (1967Mo05).
					Other: Eγ=149.32 4, Ιγ=3.62 19 ('Budapest data', 2007ChZX).
150.268 ^b 8	529.816	0.110 17			
51.533 9	567.624	0.080 12			Other: Eγ=151.19 <i>19</i> , Ιγ=0.053 <i>14</i> ('Budapest data', 2007ChZX).
52.45 3	634 . 314	0.016 5			
52.71 3	628.418	0.025 5			
53.32 4 54 71ab 2	709 700	0.006			Placement from 801 loval rejected in 2000 Dr.02
55 19be 2	192.189	U.U25 5 0.0958 =			Flacement from 095 level rejected in 2000Pr03.
00.76° 0	881.040	0.025e 5			Placement from 925 level rejected in 2000Pr03.
56.20 3		0.014			······································
56.45 3		0.014			Placement from 634 level rejected in 2000Pr03.
157.344 8	348.257	0.21 3			Other: Εγ=157.38 7, Ιγ=0.167 18 ('Budapest data', 2007ChZX).
57.95 5		0.014			Placement from 725 level rejected in 2000Pr03.
158.702 9	329.774	0.060 12			
59.38 2		0.050 10			
59.890 3	423.651	0.010 3			Placement from 885 level rejected in 2000Pr03.
161.42 ^{ab} 2	757.707 704.962	0.040 8 0.030 6			Other: $E\gamma$ =161.14 <i>10</i> , $I\gamma$ =0.114 <i>14</i> ('Budapest data', 2007ChZX); inconsistent data may indicate presence
100 450 10	500 501	0 005 10			of an impurity.
162.452 10	592.501	U.U65 13			

$\gamma(^{166}{ m Ho})$ (continued)							
$E\gamma^{\dagger}$	E(level)	Ιγ [†] c	Mult.‡	α	Comments		
163.352 ^b 7	760.345	0.51 5			Placement from 791 level rejected in 2000Pr03. Other: Eγ=163.30 <i>5</i> , Ιγ=0.359 <i>24</i> ('Budapest data', 2007ChZX).		
164.57 ^b 4	883.94	0.020 6					
166.983 5	597.015	0.170 17					
167.450 ^b 5	431.239	0.95 10	E1		α(K)exp<0.19 (1967Mo05).		
					Placement from 638 level rejected in 2000Pr03. Other: E γ =167.40 4, I γ =0.89 5 ('Budapest data', 2007ChZX).		
168.49 3		0.040 12					
169.45 ^b 3	430.031	0.02					
169.712b 5	837.717	0.240 24			Placement from 825 level rejected in 2000Pr03. Other: Eγ=169.70 7, Iγ=0.242 23 ('Budapest data', 2007ChZX).		
170.09 ^e 3	832.197	0.01 ^e					
	985.20	0.01 ^e					
170.584 15	543.672	0.050 10					
171.67 ^b 3	693.638	0.030 6			Placement from 947 level rejected in 2000Pr03. Other: Eγ=171.2 4, Ιγ=0.042 15 ('Budapest data', 2007ChZX).		
173.47 ^b 12	638.235	0.02			Placement from 736 level rejected in 2000Pr03.		
174.77 ^b 4	935.12	0.02			5		
175.73 4	470.841	0.030 9			See comment on 176.0 y.		
175.98 2	547.934	0.070 14			Other: Eγ=175.75 <i>14</i> ; Γγ=0.085 <i>18</i> ('Budapest data', 2007ChZX); may include the 175.7γ.		
177.71 4		0.01					
179.032 6	605.047	0.25 4	(M1,E2)	0.43 8	$ \begin{array}{l} \alpha({\rm K}) \!=\! 0.32 \ 10; \ \alpha({\rm L}) \!=\! 0.082 \ 20; \ \alpha({\rm M}) \!=\! 0.019 \ 6; \\ \alpha({\rm N}\!+\!) \!=\! 0.0049 \ 13. \end{array} $		
					$\alpha(N)=0.0043 \ I2; \ \alpha(O)=0.00057 \ I1; \ \alpha(P)=1.8\times10^{-3} \ 8.$ $\alpha(K)\exp=0.32 \ 21, \ 0.60 \ 20 \ (1967M005).$ Other data: Ey=179.28 7, Iy=0.354 26 ('Budapest		
179.882d 4	557.65	0.15 ^d 5			data', 2007ChZX). α(K)exp=0.32 21, 0.60 20 (1967Mo05), mult=M1,E2 for		
					doublet. Ιγ: from γγ coin (2000Pr03); Ιγ=0.25 <i>4</i> for doublet.		
	595.726	0.10 ^d 3			α(K)exp=0.32 21, 0.60 20 (1967Mo05), mult=M1,E2 for doublet.		
180.545 5	634.314	0.20 3	(M1,E2)	0.42 8	Ιγ: from γγ coin (2000Pr03); Ιγ=0.25 <i>4</i> for doublet. α(K)exp=0.40 <i>17</i> (1967Mo05).		
					$\alpha(K)=0.31$ 10; $\alpha(L)=0.079$ 19; $\alpha(M)=0.018$ 5; $\alpha(N+)=0.0048$ 12.		
181.086d 5	371.985	1.17d <i>13</i>	(M1)	0.487	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.0042 \ 11; \ \alpha(\mathrm{O}) = 0.00055 \ 10; \ \alpha(\mathrm{P}) = 1.8 \times 10^{-5} \ 8. \\ \alpha(\mathrm{K}) = 0.409 \ 6; \ \alpha(\mathrm{L}) = 0.0603 \ 9; \ \alpha(\mathrm{M}) = 0.01330 \ 19; \\ \alpha(\mathrm{N}+) = 0.00357 \ 5. \end{array} $		
					$\alpha(N)=0.00309$ 5; $\alpha(O)=0.000450$ 7; $\alpha(P)=2.53\times10^{-5}$ 4. $\alpha(K)\exp=0.8$ 3 (1973PrZI), 0.42 14 and 0.43 10 (thin source) (1967Mo05) for doublet dominated by this transition.		
					Iγ: 1.27 13 for doublet minus Iγ=0.10 3 (γγ coin, 2000Pr03) from 597 level.		
					Other: E γ =100.90 β ; 1γ =1.91 δ (Budapest data , 2007Ch7X): probably includes 190.54		
	597 015	0 10d 3			$L_{007CHLA}$, probably includes 160.57. Ly: from vy coin (2000Pr03)		
182 04b 1	795 68	0.10- 3					
182 302 16	657 995	0 100 15	[E2]	0 3329			
183.118 6		0.01	[122]	0.0020			
183.96 4	654.818	0.050 15					
184.23 2		0.150 15			Other: Eγ=184.04 21; Iγ=0.056 19 ('Budapest data', 2007ChZX).		
186.147 6	668.005	0.120 18					
	$\gamma(^{166}\text{Ho})$ (continued)						
---------------------------------	---------------------------------------	----------------------------------	------------	--------	--	--	
${\bf E}\gamma^{\dagger}$	E(level)	$_{I\gamma ^{\dagger }c}$	Mult.‡	α	Comments		
186.582 6	558.571	0.28 3	E2,M1	0.38 7	$ \begin{aligned} &\alpha(K) \exp = 0.24 \ 18 \ (1967Mo05). \\ &\alpha(K) = 0.29 \ 9; \ \alpha(L) = 0.071 \ 15; \ \alpha(M) = 0.016 \ 4; \\ &\alpha(N+) = 0.0042 \ 10. \\ &\alpha(N) = 0.0037 \ 9; \ \alpha(O) = 0.00049 \ 8; \ \alpha(P) = 1.6 \times 10^{-5} \ 7. \\ &\text{Other: } E\gamma = 186.53 \ 6 \ 1\gamma = 0.32 \ 4 \ (\text{'Budapest data'}, \\ &\alpha(D) = 0.0037 \ C + 2 \ $		
197 02 5	045 86	0.01					
188.98 <i>3</i>	605.047	0.070 14			Other: Ey=189.02 <i>18</i> Iy=0.071 <i>26</i> ('Budapest data', 2007ChZX).		
189.89 5	671.746	0.01					
191.12 ^{bf} 3	910.49?	0.030 6					
191.961 11	885.345	0.130 20					
192.33 2	668.005	0.070 14					
193.107 6	453.771	0.190 19			Other: Eγ=192.62 8, Ιγ=0.23 3 ('Budapest data', 2007ChZX); probably unresolved doublet (193.1γ+192.3γ).		
194.529 10	567.624	0.130 20			Other: Eγ=194.51 <i>13</i> , Ιγ=0.13 <i>3</i> ('Budapest data', 2007ChZX).		
195.687 ^{ab} <i>14</i>	792.789	0.080 12					
197.11 5	668.005	0.03					
197.339 8	377.806	0.32 5	(E2)	0.255	$\begin{split} &\alpha(K) exp = 0.26 \ 17 \ (1967Mo05). \\ &\alpha(K) = 0.1669 \ 24; \ \alpha(L) = 0.0679 \ 10; \ \alpha(M) = 0.01606 \ 23; \\ &\alpha(N+) = 0.00410 \ 6. \\ &\alpha(N) = 0.00364 \ 6; \ \alpha(O) = 0.000454 \ 7; \ \alpha(P) = 7.88 \times 10^{-6} \ 11. \\ &Other: \ E\gamma = 197.58 \ 5, \ I\gamma = 0.55 \ 5 \ (Budapest \ data', \\ &2007 ChZX); \ probably \ a \ 197.7 \gamma + 197.3 \gamma + 197.1 \gamma \\ &unresolved \ multiplet. \end{split}$		
197.677 ^b 10	662.169	0.20 3					
198.31 ^{be} 5	628.418	0.03 ^e					
	742.02	0.03 ^e					
×199.12 5 199.710 8	547.934	0.040 <i>12</i> 0.80 <i>8</i>	(M1)	0.371	Placement from 757 level rejected in 2000Pr03. $\alpha(K)=0.312 5$; $\alpha(L)=0.0459 7$; $\alpha(M)=0.01012 15$; $\alpha(N+)=0.00271 4$. $\alpha(N)=0.00235 4$; $\alpha(O)=0.000342 5$; $\alpha(P)=1.93\times10^{-5} 3$. $\alpha(K)\exp=1.3 8 (1973PrZI)$; $\alpha(K)\exp=0.26 11 (1967Mo05)$. Other: E $\gamma=199.66 5$, I $\gamma=0.77 5$ ('Budapest data', 2007ChZX).		
201.08 3	654.818	0.040 8					
201.95 ^{be} 3	373.092	0.050^{e} 10			Other: Eγ=201.93 22, Iγ=0.060 24 ('Budapest data', 2007ChZX).		
×205.03 8	000.000	0.02					
206.15be 2	925.0	0.050 ^e 8			Other data: Εγ=206.52 <i>24</i> , Ιγ=0.071 <i>16</i> ('Budapest data', 2007ChZX).		
	942 . 524	0.050 ^e 8			See comment on 2067 from 925 level.		
207.04 2	470.841	0.040 6					
208.34 ^b 4	638.235	0.065 10			Placement from 876 level rejected in 2000Pr03. Other: Eγ=208.48 12, Iγ=0.129 18 ('Budapest data', 2007ChZX); probably for unresolved 208.3γ+208.9γ doublet.		
208.90 ^b 4	723.239	0.030 6			Indicated as multiply-placed (2000Pr03), but no other placement was identified.		
209.69 4	757.707	0.020 6					
210.300 6	558.571	0.30 5	M1 (+E2)	0.26 6	$\begin{aligned} &\alpha(\mathbf{K}) \exp[=0.40 \ 23 \ (1967 \text{M005}). \\ &\alpha(\mathbf{K}) = 0.20 \ 7; \ \alpha(\mathbf{L}) = 0.046 \ 7; \ \alpha(\mathbf{M}) = 0.0106 \ 18; \\ &\alpha(\mathbf{N}+) = 0.0028 \ 4. \\ &\alpha(\mathbf{N}) = 0.0024 \ 4; \ \alpha(\mathbf{O}) = 0.00032 \ 3; \ \alpha(\mathbf{P}) = 1.2 \times 10^{-5} \ 5. \\ &\text{Other: } \mathbf{E}\gamma = 210.36 \ 6, \ I\gamma = 0.290 \ 24 \ (\text{'Budapest data'}, \\ &2007 \text{ ChZX}). \end{aligned}$		
^x 211.06 6		0.030 6			···· · · · · · · · · · · · · · · · · ·		
211.53 6	693.388	0.01					
212.30 ^e 6	628.418	0.040 ^e 8			Other: Eγ=212.4 <i>3</i> , Iγ=0.029 <i>15</i> ('Budapest data', 2007ChZX).		

¹⁶⁵ Ho(n,γ) E=thermal 1967Mo05,1984Ke15,2000Pr03 (continued)					
γ ⁽¹⁶⁶ Ho) (continued)					
$E\gamma^{\dagger}$	E(level)	Iγ [†] c	Mult. [‡]	α	Comments
212.30be 6	883.94	0.040 ^e 8			
213.04 ^b 6	644.29	0.01			Placement from 683 level rejected in 2000Pr03.
214.442 9	736.430	0.22 3	M1 (+E2)		Mult.: α(K)exp=0.40 25 (1967Mo05). Other: Eγ=214.46 8, Ιγ=0.171 19 ('Budapest data', 2007ChZX).
215.44 ^{§b} 9	985.20	0.01			
216.16 5	588.083	0.020 6			
216.85 ^b 6	760.345	0.04			Placement from 815 level rejected in 2000Pr03. Other: E γ =216.79 <i>25</i> , I γ =0.045 <i>14</i> ('Budapest data', 2007ChZX). May include 216.1 γ .
217.23 6	885.345	0.04			
218.00 6	671.746	0.04			
x219.02 6		0.060 18			Placement from 961 level rejected in 2000Pr03. Other: E γ =218.95 <i>14</i> , I γ =0.084 <i>16</i> ('Budapest data', 2007ChZX).
219.44 ^b 6	683.805	0.080 20			
221.174 9	481.846	3.9 4	(M1)	0.280	$\alpha(K) = 0.236 \ 4; \ \alpha(L) = 0.0346 \ 5; \ \alpha(M) = 0.00763 \ 11; \\ \alpha(N+) = 0.00204 \ 3.$
					α(N)=0.001772 25; α(O)=0.000258 4; α(P)=1.454×10 ⁻³ 21. α(K)exp=0.21 3, K:L12=21.0 25:3.6 7 (1967Mo05, thin source).
					Other: Eγ=221.18 4, Ιγ=3.30 18 ('Budapest data', 2007ChZX).
222.634 7	815.139	0.220 22			Other: Eγ=222.66 10, Iγ=0.201 23 ('Budapest data', 2007ChZX).
224.01 15	597.015	0.01			
225.722 ^b 9	788.618	0.070 14			Placement from 951 level rejected in 2000Pr03. Other: Eγ=225.81 <i>22</i> , Ιγ=0.050 <i>18</i> ('Budapest data', 2007ChZX).
227.88 7	557.65	0.02			
x228.53 7		0.050 15			
229.00e 7	577.208	0.050e 15			
	704.962	0.050e 15			
230.110 5	792.789	0.030 6			Placement from 807 level rejected in 2000Pr03.
231.957 14	605.047	0.030 $b0.24$ 5			$E\gamma=232.02$ 15, $I\gamma=0.37$ 8 ('Budapest data', 2007ChZX);
232.286 ^{ab} g	662.169	0.27 5			Placement from 652 8 level rejected in 2000Pr03. See comment on 232 0v
233.112 14	562.890	0.63 6	M1	0.243	$\alpha(\mathbf{K}) = 0.204 \ 3; \ \alpha(\mathbf{L}) = 0.0299 \ 5; \ \alpha(\mathbf{M}) = 0.00660 \ 10; \\ \alpha(\mathbf{N}+) = 0.001769 \ 25. \\ \alpha(\mathbf{N}+) = 0.001769$
					$\alpha(N)=0.001533$ 22; $\alpha(0)=0.000223$ 4; $\alpha(P)=1.259310$ ° 18. Mult.: from $\alpha(K)\exp=0.30$ 5 (1988Ba79). Other: 0.26 9 (1967Mo05).
					Other: Eγ=233.15 14, Iγ=0.61 6 ('Budapest data', 2007ChZX).
233.79 ^b 5	832.197	0.120 24			
234.79b 5	529.816	0.05			
235.80 5	870.13	0.060 18			
236.31e 8	662.169	0.030e 9			
239 140 11	891.124 430 021	0.030° 9 1 2 1	M1	0 226	$\alpha(\mathbf{K}) = 0.101.2; \alpha(\mathbf{I}) = 0.0270 \text{ /}; \alpha(\mathbf{M}) = 0.00615.0;$
239.140 11	430.031	4.2 4	мі	0.226	$\begin{aligned} &\alpha(\mathbf{K}) = 0.191 \ 3; \ \alpha(\mathbf{L}) = 0.0279 \ 4; \ \alpha(\mathbf{M}) = 0.00615 \ 9; \\ &\alpha(\mathbf{N}+) = 0.001649 \ 23. \\ &\alpha(\mathbf{N}) = 0.001429 \ 20; \ \alpha(\mathbf{O}) = 0.000208 \ 3; \ \alpha(\mathbf{P}) = 1.174 \times 10^{-5} \ 17. \\ &\alpha(\mathbf{K}) \exp = 0.18 \ 3 \ (1967Mo05, \ \text{thin source}); \\ &\alpha(\mathbf{K}) \exp = 0.33 \ 13 \ (1973PrZI); \ \mathbf{K}: (\mathbf{L}1 + \mathbf{L}2) = 17 \ 6:3.0 \ 15 \\ &(1967Mo05). \\ &\mathbf{Other: E} \gamma = 239.13 \ 4, \ 1\gamma = 3.62 \ 19 \ ('Budapest \ data', \ 2007CbZV) \end{aligned}$
241.76 5	671.746	0.050 10			Other: E γ =242.8 3, I γ =0.060 28 ('Budapest data', 2007ChZX); may be a 242.9 γ +241.8 γ doublet, but I γ is consistent with that for the 241.8 γ alone whereas E γ matches that for the stronger 242.9 γ .

	$\gamma(^{166}{ m Ho})$ (continued)					
n t		. †c	Nr. 1. †			
Eγ	E(level)	Υ	Mult.+	α	Comments	
242.90 ^b 2	881.040	0.17 3			Other: Eγ=242.8 3, Iγ=0.060 28 ('Budapest data', 2007ChZX); may be a 242.9γ+241.8γ doublet, but Iγ is closer to that from 1967Mo05 for the weaker 241.8γ alone.	
245.007 7	416.086	1.04 10	М1	0.212	$\begin{split} &\alpha(K) = 0.1785 \ 25; \ \alpha(L) = 0.0261 \ 4; \ \alpha(M) = 0.00576 \ 8; \\ &\alpha(N+) = 0.001543 \ 22. \\ &\alpha(N) = 0.001337 \ 19; \ \alpha(O) = 0.000195 \ 3; \ \alpha(P) = 1.099 \times 10^{-5} \ 16. \\ &\alpha(K) \exp = 0.17 \ 7 \ (1967Mo05); \ 0.18 \ 3 \ (1988Ba79). \\ &Other: E\gamma = 245.00 \ 7, \ I\gamma = 0.76 \ 8 \ ('Budapest \ data', \\ &2007 CbZV) \end{split}$	
246 07 2	662 169	0 2 0 4				
247 68b 9	769 78	0 0 3 0 9				
248 77b 9	719 370	0 060 12			Placement from 420 level rejected in 2000Pr03	
250 49 9	514 362	0 070 14			Placement from 905 level rejected in 2000Pr03	
253 78b 3	683 805	0 120 24			Other: E_{V} =253 87 18 I_{V} =0 090 26 ('Budapest data'	
055.70 0	000.410	0.120 24			2007ChZX).	
255.37 3	628.418	0.090 18	$M1(\cdot E9)$		$M_{\rm W}$ + $\alpha(K)_{\rm even} = 0.24.17(1067M_{\odot}05)$	
230.00 2	815.139	0.26 4	MI (+E2)		Mult.: $\alpha(R)exp=0.24$ 17 (1967M003). Other: E γ =256.23 24, I γ =0.148 18 ('Budapest data', 2007ChZX).	
257.81 2	263.7876	0.26 4	M2	0.844	$ \begin{aligned} &\alpha(K) \exp = 0.5 \ 3 \ (1967Mo05). \\ &\alpha(K) = 0.674 \ 10; \ \alpha(L) = 0.1313 \ 19; \ \alpha(M) = 0.0300 \ 5; \\ &\alpha(N+) = 0.00805 \ 12. \\ &\alpha(N) = 0.00699 \ 10; \ \alpha(O) = 0.001001 \ 14; \ \alpha(P) = 5.22 \times 10^{-5} \ 8. \\ &Other: E\gamma = 257.54 \ 12, \ I\gamma = 0.29 \ 6 \ ('Budapest data',) \end{aligned} $	
					2007ChZX).	
260.75 2	736.430	0.160 24			Other: Εγ=260.81 <i>12</i> , Ιγ=0.124 <i>23</i> ('Budapest data', 2007ChZX).	
261.31 7	521.982	0.040 12				
x261.96 7		0.05				
⁶ 262.93 [§] 9		0.3				
263.36b 5	558.571	0.120 18			Placement from 693 level rejected in 2000Pr03. Other: Eγ=263.14 <i>20</i> , Ιγ=0.077 <i>21</i> ('Budapest data', 2007ChZX).	
265.12b 5	638.235	0.18 4			Placement from 870 level rejected in 2000Pr03.	
266.03 5	824.62	0.28 6			Other: Eγ=265.76 13, Iγ=0.274 23 ('Budapest data', 2007ChZX).	
266.53 ^{be} 5	529.816	0.24 ^e 5				
	742.02	0.24 ^e 5				
267.19b 5	815.139	0.28 6			Placement from 597 level rejected in 2000Pr03. Other: Eγ=267.14 <i>13</i> , Ιγ=0.320 <i>24</i> ('Budapest data', 2007ChZX).	
267.82 9	683.805	0.110 22				
268.15 ^{ab} 9	598.448	0.070 21				
^x 269.38 <i>9</i>		0.070 21			Placement from 832 level rejected in 2000Pr03. Other: Εγ=268.99 <i>22</i> , Ιγ=0.087 <i>16</i> ('Budapest data', 2007Cb7X)	
273.64 7	464.501	0.16 3			Other: Εγ=273.56 <i>18</i> , Ιγ=0.10 <i>3</i> ('Budapest data', 2007ChZX).	
274.77 7	704.962	0.130 26				
276.83 <i>2</i>		0.03			Placement from 906 level rejected in 2000Pr03.	
278.69 ^b 10	732.513	0.060 18			Placement from 705 level rejected in 2000Pr03.	
279.79 10	470.841	0.030 9			ā	
280.99 10	286.96	0.030 9			Placement from 825 level rejected in 2000Pr03.	
282.80 8	654.818	0.060 18			5	
284.26 12	832.197	0.080 24				
285.81 ^{be} 8	423.651	0.060 ^e 18				
	659.01	0.060 ^e 18				
287.24 3	547.934	0.170 26			Other: Εγ=287.11 15, Ιγ=0.090 13 ('Budapest data', 2007ChZX).	
288.60 7	704.962	0.12				

γ ⁽¹⁶⁶ Ho) (continued)					
Εγ [†]	E(level)	Ιγ [†] c	Mult.‡	α	Comments
289.120 15	295.085	2.30 <i>23</i>	E1	0.0196	$\begin{split} &\alpha(K) \exp < 0.03 \ (1967 Mo05). \\ &\alpha(K) = 0.01655 \ 24; \ \alpha(L) = 0.00237 \ 4; \ \alpha(M) = 0.000520 \ 8; \\ &\alpha(N+) = 0.00011375 \ 20. \\ &\alpha(N) = 0.0001197 \ 17; \ \alpha(O) = 1.693 \times 10^{-5} \ 24; \\ &\alpha(P) = 8.61 \times 10^{-7} \ 12. \\ &\text{Other: } E\gamma = 289.04 \ 4, \ 1\gamma = 1.87 \ 10 \ (\text{'Budapest data'}, \\ &2007 \text{ChZX}). \end{split}$
290.61 <i>3</i>	373.092	1.70 17	М1	0.1337	$\begin{split} &\alpha(K) = 0.1127 \ 16; \ \alpha(L) = 0.01640 \ 23; \ \alpha(M) = 0.00361 \ 5; \\ &\alpha(N+) = 0.000969 \ 14. \\ &\alpha(N) = 0.000839 \ 12; \ \alpha(O) = 0.0001223 \ 18; \\ &\alpha(P) = 6.91 \times 10^{-6} \ 10. \\ &\alpha(K) \exp = 0.10 \ 4 \ (1967Mo05); \ 0.11 \ 2 \ (1988Ba79). \\ &Other: E\gamma = 290.61 \ 4, \ 1\gamma = 1.55 \ 8 \ ('Budapest \ data', \\ &2007 ChZX). \end{split}$
291.04 8	481.846	0.12			
293.42 8	464.501	0.070 14			
295.99 8	668.005	0.040 12			
297.90 3	558.571	0.39 8	M1 (+E2)	0.10 3	$\begin{split} &\alpha(K) \exp[=0.15 \ g \ (1967Mo05). \\ &\alpha(K)=0.08 \ 3; \ \alpha(L)=0.0145 \ g; \ \alpha(M)=0.00328 \ 11; \\ &\alpha(N+)=0.00087 \ 5. \\ &\alpha(N)=0.00076 \ 3; \ \alpha(O)=0.000104 \ 10; \ \alpha(P)=4.5\times10^{-6} \ 20. \\ &\text{Other: } E\gamma=297.94 \ 6, \ I\gamma=0.303 \ 23 \ (`Budapest \ data', 2007ChZX). \end{split}$
299.88 17	475 680	0.03 2.60 <i>26</i>	M1	0 1179	$\alpha(K) = 0.0994.14$; $\alpha(L) = 0.01444.21$; $\alpha(M) = 0.00318.5$;
305.36b 15	868.24	0.14 4			$\begin{split} &\alpha(N+)=0.000853 \ 12.\\ &\alpha(N)=0.000739 \ 11; \ \alpha(O)=0.0001077 \ 15; \ \alpha(P)=6.09\times10^{-6} \ 9.\\ &\alpha(K)\exp<0.4 \ (1973PrZI), \ 0.09 \ 3 \ (1967Mo05); \ 0.11 \ 2\\ &(1988Ba79). \ \alpha(L12)\exp=0.023 \ 5 \ (1988Ba79).\\ &Other: \ E\gamma=304.63 \ 4, \ I\gamma=2.16 \ 11 \ ('Budapest \ data', \ 2007ChZX).\\ &E\gamma,I\gamma: \ from \ low-energy \ \gamma\gamma \ coin \ (2000Pr03). \end{split}$
306.49b <i>3</i>	654.818	0.24 5			Placement from 736 level rejected in 2000Pr03. Other: Eγ=306.55 <i>9</i> , Ιγ=0.177 <i>16</i> ('Budapest data', 2007ChZX).
×307.65 [§] 15		0.03			
309.59 ^b 6	725.68	0.10 2			Placement from 867 level rejected in 2000Pr03.
x310.89 3		0.30 5			Other: Eγ=310.78 <i>11</i> , Ιγ=0.21 <i>3</i> ('Budapest data', 2007ChZX).
312.90 8	905.544	0.12 4			Placement from 951 level rejected in 2000Pr03.
313.48 ^e 6	577.208	0.12 ^e 4			Other: Εγ=313.35 9, Ιγ=0.114 16 ('Budapest data', 2007ChZX).
	985.20	0.12 ^e 4			
316.10 9	769.78	0.09			Other: Eγ=315.96 <i>15</i> , Ιγ=0.110 <i>23</i> ('Budapest data', 2007ChZX).
317.28 ^{ab} 3	792.789	0.22 3			Placement from 1011 level rejected in 2000Pr03. Other: Εγ=317.18 <i>12</i> , Ιγ=0.143 <i>22</i> ('Budapest data', 2007ChZX).
×321.62§ 10		0.09			
323.42 7	671.746	0.120 24			Other: Εγ=323.19 <i>13</i> , Ιγ=0.103 <i>16</i> ('Budapest data', 2007ChZX).
324.74 7	806.56	0.110 22			Other: Εγ=324.69 <i>17</i> , Ιγ=0.071 <i>14</i> ('Budapest data', 2007ChZX).
328.245 15	657.995	0.73 7			Other: Eγ=328.19 4, Iγ=0.63 4 ('Budapest data', 2007ChZX).
331.88 3	592.501	0.27 4			Other: Εγ=331.77 9, Ιγ=0.193 19 ('Budapest data', 2007ChZX).

¹⁶⁵ Ho(n,γ) E=thermal	1967Mo05,1984Ke15,2000Pr03 (continued)
----------------------------------	--

$\gamma(^{166}Ho)$ (continued)

$E\gamma^{\dagger}$	E(level)	$I\gamma^{\dagger c}$	Mult.‡	α	Comments
333.62 <i>2</i>	416.086	1.60 24	M1	0.0925	$\alpha(K)=0.0780$ 11; $\alpha(L)=0.01131$ 16; $\alpha(M)=0.00249$ 4; $\alpha(N+)=0.000668$ 10.
					$\begin{array}{l} \alpha(N)\!=\!0.000579 \; g_{\!$
					α (L12)exp=0.019 <i>6</i> (1988Ba79).
					Other: $E\gamma = 333.61$ 4, $1\gamma = 1.67$ 10 ('Budapest data',
335.61 ^b 8	806.56	0.62 12			Placement from 684 level rejected in 2000Pr03.
					Iγ: Iγ=0.052 <i>18</i> for Eγ=335.89 <i>19</i> line ('Budapest
					data', 2007ChZX) but I $\gamma {=} 0.62$ 13 (crystal data) and
					0.32 8 (Ge(Li) data) in 1967Mo05. Unless there is a
					typographical error in 1γ from 2007ChZX, it seems likely that the 336γ branching adopted here is much
					too high.
338.20 4	668.005	0.150 23			Other: $E\gamma = 338.31 \ 10$, $I\gamma = 0.106 \ 21$ ('Budapest data',
					2007ChZX).
341.57 3	521.982	0.064 13			Iγ: 0.064 13 ('Budapest data' for Eγ=341.54 19,
					2007ChZX) but 0.28 6 (1967Mo05) suggests presence of contaminant in 1967Mo05 datum, so evaluator adapts the fermer datum
343.51 <i>3</i>	426.025	0.39 8	(E1)	0.01281	$\alpha(K) \exp < 0.038.$
					$\alpha(\mathbf{K}) = 0.01085 \ I6; \ \alpha(\mathbf{L}) = 0.001538 \ 22; \ \alpha(\mathbf{M}) = 0.000337 \ 5; \ \alpha(\mathbf{N}+) = 8.93 \times 10^{-5} \ I3.$
					$\begin{array}{l} \alpha({\rm N}) \!=\! 7.77 \!\times\! 10^{-5} \ 11; \ \alpha({\rm O}) \!=\! 1.104 \!\times\! 10^{-5} \ 16; \\ \alpha({\rm P}) \!=\! 5.72 \!\times\! 10^{-7} \ 8. \end{array}$
					Other: Εγ=343.49 5; Ιγ=0.327 21 ('Budapest data',
¥					2007ChZX).
^346.3 3 347 24 8	719 370	0.04			Other: Ex-347 42 7 In-0 132 16 ('Budanest data'
547.24 0	715.570	0.20 4			2007ChZX).
350.61 12	815.139	0.070 14			Other: Εγ=351.1 <i>3</i> , Ιγ=0.048 <i>18</i> ('Budapest data', 2007ChZX).
352.28 12	725.68	0.130 26			Other: Εγ=352.46 <i>12</i> , Ιγ=0.119 <i>21</i> ('Budapest data', 2007ChZX).
357.04 4	547.934	0.29 6			Other: Eγ=357.11 5, Iγ=0.261 19 ('Budapest data', 2007ChZX).
358.4 ^b 3	774.522	0.05			Placement from 881 level rejected in 2000Pr03.
359.7 2	654.818	0.080 24			Other: Eγ=359.64 17, Iγ=0.060 15 ('Budapest data',
363.1 3	543.672	0.05			2007CnZX). Other: Ey=362.4 3. Iy=0.047 14 ('Budapest data'.
					2007ChZX).
367.54 16	558.571	0.07			
368.45 ^e 16	1061.788	0.12 ^e 3			Other: Eγ=368.26 <i>11</i> , Iγ=0.118 <i>19</i> ('Budapest data', 2007ChZX).
971 75# 9	1087.91	0.12 ^e 3	E1	0 01000	$\alpha(K)_{\text{outp} \to 0} 0.16 (1067M_{0}05)$
3/1./3" 3	420.025	3.0 3	EI	0.01060	$\alpha(K) = 0.00898 \ 1.3; \ \alpha(L) = 0.001267 \ 1.8; \ \alpha(M) = 0.000278 \ 4;$
					$\alpha(N+)=7.36 \times 10^{-5}$ 11.
					$\alpha(N) \!=\! 6.40 \!\times\! 10^{-5} \ 9; \ \alpha(O) \!=\! 9.12 \!\times\! 10^{-6} \ 13; \ \alpha(P) \!=\! 4.77 \!\times\! 10^{-7} \ 7.$
L					Other: Εγ=371.74 4; Ιγ=2.51 13 ('Budapest data', 2007ChZX).
373.47 ^D 7	379.547	0.45 7			
3/0.91 14	541.934	0.120 24			0(ner: Εγ=3/6.89 1/, 1γ=0.063 18 ('Budapest data', 2007ChZX).
	792.789	0.120 ^e 24			
380.1 2 382 80 2	157.707	U.U5U 15 0.05			
385.0 2	815 139	0.04			
386.6 ^b 3	757.707	0.048 8			Eγ,Iγ: from 2000Pr03. Eγ=386.3 <i>3</i> , Iγ=0.04 in 1967Mo05.
388.8 ^b 3	815.139	0.08 3			Eγ,Ιγ: from γγ coin (2000Pr03).
390.0 ^b 2	769.78	0.18 4			Placement from 1062 level rejected in 2000Pr03. Other: Eγ=389.72 <i>16</i> ; Ιγ=0.12 <i>3</i> ('Budapest data',

Continued on next page (footnotes at end of table)

2007ChZX).

¹⁶⁵ Ho(n,γ) E=thermal	1967Mo05,1984Ke15,2000Pr03 (continued)
----------------------------------	--

$\gamma(^{166}\text{Ho})$ (continued)

${f E}\gamma^{\dagger}$	E(level)	$I\gamma^{\dagger}c$	Mult. [‡]	α	Comments
391.89 4	562.890	1.13 11	M1	0.0605	$\begin{split} &\alpha(K) \!=\! 0.0511 \; \textit{8};\; \alpha(L) \!=\! 0.00737 \; \textit{11};\; \alpha(M) \!=\! 0.001622 \; \textit{23};\\ &\alpha(N\!+\!) \!=\! 0.000435 \; \textit{6}.\\ &\alpha(N) \!=\! 0.000377 \; \textit{6};\; \alpha(O) \!=\! 5.50 \!\times\! 10^{-5} \; \textit{8};\; \alpha(P) \!=\! 3.12 \!\times\! 10^{-6} \; \textit{5}.\\ &\text{Mult.: from } \alpha(K) \!exp \!=\! 0.08 \; \textit{2} \; (1988Ba79). \end{split}$
					Other: $E\gamma=391.86$ 4; $I\gamma=0.82$ 8 ('Budapest data',
392.2 ^b 5	868.24	0.11 3			2007Cn2X). Εγ.Ιγ: from low-energy γγ coin (2000Pr03).
394.5 ^{bf} 2	654.818	0.10			Placement from 870 level rejected in 2000Pr03.
					Absent in 'Budapest data' in 2007ChZX so placement is shown here as questionable.
×398.6 2		0.09 3			Placement from 881 level rejected in 2000Pr03.
					Other: E7=398.83 21; I7=0.06 5 ('Budapest data', 2007ChZX).
401.31 ^b 10	774.522	0.11 3			$E\gamma$, $I\gamma$: from $\gamma\gamma$ coin (2000Pr03).
401.56 6	592.501	2.1 3	(M1 , E2)	0.043 15	$ \begin{split} &\alpha(\mathbf{K}) \exp = 0.030 \ 22 \ (1967 M 005). \\ &\alpha(\mathbf{K}) = 0.035 \ 13; \ \alpha(\mathbf{L}) = 0.0059 \ 11; \ \alpha(\mathbf{M}) = 0.00132 \ 21; \\ &\alpha(\mathbf{N}+) = 0.00035 \ 6. \\ &\alpha(\mathbf{N}) = 0.00030 \ 5; \ \alpha(\mathbf{O}) = 4.3 \times 10^{-5} \ 9; \ \alpha(\mathbf{P}) = 2.1 \times 10^{-6} \ 9. \end{split} $
					Other: $E\gamma=401.57$ 4; $I\gamma=1.72$ 14 ('Budapest data',
404.7 ^b 6	881.040	0.05 2			2007CH2A). Ev. Iv: from low-energy vy coin (2000Pr03)
406.83 ^b 16	736.430	0.130 26			Placement from 1062 level rejected in 2000Pr03.
					Other: Εγ=406.53 <i>14</i> ; Ιγ=0.17 <i>3</i> ('Budapest data', 2007ChZX).
410.27 2	464.501	1.36 27			Other: E γ =410.45 4, I γ =1.98 11 ('Budapest data', 2007ChZX); probably an unresolved doublet (410.3 γ +411.1 γ).
411.09 3	671.746	0.75 23			
412.1 ^e 2	592.501	0.60 ^e 12			Other: Εγ=412.27 9; Ιγ=0.48 5 ('Budapest data', 2007ChZX).
X412 60 15	742.02	0.60 ^e 12			Discoment from 420 level rejected in 2000Pr02
413.03 13		0.13			Other: E γ =414.24 <i>19</i> , I γ =0.14 <i>3</i> ('Budapest data', 2007ChZX); it is unclear whether this is the γ
410 47 5	507 015	0 00 10			reported in 1967Mo05.
416.47 5	597.015	0.80 16			Other: $E_{\gamma}=416.52$ b; $1\gamma=0.68$ b (Budapest data', 2007ChZX).
418.08 ^b 18	598.448	0.20 6			
420.76 421 12bf 5	475.680	0.165			Eγ,1γ: from γγ coin (2000Pr03).
421.15 5	105.10	0.70 11			strong to have been overlooked there if this were a ¹⁶⁶ Ho line; not included in Adopted Gammas.
423.39be <i>18</i>	683.805	0.16 ^e			Placement from 905 level rejected in 2000Pr03.
					Other: Εγ=423.52 16; Ιγ=0.23 5 ('Budapest data', 2007ChZX).
	771.94	0.16 ^e			Placement from 905 level rejected in 2000Pr03.
425.30 ^D 3	431.239	1.30 26	E1	0 00770	Placement from 638 level rejected in 2000Pr03.
425.99 3	426.025	3.76	ΕI	0.00770	$\alpha(\mathbf{K}) \exp = 0.0005 \ 18.$ $\alpha(\mathbf{K}) = 0.00653 \ 10; \ \alpha(\mathbf{L}) = 0.000914 \ 13; \ \alpha(\mathbf{M}) = 0.000200 \ 3; \ \alpha(\mathbf{N}+) = 5.32 \times 10^{-5} \ 8.$ $\alpha(\mathbf{N}) = 4.62 \times 10^{-5} \ 7. \ \alpha(\mathbf{Q}) = 6.61 \times 10^{-6} \ 10; \ \alpha(\mathbf{P}) = 3.50 \times 10^{-7} \ 5.$
					$C(r) = 1.02 \times 10^{-7}$, $C(r) = 0.01 \times 10^{-7}$, $C(r) = 0.001 \times 10^{-7}$ Other: Ey=425.90 4; Iy=4.64 24 ('Budapest data', 2007ChZX).
	597.015	0.24 7			Εγ, Iγ: doublet; from γγ coin (2000Pr03).
426.89 ^b 15	721.98	0.13 4			$E\gamma$, $I\gamma$: from $\gamma\gamma$ coin (2000Pr03).
427.0 <i>2</i>	598.448	0.4			
430.31 ⁰ 18	760.345	0.13			Placement from 757 loval rejected in 2000 D-02
136.14 10		0.13			Other: E γ =432.19 <i>18</i> ; I γ =0.095 <i>16</i> ('Budapest data', 2007ChZX).
433.9 ^b 9	806.56	0.015 5			Εγ,Ιγ: from 2000Pr03.
433.92 18	605.047	0.17			Other: Εγ=433.05 8, Ιγ=0.140 19 ('Budapest data', 2007ChZX).

	$\gamma(^{166}{ m Ho})$ (continued)					
${f E}\gamma^{\dagger}$	E(level)	$_{I\gamma ^{\dagger }c}$	Mult.‡	α	Comments	
437.3 3	628.418	0.06			Other: Εγ=437.0 3, Ιγ=0.045 14 ('Budapest data',	
×439.6 <i>3</i>		0.04			Placement from 577 level rejected in 2000Pr03. Other: Εγ=439.39 7, Iγ=0.195 19 ('Budapest data',	
^x 442.0 <i>3</i>		0.40 12			2007ChZX); suggests presence of a contaminant. Placement from 1031 level rejected in 2000Pr03. Other: $E_7=442.05 \ g$, $I_7=0.35 \ 5$ ('Budapest data', 2007ChZX): possibly 2 442 0x 4442 2x doublet	
442.17 8	771.94	0.25 7			Ey, Iy: from yy coin (2000Pr03). Other: Ey=442.05 g, Iy=0.35 5 ('Budapest data', 2007ChZX): proceedings of $442.0y$ 442 $2y$ doublet	
442.9 3	815.139	0.40 12			2007(h12A); possibly a 442.0 γ +442.2 γ doublet. Other: E γ =443.22 10, I γ =0.264 19 ('Budapest data', 2007(h2X).	
450.3 <i>3</i>	876.37	0.05				
x454.96 20		0.3				
455.60 6	719.370	1.70 26	M1 (+E2)		Mult.: α(K)exp=0.030 <i>19</i> (1967Mo05). Other: Eγ=455.53 <i>4</i> , Ιγ=1.26 <i>6</i> ('Budapest data', 2007ChZX).	
457.37 7	628.418	0.60 12			Other: Εγ=457.55 <i>9</i> , Ιγ=0.34 <i>3</i> ('Budapest data', 2007ChZX).	
458.74 ^b 22	788.618	0.09 3			$E\gamma$, $I\gamma$: from $\gamma\gamma$ coin (2000Pr03).	
463.9 <i>3</i>	654.818	0.60 12			Other: Εγ=463.88 β, Ιγ=0.39 β ('Budapest data', 2007ChZX).	
467.3 <i>3</i>	638.235	0.30 9			Other: Εγ=467.36 8, Ιγ=0.26 3 ('Budapest data', 2007ChZX).	
472.2 ^b 5	662.169	0.14			Placement from 736 level rejected in 2000Pr03. Other: Εγ=471.53 <i>15</i> , Ιγ=0.068 <i>16</i> ('Budapest data', 2007ChZX).	
475.8 ^e 3	736.430	0.15 ^e			Other: Εγ=475.98 17, Ιγ=0.081 18 ('Budapest data', 2007ChZX).	
	905.544	0.15 ^e				
477.4 3	657.995	0.2			Other: Εγ=477.70 <i>12</i> , Ιγ=0.116 <i>18</i> ('Budapest data', 2007ChZX).	
481.31# 8	742.02	0.85 17		0 0040		
487.58 6	668.005	1.30 20	мі	0.0343	$\alpha(\mathbf{K})=0.0290$ 4; $\alpha(\mathbf{L})=0.00416$ 6; $\alpha(\mathbf{M})=0.000914$ 13; $\alpha(\mathbf{N}+)=0.000245$ 4. $\alpha(\mathbf{N})=0.000212$ 3; $\alpha(\mathbf{O})=3.10\times10^{-5}$ 5; $\alpha(\mathbf{P})=1.765\times10^{-6}$ 25. Mult.: from $\alpha(\mathbf{K})\exp=0.03$ 1 (1988Ba79). Other: $\mathbf{E}\gamma=487.45$ 5, $1\gamma=0.63$ 4 ('Budapest data', 2007CbZX)	
489.39 5	543 . 672	3.2 <i>3</i>	E2+M1	0.025 9	$\alpha(\mathbf{K}) = 0.021 \ \beta; \ \alpha(\mathbf{L}) = 0.0034 \ \beta; \ \alpha(\mathbf{M}) = 0.00075 \ 1\beta; \ \alpha(\mathbf{N}+) = 0.00020 \ 5. \ \alpha(\mathbf{N}+) = 0.00017 \ 4; \ \alpha(\mathbf{Q}) = 2.5 \times 10^{-5} \ \beta; \ \alpha(\mathbf{Q}) = 1.2 \times 10^{-6} \ 5.$	
					Mult.: from $\alpha(K)\exp[0.019]$ 4 (1988Ba79). Other $\alpha(K)\exp[0.020]$ 13 (1967Mo05). Other: E γ =489.45 4, I γ =1.85 10 ('Budapest data', 2007ChZX).	
496.9 2	668.005	0.3			Other: Eγ=497.14 8, Ιγ=0.180 19 ('Budapest data', 2007ChZX).	
499.5 ^{#b} 4 ^x 504.3 2	760.345	0.1 0.2				
506.8 ^{§b} 3	644.29	0.2				
508.4 8	562.890	0.28 8			Eγ,Ιγ: from γγ coin (2000Pr03). Other: Eγ=508.83 7, Ιγ=0.53 4 ('Budapest data', 2007ChZX); possibly γ is complex in this study.	
509.0 2	769.78	0.7			Placement from 905 level rejected in 2000Pr03.	
512.7bd 3	595.726	0.80 ^d 16			Iγ=0.80 <i>16</i> for doublet; Iγ=0.03 from γγ coin (2000Pr03) for other placement. Other: Eγ=512.76 <i>8</i> , Iγ=0.52 <i>4</i> ('Budapest data',	
	693.638	0.03 ^d			2007ChZX); presumably this also is for a doublet. Ιγ: from γγ coin (2000Pr03). Ιγ=0.80 <i>16</i> for doublet (1967Mo05).	

$\gamma(^{166}\text{Ho})$ (continued)					
$\mathrm{E}\gamma^\dagger$	E(level)	$_{I\gamma^{\dagger}c}$	Mult.‡	α	Comments
524.2b <i>3</i>	529.816	0.50 10			Other: Εγ=524.35 <i>6</i> , Ιγ=0.42 <i>3</i> ('Budapest data', 2007ChZX).
					Placement from 705 level rejected in 2000Pr03.
530.1 3		0.4			
533.5 <i>3</i>	704.962	0.60 18			Other: $E\gamma = 533.55$ 6, $1\gamma = 0.49$ 3 ('Budapest data', 2007ChZX).
534.9 ^D 4	961.08	0.3			Placement from 725 level rejected in 2000Pr03. Other: Eγ=535.89 <i>16</i> , Ιγ=0.137 <i>23</i> ('Budapest data', 2007ChZX).
538.4 <i>3</i>		0.3			Placement from 593 level rejected in 2000Pr03. Other: Eγ=538.32 <i>9</i> , Ιγ=0.24 <i>3</i> ('Budapest data', 2007ChZX).
538.6 ^b 4	868.24	0.20 6			$E\gamma$, $I\gamma$: from low-energy $\gamma\gamma$ coin (2000Pr03).
542.8b 8	961.08	0.006 2			$E\gamma$, $I\gamma$: from high-energy $\gamma\gamma$ coin (2000Pr03).
542.86 20	597.015	3.5 9	E2+M1	0.019 7	$\alpha(K) = 0.016 \ 6; \ \alpha(L) = 0.0025 \ 7; \ \alpha(M) = 0.00056 \ 13; \\ \alpha(N+) = 0.00015 \ 4.$
					$\alpha(N) = 0.00013 \ 3; \ \alpha(O) = 1.9 \times 10^{-5} \ 5; \ \alpha(P) = 1.0 \times 10^{-6} \ 4.$
					Mult.: from α(K)exp=0.011 3 (1988Ba79). Other: Eγ=542.74 4, Iγ=3.12 21 ('Budapest data', 2007ChZX).
543.66 20	543.672	2.4 6	E2	$0\;.\;0\;1\;2\;7\;5$	$\alpha(K)=0.01030$ 15; $\alpha(L)=0.00191$ 3; $\alpha(M)=0.000432$ 6; $\alpha(N+)=0.0001135$ 16.
					$\begin{array}{l} \alpha(\mathrm{N}) \!=\! 9.93 \!\times\! 10^{-5} \ 14; \ \alpha(\mathrm{O}) \!=\! 1.366 \!\times\! 10^{-5} \ 20; \\ \alpha(\mathrm{P}) \!=\! 5.77 \!\times\! 10^{-7} \ 8. \end{array}$
					Mult.: from α(K)exp=0.012 3 (1988Ba79).
					Other: Eγ=543.69 4, Ιγ=1.61 8 ('Budapest data', 2007ChZX).
546.0 ^b 5	806.56	0.020 6			Εγ,Ιγ: from 2000Pr03.
50.5 3		0.3			
553.37 ^b 21	848.46	0.07 2			E γ ,I γ : from $\gamma\gamma$ coin (2000Pr03).
554.3ª <i>4</i>	725.68	0.45 ^d 14			Ιγ: from γγ coin. Ιγ=0.60 for doublet (1967Mo05). See comment on 554γ from 815 level.
	815.139	0.150 5			Iy: from yy coin; Iy=0.60 for doublet (1967Mo05). The 'Budapest data' in 2007ChZX include two 555 keV transitions from the 815 level: Ey=554.00 <i>16</i> , Iy=0.31 <i>5</i> and Ey=555.30 <i>20</i> , Iy=0.21 <i>5</i> , but the latter energy does not fit placement.
564.8 ^b 3	736.430	0.2			
570.0 ^b 3	760. 345	0.2			
577.0 ^e 3	757.707	0.70 ^e 14			Other: Eγ=577.06 <i>6</i> , Ιγ=0.327 <i>27</i> ('Budapest data', 2007ChZX).
L	837.717	0.70 ^e 14			
579.95 7 585.6 7	760.345	0.5 <i>3</i> 0.40 <i>12</i>			Eγ,1γ: from 2000Pr03. Placement from 757 level rejected in 2000Pr03. Other: Eγ=585.93 <i>12</i> , Iγ=0.148 <i>21</i> ('Budapest data', 2007ChZX).
589.4 7		0.30 9			
593.8 ^b 7	595. 726	0.08			
300.8 ^b 7	1030.38	0.024 6			Iy: from yy coin (2000Pr03). Iy=0.3 in 1967Mo05.
307.7 <i>7</i>	662.169	0.11			Other: E ₇ =608.61 <i>25</i> , I ₇ =0.055 <i>19</i> ('Budapest data', 2007ChZX).
012.0° 5	/92.789	U.3			Othom En 612 70 5 In 0.50 4 (Dedamant data)
18 5 7	008.005	0.3			0 (Budapest data', 2007ChZX).
624.0 4	815,139	0.60 18			Other: Ey=624.13 6. Iy=0.341 26 ('Budanest data'
633.5 4	824.62	0.80 24			2007ChZX). Other: Eγ=633.62 5, Ιγ=0.58 5 ('Budapest data',
643.1 8	725.68	0.40 12			2007ChZX). Other: Εγ=643.03 <i>10</i> , Ιγ=0.164 <i>23</i> ('Budapest data',
					2007ChZX).
353.4 8		0.2			
658.9 6		0.60 18			

$\gamma(^{166}Ho)$ (continued)

$E\gamma^{\dagger}$	E(level)	$_{I\gamma ^{\dagger c}}$	Comments
661 0 ^b 6	925 0	0 60 18	
×681.7 5	020.0	0.40 12	
×689.7 9		0.80 24	Placement from 881 level rejected in 2000Pr03.
			Other: Ey=689.51 6, Iy=0.71 5 ('Budapest data', 2007ChZX).
^x 699.4 <i>9</i>		0.50 15	
700.8 ^b 3	961.08	0.06 2	Eγ,Iγ: from high-energy γγ coin (2000Pr03).
701.1 ^b 5	1030.38	0.016 5	$E\gamma$, $I\gamma$: from $\gamma\gamma$ coin (2000Pr03).
^x 708.9 6		0.3	
709.6 6	881.040	0.14 4	E γ ,I γ : from $\gamma\gamma$ coin (2000Pr03).
714.7b 2	905.544	0.26 8	$E\gamma$, $I\gamma$: from $\gamma\gamma$ coin (2000Pr03).
x715.3 6		0.60 18	
733.94 ^b 21	905.544	0.024 7	$E\gamma$, $I\gamma$: from $\gamma\gamma$ coin (2000Pr03).
x734.4 10		0.3	Placement from 925 level rejected in 2000Pr03.
,			Other: Εγ=734.45 6, Ιγ=0.41 3 ('Budapest data', 2007ChZX).
770.5 ^b 4	1030.38	0.06 2	Εγ,Iγ: from high-energy γγ coin (2000Pr03).
798.6 4	881.040	0.26 8	Eγ,Iγ: from high-energy γγ coin (2000Pr03).
827.1 3	881.040	0.19 6	Eγ,1γ: trom high-energy γγ coin (2000Pr03).
839.90 7	1030.38	0.13 4	Eγ,1γ: from high-energy γγ coin (2000Pr03).
849.50 7	1030.38	0.015 5	$E\gamma$, $I\gamma$: from high-energy $\gamma\gamma$ coin (2000Pr03).
858.00 5	1030.38	0.04 1	E_{γ}, I_{γ} : from $\gamma\gamma$ coin (2000Pr03).
4050.46 15	(6243.714)	0.097 6	Other: $E\gamma = 4049.4 \ 5, \ 1\gamma = 0.193 \ 23$ (Budapest data', 2007ChZX).
4060.74 22	(6243.714)	0.037 3	
4003.00 20	(6243.714)	0.029 3	
4071.0 5	(6243.714) (6243.714)	0.0194 0.1029	
4076 0 4	(6243.714)	0.102 5	
4079 86 24	$(6243 \ 714)$	0 044 3	
4082 6 3	$(6243 \ 714)$	0 030 3	
4086.32 14	(6243.714)	0.090 5	
4091.98 16	(6243.714)	0.088 5	
4095.2 3	(6243.714)	0.030 <i>3</i>	
4098.23 17	(6243.714)	0.072 4	
4104.4 5	(6243.714)	0.024 5	
4106.5 4	(6243.714)	0.028 5	
4112.47 16	(6243.714)	0.046 3	
4116.19 18	(6243.714)	0.035 2	
4121.2 3	(6243.714)	0.015 2	
4125.0 5	(6243.714)	0.012 2	
4127.84 23	(6243.714)	0.041 3	
4132.0 4	(6243.714)	0.017 3	
4134.5 6	(6243.714)	0.012 3	
4138.0 6	(6243.714)	0.020 5	
4140.0 4	(6243.714)	0.027 5	
4145.29 15	(0243./14)	0.048 3	
4149.3 4	(0243.714) (6243.714)	0.013 2	
4155 90 18	(0243.714)	0.031 3	
4165.89 21	(6243 714)	0.075 5	
4168 4 5	$(6243 \ 714)$	0 020 4	
4171.06 20	(6243.714)	0.064 4	
4178.46 15	(6243.714)	0.096 6	
4181.6 5	(6243.714)	0.012 2	
4185.0 3	(6243.714)	0.073 7	
4187.0 5	(6243.714)	0.038 7	
4189.3 3	(6243.714)	0.046 5	
4192.4 4	(6243.714)	0.014 2	
4203.3 3	(6243.714)	0.024 2	
4206.22 17	(6243.714)	0.064 4	
4211.61 23	(6243.714)	0.077 6	
4213.9 3	(6243.714)	0.040 6	
4218.03 19	(6243.714)	0.085 5	
4220.7 3	(6243.714)	0.024 3	

Continued on next page (footnotes at end of table)

$\gamma(^{166}Ho)$ (continued)

$E\gamma^{\dagger}$	E(level)	$I\gamma^{\dagger c}$	Comments
4226.1 4	(6243.714)	0.020 3	Other: Εγ=4227.2 5, Ιγ=0.058 26 ('Budapest data', 2007ChZX); possibly a 4226γ+4229γ doublet.
4228.59 21	(6243.714)	0.065 5	
4232.89 13	(6243.714)	0.047 3	
4238.77 10	(6243.714)	0.179 10	Other: Ey=4238.2 3, Iy=0.14 3 ('Budapest data', 2007ChZX).
4244.72 20	(6243.714)	0.026 2	
4248.29 16	(6243.714)	0.037 2	
4257.68 12	(6243.714)	0.038 2	
4265.33 18	(6243.714)	0.050 3	
4268.2 4	(6243.714)	0.020 3	
4270.8 8	(6243.714)	0.009 3	
4273.9 3	(6243.714)	0.020 2	
4282.98 14	(6243.714)	0.069 4	Other: Εγ=4282.7 5, Ιγ=0.064 16 ('Budapest data', 2007ChZX).
4286.13 21	(6243.714)	0.038 3	
4289.4 7	(6243.714)	0.007 2	
4292.78 12	(6243.714)	0.138 8	Other: $E\gamma = 4292.1$ 3, $1\gamma = 0.100$ 18 ('Budapest data', 2007ChZX).
4297.08 10	(6243.714)	0.026 2	
4304.77 10	(6243.714)	0.038 3	
4310.30 10	(6243.714) (6242.714)	0.024 2	
4313.48 10	(6243.714) (6243.714)	0.061 4	Other: Ex-4323 3 1 Iv-0 071 19 ('Budanest data' 2007Ch7X)
4327 1 6	(6243.714) (6243.714)	0.001 4	Other: $E_1 = 4323.3 + 17 = 0.074.13$ (Budapest data', 2007ChZX).
4329 7 4	(6243.714)	0 021 3	other. El-4027.0 0, 11-0.000 10 (Budapest data , 2007 ChER).
4335 98 11	(6243.714)	0 047 3	Other: Ev=4336 1 4 Jv=0 061 18 ('Budanest data' 2007ChZX)
4344.69 15	(6243.714)	0.034 2	Other: $E_{\gamma} = 4344.3 \ 6. \ 1\gamma = 0.058 \ 2.3 \ (Budapest data', 2007 ChZX).$
4348.37 11	(6243.714)	0.151 8	Other: $E_{\gamma} = 4347.5$ 3. $I_{\gamma} = 0.135$ 24 ('Budapest data', 2007ChZX).
4352.80 11	(6243.714)	0.047 3	
4360.66 18	(6243.714)	0.019 2	
4366.79 9	(6243.714)	0.064 4	
4373.4 4	(6243.714)	0.009 1	
4378.9 6	(6243.714)	0.005 1	
4384.31 11	(6243.714)	0.057 3	Other: Εγ=4384.0 20, Ιγ=0.06 4 ('Budapest data', 2007ChZX).
4388.67 13	(6243.714)	0.048 3	
4392.6 3	(6243.714)	0.014 1	
4400.66 9	(6243.714)	0.118 7	Other: Ey=4400.8 6, Iy=0.08 6 ('Budapest data', 2007ChZX).
4405.1 11	(6243.714)	0.005 2	
4408.05 16	(6243.714)	0.056 4	
4414.12 24	(6243.714)	0.017 2	
4419.79 10	(6243.714)	0.063 4	
4426.67 9	(6243.714)	0.073 4	
4438.2 3	(6243.714)	0.011 /	
4444.9 4	(6243.714)	0.009 1	
4449.47 13	(6243.714)	0.0272	
4430.1 3	(6243.714) (6242.714)	0.011 1	Other: Ex-4487.0.2 Iv-0.10.2 ('Rudenest date' 2007Ch7Y)
4474 19 18	(6243.714)	0.130 0	$C(ne)$, $E_{f} = 4407.0$, $1_{f} = 0.13$ S (Duuapest uata, 2007C(12A).
4474.15 18	(6243.714) (6243.714)	0.082 5	Other: Ev-4479 8 7 Iv-0 093 23 ('Budanest data' 2007Ch7X)
4484.0 3	(6243.714)	0.020 2	other. El-4410.0 7, 11-0.000 20 (Budapest data , 2007 onEA).
4486.8 6	(6243.714)	0.009 2	
4491.2 3	(6243.714)	0.011 1	
4501.39 12	(6243.714)	0.028 2	
4512.55 11	(6243.714)	0.035 2	
4519.8 6	(6243.714)	0.004 1	
4527.00 20	(6243.714)	0.021 2	
4530.41 23	(6243.714)	0.035 3	
4533.0 3	(6243.714)	0.019 3	
4539.34 8	(6243.714)	0.054 3	
4548.64 7	(6243.714)	0.073 4	Other: Εγ=4548.3 5, Iγ=0.066 19 ('Budapest data', 2007ChZX).
4556.35	(6243.714)	0.007 1	
4560.1 4	(6243.714)	0.019 3	
4562.4 5	(6243.714)	0.014 3	
4566.96 12	(6243.714)	0.032 2	
4572.01 8	(6243.714)	0.064 4	

$\gamma(^{166}Ho)$ (continued)

$E\gamma^{\dagger}$	E(level)	$I\gamma^{\dagger c}$	Comments
4577 50 0	(6949 714)	0 055 2	
4577.50 9	(6243.714) (6243.714)	0.035 5	
4586 1 3	(6243.714) (6243.714)	0 024 3	
4588.6 5	(6243.714)	0.011 2	
4599.16 15	(6243.714)	0.020 1	
4604.68 16	(6243.714)	0.028 2	
4608.14 9	(6243.714)	0.087 5	Other: Εγ=4608.0 4, Ιγ=0.110 21 ('Budapest data', 2007ChZX).
4613.7 3	(6243.714)	0.047 8	
4615.5 4	(6243.714)	0.027 7	Other: Εγ=4615.2 <i>6</i> , Ιγ=0.092 <i>21</i> ('Budapest data', 2007ChZX); possibly a 4614γ+4616γ doublet.
4623.3 3	(6243.714)	0.011 1	
4627.62 25	(6243.714)	0.052 6	Other: Εγ=4627.5 6, Ιγ=0.090 23 ('Budapest data', 2007ChZX).
4629.6 4	(6243.714)	0.021 5	
4637.39 24	(6243.714)	0.029 3	
4639.83 15	(6243.714)	0.085 6	Other: Εγ=4638.2 β, Iγ=0.081 23 ('Budapest data', 2007ChZX).
4643.66 9	(6243.714)	0.062 4	Other: Εγ=4643.8 4, Ιγ=0.097 19 ('Budapest data', 2007ChZX).
4651.17 18	(6243.714)	0.022 2	
4654.85 13	(6243.714)	0.031 2	Others For 4007.0.4 In 0.050 14 (Duden et detel 0007017V), dete suggest
4666.75 12	(6243.714)	0.025 2	ofner: Ey=4667.8 4, 1y=0.053 14 (Budapest data', 2007ChZX); data suggest presence of a contaminant.
4672.89 7	(6243.714)	0.102 6	Other: Εγ=4672.7 3, Ιγ=0.124 19 ('Budapest data', 2007ChZX).
4677.1 5	(6243.714)	0.007 1	
4682.6 4	(6243.714)	0.024 5	Other Fr. 1881 8 1 Iv. 0.082 16 ('Dudencet date' 2007Ch7V)
4004.74 17	(6243.714) (6243.714)	0.088 /	Other: $E_{\gamma} = 4064.04$, $I_{\gamma} = 0.08276$ (Budapest data , 2007ChZX).
4696 15 12	(6243.714) (6243.714)	0.029 2	Other: Ev-4695 4 4 Iv-0 084 18 ('Budanest data' 2007Ch7X)
4699.2 10	(6243.714)	0.005 2	other 21 room 1, 1 olor 10 (Dudupot data, woor onen).
4702.7 5	(6243.714)	0.009 2	Other: Ey=4702.9 7, Iy=0.060 16 ('Budapest data', 2007ChZX); data suggest presence of a contaminant
4706.02 11	(6243.714)	0.052 3	F
4711.52 6	(6243.714)	0.123 7	Other: Εγ=4711.7 4, Ιγ=0.098 19 ('Budapest data', 2007ChZX).
4716.78 17	(6243.714)	0.018 1	
4722.4 4	(6243.714)	0.007 1	Other: Εγ=4722.0 12, Iγ=0.006 15 ('Budapest data', 2007ChZX).
4733.04 7	(6243.714)	0.066 4	Other: Εγ=4732.8 4, Ιγ=0.071 18 ('Budapest data', 2007ChZX).
4738.11 26	(6243.714)	0.011 1	
4745.5 4	(6243.714)	0.010 1	
4749.05 18	(6243.714)	0.023 2	
4756.49 13	(6243.714)	0.024 2	
4765.15 13	(6243.714)	0.030 2	
4769.2 0	(6243.714)	0.011 2	
4771.9 4	(6243.714) (6243.714)	0.018 2	
4779 73 14	(6243.714) (6243.714)	0.122 8	Other: Ev-4780 0 4 Iv-0 130 24 ('Budanest data' 2007Ch7X)
4782.0 4	(6243.714)	0.023 5	other. <u>H</u> ==100.0 4, 1]=0.100 24 (Budupest data, 20070hEA).
4784.8 5	(6243.714)	0.011 2	
4794.72 5	(6243.714)	0.098 5	Other: Εγ=4794.2 4, Ιγ=0.103 21 ('Budapest data', 2007ChZX).
4810.00 12	(6243.714)	0.035 2	· · · · · · · ·
4813.84 7	(6243.714)	0.076 4	Other: Εγ=4813.2 7, Ιγ=0.095 23 ('Budapest data', 2007ChZX).
4822.16 13	(6243.714)	0.023 2	
4827.84 4	(6243.714)	0.273 15	Other: Εγ=4827.9 5, Iγ=0.21 5 ('Budapest data', 2007ChZX).
4837.8 3	(6243.714)	0.010 1	
4841.87 11	(6243.714)	0.035 2	
4846.87 7	(6243.714)	0.062 4	
4851.71 11	(6243.714)	0.036 2	
4855.89 5	(6243.714)	0.311 17	Other: $E_{\gamma}=4855.88\ 20\ 1\gamma=0.24\ 3$ ('Budapest data', 2007ChZX).
4863.49 19	(6243.714)	0.023 2	Utner: $E_{7}=4863.6$ 6, $1_{7}=0.034$ 16 (Budapest data', 2007ChZX).
4000.03 D	(0243./14) (62/3 71/)	0.160 10	Other. $E_7 = 4007.30 23 17 = 0.134 21$ (Duuapest Gata , 2007(DLX).
4876 33 16	(6243 714)	0 024 2	
4880.91 11	(6243.714)	0.029 2	
4888.62 5	(6243,714)	0.092 5	Other: Εν=4888.4 4. Ιν=0.101 16 ('Budapest data', 2007ChZX).
4893.71 5	(6243.714)	0.092 5	Other: $E_{\gamma}=4893.5 4$, $I_{\gamma}=0.097 15$ ('Budapest data', 2007ChZX).
4900.58 8	(6243.714)	0.047 3	

$\gamma(^{166}Ho)$ (continued)

$E\gamma^{\dagger}$	E(level)	$I\gamma^{\dagger c}$	Comments
4904.89 6	(6243.714)	0.086 5	Other: Eγ=4903.4 <i>3</i> , Iγ=0.150 <i>18</i> ('Budapest data', 2007ChZX); data suggest line may be complex.
4911.5 6	(6243.714)	0.005 1	
4916.09 21	(6243.714)	0.015 1	Other: Εγ=4916.7 5, Iγ=0.060 18 ('Budapest data', 2007ChZX).
4921.59 25	(6243.714)	0.014 1	
4925.6 3	(6243.714)	0.011 1	
4933.10 15	(6243.714)	0.019 1	
4938.83 13	(6243.714)	0.031 2	
4942.56 9	(6243.714)	0.124 8	
4945.18 7	(6243.714)	0.405 22	
4949.84 7	(6243.714)	0.068 4	
4954.34 11	(6243.714)	0.030 2	
4972.19 19	(6243.714)	0.014 1	
4979.79 4	(6243.714)	0.097 5	
4986.76 12	(6243.714)	0.028 2	
4990.94 14	(6243.714)	0.026 2	
4995.44 10	(6243.714)	0.043 3	Other: Eγ=4995.1 7, Iγ=0.027 16 ('Budapest data', 2007ChZX).
4999.39 7	(6243.714)	0.087 5	Other: Eγ=5000.7 5, Iγ=0.108 21 ('Budapest data', 2007ChZX).
5002.93 6	(6243.714)	0.089 5	
5008.77 12	(6243.714)	0.024 2	
5013.59 4	(6243.714)	0.147 8	Other: Εγ=5013.7 4, Ιγ=0.134 23 ('Budapest data', 2007ChZX).
5022.02 13	(6243.714)	0.023 2	
5026.4 3	(6243.714)	0.026 4	
5028.70 <i>23</i>	(6243.714)	0.033 4	
5035.02 9	(6243.714)	0.032 2	
5041.52 14	(6243.714)	0.045 4	Other: $E\gamma = 5040.6$ /, $1\gamma = 0.048$ /8 (Budapest data', 200/ChZX).
5044.2 <i>13</i>	(6243.714)	0.004 2	
5053.50 4	(6243.714)	0.113 6	Other: $E\gamma = 5053.4$ 4, $I\gamma = 0.132$ 24 (Budapest data', 2007ChZX).
5068.7 5	(6243.714)	0.004 1	$O_{1} = O_{1} = O_{1$
5082.28 3	(6243.714)	0.332 18	Other: $E\gamma = 5081.3 4$, $1\gamma = 0.22 4$ (Budapest data , 2007ChZX).
5088.79 4	(6243.714) (6242.714)	0.074 4	
5102 2 2	(0243.714) (6942.714)	0.007 1	
5105 84 12	(6243.714) (6243.714)	0.014 1	
5105.64 12	(6243.714) (6243.714)	0.62 4	Strong transition, but not reported in 'Budanest data' in 2007Ch7X
5112 6 3	(6243.714)	0 011 1	Strong transition, but not reported in Budapest data in soorenzk.
5122.22 7	(6243.714)	0.040 2	Other: Ev=5123.8 5. Jv=0.055 15 ('Budapest data', 2007ChZX).
5128.96 3	(6243.714)	0.265 14	Other: $E_{y} = 5129.00 25$, $I_{y} = 0.28 3$ ('Budapest data', 2007ChZX).
5146.18 5	(6243.714)	0.066 4	Other: $E_{y} = 5146.2$ 3. $I_{y} = 0.093$ 16 ('Budapest data', 2007ChZX).
5155.71 4	(6243.714)	0.088 5	Other: $E_{\gamma} = 5154.9 \ 4$, $I_{\gamma} = 0.090 \ 14$ ('Budapest data', 2007ChZX).
5181.84 2	(6243.714)	0.429 23	Other: Ey=5181.40 18 Iy=0.41 3 ('Budapest data', 2007ChZX).
5188.76 22	(6243.714)	0.011 1	Other: Ey=5188.1 6, Iy=0.027 10 ('Budapest data', 2007ChZX).
5213.25 <i>3</i>	(6243.714)	0.403 22	Other: Εγ=5212.79 20 Ιγ=0.42 4 ('Budapest data', 2007ChZX).
5217.5 5	(6243.714)	0.010 2	
5220.2 23	(6243.714)	0.002 2	
5224.4 5	(6243.714)	0.010 2	
5227.40 15	(6243.714)	0.033 3	
5232.95 18	(6243.714)	0.014 1	
5238.79 5	(6243.714)	0.064 4	Other: Εγ=5239.0 3, Iγ=0.093 14 ('Budapest data', 2007ChZX).
5258.45 14	(6243.714)	0.017 1	
5263.8 10	(6243.714)	0.006 2	
5266.4 7	(6243.714)	0.008 2	
5282.54 6	(6243.714)	0.046 3	
5292.5 3	(6243.714)	0.009 1	
5296.86 ^a 10	(6243.714)	0.031 2	
5318.3 7	(6243.714)	0.003 1	
5338.30 ^a 2	(6243.714)	0.182 10	Other: Εγ=5338.5 <i>3</i> , Ιγ=0.177 <i>24</i> ('Budapest data', 2007ChZX).
5352.504	(6243.714)	0.078 4	Other: Εγ=5352.9 4, Ιγ=0.068 16 ('Budapest data', 2007ChZX).
5358.18 17	(6243.714)	0.016 1	
5362.96 ^a 4	(6243.714)	0.106 6	Other: E7=5362.6 4, I7=0.118 19 ('Budapest data', 2007ChZX).
5367.2 3	(6243.714)	0.009 1	
5373.43 9	(6243.714)	0.025 2	
5411.40 5	(6243.714)	0.056 3	

$\gamma(^{166}\text{Ho})$ (continued)

$E\gamma^{\dagger}$	E(level)	Iγ [†] c	Comments
5418.99 5	(6243.714)	0.049 3	Other: Ey=5419.0 5, 1 γ =0.052 18 (Budapest data', 2007ChZX).
5428.47 2	(6243.714)	0.42023	Other: $E\gamma = 5428.21 \ 20, \ 1\gamma = 0.36 \ 4$ (Budapest data , $2007CnZX$).
5436.90 12	(0243.714)	0.020 1	
5451.6 4	(6243.714)		
5454.3 15	(6243.714)	0.003 2	
5473.82 4	(6243.714)	0.062 3	Other: $E\gamma = 5473.4 \ 4, \ 1\gamma = 0.061 \ 16$ ('Budapest data', 2007ChZX).
5484.71ª <i>11</i>	(6243.714)	0.022 1	
5501.55 8	(6243.714)	0.031 2	
5507.09 21	(6243.714)	0.011 1	
5517.6 8	(6243.714)	0.004 1	
5524.21 2	(6243.714)	0.257 14	Other: Εγ=5524.16 24, Ιγ=0.31 3 ('Budapest data', 2007ChZX).
5538.7 6	(6243.714)	0.005 1	
5550.214	(6243.714)	0.065 4	Other: Εγ=5549.0 5, Ιγ=0.082 16 ('Budapest data', 2007ChZX).
5559.73 16	(6243.714)	0.015 1	
5575.50 6	(6243.714)	0.046 3	
5581.52 10	(6243.714)	0.039 2	
5585.28 17	(6243.714)	0.035 3	
5588.2 3	(6243.714)	0.015 2	
5605.27 8	(6243.714)	0.050 <i>3</i>	
5609.3 11	(6243.714)	0.008 1	
5614.8 5	(6243.714)	0.005 1	
5638.7 6	(6243.714)	0.005 1	
5645.39 5	(6243.714)	0.073 4	
5651.04 4	(6243.714)	0.101 6	
5680.50 21	(6243.714)	0.040 2	
5685.01 4	(6243.714)	0.191 10	Other: Εγ=5684.5 3, Ιγ=0.156 21 ('Budapest data', 2007ChZX).
5695.47 10	(6243.714)	0.043 3	Other: E_{γ} =5697.3 6, I_{γ} =0.061 24 ('Budapest data', 2007ChZX); possibly a
			5695γ+5700γ doublet.
5699.89 15	(6243.714)	0.033 2	
5721.62 7	(6243.714)	0.038 2	Other: E7=5721.3 3, I7=0.047 10 ('Budapest data', 2007ChZX).
5761.71 3	(6243.714)	0.223 12	Other: Εγ=5761.9 3, Ιγ=0.172 21 ('Budapest data', 2007ChZX).
5767.92 4	(6243.714)	0.124 7	Other: Εγ=5767.5 8, Ιγ=0.060 13 ('Budapest data', 2007ChZX).
5772.78 4	(6243.714)	0.144 8	Other: Εγ=5772.8 3, Ιγ=0.145 19 ('Budapest data', 2007ChZX).
5779.02 13	(6243.714)	0.029 2	
5813.55 2	(6243.714)	0.94 5	Other: Εγ=5813.43 17, Ιγ=0.87 β ('Budapest data', 2007ChZX).
5823.5 5	(6243.714)	0.006 1	Ey implies the existence of a level at 420.2, but no other evidence exists for
5827 28 15	(6243 714)	0 025 2	such a level so it is not included in Adopted Levels.
5871 54 3	(6243,714)	0 372 20	Other: Fy-5871 07 21 Jy-0 36 3 ('Budanest data' 2007Ch7X)
5895 57 24	(6243.714) (6243.714)	0 008 1	$\mathbf{O}(\mathbf{H}(\mathbf{r}_1, \mathbf{r}_1) = \mathbf{O}(\mathbf{r}_1, \mathbf{r}_1) = \mathbf{O}(\mathbf{O}(\mathbf{r}_1, \mathbf{r}_2) = \mathbf{O}(\mathbf{r}_1, \mathbf{r}_2) = \mathbf{O}(\mathbf{r}_$
5914 0 3	(6243 714)	0 006 1	
5982 84 3	(6243 714)	0 141 8	Other: Ev-5983 38 23 Iv-0 150 18 ('Budanest data' 2007Ch7X)
6052 66 3	(6243.714)	0 374 20	Other: E_1 =0000.00 20 1/=0.100 10 (Budapest data', 2007ChZX).
6062 21 1R	(6243.714)	0.374 20	Other. $E_l = 0002.01 22 1l = 0.00 0$ (Duuapest uata , 2007 Ch2A).
6072 46 4	(0243.714) (6942.714)	0.014 1	Other: Ex-6072 7 4 Iv-0 047 12 ('Budanest data' 2007Ch7X)
6180 33 10	(6243.714)	0.003 3	Other. $E_{1} = 0076.77, 17 = 0.04775$ (Budapest data, 2007CHZA).

[†] E γ data are from 1984Ke15 if E>4050, and E<4050 data are from 1967Mo05 (cryst.), except as noted. 1967Mo05 also report two separate Ge(Li) detector measurements of E γ and/or I γ for a number of γ rays. E γ data from 2007ChZX (Budapest data) are, in general, less precise and less extensive, but in reasonable agreement with the crystal data; I γ data show poor to fair agreement with the crystal data. The evaluator gives the latter E γ , I γ data in comments; the possible existence of complex lines (due to poorer resolution or presence of impurities) makes it difficult to combine these data with the crystal data. The E γ data of 1967Mo05 are from wavelength measurements and probably need to be increased by about 9 ppm to correspond to a scale on which E γ (198Au)=411.80205 *I*7. Also, the uncertainties do not include an uncertainty of 0.3 ppm in the conversion of wavelength to energy (see, e.g., 2000He14).

[‡] From conversion electron data (1967Mo05,1973PrZI), except as noted. The photon and electron intensity scales were normalized by 1967Mo05 assuming $\alpha(K)(116\gamma)=1.46$, $\alpha(L1)(116)=0.18$ (from M1 theory) and $\alpha(K)(137\gamma)=0.117$ (from E1 theory); current theoretical values are 3.7% lower, 1.3% lower and 5.4% higher, respectively, but in view of the relatively much larger uncertainties in the experimental data, the evaluator has chosen not to renormalize those authors' values.

§ Questionable transition.

Line is complex (1967Mo05).

[@] From 1989Du03 (Si(Li)).

 $rac{\&}{}$ From 1989Du03; a calibration uncertainty of 6% has been added in quadrature with the statistical uncertainty.

Footnotes continued on next page

$\gamma(^{166}\text{Ho})$ (continued)

 $^{a}~~E\gamma$ deviates from least-squares prediction by at least $5\sigma.$

- b Placement from 2000Pr03.
- c Absolute intensity per 100 neutron captures.
 d Multiply placed; intensity suitably divided.
- e Multiply placed; undivided intensity given.
- f Placement of transition in the level scheme is uncertain.
- $^{x}~~\gamma$ ray not placed in level scheme.

(A) $K\pi=0-$, (B) $K\pi=7-$, (C) $K\pi=3+$, (π 7/2[523]) (D) $K\pi=5+$ band. (E) $K\pi=6+$, (π 7/2[523]) (π 7/2[523]) (π 7/2[523]) (π 7/2[523]) -(ν 1/2[521]) band. +(ν 5/2[512]) band. -(ν 7/2[633]) +(ν 7/2[633]) band. band.

¹⁶⁶₆₇Ho₉₉

(F) $K\pi = 4+$, (π 7/2[523]) +(ν 1/2[521]) band. (G) K π =1-, (π 1/2[411])+(ν 1/2[521]) band.

(H) $K\pi = 1+$, $(\pi 7/2[523]) - (\nu 5/2[523])$ band.

(I) K π =2-, (π 7/2[523])-(ν 7/2[633])+Q₂₂ band.

(P) Kπ=1-, (π 3/2[411])
 -(ν 1/2[521]) band.

(Q) K π =2-, (π 3/2[411])+(ν 1/2[521]) band. (R) $K\pi=5-$, (π 7/2[523]) +(ν 7/2[633])- Q_{22} band.

 $^{166}_{67}Ho_{99}$

 $^{166}_{67}Ho_{99}$

 $^{166}_{67}Ho_{99}$

Level Scheme (continued)

Intensities: I γ per 100 thermal neutron captures in $^{165}\text{Ho}.$

- @ Multiply placed; intensity suitably divided
- & Multiply placed; undivided intensity given

26.824 h

Level Scheme (continued)

Intensities: I γ per 100 thermal neutron captures in $^{165}\text{Ho}.$

@ Multiply placed; intensity suitably divided

& Multiply placed; undivided intensity given

26.824 h

Level Scheme (continued)

Intensities: I γ per 100 thermal neutron captures in $^{165}\mathrm{Ho.}$

@ Multiply placed; intensity suitably divided

& Multiply placed; undivided intensity given

Level Scheme (continued)

Intensities: I γ per 100 thermal neutron captures in $^{165}\mathrm{Ho}.$

@ Multiply placed; intensity suitably divided

¹⁶⁶₆₇Ho₉₉

Level Scheme (continued)

Intensities: I γ per 100 thermal neutron captures in $^{165}\mathrm{Ho}.$

@ Multiply placed; intensity suitably divided

& Multiply placed; undivided intensity given

Level Scheme (continued)

Intensities: I γ per 100 thermal neutron captures in $^{165}\mathrm{Ho}.$

@ Multiply placed; intensity suitably divided

Level Scheme (continued)

Intensities: I γ per 100 thermal neutron captures in $^{165}\mathrm{Ho}.$

@ Multiply placed; intensity suitably divided

Level Scheme (continued)

Intensities: I γ per 100 thermal neutron captures in $^{165}\mathrm{Ho}.$

@ Multiply placed; intensity suitably divided

¹⁶⁵Ho(n,γ) E=thermal 1967Mo05,1984Ke15,2000Pr03 (continued)

Level Scheme (continued)

Intensities: I γ per 100 thermal neutron captures in $^{165}\mathrm{Ho}.$

@ Multiply placed; intensity suitably divided

& Multiply placed; undivided intensity given

¹⁶⁵Ho(n,γ) E=thermal: γγ Coin 2000Pr10

2000Pr10: 99% purity Ho metal target; Ge x-ray detector (E γ =20-465 keV; FWHM=1.39 keV at 305 keV), Ge detector (E γ =59-760 keV; FWHM=2.2 keV at 305 keV); measured $\gamma\gamma$ coin (resolving time 23 ns). Additional data taken using 99.99% purity Ho oxide target; HPGe and Ge(Li) detectors (FWHM=1.9 and 2.1 keV, respectively, at 1332 keV). Measured E γ , I γ , $\gamma\gamma$ coin; deduced intermediate level energies for two-photon cascades to known low-energy states. See also 2000Pr03 (included in 165 Ho(n, γ) E=thermal data set) which incorporates some of these results.

¹⁶⁶Ho Levels

E(leve	1)†	Comments
0.0		
54 3	t	
82.6	‡	
171.1	ŧ	
180.5	‡	
191.7	‡ -	
262.1	+ +	E(level): probably includes both the 260.7 and 263.8 levels from Adopted Levels.
329.9	ŧ	
372 1	• ‡	F(level): probably includes both the 372.0 and 373.1 levels from Adonted Levels
416.2	ŧ	
430.1	10	
453.9	ŧ	
475.9	12	
483.1	11 †	
543 0	r 8	
548.1	‡	
563.7	11	
593.8	7	Corresponds to adopted level at 592.5.
599.5	18	E(level): probably a multiplet including the adopted 597.0 and 598.4 levels.
651.5	8	
658.1	5	
683 3	4	
701.5	16	No other evidence exists for this level.
717.0	14	
719.7	15	
757.7	10	
770.3	7	
790.1	20	Possibly a doublet including the adopted 788.6 and 792.8 levels, but γ deexcitation pattern agrees with neither. Brobable multiplet levels adopted 180.6 and 202.0 could not have been received in this expressment and the
807.5	20	presence of an additional level cannot be ruled out. At 34y and 546y are known to deexite the adopted 806.6 level
		but they should be accompanied by much stronger 336γ and 325γ , neither of which is seen here.
816.0	10	
826.1	16	
832.7	12	
8/3.6	24 0	Probable multiplet including levels adopted at 8/0 and 8/6.
891 5	5	Possible multiplet including levels adopted at 885.4 and 51.1 and 895.5.
906.0	10	
947.1	6	
953.4	11	
960.3	18	
973.7	18	
1004 9	0 9	
1010.5	6	
1014.6	19	
1023.3	7	
1028.7	15	
1029.0	12	
1030.2	, 6	
1053.9	7	
1060.8	6	

¹⁶⁶Ho Levels (continued)

E(level) [†]	Comments
1062.7 9	Adopted J=2,4 for this level but the proposed deexciting gammas feed levels with Jπ including 5+ and 4– and 1–, so some placements are presumably incorrect.
1087.8 10	
1099.8 11	
1115.3 12	Possible doublet; levels are adopted at 1114.7 and 1118.7.
1121.2 7	
1134.3 15	This may be a doublet; levels are adopted at 1131.0 and 1135.0.
1137.9 5	
1143.4 16	
1155.5 27	
1161.5 10	
1166.2 18	Possible doublet; Εγ values for deexciting transitions consistent with levels at 1164 and 1167 keV.
1189.9 11	

 † Authors' values. These have larger and more realistic uncertainties than would be obtained from a least-squares fit to the E γ data. Further, it should be noted that the level density is high and, in some cases, the energies are for multiplets.

[‡] Difference between capture state energy and energy of gate for sum spectrum (2000Pr10).

γ(¹⁶⁶Ho)

E(level)	$E\gamma^{\dagger}$	Iγ [‡]	Comments
	×405 4 6	0 4 1	E(nrimary y) = 5858.5 E(sum sata) = 8062.2
	×426 8 12	0 2 1	Exprimery $\eta = 5635$ 1 E(sum gate)= 6062.2
	×427 4 9	0.8.2	Exprimery $\eta = 5443.4$ E(sum gate) = 5870.6
	×516.4 7	0.52	E(primery) = 5534.6, $E(sum gate) = 6051.0$.
	×593.1 9	0.52	E(primary) = 5173.5, $E(sum gate) = 5766.6$.
	×596 1 9	073	$E_{\text{(primary i)}} = 5564.0 \text{ E(sum gate)} = 6160.1$
	×773 8 11	0 5 2	Exprimery η = 5386.3 E(sum gate)=6160.1
	×892 6 6	0 5 1	Exprimery $\eta = 5179.0$ E(sum gate)=6071.6
	×945.4 13	0.5 2	Exprimery $\eta = 5116.3$. E(sum gate) = 6062.2 .
430.1	238.5 1	5.74	-(F) /), -(B)
475.9	304.2 2	2.5.3	
	420.5 6	0.5 2	
483.1	220.1 4	0.6 1	Probably feeds the adopted 260.7 level.
	303.6 5	0.5 1	Placement not adopted; E γ expected from Adopted Gammas is 301.4 and I(304 γ)/I(220 γ) here is much too large for the 304 γ to have been unnoticed in independent studies in which the 220 γ was observed.
543.0	488.0 8	0.3 1	
	543.8 7	5.0 15	$I(544\gamma)/I(488\gamma)$ is much larger than the adopted value; possibly, γ is contaminated in this experiment.
563.7	391.6 6	0.4 1	
	508.2 8	0.3 1	
593.8	401.5 2	2.3 3	
	414.0 6	0.3 1	
599.5	408.8 6	0.5 1	Based on Ey, this y probably deexcites the 598.4 level.
	421.7 7	0.3 1	Not included in Adopted Gammas; this Εγ implies a level at 602.2 7 for which no other evidence exists.
	426.7 4	0.9 2	Probably a doublet deexciting both the adopted 597.0 and 598.4 levels. From adopted branching for 597 level, $I(427\gamma)/I(543\gamma)=0.069$ 27, so $I(427\gamma)$ from 597 level expected here is 0.07 3 leaving 0.83 20 to deexcite the 598 level.
	543.14	1.0 2	Deexcites 597.0 level.
651.5	304.1 7	0.8 3	
	596.6 <i>6</i>	0.4 1	
658.1	328.2 4	1.3 3	
	477.5 7	0.3 1	
668.3	488.0 5	0.3 1	
	613.9 6	0.5 1	I γ : I(614 $\gamma)/I(488 \gamma)$ is much larger than the adopted value; possibly, γ is contaminated in this reaction.
683.3	491.6 7	0.3 1	Not included in Adopted Gammas; none of the previously-known transitions from the 683 level is present and no γ with this energy has been reported in (n,γ) E=thermal.
701.5	369.6 10	0.7 3	

$\gamma(^{166}\text{Ho})$ (continued)

E(level)	$\mathbf{E}\gamma^{\dagger}$	Iγ [‡]	Comments
717.0	456.0 1	7.1 5	Probably deexcites the 719.7 level instead; see comment on 347.6γ. Eγ would be consistent with placement from the 719.7 level if γ fed the 263.8 (rather than the 260.7) member of the 269.1 keV doublet
	715 4 8	3 3 11	the 202.1-key doublet.
719.7	347.6 7	0.8 3	Based on Adopted Gammas, this γ should be accompanied by an order of magnitude stronger 455.6 γ ; probably the 456.0 γ which 2000Pr10 place from a separate 717.0 level.
757.7	426.9 9	0.6 3	Omitted from Adopted Gammas; I γ too large for transition to have been missed in (n, γ) $E=$ thermal.
	578.1 7	0.3 1	
770.3	421.9 5	1.9 5	
790.1	598.4 7	0.2 1	May deexcite the adopted 788.6 or 792.8 level but other gammas known to deexcite those levels are not seen here and no γ with the appropriate energy for the former placement has been reported in (n, γ) E=thermal. Not included in Adopted Gammas.
807.9	394.8 <i>9</i>	0.9 3	Presumably does not deexcite either 806.6 or 807.0 level because those placements would imply E3 or M4 multipolarity, respectively. Omitted from Adopted Levels, Gammas.
	433.1 8	0.3 1	Deexcites the 806.6 level in Adopted Levels, Gammas.
	479.2 11	0.4 2	Not included in Adopted Gammas because it is unclear which member of a probable 808 multiplet is deexcited by it.
	545.4 5	0.5 1	Deexcites the 806.6 level in Adopted Levels, Gammas.
	628.4 8	0.4 2	Not included in Adopted Gammas because it is unclear which member of a probable 808 multiplet is deexcited by it.
816.0	401.4 2	5.8 <i>8</i>	Not included in Adopted Gammas; E γ fits placement poorly and γ is far too strong to have been overlooked in other studies that excited this level.
	442.6 2	2.4 3	
	485.2 10	0.5 2	The evaluator considers this placement to be doubtful since it implies M2 multipolarity for the 485 γ .
	554.4 3	1.1 2	
	624.1 1	3.9 <i>3</i>	
826.1	456.3 4	0.72	Placement not adopted. This $E\gamma$ would imply the existence of a level for which no other evidence exists.
	563.3 5	0.5 1	
	633.2 <i>3</i>	1.4 2	
832.7	652.2 7	0.3 1	
873.6	546.6 5	1.5 3	
	614.6 9	0.3 1	
	692.4 /	0.3 1	
	790.0 10	0.5 z	Beerd on En able montheble describes the 070 level in Advand Jewels
881.9	511.5 <i>2</i>	4.9 5	Based on E7, this 7 probably deexcites the 870 fevel in Adopted Levels. Not included in Adopted Levels, Gammas. Presumably does not deexcite 882 level because it is too strong to have been overlooked in other studies: also E7 fits placement poorly.
	620.5 7	0.6 2	5
	690.2 4	0.7 2	
	708.9 6	0.5 1	Deexcites level adopted at 881.1 keV.
	798.3 4	3.0 5	Deexcites level adopted at 881.1 keV.
	826.9 3	2.0 3	Deexcites level adopted at 881.1 keV.
891	519.0 7	0.6 2	
	545.7 6	1.2 4	$E\gamma$ suggests that this γ deexcites the level adopted at 895.5. Not included in Adopted Gammas.
	626.6 7	0.4 1	
	708.6 10	0.3 2	Not included in Adopted Gammas; $E\gamma$ implies that it deexcites a level at 899.5 keV.
	714.7 5	0.72	$E\gamma$ suggests that this γ deexcites the level adopted at 885.4. Not included in Adopted Gammas.
	716.1 7	0.8 3	E γ suggests that this γ deexcites the level adopted at 895.5. Not included in Adopted Gammas.
000 0	805.4 7	1.2 3	Not included in Adopted Gammas; E3 multipolarity required if γ deexcites the 891.1 level.
906.0	714.3 1	5.1 4	
047 1	734.4 3	0.61	
947.1	//4.9 3	U.7 I	
052 /	892.4 5	1.3 3	
933.4	024.0 10	U.5 Z	
960 3	542 G 7	U.4 ∠ 1 0 ?	
300.3	342.0 / 700 1 2	1.03	
	100.1 3	1.3 2	

$\gamma(^{166}\text{Ho})$ (continued)

90.3 97.5 9 0.5 7 Perm Adopted Levels, Gammas, this placement implies M2 multipolarity and that seems unlikely. 90.4 143.5 2 1 <	E(level)	$E\gamma^{\dagger}$		Ιγ [‡]	Comments
073.7 28.0 0 0.5 2 096.8 43.5 0 1.2 5 096.8 43.5 0 1.2 5 104.9 6.3 4 1.0 2 101.3 4 0.0 2 1 101.4 6.3 4 0.0 2 101.6 6.3 4 0.0 3 101.6 7.0 4 0.0 3 101.8 7 0.0 3 7 102.8 7 0.0 3 7 102.8 7 0.0 7 102.7 7.3.3 7 0.2 7 102.8 7 0.3 7 0.4 102.7 7.3.3 7 0.2 7 102.8 7 0.4 7 7 102.7 7 0.4 7 7 102.8 7 0.4 7 7 </td <td>960.3</td> <td>875.9</td> <td>9</td> <td>0.5 2</td> <td>From Adopted Levels, Gammas, this placement implies M2 multipolarity and that seems</td>	960.3	875.9	9	0.5 2	From Adopted Levels, Gammas, this placement implies M2 multipolarity and that seems
141 1 0 0 0 0 131 2 0 0 2 0 134 3 0 0 2 0 1010 34 3 0 0.2 1 1010 34 3 0 0.2 1 1010 35 3 0 0.2 1 1010 35 3 0 0.2 1 1010 35 7 0.2 1 1011 35 7 0.2 1 1023 31.3 2 0.2 1 1024 7 0.2 1 1 1025.4 7 0.2 1 1 1024.5 7 0.4 1 1 1025.7 3 1 0.5 1 1024.0 35 7 0.4 1 1025.7 7 0.4 1 1 </td <td>973.7</td> <td>889.2</td> <td>10</td> <td>0.5 2</td> <td></td>	973.7	889.2	10	0.5 2	
988. 3.41.0 1 2 104.1 3.41.0 1 2 104.2 3.41.0 1 0 1 104.4 3.4 0 1 0 1 104.4 3.4 0 1 0 2 104.4 3.41.1 0 2 5 1 104.5 3.70.1 0.8 0 7 2 101.6 6.81.1 0 0.8 1 0.8 1 1023.7 3.81.8 2 0.8 1 0.8 1 1.8 1024.7 56.5 7 0 1 1 1 1024.7 14.5 1 0.8 1 2 1 1024.7 14.5 1 1.8 1 1 1024.7 14.5 1 1.8 1 1 1024.7 14.5 1 1.8 1 1 1025.8 14	000 0	921.1	9	0.3 1	
104.9104.1000104.984.300084.300001010.377.90001011.490.171.001012.5101.00001013.690.17001014.690.17001015.710.00001014.690.17001015.710.00001016.8101.00001017.700001018.750.11001018.710.10001018.710.1001019.710001019.710001019.710001019.710001019.710001019.710001019.710001019.810001019.810001019.710001019.810001019.810001019.810001019.810001019.810001019.8<	996.8	543.5	10	1.2.5	
104.1 104.1 2 0		024.2	э 10	0.02	
1001 9 9 0 0 0 0 1010.1 673.0 8 0.7 2 5 1010.1 673.0 8 0.7 2 5 1010.4 673.0 8 0.7 2 5 1014.4 581.1 7 0.7 2 5 1014.5 951.1 7 0.7 2 5 1023.3 81.2 7 0.3 7 7 0.3 1223.0 70.5 7 0.3 7 7 0.3 1223.0 70.5 7 0.3 7 Not included in Adopted Levels, Gammas because proposed placement implites M2 multipolarity. 1303.2 611.5 7 7 1.3 7 7 1303.2 7.7 7 1.3 7 7 7 131.3 8 0.3 7 7 7 7 131.3 8 0.3 7 7 7 </td <td>1004 0</td> <td>730.1</td> <td>0</td> <td>0.21</td> <td></td>	1004 0	730.1	0	0.21	
10100000001011.1838.100.57838.1700.5835.170.21835.170.211023.2831.370.211023.1835.370.211023.2755.370.571023.7552.690.071023.7755.370.571023.7755.370.571023.7755.370.571023.7755.370.57103.275.370.57103.470.577103.570.577103.680.57103.770.57103.890.47103.770.57103.890.4103.970.5103.990.4103.170.4103.170.4103.280.5103.280.4103.170.4103.290.4103.290.4103.370.4103.470.5103.590.4103.570.5103.570.5103.570.5103.5	1004.9	034.3	0	0.31	
1010.3 079 0 0 7 7 1011.4 381 7 1.0 5 7 1014.4 381 7 1.0 5 7 1014.3 381 7 1.0 2 7 1023.3 381 7 0.0 7 7 1023.4 7 0.0 7 7 0.0 7 1023.0 797.5 7 0.0 7 7 0.0 7 1023.0 797.5 7 0.0 7 7 0.0 7 1023.0 797.5 7 0.1 7 7 0.0 7 1033.2 8 7 1.0 7 7 0.0 7 1033.3 7 0.0 7 7 0.0 7 1033.4 8 0 0.2 7 7 0.0 7 1033.2 1081.5 7 0.0 7 7 0.0 7 1033.2 1081.5 7 0.0		950 0	1	255	
1014.0 838.1 0 0.5 1 1014.0 855.1 7 0.8 1 855.1 7 0.2 7 1023.0 831.3 7 0.2 7 1023.1 831.3 7 0.2 7 1023.2 052.5 9 0.4 7 1023.2 053.5 4 0.9 7 1030.2 014.5 4 1.0 4 1030.2 017.5 7 0.4 2 1030.2 017.5 7 0.4 7 1030.2 017.5 7 0.4 7 838.0 7 0.4 7 7 838.0 7 0.4 7 7 838.1 7 0.4 7 7 1035.8 840.1 7 1.4 7 1035.8 90.1 1.7 5 3 1036.2 8 1.9 2 7 1037.7 7 1.9 3 7	1010 5	679 9	8	072	
1014. Set. 1 0 0 2 0 0 2 0 0 2 0<	1010.0	838 1	6	0.5 1	
825.11/10.21/21023.3831.31/20.21/21024.47/20.31/20.41025.45/2.400.41/21026.75/2.500.41/21027.71/200.41/21028.7000.41/21028.7000.41/21037.201/200.41037.201/201/21038.401/201/21038.401/201/21039.51/201/201039.61/21/201/21039.71/201/201039.71/201/201039.81/201/201039.41/201/201039.41/201/21039.41/201/21039.51/201/21039.61/21/201039.71/201/21039.71/201/21039.71/201/21039.71/201/21039.71/201/21039.71/201/21039.71/201/21039.71/201/21039.71/201/21039.71/201/	1014.6	596.1	7	1.0 3	
981.2 3 1.6 7 1023.3 842.8 7 0.2 7 1028.7 852.8 7 0.3 7 1028.7 552.8 7 0.3 7 1028.7 553.3 7 0.4 2 1039.8 675.5 7 0.4 2 1038.7 7 0.4 2 Nat included in Adopted Levels, Gammas because proposed placement implies M2 multipolarity. 681.7 7 0.4 7 3 681.7 7 0.4 7 3 760.9 4 1.7 3 877.7 2 1.5 3 947.7 2 1.5 3 103.8 7 3 3 947.7 2 1.5 3 103.8 8 1.4 3 947.7 2 1.5 3 103.8 8 1.4 3 5 103.8 <t< td=""><td></td><td>825.1</td><td>11</td><td>0.2 1</td><td></td></t<>		825.1	11	0.2 1	
1023.3 81.3 /2 0.2 / 1028.7 552.6 0 0.3 / 1029.0 552.6 0 0.3 / 1029.0 552.6 0 0.3 / 1029.0 553.6 0 0.4 0 0 1030.2 0.45.5 4 0.9 2 Not included in Adopted Levels, Gammas because proposed placement implies M2 multipolarity. 1030.7 6 1.7 2 1.5 7 1031.7 7 0.4 / 8 8 1032.8 97.5 4 0.8 2 Not included in Adopted Levels, Gammas because proposed placement implies E3 multipolarity. 1035.8 97.5 8 0.8 Not included in Adopted Levels, Gammas because proposed placement implies M2 multipolarity. 1035.8 97.5 8 0.8 Not included in Adopted Levels, Gammas because proposed placement implies M2 multipolarity. 1035.8 97.4 8 0.8 2.5 3 1035.7 981.6 9 0.4 2 3.5 1035.7 981.6 0.5		961.2	5	1.6 3	
842.8 7 0.3 7 1028.7 509.5 7 0.6 3 1028.7 509.5 7 0.6 3 1030.2 014.5 7 0.4 2 1030.2 014.5 7 0.4 2 1030.2 014.5 7 0.4 2 1030.4 0 1.1 3 1030.8 0 1.4 3 1030.8 0 1.4 3 1035.7 7 0.4 1 1047.7 2 1.5 3 1037.8 8 0.8 2 1037.4 0 8 2 1033.8 8 0.8 2 1031.8 8 0.8 2 1032.8 8 0.4 3 1033.8 9 0.5 3 1033.8 9 0.2 1 1034.7 8 0.2 1	1023.3	831.3	12	0.2 1	
1023.0 552.6 9 0.6 3 1023.0 505.5 4 0.8 2.6 103.2 103.5 4 0.9 2 103.2 657.5 4 0.9 2 657.5 4 0.9 2 Not included in Adopted Levels, Gammas because proposed placement implies E3 multipolarity. 657.7 7 0.4 1.7 3 700.8 4 1.7 3 701.9 7 2.2 9 701.9 1.4 3 701.9 7 2.2 9 701.9 1.4 3 733.9 0.4 1.4 735.7 0.4 1.4 735.8 0.4 1.5 7 735.8 0.4 1.5 7 1035.8 99.6 0 1.4 2 1035.8 19 0.5 2 1040.7 1.9 1.5 2 1053.9 79 0.4 2 1053.9 1.9 0.2 2		842.8	7	0.3 1	
1029.0 598.5 4 2.6 3 1030.2 614.5 4 1.9 4 1031.2 614.5 4 1.9 4 631.1 6 1.7 3 7 631.1 6 1.7 3 7 631.1 6 1.7 3 7 700.8 4 1.4 3 3 700.8 4 1.4 3 3 700.8 4 1.4 3 3 700.8 4 1.4 3 3 700.8 4 0.9 2 9 700.8 4 0.9 2 9 700.8 4 0.9 2 9 700.8 4 0.9 2 9 701.0 7 0.9 10 10 703.1 7 0.9 1.9 1.1 703.1 7 0.9 3 1.1 1060.2 78.1 9 0.2 1 711.0 <td>1028.7</td> <td>552.6</td> <td>9</td> <td>0.6 3</td> <td></td>	1028.7	552.6	9	0.6 3	
785.370.491030.2614.540.92657.540.92657.641.7700.841.7708.841.7708.841.4709.841.4700.872.2840.270.1841.170.1947.7713.5947.7713.5953.40.82103.280.4103.880.4981.600.4103.8839.11103.8839.11103.873.40104.821053.9999.6105.971.078.10105.17106.8278.10106.82107.71.038.10108.54108.54108.54118.371.6118.30118.31.0118.32118.32118.32118.32118.42118.33.2118.32118.32118.32118.32118.32118.32118.42118.33.3118.33.3118.43119	1029.0	599.5	4	2.6 5	
1030.2 614.5 6 1.9 4 Not included in Adopted Levels, Gammas because proposed placement implies X2 multipolarity. 681.1 6 1.1 3 700.8 4 1.7 3 700.8 4 1.7 3 700.8 4 1.7 3 700.8 4 1.7 3 700.8 4 1.7 3 700.8 4 1.7 3 700.8 4 1.7 3 700.8 4 1.7 3 700.8 4 1.4 3 830.7 7 0.4 1 907.7 2 0.5 3 1035.8 664.3 8 0.4 2 1035.9 99.6 1.7 0.3 1 1060.4 79.1 0.3 2 1 1060.7 786.1 9 0.2 1 1060.7 1.0 0.5 2 1 1060.7 1.0 0.5 2 1		765.3	11	0.4 2	
	1030.2	614.5	4	1.9 4	Not included in Adopted Levels, Gammas because proposed placement implies M2 multipolarity.
681.1 6 1.7 3 769.8 4 1.4 3 849.2 7 2.2 9 847.2 7 0.4 1 857.3 4 0.8 2 975.4 0.8 2 Not included in Adopted Levels, Gammas because proposed placement implies E3 multipolarity. 1035.8 64.3 8 0.4 2 1035.8 981.6 0.4 2 1035.8 995.6 1.9 8 1035.9 0.4 2 3.5 1036.1 2 3.5 3 1036.8 68.1 1 5.3 1060.8 68.1 1 3.3 1062.7 56.1 2 7.3 1064.1 2 7.3 3 1067.8 1 0.2 1 1067.8 1 0.2 1 1067.9 0.4 1 2 1071.0 7 0.5 <t< td=""><td></td><td>657.5</td><td>4</td><td>0.9 2</td><td>Not included in Adopted Levels, Gammas because proposed placement implies E3 multipolarity.</td></t<>		657.5	4	0.9 2	Not included in Adopted Levels, Gammas because proposed placement implies E3 multipolarity.
700.8 4 1.4 3 838.9 7 2.2 9 837.0 0.4 1 857.3 4 0.9 2 975.4 6 0.8 2 975.4 6 0.8 2 975.4 6 0.8 2 975.4 6 0.8 2 1035.8 964.3 8 0.4 1 981.6 9 0.4 2 1035.8 989.6 1 0.3 1 1036.2 8 3.5 3 1053.9 999.6 1 0.3 1 1060.8 689.1 1 5.3 4 781.1 9 0.2 1 1 1062.7 786.1 2 7.3 9 741.0 7 0.6 2 1 891.1 9 0.2 1 2 1087.8 715.6 <td< td=""><td></td><td>681.1</td><td>6</td><td>1.1 3</td><td></td></td<>		681.1	6	1.1 3	
769.9 4 1.4 3 839.9 7 2.2 9 840.2 7 0.4 1 847.3 4 0.9 2 947.7 2 13.5 13 Not included in Adopted Levels, Gammas because proposed placement implies E3 multipolarity. 1035.8 64.3 8 0.4 1 952.4 9 1.9 8 1035.8 64.3 5 3 1036.2 8 3.5 3 1037.8 108.1 0.3 1 1038.9 999.6 1 0.3 1 1060.8 689.1 1 5.3 4 1062.7 58.1 2 4.0 5 716.0 7 1.0 3 7 716.0 7 0.8 2 7 716.0 7 0.9 3 4 716.0 7 0.9 3 4 716.0 7 0.9 3 4 908.7 1.4 1		700.8	4	1.7 3	
88.8.9 9 7 2.2 9 857.3 4 0.9 9 947.7 2 3.5 1.3 Not included in Adopted Levels, Gammas because proposed placement implies E3 multipolarity. 975.4 6 0.8 2 Not included in Adopted Levels, Gammas because proposed placement implies M2 multipolarity. 1035.8 961.6 9 1.4 2 1038.2 8 3.5 3 1053.9 993.6 1.1 0.3 1 1060.8 689.1 1 5.3 4 1060.8 689.1 1 0.3 1 1062.7 686.1 2 7.3 9 716.0 7 1.0 3 1062.8 89 0.2 1 873.4 9 0.2 1 874.1 9 0.2 1 973.3 7 0.5 2 974.3 1.0 3 1 1034.3 7 <td< td=""><td></td><td>769.9</td><td>4</td><td>1.4 3</td><td></td></td<>		769.9	4	1.4 3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		838.9	7	2.29	
837.3 4 0.9 2 947.7 13.5 73 Not included in Adopted Levels, Gammas because proposed placement implies E3 multipolarity. 1035.8 644.3 0.4 1 1035.8 645.3 0.4 1 1035.8 644.3 0.4 1 1036.2 8 0.4 1 1036.2 8 0.4 1 1053.9 999.6 11 0.3 1 1060.8 689.1 1 5.3 4 788.1 9 0.2 1 1.0 716.0 7 1.0 2 1 734.0 0.5 2 1 1.0 737.1 9 0.2 1 1.0 734.0 0.5 2 1 1.0 737.1 9 0.2 1 1.0 908.9 0.3 1 2 1.0 1087.8 108.5 3 1.0 2		849.2	7	0.4 1	
347.7 2 13.3 7.3 4 Not included in Adopted Levels, Gammas because proposed placement implies M2 multipolarity. 1035.8 664.3 8 0.4 7 1035.8 664.3 8 0.4 7 1036.2 8 3.5 3 1036.2 8 3.5 3 1036.2 8 3.6 1036.2 8 3.7 1036.2 8 3.7 1036.4 2 4.0 798.1 9 0.2 1062.7 586.1 2 4.0 716.0 7 1.0 3 737.4 0 7 0.6 2 831.1 9 0.2 1 1087.8 715.6 3 1.0 2 910.1 7 0.4 1 2 1038.5 4 1.1 2 1 1087.8 715.6 3 1.0 2 1099.8 623.6 0.5 2 4 1115.3 567.5		857.3	4	0.9 z	
1035.8 644.3 8 0.4 7 1035.8 644.3 9 1.9 8 1036.2 9 0.4 2 1036.8 8 3.5 3 1053.9 99.6 11 0.3 1 1060.8 689.1 1 0.3 1 1060.8 689.1 1 0.3 1 1060.8 689.1 1 0.3 1 1060.8 889.1 9 0.2 1 1062.7 586.1 2 4.0 5 734.0 7 0.6 2 811.8 9 0.2 1 818.8 8 0.3 1 818.8 9 0.3 1 818.8 9 0.3 1 828.8 9 0.3 1 828.8 8 0.3 1 1087.8 7 0.4 1 916.9 7 0.4 1 9109.7 0.4 1		947.7	2	13.5 13	Not included in Adopted Levels, Gammas because proposed placement implies E3 multipolarity.
103.8 00.4.3 0 4 4 981.6 0 1.9 8 981.6 0 1.9 8 1036.2 8 3.5 3 1053.9 999.6 1.1 5.3 4 1060.8 699.1 1 5.3 4 1060.8 798.1 0 2 1 1062.7 586.1 2 4.0 5 716.0 7 1.0 3 734.10 7 0.6 2 811.8 9 0.2 1 811.9 0.5 2 1 817.8 7 0.9 3 1087.8 715.6 3 1.0 2 1084.3 7 0.4 1 2 1084.8 0.2 1 1 2 1099.8 623.6 0.5 2 May be misplaced; Adopted Levels, Gammas implies that this would be an E3 transition. 1115.3 567.5 5 1.6 5 743.1 10 0.2 <td>1025 8</td> <td>975.4</td> <td>0</td> <td>0.82</td> <td>Not included in Adopted Levers, Gammas because proposed pracement implies M2 multipolarity.</td>	1025 8	975.4	0	0.82	Not included in Adopted Levers, Gammas because proposed pracement implies M2 multipolarity.
115.3 + 9 + 1.4 + 2 + 2.4 + 1.0 + 2 + 1.0 + 2.4 + 2.4 + 2.	1033.8	952 4	0 9	198	
1036.2 = 4 3.5 3 1053.9		981.6	9	0.4 2	
1053.9 999.6 11 0.3 1 1060.8 689.1 1 5.3 4 788.1 9 0.2 7 1062.7 586.1 2 4.0 5 716.0 7 1.0 3 718.1 9 0.2 7 81.1 0 0.5 2 979.3 7 0.9 3 1087.8 9 0.2 7 979.3 7 0.9 3 1087.8 9 0.2 7 979.3 7 0.9 3 1087.8 9 0.3 1 834.0 9 0.3 1 906.9 7 0.4 1 1034.3 7 0.5 2 115.3 836.8 0.3 1 830.8 8 0.3 1 115.3 2 1.6 5 743.1 10 0.2 1 765.5 1.6 5 743.		1036.2	8	3.5 3	
1060.8 689.1 1 5.3 4 798.1 9 0.2 1 1062.7 586.1 2 7.3 9 741.0 7 1.0 3 716.0 7 1.0 3 716.0 7 1.0 3 716.0 7 1.0 3 716.0 7 1.0 3 716.0 7 1.0 3 717.0 7 0.6 2 871.8 9 0.2 2 979.3 7 0.9 3 1087.8 7 0.1 2 1087.8 9 0.2 2 1087.8 9 0.2 2 1034.3 7 0.5 2 1099.8 636.8 0.3 2 115.3 8 0.3 2 115.4 2 14.5 5 743.1 0 0.8 2 115.3 2 14.5 5 753.1 </td <td>1053.9</td> <td>999.6</td> <td>11</td> <td>0.3 1</td> <td></td>	1053.9	999.6	11	0.3 1	
798.1 9 0.2 1 1062.7 786.1 2 4.0 5 646.1 2 7.3 9 716.0 7 1.0 3 716.0 7 0.6 2 81.8 9 0.2 1 81.8 9 0.2 2 881.1 9 0.5 2 979.3 7 0.9 3 1087.8 715.6 3 1.1 1087.8 9 0.2 1 1087.8 9 0.2 1 1087.8 9 0.2 1 1087.8 9 0.2 1 1087.8 9 0.2 1 190.9 7 0.4 1 906.9 7 0.4 1 916.1 7 0.4 1 916.2 6 3 2 115.3 623.6 8 0.3 115.3 767.5 1.6 5 115.3 1.4 </td <td>1060.8</td> <td>689.1</td> <td>1</td> <td>5.3 4</td> <td></td>	1060.8	689.1	1	5.3 4	
1062.7 586.1 2 4.0 5 646.1 7.3 9 716.0 7 0.0 2 731.0 7 0.0 2 811.1 9 0.5 2 979.3 7 0.9 3 1087.8 9 0.2 1 811.1 9 0.5 2 979.3 7 0.9 3 1087.8 8 1.1 2 979.3 7 0.9 3 1087.8 8 0 1 984.0 9 0.2 1 986.8 8 0.3 1 986.8 8 0.3 1 115.3 675.5 5 1.6 5 115.3 587.9 14 0.8 4 115.3 2 14.5 15 743.1 10 0.8 1 743.2 14.5 5 743.3 14 5 5 743.4 10 <td></td> <td>798.1</td> <td>9</td> <td>0.2 1</td> <td></td>		798.1	9	0.2 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1062.7	586.1	2	4.0 5	
716.0 7 1.0 3 734.0 7 0.6 2 871.8 9 0.2 1 881.1 9 0.5 2 979.3 7 0.9 3 1087.8 715.6 3 1.0 882.6 9 0.3 1 906.9 7 0.4 1 906.9 7 0.4 1 906.9 7 0.4 1 1034.3 7 0.5 2 1099.8 623.6 8 0.5 2 1115.3 753.1 10 0.6 3 836.8 8 0.3 1 1115.3 567.5 5 1.6 5 743.1 10 0.2 1 765.9 3 3.2 5 833.7 3 3.2 5 843.2 9 0.4 1 1121.2 704.4 9 0.8 3 791.9 1 0.5 2<		646.1	2	7.3 9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		716.0	7	1.0 3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		734.0	7	0.62	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		871.8	9	0.2 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		881.1	9 ~	0.5 2	
$1000.5 \ 4 \ 1.1 \ 2$ $1087.8 \ 715.6 \ 3 \ 1.0 \ 2$ $826.8 \ 9 \ 0.3 \ 1$ $894.0 \ 9 \ 0.2 \ 1$ $906.9 \ 7 \ 0.4 \ 1$ $916.1 \ 7 \ 0.4 \ 1$ $1034.3 \ 7 \ 0.5 \ 2$ $1099.8 \ 623.6 \ 8 \ 0.5 \ 2$ $1099.8 \ 623.6 \ 8 \ 0.5 \ 2$ $753.1 \ 10 \ 0.6 \ 3$ $836.8 \ 8 \ 0.3 \ 1$ $1115.3 \ 567.5 \ 5 \ 1.6 \ 5$ $595.9 \ 14 \ 0.8 \ 4$ $661.3 \ 2 \ 14.5 \ 15$ $743.1 \ 10 \ 0.2 \ 1$ $765.9 \ 3 \ 3.2 \ 5$ $853.7 \ 3 \ 2.5 \ 3$ $943.2 \ 9 \ 0.4 \ 1$ $1121.2 \ 704.4 \ 9 \ 0.8 \ 3$ $791.9 \ 11 \ 0.5 \ 2$		9/9.3	1	U.93	
1007.5 113.0 3 1.0 2 826.8 9 0.3 1 894.0 9 0.2 1 906.9 7 0.4 1 916.1 7 0.4 1 1034.3 7 0.5 2 1099.8 623.6 8 0.5 2 1099.8 623.6 8 0.3 1 1115.3 567.5 5 1.6 5 595.9 14 0.8 4 Tentatively placed from a 1118.7 level in Adopted Levels, gammas. 661.3 2 14.5 15 743.1 10 0.2 1 765.9 3 3.2 5 853.7 3 2.5 3 943.2 9 0.4 1 1121.2 704.4 9 0.8 3 791.9 11 0.5 2	1097 9	715 0	4		
801.0 0 0.0 1 894.0 9 0.2 1 906.9 7 0.4 1 916.1 7 0.4 1 1034.3 7 0.5 2 1099.8 623.6 8 0.5 2 1115.3 623.6 8 0.3 1 1115.3 567.5 5 1.6 5 836.8 8 0.3 1 1115.3 567.5 5 1.6 661.3 2 14.8 4 765.9 3 3.2 5 853.7 3 2.5 3 943.2 9 0.4 1 1121.2 704.4 9 0.8 3 791.9 11 0.5 2	1007.0	113.0 896 9	9	1.0 2	
906.9 7 0.4 1 916.1 7 0.4 1 1034.3 7 0.5 2 1099.8 623.6 8 0.5 2 1099.8 623.6 8 0.5 2 1115.3 567.5 5 1.6 5 595.9 14 0.8 4 Tentatively placed from a 1118.7 level in Adopted Levels, gammas. 661.3 2 14.5 15 743.1 10 0.2 1 765.9 3 3.2 5 833.7 3 2.5 3 943.2 9 0.4 1 1121.2 704.4 9 0.8 3 791.9 11 0.5 2		894.0	9	0.21	
916.1 7 0.4 1 1034.3 7 0.5 2 1099.8 623.6 8 0.5 2 1099.8 623.6 8 0.5 2 1115.3 753.1 10 0.6 3 836.8 8 0.3 1 1115.3 567.5 5 1.6 5 595.9 14 0.8 4 Tentatively placed from a 1118.7 level in Adopted Levels, gammas. 661.3 2 14.5 15 743.1 10 0.2 1 765.9 3 3.2 5 853.7 3 2.5 3 943.2 9 0.4 1 1121.2 704.4 9 0.8 3 791.9 11 0.5 2		906.9	7	0.4 1	
1034.3 7 0.5 2 1099.8 623.6 8 0.5 2 1099.8 623.6 8 0.5 2 1115.3 753.1 10 0.6 3 836.8 8 0.3 1 1115.3 567.5 5 1.6 5 595.9 14 0.8 4 5 661.3 2 14.5 15 743.1 10 0.2 1 765.9 3 3.2 5 853.7 3 2.5 3 943.2 9 0.4 1 1121.2 704.4 9 0.8 3 791.9 11 0.5 2		916.1	7	0.4 1	
1099.8 623.6 8 0.5 2 May be misplaced; Adopted Levels, Gammas implies that this would be an E3 transition. 753.1 10 0.6 3 836.8 8 0.3 1 1115.3 567.5 5 1.6 595.9 14 0.8 4 661.3 2 14.5 15 743.1 10 0.2 1 765.9 3 3.2 5 853.7 3 2.5 3 943.2 9 0.4 1 1121.2 704.4 9 0.8 3 791.9 11 0.5 2		1034.3	7	0.5 2	
753.1 10 0.6 3 836.8 8 0.3 1 1115.3 567.5 5 1.6 5 595.9 14 0.8 4 Tentatively placed from a 1118.7 level in Adopted Levels, gammas. 661.3 2 14.5 15 743.1 10 0.2 1 765.9 3 3.2 5 853.7 3 2.5 3 943.2 9 0.4 1 1121.2 704.4 9 0.8 3 791.9 11 0.5 2	1099.8	623.6	8	0.5 2	May be misplaced; Adopted Levels, Gammas implies that this would be an E3 transition.
836.8 8 0.3 1 1115.3 567.5 5 1.6 5 595.9 14 0.8 4 Tentatively placed from a 1118.7 level in Adopted Levels, gammas. 661.3 2 14.5 15 743.1 10 0.2 1 765.9 3 3.2 5 853.7 3 2.5 3 943.2 9 0.4 1 1121.2 704.4 9 0.8 3 791.9 11 0.5 2		753.1	10	0.6 3	
1115.3 567.5 5 1.6 5 595.9 14 0.8 4 Tentatively placed from a 1118.7 level in Adopted Levels, gammas. 661.3 2 14.5 15 743.1 10 0.2 1 765.9 3 3.2 5 853.7 3 2.5 3 943.2 9 0.4 1 1121.2 704.4 9 0.8 3 791.9 11 0.5 2		836.8	8	0.3 1	
595.9 14 0.8 4 Tentatively placed from a 1118.7 level in Adopted Levels, gammas. 661.3 2 14.5 15 743.1 10 0.2 1 765.9 3 3.2 5 853.7 3 2.5 3 943.2 9 0.4 1 1121.2 704.4 9 0.8 3 791.9 11 0.5 2	1115.3	567.5	5	1.6 5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		595.9	14	0.8 4	Tentatively placed from a 1118.7 level in Adopted Levels, gammas.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		661.3	2	14.5 15	
765.9 3 3.2 5 853.7 3 2.5 3 943.2 9 0.4 1 1121.2 704.4 9 0.8 3 791.9 11 0.5 2		743.1	10	0.2 1	
853.7 3 2.5 3 943.2 9 0.4 1 1121.2 704.4 9 0.8 3 791.9 11 0.5 2		765.9	3	3.2 5	
943.2 9 0.4 1 1121.2 704.4 9 0.8 3 791.9 11 0.5 2		853.7	3	2.5 3	
1121.2 704.4 9 0.8 3 791.9 11 0.5 2	1101 0	943.2	9	0.4 1	
131.3 <i>11</i> 0.3 <i>2</i>	1121.2	704.4	9 11	0.83	
		191.9	11	0.3 2	

165Ho(n w) E-thonmaly w Coin	9000Dr10 (continued)
-···Ho(n,γ) E=thermal: γγ Colh	zovoprio (continuea)

E(level)	$E\gamma^{\dagger}$	Iγ [‡]	Comments
1121 2	940 0 6	0 8 2	
1121.2	940.0 0	0.82	
1124 2	761 5 6	0.02	
1134.3	972 0 6	0.41	
	942 2 7	0.3 1	
	051 / 12	0.51	
1137 0	957 4 3	1 4 2	
1137.5	816 2 10	0 5 2	Nat included in Adonted Levels, Cammas: fits placement from known 1141.3 level very poorly
1145.4	950 3 6	0.5 2	Not included in Auspred Levers, Gammas, its placement from known 1141.5 lever very poorly.
1155 5	683 4 4	183	
1100.0	701 7 9	1 2 5	
	787 1 4	1 4 3	
	806 5 7	0 8 3	
	825 5 11	0 5 2	
	892 1 8	0 4 2	
	959 0 7	0 3 1	Not included in Adonted Levels, Gammas: fits placement very poorly
	983.3 6	0.62	The include in the production, cannot, the processing poorly.
	1099.0 5	0.8 2	
1161.5	612.7 6	1.5 4	
	732.1 5	1.8 4	
	813.3 6	1.0 3	
	831.3 7	1.1 3	
	898.8 5	1.0 2	
	981.0 7	0.5 1	
	989.6 <i>3</i>	1.5 3	
1166.2	689.1 5	1.4 3	Not included in Adopted Levels, Gammas; fits placement from known 1168.4 level very poorly.
	713.6 6	2.4 6	
	791.8 7	0.8 2	Not included in Adopted Levels, Gammas; fits placement from known 1168.4 level very poorly.
	976.9 7	0.4 1	
1189.9	712.6 7	0.5 2	
	928.7 5	0.8 2	

$\gamma(^{166}\text{Ho})$ (continued)

[†] From 2000Pr10. Uncertainties may have been underestimated. This experiment reports a number of transitions with energies above the 735 keV cutoff for data from the (n,γ) E=thermal study in 1967Mo05 but is insensitive to the lowest energy transitions.

[‡] Two-photon cascade intensity normalized so that area of experimental spectrum in range 520<Eγ<(cascade energy-520) was 100% for each final level.

 x $\,\,\gamma$ ray not placed in level scheme.

Level Scheme

Intensities: relative photon branching from each level

Level Scheme (continued)

Intensities: relative photon branching from each level

Level Scheme (continued)

Intensities: relative photon branching from each level

¹⁶⁵Ho(n,γ) E=2 keV 1970Bo29,2000Pr03

 $J\pi(target)=7/2-.$

2000Pr03: three-crystal pair spectrometer, FWHM≈5.5 keV at 6.5 MeV. calibration based on S(n) and pattern of primary

transitions to several well-established low-lying levels; measured $E\gamma,\,I\gamma$ for primary transitions.

1970Bo29: annihilation-pair spectrometer with high-resolution Ge(Li) detector, calibrated using $^{14}N(n,\gamma)$ reaction;

measured Eq, Iq for primary transitions.

¹⁶⁶Ho Levels

E(level) [†]	Jπ [‡]	Comments
54.22	2 - , 5 -	
82.0 10	(1-,6-)	
170.9 2	3-,4-	
100.7 2	3-,4-	
260 6 2	3+, 4+ 3+, 4+	
263 6 2	2+ 5+	
278.2? 10	(16 -)	
295.7? 15	16-	
330.1 10	2-, 5-	
348.2 2	2+,5+	
371.9 2	3+,4+	
416.3 4	2-, 5-	
430.1 2	2 + , 5 +	
452.0? 10	(1-,6-)	
464.0 5	2+,5+	
470.7 2	2+,5+	
475.5 10	-	
481.6 2	3+, 4+	
542 9 10	3+,4+	
547 6 2	- 3+ 4+	1π , 2+ 5+ from (2000Pr03) inconsistent with adopted 1π -4+
558 3 2	3+ 4+	
562.5 7	_	
592.0 3	3+,4+	
597.9 <i>3</i>	3+,4+	
604.8 <i>3</i>	2+,5+	
628.0 10	-	
634.2? 25	(–)	
634.20 20	(2+,5+)	
638.1 15	-	
654.9 5	2 + , 5 +	Jπ: from 2000Pr03.
658.1 <i>15</i>	-	
662.3 5	3+,4+	Jπ: from 2000Pr03.
671 1 5	-	
683 4 3	-	
693.0? 25	(-)	
693.00 <i>20</i>	(2+,5+)	
704.3 <i>3</i>	-	
719.0 2	3+,4+	
725.8 15	-	
736.0 2	3+,4+	
741.3 4	-	
756.0 10	-	
759.0 10	-	
768.8 3	2+,5+	
111.3 15	-	
183.3 13 789 5 10	_	
792.3 10	_	
805.8 2	2+.5+	
814.3 2	3+,4+	
823.7 4	-	
831.1 2	2+,5+	Jπ: from 2000Pr03; (2+,5+) in 1970Bo29.
836.5 15	-	
858.1 15	-	

¹⁶⁶Ho Levels (continued)

E(level	I) [†]	Jπ [‡]	Comments
860.7	15	_	E=860.3 <i>8</i> from 2000Pr03; may be 858+861 doublet.
867.1	15	-	
868.7	15	-	$E(evel): E=869.5 5, J\pi=2+,5+ in 2000Pr03 may be 867+869 doublet.$
874.8	15	-	
878.6	10		
881.6	15		E=880.2 1 from 2000Pr03 may be for 879+882 doublet.
884.2	15		$J\pi$: 2+,5+ from 2000Pr03 differs from adopted value.
889.8	3	3+,4+	$J\pi$: from 2000Pr03.
902.2	10		
904.0	5	2 + , 5 +	$J\pi$: from 2000Pr03.
924.4	2	2 + , 5 +	$J\pi$: from 2000Pr03.
946.2	7	2 + , 5 +	Jπ: from 2000Pr03.
950.6	7		
960.6	3	3+,4+	Jπ: from 2000Pr03.
976.1	5		
979.0	10		E=978.6 5, Jπ=3+,4+ from 2000Pr03 may be 976+979 doublet.
984.6	5	2+,5+	$J\pi$: from 2000Pr03.
998.8	5		
1003.5	3		
1008.9	3		
1016.1	10		
1020.0	15		
1024.5	15		
1028.3	4		
1032.3	7		
1040.9	15		
1045.7	15		
1053.0	2		
1060.5	2		
1077.2	2		
1086.4	3		
1090.7	15		
1096.3	10		
1113.9	2		
1118.7	10		
1120.9	15		
1129.6	/		
1134.0	15		
1130.0	10 5		
1140.7	5		
1155 4	J 15		
1159 =	10		
1130.3 1160 6	10		
(6242.6	6)	3-,4-	E(level): deduced from Eγ=6188.3 assuming E=54.2 for the first excited state of ¹⁶⁶ Ho. This differs from S(n)=6243.64 <i>2</i> (2003Au03); all primary γ energies from 1970Bo29 appear to be approximately 1 keV low.
			J π : assuming s-wave capture by J π =7/2- target; p-wave capture is expected to be relatively small (1970Bo29).

 [†] From 1970Bo29, except as noted.
 [‡] The assignments are from 1970Bo29, except as noted. They are based on the measured reduced intensities in average resonance capture, coupled with empirical reduced intensities to final states with known $J\pi$ values.

$\gamma(^{166}{ m Ho})$

1970Bo29 and 2003Pr03 have measured the average γ spectrum that results when neutrons in a relatively broad band of energy (FWHM of the order of several hundred eV) are captured in many resonances. From the γ-ray line shapes, 1970Bo29 conclude that all the γ rays they observed are primary γ rays.
1970Bo29 state that their data suggested that more than six γ rays are present in the 5559.1γ-5584.4γ range.

$E\gamma^{\dagger}$	E(level)	Iγ [‡]	Comments
5081 9 <i>12</i>	(6242, 6)	352 10	
5084.0 12	(6242.6)	351 10	
5087.1 16	(6242.6)	118 47	
5089.5 8	(6242.6)	317 32	
5095.8 <i>8</i>	(6242.6)	235 47	
5105.9 12	(6242.6)	255 25	
5108.5 16	(6242.6)	237 47	
5112.9 9	(6242.6)	338 23	
5121.6 16	(6242.6)	49 17	
5123.8 12	(6242.6)	130 32	
5128.6 6	(6242.6)	372 18	
5146.2 12	(6242.6)	60 <i>3</i>	
5151.8 16	(6242.6)	48 16	
5156.1 7	(6242.6)	281 14	
5165.3 6	(6242.6)	112 5	
5182.06	(6242.6)	510 25	
5189.5 6	(6242.6)	351 17	
5196.8 16	(6242.6)	30 10	
5201.6 16	(6242.6)	20 5	
5210.2 9	(6242.6)	271 41	
5214.2 7	(6242.6)	676 10	
5218.0 16	(6242.6)	122 42	
5222.5 16	(6242.6)	63 22	
5226.4 12	(6242.6)	71 14	
5233.6 7	(6242.6)	272 13	
5239.0 7	(6242.6)	321 16	
5243.7 8	(6242.6)	132 13	
5257.9 8	(6242.6)	182 13	$E_{\gamma} = 5258.8$ 6. $1\gamma E_{\gamma}^{\gamma} = 63$ 10 (2000Pr03).
5263.5 12	(6242.6)	170 25	$E\gamma = 5265.1 5, 1\gamma / E\gamma^2 = 91 10$ (2000Pr03).
5266.4 8	(6242.6)	284 20	
5281.9 7	(6242.6)	302 15	$E\gamma = 5282.5$ 3, $1\gamma E\gamma^3 = 96$ 8 (2000Pr03).
5291.9 9	(6242.6)	11 8	E. 5000.0.5 L.E.S. 51.6(0000B-00)
5296.3 9	(0242.0)	109 11	$E_{1} = 5230.6 \ 5, \ 1\gamma E_{1}^{2} = 31 \ 0 \ (2000 F 103).$
	(0242.0)	192 10	$E_{1} = 5318.5$ 4, $17/E_{1}^{-2} = 71.0$ (2000/F03).
5340 3 12	(0242.0) (6242.6)	110 36	$E_{1}=336.3, E_{1}E_{1}=63, C(20001103).$
5352 7 7	(6242.6)	322 16	$F_{2} = 5352.9.3$ $I_{2}/F_{2}^{5} = 119.8$ (2000Pr03)
5358 3 16	(6242.6)	112 39	$E_1 = 50505, 0, 17, 17, -11, 0, 0, 00001700).$ $E_2 = 5358.8.7 [1, 0, 17, 5^5 = 3, 0, (20001703)]$
5360 9 <i>16</i>	(6242.6)	115 46	$E_1 = 50000 \text{ is } 1, 1/2 + 5000 \text{ of } 2000 \text{ rob}.$
5363 9 <i>12</i>	(6242.6)	106 26	
5367 7 16	(6242.6)	50 20	
5373.8 16	(6242.6)	63 17	$E_{7}=5384, 2, 5, 1_{7}/E_{7}^{5}=59, 6$ (2000Pr03).
5375.4 16	(6242.6)	65 17	-,, (
5381.8 16	(6242.6)	18 5	$E\gamma = 5383.4$ <i>8</i> , $I\gamma / E\gamma^5 = 36$ <i>5</i> (2000Pr03).
5384.4 16	(6242.6)	276	
5406.0 16	(6242.6)	47 12	$E\gamma = 5406.7$ 13, $I\gamma/E\gamma^5 = 29$ 12 (2000 Pr03).
5411.4 6	(6242.6)	252 7	$E\gamma = 5411.8$ 7, $I\gamma/E\gamma^5 = 67$ 12 (2000Pr03).
5418.8 7	(6242.6)	91 6	$E\gamma = 5419.1$ <i>I</i> , $I\gamma/E\gamma^5 = 32$ <i>G</i> (2000Pr03).
5428.2 6	(6242.6)	416 12	$E\gamma = 5428.7 \ 2, \ I\gamma / E\gamma^5 = 106 \ 6 \ (2000 Pr 03).$
5436.7 6	(6242.6)	225 7	$E\gamma = 5437.8 \ 4, \ I\gamma / E\gamma^5 = 53 \ 5 \ (2000 Pr 03).$
5450.2 12	(6242.6)	94 20	$E\gamma = 5450.7 \ 1, \ I\gamma / E\gamma^5 = 30 \ 9 \ (2000 Pr 03).$
5453 . 0 12	(6242.6)	86 20	$E\gamma = 5455.2$ 7, $I\gamma / E\gamma^5 = 32$ 8 (2000Pr03).
5459.0 16	(6242.6)		$E\gamma = 5462.1 \ 10, \ I\gamma/E\gamma^5 = 13 \ 5 \ (2000 Pr 03).$
5471.2 16	(6242.6)	51 20	
5473.7 7	(6242.6)	199 10	$E\gamma = 5473.8 \ 3, \ I\gamma / E\gamma^5 = 72 \ 6 \ (2000 Pr 03).$
5483.5 12	(6242.6)	75 20	$E\gamma = 5484.2$ 1, $I\gamma / E\gamma^5 = 17$ 11 (2000 Pr03).
5486. 5 12	(6242.6)	50 20	$E\gamma = 5486.0 \ 1, \ I\gamma / E\gamma^5 = 22 \ 11 \ (2000 Pr 03).$
5501.2 7	(6242.6)	93 18	$E\gamma = 5501.6 \ 1, \ I\gamma / E\gamma^5 = 32 \ 6 \ (2000 Pr 03).$
5506.5 6	(6242.6)	380 11	$E\gamma=5507.2$ 3, $I\gamma/E\gamma^5=87$ 6 (2000Pr03).

$\gamma(^{166}{\rm Ho})$ (continued)

$E\gamma^{\dagger}$	E(level)	Iγ [‡]	Comments
5516 7 16	(6242 6)	30 7	
5523.5 6	(6242.6)	367 11	$E_{\gamma} = 5524.0.3. I_{\gamma}/E_{\gamma}^{5} = 99.7 (2000 Pr 0.3).$
5538.2 7	(6242.6)	76 5	$E_{\gamma} = 5538 \cdot 2 \cdot 0$. $1/(E_{\gamma}^{5} = 14 \cdot 4 \cdot (2000 \text{ Pr} 0.3).$
5549.58 6	(6242.6)	267 8	$E_{\gamma} = 5550.4.3.1 / (E_{\gamma}^{5} = 78.5 (2000 Pr 0.3)).$
5559.1 7	(6242.6)	94 6	$E_{\gamma} = 5562.4.9. I_{\gamma} (E_{\gamma}^5 = 26.4.(2000 Pr 03)).$
5571.4 8	(6242.6)	358 15	$E_{\gamma} = 5571.5$ 7. $I_{\gamma}/E_{\gamma}^{5} = 84$ 13 (2000 Pr03).
5574.8 12	(6242.6)	39 10	$E_{\gamma} = 5576.2$ 10. $I_{\gamma}/E_{\gamma}^{5} = 25$ 12 (2000 Pr03).
5580.2 8	(6242.6)	399 20	$E_{\gamma} = 5581.8 \ 9, \ I_{\gamma}/E_{\gamma}^5 = 95 \ 1.3 \ (2000 Pr 0.3).$
5584.4 16	(6242.6)		
5587.6 8	(6242.6)	279 15	$E\gamma = 5588.8 \ 5, I\gamma/E\gamma^5 = 54 \ 8 \ (2000Pr03).$
5604.4 16	(6242.6)	17 10	$E_{\gamma} = 5605.5 \ I, \ I_{\gamma} / E_{\gamma}^5 = 20 \ g \ (2000 Pr 03).$
5608.3§ 6	(6242.6)	360 18	$E_{\gamma} = 5610.1 \ \theta, \ I_{\gamma} / E_{\gamma}^5 = 68 \ \theta \ (2000 Pr 03).$
5614.5 12	(6242.6)	179	$E_{\gamma} = 5615.3 \ I, I_{\gamma}/E_{\gamma}^5 = 12 \ 8 \ (2000 Pr 03).$
5637.7 7	(6242.6)	247 12	$E\gamma = 5638.1 \ 4, I\gamma/E\gamma^5 = 59 \ 5 \ (2000Pr03).$
5644.6 7	(6242.6)	493 25	$E\gamma = 5645.2$ <i>I</i> , $I\gamma/E\gamma^5 = 106$ <i>10</i> (2000Pr03).
5650.5 7	(6242.6)	524 25	$E\gamma = 5651.2$ 2, $I\gamma/E\gamma^5 = 139$ 8 (2000Pr03).
5680.0 9	(6242.6)	69 17	$E_{\gamma} = 5681.1$ 10, $I_{\gamma}/E_{\gamma}^5 = 25$ 13 (2000 Pr03).
5684.2 6	(6242.6)	450 13	$E\gamma = 5685.7$ 6, $I\gamma / E\gamma^5 = 96$ 13 (2000 Pr03).
5694.9 6	(6242.6)	374 12	$E\gamma = 5695.7$ <i>I</i> , $I\gamma/E\gamma^5 = 71$ 7 (2000Pr03).
5699.6 12	(6242.6)	36 12	$E\gamma = 5700.0$ <i>I</i> , $I\gamma/E\gamma^5 = 18$ 5 (2000Pr03).
5720.6 6	(6242.6)	480 15	$E\gamma = 5721.9 \ 2, \ I\gamma/E\gamma^5 = 110 \ 7 \ (2000 Pr 03).$
5760.9 6	(6242.6)	352 7	$E\gamma=5762.0$ 3, $I\gamma/E\gamma^5=83$ 5 (2000Pr03).
5767.0 12	(6242.6)	82 16	$E\gamma = 5768.0$ <i>I</i> , $I\gamma/E\gamma^5 = 28$ <i>8</i> (2000Pr03).
5771.8 6	(6242.6)	326 23	$E\gamma = 5772.8$ <i>I</i> , $I\gamma/E\gamma^5 = 66$ <i>8</i> (2000Pr03).
5778.5 8	(6242.6)	187 13	$E\gamma = 5779.3 \ 4$, $I\gamma/E\gamma^5 = 63 \ 6 \ (2000Pr03)$.
5790.5 12	(6242.6)	11 4	
5812.4 6	(6242.6)	293 5	$E\gamma = 5813.5 \ 2, \ I\gamma/E\gamma^5 = 72 \ 4 \ (2000Pr03).$
5826.2 7	(6242.6)	46 5	$E\gamma = 5827.6$ <i>I</i> , $I\gamma/E\gamma^5 = 13$ 2 (2000Pr03).
5870.6 6	(6242.6)	648 12	$E\gamma = 5871.9 \ 2, \ I\gamma/E\gamma^5 = 124 \ 5 \ (2000 Pr 03).$
5894.3 6	(6242.6)	332 9	$E\gamma = 5895.3 \ 2, \ I\gamma/E\gamma^5 = 75 \ 5 \ (2000Pr03).$
5912.4 12	(6242.6)	47 5	$E\gamma=5914.0$ 5, $I\gamma/E\gamma^5=24$ 4 (2000Pr03).
5946.8 [#] 16	(6242.6)	11 4	
5964.3 [#] 12	(6242.6)	10 3	
5978.9 6	(6242.6)	243 45	$E\gamma = 5979.9$ <i>I</i> , $I\gamma/E\gamma^5 = 45$ 6 (2000Pr03).
5981.9 6	(6242.6)	570 40	$E\gamma = 5983.0$ <i>I</i> , $I\gamma/E\gamma^5 = 112$ <i>6</i> (2000Pr03).
6051.8 6	(6242.6)	585 17	$E\gamma = 6052.5 \ 2, \ I\gamma/E\gamma^5 = 122 \ 5 \ (2000 Pr 03).$
6061.8 6	(6242.6)	136 6	$E\gamma = 6063.4$ 7, $I\gamma / E\gamma^5 = 20$ 3 (2000 Pr 03).
6071.6 6	(6242.6)	89 4	$E\gamma = 6072.9 \ 5, \ I\gamma / E\gamma^5 = 23 \ 3 \ (2000 Pr 03).$
6160.5 12	(6242.6)	6 <i>3</i>	
6188.3 6	(6242.6)	73 <i>3</i>	$E\gamma = 6189.8 4$, $I\gamma/E\gamma^5 = 17 2$ (2000Pr03).

[†] From 1970Bo29; the authors have corrected for the 0.65 keV shift due to the non-zero energies of the captured resonance neutrons; thus, the energies they reported are those that would be expected in thermal-neutron capture. However, they are consistently lower than the similarly-corrected $E\gamma$ from 2000Pr03 by about 1 keV. Uncertainties include 0.6 keV systematic uncertainty.

[‡] Relative reduced photon intensity, $I\gamma E\gamma^{-3}$, from 1970Bo29 for a ¹⁰B absorber thickness of 0.107 g/cm²; see 1970Bo29 for reduced intensities for ¹⁰B absorber thicknesses of 0.036 and 0.418 g/cm². Relative reduced intensities from 2000Pr03, defined instead as $I\gamma E\gamma^{-5}$, are given in comments; values for M1 transitions are about a factor of 6 lower than those for E1 transitions.

§ Probably a doublet.

Placement of transition in the level scheme is uncertain.

Level Scheme (continued)

Intensities: relative $I\boldsymbol{\gamma}$

¹⁶⁶₆₇Ho₉₉

¹⁶⁵Ho(d,p) 2000Pr03,1965St06

Target Jn=7/2-.

 $2000 Pr03: E(d)=17 \ MeV; \ Q3D \ spectrograph \ with \ proportional \ chamber \ (cathode \ strip \ readout) \ and \ scin, \ FWHM=5 \ keV; \ \theta(lab)=15^\circ, \ 30^\circ, \ 45^\circ; \ E(level)\leq 1.8 \ MeV; \ DWBA \ and \ Nilsson \ model \ calculations.$

1965St06: E(d)=11, 12 MeV; metal and oxide Ho targets; magnetic spectrograph with nuclear emulsions, typical FWHM=8-13 keV, θ(lab)=35°, 45°, 60°, 65°, 90° and 95°; measured E(p), I(p). Detailed report of (d,p) data

summarized in 1967Mo05.

¹⁶⁶Ho Levels

E(level) [†]	$J\pi$ §	I(p) (45°) [‡]	Comments
6 21 [@] 25	7 _	618	
$54.3^{\#}4$	2 –	3.3 7	
82.6# 11	1-		
138.02 [@] 16	8 -	20.7 18	
171.42# 26	3 –	5.28	Other E: 167.6 20 (1965St06).
180.62# 19	4 –	9.8 9	
190.87 ^{&} 8	3+	126 4	
260.67 ^{&} 11	4 +	80 7	
264.65 ^a 27	5 +	23 6	I(p): poorly resolved from 261-keV peak.
287.5 [@] 5	9 -	13 3	
295.42 ^b 11	6 +	694	
329.83# 24	5 –	23 <i>3</i>	
348.28 ^{&} 10	5 +	654	
372.1 ^c 4	4 +	213 4	
378.90 20		77 3	E(level): possible doublet.
384.23 16		12.4 18	
423.58 ^b 20	7+	704	
426.04 ¹ 20	1+	35 4	
430.5e 5	2 +	15.6 18	
453.77 ^{&} 10	6+	28 2	Other E: 457 2 (1965St06).
464.501 13	2+	54 3	
470.88° 25	5+	12 3	
4/6.5 4	3 -	12 2	
482.20	3+	4.6 14	
514.42 - 15	2 -	40 3	
520 01k 21	5+ 6_	80 5	
547 968 5	0 – 4 +	38 2	
558 55h g	4+	62 3	
$562.6^{@}$ 4	4 -	02 0	
567.92 ^d 21	1+	10.9 11	
576.5 ^{&} 4	7+	6.2 9	
588.13 ^c 8	6 +	42 3	
592.52g <i>18</i>	3 +	35 1	
598.36 ^f 22	4 +	64 <i>3</i>	
604.88 ^d 12	2 +	15 2	Other E: 610 2 (1965St06).
634.91 ^e 19	5 +	22 2	
644.0 ^k 4	7 –	7.5 13	
655.13 ^h 11	5 +	46 2	
662.5 ^d 5	3 +	15 2	
671.318 <i>24</i>	4 +	13 1	
694.1 ¹ 3	5+	23 3	
722.95° 18	7+	10.3 12	
737.214 18	4 +	20 1	
769.72 10	0	18 1	
807.01 10 914 961 97	0+	6.9 <i>12</i>	
814.80J 27	3+	99 5	
824 6 4		112	
831.44d 23	5+	5.9 11	
837.9 3	51	3.5 10	
848.46 ¹ 16	7+	7.7 9	
884.0g 6	6 +	3.6 8	
890.64j <i>17</i>	4 +	82 3	
895.5 6		10.5 18	
904.64 ^m 13	2 +	23 1	

¹⁶⁵Ho(d,p) 2000Pr03,1965St06 (continued)

¹⁶⁶Ho Levels (continued)

E(level) [†]	Jπ§	I(p) (45°) [‡]	Comments
911.4 ⁱ 3	6+	4.78	
925.21 16		22 1	
961.23^{m} 16	3+	11.6 12	
978.55 <i>24</i>	Γ.	20 2	
985.74J 18 1003 8 6	9 +	38 2 1 8 8	
1009.8 4		3.89	
1030.3 ^m 2	4 +	8.8 10	
1038.4 3		12.3 11	
1055.4 4		9.9 10	
1088.6 7 1098.6 7	6.+	2.37	Other E: 1080 2 (1965St06).
1114.7 8	0+	3.3 8	
1130.4 10		6.5 6	
1138.4 10		8.3 6	
1148.5 11		6.0 8	Other E: 1154 3 (1965St06).
1161.1 11		1.9 5	
1168.4 11		4.76	
1190.1 14		4.9 5	
1202.3 13		10.7 7	
1209.6 14		2.5 5	
1216.6 14		4.1 5	
1226.9 15		2.96	Other E: 1221 2 (1965St06).
1240.4 15		8.49	
1264.9 18		1.2 5	
1271.2 17		19.0 11	
1280.7 18		17.3 11	
1290.9 18		16.7 12	
1297.1 19		15.5 12	
1303.7 19		7.5 11	
1334.5 21		15 2	
1341.7 21		13 2	
1350.2 22		13.8 12	
1358.8 22		292	Other E: 1361 1 (1965St06).
1367.1 23		45 2	
1376.6 22		9312	
1388.4 25		10.4 11	
1397.2 25		3.0 7	
1417 3		17.6 9	
1426 3		38.5 13	
1432 3		24.3 12	
1445 3		3.8 7	
1458 3		3.9 6	
1465 3		5.2 6	
1471 3		3.5 6	
1487 3		4.8 6	
1499 3		7.3 b 8.6.11	
1513 3		31 2	Other E: 1518 1 (1965St06).
1528 3		12.0 11	
1533 3		14 2	
1537 1		10 2	E(level): from 1965St06; 1537 3 in 2000Pr03.
1547 3		2.3 9	E/lavel), from 10655+08, 1558 2 in 2000-02
1559 1		477	E(level): Itum 19035100; 1338 3 IN 2000PTU3.
1577 4		10 1	
1593 4		3.8 8	
1601 4		8 2	
			Continued on next page (footnotes at end of table)

¹⁶⁵Ho(d,p) 2000Pr03,1965St06 (continued)

¹⁶⁶Ho Levels (continued)

E(l	level)†	I(p) (45°)‡	Comments
1605	4	5	2	Other E: 1604 1 (1965St06)
1615	4	8	1	
1623	2	10	1	E(level): from 1965St06: 1623 4 in 2000Pr03.
1636	4	9	1	
1642	1	6	1	E(level): from 1965St06; 1643 <i>4</i> in 2000Pr03.
1654	4	8	1	
1677	4	5	1	
1686	4	4	1	
1692	4	38	2	
1697		12	1	E(level): reported energy (1687 4) appears to be a misprint since it is listed out of numerical order. 1697 seems a reasonable possibility.
1702	4	5	1	
1717	4	10	1	
1723	5	8	1	
1731	5	20	1	
1745	5	27	2	
1753	5	16	1	
1759	5	14	10	
1765	5	54	20	
1779	5	2 2	3	
1784	5	21	3	
1788	5	3 5	3	

[†] From 2000Pr03, except as noted. 1965St06 reported additional levels at 308 *3*, 401 *2*?, 942 *3*, 1105 *1*, 1122 *2*, 1312 *1*,

1661 *I*; since they were not confirmed in 2000Pr03, either they do not belong in 166 Ho or are unresolved doublets. [‡] Relative proton intensity at 45°. See 2000Pr03 for relative proton intensities at 15° and 30°.

§ From 2000Pr03, based on band structure deduced from comparison between the experimental cross section and theoretical cross sections calculated for available low-lying Nilsson orbitals and the DWBA.

- # (A): Kπ=0-, (π 7/2[523])-(ν 7/2[633]) band. Jπ established by cross section fingerprint for J=1 through 5 members of this configuration.
- @ (B): Kπ=7-, (π 7/2[523])+(v 7/2[633]) band. Jπ established by cross section fingerprint for J=7 through 9 members of this configuration.
- & (C): Kπ=3+, (π 7/2[523])-(v 1/2[521]) band. Jπ established by cross section fingerprint for J=3 through 7 members of this configuration.
- a (D): $K\pi = 5+$ band. Configuration: $(\pi \ 3/2[411] + \nu \ 7/2[633]) + (\pi \ 7/2[523] + \nu \ 3/2[521])$.
- b (E): $K\pi=6+$, $(\pi 7/2[523])+(v 5/2[512])$ band.
- C (F): Kπ=4+, (π 7/2[523])+(ν 1/2[521]) band. Jπ established by cross section fingerprint for J=4 through 6 members of this configuration.
- d (G): $K\pi$ =1+, (π 7/2[523])-(ν 5/2[523]) band. J π established by cross section fingerprint for J=1 through 5 members of this configuration.
- e (H): K\pi=2+ band. (
 π 3/2[411]-v 7/2[633])+(
 π 7/2[523]-v 3/2[521]) band.
- f (I): Kπ=1+, (π 7/2[523])-(v 5/2[512]) band. Jπ established by cross section fingerprint for J=1 through 6 members of this configuration.
- g (J): $K\pi{=}3{+},\;(\pi\;1/2[411]){-}(\nu\;7/2[633])$ band.
- h (K): K\pi=4+, (π 7/2[523])+(v 1/2[510]) band.
- i (L): $K\pi = 4+$, $(\pi \ 1/2[411]) + (v \ 7/2[633])$ band.
- j (M): $K\pi=3+$, (π 7/2[523])-(ν 1/2[510]) band.
- k (N): K\pi=5-, (π 7/2[523])+(v 7/2[633])-Q₂₂ band.
- l (O): $K\pi=6+$, $(\pi 7/2[523])+(v 5/2[523])$ band.
- m (P): K\pi=2+, (π 7/2[523])–(v 3/2[521]) band.

¹⁶⁷Er(d,³He) 2000Pr03

Target J\pi=7/2+.

E(d)=27 MeV; Q3D spectrograph with proportional chamber (cathode strip readout) and scin, FWHM=9 keV; 95.6% ¹⁶⁷Er target; θ(lab)=30°, 40°, 50°; E(level)≤1.2 MeV; DWBA and Nilsson model calculations.

¹⁶⁶Ho Levels

E(level)	I(³ He) (40°) [†]	Comments
5 58 0		
5.78 3	4.8 6	
54.3+9	1.3 3	
85+ 3		
138.218 24	8.2 7	
171.6+ 7	3.1 6	
180.2+ 6	4.0 7	
190.8# 6	2.8 6	
263.76 [@] 18	22.2 11	
273.1 16	2.2 6	
286.5 ⁸ 6	5.1 7	
296.8 ^{&} 12		
330.87 7	2.24	
347.7# 9	1.2 3	
380.2 [@] 5	12.4 9	
430.14 ^a 22	11.1 11	
$454.5^{\#}$ 13	0.7 4	Intensity questionable.
481.65 ^a 20	12.1 11	
548.1 ^a 4	5.6 7	
558.5 ^c 4	4.0 7	
591.7 ^b 6	2.0 6	
635.1 ^a 6	2.4 6	
651.9 ^c 14	1.6 4	Identification questionable.
670.8 ^b 6	1.6 4	
719.1 ^d 4	3.8 6	
730 ^a 3	1.2 4	
805.0 11	2.0 6	Doublet.
820.7 13	1.8 4	
884.8 16	1.2 4	
926.5 13	1.9 4	
1010.2 22	0.8 4	
1093.7 19	0.4 2	

1142.2 21 0.6 2

 † Relative ³He intensity at 40°. See 2000Pr03 for relative ³He intensities at 30° and 50°.

[‡] (A): Kπ=0-, (π 7/2[523])-(ν 7/2[633]) band. Jπ established by cross section fingerprint for J=2 through 5 members of this configuration.

§ (B): $K\pi$ =7-, (π 7/2[523])+(ν 7/2[633]) band. $J\pi$ established by cross section fingerprint for J=7 through 9 members of this configuration.

(C): $K\pi=3+$, (π 7/2[523])-(ν 1/2[521]) band.

[@] (D): $K\pi=5+$, $(\pi \ 3/2[411]+\nu \ 7/2[633])+(\pi \ 7/2[523]+\nu \ 3/2[521])$ band.

& (E): $K\pi=6+$, (π 7/2[523])+(ν 5/2[512]) band.

a (F): Kπ=2+, (π 3/2[411]-v 7/2[633])+(π 7/2[523]-v 3/2[521]) band. Jπ established by cross section fingerprint for J=3 through 6 members of this configuration.

- b (G): $K\pi=3+$, $(\pi \ 1/2[411])-(\nu \ 7/2[633])$ band.
- c (H): $K\pi = 4+$, $(\pi 7/2[523]) + (v 1/2[510])$ band.

d (I): $K\pi{=}4{+},\;(\pi\;1{/}2[\,411\,]){+}(\nu\;7{/}2[\,633\,])$ band.

¹⁶⁷Er(t,α) 1982De37

Target $J\pi = 7/2 + .$

1982De37: E(t)=17.0 MeV; 87.2% 167 Er target; Q3D magnetic spectrometer (FWHM=20 keV), particle identification; $\theta(lab)=25^{\circ}, 30^{\circ}, 35^{\circ}, 40^{\circ}, 50^{\circ};$ measured E α , $d\sigma/d\Omega$; DWBA calculations.

¹⁶⁶Ho Levels

E(level)	$J\pi^{\dagger}$	$\underline{L^{\ddagger}}$	$d\sigma/d\Omega(35^\circ) \ \mu b/sr^{i}$	Comments
0.0#	0		. 1	d=/d0/25%) uk/an actimated for unrecoluted doublet
0.0" r@ r	0 – 7	E	≈1	$d\sigma/d\Omega(250)$ µD/sr: estimated for unresolved doublet
5-5	7 - 9	5	≈ 2 1 4 C	do/d2(35) µD/sr: estimated for unresolved doublet.
96 5# 25	2. – 1		4.0	
$136 \ 0^{@} \ 7$	8_	5	37	
$173 1^{\#} 14$	3-	0	23	
187 3# 21	4 -		14	
259.3& 12	5 +		58	
283.3 [@] 13	9 –	5	27	
323# 4	5 –		21	
375.3& 14	6 +	2	≈ 3 8	E(level): for unresolved doublet.
375.3 # 14	6 –		≈ 6	E(level): for unresolved doublet.
425.0ª 20	2 +		34	
478a <i>3</i>	3 +		38	
514.4 ^{&} 17	7+		5.1	
547a <i>3</i>	4 +		≈ 3 3	
562# 4	7 –		3	
589.9 <i>16</i>	-		13	
03643 710b 2	5+ 2 i	9	8.0 20	
110 - J 731 82 25	3+* 6+	2	0 9	
801C 4	0+		2	
818 ^b 3	4 + i		2 4	
856 ^c 6	2 +	4	4.4	
884.0 ^d 20	4 + ⁱ	2	14	
915 ^e 3	7+	4	15	
946 ^b 4	5 + ⁱ		4.7	
974 ^c 9	1 +		2.4	
1006d 4	5 + i		11	
1037 7			8.1	
1066 ^c 5	3+		1.9	
10910 4	6 + 1		2.5	
1126 8	o i		1.1	
1146° 5	0+-		13	E(level), $d\sigma/d\Omega(35^\circ)$ µb/sr; for unresolved doublet.
1187f 6	1 + 2 +		11	E(1ever), uo/usz(35)) µb/s1. for unresolved doublet.
1205 18	~ .		2.8	
1238f 3	3+	4	19	
1272.0g 20	6 +	4	32	
1305 ^f 4	4 +	4	11	
1356 5			7.7	
1379 ^f <i>14</i>	5 +		14	
1417g <i>3</i>	7+	4	24	
1460 17			5.6	
1487 11			15	
1519 <i>11</i>	0		5.8	
1585 8	6 –		12	
1604 0 20			0.0 3.8	
16287 10			υ. ο	
1645 3			26	
1692h 4	7 –		21	
1743 8			19	
1790 6			2 5	
1834 ^h	8 -		26	
1998 ^h 6	9 -		16	
2160 6			34	

¹⁶⁷Er(t,α) 1982De37 (continued)

¹⁶⁶Ho Levels (continued)

- [†] From 1982De37, based on comparison of measured cross sections with DWBA calculations for specific Nilsson orbitals, unless otherwise noted.
- \ddagger From comparison of $\sigma(\theta)(exp)$ and $\sigma(\theta)(DWBA).$
- § $d\sigma/d\Omega$ at 35° in $\mu b/sr.$
- # (A): $K\pi=0-$, $(\pi 7/2[523])-(v 7/2[633])$ band.
- @ (B): $K\pi=7-$, (π 7/2[523])+(ν 7/2[633]) band.
- & (C): K\pi=5+ band. (π 3/2[411])+(ν 7/2[633]) and (π 7/2[523])+(ν 3/2[521]).
- ^a (D): $K\pi=2+$ band. (π 3/2[411])-(ν 7/2[633]) and (π 7/2[523])-(ν 3/2[521]).
- b (E): π =+ band 1. Configuration of (π 1/2[411])-(ν 7/2[633]) assigned to this band in 1982De37 is assigned to a different band in Adopted Levels.
- c (F): Kπ=0+, (π 7/2[404])-(ν 7/2[633]) band. Jπ established by cross section fingerprint for J=0 through 3 members of this configuration.
- d (G): π =+ band 2. Configuration of (π 1/2[411])+(ν 7/2[633]) assigned to this band by 1982De37 is assigned to a different band in Adopted Levels.
- e (H): $K\pi=7+$, $(\pi 7/2[404])+(v 7/2[633])$ band.
- f (I): Kπ=1+, (π 5/2[413])-(ν 7/2[633]) band. Jπ established by cross section fingerprint for J=1 through 5 members of this configuration.
- g (J): $K\pi{=}6{+},\;(\pi\;5/2\,[413]){+}(\nu\;7/2\,[633])$ band.
- h (K): $K\pi{=}6{-},\;(\pi\;5/2[532]){+}(\nu\;7/2[633])$ band.
- $^{
 m i}$ Not adopted; configuration nominated in 1982De37 is now assigned to a different level sequence.

Adopted Levels, Gammas

 $Q(\beta^{-}) = -3038 \ 12$; $S(n) = 8474.6 \ 19$; $S(p) = 7316.0 \ 9$; $Q(\alpha) = 830.3 \ 12 \ 2003Au03$. For finestructure, hyperfine structure and isotope shift data see, e.g., 1989Kr16, 2000As04. Other Reactions:. $\frac{167}{167}$ Er(³He, $\alpha\gamma$), E=45 MeV: measured primary γ spectra; deduced level density and γ -ray strength function; see, e.g., 2001Me07. Observed pygmy resonance at E=2.98 8 MeV with $\Gamma\text{=}1.3$ 3 MeV. ¹⁴⁸Nd(¹⁸O, γ), E=78 MeV: measured $\gamma(\theta)$ for gammas emitted by the GDR in hot ¹⁶⁶Er at moderate excitation energy and spin (1993Br09, 1994Ca11). ¹⁶⁶Er Levels The evaluator has not included the 1784.8 level from (n,n'y). A comparison of branching of 1704y and 1889y, placed from 1969 level in ϵ decay, suggests that this level is being seen in both reactions and that entire $I\gamma(1704\gamma)$ in $(n,n'\gamma)$ can be assigned to the 1969 level. The 1784 γ is placed only from the 1865 level in ϵ decay with assignment of the 1704γ entirely to the 1969 level, the alternative placement of the 1784γ from a possible 1785 level is less convincing. For discussion of structure of one-phonon states see, e.g., 2006De30. Cross Reference (XREF) Flags A $^{166} Tm \ \epsilon \ Decay$ $F^{-165}Ho(^{3}He,d),(\alpha,t)$ $K^{164}Er(t,p)$ $B^{-166}Ho\ \beta^-$ Decay (1200 y) $G^{166}Er(\gamma,\gamma')$ L 168Er(p,t) $C^{-166}Ho~\beta^-$ Decay (26.824 h) H ¹⁶⁶Er(d,d') M ¹⁶⁶Er(pol p,p'),(³He,³He')... $D^{-166}Er(n,n'\gamma)$ I $^{167}\mathrm{Er}(\mathrm{d},\mathrm{t}),(^{3}\mathrm{He},\alpha)$ E Coulomb Excitation J 164 Dy(α , 2n γ) E(level)[†] Jπ XREF T_{1/2}‡ s Comments 0 + § 0.0^a ABCDEFGHI JKLM stable 80.5776a 20 2 + § ABCDEFGHI JKLM 1.815 ns 23 $\mu = +0.641 \ 10; \ Q = -1.9 \ 4 \ (1965Hu01).$ µ: mean of +0.649 10 (1981Ho31) and +0.632 10 (1968Mu01); Mossbauer effect. Q: from Mossbauer effect; Sternheimer correction applied. Others: -2.7 9 (1970McZQ), -2.9 10 (1970Ka45); from Coulomb excitation reorientation. $< r^2 > 1/2$ (charge) = 5.251 3 (2004An14). T_{1/2}: weighted average of 1.76 ns 5 (1963De21), 1.80 ns 5 (1963Fo02) in β^- decay (26.824 h); 1.83 ns $\boldsymbol{6}$ (1963Li04), 1.83 ns 5 (1968Ku03) in β^- decay (1.20 E3 y); 1.86 ns 5 from B(E2) in Coulomb excitation and adopted γ properties. Others: 1.98 ns 21 (1961Bo05) in β decay(26.824 h), 1961Ge14, 1967Ku07. $J\pi :$ E2 91 γ to 0+ g.s. 264.990a 3 4 + § ABCDEF HIJKLM 118 ps 4 $\mu = +1.19$ 4; Q = -2.7 9 (1969McZS). $T_{1/2}$: from $\gamma\gamma(t)$ ($^{166}Ho~\beta^-$ decay (1200 y)). Other: 120 ps 7 from measured B(E2) and adopted $\boldsymbol{\gamma}$ properties. μ : unweighted average of +1.26 β (1985Al22, IPAC), and +1.14 8 (1996Br09) and 1.18 5 (1986Do13), transient field IPAC. Q: from Coulomb excitation reorientation. $J\pi$: E2 184 γ to 2+ 81. 545.454^a 4 6 + §AB DEF HIJKLM 15.0 ps 8 $\mu = +1.60$ 6. $\mathbf{T}_{1/2}\!\!:$ from RDM in Coulomb excitation. Other value: 17.7 ps +10-14 from measured B(E2) and adopted γ properties. μ : weighted average of +1.55 7 (1985Al22, IPAC), +1.51 16 (1986Do13, transient field IPAC) and +1.72 9 (1996Br09, transient field

Continued on next page (footnotes at end of table)

IPAC)

¹⁶⁶Er Levels (continued)

E(level) [†]	Jπ	XREF	[†]	S	Comments
785.905b <i>6</i>	2 + &	A CDEF HIJKLM	3.12 ps 10		 μ=0.69 8; Q=2.13 15. μ: weighted average of +0.54 9 (1986Do13, transient field IPAC) and +0.74 5 (1996Br09, transient field IPAC). Q: weighted average of 2.2 2 (1983Hu01), 2.1 4 (1977Mc11) and 2.0 3 (1970McZQ); from Coulomb excitation rearisontation.
859.389b <i>5</i>	3+&	AB DEF IJKL	4.5 ps <i>8</i>		T _{1/2} : from B(E2) [†] =0.140 <i>4</i> in Coulomb excitation and adopted γ properties. J π : E2 786 γ to 0+ g.s. J π : M1 73 γ to 2+ 786, E2+M1 594 γ to 4+ 265. T _{1.0} : from B(E2)(594 γ) in Coulomb excitation
911.208 ^a 6	8 + §	B DEF IJ M	4.12 ps <i>15</i>		and adopted γ properties. $\mu = +2.1$ 2.
			·		T _{1/2} : from Coulomb excitation. μ: weighted average of +2.1 4 (1985Al22, IPAC), +1.8 3 (1986Dol3, transient field IPAC) and +2.2 2 (1906Br00, transient field IPAC)
956.232b 5	4+&	AB DEF HIJKLM	3.5 ps <i>2</i>		J π : E2 170 γ to 2+, E2 411 γ to 6+. T _{1/2} : from Coulomb excitation (measured B(E2) and RDM).
1075.277 ^b 4	5 ₊ &	AB DEF IJ	2.7 ps 3		J π : γ 's to 4+ and 6+ are E2+M1. T _{1/2} : from measured B(E2) in Coulomb excitation and adopted transition properties. Other datum: ≤ 60 ps from $\gamma\gamma(t)$ (¹⁶⁶ Ho β^- decay (1200 x))
1215.968 ^b 5	6 + ^{&}	B DEF IJ	4.4 ps 3		 μ=+1.52 19 (1985Al22). Jπ: M1+E2 671γ to 6+, E2 951γ to 4+ 265. γγ(θ) data of 1965Re02 consistent with J=6. μ: from 1985Al22 (IPAC). T = from Coulomb excitation (RDM).
1349.53a 7	10+§	E J	1.62 ps 7		$\mu_{1/2}$. from Coulomb excitation (RDM). $\mu=+2.6$ 3. J π : continuation of established g.s. band. $T_{1/2}$: from Coulomb excitation; weighted average of 1.59 ps 8 (RDM) and 1.72 ps 14 (B(E2) and adopted γ properties). μ : weighted average of +1.9 7 (1986Do13) and
1376.035 ^b 5	7+&	B DE I J	4.9 ps <i>9</i>		+2.8 4 (1996Br09); from transient field IPAC. J π : γ 's to 6+ and 8+ are E2+M1. T _{1/2} : from B(E2)(301 γ) in Coulomb excitation
1458.154 ^c 9	(2) –	A D F I			And adopted transition properties. XREF: F(1452). Is a set of 2 + and 2 + are F1 fit to a bond
1460.031 ^e 6	0 +	CD JKL	0.76 ps 28		$J\pi$: γ to $2+$ and $3+$ are E_1 , if to a band. $J\pi$: the 1460 γ is E0 to 0+ g.s. T_1 the form DSAM in (n nin)
1513.751 ^c 9	3 –	A DE H JKLM			$T_{1/2}$. How boxwin (i.i. p). XREF: J(1515). B(E3)↑=0.061 <i>10</i> (1978Mc02). B(E3)↑: from Coulomb excitation; B(E3)(W.u.)↑=37 <i>6</i> . Jr: s's to 2s and 4s are E1.
1528.401 ^e 10	2 +	A CDEF JKL	45 fs 6		JR: γ to $0+$ is E2. T _{1/2} : from B(E2) ¹ =0.018 2 in Coulomb excitation and adopted transition properties assuming negligible 572.2 branch.
1555.737 ^b 10	8+&	B DEF J	3.7 ps 3		$J\pi$: E2 γ 's to 6+ and 8+. T _{1/2} : from Coulomb excitation (RDM).
1572.183d 7	(4) –	ABDF I			$J\pi$: γ to 3+ is E1, γ to 5+ is (E1).
1596.241 ^c 7	(4) –	ABDF IJ			J π : E1 γ from 3+; γ from 6
1662.435 ^t 5	1-	A CD FGH	5.2 fs 5		XREF: F(1651). J π : E1 γ to 0+. T _{1/2} : from $\Gamma_{\gamma 0}^2/\Gamma$ =13.9 <i>16</i> in (γ , γ') and adopted $\Gamma_{\gamma 0}/\Gamma$ =0.397 <i>7</i> . K=(0) (1996Ma18) from (γ , γ').

¹⁶⁶Er Levels (continued)

E(level) [†]	Jπ	XREF	T _{1/2} ‡	S	Comments
1665.799 ^d 6	5 (–)	BDF IJKL DJ			$J\pi :$ J=5 from $\gamma\gamma(\theta)~(^{166}Ho~\beta^-$ decay (1200 y)).
1678.765 ^e 24	(4)+&	A D F I J			XREF: $F(1680)I(1679)J(1674)$.
1692.297 ^c 5	5 –	B D F HIJK			XREF: H(1698). Jπ: J=5 from $\gamma\gamma(\theta)$ (¹⁶⁶ Ho β ⁻ decay (1200 y));
1703.050 18	(2,3,4)+	A D I KL			E1(+M2) γ 1427 to 4+ 265. XREF: I(1700)K(1704).
1713.4 7	0 +	D KL	>0.97 ps		$J\pi$: M1 γ trom 3+. $J\pi$: L(p,t)=0.
1721.7 ^f 6	3_&	DEF HI			$T_{1/2}: \text{ from DSAM in } (n, n'\gamma) (1997Ga13).$ XREF: F(1720). B(E3)^=0.032 5 (1978Mc02). B(E3)^: from Coulomb excitation; B(E3)(W.u.)^=20 3. J\pi: E1(+M2) 1641\gamma to 2+ 81, D(+Q) 1457\gamma to 4+
1751.36 ^b 7	9+&	E J	2.4 ps 5		265. Jπ: γ to 8+ is (E2+M1); band assignment. T _{1/2} : from B(E2)(375γ) in Coulomb excitation and adouted transition properties
1760.9 4		D F HI KL			XREF: F(1757)H(1759)I(1762).
1786.975 ^d 5	6 -	BDF IJ			Jπ: J=6 from γγ(θ) in ¹⁶⁶ Ho β ⁻ decay (1200 y), π =- from E1+(M2) 711.68γ to 5+.
1813.2 ^k 3	1 (+)	A DFG I	39 fs 7		$\begin{array}{l} J\pi \colon D, \ \Delta \pi = (no) \ \gamma \ to \ 0+. \\ T_{1/2} \colon from \ \Gamma_{\gamma 0}{}^2/\Gamma \ in \ (\gamma,\gamma') \ and \ adopted \\ branching. \end{array}$
1827.557 ^c 5	6 –	BDF IJ			K=1 (1996Ma18) from (γ,γ'). XREF: I(1829).
1830.425 12	1 -	ACD G L	45 fs <i>8</i>		J π : γ 's to 5+ and 7+ levels are E1+M2. J π : log ft =5.1 from 0-, γ to 0+.
1846.53 ^a 12	12+§	E J	0.91 ps 5		$T_{1/2}$: from (γ , γ') assuming adopted branching. J π : continuation of established g.s. band. T from PDM in Coulomb axcitation
1865.17 4		A D F I KL			$r_{1/2}$. from ted with coulomb excitation.
1894.355 <i>21</i> 1897.27 ^e <i>10</i>	2+, 3+, 4+ (6+)&	A D I J			Jπ: M1 238γ from 3+ 2132 level. XREF: I(1896).
1901-	(3-)-	D			$J\pi$: D+Q γ to 2+ 81.
1908.29 4	(6-)	D I			$J\pi$: σ in (d,t).
1917.758g <i>8</i>	3 –	A D F			XREF: F(1915).
1934.1 5	0 +	D KL	54 fs 6		Jπ: γ's to 2+ and 4+ are El. XREF: K(1928). Jπ: L(p,t)=0.
1938.263 11	(3)+	A DF I			T _{1/2} : from DSAM in (n,n'γ). XREF: I(1940). Jπ: γ's to 2+ and 3+ are M1, Jπ=(3,4)+ from (d, t).
1942.6 4	(0+)	DE	0.24 ps 7		Jπ: Possible Kπ=0+, γγ bandhead. T _{1/2} : from DSAM in $(n, n'\gamma)$ (1997Ga11).
1948		K			
1964.04 ^b 8	10+&	E J	1.78 ps <i>17</i>		J π : γ to 10+ is E2. T _{1/2} : from Coulomb excitation (RDM and B(E2)(409 γ))
1969.71 17	(2,3,4)	A D I K			$J\pi$: γ 's to 2+ and 4+.

¹⁶⁶Er Levels (continued)

E(level) [†]	Jπ	XREF	${{T_{1/2}}^{\ddagger}}$	S	Comments
1978.422h <i>13</i>	4+	A DEF HI L	2.2 ps +11-9		XREF: F(1976)H(1973)I(1979). J π : M1+E2 154.5 γ from 3+ level; (α ,t) σ fingerprint for assigned band. Decay pattern to γ band states consistent with that for a state carrying a portion of the K π =4+ $\gamma\gamma$ vibration strength expected at roughly this energy (1998Fa15). T _{1/2} : from B(E2)(1193 γ) in Coulomb excitation and adopted transition properties assuming
1985.629 12	3 -	A I			521-keV branch is negligible. XREF: I(1987).
1986.2 7	(4+)	Е			J π : γ to 3- is M1, γ 's to 4+ and 2+. J π : γ to 2+ and 3+ levels; decay pattern to γ band states consistent with that for a state carrying a portion of the K π =4+ $\gamma\gamma$ vibration strength expected at roughly this energy
1992.70 ⁱ 10	(7) –	F J			(1998Fa15). XREF: F(1988). J π : E1 1082 γ to 8+ 911; band assignment. Suggested as possible J=7 member of K π =4- band (1080Ad12), but E is too bich for that
2001.865 12	(3) –	AD IL			XREF: I(2003).
2 0 0 2 [@] g 2 0 2 1 . 3 4 8 <i>1 2</i> 2 0 2 2 ^r	(4-) [#] (2,3)- (4-)	F A D f f I			J π : E1 10407 to 4+ 558, 7 to 2+. J π : E1(+M2) 12357 to 2+ 786, E1 11627 to 3+ 859. E(level): from (d,t),(³ He, α).
2022.59 <i>12</i> 2027.9 ^t 5	(4+) (4+)	A D f l DE l	0.22 ps <i>8</i>		 Jπ: band assignment from (d,t). Jπ: gammas to 2+ and 6+. Jπ: D+Q 1169γ to 3+ 859; Q 1243γ to 2+ 786, γ to (4)- 1572; possible γγ band assignment. T; from DSAM in (n n'r) (1997Ga11). Other
2031.5 <i>10</i> 2045 ^{@h}	(5+) 5+	D I DF			 Yalue: 0.33 ps 12 from B(E2)(1243γ) and adopted transition properties, assuming negligible 1070 branch. Jπ: σ in (d,t). Jπ: from (α,t) σ fingerprint for assigned band. The 1089γ in (n,n'γ) may be a doublet which deexcites this level as well as the 2047
2046.87 4	2+,3+	A D			level. Jπ: ε decay from 2+ is allowed or
2 0 5 0 9 2 0 5 5 P	(7-) (1-) [#]	I FG			Jπ: σ in (d,t). E(level): from (γ,γ'); 2057-keV J=1, Kπ=1- and
2 0 5 7 [@] l	(2-)#	F			$J=2$, $K\pi=2-$ doublet in ('He, 0), (α , t). E(level): 2057-keV J=1, $K\pi=1-$ and J=2, $K\pi=2-$
2062.1 <i>17</i> 2073.20 ^c 7 2074 [@] 2076.294 ^{\$} 20	(8) - (2-) (3-)	I KL I F A I			E(level): weighted average from (t,p) and (p,t). $J\pi$: γ to 7+ is E1, fit to a band. $J\pi$: σ in (³ He,d). XREF: I(2080).
2082.8 4		D			$J\pi$: σ in (d.t).
2101 6 3	(<i>1</i> , 8, 9)-	I JKL	0.27 pc 10		JREF: 1(2030). J π : E1 1181 γ to 8+ 911; band assignment. Suggested as possible J=7 member of K π =2- octupole band (1989Ad12), but E is too high for that assignment.
2101.0 3	(**)	A U	0.27 ps 19		 of γ band; candidate for K_π=4+ γγ vibration state (1994OsZZ). T_{1/2}: from B(E2)(1316γ) in Coulomb excitation and adopted transition properties assuming negligible 1145γ branch.

$^{166}_{68}\mathrm{Er}_{98}$ -5

Adopted Levels, Gammas (continued)

¹⁶⁶Er Levels (continued)

E(level) [†]	Jπ	XREF	T _{1/2} ‡	S	Comments
		_			
2116@	(6+)	F			$J\pi$: σ in (3He,d).
2117.8 8	(2+,3,4+)	Α			$J\pi$: γ 's to 2+ and 4+.
2117.8 8		D			
2124.7r 7	(5-)	D I			$J\pi$: σ in (d,t).
2132 ^{@1}	(3-)#	F			
2132 ^{@h}	6 +	F			$J\pi :$ from (a,t) σ fingerprint for assigned band.
2132.941^{m} 7	3 +	ADFI			XREF: F(2132)I(2128).
					$J\pi$: γ 's to 2+ and 4+ are M1+E2.
2144.64 ^d 10	(8-)&	J			
2148.6 ^s 5	(4-)	D I			$J\pi$: σ in (d,t).
2152 [@] P	(2-)	F			$J\pi$: σ in (³ He,d).
2155.8 7	(6+)	Е			J π : γ to 4+ and 5+; possible member of band
					built on the 4+ 1978 level.
2160.114 9	3+	A D I L			XREF: I(2161).
					$J\pi$: γ 's to 2+ and 4+ are M1+E2.
2167@	(2-)	F			$I\pi$: σ in (³ He d)
2172 751 17	3+	A D K			$XREF \cdot K(2174)$
2172.701 17	01	N D N			I_{π} : v to 2+ is M1+E2 v to 5+ is E2
9199		т			5π , 7 to 2π 13 w17 ± 2 , 7 to 5π 13 ± 2 .
2102	0.	I V			$\mathbf{I}_{\mathbf{T}}$ from $\mathbf{I}(\mathbf{n}, \mathbf{t}) = 0$
2100 70b 10	(11.)&	K			5π . Hom $L(p,t)=0$.
2189.705 10	$(11+)^{\infty}$	J			
2194.61 10	(8+)	J			
2196.3 17	0+	KL			$J\pi$: L(p,t)=0.
					E(level): weighted average from (t,p) and (p,t).
2201.3 6	1 (+)	D fG	9.7 fs 12		XREF: f(2204).
					$J\pi$: D, $\Delta\pi$ =(no) γ to 0+.
					$T_{1/2}$: assuming negligible 743 γ branch.
					K=0 (1996Ma18) from (γ, γ') .
2207 3		f L			XREF: f(2204).
					E(level): from (p,t); 2204 in $({}^{3}\text{He},d),(\alpha,t)$.
2212.95 12		А			
2215.963 13	2 - , 3 -	A F I			XREF: F(2217).
					Jπ: 298γ to 3- is M1, 386γ to 1- is E2.
2226 [@] l	(4-)#	F			
2226 [@] P	(3-)#	F			
2239 ^{@m}	4 +	F			J π : from (α ,t) σ fingerprint for assigned band.
2240.1 j <i>10</i>	(5-)	HI			XREF: H(2238)I(2242).
					$J\pi$: σ in (d,t).
					The 2240 level $J\pi = (4+)$ from (³ He.d) might be a
					separate level.
2243.087 20	3 -	A L			$J\pi$: γ 's to 2+ and 4+ are E1.
2246.31 ^c 10	(9-) &	Ţ			····
2260 3t 7	(6+)	E			$I\pi$: from band assignment
2260.65 3	2(+) 3	Δ I			$I\pi$: c decay from $2\pm$ is allowed or
2200.000	2(1),0	2			first-forbidden v to 4+
2261 21 6	$(1 \ 2 \)$				I_{π} , η is to 0_{\pm} and 2_{\pm}
2204.31 U	(1,2+)	A D I			$J\pi$. γ s to 0^+ and 2^+ .
2200	7 + 2				SR: from (0, t) 6 ingerprint for assigned band.
2273.01 3	3-	A I			$\mathbf{AREF}: 1(2274).$
0000 00 7	0()0				$J\pi$: γ s to 2+ and 4+ are E1.
2282.68 5	2(+),3	A D F			XREF: F(2279).
					$J\pi$: ε decay from 2+ is allowed or
					first-forbidden, γ to 4+.
2290.959 <i>23</i>	(3)+	A D F I L			XREF: F(2289)I(2295).
					$J\pi$: (3,4)+ from σ in (d,t), M1(+E2) γ to to 2+
					and 4+.
2302 3		L			E(level): from (p,t).
2315	(3,4)+	F I			XREF: F(2312).
					$J\pi$: σ in (d,t) .
2328.51 ^d 10	(9) -	J			$J\pi$: 1417 γ to 8+ 911; band assignment.
2328.69 9	(1,2)	Α			$J\pi$: γ 's to 0+ and 2+.
2333 [@]		FI			XREF: I(2336).

¹⁶⁶Er Levels (continued)

$E(level)^{\dagger}$	Jπ	XREF	$T_{1/2}^{\ddagger}$	S	Comments
2352 91 8	2(+) 3	AFI			XREF: F(2347)1(2353)
2002.01 0	2(1),0				$J\pi$: ϵ decay from 2+ is allowed or first
					forbidden. γ to 4+.
2359@m	5+	F			$J\pi$: from (α ,t) σ fingerprint for assigned band.
2368 [@] j	(6-)	FΙ			$J\pi$: σ in (d,t).
2377.77 5	1+	A I			XREF: I(2377).
					$J\pi$: γ to 0+ is M1.
2382.26 4	(3)+	A F I			XREF: F(2387)I(2386).
					Jπ: M1(+E2) 1523γ to 3+ 859, 924γ to (2)- 1458,
					$J\pi = (3,4) + \text{ from } \sigma \text{ in } (d,t).$
2389.33a 16	14+§	E J	0.55 ps 7		$J\pi$: continuation of established g.s. band.
					T _{1/2} : from Coulomb excitation (RDM).
2393.129 15	2+,3+	Α			$J\pi$: γ to 2+ is M1, γ to 4+.
$2402^{@}$		FΙ			
2413.67 8	(2,3,4)	A D F I			XREF: F(2418)I(2417).
					$J\pi$: $\gamma 's$ to 2+ and 4+. If the 1630 γ in $(n,n'\gamma)$
					is correctly placed from this level, its D+Q
					multipolarity would rule out J=4.
2427	(. .	1			
2428.4?¢ 4	$(10 -)^{\alpha}$	– – – – – – – – – – – – – – – – – – –			
2428.775 13	$(12+)^{\infty}$	E J	1.18 ps 21		$T_{1/2}$: from RDM in Coulomb excitation.
2435.10 10	(3,4)+	A F I			XREF: F(2438)I(2438).
0.1.10 0.0 1.0		D			$J\pi$: σ in (d,t).
2442.0? 10	(3+,4+,5+)				$J\pi$: significantly mixed D+Q 21777 to 4+ 265.
2444.10 24		A I			AREF: 1(2449).
2455 02 10		г			
2455.01 10	1.+		13 fs 6		I_{π} : M1 γ to 0+
2404.51 10	1+	A G	45 15 0		T : from $\Gamma = \frac{2}{\Gamma} = 5$ 1 5 in (<i>yy'</i>) and adopted
					$\Gamma_{1/2}$. from $\Gamma_{\gamma 0}$ / $\Gamma_{-0.44.7}$
					$K_{-1} (1996Ma18)$ from (v v')
2475 39 4	$(1 \ 2) +$	AFI			XEF: F(2476)I(2478)
2110100 1	(1,2)				$J\pi$: γ to 0+: E2.M1 γ to 2+.
2479.74?e 12	(10+) &	J			
2495	(9-)	I			$J\pi$: σ in (d,t).
2504.6 10	(3, 4) +	DFI			XREF: F(2504)I(2499).
					$J\pi$: σ in (d,t) .
2512	(3,4)+	Ι			$J\pi$: σ in (d,t) .
2525	1	GI	23 fs 3		XREF: I(2522).
					Jπ: D γ to 0+.
					E(level): from (γ, γ') .
					K=1 from (γ, γ') (1996Ma18).
$2\ 5\ 3\ 4$		FΙ			XREF: F(2536).
2542.875		A I			XREF: I(2542).
2563 ^m	6+	FΙ			XREF: F(2568).
					$J\pi :$ from (a,t) σ fingerprint for assigned band.
2574.0 ^t 10	(8+)	E			Jπ: band assignment.
2578		I			
2586.06 12	(3,4)+	A F I			XREF: F(2583).
					$J\pi$: σ in (d,t).
2600.63 <i>3</i>	1+	A G I			XREF: G(2601)I(2603).
					Jπ: M1 γ to 0+.
					$T_{1/2}$: 12 fs 3 from (γ, γ') , if I(1142 γ) is
					negligible.
0000@		F			K=1 trom (γ,γ') (1996Ma18).
2008~	(0 –)	ľ			rossible configuration: $\pi^{-}(1/2[523]+5/2[402])$
					(1333L112).
2612 50 17		٨			Jn: 0 in ("He,d).
2013.30 17 2610 6 6	(2+)	А т			XPEE (2622)
2013.0 0	(2+)	A I			$I\pi \cdot \gamma' s \text{ to } 0+ \text{ and } 4+$
2624 8 3	$(1 2 \pm)$	Δ			$J\pi$: γ 's to 0+ and 2+
2628 5 3	(1, 2+)	Δ			$J\pi$: γ 's to 0+ and 2+
~ 3 ~ 0 . 0 0	(1,)				Swijstovi unu si.

¹⁶⁶Er Levels (continued)

E(level) [†]	Jπ	XREF	T _{1/2} ‡	S	Comments
2632.66 17	(3,4)+	A F I			XREF: F(2632)I(2631).
2649		т			$J\pi$: σ in (d,t).
2654.40?b 14	(13+)&	J			
2000	(12) &	F			
2671 08 17	(12+)	A FI			XPEF: E(2671)I(2670)
2679 05 18	1+	A GI	20 fs 3		XREF: 1(2677)
					$J\pi$: M1 γ to 0+.
					K=1 from (γ, γ') (1996Ma18).
2687		FI			XREF: F(2684).
2713 ^{@m}	7 +	F			$J\pi :$ from (a,t) σ fingerprint for assigned band.
2729.090 17	(3,4)+	A I			XREF: I(2734). Jπ: σ in (d.t).
2742@		F			
2767.8 7	1	FG	22 fs 4		$J\pi$: from $\gamma(\theta)$ in (γ, γ') .
		. 50			K=0 (1996Ma18) from (γ, γ') .
2783.69 19	1+	A FG	49 fs 14		J π : MI γ to 0+. T _{1/2} : from $\Gamma_{\gamma 0}^{2}/\Gamma$ =2.6 5 from (γ, γ') and adopted
9707 5 4	(1.0.)	A E			$\Gamma_{\gamma 0}/\Gamma = 0.53$ 6.
2191.5 4	(1,2+)	A F			AREF: F(2808).
2811 98 11	1	A G	3 1 fs 3		$J\pi$. γ s to 0+ and 2+. $I\pi$: from $\gamma(A)$ in $(\gamma \gamma')$
8011100 11	-		011 10 0		$T_{1/2}$; if 2026y branch is negligible.
					$K=0$ (1996Ma18) from (γ, γ').
2858.16 18	(1,2+)	А			$J\pi$: γ 's to 0+ and 2+.
2880.07? ^b 17	(14+)&	F J			
2912 [@]		F			
$2954^{@}$		F			
2967.3 ^a 6	(16+)§	E J	0.49 ps 27		
2993? [@]		F			
3000@		F			
3043	1	F	11 for 4		Let Divite 0 + K a
3073	1	G	11 15 4		$F(\text{level})$: from $(\chi \chi')$
					$K=0$ (1996Ma18) from (γ, γ').
3077 [@] n	(8+)	F			$J\pi$: σ in (³ He,d).
3087 [@]		F			
3123	1	G	17 fs 6		$J\pi$: D γ to 0+ g.s.
					E(level): from (γ, γ') .
					$K=(0)$ (1996Ma18) from (γ, γ') .
3144	1	G	5.4 fs 5		$J\pi$: D γ to 0+ g.s.
					E(level): from (γ, γ') . Other E: 3141 from
					(γ, γ') .
9147@					$K=1$ (1996Ma18) from (γ, γ').
31470		F			
3175	1	r C	11 8 fs 15	14 9 16	$I\pi: D \vee to 0 + \sigma s$
0170	1	ŭ	11.0 15 10	11.0 10	E(level): from (γ, γ') .
					$K = (1)$ (1996Ma18) from (γ, γ') .
3187	1	G	11.4 fs 10		$J\pi$: D γ to 0+ g.s.
					E(level): from (γ, γ') .
					K=1 (1996Ma18) from (γ,γ').
3197	1	G	7.4 fs 7		K=1 (1996Ma18) from (γ, γ') .
					$J\pi$: D γ to 0+ g.s.
					E(level): from (γ,γ'). Other E: 3193 in (γ,γ') (1973Me17).
3211@		F			
3239 [@]		F			
3 2 5 3 [@]		F			
3273 [@] n	(9+)	F			$J\pi$: σ in (³ He,d).

¹⁶⁶Er Levels (continued)

E(level) [†]	Jπ	XREF	T _{1/2} ‡	Comments
3288	1	G	6.0 fs 9	$J\pi$: D γ to 0+ g.s. E(level): from (γ , γ ').
				$K=(0)$ (1996Ma18) from (γ, γ').
3296 ^w		F	5 0 6 - 14	
3322	1	FG	5.8 fs 14	Jπ: D γ to 0+ g.s. E(level): from (γ,γ'). K=0 (1996Ma18) from (γ,γ').
3329	1	G	15.0 fs 25	J π : D γ to 0+ g.s. E(level): from (γ , γ ').
3315@		F		$K=1$ (1996Ma18) from (γ, γ).
3371 [@]		F		
3386	1	G	5.3 fs 12	$J\pi$: D γ to 0+ g.s.
				E(level): from (γ,γ). K=(0) (1996Ma18) from (γ,γ).
$3394^{@}$		F		
3425	1	fG	38 fs 19	$J\pi$: D γ to 0+ g.s.
		10		E(level): from (γ, γ') .
3430	1	fG	13 fs 3	$J\pi$: D γ to 0+ g.s.
				E(level): from (γ, γ) . K-1 (1996Ma18) from (γ, γ')
3440	1	G	34 fs 13	$\mathbf{K} = 1 \left(1 9 9 0 \mathbf{M} 1 1 9 \right) 1 0 \mathbf{m} \left(\mathbf{\gamma}, \mathbf{\gamma} \right).$
3459 [@]	1	F	0.4 15 10	1/2. 11011 (1,1).
3476 [@]		F		
3493	1	G		$J\pi$: D γ to 0+ g.s.
				E(level): from (γ, γ') .
3498	1	FG		XREF: F(3501).
				$J\pi$: D γ to 0+ g.s.
0 × × · @		-		E(level): from (γ, γ') .
3554	(18.)8	F		E(level), from Coulomb excitation
3579@	(10+)	F		E(level): from Coulomb excitation.
3600 [@]		F		
3627@		F		
3663 [@]		F		
3721@		F		
3751@		F		
3783 [@]		F		
3808		F		
3856 [@]		F		
3881 [@]		F		
3907 [@]		F		
3932 [@]		F		
3978 [@]		F		
4002 [@] 0		F		
4026@		F		
4045 [@]		F		
4064 [@]		F		
408700		F		
4126 [@]		F		
4149@		F		
4174@		F		
4227 [@]		F		
4256@		F		
4274@		F		
4297 [@]		F		
4329 [@]		F		
4359 ^w		F		
4381 ^{ee}		F		
4407~		r F		
		1'		

¹⁶⁶Er Levels (continued)

E(level)[†] XREF

4442@

- [†] From least-squares fit to E γ , omitting the 646.8 γ from the 2160 level, the 1053 γ from the 1964 level, and all three placements for the 1216.173 γ because these transitions have E γ values that deviate from the expected value by at least 5 σ . Exceptions are noted.
- [‡] Deduced from measured $\Gamma_{\gamma 0}^{2/\Gamma}$ and $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$, in (γ, γ') assuming $\Gamma = \Gamma_{\gamma 1} + \Gamma_{\gamma 0}$. Thus, deduced $T_{1/2}$ will be an upper limit if branches exist to levels other than the g.s. and the 81-keV level.
- § Assignments for J<16 g.s. band members are based on known J π of g.s., the E2 transition between J=2 and 0 members and large B(E2) for excitation of levels in multiple Coulomb excitation.
- $^{\#}$ Assignments based on (^3He,d) or (\alpha,t) cross section and (^3He,d) to (\alpha,t) cross section ratios.
- @ From ¹⁶⁵Ho(³He,d),(α,t).
- & Fit to a band, unless otherwise noted.
- ^a (A): $K\pi=0+$ g.s. band. A=13.9, B=-12.8×10⁻³.

F

- b (B): $K\pi=2+\gamma$ -vibrational band. A=12.44, B=-10.4×10⁻³.
- ^C (C): Kπ=(2)- octupole vibrational band. K=2 octupole-vibrational states are strongly Coriolis mixed with Kπ=4- two-quasiproton 7/2[523]+1/2[411] states for J≥4. K=2 dominates in 1458, 1514,1596 and 1692 levels, K=4 dominates in 1572 and 1666 levels and K=2 and K=4 amplitudes are comparable in E>1692 levels (see 1974Ka02 and 1989Ad12; see also 2000Gr33). Attribution of predominant K=2 character has been based on mixing calculations from 1989Ad12. The 1458, 1514 and 1596 level energies imply A=10.75, B=-0.034.
- d (D): Kπ=(4)- band. Kπ=4- two-quasiproton 7/2[523]+1/2[411] states strongly mixed with Kπ=2- octupole vibration states (please see comment on that band). Attribution of predominant K=4 character has been based on mixing calculations from 1989Ad12.
- e (E): $K\pi=0+$ band. A=11.7, B=-0.05.
- f (F): $K\pi=0-$ band.
- g (G): Kn=3- band (1993Li12). Configuration: 7/2[523]-1/2[411].
- h (H): $K\pi$ =4+ band (1993Li12). Configuration: 7/2[523]+1/2[541]; established from (α ,t), (³He,d) cross section fingerprint for observed band members.
- i (I): K\pi=7- band (1993Li12). Configuration: 7/2[523]+7/2[404].
- j (J): $K\pi = (5-)$ band (1975Pa15). Configuration: 7/2[633]+3/2[521].
- k (K): $K\pi=1+$ band.
- l (L): K\pi=2- band. Configuration: 7/2[523]-3/2[411].

^m (M): $K\pi$ =3+ band. Configuration: 7/2[523]-1/2[541]; established from (α ,t), (³He,d) cross section fingerprint for observed band members.

- n (N): Kπ=8+ band. Configuration: 7/2[523]+9/2[514].
- ⁰ (O): Kπ=1+? band (1993Li12). Possible configuration: 7/2[523]-9/2[514].
- P (P): Kπ=1- band. Configuration: 7/2[523]-5/2[402].
- q (Q): Kπ=(6-) band (1975Pa15). Configuration: 7/2[633]+5/2[523].
- r (R): Kπ=(4-) band (1975Pa15). Configuration: 7/2[633]+1/2[521].
- ^s (S): $K\pi = (3-)$ band (1975Pa15). Configuration: 7/2[633]-1/2[521].
- t (T): Possible Km=4+, $\gamma\gamma$ vibration band (1998Fa15).

$\gamma(^{166}\mathrm{Er})$

E(levŁ(l))+ce)	$E\gamma^{\dagger}$	Iγ [‡]	Mult.§	Comme b [#] s	α
80.5776	80.576 2	100	E2		6.78
	Eγ: from ¹⁶⁶ Ho β ⁻ de	cay (26.824 h).			
	Mult.: based on ce d	ata from ¹⁶⁶ Ho β ⁻ d	ecay (26.824 h).		
	B(E2)(W.u.)=217 5.				
264.990	184.4113 [@] 24	100	E2		0.331
	B(E2)(W.u.)=312 11.				
545.454	280.464 [@] 2	100	E2		0.0849
	B(E2)(W.u.)=370 20.				
785.905	$520.945^{@}15$	1.72 4	E2		0.01481
	B(E2)(W.u.)=0.78 4.				
785.905	705.333 20	100.0 21	E2+M1	-5 + 3 - 14	0.0074 12
	δ: from ε decay (198	7Kr12). Other δ: -2	2 + 13 - 7, -7 + 23 - 3	in ϵ decay; >50 from (r	$(n, n'\gamma); -19 + 9 - 38, -38 + 24 - \infty, > 25$
	in Coulomb excita	ition.			
	B(M1)(W.u.)=0.0004	+5-4; B(E2)(W.u.)=	9.6 6.		
785.905	785.904 15	88.9 18	E2		0.00561
	Iγ: weighted average	e of 86.3 15 from β^-	decay (26.824 h), 8	81 <i>4</i> from (n,n'γ) and 9	0.5 <i>10</i> from ε decay.
	B(E2)(W.u.)=5.17 21				
859.389	73.45 2	0.04	M1		6.92

$\gamma(^{166}{\rm Er})$ (continued)

E(lev ē ())+ce)	$E\gamma^{\dagger}$	Iγ [‡]	Mult.§	Comme ů #s	α				
	ly: from Coulomb excitation.								
859.389	594,409 15	18.82 17	E2+M1	-12 2	0.01076 16				
	$B(M1)(W,u)=2.5\times10^{-5} I \ell$; $B(E2)(W,u)=4.8 g$.								
	3; from ¹⁶⁶ Tm = decay: -45 , $+19$ -137 from (n, n'y), $-8 + 3$ -15 from Ho 8 ⁻ decay (1200 y).								
859.389	778.839 [@] 11	100.0 24	E2+M1	-20 + 2 - 4	0.00574				
	Eγ: from $β^-$ decay (12)	200 y).							
	δ: from β ⁻ decay (120	0 y). Other δ inclu	de: -45 <i>+8-13</i> fro	m β^{-} decay (1200 y), <-7	7 from (α,2nγ), -75 <i>+26-134</i> from				
	(n,n'γ); however, data from ε decay range from +8.4 7 to -6.2 +10-8 and source of discrepancy is not known.								
859.389	859.3 [@] 1	1.18 24							
	Eγ: from β ⁻ decay (12	200 y).							
911.208	365.760 [@] 5	100	E2		0.0385				
	Mult.: from ce data i	n ¹⁶⁴ Dy(α , 2n γ).							
050 000	$B(E2)(W.u.)=373 \ 14.$	0 100@ 0	Ea		0.00				
956.232	96.85 5 D(E9)(W) 970.20	0.166 8	E2		3.32				
056 999	$B(E_2)(W.U.)=370-30.$	1 05@ 2	E9		0 422				
930.232	$B(F2)(W_{11}) = 138.0$	1.05- 5	E2		0.433				
956 232	410 797 16	$1 25^{@} 4$	E2		0 0278				
	B(E2)(W.u.)=2.01 14.								
956.232	691.251 [@] 16	100.0@6	E2+M1	-3.7 5	0.00802 20				
	δ: from ¹⁶⁶ Tm ε deca	y. Other δ: ≥50 from	n (n, n' γ), -3.3 +1	2-30 from Coulomb excit	ation, 3.8 +34-12 and -10 +4-27				
	from β ⁻ decay (120))0 y). However, dis	crepant data exis	st, e.g., +5.5 <i>+28-14</i> in ε	decay or -16 +427 and +566				
	-522-616 in β^- de	cay (1200 y).							
	B(M1)(W.u.)=0.00082	2 22; B(E2)(W.u.)=1	1.1 7.						
956.232	875.650 15	54.2 [@] 4	E2		0.00444				
	Other Iγ: 55.0 10 fro	mεdecay, 57 from	Coulomb excitati	on, $43.9 \ 24 \ \text{from} \ (n, n'\gamma)$,	70 7 from (α,2nγ).				
	B(E2)(W.u.)=1.98 12.								
1075.277	119.041 [®] 3	0.298 6	(M1+E2)	+1.94 + 23 - 21	1.578 24				
	Mult., δ : D+Q from 11	$19\gamma - 876\gamma(\theta)$ for intr	aband γ in ¹⁰⁰ Ho	β ⁻ decay (1200 y).					
1075 977	B(MI)(W.U.)=0.0024	0; B(E2)(W.U.)=3.1	E2 4.		0 106				
1075.277	$B(F2)(W_{H}) = 3.0F2.4$	4.32 1	[E2]		0.190				
	$I_{\gamma}(215.9\gamma)/I_{\gamma}(810.3\gamma) =$	=0.0502 <i>22</i> (¹⁶⁶ Tm ε	decav), 0,109 / j	(in (α.2ny), 0.0432 in Co	oulomb excitation. <0.029 in				
	(n,n'γ).		,j,,		· · · · · · · · · · · · · · · · · · ·				
1075.277	529.807 [@] 11	16.63@ 27	E2+M1@	-25 +4-5	0.01421				
	Ιγ(529.8γ)/Ιγ(810.3γ)=	=0.164 7 (¹⁶⁶ Tm ε d	ecay). 0.167 <i>23</i> ii	n (α,2nγ), 0.156 in Coulo	mb excitation, 0.300 23 in				
	(n,n'γ).								
	δ: other values: see β	3 ⁻ decay (1200 y) ar	nd (n,n'γ) data se	ts.					
	$B(M1)(W.u.)=1.2\times10^{-1}$	⁻⁵ 4; B(E2)(W.u.)=1	2.4 15.						
1075.277	810.293 [@] 10	$100.0^{@}$ 19	E2+M1@	-21.2 + 18 - 21	0.00526				
	Other δ : $-27 + 4 - 6$ in	$(n,n'\gamma); < -17 \text{ in } \varepsilon d$	ecay.						
1015 000	$B(M1)(W.u.)=2.8\times10^{-1}$	5 6; B(E2)(W.u.)=8.	.9 11.		0.1070				
1215.968	$259.740^{\circ}3$ 19.60 ^{\overlap{o}11} [E2] 0.1079								
	$B(F2)(W_{11}) = 225 - 16$	(a,2117), 24.8 III Cou	comb excitation.						
1215 968	$304 \ 91^{@} \ 5$	0.36 [@] 5	[F2]		0 06574				
1210.000	$B(E2)(W,u_{*})=1.9.3$	0.00 0	[12]		0.00014				
1215.968	670.516 [@] 14	100.0@ 17	E2+M1@	+10.0 + 16 - 12	0.00811				
	Other δ : $\geq +11$ in (n,n)	$(\alpha, 2)$; -6 + ∞ -3 in ($\alpha, 2$	2nγ).						
	$B(M1)(W.u.)=9.\times 10^{-5}$	3; B(E2)(W.u.)=9.9	7.						
$1\ 2\ 1\ 5\ .\ 9\ 6\ 8$	$950.964^{@}9$	$50.40^{@}24$	E2		0.00373				
	Mult.: from ce data (164 Dy(α , 2n γ)).							
	$B(E2)(W.u.)=0.88 \ 6.$	_							
1349.53	438.2 ^{ag} 1	1009	[E2]		0.0233				
1276 025	$B(E2)(W.u.)=390\ 17.$	20 16@ 22	E9 (1M9)	0 019 15 10	0.0601.10				
13/0.033	$B(F2)(W_{11}) = 920 40$	39.10 23	E2 (+1113)	-0.016 +13-16	0.0031 13				
	δ: B(M3)(W u) evcee	ds RUL, unless 8-0	.00003.						
1376.035	464.832 [@] 6	12.8 [@] 6	E2+M1@	-63 + 12 - 19	0.02004				
	δ: from 1985Al22: ho	wever $\delta = -13 + 5 - 3$ ((1981Kr12) also r	eported.	· · · · · · · ·				
	B(M1)(W.u.)=9.×10 ⁻⁷	4; B(E2)(W.u.)=8.0) 16.	-					
1376.035	830.585 [@] 9	100.0@ 23	E2+M1	-16.6 + 15 - 18	0.00499				
	δ: from $β^-$ decay (120	δ: from β ⁻ decay (1200 y). Other δ: <-20 in (α,2nγ); -34 +14-51 in (n,n'γ).							

$\gamma(^{166}{\rm Er})$ (continued)

E(lev ě(l) +ce)	Eγ [†]	Iγ [‡]	Mult.§	Comme ió #s	α					
	$B(M1)(W_{11}) = 1.8$	×10 ⁻⁵ 5·B(F2)(W µ)-	- 9 1 7							
1458.154	598.764 <i>19</i> Other Iy: 51 <i>9</i> in	34.4 7 (n,n' γ).	E1 (+M2)	-0.02 6	0.0038 4					
	Mult., \delta: E1 from	ϵ decay; D(+Q), $\delta = -0$.02 6 or -5.4 +13-3	30 from (n,n'γ).						
1458 . 154	672.242 <i>20</i>	100.0 22	E1		0.00297					
	δ: -0.01<δ(D,Q)<	0 from ¹⁶⁶ Tm ε decay	; mult=D+Q and δ(D,Q) = +0.01 + 7-5 or +2	$.2 + 3-4$ from $(n, n'\gamma)$.					
1460.031	1379.437 ^{&} 6 Mult.: from ¹⁶⁶ H B(E2)(W.u.)=2.7	100∝ o β ⁻ decay (26.824 h) 10.	E2		0.00181					
1460.031	1460.0&		E0							
≈ 0.030	Mult.: from ¹⁶⁶ Η ρ ² (E0)=0.0020 <i>10</i>	o β ⁻ decay (26.824 h) 7 (1999Wo07).								
1513.751	654.358 <i>16</i> Other Iγ: 52 6 in	85.7 <i>17</i> (n,n'γ).	E1		0.00314					
	Mult.: from ε dec	Mult.: from ε decay; $\delta(D,Q) = -0.08 + 9-6$ or $+1.55 + 21-23$ from $(n,n'\gamma)$.								
1513.751	727.858 20 Other Iy: 78 7 in $\delta(D, Q) = +0.01 + 3$	91 4 (n,n' γ). -4 from (n n' γ)	EI		0.00253					
1513.751	1248.78 3	51.1 11	E1+M2	+0.13 3	0.00109 7					
	Other Ιγ: 41 7 in Mult.,δ: from (n,	(n,n'γ). n'γ).								
1513.751	1433.42 <i>25</i> Εγ: from ¹⁶⁶ Hoβ Mult.,δ: from (n,	100 <i>17</i> ⁻ decay (1200 y). n'γ).	E1+M2	+0.054 +19-27	8.85×10 ⁻⁴ 18					
1528.401	1263.412 16	100.0 21	E2		0.00212					
	Mult.: from $\gamma(\theta)$ a	and linear polarizatio	on in (n,n'γ); M1,E2	2 from $\alpha(K) \exp in \epsilon dec$	ay.					
1528 401	B(E2)(W.u.)=39 (71 1 <i>17</i>	M1 + F2 + F0	+0 5 3	0 00242 18					
1020.401	δ: from (n,n'γ). B(M1)(W,u,)=0.0	13 <i>13</i> .	MITENTED		0.00242 10					
1528.401	1528.38 4	4.3 4	E2		1.54×10^{-3}					
	Other Iγ: 5.8 7 fr B(E2)(W.u.)=0.66	om ¹⁶⁶ Ho β ⁻ decay (2 3 <i>8</i> .	6.824 h), 18 7 from	ı (n,n'γ).						
1	B(E2)(W.u.): from	n measured B(E2)=0.	018 2 in Coulomb e	excitation.	0 0000					
1555./3/	200.0 Eγ: from Coulom B(E2)(W.u.)≈1.5. B(E2)(W.u.) from	b excitation.	[E2]	weitetien	0.2282					
1555.737	339.751° 21	100.0 [@] 10	(E2)	excitation.	0.0476					
	B(E2)(W.u.)=250	23.	()							
1555.737	$644.60^{@}5$	86.9 [@] 27	E2+M1	+4.9 $+23 - 11$	0.0092 3					
	Mult.: from α(K) δ: from γ(θ,H,t) ¹ -0.75 <i>20</i> in (α	exp in (α,2nγ) and γ(6 ⁶⁶ Ho β ⁻ decay (1200 <u>;</u> ,2nγ).),H,t) in β ⁻ decay (1 y). Other δ: ≤−1 or	1200 y). ≥+4, >+1.4 or <-6 in β ⁻	- decay (1200 y); +1.6 +10-6 or					
1.5.5. 7.9.7	B(M1)(W.u.)=0.0	003 3; $B(E2)(W.u.)=8$.5 <i>9</i> .		0.00280					
1555./3/	Other I γ : 41 4 from Control of	48.3° o om (α ,2n γ), 38 from C ata (164 Dy(α ,2n γ)).	E2 oulomb excitation.		0.00329					
1572.183	496.935 16	45.2 9	(E1)		0.00566					
	Other Ιγ: 26 5 in	$(n,n'\gamma)$.								
1572.183	615.963 15 Other I γ : 22 4 in Mult.: D(+Q) from	34.8 8 (n,n' γ). m (n,n' γ); $\Delta \pi$ =yes from	(E1 (+M2)) n level scheme.							
1596.241	$520.94^{@}$ 3	66.8 18	10m (Π,Π γ).	R. 7 from (n -1-)						
1596.241	1γ: from β ⁻ decay 640.015 [@] 9	(1200 y). Other 1γ: 4 37.2 7	4 σ from ε decay, 3	το / from (n,n'γ).						
1596.241	1γ: weighted aven 736.832 <i>22</i>	cage of 37.7 9 from β ⁻ 100 [@] 6	decay (1200 y) and E1	d 36.5 <i>11</i> from ε decay.	Other 1γ: 48 7 from (n,n'γ). 0.00247					
1596.241	Mult.,δ: from (n, 1331.17 [@] <i>11</i>	n'γ); $\delta(D,Q) = +0.002 + 1.7^{@}2$	19-25.							
	Iy: based on Iy(13	331.2γ /I γ (640 γ)=0.04	1 <i>6</i> (¹⁶⁶ Ho β ⁻ decay	(1200 y)).						

		Adopte	d Levels, Gam	mas (continued)	_	
		$\gamma(^{166}\mathrm{Er})$ (continued)				
E(level)	$\underline{\qquad } E\gamma^{\dagger}$	Iγ [‡]	Mult.§	δ#	α	Comments
1662.435	1581.834& 7	100.0 ^{&} <i>11</i>	E1 (+M2)	-0.027 <i>27</i>	8.69×10 ⁻⁴ 15	Mult., δ : from ¹⁶⁶ Ho β^- decay (26.824 h). Other δ : -0.04 +8-9 or -3.0 +7-11 from (n,n' γ). B(E1)(W.u.)=0.0066 7;
	1662.439 ^{&} 6	65.3 ^{&} 7	E1		8.77×10 ⁻⁴	B(M2)(W.u.)=9 +18-9. I γ : other I γ : 65.8 17 in (γ , γ), 80 10 in ε decay, 73 7 in (n,n' γ). Mult.: from (γ , γ '). B(E1)(W.u.)=0.0037 4.
1665.799	$590.56^{@}$ 3 1120.330 [@] 11	$4.6^{@} 4$ 39.2 [@] 4				Other Iy: 48 5 from $(\alpha, 2n\gamma), 95 10$ from $(n, n'\gamma)$
1673.70 1678.765	1400.770 [@] 15 1408.7 1 819.0b 802b	$100.0^{@}$ 7 100 49b 15	E1 (+M2)	+0.025 +18-26	8.81×10 ⁻⁴ 14	(n,n γ). Mult.,δ: from (n,n'γ).
1692.297	892^{-1} 1413.81 4 1598.2b $476.378^{@}$ 19 $617.0^{@}$ 5 $736.02^{@}$ 8	$< 9^{-2}$ 100 5 < 21b $7 . 3^{@} 4$ $4 . 5^{@} 13$ $28^{@} 3$	M1 (+E2+E0)	+0.35 30	0.0062 <i>21</i>	δ: from (n,n'γ).
1703.050	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rcrcr} 41.1^{(@)} & 4 \\ 100.0^{(@)} & 7 \\ 100 \\ 100 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	E1 (+M2) E2,M1	-0.002 +22-31	8.72×10 ⁻⁴ 14 0.0018 4	Mult.,δ: from (n,n'γ).
1713.4 1721.7	927.40 1632.9b 935h	12.4 ^b 6 100.0 ^b 6	[E2]			B(E2)(W.u.)<0.83. Tentative γ reported in Coulomb excitation only
	1456.6 ^b 10	78b <i>12</i>	D(+Q)			Mult.: from $(n, n'\gamma)$. $\delta := -0.01 \ 10 \ \text{or}$ $-8 \ +13 \ -12 \ \text{from}$ $(n, n'\gamma)$.
1751.36	1641.2b 7 375.2a <i>I</i>	100 ^b <i>13</i> 100 ^a <i>10</i>	E1 (+M2) E2	+0.01 +3-4	8.74×10 ⁻⁴ 14 0.0358	Mult., δ : from (n, n' γ). Mult.: from ce data in ¹⁶⁴ Dy(α , 2n γ). B(E2)(W, u,)=370–150.
	401.9ª <i>1</i>	5				Iγ: from Coulomb excitation. Other:
	840.2 ^{ag} 1	90ag <i>g</i>	(E2+M1)		0.0072 <i>23</i>	Mult:: from $\alpha(\mathbf{K})$ exp in 164 Dy $(\alpha, 2n\gamma)$. $\delta(\mathbf{D}, \mathbf{Q}) = -11 + 3-$ infinity from $\gamma(\theta)$ in 164 Dy $(\alpha, 2n\gamma)$ for γ that may be doubly placed.
1760.9	1215.5b <i>5</i> 1495.7b <i>7</i>	<95b 100b <i>16</i>	D+Q			First for doubly-placed γ . E γ : F γ =1495.57 <i>18</i> for unplaced γ in ¹⁶⁶ Tm ε decay. Mult.: from (n, n' γ). δ : +0.41 +7-4 or +4.28 from (n, n' γ)
1786.975	$\begin{array}{cccc} 94.674^{@} & 3\\ 121.175^{@} & 3\\ 190.774^{@} & 23\\ 214.807^{@} & 8\end{array}$	0.259 [@] 4 0.465 [@] 7 0.395 [@] 4 0.803 [@] 11	[M1] [E2] [E2] [E2]		3.33 1.443 0.295 0.199	нон (II,II <i>I</i>).

		Adopted	d Levels, Gam	mas (continued))	
$\gamma(^{166}{\rm Er})$ (continued)						
E(level)	$_{\rm E\gamma^\dagger}$	Iγ [‡]	Mult.§	δ#	α	Comments
1786.975	410.944 [@] 8 570.976 [@] 18	$20.69^{@} 8$ $9.99^{@} 27$	E1+M2 [@] E1+M2 [@]	-0.0105 +0.063	0.00873 0.0044 <i>4</i>	
	711.681@ 6	100.0 [@] 16	E1 (+M2)	+0.002 3	0.00264	Mult.: from $\alpha(K) \exp in$ ¹⁶⁴ Dy(α , 2n γ).
	1241.500° 14 1521.86° 5	$1.53^{\circ}8$ $0.0298^{\circ}11$	E1+M2 [@]	+0.21 5	0.00129 17	
1813.2	1731.9 5	45 8	(M1+E2)		0.0016 3	Iγ: unweighted average of 32 <i>I1</i> from ε decay, 48 5 and 67 6 from (n, γ') , and 33 8 from $(n, n'\gamma)$ (weighted average is 50 7). Mult.: D+Q from $(n, n'\gamma), \Delta \pi = (no)$ from level scheme.
		100	(111)		1 74.10-3	from $(n,n'\gamma)$.
	1813.4 3	100	(M1)		1.74×10^{-3}	Iγ: from (γ, γ') . Mult.: D, $\Delta \pi = (no)$ from (γ, γ') .
1827 557	135 260@ 4	0 812 [@] 11	[F2]		0 971	B(M1)(W.U.)=0.065 13.
1027.337	$161.731^{@}8$	$0.893^{@} 24$	[M1.E2]		0.62 11	
	231.318@ 8	1.702@ 18	[E2]		0.1561	
	255.20 [@] 12	0.035@ 8	[E2]		0.1140	
	451.542 [@] 7	24.05 [@] 24	E1+M2@	-0.0023 22	0.00702	
	611.555 [@] 26	11.31 [@] 11	E1+M2@	-0.18 7	0.0054 16	
	752.313 [@] 12	$100.0^{@}$ 10	E1 (+M2)	+0.0054	0.00237	Mult.: from $\alpha(K) \exp in$ ¹⁶⁴ Dy(α , 2n γ).
	$1282.058^{@}$ 15 1562.31 14	$1.524^{@}24$ $0.0280^{@}24$	E1+M2 [@]	0.20 11	0.0012 4	
1830.425	1749.836 ^{&} 14	100.0 ^{&} 14	(E1(+M2))		0.0023 15	Mult., δ : D(+Q), δ =+0.09 +25-15 or $1/\delta$ =-0.20 +25-16 from (n,n' γ); $\Delta\pi$ =yes from level scheme.
	1830.419 ^{&} 23	30.7 ^{&} 5	(E1)		9 . 2 0 \times 1 0 $^{-4}$	Mult.: D from (n,n'γ), Δπ=yes from level scheme
1846.53	497.0ª 1	100	E2		0.01670	B(E1)(W.u.)=0.00019 4. Mult.: from α(K)exp in ¹⁶⁴ Dy(α,2nγ).
1865.17	1079.5 ^{bh} 8	27 ^b 12				B(E2)(W.u.)=372 21. Εγ,Ιγ: for doubly-placed transition; Ιγ not divided.
	1784.58b4	100 13				
1894.355	1034.79 13	100 17				
	1629.48 <i>3</i>	< 6 2 0 g				T 10 0 1 1 0 . 0.
	1813.4 3	< 1 4 4 8				iγ: undivided intensity for doublet
1897 27	1351 8ª <i>1</i>	72b 20				tor doublet.
	1632.7 ^b 7	100 ^b 32				
	1817.0 ^b 10	60 ^b 32				
1904.8?	1824.2h 5	100	D+Q			Eγ,Mult.: from (n,n'γ). δ: -0.22 +4-3 or +4.9 +7-8 from (n n'x)
1908.2	312.0 ^b	< 1 4 ^b				(11,11-1).
	336.0 ^b 4	100 ^b 21				
1917.758	86.84		E2		5.05	
	255.44 6	0.21 2				

		Adopt	ed Levels, Gan	nmas (continued)	_	
			$\gamma(^{166}{\rm Er})$ (6	continued)		
E(level)	$\underline{} E \gamma^{\dagger}$	Iγ [‡]	Mult.§	δ#	α	Comments
1917.758	345.569 <i>15</i> 404.004 <i>13</i>	$\begin{array}{ccc}18.3&5\\31.1&8\end{array}$	$\begin{array}{c} M1 + E2\\ M1 + E2 \end{array}$	-0.57 + 21 - 25 -0.34 + 17 - 19	0.080 <i>8</i> 0.057 <i>4</i>	Other Iy: 21 4 from $(n, n'x)$
	459.600 <i>15</i>	100 2	M1+E2	-0.16 4	0.0428 7	Mult.: D+Q from (n,n' γ); M1 from ε decay. δ : weighted average of $-0.11 + 5-8$ from $\gamma(\theta)$ in (n,n' γ), $-0.17 - 5$ and $-0.21 - 9$ from $\gamma\gamma(\theta)$ in ε decay. Other solution in (n,n' γ) ($-2.7 - 5$)
						rejected.
	1131.872 <i>25</i> 1652.76 <i>3</i>	9.65 23 42.2 11	E1 E1		$\frac{1 \cdot 09 \times 10^{-3}}{8 \cdot 75 \times 10^{-4}}$	δ(D,Q)<-0.03 and -0.05 8 from ¹⁶⁶ Tm ε
	1837.17 3	29.8 7	E1		9.22 \times 10 $^{-4}$	uetay.
1934.1	1853.5 ^b 5	100	[E2]			B(E2)(W.u.)=8.8 10.
1938.263	982.00 15	0.62 11				
	1078.876 22	30.6 <i>6</i>	М1		0.00513	-0.007<δ(D,Q)<+1.3 in (n,n'γ) for γ which may have an additional placement.
	1152.350 16	100.0 26	M1		0.00438	$\delta(D,Q) = +0.01 + 3-4$ from (n,n' γ).
	1673.5 4	0.95 24				
1942.6	1857.62 <i>17</i> 1156.7 <i>4</i>	1.2 <i>4</i> 100	[E2]		0.00251	Ey: from Coulomb excitation. Mult.: γ(θ) isotropic in Coulomb excitation. B(E2)(W u)=21.7
1964.04	408.5 ^a 1	100 ^a 10	[E2]		0.0282	B(E2)(W.u.)=290 60.
1060 71	614.3 ^a <i>1</i> 1053.7 ^{ae} <i>1</i> 1704.7 <i>2</i>	< 30 ^a 58 ^a 6	[E2]		0.00302	B(E2)(W.u.)=1.5 3.
1000.71	1889.12 20	84b 16				
1978.422	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				Other IV: IV(1120v)·IV(1193v)
	1110.0					$= 29 \ 10:100 \ 25 \text{ in}$ Coulomb excitation.
1985.629	1192.516 I6 $389.38 3$ $413.430 I8$ $471.871 23$ $527.58 I0$ $1720.87 20$	100.0 23 45.5 13 57.4 18 100.0 23 27.6 9 47 5 47 5	E2 M1 E2 M1 (E1)		0.002360.06680.02730.04058.89×10-4	B(E2)(W.u.)=0.9 +4-5.
1986.2	1905.43 <i>23</i> 1127	41 11				Eγ: from Coulomb excitation.
1992 70	1081 52 1	1002 10	F1		$1 18 \times 10^{-3}$	excitation.
1332.70	1447.0 ^a 5	<312 ^a	15.1		1.10/10	
2001.865	84.11 <i>2</i> 488.19 <i>8</i>	7.6 20 7.2 16	M1		4.68	Other Iy: 27 <i>10</i> in $(n, n'\gamma)$.
	543.69 <i>3</i>	15.5 4	E2,M1		0.021 8	

			$\gamma(^{166}{\rm Er})$ (continued)		
E(level)	$E\gamma^{\dagger}$	Iγ [‡]	Mult.§	δ#	α	Comments
0001 005	1045 040 00		F1		1 00.10-3	
2001.805	1045.648 20 1142 45g 3	30.0 8 - 23 6g	EI		1.26×10 °	
	1216.173 ^e 17	100 20				
	1737.09 20	16.4 8	(E1)		8.93×10 ⁻⁴	
	1921.40 15	14.4 12				
2021.348	563.21 3	3.24 10	E2,M1		0.019 7	
	1161.955 16	38.6 9	E1		1 . $0.5\!\times\!10^{-3}$	
	1235.433 16	100 2	E1 (+M2)	+0.04 + 9 - 6	0.00098 12	Mult., δ : from (n,n' γ). Other δ : +0.05 <i>10</i> from s decay
2022.59	1475.5 ^b 10	18b 7				nom e decay.
	1758.06 20	46 4				
	1941.78 15	100 14				
2027.9	455.7b	14.9 ^b 21				
	1070					Eγ: from Coulomb
						excitation.
	1168.8 ^b	97.9b <i>21</i>	D+Q	4.5 10		Mult., δ : from (n,n' γ). Other I γ : I γ (1169 γ):I γ (1243 γ) =68 <i>14</i> :100 <i>14</i> in Coulomb excitation.
	1243.2 ^b	100.0 ^b 21	(E2)		0.00218	Mult.: Q from γ(θ) in Coulomb excitation; Δπ=no from level scheme.
	1					B(E2)(W.u.)=8 3.
2031.5	1486.00 10	100				
2046.87		20.2 11	M1 (, E9)		0 0022 0	St. 0.02 (12 Gam
	1781.40 15	19.6 21	((<u>L</u> L)		0.0002 0	+1.40 +23-27 from (n,n'γ).
2073.20	286.2a 1	< 6 3 a				
	697.2a <i>1</i>	100a 10	E1		0.00276	
2076.294	1119.5 1216 172eh 17	≈100 ¹				
	1290 368 22	62 1 16				
	1810.6 5	15 4				
	1996.10 15	6.1 8				
2082.8	569.2 ^b 4	100 ^b 24				
	1126.0 ^b 8	32b 16				
2092.31	1181.10 ^a 10	100	E1		1 . 0.3×1.0^{-3}	
2101.6	1145.4 ^h					Eγ: from one Coulomb excitation study only.
	1242.2 3	39 8	()			- /
	1315.6 8	100 10	[E2]		0.00197	B(E2)(W.u.)=7 5.
2117.8	1853.1 10	100 24				
2117 8	2030.8 12 1161.68 8	40 <i>8</i>				Ev: for doubly-placed y
2124 7	1168 5b 7	1008				E7. Ior doubly-placed 7.
2121.941	130.90 20	3.0 3	E1		0.1590	
	147.301 20	1.97 8	E1		0.1162	
	154.508 25	1.19 10	M1 + E2	0.75 25	0.75 4	
	194.678 15	≈4.4	M1		0.433	
	215.185 14	30.4 10	E1+M2	-0.09 + 7 - 6	0.056 23	δ: from 166 Tm ε decay.
	238.581 20	0.21 1	M1		0.248	
	429.885 20	0.45 1	M1		0.0516	
	454.20 3	0.189 22	(E2)		0.0211	
	530.07 3	0.737 20	EI		0.00478	
	300.77 3 604 553 15	0.399 <i>13</i> 1 15 2	F2		0 01025	
	619.498 <i>25</i>	<0.038			0.01080	

Continued on next page (footnotes at end of table)

0.00295

E1

674.788 22

15.0 3
			γ(¹⁶⁶ Er) (c	ontinued)	_	
E(level)	$E\gamma^{\dagger}$	Iγ [‡]	Mult.§	δ#	α	Comments
2132 011	1057 67 4	1 02 13	F9		0 00300	
2102.041	1176.704 16	55.5 11	M1+E2	+0.204	0.00410 7	δ: from ¹⁶⁶ Tm ε decay.
	1273.540 16	86.4 18	M1+E2	-0.11 8	0.00344 6	δ: from ¹⁶⁶ Tm ε decay.
	1347.035 18	6.36 13	M1		0.00304	
	1867.94 <i>3</i>	23.5 6	M1+E2	+3.49 +10-3	1 . 2 $6\!\times\!10^{-3}$	δ: from ¹⁶⁶ Tm ε decay (1980Bu26).
	2052.36 3	100.0 20	M1 + E2	+7.05	1 . 1.6×1.0^{-3}	δ: from ¹⁶⁶ Tm ε decay.
2144.64	768.60 ^a 10	100				
2148.6	1192.5a 7	< 1 2 7 ^D				Eγ: for doubly-placed γ.
	1883.5ª 6	100 ^D 33				
2155.8	1200					Eγ: from Coulomb excitation. Eγ: from Coulomb
0100 114	150 000 05	0 50 0			0.0001	excitation.
2160.114	158.269 25	U.563	EI		0.0961	
	401.33 10 587 90 16	0.212				
	631.62 10	1.14.3	(E2)		0.00924	
	646.75 ^e 4	≈0.12	(22)		0.00081	
	1084.826 17	5.77 12	E2		0.00285	
	1203.873 20	16.5 3	M1+E2		0.0031 9	
	1300.725 16	21.2 4	M1		0.00330	
	1374.194 25	88.9 21	M1 + E2	-0.11 4	0.00290 5	δ: from ¹⁶⁶ Tm ε decay.
	1895.12 <i>3</i>	19.2 6	M1 + E2	+2.63 4	1 . 2 $7\!\times\!1$ 0 $^{-3}$	δ: from ¹⁶⁶ Tm ε decay.
	2079.53 <i>3</i>	100.0 21	M1 + E2	+5.2 $+15-5$	$1 . 1 6 \! imes \! 1 0^{-3}$	δ: from ¹⁶⁶ Tm ε decay.
2172.751	659.04 <i>20</i>	0.35 7				
	1097.46 5	3.66 11	E2		0.00278	
	1216.173 17		E9 M1		0 0096 7	
	1907 71 6	13.7 4	E2,M1 E2 M1		0.0026 /	
	2092 13 3	100 0 22	M1+F2	+37 + 19 - 7	$1 16 \times 10^{-3}$ 2	δ· from ¹⁶⁶ Tm ε decay
2189.70	438.2agh 1 840.2agh 1	100.0 ^{ag} 13 24.4 ^{ag} 27			1.10/10 2	o. nom - ni e accay.
2194.61	1283.4 ^a 1	100				
2201.3	742.6 ^b	< 3 7				Ey: for doubly-placed γ .
	2120.5^{b} 10	100 <i>5</i>	D+Q			Mult.: from $(n,n'\gamma)$. Iy: from (γ,γ') .
	220200	54 u	(M1)		1.42×10 ⁻³	Mult.: D, $\Delta \pi = (no)$ from (γ, γ'). B(M1)(W u) = 0.067.11
2212.95	166.268 <i>20</i>	< 20 g				D(W1)(W.u.)=0.007 11.
	1256.7 3	34 14				
	1353.27 25	36 11				
	1427.06 20	100 29				
	1948.2 ^h 3	51 6				
2215.963	139.64 4	0.54 3				
	194.678	$\approx 2 \cdot 8$	M1		0.433	
	298.207 20	7.70 16	M1		0.1355	
	385.54 4	0.62 2	EZ		0.0331	
	643 90 <i>10</i>	0.178				
	702.28 10	22.0 6	M1		0.01475	
	757.798 17	100 2	M1		0.01220	
	1356.62 4	0.7 5				
	1430.2 3	6.7 16				
	2135.36 4	1.56 6				
2243 . 0 8 7	257.36 10	3.8 11				
	646.75 4	≈18				
	729.38 3	100 9	M1		0.01342	
	1287.1 3	5.1 <i>13</i>				
	1303.33	13 / 78 11				
	1978.12 20	96 7	E1		9.71×10 ⁻⁴	

			$\gamma(^{166}{\rm Er})$ (6	continued)			
E(level)	$E\gamma^\dagger$	Iγ [‡]	Mult.§	δ#	α	Comments	
2243.087	2162.54 5	61.8 24	EI		1.04×10 ⁻⁵		
2246.31	1335.14 1	100					
2260.3	1304					Eγ: from Coulomb excitation. Ev: from Coulomb	
	1504					excitation.	
2260.65	1401.16 4	665					
	1474.84 4	100 3	M1 , E2		0.0021 5		
2264.31	2183.68 7	100 6	Q(+D)			Mult.,δ: from (n,n'γ). δ=-0.47 +14-19 or 1/δ=0.02 +12-13.	
	2264.34 8	32 <i>3</i>					
2273.01	225.9 5	0.58 25					
	287.1 3	0.50 17					
	610.8g 3	<1.7g					
	814.82 20	5.1 10					
	1487.01 15	3.8 7			0 00 10 1		
	2008.00 4	100.0 25	E1		9.82×10 ⁻⁴		
	2192.43 4	90.1 25	E1		1.06×10^{-3}		
2282.68	824.528 11	<13.88					
	2017.07 7	84 8	E1 E9				
2200 050	119 19 2		EI, E2		1 765		
2290.939	312 58 20	3.7 11 0 14 7	[WII]		1.705		
	832 88 7	1 17 9					
	1334.74 21	0.96 16	M1 (+E2)		0.0025 6		
	1431.6 3	41 7					
	1505.00 4	100.0 23	M1 (+E2)	-0.2 <i>+2-3</i>	0.00237 14	δ: from ¹⁶⁶ Tm ε decay. Other:-0.15 +5-10 from (n n'y)	
	2026 068 11	< 3 2 g					
	2210.49 6	7.4 3					
2328.51	1417.3ª 1	100					
2328.69	2247.90 20	52 8					
	2328.72 10	100 9					
2352.91	824.52 ^g 11	< 4 1 g					
	1396.8 4	19 10					
	1493.43 16	100 15					
	2272.33 15	28 3					
2377.77	1518.8 9	3.2 7					
	1591.77 6	100.0 22	E2,M1		0.0018 4		
	2297.26 10	9.7 5	E2,M1		0.00125 14		
	2377.84 8	12.3 12	M1		1.37×10^{-3}		
2382.26	166.268 20	< 5 8					
	868.47 12	9.4 16					
	924.21 11	11.4 16	$M1(\cdot E0)$		0 0010 (
	1522.85 4	100 4	MI (+E2)		0.0019 4		
2280 23	1390.7 J 549 88 1	0 4 100	F2		0 01335	Mult : from ce data in	
2309.33	542.0- 1	100	E2		0.01333	164 Dy(α ,2n γ). B(E2)(W.u.)=400 <i>50</i> .	
2393.129	797.02 20	2.9 6					
	1437.3 3	38 5					
	1533.80 19	3.0 8					
	1607.18 3	100 5	E2,M1		0.0018 4		
	2128.19 5	11.1 8					
	2312.57 9	10.4 5	M1		1.38×10^{-3}		
2413.67	475.36 25	34 6					
	899.80 18	12.5 25					
	1554.33 20	19 9					

$\gamma(^{166}{ m Er})$ (continued)

E(level)	$E\gamma^{\dagger}$	Ιγ [‡]	Mult.§	α	Comments
2413.67	1627.8 <i>3</i>	100 19			If this is the same transition as the 1630 γ in (n n' γ) mult=D+Q δ =+15 +31-5
	2148.6 3	7.5 19			m(n,n), m(n-b+q, b-1)
	2333.11 10	15.4 16			
2428.4?	352.0 ^{ah} 5				Existence of transition is questionable.
	677.0 ^{ah} 5				Existence of transition is questionable.
2428.77	464.7 ^a 1		[E2]	0.01990	
	1081.2				Eγ: from from level energy difference in Coulomb excitation.
2435. 10	1575.65 26	42 9			
	1649.19 10	100 18			
2442.0?	2177h	100	D+Q		$E\gamma$, Mult.: from $(n, n'\gamma)$.
2444.16	1658.4 3	100 21			
	2363.3 4	19.2 23			
0.450.00	2444.0 10	8.9 26			
2459.0?	245951	100	E2 M1	0 00194 12	In weighted everage of
2404.51	2383.91 10	44 /	E2,WI	0.00124 13	I(2384γ):I(2465γ)=52 5:100 8 in ε decay. And 38 6:100 in $(γ, γ')$.
	2464.7 5	100	M1	1 . $35\!\times\!10^{-3}$	Mult.: E2,M1 from $\alpha(K)$ exp in ε decay; D from (γ, γ') .
					B(M1)(W.u.)=0.024 4.
2475.39	1017.29 6	50 <i>3</i>			
	1615.88 7	99 7			
	1690.2 4	28 10			
	2394.81 8	100 5	E2,M1	0.00124 13	
2479.74?	1130.2 ^a 1	100			Existence of transition is questionable.
2504.6	24240	100			δ: δ(D,Q)=+0.36 +6-4 or +9 +7-3 in (n,n'γ) (1992Be29) if J(2506 level)=3, but γ(θ) does not rule out stretched Q.
2525	2 4 4 4 ^c	51 d 5			····· •
	2 5 2 5 ^c	1 0 0 d	Df		
2542.87	946.57 8	27 4			
	1586.68 8	100 17			
	1683.3 <i>3</i>	56 21			
	2277.88 8	39.2 14			
	2462.5 5	596			
2574.0	1358	100			Eγ: from Coulomb excitation.
2586.06	1629.45 3	<8045			
	2321 18 18	54 8			
	2505.58 20	100 8			
2600.63	1142.45g <i>3</i>	<2638			
	2520.20 10	49 3			
	2600.76 20	100 11	M1	1 . $34\!\times\!10^{-3}$	Mult.: E2,M1 from $\alpha(K)$ exp in ε decay; D from $\gamma(\theta)$ in (γ, γ')
2613.50	2532.3 3	41 7			
	2613.75 20	100 10			
2619.6	2354.6 10	43 19			
	2538.8 10	69 12			
	2619.7 8	100 67			
2624.8	2544.3 3	97 17			
	2624.4 7	100 10			
2628.5	2547.1 10	37 14			
0.000 0.0	2628.5 3	100 10			
2032.00	1840.03 9559 19 20	100 38			
2654 402	2002.12 20 161 7ah 1	20 2			Existence of transition is questionable
2656 97	810 3ah 1	100			Existence of transition is questionable.
2671.98	2591.4 3	50 15			
	2671.95 20	100 7			
2679.05	2598.2 4	52 10			

			γ(¹⁶⁶ Er) (continued)	
E(level)	$$ $E\gamma^{\dagger}$	Ιγ [‡]	Mult.§	α	Comments
2679.05	2679.09 20	100 7	M1	$1 . 34 \times 10^{-3}$	Mult.: E2,M1 from $\alpha(K)$ exp in ε decay; D from $\gamma(\theta)$ in (γ, γ') . B(M1)(W, u)=0.038.7
2729.090	143.2 6	0.8 3			D(M1)(W.u.)=0.0507.
	743.8 5	2.2 8			
	1200.66 3	100 3	E2,M1	0.0032 9	
	1943.6 15	3.6 24			
	2648.50 2	5.5 4	E2,M1	0.00123 12	
	2728.9 10	0.39 12			
2767.8	2687	100 12	C		
	2768	67	Dţ		
2783.69	610.8g 3	< 6 0 g			
	2703.1 4	536		4 95 49-3	1γ : from (γ, γ'). 58 7 from ε decay.
	2783.8 3	100 5	M1	1.35×10 ⁻³	Mult.: E2,M1 from $\alpha(K)$ exp in ε decay; D from $\gamma(\theta)$ in (γ, γ') . B(M1)(W.u.)=0.011 4.
2797.5	2716.8 4	100 12			
	2798.2 10	31 13			
2811.98	2026.06g 11	< 2 3 4 0 g			Iγ: from ε decay (for doublet).
	2732.0 10	100			
	2811.7 10	55 <i>3</i>	Df		Iy: from (y,y'). Other Iy: 68 20 in ϵ decay.
2858.16	2777.56 18	100 9			
	2858.1 10	28 12			
2880.07?	451.3 ^{ah} 1	100			Existence of transition is questionable.
2967.3	578.0 ^a 5	100	E2	0.01143	B(E2)(W.u.)=330 <i>180.</i> Other Εγ: 579.2 in Coulomb excitation.
3073	29920	100 ^u <i>19</i>	_ f		
	30730	31.3u	D1		
3123	30420	1004 33	ъf		
9144	31230	49 2	D		
5144	3144	40 3	nf		
3175	30940	61d 6	Б		
0170	3175°	100d	Df		
3187	3106 ^c	49d 4	2		
	3187 ^c	100 ^d	Df		
3197	3116 ^c	51 d 3			
	3197 ^c	100 ^d	Df		
3288	3207 ^c	100 ^d 9			
	3288 ^c	6 6 d	Df		
3322	3241 ^c	100d <i>14</i>			
	3322 ^c	4 5 d	Df		
3329	3248 ^c	40d 7	0		
	3329 ^c	100 ^d	Dİ		
3386	3305 ^c	100 ^d 11	C		
	3386 ^c	68ª			
3425	34250	100 ^u	D1		
3430	33490	24u 6	Df		
2440	34300	100ª	D		
3440	33590	2004 18 200	Df		
3103	3440° 34030	100d	D. Df		
3498	3498 ^C	100 ^d	Df		
5100	0100	100	D		

 $^\dagger~$ From $^{166} Tm~\epsilon$ decay, unless otherwise noted.

 ‡ Relative photon intensity normalized to 100 for strongest photon deexciting each level; based on data from 166 Tm arepsilon decay, unless otherwise noted.

§ From ce data of 1979Ad06 in ϵ decay, unless otherwise noted.

⁴ From ¹⁶⁶Ho β^- decay (1200 y), unless otherwise noted. ^a From ¹⁶⁶Ho β^- decay (1200 y). ^b From ¹⁶⁶Ho β^- decay (26.824 h). ^a From ¹⁶⁴Dy(α , 2n γ).

b From $(n, n'\gamma)$.

Footnotes continued on next page

$\gamma(^{166}{\rm Er})$ (continued)

^c From level energy difference.

- ⁴ From Γ_{γ1}+Γ_{γ0} in (γ,γ). ⁶ Eγ deviates by at least 5σ from value expected for this placement. Datum excluded from least-squares fit. ⁷ From γ(θ) in (γ,γ).
- g Multiply placed; undivided intensity given.
- $h\$ Placement of transition in the level scheme is uncertain.
- ⁱ Multiply placed; intensity suitably divided.

(A) Kπ=0+ g.s. band. (B) $K\pi = 2 + \gamma$ -vibrational band.

(C) $K\pi = (2)$ - octupole vibrational band.

(18+) 3577

 $^{166}_{68}\mathrm{Er}_{98}$

(D) Kπ=(4)- band.

(E) $K\pi = 0 + band$.

(F) Kπ=0- band.

(G) Kπ=3- band (1993Li12).	(H) Kπ=4+ band (1993Li12).	(I) Kπ=7- band (1993Li12).	(J) Kπ=(5-) band (1975Pa15).	(K) Kπ=1+ band.

(Q) Kπ=(6-) band	(R) Kπ=(4-) band	(S) Kπ=(3-) band (1975Pa15).	(T) possible Kπ=4+,
(1975Pa15).	(1975Pa15).		γγ vibration band (1998Fa15)

 $^{166}_{68}{
m Er}_{98}$

$^{16}_{68}{}^{6}\mathrm{Er}_{98}$

Level Scheme

Intensities: relative photon branching from each level

& Multiply placed; undivided intensity given

Level Scheme (continued)

Intensities: relative photon branching from each level

& Multiply placed; undivided intensity given

Level Scheme (continued)

Intensities: relative photon branching from each level

& Multiply placed; undivided intensity given

4442

Adopted Levels, Gammas (continued)

Level Scheme (continued)

Intensities: relative photon branching from each level

& Multiply placed; undivided intensity given

4442

Adopted Levels, Gammas (continued)

Level Scheme (continued)

Intensities: relative photon branching from each level

& Multiply placed; undivided intensity given

4442

Adopted Levels, Gammas (continued)

Level Scheme (continued)

Intensities: relative photon branching from each level

& Multiply placed; undivided intensity given

Level Scheme (continued)

Intensities: relative photon branching from each level

& Multiply placed; undivided intensity given

Level Scheme (continued)

Intensities: relative photon branching from each level

& Multiply placed; undivided intensity given

¹⁶⁶Ho β⁻ Decay (26.824 h)

 $Parent \ ^{166}Ho: \ E=0.0; \ J\pi=0-; \ T_{1/2}=26.824 \ h \ \textit{12}; \ Q(g.s.)=1854.7 \ \textit{9}; \ \%\beta^{-} \ decay=100.$

¹⁶⁶Er Levels

E(level) [†]	Jπ [‡]	T _{1/2}	Comments
0.0	0+	stable	
80.5775 20	2+	1.815 ns 23	T _{1/2} : from Adopted Levels. Measured values from β-γ(t) are: 1.76 ns 5 (1963De21), 1.80 ns 5 (1963F002), 1.98 ns 21 (1961Bo05). Others: 1950Mc79, 1956Be54, 1959Bi10, 1960Be28, 1960Ma38.
265.02 9	4 +		
785.865 12	2 +		
1460.025 7	0+		Jπ: (1379.4γ)(80.574γ)(θ) is consistent only with J=0 for 0-2-0 cascade (1960Ma19,1960Ma38,1961Ku03).
1528.12 7	2 +		
1662.436 5	1 –		J π : (1581.89 γ)(80.574 γ)(θ) is consistent with 1(D+Q)2(Q)0 cascade and 3(D+Q)2(Q)0 cascade. J=3 ruled out because of log <i>ft</i> =6.94 for the β - branch to 1662.45 level (1968Fo11). 1969He02 measured the linear polarization and demonstrate that it is consistent with E1(+M2) for the 1581.89 γ only if J=1 for 1662.45 level.
1830.425 12	1 –		
† F			

 † From least-squares fit to Eq.

‡ From Adopted Levels.

 β^- radiations

$E\beta^{-}(g.s.)$	Ιβ-	References
1854 5		1955Gr07
1859 3	49	1963Fu17
1857 3	52	1966Da04
1854.7 15	51 2	1974Gr41
1845 2	52	1976Ra32
Eβ ⁻ (80.5 level)	Ιβ-	References
1771 7	48 4	1955Gr07
1779 5	49	1963Fu17
1776 4	47 3	1966Da04
1776 8		1966Be12
1776 5	48 2	1974Gr41
1771 2	47.5	1976Ra32
1773.1 14		weighted ave

For measurements of other low energy β- groups, see 1963Fu17, 1966Da04, 1966Be12, 1958Co76, 1976Ra32. Other measurements: 1949Gr01, 1950An12, 1950Si20, 1954Su12, 1958Co76.

 $\beta^- \gamma(\theta)$: (1773.1 β -)(80.574 γ) cascade is consistent with 0-,2+,0+ (1955Gr07,1965Ma39,1968Me17). Other measurements: 1961De34, 1963Gr36, 1964Gr33.

$E\beta^-$	E(level)	Iβ ^{-†§}	Log ft	Comments
(24, 2, 0)	1020 495	0 0 2 4 2 6	5 11 5	av E0 6 19 92
(24.3 9) (192.3 9)	1662.436	0.302 5	6.916 <i>10</i>	av $E\beta=0.12$ 23. av $E\beta=52.18$ 27.
(326.6 9)	1528.12	0.00268 12	9.493 ¹ u <i>21</i>	av $E\beta = 105.41$ 30.
(394.79)	1460 . 025	0.943 13	7.424 7	av $E\beta = 115.14$ 30.
(1068.8 9)	785.865	0.0070 12	11.62 ¹ u 8	av Eβ=369.33 35.
1773.1 14	80.5775	49.9 12	8.981 ¹ u <i>11</i>	av Eβ=651.33 <i>38</i> .
1854.7 [‡] <i>15</i>	0.0	48.8 12	8.104 11	av E\beta=693.96 39.

[†] From the intensity balance.

‡ from 1974Gr41.

\$ Absolute intensity per 100 decays.

¹⁶⁶Ho β^- Decay (26.824 h) (continued)

$\gamma(^{166}\mathrm{Er})$

x-rays: $(I\gamma \ relative \ to \ I\gamma(1379.3\gamma)=100 \ (1989Ch45))$.

Intensity	Designation
13.3 3	L ₁ x ray
359 13	L _α x ray
381 13	L _β x ray
59 <i>3</i>	L _γ x ray
346 11	Kα ₂ x ray
613 22	Kα ₁ x ray
194 8	Kβ ₁ 'x ray
47 2	Kβ ₂ 'x ray

Summary of γ intensity data relative to $I(1379\gamma) = 100$:

Reference	80.6γ	184.4 <i>\cap\$</i> #	521 . 0 γ	$6\ 7\ 4\ .\ 2\ \gamma \#$	705 . 4γ #	785 . 9γ
1962Cl03	730 50	-	-	3.0 5	2.0 5	1.0 5
1967Bu14	667 43	-	-	3.23 22	2.04 32	1.61 32
1970Re16	-	0.22 5	-	2.15 22	1.61 22	1.40 22
1976Ra32	704 32	-	-	3.44 22	2.26 11	1.2 5
1977A127	672 65	0.129 30	0.032 11	1.76 9	1.37 6	1.25 6
1980VyZZ	-	-	-	1.95 10	1.40 8	1.37 12
1989Ch45	722 8	0.23 1	0.05 2	2.3 1	1.7 1	1.4 1
1992Ar06	656 32	0.097 11	0.0376 43	2.011 32	1.441 22	1.280 22
1995Gi10	-	-	-	2.4 3	-	_
Recommended e	712 10	0.17 4	0.037 4	2.07 10	1.49 8	1.286 23
Reference	1263.0γ	1379.4γ	1447.5γ	1528 . 2γ	1581 . 8γ	1662 . 4γ
1962Cl03	_	100	-	_	19 <i>3</i>	13 <i>3</i> @
1967Bu14	-	100	-	-	20.6 10	12.9 7
1970Re16	-	100 5	-	-	19.5 10	12.5 6
1976Ra32	-	100	-	-	21.5 11@	9.94@
1977A127	0.151 22	100.0 11	0.105 11	0.022	19.7 6	13.0 4
1980VyZZ	-	100	-	-	20.3 11	13.2 8
1981Se09	-	100	-	-	-	-
1989Ch45	0.17 1	100 1	0.12 1	-	19.9 4	12.7 3
1992Ar06	0.161 32	100.0 11	0.14 5	0.0097 11	19.68 22	13.01 11
1995Gi10	-	100	-	_	-	_
Recommended e	0.166 9	100.0	0.114 7	0.0097 11	19.79 22	12.92 14
Reference	1732.0γ	1749.8γ	1812 . 8γ	1830.5γ	,	
100000100		2 0 5		1 0 2 6		
19620103	-	3.0 5	-	1.0 3 @	, 	
1967Bu14	-	3.33 11 @	<u> </u>	1.00 8	w ,	
1970Re16	-	2.69 22	-	0.86 11		
1976Ra32	-	3.01 18	-	0.81 54	1	
1977A127	-	2.80 22	-	0.89 5		
1980VyZZ	-	2.75 15	-	0.83 5		
1989Ch45	-	2.8 1	-	0.85 2		
Recommended e	0.0054 22	2 2 . 85 4 2 2 . 84 4	0.0065 2.	2 0.892 2 2 0.871 1	5	
Data for this	vare dis	screpant (² exceeds	critical	value).	
statistical or	utlier bas	ed on Chai	ivenet cri	terion: da	tum exclu	ded
from average						
woighted aver	مرم معرابية	ling statio	tical out	lions and	data from	

1980VyZZ (for which evaluator lacks complete documentation). γγ(θ): see 1955Fr06, 1960Ma19, 1961Bo05, 1961Ku03, 1963Ve11, 1969KaZV, 1971SkZX, 1973Di18. $β^-$ γ(θ,t), γγ(θ,t): see 1963Bo19, 1961Bo05, 1969Fo09, 1969KaZV, 1971HeYP, 1971HeYO. $\gamma\gamma(\theta,h),\;\gamma\gamma(\theta,H,t)\colon 1960Ma38,\;1961Bo05,\;1961Ku03,\;1971SkZX,\;1973Di18.$ γγ-coin: 1954Su12, 1955Fr06, 1958Co61, 1958Kl48, 1961Ha14, 1962Cl03.

Continued on next page (footnotes at end of table)

 $\gamma(^{166}{\rm Er})$ (continued)

ce(80.6γ): L1:L2=0.0859 8, L2:L3=0.962 9, M1:M3=0.0744 22, M2:M3=0.926 9, M45:M3=0.024 4, M:M3=2.027 7; L3:M3=3.99 12, N1:M3=0.024 3, N2:M3=0.210 4, N3:M3=0.224 10, N123:M3=0.458 11, O123:M3=0.065 4, N123:O123=7.0 5 (1981Bu24); K:L1:L2:L3:M:M1:M2:M3:N:O= 350 10:35 1:380 8:430 9:210 5:8.0 4:94 2:100:42.5 20:8.5 6 (1977Ka30); K:L=0.426 11 (1968Ni06); L1:L2:L3:M3=87.1 11:959 6:1000:250 3 (1966Ka13,1968Ni06); M1:M2:M3:M4:M5=79.0 18:934 8:1000:10.5 4:10.5 5 (1968Ho19); M:(N+O+P)=3.78 9 (1968Ni06); N1:N2:N3:N45=85 28:90 7:1000:10 8 (1972Dr02); N/O=6.7 4 (1972Dr02); (M+N)/L=0.320 3 (1966Da04).

I γ normalization: weighted average of 0.920 13 based on %I(81 γ)=6.55 7 (1994Co02) and %I(1379 γ)=0.93 3 (1962Cl03).

See comment on 81γ for additional absolute intensity data for that transition.

$E\gamma^{\dagger}$	E(level)	Iγ ^{‡#}	Mult.§	δ	α	I(γ+ce) [#]	Comments
80.576 2	80.5775	712 10	E2		6.78		$\label{eq:alpha} \begin{split} & \alpha(\mathbf{K}) = 1.671 \ 24; \\ & \alpha(\mathbf{L}) = 3.91 \ 6; \\ & \alpha(\mathbf{M}) = 0.954 \ 14; \\ & \alpha(\mathbf{N}+) = 0.241 \ 4. \\ & \alpha(\mathbf{N}) = 0.216 \ 3; \\ & \alpha(\mathbf{O}) = 0.0251 \ 4; \\ & \alpha(\mathbf{P}) = 7.29 \times 10^{-5} \ 11. \\ \mathbf{E}\gamma; \ from \ 1992 \ Arole \ 0 \ Other \\ & \text{precise} \ \mathbf{E}\gamma; \ 80.557 \ 4 \\ & (1963 \ Ma08 \ cryst), \\ & 80.574 \ 8 \ (1962 \ Ha46 \ cryst.), \\ & 80.574 \ 8 \ (1962 \ Ha46 \ cryst.), \\ & 80.574 \ 8 \ (1962 \ Ha46 \ cryst.), \\ & 80.574 \ 8 \ (1962 \ Ha46 \ cryst.), \\ & 80.53 \ 5 \ (1960 \ Ma19). \\ & \mathbf{I}\gamma; \ \% \mathbf{I}\gamma(81) = 6.55 \ 7 \\ & (1994 \ Co02). \ Other \\ & \% \mathbf{I}(81\gamma): \ 6.7 \ 5 \\ & (1962 \ Clo3); \ 6.6 \ 4 \\ & (1981 \ Se09); \ 6.3 \ 4 \\ & (1966 \ Ne06); \ 6.1 \ 4 \ and \\ & 7.2 \ 6, \ respectively, \\ & from \ \mathbf{I}(ce(\mathbf{L}))/\mathbf{I}\beta = 0.240 \ 15 \\ & (1966 \ Ne06); \ 6.1 \ 4 \ and \\ & \mathbf{I}(ce)/\mathbf{I}\beta = 0.49 \ 4 \\ & (1974 \ Gr 41) \ and \ \mathbf{E}2 \ theory. \\ \\ & \mathbf{Mult.; \ from \ \alpha(\mathbf{K}) exp = 1.72 \ 6 \\ & (1969 \ Ne02), \ 1.69 \ 6 \\ & (1971 \ Ca08), \ 1.76 \ 15 \\ & (1960 \ Ma19). \\ & \mathbf{M} + \mathbf{N}/\mathbf{L} = 0.320 \ 3 \\ & (1966 \ Da04) \ cf. \ 0.306 \\ from \ \mathbf{E}2 \ theory. \\ \end{aligned}$
184.4 <i>1</i>	265.02	0.17 4	Ε2		0.331		$\begin{split} &\alpha(K) = 0.205 \ 3; \\ &\alpha(L) = 0.0965 \ 14; \\ &\alpha(M) = 0.0231 \ 4; \\ &\alpha(N+) = 0.00590 \ 9. \\ &\alpha(N) = 0.00525 \ 8; \\ &\alpha(O) = 0.000642 \ 10; \\ &\alpha(P) = 9.48 \times 10^{-6} \ 14. \\ & E\gamma; \ from 1970Re16. \ Other \\ & E\gamma: \ 184.5 \ 2 \\ &(1992Ar06), \ 184.5 \ 10 \\ &(1977Al27). \\ & I\gamma: \ weighted \ average \ of \\ &1970Re16, \ 1977Al27, \\ &1989Ch45. \end{split}$

			γ(¹⁶⁶ Er) (continued)				
$E\gamma^{\dagger}$	E(level)	Ιγ ^{‡#}	Mult.§	δ	α	I(γ+ce) [#]	Comments
520.8 <i>4</i>	785.865	0.037 4	E2		0.01482		$\begin{aligned} &\alpha(\mathbf{K}) = 0.01185 \ 17; \\ &\alpha(\mathbf{L}) = 0.00231 \ 4; \\ &\alpha(\mathbf{M}) = 0.000525 \ 8; \\ &\alpha(\mathbf{N}+) = 0.0001383 \ 20. \\ &\alpha(\mathbf{N}) = 0.0001211 \ 18; \\ &\alpha(\mathbf{O}) = 1.645 \times 10^{-5} \ 24; \\ &\alpha(\mathbf{P}) = 6.58 \times 10^{-7} \ 10. \\ &\mathbf{E}\gamma: \ from \ 1977A127. \ Other \\ &\mathbf{E}\gamma: \ 520.8 \ 5 \\ &(1992Ar06). \end{aligned}$
674.188 <i>15</i>	1460.025	2.07 10					Eγ: weighted average of 674.222 <i>16</i> (1992Ar06), 674.08 <i>10</i> (1977Al27), 672.09 <i>d</i> (1970Pc16)
705.334 <i>22</i>	785.865	1.49 <i>8</i>	E2+M1	-5 +3-14	0.00716 <i>13</i>		
785.89 3	785.865	1.286 <i>23</i>	E2		0.00561		
1263.01 14	1528.12	0.166 9	E2		0.00212		$\begin{aligned} \alpha(\mathbf{K}) = 0.001774 \ 25; \\ \alpha(\mathbf{L}) = 0.001774 \ 25; \\ \alpha(\mathbf{L}) = 0.000259 \ 4; \\ \alpha(\mathbf{M}) = 5.73 \times 10^{-5} \ 8; \\ \alpha(\mathbf{N}+) = 2.84 \times 10^{-5} \ 4. \\ \alpha(\mathbf{N}) = 1.332 \times 10^{-5} \ 19; \\ \alpha(\mathbf{O}) = 1.91 \times 10^{-6} \ 3; \\ \alpha(\mathbf{P}) = 1.011 \times 10^{-7} \ 15; \\ \alpha(\mathbf{IPF}) = 1.309 \times 10^{-5} \ 19. \\ \mathbf{E}\gamma: \text{ weighted average of} \\ 1262.94 \ 19 \ (1992Ar06), \\ 1263.08 \ 20 \ (1977A127) \end{aligned}$
1379.437 6	1460.025	100	E2		0.00181		$\label{eq:alpha} \begin{split} &\alpha(K) = 0.001498\ 21; \\ &\alpha(K) = 0.000216\ 3; \\ &\alpha(M) = 4.76 \times 10^{-5}\ 7; \\ &\alpha(N) = 1.108 \times 10^{-5}\ 7. \\ &\alpha(N) = 1.108 \times 10^{-5}\ 16; \\ &\alpha(O) = 1.591 \times 10^{-6}\ 23; \\ &\alpha(P) = 8.54 \times 10^{-8}\ 12; \\ &\alpha(PF) = 3.64 \times 10^{-5}\ 5. \\ &\text{Mult.: from } \alpha(K) exp = \\ &1.4 \times 10^{-3}\ 4\ (1974\text{Gr}41). \\ &\text{E}\gamma: \ weighted \ average \ of \\ &1379.437\ 6\ (1972\text{Re}16). \\ &1379.436\ 6\ (1970\text{Re}16). \end{split}$

¹⁶⁶Ho β ⁻ Decay (26.824 h) (continued)

$\gamma(^{166}\mathrm{Er})$ (continued)							
Εγ [†]	E(level)	Ιγ ^{‡#}	Mult.§	δ	α	I(γ+ce) [#]	Comments
1447.52 9	1528.12	0.114 7	M1+E2+E0	+0.5 <i>3</i>	0.0021 5		$\begin{aligned} &\alpha(\mathbf{K}) = 0.0018 \ 4; \\ &\alpha(\mathbf{L}) = 0.00025 \ 6; \\ &\alpha(\mathbf{M}) = 5.5 \times 10^{-5} \ 12; \\ &\alpha(\mathbf{N}+) = 7.6 \times 10^{-5} \ 9. \\ &\alpha(\mathbf{N}) = 1.3 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{O}) = 1.8 \times 10^{-6} \ 4; \\ &\alpha(\mathbf{P}) = 1.03 \times 10^{-7} \ 25; \\ &\alpha(\mathbf{IPF}) = 6.1 \times 10^{-5} \ 6. \end{aligned}$
							Eγ: weighted average of 1447.5 1 (1992Ar06), 1447.59.20 (1977Al27)
1460.0	1460.025		E0			≈ 0 . 0 3 0	 I447.35 20 (1977A127). Mult.: no photon was observed; α(K)exp≥0.3 (1974Gr41). Eγ,I(γ+ce): from ce data (1974Gr41). I(ce(K) 1460)/I(ce(K) 1379)=0.2 1, so I(ce(K) 1460)=0.030 15
1528 23 15	1528 12	0 0097 11	F2		1.54×10^{-3}		if $\alpha(K)(1379)=0.00150$.
1581.834 7	1662.436	19.79 <i>22</i>	E1 (+M2)	-0.027 27	8.69×10 ⁻⁴ 15		E: 11011 135A100. Other E: 1528.2 (1977A127). $\alpha(K) = 0.000523 II;$ $\alpha(L) = 6.94 \times 10^{-5} I5;$ $\alpha(M) = 1.52 \times 10^{-5} I;$ $\alpha(N) = 3.53 \times 10^{-6} I;$ $\alpha(N) = 3.53 \times 10^{-6} I;$ $\alpha(O) = 5.11 \times 10^{-7} II;$ $\alpha(P) = 2.89 \times 10^{-8} T;$ $\alpha(IPF) = 0.000257 I.$ Mult.: from linear polarization (1969He02). δ : from 1968Fo11. E: weighted average of 1581.833 7 (1992Ar06), 1581.88 I0 (1977A127),
1662.439 6	1662.436	12.92 14	E1		8 . 77 × 10 ⁻⁴		1581.89 8 (1970Re16). Eγ: 1662.439 6 (1992Ar06), 1662.53 10 (1977Al27), 1662.48 8 (1027Be18)
1749.836 14	1830.425	2.84 4	(E1(+M2))		0.0023 15		 (1970/016). Εγ: 1749.833 14 (1962Cl03), 1749.88 10 (1977Al27), 1749.94 10 (1970Re16).
1830.419 <i>23</i>	1830.425	0.871 15	(E1)		9.20×10 ⁻⁴		Ey: 1830 413 24 (1992Ar06), 1830.46 10 (1977Al27), 1830.57 15 (1970Re16).

 † Weighted average of data from 1977Al27 and 1970Re16, except as noted.

[‡] Weighted average of photon data in table above after elimination of data (denoted there by '@') which are statistical outliers based on the Chauvenet criterion, and excluding data from 1980VyZZ. Uncertainties in I(1379γ) have been added in quadrature to the uncertainties in Iγ of other lines from the same data set before averages were calculated. Other measurements: 1950Si20, 1952Mc05, 1952Mi18, 1954Su12, 1955Fr06, 1955Gr07, 1957Mc34, 1958Co76, 1958Kl48, 1960He09, 1960Ma19, 1961Ha14, 1962El12, 1963Fu17, 1968Da24, 1971Be74.

§ From Adopted Gammas, unless otherwise noted.

[#] For absolute intensity per 100 decays, multiply by 0.00922 12.

¹⁶⁶Ho β⁻ Decay <u>(1200 y)</u>

 $Parent \ ^{166}Ho: \ E=5.969 \ {\it 12}; \ J\pi=7-; \ T_{1/2}=1200 \ y \ {\it 180}; \ Q(g.s.)=1854.7 \ {\it 9}; \ \%\beta^- \ decay=100.$

```
<sup>166</sup>Er Levels
```

$E(level)^{\dagger}$		Jπ [‡]	T _{1/2}	Comments
0 0	ſ)+	stable	
80 574 4	1 9) +) +	1 83 ne 5	T = $f_{rom w(t)}$ (1.83 ns 6 (19631 i04) · 1.83 ns 5 (1968K u03))
264 097 4	r 1 5 /		118 pc 4	$I_{1/2}$ from $I_{1(1)}$ (1.05 H3 0 (1.05 H3 0), 1.05 H3 5 (1000 K005)). $\sigma_{-1}(0.215 + 16 (1005 K122))$
204.907 3	,	±+	118 ps 4	$g = +0.515 \ 10 \ (1963A122).$
	~ ,			$1_{1/2}$: from $\gamma\gamma(t)$ (1968b036). Other data: 120 ps 8 (1963L104), 117 ps 7 (1968k003).
545.451 5	5 t	o +		g = +0.258 II (1985A122).
785.933 1	11 2	2+		
859.384 6	6 3	3+		
911.204 2	7 8	8+		g=+0.262 47 (1985A122).
956.227 6	64	4 +		
1075.271 6	6 5	ŏ +	≤60 ps	T _{1/2} : from γγ(t) (1963Li04).
1215.963 6	66	3 +		g=+0.254 32 (1985A122).
1376.029 6	6 7	7 +		
1514.0 3	3	3 –		
1527.12? 9	9 2	2 +		
1555.739	11 8	8+		
1572.177 8	8	(4) -		
1596.232 8	8	(4-)		
1665.795 7	7 5	5 (-)		J π : (1120.3 γ)(280.45 γ)(0) A ₂ =-0.103 32, A ₄ =-0.008 42 is consistent only with 5(D)6(Q)4 spin sequence (1981La27).
1692.292 7	7 5	5 (-)		J π : (1146.8 γ)(280.45 γ) A ₂ =-0.098 45, A ₄ =-0.06 7; and (1427.25 γ)(184.41 γ)(θ) A ₂ =-0.089 45, A ₄ =0.00 3. The two sets A ₂ , A ₄ are consistent only with 5(D+Q)6(Q)4 spin sequence with δ (1146.8 γ)=-0.02 +7-6 or +9 +9-6 and 5(D+Q)4(Q)2 spin sequence with δ (1427.25 γ)=-0.025 25 (1981La27).
1786.969 6	6 (6 –		J π : (711.68 γ)(280.45 γ)(θ) A ₂ =-0.05 <i>I</i> , A ₄ =-0.02 2 and (1241.48 γ)(280.45 γ)(θ) A ₂ =+0.129 <i>I</i> 3, A ₄ =0.000 23 are consistent only with J=6 (1981La27).
1827.552	7 (3 –		

[†] From least-squares fit to Εγ.
 [‡] From Adopted Levels, unless otherwise noted.

¹⁶⁶Ho β^{-} Decay (1200 y) (continued)

β^- radiations

$E\beta^{-\ddagger}$	E(level)	IB-†§	Log ft	Comments
(33 1 9)	1827 552	17 23 16	8 41 8	av FB=8 38 24
(73.7 9)	1786.969	73.9 10	8.83 7	av $E\beta = 19.02$ 24.
(168.4 9)	1692.292	0.08 3	12.91 18	av $E\beta = 45.26$ 26.
(304.9 9)	1555.739	0.385 6	13.04 7	av Eβ=86.32 29.
(484.6 9)	1376.029	0.58 24	13.52 20	av Eβ=145.33 31.
(644.7 9)	1215.963	2.27 18	13.35 8	av Eβ=201.79 33.
(949.5 9)	911.204	1.16 7	14.23 7	av Eβ=316.97 36.
(1315.2 9)	545.451	3.3 <i>3</i>	14.30 8	av $E\beta = 464.67$ 38.

[†] From level scheme.

[‡] For measured values, see 1963Cl02, 1962Ge02, 1959Bo57, 1952Bu18.

§ Absolute intensity per 100 decays.

$\gamma(^{166}{ m Er})$

x-rays: (Ιγ ι	elative to I	γ(184.4γ)=	100.0).		
Energy	1988Ch44	1992Wa33	1996Mo11	$2002\mathrm{Be}04$	x – r a y
48.22	15.1 3	15.9 4	14.66 11	13.74 21	Kα ₂ x ray
49.13	25.4 4	26.97	26.43 19	26.94	Kα ₁ x ray
55.67	7.86 12	7.67 18	8.32 7	8.03 12	Kβ ₁ 'x ray
56.08	1.94 4	1.75 4	2.20 3	2.08 4	Kβ ₂ 'x ray

 $\gamma\gamma(\theta)\colon$ 1965Re02, 1972Ca42, 1975Ba39, 1981La27, 1981Ka37, 1985Al22, .

Summary of relative intensity data for principal lines:

Reference	80.6γ #	94.7γ	119.0γ	121.2γ	135.3γ	140.7γ
1967Bu14	14.5 29	0.16 3 @	0.7	5 d	0.1 1 @	-
1967Gu04	14.55 45	-	-	-	-	-
1970Re16	17.1 5	0.191 14	0.246 27	0.36 4	0.137 14	0.059 14
1973La32	14.5 5	-	-	0.78 18	-	-
1974Li11	16.8 4	0.21 3	0.23 3	0.54 5 @	-	-
1977Ge12	16.79	-	-	-	-	-
1978Sa14	17.5 5	0.221 11	0.222 11	0.337 13	0.126 14	0.059 9
1981Ka37		0.217 24	-		0.136 14	0.045 14
1982B128	16.56 8	-	-	-	-	-
19825012	17.8 4	0.22 1	0.27 2 @	0.45 2 @	0.14 1	0.06 1
1986Og03	16.97 13	0.20 1	0.24 1	0.35 2	0.14 1	0.07 1
1988Ad05	17.2 7	0.190 25	0.243 12	0.346 12	0.128 5	0.060 3
1988Ch44	17.2 2	-	-	-	-	-
1989Da18	16.59 31	-	-	-	-	-
1992Ar06	17.6 4	0.23 3	0.23 3	0.38 <i>3</i> @	0.15 3	0.07 1
1992Wa10	17.00 22	0.208 10	-	0.307 11@	-	-
1992Wa33	16.74	0.198 4	0.236 5	0.362 7	0.1358 28	0.0584 16
1994Mi22	16.05 11	-	-	-	-	-
1996Mo11	17.18 11	0.198 5	0.238 7	0.343 11	0.142 9	0.051 7
2000Hi01	16.35 22	-	-	-	-	-
$2002\mathrm{Be}04$	16.09 14	0.187 3	0.576	14 d	0.138 3	0.0579 14
Recommended	16.62 12	0.195 3	0.235 6	0.350 5	0.1364 19	0.0584 10

$\gamma(^{166}{ m Er})$ (continued)

Reference	$1\ 6\ 0\ .\ 1\ \gamma$	161.7γ	184 . 4γ	190 . 7γ	$2\ 1\ 4$. $8\ \gamma$	215 . 9γ
1967Bu14	0.35	<i>10</i> d	100.0	-		3.84@
1967Gu04	-	-	100.0 10	-	4.15	6 d
1970Re16	0.134 14	0.150 14	100 5	0.301 27	0.75 10@	3.55 27
1973La32	0.36 15 @	-	100.0	-	-	_
1974Li11	0.16 3 @	0.16 3	100.0	0.31 4	_	-
1977Ge12	-	-	100.0 31	-	4.06	<i>16</i> d
1978Sa14	0.109 8 @	0.135 8	100.0 20	0.304 14	0.586 20@	3.54 10
1981Ka37	0.132 13	0.133 13	100.0 10	0.305 16	0.61 4	3.57 6
1982B128	-	-	100.0	-	-	4.04 4
1982So12	0.14 1	0.15 8	100.0	0.31 1	0.61 2	3.67 9
1986Og03	0.14 2	0.15 2	100.0	0.33 2 @	0.61 2	3.60 13
1988Ad05	0.124 8 @	0.140 6	100.0 20	0.291 9	4.14	5 d
1988Ch44	-	-	100.0 10	-	-	-
1989Da18	-	-	100.0 14	-	0.602 48	3.61 12
1992Ar06	0.14 3	0.15 3	100.0	0.31 3	0.61 4	3.49 14
1992Wa10	0.153 7 @	-	100.0	-	-	3.59 4
1992Wa33	0.139 3	0.160 4	100.0 16	0.273 6 @	0.671 13@	3.60 6
1994Mi22	-	-	100.0 3	-	-	3.447 23 @
1996Mo11	0.140 11	0.158 8	100.0 5	0.301 6	0.600 9	3.566 19
2000Hi01	-	-	100.0 10	-	-	-
2002Be04	0.266	6 d	100.0 6	0.292 4	4.145	<i>33</i> d
Recommended	0.139 3	0.150 4	100.0	0.297 3	0.604 8	3.570 11
Reference	231.3γ	259.7γ	280.5γ	300.7 γ #	304.9 γ #	339.8γ
1967Bu14	0.3 2	1.8 5 @	39.5 <i>28</i>	4.8 4	-	-
1967Gu04	0.32 5	1.42 10	43.6 4 @	5.45 5	-	-
1970Re16	0.328 27	1.50 8	40.7 20	5.12 26	-	0.232 27
1973La32	0.36 <i>3</i> @	1.77 12 @	38.6 5 @	4.77 9		-
1974Li11	0.31 4	1.52 5	39.6 13	4.92 12	-	0.23 4
1977Ge12	-	-	40.2 13	4.97 16	-	-
1978Sa14	0.284 14	1.45 4	40.8 12	5.12 15	-	0.234 15
1981Ka37	0.289 12	1.482 23	41.34 20	5.165 27	-	0.232 18
1982B128	-	-	41.26 28	5.22 4	-	-
1982So12	0.30 1	1.53 3	41.0 5	5.17 8	-	0.21 1
1986Og03	0.33 <i>3</i>	1.52 3	40.6 5	5.11 8	0.023 3	0.21 3
1988Ad05	0.289 9	1.47 4	40.4 13	5.04 16	0.030 3	0.222 7
1989Da18	0.263 19	1.502 40	40.88 48	5.13 7	-	-
1992Ar06	0.30 4	1.45 5	39.8 <i>9</i>	4.98 13	0.023 3	0.22 3
1992Wa10	0.283 6	1.529 34	41.4 5	5.34 6	-	-
1992Wa33	0.260 5	1.507 23	41.8 6	5.29 8	0.020 10	0.221 5
1994Mi22	-	1.434 25	40.63 11	5.079 36	-	-
1996Mo11	0.293 5	1.480 9	40.66 20	5.118 26	0.026 6	0.2250 34
2000Hi01	-	-	41.02 41	-	-	-
2002Be04	0.291 5	1.445 10	40.36 21	5.004 28	$0\ .\ 0\ 2\ 2\ 0 1\ 4$	0.215 6
2006Ku03 s	-	1.428 17	-	-	0.0310 12	0.223 4

$\gamma(^{166}{ m Er})$ (continued)

Reference	365.7γ #	410.9γ	451.5γ #	464.8γ #	476 . 4γ	496 . 9γ
1967Bu14	293@	15 8 12	3 5 7 @	2 0 4	0 4 2 @	
1967Gu04	37976	16 8 2 @	3.37e	1 66 8	-	_
1970Re16	3 44 18	15 8 8	4 18 20	1 68 11	_	_
19731 232	29366	15.50 19	3 48 7 @	2 00 7	_	_
19741 11	2.55 0 @	11 8 3	3 84 13	1 50 8		
1977Ge12	3 30 3	15 27 16	3 99 4	-	_	_
19785214	3 33 10	15 25 13	1 02 12	1 65 5		
1081Ka37	3 4 4 5 2	1 1 5 9 5 1 5	4.02.12	1 600 21		
1982B128	3 30 3	15 65 10	3 85 5	-	_	_
19825012	3 49 6	15 9 2	1 1 7 5	1 67 3		- 0.18.3.@
19860003	3 46 6	15.5 2	4 04 11	1 73 7	0 052 6	0 17 1
19884405	3 33 10	15.3 4	4.04 11	1 59 1	0.052 0	0.17 1
1989Da18	3 44 5	15 93 16	4.00 11	1 69 6	-	-
1992Ar06	3 34 9	15.0 1	3 80 13	1 66 7	0 052 7	0 17 3
1992Wa10	3 589 1	15.0 4 5 16 49 <i>19 6</i>	0.00 10 04 24 6	1 720 35	-	-
1002Wa10	3 51 6	16 02 25	4 11 7	1 73 3	0 0494 2	1 0 175 3
1004Mi 22	3 139 1	5 15 42 6	4.11 /	2 0 2 7 3 0	-	-
1996Mo11	3 404 12	7 15 81 0	4.023 20	1 665 17		0 174 16
2000H;01	-	15 73 18	-	-	_	-
200011101 2002Be04	3 351 2	15.75 10	4 001 22	d 1 587 11		0 168 6
20025604	-	-	4.001 22	1 619 19		-
Recommended	3 400 2/	-	1 01 1 0	1 67 8 0	0 0498 19	201723
ite commente a	5.400 20	, 15.50 0	4.04 4 6	1.07 5 6	0.0450 12	5 0.172 5
Reference	520.9γ	529.8γ #	570.9γ #	594.5γ	611.6γ	615.8γ #
1967Bu14	_	10.3 <i>10</i> @	6.8 7	1.2 4 @	1.4 10 @	_
1967Gu04	_	13.0 4	7.08 14	0.74 10	1.59 <i>32</i> @	_
1970Re16	_	13.9 7	7.86 40	0.96 5 @	1.90 11	_
1973La32	_	10.16 32 @	6.77 14	1.28 18 @	1.48 27 @	_
1974Li11	_	12.4 3	7.04 14	0.70 5 @	1.67 9@	_
1977Ge12	_	12.78 13	7.45 8	_	-	_
1978Sa14	_	13.1 4	7.53 22	0.77 3	1.95 6	_
1981Ka37	_	13.46 7	7.70 8	0.813 27	2.001 27	_
1982B128	_	12.48 10	7.22 6	-	-	_
19825012	0.22 3	13.3 2	7.65 9	0.77 2	1.86 4	_
1986Og03	0.21 1	13.18 34	7.64 20	0.80 9	1.86 12	0.044 13
1988Ad05	0.20 3	12.83 29	7.42 18	0.769 18	1.85 6	0.163 7
1989Da18	0.240 23	13.46 18	7.81 10	0.803 32	1.95 10	_
1992Ar06	0.21 3	12.6 4	7.27 23	0.78 7	1.86 11	0.044 13
1992Wa10	_	13.19 15	7.96 9	0.761 22	2.097 26 @	2 _
1992Wa33	0.276 13	_	_	_	_	0.138 10
1994Mi22	_	13.38 5	7.50 7	_	1.95 6	_
1996Mo11	0.212 13	13.33 7	7.705 43	0.880 20 @	1.911 34	0.160 10
2000Hi01	-	13.30 15	7.65 11	_	_	_
2002Be04	0.241 7	12.88 7	7.47 4	0.788 <i>8</i>	1.850 22	0.128 6
Recommended	0.227 6	13.14 <i>24</i> e	7.51 20 6	0.783 7	1.900 18	0.128 17

$^{166}\text{Ho}\ \beta^{-}$ Decay (1200 y) (continued)

$\gamma(^{166}{ m Er})$ (continued)

Reference	640.0γ	644.7γ #	670.6γ #	691.3γ	705.1 γ #	711.7γ #
1967Bu14	_	0.27 15	7.0 7	1.94	_	72.5 60
1967Gu04	_	0.31 3@	7.35 29	1.62 8 @	_	71.5 7
1970Re16	0.22 7 @	0.246 27	7.88 40	2.09 11 @	_	80.2 40 @
1973La32	_	-	7.01 25	1.85 9	_	71.65 68
1974Li11	_	_	6.98 16	1.60 10 @	_	71.1 14
1977Ge12	_	_	7.37 8	1.805 18	_	74.5 8
1978Sa14	0.122 16	0.213 19	7.37 21	1.87 6	_	74.5 22
1981Ka37	0.124 18	0.222 24	7.583 35	1.886 18	_	76.47 27
1982B128	_	_	7.28 6	_	_	72.4 4
19825012	0.12 1	0.19 1	7.53 9	1.87 4	_	75.7 8
1986Og03	0.11 1	0.23 6	7.16 20	1.86 9	0.011 1	75.3 18
1988Ad05	0.124 5	0.186 5	7.32 17	1.79 4	0.025 15	73.8 20
1989Da18	_	_	7.60 9	1.839 40	_	76.4 8
1992Ar06	0.11 2	0.21 4	6.98 22	1.78 9	0.011 2	72.0 19
1992Wa10	_	_	7.72 8	1.87 4	_	77.5 6
1992Wa33	0.137 <i>3</i>	0.206 4	_	_	0.0272 6	_
1994Mi22	_	_	7.618 39	1.914 26	_	76.30 26
1996Mo11	0.138 9	0.189 11	7.563 43	1.862 19	_	76.34 43
2000Hi01	_	_	7.80 12	_	_	77.3 7
2002Be04	0.123 4	0.154 4	7.33 4	1.804 14	_	74.10 28
2006Ku03 s	_	0.2071 29	_	_	_	_
Recommended	0.128 3	0.193 6	7.49 <i>13</i> e	1.851 11	0.019 <i>8</i> e	75.2 <i>12</i> e
Reference	736.7γ	752.3γ #	778.9γ # 7	785.8γ # ε	810.3γ # 8	330.6γ #
1967Bu14	0.45 15	16.1 12	3.8 <i>3</i>	-	76 8	12.5 10
1967Gu04	0.50 5	15.2 <i>3</i> @	3.88 6	-	76.4 8	12.9 3
1970Re16	0.14 4 @	17.9 <i>10</i> @	4.51 23	-	85.7 42 @	14.58@
1973La32	0.46 4	16.06 40	3.72 7	-	76.4 8	12.07 <i>25</i> @
1974Li11	0.45 5	15.98 32	4.16 12	-	75.7 15	12.83 <i>3</i>
1977Ge12	-	16.57 16	4.13 4	-	78.1 8	13.26 <i>13</i>
1978Sa14	0.506 24	16.6 5	4.17 12	-	78.7 22	13.3 4
1981Ka37	0.531 19	16.99 6	4.267 20	-	80.39 30	13.57 6
1982Bl28	-	16.26 12	4.00 3	-	76.94	12.99 10
1982So12	0.51 2	17.0 2	4.25 6	-	80.1 8	13.5 2
1986Og03	0.50 4	17.08 43	4.22 14	0.019 4	79.3 18	13.51 35
1988Ad05	0.530 14	16.5 4	4.13 10	0.023 3	78.2 20	13.3 <i>3</i>
1989Da18	0.547 22	16.98 22	4.27 7	-	80.3 11	13.62 18
1992Ar06	0.49 4	16.2 5	4.04 14	0.019 4	76.1 20	12.9 4
1992Wa10	0.510 12	17.16 14	4.28 6	-	80.8 6	13.87 <i>18</i>
1992Wa33	-	-	-	$0\ .\ 0\ 3\ 1\ 2 1\ 0$		-
1994Mi22	-	16.97 7	4.257 25	-	80.52 29	13.64 7
1996Mo11	0.550 17	16.98 9	4.242 26	-	80.3 4	13.64 7
2000Hi01	-	16.95 21	-	-	80.4 7	13.49 17
2002Be04	0.530 7	16.50 8	4.158 25	-	77.96 41	13.17 7
2006Ku03 s	-	-	-	-	[79.0] -	-
Recommended	0.524 5	16.80 <i>17</i> e	4.16 <i>10</i> e	0.026 5 e	79.0 15 e	13.13 e

$\gamma(^{166}{\rm Er})$ (continued)

Reference	875 . 6γ	951 . 0γ	1010 . 3γ	1120.4γ	1146.8γ	1241.5γ #
 1967Bu14	1.15 <i>15</i> @	3.6 6	0.1 1		0.38 6 @	1.25 25
1967Gu04	0.91 4 @	3.16 12 @	0.11 3	0.26 2	0.26 2	1.06 4
1970Re16	1.08 8 @	4.15 20 @	0.123 14 @	0.314 27 @	0.301 27	1.37 7@
1973La32	1.14 7@	3.50 14 @	-	0.30	0.38 5	1.22 5
1974Li11	1.00 9	3.74 16	-	-	-	1.17 12
1977Ge12	0.979 10	3.68 4	-	-	0.274 3	1.098 13
1978Sa14	0.99 3	3.71 11	0.096 7	0.327 13 @	0.271 13	1.14 3
1981Ka37	1.026 12	3.800 18	0.104 6	-	0.293 20	1.071 31
1982Bl28	-	3.65 4	-	-	-	-
1982So12	0.99 4	3.89 6	0.11 1	0.35 1 @	0.30 1	1.21 4
1986Og03	1.00 5	3.87 12	0.13 3@	0.28 5	0.29 4	1.21 6
1988Ad05	0.987 24	3.74 9	0.107 3	0.268 6	0.279 7	1.118 25
1989Da18	1.002 21	3.85 6	-	-	0.281 27	1.116 32
1992Ar06	0.97 6	3.68 12	0.11 2	0.28 3	0.27 3	1.14 5
1992Wa10	1.003 21	3.90 5	-	-	0.290 6	1.211 10
1992Wa33	-	-	0.1113 22	0.281 6	0.289 6	-
1994Mi22	-	3.789 22	-	-	-	-
1996Mo11	1.016 17	3.793 23	0.107 6	0.278 10	0.279 6	1.121 13
2002Be04	0.994 10	3.709 26	0.100 4	0.260 4	0.278 7	1.099 12
2006Ku03 s	-	-	0.1082 19	-	-	-
Recommended	1.003 7	3.775 18	0.1073 13	0.273 <i>3</i> e	0.282 3	1.15 <i>6</i> e

Reference	1282.1γ	1306.6γ #	1331.0γ #	1400.8γ	1427.2γ
1967Bu14	-	-	-	-	0.69 7
1967Gu04	0.22 2	-	-	0.72 2	0.69 2
1970Re16	0.314 27 @	-	-	0.75 4	0.81 4 @
1973La32	0.38 4 @	-	-	0.86 5 @	0.65 3
1974Li11	0.24 5	-	-	-	-
1977Ge12	0.241 4	-	-	0.670 7	0.666 10
1978Sa14	0.246 12	-	-	0.686 21	0.667 21
1981Ka37	0.226 18	-	-	0.702 27	0.701 27
1982So12	0.29 1	-	-	0.74 2	0.72 2
1986Og03	0.28 4	0.010 2	0.010 1	0.76 4	0.77 4 @
1988Ad05	0.240 8	0.0044 4	0.0051 6	0.672 16	0.673 17
1989Da18	0.271 18	-	-	0.720 25	0.708 18
1992Ar06	0.27 3	0.010 2	0.010 2	0.70 3	0.68 3
1992Wa10	0.268 12	-	-	0.707 17	0.705 28
1992Wa33	0.263 5	0.00615 23	0.0025 10	-	-
1996Mo11	0.2434 27	-	-	0.689 6	0.696 6
2002Be04	0.255 6	-	-	0.697 10	0.664 10
Recommended	0.256 4	0.0076 15e	0.0059 16	0.697 5	0.687 5

Data for this γ are discrepant (χ^2 exceeds critical value).

 statistical outlier based on Chauvenet criterion; datum excluded from average.

s I γ data were reported relative to I (810 γ)=80.0; values have been scaled so I (810 γ)=79.0, the value adopted here.

d for doublet.

e weighted average with uncertainty expanded to encompass most precise datum.

I γ normalization: the absolute intensity per decay for the 184 γ determined from activity measurements is 0.699 14 (1989Da18), 0.7258 22 (1994Mi22), 0.7021 35 (1996Mo11), 0.724 7 (2000Hi01), 0.726 5 (2002Be04). No β^- feeding is expected from the (7)- ¹⁶⁶Ho parent to the 0+ g.s., 2+ 80.6 level or the 4+ 265 level. $\Sigma(I(\gamma+ce)$ to 265 level) + Σ (I($\gamma+ce$) for crossover transitions to g.s. and 81 level)=100 implies I γ normalization=0.731 9 and $\Sigma(I(\gamma+ce)$ to 81 level)+I($\gamma+ce$)(786 γ)+I($\gamma+ce$)(859 γ)=100 implies I γ normalization=0.723 6; the evaluator adopts the weighted average of these two values and the five absolute measurements, viz., 0.720 4. However, $\Sigma(I(\gamma+ce)$ to g.s.)=100 implies I γ normalization=0.773 11 which gives an unphysical intensity imbalance at the 81 level, suggesting that the adopted I(81 γ) is too low.

			$\gamma(^{166}{ m Er})$ (continued)		
$E\gamma^{\dagger}$	E(level)	<u>Ι</u> γ [‡] &	Mult.§	δ	α	Comments
(73.45 [@] 2)	859.384	0.002@	M1		6.92	$\alpha(K) = 5.80 \ 9; \ \alpha(L) = 0.876 \ 13; \alpha(M) = 0.194 \ 3; \alpha(N+) = 0.0522 \ 8. \alpha(N) = 0.0453 \ 7; \alpha(O) = 0.00655 \ 10; \alpha(P) = 0.00350 \ 5$
80.574 4	80.574	16.62 <i>12</i>	Ε2		6.78	α(K) = 1.671 24; α(L) = 3.92 6; α(M) = 0.954 14; α(N) = 0.241 4. α(N) = 0.216 3; α(O) = 0.0251 4; α(P) = 7.29×10-5 11. Εγ: unweighted average of 80.573 15 (1970Re16), 80.589 5 (1975Mo13), 80.572 15 (1982So12), 80.586 1 (1986Og03), 80.586 1 (1986Og03), 80.586 3 (1992Wa33), 80.566 3 (1992Wa33), 80.577 7 (1992Ar06). Weighted average is 80.577 4. Iγ: this value appears to be too low; intensity balance at the 81 level requires I(γ+ce)(81γ)=Σ (I(γ+ce) to 81 level)=138.3 5, so Iγ(81)=17.78 21 is expected assuming α(E2)
94.674 3	1786.969	0.195 3	[M1]		3.33	theory)=6.78. $\alpha(K)=2.79 \ 4; \ \alpha(L)=0.419 \ 6; \ \alpha(M)=0.0930 \ 13; \ \alpha(N)=0.0250 \ 4.$ $\alpha(N)=0.0217 \ 3; \ \alpha(O)=0.0001723 \ 25.$ Ey: weighted average of 94.679 \ 9 (1992Ar06), 94.672 \ 2 (1992Wa33), 94.697 \ 23 (1988Ad05), 94.683 \ 30 (1970Re16). Unweighted average: 94.680 \ 7.
(96.85 [@] 5)	956.227	0.00307 [@] 16	E2		3.32	$\begin{aligned} &\alpha(\mathbf{K}) = 1.9 \ \ 8; \ \alpha(\mathbf{L}) = 1.0 \ \ 7; \\ &\alpha(\mathbf{M}) = 0.25 \ \ 16; \\ &\alpha(\mathbf{N}+) = 0.06 \ \ 4. \\ &\alpha(\mathbf{N}) = 0.06 \ \ 4; \ \alpha(\mathbf{O}) = 0.007 \ \ 4; \\ &\alpha(\mathbf{P}) = 0.00010 \ \ 6. \end{aligned}$

$E\gamma^{\dagger}$	E(level)	1γ‡&	Mult.§	δ	α	Comments
119.041 3	1075.271	0.235 6	(M1+E2)	+1.94 +23-21	1.579 24	$\begin{array}{c} \alpha({\rm K}) \!=\! 0.86 \; 4; \; \alpha({\rm L}) \!=\! 0.556 \; 19; \\ \alpha({\rm M}) \!=\! 0.134 \; 5; \\ \alpha({\rm N}) \!=\! 0.0341 \; 12. \\ \alpha({\rm N}) \!=\! 0.0304 \; 112. \\ \alpha({\rm O}) \!=\! 0.00366 \; 12; \\ \alpha({\rm P}) \!=\! 4.2 \!\times\! 10^{-5} \; 3. \\ {\rm E}\gamma: \; {\rm weighted \; average \; of} \\ 119.035 \; 10 \; (1992{\rm Ar06}), \\ 119.040 \; 2 \; (1992{\rm Wa33}); \\ 119.09 \; 4 \; (1982{\rm Mad}05); \\ 119.07 \; 1 \; (1986{\rm Og}03), \\ 119.08 \; 4 \; (1982{\rm So}12), \\ 119.04 \; 3 \; (1970{\rm Re16}). \\ ({\rm unweighted \; average \; is} \\ 119.059 \; 10.). \\ {\rm Mult., \& D + Q \; from } \\ \end{array}$
121.175 3	1786.969	0.350 <i>5</i>	[E2]		1.442	119γ-876γ(θ) for intraband γ (1996Al31). $\alpha(K) = 0.665 \ I0;$ $\alpha(L) = 0.596 \ 9;$ $\alpha(M) = 0.1443 \ 2I;$ $\alpha(N+) = 0.0366 \ 6.$ $\alpha(N) = 0.0327 \ 5;$ $\alpha(O) = 0.00388 \ 6;$ $\alpha(P) = 2.81 \times 10^{-5} \ 4.$ Eγ: weighted average of 121.175 \ I0 (1992Ar06), 121.174 \ 2 (1992Wa33), 121.209 \ 26 (1988Ad05), 121.20 \ 1 (1986Og03), 121.161 \ 30 (1970Re16). Other Eγ: 121.30 \ 10 (1982So12); statistical outlier. Unweighted
135.260 <i>4</i>	1827.552	0.1364 <i>19</i>	[E2]		0.970	average: 121.184 9. $\alpha(K) = 0.494$ 7; $\alpha(L) = 0.365$ 6; $\alpha(M) = 0.0882$ 13; $\alpha(N+) = 0.0224$ 4. $\alpha(N) = 0.0200$ 3; $\alpha(O) = 0.00239$ 4; $\alpha(P) = 2.13 \times 10^{-5}$ 3. Ey: weighted average of 135.257 14 (1992Ar06), 135.259 4 (1992Wa33), 135.275 26 (1988Ad05), 135.30 2 (1986Og03), 135.30 10 (1982So12), 135.238 35 (1970Re16). Unweighted average is 135.272 10.
140.692 6	1215.963	0.0584 10	[M1 , E2]		0.96 <i>12</i>	$\begin{split} &\alpha(\mathbf{K})\!=\!0.67~23;~\alpha(\mathbf{L})\!=\!0.22~9;\\ &\alpha(\mathbf{M})\!=\!0.052~22;\\ &\alpha(\mathbf{N}\!+\!)\!=\!0.013~6.\\ &\alpha(\mathbf{N})\!=\!0.012~5;\\ &\alpha(\mathbf{O})\!=\!0.0015~5;\\ &\alpha(\mathbf{P})\!=\!3.7\!\times\!10^{-5}~19.\\ &\mathbf{E}\gamma:~weighted~average~of~}\\ &140.702~20~(1992Ar06),\\ &140.692~5~(1992Wa33),\\ &140.73~4~(1988Ad05),\\ &140.72~2~(1986Og03),\\ &140.81~10~(1982So12),\\ &140.62~4~(1970Re16).\\ \end{split}$

			$\gamma(^{166}{ m Er})$ (continued)		
Εγ [†]	E(level)	Ιγ‡&	Mult.§	δ	α	Comments
160.076 5	1376.029	0.129 8	[M1 , E2]		0.64 11	$\begin{split} &\alpha(K)\!=\!0.47 \ 16; \ \alpha(L)\!=\!0.13 \ 4; \\ &\alpha(M)\!=\!0.031 \ 11; \\ &\alpha(N\!+\!)\!=\!0.008 \ 3. \\ &\alpha(N)\!=\!0.0072 \ 24; \\ &\alpha(O)\!=\!0.00093 \ 23; \\ &\alpha(P)\!=\!2.6\!\times\!10^{-5} \ 13. \\ & E\gamma: \ weighted \ average \ of \\ &160.077 \ 20 \ (1992Ar06), \\ &160.074 \ 6 \ (1992Wa33), \end{split}$
101 701 0	1007 550	0.150 /				160.09 3 (1988Ad05), 160.09 2 (1986Og03), 160.09 10 (1982So12), 160.06 5 (1970Re16). Unweighted average is 160.080 5.
161.731 8	1827.552	0.150 4	[M1 , E2]		0.62 11	$\begin{split} &\alpha(\mathbf{K}) = 0.45 \ 16; \ \alpha(\mathbf{L}) = 0.13 \ 4; \\ &\alpha(\mathbf{M}) = 0.030 \ 10; \\ &\alpha(\mathbf{N}+) = 0.0078 \ 25. \\ &\alpha(\mathbf{N}) = 0.0069 \ 23; \\ &\alpha(\mathbf{O}) = 0.00089 \ 22; \\ &\alpha(\mathbf{O}) = 0.0089 \ 22; \\ &\alpha(\mathbf{P}) = 2.5 \times 10^{-5} \ 12. \\ & \text{E}\gamma: \text{ weighted average of} \\ &161.707 \ 14 \ (1992\text{Ar06}), \\ &161.728 \ 6 \ (1992\text{Wa33}), \\ &161.78 \ 3 \ (1988\text{Ad05}), \\ &161.78 \ 2 \ (1986\text{Og03}), \end{split}$
						161.75 <i>8</i> (1982So12), 161.75 <i>5</i> (1970Re16). Unweighted average is 161.749 <i>12</i> .
170.288 23	956.227	0.0194 5	E2		0.434	$\begin{split} &\alpha(\mathbf{K})\!=\!0.258\ 4;\\ &\alpha(\mathbf{L})\!=\!0.1348\ 19;\\ &\alpha(\mathbf{M})\!=\!0.0323\ 5;\\ &\alpha(\mathbf{N}\!+\!.)\!=\!0.00825\ 12.\\ &\alpha(\mathbf{N})\!=\!0.00734\ 11;\\ &\alpha(\mathbf{O})\!=\!0.000894\ 13;\\ &\alpha(\mathbf{P})\!=\!1.170\!\times\!10^{-5}\ 17.\\ &\mathrm{E}\gamma:\ from\ 1992Wa33.\\ &\mathrm{I}\gamma:\ weighted\ average\ of\\ &0.0192\ 11\ (1992Wa33)\ and\\ &0.0195\ 6\ (2006\mathrm{Ku}03,\\ &\mathrm{relative\ to\ adopted}\\ &\mathrm{I}(810\gamma)\!=\!79.0). \end{split}$

$^{166}\text{Ho}~\beta^{-}$ Decay (1200 y) (continued)

			$\gamma(^{166}{\rm Er})$ (continued)		
$_{\rm E\gamma^\dagger}$	E(level)	Iγ [‡] &	Mult.§	δ	α	Comments
184.4113 <i>24</i>	264.987	100.0	E2		0.331	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.205 \; 3; \\ &\alpha(\mathbf{L}) \!=\! 0.0964 \; 14; \\ &\alpha(\mathbf{M}) \!=\! 0.0230 \; 4; \\ &\alpha(\mathbf{M}) \!=\! 0.00590 \; 9. \\ &\alpha(\mathbf{N}) \!=\! 0.00524 \; 8; \\ &\alpha(\mathbf{O}) \!=\! 0.000642 \; 9; \\ &\alpha(\mathbf{P}) \!=\! 9.48 \!\times\! 10^{-6} \; 14. \\ &\mathbf{I}\gamma; \; \mathbf{I}\gamma(\%) \!=\! 69.9 \; 14 \\ &(1989Da18); \; 70.21 \; 35 \\ &(1996Mo11); \; 72.58 \; 22 \\ &(1994Mi22); \; 72.4 \; 7 \\ &(2000Hi01); \; 72.6 \; 5 \\ &(2002Be04). \\ &\mathbf{E}\gamma; \; weighted \; average \; of \\ &184.407 \; 15 \; (1975Mo13), \\ &184.415 \; 6 \; (1975Mo13), \\ &184.42 \; 2 \; (1988Cg03), \\ &184.404 \; 7 \; (1988Ad05), \\ &184.412 \; 3 \; (1992Wa33). \\ &\mathbf{E}(\mathbf{N}) \!=\! \mathbf{E}(\mathbf{N}) \!=$
190.762 <i>15</i>	1786.969	0.297 3	[E2]		0.295	$\begin{aligned} &\alpha(\mathbf{K}) = 0.186\ 3; \\ &\alpha(\mathbf{L}) = 0.0838\ 12; \\ &\alpha(\mathbf{M}) = 0.0200\ 3; \\ &\alpha(\mathbf{N} = 0.00512\ 8. \\ &\alpha(\mathbf{N}) = 0.00555\ 7; \\ &\alpha(\mathbf{O}) = 0.000559\ 8; \\ &\alpha(\mathbf{P}) = 8.66 \times 10^{-6}\ 13. \end{aligned}$ Ey: unweighted average of 190.747\ 16\ (1992Ar06), 190.746\ 3\ (1992Wa33), 190.759\ 29\ (1988Ad05), 190.80\ 3\ (1986Og03), 190.81\ 2\ (1982So12), 190.711\ 25\ (1970Re16). \\ Weighted average is 190\ 748\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\
214.807 8	1786.969	0.604 8	[E2]		0.199	$\begin{aligned} &\alpha(K) = 0.1318 \ 19; \\ &\alpha(L) = 0.0516 \ 8; \\ &\alpha(M) = 0.01226 \ 18; \\ &\alpha(N) = 0.00280 \ 4; \\ &\alpha(O) = 0.000347 \ 5; \\ &\alpha(O) = 0.000347 \ 5; \\ &\alpha(P) = 6.31 \times 10^{-6} \ 9. \end{aligned}$ Ey: weighted average of 214.79 3 (1992Ar06), 214.814 9 (1992Wa33), 214.79 2 (1986Og03), 214.79 2 (1986Og03), 214.79 4 (1982So12), 214.76 5 (1970Re16). The unweighted average is 214.789 9. \end{aligned}
			$\gamma(^{166}{\rm Er})$ (6	continued)		
---------------------	----------	------------------	-----------------------------	------------	--------	--
$E\gamma^{\dagger}$	E(level)	Ιγ‡&	Mult.§	δ	α	Comments
215.8887 <i>21</i>	1075.271	3.570 <i>11</i>	[E2]		0.195	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.1298 \ 19; \\ &\alpha(\mathbf{L}) \!=\! 0.0506 \ 7; \\ &\alpha(\mathbf{M}) \!=\! 0.01201 \ 17; \\ &\alpha(\mathbf{M}) \!=\! 0.00308 \ 5. \\ &\alpha(\mathbf{N}) \!=\! 0.00274 \ 4; \\ &\alpha(\mathbf{O}) \!=\! 0.000340 \ 5; \\ &\alpha(\mathbf{P}) \!=\! 6.23 \!\times\! 10^{-6} \ 9. \\ &\text{Other I}_{Y}: \mathbf{I}_{Y}(119_{Y})/\mathbf{I}_{Y}(215.8_{Y}) \!=\! \\ &0.063 \ 5 \ (1969 \mathrm{Su07}). \\ &\mathbf{E}_{Y}: \text{ weighted average of} \\ &215.871 \ 10 \ (1992 \mathrm{Ar06}), \\ &215.892 \ (1992 \mathrm{Wa33}), \\ &215.90 \ 1 \ (1986 \mathrm{Og}03), \\ &215.875 \ 30 \ (1970 \mathrm{Re16}). \\ \end{split}$
231.318 8	1827.552	0.286 3	[E2]		0.1561	$\begin{aligned} &\alpha(K) = 0.1063 \ 15; \\ &\alpha(L) = 0.0384 \ 6; \\ &\alpha(M) = 0.00909 \ 13; \\ &\alpha(N+) = 0.00234 \ 4. \\ &\alpha(N) = 0.000268 \ 3; \\ &\alpha(O) = 0.000260 \ 4; \\ &\alpha(P) = 5.18 \times 10^{-6} \ 8. \end{aligned}$ Ey: weighted average of 231.32 \ 4 (1992Ar06), 231.320 \ 10 (1992Wa33), 231.322 \ 26 (1988Ad05), 231.31 \ 2 (1986Og03). \\ &Other E\gamma: 231.39 \ 3 \\ &(1982So12), 231.28 \ 4 \\ &(1970Re16) \ (statistical outliers). Unweighted average: 231.318 \ 3. \end{aligned}
255.20 <i>12</i>	1827.552	0.0059 <i>13</i>	[E2]		0.1140	$\alpha(K) = 0.0801 \ 12;$ $\alpha(L) = 0.0262 \ 4;$ $\alpha(M) = 0.00618 \ 9;$ $\alpha(N) = 0.001593 \ 23.$ $\alpha(N) = 0.001411 \ 20;$ $\alpha(O) = 0.000178 \ 3;$ $\alpha(P) = 3.99 \times 10^{-6} \ 6.$ Ev.Iv: from 1988Ad05.
259.740 <i>3</i>	1215.963	1.468 <i>8</i>	[E2]		0.1079	$\begin{array}{l} \alpha({\rm K}) \!=\! 0.0761 \ 11; \\ \alpha({\rm L}) \!=\! 0.0245 \ 4; \\ \alpha({\rm M}) \!=\! 0.00577 \ 8; \\ \alpha({\rm N} \!=\! 0.001489 \ 21. \\ \alpha({\rm N}) \!=\! 0.001318 \ 19; \\ \alpha({\rm O}) \!=\! 0.001669 \ 24; \\ \alpha({\rm P}) \!=\! 3.81 \!\times\! 10^{-6} \ 6. \\ \text{Other Iy: I} \gamma(140.7\gamma) / I\gamma(259.7\gamma) \!= \\ 0.037 \ 9 \ (1969 \text{Su07}). \\ \text{E}\gamma: \ \text{weighted average of} \\ 259.70 \ 3 \ (1992 \text{Aro6}), \\ 259.714 \ 3 \ (1992 \text{Aro6}), \\ 259.76 \ 2 \ (1986 \text{Og03}), \\ 259.716 \ 20 \ (1982 \text{So12}), \\ 259.716 \ 20 \ (1970 \text{Re16}). \\ \text{Unweighted average is} \\ 259.732 \ 10. \\ \end{array}$

¹⁶⁶Ho β^- Decay (1200 y) (continued)

$\gamma(^{166}\mathrm{Er})$ (continued)									
$E\gamma^{\dagger}$	E(level)	Ιγ ^{‡&}	Mult.§	δ	α	Comments			
280.464 2	545.451	40.78 <i>10</i>	E2		0.0849	$\begin{split} &\alpha(\mathbf{K}) = 0.0611 \ 9; \\ &\alpha(\mathbf{L}) = 0.0183 \ 3; \\ &\alpha(\mathbf{M}) = 0.00430 \ 6; \\ &\alpha(\mathbf{N}+) = 0.001112 \ 16. \\ &\alpha(\mathbf{N}) = 0.000984 \ 14; \\ &\alpha(\mathbf{O}) = 0.0001255 \ 18; \\ &\alpha(\mathbf{P}) = 3.11 \times 10^{-6} \ 5. \\ &\mathbf{E}\gamma: \ weighted \ average \ of \\ & 280.456 \ 20 \ (1970 \text{Re}16); \\ & 280.46 \ 2 \ (1982 \text{So}12); \\ & 280.46 \ 2 \ (1988 \text{Ad}05); \\ & 280.450 \ 26 \ (1988 \text{Ad}05); \\ & 280.468 \ 7 \ (1992 \text{Ar}06); \\ & 280.468 \ 2 \ (1992 \text{Ar}06); \\ & 280.458 \ 2 \ (1992 \text{Ar}06); \\ & 280.458 \ 3. \\ \end{split}$			
300.755 4	1376.029	5.13 <i>3</i>	E2 (+M3)	-0.018 +15-16	0.0691 <i>19</i>	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0507 \ 14; \\ &\alpha(\mathbf{L}) = 0.0143 \ 4; \\ &\alpha(\mathbf{M}) = 0.00334 \ 9; \\ &\alpha(\mathbf{M}) = 0.000765 \ 22; \\ &\alpha(\mathbf{O}) = 9.8 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{P}) = 2.63 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{P}) = 2.63 \times 10^{-6} \ 12. \end{aligned}$ Mult., & from 1985Ma22. Other I \gamma: I \gamma(160.1 \gamma) / I \gamma 300.75 \gamma) \\ &= 0.032 \ 4 \ (1969Su07). \end{aligned} Ey: weighted average of 300.731 \ 9 \ (1992Ar06), 300.756 \ 3 \ (1992Wa33), 300.756 \ 3 \ (1992Wa33), 300.771 \ 1 \ (1986Og03), 300.771 \ 2 \ (1982So12), 300.744 \ 20 \ (1970Re16). Unweighted average is 300 \ 750 \ 7 \end{aligned}			
304.91 5	1215.963	0.027 4				Ey: unweighted average of 304.8 <i>I</i> (1996Mo11), 305.03 <i>5</i> (1992Ar06), 304.86 <i>7</i> (1992Wa33), 304.82 <i>4</i> (1988Ad05), 305.03 <i>5</i> (1986Og03). Data are discrepant. Weighted average is 304.92 <i>5</i> .			
339.751 <i>21</i>	1555.739	0.2221 <i>21</i>	(E2)		0.0477	$\label{eq:alpha} \begin{split} &\alpha(K) = 0.0358 \ 5; \\ &\alpha(L) = 0.00915 \ 13; \\ &\alpha(M) = 0.00213 \ 3; \\ &\alpha(N) = 0.000553 \ 8. \\ &\alpha(N) = 0.000488 \ 7; \\ &\alpha(O) = 6.35 \times 10^{-5} \ 9; \\ &\alpha(P) = 1.89 \times 10^{-6} \ 3. \\ & & & & & & \\ & & & & & \\ & & & & & $			

¹⁶⁶Ho β⁻ Decay (1200 y) (continued)

			γ(¹⁶⁶ Er) (continued)		
$E\gamma^{\dagger}$	E(level)	<u>Ιγ</u> ‡&	Mult.§	δ	α	Comments
365.760 <i>5</i>	911.204	3.400 20	E2		0.0385	$\begin{split} &\alpha(\mathbf{K}) = 0.0293 \ 5; \\ &\alpha(\mathbf{L}) = 0.00709 \ 10; \\ &\alpha(\mathbf{M}) = 0.001643 \ 23; \\ &\alpha(\mathbf{N}+) = 0.000428 \ 6. \\ &\alpha(\mathbf{N}) = 0.000377 \ 6; \\ &\alpha(\mathbf{O}) = 4.95 \times 10^{-5} \ 7; \\ &\alpha(\mathbf{O}) = 1.562 \times 10^{-6} \ 22. \\ &\mathbf{E}\gamma: \ weighted \ average \ of \ 365.736 \ 9 \ (1992 Ar06), \\ &365.765 \ 4 \ (1992 Wa33) \\ &365.765 \ 4 \ (1992 Wa33) \\ &365.76 \ 2 \ (1986 Og03), \\ &365.774 \ 3 \ (1982 So12), \\ &365.777 \ 16 \ (1975 Mo13). \end{split}$
$(410.797^{@}16)$	956.227	0.0231@ 7	E2			
410.949 7	1786.969	15.56 <i>6</i>	E1+M2	-0.010 5	0.00873	$\label{eq:alpha} \begin{split} &\alpha(K) \!=\! 0.00739 \ 11; \\ &\alpha(L) \!=\! 0.001047 \ 15; \\ &\alpha(M) \!=\! 0.000231 \ 4; \\ &\alpha(N+) \!=\! 6.14 \!\times\! 10^{-5} \ 9. \\ &\alpha(N) \!=\! 5.34 \!\times\! 10^{-5} \ 8; \\ &\alpha(O) \!=\! 7.57 \!\times\! 10^{-6} \ 11; \\ &\alpha(P) \!=\! 3.92 \!\times\! 10^{-7} \ 6. \\ & \text{Unweighted average of E} \\ & \text{Unweighted average of E} \\ & \text{Unweighted average of E} \\ & \text{(1992Ar06), 410.974 \ 5} \\ & \text{(1992Wa33), 410.96 \ 3} \\ & \text{(1988Ad05), 410.95 \ 1} \\ & \text{(1986Og03), 410.92 \ 2} \\ & \text{(1986Og03), 410.92 \ 2} \\ & \text{(1970Re16). Weighted} \\ & \text{average of these data is} \\ & \text{410.962 \ 6.} \\ & \delta: \ \text{from 1981Kr12. Other \ \delta:} \\ & -0.27 \ 18 \ (1965Re02); \\ \end{split}$
^x 449.8 <i>1</i> 451.542 <i>7</i>	1827.552	0.066 <i>10</i> 4.04 <i>4</i>	E1+M2	-0.0023 <i>22</i>	0.00706 <i>14</i>	0.23 2 (1963Ge09). E_{γ},I_{γ} : from 1996Mo11. $\alpha(K)=0.00598$ 11; $\alpha(L)=0.000843$ 18; $\alpha(M)=0.000186$ 4; $\alpha(M)=4.30\times10^{-5}$ 9; $\alpha(O)=6.12\times10^{-6}$ 13; $\alpha(P)=3.19\times10^{-7}$ 7. E_{γ} : weighted average of 451.528 9 (1992Ar06), 451.554 6 (1992Wa33), 451.531 26 (1988Ad05), 451.532 (1988Og03), 451.524 25 (1970Re16). Unweighted average is 451.528 7. δ : from 1985Ma22. Other δ :

¹⁶⁶Ho β⁻ Decay (1200 y) (continued)

$\gamma(^{166}{ m Er})$ (continued)									
$E\gamma^{\dagger}$	E(level)	<u>Ι</u> γ ^{‡&}	Mult.§	δ	α	Comments			
464.832 6	1376.029	1.67 8	E2+M1	-63 +12-19	0.0200 4	α(K)=0.0158 3; $α(L)=0.00326 5; $ $α(M)=0.000747 12; $ $α(M)=0.000196 3. $ $α(N)=0.000172 3; $ $α(O)=2.31×10-5 4; $ $α(P)=8.70×10-7 18. $ 5: from 1985Al22. δ data: $-80<δ<+30$ (1975Ba39); 11 $-7+infinity or$ $0.20 + 14 - 12$ (1981Ka37); $(-13 - 15 + 5, neodimium ethyl sulfate; -51 + 21-Infinity, Ho metal) (1981Kr12); -32 -98+14 (1981La27); -63 + 122 - 19 (1985Al22); -238 + 152 - 303 (1985Ma22); -238 +153 + 320 (1990Ha34; solution includes ∞). Ey: weighted average of 464.819 12 (1992Ar06), 464.839 7 (1992Wa33), 464.852 20 (1988Ad05), 464.80 3 (1982So12), 464.83 4 (1970Re16). Other: 464.76 2 (1986Og03), statistical outlier. Unweighted average 1646422 7$			
476.378 19	1692.292	0.050 3				 average is 464.823 7. Eγ: weighted average of 476.38 6 (1992Ar06), 476.380 26 (1992Wa33), 476.37 4 (1988Ad05), 476.38 6 (1986Og03). Unweighted average: 476.3775 25. 			
496.923 <i>8</i>	1572.177	0.172 3	E1		0.00566	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.00480 \ 7; \\ &\alpha(\mathbf{L}) \!=\! 0.000672 \ 10; \\ &\alpha(\mathbf{M}) \!=\! 0.0001479 \ 21; \\ &\alpha(\mathbf{M}+) \!=\! 3.94 \!\times\! 10^{-5} \ 6. \\ &\alpha(\mathbf{N}) \!=\! 3.43 \!\times\! 10^{-5} \ 5; \\ &\alpha(\mathbf{O}) \!=\! 4.88 \!\times\! 10^{-6} \ 7; \\ &\alpha(\mathbf{O}) \!=\! 2.57 \!\times\! 10^{-7} \ 4. \\ &\mathbf{E}\gamma: \ weighted \ average \ of \\ &497.0 \ 1 \ (1996 Mol11), \\ &496.86 \ 4 \ (1992 Ar06), \\ &496.929 \ 10 \ (1992 Wa33), \\ &496.85 \ 5 \ (1982 Mol5), \\ &496.88 \ 5 \ (1982 Sol2), \\ &Unweighted \ average: \\ &496.911 \ 22. \end{split}$			

¹⁶⁶Ho β^- Decay (1200 y) (continued)

_

		Iγ‡&	γ(¹⁶⁶ E	r) (continued)		Comments
$\mathrm{E}\gamma^{\dagger}$	E(level)		Mult.§	δ	α	
520.94 <i>3</i>	1596.232	0.227# 6				 Εγ: unweighted average of 520.86 5 (1982So12), 520.85 5 (1986Og03), 520.99 4 (1988Ad05), 521.0 1 (1989Da18), 520.85 5 (1992Ar06), 521.041 25 (1992Wa33), 521.0 1 (1996Mo11). Data are discrepant. Weighted average is 520.97 3. Extremely weak component of 521 γ from 786 level will have no significant effect on this Eγ.
520.945 <i>15</i>	785.933	0.00041 [#] 8	E2		0.01481	$\alpha(K) = 0.01184 \ 17;$ $\alpha(L) = 0.00230 \ 4;$ $\alpha(M) = 0.000525 \ 8;$ $\alpha(N+) = 0.0001381 \ 20.$ $\alpha(N) = 0.0001210 \ 17;$ $\alpha(O) = 1.644 \times 10^{-5} \ 23;$ $\alpha(P) = 6.58 \times 10^{-7} \ 10.$
529.807 11	1075.271	13.14 21	E2+M1	-25 +4-5	0.01421	$\begin{split} &\alpha(\mathbf{K}) = 0.01139 \ 16; \\ &\alpha(\mathbf{L}) = 0.00219 \ 3; \\ &\alpha(\mathbf{M}) = 0.000499 \ 7; \\ &\alpha(\mathbf{N}) = 0.00011316 \ 19. \\ &\alpha(\mathbf{N}) = 0.0001152 \ 17; \\ &\alpha(\mathbf{O}) = 1.568 \times 10^{-5} \ 22; \\ &\alpha(\mathbf{P}) = 6.34 \times 10^{-7} \ 9. \\ &\delta: \ from \ 1981La27. \ Other \ \delta: \\ & -85 \ +45 - Infinity \\ &(1965Re02); \ -25 \ 3 \\ &(1975Ba39); \ 158 \\ &+ infinity - 130 \\ &(1981Ka37); \ (-60 \ -45 + 19, \\ &neodimium \ ethyl \ sulfate; \\ & -62 \ -40 + 17, \ Ho \ metal) \\ &(1981Kr12); \ -43 \ +5 - 7 \\ &(1990Ha34); \ . \\ &\mathbf{E}\gamma: \ weighted \ average \ of \\ & 529.811 \ 10 \ (1992Ar06), \\ & 529.835 \ 18 \ (1988Ad05), \\ & 529.76 \ 2 \ (1986Og03), \\ & 529.79 \ 3 \ (1970Re16). \\ &Unweighted \ average \ is \\ & 529.801 \ 13. \\ \end{split}$

$^{166}\text{Ho}~\beta^{-}$ Decay (1200 y) (continued)

			$\gamma(^{166}{\rm Er})$ (continued)			
$E\gamma^{\dagger}$	E(level)	Ιγ‡&	Mult.§	δ	α	Comments
570.976 <i>18</i>	1786.969	7.51 20	E1+M2	+0.06 3	0.0044 4	$\label{eq:alpha} \begin{split} &\alpha(\mathbf{K}) \!=\! 0.0038 \; 3; \\ &\alpha(\mathbf{L}) \!=\! 0.00013 \; 5; \\ &\alpha(\mathbf{M}) \!=\! 0.000116 \; 10; \\ &\alpha(\mathbf{N}+) \!=\! 3.1 \!\times\! 10^{-5} \; 3. \\ &\alpha(\mathbf{N}) \!=\! 2.70 \!\times\! 10^{-5} \; 23; \\ &\alpha(\mathbf{O}) \!=\! 3.9 \!\times\! 10^{-6} \; 4; \\ &\alpha(\mathbf{P}) \!=\! 2.05 \!\times\! 10^{-7} \; 18. \\ \mathbf{E}\gamma: \; unweighted \; average \; of \\ &570.940 \; 10 \; (1992 \mathrm{Ar06}), \\ &571.034 \; 18 \; (1988 \mathrm{Ad05}), \\ &570.94 \; 2 \; (1986 \mathrm{Og03}), \\ &570.94 \; 2 \; (1986 \mathrm{Og03}), \\ &570.94 \; 30 \; (1970 \mathrm{Re16}); \\ &data \; are \; discrepant. \\ &Weighted \; average \; is \\ &570.962 \; 18. \\ &\mathbf{\delta}: \; from \; 1981 \mathrm{Kr12}. \; Other \; \mathbf{\delta}: \\ &-0.08 \; + 12 \!-\! 8 \; (1965 \mathrm{Re02}). \end{split}$
590.56 <i>3</i>	1665.795	0.032 3				Eγ: from 1992Wa33. Other: 590.67 <i>15</i> (1988Ad05).
594.46 <i>3</i>	859.384	0.783 7	E2+M1	-12 2	0.0109 4	$ α(K) = 0.0088 3; α(L) = 0.00160 4; α(M) = 0.000361 8; α(N +) = 9.54 × 10^{-5} 21. α(N) = 8.35 × 10^{-5} 18; α(O) = 1.15 × 10^{-5} 3; α(P) = 4.95 × 10^{-7} 17. δ: from Adopted Gammas. Others: -9 + 5 - 319 (1975Ba39), -9 + 5 - 1nfinity (1981La27); (-8 + 3 - 15, neodimium ethyl sulfate; -12 - 29 + 5. Ho metal) (1981Kr12); -36 + 32 - 11 (1990Ha34; sign from table 2, misprinted in table 1). Eγ: unweighted average of 594.536 24 (1992Ar06), 594.423 25 (1988Ad05), 594.423 (1982So12), 594.48 8 (1970Re16). Data are discrepant. Weighted average is 594.47 3. $
611.555 <i>26</i>	1827.552	1.900 <i>18</i>	E1+M2	-0.18 7	0.0054 <i>16</i>	$\begin{split} &\alpha(K) = 0.0046 \ 13; \\ &\alpha(L) = 0.00067 \ 22; \\ &\alpha(M) = 0.00015 \ 5; \\ &\alpha(N+) = 4.0 \times 10^{-5} \ 13. \\ &\alpha(N) = 3.5 \times 10^{-5} \ 12; \\ &\alpha(O) = 5.0 \times 10^{-6} \ 17; \\ &\alpha(P) = 2.7 \times 10^{-7} \ 9. \\ & E\gamma: unweighted average of \\ & 611.620 \ 17 \ (1992Ar06), \\ & 611.615 \ 26 \ (1988Ad05), \\ & 611.49 \ 3 \ (1986Og03), \\ & 611.53 \ 3 \ (1982So12), \\ & 611.52 \ 7 \ (1970Re16). \\ & Data are discrepant. \\ & Weighted average is \\ & 611.583 \ 26. \\ & \delta: from \ 1981Kr12. \end{split}$

¹⁶⁶Ho β⁻ Decay (1200 y) (continued)

$\gamma(^{166}\text{Er})$ (continued)									
$E\gamma^{\dagger}$	E(level)	Ιγ [‡] &	Mult.§	δ	α	Comments			
615.89 4	1572.177	0.128 17	(E1(+M2))			Eγ: weighted average of 616.0 1 (1996Mo11); 615.84 9 (1992Ar06), 615.85 5 (1992Wa33), 616.08 8 (1988Ad05), 615.84 5 (1986Og03). Unweighted average is 615.92 5. Mult: from Adopted Gammas.			
617.0 5	1692.292	0.031 9				Ey, Iy: from deconvolution of doublet (1988Ad05). See also comments on 615.96y.			
640.015 <i>9</i>	1596.232	0.128 3				 Εγ: weighted average of 639.97 9 (1992Ar06), 640.019 10 (1992Wa33), 640.003 24 (1988Ad05), 639.97 5 (1986Og03); 640.0 1 (1982So12); unweighted average is 639.992 10. Other Εγ: 639.77 6 (1970Re16); statistical outlier. 			
644.60 5	1555.739	0.193 6	E2+M1	+4.9 +23-11	0.0092 3	$\begin{split} &\alpha(K) = 0.00751\ 23;\\ &\alpha(L) = 0.00130\ 3;\\ &\alpha(M) = 0.000294\ 7;\\ &\alpha(N+) = 7.78\times10^{-5}\ 18.\\ &\alpha(N) = 6.79\times10^{-5}\ 16;\\ &\alpha(O) = 9.42\times10^{-6}\ 23;\\ &\alpha(P) = 4.25\times10^{-7}\ 15.\\ &\delta:\ from\ \gamma(\theta),\ oriented\\ &nuclei\ (Ho\ metal)\\ &(1990Ha34).\ Other\ \delta:\ >2\\ &(1975Ba39);\ \delta\leq -1\ or\ \delta\geq +4\\ &(1981Kr12);\ \delta> +1.4\ or\\ &\delta< -6\ (1981La27).\\ &E\gamma:\ unweighted\ average\ of\\ &644.689\ 15\ (1992Wa33),\\ &644.570\ 8\ (1992Wa33),\\ &644.570\ 8\ (1982So12),\\ &644.51\ 6\ (1982So12),\\ &644.45\ 10\ (1970Re16).\\ &Data\ are\ discrepant.\\ &Weighted\ average:\\ &644.598\ 24. \end{split}$			

¹⁶⁶Ho β⁻ Decay (1200 y) (continued)

			$\gamma(^{166}{\rm Er})$ (continued)			
$E\gamma^{\dagger}$	E(level)	Iγ [‡] &	Mult.§	δ	α	Comments
670.516 <i>14</i>	1215.963	7.49 13	E2+M1	+10.0 +16-12	0.00805 <i>13</i>	$ α(K)=0.00659 11; $ $ α(L)=0.001140 17; $ $ α(M)=0.000257 4; $ $ α(N+)=6.81×10^{-5} 10. $ $ α(N)=5.95×10^{-5} 9; $ $ α(O)=8.24×10^{-6} 13; $ $ α(P)=3.72×10^{-7} 6. $ δ: from 1981Kr12. δ data: (76 +infinity-71 or 1.6 +11-3 (1981Ka37)); (+10.0 +16-12, Ho metal; +9.4 +29-16, crystal of neodymium ethyl sulfate) (1981Kr12); +25 +17-7 (1985Ma22 and 1990Ha34); however, -20 +9-90 (1975Ba39 and 1981La27). Eγ: unweighted average of 670.565 12 (1992Ar06), 670.525 21 (1988Ad05), 670.49 2 (1982So12), 670.51 4 (1970Re16). Data are discrepant. Weighted average is 670.531 17.
691.251 <i>16</i>	956.227	1.851 <i>11</i>	E2+M1	-3.3 +12-30	0.0080 6	$\begin{split} &\alpha(K) = 0.0066 \ 5; \\ &\alpha(L) = 0.00110 \ 6; \\ &\alpha(M) = 0.000248 \ 12; \\ &\alpha(N+) = 6.6 \times 10^{-5} \ 4. \\ &\alpha(N) = 5.7 \times 10^{-5} \ 3; \\ &\alpha(O) = 8.0 \times 10^{-6} \ 5; \\ &\alpha(P) = 3.7 \times 10^{-7} \ 3. \\ &\delta: \ from \ Adopted \ Gammas. \ \delta \\ from \ \beta^- \ decay: \ -10 \ +4-27 \\ &(1975Ba39); \ 3.8 \ +34-12 \\ ∨ \ 0.61 \ +18-14 \\ &(1981Ka37); \ -16 \ -27+4 \\ &(1981Ka27); \ -16 \ +9-Infinity \\ &(1981Ka12); \ +566 \\ &-522-616 \ (1990Ha34; \\ &solution \ includes \ \infty). \\ &E\gamma: \ unweighted \ average \ of \\ &691.260 \ 18 \ (1982An06), \\ &691.24 \ 3 \ (1982So12), \\ &691.24 \ 3 \ (1982So12), \\ &691.24 \ 5 \ (1970Re16). \\ &Weighted \ average \ is \\ &691.279 \ 15. \end{split}$

¹⁶⁶Ho β^- Decay (1200 y) (continued)

			$\gamma(^{166}{\rm Er})$ (continued)			
${f E}\gamma^{\dagger}$	E(level)	Ιγ [‡] &	Mult.§	δ	α	Comments
705.24 7	785.933	0.019 8	E2+M1	-5 +3-14	0.00716 <i>13</i>	$ α(K)=0.00588 11; $ $ α(L)=0.000999 16; $ $ α(M)=0.000225 4; $ $ α(N+)=5.96×10^{-5} 10. $ $ α(N)=5.20×10^{-5} 9; $ $ α(O)=7.24×10^{-6} 12; $ $ α(P)=3.33×10^{-7} 7. $ Mult.,δ: from Adopted Gammas. Ey: weighted average of 705.09 7 (1992Ar06), 705.34 4 (1992Wa33); 706.2 9 (1988Ad05); 705.09 7 (1986Og03). Data are discrepant. Unweighted average is 705.4 3.
711.681 6	1786.969	75.2 <i>12</i>	E1 (+M2)	+0.002 3	0.00264	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00225 \ 4; \\ &\alpha(\mathbf{L}) = 0.000309 \ 5; \\ &\alpha(\mathbf{M}) = 6.77 \times 10^{-5} \ 10; \\ &\alpha(\mathbf{N}+) = 1.81 \times 10^{-5} \ 3. \\ &\alpha(\mathbf{N}) = 1.573 \times 10^{-5} \ 2.2; \\ &\alpha(\mathbf{O}) = 2.26 \times 10^{-6} \ 4; \\ &\alpha(\mathbf{P}) = 1.223 \times 10^{-7} \ 1.8. \end{aligned}$ Ey: weighted average of 711.680 \ 8 (1992 Ar06), 711.701 \ 24 (1988 Ad05), 711.681 \ (1986 Og03), 711.68 \ 1 (1986 Og03), 711.68 \ 2 (1982 So12), 711.69 \ 4 (1970 Re16). \\ &Unweighted average: 711.686 \ 4. \\ &\delta: \ from \ 1981 Kr12. \ Other \ \delta: \\ &-0.024 \ 29 (1985 Re02); \\ &+0.01 \ 2 (1981 La27); \\ &0.06 \ +11-6 (1963 Ge09). \end{aligned}
(712.89 13)	1572.177	0.380 12	E1		0.00264	$\begin{split} &\alpha(K) \!=\! 0.00224 \ 4; \\ &\alpha(L) \!=\! 0.000308 \ 5; \\ &\alpha(M) \!=\! 6.75 \!\times\! 10^{-5} \ 10; \\ &\alpha(N+) \!=\! 1.80 \!\times\! 10^{-5} \ 3. \\ &\alpha(N) \!=\! 1.568 \!\times\! 10^{-5} \ 22; \\ &\alpha(O) \!=\! 2.25 \!\times\! 10^{-6} \ 4; \\ &\alpha(P) \!=\! 1.219 \!\times\! 10^{-7} \ 17. \\ & From \ ^{166} Tm \ \epsilon \ decay. \ I\gamma \\ & calculated \ from \\ &I\gamma(712.89\gamma) \!:\! I\gamma(496.88\gamma) \!= \\ &(2.19 \ 4) : (0.99 \ 2) \ (^{166} Tm \ \epsilon \ decay) \ and \\ &I(496.88\gamma) \!=\! 0.172 \ 3. \end{split}$
736.02 8	1692.292	0.17 3				Eγ: from deconvolution of doublet (1988Ad05). Ιγ: see comment on 737γ from 1596 level. Doublet intensity has been suitably divided.

¹⁶⁶Ho β⁻ Decay (1200 y) (continued)

$\gamma(^{166}{ m Er})$ (continued)								
$E\gamma^{\dagger}$	E(level)	Ιγ [‡] &	Mult.§	δ	α	Comments		
736.83 <i>3</i>	1596.232	0.351 <i>18</i>	E1		0.00247	$ α(K)=0.00210 4; $ $ α(L)=0.000287 5; $ $ α(M)=6.31×10^{-5} 11; $ $ α(M)=6.31×10^{-5} 21; $ $ α(N)=1.465×10^{-5} 24; $ $ α(O)=2.10×10^{-6} 4; $ $ α(P)=1.142×10^{-7} 19. $ Iy: from I(640γ) here and I(737γ)/I(640γ)=2.74 12 in ε decay (where the 737γ is not a doublet), I(737γ from 1596 level)=0.351 18. From table above, Iγ=0.524 5 for doublet, so Iγ(737γ from 1692 level) is 0.17 3. δ: from Adopted Gammas. Ey: from 1988Ad05. Others did not deconvolute observed doublet. Ey for doublet: 736.70 7 (1992Ar06), 736.653 27 (1988Ad05), 736.65 4 (1986Og03), 736.65 4 (1982So12), 736.67 8 (1970Re16); weighted average 736.661 19, unweighted average 736.671 9.		
752.313 <i>12</i>	1827.552	16.80 <i>17</i>	E1 (+M2)	+0.005 4	0.00237	$\begin{split} &\alpha(\mathbf{K}) = 0.00201 \ 3; \\ &\alpha(\mathbf{L}) = 0.000276 \ 4; \\ &\alpha(\mathbf{M}) = 6.04 \times 10^{-5} \ 9; \\ &\alpha(\mathbf{N}+) = 1.617 \times 10^{-5} \ 23. \\ &\alpha(\mathbf{N}) = 1.404 \times 10^{-5} \ 20; \\ &\alpha(\mathbf{O}) = 2.02 \times 10^{-6} \ 3; \\ &\alpha(\mathbf{O}) = 2.02 \times 10^{-6} \ 3; \\ &\alpha(\mathbf{P}) = 1.097 \times 10^{-7} \ 16. \\ \mathbf{E}\gamma: \text{ weighted average of} \\ &752.332 \ 10 \ (1992 \text{ Aro6}), \\ &752.281 \ 19 \ (1988 \text{ Ado5}), \\ &752.30 \ 2 \ (1986 \text{ Og}03), \\ &752.27 \ 3 \ (1982 \text{ So}12), \\ &752.27 \ 4 \ (1970 \text{ Re16}). \\ &\text{Unweighted average is} \\ &752.291 \ 12. \\ &\delta: \ \text{from} \ 1981 \text{ Kr}12. \ \text{Other} \ \delta: \\ &0.00 \ 2 \ (1981 \text{ La27}). \end{split}$		

¹⁶⁶Ho β^- Decay (1200 y) (continued)

$\gamma(^{166}{ m Er})$ (continued)									
$E\gamma^{\dagger}$	E(level)	Iγ [‡] &	Mult.§	δ	α	Comments			
778.839 11	859.384	4.16 10	E2+M1	-20 +2-4	0.00574 9	$\begin{split} &\alpha(K) = 0.00474 \ 7; \\ &\alpha(L) = 0.000778 \ 11; \\ &\alpha(M) = 0.0001744 \ 25; \\ &\alpha(N+.) = 4.63 \times 10^{-5} \ 7. \\ &\alpha(N) = 4.04 \times 10^{-5} \ 6; \\ &\alpha(O) = 5.66 \times 10^{-6} \ 8; \\ &\alpha(O) = 5.66 \times 10^{-7} \ 4. \\ &\delta; \ from \ 1981Kr12. \ \delta \ from \ \beta^- \\ \ decay: \ -18 \ +9^{-\infty} \\ &(1975Ba39); \ (-20 \ +2^{-4} \ Ho \\ metal; \ -18 \ +9^{-\infty} \\ &(1975Ba39); \ (-20 \ +2^{-4} \ Ho \\ metal; \ -18 \ -8^{+5}, \\ neodimium \ ethyl \ sulfate) \\ &(1981Kr12); \ -19 \ +10^{-1} nfinity \\ &(1981Kr12); \ -10^{-1}			
785.94 3	785.933	0.026 5	E2		0.00561	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.00464 \ 7; \\ &\alpha(\mathbf{L}) = 0.000759 \ 11; \\ &\alpha(\mathbf{M}) = 0.0001701 \ 24; \\ &\alpha(\mathbf{N}+) = 4.52 \times 10^{-5} \ 7. \\ &\alpha(\mathbf{N}) = 3.94 \times 10^{-5} \ 6; \\ &\alpha(\mathbf{O}) = 5.52 \times 10^{-6} \ 8; \\ &\alpha(\mathbf{C}) = 2.63 \times 10^{-7} \ 4. \\ \mathbf{E}\gamma: \ weighted \ average \ of \ 785.81 \ 7 \ (1992 Ar06); \\ &785.90 \ 7 \ (1988 Ad05); \\ &785.81 \ 7 \ (1986 Og03). \\ &Unweighted \ average \ is \ 785.87 \ 4. \end{aligned} $			

$^{166}\text{Ho}~\beta^{-}$ Decay (1200 y) (continued)

$\gamma(^{166}{ m Er})$ (continued)									
$E\gamma^{\dagger}$	E(level)	Ιγ‡&	Mult.§	δ	α	Comments			
810.293 10	1075.271	79.0 15	E2+M1	-21.2 +18-21	0.00526	$ \begin{split} & \alpha(K) = 0.00436 \ 7; \\ & \alpha(L) = 0.000706 \ 10; \\ & \alpha(M) = 0.0001580 \ 23; \\ & \alpha(M) = 0.0001580 \ 23; \\ & \alpha(M) = 3.68 \times 10^{-5} \ 6; \\ & \alpha(O) = 5.14 \times 10^{-6} \ 8; \\ & \alpha(O) = 5.14 \times 10^{-6} \ 8; \\ & \alpha(O) = 5.14 \times 10^{-7} \ 4. \\ \\ & E\gamma: unweighted average of \\ & 810.325 \ 10 \ (1992Ar06), \\ & 810.282 \ 16 \ (1988Ad05), \\ & 810.282 \ 16 \ (1982So12), \\ & 810.31 \ 4 \ (1970Re16). \\ & Data \ are \ discrepant; \\ & weighted \ average \ is \\ & 810.294 \ 12. \\ & \delta: \ from \ 1990Ha 34. \ Other \ \delta: \\ & -37 \ -10 \ -1 \ (1965Re02); \\ & -20 \ 4 \ (1975Ba 39); \\ & 24 \ +54 \ -10 \ (1981Ka 37); \\ & -20 \ +3 \ -4 \ (1981La 27); \\ & (-15 \ I, neodimium \ ethyl \\ & sulfate; \ -21 \ 2 \ Ho \ metal) \\ & (1981Kr12); \ -36 \ +7 \ -11 \\ & (1985Al22); \ 1963Ge09. \\ \end{split}$			
830.585 9	1376.029	13.1 3	E2+M1	-16.6 +15-18	0.00499	$\begin{aligned} &(1983A122); 1983Ge09.\\ &\alpha(K)=0.00414 \ 6;\\ &\alpha(L)=0.000665 \ 10;\\ &\alpha(M)=0.0001487 \ 21;\\ &\alpha(N+)=3.96\times10^{-5} \ 6.\\ &\alpha(N)=3.45\times10^{-5} \ 5;\\ &\alpha(O)=4.85\times10^{-6} \ 7;\\ &\alpha(P)=2.35\times10^{-7} \ 4.\\ &\delta: \ from \ 1981Kr12. \ Other \ \delta:\\ &-70 \ -260+30 \ (1965Re02);\\ &-22 \ +5-7 \ (1975Ba39); \ 63\\ &-44+infinity \ (1981Ka37);\\ &-22 \ -7+5 \ (1981La27);\\ &(-16.6 \ -18+15, \ neodimium\\ \ ethyl \ sulfate; \ -23 \ 4, \ Ho\\ metal) \ (1981Kr12);\\ &-18 \ +2-3 \ (1985A122);\\ &-17.3 \ +13-15 \ (1990Ha34);\\ &1963Ge09.\\ &E\gamma: \ weighted \ average \ of\\ & 830.601 \ 15 \ (1992Ar06),\\ & 830.583 \ 18 \ (1988Ad05),\\ & 830.58 \ 2 \ (1986Og03),\\ & 830.58 \ 4 \ (1970Re16).\\ &Unweighted \ average \ is\\ & 830.579 \ 7. \end{aligned}$			
859.3 1	859.384	0.049 10				Eγ: from 1996Mo11. Iγ: weighted average of 0.044 <i>14</i> (1996Mo11) and 0.055 <i>14</i> (2002Be04). Placement from 1996Mo11.			

¹⁶⁶Ho β^- Decay (1200 y) (continued)

			$\gamma(^{166}{ m Er})$ (c	continued)		
$_{\rm E\gamma^\dagger}$	E(level)	Ιγ‡&	Mult.§	δ	α	Comments
875.650 <i>15</i>	956.227	1.003 7	E2		0.00444	$ α(K)=0.00369 6; $ $α(L)=0.000584 9; $ $α(M)=0.0001305 19; $ $α(N+)=3.47\times10^{-5} 5.$ $α(N)=3.03\times10^{-5} 5; $ $α(O)=4.27\times10^{-6} 6; $ $α(P)=2.10\times10^{-7} 3.$ Eγ: weighted average of 875.63 5 (1992Ar06), 875.658 21 (1988Ad05), 875.69 4 (1986Og03), 875.60 4 (1982So12), 875.64 5 (1970Re16). Unweighted average is 875.64 15
950.964 <i>9</i>	1215.963	3.775 18	E2		0.00373	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00311 \ 5; \\ &\alpha(\mathbf{L}) = 0.000482 \ 7; \\ &\alpha(\mathbf{M}) = 0.0001074 \ 15; \\ &\alpha(\mathbf{N}) = 0.286 \times 10^{-5} \ 4. \\ &\alpha(\mathbf{N}) = 2.49 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{O}) = 3.53 \times 10^{-6} \ 5; \\ &\alpha(\mathbf{P}) = 1.771 \times 10^{-7} \ 25. \end{aligned}$ EY: weighted average of 950.963 \ 10 \ (1992Ar06), 950.955 \ 28 \ (1988Ad05), 950.97 \ 3 \ (1986Og03), 951.00 \ 4 \ (1982So12), 950.94 \ 6 \ (1970Re16). \end{aligned}
1010.288 <i>11</i>	1555.739	0.1073 <i>13</i>	E2		0.00329	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00275 \ 4; \\ &\alpha(\mathbf{L}) = 0.000420 \ 6; \\ &\alpha(\mathbf{M}) = 9.35 \times 10^{-5} \ 13; \\ &\alpha(\mathbf{N}+) = 2.49 \times 10^{-5} \ 4. \\ &\alpha(\mathbf{N}) = 2.17 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{O}) = 3.08 \times 10^{-6} \ 5; \\ &\alpha(\mathbf{P}) = 1.567 \times 10^{-7} \ 22. \end{aligned}$ Ey: weighted average of 1010.27 \ 6 (1992 Ar06), 1010.290 \ 13 (1992 Wa33), 1010.302 \ 26 (1988 Ad05), 1010.27 \ 6 (1986 Og03), 1010.25 \ 5 (1982 So12), 1010.25 \ 10 (1970 Re16). \\ &Unweighted average is 1010.27 \ 9. \end{aligned}
1120.330 <i>11</i>	1665.795	0.273 3				 Eγ: weighted average of 1120.35 5 (1992Ar06), 1120.329 14 (1992Wa33), 1120.324 28 (1988Ad05), 1120.33 4 (1982So12), 1120.33 7 (1970Re16). Unweighted average: 1120.332 6. δ(D,Q)=0.00 +3-5 (1981La27).

¹⁶⁶Ho β⁻ Decay (1200 y) (continued)

$^{166}\text{Ho}\ \beta^{-}$ Decay (1200 y) (continued)

$\gamma(^{166}\text{Er})$ (continued)

$E\gamma^\dagger$	E(level)	Ιγ‡&	Mult.§	δ	α	Comments
1146.825 <i>12</i>	1692.292	0.282 3				$\begin{split} \delta(D,Q) &= -0.02 + 7-6 \text{ or} \\ &+ 9 + 9-6 \ (1981La27). \end{split}$ Ey: weighted average of 1146.81 9 (1992Ar06), 1146.818 15 (1992Wa33), 1146.84 4 (1988Ad05), 1146.83 5 (1986Og03), 1146.86 4 (1982So12); 1146.82 7 (1970Re16). Unweighted average: 1146.830 7. \end{split}
1241.500 14	1786.969	1.15 6	E1+M2	+0.21 5	0.00129 <i>17</i>	$\begin{split} &\alpha(K) = 0.00107 \ 14; \\ &\alpha(L) = 0.000147 \ 21; \\ &\alpha(M) = 3.2 \times 10^{-5} \ 5; \\ &\alpha(N+) = 4.70 \times 10^{-5} \ 8. \\ &\alpha(N) = 7.5 \times 10^{-6} \ 11; \\ &\alpha(O) = 1.09 \times 10^{-6} \ 16; \\ &\alpha(P) = 6.1 \times 10^{-8} \ 9; \\ &\alpha(IPF) = 3.83 \times 10^{-5} \ 10. \\ &E\gamma: weighted average of \\ &1241.52 \ 2 \ (1992Ar06), \\ &1241.484 \ 28 \ (1988Ad05); \\ &1241.484 \ 28 \ (1988Ad05); \\ &1241.484 \ 28 \ (1982So12), \\ &1241.444 \ 6 \ (1970Re16). \\ &Unweighted average is \\ &1241.485 \ 14. \\ &\delta: \ from \ 1981La27. \ Other \ \delta: \\ &-0.09 \ 6 \ (1965Re02); \\ &+0.21 \ 12 \ (1981La27). \end{split}$
1261.98 ^a <i>12</i>	1527.12?	0.010 1				EY, IY: From 1986Og03. Note that adopted EY=1263.412 <i>16</i> and that adopted IY is comparable to that of 1447 γ .
1282.058 <i>15</i>	1827.552	0.256 4	E1+M2	0.20 11	0.0012 4	$\label{eq:alpha} \begin{split} &\alpha(K) \!=\! 0.0010 \; 3; \\ &\alpha(L) \!=\! 0.00013 \; 5. \end{split}$ Ey: weighted average of 1282.06 & (1992Ar06), 1282.050 \; 19 \; (1992Wa33), 1282.08 & 4 \; (1988Ad05), 1282.06 & 6 \; (1986Og03), 1282.07 \; 4 \; (1982So12). \\ &Unweighted average is 1282.064 \; 5. \; Other \; Ey: 1282.12 \; 7 \; (1970Re16); statistical outlier. \end{split}
1306.74 24	1572.177	0.0076 <i>15</i>				 δ: from 1981La27. Eγ: unweighted average of 1306.60 15 (1992Ar06), 1306.90 3 (1992Wa33), 1307.30 8 (1988Ad05) and 1306.16 15 (1986Og03). (weighted average is 1800.01 10).
1331.17 <i>11</i>	1596.232	0.0059 <i>16</i>				1300.91 11.). Eγ: weighted average of 1331.04 13 (1992Ar06), 1331.5 5 (1992Wa33), 1331.45 14 (1988Ad05), 1331.04 13 (1986Og03). Unweighted average is 1331.26 13.

¹⁶⁶Ho β⁻ Decay (1200 y) (continued)

$\gamma(^{166}{\rm Er})$ (continued)

$E\gamma^{\dagger}$	E(level)	<u>Ιγ</u> ‡&	Mult.§	δ	α	Comments
1400.770 15	1665.795	0.697 5	E1 (+M2)	+0.025 +18-26	8.81×10 ⁻⁴ 14	 δ: from Adopted Gammas. Other δ: +0.05 +5-7 (1981La27). Εγ: weighted average of 1400.79 2 (1992Ar06), 1400.75 4 (1988Ad05); 1400.75 4 (1988Ad05); 1400.73 4 (1982So12), 1400.72 8 (1970Re16). Unweighted average is 1400 750 12
1427.227 21	1692.292	0.687 5	E1 (+M2)	-0.002 +22-31	8.72×10 ⁻⁴ 14	
1433.42 <i>25</i>	1514.0	0.00054 25	E1+M2	+0.054 <i>+19-27</i>	8.70×10 ⁻⁴	1427.19 4. $\alpha(K) = 0.000615 9;$ $\alpha(L) = 8.18 \times 10^{-5} 12;$ $\alpha(M) = 1.79 \times 10^{-5} 3;$ $\alpha(N+) = 0.0001555 22.$ $\alpha(N) = 4.16 \times 10^{-6} 6;$ $\alpha(O) = 6.03 \times 10^{-7} 9;$ $\alpha(P) = 3.39 \times 10^{-8} 5;$ $\alpha(IPF) = 0.0001507 22.$
1446.72ª <i>13</i>	1527.12?	≤0.01				 Εγ.1γ: from 1992Wa33. Εγ: from 1986Og03; 1446.7 2 from 1992Ar06. Ιγ: from 1992Ar06 and
1521.86 5	1786.969	0.0224 8				19860g03. Eγ: from 1992Wa33; measured using 50 mm thick Pb filter. Iγ: from 1992Wa33. Other
1562.31 <i>14</i>	1827.552	0.0047 4				 Iγ: 0.018 5 (1988Ad12). Eγ: from 1992Wa33; measured with 50 mm thick Pb filter. Iγ: from 0.0047 4 (1992Wa33). Other Iγ: 0.0040 11 (1988Ad12).

[†] From indicated data of 1970Re16 (semi γ), 1982So12 (semi γ), 1986Og03 (HPGe γ), 1988Ad05 (Ge(Li) anti-compt), 1992Ar06 (HPGe, LEPS), 1992Wa33 (HPGe), unless otherwise noted. Others: 1996Mo11, 1975Mo13, 1973La32, 1967Bu14, 1967Gu04.

[‡] Relative intensity normalized so I(184γ)=100. Adopted values are weighted averages of data tabulated above excluding all data identified as statistical outliers based on the Chauvenet criterion, unless noted to the contrary. Uncertainties in the 184γ reference line were combined in quadrature with with the uncertainties in other data from that measurement prior to averaging, where relevant. Data from 1967Bu14, 1967Gu04, 1970Re16, 1973La32, 1974Li11, 1977Ge12, 1978Sa14, 1981Ka37, 1982Bl28, 1982So12, 1986Og03, 1988Ad05, 1988Ch44, 1989Da18 (see also 1988DaZX), 1992Ar06, 1992Wa10, 1992Wa33, 1994Mi22, 2000Hi01, 2002Be04 and 2006Ku03 were considered. Other measurements: 1973Ko13, 1965Re02, 1963Ge09.

Footnotes continued on next page

¹⁶⁶Ho β ⁻ Decay (1200 y) (continued)

$\gamma(^{166}{\rm Er})$ (continued)

§ From Adopted Gammas.

- [#] The recommended I(521γ)=0.227 *b* is for a doublet. Based on I(786γ+705γ)=0.045 *b* here and the adopted 786 level branching of I(521γ)/I(786γ+705γ)=0.00911 *25*, I(521γ from 786 level)=0.00041 *b* is expected in this decay. This represents a negligible fraction of the doublet intensity, so I(521γ from 1596 level)=0.227 *b* is adopted.
- [@] Eγ and branching assumed from Adopted Gammas.
- & For absolute intensity per 100 decays, multiply by 0.720 4.
- a Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

¹⁶⁶Ho β⁻ Decay (1200 y) (continued)

Decay Scheme

Intensities: $I(\gamma+ce)$ per 100 parent decays

¹⁶⁶TmεDecay 1989Ad11

Parent ¹⁶⁶Tm: E=0.0; $J\pi$ =2+; $T_{1/2}$ =7.70 h 3; Q(g.s.)=3038 12; % ϵ +% β ⁺ decay=100.

Data are from 1989Ad11, unless otherwise noted. Other measurements: 1995KrZX (and 1996KrZW), 1993AdZY, 1993BaZS, 1980Pe15, 1979Ad06, 1974Ar28, 1961Ha23, 1961Gr33, 1966Zy01, 1973De22, 1970Re16, 1967Bu14, 1968Mi13, 1959Ba12, 1959Bo57, 1959Br17, 1960Ja08, 1960Wi12, 1961Bo15, 1962Gr29, 1964Pr02, 1969Ar23.

¹⁶⁶Er Levels

E(level) [†]	Jπ [‡]	E(level) [†]	Jπ‡	E(level) [†]	$J\pi^{\ddagger}$
0.0	0 +	1978.432 16	(4)+	2382.27 4	(3)+
80.581 11	2 +	1985.644 16	3 –	2393.14 3	2+,3+
264.985 13	4 +	2001.874 16	(3) –	2413.68 8	(2,3,4)
545.444 16	6 +	2021.359 16	(2,3) -	2435.11 10	(3,4)+
785.917 11	2 +	2022.62 12	(4+)	2444.16 24	
859.399 12	3 +	2046.88 4	2+,3+	2464.52 10	1 +
956.240 12	4 +	2076.305 22	(3-)	2475.40 4	(1,2+)
1075.281 12	5 +	2101.6 3	(4+)	2542.88 5	
1458.164 14	(2) –	2117.8 8	(2+,3,4+)	2586.07 12	(3,4)+
1513.760 14	3 –	2132.951 12	3+	2600.64 4	1 +
1528.404 14	2 +	2160.121 14	3+	2613.50 17	
1572.206 14	(4) –	2172.757 20	3+	2619.6 6	(2+)
1596.263 17	(4) –	2212.97 12		2624.8 3	(1,2)
1662.32 6	1 –	2215.972 16	2 - , 3 -	2628.5 3	(1,2)
1678.77 3	(4)+	2243.099 23	3 –	2632.66 17	(3,4)+
1703.057 20	(2,3,4)+	2260.66 3	2 (+), 3	2671.98 17	
1813.2 3	1 (+)	2264.31 6	(1,2+)	2679.05 18	1 +
1830.42 4	1 –	2273.01 3	3 –	2729.094 20	(3,4)+
1865.17 5		2282.68 5	2 (+), 3	2783.69 19	1 +
1894.364 23	2 + , 3 + , 4 +	2290.997 25	(3)+	2797.5 4	(1,2)
1917.767 13	3 -	2328.69 9	(1,2)	2811.99 11	1
1938.273 15	(3)+	2352.91 8	2 (+), 3	2858.17 18	(1,2)
1969.71 17	(2,3,4)	2377.77 5	1+		

[†] From least-squares fit to E γ , omitting the 646.8 γ from the 2160 level and all three placements for the 1216.173 γ because these transitions have E γ values that deviate from the expected value by at least 5 σ .

‡ From Adopted Levels.

β⁺,ε Data

Εε	E(level)	Ιβ+‡	Ιε ^{†‡}	Log ft	$I(\epsilon+\beta^+)^{\ddagger}$	Comments
(180 12)	2858.17		0.0031 4	8.28 10	0.0031 4	εK=0.724 13; εL=0.209 10; εM+=0.067 4.
(226 12)	2811.99		< 0.025	>7.6	< 0.025	εK=0.756 7; εL=0.186 5; εM+=0.0588 18.
(241 12)	2797.5		0.0035 5	8.55 9	0.0035 5	εK=0.762 6; εL=0.181 4; εM+=0.0570 15.
(254 12)	2783.69		0.0121 17	8.07 8	0.0121 17	εK=0.768 5; εL=0.177 4; εM+=0.0555 13.
(309 12)	2729.094		0.358 25	6.81 5	0.358 25	εK=0.783 3; εL=0.1654 21; εM+=0.0514 8.
(359 12)	2679.05		0.070 8	7.67 6	0.070 8	εK=0.7924 20; εL=0.1586 15; εM+=0.0489 6.
(366 12)	2671.98		0.0075 10	8.66 7	0.0075 10	εK=0.7935 19; εL=0.1579 14; εM+=0.0487 5.
(405 12)	2632.66		0.019 6	8.35 14	0.019 6	εK=0.7986 15; εL=0.1541 11; εM+=0.0473 4.
(410 12)	2628.5		0.0056 8	8.90 7	0.0056 8	εK=0.7991 14; εL=0.1537 11; εM+=0.0472 4.
(413 12)	2624.8		0.0057 7	8.90 6	0.0057 7	εK=0.7995 14; εL=0.1534 10; εM+=0.0471 4.
(418 12)	2619.6		0.008 3	8.76 17	0.008 3	εK=0.8001 14; εL=0.1530 10; εM+=0.0469 4.
(425 12)	2613.50		0.0051 6	8.97 6	0.0051 6	εK=0.8007 13; εL=0.1526 10; εM+=0.0467 4.
(437 12)	2600.64		0.12 6	7.63 22	0.12 6	εK=0.8020 12; εL=0.1516 9; εM+=0.0464 4.
(452 12)	2586.07		0.023 14	8.4 3	0.023 14	εK=0.8033 11; εL=0.1506 9; εM+=0.0460 3.
(495 12)	2542.88		0.077 9	7.94 6	0.077 9	εK=0.8068 9; εL=0.1481 7; εM+=0.04513 24.
(563 12)	2475.40		0.082 7	8.04 5	0.082 7	εK=0.8110 7; εL=0.1449 5; εM+=0.04402 18.
(573 12)	2464.52		0.037 3	8.40 4	0.037 3	εK=0.8116 7; εL=0.1445 5; εM+=0.04387 17.
(594 12)	2444 . 16		0.024 5	8.62 10	0.024 5	εK=0.8126 β; εL=0.1438 5; εM+=0.04360 16.
(603 12)	2435.11		0.090 14	8.06 7	0.090 14	$\epsilon K=0.8131 \ \theta; \ \epsilon L=0.1435 \ 5; \ \epsilon M+=0.04349 \ 15.$
(624 12)	2413.68		0.058 8	8.29 7	0.058 8	εK=0.8140 6; εL=0.1428 4; εM+=0.04324 14.
(645 12)	2393.14		0.250 19	7.68 4	0.250 19	εK=0.8149 5; εL=0.1421 4; εM+=0.04301 13.
(656 12)	2382.27		0.138 11	7.96 4	0.138 11	εK=0.8153 5; εL=0.1418 4; εM+=0.04290 13.
(660 12)	2377.77		0.195 12	7.81 4	0.195 12	εK=0.8155 5; εL=0.1417 4; εM+=0.04286 13.
(685 12)	2352 . 91		0.025 4	8.74 8	0.025 4	εK=0.8164 5; εL=0.1410 4; εM+=0.04262 12.
(709 12)	2328.69		0.0066 7	9.35 5	0.0066 7	$\epsilon K{=}0.8172\ \textit{4};\ \epsilon L{=}0.1404\ \textit{3};\ \epsilon M{+}{=}0.04240\ \textit{11}.$

	β^+, ϵ Data (continued)									
Eε		E(level)	Ιβ+‡	Ιε ^{†‡}	Log ft	$I(\epsilon+\beta^+)^{\ddagger}$	Comments			
(747	12)	2290.997		1.36 11	7.08 4	1.36 11	εK=0.8183 4; εL=0.1396 3; εM+=0.04210 10.			
(755	12)	2282.68		0.086 7	8.29 4	0.086 7	εK=0.8186 4; εL=0.1394 3; εM+=0.04204 9.			
(765	12)	2273.01		0.46 3	7.58 4	0.46 3	εK=0.8188 4; εL=0.13920 25;			
							$\epsilon M + = 0.04197 \ 9.$			
(774	12)	2264.31		0.0296 23	8.78 4	0.0296 23	$\epsilon K = 0.8191 \ 4; \ \epsilon L = 0.13902 \ 24; \ \epsilon M + = 0.04191 \ 9.$			
(777	12)	2260.66		0.188 13	7.98 4	0.188 13	$\epsilon K = 0.8192$ 4; $\epsilon L = 0.13895$ 24; $\epsilon M_{+} = 0.04188$ 9			
(795	12)	2243.099		0.324 24	7.76 4	0.324 24	$\epsilon K = 0.8196 3; \epsilon L = 0.13862 23;$			
(822	12)	2215.972		3.48 21	6.76 3	3.48 21	$\epsilon K = 0.8203 \ 3; \epsilon L = 0.13813 \ 21;$			
(825	12)	2212.97		0.054 12	8.58 10	0.054 12	εK=0.8203 3; εL=0.13808 21;			
(865	12)	2172.757		2.35 18	6.98 4	2.35 18	$\epsilon M + = 0.04137 \delta$. $\epsilon K = 0.8212 \delta; \epsilon L = 0.13742 19;$ $\epsilon M + = 0.04134 \delta$			
(878	12)	2160.121		16.2 11	6.16 4	16.2 11	$\epsilon K = 0.8215 \ 3; \epsilon L = 0.13723 \ 19;$			
(905	12)	2132.951		59 4	5.62 4	59 4	$\epsilon K = 0.8220 \ 3; \ \epsilon L = 0.13684 \ 18;$ $\epsilon M + = 0.04113 \ 6.$			
(920	12)	2117.8		0.067 13	8.58 9	0.067 13	$\varepsilon K = 0.8223 \ 3; \ \varepsilon L = 0.13663 \ 17;$ $\varepsilon M + = 0.04106 \ 6.$			
(936	12)	2101.6		0.024 3	9.05 6	0.024 3	ϵ K=0.8226 3; ϵ L=0.13641 16; ϵ M+=0.04098 6.			
(962	12)	2076.305		0.222 15	8.10 4	0.222 15	ϵ K=0.8230 2; ϵ L=0.13609 15; ϵ M+=0.04087 6.			
(991	12)	2046.88		0.147 10	8.31 4	0.147 10	εK=0.8235 2; εL=0.13574 14; εM+=0.04074 5.			
(1015	12)	2022.62		0.061 7	8.71 6	0.061 7	εK=0.8239 2; εL=0.1355 2; εM+=0.04064 5.			
(1017	12)	2021.359		2.56 16	7.09 <i>3</i>	2.56 16	εK=0.8239 2; εL=0.1355 2; εM+=0.04064 5.			
(1036	12)	2001.874		0.53 14	7.79 12	0.53 14	εK=0.8242 2; εL=0.1352 2; εM+=0.04056 5.			
(1068)	12)	1969.71		0.059 11	8.78 9	0.059 11	$\epsilon K{=}0.8246\ {\it 2};\ \epsilon L{=}0.1349\ {\it 2};\ \epsilon M{+}{=}0.04045\ {\it 5}.$			
(1100	12)	1938.273		0.99 8	7.58 4	0.99 8	$\epsilon K=0.8250 \ 2; \ \epsilon L=0.1346 \ 2; \ \epsilon M+=0.04034 \ 4.$			
(1144)	12)	1894.364		≤ 0 . 0 2 7	≥ 9 .2	≤ 0 . 0 2 7	$\epsilon K=0.8256$ 2; $\epsilon L=0.1342$ 1; $\epsilon M+=0.04020$ 4.			
(1173	12)	1865.17		0.093 8	8.66 4	0.093 8	$\epsilon K=0.8259$ 2; $\epsilon L=0.1340$ 1; $\epsilon M=0.04012$ 4.			
(1208	12)	1830.42		0.016 5	9.45 14	0.016 5	$\epsilon K=0.8262 \ 2; \ \epsilon L=0.1337 \ 1; \ \epsilon M+=0.04002 \ 4.$			
(1225	12)	1813.2		0.059 9	8.90 7	0.059 9	$\epsilon K=0.8264 \ 2; \ \epsilon L=0.13358 \ 9; \ \epsilon M+=0.03997 \ 4.$			
(1335	12)	1703.057		0.375 25	8.17 3	0.375 25	εK=0.8272; εL=0.13280 8; εM+=0.03970 3.			
(1359	12)	1678.77		0.012 6	9.69 22	0.012 6	$\epsilon K=0.8273$; $\epsilon L=0.13264$ 8; $\epsilon M+=0.03965$ 3.			
(1376)	12) 12)	1662.32 1596.263		0.045 13 0.040 11	9.12 <i>13</i> 10.09 ¹ <i>12</i>	$0.045 13 \\ 0.040 11$	εK=0.8274; εL=0.13253 8; εM+=0.03961 3. εK=0.8164 2; εL=0.14089 16;			
(1466	12)	1572.206		0.052 19	10.00 ¹ u <i>16</i>	0.052 19	$\epsilon M += 0.04262 \ 6.$ $\epsilon K = 0.8167 \ 2; \ \epsilon L = 0.14059 \ 15;$			
(1510	12)	1528.404	0.00191 24	1.03 7	7.85 <i>3</i>	1.03 7	$\epsilon M + = 0.04251 \ b.$ av E $\beta = 234.8 \ 54$; $\epsilon K = 0.8272$; $\epsilon L = 0.13165 \ 9$;			
(1524	12)	1513.760	0.00025 19	0.12 9	8.8 4	0.12 9	$ε_{M+=0.03531}$ 3. av Eβ=241.3 54; εK=0.8271 1; εL=0.13155 9: εM+=0.03927 3.			
(1580	12)	1458. 164	0.0014 6	0.45 18	8.25 18	0.45 18	av E β =265.7 53; ϵ K=0.8265 2; ϵ L=0.13116 9; ϵ M+=0.03914 3.			
(2179	12)	859.399	0.05 3	1.1 6	8.16 24	1.1 6	av E β =529.0 54; ϵ K=0.7952 13; ϵ L=0.12403 22; ϵ M+=0.03692 7.			
(2252	12)	785.917	0.075 22	1.3 4	8.09 13	1.4 4	av E β =561.5 53; ϵ K=0.7874 14; ϵ L=0.12263 25; ϵ M==0.03649 8			
(2957	12)	80.581	1.0 10	4 4	7.9 5	5 5	av E β =874.9 54; ϵ K=0.669 3; ϵ L=0.1030 4; ϵ M+=0.03061 13.			

Eε: Eβ+=1940 20 (1961Gr33); =1928 20 (1961Zy02); =1936 20 (1963Pr13).

 $^\dagger~$ From intensity balance, unless otherwise noted.

[‡] Absolute intensity per 100 decays.

$\gamma(^{166}{\rm Er})$

 $\begin{array}{ccc} x-rays: & (1980VyZZ) & (I\gamma \ relative \ to \ I\gamma(778.8\gamma)=100) \\ & Energy & I\gamma & Identification \end{array}$

Energy	Ιγ	Identificatio
48.221	142.5 28	 Kα, x ray
49.128	252.0 40	Kα ₁ x ray
55.6	80.2 15	Kβ ₁ 'x ray
57.1	21.0 4	Kβ ₂ 'x ray

1973 De22 report, for equilibrium source $(^{166}{\rm Yb}+^{166}{\rm Tm}+^{166}{\rm Er})$:

I (Tm K x ray): I (82.3 γ , ¹⁶⁶Tm): I (Er K x ray): I (80.6 γ , ¹⁶⁶Er): I (785.9 γ , ¹⁶⁶Er) = 868 21:100:805 32:90.2 9:73 4.

 $\gamma\gamma-coin:$ 1960Wi12, 1961Bo15, 1966Zy01, 1968Mi13, 1979Ad06.

I γ normalization: The basis of the intensity normalization is that $\epsilon+\beta^+$ feeding to the ground state of 166 Er is not expected ($\Delta J=2$, $\Delta \pi=no$), so $\Sigma(I(\gamma+ce)$ to g.s.)=100%.

$E\gamma^{\dagger}$	E(level)	$I\gamma^{\dagger}b$	Mult. [‡]	δ	α	Comments
73.45 <i>2</i>	859.399	≤0.5	M1		6.92	$\alpha(\mathbf{K}) = 5.80 \ 9;$ $\alpha(\mathbf{L}) = 0.876 \ 13;$ $\alpha(\mathbf{M}) = 0.194 \ 3;$ $\alpha(\mathbf{N}+) = 0.0522 \ 8.$ $\alpha(\mathbf{N}) = 0.0453 \ 7;$ $\alpha(\mathbf{O}) = 0.00655 \ 10;$ $\alpha(\mathbf{O}) = 0.00655 \ 10;$
80.585 <i>15</i>	80.581	60.4 <i>32</i>	E2		6.78	$\begin{array}{l} \alpha(P) = 0.000360 \ 5. \\ \mbox{Mult.: from L1:L2:L3=10 \ 3:70 \ 7:} \\ 50 \ 5. \\ \mbox{E}\gamma.I\gamma: from 1979Ad06. \\ \alpha(K) = 1.671 \ 24; \\ \alpha(L) = 3.91 \ 6; \\ \alpha(M) = 0.953 \ 14; \\ \alpha(N+) = 0.241 \ 4. \\ \alpha(N) = 0.215 \ 3; \\ \alpha(O) = 0.0251 \ 4; \\ \alpha(P) = 7.29 \times 10^{-5} \ 11. \\ \mbox{$\%$I(80.6\gamma) = 11.5 \ 3$ assuming} \end{array}$
84.11 <i>2</i>	2001.874	0.19 <i>5</i>	М1		4.68	adopted normalization. Mult.: from L1:L2:L3=2270 115: 26700 1400:27500 1400 and $\alpha(K) \exp=2.2 \ 6;$ (K:L:M=0.40 4:1:0.32 3 (1966Zy01)). $\alpha(K)=3.92 \ 6;$ $\alpha(L)=0.591 \ 9;$ $\alpha(M)=0.1311 \ 19;$ $\alpha(N+)=0.0352 \ 5.$ $\alpha(N)=0.0306 \ 5;$ $\alpha(O)=0.00442 \ 7;$ $\alpha(P)=0.000243 \ 4.$ Mult : from L1:L2:L3=110 1/.
86.84	1917.767		E2		5.05	10 1:2.5. α(K)exp=21 9 is not consistent with M1; probably Iγ or Ice contained a typographical error. Eγ,Iγ; from 1979Ad06; not reported in 1989Ad11. α(K)=1.458 21; α(L)=2.75 4; α(M)=0.671 10; α(N+)=0.1694 24. α(N)=0.1516 22; α(O)=0.01770 25; α(P)=6.18×10 ⁻⁵ 9. Eγ: from 1993BaZS. Mult.: from L2/L3=1 (1993BaZS).

			γ(¹⁶⁶ Er)	(continued)		
$E\gamma^{\dagger}$	E(level)	$I^{\lambda \downarrow p}$	Mult. [‡]	δ	α	Comments
96.85 <i>5</i>	956.240	0.065 <i>3</i>	E2		3.32	$\begin{aligned} &\alpha(\mathbf{K}) = 1.157 \ 17; \\ &\alpha(\mathbf{L}) = 1.658 \ 24; \\ &\alpha(\mathbf{M}) = 0.403 \ 6; \\ &\alpha(\mathbf{N}+) = 0.1019 \ 15. \\ &\alpha(\mathbf{N}) = 0.012 \ 13; \\ &\alpha(\mathbf{O}) = 0.01069 \ 16; \\ &\alpha(\mathbf{P}) = 4.82 \times 10^{-5} \ 7. \end{aligned}$
112.7 ^f	2273.01					19 2:17 2 and α (K)exp=2.3 10. E γ : from 1993BaZS. Mult.: M1+E2 from L1/L2=0.25, L2/L3=1.3 (1993BaZS). However, level scheme requires E1. Consequently, placement is shown as
114.09	1572.206		E2		1.80	uncertain nere and transition is omitted from Adopted Gammas. $\alpha(K)=0.778 \ 11;$ $\alpha(L)=0.783 \ 11;$ $\alpha(M)=0.190 \ 3^{\circ}$
						$\begin{array}{l} \alpha(N+)=0.0481 \ 7.\\ \alpha(N)=0.0430 \ 6;\\ \alpha(O)=0.00508 \ 8;\\ \alpha(P)=3.26\times 10^{-5} \ 5.\\ E\gamma: \ from \ 1993BaZS.\\ Mult.: \ from \ L1/L2=1\\ (1993BaZS) \end{array}$
118.18 <i>3</i>	2290.997	0.16 5	[M1]		1.765	$\alpha(K) = 1.481 2I;$ $\alpha(L) = 0.222 4;$ $\alpha(M) = 0.0492 7;$ $\alpha(N) = 0.01147 I6;$ $\alpha(O) = 0.001657 24;$ $\alpha(D) = 0.001657 I3;$
(119.041 3)	1075.281	0.0173 5	(M1+E2)	+1.94 +23-21	1.579 <i>24</i>	
130.90 <i>20</i>	2132.951	2.70 <i>25</i>	E1		0.1590	$\alpha(K) = 0.1328 \ 20;$ $\alpha(L) = 0.0205 \ 3;$ $\alpha(M) = 0.00453 \ 7;$ $\alpha(N+) = 0.001188 \ 18.$ $\alpha(N) = 0.001040 \ 16;$ $\alpha(O) = 0.0001414 \ 21;$ $\alpha(P) = 6.22 \times 10^{-6} \ 9.$ Mult.: from L1:L2:L3=14 2: 2.8 \ 3:3.0 \ 3 and $\alpha(K) = 0.20 \ 4.$
139.64 4	2215.972	0.066 4				α(κ)exp=0.20 4.
143.2 6	2729.094	0.013 5				

			$\gamma(^{166}{ m Er})$ (continued)			
$E\gamma^{\dagger}$	E(level)	$\underline{}_{I\gamma^{\dagger}b}$	Mult. [‡]	δ	α	Comments
147.301 <i>20</i>	2132.951	1.79 7	E1		0.1162	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0973 \ 14; \\ &\alpha(\mathbf{L}) = 0.01482 \ 21; \\ &\alpha(\mathbf{M}) = 0.00328 \ 5; \\ &\alpha(\mathbf{N}+) = 0.000861 \ 12. \\ &\alpha(\mathbf{N}) = 0.000753 \ 11; \\ &\alpha(\mathbf{O}) = 0.0001029 \ 15; \\ &\alpha(\mathbf{O}) = 4.63 \times 10^{-6} \ 7. \\ &\mathbf{Mult.: from } L1:L2:L3=2.5 \ 3: \\ &0.5 \ 1:0.6 \ 1 \ \text{and} \end{aligned}$
154.508 <i>25</i>	2132.951	1.08 9	M1 + E2	0.75 25	0.75 4	$\alpha(K) \exp = 0.083 \ 20.$ $\alpha(K) = 0.57 \ 6;$ $\alpha(L) = 0.140 \ 17;$ $\alpha(M) = 0.032 \ 5;$ $\alpha(N+) = 0.0085 \ 11.$ $\alpha(N) = 0.0074 \ 10;$ $\alpha(O) = 0.00098 \ 10;$ $\alpha(P) = 3.3 \times 10^{-5} \ 5.$ Mult.: from L1:L2:L3=14 2: 2.7 \ 3:1.4 \ 2 and $\alpha(K) \exp = 0.54 \ 11.$ S: from Adouted Commerce
158.269 25	2160.121	$0.186 \ 9$ $0.030 \ 4$ $0.020^{d} \ 8$	E1		0.0961	6: from Adopted Gammas. $\alpha(K)=0.0805 \ 12;$ $\alpha(L)=0.01218 \ 17;$ $\alpha(M)=0.00269 \ 4;$ $\alpha(N+)=0.000708 \ 10.$ $\alpha(N)=0.000619 \ 9;$ $\alpha(O)=8.49\times10^{-5} \ 12;$ $\alpha(P)=3.87\times10^{-6} \ 6.$ Mult.: from $\alpha(K)\exp=0.13 \ 6.$
170.325 16	2382.27 956.240	0.020 ^d 8 0.390 20	E2		0.433	$\alpha(K)=0.258 \ 4;$ $\alpha(L)=0.1347 \ 19;$ $\alpha(M)=0.0323 \ 5;$ $\alpha(N+)=0.00824 \ 12.$ $\alpha(N)=0.00734 \ 11;$ $\alpha(O)=0.000893 \ 13;$ $\alpha(P)=1.169\times10^{-5} \ 17.$ Mult.: from L1:L2:L3=2.5 \ 3: 6.7 \ 7:5.9 \ 6 and $\alpha(K)\exp=0.30 \ 11.$
184.405 <i>25</i>	264.985	85.0 <i>18</i>	E2		0.331	$\begin{aligned} &\alpha(\mathbf{K}) = 0.205 \ 3; \\ &\alpha(\mathbf{L}) = 0.0964 \ 14; \\ &\alpha(\mathbf{M}) = 0.0230 \ 4; \\ &\alpha(\mathbf{N} +) = 0.00590 \ 9. \\ &\alpha(\mathbf{N}) = 0.00524 \ 8; \\ &\alpha(\mathbf{O}) = 0.000642 \ 9; \\ &\alpha(\mathbf{P}) = 9.48 \times 10^{-6} \ 14. \end{aligned}$ Mult.: from L1:L2:L3=330 20: 580 30:500 25 and &\alpha(\mathbf{K}) \exp = 0.19 \ 8; \\ &(\mathbf{K}:L:\mathbf{M} = 2.1 \ 1:1:0.36 \ 2 \\ &(1966Zy01)). \\ &\delta: \ \delta(\mathbf{E}2/\mathbf{M}3) = +0.09 \ 10 \\ &(1985DaZV). \end{aligned}

			γ(¹⁶⁶ Er)	(continued)		
$_{\rm E\gamma^{\dagger}}$	E(level)	$_{I\gamma^{\dagger}b}$	Mult. [‡]	δ	α	Comments
194.678 ^{#e} 15	2132.951	≂4.0 ^e	М1		0.433	$\alpha(K) = 0.364 5;$ $\alpha(L) = 0.0541 8;$ $\alpha(M) = 0.01199 17;$ $\alpha(N+) = 0.00322 5.$ $\alpha(N) = 0.00280 4;$ $\alpha(O) = 0.000404 6;$ $\alpha(P) = 2.24 \times 10^{-5} 4.$ Mult.: from L1:L2:L3=43 5: 3.7 4:0.55 10 and
194.678 ^{#e}	2215.972	≈0.35 ^e	M1		0.433	$\alpha(\mathbf{K}) e x_{\mathbf{F}} = 0.37 \ \delta.$ $\alpha(\mathbf{K}) = 0.364 \ \delta;$ $\alpha(\mathbf{L}) = 0.0541 \ \delta;$ $\alpha(\mathbf{M}) = 0.01199 \ 17;$ $\alpha(\mathbf{N}+) = 0.00322 \ \delta.$ $\alpha(\mathbf{N}) = 0.00280 \ d;$ $\alpha(\mathbf{O}) = 0.000404 \ \delta;$ $(\mathbf{O}) = 0.000404 \ \delta;$ $(\mathbf{O}) = 0.000404 \ \delta;$ $\alpha(\mathbf{O}) = 0.000404$
215.185 <i>14</i>	2132.951	27.79	E1+M2	-0.09 <i>+7-6</i>	0.056 23	$\begin{aligned} &\alpha(\mathbf{F}) = 2.24 \times 10^{-9} \ 4. \\ &\alpha(\mathbf{K}) = 0.047 \ 18; \\ &\alpha(\mathbf{L}) = 0.008 \ 4; \\ &\alpha(\mathbf{M}) = 0.0017 \ 9; \\ &\alpha(\mathbf{N}) = 0.00039 \ 21; \\ &\alpha(\mathbf{O}) = 5. \times 10^{-5} \ 3; \\ &\alpha(\mathbf{O}) = 5. \times 10^{-5} \ 3; \\ &\alpha(\mathbf{P}) = 2.7 \times 10^{-6} \ 15. \end{aligned}$ $\mathbf{I}\gamma; \ \mathbf{from 1989Ad11}; \\ &\mathbf{E}\gamma = 215.185 \ 185 \ 14, \\ &\mathbf{I}\gamma = 28.0 \ 9 \ for \ doublet. \\ \mathbf{Mult.: \ from \ L1:L2:L3 = 22 \ 3: } \\ &3.7 \ 4:4.2 \ 5 \ \text{and} \\ &\alpha(\mathbf{K}) \mathbf{e}\mathbf{x} = 0.034 \ 7. \\ &\delta: \ \mathbf{from \ 1985DaZV. \ Other} \\ &\delta: \ -0.04 \ 8 \ \mathbf{from} \\ &\alpha(\mathbf{H} \ \mathbf{h}') (1905\mathbf{K} = \mathbf{ZY}) \end{aligned}$
215.88 3	1075.281	0.290 13	[E2]		0.196	$\begin{split} &\gamma(\theta,H,t) \ (1995 \text{ KrZX}), \\ &\alpha(\text{K}) = 0.1298 \ 19; \\ &\alpha(\text{L}) = 0.0506 \ 7; \\ &\alpha(\text{M}) = 0.01201 \ 17; \\ &\alpha(\text{M}) = 0.00308 \ 5. \\ &\alpha(\text{N}) = 0.000340 \ 5; \\ &\alpha(\text{O}) = 0.000340 \ 5; \\ &\alpha(\text{O}) = 0.23 \times 10^{-6} \ 9. \\ &\text{I}\gamma; \ \text{from } 1989 \text{Ad} 11; \\ &\text{E}\gamma = 215.185 \ 185 \ 14, \\ &\text{I}\gamma = 28.0 \ 9 \ \text{for doublet}. \end{split}$
225.95 *228.217	22/3.01	0.007 3	M1+E2		0.22 6	$\begin{aligned} &\alpha(\mathbf{K}) = 0.17 \ 7; \\ &\alpha(\mathbf{L}) = 0.038 \ 3; \\ &\alpha(\mathbf{M}) = 0.0087 \ 10; \\ &\alpha(\mathbf{N}+) = 0.00227 \ 20. \\ &\alpha(\mathbf{N}) = 0.00199 \ 20; \\ &\alpha(\mathbf{O}) = 0.000267 \ 8; \\ &\alpha(\mathbf{P}) = 1.0 \times 10^{-5} \ 5. \end{aligned}$
238.581 <i>20</i> 255.44 6	2132.951	0.187 5	M1		0.248	$\alpha(K) = 0.208 3;$ $\alpha(L) = 0.0308 5;$ $\alpha(M) = 0.00683 10;$ $\alpha(N+) = 0.00184 3.$ $\alpha(N) = 0.001592 23;$ $\alpha(O) = 0.000230 4;$ $\alpha(P) = 1.276 \times 10^{-5} 18.$ Mult.: from $\alpha(K) \exp[=0.31 9].$
257.36 10	2243.099	0.017 5				

			γ(¹⁶⁶ Er)	(continued)		
${f E}\gamma^{\dagger}$	E(level)	$I^{\lambda \downarrow p}$	Mult.‡	δ	α	Comments
×277.73 20		0.030 10	(M1)		0.1641	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.1380 \ 20; \\ &\alpha(\mathbf{L}) \!=\! 0.0203 \ 3; \\ &\alpha(\mathbf{M}) \!=\! 0.00450 \ 7; \\ &\alpha(\mathbf{N} \!+\!) \!=\! 0.001210 \ 18. \\ &\alpha(\mathbf{N}) \!=\! 0.001050 \ 15; \\ &\alpha(\mathbf{O}) \!=\! 0.0001521 \ 22; \\ &\alpha(\mathbf{P}) \!=\! 8.44 \!\times\! 10^{-6} \ 12. \end{split}$
280.461 20	545.444	1.47 3	E2		0.0849	Mult.: from $\alpha(K)\exp=0.16$ 15. $\alpha(K)=0.0611$ 9; $\alpha(L)=0.0183$ 3; $\alpha(M)=0.00430$ 6; $\alpha(N+)=0.001112$ 16. $\alpha(N)=0.000984$ 14; $\alpha(O)=0.0001255$ 18; $\alpha(P)=3.11\times10^{-6}$ 5. Mult.: from L1:L2:L3=3.1 4: 3.3 4:2.3 3 and $\alpha(K)\exp=0.08$ 3.
287.1 3 x293.40 8	2273.01	0.006 2 0.051 8	(E2)		0.0739	$\alpha(K)=0.0538 \ 8;$ $\alpha(L)=0.01550 \ 22;$ $\alpha(M)=0.00363 \ 5;$ $\alpha(N+)=0.000940 \ 14.$ $\alpha(N)=0.000831 \ 12;$ $\alpha(O)=0.0001065 \ 15;$ $\alpha(P)=2.76 \times 10^{-6} \ 4.$ Mult : from $\alpha(K)=x_{D}=0.16 \ 8.$
298.207 20	2215.972	0.95 2	M1		0.1355	$\begin{aligned} &\alpha(K) = 0.1140 \ 16; \\ &\alpha(L) = 0.01676 \ 24; \\ &\alpha(M) = 0.00371 \ 6; \\ &\alpha(N+) = 0.000998 \ 14. \\ &\alpha(N) = 0.000866 \ 13; \\ &\alpha(O) = 0.0001254 \ 18; \\ &\alpha(P) = 6.96 \times 10^{-6} \ 10. \\ &\text{Mult.: from } \alpha(K) \exp[=0.12 \ 3. \end{aligned}$
312.58 20 ^x 319.883 18	2290.997	0.006 <i>3</i> 0.233 <i>7</i>	М1		0.1123	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0945 \ 14; \\ &\alpha(\mathbf{L}) = 0.01387 \ 20; \\ &\alpha(\mathbf{M}) = 0.00307 \ 5; \\ &\alpha(\mathbf{N}+) = 0.000826 \ 12. \\ &\alpha(\mathbf{N}) = 0.000716 \ 10; \\ &\alpha(\mathbf{O}) = 0.0001038 \ 15; \\ &\alpha(\mathbf{P}) = 5.76 \times 10^{-6} \ 8. \end{aligned}$
345.569 <i>15</i>	1917.767	2.43 6	M1+E2	-0.57 <i>+21-25</i>	0.080 8	$\begin{split} &\alpha(K) \!=\! 0.067 \ 7; \\ &\alpha(L) \!=\! 0.0106 \ 5; \\ &\alpha(M) \!=\! 0.00237 \ 9; \\ &\alpha(N+) \!=\! 0.00063 \ 3. \\ &\alpha(N) \!=\! 0.000552 \ 21; \\ &\alpha(O) \!=\! 7.8 \!\times\! 10^{-5} \ 4; \\ &\alpha(P) \!=\! 4.0 \!\times\! 10^{-6} \ 5. \\ &\text{Mult.: from L1:L2=6.7 \ 7:1.0 \ 1} \\ &\text{and } \alpha(K) \! \exp\! =\! 0.10 \ 2. \\ &\delta: \text{ from } A_2 \!=\! +\! 0.22 \ 6, \\ &A_4 \!=\! -0.07 \ 15 \ \text{for} \\ &215\gamma \!=\! 345\gamma(\theta) \\ &(1993 \text{AdZY}). \ \text{Other } \delta: \\ &0.75 \ 25 \ \text{from ce data}. \end{split}$
312.40 4		0.062 4				

$\gamma(^{166}{ m Er})$ (continued)								
$E\gamma^\dagger$	E(level)	Iγ [†] b	Mult. [‡]	δ	α	Comments		
385.54 <i>4</i>	2215.972	0.076 3	E2		0.0331	$\alpha(K) = 0.0255 \ 4;$ $\alpha(L) = 0.00594 \ 9;$ $\alpha(M) = 0.001372 \ 20;$ $\alpha(N+) = 0.000358 \ 5.$ $\alpha(N) = 0.000315 \ 5;$ $\alpha(O) = 4.16 \times 10^{-5} \ 6;$ $\alpha(P) = 1.367 \times 10^{-6} \ 20.$		
389.38 <i>3</i>	1985.644	0.254 7	М1		0.0668	$\alpha(K) = 0.0563 \ \ s;$ $\alpha(L) = 0.00820 \ \ l2;$ $\alpha(M) = 0.00182 \ \ 3;$ $\alpha(N) = 0.000423 \ \ s;$ $\alpha(N) = 0.000423 \ \ s;$ $\alpha(O) = 6.14 \times 10^{-5} \ \ g;$ $\alpha(P) = 3.42 \times 10^{-6} \ \ 5.$ Mult: from $\alpha(K) \exp = 0.059 \ \ 23.$		
404.004 <i>13</i>	1917.767	4.12 10	M1+E2	-0.34 +17-19	0.057 4	$\alpha(K) = 0.048 \ 4;$ $\alpha(L) = 0.0072 \ 3;$ $\alpha(M) = 0.00160 \ 6;$ $\alpha(N+) = 0.000429 \ 17.$ $\alpha(N) = 0.000372 \ 15;$ $\alpha(O) = 5.36 \times 10^{-5} \ 25;$ $\alpha(P) = 2.91 \times 10^{-6} \ 23.$ Mult: from L1:L2=7 1:0.8 3 and $\alpha(K) \exp = 0.053 \ 12.$ $\delta: from A_2 = +0.05 \ 8,$ $A_4 = +0.08 \ 15 \ for$ $215\gamma - 404\gamma(\theta)$ (1993AdZY).		
410.797 <i>16</i>	956.240	0.490 <i>10</i>	E2		0.0278	$\begin{split} &\alpha(\mathbf{K}) = 0.0216 \ \ 3; \\ &\alpha(\mathbf{L}) = 0.00481 \ \ 7; \\ &\alpha(\mathbf{M}) = 0.001109 \ \ 16; \\ &\alpha(\mathbf{N}+) = 0.000290 \ \ 4. \\ &\alpha(\mathbf{N}) = 0.000255 \ \ 4; \\ &\alpha(\mathbf{O}) = 3.39 \times 10^{-5} \ \ 5; \\ &\alpha(\mathbf{O}) = 1.67 \times 10^{-6} \ \ 17. \\ &\mathbf{I}\gamma(411\gamma) : \mathbf{I}\gamma(691\gamma) = 0.0233 \ \ 5: \\ &1.85 \ \ (2006Ku03). \\ &\mathbf{Mult.: from } \alpha(\mathbf{K}) exp = 0.019 \ \ 10. \end{split}$		
413.430 <i>18</i>	1985.644	0.320 <i>10</i>	E2		0.0273	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0212 \ 3; \\ &\alpha(\mathbf{L}) = 0.00472 \ 7; \\ &\alpha(\mathbf{M}) = 0.001086 \ 16; \\ &\alpha(\mathbf{N}+) = 0.000284 \ 4. \\ &\alpha(\mathbf{N}) = 0.000250 \ 4; \\ &\alpha(\mathbf{O}) = 3.32 \times 10^{-5} \ 5; \\ &\alpha(\mathbf{P}) = 1.149 \times 10^{-6} \ 16. \end{aligned}$		
429.885 <i>20</i>	2132.951	0.410 10	M1		0.0516	$\begin{aligned} &\alpha(K) = 0.0435 \ \ 6; \\ &\alpha(L) = 0.00632 \ \ 9; \\ &\alpha(M) = 0.001397 \ \ 20; \\ &\alpha(N+) = 0.000376 \ \ 6. \\ &\alpha(N) = 0.000326 \ \ 5; \\ &\alpha(O) = 4.72 \times 10^{-5} \ \ 7; \\ &\alpha(P) = 2.64 \times 10^{-6} \ \ 4. \end{aligned}$		

$\gamma(^{166}{ m Er})$ (continued)								
$E\gamma^{\dagger}$	E(level)	Iγ [†] b	Mult.‡	δ	α	Comments		
454.20 <i>3</i>	2132.951	0.172 20	(E2)		0.0211	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01664 \ 24; \\ &\alpha(\mathbf{L}) = 0.00349 \ 5; \\ &\alpha(\mathbf{M}) = 0.000801 \ 12; \\ &\alpha(\mathbf{N}+) = 0.000210 \ 3. \\ &\alpha(\mathbf{N}) = 0.000184 \ 3; \\ &\alpha(\mathbf{O}) = 2.47 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{P}) = 9.12 \times 10^{-7} \ 13. \\ &\text{Mult.: E1,E2 from} \\ &\alpha(\mathbf{K}) \text{exp} = 0.009 \ 5; \ \Delta\pi = \text{no} \\ &\text{from level scheme.} \end{aligned}$		
459.600 <i>15</i>	1917.767	13.26 <i>26</i>	M1+E2	-0.16 4	0.0428 7	α(K) = 0.0361 θ; α(L) = 0.00525 8; α(M) = 0.001162 18; α(N+) = 0.000312 5. α(N) = 0.000271 4; α(O) = 3.93×10-5 θ; α(P) = 2.18×10-6 4. Mult:: from Adopted Gammas. M1 from L1:L2:L3=14 2:1.0 2:0.3 and α(K) exp = 0.043 9. δ: from Adopted Gammas. δ = -0.17 3 from A2=-0.28 3, A4=+0.01 7 for 215γ-460γ(θ) and δ = -0.21 9 from A2=-0.17 5, A4=+0.06 9 for 460γ-672γ(θ) (1993AdZY).		
464.5 <i>3</i> 471.871 <i>23</i>	1978.432 1985.644	0.030 <i>8</i> 0.558 <i>13</i>	М1		0.0405	$\begin{split} &\alpha(K) \!=\! 0.0342 \; \textit{5}; \\ &\alpha(L) \!=\! 0.00495 \; \textit{7}; \\ &\alpha(M) \!=\! 0.001094 \; \textit{16}; \\ &\alpha(N+\ldots) \!=\! 0.000294 \; \textit{5}. \\ &\alpha(N) \!=\! 0.000255 \; \textit{4}; \\ &\alpha(O) \!=\! 3.70 \!\times\! 10^{-5} \; \textit{6}; \\ &\alpha(P) \!=\! 2.07 \!\times\! 10^{-6} \; \textit{3}. \\ &\text{Mult.: from } \alpha(K) \!exp \!=\! 0.034 \; \textit{10}. \end{split}$		
475.36 25 ×477.24 20 481.33 10	2413.68 2160.121 2001.874	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
496.935 <i>16</i> 520.92 <i>4</i>	1572.206	0.990 20	El		0.00566	$\begin{split} &\alpha(K) \!=\! 0.00480\ 7; \\ &\alpha(L) \!=\! 0.000672\ 10; \\ &\alpha(M) \!=\! 0.0001479\ 21; \\ &\alpha(N+) \!=\! 3.94 \!\times\! 10^{-5}\ 6. \\ &\alpha(N) \!=\! 3.43 \!\times\! 10^{-5}\ 5; \\ &\alpha(O) \!=\! 4.88 \!\times\! 10^{-6}\ 7; \\ &\alpha(P) \!=\! 2.57 \!\times\! 10^{-7}\ 4. \\ &\text{Mult.: from } \alpha(K) \!\exp\! \!=\! 0.0072\ 35. \\ &\text{Ey; from deconvolution of} \end{split}$		
						a doublet (1989Ad11). Ιγ: see comment on 521γ from 786 level.		

			γ(¹⁶⁶ Er) (c			
$E\gamma^{\dagger}$	E(level)	$I\gamma^{\dagger b}$	Mult. [‡]	δ	α	Comments
520.99 4	785.917	0.998 23	E2		0.01481	α(K) = 0.01184 17; α(L) = 0.00230 4; α(M) = 0.000525 8; α(M) = 0.0001382 20. α(N) = 0.0001382 20. α(N) = 0.0001211 17; α(O) = 1.644 × 10-5 23; α(P) = 6.58 × 10-7 10. L1:L2=0.4 2:0.15 and α(K) exp=0.012 5 for the doublet. Iγ. Eγ: Iγ is from Iγ(521γ from 786 level)/Iγ(705γ)= 0.0172 4 (2006Ku03) and I(705γ). Eγ=520.945 15, Iγ=1.32 3 for doublet in 1989Ad11, so Iγ(521γ from 1596 level)=0.32 4. Note, however, that the resulting 521γ branch from the 1596 level is somewhat smaller than the value adopted from β- decay (1200 y). 1989Ad11 estimated Eγ=520.92 4, Iγ=0.89 9 and Eγ=520.92 4, Iγ=0.42 7 for the respective components of the doublet they observed.
527.58 <i>10</i> 529.835 <i>20</i>	1985.644 1075.281	0.154 5 0.947 20	E2		0.01419	$\begin{split} &\alpha(K) \!=\! 0.01136 \ 16; \\ &\alpha(L) \!=\! 0.00219 \ 3; \\ &\alpha(M) \!=\! 0.000499 \ 7; \\ &\alpha(N+) \!=\! 0.0001314 \ 19. \\ &\alpha(N) \!=\! 0.0001151 \ 17; \\ &\alpha(O) \!=\! 1.566 \!\times\! 10^{-5} \ 22; \\ &\alpha(P) \!=\! 6.32 \!\times\! 10^{-7} \ 9. \\ \end{split}$
536.67 3	2132.951	0.671 <i>18</i>	E1		0.00478	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00406 \ \ \delta; \\ &\alpha(\mathbf{L}) = 0.000566 \ \ \delta; \\ &\alpha(\mathbf{M}) = 0.0001244 \ \ I8; \\ &\alpha(\mathbf{N}+) = 3.32 \times 10^{-5} \ \ 5. \\ &\alpha(\mathbf{N}) = 2.88 \times 10^{-5} \ \ \delta; \\ &\alpha(\mathbf{O}) = 4.12 \times 10^{-6} \ \ \delta; \\ &\alpha(\mathbf{P}) = 2.18 \times 10^{-7} \ \ 3. \end{aligned}$ Mult.: from $\alpha(\mathbf{K}) \exp = 0.0038 \ \ 20. \end{aligned}$
543.69 <i>3</i>	2001.874	0.387 11	E2,M1		0.021 8	$\alpha(K) = 0.017 \ 7;$ $\alpha(L) = 0.0027 \ 7;$ $\alpha(M) = 0.00061 \ 15;$ $\alpha(N+) = 0.00016 \ 4.$ $\alpha(N) = 0.00014 \ 4;$ $\alpha(O) = 2.0 \times 10^{-5} \ 6;$ $\alpha(P) = 1.0 \times 10^{-6} \ 5.$ Mult.: from $\alpha(K) \exp = 0.025 \ 14.$

$\gamma(^{166}{ m Er})$ (continued)								
${ m E}\gamma^{\dagger}$	E(level)	Iγ [†] b	Mult.‡	δ	α	Comments		
557.514 <i>18</i>	1513.760	1.54 <i>3</i>	E1		0.00440	$\begin{aligned} &\alpha(K) \!=\! 0.00374 \ \ 6; \\ &\alpha(L) \!=\! 0.000520 \ \ 8; \\ &\alpha(M) \!=\! 0.0001143 \ \ 16; \\ &\alpha(N+) \!=\! 3.05 \!\times\! 10^{-5} \ \ 5. \\ &\alpha(N) \!=\! 2.65 \!\times\! 10^{-5} \ \ 4; \\ &\alpha(O) \!=\! 3.79 \!\times\! 10^{-6} \ \ 6; \\ &\alpha(P) \!=\! 2.01 \!\times\! 10^{-7} \ \ 3. \end{aligned}$ Mult.: from \$\alpha(K) exp \!=\! 0.004 \ \ 2.		
560.77 <i>3</i> 563.21 <i>3</i> 572.2	2132.951 2021.359 1528.404	0.363 12 0.318 10	E2,M1		0.019 7	$\label{eq:alpha} \begin{split} &\alpha(K)\!=\!0.016\ 6;\\ &\alpha(L)\!=\!0.0025\ 7;\\ &\alpha(M)\!=\!0.00055\ 14;\\ &\alpha(N\!+\!)\!=\!0.00015\ 4.\\ &\alpha(N)\!=\!0.00013\ 4;\\ &\alpha(O)\!=\!1.8\!\times\!10^{-5}\ 6;\\ &\alpha(P)\!=\!9.\!\times\!10^{-7}\ 4.\\ &\text{Mult.: from }\alpha(K)\!\exp\!=\!0.015\ 8.\\ &\text{E}\gamma:\ from 1993BaZS. \end{split}$		
587.90 <i>16</i> 594.409 <i>15</i>	2160.121 859.399	0.27.5 18.3.4	E2+M1	-12 2	0.0111 7	$\label{eq:alpha} \begin{split} &\alpha(K) \!=\! 0.0090 \ 6; \\ &\alpha(L) \!=\! 0.000365 \ 14; \\ &\alpha(M) \!=\! 0.000365 \ 14; \\ &\alpha(M) \!=\! 0.7\times 10^{-5} \ 4. \\ &\alpha(N) \!=\! 8.4\times 10^{-5} \ 4; \\ &\alpha(O) \!=\! 1.16\times 10^{-5} \ 5; \\ &\alpha(O) \!=\! 1.16\times 10^{-7} \ 4. \\ & \text{Mult.: from } L1:L2:L3 \!=\! 4.5 \ 5: \\ &1.3 \ 2:0.8 \ 1 \ \text{and} \\ &\alpha(K) \!exp \!=\! 0.0076 \ 20. \\ &\delta: \ from \ \gamma(\theta, H, t) \\ &(1995KrZX). \ Other \ \delta: \\ &> \!+31 \ from \ \gamma(\theta) \\ &(1980Bu26); \ +5.5 \ +74 \!-\! 22 \\ &(1985DaZV); \ -1.3 \ +\! 3 \!-\! 5 \\ from \ 594\gamma \!-\! 184\gamma(\theta) \\ &(1993AdZY), \ however, \\ evaluator \ cannot \\ reproduce \ this \ value \\ &using \ the \ authors' \\ &stated \ A_2 \ and \ A_4 \\ &coefficients. \\ \end{split}$		
598.764 <i>19</i>	1458.164	11.13 <i>23</i>	E1 (+M2)	-0.02 6	0.0038 4	$\begin{aligned} &\alpha(K) = 0.0032 \ 3; \\ &\alpha(L) = 0.00045 \ 5; \\ &\alpha(M) = 9.8 \times 10^{-5} \ 12; \\ &\alpha(N+) = 2.6 \times 10^{-5} \ 3. \\ &\alpha(N) = 2.3 \times 10^{-5} \ 3; \\ &\alpha(O) = 3.3 \times 10^{-6} \ 4; \\ &\alpha(P) = 1.75 \times 10^{-7} \ 21. \end{aligned}$ Mult.,& from Adopted Gammas. E1 from L1:L2:L3 = 1.2 \ 2:0.2 and &\alpha(K) exp = 0.0042 \ 13. \end{aligned}		
604.553 <i>15</i>	2132.951	1.047 <i>23</i>	E2		0.01025	$\begin{aligned} \alpha(\mathbf{K}) &= 0.00832 \ 12; \\ \alpha(\mathbf{L}) &= 0.001506 \ 21; \\ \alpha(\mathbf{M}) &= 0.000341 \ 5; \\ \alpha(\mathbf{N}+) &= 9.01 \times 10^{-5} \ 13. \\ \alpha(\mathbf{N}) &= 7.88 \times 10^{-5} \ 11; \\ \alpha(\mathbf{O}) &= 1.083 \times 10^{-5} \ 16; \\ \alpha(\mathbf{P}) &= 4.67 \times 10^{-7} \ 7. \end{aligned}$		
610.8 ^d 3	2 2 7 3 . 0 1 2 7 8 3 . 6 9	$\begin{array}{ccc} 0.015^{}{} & \textit{\textit{6}} \\ 0.015^{}{} & \textit{\textit{6}} \end{array}$						

			γ(¹⁶⁶ Er) (cc	ntinued)		
$E\gamma^{\dagger}$	E(level)	$I\gamma^{\dagger}b$	Mult. [‡]	δ	α	Comments
615.963 15	1572.206	0.763 17	(E1(+M2))			Mult.: from Adopted
619.49 ^d 25	2132.951	0.015d 6				Gammas.
0.0.1 0.0 1.0	2215.972		(59)		0.00004	-(V) = 0.00750 + 1.00750
631.62 10	2160.121	0.380 10	(E2)		0.00924	$\alpha(K)=0.000752 \ 17;$ $\alpha(L)=0.001336 \ 19;$ $\alpha(M)=0.000302 \ 5;$ $\alpha(N+)=7.98\times10^{-5} \ 12.$ $\alpha(N)=6.98\times10^{-5} \ 10;$ $\alpha(O)=9.63\times10^{-6} \ 14;$ $\alpha(P)=4.23\times10^{-7} \ 6.$ Multi-from (K)axp=0.009 5
640.04 <i>3</i>	1596.263	0.263 8				
643.90 10	2215.972	0.120 6				
646.75 ^{@&e} 4	2160.121	≈0.04 ^e				
	2243.099	≈0.08 ^e				
654.358 <i>16</i>	1513.760	1.97 4	E1		0.00314	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.00267 \ 4; \\ &\alpha(\mathbf{L}) \!=\! 0.000368 \ 6; \\ &\alpha(\mathbf{M}) \!=\! 8.08 \!\times\! 10^{-5} \ 12; \\ &\alpha(\mathbf{N} \!=\! 1.87 \!\times\! 10^{-5} \ 3. \\ &\alpha(\mathbf{N}) \!=\! 1.87 \!\times\! 10^{-5} \ 3; \\ &\alpha(\mathbf{O}) \!=\! 2.69 \!\times\! 10^{-6} \ 4; \\ &\alpha(\mathbf{P}) \!=\! 1.446 \!\times\! 10^{-7} \ 21. \\ & \text{Mult.: from } \alpha(\mathbf{K}) \! \text{exp} \!=\! 0.0046 \ 25. \end{split}$
659.04 <i>20</i>	2172.757	0.029 6				
672.242 20	1458.164	32.4 7	E1		0.00297	$\begin{aligned} &\alpha(K) = 0.00253 \ 4; \\ &\alpha(L) = 0.000348 \ 5; \\ &\alpha(M) = 7.63 \times 10^{-5} \ 11; \\ &\alpha(N+) = 2.04 \times 10^{-5} \ 3. \\ &\alpha(N) = 1.771 \times 10^{-5} \ 25; \\ &\alpha(O) = 2.54 \times 10^{-6} \ 4; \\ &\alpha(P) = 1.370 \times 10^{-7} \ 20. \\ &\delta: < -0.01 \ from \ \gamma\gamma(\theta) \\ &(1980Bu26); \ +0.16 \ 4 \\ &from \ 672\gamma - 785\gamma(\theta) \\ &(1993AdZY). \end{aligned}$
674.788 <i>22</i>	2132.951	13.6 <i>3</i>	E1		0.00295	Mult.: from L1:L2:L3=1.9 2: 0.2 1:0.2 1 and $\alpha(K) \exp = 0.0026 9.$ $\alpha(K) = 0.00251 4;$ $\alpha(L) = 0.000345 5;$ $\alpha(M) = 7.57 \times 10^{-5} 11;$ $\alpha(N+) = 2.02 \times 10^{-5} 3.$ $\alpha(N) = 1.757 \times 10^{-5} 25;$ $\alpha(O) = 2.52 \times 10^{-6} 4;$ $\alpha(P) = 1.359 \times 10^{-7} 19.$ Mult.: from $\alpha(K) \exp = 0.002 1.$

			γ(¹⁶⁶ Er)	(continued)		
$E\gamma^{\dagger}$	E(level)	Iγ [†] b	Mult. [‡]	δ	α	Comments
691.250 <i>17</i>	956.240	39.1 <i>8</i>	E2+M1	-3.3 +12-30	0.00802 20	$\begin{aligned} &\alpha(K) = 0.00660 \ 17; \\ &\alpha(L) = 0.001106 \ 23; \\ &\alpha(M) = 0.000248 \ 5; \\ &\alpha(N+) = 6.59 \times 10^{-5} \ 14. \\ &\alpha(N) = 5.75 \times 10^{-5} \ 12; \\ &\alpha(O) = 8.03 \times 10^{-6} \ 18; \\ &\alpha(P) = 3.76 \times 10^{-7} \ 11. \\ &\delta: \ from \ Adopted \ Gammas. \ \delta \\ &from \ \epsilon \ decay: \ -3.7 \ 5 \\ &from \ \gamma(\theta) \ (1980Bu26); \\ &-8.5 < \delta < +7.0 \ (1985DaZV), \\ &-13 \ 9 \ from \ 691\gamma - 184\gamma(\theta) \\ &(1993AdZY), \ +5.5 \ +28 - 14 \\ &from \ \gamma(\theta, H, t) \\ &(1995KrZX). \\ &Mult.: \ from \ L1:L2:L3 = 5.6 \ 6; \\ &0.5 \ 2:0.5 \ 2 \ and \\ &\alpha(W) = 0.0068 \ 16 \end{aligned}$
702.28 10	2215.972	2.71 7	Μ1		0.01475	$\alpha(\mathbf{K}) \exp = 0.0068 \ 16.$ $\alpha(\mathbf{K}) = 0.01247 \ 18;$ $\alpha(\mathbf{L}) = 0.001782 \ 25;$ $\alpha(\mathbf{M}) = 0.000393 \ 6;$ $\alpha(\mathbf{N}+) = 0.0001058 \ 15.$ $\alpha(\mathbf{N}) = 9.17 \times 10^{-5} \ 13;$ $\alpha(\mathbf{O}) = 1.332 \times 10^{-5} \ 19;$ $\alpha(\mathbf{P}) = 7.49 \times 10^{-7} \ 11.$ Multi-fram $\alpha(\mathbf{K}) = 0.014 \ d$
705.333 <i>20</i>	785.917	58.0 <i>12</i>	M1+E2	-5 +3-14	0.00716 <i>13</i>	Mult: 110in 0 (K)exp=0.014 4. α (K)=0.00588 11; α (L)=0.000999 16; α (M)=0.000225 4; α (N)=5.20×10 ⁻⁵ 9; α (O)=7.24×10 ⁻⁶ 12; α (P)=3.32×10 ⁻⁷ 7. δ: from γγ(θ) (1987Kr12). Other: -22 +13-7 (1980Bu26), -7 +23-3 from γ(θ,H,t) (1995KrZX). Mult: from L1:L2:L3=7.0 7: 0.7 1:0.7 1 and α (K)exp=0.0067 14.
712.817 22	1572.206	2.19 4	El		0.00264	$\alpha(K)exp=0.0007 14.$ $\alpha(K)=0.00224 4;$ $\alpha(L)=0.000308 5;$ $\alpha(M)=6.75\times10^{-5} 10;$ $\alpha(N+)=1.80\times10^{-5} 3.$ $\alpha(N)=1.568\times10^{-5} 22;$ $\alpha(O)=2.25\times10^{-6} 4;$ $\alpha(P)=1.219\times10^{-7} 17.$ Mult: from $\alpha(K)exp=0.0032 17.$
727.858 <i>20</i>	1513.760	2.09 10	El		0.00253	$\begin{aligned} &\alpha(K) \!=\! 0.00215 \; 3; \\ &\alpha(L) \!=\! 0.000295 \; 5; \\ &\alpha(M) \!=\! 6.47 \!\times\! 10^{-5} \; 9; \\ &\alpha(N+) \!=\! 1.729 \!\times\! 10^{-5} \; 25. \\ &\alpha(N) \!=\! 1.502 \!\times\! 10^{-5} \; 21; \\ &\alpha(O) \!=\! 2.16 \!\times\! 10^{-6} \; 3; \\ &\alpha(P) \!=\! 1.170 \!\times\! 10^{-7} \; 17. \\ & \text{Mult.: from } \alpha(K) \!\exp\! \!=\! 0.0013 \; 5. \end{aligned}$

			γ(¹⁶⁶ Er) (continued)				
$E\gamma^\dagger$	E(level)	Iγ [†] b	Mult. [‡]	δ	α	Comments		
729.38 <i>3</i> 736.832 <i>22</i>	2243.099	0.45 <i>4</i> 0.721 <i>24</i>	М1		0.01342	$\begin{split} &\alpha(\mathrm{K}) \!=\! 0.01135 \ 16; \\ &\alpha(\mathrm{L}) \!=\! 0.001619 \ 23; \\ &\alpha(\mathrm{M}) \!=\! 0.000357 \ 5; \\ &\alpha(\mathrm{N} \!+\!) \!=\! 9.61 \!\times\! 10^{-5} \ 14. \\ &\alpha(\mathrm{N}) \!=\! 8.33 \!\times\! 10^{-5} \ 12; \\ &\alpha(\mathrm{O}) \!=\! 1.210 \!\times\! 10^{-5} \ 17; \\ &\alpha(\mathrm{P}) \!=\! 6.81 \!\times\! 10^{-7} \ 10. \\ &\mathrm{Mult.: \ from } \alpha(\mathrm{K}) \!\exp\! \!=\! 0.023 \ 13. \end{split}$		
742.59 10 743 8 5	1528.404 2729 094	$0.138 \ 12$ 0.037 \ 13						
757.798 17	2215.972	12.33 25	M1		0.01220	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01032 \ 15; \\ &\alpha(\mathbf{L}) = 0.001471 \ 21; \\ &\alpha(\mathbf{M}) = 0.000324 \ 5; \\ &\alpha(\mathbf{N}+) = 8.73 \times 10^{-5} \ 13. \\ &\alpha(\mathbf{N}) = 7.57 \times 10^{-5} \ 11; \\ &\alpha(\mathbf{O}) = 1.099 \times 10^{-5} \ 16; \\ &\alpha(\mathbf{P}) = 6.19 \times 10^{-7} \ 9. \\ &\mathbf{Mult.: from } \alpha(\mathbf{K}) \exp = 0.011 \ 3. \\ &\delta: \ 0.03 \ + 18 - 14 \ if \ J\pi = 2 - \\ ∨ \ + 0.31 \ 9 \ if \ J\pi = 3 - \\ &(1985 DaZV) \end{aligned}$		
778.814 <i>15</i>	859.399	100.0 <i>20</i>	E2+M1	-20 +2-4	0.00580	$\begin{aligned} & (1363) \Delta L V). \\ & ((K) = 0.00479 7; \\ & ((L) = 0.000784 11; \\ & ((M) = 0.0001758 25; \\ & ((N) = 4.07 \times 10^{-5} 7. \\ & ((N) = 4.07 \times 10^{-5} 6; \\ & ((O) = 5.71 \times 10^{-6} 8; \\ & ((P) = 2.72 \times 10^{-7} 4. \\ & \delta: from Adopted Gammas. \\ & Data from \epsilon decay: \\ & + 8.4 7 from \gamma \gamma (0) \\ & (1980Bu26); +15 + 26 - 6 \\ & (1985DaZV), +10 + 130 - 5 \\ & from 598 \gamma - 778 \gamma (0) \\ & (1993AdZY), -6.2 + 10 - 8 \\ & from \gamma (0, H, t) \\ & (1995KrZX); reason for \\ & discrepant results is \\ & not known. \\ & Mult.: from L1:L2:L3=11 1: \\ & 2.2 3:1.0 2 \\ & (\alpha (K) = 4.79 \times 10^{-3} (E2 \\ & theory)). \end{aligned}$		
785.904 <i>15</i>	785.917	52.5 6	E2		0.00561	$\begin{aligned} &\alpha(K) = 0.00463 \ 7; \\ &\alpha(L) = 0.000759 \ 11; \\ &\alpha(M) = 0.0001701 \ 24; \\ &\alpha(N+) = 4.52 \times 10^{-5} \ 7. \\ &\alpha(N) = 3.94 \times 10^{-5} \ 6; \\ &\alpha(O) = 5.52 \times 10^{-6} \ 8; \\ &\alpha(P) = 2.63 \times 10^{-7} \ 4. \\ &I\gamma: \ from \ I\gamma(786\gamma)/I\gamma(705\gamma) = \\ &0.906 \ 10 \ (2006 Ku03) \ and \\ &I(705\gamma); \ in \ excellent \\ &agreement \ with \\ &I\gamma = 52.4 \ 11 \ from \\ &1989 Ad11. \\ &Mult.: \ from \ L1:L2:L3 = 3.3 \ 10; \\ &I.3 \ 4:0.5 \ 2 \ and \end{aligned}$		
797.02 20	2393.14	0.023 5				α(K)exp=0.0046 3.		
x799.74 20		0.023 5						

			γ(¹⁶⁶ Er			
$E\gamma^{\dagger}$	E(level)	Iγ [†] b	Mult.‡	δ	α	Comments
810.290 16	1075.281	5.78 13	E2+M1	-21.2 +18-21	0.00526	$\begin{split} \alpha(K) = 0.00436 \ 7; \\ \alpha(L) = 0.000706 \ 10; \\ \alpha(M) = 0.0001580 \ 23; \\ \alpha(N+) = 4.20 \times 10^{-5} \ 6. \\ \alpha(N) = 3.66 \times 10^{-5} \ 6; \\ \alpha(O) = 5.14 \times 10^{-6} \ 8; \\ \alpha(P) = 2.47 \times 10^{-7} \ 4. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
814.82 <i>20</i> 824.52d <i>11</i>	2273.01 2282.68 2352.91	0.062 <i>12</i> 0.026d 7 0.026d 7				
832.88 7	2290.997	0.051 4				
*858.62 9	0000 07	0.042 7				
875.650 <i>15</i>	2382.27 956.240	0.052 9 21.5 4	E2		0.00444	$\begin{split} &\alpha(K) = 0.00369 \ \ 6; \\ &\alpha(L) = 0.000584 \ \ 9; \\ &\alpha(M) = 0.0001305 \ \ 19; \\ &\alpha(N+) = 3.47 \times 10^{-5} \ \ 5. \\ &\alpha(N) = 3.03 \times 10^{-5} \ \ 5; \\ &\alpha(O) = 4.27 \times 10^{-6} \ \ 6; \\ &\alpha(P) = 2.10 \times 10^{-7} \ \ 3. \\ &I\gamma(875\gamma):I\gamma(691\gamma) = 1.026 \ \ 16; \\ &1.85 \ (2006Ku03). \\ &Mult.: \ from \ L1:L2:L3 = 2.0 \ \ 2; \\ &0.4 \ \ 1.0.2 \ \ and \\ &\alpha(K) exp = 0.0035 \ \ 4. \\ &\delta: \ \delta(E2/M3) = -0.07 \ \ 9 \\ &(1985DaZV). \end{split}$
899.80 <i>18</i> 903 01 <i>13</i>	2413.68	0.0204 0.0295				
924.21 11	2382.27	0.063 9				
946.57 8	2542.88	0.038 5				
982.00 15	1938.273	0.051 9				
x985.53 15		0.052 9				
×1004.99 20		0.028 8				
1017.29 6	2475.40	0.077 5				
1022.1/5 23	19/8.432	U. 294 11 0 020 5				
1045.648 20	2001.874	0.901 20	E1		$1 \cdot 26 \times 10^{-3}$	$\begin{aligned} &\alpha(K) = 0.001075 \ 15; \\ &\alpha(L) = 0.0001447 \ 21; \\ &\alpha(M) = 3.17 \times 10^{-5} \ 5; \\ &\alpha(N+) = 8.49 \times 10^{-6} \ 12. \\ &\alpha(N) = 7.36 \times 10^{-6} \ 11; \\ &\alpha(O) = 1.063 \times 10^{-6} \ 15; \\ &\alpha(P) = 5.90 \times 10^{-8} \ 9. \\ &Mult. \ from \ \alpha(K) exp = 0.0018 \ 9. \end{aligned}$

$\gamma(^{166}{\rm Er})$ (continued)							
$E\gamma^{\dagger}$	E(level)	$I\gamma^{\dagger b}$	Mult. [‡]	δ	α	Comments	
1057.67 4	2132.951	3.66 12	E2		0.00300	$\begin{aligned} &\alpha(\mathbf{K}) \!=\! 0.00251 \; 4; \\ &\alpha(\mathbf{L}) \!=\! 0.000379 \; 6; \\ &\alpha(\mathbf{M}) \!=\! 8.43 \!\times\! 10^{-5} \; 12; \\ &\alpha(\mathbf{N} \!+\!) \!=\! 2.25 \!\times\! 10^{-5} \; 4. \\ &\alpha(\mathbf{N}) \!=\! 1.96 \!\times\! 10^{-5} \; 3; \\ &\alpha(\mathbf{O}) \!=\! 2.78 \!\times\! 10^{-6} \; 4; \\ &\alpha(\mathbf{P}) \!=\! 1.430 \!\times\! 10^{-7} \; 20. \end{aligned}$	
1078.876 <i>22</i>	1938.273	2.51 5	M1		0.00513	Mult: from $\alpha(\mathbf{X}) \exp[-0.0024]$ 3. $\alpha(\mathbf{K}) = 0.00435$ 6; $\alpha(\mathbf{L}) = 0.000612$ 9; $\alpha(\mathbf{M}) = 0.0001349$ 19; $\alpha(\mathbf{N} +) = 3.63 \times 10^{-5}$ 5. $\alpha(\mathbf{N}) = 3.15 \times 10^{-5}$ 5; $\alpha(\mathbf{C}) = 4.57 \times 10^{-6}$ 7; $\alpha(\mathbf{C}) = 2.59 \times 10^{-7}$ 4.	
1084.826 <i>17</i>	2160.121	1.92 <i>4</i>	Ε2		0.00285	Mult:: from $\alpha(\mathbf{K}) \exp[=0.0059\ 20.$ $\alpha(\mathbf{K})=0.00239\ 4;$ $\alpha(\mathbf{L})=0.000359\ 5;$ $\alpha(\mathbf{M})=7.96\times10^{-5}\ 12;$ $\alpha(\mathbf{N}+)=2.13\times10^{-5}\ 3.$ $\alpha(\mathbf{N})=1.85\times10^{-5}\ 3;$ $\alpha(\mathbf{C})=2.63\times10^{-6}\ 4;$ $\alpha(\mathbf{P})=1.360\times10^{-7}\ 19.$ Mult:: from $\alpha(\mathbf{K})\exp[=0.0024\ 2.$	
	2046.88	0.302 9	E2		0.00278	$\begin{split} &\alpha(K) \!=\! 0.00233 \; 4; \\ &\alpha(L) \!=\! 0.000350 \; 5; \\ &\alpha(M) \!=\! 7.76 \!\times\! 10^{-5} \; 11; \\ &\alpha(N+) \!=\! 2.07 \!\times\! 10^{-5} \; 3. \\ &\alpha(N) \!=\! 1.80 \!\times\! 10^{-5} \; 3; \\ &\alpha(O) \!=\! 2.57 \!\times\! 10^{-6} \; 4; \\ &\alpha(P) \!=\! 1.329 \!\times\! 10^{-7} \; 19. \end{split}$ Mult.: from $\alpha(K) \! \exp\! =\! 0.0035 \; 19.$	
1119.50§e	1978.432	≈0.68 ^e					
1119.58 ^e ^x 1126.807 <i>25</i>	2076.305	≈0.67° 0.380 <i>11</i>	M1+E2		0.0036 <i>10</i>	$\begin{split} &\alpha(\mathbf{K})\!=\!0.0031~9;\\ &\alpha(\mathbf{L})\!=\!0.00044~11;\\ &\alpha(\mathbf{M})\!=\!9.7\!\times\!10^{-5}~24;\\ &\alpha(\mathbf{N}\!=\!2.7\!\times\!10^{-5}~7.\\ &\alpha(\mathbf{N})\!=\!2.3\!\times\!10^{-5}~6;\\ &\alpha(\mathbf{O})\!=\!3.3\!\times\!10^{-6}~9;\\ &\alpha(\mathbf{C})\!=\!1.8\!\times\!10^{-7}~6;\\ &\alpha(\mathbf{IPF})\!=\!7.8\!\times\!10^{-7}~8.\\ &\mathbf{Mult.:}~\alpha(\mathbf{K})\mathbf{exp}\!=\!0.0032~8\\ &(1993BaZS). \end{split}$	
1131.872 25	1917.767	1.28 3	E1		1.09×10 ⁻³	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000931 \ I3; \\ &\alpha(\mathbf{L}) = 0.0001249 \ I8; \\ &\alpha(\mathbf{M}) = 2.73 \times 10^{-5} \ I; \\ &\alpha(\mathbf{M}) = 1.183 \times 10^{-5} \ I7. \\ &\alpha(\mathbf{N}) = 6.35 \times 10^{-6} \ g; \\ &\alpha(\mathbf{O}) = 9.18 \times 10^{-7} \ I3; \\ &\alpha(\mathbf{P}) = 5.11 \times 10^{-8} \ g; \\ &\alpha(\mathbf{IPF}) = 4.50 \times 10^{-6} \ 7. \\ &\mathbf{Mult: from } \alpha(\mathbf{K}) = \mathbf{p} = 0.0013 \ 7. \end{aligned}$	
1142.45 ^d 3	2001.874	0.578 ^d 13				Mult.: $\alpha(K) \exp=0.0010$, mult=El for doublet (1993BaZS).	
	2600.64	0.578 ^d 13				Mult.: α(K)exp≈0.0010, mult=E1 for doublet (1993BaZS).	

			γ(¹⁶⁶ Er)	(continued)				
$_{\rm E\gamma^{\dagger}}$	E(level)	$I^{\lambda \downarrow p}$	Mult. [‡]	δ	α	Comments		
1152.350 <i>16</i>	1938.273	8.20 <i>21</i>	М1		0.00438	$\alpha(K) = 0.00371 \ 6;$ $\alpha(L) = 0.000521 \ 8;$ $\alpha(M) = 0.0001148 \ 16;$ $\alpha(N+) = 3.28 \times 10^{-5} \ 5.$ $\alpha(N) = 2.68 \times 10^{-5} \ 4;$ $\alpha(O) = 3.89 \times 10^{-6} \ 6;$ $\alpha(P) = 2.21 \times 10^{-7} \ 3;$ $\alpha(IPF) = 1.94 \times 10^{-6} \ 3.$ Mult.: from $\alpha(K) \exp = 0.0040 \ 14$ (1979Ad06,1989Ad11) and 0.0033 \ 5(1093PaZS)		
1161.955 <i>16</i>	2021.359	3.78 9	El		1.05×10 ⁻³	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000388 \ 13; \\ &\alpha(\mathbf{L}) = 0.0008189 \ 13; \\ &\alpha(\mathbf{L}) = 0.0001190 \ 17; \\ &\alpha(\mathbf{M}) = 2.60 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{N}+) = 1.721 \times 10^{-5} \ 25. \\ &\alpha(\mathbf{N}) = 6.05 \times 10^{-6} \ 9; \\ &\alpha(\mathbf{O}) = 8.75 \times 10^{-7} \ 13; \\ &\alpha(\mathbf{O}) = 4.88 \times 10^{-8} \ 7; \\ &\alpha(\mathbf{IFF}) = 1.024 \times 10^{-5} \ 15. \end{aligned}$		
1176.704 <i>16</i>	2132.951	50.5 10	M1+E2	+0.20 4	0.00410 7	$\begin{aligned} &\alpha(K)=0.00347\ 6;\\ &\alpha(L)=0.000488\ 8;\\ &\alpha(M)=0.0001074\ 17;\\ &\alpha(N+)=3.26\times10^{-5}\ 5.\\ &\alpha(N)=2.51\times10^{-5}\ 4;\\ &\alpha(O)=3.64\times10^{-6}\ 6;\\ &\alpha(P)=2.06\times10^{-7}\ 4;\\ &\alpha(IPF)=3.70\times10^{-6}\ 6.\\ &\text{Mult.: from }\alpha(K)\exp=0.0032\ 2.\\ &\delta: weighted average of\\ &+0.24\ 4\ from\\ &1177\gamma-876\gamma(\theta)\\ &(1993AdZY), +0.11\ 7\\ &from\ 1177\gamma-876\gamma(\theta)\\ &(1993AdZY). \end{aligned}$		
1187.49 <i>4</i>	2046.88	0.560 <i>14</i>	M1 (+E2)		0.0032 9	$\begin{split} &\alpha(K) = 0.0027 \ \ 8; \\ &\alpha(L) = 0.00039 \ \ 10; \\ &\alpha(M) = 8.6 \times 10^{-5} \ \ 21; \\ &\alpha(N+) = 2.7 \times 10^{-5} \ \ 6. \\ &\alpha(N) = 2.0 \times 10^{-5} \ \ 5; \\ &\alpha(O) = 2.9 \times 10^{-6} \ \ 8; \\ &\alpha(P) = 1.6 \times 10^{-7} \ \ 5; \\ &\alpha(IPF) = 4.4 \times 10^{-6} \ \ 5. \\ &Mult.: \ from \ \alpha(K) exp = 0.0030 \ \ 7 \\ &(1993BaZS). \end{split}$		
1192.516 <i>16</i>	1978.432	0.880 <i>20</i>	E2		0.00236	$\begin{split} &\alpha(K) = 0.00198 \ 3; \\ &\alpha(L) = 0.000292 \ 4; \\ &\alpha(M) = 6.48 \times 10^{-5} \ 9; \\ &\alpha(N+) = 2.17 \times 10^{-5} \ 3. \\ &\alpha(N) = 1.505 \times 10^{-5} \ 21; \\ &\alpha(O) = 2.15 \times 10^{-6} \ 3; \\ &\alpha(P) = 1.130 \times 10^{-7} \ 16; \\ &\alpha(IPF) = 4.41 \times 10^{-6} \ 7. \\ &Mult.: from \ \alpha(K) exp = 0.0015 \ 8 \\ &(1979Ad06) \ and \ 0.0020 \ 6 \\ &(1993BaZS). \end{split}$		

$\gamma(^{166}\mathrm{Er})$ (continued)								
$\underline{\qquad} E\gamma^{\dagger}$	E(level)	$I\gamma^{\dagger b}$	Mult. [‡]	δ	α	Comments		
1200.66 3	2729.094	1.66 5	E2 , M1		0.0032 9	$\begin{aligned} &\alpha(K) = 0.0027 \ 7; \\ &\alpha(L) = 0.00038 \ 10; \\ &\alpha(M) = 8.4 \times 10^{-5} \ 20; \\ &\alpha(N+) = 2.8 \times 10^{-5} \ 6. \\ &\alpha(N) = 2.0 \times 10^{-5} \ 5; \\ &\alpha(O) = 2.8 \times 10^{-6} \ 7; \\ &\alpha(P) = 1.6 \times 10^{-7} \ 5; \\ &\alpha(IPF) = 5.7 \times 10^{-6} \ 6. \\ &\text{Mult.: from } \alpha(K) exp = 4.0 \end{aligned}$		
1203.873 <i>20</i>	2160.121	5.49 <i>11</i>	M1+E2		0.0031 9	$\begin{array}{c} 4.3 \times 10^{-5} 22.\\ \alpha(\mathrm{K}) = 0.0026 \ 7;\\ \alpha(\mathrm{L}) = 0.00038 \ 10;\\ \alpha(\mathrm{M}) = 8.3 \times 10^{-5} \ 20;\\ \alpha(\mathrm{N}+) = 2.8 \times 10^{-5} \ 6.\\ \alpha(\mathrm{N}) = 1.9 \times 10^{-5} \ 5;\\ \alpha(\mathrm{O}) = 2.8 \times 10^{-6} \ 7;\\ \alpha(\mathrm{P}) = 1.5 \times 10^{-7} \ 5;\\ \alpha(\mathrm{IPF}) = 6.1 \times 10^{-6} \ 6.\\ \end{array}$		
1216.173 ^{&e} 17	2001.874	2.5 ^e 5				Mult.: Iroli α(χ)εκρ=0.0020 4. Iγ: from ce-γ coin data (1989Ad11); Iγ=3.72 8 for doublet		
	2076.305					Iγ: Iγ must be small.		
	2172.757	1.2 ^e 5				Placement is uncertain. Iγ: from ce-γ coin data (1989Ad11); Iγ=3.72 <i>8</i> for doublet		
1235.433 16	2021.359	9.8 2	E1 (+M2)	+0.04 <i>+9-6</i>	0.00098 12	$\begin{split} &\alpha(K) = 0.00081 \ 10; \\ &\alpha(L) = 0.000108 \ 16; \\ &\alpha(M) = 2.4 \times 10^{-5} \ 4; \\ &\alpha(N+) = 4.35 \times 10^{-5} \ 8. \\ &\alpha(N) = 5.5 \times 10^{-6} \ 8; \\ &\alpha(O) = 8.0 \times 10^{-7} \ 12; \\ &\alpha(P) = 4.4 \times 10^{-8} \ 7; \\ &\alpha(IPF) = 3.71 \times 10^{-5} \ 8. \\ &\text{Mult.: from Adopted} \\ &\text{Gammas. E1 from} \\ &\alpha(K) \exp = 0.8 \times 10^{-3} \ 4 \\ &(1979 \text{Ad}06), \ 0.00092 \ 20 \\ &(1993 \text{BaZS}). \\ &\delta: \text{ from Adopted Gammas.} \\ &\text{Other } \delta: +0.1 \ 2 \\ &(1985 \text{DaZV}), \ +0.05 \ 10 \\ &\text{from } \gamma(\theta, \text{H}, t) \\ &(1995 \text{KrZX}). \\ \end{split}$		
1242.2 <i>3</i> 1248.78 <i>3</i>	2101.6 1513.760	0.035 7 1.175 <i>25</i>	E1+M2	+0.13 3	0.008	$\begin{aligned} &\alpha(K) = 0.004 \ 4; \\ &\alpha(L) = 0.0006 \ 5; \\ &\alpha(M) = 0.00013 \ 11; \\ &\alpha(N+) = 5.8 \times 10^{-5} \ 10. \\ &\alpha(N) = 3. \times 10^{-5} \ 3; \\ &\alpha(O) = 4. \times 10^{-6} \ 4; \\ &\alpha(P) = 2.5 \times 10^{-7} \ 21; \\ &\alpha(IPF) = 2.3 \times 10^{-5} \ 20. \\ &\text{Mult.,} \& \text{ from Adopted} \\ &\text{Gammas; } E1(+M2) \ \text{from} \\ &\alpha(K) \exp = 0.0011 \ 4 \\ &(10 \exp 20.5) \end{aligned}$		
1256.7 3	2212.97	0.047 20				(15551025).		
			γ(¹⁶⁶ Er)	(continued)				
--	----------------------------------	--------------------------------	-----------------------	-------------	-----------	--		
$E\gamma^{\dagger}$	E(level)	Iγ [†] b	Mult. [‡]	δ	α	Comments		
1263.412 <i>16</i>	1528.404	4.77 10	E2		0.00212	$\begin{split} &\alpha(K) = 0.001772 \ 25; \\ &\alpha(L) = 0.000259 \ 4; \\ &\alpha(M) = 5.72 \times 10^{-5} \ 8; \\ &\alpha(N+) = 2.85 \times 10^{-5} \ 4. \\ &\alpha(N) = 1.331 \times 10^{-5} \ 19; \\ &\alpha(O) = 1.91 \times 10^{-6} \ 3; \\ &\alpha(P) = 1.010 \times 10^{-7} \ 15; \\ &\alpha(IPF) = 1.315 \times 10^{-5} \ 19. \\ &Mult.: from Adopted \\ &Gammas consistent with \\ &\alpha(K) exp = 0.0030 \ 12 \\ &(1979Ad06) \ and 0.0021 \ 4 \\ &(1993BaZS). \end{split}$		
1273.540 16	2132.951	78.6 16	M1+E2	-0.11 8	0.00344 6	$ \begin{array}{l} \alpha((K)=0.00290\ 5; \\ \alpha(L)=0.000407\ 7; \\ \alpha(M)=8.96\times 10^{-5}\ 15; \\ \alpha(N+)=4.18\times 10^{-5}\ 7. \\ \alpha(N)=2.09\times 10^{-5}\ 4; \\ \alpha(O)=3.04\times 10^{-6}\ 5; \\ \alpha(P)=1.73\times 10^{-7}\ 3; \\ \alpha(1PF)=1.77\times 10^{-5}\ 3. \\ \mbox{Mult.: from } \alpha(K)\exp=0.0029\ 2. \\ \delta:\ -0.11\ 8\ (1985DaZV); \\ \ however,\ \delta=+0.30\ 6\ from \\ 1273\gamma-778\gamma(\theta) \\ (1993AdZY). \end{array} $		
1287.1 3 1290.368 22 1300.725 16	2243.099 2076.305 2160.121	0.023 6 0.416 11 7.05 14	М1		0.00330	$\alpha(K) = 0.00278 \ 4;$ $\alpha(L) = 0.000388 \ 6;$ $\alpha(M) = 8.55 \times 10^{-5} \ 12;$ $\alpha(N+) = 4.61 \times 10^{-5} \ 7.$ $\alpha(N) = 1.99 \times 10^{-5} \ 3;$ $\alpha(O) = 2.90 \times 10^{-6} \ 4;$ $\alpha(P) = 1.648 \times 10^{-7} \ 23;$ $\alpha(PE) = 2.31 \times 10^{-5} \ 4.$		
1307.17 <i>15</i> 1313.37 <i>3</i>	1572.206 2172.757	0.023 6 1.13 3	M1 , E2		0.0026 7	$\begin{aligned} &\alpha(\mathbf{K}) = 2.31 \times 10^{-4} \cdot \mathbf{A}, \\ &\mathbf{M} ult.: \text{ from } \alpha(\mathbf{K}) \exp = 0.0028 \ 3. \\ &\alpha(\mathbf{K}) = 0.0022 \ 6; \\ &\alpha(\mathbf{L}) = 0.00031 \ 7; \\ &\alpha(\mathbf{M}) = 6.8 \times 10^{-5} \ 16; \\ &\alpha(\mathbf{N} +) = 4.2 \times 10^{-5} \ 7. \\ &\alpha(\mathbf{N}) = 1.6 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{O}) = 2.3 \times 10^{-6} \ 6; \\ &\alpha(\mathbf{P}) = 1.3 \times 10^{-7} \ 4; \\ &\alpha(\mathbf{IP} F) = 2.37 \times 10^{-5} \ 23. \\ &\mathbf{M} ult.: \text{ from } \alpha(\mathbf{K}) \exp = 0.0014 \ 7. \end{aligned}$		
1315.6 <i>8</i> 1334.74 <i>21</i>	2101.6 2290.997	0.090 9 0.042 7	M1 (+E2)		0.0025 6	$\begin{split} &\alpha(K) \!=\! 0.0021 \ 5; \\ &\alpha(L) \!=\! 0.00030 \ 7; \\ &\alpha(M) \!=\! 6.6 \!\times\! 10^{-5} \ 15; \\ &\alpha(N+) \!=\! 4.8 \!\times\! 10^{-5} \ 7. \\ &\alpha(N) \!=\! 1.5 \!\times\! 10^{-5} \ 4; \\ &\alpha(O) \!=\! 2.2 \!\times\! 10^{-6} \ 6; \\ &\alpha(P) \!=\! 1.2 \!\times\! 10^{-7} \ 4; \\ &\alpha(IPF) \!=\! 2.8 \!\times\! 10^{-5} \ 3. \\ &Mult.: from \alpha(K) \!\exp\!\!=\! 0.0048 \ 8 \\ &(1993BaZS). \end{split}$		

			$\gamma(^{166}{ m Er})$	(continued)		
Εν [†]	E(level)	I∿‡p	Mult [‡]	δ	a	Comments
1347.035 18	2132.951	5.79 12	M1		0.00304	α(K)=0.00255 <i>4</i> ;
						$\begin{split} &\alpha(L) = 0.000357 \ 5; \\ &\alpha(M) = 7.86 \times 10^{-5} \ 11; \\ &\alpha(N+) = 5.56 \times 10^{-5} \ 8. \\ &\alpha(N) = 1.83 \times 10^{-5} \ 3; \\ &\alpha(O) = 2.67 \times 10^{-6} \ 4; \\ &\alpha(P) = 1.516 \times 10^{-7} \ 22; \\ &\alpha(IPF) = 3.45 \times 10^{-5} \ 5. \end{split}$
1353 27 25	2212 97	0 0 5 0 1 5				Mult.: from $\alpha(K)exp=0.0024$ 3.
1356.62 4	2215.972	0.09 6				Mult.: α(K)exp=0.008 <i>6</i> (1993BaZS).
1374.194 <i>25</i> 1378.6 <i>10</i>	2160.121	29.6 7 0.040 <i>20</i>	M1+E2	-0.11 4	0.00290 5	$\begin{split} &\alpha(K) = 0.00242 \ 4; \\ &\alpha(L) = 0.000339 \ 5; \\ &\alpha(M) = 7.46 \times 10^{-5} \ 11; \\ &\alpha(N+) = 6.24 \times 10^{-5} \ 9. \\ &\alpha(N) = 1.74 \times 10^{-5} \ 3; \\ &\alpha(O) = 2.53 \times 10^{-6} \ 4; \\ &\alpha(P) = 1.438 \times 10^{-7} \ 21; \\ &\alpha(IPF) = 4.23 \times 10^{-5} \ 6. \\ &\text{Mult.: from } \alpha(K) = xp = 0.0023 \ 2. \\ &\delta: \ weighted \ average \ of \\ &-0.18 \ 7 \ (1985 DaZV) \ and \\ &-0.09 \ 4 \ from \\ &1374\gamma - 785\gamma(\theta) \\ &(1993 AdZY). \ Others: \\ &+0.01 \ 14 \ from \\ &1374\gamma - 705\gamma(\theta) \\ &(1993 AdZY), \\ &-0.34 \ + 17 - 12 \ from \\ &\gamma(\theta, H, t) \ (1995 KrZX). \end{split}$
1383.5 <i>3</i>	2243.099	0.06 3				
1396.8 4	2352.91	0.015 8				
1401.16 <i>4</i>	2260.66	0.39 3				
1406.6 <i>3</i> 1413.81 <i>4</i>	1678.77	0.023 8	M1 (+E2+E0)	+0.35 30	0.062 21	$\begin{split} &\alpha(K) = 0.00218 \ 17; \\ &\alpha(L) = 0.000306 \ 22; \\ &\alpha(M) = 6.7 \times 10^{-5} \ 5; \\ &\alpha(N+) = 7.2 \times 10^{-5} \ 4. \\ &\alpha(N) = 1.57 \times 10^{-5} \ 11; \\ &\alpha(O) = 2.28 \times 10^{-6} \ 17; \\ &\alpha(P) = 1.29 \times 10^{-7} \ 11; \\ &\alpha(IPF) = 5.43 \times 10^{-5} \ 20. \\ &Mult.: from &\alpha(K) exp = 0.0048 \ 16 \\ &(1993BaZS). \\ &\alpha: approximate value from \\ &\alpha(K) exp x \ 1.3. \end{split}$
1427.06 <i>20</i> 1430.2 <i>3</i>	2212.97 2215.972	0.14 4 0.86 20				
1431.6 3	2290.997	1.8.3				

			γ(¹⁶⁶ Er)			
$_{\rm E\gamma^{\dagger}}$	E(level)	Iγ ^{†b}	Mult. [‡]	δ	α	Comments
1433.1 <i>3</i>	1513.760	2.3 4	E1+M2	+0.054 <i>+19-27</i>	8.70×10 ⁻⁴	$\begin{aligned} &\alpha(K) = 0.000615 \ 9; \\ &\alpha(L) = 8.18 \times 10^{-5} \ 12; \\ &\alpha(M) = 1.79 \times 10^{-5} \ 3; \\ &\alpha(N+) = 0.0001553 \ 22. \\ &\alpha(N) = 4.16 \times 10^{-6} \ 6; \\ &\alpha(O) = 6.03 \times 10^{-7} \ 9; \\ &\alpha(P) = 3.39 \times 10^{-8} \ 5; \\ &\alpha(IPF) = 0.0001505 \ 22. \\ &Mult., \delta: \ from \ Adopted \\ &Gammas \ E1 \ from \\ &\alpha(K) = xp = 0.0009 \ 3 \\ &(1993BaZS). \end{aligned}$
1437.3 <i>3</i> 1447.820 <i>25</i>	2393.14 1528.404	0.30 <i>4</i> 3.39 <i>8</i>	M1+E2+E0	+0.5 3	0.0021 5	$ \begin{aligned} &\alpha(K) = 0.0018 \ 4; \\ &\alpha(L) = 0.00025 \ 6; \\ &\alpha(M) = 5.5 \times 10^{-5} \ 1.2; \\ &\alpha(N+) = 7.6 \times 10^{-5} \ 9. \\ &\alpha(N) = 1.3 \times 10^{-5} \ 3; \\ &\alpha(O) = 1.8 \times 10^{-6} \ 4; \\ &\alpha(P) = 1.03 \times 10^{-7} \ 2.5; \\ &\alpha(IPF) = 6.1 \times 10^{-5} \ 6. \\ &\text{Mult.: from } \alpha(K) \exp = 0.0038 \ 9 \\ &(1993BaZS). \\ &\delta: from Adopted Gammas. \end{aligned} $
1457.17ª 5 1474.84 4	2243.099 2260.66	0.35 5 0.593 16	M1 , E2		0.0021 5	$\alpha(K) = 0.0017 \ 4;$ $\alpha(L) = 0.00024 \ 5;$ $\alpha(M) = 5.2 \times 10^{-5} \ 11;$ $\alpha(N+) = 8.5 \times 10^{-5} \ 10.$ $\alpha(N) = 1.2 \times 10^{-5} \ 3;$ $\alpha(O) = 1.8 \times 10^{-6} \ 4;$ $\alpha(P) = 9.9 \times 10^{-8} \ 24;$ $\alpha(1PF) = 7.1 \times 10^{-5} \ 7.$ Mult.: from $\alpha(K) \exp = 1.8 \times 10^{-3} \ 10$
1487.01 <i>15</i> 1493.43 <i>16</i> *1405.57 <i>18</i>	$2\ 2\ 7\ 3\ .\ 0\ 1\\ 2\ 3\ 5\ 2\ .\ 9\ 1$	$0.046 \ 8$ $0.081 \ 12$ $0.074 \ 12$				1.0×10 10.
1505.00 4	2290.997	4.37 10	M1 (+E2)	-0.2 +2-3	0.00237 <i>14</i>	$\begin{split} &\alpha(K) = 0.00194 \ 12; \\ &\alpha(L) = 0.000270 \ 16; \\ &\alpha(M) = 5.9 \times 10^{-5} \ 4; \\ &\alpha(N+) = 0.000105 \ 4. \\ &\alpha(N) = 1.39 \times 10^{-5} \ 8; \\ &\alpha(O) = 2.02 \times 10^{-6} \ 12; \\ &\alpha(P) = 1.15 \times 10^{-7} \ 8; \\ &\alpha(IPF) = 8.9 \times 10^{-5} \ 3. \\ &Mult.: \ from \ \alpha(K) exp = 0.0024 \ 10. \\ &\delta: \ from \ 1985 DaZV. \end{split}$
1518.8 <i>9</i> 1522.85 <i>4</i>	2377.77 2382.27	0.026 6 0.552 21	M1 (+ E2)		0.0019 4	$\begin{aligned} &\alpha(K) = 0.0016 \ 4; \\ &\alpha(L) = 0.00022 \ 5; \\ &\alpha(M) = 4.9 \times 10^{-5} \ 10; \\ &\alpha(N+) = 0.000101 \ 12. \\ &\alpha(N) = 1.14 \times 10^{-5} \ 23; \\ &\alpha(O) = 1.6 \times 10^{-6} \ 4; \\ &\alpha(P) = 9.2 \times 10^{-8} \ 22; \\ &\alpha(IPF) = 8.8 \times 10^{-5} \ 9. \\ &Mult.: \ from \ \alpha(K) exp = \\ &2.4 \times 10^{-3} \ 9. \end{aligned}$

		¹⁶⁶ Tn	n & Decay 19	89Ad11 (continu	ed)	
		$\gamma(^{166}{\rm Er})$ (continued)				
${\rm E}\gamma^\dagger$	E(level)	$I\gamma^{\dagger}b$	Mult. [‡]	δ	α	Comments
1528.38 <i>4</i>	1528.404	0.207 <i>17</i>	E2		1.54×10^{-3}	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.001235 \ 18; \\ &\alpha(\mathbf{L}) \!=\! 0.0001753 \ 25; \\ &\alpha(\mathbf{M}) \!=\! 3.86 \!\times\! 10^{-5} \ 6; \\ &\alpha(\mathbf{N} \!+\!) \!=\! 9.19 \!\times\! 10^{-5} \ 13. \\ &\alpha(\mathbf{N}) \!=\! 8.99 \!\times\! 10^{-6} \ 13; \\ &\alpha(\mathbf{O}) \!=\! 1.295 \!\times\! 10^{-6} \ 19; \\ &\alpha(\mathbf{P}) \!=\! 7.03 \!\times\! 10^{-8} \ 10; \\ &\alpha(\mathbf{I} \! \mathbf{P} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
1533.80 19	2393.14	0.024 6				
1554.33 20 ×1562 05 9	2413.68	0.030 15				
1575.65 26	2435.11	0.14 3				
x1577.5 3		0.051 20				
1581.8 8	1662.32	0.15 6	E1 (+M2)	-0.027 27	8.69×10 ⁻⁴ 15	$\alpha(K)=0.000523 II; \alpha(L)=6.94\times10^{-5} I5; \alpha(M)=1.52\times10^{-5} I; \alpha(N+)=0.000261 I. \alpha(N)=3.53\times10^{-6} B; \alpha(O)=5.11\times10^{-7} II; \alpha(P)=2.89\times10^{-8} 7; \alpha(IPF)=0.000257 I. Mult.,& from Adopted Gammas$
1586.68 8	2542.88	0.143 24				
1591.77 6	2377.77	0.812 18	E2 , M1		0.0018 4	$\begin{split} &\alpha(\mathbf{K})\!=\!0.0014 \; 3; \\ &\alpha(\mathbf{L})\!=\!0.00020 \; 4; \\ &\alpha(\mathbf{M})\!=\!4.4\!\times\!10^{-5} \; 9; \\ &\alpha(\mathbf{N}\!+\!)\!=\!0.000128 \; 14. \\ &\alpha(\mathbf{N}\!=\!1.03\!\times\!10^{-5} \; 20; \\ &\alpha(\mathbf{O})\!=\!1.5\!\times\!10^{-6} \; 3; \\ &\alpha(\mathbf{P}\!=\!8.4\!\times\!10^{-8} \; 19; \\ &\alpha(\mathbf{I}\mathbf{P}\mathbf{F})\!=\!0.000116 \; 12. \end{split}$
1596.7 5	2382.27	0.045 20	F2 M1		0 0018 4	$\alpha(K) = 0.0014.3$
1615.88 7	2475.40	0.153 11	E2 , MI		0.0018 4	$\begin{aligned} &\alpha(L) = 0.00120 \ \ 4; \\ &\alpha(M) = 0.00020 \ \ 4; \\ &\alpha(M) = 4.3 \times 10^{-5} \ \ 9; \\ &\alpha(N) = 1.01 \times 10^{-5} \ \ 20; \\ &\alpha(O) = 1.5 \times 10^{-6} \ \ 3; \\ &\alpha(P) = 8.2 \times 10^{-8} \ \ I8; \\ &\alpha(IPF) = 0.000122 \ \ I3. \end{aligned}$ Mult.: from $\alpha(K)$ exp= 2.0×10 ⁻³ \ \ I1.
1622.45 3	1703.057	2.39 6	E2 , M1		0.0018 4	$\begin{split} &\alpha(K) = 0.0014 \ 3; \\ &\alpha(L) = 0.00019 \ 4; \\ &\alpha(M) = 4.2 \times 10^{-5} \ 8; \\ &\alpha(N+) = 0.000140 \ 16. \\ &\alpha(N) = 9.9 \times 10^{-6} \ 19; \\ &\alpha(O) = 1.4 \times 10^{-6} \ 3; \\ &\alpha(P) = 8.0 \times 10^{-8} \ 18; \\ &\alpha(IPF) = 0.000129 \ 13. \\ &Mult.: from \alpha(K) exp = 0.0021 \ 11. \end{split}$
1627.8 <i>3</i>	2413.68	0.16 3				If this is the same transition as the 1630 γ in (n,n' γ), mult=D+Q, δ =+15 +31-5.
1629.4 ^d 3	1894.364	0.15 ^d 3				
X1641 109 20	2586.07	$0.15^{d} 3$				
-1041.10° 20 1649.19 10	2435.11	0.127 15 0.33 6				

			γ(¹⁶⁶ Er) (co	continued)			
Eγ [†]	E(level)	Iγţp	Mult. [‡]	δ	α	Comments	
1652.76 <i>3</i>	1917.767	5.60 15	E1		8.75×10 ⁻⁴	$\label{eq:alpha} \begin{split} &\alpha({\rm K}) \!=\! 0.000484~7; \\ &\alpha({\rm L}) \!=\! 6.40 \!\times\! 10^{-5}~9; \\ &\alpha({\rm M}) \!=\! 1.399 \!\times\! 10^{-5}~20; \\ &\alpha({\rm N}\! +) \!=\! 0.000313~5. \\ &\alpha({\rm N}) \!=\! 3.26 \!\times\! 10^{-6}~5; \\ &\alpha({\rm O}) \!=\! 4.72 \!\times\! 10^{-7}~7; \\ &\alpha({\rm D}) \!=\! 2.67 \!\times\! 10^{-8}~4; \\ &\alpha({\rm IPF}) \!=\! 0.000310~5. \\ &\delta: \!<\! -0.03~from~\gamma\gamma(\theta) \\ &(1980 {\rm Bu} 26); -0.05~8 \\ &from~A_2 \!=\! -0.10~7, \\ &A_4 \!=\! -0.06~16~for \\ &1653 \!\gamma\! -\! 184 \!\gamma(\theta) \\ &(1993 {\rm AdZY}). \\ &{\rm Mult.:~from}~\alpha({\rm K}) \!\exp\! \!=\! 0.0005~2. \end{split}$	
1658.43 1662.3320 1673.54 1683.33 *1688.64 1690.24 *1703.05 1704.73 *1704.75	2444.16 1662.32 1938.273 2542.88 2475.40 1969.71	$\begin{array}{c} 0.097 \ 20 \\ 0.120 \ 15 \\ \hline 0.078 \ 20 \\ 0.08 \ 3 \\ 0.041 \ 15 \\ 0.043 \ 15 \\ 0.055 \ 22 \\ 0.17 \ 4 \\ 0.032 \ 12 \\ 0.025 \ 10 \\ \hline \end{array}$	E1		8.77×10 ⁻⁴	Mult.: from Adopted Gammas.	
1720.87 20	1985.644	0.26 3	(E1)		8.89×10 ⁻⁴	$\begin{split} &\alpha(K) \!=\! 0.000453 \ 7; \\ &\alpha(L) \!=\! 5.98 \!\times\! 10^{-5} \ 9; \\ &\alpha(M) \!=\! 1.307 \!\times\! 10^{-5} \ 19; \\ &\alpha(N+) \!=\! 0.000363 \ 5. \\ &\alpha(N) \!=\! 3.04 \!\times\! 10^{-6} \ 5; \\ &\alpha(O) \!=\! 4.41 \!\times\! 10^{-7} \ 7; \\ &\alpha(P) \!=\! 2.50 \!\times\! 10^{-8} \ 4; \\ &\alpha(IPF) \!=\! 0.000360 \ 5. \\ &Mult.: E1, E2 \ from \\ &\alpha(K) \!exp \!=\! 0.6 \!\times\! 10^{-3} \ 4. \end{split}$	
1726.3 5 ^x 1730.5 5 1731.9 5	2586.07	0.021 8 0.12 4 0.12 4	(M1 + E2)			Mult.: from Adopted	
1737.09 <i>20</i>	2001.874	0.41 2	(E1)		8.93×10 ⁻⁴	Gammas. $\alpha(K) = 0.000446 7;$ $\alpha(L) = 5.89 \times 10^{-5} 9;$ $\alpha(M) = 1.287 \times 10^{-5} 18;$ $\alpha(N+) = 0.000375 6.$ $\alpha(N) = 2.99 \times 10^{-6} 5;$ $\alpha(O) = 4.34 \times 10^{-7} 6;$ $\alpha(P) = 2.46 \times 10^{-8} 4;$ $\alpha(IPF) = 0.000372 6.$ Mult.: E1,E2 from $\alpha(K) \exp = 0.7 \times 10^{-3} 4.$	
1749.78 7 *1755.5 5 1758.06 20 1781.40 15 1784.58 4	1830.42 2022.62 2046.88 1865.17	0.113 8 0.033 6 0.101 9 0.110 12 0.489 25	(E1(+M2))		0.0023 15	Mult.: from Adopted Gammas.	
1810.6 <i>5</i> 1813.4 ^d <i>3</i>	2076.305 1813.2 1894.364	0.10 <i>3</i> 0.37 ^d <i>5</i> 0.37 ^d <i>5</i>	(M1)			Mult.: from Adopted Gammas.	
x1824.10 20 1830.9 5	1830.42	0.51 <i>10</i> 0.050 <i>20</i>	(E1)		9 . 2 0 $\times 1$ 0 $^{-4}$	Mult.: from Adopted Gammas.	

			γ(¹⁶⁶ Er)			
$E\gamma^{\dagger}$	E(level)	$I^{\lambda\downarrow p}$	Mult. [‡]	δ	α	Comments
1837.17 <i>3</i>	1917.767	3.95 <i>9</i>	E1		9 . 2 2 × 1 0 ⁻⁴	$\begin{split} &\alpha(K)\!=\!0.000407\ 6;\\ &\alpha(L)\!=\!5.37\!\times\!10^{-5}\ 8;\\ &\alpha(M)\!=\!1.172\!\times\!10^{-5}\ 17;\\ &\alpha(N+)\!=\!0.000449\ 7,\\ &\alpha(N)\!=\!2.73\!\times\!10^{-6}\ 4;\\ &\alpha(O)\!=\!3.96\!\times\!10^{-7}\ 6;\\ &\alpha(P)\!=\!2.25\!\times\!10^{-8}\ 4;\\ &\alpha(IPF)\!=\!0.000446\ 7,\\ &Mult.:\ from\ \alpha(K)exp\!=\\ &5.3\!\times\!10^{-4}\ 25. \end{split}$
1846.6 <i>3</i> 1853.1 <i>10</i>	$2632.66 \\ 2117.8$	0.08 <i>3</i> 0.25 <i>6</i>				
1857.62 <i>17</i> 1867.94 <i>3</i>	1938.273 2132.951	0.10 3 21.4 5	M1+E2	+3.49 <i>+10-3</i>	1.26×10 ⁻³	$\label{eq:alpha} \begin{split} &\alpha(K) \!=\! 0.000878 \ 13; \\ &\alpha(L) \!=\! 0.0001218 \ 18; \\ &\alpha(M) \!=\! 2.68 \!\times\! 10^{-5} \ 4; \\ &\alpha(N) \!=\! 0.000232 \ 4. \\ &\alpha(N) \!=\! 6.24 \!\times\! 10^{-6} \ 9; \\ &\alpha(O) \!=\! 9.02 \!\times\! 10^{-7} \ 13; \\ &\alpha(P) \!=\! 5.01 \!\times\! 10^{-8} \ 7; \\ &\alpha(IPF) \!=\! 0.000225 \ 4. \\ &\delta: \ from \ \gamma(\theta) \ (1980Bu26). \\ &Others: \ 3.7 \ +\! 57 \!-\! 18 \\ &(1987Kr12). \ +\! 4.3 \ +\! 10 \!-\! 7 \\ &from \ 1868 \!\gamma \!-\! 184 \!\gamma(\theta) \\ &(1993AdZY), \ +\! 3.6 \ +\! 24 \!-\! 12 \\ &from \ \gamma(\theta, H, t) \\ &(1995KrZX). \\ &Mult.: \ from \ \alpha(K) exp \!= \\ &0.81 \!\times\! 10^{-3} \ 9. \end{split}$
x1883.18 <i>11</i> 1889 12 <i>20</i>	1969 71	0.127 <i>22</i> 0.14 <i>3</i>				
1895.12 3	2160.121	6.4 20	M1+E2	+2.63 4	1 . 27×10 ⁻³	$ \begin{split} & \alpha(K) = 0.000870 \ 13; \\ & \alpha(L) = 0.0001206 \ 17; \\ & \alpha(M) = 2.65 \times 10^{-5} \ 4; \\ & \alpha(N+) = 0.000248 \ 4. \\ & \alpha(N) = 6.17 \times 10^{-6} \ 9; \\ & \alpha(O) = 8.94 \times 10^{-7} \ 13; \\ & \alpha(P) = 4.98 \times 10^{-8} \ 7; \\ & \alpha(IPF) = 0.000240 \ 4. \\ & \delta: \ from \ \gamma\gamma(\theta) \ (1980Bu26) \\ & based \ on \ \%E2 = 87.4 \ and \\ & \%MI = 12.6 \ 3. \ Other: \\ & +2.3 \ +6-4 \ from \\ & 1895\gamma - 184\gamma(\theta) \\ & (1993AdZY). \\ & Mult.: \ from \ \alpha(K)exp = \\ & 0.76 \times 10^{-3} \ 10. \end{split} $
1905.43 <i>23</i> 1907.71 <i>6</i>	1985.644 2172.757	0.23 6 1.82 8	E2 ,M1		0.00141 21	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00098 \ 16; \\ &\alpha(\mathbf{L}) = 0.000135 \ 22; \\ &\alpha(\mathbf{M}) = 3.0 \times 10^{-5} \ 5; \\ &\alpha(\mathbf{N}+) = 0.00027 \ 3. \\ &\alpha(\mathbf{N}) = 6.9 \times 10^{-6} \ 11; \\ &\alpha(\mathbf{O}) = 1.00 \times 10^{-6} \ 17; \\ &\alpha(\mathbf{P}) = 5.7 \times 10^{-8} \ 10; \\ &\alpha(\mathbf{IPF}) = 0.00027 \ 3. \end{aligned}$
1921.40 <i>15</i>	2001.874	0.36 3				Mult.: from $\alpha(K) \exp[=0.0015 \ 6]$.
^x 1922.4 4 ^x 1929.1 3		0.06 <i>3</i> 0.024 <i>6</i>				
1941.78 15	2022.62	0.22 3				
1943.6 15	2729.094	0.06 4				

			γ(¹⁶⁶ Er)	(continued)		
$_{\rm E\gamma^{\dagger}}$	E(level)	Iγ [†] b	Mult.‡	δ	α	Comments
1948.2 ^f 3 ×1966.52 4	2212.97	0.071 <i>8</i> 0.234 <i>23</i>	M1 , M2			Eγ: close to, but inconsistent with, Eγ expected for a 2047 to 81 transition. Mult.: from α(K)exp=0.0023 <i>15</i> .
×1976.38 20 1978.12 20	2243.099	0.29 3 0.43 3	E1		9.71×10 ⁻⁴	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000361 \ 5; \\ &\alpha(\mathbf{L}) = 4.75 \times 10^{-5} \ 7; \\ &\alpha(\mathbf{M}) = 1.038 \times 10^{-5} \ 15; \\ &\alpha(\mathbf{N} +) = 0.000552 \ 8. \\ &\alpha(\mathbf{N}) = 2.41 \times 10^{-6} \ 4; \\ &\alpha(\mathbf{O}) = 3.51 \times 10^{-7} \ 5; \\ &\alpha(\mathbf{P}) = 1.99 \times 10^{-8} \ 3; \\ &\alpha(\mathbf{IP}F) = 0.000549 \ 8. \\ &\mathbf{Mult}: \ E1, E2 \ from \\ &\alpha(\mathbf{K}) \exp = 1.0 \times 10^{-3} \ 6. \end{aligned}$
x1986.53 5	2076 305	0.194 10	M1 , E2		0.00136 19	$\begin{aligned} \alpha(\mathbf{K}) = 0.00090 \ I4; \\ \alpha(\mathbf{L}) = 0.00090 \ I4; \\ \alpha(\mathbf{M}) = 2.7 \times 10^{-5} \ 4; \\ \alpha(\mathbf{N}+) = 0.00031 \ 4. \\ \alpha(\mathbf{N}) = 6.3 \times 10^{-6} \ I0; \\ \alpha(\mathbf{O}) = 9.2 \times 10^{-7} \ I5; \\ \alpha(\mathbf{P}) = 5.2 \times 10^{-8} \ 9; \\ \alpha(\mathbf{IPF}) = 0.00031 \ 4. \end{aligned}$
x2003.4 3 2008.00 4	2273.01	0.071 14 1.21 3	E1		9.82×10 ⁻⁴	$\alpha(K)=0.000353 5;\alpha(L)=4.64\times10^{-5} 7;\alpha(M)=1.012\times10^{-5} 15;\alpha(N+)=0.000573 8.\alpha(N)=2.36\times10^{-6} 4;\alpha(O)=3.42\times10^{-7} 5;\alpha(P)=1.95\times10^{-8} 3;\alpha(IPF)=0.000571 8.Mult.: from \alpha(K)exp=0.44\times10^{-3} 25$
2017.67 7 *2022.03 20 2026.06 ^d 11	2282.68 2290.997 2811.99 2117.8	0.200 20 0.09 3 0.120 ^d 20 0.120 ^d 20 0.100 20				0.44710 20.
2052.36 3	2132.951	91.0 <i>18</i>	M1+E2	+7.0 5	1.16×10 ⁻³	$\begin{split} &\alpha(K) = 0.000723 \ 11; \\ &\alpha(L) = 9.96 \times 10^{-5} \ 14; \\ &\alpha(M) = 2.19 \times 10^{-5} \ 3; \\ &\alpha(N+) = 0.000314 \ 5. \\ &\alpha(N) = 5.09 \times 10^{-6} \ 8; \\ &\alpha(O) = 7.37 \times 10^{-7} \ 11; \\ &\alpha(P) = 4.12 \times 10^{-8} \ 6; \\ &\alpha(IPF) = 0.000308 \ 5. \\ &\delta: \ from \ \gamma(\theta) \ (1980Bu26). \\ &Others: \ +9 \ +19 - 4 \\ &(1985DaZV), \ +6.0 \ +76 - 24 \\ &from \ \gamma(\theta, H, t) \\ &(1995KrZX). \\ &Mult: \ from \ \alpha(K) exp = \\ &0.77 \times 10^{-3} \ 8. \end{split}$

			v(¹⁶⁶ Fr)	(continued)	<u> </u>	
			()	(continued)		
$E\gamma^{\dagger}$	E(level)	$_{I\gamma ^{\dagger }b}$	Mult.‡	δ	α	Comments
2079.53 <i>3</i>	2160.121	33.3 7	M1+E2	+5.2 +15-5	1.16×10 ⁻³	$\begin{split} &\alpha(\mathbf{K}) = 0.000709 \ 11; \\ &\alpha(\mathbf{L}) = 9.76 \times 10^{-5} \ 15; \\ &\alpha(\mathbf{M}) = 2.14 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{N}+) = 0.000328 \ 5. \\ &\alpha(\mathbf{N}) = 4.99 \times 10^{-6} \ 8; \\ &\alpha(\mathbf{O}) = 7.23 \times 10^{-7} \ 11; \\ &\alpha(\mathbf{P}) = 4.04 \times 10^{-8} \ 6; \\ &\alpha(\mathbf{IPF}) = 0.000322 \ 5. \\ &\text{Mult.: from } \alpha(\mathbf{K}) \exp \\ &0.72 \times 10^{-3} \ 7. \\ &\delta: from \ \gamma(\theta) \ (1980Bu26). \\ &Others: +10 + \infty - 6 \\ &(1985Da2V), +10 + \infty - 6 \end{split}$
2092.13 <i>3</i>	2172.757	8.26 18	M1+E2	+3.7 +19-7	1.16×10 ⁻³ 2	rrom γ(θ, π, t) (1995KrZX). $\alpha(K)=0.000709 \ 13;$ $\alpha(L)=9.74 \times 10^{-5} \ 18;$ $\alpha(M)=2.14 \times 10^{-5} \ 4;$ $\alpha(N)=4.98 \times 10^{-6} \ 10;$ $\alpha(O)=7.22 \times 10^{-7} \ 14;$ $\alpha(P)=4.04 \times 10^{-8} \ 8;$ $\alpha(IPF)=0.000331 \ 6.$ Mult.: from $\alpha(K) \exp =$ $0.99 \times 10^{-3} \ 44.$ δ: from γ(θ) (1980Bu26).
x2100.2 6	2202 14	0.032 9				
2128.19 5	2215.972	0.192 8				
2148.6 <i>3</i>	2413.68	0.012 3				Iγ: there is a discrepancy. Iγ=0.12 <i>3</i> in table 1 but 0.01 in table 2 of 1989Ad11.
2162.54 5	2243.099	0.278 11	El		$1 \cdot 04 \times 10^{-3}$	$\begin{aligned} \alpha(\mathbf{K}) = 0.000313 \ 5; \\ \alpha(\mathbf{L}) = 4.11 \times 10^{-5} \ 6; \\ \alpha(\mathbf{M}) = 8.98 \times 10^{-6} \ 13; \\ \alpha(\mathbf{N}+) = 0.000680 \ 10. \\ \alpha(\mathbf{N}) = 2.09 \times 10^{-6} \ 3; \\ \alpha(\mathbf{O}) = 3.04 \times 10^{-7} \ 5; \\ \alpha(\mathbf{O}) = 3.04 \times 10^{-7} \ 5; \\ \alpha(\mathbf{P}) = 1.730 \times 10^{-8} \ 25; \\ \alpha(\mathbf{IPF}) = 0.000678 \ 10. \\ \mathbf{Mult.: from } \alpha(\mathbf{K}) \mathbf{exp} = \\ 0.29 \times 10^{-3} \ 17. \end{aligned}$
*2176.61 <i>6</i>		0.184 <i>8</i>	M1 , E2		0.00128 <i>16</i>	$\alpha(L) = 5 \times 10^{-7} I.$ $\alpha(L) = 0.00074 I0;$ $\alpha(L) = 0.000102 I4;$ $\alpha(M) = 2.2 \times 10^{-5} 3;$ $\alpha(N+) = 0.00041 5.$ $\alpha(N) = 5.2 \times 10^{-6} 7;$ $\alpha(O) = 7.6 \times 10^{-7} II;$ $\alpha(P) = 4.3 \times 10^{-8} 7;$ $\alpha(IPF) = 0.00041 5.$ Mult: from $\alpha(K) \approx 20.0015 0.0015$
2183.68 7	2264.31	0.117 7	Q(+D)			Mult.: from Adopted Gammas.

			γ(¹⁶⁶ Er)) (continued)	
${f E}\gamma^\dagger$	E(level)	$_{\rm I\gamma^{\dagger b}}$	Mult.‡	α	Comments
2192.43 4	2273.01	1.09 3	E1	1.06×10 ⁻³	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000307 \ 5; \ \alpha(\mathbf{L}) = 4.02 \times 10^{-5} \ 6; \\ &\alpha(\mathbf{M}) = 8.78 \times 10^{-6} \ 13; \ \alpha(\mathbf{N}+) = 0.000700 \ 10. \\ &\alpha(\mathbf{N}) = 2.04 \times 10^{-6} \ 3; \ \alpha(\mathbf{O}) = 2.97 \times 10^{-7} \ 5; \\ &\alpha(\mathbf{P}) = 1.693 \times 10^{-8} \ 24; \ \alpha(\mathbf{IPF}) = 0.000698 \ 10. \end{aligned}$
2202.09 6	2282.68	0.238 10	E1,E2		Mult.: from α(K)exp=0.40×10 ⁻³ 23. Mult.: from α(K)exp=0.68×10 ⁻³ 37.
2210.49 6	2290.997	0.323 12			
2247.90 <i>20</i>	2328.69	0.0118 19			
*2234.3 3 X9957 0 2		0.007 3			
-2237.0 3 9967 97 9	2264 21	0.0090 25			
2204.34 0	2204.31	0.038 3			
2272.33 13	2512.91	0.0228 25			
X2291 6 2	2342.00	0.030 2			
2297.26 10	2377.77	0.079 4	E2 , M1	0.00125 14	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00066 \ \ 8; \ \alpha(\mathbf{L}) = 9.1 \times 10^{-5} \ \ 11; \\ &\alpha(\mathbf{M}) = 1.99 \times 10^{-5} \ \ 24; \ \alpha(\mathbf{N}+) = 0.00048 \ \ 5. \\ &\alpha(\mathbf{N}) = 4.6 \times 10^{-6} \ \ 6; \ \alpha(\mathbf{O}) = 6.8 \times 10^{-7} \ \ 9; \\ &\alpha(\mathbf{P}) = 3.8 \times 10^{-8} \ \ 5; \ \alpha(\mathbf{IPF}) = 0.00047 \ \ 5. \end{aligned}$
×2302.85 <i>8</i>		0.112 10	E2,M1	0.00125 14	Mult.: from $\alpha(\mathbf{K}) \exp[-0.0014 \ s.$ $\alpha(\mathbf{K}) = 0.00066 \ s; \ \alpha(\mathbf{L}) = 9.0 \times 10^{-5} \ 11;$ $\alpha(\mathbf{M}) = 1.98 \times 10^{-5} \ 24; \ \alpha(\mathbf{N}+) = 0.00048 \ 5.$ $\alpha(\mathbf{N}) = 4.6 \times 10^{-6} \ 6; \ \alpha(\mathbf{O}) = 6.7 \times 10^{-7} \ 9;$ $\alpha(\mathbf{P}) = 3.8 \times 10^{-8} \ 5; \ \alpha(\mathbf{IPF}) = 0.00047 \ 5.$ Mult.: from $\alpha(\mathbf{K}) \exp[-0.9 \times 10^{-3} \ 6.$
x2309.3 3		0.0145 17			
2312.57 9	2393.14	0.082 4	M1	1.38×10 ⁻³	$\alpha(\mathbf{K}) = 0.000726 \ 11; \ \alpha(\mathbf{L}) = 9.98 \times 10^{-5} \ 14; \alpha(\mathbf{M}) = 2.19 \times 10^{-5} \ 3; \ \alpha(\mathbf{N} +) = 0.000532 \ 8. \alpha(\mathbf{N}) = 5.12 \times 10^{-6} \ 8; \ \alpha(\mathbf{O}) = 7.46 \times 10^{-7} \ 11; \alpha(\mathbf{P}) = 4.27 \times 10^{-8} \ 6; \ \alpha(\mathbf{IPF}) = 0.000526 \ 8. $ Multi fram $\alpha(\mathbf{K}) = 8. \ 5 \times 10^{-3} \ 9. \ 10^{-3} \ 10^$
9991 19 10	2586 07	0 0122 18			Mult.: from $\alpha(\mathbf{K})\exp[-1.5\times10^{-5}]$
2321.10 10	2328 69	0.0122 18 0.0225 21			
2323.12 10	2413 68	0 0247 25			
×2352.7 10		0.006 3			
2354.6 10	2619.6	0.009 4			
2363.3 4	2444.16	0.0186 22			
x2366.6 4		0.0163 24			
2377.84 8	2377.77	0.100 10	M1	$1 \cdot 37 \times 10^{-3}$	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.000682 \ 10; \ \alpha(\mathbf{L}) \!=\! 9.36 \!\times\! 10^{-5} \ 14; \\ &\alpha(\mathbf{M}) \!=\! 2.06 \!\times\! 10^{-5} \ 3; \ \alpha(\mathbf{N} \!+\!) \!=\! 0.000570 \ 8. \\ &\alpha(\mathbf{N}) \!=\! 4.80 \!\times\! 10^{-6} \ 7; \ \alpha(\mathbf{O}) \!=\! 6.99 \!\times\! 10^{-7} \ 10; \\ &\alpha(\mathbf{P}) \!=\! 4.00 \!\times\! 10^{-8} \ 6; \ \alpha(\mathbf{IPF}) \!=\! 0.000564 \ 8. \\ &\mathrm{Mult.: \ from } \alpha(\mathbf{K}) \! \exp\! =\! 0.0010 \ 6. \end{split}$
2383.91 10	2464.52	0.066 6	E2,M1	0.00124 13	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.00061 \ 7; \ \alpha(\mathbf{L}) \!=\! 8.4 \!\times\! 10^{-5} \ 10; \\ &\alpha(\mathbf{M}) \!=\! 1.84 \!\times\! 10^{-5} \ 21; \ \alpha(\mathbf{N}+) \!=\! 0.00052 \ 6. \\ &\alpha(\mathbf{N}) \!=\! 4.3 \!\times\! 10^{-6} \ 5; \ \alpha(\mathbf{O}) \!=\! 6.2 \!\times\! 10^{-7} \ 8; \\ &\alpha(\mathbf{P}) \!=\! 3.5 \!\times\! 10^{-8} \ 5; \ \alpha(\mathbf{IPF}) \!=\! 0.00052 \ 6. \\ &\mathrm{Mult.: \ from \ } \alpha(\mathbf{K}) \! \exp\! =\! 6.5 \!\times\! 10^{-4} \ 40. \end{split}$
2394.81 8	2475.40	0.155 7	E2 ,M1	0.00124 13	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.00061 \ 7; \ \alpha(\mathbf{L}) \!=\! 8.3 \!\times\! 10^{-5} \ 9; \\ &\alpha(\mathbf{M}) \!=\! 1.82 \!\times\! 10^{-5} \ 21; \ \alpha(\mathbf{N}\!+\!) \!=\! 0.00053 \ 6. \\ &\alpha(\mathbf{N}) \!=\! 4.3 \!\times\! 10^{-6} \ 5; \ \alpha(\mathbf{O}) \!=\! 6.2 \!\times\! 10^{-7} \ 7; \\ &\alpha(\mathbf{P}) \!=\! 3.5 \!\times\! 10^{-8} \ 5; \ \alpha(\mathbf{IPF}) \!=\! 0.00052 \ 6. \\ &\mathrm{Mult.: \ from \ } \alpha(\mathbf{K}) \! \exp\! =\! 0.8 \!\times\! 10^{-3} \ 4. \end{split}$
*2398.7 4		0.014 4			
*2403.05 <i>25</i>		0.0096 22			
*2413.0 5 *2423.95 10		$0.007 \ 3$ $0.128 \ 4$	E2,M1	0.00123 13	$\alpha(K) = 0.00059 \ 6; \ \alpha(L) = 8.1 \times 10^{-5} \ 9; \alpha(M) = 1.78 \times 10^{-5} \ 20; \ \alpha(N+) = 0.00054 \ 6. \alpha(N) = 4.1 \times 10^{-6} \ 5; \ \alpha(O) = 6.0 \times 10^{-7} \ 7; \alpha(P) = 3.4 \times 10^{-8} \ 4; \ \alpha(IPF) = 0.00054 \ 6. Mult : from \alpha(K) exp = 0.8 \times 10^{-3} \ 4$
^x 2435.8 5		0.019 3			
x2438.6 10		0.0110 25			
x2441.3 8		0.016 3			

			γ(¹⁶⁶ Er)	(continued)	
${\bf E}\gamma^\dagger$	E(level)	Iγ [†] b	Mult.‡	α	Comments
9444 0 10	9444 10	0 0000 07			
2444.0 IU X2458 51 20	2444.10				
2438.31 20	2512 88	0.023 5			
2464.7 5	2464.52	0.126 10	M1	1.35×10^{-3}	$\begin{split} &\alpha(K) \!=\! 0.000628 \; \mathit{9}; \; \alpha(L) \!=\! 8.62 \times \! 10^{-5} \; \mathit{12}; \\ &\alpha(M) \!=\! 1.89 \times \! 10^{-5} \; \mathit{3}; \; \alpha(N+) \!=\! 0.000619 \; \mathit{9}. \\ &\alpha(N) \!=\! 4.42 \times \! 10^{-6} \; \mathit{7}; \; \alpha(O) \!=\! 6.44 \times \! 10^{-7} \; \mathit{9}; \\ &\alpha(P) \!=\! 3.69 \times \! 10^{-8} \; \mathit{6}; \; \alpha(IPF) \!=\! 0.000614 \; \mathit{9}. \\ &\text{Mult: E2, M1 from } \alpha(K) \! \exp \! \! 9 \! \times \! 10^{-4} \; \mathit{5}; \; \Delta \! J \!=\! 1 \; \text{from} \\ &\text{Adopted Gammas.} \end{split}$
$^{x}2490.4$ 7		0.0040 9			
x2494.42 20		0.0247 15			
2505.58 20	2586.07	0.0224 18			
2520.20 10	2600.64	0.110 7			
x2524.6 5		0.0086 20			
2532.3 3	2613.50	0.0077 13			
x2536.7 10		0.014 3			
2538.8 10	2619.6	0.0145 26			
2544.3 3	2624.8	0.0146 25			
	2628.5	0.008 3			
x2560 1 5	2032.00	0.0210 10			
x2562.8 3		0.029 4 0.084 4	E2,M1	0.00123 12	$\alpha(\mathbf{K}) = 0.00053 \ 5; \ \alpha(\mathbf{L}) = 7.2 \times 10^{-5} \ 7;$ $\alpha(\mathbf{M}) = 1.58 \times 10^{-5} \ 16; \ \alpha(\mathbf{N}) = 0.00061 \ 7.58 \times 10^{-5} \ 16; \ $
					$\alpha(N) = 3.7 \times 10^{-6} \ 4; \ \alpha(O) = 5.4 \times 10^{-7} \ 6; \alpha(P) = 3.1 \times 10^{-8} \ 4; \ \alpha(IPF) = 0.00061 \ 7. Mult : from \alpha(K) exp = 1 2 \times 10^{-3} \ 6$
2591.4 3	2671.98	0.013 4			
2598.2 4	2679.05	0.125 25			
2600.76 <i>20</i>	2600.64	0.225 25	M1	$1 \cdot 34 \times 10^{-3}$	$\begin{split} &\alpha(K) \!=\! 0.000557 \; \textit{8}; \; \alpha(L) \!=\! 7.63 \!\times\! 10^{-5} \; \textit{11}; \\ &\alpha(M) \!=\! 1.675 \!\times\! 10^{-5} \; \textit{24}; \; \alpha(N+) \!=\! 0.000694 \; \textit{10}. \\ &\alpha(N) \!=\! 3.91 \!\times\! 10^{-6} \; \textit{6}; \; \alpha(O) \!=\! 5.69 \!\times\! 10^{-7} \; \textit{8}; \\ &\alpha(P) \!=\! 3.26 \!\times\! 10^{-8} \; \textit{5}; \; \alpha(IPF) \!=\! 0.000690 \; \textit{10}. \\ &\text{Mult.: E2,M1 from } \alpha(K) \!\exp\! \!=\! 0.7 \!\times\! 10^{-3} \; \textit{4}; \; D \; from \\ &\text{Adopted Gammas.} \end{split}$
2613.75 20	$2\ 6\ 1\ 3$. $5\ 0$	0.0188 18			
2619.7 8	2619.6	0.021 14			
x2620.8 6		0.042 4			
2624.4 7	2624.8	0.0150 15			
2628.5 <i>3</i> 2648.50 <i>2</i>	2628.5 2729.094	0.0215 21 0.092 6	E2,M1	0.00123 12	$\begin{split} &\alpha(K) \!=\! 0.00049 \ 4; \ \alpha(L) \!=\! 6.7 \!\times\! 10^{-5} \ 6; \\ &\alpha(M) \!=\! 1.48 \!\times\! 10^{-5} \ J3; \ \alpha(N+) \!=\! 0.00066 \ 7. \\ &\alpha(N) \!=\! 3.4 \!\times\! 10^{-6} \ 3; \ \alpha(O) \!=\! 5.0 \!\times\! 10^{-7} \ 5; \\ &\alpha(P) \!=\! 2.9 \!\times\! 10^{-8} \ 3; \ \alpha(IPF) \!=\! 0.00065 \ 7. \\ &Mult.: \ from \ \alpha(K) exp \!=\! 0.9 \!\times\! 10^{-3} \ 5. \end{split}$
2671.95 20	2671.98	0.0262 19			
2679.09 <i>20</i>	2679.05	0.241 18	M1	1.34×10 ⁻³	$\begin{split} &\alpha(\mathbf{K}) = 0.000521 \; \$; \; \alpha(\mathbf{L}) = 7.13 \times 10^{-5} \; I0; \\ &\alpha(\mathbf{M}) = 1.566 \times 10^{-5} \; 22; \; \alpha(\mathbf{N}+) = 0.000737 \; I1. \\ &\alpha(\mathbf{N}) = 3.65 \times 10^{-6} \; 6; \; \alpha(\mathbf{O}) = 5.32 \times 10^{-7} \; \$; \\ &\alpha(\mathbf{P}) = 3.05 \times 10^{-8} \; 5; \; \alpha(\mathbf{IPF}) = 0.000733 \; I1. \\ &\mathbf{Mult.} \; \mathbf{E2.M1} \; \text{from } \alpha(\mathbf{K}) \exp = 0.7 \times 10^{-3} \; 4; \; \mathbf{D} \; \text{from} \\ &\mathbf{Adopted Gammas.} \end{split}$
x2682.5 7		0.030 3			
2703.1 4	2783.69	0.0202 25			
2716.8 4	2797.5	0.0139 16			
*2720.2 4	0700 004	0.0102 20			
2128.9 IU 2732 0 10	2129.094	U.UU65 20			
x2740 26 20	2011.99	0 0440 27			
x2753.05 20		0.0140 25			
2777.56 18	2858.17	0.0126 11			
2783.8 3	2783.69	0.0351 19	M1		Mult.: E2,M1 from $\alpha(K)exp=0.7 \times 10^{-3} 4$; D from Adopted Gammas.
x2795.7 7		0.0057 20			-

$\gamma(^{166}\text{Er})$ (continued)

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	E(level)	$\{I\gamma^{\dagger}b}$	Mult. [‡]	Comments
2798.2 10	2797.5	0.0043 18		
x2801.3 7		0.0042 15		
x2808.5 10		0.0034 12		
2811.7 10	2811.99	0.0041 12	D	Mult.: from Adopted Gammas.
2858.1 10	2858.17	0.0035 15		
x2861.4 10		0.0043 15		

[†] From 1989Ad11, except as noted.

[‡] Deduced from $\alpha(K)\exp=ce(K)/I\gamma$ normalized to $\alpha(K)(778.90\gamma)=4.79\times10^{-3}$ (E2 theory), ce(K) from 1979Ad06, I γ from 1989Ad11, except as noted.

\$ Measured E γ =1119.50 4 (I γ =1.35 5) is doublet, I γ divided by 1989Ad11. α (K)exp=0.00089 22 for doublet (1993BaZS).

[#] Measured E γ =194.678 15 (I γ =4.34 13) is doublet, I γ divided by 1989Ad11.

[@] Measured E γ =646.75 4 (I γ =0.117 6) is doublet, I γ divided by 1989Ad11.

 $\&~E\gamma$ deviates by at least 5σ from value expected for this placement. Datum excluded from least-squares fit.

^a if the unplaced 1641 γ in ϵ decay corresponds to the 1641 γ deexciting a 1722 level in $(n,n'\gamma)$, then one should also see a 1456.6 γ in ϵ decay. From I γ (1456.6 γ)/I γ (1641.2 γ)=0.78 16 in $(n,n'\gamma)$ and I(1641 γ)=0.127 15 in ϵ decay, one expects I γ (1456 γ)=0.099 24 for a possible 1456.6 10 transition in ϵ decay. This could have been masked by the 1457.17 γ , with I γ =0.35 5. However, if present, I γ (1457 γ) from the 2243.1 level in ϵ decay should then be decreased to 0.25 6.

b For absolute intensity per 100 decays, multiply by 0.191 11.

d Multiply placed; undivided intensity given.

- ^e Multiply placed; intensity suitably divided.
- f Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

Decay Scheme

Decay Scheme (continued)

 $^{16}_{68}^{6}\mathrm{Er}_{98}$

Decay Scheme (continued)

 $^{166}_{68}\mathrm{Er}_{98}$

Decay Scheme (continued)

Decay Scheme (continued)

¹⁶⁴Dy(α,2nγ) 1985Fi04

Others: 1966Mo01, 1976Da10, 1976We24.

1976We24: $E(\alpha)=24$ MeV; measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$, Ge(Li). 1976Da10: $E(\alpha)=27.5$ MeV; measured E γ , I $\gamma(\theta)$, γ -coin, Ge(Li). 1985Fi04: $E(\alpha)=24$ MeV; measured E γ , I γ , $\gamma\gamma$ -coin, I(ce), Ge(Li) and HPGE detectors, mini-orange spectrometer.

¹⁶⁶Er Levels

E(level)	<u>†</u>	Jπ‡	E(level)	1	Jπ [‡]	E(level) [†]	Jπ‡
0.0§		0 +	1528&		(2+)	2144.46 ^b 15	(8-)
80.37 [§]	8	2 +	$1555.38^{\#}$	12	8+	2189.33? # 15	(11+)
264.79 [§]	10	4 +	$1596.2^{@}$		(4-)	2194.26& 16	(8+)
545.22§	11	6 +	1665.11 ^a	13	5 (–)	2245.96 ^a 16	(9-)
785.83#	8	2 +	1673.50&	14	(4+)	2328.17a 16	(9-)
859 . 2 3 $^{\#}$	11	3 +	1692 . $21a$	15	5 (–)	2388.98 [§] 20	14+
910.86§	13	8 +	1751 . $07^{\#}$	14	9+	2426.5@ 4	(10-)
956 . 2 2 $^{\#}$	10	4 +	$1786.66^{@}$	13	6 -	2428.38? # 17	(12+)
1074 . $92^{\#}$	11	5 +	1827.22 ^b	15	6 -	2479.39?& 17	(10+)
1215 . $86^{\#}$	11	6 +	1846.18 [§]	17	12+	2654.03?# 18	(13+)
1349.18 [§]	14	10+	$1897.03^{\&}$	15	(6+)	2656.49?& 20	(12+)
1375 . $86^{\#}$	12	7 +	1963 . $68^{\#}$	14	10+	2879.68?# 20	(14+)
$1458^{@}$		(2) -	1992.36a	16	(7) –	2967.0§ 6	16 +
1460 ^{&}		0 +	2072 . $99^{@}$	14	(8) –		
1514 ^a		3 –	2091.96 ^a	16	(7) –		

 $^\dagger~$ From least-squares fit to Ey.

[‡] From Adopted Levels.

§ (A): $K\pi=0+$ g.s. band.

(B): $K\pi=2+\gamma-vibrational$ band.

^(@) (C): $K\pi=(2-)$ band. In Adopted Levels, the 1787 level is assigned, instead, to a $K\pi=4-$ band which is strongly mixed with this $K\pi=2-$ band.

& (D): $K\pi = (0+)$ band.

a (E): $K\pi$ =(2-,5-) band. In Adopted Levels, the 1514, 1692 and 2246 levels are assigned, instead, to the $K\pi$ =(2-) band based on the 1458 level, and the 1665 and 2328 levels are assigned to a $K\pi$ =(4)- band (based on a 1572 level that 1985Fi04 do not observe) which mixes strongly with the 2- band. Different or no band assignments are adopted for the 1992 and 2091 levels.

b (F): $K\pi$ =(5-) band (1985Fi04). Band not adopted. In Adopted Levels, the 1827 and 2144 levels are assigned, respectively, to $K\pi$ =2- and 4- bands, which are strongly Coriolis mixed. (The latter band is based on a 1572 level which 1985Fi04 do not observe.).

$E\gamma^{\dagger}$	E(level)	$I\gamma^{\dagger}$	Mult. [‡]	δ§	α	Comments
80.3 1	80.37	3 1	E2#		6.87	$A_2 = +0.20$ 3, $A_4 = -0.01$ 3 (1976We24).
141.4 1	1215.86	< 1				
160.0 1	1375.86	< 1				
170.4 1	956.22	< 1				
179.3 1	1555.38	< 1				
184.6 1	264.79	120 12	E2#		0.329	$A_2 = +0.27$ 1, $A_4 = -0.028$ 11 (1976We24).
215.6 1	1074.92	1.70 17				
259.5 1	1215.86	2.2 2				$A_2 = +0.09$ 18, $A_4 = -0.22$ 23 (1976We24).
280.4 1	545.22	100 10	E2#		0.0849	$A_2 = +0.32$ 4, $A_4 = -0.05$ 5 (1976We24).
286.2 1	2072.99	< 1				
300.7 1	1375.86	4.7 5				$A_2 = +0.40 \ 8, \ A_4 = -0.13 \ 9 \ (1976 \text{We}24).$
339.7 1	1555.38	5.1 6				$A_2 = +0.14$ 7, $A_4 = +0.24$ 18 (1976We24).
352.0 ^{&} 5	2426.5	< 1				~ .
365.6 1	910.86	50 5	E2		0.0385	$A_2 = +0.43$ 4, $A_4 = +0.05$ 4 (1976We24).
						$\alpha(K) \exp = 0.033 \ 3.$
375.2 1	1751.07	6.1 6	E2		0.0358	$\alpha(K) \exp = 0.0276$ 13.
						$A_2 = +0.39 \ 8, \ A_4 = +0.09 \ 9 \ (1976We24).$
401.9 1	1751.07	< 1				~ *
408.5 1	1963.68	3.3 <i>3</i>				$A_2 = +0.48$ 12, $A_4 = +0.12$ 13 (1976We24).
410.7 1	1786.66	< 1				20 T
438.2 [@] 1	1349.18	22.5 [@] 23				$A_2 = +0.36$ 4, $A_4 = -0.07$ 5 (1976We24) for
	0100 000	00 r@ 0				multiply-placed γ.
1	2189.33?	22.5 ^e 3				
451.3ª <i>1</i>	2879.68?	< 1				

$\gamma(^{166}{ m Er})$

$\gamma(^{166}{\rm Er})$ (continued)

$E\gamma^{\dagger}$	E(level)	$I\gamma^{\dagger}$	Mult.‡	δ§	α	Comments
464.7 [@] 1	1375.86	1.80 [@] 18				$A_2 = +0.22$ 14, $A_4 = +0.14$ 17 (1976We24) imply
						D+Q, $0=-3.1 + 9-15$ but transition is multiply-placed
	2428.38?	1.80@ 18				multiply placed.
	2654.03?	1.80@ 18				
497.0 1	1846.18	7.0 7	E2		0.01670	$A_2 = +0.23$ 6, $A_4 = -0.064$ 8 (1976We24). $\alpha(K) = 0.0130$ 10
529.8 1	1074.92	2.60 26	E2+M1	-5.0 25	0.0148 16	$A_{2}=+0.10$ 14, $A_{4}=+0.37$ 18 (1976We24). $\alpha(K) \exp = 0.0124$ 10
542 8 1	2388 98	1 50 15	F9		0 01335	$\alpha(\mathbf{K}) \exp[-0.0124 \ 10]$
578 0 5	2967 0	<1	E2		0 01143	$\alpha(K) \exp = 0.011.3$
594.4 1	859.23	<1	E2+M1		0.017 6	$\alpha(\mathbf{K}) \exp = 0.0138 \ 16.$
614.3 1	1963.68	<1	E2			$\alpha(\mathbf{K}) \exp = 0.0073 \ 8.$
644.6 1	1555.38	3.9 4	E2+M1		0.014 5	$δ: A_2 = +0.06 \ 1I, A_4 = -0.06 \ 14 \ (1976We24);$ $δ = -0.75 \ 20 \ or \ +1.6 \ +10-6.$
670 6 1	1215 86	850	E2+M1		0 012 5	$\alpha(\mathbf{K}) \exp = 0.0001 \ b.$
070.0 1	1213.00	0.00	E2 TMI		0.012 3	$\begin{aligned} &\alpha_2 = -0.13 \gamma, \alpha_4 = -0.14 \sigma \text{ (13) over 24}, \\ &\delta: -1.2 4-8 \text{ or } -6 + \text{ infinity } -3 \text{ from } \gamma(\theta); \\ &\alpha(\text{K}) \exp - \alpha(\text{K})(\text{E2}) \text{and } < \alpha(\text{K})(\text{M1}). \\ &\alpha(\text{K}) \exp = 0.0056 5. \end{aligned}$
677.0 ^{&} 5	2426.5	< 1				
691.4 1	956.22	5.4 5	E2+M1		0.011 4	α(K)exp=0.00900 <i>19</i> .
697.2 1	2072.99	1.60 16	E1			α(K)exp=0.0029 <i>10</i> .
705.4 1	785.83	3.0 <i>3</i>	E2(+M1)		0.011 4	α(K)exp=0.0064 <i>6</i> .
711.7 1	1786.66	2.30 23	E1			α(K)exp=0.0039 4.
752.3 1	1827.22	2.10 21	E1			α(K)exp=0.0048 8.
768.6 1	2144.46	1.40 14				
778.8 1	859.23	10.0 10	E2+M1	<-7	0.009 3	$A_2 = +0.02 \ 8; A_4 = +0.06 \ 11 \ (1976We24).$ $\alpha(K) \exp = 0.0051 \ 3.$
785.9 1	785.83	3.2 3	E2			$A_2 = -0.31$ 22, $A_4 = +0.03$ 4 (1976We24); inconsistent with stretched Q required by level scheme. $\sigma(K) \exp = 0.0053$ 3
810.3 [@] 1	1074.92	15.6 [@] 16	(E2+M1)		0.008 3	$\alpha(K) \exp 0.0005 4$; $A_2 = -0.017 38$, $A_4 = +0.18 5$, $\delta = -84 + 57$ - infinity (1976We24) implies mult=(E2+M1), $\delta < -27$ for multiply-placed γ . Based on adopted branching from 1075 level, most or all of I(810.3 γ) is attributable to this placement.
	2656.49?	15.6^{ω} 16				See comment on 8107 from 1075 level.
830.6 1	1375.86	11.5 12	E2+M1	< -20		$A_2 = -0.09$ 5, $A_4 = +0.30$ 6, $\delta = -37$ +17- infinity (1976We24). $\alpha(K)\exp=0.0054$ 4.
840.2 [@] 1	1751.07	5.5 [@] 6	(E2+M1)		0.0072 23	δ: A ₂ =+0.03 8, A ₄ =+0.25 10 imply δ(D,Q)=−11 +3- infinity (1976We24); however transition may be doubly-placed. α(K)exp=0.0043 4.
075 7 1	2189.33?	5.5 0	Ee			A
8/5./ 1	956.22	3.84	Εz			$A_2 = +0.44$ 12, $A_4 = +0.22$ 14 (1976We24). $\alpha(K) \exp = 0.0039$ 3.
951.0 1	1215.86	4.2 4	E2			$A_2 = +0.17 \ I6, A_4 = -0.33 \ I9 \ (1976We24).$ $\alpha(K) \exp = 0.0032 \ 4.$
1010.3 1	1555.38	2.10 20	E2			α(K)exp=0.0024 <i>3</i> .
1053.7& 1	1963.68	1.90 19				α(K)exp=0.0010 4.
1081.5 1	1992.36	1.60 16	E1			α(K)exp=0.0013 5.
1119.7 1	1665.11	1.10 11				
1130.2 <i>& 1</i>	2479.39?	<1				
1147.0 1	1692.21	<1				
1181.1 1	2091.96	6 1	E1			$\alpha(K) \exp = 0.00038 \ 10.$
1283.4 1	2194.26	2.1 4				
1335.1 1	2245.96	<1				
1351.8 1	1897.03	1.50 15				
1400.5 1	1665.11	2.30 <i>23</i>				

$\gamma(^{166}{\rm Er})$ (continued)

$E\gamma^{\dagger}$		E(level)	Iγ [†]	
1408.7	1	1673.50	< 1	
1417.3	1	2328.17	1.40 14	
1427.0	5	1692.21	< 5	
1447.0	5	1992.36	< 5	

[†] From 1985Fi04.

[‡] From $\alpha(K)$ exp. 1985Fi04 used $\alpha(K)(280.4\gamma)=0.064$ to normalize their intensity scales; $\alpha(K)$ exp values shown here have been

recalculated using $\alpha(K)(280.4\gamma)=0.0612$ (E2 theory).

§ From $\gamma(\theta)$ in 1976We24. # Q from $\gamma(\theta)$ (1976We24); not M2 from RUL and adopted level half-life.

Multiply placed; undivided intensity given.

& Placement of transition in the level scheme is uncertain.

(E) Kπ=(2-,5-) band.

(F) Kπ=(5-) band (1985Fi04).

 $^{166}_{68} {
m Er}_{98}$

Level Scheme

Intensities: relative $I\boldsymbol{\gamma}$ & Multiply placed; undivided intensity given

 $^{16}_{68}^{6}\mathrm{Er}_{98}$

¹⁶⁴Er(t,p) 1992Bu16

 $1992 Bu16: \ E(t) = 17 \ MeV; \ 67.2\% \ ^{164} Er \ enriched \ target; \ magnetic \ spectrometer \ with \ photographic \ plates, \ FWHM \approx 14 \ keV; \ for the start \ for t \ for the start \ for the start$ $\theta(lab) = 7.5^{\circ} - 67.5^{\circ} \text{ (in } 7.5^{\circ} \text{ steps); measured } E(p), \text{ angular distributions, } L \text{ transfer; DWBA calculations.}$

¹⁶⁶Er Levels

E(level) [†]	L‡	$d\sigma/d\Omega(30^\circ) \ \mu b/sr^{-1}$	Comments
0.0#	0	271	
81# 1		21	
265 # 1		8	
545		1	E(level): rounded value from Adopted Levels.
786 [@] 1		2	
861@ 2		1	
956 [@] 1		10	
1460& 1	0	≤ 4.5	
1513& 1		6	
1528 3		5	
1669 2		5	
1692 2		1	
1714 2	0	54	
1760 3			
1869 <i>3</i>		4	
1900 <i>3</i>			
1967 <i>3</i>			
2060 3			
2089 3		≤ 6	
2197 3	(0)	12	

[†] From 1992Bu16, except as noted.

[‡] From comparison of measured and calculated $\sigma(\theta)$ (1992Bu16).

§ Differential cross section at 30° in $\mu b/sr$ from 1992Bu16.

(A): $K\pi = 0 + g.s.$ band.

[@] (B): $K\pi=2+\gamma$ -vibrational band.

& (C): $K\pi=2-$ octupole band.

¹⁶⁵Ho(³He,d),(α ,t) 1993Li12,1979Pa15

Target Jn=7/2-.

Other measurements: 1974Ka02, 1969Bu01.

1993Li12:

 $E(^{3}He)=25$ MeV, $E\alpha=40$ MeV; Q3D magnetic spectrometer with position sensitive detector in focal plane, FWHM=20 keV; $\theta(lab)=40^{\circ} \text{ and } 65^{\circ} \text{ for } (^{3}\text{He,d}), \ 20^{\circ} \text{ and } 30^{\circ} \text{ for } (\alpha,t); \text{ measured } E(level) \text{ and } d\sigma/d\Omega; \ DWBA \ calculations.$ 1979Pa15:

 $E(^{3}He)=24$ MeV and $E(^{4}He)=27$ MeV; Enge split-pole magnetic spectrograph, photographic emulsions (FWHM=13-15 keV); measured E(level), $d\sigma/d\Omega$.

¹⁶⁶Er Levels

E(level) [†]	_Jπ‡_	L	$d\sigma/d\Omega(60^\circ)~(\alpha,t)~\mu b/sr^{\mbox{§}}$	Comments
0.0&	0+		<1.0	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): <1.0 at 45°.
80&	2 +		6.1	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 2.2 at 45°, 1.6 at 60°.
264	4 +		24	Other E: 258 in 1993Li12.
				$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 6.4 at 45°, 5.2 at 60°.
545 ^{&}	6 +		10.7	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 2.8 at 45°, 2.6 at 60°.
786 ^a	2 +		<1.0	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): <1.0 at 45° and 60°.
859a	3+		1.0	E(level): absent in (³ He,d) (1979Pa15).
910&	8+		1.0	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): <1.0 at 45°.
955a	4 +		1.0	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): <1.0 at 45° and 60°.
1076 ^a	5 +		1.0	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): <1.0 at 45° and 60°.
1215 ^a	6 +			E(level): absent in (α, t) (1979Pa15) and in 1993Li12.
				$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): <1.0 at 45° and 60°.
1452			<1.0	E(level): absent in (³ He,d) (1979Pa15).
1529			1.6	E(level): absent in (³ He,d) (1979Pa15).

¹⁶⁵Ho(³He,d),(α,t) 1993Li12,1979Pa15 (continued)

¹⁶⁶Er Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	L	$d\sigma/d\Omega(60^\circ)$ (a,t) $\mu b/sr^{i}$	Comments
1557@a	8.+			
1537° u	(4)		2.0	$d\sigma/d\Omega(ub/cr)$ in (³ He d) at $F(^{3}He) = 24$ MeV (1070Pa15), 27 at 45° 17.7 at 60°
1595b	(4-) 4-		3.0	$d\sigma/d\Omega(\mu b/sr)$ in (³ He d) at E(³ He)-24 MeV (1979Pa15): 1.9 at 45°, 17.7 at 60°.
1651@	4-		5.0	$do/dz_{\mu}(\mu)(s)$ in (ine, u) at $E(11e) = 24$ wev (15751 at 5). 1.5 at 45, 1.7 at 00.
1665 ^b	(5-)		13 5	$d\sigma/d\Omega(\mu h/sr)$ in (³ He d) at E(³ He)=24 MeV (1979Pa15): 9.8 at 45° 7.2 at 60°
1680 ^b	(0)		≈1 0	$d\sigma/d\Omega(\mu b/sr)$ in (³ He d) at E(³ He)=24 MeV (1979Pa15): 3.0 at 45°, 2.6 at 60°
1692	(5-)		≈12.8	$d\sigma/d\Omega(\mu b/sr)$ in (³ He.d) at E(³ He)=24 MeV (1979Pa15): 8.2 at 45°, 5.0 at 60°.
1720	(-)		2.6	$d\sigma/d\Omega(ub/sr)$ in (³ He.d) at E(³ He)=24 MeV (1979Pa15); 1.2 at 45°, 1.4 at 60°.
1757			2.2	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): <1.0 at 45° and 60°.
1785 ^b	(6-)		2.5	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 1.9 at 45°, 1.7 at 60°.
1813				E(level): absent in (α, t) (1979Pa15) and in 1993Li12.
				$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): <1.0 at 45°.
1828 ^b	(6-)		5.7	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 6.4 at 45°, 4.9 at 60°.
1864			4.5	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 4.4 at 45°, 3.5 at 60°.
1916 ^c	(3–)		13.8	$d\sigma/d\Omega(\mu b/sr)$ in (^3He,d) at E(^3He)=24 MeV (1979Pa15): 18.0 at 45°, 11.9 at
				60°.
1938			4.5	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 1.4 at 45°, 2.0 at 60°.
1976d	4 + #		11.2	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 13.2 at 45°, 9.2 at 60°.
1989 ^e	(7–)		3 5	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 19.4 at 45°, 16.9 at
				60°.
20020	(4–)		12.7	$d\sigma/d\Omega(\mu b/sr)$ in ("He,d) at E("He)=24 MeV (1979Pa15): 14.9 at 45°, 10.3 at
0.0.0.0			10.4	60° .
2022 2045d	e.#		10.4	$d\sigma/d\Omega(\mu p/sr)$ in ("He,d) at E("He)=24 MeV (1979Pa15): 11.7 at 45°, 7.3 at 60°.
20454	o + "		19.0	$d\sigma/d\Omega(\mu p/sr)$ in ("He,d) at E("He)=24 MeV (1979Pa15): 14.9 at 45", 15.8 at
2057İ	(1 -)		17 2	$F(laval)$: daublat: I-1, $K\pi$ -1, and I-2, $K\pi$ -2.
20373	(1-)		17.2	$d\sigma/d\Omega(\mu h/sr)$ in (³ He d) at $F(^{3}He)=24$ MeV (1979Pa15): 33 at 45° 19.1 at 60°
				for presumed doublet
2057 ^f	(2 -)			
2074	(2 -)		3.5	$d\sigma/d\Omega(\mu b/sr)$ in (³ He.d) at E(³ He)=24 MeV (1979Pa15); 2.0 at 45°, 2.9 at 60°.
2116	(6+)		2.2	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 2.2 at 45°, 1.9 at 60°.
2132d	(6+)		38	E(level): triplet; J=3, K π =3+ and J=6, K π =4+ and J=3, K π =2
				$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 36 at 45°, 26 at 60°
				for presumed triplet.
$2132^{\rm f}$	3 – #			
2132g	3 + #			
2152j	(2-)		≈ 8	$d\sigma/d\Omega(\mu b/sr)$ in (^3He,d) at E(^3He)=24 MeV (1979Pa15): 13.0 at 45°, 11.3 at
				60°.
2167	(2-)		2.0	E(level): absent in 1993Li12.
				$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 3.5 at 45°, 1.8 at 60°.
2204			11.6	$d\sigma/d\Omega(\mu b/sr)$ in ("He,d) at E("He)=24 MeV (1979Pa15): 5.0 at 45°, 6 at 60°.
2217			8.0	E(level): absent in 1993L112. $d_{\pi}/d_{\Omega}(u_{h}/u_{h}) = (3110 d) = t E(3110) = 24 MeV (1070De15) + 8.7 et 45% f -2 et 60%$
1 2 2 2 2	(2)		- 5	$U(J(U(\mu)/S)) = U(-He, u)$ at $E(-He)=24$ MeV (1979Fa15): 8.7 at 45, 6.2 at 60.
22203	(3-)		~ 3	$d\sigma/d\Omega(\mu h/sr)$ in (³ He d) at $F(^{3}He)=24$ MeV (1979Pa15): 11.7 at 45° 9.8 at 60°
2226 ^f	(4 -)			
2239g	4 + #		12.9	$d\sigma/d\Omega(\mu b/sr)$ in (³ He.d) at E(³ He)=24 MeV (1979Pa15): 11.2 at 45°, 8.5 at 60°.
2266d	7 + #		3.6	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 4.3 at 45°, 3.2 at 60°.
2279			1.6	E(level): absent in (³ He,d) (1979Pa15). Other E: 2283 in 1993Li12.
2289				E(level): absent in (α,t) (1979Pa15).
				$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 3.1 at 45°, 1.0 at 60°.
2313			2.0	$d\sigma/d\Omega(\mu b/sr)$ in (^3He,d) at E(^3He)=24 MeV (1979Pa15): 4.2 at 45°, 2.6 at 60°.
2333			5.1	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 8.4 at 45°, 6.6 at 60°.
2347			3.4	E(level): absent in (³ He,d) (1979Pa15) and in 1993Li12.
2359g	5 + #		3.4	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 4.1 at 45°, 3.2 at 60°.
2368				E(level): absent in (³ He,d) (1979Pa15) and in 1993Li12.
2388			≈ 2	Absent in 1993Li12.
				$d\sigma/d\Omega(\mu b/sr)$ in ('He,d) at E('He)=24 MeV (1979Pa15): 4 at 45°, 4.5 at 60°.
2402			≂ tj	$a\sigma/au(\mu p/sr)$ in ("He,d) at E("He)=24 MeV (1979Pa15): 6 at 45°, 6.3 at 60°.
2418			1.8	Ellevel): 1993L112 report E=2430; possibly this a doublet consisting of the
				α and α as reported by 1973rd13. dσ/d0(ub/sr) in (³ He d) at E(³ He)=24 MeV (1970Pa15)· 3 at 45°
				as an (more of a the area of the area and a the area and a the area of the are

¹⁶⁵Ho(³He,d),(α,t) 1993Li12,1979Pa15 (continued)

¹⁶⁶Er Levels (continued)

E(level) [†]	Jπ [‡]	L	$d\sigma/d\Omega(60^\circ)$ (α,t) $\mu b/sr^{i}$	Comments
2438			2.5	E(level): see comment on 2418 level.
				$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 3.4 at 45°, 2.3 at 60°.
2453			6.1	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 9.3 at 45°, 7.6 at 60°.
2476			6.2	$d\sigma/d\Omega(\mu b/sr)$ in ("He,d) at E("He)=24 MeV (19/9Pa15): 7.0 at 45", 7.1 at 60".
2000			3.7	$d\sigma/d\Omega(\mu p/sr)$ in ("He,d) at E("He)=24 MeV (1979Pa15): 5.9 at 45", 7.2 at 60".
2001	e.#		3.4	$d\sigma/d\Omega(\mu p/sr)$ in ("He,d) at E("He)=24 MeV (1979Pa15): 3.0 at 45", 5.7 at 60".
2583	0+		5.0	$E(1_{0}, \alpha_{2}, \alpha_{1}, \alpha_{2})$ in ($1_{10}, \alpha_{1}$) at $E(1_{10}, \alpha_{2}, \alpha_{1}, \alpha_{2})$ ($1_{0}, \alpha_{1}$), (α_{1}, α_{2}) ($1_{0}, \alpha_{2}$), (α_{1}, α_{2}) (α_{1}, α_{2})), (α_{1}, α_{2}) ($\alpha_{1}, \alpha_{2})$), (α_{1}, α_{2}) ($\alpha_{1}, \alpha_{2})$), (α_{1}, α_{2}) ($\alpha_{1}, \alpha_{2})$), $(\alpha_{1},$
2000				$d\sigma/d\Omega(ub/sr)$ in (³ He d) at E(³ He)=24 MeV (1979Pa15): 7.7 at 45° 7.0 at 60°
2608	(6-)		34	Possible configuration: $\pi^2(7/2[523]+5/2[402])$ (1993Li12).
2000	(0)		01	$d\sigma/d\Omega(ub/sr)$ in (³ He.d) at E(³ He)=24 MeV (1979Pa15); 74 at 45°, 56 at 60°.
2632			9.8	$d\sigma/d\Omega(ub/sr)$ in (³ He.d) at E(³ He)=24 MeV (1979Pa15); 11.9 at 45°, 9.5 at 60°.
2655			8.3	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 14.2 at 45°, 10.3 at
				60°.
2671			2.1	Absent in 1993Li12.
				$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 5.2 at 45°, 3.6 at 60°.
2684@				
2713 [@] g	7 + #			
2742@				
2766 [@]				
2786 [@]				
2808 [@]				
2880 [@]				
2912			1.3	Other E: 2920 in 1993Li12.
				$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 4.5 at 45°, 3.8 at 60°.
2954			2.1	Other E: 2959 in 1993Li12.
				$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 10.9 at 45°, 10.0 at
				60°.
2993			1.9	Absent in 1993Li12. $1/3$
<i>@</i>				dσ/dΩ(μb/sr) in ('He,d) at E('He)=24 MeV (1979Pa15): 10.8 at 45°, 8.7 at 60°.
3000				
3043° 2077h	(8.)		6 0	$d = (d O(u b/a_{2})) in (3 U a d) at E(3 U a) 24 MaV (1070 Da15), 6.7 at 45% 4 at 60%$
2087	(0+)		0.9	$do/d\Omega(\mu b/sr) = 10021 i12$
3087			2.0	$d\sigma/d\Omega(ub/sr)$ in (³ He d) at E(³ He)-24 MeV (1979Pa15): 5.0 at 45° 7.5 at 60°
3147			1 9	$d\sigma/d\Omega(ub/sr)$ in (³ He d) at E(³ He)-24 MeV (1979Pa15): 12.4 at 45°
3160			1.2	Other E: 3168 in 1993Li12.
0100			1	$d\sigma/d\Omega(ub/sr)$ in (³ He.d) at E(³ He)=24 MeV (1979Pa15): 10.5 at 45°.
3211@				
3239			4.7	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 11.7 at 45°.
3253 [@]				
3273h	(9+)		13.7	$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 11.2 at 45°, 6.1 at 60°.
3296@				
3322@				
$3345^{@}$				
3371@				
3394@				
3429@				
3459@				
3476				E(level): absent in (α ,t) (1979Pa15). Other E: 3482 in 1993Li12.
				$d\sigma/d\Omega(\mu b/sr)$ in (³ He,d) at E(³ He)=24 MeV (1979Pa15): 15.1 at 45°.
3501		0	<2	E(level): absent in (α, t) (1979Pa15).
				L: based on $d\sigma/d\Omega$ ("He,d)/ $d\sigma/d\Omega$ (α ,t) at 60".
0554@				$a\sigma/au(\mu p/sr)$ in ("He,d) at E("He)=24 MeV (1979Pa15): 25.0 at 45°, 22 at 60°.
3554				
35/9° 2000@				
3600° 2627@				
362/5 2662@				
3003~ 2791@				
3721~ 2751@				
3783@				
3808 [@]				

¹⁶⁵Ho(³He,d),(α,t) 1993Li12,1979Pa15 (continued)

¹⁶⁶Er Levels (continued)

E(level) [†]	E(level) [†]	E(level) [†]
3838 [@]	4064@	4297 [@]
3856@	4087 [@] i	4329@
3881@	4106@	4359@
3907@	4126@	4381@
3932 [@]	4149@	4407@
3978 [@]	4174@	4418@
4002 [@] i	4227 [@]	4442@
4026@	4256@	
4045@	4274 [@]	

 † From 1979Pa15, except as noted. If level is observed in both (³He,d) and (α ,t), the mean of the two energies is given.

[‡] Assignments based on $({}^{3}\text{He},\text{d})$ or (α,t) cross section and $({}^{3}\text{He},\text{d})$ to (α,t) cross section ratios.

§ $d\sigma/d\Omega$ at 60° and E α =27 MeV for the (α ,t) reaction (μ b/sr) (1979Pa15).

 $^{\#}$ Definite J π assigned based on cross section fingerprint.

[@] From 1993Li12. Uncertainty not stated by authors.

& (A): $K\pi{=}0{+}$ g.s. band. Configuration: 7/2[523]–7/2[523].

a (B): $K\pi=2+\gamma$ -vibrational band.

b (C): Mixed Kπ=2- and 4- bands. K=2 octupole-vibrational states are strongly Coriolis mixed with Kπ=4- two-quasiproton 7/2[523]+1/2[411] states for J≥4. K=2 dominates in 1458, 1514, 1596, and 1692 levels, K=4 dominates in 1572 and 1666 levels and K=2 and K=4 amplitudes are comparable for the E>1692 levels (see mixing calculations in 1989Ad12).

c (D): Kπ=3- band. Configuration: 7/2[523]-1/2[411].

- d (E): $K\pi$ =4+ band. Configuration: 7/2[523]+1/2[541]; established from (α ,t), (³He,d) cross section fingerprint for observed band members.
- e (F): $K\pi=7-$ band. Configuration: 7/2[523]+7/2[404].
- f (G): Kπ=2- band. Configuration: 7/2[523]-3/2[411].
- g (H): Kπ=3+ band. Configuration: 7/2[523]-1/2[541]; established from (α,t), (³He,d) cross section fingerprint for observed band members.
- h (I): K\pi=8+ band. Configuration: 7/2[523]+9/2[514].
- i (J): $K\pi=1+?$ band. Possible configuration: 7/2[523]-9/2[514].
- j (K): Kπ=1- band. Configuration: 7/2[523]-5/2[402].

¹⁶⁶Er(γ,γ') 1996Ma18,1976Me04,1973Me17

Other studies: 1991Zi01.

1973Me17: bremsstrahlung E=1.6-4.2 MeV; measured $\sigma(98^\circ)$ and $\sigma(127^\circ)$ (1976Me04).

1996Ma18: bremsstrahlung endpoint energy=3.55 MeV; 95.5% ¹⁶⁶Er metal target; HPGe detector, 3 Ge detectors,

- true-coaxial HPGe Compton polarimeter with 8-crystal BGO Compton shield; θ =95°, 127°; measured E γ , integrated
- cross section, γ anisotropy, γ polarization; deduced Γ_0 , $\Gamma_{\gamma 0}^2/\Gamma$, $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$, J π , K.

¹⁶⁶Er Levels

Values of K, deduced by 1996Ma18 from measured $\Gamma_{\gamma 1}/\Gamma_{\gamma 0},$ are given in comments on the relevant levels.

E(level) [†]	$J\pi^{\#}$	T _{1/2} ‡	$\Gamma_{\gamma 0}{}^2/\Gamma \ (meV)^{i}$	Comments
0.0	0+			
80.6	2 +			E(level): rounded value from Adopted Levels.
				Jπ: from Adopted Levels.
1663 1	1 –	5.2 fs 5	13.9 16	E(level): from 1991Zi01.
				K = (0) (1996Ma18).
				${\Gamma_{\gamma 0}}^2/\Gamma$: weighted average of 15.2 <i>17</i> (1996Ma18) and 17.1 <i>11</i> (1991Zi01, from
				reported $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}=1.50$ 4 and $\Gamma_{\gamma 0}=42.8$ meV 28) and 12.0 8 (1976Me04).
1812 1	1 (+)	34 fs 7	5.5 10	E(level): from 1973Me17.
				$T_{1/2}$: value becomes 39 fs 7 based on adopted branching.
				$\Gamma_{\gamma 0}^{2}/\Gamma$: weighted average of 7.0 g (1996Ma18) and 4.8 G (1976Me04).
				K=1 (1996Ma18).
1830		45 fs 8		E(level): from 1973Me17; not reported in 1996Ma18.
				$T_{1/2}$: $\Gamma_{\gamma 0}\Gamma_{\gamma 1}/\Gamma=1.8$ 3 meV (1973Me17); deduced by evaluator from authors'
				calculated $\Gamma_{\gamma 0}$ and assumed $\Gamma_{\gamma 1}/\Gamma$. Assuming adopted
				$I(1749\gamma):I(1830\gamma)=100.0$ 21:29.9 5 and J=1, this gives $\Gamma=10.1$ 17 meV.
2055?				From 1976Me04. $\Gamma_{\gamma 0}^{2}/\Gamma$ =0.8 5 meV if the only branch is to the g.s.

¹⁶⁶Er(γ,γ') 1996Ma18,1976Me04,1973Me17 (continued)

$^{166}\mathrm{Er}$ Levels (continued)

E(level) [†]	$J\pi^{\#}$	T _{1/2} ‡	$\Gamma_{\gamma 0}^2 / \Gamma \ (meV)$	Comments
2202	1 (+)	9.7 fs 12	5.8 6	$\Gamma_{\gamma 0}{}^2/\Gamma$: weighted average of 6.1 g (1996Ma16) and 5.4 g (1976Me04).
				K=0 (1996Ma18).
2465	1	43 fs 6	5.1 5	K=1 (1996Ma18).
				$T_{1/2}$: from $\Gamma_{\gamma 0}^{2}/\Gamma = 5.1$ 5 and adopted $\Gamma_{\gamma 0}/\Gamma_{\gamma 1} = 0.44$ 7.
				$\Gamma_{\gamma 0}^{2}/\Gamma$: weighted average of 5.3 3 (1996Ma16) and 3.9 8 (1976Me04).
2525	1	23 fs <i>3</i>	8.7 10	$\Gamma_{\gamma 0}^{2}/\Gamma$: weighted average of 9.0 <i>13</i> (1996Ma16) and 8.3 <i>17</i> (1976Me04).
				K=1 (1996Ma18).
2601	1	12 fs 3	16 3	$\Gamma_{\gamma 0}^{2}/\Gamma$: weighted average of 23 <i>4</i> (1996Ma16) and 15.4 <i>16</i> (1976Me04).
				K=1 (1996Ma18).
2679	1	20 fs 3	9.8 9	$\Gamma_{\gamma 0}^{2}/\Gamma$: weighted average of 10.0 <i>10</i> (1996Ma16) and 9.1 <i>19</i> (1976Me04).
				K=1 (1996Ma18).
2768	1	22 fs 4	5.2 5	$\Gamma_{\gamma 0}^{2}/\Gamma$: weighted average of 5.1 5 (1996Ma16) and 5.8 11 (1976Me04).
				K=0 (1996Ma18).
2783	1	49 fs 14	2.6 5	$\Gamma_{\gamma 0}^{2}/\Gamma$: weighted average of 3.2 <i>6</i> (1996Ma16) and 2.2 <i>5</i> (1976Me04).
				$T_{1/2}$: from $\Gamma_{\gamma 0}^2 / \Gamma = 2.6$ 5 and adopted $\Gamma_{\gamma 0} / \Gamma = 0.53$ 6.
2812	1	3.1 fs 3	18.9 13	K=0 (1996Ma18).
				${\Gamma_{\gamma 0}}^2/\Gamma$: weighted average of 19.1 <i>16</i> (1996Ma16) and 18.6 <i>23</i> (1976Me04).
3073	1	11 fs 4	2.4 4	K=0 (1996Ma18).
3123	1	17 fs 6	6.3 6	K = (0) (1996Ma18).
3144	1	5.4 fs 5	39 <i>3</i>	E(level): 3141 in 1973Me17.
				$\Gamma_{\gamma 0}^{2}/\Gamma$: weighted average of 42 3 (1996Ma16) and 35 4 (1976Me04).
				K=1 (1996Ma18).
3175	1	11.8 fs 15	14.9 16	K = (1) (1996Ma18).
3187	1	11.4 fs 10	18.0 13	K=1 (1996Ma18).
3197	1	7.4 fs 7	27.0 25	${\Gamma_{\gamma 0}}^2/\Gamma$: weighted average of 29.0 <i>21</i> (1996Ma16) and 23.8 <i>27</i> (1976Me04).
				K=1 (1996Ma18).
				E(level): 3193 in 1973Me17.
3288	1	6.0 fs 9	11.9 13	K = (0) (1996Ma18).
3322	1	5.8 fs 14	7.5 11	K=0 (1996Ma18).
3329	1	15.0 fs 25	15.5 21	K=1 (1996Ma18).
3386	1	5.3 fs 12	14.3 25	K = (0) (1996Ma18).
3425	1	38 fs 19	12 6	
3430	1	13 fs <i>3</i>	22 5	K=1 (1996Ma18).
3440	1	3.4 fs 13	9.3 27	K=0 (1996Ma18).
3493	1		20 18	
3498	1		10 10	

[†] From 1996Ma18, except as noted.

¹ Deduced from measured $\Gamma_{\gamma 0}^{2}/\Gamma$ and $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$, assuming $\Gamma = \Gamma_{\gamma 1} + \Gamma_{\gamma 0}$, except as noted. Thus, deduced $T_{1/2}$ will be an upper limit if branches exist to levels other than the g.s. and the 81-keV level.

§ From 1996Ma18, except as noted. Calculated by evaluator from integrated cross section data of 1996Ma18 assuming J indicated, unless noted otherwise.

[#] From γ multipolarity (based on γ anisotropy) in 1996Ma18 and γ polarization (1973Me17). J=1,2 are the only possible spin choices for the levels excited by bremsstrahlung in a ¹⁶⁸Er target.

$\gamma(^{166}{ m Er})$

E(level)	$E\gamma^{\dagger}$	Iγ‡	Mult.§	Comments
1663	1582	152	4 E1	Iγ: from weighted average of Γ _{γ1} /Γ _{γ0} =1.50 <i>6</i> (1996Ma18), 1.50 <i>4</i> (1991Zi01) and 1.63 <i>7</i> (1973Me17). Mult: from 1973Me17
	1663	100	E1	Mult.: from 1973Me17.
1812	1732	56	9	Iy: from weighted average of $\Gamma_{u1}/\Gamma_{u0}=0.48$ 5 (1996Ma18) and 0.67 6 (1973Me17).
	1813	100	(M1)	Mult.: D, $\Delta \pi = (no)$ from 1973Me17.
1830	1749	100		
	1830			Iy: weak branch; consistent with $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$ =3 expected by authors from earlier decay studies (1973Me17).
2202	2121	186	9	Iy: from weighted average of $\Gamma_{y1}/\Gamma_{y0}=1.88$ 10 (1996Ma18) and 1.78 23 (1976Me04).
	2202	100	D	Mult.: Δπ=(no) (1976Me04).
2465	2384	38	6	Iγ: from weighted average of $\Gamma_{\chi 1}/\Gamma_{\chi 0}$ =0.36 β (1996Ma18) and 0.59 20 (1976Me04).
	2465	100	D	1- 1-

¹⁶⁶Er(γ,γ') 1996Ma18,1976Me04,1973Me17 (continued)

$\gamma(^{166}{\rm Er})$ (continued)

E(level)	$E\gamma^\dagger$	Iγ [‡]	Mult.§	Comments
2525	2444	51 <i>5</i>		Iy: from weighted average of $\Gamma_{1}/\Gamma_{0}=0.52$ 5 (1996Ma18) and 0.41 20 (1976Me04).
	2525	100	D	
2601	2520	53 <i>9</i>		Iy: from weighted average of $\Gamma_{u1}/\Gamma_{u0}=0.52$ 10 (1996Ma18) and 0.61 26 (1976Me04).
	2601	100	D	
2679	2598	53 11		Iγ: from weighted average of Γ_{v1}/Γ_{v0} =0.52 11 (1996Ma18) and 0.7 4 (1976Me04).
	2679	100	D	1- 10
2768	2687	150 18		Iy: from weighted average of $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$ =1.57 20 (1996Ma18) and 1.2 4 (1976Me04).
	2768	100	D	
2783	2702	536		Iγ: from Adopted Gammas; $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$ =0.43 <i>41</i> in 1976Me04.
	2783	100	D	Mult.: from 1996Ma18.
2812	2731	181 9		Iy: from weighted average of $\Gamma_{\gamma l}/\Gamma_{\gamma 0}$ =1.80 9 (1996Ma18) and 2.1 4 (1976Me04).
	2812	100	D	
3073	2992	320 60		Iγ: from $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$ =3.2 <i>θ</i> (1996Ma18).
	3073	100	D	
3123	3042	105 35		Iγ: from $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$ =1.05 35 (1996Ma18).
	3123	100	D	
3144	3063	47 3		Iy: from weighted average of $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$ =0.48 3 (1996Ma18) and 0.39 10 (1976Me04).
	3144	100	D	
3175	3094	61 6		Iγ: from $\Gamma_{\gamma 1}/\Gamma_{\gamma 0} = 0.61 \ 6 \ (1996 Ma18).$
	3175	100	D	
3187	3106	49 4		Iγ: from $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$ =0.49 4 (1996Ma18).
	3187	100	D	
3197	3116	51 <i>3</i>		Iy: from weighted average of $\Gamma_{\gamma1}/\Gamma_{\gamma0}$ =0.52 3 (1996Ma18) and 0.41 10 (1976Me04).
	3197	100	D	
3288	3207	152 13		Iγ: from $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$ =1.52 <i>13</i> (1996Ma18).
	3288	100	D	
3322	3241	223 31		Iγ: from $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$ =2.23 <i>31</i> (1996Ma18).
	3322	100	D	
3329	3248	40 7		Iγ: from $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$ =0.40 7 (1996Ma18).
	3329	100	D	
3386	3305	146 16	_	Iy: from $\Gamma_{\gamma 1}/\Gamma_{\gamma 0} = 1.46 \ I6 \ (1996Ma18).$
	3386	100	D	
3425	3425	100	D	
3430	3349	24 6		17: trom $\Gamma_{\gamma 1}/\Gamma_{\gamma 0} = 0.24 \ 6 \ (1996 Ma18).$
	3430	100	D	
3440	3359	280 50	D	17: trom $1_{\gamma 1}/1_{\gamma 0} = 2.8 \ $ (1996Ma18).
	3440	100	D	
3493	3493	100	D	
3498	3498	100	ט	

[†] From level energy difference, except as noted. [‡] Relative branching based on $(\Gamma_{\gamma 1}/\Gamma_{\gamma 0})$ calculated by evaluator from experimental $R = (\Gamma_{\gamma 1}/\Gamma_{\gamma 0}) (E_{\gamma 0}/E_{\gamma 1})^3$ in 1996Ma18, except as noted. Values of $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$ are given in comments. § ΔJ from γ anisotropy (1996Ma18), $\Delta \pi$ from γ linear polarization (1976Me04, except as noted).

¹⁶⁶Er(γ,γ') 1996Ma18,1976Me04,1973Me17 (continued)

Level Scheme

Intensities: relative photon branching from each level

Others: 2000De59, 1997Ga11, 1997Ga13.

1997Ga11, 1997Ga13: E(n)=1.4 to 3.2 MeV, using nearly monoenergetic neutrons from the ³H(p,n) reaction; 98% enriched ¹⁶⁶Er target; HPGe detector (FWHM=2.1 keV at 1332 keV); measured excit (E(n)=1.4-3.1 MeV), $\gamma(\theta)$ (E(n)=2.1 MeV, 10 angles; 2.5 MeV, 11 angles), $\gamma\gamma$ coin (E(n)=3.2 MeV), T_{1/2} using DSAM; searched for two-phonon γ -vibrational states. See also 2000Ga22.

1992Be29: reactor neutrons; 96.1% ¹⁶⁶Er enriched oxide target; Ge detector (FWHM=2.4 keV at 1300 keV); two-crystal Compton polarimeter; measured Εγ, Ιγ, γ(θ) (θ=90°, 105°, 115°, 125°, 135°, 142° and 150°), γ linear polarization. See also 1991Be38 and 2000De59. 2000De59 (which supersedes 1999DeZX) reanalyses γ(θ) for six transitions.

1981Bo40: E=reactor spectrum; 96.3% ¹⁶⁶Er target; Ge(Li) detector (FWHM=3 keV at Eγ=700); measured Eγ, Iγ. See also 1982Bo39.

For further discussion of band structure, see 2000Gr33.

¹⁶⁶Er Levels

The band structure shown here is taken from 1992Be29.

E(level) [†]	$_J\pi^{\ddagger}$	T_1/2	Comments
$\begin{array}{c} 0.0^{\$} \\ 80.62^{\$} & 15 \\ 265.06^{\$} & 19 \\ 545.46^{\$} & 24 \end{array}$	0 + 2 + 4 + 6 +	stable	

¹⁶⁶Er Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2}	Comments
785.90# 18	2+		
859.35# 21	3+		
911.2 [§] 4	8+		
956.45# 21	4+		
1075.55# 25	5 +		
1216.0 # 4	6 +		
1375 . $9^{\#}$ 4	7+		
1458.1 [@] 3	2 -		
1459.9& 4	0 +	0.76 ps <i>28</i>	T _{1/2} : from DSAM (1997Ga13). Band assignment from Adopted Levels.
1513.46 [@] 22	3 –		
1528.5 ^{&} 3	2 +		
1555.6# 3	8+		Jπ and band assignment from Adopted Levels.
1572.31 <i>3</i>	4 -		K=4 suggested in 1992Be29.
1596.38 25	4 -		
1665 6 4	1 - 5 -		
1674.1? 11	0		
1678.4& 6	4 +		
1692.1 5	(5-)		K=5 suggested in 1992Be29.
1703.0 ^b 6			
1713.4 8	(0+)	>0.97 ps	T _{1/2} : from DSAM (1997Ga13).
1721.8 ^a 6	3 –		
1760.9 5	5 -		
1784.8 ^{be} 4			
1787.2 11			
1812.5 4	1+		
1827.9 5 1830 6d 3	1-		
1865.2? 5			
1897.9& 6	(6+)		
1904.8? 6	(2+)		
1908.3 5			
1917.7d 4	3 –		
1934.1 5	(0+)	54 fs 6	T _{1/2} : from DSAM (1997Ga13).
1938.3 4	(3)+		
1942.7 11	(0+)	0.24 ps 7	$J\pi$: from 1997Gall.
1060 5b 1			$I_{1/2}$: from DSAM (199/Gall).
1978 1 4	4 +		K=4 suggested in 1992Be29
2001.4 6			
2021.1 7	(2) -		
2022.5 4	(4+)		Jπ: from Adopted Levels.
2028.4 6	(4+)	0.22 ps <i>8</i>	T _{1/2} : from DSAM (1997Ga11).
2031.5? 11			
2045.5? 11			Level shown as tentative and omitted from Adopted Levels because its existence relies entirely on placement of one multiply-placed transition.
2046.3 5	(3+)		
2082.6 5			
2118.1 9			
2124.9 8	0.		
2132.0 0	3+		I avail shown as tantative and emitted from Adapted Levels because its evistance values
2133.0? 0	3+		entirely on placement of one multiply-placed transition.
2148.7 5 2160.02 9			
2100.07 8 2172 1 11			
2201.8 8	1		
2265.6? 11	(2-)		
2282.6? 11	(3)		
2291.9 11	3+		
2415.9 11	(3)		
2442.1? 11	(3,4)+		
			Continued on next page (footnotes at end of table)

¹⁶⁶Er Levels (continued)

E(level) [†]	Jπ [‡]	Comments
2459.0? 10		J π : 1992Be29 suggest J=(2), but this is inconsistent with negative A ₂ for 2459 $\gamma(\theta)$.
2504.6 11	(3,4)+	
† From least	-squares fit to) Εγ, assigning ΔE=1 keV to Eγ data for which the authors gave no uncertainty.
[‡] From 1992	Be29, based or	1 deduced band structure and $\gamma(\theta)$ data for interconnecting transitions, except as noted.
§ (A): Kπ=0+	ground-state	band.
[#] (B): Kπ=2+	- band.	
@ (C): Kπ=2-	band. Note th	at, in Adopted Levels, the J=5, 1666 level is assigned to a $K\pi$ =4– band which is strongly mixed with the
2- band.		
& (D): $K\pi = 0 +$	- band.	

a (E): $K\pi = 0 + band$.

(F): $K\pi$ =0+ band. Not adopted. One of the three levels associated with this band in $(n,n'\gamma)$ (at 1785 keV) is not adopted and the available information concerning the 1703 and 1969 levels is quite limited.

c (G): $K\pi = 1 + band$.

d (H): Kπ=1-? band. Not adopted. The 1918 level is adopted, instead, as the bandhead of a 3- band, and no band assignment is adopted for the 1- 1831 level.

^e The evaluators have not included the 1784.8 level from $(n,n'\gamma)$. A comparison of branching of 1704 γ and 1889 γ , placed from 1969 level in ε decay, suggests that this level is being seen in both reactions and that entire I γ (1704 γ) in $(n,n'\gamma)$ can be assigned to the 1969 level. The 1784 γ is placed only from the 1865 level in ε decay with assignment of the 1704 γ entirely to the 1969 level; the alternative placement of the 1784 γ from a possible 1785 level is less convincing.

$\gamma(^{166}{\rm Er})$

 A_2 and A_4 from $\gamma(\theta)$, and γ linear polarization data ($P(\gamma)$), are given in comments on the relevant γ rays.

See 2000De59 and 1999De37 for discussion of relative signs of mixing ratios for low-lying transitions connecting the g.s. band and/or the γ and β bands.

$E\gamma^{\dagger}$	E(level)	Iγ [‡]	Mult.§	δ	α	Comments
80.62	80.62	200 80				
184.4 2	265.06	310 70	E2		0.331	Mult.: $A_2 = +0.17$ 9, $A_4 = -0.013$ 12, P(γ)=1.48 +12-6 (1992Be29).
215	1075.55	< 1				
260	1216.0	0.9 3				
280.5 <i>2</i>	545.46	42 5	E2		0.0848	Mult.: $A_2 = +0.278$ 15, $A_4 = -0.071$ 19, P(γ)=2.1 +6-2 (1992Be29).
300.5 4	1375.9	1.3 4				
312.0	1908.3	< 0.2				
x321.4 4		1.3 3				
336.0 4	1908.3	1.4 3				
339.8	1555.6	< 0.4				
365.7 <i>3</i>	911.2	3.7 3	E2		0.0385	Mult.: $A_2 = +0.33$ 3, $A_4 = -0.05$ 4, P(γ)=3.2 +999-7 (1992Be29).
x385.0 5		0.8 1				
404.0 5	1917.7	0.6 1				
411.5 5	956.45	0.6 1				
452.0 5	1827.9	0.4 2				
455.7	2028.4					Eγ: from 1997Ga11.
						Iy: see comment on 1243.2γ .
459.7 3	1917.7	2.8 3	D+Q			Mult.: A ₂ =-0.31 4, A ₄ =0.00 6 (1992Be29).
						δ: -0.11 +5-8 or -2.7 5 (1992Be29).
488.2 ^c 5	2001.4	1.1 4				
x494.0 5		1.4 7				
496.55	1572.31	3.3 7				
520.9ª <i>2</i>	785.90	1.5&a 2				
	1596.38	2.4&a 5				
530.5 <i>3</i>	1075.55	10.5 5	M1+E2	-20 +10-110	0.01418	Mult.: $A_2 = -0.143$ 18, $A_4 = +0.04$ 3, $P(\gamma) = 0.52$ +15-17 (1992Be29). $\delta = -21$ +5-111 from $\gamma(\theta)$ (1992Be29)
556.5 3	1513.46	4.8.8				
569.2 4	2082.6	2.5 6				
×573.2 <i>3</i>		4.1 6				

				γ(¹⁶⁶ Er) (continued		
$E\gamma^{\dagger}$	E(level)	Iγ [‡]	Mult.§	δ	α	Comments
594.4 <i>3</i>	859.35	21 7	D+Q	-50 +20-140		Mult.: $A_2 = -0.139 \ 2I$, $A_4 = +0.05 \ 3$ (1992Be29). $A_2 = -0.136 \ 2O$, $A_4 = +0.04 \ 3$ (2000De59). $\delta: -45 \ +19 - 137 \ from \ 2000De59;$ $22 \ +7 \ 120 \ from \ 1092Be20$
598.7 4	1458.1	9.9 18	D(+Q)			$\begin{array}{c} -2.5 + 7.120 \text{ from } 1352162.5.\\ \text{Mult.: } \text{A}_2 = -0.04 3, \text{A}_4 = 0.00 4\\ (1992Be29).\\ \delta: -0.02 6 $
616.0 <i>3</i>	1572.31	2.8 5	D(+Q)			Mult.: $A_2 = +0.288 \ 21$, $A_4 = -0.02 \ 3$, $P(\gamma) = 0.7 \ +4-3 \ (1992Be29)$. $\delta: -0.03 \ +10-6 \ or \ +1.02 \ +14-18 \ (1992Be29)$.
^x 633.5 4		0.95				, ,
640.0 <i>3</i>	1596.38	3.2 5				
644.4 5	1555.6	0.4 2				
646.0 ^{# c} 5	2160.0?	1.2# 4				
654.4 <i>3</i>	1513.46	3.6 4	D(+Q)			Mult.: A_2 =+0.204 18, A_4 =-0.052 24 (1992Be29). δ : -0.08 +9-6 or +1.55 +21-23 (1992Be29).
^x 668.0 8		1.0 4				
670.5	1216.0	< 6	M1+E2	≥+11	0.00807	Mult.: $A_2=-0.209$ 18, $A_4=-0.16$ 3, P(γ)=0.31 +9-12 (1992Be29). δ : +16 + ∞ -5 (1992Be29).
672.3 <i>3</i>	1458.1	19.6 15	D(+Q)			Mult.: A_2 =+0.171 12, A_4 =-0.029 16 (1992Be29). δ : +0.01 +7-5 or +2.2 +3-4 (1992Be29)
674.0 6	1459.9	1.6 8				Iγ: too large by an order of magnitude cf. adopted branching.
691.2 <i>2</i>	956.45	41 4	D+Q	≥50		Mult.: $A_2 = -0.180 \ 10, \ A_4 = -0.119 \ 14$ (1992Be29, 2000De59), $P(\gamma) = 0.39 \ +7 - 11 \ (1992Be29).$ $I(\delta(D, O) = 0.00, \ 2 \ (1992Be29).$
705.3 <i>3</i>	785.90	84 5	D+Q	≥50		Mult.: $A_2 = -0.051 \ 9, \ A_4 = -0.035 \ 13$ (1992Be29, 2000De59), $P(\gamma) = 0.73 \ +8-10 \ (1992Be29).$ $1/\delta(D, Q) = 0.00 \ 2 \ (1992Be29)$
711.7	1787.2	< 4				1.0(2,4) 0.00 2 (10022020).
712.9 3	1572.31	12.8 7				
727.8 3	1513.46	5.4 5	E1 (+M2)	+0.01 + 3 - 4	0.00807	Mult.: $A_2 = -0.181$ 16, $A_4 = -0.013$ 22, P(γ)=1.5 +8-5 (1992Be29).
~730.4 7 736.8 <i>3</i>	1596.38	$\begin{array}{cccc} 1.1 & 4 \\ 6.7 & 5 \end{array}$	E1(+M2)	+0.002 + 19 - 25	0.00247	Mult.: A ₂ =-0.215 17, A ₄ =-0.055 24,
742.6 ^b	1528.5	$< 0.7^{b}$				P(γ)=1.5 +8-5 (1992Be29).
×749 5 8	2201.8	<0.7-				
752.3 7	1827 9	1.4.5				
×764.0 8	102.10	0.8.5				
×771.0 8		1.2 7				
778.8 3	859.35	106 5	M1+E2	-80 +30-130	0.00572	Mult.: A_2 =+0.054 8, A_4 =+0.064 12, $P(\gamma)$ =1.32 +22-15 (1992Be29). A_2 =+0.052 8, A_4 =+0.061 12 (2000De59). δ : -75 +26-134 from 2000De59; -67 +30-44 from 1992Be29.
785.9 <i>3</i>	785.90	68 <i>3</i>	E2		0.00561	Mult.: A_2 =+0.236 10, A_4 =-0.068 12 (1992Be29, 2000De59), $P(\gamma)$ =2.1 +6-2 (1992Be29).
x794.0 6		1.0 5				

			_			
$\mathrm{E}\gamma^{\dagger}$	E(level)	Iγ [‡]	Mult.§	δ	α	Comments
810.3 <i>3</i>	1075.55	35 2	M1+E2	-27 +4-6	0.00525	Mult.: $A_2 = -0.051 \ 9$, $A_4 = +0.151 \ 12$, $P(\gamma) = 1.07 \ +16-14 \ (1992Be29)$.
819.0	1678.4	1.6 5				
830.3 5	1375.9	2.7 5	D + Q	-34 + 14 - 51		Mult.: $A_2 = -0.084$ 21, $A_4 = +0.24$ 3, P(γ)=0.9 +4-3 (1992Be29).
875.6 <i>3</i>	956.45	18 1	E2		0.00444	Mult.: $A_2 = +0.305 \ 10$, $A_4 = -0.068 \ 13$ (1992Be29, 2000De59), $P(\gamma)=3.6 \ +22-6 \ (1992Be29).$
×879.0 <i>8</i>		1.2 6				
892	1678.4	< 0.3				
927.4	1713.4					Eγ: from 1997Ga13.
950.9 <i>3</i>	1216.0	2.0 3	Q			Iγ: see comment on 1632.9γ. Mult.: A ₂ =+0.32 <i>3</i> , A ₄ =-0.10 <i>3</i> (1992Be29).
020.5 8		1.1 7				
1021.0 8	1978.1	0.7 3				
070.8 8		1.2 3				Mult.: A ₂ =0.00 <i>6</i> , A ₄ =+0.03 <i>9</i> (1992Be29).
1079.5 ^{bc} 8	1865.2?	1.6 ^b 7				Mult.: $A_2=+0.31$ 7, $A_4=-0.02$ 10, P(γ)=2.0 +12-6 (1992Be29). -0.007< δ (D,Q)<+1.3 (1992Be29), mult=D+Q for doubly-placed y.
	1938.3	1.6 ^b 7				Mult.: $A_2 = +0.31$ 7, $A_4 = -0.02$ 10, $P(\gamma) = 2.0 + 12-6$ (1992Be29). $-0.007 < \delta(D, Q) < +1.3$ (1992Be29), mult=D+Q for doubly-placed y.
1089 ^b c	2045.5?	$< 0 . 4^{b}$				See comment on 1089γ from 2046.3 level.
	2046.3	< 0 . 4 ^b				1981Bo40 show two placements for this γ but, based on adopted branching from the 2046 level, all its intensity can be exhausted by this placement alone
1119.7b 5	1665.6	3.9b 4				
	1978.1	3.9 ^b 4				
126.0 8	2082.6	0.8 4				
146.0 10	1692.1	1.3 4				
149 1		0.9 4				
152.3 3	1938.3	4.5 5	M1 (+E2)	+0.01 +3-4	0.00438	Mult.: $A_2 = -0.189$ 22, $A_4 = -0.01$ 3, P(γ)=0.57 +28-23 (1992Be29).
156.3 5		1.6 5				Mult.: $A_2 = -0.02 \ 3$, $A_4 = +0.01 \ 5$
156 9	1049 7					(1992B629).
161 ep o	1942.7	1 2b 1				Ey: 110m 1997Ga11.
101.0 0	2118 1	1.3°4 1.3b⊿				
168 5 7	2124 9	1 3 4				
168.8	2028.4	1.0 1	D+Q	4.5 10		Ey; from 1997Ga11.
			- • •			Iγ: see comment on 1243.2γ. Mult.,δ: from 1997Ga11.
176	2132.6	< 0.9				
187.0	2046.3	1.7 5				Mult.: $A_2=+0.23$ 4, $A_4=+0.04$ 6, $P(\gamma)=2.0$ +12-6 (1992Be29). $\delta: -0.03$ +12-6 or +1.40 +23-27 (1992Be29).
191.0 7	1978.1	1.4 5	(Q)			Mult.: $A_2 = +0.27$ 4, $A_4 = -0.19$ 6 (1992Be29).
192.5 7	2148.7	1.4 5				
215.5 ^b 5	1760.9	4.1 ^b 5				
	2001.4	4.1 ^b 5				
217.0 10		1.4 5				
1233.0 15		1.4 5				

			//			
			-			
${f E}\gamma^{\dagger}$	E(level)	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	Mult.§	δ	α	Comments
1235.5 10	2021.1	2.3 5	E1 (+M2)	+0.04 $+9-6$	0.00098 12	Mult.: $A_2 = +0.188 \ 23$, $A_4 = +0.01 \ 3$, P(γ)=0.64 +30-24 (1992Be29).
1243.2	2028.4					Eγ: from 1997Ga11. Ιγ: Ι(1243γ):Ι(1169γ):Ι(456γ)=0.47 <i>Ι</i> : 0.46 <i>Ι</i> :0.07 <i>Ι</i> (1997Ga11).
1248.7 7	1513.46	2.8 5	E1+M2	+0.13 3	0.00109 7	Mult.: $A_2 = -0.05 \ 3$, $A_4 = 0.00 \ 4$, P(γ)=2.1 +22-10 (1992Be29).
1261.0 ^{@c} 10	2046.3	2.0 [@] 10	20			
1263.3 3	1528.5	9.9.6	E2		0.00212	Mult.: $A_2 = +0.092$ <i>11</i> , $A_4 = -0.024$ <i>15</i> , P(γ)=1.2 +4-3 (1992Be29).
1273	2132.0	<1.0				
374 5 [#] C 10	2160 02	3 3# 5				
379 4 5	1459 9	976				Mult : $P(y) = 0.96 + 21 - 18 (1992Be29)$
388.8 10	1400.0	1.7 6	D + Q			Mult.: $A_2=+0.14$ 9, $A_4=-0.04$ 13 (1992Be29).
1396 1		1.2 6				
1400.7 3	1665.6	4.1 6	E1(+M2)	+0.025 $+18-26$	8.81×10 ⁻⁴ 14	Mult.: $A_2 = -0.183 \ 23$, $A_4 = -0.02 \ 3$, P(γ)=1.7 +11-7 (1992Be29).
1409.0 ^c 10	1674.1?	1.1 6				
1413.5 10	1678.4	3.4 6	D+Q	+0.35 30		Mult.: $A_2 = +0.388 \ 17, \ A_4 = -0.008 \ 23,$ $P(\gamma) = 3.7 \ +150 - 18 \ (1992Be29).$ $+0.08 \leq \delta(D, \Omega) < +0.65 \ (1992Be29)$
1427.2 5	1692.1	3.4 6	E1(+M2)	-0.002 + 22 - 31	8.72×10 ⁻⁴ 14	Mult.: $A_2 = -0.22$ 3, $A_4 = -0.02$ 4, $P(\gamma) = 2.0 + 12-6$ (1992Be29).
1432.7 3	1513.46	6.96	E1+M2	+0.054 $+19-27$	8.86×10 ⁻⁴ 18	Mult.: $A_2 = -0.137$ 18, $A_4 = -0.02$ 3, P(γ)=1.9 +8-5 (1992Be29).
1448.2 5	1528.5	6.3 6	D+Q	+0.5 3		Mult.: $A_2 = +0.339$ 15, $A_4 = -0.051$ 20, P(γ)=1.8 +10-7 (1992Be29).
1456.6 10	1721.8	4.77	D(+Q)			Mult.: $A_2 = -0.07 \ 8$, $A_4 = -0.12 \ 11$ (1992Be29).
						δ: -0.01 10 or -8 +13-12 (1992Be29)
475.5 10	2022.5	0.8 3				
486.0 ^c 10	2031.5?	1.2 3				
1495.77	1760.9	4.3 7	D+Q			Mult.: $A_2 = +0.300 \ 20$, $A_4 = -0.06 \ 3$, P(γ)=2.0 +12-6 (1992Be29). δ : +0.41 +7-4 or +4.2.8 (1992Be29).
1506.0 10		2.4 7	D+Q			Mult: $A_2 = -0.35$ 6, $A_4 = -0.11$ 9 (1992Be29). $\delta: -0.15 + 5 - 10$ or $-2.4 + 4 - 5$
1506.0 10	2291.9	2.4 7	D + Q			(1992Be29). Mult.: $A_2=-0.35$ 6, $A_4=-0.11$ 9 (1992B-99)
						(1992Be29). $\delta: -0.15 + 5 - 10 \text{ or } -2.4 + 4 - 5$ (1992Be29).
						Eγ: presumed to be the 1505γ mentioned in 1992Be29; unplaced in 1981Bo40.
1515 1		0.8 3				
528 ^c 1	1528.5	1.8 7	Q			Mult.: $A_2 = +0.16$ 3, $A_4 = -0.08$ 4 (1992Be29).
1581.9 3	1662.5	10.6 7	E1 (+M2)		U.UU28 20	Mult.: $A_2 = -0.005 \ 10$, $A_4 = 0.0$, P(γ)=1.02 +28-23 (1992Be29). δ : -0.04 +8-9 or -3.0 +7-11
		0 7				(1992Be29).
1598.2	1678.4	< 0.7				
604 <i>I</i>		2.37				
1007 I 1699 A #	1702 0	1.04				
10// 4 5	1 / 11 4 11	ч К /				
			-			
---------------------------------	----------	--------------------	------------	---------------	--------------------------------	--
${ m E}\gamma^{\dagger}$	E(level)	Iγ‡	Mult.§	δ	α	Comments
1630 1	2415.9	2.0 7	D+Q	+15 +31-5		Mult.: $A_2 = +0.14$ 4, $A_4 = -0.04$ 5, P(γ)=1.1 +11-6 (1992Be29).
						Eγ: presumed to be the 1629γ mentioned in 1992Be29; unplaced
1632.7 7	1897.9	2.5 8				Mult.: $A_2=0.00 \ 3$, $A_4=-0.04 \ 4$, $P(y)=0.8 \pm 7-5 \ (1992Bo29)$
1632.9	1713.4					 F(y)=0.6 + y = 5 (1552 Be25). Eγ: from 1997Ga13. Iγ: I(1633γ):I(927γ)=0.890 5:0.110 5 (1997Ga13).
1641.2 7	1721.8	6.08	E1 (+M2)	+0.01 + 3 - 4	8.74×10 ⁻⁴ 14	Mult.: $A_2 = -0.188 \ 18$, $A_4 = 0.00 \ 3$, $P(\gamma) = 1.2 \ +6-4 \ (1992Be29)$.
1653 1	1917.7	1.3 7				
1662.4 5	1662.5	7.78	E1		8 . 7 7 \times 1 0 $^{-4}$	Mult.: A ₂ =-0.095 16, A ₄ =0.0, P(γ)=2.2 +18-8 (1992Be29).
1704.5 ^b 5	1784.8	3.2 ^b 6				
	1969.5	3.2 ^b 6				
1731.5 5	1812.5	2.8 7	D+Q			Mult.: $A_2 = +0.05$ 3, $A_4 = 0.0$ (1992Be29).
1750.0 <i>3</i>	1830.6	5.28	D(+Q)			$\delta: -1.6 < \delta(D,Q) < -0.28 (1992Be29).$ Mult.: A ₂ =-0.018 <i>16</i> , A ₄ =0.0
						(1992Be29). $\delta(D,Q) = +0.09 + 25 - 15 \text{ or}$ $1/\delta = -0.20 + 25 - 16 (1992Be29)$
1756						$F_{1/0} = 0.20 + 2.5 - 10 (1352 Be23).$
						Mult.: $A_2 = +0.26$ 4, $A_4 = -0.06$ 6 (1992Be29).
1757.2 5	2022.5	3.0 8				
1758						Mult.: A ₂ =+0.11 <i>4</i> , A ₄ =+0.04 <i>5</i> (1992Be29).
1781	2046.3	< 2				
1784.5 ^b 5	1784.8	6.0 ^b 8				
	1865.2?	6.0 ^D 8				
1812.8 5	1812.5	8.5 8	D			Mult.: $A_2 = -0.066 \ I8$, $A_4 = 0.0$ (1992Be29).
1817 1 1824.2 ^c 5	1904.8?	1.5 8 5.2 8	D + Q			Mult.: $A_2 = +0.053$ 16, $A_4 = -0.015$ 23 (1002Bo20)
						$\delta: -0.22 + 4-3 \text{ or } +4.9 + 7-8$ (1992Be29).
						Placement from 1992Be29; no other evidence exists for this level
						or for a 2089 level from which
1830.6 5	1830.6	1.5 8	D			Mult.: $A_2 = -0.09 \ 4$, $A_4 = 0.0$ (1992Be29).
1833 1		1.1 5				· · · · · · · · · · · · · · · · · · ·
1837	1917.7	< 1				
1853.5 5	1934.1	4.0 8				Other Εγ: 1853.9 (1997Ga13).
1883.5 <i>6</i>	2148.7	1.5 5				
1888.8 5	1969.5	2.7 5				
1942.5 5	2022.5	4.4_8				
1966.3 ^{@c}	2046.3	$0.9^{@}5$				
2052.5 ^b 10	2132.6	2.7 ^b 8				Mult.: A ₂ =+0.02 3, A ₄ =-0.08 4 (1992Be29) for doubly-placed γ. δ: +0.20 3 or -22 +8-57 (1992Be29) for doublet.
	2133.8?	2.7 ^b 8				See comment on 2052γ from 2132.6 level.
2079	2160.0?	< 1				
2091.5 10	2172.1	3.2 8				

		¹⁶⁶ Er(n,					
				$\gamma(^{166}\mathrm{Er})$ (continued)			
$E\gamma^\dagger$	E(level)	Iγ [‡]	Mult.§	Comments			
2120.5 10	2201.8	1.9 9	D+Q	Mult.: $A_2 = -0.05 \ 4$, $A_4 = -0.07 \ 5$ (1992Be29).			
				Shown as unplaced in 1992Be29.			
x2134.5 10		1.9 9	D+Q	Mult.: $A_2 = -0.15$ 3, $A_4 = +0.01$ 5 (1992Be29).			
				Εγ is consistent with placement from the 2134 level, but multipolarity is inconsistent with that placement if J(2134)=3+ as proposed in 1992Be29.			
2177 ^c	2442.1?		D+Q	Eγ: from 1992Be29.			
				Mult.: $A_2 = +0.06$ 5, $A_4 = -0.12$ 7 (1992Be29).			
				δ : -3.2 +11-7 or -0.19 +8-9 (1992Be29) if J(2441)=3; +2.3 +6-5 or -0.41 10 (1992Be29) if J(2441)=4.			
2185 ^c	2265.6?		Q(+D)	Eγ: from 1992Be29.			
				Mult.: $A_{2} = -0.06 \ 6$, $A_{4} = -0.25 \ 8 \ (1992Be29)$.			
				$\delta: -0.47 + 14 - 19 \text{ or } 1/\delta = -0.02 + 12 - 13 (1992 Be 29).$			
2202 ^b c	2201.8	1.0 ^b 5		Mult.: $A_2 = -0.31$ 6, $A_4 = -0.04$ 8 (1992Be29) for doubly-placed γ .			
				δ: -0.11 +5-8 or -2.7 +5-6 (1992Be29) for doublet.			
	2282.6?	1.0 ^b 5		Mult.: $A_2 = -0.31$ 6, $A_4 = -0.04$ 8 (1992Be29) for doubly-placed γ .			
				δ: -0.11 +5-8 or -2.7 +5-6 (1992Be29) for doublet			
2424	2504.6			Eγ: from 1992Be29.			
				Mult.: A ₂ =+0.18 4, A ₄ =-0.05 6 (1992Be29).			
				δ: δ(D,Q)=+0.36 +6-4 or +9 +7-3 (1992Be29) if J(2506 level)=3, but $\gamma(\theta)$ does not rule out stretched Q.			
2459 ^c	2459.0?			Eγ: from 1992Be29.			
				Mult.: A_2 =-0.014 7, A_4 =+0.17 10 (1992Be29); not consistent with stretched Q.			

[†] From 1981Bo40, except as noted.

[‡] Photon intensity normalized to Iγ(847γ,⁵⁶Fe)=1000 for the equal weight of ⁵⁶Fe and ¹⁶⁶Er. Data are from 1981Bo40, except as noted; they are not corrected for the angular distributions of the transitions, but the authors do not expect those corrections to exceed 10-15%.

§ Based on $\gamma(\theta)$ and linear polarization data from 1992Be29.

γ probably misplaced because, based on adopted branching from the 2160 level, Iγ here is far too large relative to I(2079γ).

 $^{\circ}$ Placement shown as tentative and γ omitted from Adopted Gammas because γ is absent in ε decay even though its branching here is too large for transition to have been missed in the ε decay studies.

& I(521γ doublet)=3.9 5. From adopted I(521γ)/I(705γ)=0.0172 4 and I(705γ)=84 5 in (n,n'γ), I(521γ from 786 level)=1.5 2 leaving $I\gamma=2.4~5~to~be~placed~elsewhere.~From~adopted~I(521\gamma)/I(736\gamma)=0.668~18~and~I(736\gamma)=6.7~5~in~(n,n'\gamma),~one~expects~I(521\gamma)/I(736\gamma)=0.668~18~and~I(736\gamma)=0.7~5~in~(n,n'\gamma),~one~expects~I(521\gamma)/I(736\gamma)=0.668~18~and~I(736\gamma)=0.7~5~in~(n,n'\gamma),~one~expects~I(521\gamma)/I(736\gamma)=0.668~18~and~I(736\gamma)=0.7~5~in~(n,n'\gamma),~one~expects~I(521\gamma)/I(736\gamma)=0.668~18~and~I(736\gamma)=0.7~5~in~(n,n'\gamma),~one~expects~I(521\gamma)/I(736\gamma)=0.668~18~and~I(736\gamma)=0.668~18~and~I(736\gamma)=0.668~18~and~I(736\gamma)=0.7~5~in~(n,n'\gamma),~one~expects~I(521\gamma)/I(736\gamma)=0.668~18~and~I(736\gamma)=0.7~5~in~(n,n'\gamma),~one~expects~I(521\gamma)/I(736\gamma)=0.668~18~and~I(736\gamma)=0$ level)=4.5 &, leaving no intensity for the proposed placement from the 1978 level. Consequently, the evaluator does not include a 521γ from the 1978 level.

^a Multiply placed; intensity suitably divided.

- ^b Multiply placed; undivided intensity given.
- ^c Placement of transition in the level scheme is uncertain.

^x γ ray not placed in level scheme.

 $^{16}_{68}^{6}\mathrm{Er}_{98}$

 $^{166}_{68}{
m Er}_{98}$

Level Scheme

Intensities: relative Ιγ @ Multiply placed; intensity suitably divided

& Multiply placed; undivided intensity given

Level Scheme (continued)

Intensities: relative Iy

@ Multiply placed; intensity suitably divided

& Multiply placed; undivided intensity given

Level Scheme (continued)

Intensities: relative $I\gamma$

@ Multiply placed; intensity suitably divided & Multiply placed; undivided intensity given

¹⁶⁶Er(pol p,p'),(³He,³He'), (α,α') 1992Ka07,1984Ic01,1983Ro11

Others: 1968He24 ((α,α'), E=50 MeV).

1992Ka07: E=30 MeV/nucleon; 97.69% ¹⁶⁶Er target; RAIDEN magnetic spectrograph with two-dimensional position sensitive proportional counter, dual single-wire proportional counter and plastic scintillator; θ(lab)=10°- 95° for (p,p'), 10°- 62° for (³He, ³He') and (α,α'); measured σ(θ) for all three reactions, analyzing power for (p,p'); coupled channels analysis, folding-model calculations; deduced quadrupole moments of deformed optical potentials.
1984Ic01: (pol p,p'), E=65 MeV; 97.69% ¹⁶⁶Er target; RAIDEN magnetic spectrograph (FWHM=20-26 keV) with two-dimensional position sensitive proportional counter, dual single-wire proportional counter and plastic scintillator; measured E(p'), σ(θ), analyzing power (θ=11° -35° in 1° steps, θ=36° -70° in 2° steps); coupled channels analysis; deduced deformation parameters, multipole moments; observed J=0,2,4,6 members of g.s. band and J=2,4 members of γ band. 1986Ic02 and 1987Ic04 extended and further refined analysis.

1983Ro11: (pol p,p'), E(p)=133.9 MeV; 96% enriched ¹⁶⁶Er target; magnetic spectrometer with with helical wire counter backed by two plastic scintillators (FWHM=45 keV); measured E(p'), σ(θ) and asymmetry (θ(lab)=22.5° - 70° in 2.5° steps).

¹⁶⁶Er Levels

For deduced moments of deformed optical potential and/or imaginary and spin-orbit potential deformation parameters, see 1983Ro11, 1984Ic01, 1984Ic02, 1992Ka07.

E(level) [†]	$J\pi^{\ddagger}$	Comments
0.0§	0+	
81 [§]	2 +	Potential deformation: β_2 =+0.230 from (α, α') (1968He24); β_2 (real)=+0.276 <i>b</i> (1983Ro11), +0.294 (1992Ka07) from (p,p').
265 [§]	4 +	Potential deformation: $\beta_4=0$ from (α, α') (1968He24). β_4 (real)=+0.009 5 (1983Ro11), +0.019 (1992Ka07) from (p,p').
545§	6 +	Potential deformation: β ₆ =-0.015 from (α,α') (1968He24). β ₆ (real)=-0.007 2 (1983Ro11), -0.020 (1992Ka07) from (p,p').
786#	2+	
911 [§]	8+	E(level): rounded value from Adopted Levels. Excited in (p,p') (1983Ro11) but not resolved from 956 level.
956#	4 +	
1514	3 -	

[†] From 1992Ka07, except as noted.

‡ From Adopted Levels.

§ (A): $K\pi=0+$ g.s. band.

(B): $K\pi = 2 + \gamma$ band.

¹⁶⁶Er(d,d') 1968Tj02

¹⁶⁶Er Levels

E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	<u></u> Jπ‡
0.0	0 +	956	4+	1759	
81	2 +	1512	(3-)	1901	(5-)
265	4 +	1662		1973	
544	6+	1698		2238	(3-)
786	2 +	1719	(3-)	2463	

[†] From 1968Tj02; uncertainties unstated by authors.

[‡] Assignments based on the empirical rules, see 1968Tj02.

Coulomb Excitation 1992Fa01,1992Th04,1996Br09

Other measurements: 1963Yo09, 1970Ka45, 1972Er04, 1973Be40, 1974Wo01, 1974Sh12, 1972Do01, 1974Ke04, 1977Ke06, 1977Wo03, 1978Mc02, 1983Hu01, 1986Do13, 1992Br07, 1994OsZZ (and 1994KuZY), 1996Fa21, 1998Fa15. Model-dependent deformation parameters deduced from Coulomb excitation: see 1970Ap03, 1972Er04, 1972Yu03, 1973Be40, 1973He28, 1975Le22, 1977Fi01. $1998 Fa15: \ ({}^{58}Ni, {}^{58}Ni'\gamma), \ E=240 \ MeV; \ GASP \ spectrometer, \ two \ position-sensitive \ parallel-plate \ avalanche \ detectors; \ Same and \ Same$ measured Ey, $\gamma(\theta)$ and $\gamma\gamma$ coin gated by scattered projectiles. 1996Br09: (58 Ni, 58 Ni'), E=165, 210, 225 MeV; measured $\gamma(\theta,H,T)$ in polarized Gd (IMPAC technique); deduced g-factors.

 $1996Fa21:\ ({}^{58}Ni,{}^{58}Ni'\gamma),\ E=225\ MeV;\ one\ high\ resolution\ Ge\ detector\ and\ circular\ segmented\ Si\ detector,\ all\ second$ surrounded by the Heidelberg Darmstadt Crystal Ball spectrometer array of 160 NaI detectors, operated in coincidence with Ge and Si detectors. Measured Ey, $\gamma\gamma$ coin.

 $1994OsZZ: \ (^{74}Ge, ^{74}Ge'\gamma), \ E=295 \ MeV; \ (^{58}Ni, ^{58}Ni'\gamma), \ E=235 \ MeV; \ four \ Ge-BGO \ \gamma \ spectrometers; \ measured \ E\gamma, \ I\gamma; \ observed \ Spectrum (Spectrum (Spe$ g.s. band to 16+ state, γ band to 10+ state, and candidate for $\gamma\gamma$ vibrational state; data analysis performed using GOSIA code. See also 1994KuZY.

1992Br07: (⁵⁸Ni,⁵⁸Ni'γ), E=210 MeV; parallel-plate avalanche counter (for backscattered projectiles), four Ge detectors; Gd ferromagnetic host; measured Ey, $I\gamma(\theta, H, t)$; deduced g-factors.

1992Fa01: (^{16}O , $^{16}O'\gamma$), E=57 MeV; (^{32}S , $^{32}S'\gamma$), E=115, 120 MeV; (^{58}Ni , $^{58}Ni'\gamma$), E=221 MeV; E(beam) at center of 96% ¹⁶⁶Er target was 56, 112, 117, 214 MeV, respectively. Two parallel-plate avalanche detectors, annular

surface-barrier detector, four Ge detectors. Measured E γ , I γ and $\gamma(\theta)$, gated with scattered projectiles.

1992Th04: (⁵⁸Ni,⁵⁸Ni'), E=227 MeV; 96.24% ¹⁶⁶Er target, Ni backing; Measured lifetimes using the Recoil Distance Method (RDM).

1986Do13: ¹⁶⁶Er(⁵⁸Ni,⁵⁸Ni'γ), E=160, 200 MeV; HPGe detector; measured g-factors using transient field technique.

Ge(Li) and silicon surface-barrier detectors. 1978Mc02: $^{166}Er(\alpha,\alpha'\gamma),~E{=}14$ MeV; measured Iy, Ey, $\gamma(\theta);~Ge(Li).$

1977Wo03: 166 Er($\alpha, \alpha'\gamma$), E=11.5-12 MeV.

1977Ke06: ¹⁶⁶Er(⁵⁶Fe,⁵⁶Fe), (⁸⁴Kr,⁸⁴Kr'); E(⁵⁶Fe)=232 MeV, E(⁸⁴Kr)=348 MeV; measured Eγ (Ge(Li)).

1978Mc02 proposed a 2+ level at 1159 keV and deexcited by 11597, 10787, 3737. These 7's probably arise from an impurity, based on their absence in the $(n,n'\gamma)$ reaction study in 1981Bo40.

¹⁶⁶Er Levels

Values for Q have been estimated by the evaluator from the static (diagonal) matrix elements in table 3 of 1992Fa01 using the relation $Q = \langle J M(E2) J \rangle x [16\pi J(2J-1)/(5(2J+1)(2J+3)(J+1))]^{1/2}$, unless noted to the contrary. They are not included in Adopted Levels.

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2}	Comments
0.08	0.+		
80 574§	0 + 9 .	1 96 nc 5	$P(F_2)^{+}=5.77.5$
00.3740	<i>L</i> +	1.00 113 5	$D(E_{2}) = 0.17$ of 0.
			Q = -1.77 + 14-5 based on diagonal matrix element.
			$I_{1/2}$: from $B(E2)$ and adopted transition properties.
			B(E2) T: From an unweighted average of 5.69 <i>16</i> (1970Ka45); 5.76 <i>10</i> (1972Er04); 5.65 <i>5</i>
			(1973Be40); 5.85 4 (1974Wo01); 5.91 3 (1977Fi01). Other: 5.2 5 (1992Fa01).
			Static matrix element: <2+ M(E2) 2+> =-2.33 +19-12 (1992Fa01).
264.98 [§]	4 +	120 ps 7	g=0.297 13 (1986Do13).
			Q = -1.60 + 26 - 12 based on diagonal matrix element.
			g-factor from transient field IPAC: +0.297 <i>13</i> (1986Do13), 0.285 <i>20</i> (1996Br09).
			Static matrix element: <4+ M(E2) 4+> =-2.12 +34-16 (1992Fa01).
			E4 matrix element=0.06 +12-18 (1972Er04); 0.32 16 (1973Be40); 0.22 +11-16(1974Wo01);
			0.31 +9-10 (1974Sh12); 0.24 7 (1977Fi01).
			$T_{1/2}$: from B(E2) and adopted transition properties.
545.44 [§]	6+	15.0 ps <i>8</i>	g=+0.287 15 (1996Br09).
			Q = -2.81 + 17 - 14 based on diagonal matrix element.
			g-factor: method, transient field. Other: 0.259 <i>30</i> (1986Do13) from
			g-factor/g-factor(265)=0.85 9, g-factor(265)=+0.305 15.
			Static matrix element: <6+ M(E2) 6+> =-4.03 +25-20 (1992Fa01).
			$T_{1/2}$: from RDM (1992Th04); 17.7 ps +10-14 from B(E2) and adopted transition properties.

¹⁶⁶Er Levels (continued)

E(level) [†]	J ^{π‡}	T _{1/2}	Comments
785.89#	2+	3.12 ps 10	g=+0.371 24 (1996Br09).
		I I I	$Q=2.18 \ 30 \ (1983Hu01).$
			$B(E2)^{=0.140}$ 4.
			Other Q: +2.25 +13-11 based on diagonal matrix element.
			g-factor: method, transient field. Other: 0.271 44 (1986Do13) from
			g-factor/g-factor(265)=0.89 14, g-factor(265)=+0.305 15.
			Static matrix element: $<2+$ M(E2) $2+>=+2.97 + 17-15$ (1992Fa01).
			I _{1/2} : from B(E2) = 0.140 4 and adopted transition properties. Other value: 4.0 ps 4 from RDM (1992Th04).
			$B(E2)(785.9\gamma)/B(E2)(705.3\gamma)=0.544$ 15 (1983Hu01).
			B(E2): Weighted average of 0.140 & (1978Mc02), 0.134 9 (1972Do01), 0.142 5 (1973Be40), and 0.140 15 (1992Fa01) from $<2+_{\gamma}$ M(E2) $0+_{g}>=+0.372$ 19. Others: 0.176 & (1977Wo03), 0.19 4 (1963Y009).
859.4#	3+	4.5 ps 8	$T_{1/2}$: from B(E2)(594 γ) and adopted transition properties.
911.18 [§]	8+	4.12 ps 15	$g=+0.278 \ 22 \ (1996Br09).$
			Q=-3.05 +15-30 based on diagonal matrix element.
			g-factor: method, transient field. Other: 0.229 41 (1986Do13) from
			g-factor/g-factor(265)=0.75 13, g-factor(265)=+0.305 15.
			Static matrix element: $<8+$ M(E2) $8+> = -4.74 + 24-47$ (1992Fa01).
			$I_{1/2}$: weighted average of 4.2 ps 3 (Doppler-broadened lineshape) and 4.7 ps 4 (RDM) (1077Ka06) 3.88 ps 21 RDM (1002Th04): 4.2 ps 2 from R(F2) and adopted transition
			(1377 KeO), 3.86 ps 27 KDM $(13321 HO4)$, 4.2 ps 5 from $D(E2)$ and adopted transition
956.20#	4 +	3.5 ps <i>2</i>	Q=-1.08 + 13-6 based on diagonal matrix element.
			Static matrix element: <4+ M(E2) 4+> =-1.43 +17-8 (1992Fa01).
			T _{1/2} : weighted average of 3.6 ps <i>3</i> from RDM (1992Th04) and 3.4 ps <i>2</i> from B(E2) and adopted γ properties.
1075.3 [#] 3	5 +	2.7 ps <i>3</i>	$T^{}_{1/2}\!\!:$ from measured B(E2) for 530 γ and 810 γ and adopted transition properties.
1216.0# 3	6+	4.4 ps 3	T _{1/2} : from RDM (1992Th04). The unweighted average of 3.5 ps 4, 4.4 ps 4, 4.6 ps 5 from
			$B(E2)(260\gamma)$, $B(E2)(671\gamma)$, $B(E2)(951\gamma)$, respectively, and adopted transition
			properties is 4.2 ps 3.
			Q = -2.57 + 13 - 13 based on diagonal matrix element. Static matrix element: $z = -46$ M(F2) $E = -3.69 + 18 - 22$ (1992F201)
1350§	10+	1.62 ns 7	g = +0.28 4 (1996Br09).
		F	Q = -4.1 + 3-6 based on diagonal matrix element.
			g–factor: method, transient field. Other: 0.20 7 (1986Do13) from
			g-factor/g-factor(265)=0.64 24, g-factor(265)=+0.305 14.
			Static matrix element: $<10+$ M(E2) $10+>=-6.8+5-10$ (1992Fa01).
			T _{1/2} : weighted average of 1.59 ps 8 from RDM (1992Th04) and 1.72 ps 14 from B(E2) and
			adopted transition properties. Others: 1.7 ps 2 (Doppler-broadened lineshape) and
1276 4#	7 .	4 9 nc 0	1.6 ps 3 (recoil distance method) (197/KeU6). T $ = 10^{-1} \text{ from } \text{P}(\text{F2})(201s) and adopted transition properties. Other values: 5.0 ps. 12 from$
1370.4"	7 +	4.9 ps 5	$R_{1/2}$. Hold $B(E_2)(3017)$ and adopted transition properties. Other values: 5.0 ps 12 from $B(E_2)(4657)$
1514	3 -		$B(E3)^{+}=0.061 \ 10 \ (1978Mc02).$
1528	2 +	45 fs 6	$B(E2)\uparrow=0.018 \ 2 \ (1978Mc02).$
			$T_{1/2}$: from measured B(E2) and adopted transition properties.
1555.8 [#] 4	8+	3.7 ps <i>3</i>	T _{1/2} : from RDM (1992Th04). 3.2 ps <i>3</i> from B(E2)(340γ), 3.2 ps <i>4</i> from B(E2)(645γ) and
			4.0 ps $+9-5$ from B(E2)(1010 γ) and adopted transition properties if 206.0 branch is not significant.
			Q=-3.17 +28-22 based on diagonal matrix element.
			Static matrix element: $<8+$ M(E2) $8+>=-4.92 + 44-34$ (1992Fa01).
1721	(3-)		$B(E3)\uparrow=0.032 5 (1978Mc02).$
1751.1# 5	9+	2.4 ps 5	$T_{1/2}$: from B(E2)(375 γ) and adopted γ properties.
18478	12+	0.91 ps 5	$T_{1/2}$: weighted average of 0.90 ps 8 (1977Ke06) and 0.92 ps 6 from RDM (1992Th04).
1942 9 11	(0+)		v.34 ps o from $B(E2)$ and adopted transition properties. In: Possible $K\pi = 0 + \omega v$ bandhead
$1964.6^{\#} 4$	(0+) 10+	1.78 ns 17	Two isolate $R_{A} = 0.7$, H balance u . Two isolate $R_{A} = 0.7$, H balance u . Two isolate $R_{A} = 0.7$, H balance u .
		Po 1,	and adopted transition properties. Other value: 1.7 ps +4-3 from B(E2)(1054 γ).
1977.8 7	(4+)	2.2 ps +11-9	J π : Possible K π =4+, $\gamma\gamma$ bandhead.
			$T^{}_{1/2}\!\!:$ from B(E2)(11927) and adopted transition properties assuming 9037 branch is
			negligible.
			$B(E2)^{\uparrow}(786 \text{ to } 1978) = B(E2)^{\uparrow}(g.s. \text{ to } 786) \times 0.16 \ 12 \ (1994OsZZ) = 0.022 \ 17 \text{ if } B(E2)^{\uparrow}(g.s. \text{ to } 12)^{\uparrow}(g.s. \text{ to } 12)^{\downarrow}(g.s. \text{ to } 12)^{\downarrow$
1000 1 0			786)=0.140 4.
1980.1 8	(4+)		

¹⁶⁶Er Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2}	Comments
2028.2 [@] 7	(4+)	0.33 ps <i>12</i>	$T^{}_{1/2}$: from B(E2)(12437) and adopted transition properties, assuming 1070 branch is negligible.
2101.6	(4+)	0.27 ps <i>19</i>	E(level): level reported by 1994OsZZ only. 1996Fa21 report no evidence for the deexciting transitions reported by 1994OsZZ in a study using the same beam species and similar beam energy. However, level is known from an ε decay study. Jπ: candidate for two-phonon (γγ vibration) state (1994OsZZ).
			B(E2) [↑] (786 to 2102)=0.47 35 x B(E2) [↑] (g.s. to 786)(1994OsZZ)= 0.07 5 if B(E2) [↑] (786 level)=0.140 4.
			$T_{1/2};$ from $B(E2)(1316\gamma)$ and adopted transition properties assuming negligible 1145 γ branch.
2155.8 8	(6+)		
2260.3 [@] 8	(6+)		
2389.6 [§] 6	14+	0.55 ps 7	$T_{1/2}$: from RDM (1992Th04). Other value: 0.52 +11-5 ps from B(E2) and adopted transition properties.
2429.6 [#] 5	12+	1.18 ps 21	$T_{1/2}$: from RDM (1992Th04). Other datum: 1.8 +7-4 ps from B(E2)(465 γ) if 1081 γ is negligible.
2574.0@ 11	(8+)		
2968.8 [§] 7	16+	0.49 ps <i>27</i>	$T_{1/2}$: from B(E2) an adopted transition properties.
3577?§	18+		E(level): from fig. 1 of 1998Fa15; justification for value is unknown.

[†] From least-squares adjustment of E γ , except as noted, assuming $\Delta(E\gamma)=0.3$ keV for E γ data quoted to one decimal place and 1 keV for for all other data.

[‡] From Adopted Levels.

§ (A): g.s. band.

(B): γ band.

@ (C): Possible K π =4+, $\gamma\gamma$ vibration band.

$\gamma(^{166}{\rm Er})$

E(level)	$\underline{\qquad E \gamma^{\dagger}}$	Iγ [‡]	Mult.§	δ	α	Comments
80.574	80.6	100	E2		6.77	$<4+_{a}$ M(E2) $2+_{a}>=+3.86$ 12 (1992Fa01).
264.98	184.4	100	E2		0.331	$B(E^{5}_{2})\downarrow = 1.66 \ 10.$
						$B(E2)\downarrow$: from $<4+_{a}$ M(E2) $2+_{a}>=+3.86$ 12 (1992Fa01).
545.44	280.5	100	E2		0.0848	$B(E2)\downarrow = 1.70 + 14 - 10.$
						$B(E2)\downarrow$: from <6+ _g M(E2) 4+ _g > =+4.70 +19-14 (1992Fa01).
785.89	521.0	2.1	E2		0.01480	$B(E2)\downarrow = 0.0052 + 17 - 14.$
						B(E2) \downarrow : from <2+ $_{\gamma}$ M(E2) 4+ $_{g}$ > =+0.161 +26-22 (1992Fa01).
	705.3	100	E2+M1	-19 + 9 - 38	0.011 4	$B(E2)\downarrow = 0.054$ 5.
						$B(E2)\downarrow$: from $<2+_{\alpha}M(E2)$ $2+_{\alpha}>=+0.518$ 26 (1992Fa01).
						$A_2 = -0.24$ 4, $A_4 = -0.46$ 7 and $A_2 = -0.24$ 9, $A_4 = -0.40$ 12 (1972Do01).
						δ: from 1972Do01. Others: -38 +24- infinity (1972Do01): ≥25 (1978Mc02).
	785.9	88	E2		0.00561	$B(E2)\downarrow = 0.028 \ 3.$
						$B(E2)\downarrow$: from <2+, M(E2) 0+, > =+0.372 19 (1992Fa01).
						$I_{\gamma}(786\gamma)/I_{\gamma}(705\gamma)=0.85$ 4 and 80 5 (1972Do01).
859.4	73.4 ^a	0.04				
	594.4	16.5				$B(E2)\downarrow = 0.026$ 5.
						$B(E2)\downarrow$: from $<3+_{\gamma}M(E2)$ $4+_{\sigma}>=-0.43$ 4 (1992Fa01).
	778.8	100				$B(E2)\downarrow = 0.018 + 5-4.$
						$B(E2)\downarrow$: from $<3+_{\gamma}M(E2)$ $2+_{\sigma}>=-0.35 + 5-4$ (1992Fa01).
911.18	366.1 # 5	100	E2		0.0384	B(E2)↓=1.99 14.
						$B(E2)\downarrow$: from $<8+_g M(E2)$ $6+_g> =+5.81$ 20 (1992Fa01).
956.20	97.0 ^a	1.99				Iγ: this value appears to be an order of magnitude
						too large; evaluator suspects a typographical error in 1992Fa01.
	170.3	1.08				$B(E2)\downarrow = 0.75 \ 8.$
						$B(E2)\downarrow$: from <4+ _y M(E2) 2+ _y > =+2.60 13 (1992Fa01).

$\gamma(^{166}{\rm Er})$ (continued)

E(level)	$E\gamma^{\dagger}$	Ιγ‡	Mult.§	δ	Comments
956 20	410 7	1 38			$B(E2) = 0.0118 \pm 12 - 30$
550.20	410.7	1.50			$B(E2)\downarrow$: from $<4+_{u}$ M(E2) $6+_{u}>=+0.326 + 16-41$ (1992Fa01).
	691.2	100	D+Q	-3.3 + 12 - 30	$B(E2) \downarrow = 0.059 \ \theta.$
					$B(E2)\downarrow$: from $<4+_{\gamma}M(E2)$ $4+_{g}>=+0.727$ 36 (1992Fa01).
					$A_2 = -0.47 \ 6, \ A_4 = -0.55 \ 9 \ (1972 \text{ Do} 01).$
	875 64	57			0: from $19/2$ D001. B(E2) = 0.0110.11
	075.04	57			$B(E2)\downarrow$: from <4+ $M(E2)$ 2+> =+0.315 16 (1992Fa01).
					$I\gamma(876\gamma)/I\gamma(691\gamma)=0.53 \ 5 \ (1972Do01).$
					$A_2 = +0.51$ 11, $A_4 = -0.43$ 19 (1972Do01).
1075.3	119.1a	0.39			
	216.0	4.32			$B(E2) \downarrow = 1.6 + 9-4.$ $B(E2) \downarrow : from < 5+ M(E2) 3+ > -+4.20 + 12-5 (1992Ea01)$
	529.8	15.6			$B(E2)\downarrow=0.066 + 9-12.$
					$B(E2)\downarrow$: from $<5+_{\gamma}M(E2)$ $6+_{\rho}> =-0.85 + 6-8$ (1992Fa01).
	810.3	100			$B(E2) \downarrow = 0.050 \ 8.$
					$B(E2)\downarrow$: from $<5+_{\gamma}M(E2)$ $4+_{g}> =-0.74$ 6 (1992Fa01).
1216.0	140.7^{a}	0.73			B(E9) 1 59 15
	239.1	24.0			$B(E2)\downarrow = 1.52$ 15. $B(E2)\downarrow : \text{from } <6+$ $M(E2)$ $4+ > =+4.44$ 20 (1992Fa01).
	304.7				$\mathbf{B}(\mathbf{E2}) \downarrow \approx 0.008.$
					$B(E2)\downarrow$: from <6+ _y M(E2) 8+ _g > =+0.33 +31-30 (1992Fa01).
	670.5	100			$B(E2)\downarrow = 0.054$ 5.
	051 0	40 1			$B(E2)\downarrow$: from $\langle 6+_{\gamma} M(E2) 6+_{g} \rangle = +0.834 \ 42 \ (1992Fa01).$
	951.0	49.1			$B(E2)\downarrow=0.0046$ 4. $B(E2)\downarrow$: from <6+ M(E2) 4+ > =+0.244 12 (1992Ea01)
1350	438.5 # 5	100			$B(E2) \downarrow = 1.99 \ 16.$
					$B(E2)\downarrow$: from <10+ _g M(E2) 8+ _g > =+6.47 25 (1992Fa01).
1376.4	301.0				$B(E2)\downarrow = 1.18$ 22.
	404 0				$B(E2)\downarrow$: from $<7+_{\gamma}M(E2)$ $5+_{\gamma}> =+4.2$ 4 (1992Fa01).
	464.8				$B(E2)\downarrow=0.025$ 7. $B(E2)\downarrow$: from <7+ M(E2) 8+ > ==0.61 +9=8 (1992Ea01)
	830.6				$B(E2)\downarrow=0.018$ 4.
					$B(E2)\downarrow$: from $<7+_{\gamma}M(E2)$ $6+_{g}>=-0.52$ 6 (1992Fa01).
1514	558b				1 0
	655 ^b				
1528	7285 1528b				
1555.8	206.0				B(E2)↓≈0.008.
					$B(E2)\downarrow$: from $<8+_{\gamma}M(E2)$ 10+ _g > =+0.37 +18-30 (1992Fa01).
	339.7	86			$B(E2)\downarrow = 1.64 \ 16.$
	C 4 4 5	100			$B(E2)\downarrow$: from $\langle 8+_{\gamma} M(E2) 6+_{\gamma} \rangle =+5.28 \ 26 \ (1992Fa01).$
	644.5	100			$B(E2) \downarrow = 0.033$ 3. $B(E2) \downarrow : \text{ from } < 8_{+} = M(E2) 8_{+} > = \pm 0.97.5 (1992 Ea01)$
	1010.3	38			$B(E2) \downarrow = 0.0027 + 3-6.$
					$B(E2)\downarrow$: from $<8+_{\gamma}M(E2)$ $6+_{g}> =+0.214$ +11-22 (1992Fa01).
1721	935bc				
1751.1	375.0	100			$B(E2) \downarrow = 1.57 + 28 - 21.$
	401 9a	5			$B(E2)$ \downarrow : from $\langle 9+_{\gamma} M(E2) / +_{\gamma} \rangle = +5.5 + 5-4$ (1992Fa01).
	840.2 ^a	88			
1847	497.3 [#] 5	100			$B(E2) \downarrow = 1.96 \ 17.$
	0				$B(E2)\downarrow$: from <12+ _g M(E2) 10+ _g > =+7.0 3 (1992Fa01).
1942.9	1156.7 ^w 4	100			$I\gamma:I\gamma(1243.4\gamma)=121\ 29:359\ 50\ (1996Fa21).$
1964 6	408 5	100			$\gamma(0)$ is isotropic (1998Falb). B(F2) $-1.52.15$
1001.0	100.0	100			$B(E2)\downarrow$: from <10+, M(E2) 8+, > =+5.65 28 (1992Fa01).
	614.3 ^a	28			γ γ γ γ γ γ
	1053.7	62			$B(E2) \downarrow = 0.0082 + 11 - 17.$
1077 0	0.0.0				$B(E2)\downarrow$: from $<10+_{\gamma}M(E2)$ $8+_{g}> =+0.416 +27-44$ (1992Fa01).
1977.8	903.1 1021&				Ey: from level energy difference in fig. 3 of 1994OsZZ.
	1119 [@] 1	29 10			$I\gamma(1119\gamma):I\gamma(1191.6\gamma)=41$ 15:143 36 (1996Fa21).

$\gamma(^{166}{\rm Er})$ (continued)

E(level)	$\underline{} E \gamma^{\dagger}$	Iγ [‡]	Mult.§	Comments
1977.8	1191.6 [@] 4	100 25		B(E2)↓=0.0049 +20-25 (1996Fa21).
				Iy: see comment on $1119y$.
1986.1	1127&			
	1200&			
2028.2	1070&			
	1169.7 [@] 3	68 14		$I\gamma(1169.7\gamma):I\gamma(1243.4\gamma)=243\ 50:359\ 50\ (1996Fa21).$
	1243.4 [@] 3	100 14	Q	$B(E2)\downarrow = 0.027 \ 10 \ (1996Fa21).$
				Iy: see comment on 1169.7 γ .
				Mult.: Q from preliminary $\gamma(\theta)$ data (1998Fa15).
2101.6	1145.4 ^c			Eγ: from level energy difference in fig. 3 of 1994OsZZ.
	1242.2			Eγ: from level energy difference in fig. 3 of 1994OsZZ.
	1315.7			Eγ: from level energy difference in fig. 3 of 1994OsZZ.
2155.8	1080&			
	1200&			
2260.3	1185&			
	1304&			
2389.6	542.8	100		$B(E2)\downarrow=2.29 + 23-49.$
				$B(E2)\downarrow$: from <14+ _a M(E2) 12+ _a > =+8.15 +41-86 (1992Fa01).
2429.6	465.0			$B(E2) \downarrow = 1.4 + 4-6.$
				$B(E2)\downarrow$: from <12+, M(E2) 10+, > =+6.0 +8-12 (1992Fa01).
	1081.2			Eγ: from level energy difference in fig. 3 of 1994OsZZ.
2574.0	1358&			
2968.8	579.2			$B(E2) \downarrow = 1.8 \ 10.$
				$B(E2)\downarrow$: from <16+ _a M(E2) 14+ _a > =+7.7 +20-22 (1992Fa01).

[†] From 1992Fa01, unless otherwise stated. Uncertainty unstated by authors.

[‡] Relative photon branching from level; from 1992Fa01, except as noted. Values result from analysis of data using the code GOSIA.

§ From Adopted Gammas, unless otherwise noted.

[#] From 1977Ke06.

[@] From 1996Fa21.

& From 1998Fa15. Uncertainty unstated by authors.

a Rounded-off value from Adopted Gammas. Transition shown in figure 5 of 1992Fa01.

b From 1978Mc02. Uncertainty unstated by authors.

c Placement of transition in the level scheme is uncertain.

(A) g.s. band.

(B)γband.

(C) possible Kπ=4+, γγ vibration band.

18+ 3577

 $^{166}_{68}\mathrm{Er}_{98}$

Coulomb Excitation	1992Fa01,1992Th04,1996Br(9 (continued)
	Bands for ¹⁶⁶ Er	
(A)	(B)	(C)
10		
579.2		
	[(8+)
	12+	
<u>14+ v</u>		
4	65.0	(6+)
542.8		
	<u>v 10+</u>	(4+)
4		
497.3 614.3		
10+	$39.7 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	
	840.2	
438.5	(40.7)	
/ 2: 304.7 1010.3	59.7 / 119.1 / 5 + 119.1 / 1	
8+	<u>v 830.6 v 216.0</u>	
	10.3 10.3	
$366.1 \begin{array}{c} 410.7\\ 951.0\\ \end{array}$	810.3	
691.2 6+		
321.0 875.64 <i>IIII</i> 7 <u>05</u> .3	/ / /778.8 /	
280.5 785.9		
	kk	
2+	/	
80.6 0+ V		

 $^{166}_{68}\mathrm{Er}_{98}$

Level Scheme

Coulomb Excitation 1992Fa01,1992Th04,1996Br09 (continued)

 $^{166}_{68}\mathrm{Er}_{98}$ -140

¹⁶⁷Er(d,t),(³He,α) 1979Pa15

Target $J\pi = 7/2 + .$

1979Pa15: E(d)=15 MeV (FWHM=7-8 keV) and E(³He)=24 MeV (FWHM=21 keV); magnetic spectrograph, photographic emulsions; measured d\sigma/d\Omega.

Other measurement: 1969Bu01.

¹⁶⁶Er Levels

E(level)	$J\pi^{\dagger}$	L	$d\sigma/d\Omega(d,t)^{\ddagger}$	Comments
79 [#]	2+		17 3	$d\sigma/dO(50^{\circ}) < 1.0 \text{ ub/sr for } (^{3}\text{He} \alpha) (1979\text{Pa15})$
265#	2 + 4 +		≈39 ≈39	$d\sigma/d\Omega(50^\circ) = 6.5 \text{ µb/sr for } ({}^{3}\text{He} \alpha) (1979Pa15)$
545 [#]	6+		24	$d\sigma/d\Omega(50^\circ) = 17.2 \text{ µb/sr for } ({}^{3}\text{He},\alpha) (1979\text{Pa15}).$
786 [@]	2+		5.6	
859 [@]	3+		5.6	
911#	8+		8.2	$d\sigma/d\Omega(50^{\circ})=6.0 \ \mu b/sr$ for (³ He, α) (1979Pa15).
957 [@]	4 +		5.8	
1075@	5 +		4.1	
1215@	6 +		2.3	
$1375^{@}$	7+		<1.0	
1458&	(2-)		103	$d\sigma/d\Omega(50^{\circ}) < 1.0 \ \mu b/sr \ for \ (^{3}He, \alpha) \ (1979Pa15).$
1515&	(3-)		72	$d\sigma/d\Omega(50^{\circ})=2.1 \ \mu b/sr \ for \ (^{3}He,\alpha) \ (1979Pa15).$
1572&	4 –		5.0	
1597	(4-)		46	$d\sigma/d\Omega(50^{\circ})=1.9 \ \mu b/sr \ for \ (^{3}He,\alpha) \ (1979Pa15).$
1666	5 -		14.8	
1679			4.7	$d\sigma/d\Omega(50^{\circ})=1.9 \ \mu b/sr \ for \ (^{3}He,\alpha) \ (1979Pa15).$
1692	(5-)		12.4	
1700			4.2	$d\sigma/d\Omega(50^{\circ})=2.0 \ \mu b/sr \ for \ (^{3}He,\alpha) \ (1979Pa15).$
1722			7.0	
1762			10.9	$d\sigma/d\Omega(50^{\circ})=2.1 \ \mu b/sr$ for (³ He, α) (1979Pa15).
1787	6 -		3.5	
1813			3.4	
1829	(6-)		9.9	
1865			33	$d\sigma/d\Omega(50^\circ) = 15.5 \ \mu b/sr$ for (³ He, α) (1979Pa15).
1896			11.3	
1910 ^a	(6-)	e	47	$d\sigma/d\Omega(50^\circ) = 5.3 \ \mu b/sr \ for \ (^3He, \alpha) \ (1979Pa15).$
1940	(3,4)+8	08	38	$d\sigma/d\Omega(50^{\circ}) < 1.0 \ \mu b/sr \ for ({}^{3}He,\alpha) \ (1979Pa15).$
1970		- 8	11.8	$d\sigma/d\Omega(50^\circ)=2.2 \ \mu b/sr \ for \ (^{3}He,\alpha) \ (1979Pa15).$
1979	(3,4)+8	08	26	
1987			15.9	
2003 2003	(4)		2.2	$d_{-1}(10)(500) = 0.0 \text{ m}^{1}(10, 500)(10, 700) = 1.5$
20225	(4-)		96	$d\sigma/d\Omega(30^{-})=8.0 \ \mu D/sr \ 10r \ (^{-}He, \alpha) \ (19/9Pa \ 15).$
2032	(3+)		29	$d\sigma/d\Omega(30^{2})=12.7 \mu D/ST 107 (^{-1}He, \alpha) (1979 Palls).$
2030-	(7-)		22	$d\sigma/d\Omega_{2}(3\sigma) = 0.0 \ \mu D/sr \ 10r \ (-10, 0) \ (13/37413).$
20800	(3-)		88	a (dual (dual - 1, u)) = 101 (110, u) (1370, 131).
2090	(6+)		10 3	$d\sigma(dO(50^\circ) - 11.2)$ ub(sr for (³ He α) (1979Pa15)
2122b	(5-)		28	$d\sigma/d\Omega(50^\circ) = 13$ µb/sr for (³ He α) (1979Pa15)
2128	(~)		190	
2147 ^c	(4-)		33	$d\sigma/d\Omega(50^{\circ}) = 11.2 \text{ µb/sr for } ({}^{3}\text{He.}\alpha) (1979\text{Pa15}).$
2161	(3, 4) + §	0 §	38	 A determine of the state of the
2174		-	14.3	$d\sigma/d\Omega(50^{\circ})=13.2 \ \mu b/sr$ for (³ He, α) (1979Pa15).
2182			3.4	$d\sigma/d\Omega(50^{\circ})=5.4 \ \mu b/sr$ for (³ He, α) (1979Pa15).
2215	(3-)		86	$d\sigma/d\Omega(50^{\circ})=12.5 \ \mu b/sr$ for (³ He, α) (1979Pa15).
2 2 4 2 d	(5-)		143	$d\sigma/d\Omega(50^{\circ})=30 \ \mu b/sr$ for (³ He, α) (1979Pa15).
2266			12.4	$d\sigma/d\Omega(50^{\circ})=16.7 \ \mu b/sr$ for (³ He, α) (1979Pa15).
2274			13.8	
2295	(3,4)+§	0 §	289	$d\sigma/d\Omega(50^{\circ})=7.1 \ \mu b/sr$ for (³ He, α) (1979Pa15).
2316	(3,4)+§	0 §	277	$d\sigma/d\Omega(50^{\circ})=9.8 \ \mu b/sr$ for (³ He, α) (1979Pa15).
2336			243	$d\sigma/d\Omega(50^{\circ})=11.1 \ \mu b/sr$ for (³ He, α) (1979Pa15).
2353			75	
2367d	(6–)		115	$d\sigma/d\Omega(50^{\circ})=10.2 \ \mu b/sr \ for \ (^{3}He,\alpha) \ (1979Pa15).$
2377		_	81	$d\sigma/d\Omega(50^{\circ})=23 \ \mu b/sr$ for $(^{3}He,\alpha)$ (1979Pa15).
2386	(3,4)+§	0 §	73	
2402			49	$d\sigma/d\Omega(50^{\circ})=7.6 \ \mu b/sr \ for \ (^{3}He,\alpha) \ (1979Pa15).$
2417			37	$d\sigma/d\Omega(50^{\circ})=4.9 \ \mu b/sr$ for (³ He, α) (1979Pa15).
2427			98	
2438	(3,4)+8	0 \$	≈ 2 8	

¹⁶⁷Er(d,t),(³He,α) 1979Pa15 (continued)

¹⁶⁶Er Levels (continued)

E(level)	$J\pi^{\dagger}$	L	$d\sigma/d\Omega(d,t)^{\ddagger}$	Comments
2449			83	$d\sigma/d\Omega(50^{\circ})=6.8 \mu\text{b/sr}$ for (³ He.a) (1979Pa15).
2478			58	$d\sigma/d\Omega(50^{\circ})=2.9 \ \mu b/sr$ for (³ He. α) (1979Pa15).
2495	(9-)		57	$d\sigma/d\Omega(50^{\circ})=34 \text{ µb/sr for } (^{3}\text{He.}\alpha) (1979\text{Pa15}).$
2499	(3, 4) + §	0 §	94	
2512	(3, 4) +	0 §	237	$d\sigma/d\Omega(50^{\circ})=18.7 \ \mu b/sr$ for (³ He, α) (1979Pa15).
2522			≈ 2 8	
2534				$d\sigma/d\Omega(50^{\circ})=7.8 \ \mu b/sr$ for (³ He, α) (1979Pa15).
2545			41	
2563			26	$d\sigma/d\Omega(50^{\circ})=5.2 \ \mu b/sr$ for (³ He, α) (1979Pa15).
2578			8.8	
2586	(3,4)+§	0 §	76	$d\sigma/d\Omega(50^{\circ})=7.3 \ \mu b/sr$ for (³ He, α) (1979Pa15).
2603			30	
2622			21	
2631	(3,4)+§	0 §	388	$d\sigma/d\Omega(50^{\circ})=5.3 \ \mu b/sr$ for (³ He, α) (1979Pa15).
2649			11.4	$d\sigma/d\Omega(50^{\circ})=2.7 \ \mu b/sr$ for (³ He, α) (1979Pa15).
2670			2.7	
2677			19.1	
2687			≈ 2.0	
$2\ 7\ 3\ 4$	(3,4)+§	0 §	48	

 $^\dagger\,$ Assignments based on (d,t) and ($^3\text{He},\alpha)$ cross section.

[‡] $d\sigma/d\Omega(45^{\circ})$ in µb/sr for (d,t) reaction (1979Pa15).

\$ Angular distributions in the (d,t) reaction have large cross sections at forward angles indicative of L=0 neutron transfers.

(A): $K\pi=0+$ g.s. band. Configuration: 7/2[633]-7/2[633].

@ (B): $K\pi=2+\gamma$ -vibrational band.

& (C): $K\pi=2-$ band. Configuration: 7/2[633]-3/2[521] mixed with 7/2[523]+1/2[411] for J≥4.

^a (D): $K\pi = (6-)$ band. Configuration: 7/2[633]+5/2[523].

b (E): Kπ=(4-) band. Configuration: 7/2[633]+1/2[521].

^c (F): $K\pi = (3-)$ band. Configuration: 7/2[633]-1/2[521].

d (G): Kn=(5-) band. Configuration: 7/2[633]+3/2[521].

¹⁶⁸Er(p,t) 1992Bu16,1972Ma37

Other: 1973Oo01 (E=19 MeV).

1992Bu16: E(p)=18 MeV; 97.69% ¹⁶⁸Er enriched target; magnetic spectrometer with photographic plates, FWHM=7 keV; $\theta(lab)=6^{\circ}$ and $\theta=10^{\circ}-65^{\circ}$ (in 5° steps); measured E(t), angular distributions, L transfer; DWBA calculations.

¹⁶⁶Er Levels

E(level) [†]	_L [‡]	$d\sigma/d\Omega(25^{\circ}) \ \mu b/sr \$$	Comments
0.0#	0	630	
81 [#] 1		92	
265 # 1		36	
546# 1		3	
786 [@] 1		8	
859 [@] 2		1	
956 [@] 1		4	
1160			E(level): reported by 1972Ma37 only; not adopted.
1458 ^{&} 2	(0)	≤1	E(level): possible doublet; $0+$ and (2)- levels are known to exist at approximately this
			energy.
1514 ^{&} 2		6	Other E: 1505 in 1972Ma37.
1528 2		≤1	
1665 1		4	
1703 1		22	
1713 1	0	38	
1762 2		1	
1831 1		2	
1869 2		1	
1905 2		3	

¹⁶⁸Er(p,t) 1992Bu16,1972Ma37 (continued)

¹⁶⁶Er Levels (continued)

E(le	vel)†	L‡	$d\sigma/d\Omega(25^\circ)~\mu b/sr^{i}$	Comments
1935	2	0	21	Other E: 1928 in 1972Ma37.
1948				E(level): reported by 1972Ma37 only; not adopted.
1979	3		2	
2004	2		4	
2025	2		4	
2063	2		1	
2093	2		3	
2159	2		2	
2196	2	0	17	Other E: 2187 in 1972Ma37.
2207	3		1	
$2\ 2\ 4\ 5$	3		2	
2260	2		5	
2287	3		2	
$2\ 3\ 0\ 2$	3		2	

 $^\dagger~$ From 1992Bu16, except as noted.

 \ddagger From comparison of measured and calculated $\sigma(\theta)$ (1992Bu16).

§ Differential cross section at 25° in $\mu b/sr$ from 1992Bu16.

^a (A): $K\pi=0+$ g.s. band. ^a (B): $K\pi=2+$ $\gamma-vibrational band.$ ^c (C): $K\pi=2-$ octupole band.

Adopted Levels, Gammas

 $Q(\beta^{-})=-305 \ 14$; $S(n)=7029 \ 12$; $S(p)=4655 \ 12$; $Q(\alpha)=1728 \ 12 \ 2003Au03$.

Assignment: ¹⁶⁹Tm(p,4n), E=230 MeV; ion chem. Parent ¹⁶⁶Tm (1960Bu27). ¹⁶⁹Tm(p,4n) chem. ms (1963Pa08).

¹⁶⁶Tm Levels

Cross Reference (XREF) Flags

				cross Reference (XREF) Flags
				A 166 Yb ε Decay B 165 Ho $(\alpha, 3n\gamma)$ C 160 Gd $({}^{11}$ B,5n $\gamma)$ D Er $(p, xn\gamma)$
E(level) [†]	Jπ‡	XREF	T_1/2	Comments
0.0	2 +	ABCD	770 h 3	%e + %R + -100
0.0	£ +	ADCD	7.70 11 5	$\mu = +0.0926 7 (1992Sh31); Q = +2.14 3 (1988Al04).$
				 μ: 0.0926 7 from radiation detected optical pumping (1992Sh31). Other: +0.092 1 from LASER resonance ion mass spectroscopy (1988Al04); relative to ¹⁶⁹Tm.
				Q: LASER resonance ion mass spectroscopy (1988Al04); relative to ¹⁷⁰ Tm, Sternheimer correction applied.
				$< r^2 > 1/2$ (charge)=5.205 4 (2004An14).
				J π : J=2 from atomic beam (1972Ad14); M1 82.29 γ from 1+.
				T _{1/2} : weighted average of 7.7 h <i>1</i> (1949Wi03); 7.74 h <i>8</i> (1960Gr15); 7.69 h <i>5</i>
				(1960Wi12); 8.0 h 2 (1961Bj02); 7.5 h 2 (1963Pa08); 7.7 h 1 (1963Ra15);
o (f	(2)	D.C.		7.70 h 8 (1970Ka23). Other measurements: 1954Mi16, 1960Bo29, 1960Bu27.
0 + x 8	(3+)	BC		E(level): x<16 keV from estimated E γ <50 keV for (4+) to 2+ transition.
$0+u^{3}$ 33 637+xf 6	$(A \pm)$	Б		
74 920 + xg 3	(4+) (5+)	BC		
82.298 <i>8</i>	1+	ABCD	385 ns 40	$J\pi$: allowed ε decay from $0 + \frac{166}{100}$ (log $ft=4.9$).
			··· •	$T_{1/2}$: from ce(L)(t) in Er(p,xn γ) (1976Sv01).
$109.338 + x^{\#}$ 4	(6-)	BC	340 ms 25	% IT = 100.
				E(level): 1996Dr07 assumed that the isomer depopulated via an unseen transition of energy x<25 keV. However, based on energy differences, 2002Ca46 find x=0.2 5 and conclude that the isomer decays directly via a 34.42γ to the 75+x level. T = from 34.4γ(t) in (¹¹⁸ 5ny) Other: 370 ms 40 from K x ray(t) in
				$(^{11}B,5n\gamma).$
131.753+x ^k 6	(5+)	С		
$152.117 + x^{t} 4$	(6+)	BC		
$171.566 + x^{d}$ 4	(6+)	BC		
$194.032 + u^{s}$	(0)	B		
207.553 + XJ 5	(6+)	BC		
$211.437 + x^{\circ} 4$ 212 91 + x ⁿ 24	(7+)	БС С		
212.31+x=24 226.586+xg 4	(3+)	BC		
$231.053 + x^{b}$ 4	(6-)	BC	36 ns 2	$T_{1/2}$: from fits to time spectra for 59 γ , 62 γ and 122 γ in (¹¹ B,5n γ), (⁶ Li,4n γ) (2002Ca46). Other $T_{1/2}$: 2 μ s 1 from 59.5 γ (t) and 62.2 γ (t) measured with pulsed beam (90 μ s on, 90 μ s off) and <2 μ s from 121.7 γ (t) (1996Dr07).
				80 ns <t <math="" display="inline">_{1/2}<1 μs (1992Dr03) from two-parameter Ey-t in ($\alpha,3n\gamma).$</t>
$256.995 + x^{@}8$	(7–)	BC		
$266.26 + x^{\&} 14$	(6+)	С		
281.53+x ⁰ 11	(6+)	С		
$287.586 + x^{\rm C}$ 5	(7–)	BC		
$288.141 + x^{K} 4$	(7+)	BC		
$293.81 + x^{m} 14$	(6+)	C		
298.122+Xª 6	(8+)	BC		
341.033+X* 4 359 14+x 11	(0+)	B B		
367.485+xb 7	(8-)	BC		
$377.0+x?^{r}4$	(5-)	C		
$383 21 \pm x^n 13$	(7+)	Ē		

 $J\pi : \, E2 \,\, 184\gamma$ to (6–) $230\!+\!x.$

Continued on next page (footnotes at end of table)

 $389.07 + x^{a}$ 14

 $401.81 + x^p$ 11

 $\begin{array}{c} 409.088 + u^{8} & 23 \\ 415.45 + x & 20 \end{array}$

С

С

в

в

(7+)

(7+)

(–)

Adopted	Levels.	Gammas	(continued)
nuopteu	Levels,	aammas	(continueu)

			¹⁶⁶ Tr	n Levels ((continued)		
E(level) [†]	Jπ [‡]	XREF	E(level) [†]	Jπ [‡]	XREF	E(level) [†]	J π^{\ddagger}	XREF
417 445+x ^e 6	(9+)	BC	1486 8+ya 3	(13+)	C	3246 17+x ^C 12	(21 -)	C
$423.656 + x^{i} 20$	(7-)	BC	$1510.57 + x^{@}$ 13	(13 -)	c	3308.63 + xg 12	(21)	c
423.693+xj 5	(8+)	BC	1528.158+x ^c 17	(15-)	BC	3328.23+xj 20	(20+)	С
424. 176 + x [#] 9	(8–)	BC	$1\ 5\ 9\ 9$. $6\ 3+x\ e$ 5	(15+)	BC	3345.18+x ^e 12	(21+)	С
453.93+x?9 <i>18</i>	(6-)	С	1604. $02 + xj$ 9	(14+)	С	3354.7+x9 <i>3</i>	(20-)	С
460.262+xg 6	(9+)	BC	1610.04+xg 3	(15+)	BC	$3374.8 + x^{0}4$	(20+)	С
$469.141 + x^{\circ} 7$	(9-) (8-)	BC	$1612.15 + x^{0}$ 10	(14+)	BC	$3449.20 + x^{-1}24$	(21 -)	С
$488.73 + x^{\circ} 11$ 504 87 + x ^m 12	(8+)	С	$1625.45 + x^{4} 10$ $1634.82 + x^{m} 17$	(14 -) (14 +)	BC C	$3457.7+x^{11}.5$ $3546.74+x^{11}.5$	(20+)	C
$507.811 + x^{h} 9$	(8-)	c	$1722.71 + x^{i}$ 7	(11)	BC	$3623.42 + x^{d}$ 13	(22)	c
$5\ 2\ 4\ .\ 6\ 3\ 1+x\ k\ \ 5$	(9+)	С	1723.9+x ^{&} 3	(14+)	С	$3640.6+x^k$ 4	(21+)	С
$529.71 + x^{\&}$ 14	(8+)	С	1768 . $85 + x^{\#}$ 14	(14-)	С	3686.78+xf 15	(22+)	С
$539.90 + x^{r}$ 18	(7-)	С	$1770.17 + x^{b}4$	(16-)	BC	$3699.0 + x^{1}$ 4	(21+)	С
$563.383 + x^{d}$ 7	(10+)	С	$1774.71 + x^{K}$ 11	(15+)	BC	$3699.9 + x^{r} 4$	(21-)	С
$592.557 + x^{5}9$	(10-)	BC	1836.51+x ^u 8	(16+)	BC	$3732.3+x^{11}3$	(21+)	C C
$609.616 + x^{@}$ 1.3	(10+)	BC	$1858.44 + x^{-1}$ 15 1865.94 + x f 9	(15+) (16+)	BC	$3788.4 + x^{12} 4$ $3804.3 + x^{12} 6$	(22 -)	C
$634.390 + x^{i} 9$	(9-)	BC	$1873.54 + x^{r}$ 16	(15-)	BC	$3923.95 + x^{c}$ 14	(23 -)	c
634 . $54 + x^n$ 11	(9+)	BC	1900.78+xP 23	(15+)	С	3975.90+xg 15	(23+)	С
637.89+x9 <i>15</i>	(8–)	С	$1 \ 9 \ 0 \ 8 \ . \ 4 \ 7 + x \ h 4$	(16-)	BC	4018.5+x j 4	(22+)	С
$6\ 4\ 2\ .\ 5\ 9+u\ ^{S} {\it 6}$		В	1976.5+x ^a 4	(15+)	С	4024.69+x ^e 15	(23+)	С
649.73+x ^p 11	(9+)	BC	$2037.54 + x^{(0)}22$	(15-)	С	4058.9 + xq 4	(22-)	С
$688.03 + x^{a}$ 14	(9+)	BC	$2038.35 + x^{\circ} 7$	(17-)	BC	$4136.2 + x^{-1} 4$	(23 -)	С
$733.224 + x^{\circ} 8$ 733.695+x1 11	(11+) (10+)	BC	$2120.43 + x^{1} 14$	(17+) (16+)	BC C	$4232.54 + x^{2} - 16$ $4316.92 + x^{2} - 17$	(24 -)	C C
736.322 + xh 9	(10 -)	BC	2123.26 + x9 17	(16-)	BC	$4328.3+x^{1}4$	(23+)	c
737.615+x ^c 12	(11-)	BC	2131.92+x ^e 7	(17+)	С	4359.0+x ^k 4	(23+)	С
756. $17 + x$ ^r 15	(9-)	BC	$2\ 1\ 5\ 3$. $2\ 2+x\ ^{0}$ 12	(16+)	С	4391.08+x ^f 18	(24+)	С
772.742+x ^g 12	(11+)	BC	2181 . $72 + x^m$ 19	(16+)	С	$4\ 4\ 2\ 1$. $0 + x\ ^{r}$ 5	(23-)	С
$778.37 + x^{0}$ 11	(10+)	BC	$2237.39 + x^{1}$ 10	(17-)	С	$4481.8 + x^n 5$	(23+)	С
$799.37 + x^{III}$ 12	(10+)	C C	$2245.5+x^{\infty}4$	(16+)	C	$4542.3 + x^{11}5$	(24 -)	C C
$812.26 + x^{\mu}$ 9 850 036 + x k 8	(10-) (11+)§	BC	$2307.58 + x^{\pm} 8$ $2315.79 + x^{\pm} 25$	(18 -)	BC C	4642.89 + x = 17 4697.4 + x = 4	(25-)	C C
$863.54 + x^{\&} 14$	$(11+)^{-}$	BC	$2357.11 + x^{k}$ 14	(10)	c	$4755.8 + x^{e}$ 4	(25+)	c
887.39+x9 15	(10-)	BC	2381.19+xd 7	(18+)	BC	4762.7+x j 5	(24+)	С
$904.431 + x^b$ 13	(12-)	BC	2399 . $14 + x^n$ 17	(17+)	С	4874.2+x ⁱ 5	(25-)	С
$915.984 + x^{i}$ 10	(11-)	BC	$2412.13 + x^{r}$ 18	(17–)	С	4957.64+x ^b 19	(26-)	С
$922.167 + x^{d}$ 9	(12+)	BC	$2423.39 + x^{f}$ 11	(18+)	С	$5021.3 + x^{1}5$	(25+)	С
$946.244 + x^{1}$ 10	(12+)	BC	$2463.70 + x^{11}$ 10	(18-)	BC	$5064.6+x^{4}$	(26+)	c
$965.86 + X^{11}$ 11 082 27 + X^{11} 11	(11+)	BC	24/9.1+xP 4 2521.0+x2.5	(17+)	C	$5111.0+x^{K}4$ 5150.0+xf4	(25+)	C C
982.27 + xF II 1030 91+ $x^{@}$ 9	(11+) (11-)	C	$2521.0+x^{-5}$ 2602 1+x [@] 3	(17+) (17-)	C	5346 5+xh 6	(26 -)	C
1043.013+x ^h 10	(12-)	BC	$2614.28 + x^{c}$ 10	(19-)	BC	$5407.2 + x^{c}$ 4	(27-)	c
1045 . $54+x$ ^r 15	(11-)	BC	2690. $13 + xg$ 10	(19+)	С	5480 . $3+x^{g}$ 5	(27+)	С
$1\ 0\ 5\ 5\ .\ 5\ 6+x\ ^a$ 14	(11+)	BC	2696.33+xj-17	(18+)	С	5544.9+x ^e 5	(27+)	С
$1092.229 + x^{c}$ 14	(13-)	BC	2702.85+x9 <i>19</i>	(18–)	С	5559.3 + xj 6	(26+)	С
1130.482+xJ <i>11</i>	(12+)	BC	$2713.80 + x^{e}$ 10	(19+)	С	$5662.6 + x^{1}6$	(27-)	С
$1132.345 + x^{e} I0$	(13+)	BC	$2751.22 + x^{\circ}$ 15 $2785.4 + x^{\circ}$ 4	(18+)	C	5725.5+x = 4 5766 4 x = 6	(28 -)	C C
$1150.59 + x^{\circ} 11$ 1157 140 + xg 18	(12+) (13+)	BC	$2783.4 + x^{ii} 4$ $2814.91 + x^{ii} 12$	(10+)	C	$5700.4+x^{-}0$ 5873 6+x ^d 5	(27+) (28+)	C
$1173.09 + x^m$ 12	(12+)	C	$2839.3 + x^{\&} 5$	(18+)	c	$5923.5+x^{k}5$	(27+)	c
$1\ 2\ 1\ 4\ .\ 1\ 5\ +\ x\ q$ 15	(12-)	BC	$2893.6 + x^{\#}$ 4	(18-)	С	5972 . $8 + x f = 5$	(28+)	С
$1\ 2\ 6\ 3\ .\ 3\ 5+x^{\&}$ 23	(12+)	BC	$2902.79 + x^{b}$ 11	(20-)	BC	$6 1 9 2 . 9 + x^h 7$	(28–)	С
$1264.02 + x^{\#}$ 12	(12-)	С	2978.39+x ^d 11	(20+)	С	6227.2+x ^c 5	(29–)	С
$1268.634 + x^{K}$ 22	(13+)	BC	$2987.24 + x^{K}$ 23	(19+)	С	$6329.6+x^{g}6$	(29+)	C
$12/9.702 + x^{1} I7$ 1200 528 wh 14	(13 -)	BC	$3010.41 + x^{11} 23$ $3024.5.5r^{2}$	(19+)	C	6407 2 - i 7	(29+)	C
1350.370+xd 25	(14-)	BC	$3024.5+x^{2}5$ $3031.65+x^{2}f$ 12	(20+)	C	$6503 2 + x^{1} 7$	(20+)	c c
$1368.12 + x^{f} 4$	(14+)	BC	$3092.79 + x^{h} 14$	(20 -)	c	$6542.5+x^{b}6$	(20 -)	c
$1379.24 + x^{n}$ 13	(13+)	BC	3100.6+x 5	(c	6571.1+x ¹ 7	(29+)	c
1397 . $15+x^p$ 12	(13+)	С	3109.0+x 5		С	$6748.9 + x^{d}$ 6	(30+)	С
$1\ 4\ 1\ 6\ .\ 8\ 0\ +\ x\ ^{r}$ 15	(13-)	BC	3133.9+xP 5	(19+)	С	6788.7+x ^k 6	(29+)	С
1433 . $82 + xh$ 3	(14-)	BC	$3200.6 + x^{@}5$	(19–)	С	6861.1+x ^f 6	(30+)	С

${}^{166}_{69}$ Tm₉₇-3

Adopted Levels, Gammas (continued)

¹⁶⁶Tm Levels (continued)

E(level) [†]	Jπ [‡]	XREF	E(level) [†]	$J\pi^{\ddagger}$	XREF	E(level) [†]	$J\pi^{\ddagger}$	XREF
$7063.2 + x^{h}$ 7	(30-)	С	7692.5+xd 7	(32+)	С	8352.7+x ⁱ 8	(33-)	С
7111.2+x ^c 6	(31-)	С	7816.1 + xf 7	(32+)	С	8692.2 + xd 7	(34+)	С
7247.9+xg 7	(31+)	С	7969.9+x ^h 8	(32-)	С	8845.2+x?f 7	(34+)	С
7304.6+x j 8	(30+)	С	8065.8+x ^c 7	(33-)	С	9338.8+x ^b 7	(36-)	С
7313.9+x ^e 7	(31+)	С	8234.4+xg 7	(33+)	С			
7398.8+x ⁱ 8	(31-)	С	8297.4+x ^e 7	(33+)	С			
$7\ 4\ 1\ 4$. 4 + x ^b 6	(32-)	С	$8345.2+x^{b} {\cal 7}$	(34-)	с			

 $^\dagger~$ From least-squares fit to Eq.

 ‡ Values given without comment are based on deduced band structure in (¹¹B,5n γ) and transition multipolarities.

§ D+Q 245γ to (10+) 605+x.

[#] (A): $K\pi=6-$, $\alpha=0$ (π 7/2[404])+(ν 5/2[523]) band.

[@] (B): $K\pi=6-$, $\alpha=1$ (π 7/2[404])+(ν 5/2[523]) band.

& (C): $K\pi=6+$, $\alpha=0$ (π 7/2[523])+(ν 5/2[523]) band. Note that adopted J values are two units higher than shown in (α , $3n\gamma$) and π is opposite. The configuration proposed in (α , $3n\gamma$) differs also.

a (D): K\pi=6+, α =1 (π 7/2[523])+(ν 5/2[523]) band. See comment on signature partner of this band.

b (E): $K\pi=6-$, $\alpha=0$ (π 7/2[523])+(ν 5/2[642]) band.

c (F): $K\pi=6-$, $\alpha=1$ (π 7/2[523])+(ν 5/2[642]) band.

d (G): $K\pi=6+$, $\alpha=0$ (π 7/2[404])+(ν 5/2[642]) band. Note that adopted J values are one unit higher than shown in (α , 3n γ).

 $e_{}$ (H): K\pi=6+, $\alpha=1$ (m 7/2[404])+(v 5/2[642]) band. See comment on signature partner of this band.

 $f \quad (I): \ K\pi=2+, 3+, \ \alpha=0 \ (\pi \ 1/2[411]) \otimes (\nu \ 5/2[642]) \ band. \ Note that adopted J values are one unit higher than shown in (\alpha, 3n\gamma).$

g (J): $K\pi=2+,3+$, $\alpha=1$ (π 1/2[411]) \otimes (v 5/2[642]) band. See comment on signature partner of this band.

h (K): $K\pi=2-,3-, \alpha=0$ (p1/2[541]) \otimes (v 5/2[642]) band. Note that adopted J values are one unit higher than shown in (α ,3n γ) and π is opposite. The configuration proposed in (α ,3n γ) differs also. From the adopted $K\pi=3-$ configuration=(π 1/2[541])+(v 5/2[642]).

i (L): K = 2-, 3-, α = 1 ($p1/2[541]) \otimes (v\ 5/2[642])$ band. See comment on signature partner of this band.

 \dot{J} (M): $K\pi=2+,3+$, $\alpha=0$ (π 1/2[541]) \otimes (v 5/2[523]) band. Note that adopted J values are one unit higher than shown in (α ,3n γ) and π is opposite. The configuration proposed in (α ,3n γ) differs also.

 $k \quad (N): \ K\pi=2+,3+, \ \alpha=1 \ (\pi \ 1/2[541]) \otimes (\nu \ 5/2[523]) \ band. \ See \ comment \ on \ signature \ partner \ of \ this \ band.$

l (O): $\alpha{=}1$ band including (21+) 3699+x level.

 m (P): K\pi=1+,2+, $\alpha{=}0$ (π 1/2[541]) $\otimes(\nu$ 3/2[521]) band.

 n (Q): K\pi=1+,2+, $\alpha {=}1$ (m 1/2[541]) $\otimes (\nu$ 3/2[521]) band.

⁰ (R): $K\pi=1+$, $\alpha=0$ (π 7/2[404])-(ν 5/2[642]) band.

P (S): $K\pi=1+$, $\alpha=1$ (π 7/2[404])-(ν 5/2[642]) band.

9 (T): $K\pi=1-$, $\alpha=0$ (π 7/2[523])-(ν 5/2[642]) band. Note that adopted J values are three units higher than shown in (α , $3n\gamma$). The configuration proposed in (α , $3n\gamma$) differs also.

r (U): K π =1-, α =1 (π 7/2[523])-(ν 5/2[642]) band. See comment on signature partner of this band.

 S (V): Possible band fragment (1995Ma07). Observed only in ($\alpha,3n\gamma).$

$\gamma(^{166}Tm)$

E(level)	$E\gamma^{\dagger}$	Iγ [†]	Mult.†	δ‡	α	Comments
$7\ 4\ .\ 9\ 2\ 0+x$	41.29 7	38 <i>5</i>	M1+E2	0.33	19.8 4	Mult., δ : from intensity balance at the 74.9+x level in (¹¹ B,5n γ).
	74.920 [#] 3	100 5	E2		9.57	Mult.: from $\alpha(K)exp$ in $(^{11}B,5n\gamma)$; Q from DCO in $(^{11}B,5n\gamma)$.
82.298	82.298# 8	100	M1		5.43	B(M1)(W.u.)=0.0160 17. Mult : from ce data in ¹⁶⁶ Vh s decay
1 0 9 . 3 3 8 + x	34.418# 1	100	E1		1.116	$B(E1)(W.u.)=7.6 \times 10^{-12} \ 6.$
						Mult.: from intensity balance at the $109+x$ level in $(^{11}B, 5n\gamma)$.
131.753+x	57 [#] &					
	98.2 <i>3</i>	100 14	D(+Q)			
152.117 + x	77.195# 2	55.1 12	(M1+E2)§		7.5 10	Iy: from (α , 3ny). Other Iy: 79 from (¹¹ B, 5ny).
	118 . $480^{\#}$ 4	100# 9	E2 [@]		1.627	Mult.: from ce data in $(\alpha, 3n\gamma)$ and DCO in $(^{11}B, 5n\gamma)$.
171.566+x	62.225 [#] 2	100	E1		1.137	Mult.: from $\alpha(K) \exp in ({}^{11}B, 5n\gamma)$.
194.032+u	194.032 # 7	100	(M1+E2)§		0.38 10	
207.553+x	75.793# 4	100# 3				

$\gamma(^{166}Tm)$ (continued)

E(level)	$E\gamma^{\dagger}$	$I\gamma^\dagger$	Mult. [†]	δ‡	α	Comments
$2\ 0\ 7$. $5\ 5\ 3+x$	98.10 ^{#&} 5	< 9 6				Eγ, Iγ: from (α , 3nγ) for triplet;
						This placement of 98.1 γ triplet is from (α , 3 η); it does not fit this placement well, so is shown as tentative here.
211.437+x	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	88.5 [#] 25 100 [#] 23	M1 (+E2)		90 <i>80</i>	Other Eq: 132.0 3 in $(^{11}B, 5n\gamma)$. Mult.: from $\alpha(exp)=9$ 3 from intensity
						balance in $(^{11}B,5n\gamma)$ (2002Ca46). Placement from $(^{11}B,5n\gamma)$; placement feeding 109+x level in $(\alpha,3n\gamma)$ not confirmed in $(^{11}B,5n\gamma)$.
	102.102# 2	63.1 12	E1		0.316	Mult.: from $\alpha(\exp) \le 1.5$ (2002Ca46) in (¹¹ B,5n γ) and $\gamma(\theta)$ in (α ,3n γ). I γ : from (α ,3n γ). Other: 72 from
226 586+v	71 15# 3	3 91# 25				(B, 5nγ).
520.000TX	151.666# 1	100.0# 8	E2§		0.670	
231.053+x	59.488 [#] 2	100# 6	E1		0.246	$B(E1)(W.u.)=1.35\times10^{-5}$ 12.
						Mult.: from $\alpha(K) \exp in (^{11}B, 5n\gamma)$ (1996Dr07).
	121.710 [#] 5	33.8 6	M1		1.768	B(M1)(W.u.)= 5.3×10^{-5} 4. Iy: from (α , 3ny). Other I(122y):I(59y)=45 15:100 16 in (11b5ng).
						Mult.: from ce data in $(\alpha, 3n\gamma)$.
256.995 + x	147.656# 7	100	(M1+E2)§		0.88 15	
266.26+x	35.1 <i>3</i> 94.4 <i>3</i> 156.9 <i>3</i>		E1		1.06 3	α(exp)≤3 (2002Ca46).
287.586 + x	56.532 [#] 2	100				
288.141 + x	80.584# 4	62 12	M1 , E2		6.5 7	Iy: from $(\alpha, 3n\gamma)$. Other: 56 from $(^{11}B, 5n\gamma)$.
	136.022 [#] 3 156.409 [#] 7	100.0 [#] 21 27.8	D+Q§			Iy: other Iy: 41.5 3 from $(\alpha, 3n\gamma)$.
293.81+x	81.1 <i>3</i> 141.7 <i>3</i>					
298.122 + x	86.696 [#] 9	100	M1+E2	+0.32 2	4.74	Mult.: from ce data and $\gamma(\theta)$ in $(\alpha, 3n\gamma)$. δ : from $\gamma(\theta)$ in $(\alpha, 3n\gamma)$.
241 952 1	126.5 3	6.7	(E2) [@]		1.281 21	
341.0J3+X	115.269 [#] 2	30.5 13	(M1)		2.06	Iy: from $(\alpha, 3n\gamma)$. Other: 36 from $(^{11}B, 5n\gamma)$.
	189.733 [#] 3	100.0# 11	E2§		0.310	
$3\ 6\ 7$. $4\ 8\ 5+x$	79.888 [#] 9	100# 3	(M1+E2)		6.78	
	136.445# 9	9.1 20				Iy: from (α ,3ny). Other: 3.9 from (¹¹ B,5ny).
383.21+x	89.63 170 1 3					
389 0.7 + x	122 809 4	100				
401.81 + x	107.7 3	74				
	120.2 3	100				
409.088 + u	215.056 # 21	100				
$4\ 1\ 5\ .\ 4\ 5+x$	$184.4^{\#}2$	100	E2		0.341	Mult.: from $\alpha(K)exp=0.21$ 8 in $(\alpha, 3n\gamma)$.
$4\ 1\ 7\ .\ 4\ 4\ 5+x$	$119.324^{\#}$ 3 206.004 5	$100.0^{\#}$ 16 70.6 [#] 16	M1+E2§ E2§	+0.44 1	$1 . 8 2 \\ 0 . 2 3 6$	
423.656+x 423.693+x	271.543 [#] 19 135.554 [#] 3	100 95.9 <i>24</i>	(M1+E2)§		1.15 16	Other Εγ: 271.1 <i>3</i> in (¹¹ B,5nγ). Ιγ: from (α,3nγ). Other: 49 from (¹¹ B,5nγ).
	196.8 3 $216.139^{\#}$ 12 $271.542^{\#}$ 12	29.0 $100.0^{\#}24$	E2§		0.201	
$4\ 2\ 4\ .\ 1\ 7\ 6+x$	$167.180^{\#} 5$	33" 4 100 4	(M1+E2)§		0.60 13	

$\gamma(^{166}Tm)$ (continued)

E(level)	$E\gamma^{\dagger}$	Iγ [†]	Mult. [†]	δ‡	<u>α</u>	Comments
404 170	014 07# 4	70 7				
424.170+x	314.87" 4	12 3				
433.93 + X	110.95	100				
400.202 + X	118.4"	100	E 0 8		0 1501	
400 141	233.675" 2	100	E23		0.1501	
409.141 + x	101.657" 3	100.0" 18	MI+E23	+0.20 1	2.95	Luc for any (or local) Otherny 10.0 for any
	181.552" 9	16.4 18	EZ3		0.360	1γ : from (α , $3n\gamma$). Other: 12.2 from
400 70	0.0 01.0# (100# ~				(**B,5ny).
488.73 + x	86.918" 4	100" 5				
	129.588" 0	31.2" 9	(50)@		0 001	
	207.20" 4	80 14	(E2)°		0.231	1γ : from (α , $3n\gamma$). Other: 63 from (11R 5mm)
504 97 m	102 0 2	9.0				(B, 5Hγ).
JU4.07+X	103.0 3	4.2				
	162 0 2	45				
	102.9 3	33				
507 811 v	211.1 1	17 4	D			
JU7.011+X	215.55	100	D+0			
594 691 v	100 020# 2	100	D+Q [©] (M1(↓E2))		2 00	
524.051+X	182 775# 8	10.0	$D_{\pm}O$		2.55	
	236 181# 10	65	(F2)@		0 1502	
529 71 + x	$140 641^{\#} 12$	100	$(12)^{-1}$		1 02 15	
J 2 5 . 7 1 + X	242 5 2	12 0	(WII+E2)		1.02 15	
	263 5 3	18 6				
539 90+x	85 973 20	10.0				
$563 383 \pm v$	145 939# 3	50	(M1 + F2)	+0.47.2	1 004 15	$\delta_{1}^{2} \pm 0.40$ to ± 0.67 from $(^{11}B 5n\gamma)$
505.505+X	145.555 5	50	(111+122)	+0.47 2	1.004 15	± 0.47 2 from (α 3ny)
	265 263# 11	100	F2§		0 1043	+0.472 from (0,517).
592 557 \pm x	$123 416^{\#} 6$	$100 0^{\#} 14$	M1+F2§	+0 22 1	1 685	
002.007 TA	225 056# 17	29 3 12	F2§	10.22 1	0 1763	Iv: from (a 3nv) Other: 36.7 from
	220.000 17	20.0 12	L 2		0.1700	(¹¹ B 5ny)
$605 315 \pm x$	80 682# 3	8 0 # 16	D			
000.010+x	144 9 1	14 5	(M1+E2)		0 93 15	$E_{v}=145,061,3$ for doublet in ($\alpha,3n_v$)
			(Other IV: 17.5 in $(\alpha, 3nv)$.
	263.466 6	$100.0^{\#}$ 10	E2§		0.1066	
609 616 + x	185 441#a g	83a g	1.0		0.1000	
	352.6 1	100 7				I_{Y} : I(353y):I(185y)=4.8 5:5.8 4 from yy
						coin (1996 $Dr07$) in (¹¹ $B.5n\gamma$).
634.390 + x	$126.577^{\#}$ 4	15.6 13	(M1)		1.581	Iv: from $(\alpha, 3nv)$. Other: 14.4 from
			()			(¹¹ B.5ny).
	211.4 3	17.0				Other Ey: 210.7 in $(\alpha, 3n\gamma)$.
	292.534 # 14	100.0# 22	(E1(+M2))	0.0 1	0.020 7	δ : -0.1 to +0.1 from DCO ratio in
			, , , ,			$(^{11}B, 5n\gamma).$
634.54+x	129.5 3	45				
	145.805#4	69				
	251.4 1	100	(E2) [@]		0.1235	
637.89+x	98.0 1	100	(M1 (+E2))		3.30	
	214.7 3	20.9				
642.59+u	448.56# 6	100				
649.73 + x	160.998# 15	100	(M1 (+E2))		0.67 13	
	247.9 3	62	(E2) [@]		0.1292	
	266.1 3	28.2				
688.03 + x	158.329# 15	100 # 15	(M1+E2)§		0.71 14	
	298.89 [#] 9	65 19	E2§		0.0723	Iγ: from (α,3nγ). Other: 39 from
						$(^{11}B, 5n\gamma).$
	320.6 3	33				
$7\ 3\ 3\ .\ 2\ 2\ 4+x$	169.841 # 5	20.9 12	M1 + E2 §	+0.66 19	0.62 3	Iy: from (α , 3ny). Other: 27.1 from
						$(^{11}B, 5n\gamma).$
	315.735 # 17	100# 4	E2§		0.0613	
$7\ 3\ 3\ .\ 6\ 9\ 5+x$	209.081 [#] 13	50 4	(M1+E2)		0.31 9	Iy: from (α , 3ny). Other: 58 from
						$(^{11}\mathrm{B},5\mathrm{n}\gamma).$
	273.5 3	4.9				
	309.977# 16	100# 3	E2§		0.0647	
	391.0 <i>3</i>	2.1				

			γ(¹⁶⁶]	Гm) (continue	:d)	
E(level)	$E\gamma^{\dagger}$	$I\gamma^\dagger$	Mult. [†]	δ^{\ddagger}	α	Comments
736.322+x	101.929# 5	10.54 18				Iγ: from (α,3nγ). Other: 13.9 from
	211.67# 3	31.9 15	D			(¹¹ Β,5nγ). Ιγ: from (α,3nγ). Other: 26.7 from (¹¹ Β.5nγ).
	2 2 8 . 5 3 3 [#] 1 5	71 6	(E2) [@]		0.1677	Iγ: from (α ,3nγ). Other: 35 from (¹¹ B,5nγ).
	276.058 [#] 13	100.0# 18	D§			
737.615+x	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	100 # 20 51 3	(M1+E2) E2§		0.93 <i>15</i> 0.1005	E γ =145.061 <i>3</i> for doublet in (α ,3n γ). I γ : from (α ,3n γ). Other: 42 from (¹¹ B 5n γ)
756 17 + x	118 284# 4	100	(M1 + E2)		1 78 15	(, 5, 5, 7).
100.1114	216 1 3	12.8	(1411 + 122)		1.70 10	
	248 1 3	30				
772 742 + x	167 4 3	4 2	(M1)		0 718	
//#./148/X	248 2 3	1.2	(111)		0.710	
	$312 \ 484^{\#} \ 12$	100	F2§		0 0632	
778 37 + x	$128.645^{\#}$ 7	55 3	(M1(+E2))		1 36 16	Iv: from (α 3nv) Other: 44 from
110.01 X	143 7 3	45			1.00 10	$(^{11}B, 5n\gamma).$
	289 61# 5	100# 11	F2@		0 0795	
799 37±x	164 8 3	25			0.0700	
100.0112	193 9 3	96				
	294 5 1	100				Ev: nossibly the same transition as the
919 96 w	202 5 2	100				unplaced 294.379 22 in (α ,3n γ).
0 1 2 . 2 0 + x	202.3 3	44				
850 026 v	116 2#&	100				α absorption (11P 5 mm)
830.030+x	244.718 [#] 7	594	D + Q			γ absent in (B, 5πγ). Iγ: from (α, 3nγ). Other: 64 from $\binom{11}{8}$ 5nγ)
						Mult.: $\Delta \pi = yes$ from $\alpha(K)exp$ in $(\alpha, 3n\gamma)$; D+Q from $\gamma(\theta)$ in $(\alpha, 3n\gamma)$ and DCO ratio in $(^{11}B, 5n\gamma)$. However, level scheme requires $\Delta \pi = no$
	325.423 [#] 12 389.4.1	100.0 [#] 13	E2§		0.0560	
863 54+x	$175 514^{\#} 9$	100				
00010111	333 78# 3	32				$I(334\gamma) \cdot I(176\gamma) = 100 \ l \cdot 75 \ 5 \ in \ (\alpha \ 3n\gamma)$
887.39 + x	$131.215^{\#}$ 4	100# 6	(M1(+E2))		1.27 16	-(
	249.7 1	46 15				Iy: from (α ,3ny). Other: 35 from (^{11}B ,5ny).
	252.9 3					
904.431 + x	166.819# 7	100# 3	M1 + E2 §	+0.25 1	0.711	δ: from $\gamma(\theta)$ in (α, 3n γ).
	311.855# 19	86.4 25	E2§		0.0636	Iy: from $(\alpha, 3n\gamma)$. Other: 78 from $(^{11}B, 5n\gamma)$.
915 . $984 + x$	179.664 # 7	28.2 <i>22</i>	(M1+E2)	-0.15 10	0.585 12	Iy: from $(\alpha, 3n\gamma)$. Other: 39 from $(^{11}B, 5n\gamma)$.
	281.597 [#] 13	71 8	E2§		0.0867	Iy: from $(\alpha, 3n\gamma)$. Other: 52 from $(^{11}B, 5n\gamma)$.
	310.662# 19	100# 6	D			
922.167+x	188.925# 8	18.3 12	M1+E2§	+0.63 14	0.456 19	δ: from $\gamma(\theta)$ in (α, 3n γ). I γ : from (α, 3n γ). Other: 17.0 from (¹¹ B 5n γ)
	358.80 # 1	100.0# 23	E2§		0.0422	
946 . $244+x$	96.23# 4	3.0 4	D			Iy: from (α , 3ny). Other: 5.9 from (¹¹ B, 5ny).
	173.46# 8	5.4 7	(M1 (+E2))	-0.11 14	0.647 14	δ: -0.25 to +0.03. Iγ: from (α, 3nγ). Other: 3.9 from (¹¹ B, 5nγ)
965 86	$340.928^{\#}$ 10	$100.0^{\#}$ 9	E2§		0.0489	(, , , , , , , , , , , , , , , , , , ,
303.00+X	$187.482^{\#}$ 6	38 7	D			Iy: from (α ,3ny). Other: 44 from $\binom{11}{3}$ 5nx)
	331.323 [#] 21	100# 4	E2§		0.0531	(D , 5117).

E(level)	Εγ [†]	Iγ [†]	Mult. [†]	δ‡	α	Comments
982.27 + x	203.894 [#] 12	21.1 26				Iγ: from (α,3nγ). Other: 33 from (¹¹ Β 5nγ)
	332.58 [#] 3	100# 4	E2§		0.0525	(),011).
$0\ 3\ 0$. $9\ 1+x$	218.2 3	34.5				
	421.4 1	100	(E2) [@]		0.0269	
043.013+x	$127.030^{\#}$ 4	12.1 15	(M1+E2)		1.41 16	Iγ: from (α,3nγ). Other: 17.8 from (¹¹ B,5nγ).
	192.8 [#] 2	9.7 24	D			Iγ: from (α,3nγ). Other: 17.4 from (¹¹ B,5nγ).
	270.30 # 4	30.6 24	D			Iγ: from (α,3nγ). Other: 42.1 from $\binom{11}{9}$ B.5nγ).
	306.685 [#] 9	100.0# 19	E2 §		0.0668	(_,,)
045.54+x	158.148 [#] 14	100	(M1+E2)§		0.71 14	
	289.36 # 7	22.0	. ,			I(158γ):I(289γ)=100 10:68 7 in (α, 3nγ).
	309.1 <i>3</i>	4.8				
055.56+x	192.023# 11	100				
	367.52# 5	63	E2 §		0.0394	Other Ιγ: Ι(192γ):Ι(368γ)=63 8:100 5 in (α,3nγ).
0 9 2 . 2 2 9 + x	187.796 # 5	85 <i>3</i>	M1 + E2	+0.40 8	0.494 12	Iγ: from (α ,3nγ). Other: 98 from $(^{11}\text{B},5n\gamma)$.
						δ: weighted average of +0.23 8 from DCO in (¹¹ B,5nγ), +0.44 4 from $\gamma(\theta)$ in
	354 61# 6	100# 7	F2§		0 0436	(0,511).
$1\ 3\ 0\ .\ 4\ 8\ 2+x$	280.446 [#] 8	52 8	(M1 (+E2))		0.13 5	Iy: from $(\alpha, 3n\gamma)$. Other: 24.5 from $\binom{11B}{2}$ 5ny)
	396 79 [#] 4	100# 8	E2§		0 0317	(,,,,,).
$1\ 3\ 2\ .\ 3\ 4\ 5+x$	210.177# 3	17.1 16			0.0011	Iy: from $(\alpha, 3n\gamma)$. Other: 12.9 from $\binom{11}{11}$ Space
	300 16# 2	100	F28		0 0312	(5,517).
156 50±v		13 6	L		0.0312	
10010014	190.4 3	14.8				
	378.22# 5	100	E2 §		0.0363	
157.140 + x	210.893# 25	32.9 11	(M1)		0.378	Iy: from (α , 3ny). Other: 8.7 from (11B 5ny)
	384 406# 21	100 0# 14	F28		0 0347	(5,517).
$173 09 \pm x$	206 9 3	17 4	L		0.0347	
170.0012	373 7 1	100				
214 15 + x	$168 \ 609^{\#} \ 5$	100	(M1+E2)§		0 58 12	
	$326.89^{\#\#} 8$	32.7	E2		0.0553	Other IV: 73 12 in $(\alpha, 3n\gamma)$.
263.35 + x	207.7.3	100				Other Ey: 208.0 in $(\alpha, 3n\gamma)$.
	399.9 <i>3</i>	74				
264.02 + x	233.2 3	30.3				
	451.7 1	100				
$2\ 6\ 8\ .\ 6\ 3\ 4+x$	322.27# 7	21.9 26	(M1+E2)	-2.6 24	0.07 6	δ: -5.0 to -0.18. Ιγ: from (α,3nγ). Other: 29.4 from
		100 - #	500			$(^{11}B, 5n\gamma).$
	418.603# 22	100.0# 26	E2 [@]		0.0274	
	496.1 3	7.9	(244)		0.057	
279.702+x	236.688# 15	48.2 22	(M1)		0.275	17: from $(\alpha, 3n\gamma)$. Other: 50 from $(^{11}B, 5n\gamma)$.
	333.6 1	48	D			
	$363.76^{\#}5$	100# 4	E2S		0.0405	
299.528+x	207.295 [#] 5	69 <i>5</i>	(M1+E2)	+0.17 1	0.392	δ: from γ(θ) in (α,3nγ). Ιγ: from (α,3nγ). Other: 67 from (¹¹ Β.5nγ).
	395.12 [#] 2	100# 3	E2§		0.0321	
350.370 + x	217.8 3	8.5 19				Iy: from (α , 3ny). Other: 7.9 from (¹¹ B, 5ny).
	404.14 # 3	20.4 19	Q			Iγ: from (α ,3nγ). Other: 32 from (¹¹ B 5nγ)
	$428.19^{\#}$ 4	100# 4	(E2) [@]		0.0258	(2,01).
1368 12±v	211 28 3	2 3a	(2~)		0.0200	

$\gamma(^{166}Tm)$ (continued)

E(level)	${ m E}\gamma^\dagger$	$I\gamma^\dagger$	Mult. [†]	α	Comments
1368.12+x	235.6 <i>3</i>	6.1			
1000.12.1	$421.88^{\#}$ 4	100	(E2) [@]	0.0268	
	445 9 1	25 0	0	0.0200	
1379.24 + x	206.0 3	5.7	*		
	222.7 3	4.9	D		
	396.9 3	27	-		
	413 4 [#] 1	100	E2§	0 0283	
1397 15 + x	223 6 3	15 4	110	0.0200	
100111014	240.4 3	43			
	267 0 3	12 3			
	414 9 1	100			
1416 80 + x	$202 649^{\#} 8$	100	(M1(+E2))	0 34 9	
1110.0014	371 3 1	52	$(E2)^{@}$	0 0382	
$1433 82 \pm x$	$154 \ 18^{\#} \ 4$	14 5 14	(M1(+F2))	0 77 14	Ly: from $(\alpha, 3n\gamma)$ Other: 8.4 from $(^{11}B, 5n\gamma)$
1400.02+X	165 1 3	4 3	(111 (122))	0.77 14	
	276 7 3	9.2	D		
	390 77# 3	100# 3	E28	0 0331	
1486 8 + x	223 5 3	96	L.S -	0.0001	
1400.01X	431 2 3	100			
$1510 57 \pm x$	246 4 3	10 2			
1310.37+X	470 7 1	100			
1528 158+v	475.7 1 228 622 [#] 10	62# 5	(M1 + F2)	0 24 7	
1520.150+x	135 97# 2	100# 5	$(F_2)^{@}$	0.0245	
1500 62 1	433.97 2	6 5	(E2)	0.0245	
1333.03+X	231.8 3	0.5			Other Iv: 8 1 in (a 3ny)
	112 3 3	8.6			other 17. 6 4 m (0,511)).
	442.5 5	8.0	(F2) [@]	0 0204	
1604 02 1	407.28 0	7 0	(E2)	0.0204	
1004.02+x	420 0 2	1.5			
	430.9 3	9.2			
	447.0 5	100			
1610 04	473.0 1	2 8			
1010.04+x	241.9 3	3.8 7.8	D		
	152 901# 22	100	(F2) [@]	0 0222	
	452.504 22	7 2	(12)	0.0222	
1612 15+x	313 6 3	13 3			
1012.13+X	139 0 3	80			
	455 6 1	100	(F2) [@]	0 0218	
	$481 60^{\#} 16$	63	(12)	0.0210	Placement from $(^{11}B5n\gamma)$: placed in different hand
	401.00 10	00			in $(\alpha 3ny)$
1625 45 + x	208 659# 15	100# 5			
1080.10.1	$411 \ 21^{\#} \ 11$	45 5	(E2)§	0 0288	Ly: from $(\alpha, 3n\gamma)$ Other: 39 from $(^{11}B, 5n\gamma)$
1634.82 + x	461.9.3	92	()		
	478.3 3	100			Placement from $(^{11}B.5n\gamma)$: see comment on the
					478.99 11 transition in $(\alpha, 3n\gamma)$ source data set.
	504.4 3	16			
1722.71 + x	289.0 3	27	(M1+E2)	0.12 4	
	354.3 3	23.1	D		
	372.6 3	10.0			
	442.95# 7	100	(E2) [@]	0.0235	
1723.9 + x	237.1 3	87			
	460.5 3	100			
1768.85 + x	258.5 3	13.0			
	504.8 1	100	(E2) [@]	0.01671	
1770.17 + x	$242.05^{\#}$ 4	70.3	(M1 + E2)	0.20 6	Iv: from (α , 3nv), Other: 46 in (¹¹ B, 5nv).
	$470.60^{\#}$ 4	100# 7	(E2) [@]	0.0200	, (
1774.71 + x	406.9.3	10.7	· /		
	$505.97^{\#}$ 1.3	100	(E2) [@]	0.01662	
1836.51+x	236.8 3	3.7	· · /		
	468.3 3	10.9	Q		
	486.14 # 4	100	(E2) [@]	0.0184	
1858.44 + x	461.3 3	14.3		-	

$\gamma(^{166} \mathrm{Tm})$ (continued)							
E(level)	$\underline{} E \gamma^{\dagger}$	Iγ [†]	Mult. [†]	α	Comments		
1858.44 + x	479.2 1	100	(E2) [@]	0.0191	Placement from $(^{11}B, 5n\gamma)$; see comment on the 478.99 11 transition in (α .3ny) source data set.		
$1\ 8\ 6\ 5\ .\ 9\ 4+x$	266.2 3	5.8					
	497.8# 1	100	(E2) [@]	0.01732			
	515.4 3	4.8	c				
1873.54+x	$2\ 4\ 8\ .\ 0\ 8\ ^{\#}\ \ 3 \\ 4\ 5\ 6\ .\ 9\ 1\ ^{\#}\ \ 1\ 6$	100	(M1+E2) ⁸	0.19 6	Iy: data from $(^{11}B, 5n\gamma)$ (86) and from $(\alpha, 3n\gamma)$ (25 7) are discrement		
$1 \; 9 \; 0 \; 0 \; . \; 7 \; 8 + x$	296.8 <i>3</i> 503.6 <i>3</i>	24 100					
1908.47 + x	185.4 ^a 3	4.7 ^a					
	299.1 3	2.4	D				
	$474.66^{\#}$ 3	100	(E2) [@]	0.0196			
$1 \ 9 \ 7 \ 6 \ . \ 5 + x$	252.6 3	5 5					
	489.9 3	100					
$2\ 0\ 3\ 7$. $5\ 4+x$	268.6 3	12.5					
	527.0 3	100	(E2)@	0.01499			
2038.35 + x	268.2 1	22 6	(MI+E2)	0.15 5	1γ : from (α, $3n\gamma$). Other: 37 in (¹¹ B, $5n\gamma$).		
2120 $43 \pm x$	254 5 3	100" 22	EZC	0.01627			
2120.43+x	283 9 3	7 0					
	510.4 <i>1</i>	100	(E2) [@]	0.01625			
	520.8 1	16.0	Q				
$2\ 1\ 2\ 2$. 4 3 + x	510.3 1	100					
	518.2 3	3 5					
$2 \ 1 \ 2 \ 3 \ . \ 2 \ 6 + x$	249.8 1	100	(M1(+E2))	0.18 6			
	497.8 1	100					
$2\ 1\ 3\ 1$. $9\ 2+x$	295.6 3	14.7	(M1+E2)	0.11 4			
	521.9 1	100	Q (Ta)@				
0150 00	532.3 1	82	(E2) @	0.01462			
2153.22+x	3/8.3 3	3.Z					
	541 0 3	48					
	549.2 1	100					
$2\ 1\ 8\ 1$. 7 2 + x	546.9 1	100					
$2\ 2\ 3\ 7$. $3\ 9+x$	329.1 3	22					
	401.1 3	8.6					
	514.6 1	100	(E2) [@]	0.01592			
$2\ 2\ 4\ 5$. 5 + x	269.2 3	39					
	521.43	100					
$2\ 3\ 0\ 7$. $5\ 8+x$	269.32#9	47# 11	(M1 + E2)	0.15 5			
2215 70 v	537.38 ⁺ 11	100# 16	(E2)@	0.01428			
2313.75+X	547 0 3	100					
2357.11+x	582.4 1	100	(E2) [@]	0.01171			
2381.19 + x	249.3 3	1.5	(==)				
	544 . $67^{\#}$ 6	100	(E2) [@]	0.01381			
$2\ 3\ 9\ 9$. $1\ 4+x$	540.7 1	100	(E2) [@]	0.01406			
$2 \ 4 \ 1 \ 2 \ . \ 1 \ 3 + x$	289.6 3	4.5					
	538.5 1	100					
2423.39 + x	291.7 3	5.8	() @				
0.4.0.0 7.0	557.4 1	100	(E2) (E2)	0.01304			
2463.70+x	555.26" 9	100	(E2) ^C	0.01316	Other $E\gamma$: 554.9 <i>I</i> in (**B,5n γ).		
2521 0+v	544 5 2	100					
2602.1 + x	286.5 3	100					
	564.4 3						
$2\ 6\ 1\ 4\ .\ 2\ 8+x$	306.8 1	< 1 7	(M1+E2)	0.10 4	Iy: from $(\alpha, 3n\gamma)$. Other: 30 in $(^{11}B, 5n\gamma)$.		
	575.76 # 14	100# 10	(E2) [@]	0.01205			
2690.13+x	266.6 3	4.6					
	308.9 <i>3</i>	4.6					
	558.3 <i>3</i>	8.2					
	569.7 1	100	(E2) [@]	0.01236			

$\gamma(^{166}Tm)$ (continued)

E(level)	$E\gamma^{\dagger}$	Iγ [†]	Mult. [†]	α	Comments
2696.33 + x	573 9 1	100			
2702.85+x	290.8 3	56			
	579.6 1	100			
2713.80 + x	290.8 3	3.7			
	332.6 <i>3</i>	8.1			
	581.9 1	100	(E2) [@]	0.01174	
$2\ 7\ 5\ 1$. $2\ 2+x$	598.0 1	100	(E2) [@]	0.01099	
$2\ 7\ 8\ 5$. $4+x$	603.7 <i>3</i>	100			
$2\; 8\; 1\; 4\; .\; 9\; 1 + x$	351.5 3	19			
	433.6 3	3.7			
	577.5 1	100	(E2)@	0.01196	
$2\ 8\ 3\ 9$. $3+x$	593.8 <i>3</i>	100			
2893.6+x	291.4 3				
	577.9 <i>3</i>				
2902.79 + x	288.6 1	34	(M1+E2)	0.12 4	
	595.2 1	100	(E2) [@]	0.01112	Other Ey: 598.8 8 in $(\alpha, 3n\gamma)$.
2978.39+x	597.2 1	100	(E2)@	0.01103	
2987.24 + x	588.2 3	100	(50)@		
0.01.0 41	630.1 3	88	(E2)@	0.00971	
3016.41+x	617.2 3	66			
0004 5	659.3 3	100			
3024.3+x	321.7 3	47			
2021 65	012.3 3	100			
3031.03+X	318.3 3	6.7	(E2) [@]	0 01056	
3002 70+v	629 1 1	100	$(E_2)^{e}$	0.01030	
3092.79+x 3100.6+x	621 5 3	100	(E2)	0.00974	
3100.0+x 3100.0+x	629 9 3	100			
$3133 \ 9+x$	654 8 3	100			
3200.6+x	598 4 3	100			
3246.17 + x	343.6 1	34	(M1+E2)	0.07 3	
0.8.101.111.1	631.8 1	100	(E2) [@]	0.00965	
3308.63+x	277.1 3	1.4	· · ·		
	330.4 <i>3</i>	4.2			
	618.5 1	100	(E2) [@]	0.01014	
$3\ 3\ 2\ 8$. 2 3 + x	631.9 1	100			
$3\ 3\ 4\ 5$. $1\ 8+x$	366.8 <i>3</i>	7.9			
	631.4 1	100	(E2) [@]	0.00966	
$3\ 3\ 5\ 4$. 7 + x	330.1 3	3 5			
	651.9 <i>3</i>	100			
$3\ 3\ 7\ 4$. $8+x$	623.6 <i>3</i>	100	(E2)@	0.00995	
$3\ 4\ 4\ 9$. 2 0 + x	356.5 <i>3</i>	11.8			
	634.2 <i>3</i>	100	(E2) [@]	0.00956	
$3\ 4\ 5\ 7$. 7 + x	672.3 <i>3</i>	100			
3546.74 + x	300.7 1	28	(M1+E2)	0.11 4	
	643.8 1	100	(E2) [@]	0.00923	
3623.42+x	645.0 1	100	(E2) "	0.00919	
304U.0+X	653.4 3	100	(E2) "	0.00892	
3080./8+X	341.8 3	100	(E2)@	0 00000	
2000 0		100	(E2)@	0.00886	
3699.0+x	082.0 3	100			
3099.9+x	545.5 J	32			
2722 2	715 0 2	100			
0706.0TX	745 1 2	86			
3788.4 + x	695 6 3	100	(E2) [@]	0.00772	
3804.3+x	670 4 3	100	(20)	5.00776	
3923.95 + x	377 2 1	37	(M1 + E2)	0.058 22	
01001A	677.8 1	100	(E2) [@]	0.00819	
3975.90 + x	352.2 3	2.6	·/		
	667.3 1	100	(E2) [@]	0.00849	
4018.5 + x	690.3 <i>3</i>	100	. ,		
$4024 69 \pm x$	401 3 3	6 5			

Adopted	Levels,	Gammas	(continued)

			$\gamma(^{166}Tm)$ (continue		
E(level)	$E\gamma^{\dagger}$	Ιγ [†]	Mult. [†]	α	
4024.69 + x	679.5 1	100	(E2) [@]	0.00814	
4058.9 + x	359.0 <i>3</i>	16			
	704.2 <i>3</i>	100			
$4\ 1\ 3\ 6\ .\ 2+x$	687.0 <i>3</i>	100	(E2) [@]	0.00794	
4232.54 + x	308.9 <i>3</i>	23			
4010 00	685.8 1	100	(E2) [@]	0.00797	
4316.92+x	693.5 1	100	(E2) ^C	0.00777	
4328.3+x	687.7 3	100			
4359.0+x	660.0 3	77			
	718.5 3	100			
$4\ 3\ 9\ 1$. $0\ 8+x$	704.3 1	100	(E2) [@]	0.00750	
$4\ 4\ 2\ 1\ .\ 0+x$	721.1 3	100			
$4\ 4\ 8\ 1$. $8+x$	749.5 <i>3</i>	100	8		
4542.3+x	753.9 <i>3</i>	100	(E2) [@]	0.00644	
4642.89 + x	410.7 3	27	(50)@	0.00710	
1607 1 v	718.9 1	100	(E2) [©]	0.00716	
4755 8 + x	721.5 5	100	(12)	0.00711	
4762.7+x	744.2 3	100			
4874.2+x	738.0 <i>3</i>	100			
4957.64 + x	725.1 1	100	(E2) [@]	0.00703	
$5\ 0\ 2\ 1$. $3+x$	693.0 <i>3</i>	100			
$5\ 0\ 6\ 4$. $6+x$	747.7 3	100	(E2) [@]	0.00656	
5111.0 + x	751.9 3	100			
5150 0	782.7 3	12.5	(E0)@	0 00000	
5150.9+x 5346 5+x	739.8 3	100	(E2) [©]	0.00559	
5407.2+x	764.3 3	100	(12)	0.00333	
5480.3+x	782.9 3	100			
5544.9 + x	789.1 <i>3</i>	100			
$5\ 5\ 5\ 9$. $3+x$	796.6 <i>3</i>	100			
5662.6+x	788.4 3	100			
5725.5+x	767.9 3	100	(E2) [@]	0.00619	
5766.4+x	745.1 3	100			
58/3.6+X	809.0 3	100			
5972 8 + x	821 9 3	100			
6192.9 + x	846.4 3	100			
6227.2+x	820.0 3	100			
$6\ 3\ 2\ 9$. $6+x$	849.3 <i>3</i>	100			
6396.4 + x	851.5 <i>3</i>	100			
$6\ 4\ 0\ 7$. $3+x$	848.0 3	100			
6503.2+x	840.6 3	100			
6542.5+x	817.03	100			
6748 + y	875 3 3	100			
6788.7 + x	865.2 3	100			
6861.1+x	888.3 <i>3</i>	100			
$7\ 0\ 6\ 3$. 2 + x	870.3 <i>3</i>	100			
$7\ 1\ 1\ 1$. 2 + x	884.0 3	100			
7247.9+x	918.3 <i>3</i>	100			
7304.6+x	897.3 <i>3</i>	100			
/ 3 1 3 . 9 + X 7 3 9 8 8 + V	917.5 3	100			
7414.4+x	871.9.3	100			
7692.5+x	943.6 3	100			
7816.1+x	955.0 <i>3</i>	100			
7969.9+x	906.7 <i>3</i>	100			
$8\ 0\ 6\ 5$. $8+x$	954.6 3	100			
8234.4+x	986.5 <i>3</i>	100			
8297.4+x	983.5 <i>3</i>	100			
8345.Z+X	930.8 <i>3</i>	100			

$\gamma(^{166}Tm)$ (continued)

E(level)	$E\gamma^{\dagger}$	$I\gamma^{\dagger}$
8352.7+x	953.9 <i>3</i>	100
8692.2 + x	999.7 <i>3</i>	100
8845.2 + x?	1029.1 ^{&} 3	100
9338.8+x	993.5 <i>3</i>	100

[†] From (¹¹B,5n γ), except as noted. Intraband transitions are assigned $\Delta \pi$ =(no). $\Delta I \gamma$ ranges between 10% and 50% for (¹¹B,5n γ).

[‡] From $\gamma(\theta)$ in $(\alpha, 3n\gamma)$, except as noted.

§ From $\gamma(\theta)$ in (α,3nγ), assigning $\Delta \pi$ =(no) to intraband transitions, unless $\gamma(\theta)$, combined with $\gamma\gamma$ coin resolving time, definitely eliminates $\Delta \pi$ =yes based on RUL.

[#] From (α, 3nγ).

@ Q or (Q) from DCO for intraband transition in ($^{11}B,5n\gamma$). $\Delta\pi$ =(no) assigned based on band structure.

& Placement of transition in the level scheme is uncertain.

^a Multiply placed; intensity suitably divided.

(A) $K\pi=6-$, $\alpha=0$ (π 7/2[404]) +(ν 5/2[523]) band. (B) $K\pi=6-$, $\alpha=1$ (π 7/2[404]) +(ν 5/2[523]) band. (C) $K\pi=6+$, $\alpha=0$ (π 7/2[523]) +(ν 5/2[523]) band.

		(19-)	3200.6+x	_		
(18-)	2893.6+x	_		(18+)		2839 3+v
				(10+)		2000.012
(B)(17-)		(17-)	v 2602.1+x	_		
(16-)	<u>2315.79+x</u>	(A)(16-) ¥		-(16+)	,	2245.5 + x
		(1)		(D)(15+)		
(B)(15-)	¥	(15-)	¥ 2037.54+x	$-\frac{(b)(10+)}{(14+)}$	v	1723.0+x
(14.)	1769 95	$(\Lambda)(14)$		(D)(13+)		/
(14-)	¥ 1708.83+X	(A)(14-) ¥		(12)(13+)	\¥	1262 25 1 1
(B)(13-)	V	(13-)	1510.57+x	(12+) (D)(11+)		1203.33+X
				(10+)		863.54+x
(12-)	1264.02+x	(A)(12-) ¥		(D)(9+)	\\¥_/	
(B)(11-)	↓	(11-)	1030.91+x	(8+)		529.71+x
(10.)				(D)(7+)		
(10-)		(A)(10-) ¥		(E)(7-)		/
(B)(9-)		- (9-)	609.616+x	$-\frac{(6+)}{(6+)}$	\\\¥/	266 26+x
<u>(8-)</u>	$\sqrt{\frac{424.176+x}{7}}$	- (A)(8-)		$(E)(6_{-})$	₩ <u> </u>	<u> </u>
(B)(7-)		(7_)	256 995+x	(C)(6+)		/
(6-)	109.338+x	- (A)(6-)	¥ 200.000+X	$(\Delta)(6_{-})$		·
(J)(5+)	<u> </u>	Y		(1)(0-)	¥	

 $^{166}_{69}$ Tm₉₇

(E) $K\pi = 6-$, $\alpha = 0$ ($\pi 7/2[523]$)+($\nu 5/2[642]$) (D) $K\pi = 6+$, $\alpha = 1$ (π 7/2[523]) (F) $K\pi = 6-$, $\alpha = 1$ (π 7/2[523]) +(v 5/2[523]) band. band. +(v5/2[642]) band. 9338.8 + x(36-) (34-) 8345.2 + x(33-) 8065.8 + x7414.4 + x(32-) 7111.2+x (31-) (30-) 6542.5 + x(29-) 6227.2 + x(28-) 5725.5 + x5407.2 + x(27-) (26-) 4957.64 + x4642.89 + x(25-) (24-) 4232.54 + x(E)(24-) (F)(23-) (23-) 3923.95 + x(22-) 3546.74 + x(E)(22-) (F)(21-) (21-) 3246.17 + x(20-) 2902.79 + x(E)(20-) (F)(19-) (19-) 2614.28 + x(17+) 2521.0+x2307.58 + x(E)(18-) (18-) (F)(17-) <u>(17–)</u> 2038.35 + x(15+) 1976.5 + x- (16-) 1770.17 + x(F)(15-) (E)(16-) (C)(14+) 1299.528 + x(14-) _ (15-) 1528.158+x(13+) 1486.8 + x(F)(13-) (E)(14-) (C)(12+) (12-) 904.431 + x1092.229+x . (13–) (11+) 1055.56 + x(F)(11-) (E)(12-) (C)(10+) 592.557 + x(10-) _ (11-) 737.615 + x(9+) 688.03 + x(F)(9-) (E)(10-) (C)(8+) 367.485 + x(8-) 469.141 + x(9–) 389.07 + x(7+) (F)(7-) ↓ (E)(8-) (E)(8-) 231.053+x (6-) 287.586 + x. (7–) V (C)(6+) ¥ (G)(6+) (E)(6-) (A)(6-)

Adopted Levels, Gammas (continued)

 $^{166}_{69} Tm_{97}$

(G) $K\pi=6+$, $\alpha=0$ (π 7/2[404])(H) $K\pi=6+$, $\alpha=1$ (π 7/2[404])+(ν 5/2[642])(I) $K\pi=2+,3+$, $\alpha=0$ (π 1/2[411]) \otimes (ν 5/2[642])+(ν 5/2[642]) band.band.band.

				(34+)	8845.2+x
(34+)	8692.2+x				
	(33)	+)	8207 4+x		
	(00-	+)	0237.4+X	-	
				()	
(22.)	7609 5			(32+)	v 7816.1+x
(32+)	7692.3+X				
	(31-	+)	7313.9+x	_	
				(30+)	6861.1+x
<u>(30+)</u>	6748.9+x				
	(29-	+)	6396.4+x		
				_	
(00.)	F070 0			(28+)	y 5972.8+x
(28+)	58/3.6+X				
	(27-	+)	5544.9+x	_	
				(26+)	5150 Q+x
(26+)	5064.6+x			(20+)	5150.5+X
	(25-	+)	4755.8+x	_	
				(24.)	4201.08.2
<u>(24+)</u>	4316.92 + x			(24+)	4391.08+X
	(23-	+)	4024.69+x	_	
	0000 40	7)(00.)		(22+)	3686.78+x
(22+)	3623.42+X (C	x)(22+) <u>V</u>		(H)(21+)	
	(21.	+)	/ 3345 18+x	(20+)	$\sqrt{3031.65+x}$
	(21		0010.101X	(H)(19+)	/
				(18+)	2423.39+x
<u>(20+)</u>	2978.39+x (0	G)(20+)		- (H)(17+)	₩ //
	(19-	+)	2713.80+x	-(16+)	1865.94 + x
	(I)(18+)	[]	(H)(15+)	+
(10.)		$\frac{1}{2}$		-(14+)	////1368.12+x
(18+)	2381.19+x (17-		/ <u>2131.92+x</u>	- (G)(14+)	t
(H)(17+)	(($\frac{1}{10}$, /	- (J)(13+)	////
	1836.51+x (J)(15+)	[]	- (H)(13+)	t=_/////
(H)(15+)	(15-	<u>+)</u>	// <u>1599.63+x</u>	-(12+)	///// 946.244+x
(I)(14+)	(I)(14+)	└──///	- (G)(12+)	
	1350.370+x (0	<u>G)(14+)</u>	//	- (N)(11+)	↓/////
(H)(13+)	(J		//	-(J)(11+)	L //////
	(13-	+)	<u>1132.345+x</u>	-(10+) \\\\\\	605.315+x
	922.167 + x (0	x)(12+)	/	- (N)(9+) /////	
(H)(11+)	(11-	+)	733.224+x		↓ /////
	563.383+x (0	G(10+)	└──′/,	- (8+)	341.853+x
(H)(9+)	(9+))	417.445+x	- (N)(7+)	t////
	298.122 + x (0	<u>G)(8+) // ¥</u>	//,	- (J)(7+)	╄━━┘///
<u>(H)(7+)</u>	(7+))	211.437+x	- (6+) W	/// 152.117+x
	171.566+x (0		/	- (J)(5+)	
(A)(6-)	(A	A)(6-)	/	- (4+)	33.637+x

 $^{166}_{69}$ Tm₉₇

(J) $K\pi = 2+, 3+, \alpha = 1 (\pi 1/2[411]) \otimes (\nu 5/2[642])$ band.

(K) K π =2-,3-, α =0 (p1/2[541]) \otimes (v 5/2[642]) band.

(33+) 8234.4+x (32-) 7969.9 + x(31+) 7247.9 + x7063.2+x (30-) (29+) 6329.6 + x(28-) 6192.9 + x(27+) 5480.3 + x(26-) 5346.5 + x(25+) 4697.4 + x(24-) 4542.3 + x(23+) 3975.90 + x(G)(22+)(21+) 3308.63 + x(I)(20+) (22 -)3788.4 + x(G)(20+)(19+) 2690.13 + x(I)(18+) (G)(18+) (20-) 3092.79 + x(H)(17+) (18-) 2463.70 + x(17+)2120.43 + x1908.47 + x(16-) (I)(16+) (L)(15-) (G)(16+) (J)(15+) (15+) 1610.04 + x(14-) 1433.82+x (H)(15+) (L)(13-) (I)(14+) (N)(13+) (G)(14+) (J)(13+) 1157.140+x (13+) κh (12-) 1043.013+x (H)(13+) (L)(11-) (I)(12+) h (N)(11+) (11+) 772.742+x <u>|</u>#¥ (J)(11+) (I)(10+)(10-) 736.322+x (N)(9+) (L)(9-) **₩**¥ (9+) 460.262 + x(N)(9+) (I)(8+) 507.811+x (8–) ₽₽ (7+) 226.586 + x(J)(9+) (I)(6+) (N)(7+) Ý. (5+) 74.920 + x(J)(7+) (I)(4+) 0+x (3+)¥

 $^{16}_{69}^{6}$ Tm₉₇
(L) Kπ=2-,3-, α=1 (p1/2[541])⊗(ν 5/2[642]) band. (M) $K\pi=2+,3+, \alpha=0 \ (\pi \ 1/2[541]) \otimes (\nu \ 5/2[523])$ band.

(33-)	8352.7+x	_	
(31-)	v 7398.8+x	(20)	7204 6 I V
		(30+)	/304.0+x
(29-)	6503.2+x		
		(28+)	<u>6407.3+x</u>
(27-)	y 5662.6+x		
		(26+)	<u> </u>
(95)	4974 9		
(23-)	40/4.2+X	(24+)	4762.7+x
(00.)			
(23-)	¥ 4136.2+x	(22)	4018.5
		(22+)	4018.3+x
(21-)	3449.20+x		
(K)(20-)	↓	(20+)	3328.23+x
(19-)	$\sqrt{2814.91+x}$		
(K)(18-)		- (18+)	2696.33+x
(G)(18+)			2122.43+x
(17-)	¥ // 2237 39+x	(R)(14+)	//
(K)(16)			<u>1604.02+x</u>
$\frac{(\mathbf{R})(10^{-})}{(\mathbf{C})(16^{+})}$		(N)(13+)	
		(P)(12+)	////
(K)(14)	¥/////	(R)(12+)] ////
$\frac{(\mathbf{K})(14-)}{(\mathbf{I})(14+)}$			////_ <u>1130.482+x</u>
	↓////	- (N)(11+)	
(G)(14+)		(10+)	//////733.695+x
	1279.702+x	- (N)(9+)	
<u>(K)(12-)</u>	////	- (J)(9+)	
(I)(12+)	<u>↓</u> ///		////// 423.693+x
(11-)	915.984+x		
<u>(K)(10–)</u>	///	- (N)(7+)	
<u>(9–)</u>	<u>+ 634.390+x</u>	- (J)(7+)	
(I)(10+)	//		207 553+x
(K)(8-)	¥//	$(\mathbf{I})(6_{+})$	
<u>(7–)</u>	423.656+x	- (N)(5+)	_ /////
(I)(8+)			
(I)(6+)			
		(3)(3+)	

 $^{166}_{69}$ Tm₉₇

(N) $K\pi=2+,3+, \alpha=1 (\pi 1/2[541]) \otimes (\nu 5/2[523])$ band. (O) α=1 band including (21+) 3699+x level. (P) $K\pi=1+,2+, \alpha=0 (\pi 1/2[541])$ $\otimes (v 3/2[521])$ band.

(Q) $K\pi=1+,2+, \alpha=1 (\pi 1/2[541])$ $\otimes (v 3/2[521])$ band. (R) $K\pi=1+$, $\alpha=0$ (π 7/2[404])-(ν 5/2[642]) band. (S) $K\pi=1+$, $\alpha=1$ (π 7/2[404]) -(ν 5/2[642]) band.

 ${}^{16}_{69}{}^{6}\mathrm{Tm}_{97}$

(T) $K\pi=1-$, $\alpha=0$ (π 7/2[523]) -(ν 5/2[642]) band. (U) $K\pi=1-$, $\alpha=1$ (π 7/2[523]) -(ν 5/2[642]) band. (V) possible band fragment (1995Ma07).

 $^{166}_{69} Tm_{97}$

 ${}^{166}_{69}$ Tm₉₇

 ${}^{166}_{69}$ Tm₉₇

Bands for ¹⁶⁶Tm

(V)

 ${}^{16}_{69}{}^{6}\mathrm{Tm}_{97}$

Level Scheme (continued)

Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided

Level Scheme (continued)

Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided

(36-)		9338.8+x	
(34+)		8692.2+x	
(33+)		8234 4+x	
(10)		0014.01	
(19-)		2814.91+x	
(18+)		2751 22+x	
(19+)		2713.80+x	
(18-)		2702.85+x	
(18+)		2696.33+x	
(19+)		2690.13+x	
(19-)		2614.28+x	
(17-)		2602.1+x	
(17+)		2521.0+x	
(17+)		2479.1+x	
(18-)		2463.70+x	
(17-)	7\\\\\\\\	2412 13+x	
(17+)	7	2399.14+x	
(18+)		2381.19+x	
(17+)		2357.11+x	
(16-)		2315.79+x	
(18-)		2307.58+x	
(16+)		2245.5+x	
(17-)		2237.39+x	
(16+)		2181.72+x	
(16+) (17+)		2153.22 + x	
(17+) (16-)		2131.92 + x	
(16+)	7	2120.20+X 2122.43+x	
(17+)	7	2120.43+x	
(17-)		2038.35+x	
(15-)		2037.54+x	
(15+)		1976.5+x	
(16-)		1908.47+x	
(15+)		<u>1900.78+x</u>	
(15-)		1873.54+x	
(15+)		1865.94+x	
(15+)		1836 51+x	
(15+)		1774.71 + x	
(16-)		1770.17+x	
(14-)		1768.85+x	
(14+)		1723.9+x	
(15-)		1722.71+x	
(14+)		1634.82+x	
(14-)		1625.45+x	
(14+)		1612.15+x	
(15+)		1610.04+x	
(14+)		1604.02+x	
(15+)	J	1599.63+x	
(15-)		1528.158+x	
(13-)		<u>1510.5/+x</u>	
2+		0.0	7.70 h

 $^{166}_{69} Tm_{97}$

Level Scheme (continued)

Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided

(34-) 809.2 sx (32-) 709.9 sx (32-) 709.5 sx (32-) 709.5 sx (32-) 709.5 sx (32-) 709.5 sx (32-) 709.5 sx (32-) 709.5 sx (32-) 709.5 sx (32-) 709.5 sx (32-) 709.5 sx (32-) 709.5 sx (32-) 709.5 sx (32-) 709.5 sx (33-) 709.5 sx (34-) 709.5 sx (35-)	(36-)		9338.8+x
(34-) 892.2-x (33-) 623.4.4x (32-) 798.5-x (34-) 798.5-x (35-) 784.5-x (36-) 784.5-x (37-) 784.5-x (36-) 785.5-x			
(34) 882.2 * x (33) 793.4 * x (32-) 799.5 * x (32-) 799.5 * x (32-) 799.5 * x (32-) 799.5 * x (33-) 799.5 * x (34-) 799.5 * x (35-) 799.5 * x			
(34-) 809.2 × x (33-) 623.4 4 × x (32-) 7090.9 × x (34-) 7090.5 × x (34-) 7092.5 × x (35-) 7092.5 × x (34-) 7092.5 × x (35-) 7092.5 × x (16-) 1096.6 × x (10-) 1096.6 × x <td< td=""><td></td><td></td><td></td></td<>			
(33-) 833.4.5. (32-) 7692.5.s. (33-) 7692.5.s. (35-) 7692.5.s.	(34+)		8692.2+x
(33-) 8234.4-x (32-) 7995.9-x (32-) 7992.5-x (31-) 7414.4-x (31-) 7414.5-x (32-) 7052.5-x (33-) 1095.47-x (34-) 1095.47-x (35-) 1077.17-x (36-) 1777.17-x (37-) 1776.17-x (37-) 1776.17-x (37-) 1777.17-x (37-) 1780.8-x			
10000 100000 (12-) 7002.5-x (12-) 7414.4-x (13-) 7447.6-x (13-) 7447.6-x (13-) 1000.78-x (13-) 1000.78-x (13-) 1000.78-x (14-) 1000.78-x (15-) 1000.78-x (16-) 1000.78-x	(33+)		8231 1+x
(32-) 7692.9-x (32-) 7692.5-x (32-) 7414.4-x (31-) 7414.4-x (32-) 7692.5-x (35-) 1905.6-x (15-) 1905.6-x (16-) 1905.7-x (16-) 1905.7-x (16-) 1905.7-x (16-) 1905.7-x (16-)	(33+)		0234.4+X
192+) 7414.4×s. 111- 7414.4×s. 112- 7414.4×s. 113- 7083.2×s. 105- 1978.5×s. 105- 1980.47×s. 105- 1779.17×s. 1720.17×s. 1723.51×s. 105- 1723.9×s. 105- 1723.9×s. 105- 1723.9×s. 105- 199.85×s.	(32-)		7969.9+x
(32-) 7414.4+x (31-) 7247.9-x (30-) 7063.2-x (15-) 1994.72-x (15-) 1997.53-x (15-) 1997.53-x (15-) 1997.53-x (15-) 1997.53-x (15-) 1774.71-x (15-) 1774.72-x (15-) 1774.72-x (15	(32+)		7692.5+x
611.)	(32-)		7414.4+x
300 - - 7063.2 xx 105 - 1978.6 xx 105 - 1908.47 x. 104 - 1908.47 x. 104 - 1707.17 x. 104 - 1908.42 x. 104 - 1908.42 x. 104 - 1908.42 x. 104 - 1908.42 x. 105 - 1909.63 x. 105 - 1909.63 x. 105 - 1909.63 x. 105 - 1909.63 x. 105 - 1909.63 x. 105 - 1909.63 x. 105 - 1909.63 x. 105 - 1909.63 x. 105 - 1909.63 x. 105 - 1909.63 x. 105 - 1909.63 x. <td>(31+)</td> <td></td> <td>7247.9+x</td>	(31+)		7247.9+x
(15+) 1976,5+x (16-) 1900,77×. (15-) 1900,77×. (15-) 185,51×. (15-) 185,51×. (15-) 185,51×. (15-) 1770,17×. (14-) 178,85×. (15-) 178,85×. (16-) 172,71×. (16-) 172,71×. (16-) 172,71×. (16-) 172,71×. (16-) 172,71×. (16-) 172,71×. (16-) 172,71×. (16-) 172,71×. (16-) 172,71×. (16-) 112,15×. (16-) 112,15×. (16-) 110,01×. (16-) 110,01×. (16-) 110,01×. (16-) 110,01×. (16-) 110,01×. (16-) 110,01×. (16-) 110,01×. (16-) 110,01×. (16-) 110,01×. (16-) 110,01×. (16-) 110,01×. (16-) 110,01×	(30-)		- 7063.2+x
1851 1908.47×x 1851 1873.54×x 1851 1873.54×x 1852 1885.94×x 1853 1885.94×x 1854 1885.94×x 1855 1885.85×x 1854 1770.17×x 1855 183.65×x 1855 183.65×x 1855 183.65×x 1855 183.65×x 1855 183.65×x 1855 183.65×x 1855 183.68×x 1856 183.68×x 1857 183.68×x 1858 183.68×x 1859 183.68×x 1859 183.63×x 1850 183.63×x 1851 183.63×x 1852 183.63×x 1853 183.63×x 1851 183.63×x 1851 183.63×x	(15+)		1976.5 + x
(15-) (1900,78-x) (16-) (1855,94+x) (185-) (1856,94+x) (185-) (1856,94+x) (185-) (1774,71+x) (16-) (1722,71+x) (16-) (1722,71+x) (16-) (160,10+x) (17-) (160,10+x) (17-) (160,10+x) (18-) (18-) (19-) (18-) (19-) (18-) (19-) (18-) (19-) (18-) (19-) (18-) (19-) (18-) (19-) (18-) (19-) (19	(16-)		1908.47+x
(15-) 1873.54+x (15-) 1885.34+x (15-) 188.38+x (16-)	(15+)		1900.78+x
(16-) 1865.94+x (16-) 1865.94+x (16-) 170.17+x (16-) 170.17+x (17-) 101.10+x (17-) 101.10+x (17-) 101.10+x (17-) 1170.11+x (17-) 1170.11+x (17-) 1170.11+x (17-) 1170.11+x (17-) 1170.11+x (17-) 1170.11+x (17-) 11	(15-)		1873.54+x
(15-) 1858.41-x (15-) 1774.71-x (16-) 1774.71-x (16-) 1774.71-x (16-) 1768.85-x (15-) 1768.85-x (15-) 1768.85-x (16-) 1768.85-x (16-) 1768.85-x (16-) 163.82-x (16-) 164.82-x (16-) 164.82-x (16-) 164.82-x (16-) 163.82-x (16-) 163.83-x (16-) 163.83-x (16-) 1	(16+)		1865.94+x
(16-) 136.51-x (15-) 1774.71-x (16-) 1775.75-x (16-) 1723.9-x (16-) 1625.45-x (16-) 160.02-x (16-) 160.02-x (16-) 159.63-x (17-) 1	(15+)		1858.44+x
(15-) 1776.17-x (14-) 1770.17-x (14-) 178.85-x (14-) 178.85-x (14-) 198.85-x (14-) 198.85-x (14-) 198.85-x (15-) 198.85-x (15-) 198.85-x (15-) 198.85-x (15-) 199.83-x (13-) 199.15-x (13-) 199.15-x (13-) 199.15-x (13-) 199.15-x (13-) 199.15-x (13-) 199.2-x<	(16+)		1836.51+x
(16-) (170.17*x (14-) (172.3*x (15-) (172.3*x (14-) (172.3*x (14-) (14-) (14-) (14-) (14-) (14-) (14-) (15-) (15-) (15-) (14-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (15-) (14-) (15-) (13-) (15-) (14-) (15-) (13-) (15-) (12-) (15-) (12-) (15-)	(15+)		<u>1774.71+x</u>
(14-) (168,85+x) (14-) (172,83,8+x) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (16-) (15-) (16-) (15-) (16-) (15-) (16-) (13-) (16-) (13-) (13-) (13-) (13-) (13-) (13-) (14-) (14-) (14-) (14-) (13-) (13-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (14-) (15-) (12-) (14-)	(16-)		$\frac{1770.17 + x}{1770.07}$
114-1 172.3-** (14-) 172.3-** (14-) 183.82*× (14-) 180.42*× (14-) 180.42*× (14-) 180.42*× (14-) 180.42*× (14-) 180.42*× (14-) 180.42*× (14-) 180.42*× (14-) 180.42*× (13-) 180.42*× (13-) 180.42*× (13-) 186.8*× (14-) 190.57*× (13-) 186.8*× (14-) 190.57*× (13-) 186.8*× (14-) 190.57*× (13-) 186.8*× (14-) 190.57*× (13-) 186.8*× (14-) 190.57*× (13-) 186.8*× (12-) 186.54*× (12-) 186.54*× (12-) 190.6** (12-) 190.6** (13-) 190.6** (14-) 190.6** (12-) 190.6** (13-) 190.6** <td>(14-)</td> <td></td> <td>1768.85 + x</td>	(14-)		1768.85 + x
133-2 1122.117X (14+) 1121.117X (14+) 1121.117X (14-) 1121.117X	(14+)	עוווון	1723.9+x
1030 1032,45+x 104) 1023,45+x 105) 1023,45+x 104) 1023,45+x 105) 1023,45+x 104) 1040,42+x 150,03+x 159,03+x 1031) 150,57+x 1132,15+x 150,57+x 1134,04+x 1416,80+x 1134,04+x 1416,80+x 1137,924+x 1368,12+x 1137,924+x 1368,12+x 1137,924+x 1368,12+x 1124,04+x 1264,02+x 1299,528+x 1299,528+x 1291,04+x 1368,12+x 1137,92+x 1264,02+x 1284,35+x 1137,93+x 1132,335+x 1130,432+x 1132,335+x 1030,91+x 1035,56+x 1030,91+x 1043,013+x 1000	(13-) (14+)		1722.71+x 1634.82+x
1014-1 1612.15+x 11512.15+x 1610.04+x 11512.15+x 1610.04+x 11512.15+x 1504.02+x 11512.15+x 1468.8+x 1146.80+x 1468.8+x 1141.15+x 1146.80+x 1121.15+x 1146.80+x 1132.12+x 11368.12+x 1132.12+x 11368.12+x 1122.12+x 11268.03+x 1122.12+x 11268.03+x 1122.12+x 11268.03+x 1122.12+x 11268.03+x 1122.12+x 11268.05+x 1122.12+x 11268.05+x 1122.12+x 11268.05+x 1122.12+x 1135.50+x 1132.345+x 1130.422+x 1132.345+x 1130.422+x 1132.345+x 1130.422+x 1132.345+x 1130.422+x 1132.345+x 1130.422+x	(14+) (14-)	7	$1625 45 \pm x$
(15-) 1610.04+x (15-) 1590.63+x (15-) 1528.158+x (13-) 1510.57+x (13-) 1510.57+x (13-) 1488.88+x (14-) 1416.80+x (13+) 1307.15+x (13+) 1307.24+x (13+) 1307.24+x (13+) 1307.24+x (13+) 1307.24+x (13+) 1290.528+x (12-) 1200.070+x (12-) 1157.140+x (13-) 1132.35+x (13-) 1132.35+x (12-) 1132.345+x (13-) 1132.345+x (13-) 1132.345+x (13-) 1132.345+x (13-) 1092.229+x (13-) 1092.229+x (13-) 1092.229+x (13-) 1092.229+x (13-) 1092.229+x (13-) 1092.229+x (13-) 1092.209+1x (13-) 1092.209+1x	(14+)		1612.15 + x
(14+) 1604.02+x (15-) 159.63+x (13-) 1510.57+x (13-) 146.80+x (14-) 146.80+x (13-) 141.882+x (14+) 1350.370+x (13-) 1350.370+x (13-) 1350.370+x (13-) 129.528+x (13-) 129.528+x (13-) 1350.370+x (13-) 129.528+x (13-) 129.528+x (13-) 1350.370+x (12-) 129.528+x (12-) 120.528+x (12-) 120.528+x (12-) 1157.140+x (12-) 1156.59+x (13-) 1156.59+x (13-) 1160.402+x (12-) 1160.59+x (13-) 1156.59+x (13-) 1156.59+x (13-) 1156.59+x (13-) 1156.59+x (13-) 1156.59+x (13-) 1156.59+x (13-) 1102.422+x (103-) 1030.91+x	(15+)		1610.04+x
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(14+)		1604.02+x
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(15+)		1599.63+x
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(15-)		1528.158+x
$\begin{array}{c} (13+) \\ (14-) \\ (13+) \\ (14+) \\ (14+) \\ (14+) \\ (14+) \\ (13+) \\ (12-) \\ (12+) \\$	(13-)		1510.57 + x
$\begin{array}{c} (14-) \\ (13+) \\ (13+) \\ (13+) \\ (14+) \\ (14+) \\ (14-) \\ (13-) \\ (13-) \\ (13-) \\ (12-) \\$	(13+)		1486.8+x
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(14-)		$\frac{1433.82 + x}{14433.82 + x}$
$\begin{array}{c} 113+1\\ (13+)\\ (14+)\\ (14+)\\ (14+)\\ (14+)\\ (14+)\\ (14+)\\ (14+)\\ (13+)\\ (12+)\\ (12+)\\ (12+)\\ (12+)\\ (12+)\\ (12+)\\ (12+)\\ (12+)\\ (12+)\\ (12+)\\ (13+)\\ (12+)\\ (13+)\\ (12+)\\ (12+)\\ (13+)\\ (12+)\\ (12+)\\ (13+)\\ (12+)\\ (1$	(13-)		1416.80 + x
$\begin{array}{c} 1137\\ (14+)\\ (14+)\\ (14+)\\ (14+)\\ (13-)\\ (13-)\\ (13-)\\ (13-)\\ (12-)\\ (12-)\\ (12+)\\ (12$	(13+)		1397.13+x 1270.24+x
114-) 1350.370+x 113-) 1299.528+x 112-) 1210.528+x 112-) 1268.634+x 112-) 1268.634+x 112-) 121.158 112+) 1173.09+x 113-) 1173.09+x 113-) 1157.140+x 113-) 1155.59+x 113-) 1130.482+x 109.229+x 1130.482+x 109.210+x 1030.91+x 1030.91+x 0.0	(13+) (14+)		1375.24+x 1368 12+x
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(14+)		1350.370+x
$\begin{array}{c} (13-) \\ (13+) \\ (12-) \\ (12+) \\ (12+) \\ (13+) \\$	(14-)		1299.528+x
$\begin{array}{c} (13+) \\ (12-) \\ (12+) \\ (12+) \\ (13+) \\ (11+) \\$	(13-)		1279.702+x
$\begin{array}{c} (12-) \\ (12+) \\ (12+) \\ (13+) \\ (13+) \\ (13+) \\ (13+) \\ (13+) \\ (13+) \\ (13+) \\ (13+) \\ (13+) \\ (13+) \\ (13+) \\ (13+) \\ (11+) \\$	(13+)	and a start of the	1268.634+x
(12+) 1263.35+x (12+) 1214.15+x (13+) 1173.09+x (13+) 1157.140+x (13+) 1156.59+x (13+) 1132.345+x (13+) 1132.345+x (11+) 1130.482+x (11-) 1043.013+x 2+ 0.0	(12-)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1264.02+x
(12-) (12+) 1214.15+x (13+) (13+) (157.140+x) (12+) (11+) (11+) (13+) (12+) (11+) (13+) (12+) (11+) (13-) (13-) (13-) (11+) (12+) (13-) (11+) (12+) (13-) (11+) (12+) (13-) (11-) (11-) (1043.013+x) 2+ 0.0	(12+)		1263.35 + x
(12+) (12+) (11-) <td< td=""><td>(12-)</td><td></td><td>1214.15 + x</td></td<>	(12-)		1214.15 + x
(13+) (13-) (13-) (13-) (13-) (13-) (13-) (13-) (13-) (13-) (13-) (13-) (13-) (13-) (13-) (13-) (13-) (102-) (13-) (102-) (13-) (102-) </td <td>(12+)</td> <td>┐║╵╩╢╵╚╵╴┿╧╶┿╧╺╈┿┶╈╴╵┢┪╵╧╵┸[©]╵╋╵╞╧╅╈<mark>╴┊╎╵╵╋╶╎╵╵╵╴┙╧╈</mark>┊╵╵╵╵┿┱┱┱┱╻╻╻╌╴[╝]╝╵╢╢╢║║</td> <td>$\frac{1173.09+x}{1157.140}$</td>	(12+)	┐║╵╩╢╵ ╚╵╴┿╧╶┿╧╺╈┿┶╈╴╵┢┪╵╧╵ ┸ [©] ╵╋╵╞╧╅╈ <mark>╴┊╎╵╵╋╶╎╵╵╵╴┙╧╈</mark> ┊╵╵╵╵┿┱┱┱┱╻╻╻╌╴ [╝] ╝╵╢╢╢║║	$\frac{1173.09+x}{1157.140}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(13+)		1157.140+x
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(12+) (12+)		$1132 345 \pm v$
(13-) (13-) (102.229+x) (11-) (103.013+x) (11-) (103.013+x) 2+ 0.0	(13+) (12+)		1130 489±v
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(13-)		1092.229+x
(12-) (104.013 + x) (11-) (1030.91 + x) 2+ 0.0	(11+)		1055.56+x
(11-) 2+ 0.0	(12-)		1043.013+x
2+ 0.0	(11-)		1030.91+x
	2+		0.0

Level Scheme (continued)

Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided

(36-)		9338.8+x
		-
(34+)		8692.2+x
(33+)		8234.4+x
(32-)		7969.9+x
(32+)		7692.5+x
(32-)		7414.4+x
(31+)		7247.9+x
(13 -)		= 1416.80 + x
(13+)	7	$\sqrt{1397.15+x}$
(13+)		1379.24+x
(14+)		1368.12+x
(14+)		1350.370+x
(14-)		1299.528+x
(13-)		1279.702 + x
(13+) (12-)		1268.034 + x 1264.02+x
(12+)	7	1263.35+x
(12-)		1214.15+x
(12+)		1173.09+x
(13+)		<u>1157.140+x</u>
(12+)		<u>1156.59+x</u>
(13+)		1132.345 + x
(12+) (13-)		1130.482 + x 1092 229+x
(11+)		1055.56+x
(11-)		1045.54+x
(12-)		1043.013+x
(11-)		1030.91+x
(11+)		<u>982.27+x</u>
(11+)		965.86+x
(12+) (12+)		922 167+x
(11-)		915.984+x
(12-)		904.431+x
(10-)		887.39+x
(10+)		863.54+x
(11+)		850.036+x
(10-)	, , , , , , , , , , , , , , , , , , ,	812.26+x
(10+)		799.37+X 778.37+X
(11+)	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	772.742+x
(9-)]	756.17+x
(11-)		737.615+x
(10-)	###############################	736.322+x
(10+)		733.695+x
(11+)	▖║║╙╙┈──────────────────────────────────	733.224+x
(9+)		= 088.03 + x
(9+)		634.54+x
(9-)		609.616+x
2+		0.0

Level Scheme (continued)

Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided

(36-)		9338.8+x
(34+)		8692.2 + x
(0.0.)		
(33+)		- 8234.4+x
(32-)		- 7969.9+x
		_
(32+)		7692.5+x
(31+)		7313.9+x
(12+)		946.244+x
(12+)		-922.167+x
(11-)		915.984+x
(12-)		904.431+x
(10-)		887.39+x
(10+)		863.54+x
(11+)		850.036+x
(10-)		812.26+x
(10+)		799.37+X
(10+) (11+)		772 742+x
(9-)		$756.17 \pm x$
(11-)	7	737.615+x
(10-)		736.322+x
(10+)		733.695+x
(11+)		733.224+x
(9+)		688.03+x
(9+)		649.73+x
		642.59+u
(8-)		637.89+x
(9+)		634.54+x
(9-)		634.390+x
(9-)		609.616+x
(10+)		605.315+x
(10-)		562.282+x
(10+)		520 00 x
(8+)		529 71+x
(9+)		524 631+x
(8-)		507.811+x
(8+)		504.87+x
(8+)		488.73+x
(9-)		469.141+x
(9+)		460.262+x
(8-)		//424.176+x
(8+)		// <u>423.693+x</u>
(7-)		423.656+x
(9+)	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	417.445+x
(7+)		401.81+x
(7+)	\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\frac{389.07 + x}{200.01}$
(7+)		383.21+x
(8-)		367.485+X
(ð+)		<u>341.853+X</u>
2+		0.0
ώT		0.0

Level Scheme (continued)

Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided

_(36-)			9338.8+x	
(34+)			 8602 2+v	
(34+)			0032.2+X	
(33+)			8234.4+x	
_(32-)			7969.9+x	
(22.)				
(32+)			7692.5+X	
(32-)			7414.4+x	
(31+)			7247.9+x	
(9-)			= 609.616+x	
(10+)			-605.315+x	
(10-)			$= \frac{592.557 + x}{592.557 + x}$	
			563.383+x	
			539.90 + x	
(9+)		/	523.71+x 524.631+x	
		///	507.811+x	
		///	504.87+x	
		/////	488.73+x	
<u>(9-)</u>			469.141+x	
		///////	400.202+x 453.93+x	
			424.176+x	
(8+)		////////	423.693+x	
<u>(7-)</u>		////////	423.656+x	
			$\frac{417.445 + x}{415.45 + x}$	
		//////////////////////////////////	415.45+x 409.088+11	
(7+)		[//////////////////////////////////////	401.81+x	
(7+)		(////////////////////////////////	389.07+x	
			383.21+x	
		/////////////////////////////////	377.0+x	
			$\frac{367.485+x}{359.14+x}$	
		/////////////////////////////////	341.853+x	•
			298.122+x	
		//////////////////////////////////	293.81+x	
(7+)			$\frac{288.141+x}{287.586+x}$	
(7-)			287.580+x 281.53+x	
			266.26+x	
		//////////////////////////////////	256.995+x	
			231.053+x	36 ns
			$\frac{226.586+x}{210.01}$	
			$\frac{212.91+x}{211.437+x}$	
(6+) (6+)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	¥=\$=¥`?\$#\$\$ `````````````````````````````````	207.553+x	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/// 194.032+u	
(6+) ((1)) ((1)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) ((2)) (	2000 00 00 00 00 00 00 00 00 00 00 00 00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	//// <u>171.566+x</u>	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	152.117+x	
			131.753 + x	
2+			0.0	340 ms
				i 7.70 fi

 $^{16}_{69}^{6}\mathrm{Tm}_{97}$

Level Scheme (continued)

Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided

(36-)		9338.8+x	
(34+)	8	8692.2+x	
(22))		997 A . v	
(33+)		52.54.4+x	
(32-)		7969.9+x	
(32+)		7692.5+x	
(32-)		7414.4+x	
(31+)		7247.9+x	
(30-)	7	7063.2+x	
(30+)		3748 9+x	
(29+)		3571.1+x	
(29+)		6396.4+x	
(28-)		6192.9+x	
(27+)		5923.5+x	
(28-)		5725.5+x	
(27+)		5544.9+x	
(26-)		5346.5+x	
(26+)		5064.6+x	
(25-)		4874.2+x	
(25+)		4697.4+x	
(23+)		4481.8+x	
(24+)		4316.92 + x	
(23-)	4	4136.2+x	
(23-)		3923.95+x	
(21+)		3732.3+x	
(22-)		3546.74 + x 3374.8 + x	
(20+) (19-)		3200.6+x	
(19-)		3024.5+x	
(18+)		2785.4+x	
(6+)		266.26+x	
(7-)		256.995+x	
$\frac{(6-)}{(7+)}$		231.053 + x	36 ns
(7+)		211.437 + x	
(6+)		207.553+x	
		194.032+u	
(6+)		171.566+x	
(0+)		132.117 + x 131.753 + x	
(6-)		109.338+x	340 ms
1+		82.298	385 ps
(5+)		74.920+x	
(4+)		33.63/+X	
(3+)		0+x	
2+		0.0	7.70 h

¹⁶⁶Yb ε Decay 1973De22,1963Ja06,1959Gr06

Parent ¹⁶⁶Yb: E=0; $J\pi$ =0+; $T_{1/2}$ =56.7 h *1*; Q(g.s.)=305 *14*; %ε decay=100. Others: 1959Br17, 1961Gr33, 1963Pa08, 1967Bu14, 1995Ma07.

¹⁶⁶Tm Levels

E(level) [†]	J ^{π‡}	T_1/2		Comments				
0.0 82.29 <i>2</i>	2 + 1 +	7.70 h 3 385 ps 40	Т _{1/2} : fr	T _{1/2} : from Adopted Levels. <3 ns (1973De22, K x ray-82γ delayed coin), <0.45 ns (1966Ja16).				
† From E [.] ‡ From A.	γ. dopted Le	vels.						
				β ⁺ ,ε Data				
Eε	E(lev	el) <u>I</u> ε [†]	Log ft	Comments				
(223 14)	82.29	100	4.91 8	$\epsilon K = 0.748 \ \theta; \ \epsilon L = 0.191 \ 7; \ \epsilon M + = 0.0612 \ 23.$ $\epsilon K (exp)/\epsilon = 0.73 \ +6-2 \ (1963Ja06).$				
† Absolut	e intensit	y per 100 deca	iys.					
				<u>γ(¹⁶⁶Tm)</u>				
No nga (11	ewγrays mma-ray 967Bu14)	attributable t s (1973De22). . No γ rays att	o ¹⁶⁶ Yb deca Noγrays at ributable to	y found for 10-keV <eγ<150-kev; 0.3%="" a="" authors="" deduce="" for="" limit="" of="" such<br="">tributable to ¹⁶⁶Yb decay found for 20-keV<eγ<65-kev; limit="" ιγ(82.3γ)<br="" ιγ<0.05="">¹⁶⁶Yb decay found for 86-keV<eγ<250-kev; (1967bu14).<="" limit="" td="" ιγ(82.3γ)="" ιγ<0.003=""></eγ<250-kev;></eγ<65-kev;></eγ<150-kev;>				

No transitions with $20 \le E_{\gamma} \le 500$ were found in coincidence with 82.3γ (1995Ma07). I γ (Tm K x ray)/I γ (82.3 γ)=8.68 21 (1973De22); =8.17 23 (1963Ja06).

Eγ	E(level)	Mult.	_α	I(γ+ce) [†]	Comments
82.29 <i>2</i>	82.29	М1	5.43	100	$\begin{split} & ce(\mathbf{K})/(\gamma+ce)=0.707\ 6;\ ce(\mathbf{L})/(\gamma+ce)=0.1075\ 19;\ ce(\mathbf{M})/(\gamma+ce)=0.0240\ 5;\\ & ce(\mathbf{N}+)/(\gamma+ce)=0.00646\ 1\mathcal{Z}.\\ & ce(\mathbf{N})/(\gamma+ce)=0.00561\ 1\mathrm{I};\ ce(\mathbf{O})/(\gamma+ce)=0.000806\ 15;\ ce(\mathbf{P})/(\gamma+ce)=4.35\times10^{-5}\ 8.\\ & Mult.:\ \alpha(\mathbf{K})exp=4.2\ +3-\mathcal{Z}\ (1963Ja06);\ \mathbf{K}:\mathbf{L}=580\ 50:100\ (1959Br17),\\ & K:\mathbf{L}12:\mathbf{L}3:\mathbf{M}=630\ \mathcal{Z}00:100:1.1\ \mathcal{Z}:14\ \mathcal{Z}\ (1959Gr06).\\ & E\gamma:\ from\ 1973De22.\ Others:\ 82.3\ 1\ (1961Gr33);\ 82.0\ 1\ (1963Pa08). \end{split}$

 † $\,$ Absolute intensity per 100 decays.

¹⁶⁶Yb ε Decay 1973De22,1963Ja06,1959Gr06 (continued)

¹⁶⁰Gd(¹¹B,5nγ),¹⁶⁴Dy(⁶Li,4nγ) 2002Ca46,1996Dr07

2002Ca46:

¹⁶⁰Gd(¹¹B, 5nγ), E(¹¹B)=61 MeV; GASP array (40 Compton-suppressed large volume Ge detectors, and a multiplicity filter of 80 BGO elements); measured Eγ, Iγ (for E(¹¹B)=61 MeV), γγ coin, γγ(θ)(DCO).

¹⁶⁴Dy(⁶Li,4nγ), E(⁶Li)=38 MeV. Measured lifetimes in the 10-100 ns range using a high resolution planar Ge detector and an 11-element NaI(Tl) multiplicity filter.

1996Dr07: 160 Gd(11 B,5n γ) E=57-66 MeV; 95.1% 160 Gd metallic target; pulsed beam; three HPGe detectors (two low energy detectors and one coaxial). Isomers in 166 Tm identified. Measured E γ , I γ (for E(11 B)=61 MeV), $\gamma\gamma$ coin, T $_{1/2}$ (recoil shadow method).

¹⁶⁶Tm Levels

E(level) [†]	Jπ‡	T _{1/2}	Comments
0.08	0		
0.0e	$Z + (2 \cdot)$		Educed and the Witness estimated Ex. 50 he Witness (4.) to 0, the maintenant
0+x -	(3+)		$E(\text{level})$: x<16 keV from estimated $E\gamma$ <50 keV for (4+) to 2+ transition.
$33.05 + x^{\circ} 8$	(4+)		
$74.92 + x^{1} 4$	(5+)	0.4.0 0.7	
$109.34 + x^{3}$ 5	(6–)	340 ms 25	E(level): 1996Dr07 assumed that the isomer depopulated via an unseen transition of energy x<25 keV. However, based on energy differences, 2002Ca46 find x=0.2 5 and conclude that the isomer decays directly via a 34.42 to the 75+x level.
			$r_{1/2}$ 34.4 $r_{1/2}$ (1930) 107). Other, 570 ms 40 from K x ray(r) (1930) 107). Fulsed beam (1.5 on, 4.s off).
131.69+xj <i>19</i>	(5+)		
152.11+x ^e 8	(6+)		
$1\ 7\ 1\ .\ 5\ 6+x\ ^{c}$	(6+)		
207.32+x ⁱ 11	(6+)		
211.44+x ^d 8	(7+)		
$2\ 1\ 2$. $8 + x^m$ 3	(5+)		
$2\ 2\ 6\ .\ 5\ 5+x\ f\ 9$	(7+)		
$2\ 3\ 1\ .\ 0\ 5+x\ a\ 8$	(6-)	36 ns 2	$T_{1/2}$: from 2002Ca46. Other $T_{1/2}$: 2 µs <i>1</i> from 59.5 γ (t) and 62.2 γ (t) measured with pulsed beam (90 µs on, 90 µs off) (1996Dr07) and <2 µs from 121.7 γ (t).
$256.52 + x^{\#} 21$	(7-)		
$266.29 + x^{@}$ 16	(6+)		
281.4+x ⁿ 3	(6+)		
287.54+x ^b 17	(7-)		
287.89+x j 10	(7+)		
293.73+x ^l 17	(6+)		
298.12+x ^c 10	(8+)		
341.74+x ^e 9	(8+)		
367.45+x ^a 17	(8-)		
376.9+x?9 5	(5-)		
$383.13 + x^m$ 18	(7+)		
$389.05 + x^{\&}$ 18	(7+)		

¹⁶⁰Gd(¹¹B,5nγ),¹⁶⁴Dy(⁶Li,4nγ) 2002Ca46,1996Dr07 (continued)

E(level) [†]	$J\pi^{\ddagger}$	E(level) [†]	$J\pi^{\ddagger}$	E(level) [†]	$_J\pi^{\ddagger}$
$401.64 + x^{0}$ 20	(7+)	$1486.7 + x^{\&}4$	(13+)	3246.19+x ^b 24	(21 -)
417.45+xd 10	(9+)	$1510.09 + x^{\#} 23$	(13-)	3308.58+x ^f 16	(21+)
423 . $21+x^h$ 18	(7-)	$1\ 5\ 2\ 8\ .\ 3\ 4+x\ b\ 2\ 1$	(15-)	3328.11+x ⁱ 23	(20+)
$4\ 2\ 3\ .\ 4\ 8+x\ ^i$ 11	(8+)	$1\ 5\ 9\ 9$. $5\ 7+x\ d$ 12	(15+)	3345.13+x ^d 16	(21+)
$4\ 2\ 3\ .\ 9\ 2+x\ ^{\S}$ 21	(8–)	1603.88+x ⁱ 14	(14+)	$3\ 3\ 5\ 4$. 5 + x P 4	(20-)
453.8+x?P 4	(6-)	1609. $95+x$ f 12	(15+)	$3374.7 + x^n 4$	(20+)
$460.30 + x^{f} 10$	(9+)	$1612.04 + x^{n}$ 16	(14+)	3449.1+x ^h 3	(21-)
$469.13 + x^{D}$ 18	(9-)	1625.27 + xP 21	(14-)	$3457.6 + x^{1}5$	(20+)
$488.59 + x^{11}$ 17	(8+)	$1634.69 + x^{1} 20$	(14+)	$3546.76 + x^{a} 24$	(22 -)
$504.79 + x^{2} - 10$ 507.83 + x ² - 11	(8+)	$1722.03 + x^{@} 13$ $1723.0 + x^{@} 13$	(13 -)	$3623.41 + x^{\circ} 17$ $3640.6 + x^{\circ} 1$	(22+)
524.54 + xJ 9	(9+)	$1768.45 \pm x^{\$}24$	(14-)	$3686.72 + x^{e}$ 18	(22+)
$529.72 + x^{@}$ 18	(8+)	$1770.39 + x^{a} 22$	(16 -)	$3699.0 + x^k 4$	(21+)
539.76+x9 <i>21</i>	(7-)	1774.78+x j 14	(15+)	3699.8+x9 4	(21-)
563.37+x ^c 11	(10+)	$1836.42 + x^{c}$ 13	(16+)	$3732.4 + x^m$ 3	(21+)
$592.48 + x^{a}$ 18	(10-)	$1858.45+x^{m}18$	(15+)	3788.1 + xg 4	(22-)
605.20+xe <i>9</i>	(10+)	1865 . $88 + x^{e}$ 13	(16+)	3804.2+x ⁰ 6	(21+)
$609.06 + x^{\#} 20$	(9-)	1873.38+x9 22	(15-)	$3923.98 + x^{b} 25$	(23-)
634.34+x ⁿ 11	(9–)	$1900.7 + x^0 3$	(15+)	$3975.85 + x^{f}$ 18	(23+)
$634.48 + x^{III}$ 17	(9+)	1908.53 + x8 14	(16-)	$4018.4 + x^{1}4$	(22+)
637.74 + xP I9 $640.40 + x^{0} 17$	(8-)	$1976.4 + x^{4}$	(15+)	$4024.64 + x^{c}$ 18 $4058.7 + x^{D}$ 4	(23+)
$687 86 \pm x^{\&} 19$	(9+)	2037.1+x = 5 2038.61+x = 22	(13-)	$4038.7 + x^{1} 4$ $4136.1 + x^{1} 4$	(22 -)
$733.18 \pm x^{d}$ 11	(11+)	$2120.36 + x^{f}$ 13	(17+)	$4232.6 + x^{a}$	(23)
733.49+x ⁱ 11	(10+)	$2122.31 + x^{i}$ 18	(16+)	4316.91+x ^c 20	(24+)
736. $29 + xg$ 10	(10-)	$2\ 1\ 2\ 3$. $0\ 8 + x\ P$ 22	(16-)	4328 . $4 + x^k$ 4	(23+)
737.66+x ^b 19	(11-)	2131.85+x ^d 12	(17+)	4359.1+x j 4	(23+)
756.05 + xq 19	(9-)	$2153.10 + x^{n}$ 16	(16+)	4391.02+x ^e 21	(24+)
$772.73 + x^{I}$ 11	(11+)	$2181.59 + x^{1}$ 22	(16+)	4420.9 + xq 5	(23-)
$778.48 + x^{11}$ 16 700.20 x 1 15	(10+)	$2237.44 + x^{11}$ 14	(17-)	$4481.9 + x^{11}5$	(23+)
799.30 + x = 13 811 92 + x § 22	(10+)	$2243.3+x^{-3}$ 2307 60+x ^a 22	(10+) (18-)	4542.0+x85 4642.9+xb3	(24 -)
849.96 + xj 10	(11)	$2315.4 + x^{\$}$ 4	(16)	$4697.4 + x^{f} 4$	(25+)
$863.5 + x^{@}3$	(10+)	2357.18+x <i>j</i> 16	(17+)	4755.7+xd 4	(25+)
887.29+xP 18	(10-)	$2\ 3\ 8\ 1$. 2 0 + x ^c 1 4	(18+)	$4\ 7\ 6\ 2\ .\ 6+x\ ^{i}$ 5	(24+)
904.47+x ^a 20	(12-)	$2399.16+x^{m}\ \ {\cal 2}0$	(17+)	$4874.1 + x^{h}5$	(25-)
915.99+x ^h 10	(11-)	$2\ 4\ 1\ 1$. $9\ 6 + x\ q$ 23	(17-)	$4957.7 + x^{a}$ 3	(26-)
922.13+x ^c 11	(12+)	$2423.33 + x^{e}$ 14	(18+)	$5021.4 + x^{K}$ 5	(25+)
$946.15 + x^e 10$	(12+)	2463.43 + x8 16	(18 -)	$5064.6+x^{\circ}4$	(26+)
$965.93 + x^{m} Ib$	(11+)	$2479.0+x^8$ 5	(17+)	5111.0+xJ 4 5150 8+xe 4	(23+)
$1030.41 + x^{\#} 22$	(11+) (11-)	$2601.7 + x^{\#}$ 4	(17+) (17-)	5346.2 + x8.6	(26-)
1043.03+xg 11	(12 -)	$2614.30 + x^{b}$ 23	(19 -)	$5407.2 + x^{b}4$	(27 -)
1045.40+x9 <i>19</i>	(11-)	$2690.07 + x^{f}$ 14	(19+)	$5480.3 + x^{f}$ 5	(27+)
$1055.5 + x^{\&}$ 3	(11+)	$2\ 6\ 9\ 6$. $2\ 1+x\ ^{i}$ 20	(18+)	5544 . 8 + x d 5	(27+)
$1 \ 0 \ 9 \ 2 \ . \ 3 \ 5 + x \ b \ 2 \ 0$	(13-)	$2\ 7\ 0\ 2$. $6\ 8+x\ p$ 24	(18–)	5559.2+x ⁱ 6	(26+)
1130.28+x ⁱ 13	(12+)	$2\ 7\ 1\ 3$. $7\ 4+x\ d$ 14	(19+)	$5662.5 + x^{h}$ 6	(27–)
1132.36+x ^d 11	(13+)	$2751.10 + x^{n}$ 19	(18+)	5725.6+xa 5	(28-)
$1156.45 + x^{11}$ 15	(12+)	$2785.3 + x^{1}4$	(18+)	$5766.5 + x^{K}6$	(27+)
$1157.08 + x^{1} I2$ $1172.02 + x^{1} I6$	(13+)	$2814.92 + x^{m}$ 10	(19 -)	$5873.6+x^{\circ}5$	(28+)
1213 99 + xP 21	(12+)	$2893 2 + x^{\$} 4$	(18+) (18-)	$5972 7 + x^{e} 5$	(27+)
$1263.3 + x^{@}4$	(12+)	$2902.81 + x^{a}$ 23	(20 -)	$6192.6 + x^{g}$ 7	(28-)
$1\ 2\ 6\ 3$. $6\ 4+x\ $ $^{\ }$ 23	(12-)	2978.39+x ^c 16	(20+)	$6\ 2\ 2\ 7\ .\ 2+x\ ^b\ 5$	(29-)
$1\ 2\ 6\ 8\ .\ 6\ 7+x\ j$ 11	(13+)	2987 . $29+xj$ 24	(19+)	6329 . $6 + x f - 6$	(29+)
$1279.73 + x^{h}$ 11	(13-)	3016 . $45 + x^m$ 24	(19+)	6396.3+x ^d 6	(29+)
1299.71+x ^a 21	(14-)	3024.4+x9 <i>3</i>	(19-)	$6407.2 + x^{i} 7$	(28+)
$1350.26 + x^{\circ} 11$	(14+)	$3031.59 + x^e$ 16	(20+)	$6503.1 + x^{11}$ 7 $6542.6 - x^{2}$ 5	(29 -)
$1379 \ 26 \pm v^{\text{m}} \ 17$	(14+) (13+)	$3100 5 \pm x 5$	(20-)	6571 2+vk 7	(30 -)
$1397.05 + x^0 17$	(13+)	3108.9 + x 5		$6748.9 + x^{c} 6$	(30+)
1416.61+x9 <i>21</i>	(13-)	3133.8+x ⁰ 5	(19+)	6788.7+x j 6	(29+)
1433.82+xg <i>12</i>	(14-)	3200 . 1 + x [#] 5	(19–)	6861.0+x ^e 6	(30+)

¹⁶⁶Tm Levels (continued)

¹⁶⁰ Gd(¹¹ B,5nγ), ¹⁶⁴ Dy(⁶ Li,4nγ)	2002Ca46,1996Dr07 (continued)			
166-				

				n Levels (continued))
E(level) [†]	Jπ [‡]	E(level) [†]	Jπ [‡]	E(level) [†]	J π [‡]
7062.9+xg 7	(30-)	$7692.5 + x^{c}$ 7	(32+)	8352.6+x ^h 8	(33-)
7111.2+x ^b 6	(31-)	$7816.0 + x^{e}$ 7	(32+)	$8692.2 + x^{c}$ 7	(34+)
7247.9 + xf 7	(31+)	7969.7+xg 8	(32-)	8845.1+x?e 7	(34+)
$7\ 3\ 0\ 4$. $5+x\ i$ 7	(30+)	8065 . $8 + x^b$ 7	(33-)	9338.8+x ^a 8	(36-)
7313.9+x ^d 7	(31+)	$8234.4 + x^{f}$ 7	(33+)		
7398.7+x ^h 8	(31-)	$8297.4+x^{d}$ 7	(33+)		
$7414.5 + x^{a}$ 6	(32-)	$8345.3 + x^a$ 7	(34-)		

 $^\dagger~$ From least-squares fit to Eq.

‡ Authors' values, based on measured DCO ratios, intensity balance, deduced band properties, B(M1)/B(E2) ratios for intraband transitions and alignment.

§ (A): $K\pi=6-$, $\alpha=0$ (π 7/2[404])+(ν 5/2[523]) band.

(B): $K\pi = 6-$, $\alpha = 1$ (π 7/2[404])+(ν 5/2[523]) band.

@ (C): $K\pi=6+$, $\alpha=0$ (π 7/2[523])+(ν 5/2[523]) band.

& (D): $K\pi = 6+$, $\alpha = 1$ (π 7/2[523])+(ν 5/2[523]) band.

a (E): $K\pi=6-$, $\alpha=0$ (π 7/2[523])+(ν 5/2[642]) band.

b (F): $K\pi=6-$, $\alpha=1$ (π 7/2[523])+(ν 5/2[642]) band.

c (G): $K\pi = 6+$, $\alpha = 0$ (π 7/2[404])+(ν 5/2[642]) band.

d (H): $K\pi=6+$, $\alpha=1$ (π 7/2[404])+(ν 5/2[642]) band.

e (I): $K\pi = 2+, 3+, \alpha = 0 (\pi 1/2[411]) \otimes (v 5/2[642])$ band.

f (J): $K\pi=2+,3+$, $\alpha=1$ (π 1/2[411]) \otimes (v 5/2[642]) band. g (K): $K\pi=2-,3-, \alpha=0$ (π 1/2[541]) \otimes (ν 5/2[642]) band.

h (L): $K\pi{=}2{-},3{-},~\alpha{=}1~(\pi~1/2[541]){\otimes}(\nu~5/2[642])$ band.

i (M): $K\pi = 2+, 3+, \alpha = 0 \ (\pi \ 1/2 \ [541]) \otimes (\nu \ 5/2 \ [523]) \ band.$

j (N): $K\pi = 2+, 3+, \alpha = 1 (\pi 1/2[541]) \otimes (v 5/2[523])$ band.

k (O): $\alpha{=}1$ band including (21+) 3699+x level.

l (P): $K\pi=1+,2+, \alpha=0$ (π 1/2[541]) \otimes (v 3/2[521]) band.

 m (Q): K\pi=1+,2+, $\alpha{=1}$ (π 1/2[541]) $\otimes(\nu$ 3/2[521]) band.

 n (R): K\pi=1+, $\alpha{=}0$ (π 7/2[404])–(v 5/2[642]) band.

⁰ (S): $K\pi=1+$, $\alpha=1$ (π 7/2[404])-(ν 5/2[642]) band.

 p (T): K = 1-, $\alpha = 0$ (m 7/2[523])-(v 5/2[642]) band.

9 (U): $K\pi=1-$, $\alpha=1$ (π 7/2[523])-(ν 5/2[642]) band.

$\gamma(^{166}Tm)$

$E\gamma^{\dagger}$	E(level)	Iγ§	Mult. [‡]	δ#	Comments
34.42 2	1 0 9 . 3 4 + x		E1		Eγ: from 1996Dr07.
					Mult.: from intensity balance at the 109+x level (1996Dr07).
35.1 3	$2\ 6\ 6\ .\ 2\ 9+x$		E1		Mult.: α(exp)≤3 (2002Ca46).
39.9 1	$2\ 1\ 1$. $4\ 4 + x$	25.0	M1 (+E2)		Mult.: $\alpha(exp)=9$ 3 (2002Ca46).
41.29 7	74.92 + x	23	M1+E2	0.33	Εγ: from 1996Dr07.
					Other Ιγ: Ι(41.29γ):Ι(74.92γ)=6.7 9:17.8 9 in 1996Dr07.
					Mult.,δ: from intensity balance at the 74.9+x level (1996Dr07).
53.8 <i>3</i>	341.74 + x	4.7			
56.4 3	287.54 + x				
59.49 7	$2\ 3\ 1$. $0\ 5+x$		E1		Εγ: from 1996Dr07. Other Εγ: 59.3 <i>3</i> (2002Ca46).
					Mult.: α(K)exp=1.18 24 (1996Dr07) from I(K x ray) in coincidence with 59γ.
62.22 5	171.56 + x	$\geq 1 \ 1 \ 2$	E1		DCO=0.8 1.
					Eγ: from 1996Dr07; 62.2 <i>1</i> in 2002Ca46.
					Mult.: from $\alpha(K)exp=1.21$ 24 (1996Dr07) from I(K x ray) in coincidence with 62 $\gamma.$
74.5 3	$2\ 2\ 6\ .\ 5\ 5+x$	5.0			
74.92 4	74.92 + x	62	E2		DCO=0.95 7.
					Eγ: from 1996Dr07. Eγ=74.9 1 in 2002Ca46.
					Mult.: from α(K)exp=2.0 3 (1996Dr07); Q from DCO.
75.7 <i>3</i>	$2\ 0\ 7$. $3\ 2+x$				
76.9 <i>3</i>	453.8 + x?				
77.3 1	$1\ 5\ 2\ .\ 1\ 1+x$	41			
79.9 1	$3\ 6\ 7$. $4\ 5+x$	44	D+Q		DCO=0.83 8.

				$\gamma(^{166}Tm)$ (6	continued)
$E\gamma^{\dagger}$	E(level)	<u>Ιγ</u> §	Mult. [‡]	δ#	Comments
80.6 1	287.89 + x	5.2	M1 , E2		Mult.: α(exp)=7 2 (2002Ca46).
	605.20 + x	5.9	D		DCO=0.54 9.
81.1 <i>3</i>	2 9 3 . 7 3 + x				
86.0 <i>3</i>	$5\ 3\ 9$. $7\ 6+x$				
86.7 1	$2 \ 9 \ 8 \ . \ 1 \ 2 + x$	33	D+Q		DCO=0.8 1.
86.8 <i>3</i>	488.59 + x	4.8			
89.6 <i>3</i>	383.13 + x				
94.4 3	266.29 + x	0.0	D		
96.2 3	940.10+x	3.0			DCO=0.57 15
98.0 1	131 69 + x	13.9	D(+Q) D(+Q)		DCO-0.7.2
100 8 3	524 54 + x	4 9	D(+Q)		DCO=0.7 2
101.6 /	469.13 + x	60	D+Q		DCO=0.80 7.
101.8 3	736.29+x	2.6	v		
102.1 1	$2\ 1\ 1$. $4\ 4+x$	18.0	E1		DCO=0.66 8. Mult.: α(exp)≤1.5 (2002Ca46).
103.0 <i>3</i>	504.79 + x	2.2			
107.7 3	$4\ 0\ 1$. $6\ 4 + x$	3.4			
115.2 1	$3\ 4\ 1$. $7\ 4+x$	22.1	D		DCO=0.66 8.
118.2 1	756.05 + x	13.3	D+Q		DCO=0.75 12.
118.4 1	$1\ 5\ 2\ .\ 1\ 1+x$	52	(E2) [@]		DCO=1.0 1.
119.3 1	417.45 + x	35			DCO=0.97 12.
120.2 3	401.64 + x	4.6			
121.4 3	504.79 + x	3.4			E. from 1000D-07 Other E. 101 5 2 (0000C-40)
121.7 1	231.05 + x				EY: from 1996Dr07. Other EY: 121.5 3 (2002Ca46).
199 7 1	389 05+x	10.0			$1\gamma: 1(121.71\gamma):1(39.488\gamma)=7.5\ 25:10.5\ 20\ (1990D107).$
122.7 1	$592.03 \pm x$	78			DCO-0.9.1
126.5 3	298.12 + x	2.2	(E2) [@]		DCO=1.1.2
	634.34 + x	2.2	D		DCO=0.5 1.
127.0 3	1043.03 + x	4.4	D+Q		DCO=0.49 7.
128.7 3	778.48 + x	4.1	D(+Q)		DCO=0.59 15.
129.5 3	$6\ 3\ 4$. $4\ 8+x$	2.6			
131.1 1	887.29 + x	16.9	D(+Q)		DCO=0.75 25.
132.0 3	$2\ 0\ 7$. $3\ 2+x$				
135.6 1	$4\ 2\ 3\ .\ 4\ 8+x$	6.4			
135.7 1	287.89 + x	9.0	D		DCO=0.72 8.
136.6 3	367.45+x	1.7	D 0		
140.6 1	529.72 + x	7.0	D+Q		DC0=0.8 2.
141.7 3	293.73 + X	1 9			
143.7 3	605 20 + x	4.2 9.4	D		DCO=0.69.8
145 1 1	737 66 + x	69	D+0		DCO=0.79 <i>9</i>
145.7 3	634.48 + x	4.0			DCO=1.0 2.
145.8 1	563.37+x	25.0	(M1+E2)	+0.54 14	DCO=1.06 10.
147 5 2	256 52				δ : +0.40 to +0.67 from DCO.
147.5 3	236.52 + x 226.55+x	100	(F2) [@]		DCO-0.98.5
154 0 3	1433 82 + x	2.9	$D(\pm 0)$		DCO=0.67, 13
156.3 3	287.89 + x	2.5	-(-,,)		
156.9 <i>3</i>	266.29 + x				
158.1 1	687.86 + x	5.1			
	1045.40 + x	18.6			DCO=0.9 2.
160.9 1	649.49 + x	7.8	D(+Q)		DCO=0.62 20.
162.9 3	$5\ 0\ 4$. $7\ 9+x$	2.8			Eγ: 162.6 keV in figure 1 of 2002Ca46.
164.8 3	799.30 + x	2.6			
165.1 3	$1\;4\;3\;3\;.\;8\;2+x$	1.5			
166.5 3	965.93 + x	0.8			
166.8 1	904.47 + x	59	D+Q		$D \cup U = 0.85 \delta$.
167.2 3	423.92 + x	0 0	D		DCO_{-0} 67 12
168 5 1	112.13+X	2.8 15.3	$D(\pm 0)$		DCO=0.07 12.
169.7 1	733.18+x	16 0	$D(\mp q)$		DCO=1.2 2.
4		10.0			

$\gamma(^{166}Tm)$ (continued)

$E\gamma^{\dagger}$	E(level)	Iγ§	Mult. [‡]	δ#	Comments
170 1 2	999 19 m				
173.5 3	946.15 + x	2.4	(M1 (+E2))	-0.11 14	DCO=0.5 1.
					δ : -0.25 to +0.03.
174.4 3	$1 \ 1 \ 5 \ 6 \ . \ 4 \ 5 + x$	1.2			
175.4 3	863.5+x	4.4			
179.7 1	915.99 + x	5.3	(M1+E2)	-0.15 10	DCO=0.46 7.
181.6 /	469.13 + x	7.3	D		
185.4& 3	524.54+x 609.06+x	20.0 5.5&	D		
10011 0	1908.53 + x	1.2&			
187.4 3	965.93+x	4.8	D		DCO=0.70 15.
187.8 1	1 0 9 2 . 3 5 + x	48	M1 + E2	+0.23 8	DCO=0.80 8.
188.9 1	$9\ 2\ 2$. 1 3 + x	10.2			DCO=1.1 2.
189.7 1	3 4 1 . 7 4 + x	62	(E2) [@]		DCO=0.93 8.
190.4 3	1156.45 + x	1.3			
191.9 3	1055.5+x 1042.02+x	3.8	D		DCO-0 55 11
192.8 3	799 30 + x	4.3	D		
196.8 3	423.48 + x	3.8			
202.5 3	811.92 + x	3.2			
202.5 1	$1 \ 4 \ 1 \ 6 \ . \ 6 \ 1 + x$	14.0	D(+Q)		DCO=0.66 15.
203.8 <i>3</i>	982.17 + x	2.9			
206.0 1	$4\ 1\ 7\ .\ 4\ 5+x$	24.0	(E2) [@]		DCO=0.92 17.
206.0 3	1379.26+x	0.7			
206.93	1173.02 + x	1.6	(F 2) @		
207.2 3	488.33+x 1299 71+x	33 8	(E2) -		DCO=0.85.7
207.7 3	1263.3+x	3.4	Diq		
208.6 1	1625.27 + x	10.8			
209.0 1	733. $49 + x$	8.4	D+Q		DCO=0.3 2.
210.2 1	$1 \ 1 \ 3 \ 2 \ . \ 3 \ 6 + x$	6.6			DCO=1.1 2.
210.9 3	$1\ 1\ 5\ 7$. $0\ 8+x$	4.0	D		DCO=0.6 2.
211.1 1	504.79+x	8.0			
211.2 3	736.29 + x	5.0∝ 1.0&	D		DCO=0.60 12.
211 4 3	634 34 + x	1.0∝ 2.6			
214.7 3	637.74 + x	2.9			
216.1 1	423.48 + x	13.1	(E2) [@]		DCO=0.9 2.
216.1 3	756.05 + x	1.7			
217.8 3	$1\; 3\; 5\; 0\; .\; 2\; 6 + x$	3.8			DCO=1.1 2.
218.2 3	$1 \ 0 \ 3 \ 0$. $4 \ 1 + x$	2.0			
219.9 3	507.83 + x	1.9	D		DCO=0.60 15.
222.1 3	1379.20+x 1486.7+x	0.0	D		DC0=0.7 2.
223.6 3	1397.05 + x	1.0			
225.1 1	592.48 + x	20.8			
228.5 1	736.29 + x	6.6	(E2) [@]		DCO=1.02 8.
228.6 1	$1\;5\;2\;8\;.\;\;3\;4+x$	26.6	D+Q		DCO=0.80 <i>9</i> .
231.8 3	1599.57 + x	2.4			
233.2 <i>3</i>	$1\ 2\ 6\ 3$. $6\ 4+x$	1.7			
233.7 1	460.30 + x	107	(E2) [@]		DCO=1.08 5.
235.03	1308.00+x	2.7	(F2) [@]		$DCO_{-1} \otimes 2$
236.7 1	1279.73 + x	7 8	(E2) D		DCO=0.56 6.
236.8 3	1836.42 + x	1.4			
237.1 3	$1\ 7\ 2\ 3$. $9+x$	2.0			
240.4 3	$1\; 3\; 9\; 7\; .\; 0\; 5+x$	2.8			
241.9 3	$1\; 6\; 0\; 9\; .\; 9\; 5+x$	1.2			
242.1 1	1770.39+x	19.0	D+Q		DCO=0.77 <i>8</i> .
242.5 3	529.72 + x	0.9	D.O		
244.8 <i>1</i> 246.4 3	849.96+X 1510 09±v	20.1 1 0	n+A		DCU=0.40 <i>9</i> .
247.9 3	649.49 + x	4.8	(E2) [@]		DCO=0.9 2.

				$\gamma(^{166}Tm)$	(continued)
$E\gamma^{\dagger}$	E(level)	Iγ§	Mult.‡	δ#	Comments
248.1 3	756.05 + x	4.0			
248.1 1	1873.38+x	9.5			
248.2 3	772.73+x				
249.3 <i>3</i>	1599.57 + x	1.3			
	$2\ 3\ 8\ 1$. $2\ 0+x$	0.4			
249.7 1	887.29 + x	5.9			
249.8 1	$2\ 1\ 2\ 3$. $0\ 8+x$	7.0	D(+Q)		DCO=0.68 15.
251.4 1	$6\ 3\ 4$. $4\ 8+x$	5.8	(E2) [@]		DCO=0.9 2.
252.6 3	$1 \ 9 \ 7 \ 6 \ . \ 4 + x$	1.1			
252.9 <i>3</i>	887.29 + x				
254.5 3	2120.36 + x	1.9			
258.5 3	1768.45 + x	0.7	D		
259.73	1609.95 + x	2.5	D		DCO=0.58 12.
263.5.5	529.72 + x 605.20 + x	1.5	(F2) [@]		
265 3 1	$563 \cdot 37 + x$	50	$(E_2)^{@}$		DCO=0.97 12
266.1 3	649.49 + x	2.2	(12)		D00-0.07 12.
266.2 3	1865.88 + x	1.8			
266.6 3	2690.07+x	0.9			
267.0 3	1397.05 + x	0.8			
268.2 1	$2\ 0\ 3\ 8$. $6\ 1+x$	11.6	D+Q		DCO=0.91 8.
268.6 1	$7\ 3\ 7\ .\ 6\ 6+x$	28.8			
268.6 3	$2\ 0\ 3\ 7$. 1 + x	0.6			
269.0 1	$2\ 3\ 0\ 7$. $6\ 0+x$	14.7	(D+Q)		DCO=0.9 2.
269.2 <i>3</i>	$2\ 2\ 4\ 5$. $5+x$	0.9			
270.3 1	$1 \ 0 \ 4 \ 3 \ . \ 0 \ 3 + x$	10.4	D		DCO=0.69 <i>12</i> .
271.1 3	423.21+x	5.0			DCO=0.8 2.
271.7 3	423.48 + x	4.5			
273.5 3	733.49 + x	0.7			DCU=1.2 3. Even from a mail ranky (of May 12, 2002) from one of the
					$E\gamma$: from e-mail reply (of May 12, 2003) from one of the authors (M A Cardona). The Ex-325 7 in Table I and fig. 1
					of 2002Ca46 is a typographical error
276.1 1	$736 \cdot 29 + x$	18.7	D		DCO=0.58 7.
276.7 3	1433.82 + x	3.2	D		DCO=0.56 6.
277.1 3	3308.58+x	0.2			
278.4 3	$2\ 3\ 1\ 5$. $4+x$				
280.4 3	$1\ 1\ 3\ 0$. $2\ 8+x$	2.7	D(+Q)		DCO=0.5 2.
281.3 1	$5\ 0\ 7$. $8\ 3 + x$	10.9	D		DCO=0.60 8.
281.7 1	$9\ 1\ 5\ .\ 9\ 9+x$	7.1			
283.9 <i>3</i>	$2\ 1\ 2\ 0$. $3\ 6+x$	1.0			
286.5 <i>3</i>	$2\ 6\ 0\ 1$. 7 + x				
288.6 1	2902.81+x	8.7	D+Q		DCO=0.8 2.
289.0 3	1722.83 + x	3.5	D+Q		DCO=0.39 7.
289.3 3	1045.40+x	4.1			
289.0 3	2411.90+x	4.5	(E2) [@]		$DCO_{-1} 04 12$
200 8 3	$7702 68 \pm x$	5.4 4 0	(E2)		DC0=1.04 12.
200.0 0	2713.74 + x	4.0 0.6			
291.4 3	2893.2 + x				
291.7 3	2423.33+x	1.3			
292.6 1	634.34 + x	15.3	(E1 (+M2))	0.0 1	DCO=0.57 8.
					δ: -0.1 to +0.1 from DCO.
294.5 1	799.30 + x	10.4			
295.6 3	$2\ 1\ 3\ 1$. 8 5 + x	1.9	$\mathbf{D} + \mathbf{Q}$		DCO=1.07 8.
296.8 <i>3</i>	$1 \ 9 \ 0 \ 0$. $7 + x$	1.0			
298.8 <i>3</i>	687.86 + x	2.0			
299.1 3	1908.53+x	0.6	D		DCO=0.6 2.
300.7 1	3546.76 + x	5.6	(D+Q)		DCO=0.9 2.
306.8 1	1043.03 + x	24.7	(E2) ^{ee}		$DCO = 1.00 \ b.$
200 0 2	2014.30+X	10.3	D+Å		$D \cup U = 0.70 \delta.$
300.9 3	2090.07+X 1939 R±v	U.9 2 1			
309.1.3	1045.40 + x	0.9			
000.1 0	101011014	0.0			

				γ(¹⁶⁶ Tm) ((continued)
Εν [†]	E(level)	τγ§	Mult ‡	δ#	Comments
310.0 1	733.49+x	14.4	(E2)@		DCO=1.1 2.
310.7 1	915. $99+x$	13.7	D		DCO=0.66 7.
312.0 1	904.47 + x	46	(E2)@		DCO=0.99 7.
312.5 1	772.73+x	66	(E2) [@]		DCO=1.00 6.
314.7 3	423.92+x		(50)@		1γ : 1(315γ):1(167γ)=5.3 4:7.4 3 from γγ coin (1996Dr07).
315.8 1	733.18+x	59	(E2) e		DCO=1.00 8.
318.3 3	3031.59+x	1.1			
320.6 3	687.86+x	1.7			
322 6 1	$1268 67 \pm x$	1.8	(M1 + F2)	-2 6 21	DCO-0.34.10
522.0 1	1200.07+x	5.2	(111+122)	-2.0 24	$\delta_{1} = 5.0 \text{ to } = 0.18$
325 5 1	849 96 + x	31 2	(E2) [@]		DCO=1.03.8
326.8 3	1213.99 + x	5.0	(E2) [@]		DCO=1.1 2.
329.1 3	2237.44 + x	1.8			
330.1 <i>3</i>	$3\ 3\ 5\ 4$. 5 + x	1.7			
330.4 <i>3</i>	3308.58 + x	0.6			
331.5 1	965.93 + x	10.8	(E2) [@]		DCO=1.00 8.
332.6 <i>3</i>	$2\ 7\ 1\ 3$. $7\ 4+x$	1.3			
332.7 1	982.17 + x	8.8			
333.6 1	$1\ 2\ 7\ 9$. $7\ 3+x$	7.5	D		DCO=0.51 8.
333.9 <i>3</i>	863.5+x	1.4			
335.1 3	1603.88+x	0.6			Eγ: 2002Cta46 show 343.6γ from this level, but level-energy difference supports 335.1γ (placement adjusted by compilers). See comment for 343.6γ from 1611.97+x level. This conclusion is confirmed in an e-mail reply (of May 12, 2003) from one of the authors (M.A. Cardona).
341.0 1	946.15 + x	61	(E2) [@]		DCO=1.04 <i>6</i> .
341.8 <i>3</i>	3686 . $72+x$				
343.6 <i>3</i>	1612.04+x	0.8			Eγ: 2002Ca46 show 335.1γ from this level, but level-energy difference supports 343.6γ (placement adjusted by compilers). See comment for 335.1γ from 1603.75+x level. This conclusion is confirmed in an e-mail reply (of May 12, 2003) from one of the authors (M.A. Cardona).
343.6 1	3246.19 + x	7.7	D+Q		DCO=0.67 18.
345.3 <i>3</i>	3699.8 + x	0.8			
351.5 3	2814.92+x	1.0			
352.2 3	3975.85 + x	0.2			$I_{\rm eff} = I(0, f(0)) \cdot I(10, f(0)) = A(0, f(f(0))) + A(0, f(f(0))) + A(0, f(0))) + A(0, f(0)) + A(0, f(0)) + A(0, f(0))) + A(0, f(0))) + A(0, f(0)) + A(0, f(0))) + A(0, f($
352.6 1	609.06+x	6.6 2.0	D		$1\gamma: 1(353\gamma):1(185\gamma)=4.8 5:5.8 4 \text{ from } \gamma\gamma \text{ coin } (1996\text{Dru7}).$
354.5 5	1722.83+x 1092.35+x	49	(F2) [@]		DCO-1.06.8
356.5 3	3449.1+x	0.4	(22)		
358.8 1	922.13 + x	60	(E2) [@]		DCO=1.08 10.
359.0 <i>3</i>	4058.7 + x	0.5			
363.7 1	$1\ 2\ 7\ 9$. $7\ 3+x$	15.5	(E2) [@]		DCO=1.10 <i>6</i> .
366.8 <i>3</i>	$3\ 3\ 4\ 5$. $1\ 3+x$	0.9			
367.7 <i>3</i>	$1\ 0\ 5\ 5\ .\ 5+x$	2.4			
371.3 1	$1\ 4\ 1\ 6\ .\ 6\ 1+x$	7.3	(E2) [@]		DCO=0.96 20.
372.6 3	1722.83 + x	1.3			
373.7 1	1173.02+x	9.2			
377.2 1	3923.98+x	5.5	(D+Q)		DCO=0.9 2.
377.9 1	1156.45 + x	8.8			
3/8.3 3	2153.10+x	0.2	(E9)@		
388 0 1	811 09±v	40 79	(E4)		DCO-1.02 J.
389 4 1	849 96±v	13 0			DCO=1.0.3
390.8 1	1433.82 + x	34.7	(E2) [@]		DCO=1.03 5.
391.0 3	733.49+x	0.3	、 <i>、</i>		
395.3 1	1299.71 + x	50	(E2) [@]		DCO=0.97 6.
396.8 1	$1\ 1\ 3\ 0$. $2\ 8+x$	11.0			DCO=0.8 2.
396.9 <i>3</i>	$1\ 3\ 7\ 9$. $2\ 6+x$	3.3			
399.2 1	$1 \ 1 \ 3 \ 2 \ . \ 3 \ 6 + x$	5 1	(E2) [@]		DCO=1.03 7.
399.9 <i>3</i>	$1\ 2\ 6\ 3$. $3+x$	2.5			
401.1 3	$2\ 2\ 3\ 7$. $4\ 4+x$	0.7			

$\gamma(^{166}Tm)$ (continued)

$\underline{} E \gamma^\dagger$	E(level)	Iγ§	Mult.‡	Comments
401.3 <i>3</i>	4024.64 + x	0.4		
404.1 1	1350. $26+x$	15.3	Q	DCO=0.95 8.
406.9 3	1774.78 + x	1.3		
410.7 3	4642.9 + x	1.8		
411.3 1	$1\ 6\ 2\ 5\ .\ 2\ 7+x$	7.4		
413.4 1	$1\ 3\ 7\ 9$. $2\ 6+x$	12.3	(E2) [@]	DCO=1.07 12.
414.9 1	$1 \; 3 \; 9 \; 7 \; . \; 0 \; 5 + x$	6.5		
418.6 1	$1\ 2\ 6\ 8\ .\ 6\ 7+x$	17.7	(E2) [@]	DCO=1.04 8.
421.4 1	$1 \ 0 \ 3 \ 0$. $4 \ 1 + x$	5.8	(E2)@	DCO=1.0 1.
421.9 1	$1\ 3\ 6\ 8$. $0\ 6+x$	44	(E2)@	DCO=0.98 7.
428.2 1	$1\ 3\ 5\ 0$. $2\ 6+x$	48	(E2) [@]	DCO=1.07 8.
430.9 <i>3</i>	1603.88 + x	0.7		
431.2 3	1486. $7+x$	2.3		
433.6 <i>3</i>	2814.92 + x	0.2		
436.0 1	1528.34+x	43	(E2) [@]	DCO=1.01 <i>6</i> .
439.0 3	1612.04 + x	4.8		
442.3 3	1599.57+x	3.2	(50)@	
443.1 1	1/22.83+x	13.0	(Ez)e	DCO = 1.03 5.
445.9 1	1368.06+X	11.0	Q	DC0=1.0 <i>1</i> .
447.0 3	1003.88+X	2.0		
431.7 1	1203.04 + x	3.0	(F2) [@]	DC0-1.08 6
452.91	$1612 0.4 \pm x$	52	$(E_2)^{@}$	DCO=1.080
455.01	1012.04+x 1873.38+x	8 2	(E2)	DC0=1.0 2.
450.8 1	$1723 9 \pm x$	8.2 23		
461 3 3	$1858 45 \pm x$	1 5		
461 9 3	1634 69 + x	4 6		
467.2 1	1599.57 + x	37	(E2) [@]	DCO=1.16 14.
468.3 3	1836.42 + x	4.1	Q	DCO=1.0 1.
470.7 1	1770.39+x	41	(E2) [@]	DCO=0.98 <i>6</i> .
473.6 1	1603.88 + x	7.6		
474.7 1	1908.53 + x	25.3	(E2) [@]	DCO=1.00 3.
477.6 3	$1\ 6\ 0\ 9$. $9\ 5+x$	2.3		
478.3 3	$1 \ 6 \ 3 \ 4 \ . \ 6 \ 9 + x$	5.0		
479.2 1	$1\ 8\ 5\ 8$. $4\ 5+x$	10.5	(E2) [@]	DCO=0.98 11.
479.7 1	$1 \ 5 \ 1 \ 0 \ . \ 0 \ 9 + x$	5.2		
481.6 3	$1\ 6\ 1\ 2$. $0\ 4+x$	3.8		
486.2 1	1836.42 + x	37.5	(E2) [@]	DCO=1.06 <i>10</i> .
489.9 3	1976.4 + x	2.0		
496.1 3	1268.67 + x	1.4	-	
497.8 1	1865.88 + x	31.2	(E2)@	DCO=1.04 8.
	2123.08 + x	7.0		
503.6 <i>3</i>	1900.7+x	4.2		
504.4 3	1634.69 + x	0.8		
504.8 <i>1</i>	1768.45 + x	5.4	(E2) [@]	
506.1 <i>1</i>	1774.78 + x	12.2	(E2) [@]	$D \cup U = 0.96 I \theta$
510.2 <i>I</i>	2038.01+X	31.3	(EZ) @	$D \cup U = 0.93 IZ.$
510.3 1	2120 26	14.9	(F2)@	
510.4 1	2120.30 + x	14.2	(E2)~ (E2)@	DCO=1.00.5
515 4 2	2237.44 + X	8.1 1.5	(E2)~	DC0=1.00 <i>5</i> .
518 9 9	2122 21 ₊ v	1.J 9.5		
518 7 3	2152.51+x 2153.10+x	2.5		
520.8 1	2120.36+x	16 0	Q	DCO=1.00 5.
521.4 3	2245.5+x	2 3	ч ^р	v.
521.9 /	2131.85 + x	12.9	0	DCO=1.00 6.
527.0 3	2037.1+x	4.8	(E2)@	DCO=1.2 2.
532.3 1	2131.85+x	10.6	(E2) [@]	DCO=1.03 8.
537.3 1	2307.60+x	33	(E2) [@]	DCO=1.01 7.
538.5 1	2411.96 + x	6.9		
540.7 1	2399.16 + x	9.0	(E2) [@]	DCO=0.98 15.
541.0 3	$2\ 1\ 5\ 3$. $1\ 0+x$	3.0		
544.5 3	$2\ 5\ 2\ 0$. $9 + x$	1.3		

$\gamma(^{166}Tm)$ (continued)

$E\gamma^{\dagger}$	E(level)	Iγ§	Mult.‡	Comments
544.8 1	2381.20 + x	26.7	(E2) [@]	DCO=1.04 15.
546.9 1	2181.59 + x	6.2	()	
547.0 3	$2\ 3\ 1\ 5$. $4+x$	3.6		
549.2 1	$2\ 1\ 5\ 3$. $1\ 0+x$	6.3		
554.9 1	$2\ 4\ 6\ 3$. $4\ 3 + x$	16.6	(E2) [@]	DCO=1.04 <i>6</i> .
557.4 1	$2\ 4\ 2\ 3$. $3\ 3+x$	22.3	(E2) [@]	DCO=0.97 10.
558.3 <i>3</i>	2690.07 + x	1.6		
564.4 3	$2\ 6\ 0\ 1$. 7 + x	3.2		
569.7 1	2690.07 + x	19.4	(E2)@	DCO=1.00 5.
573.9 1	2696.21 + x	8.1		
575.6 1	$2\ 6\ 1\ 4\ .\ 3\ 0+x$	34	(E2)@	DCO=0.99 15.
577.5 1	2814.92 + x	5.4	(E2)@	DCO=1.1 1.
577.9 3	2893.2+x			
578.3 3	2479.0+x	2.7		
579.6 1	2702.68+x	7.1	(50)@	
581.9 1	2/13./4+x	16.1	(E2) [©]	DCO 10 %
588 2 2	2087 20+x	7.1	$(\mathbf{E}\boldsymbol{z})^{-1}$	DC0=1.0 2.
593 8 3	2839 3+x	1 0		
595.8 5	2902 81 + x	25 6	(E2) [@]	DCO=0.96.9
597.2 1	2978.39 + x	20.8	$(E_2)^{@}$	DCO=0.93 15.
598.0 1	2751.10 + x	7.7	(E2) [@]	DCO=0.9 2.
598.4 3	3200.1+x		· · ·	
603.7 <i>3</i>	2785.3 + x	3.5		
608.2 1	3031.59 + x	16.4	(E2)@	DCO=1.1 1.
612.3 3	$3\ 0\ 2\ 4$. 4 + x	3.8		
617.2 <i>3</i>	$3\ 0\ 1\ 6$. $4\ 5+x$	2.1		DCO=1.0 2.
618.5 1	$3\ 3\ 0\ 8$. $5\ 8+x$	14.2	(E2) [@]	DCO=1.04 8.
621.5 <i>3</i>	$3\ 1\ 0\ 0$. 5 + x	0.8	-	
623.6 <i>3</i>	3374.7+x	3.0	(E2) [@]	DCO=1.0 2.
629.1 1	3092.54 + x	8.6	(E2) [@]	DCO=1.01 8.
629.4 <i>3</i>	4328.4+x	0.5		
629.9 3	3108.9 + x	0.9	(50)@	
	2987.29+X	3.0	$(E_2)^{\circ}$	
631.4 1	3343.13+x 3246.10+x	11.4 22.4	$(E_2)^{\circ}$	DCO=0.92.
631 9 1	3240.13+x 3328.11+x	6 2	(12)	BC0-1.03 0.
634.2.3	3449.1+x	3.4	(E2) [@]	DCO=0.9 1.
643.8 1	3546.76+x	20.3	(E2) [@]	DCO=0.98 8.
645.0 1	3623.41 + x	12.0	(E2) [@]	DCO=0.98 24.
651.9 <i>3</i>	$3\ 3\ 5\ 4$. 5 + x	4.8		
653.4 <i>3</i>	3640.6+x	4.0	(E2)@	DCO=0.9 2.
654.8 <i>3</i>	$3\ 1\ 3\ 3$. $8 + x$	0.7		
655.1 1	3686 . $72+x$	10.0	(E2) [@]	DCO=1.0 1.
659.3 <i>3</i>	$3\ 0\ 1\ 6$. $4\ 5+x$	3.2		DCO=1.2 2.
660.0 <i>3</i>	$4\ 3\ 5\ 9$. $1+x$	1.0		
667.3 1	3975.85+x	7.6	(E2) [@]	DCO=1.02 15.
670.4 <i>3</i>	$3804 \cdot 2 + x$	0.5		
672.3 3	3457.6+x	1.2		
0/J.4 3	3099.8+X	Z.5	(F2)@	
011.81 67951	3923.98+X	14./	(E2) [©]	DCO=1.00 9.
682 5 3	$3699 0 \pm v$	0.2	(Ec)	DC0-1.0 4.
685.8 1	4232.6+x	13 3	(E2) [@]	DCO=1.1 1.
687.0.3	4136.1+x	1.6	(E2) [@]	DCO=0.9 1.
687.7 3	4328.4+x	1.4	```	
690.3 <i>3</i>	4018.4 + x	3.9		
693.0 <i>3</i>	$5\ 0\ 2\ 1$. 4 + x	0.6		
693.5 1	$4\ 3\ 1\ 6\ .\ 9\ 1+x$	6.4	(E2) [@]	DCO=1.0 1.
695.6 <i>3</i>	3788 . 1 + x	5.0	(E2) [@]	DCO=0.95 1.
704.2 3	$4\ 0\ 5\ 8\ .\ 7+x$	3.2	-	
704.3 1	$4\ 3\ 9\ 1\ .\ 0\ 2+x$	5.6	(E2)@	DCO=1.1 2.
715.9 <i>3</i>	3732.4 + x	0.7		

				$\gamma(^{166}\text{Tm})$ (continued)		
$E\gamma^{\dagger}$	E(level)	Iγ§	Mult.‡		Comments	
718 5 3	4359 1+x	13				
718.9 1	4642.9+x	6.6	(E2) [@]	DCO=1.1 2.		
721.1 3	4420.9 + x	1.5	()			
721.5 3	4697.4 + x	4.5	(E2) [@]	DCO=0.9 2.		
725.1 1	4957.7 + x	6.3	(E2) [@]	DCO=0.9 2.		
731.1 3	$4\ 7\ 5\ 5$. $7+x$	3.6				
738.0 <i>3</i>	$4\ 8\ 7\ 4$. $1+x$	0.6				
744.2 3	$4 \; 7 \; 6 \; 2 \; . \; 6 + x$	1.4				
745.1 3	3732.4 + x	0.6				
	5766.5+x	0.3				
747.7 3	5064.6+x	3.3	(E2) [@]	DCO=0.92 15.		
749.5 3	4481.9+x	0.3				
751.9 3	5111.0+x	0.8	(59)@			
750 8 3	4342.0+x 5150 8+x	2.2	$(E_2)^{e}$	DCO=1.0.2		
764 3 3	5407 + x	2.5	(12)	DC0-1.0 2.		
767.9 3	5725.6+x	2.8	(E2) [@]	DCO=1.1 2.		
782.7 3	5111.0+x	0.1	. ,			
782.9 <i>3</i>	5480.3 + x	1.9				
788.4 3	5662.5+x	0.4				
789.1 <i>3</i>	5544.8 + x	1.5				
796.6 <i>3</i>	$5\ 5\ 5\ 9$. 2 + x	0.5				
804.2 3	$5\ 3\ 4\ 6$. 2 + x	1.0	(E2) [@]	DCO=1.0 1.		
804.7 3	6571.2 + x	0.1				
809.0 3	5873.6+x	1.5				
812.5 3	5923.5+x	0.4				
817.0 3	6542.6+x	1.3				
820.0 3	6227.2+x	1.0				
840 6 3	5572.7 + x 6503 1 + x	0 3				
846.4 3	6192.6+x	0.6				
848.0 3	6407.2 + x	0.3				
849.3 <i>3</i>	$6\ 3\ 2\ 9$. $6+x$	1.0				
851.5 3	6396.3 + x	0.7				
865.2 3	6788.7 + x	0.2				
870.3 <i>3</i>	7062.9 + x	0.3				
871.9 <i>3</i>	$7\ 4\ 1\ 4$. $5 + x$	0.6				
875.3 3	6748.9+x	0.6				
884.0 3	7111.2 + x	0.4				
888.3 3	7208 7 + x	0.6				
897 3 3	7398.7 + x 7304 5+x	0.2				
906.7 3	7969.7 + x	0.1				
917.5 3	7313.9+x	0.4				
918.3 <i>3</i>	7247.9 + x	0.5				
930.8 <i>3</i>	8345 . $3 + x$	0.2				
943.6 3	7692.5 + x	0.3				
953.9 <i>3</i>	$8\ 3\ 5\ 2$. $6+x$					
954.6 3	8065 . $8+x$	0.2				
955.0 3	7816.0+x	0.3				
983.5 <i>3</i>	8297.4 + x	0.2				
986.5 3 002 = 2	8234.4+X	U.2				
993.3 J 9997 2	JJJJ0.0+X 8692 2±v	0.1				
1029.1 ^a 3	8845.1 + x?	0.1				

[†] ΔE assigned as 0.1 keV for I γ >5 and 0.3 keV for I γ ≤5 based on a general statement by 2002Ca46 that uncertainties range from 0.1 keV to 0.3 keV.

[‡] From $\alpha(exp)$ data based on intensity balance (2002Ca46), when available. From DCO ratios, otherwise; measurements were made using gates on stretched Q transitions, θ_1 =(31.7°, 36°, 144°, 148.3°), and θ_2 =90°.

§ From 2002Ca46, except as noted. Uncertainties range from 10% to 50%, depending on the intensity and complexity of the peak in the gamma-ray spectrum.

From authors' analysis of DCO ratio data (2002Ca46).

Footnotes continued on next page

160 Gd(11 B,5n γ), 164 Dy(6 Li,4n γ) 2002Ca46,1996Dr07 (continued)

$\gamma(^{166}Tm)$ (continued)

@ Q or (Q) from DCO for intraband transition. Δπ=(no) assigned based on band structure.
 & Multiply placed; intensity suitably divided.
 a Placement of transition in the level scheme is uncertain.

(A) $K\pi=6-$, $\alpha=0$ (π 7/2[404]) +(ν 5/2[523]) band. (B) $K\pi=6-$, $\alpha=1$ (π 7/2[404]) +(ν 5/2[523]) band. (C) $K\pi=6+$, $\alpha=0$ (π 7/2[523]) +(ν 5/2[523]) band.

			(19-)			3200.1 + x	_		
(1.2.)									
(18-)		2893.2+x	_				(18+)		2839.3 + x
(B)(17–)	V		(17–)		¥	2601.7+x	_		
(16-)		2315.4+x	(A)(16-)				- (16+)	,	2245.5+x
(B)(15-)	v		(15-)			2037.1+x	(D)(15+)		
(14-)		1768.45+x	(A)(14-)				(14+) (D)(13+)		1723.9+x
(B)(13-)	v		(13-)			1510.09+x	(12+) - (D)(11+)		1263.3+x
(12-)		1263.64+x	(A)(12-)	v			(10+)		863.5+x
(B)(11-)	v		(11-)			1030.41+x	(D)(9+) (8+)		529.72+x
(10-)		811.92+x	(A)(10-)				(D)(7+)	<u></u>	∟∥,
(B)(9-)	<u> </u>	423.92 + x	- (9-)		¥	609.06+x	-(6+)	\\\ <u>\</u>	266.29+x
(B)(7-)	\		(L)(7-)	v			(E)(6-)		Ľ///
(6-)	\	109.34+x	(7-)		V	256.52 + x	(G)(6+)		ـــــــــــــــــــــــــــــــــــــ
(J)(5+)	۱ v v		(A)(6-)	v			(A)(6-)		

(D) Kπ=6+, α=1 (π 7/2[523]) +(ν 5/2[523]) band.	(E) Kπ=6-, α=0 (π 7/2 +(v 5/2[642]) ban	[523]) d.	(F) $K\pi=6-$, $\alpha=1$ (π 7 +(ν 5/2[642]) ba	/2[523]) and.
	(36-)	9338.8+x	_	
	(34-)	8345.3+x	_	
			_(33–)	8065.8+x
	(22.)	7414.5		
	(32-)	V /414.J+X		v 7111.2+x
	_(30-)	v 6542.6+x	(29–)	v 6227.2+x
	(28-)	y 5725 6+x		
	<u></u>		(27–)	y 5407.2+x
	_(26-)	4957.7+x	_	
			_(25–)	4642.9+x
	(24-)	4232.6+x	(E)(24-) v	
	(F)(23-)		(23-)	y 3923.98+x
	_(22–)	y 3546.76+x	(E)(22-) y	
	(F)(21-)	y 2002 81 y	(21-)	y 3246.19+x
(17+) 2520.9+x	(F)(19-)	2302.01+X	(19–)	y 2614.30+x
	(18-)	v 2307.60+x	(E)(18-) y	
(15+) v 1976.4+x	$- \underbrace{(F)(17-)}{(F)(15-)}$	1770.39+x	— <u>(17-)</u> — (E)(16.)	v 2038.61+x
$(C)(14+)$ ψ 1486.7+x	-(14-)	1299.71+x	$- (15-) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	1528.34+x
$\begin{array}{c c} \hline (C)(12+) \\ \hline (11+) \\ \hline 1055.5+x \\ \hline \end{array}$	(12-) (F)(11-)	904.47+x	- (E)(14-) (13-) (F)(12-) (F	1092.35+x
(C)(10+) (9+) (687.86+x)		592.48+x	$- \underbrace{(E)(12-)}_{(E)(10-)}$	737.66+x
(C)(8+)	(8-)	367.45+x	- (E)(10-)	469.13+x
(E)(8-)	$- \underbrace{(6-)}_{(C)(6+)} $	231.05+x	$- \underbrace{(E)(\delta_{-})}_{(\overline{7}_{-})} _{(\overline{7}_{-})} _{(7$	287.54+x
	(A)(6-)	¥/	(E)(6−)¥	·

 $^{166}_{69} Tm_{97}$

 (G) $K\pi=6+$, $\alpha=0$ (π 7/2[404])
 (H) $K\pi=6+$, $\alpha=1$ (π 7/2[404])+(ν 5/2[642])
 (I) $K\pi=2+,3+$, $\alpha=0$ (π 1/2[411]) \otimes (ν 5/2[642])

 +(ν 5/2[642]) band.
 band.
 band.

				(34+)		884	5.1+x
(34+)	8692.2+x	_					
		(33+)	8297.4+x	_			
				(32+)		v 781	6.0 + x
(32+)	v 7692.5+x	_					
		(21 +)	72120				
		(51+)	V 7515.5+X	-			
				(20)		. 696	1 0 . v
(30+)	6748.9+x			(30+)		080	1.0+x
		_					
		()					
		(29+)	v 6396.3+x	_			
				(28.)			19 7
(28+)	5873.6+x			(20+)		<u>y 597</u>	2.1+X
		_					
		(27+)	5544 8±v				
		(27+)	V 3344.0+X	_			
()				(26+)		515	0.8 + x
(26+)	y 5064.6+x	_					
		(25+)	v 4755.7+x	_			
				(24+)		439	01.02 + x
(24+)	4316.91+x	_		<u> </u>			
		(23+)	v 4024.64+x	_			
				(22+)		368	$6.72 \pm x$
(22.)	9699.41	(C)(22.)		(H)(21+)		V	0.7
(22+)	y 3023.41+X	<u>(G)(22+)</u> <u>¥</u>		$\frac{(11)(21+)}{(20+)}$		303	1 59±x
		(21+)	3345.13+x	(H)(19+)			1.00+A
				(18+)		242	3 33+x
				(H)(17+)		J // <u>~~~</u>	0.0011
(20+)	¥ 2978.39+x	<u>(G)(20+)</u> ¥	071071	$-\frac{(16+)}{(16+)}$		186	5.88+x
		$\frac{(19+)}{(1)(10-)}$	Z/13.74+X	- <u>(H)(15+)</u>	\ J	///	
		(1)(18+)	Ť_/	$-\frac{(1)(10+)}{(14+)}$	\¥		8.06+x
(18.)		$(\mathbf{G})(1\mathbf{X}+)$	9101.05	$-\frac{(G)(14+)}{(G)(14+)}$	\parallel	↓ ////	
(IO+) (II)(17+)	¥ 2381.20+X	$-\frac{(1 (+))}{(C)(1 (+))}$	2131.85+X	$-\frac{(J)(13+)}{(J)(13+)}$	<u> </u>	<i>──/////</i>	
$\frac{(\mathbf{r})(1^{\prime})}{(1^{\prime})}$	1000 40		↓ //	-(H)(13+)	\\\ V	/////	
(10+)	1836.42+x			$-\frac{(12+)}{(12+)}$	\\\ <u>`</u>		0.15+x
(H)(15+)	↓ //		1599.57+x	-(G)(12+)	////	¥//////	
(1)(14+)		(1)(14+)	───///────	-(N)(11+)		/////	
(14+)	1350.26+x	$(\mathbf{U})(12+) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	_¥///	$-\frac{(J)(11+)}{(J)(11+)}$	\\\\\¥	_///////──	
(H)(13+)	J //	(10)(13+)	1 1100.00	$-\frac{(0)(11)}{(10+)}$		V ////// 605	.20+x
			1132.36+x	$-\frac{(10+)}{(N)(9+)}$	//// <u>*********************************</u>	₽//////	
	922.13+x	(G)(12+)	¥/	-(1)(9+)	\\\\L	₽/////	
(H)(11+)	1/1		733.18+x	$-\frac{(3)(3+)}{(8+)}$		V ///// 241	74+v
(10+)	563.37+x	(G)(10+)		$-\frac{(3+)}{(F)(7-)}$		<u>₽₩/// ³⁴¹</u>	., 174
(H)(9+)		(9+)	<u>417.45+x</u>	-(1)(7+)	v	Ţ_/////	
(8+)	¥ // 298.12+x	(G)(8+) ↓	+//	$-\frac{(3)(1+)}{(6+)}$	// <u> </u>	159	2 11+v
(H)(7+)	+_//	(7+)	<u>v</u> <u>211.44+x</u>	$-\frac{(3+)}{(1)(5+)}$	\¥	↓ ////	
<u>(6+)</u>	171.56+x	(G)(6+)	<u>↓</u> //	$-\frac{(3)(3+)}{(4+)}$			65±x
(A)(6-)	 _/	(A)(6-)	J	- <u>2+</u>	¥.		00 T A

 $^{166}_{69}$ Tm₉₇

(J) $K\pi = 2+, 3+, \alpha = 1 \ (\pi \ 1/2[411]) \otimes (\nu \ 5/2[642])$ band. (K) $K\pi=2-,3-, \alpha=0 \ (\pi \ 1/2[541])$ $\otimes (v \ 5/2[642]) \text{ band.}$

(33+)	8234.4+x	_	
		(32–)	7969.7+x
		<u> </u>	
(31+)	7247.9+x	_	
		_(30-)	7062.9+x
(29+)	¥ 6329.6+x	- (28-)	6192.6+x
(27+)	v 5480.3+x	- (00.)	
		_(26-)	¥ 5346.2+x
(25+)	v 4697.4+x	_	
		_(24-)	4542.0+x
(23+)	<u>3975.85+x</u>	_	
(G)(22+)	2208 58. 8	- (22)	2799 1
(21+) (I)(20+)	<u>3308.38+x</u>		
(G)(20+)		_	
(19+)	2690.07+x	_	
(G)(18+)		- (20-)	<u>3092.54+x</u>
(H)(17+)	₩	$\frac{-(18-)}{(16-)}$	$\frac{2463.43+x}{1908.53+x}$
(17+)	<u>2120.36+x</u>	-(L)(15-)	
(G)(16+)		(J)(15+)	///
<u>(15+)</u>	1609.95+x	$\frac{-(14-)}{(1)(13-)}$	/// <u>1433.82+x</u>
$(H)(15+) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	¥////	-(N)(13+)	
(G)(14+)	////	- (J)(13+)	¥_/////
(13+)	1157.08+x	-(12-)	//// <u>1043.03+x</u>
(H)(13+)	<u>+</u> ///	$-\frac{(L)(11-)}{(N)(11+)}$	//////
(I)(12+)			
	¥//		////_736.29+x
(N) (9+)	┼──╢/─────	$= (L)(9-) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	
(9+)	¥ /// 460.30+x		507.83+x
$\frac{(I+)}{(I)(6+)} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	220.33+X	- (J)(9+)	
(5+)	74.92+x	-(N)(7+)	
(I) (4+)	↓	(3)(1+)	<u>. v</u>
(3+)	v 0+x	_	

 $^{166}_{69} Tm_{97}$

(L) $K\pi=2-,3-, \alpha=1 \ (\pi \ 1/2 \ [541]) \otimes (\nu \ 5/2 \ [642])$ band. (M) K π =2+,3+, α =0 (π 1/2[541]) \otimes (ν 5/2[523]) band.

(33-)	8352.6+x	_	
(31-)	7398 7+x		
(01)	1000.11X	(30+)	7304.5+x
(29-)	6503.1+x		
		(28+)	6407.2+x
(27-)	v 5662.5+x	-(26+)	5559 2+x
			0000.21X
(25-)	v 4874.1+x		1700.0
		(24+)	¥ 4702.0+X
()			
(23-)	¥ 4136.1+x	(22+)	4018 4+x
			4010.4+X
(21-)	3449.1+x	_	
(K)(20-)		(20+)	y 3328.11+x
(19-)	2814.92 + x	_	
<u>(K)(18-)</u>	/	-(18+)	2696.21 + x
<u>(G)(18+)</u>	V //	-(16+)	$\sqrt{2122.31+x}$
(17-)	2237.44+x	(R)(14+)	
(K)(16-)		- (14+)	1603.88+x
		(N)(13+)	
	// <u>1722.83+x</u>	(P)(12+)	
$(\mathbf{K})(14)$		(R)(12+)	_¥////
	////	- (12+)	////_1130.28+x
(G)(14+)		- (N)(11+)	
(13-)	1279.73+X	- <u>(10+)</u>	<u> </u>
$(\mathbf{K})(12-)$		- <u>(N)(9+)</u>	
		(J)(9+)(H)///// ↓	
(11-) (K)(10.)	// 910.99+X		423.48+x
		(I)(8+)	/////
(J)(10+)		(N)(7+)₩	//////
(K)(8_)	//	(J)(7+)	_¥_/////
(7-)	493 91±v		////_207.32+x
(I)(8+)			±
(I) (6+)	↓	- (N)(5+)	///
		─ (J)(5+) \ <u>`</u>	

 $^{166}_{69}$ Tm₉₇

(N) $K\pi=2+,3+$, $\alpha=1$ (π 1/2[541]) \otimes (ν 5/2[523]) band. (O) α=1 band including
 (21+) 3699+x level.

(P) $K\pi=1+,2+, \alpha=0 (\pi 1/2[541])$ $\otimes (v 3/2[521])$ band.

(Q) $K\pi=1+,2+, \alpha=1 (\pi 1/2[541])$ $\otimes (v 3/2[521])$ band. (R) $K\pi=1+$, $\alpha=0$ (π 7/2[404])-(ν 5/2[642]) band. (S) $K\pi=1+$, $\alpha=1$ (π 7/2[404]) -(ν 5/2[642]) band.

(23+)		4481.9 + x	_					
_(21+)	v	3732.4+x	-			(21+)		3804.2+x
			(20+)		3374.7+x	_		
(19+)		3016.45+x	_			(19+)		3133.8+x
(N)(19+)			(18+) (16+)	\\	2751.10+x 2153.10+x	_		
(N)(17+)			(N)(15+)		/	-(17+)		2479.0+x
(15+)	<u> </u>	$\frac{1858.45 + x}{1858.45 + x}$	(P)(14+)		$1612.04 \pm x$	- (15+)		1900.7 + x
(S)(13+)		1270.26.1	(M)(14+)	///	L///	(M)(14+)	\	
(13+) (P)(12+)		1379.20+X	(N)(13+)		////	(13+)		1397.05+x
(R)(12+)		///	(P)(12+)	∭\\¥		(P)(12+)		
(S)(11+)		///	$\frac{(12+)}{(M)(12+)}$	/////	<u> </u>	(R)(12+) (M)(12+)	∭¥	⊢////
(11+)		965.93+x	$-\frac{(M)(12+)}{(S)(11+)}$			(11+)	///	982.17+x
(P)(10+)		///	(Q)(11+)		-////	(R)(10+)		
(9+)		634 48+x	(10+)		778.48+x	(9+)		649.49+x
(P)(8+)		/// 001.10+x	(S)(9+)		/	(R)(8+)	M	//
(R)(8+)		//	(Q)(9+)	\ <u></u>		(7+)	\\\¥,	401.64+x
(7+)		383.13+x	$(\delta +)$		<u>488.59+x</u>	(Q)(7+)	∭	//
(P)(6+)			(3)(7+)	¥	281 4+x	$(\mathbf{r})(0+)$ (R)(6+)		
(5+)	I	$-2212.8 \pm v$	()			(11)(01)		

 $^{166}_{69}$ Tm₉₇

(T) $K\pi=1-$, $\alpha=0$ (π 7/2[523]) -(ν 5/2[642]) band. (U) $K\pi=1-$, $\alpha=1$ (π 7/2[523]) -(ν 5/2[642]) band.

		(23-)		4420.9+x
(22-)	4058 7+x			
	4000.71X			
(U)(21-) ¥		(21-)		<u>¥ 3699.8+x</u>
(20-)	v 3354.5+x	(T)(20-)	v	
(U)(19-)		(19-)		3024.4+x
(18-)	2702.68+x	(T)(18-)	V	
(II)(17-)		(17-)		2411 96+x
(16-)	2123.08+x	(T)(16-)	∼	¥
(U)(15-)		(15-)		$\sqrt{1873.38+x}$
(14-)	1625 27 + x	(T)(14-)	_\₩	
(U)(13-)		(13-)	7\\	$\sqrt{1416.61+x}$
(12-)	1213.99+x	(T)(12-)		<u>+</u> _//
(U)(11-)	¥///	(11-)	_\\\¥	1045.40+x
(10-)	887.29+x	(T)(10-)		
(U) (9–)		(9-)		756.05+x
(8-)	637.74+x	(K)(10-)	_\\\\¥	+///
(L) (9–)	₩	(T)(8-)		¥///
(U)(7_)	¥_///	(7-)	_\\\\\+₩	<u>539.76+x</u>
(6–)	///_453.8+x	(K)(8-)	_\\\'^	╇━╜╢
(L)(7-)	<u> </u>	(T)(6-)		<u>↓/</u>
(U)(5−) ^{\\} <u>\</u>	<u>i</u> j	(5-)		, 376.9+x

 $^{166}_{69}$ Tm₉₇
			Bands for ¹⁶⁶	³ Tm	(continueu)	
(A)	(B)	(C)	(D)	<u>(36-) (E)</u>	(F)	(G)
				993.5		(34+)
				<u>(34–) v</u>	(33-)	999.7
				930.8	954.6	<u>(32+)</u> γ
				871.9	<u>v (31-)</u>	943.6
				<u>(30-)</u>	884.0	<u>(30+) v</u>
				817.0	<u> (29–)</u>	875.3
				<u>(28–) v</u>	820.0	<u>(28+)</u>
				767.9	<u> </u>	809.0
				<u>(26-) v</u>	764.3	(26+) ¥
				725.1	410.7 718.9	<u>(24+)</u>
				685.8)8.9 (23-)	693.5
				<u>(22-)</u>	377.2 677.8	<u>(22+)</u> (G)
	(19–)			643.8	343.6 (21–)	645.0 (20+) V (G)
(18-) 291.4 577.9	598.4 v (17-)	(18+)	(17+)	(20-) ¥ 28 595.2	$\begin{array}{c} & 631.8 \\ 88.6 \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ $	597.2
(16-) $(16-)$ $(16-$.5 564.4	(16+) v	544.5	<u>(18-)</u> v 26	306.8 	(18+) (G) 249.3 544.8 (H)
547.0 1, 268 (14-)	.6 (15-) 527.0	521.4 (14+)	252.6 (15+) ↓ 489.9	537.3 (16-)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(16+) (G)
(12-) (258.5) $(258.5$	(13-) .4 479.7	460.5 (12+)	(1) $(13+)223.5 (13+)(13+)$	470.7 (14-)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
451.7 (10-) 233.2 233.2 218	(11-)	20'7 399.9 (10+)	.7 (11+) 191.9 V 367.7	395.3 (12-)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
202.5 388.0 (8-)	(9-) (352.6 (9-) (185.4)	(8+) $(8+)$ $(8+)$ (140)	$\begin{array}{c c} .4 & & & (9+) \\ \hline 158.1 & & & \\ \psi & 298.8 & 320. \\ .6 & & & & (7+) \end{array}$	$6 \frac{(10-)}{(8-)} \frac{225.1}{225.1} 12$	$\begin{array}{c} 0.0 \\ 145.1 \\ 3.2 \\ 101.6 \\ \hline \\ 0 \\ 101.6 \\ \hline \\ 0 \\ 0 \\ \hline \\ 0 \\ 0 \\ 0 \\ \hline \\ 0 \\ 0$	$\begin{array}{c} 358.8 \\ (10+) \\ \hline 265.3 \\ \hline 145.8 \\ \hline 145.8 \\ \hline 161 \\ \hline$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.1222.7 1-27 4	(6-) 136.6 7921.7 59	181.6 56.4 (7-) 49	$\begin{array}{c} (8+) \\ (6+) \\ (6+) \\ (2,22) \\ (4) \\$

 $^{166}_{69} Tm_{97}$

 $^{166}_{69}$ Tm₉₇-54

 ${}^{166}_{69}$ Tm₉₇

	¹⁶⁰ Gd(¹¹ B,5	nγ), ¹⁶⁴ Dy(⁶ Li,4	nγ) 2002Ca46,	1996Dr07 (ca	ontinued)	
		В	ands for ¹⁶⁶ Tm	_		
(0)	(P)	(Q)	(R)	(S)	(T)	(U)
(29+)						
804.7						
<u> (27+)</u>						
745 1						
/45.1						
<u> </u>						
693.0						
(O) (23+)	_	(23+)				(23-)
687 7 629 4		749.5			(22-)	721.1
(0) $(21+)$		v (21+)	_	(21+)	359.0	y (21-)
(<u>20</u>)	+)			670.4	345.3	
682.5	745.1	715.9	(20+)	y (19+)	(20-) 330.1	675.4
(N)	672.3	<u> (19+)</u>	623.6 -	<u> </u>	651.9	<u> </u>
<u>(18</u>	+) 659.3	617.2 -	(18+)	654.8	<u>(18-)</u>	612.3
{ N }	603.7	<u>v (17+)</u>	598.0 —	v (17+)	579.6	<u> </u>
<u>(16</u>	+) v	540.7	(16+)	578.3	<u>(16-)</u>	538.5
(N)	546.9	$\begin{array}{r} 378.3 \\ \hline (15+)518.7 \\ 549.2 \end{array}$	541.0	v (15+)		<u>(15–)</u>
(R) (14 (M) (14	+) /	479.2461.3	(14+)	503.6	(14-) $(14-)$ $(14-$	456.8
(N) 504.4	461.9 478.3	(13+) $343.6439.022481.6$	455.6	(13+)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	371.3
(M)	206.9 373.7	413.4 <u>396.9</u> 190.4 (11+) 1 k	$ \frac{12+1}{174.4} \frac{12}{267.0} $) (11+)	168.5 326.8 $158.1(10-)$ 158.1	289.2
(K) 19 <u>3</u> .9-	+) $166.5-294.5$ 164.8	331.5 $187.4(9+)$ 143.7	$7 - \frac{(10+)}{289.9} \times 128.7 - \frac{203.8}{128.7}$	⁵ 332.7 (9+) 2	52.9 249.7 131.1/ 52.9 149.7 131.1/ $52.9 149.7 118.2^{-1}$	205.3 (9-) 216.1
(1) $(8+)$ (K) $(8+)$ (L) 162.9	$\begin{array}{c} 129.5 \\ \hline 211.1 \\ 121.4$	251.4 145.7 (7+)	(8^+) (8^+) (266.1) (8^+) $(86.266.1)$ (107) (107)	$\frac{9}{247.9}$ 247.9 2	14.7 - 98.07 - 248.1 - 76.9	<u>(7−)</u> (5−)
(I)	81.1	<u>170.1</u> <u>v</u> (5+)	<u>(6+)</u> -120.2	2		

 $^{16}_{69}^{6}\mathrm{Tm}_{97}$

 ${}^{166}_{69}$ Tm₉₇

Level Scheme (continued)

Intensities: relative I γ from (¹¹B,5n γ), E=61 MeV. @ Multiply placed; intensity suitably divided

 $^{166}_{69}$ Tm₉₇

Level Scheme (continued)

Intensities: relative I γ from (¹¹B,5n γ), E=61 MeV. @ Multiply placed; intensity suitably divided

(36-)		9338.8 + x
(34+)		8692.2+x
(34-)		8345.3+x
(18+)		2785.3+x
(18+)]	$\sqrt{2751.10+x}$
(19+)		2713.74 + x
(18-)		2702.68 + x
(18+)		2696.21 + x
(19+)		2690.07 + x
(19-)		2614.30+x
(17-)	11/1/1	2601.7+x
(17+)	11/////	2520.9+x
(17+)		2479.0+x
(18-)	1//////	2463.43+x
(18+)		2423.33+x
(17-)		2411.96+x
(17+)		2399.16+x
(18+)		2381.20+x
(17+)		2357.18+x
(16-)		2315.4+x
(18-)		2307.60+x
(16+)		2245.5+x
(17–)		2237.44+x
(16+)		2181.59+x
(16+)		2153.10+x
(17+)		2131.85+x
(16-)		2123.08+x
(16+)		2122.31+x
(17+)		2120.36+x
(17-)		2038.01+x
(15-)		1076 4 ×
(16_{-})		1970.4+x 1908 53+x
(15+)		1900.7±x
(15-)		1873.38+x
(16+)		1865.88+x
(15+)		1858.45 + x
(16+)		1836.42+x
(15+)		1774.78+x
(16-)		1770.39+x
(14-)		1768.45+x
(14+)		1723.9+x
(15-)		1722.83+x
(14+)	U	<u>1634.69+x</u>
(14-)		1625.27 + x
(14+)		1612.04+x
(15+)		<u>1609.95+x</u>
(14+)		1603.88+x
(15+)		1599.57+x
(15-)		<u>1528.34+x</u>
(13-)		1510.09+x
(13+)	J	<u>1486.7+x</u>
(14-)		1433.82 + x
2+		0.0

 $^{166}_{69}$ Tm₉₇

Level Scheme (continued)

Intensities: relative I γ from (¹¹B,5n γ), E=61 MeV. @ Multiply placed; intensity suitably divided

(36-)		9338.8+x
(24)		8602 2
(34+)		8052.2+X
(33+)		8234.4 + x
(32-)		7969.7+x
(
(32+)		7692.5+x
(32–)		7414.5+x
(31+)		7247.9+x
(30-)		7062.9+x
(15+)		1900.7+x
(15-)		1873.38+x
(16+)		$\frac{1865.88 + x}{1858.45 + x}$
(15+) (16+)	7//	1838.43 + x
(15+)		1774.78+x
(16-)		1770.39+x
(14-)		1768.45+x
(14+)	~	1723.9+x
(13-) (14+)	7	1634.69 + x
(14-)	7	1625.27 + x
(14+)		1612.04+x
(15+)		1609.95+x
(14+)		1603.88 + x
(15+) (15-)		1599.37 + x 1528.34 + x
(13-)		1510.09+x
(13+)		1486.7+x
(14-)		1433.82+x
(13-)	~	$\frac{1416.61+x}{1207.05+x}$
(13+) (13+)		1397.03+x 1379.26+x
(14+)		1368.06+x
(14+)		1350.26+x
(14-)		<u>1299.71+x</u>
(13-)		1279.73 + x
(13+) (12-)		1263.64 + x
(12+)		1263.3+x
(12-)		1213.99+x
(12+)		<u>1173.02+x</u>
(13+)		1157.08+x
(12+) (13+)		1156.45 + x
(12+)		1130.28+x
(13-)		1092.35+x
(11+)		1055.5+x
(11-)		1045.40+x
(12-)		1043.03+x
(11-)		1030.41 + x
(11+)		0.0

 $^{166}_{69}$ Tm₉₇

Level Scheme (continued)

Intensities: relative I γ from (¹¹B,5n γ), E=61 MeV. @ Multiply placed; intensity suitably divided

(36-)		9338.8+x
(34+)		8692.2+x
(33+)		8234.4+x
(32-)		7969.7+x
(32+)		7692.5+x
(2.2.)		7414 5
(32-)		7247 9+x
(31+)		1241.3+X
(13+)		1379.26+x
(14+)		1368.06 + x
(14+) (14-)	אר איז איז איז איז איז איז איז איז איז איז	1330.20 + x 1299 71+x
(13-)		1279.73 + x
(13+)		1268.67+x
(12-)		1263.64+x
(12+)		1263.3+x
(12-)		1213.99 + x
(12+) (13+)	7	$1173.02 \pm x$ 1157.08 $\pm x$
(12+)	71	1156.45 + x
(13+)		1132.36+x
(12+)		1130.28+x
(13-)		1092.35+x
(11+) (11-)	7	1055.5+x
$\frac{(11-)}{(12-)}$		$\sqrt{1043.03+x}$
(11-)		1030.41+x
(11+)		982.17+x
(11+)		965.93+x
(12+)		946.15+x
(12+) (11-)	7	922.13+x
(12-)		$\sqrt{904.47+x}$
(10-)		887.29+x
(10+)		863.5+x
(11+)		849.96+x
(10-) (10+)		$\sqrt{\frac{811.92 + x}{799.30 + x}}$
(10+) (10+)		778.48+x
(11+)		772.73+x
(9-)		756.05+x
(11-)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	737.66+x
(10-)		736.29 + x
(10+) (11+)		733.49 + x
(9+)		687.86+x
(9+)	▁║║║ ╠╧╚╩╩╶╝╝╝╝╗╔┊┟╩╪╧┟╩┟╩┟╩┟╩┟╩ ┟╋┢╝┲┊╆╤╤┲┲╖╖╖╢╢	649.49+x
(9+)		634.48+x
(9-)		\ <u>609.06+x</u>
(10+)		<u>605.20+x</u>
(10+)		<u>563.37+x</u>

 $^{16}_{69}^{6}\mathrm{Tm}_{97}$

Level Scheme (continued)

Intensities: relative I γ from (¹¹B,5n γ), E=61 MeV. @ Multiply placed; intensity suitably divided

(36-)		9338.8 + x
(34+)		8692.2 + x
(22))		9924 4 v
(33+)		0234.4+X
(32-)		7969.7+x
(32+)		7692.5+x
(00.)		7414 5
(32-)		7414.5+X
(30-)		7062 9+x
(30-)		6861 0 + x
(30+)		015 00
(11-)	7	915.99 + x
(12-) (10-)		887 29+x
(10+)		863.5+x
(11+)		849.96+x
(10-)		811.92+x
(10+)		799.30+x
(10+)		778.48+x
(11+)		772.73+x
(9-)	7//////	756.05+x
(11-) (10-)	7	736 20+x
(10+)		733.49+x
(11+)		733.18+x
(9+)		687.86+x
(9+)		649.49+x
(8-)		637.74+x
(9+)		634.48+x
(9-)	7	634.34+x
(9-) (10+)		605.20 + x
(10-)		592.48+x
(10+)		563.37+x
(7–)		539.76+x
(8+)		529.72+x
(9+)		524.54+x
(8-)		507.83+x
(8+)		504.79 + x
(9-)		469.13 + x
(9+)		460.30+x
(8-)		423.92+x
(8+)		423.48+x
(7-)		423.21+x
(9+)	A C C C C C C C C C C C C C C C C C C C	417.45+x
(7+)		401.64+x
(7+)		$\sqrt{\frac{389.05 + x}{282.12 + x}}$
(8-)		367 45+x
(8+)		341.74+x
(7-)		256.52+x
2		0.0

 $^{16}_{69}^{6}\mathrm{Tm}_{97}$

Level Scheme (continued)

Intensities: relative I γ from (¹¹B,5n γ), E=61 MeV. @ Multiply placed; intensity suitably divided

(36-)		9338.8+x	
(34+)		8692.2+x	
(33+)		8234 4+x	
(001)		0204.41X	
(32–)		7969.7+x	
(32+)		7692.5+x	
(32-)		7414.5+x	
(31+)		7247.9+x	
(30-)		7062.9+x	
(30+)		6748.9+x	
(29+)		6571.2+x	
(29+)		6396.3+x	
(28-)		6192.6+x	
(10+)	7	563.37+x	
(7-)	n	539.76+x	
(8+)		529.72 + x	
(9+)		524.54 + x	
(8+)		504.79+x	
(8+)		488.59+x	
(9–)		469.13+x	
(9+)		460.30+x	
(6-)		453.8+x	
(8-)		$\frac{423.92 + x}{423.92 + x}$	
(7-)		423.21+x	
(9+)		417.45+x	
(7+)		401.64+x	
(7+)		389.05+x	
(7+)		383.13+x	
(5-)		$\frac{376.9 + x}{376.9 + x}$	
(8+)		367.43 + x	
(8+)		298.12+x	
(6+)		293.73+x	
(7+)		287.89+x	
(7-)		287.54 + x	
(6+)		$\frac{281.4+x}{280.80}$	
(0+) (7-)		256.29 + x	
(6-)		231.05 + x	26
(7+)		226.55+x	so ns
(5+)		212.8+x	
(7+)		211.44 + x	
(6+)		207.32 + x	
(6+)		1/1.56+x	
(5+)		131.69 + x	
(6-)		109.34+x	340 mc
(5+)		74.92+x	540 118
2+		⁷ 00	

 $^{16}_{69}^{6}\mathrm{Tm}_{97}$

Level Scheme (continued)

Intensities: relative I γ from (¹¹B,5n γ), E=61 MeV. @ Multiply placed; intensity suitably divided

(36-)	 9338.8+x	
(34+)	 8692.2+x	
(33+)	 8234.4+x	
(32-)	7969 7+x	
(02)		
(32+)	7692.5+x	
(32-)	 7414.5+x	
(31+)	7247.9+x	
(30-)	 7062.9+x	
(30+)	6748.9+x	
(29+)	6571.2 + x	
(29+)	6396.3+x	
(28-)	6192.6+x	
(27+)	5923.5+x	
(28-)	5725.6+x	
(27+)	5544.8 + x	
(26-)	5346.2+x	
(26+)	 5064 6+x	
(25-)	4874 1+x	
(25+)	4697.4+x	
(23+)	4481 9+x	
(24+)	4316.91+x	
(23-)	4136.1+x	
(23-)	3923.98+x	
(21+)	 3732.4+x	
(22-)	3546.76+x	
(20+)	3374.7+x	
(19-)	3200.1+x	
(19–)	3024.4+x	
(18+)	2785.3+x	
(19–)	2614.30+x	
(17-)	2411.96+x	
(16-)	2123.08 + x	
(6+) (5+)	$\frac{152.11+x}{131.69+x}$	
(6-)	109.34+x	240
(5+)	74.92+x	340 ms
(4+)	33.65+x	
(3+)	$\frac{0+x}{1-x}$	
2+	/ 0.0	

 $^{166}_{69}$ Tm₉₇

¹⁶⁵Ho(α,3nγ) 1995Ma07,1992Dr03

Others: 1988Pe08 (E(α)=40 MeV; Dumond curved crystal spectrometer); 1982El02 (E α =41 MeV).

 $1995 Ma07; \ ^{165} Ho(\alpha,3n\gamma), \ E\alpha=32.6 \ to \ 47.9 \ MeV; \ iron-free \ double \ orange \ \beta \ spectrometer \ with \ NE102 \ plastic \ scintillator \ normalized and the second secon$

(FWHM=1.4 at 125 keV), curved-crystal spectrometer (reflection orders n=1, 2, 3, 5 recorded, energy $\left(\frac{1}{2} \right)^{1/2}$

resolution=50 eV at 100 keV for n=2), two Ge detectors (one planar and one 65 cm³ coaxial). Measured E γ , $\gamma\gamma$ coin (15 ns FWHM), I γ , $\gamma(\theta)$, I(ce) (prompt and delayed), ce-ce coin.

1992Dr03: $E\alpha$ =32.6, 38.1, 43.1, 47.9 MeV; two intrinsic HPGe detectors and a curved-crystal spectrometer; measured

Ey, Iy, yy coin (15 ns FWHM), $\gamma(\theta)$ (15° –90°), $\gamma(t).$

¹⁶⁶Tm Levels

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2}	Comments
0.0 [@]	2 +		Jπ: from Adopted Levels.
0.0+y			E(level): from Adopted Levels, y=x+453.5.
0.0+z ⁿ			E(level): from Adopted Levels, z=x+281.
$0 . 0 + u^{0}$			E(level): from figure 9b of 1995Ma07, u>171.56+x.
$0 \cdot 0 + v$			E(level): from Adopted Levels, v=0.0.
33.620 ^{&} 12	3+		
74.903 [@] 11	4 +		
74.920 2			
77.624 + z 9			
82.298 + v 8	1+		Configuration= $(\pi 7/2[523])-(v 5/2[523]).$
85.973+yk <i>20</i>	(4-)		
$1\ 0\ 1\ .\ 5+z^m\ 1\ 0$			
109.338 4			Not adopted. In Adopted Levels, Gammas, the 34.4γ deexcites the $109.3+x$ isomer directly, as proposed in the $(^{11}B,5n\gamma)$ study by $2002Ca46$.
$109.338 + x^{\$}$	6 -	340 ms 25	T _{1/2} : from Adopted Levels.
			E(level): see comment on 109.338 level.
$1\ 2\ 0\ .\ 2\ 9\ 4+z\ ^{n}$	5		$E(level)\colon 86.918+x$ in 1995Ma07 because order of 87 γ and 120 γ there was the reverse of what is shown here.
131.736 ^c 12	4 -		
149.2083+x <i>17</i>	5-,6-,7-		Level not adopted; in Adopted Levels, Gammas, the order of the 39.9γ deexciting it here and the 62.231γ feeding it is reversed, resulting in E(level)=171.6+x.
152.100 ^{&} 12	5 +		
171.5647+x 19	7+		1995Ma07 propose configuration= $(\pi 7/2[404]) + (\nu 7/2[633])$.
184.07+y ¹ 6	(5-)		
194.032+u ⁰			
207.212+z ⁿ 7			
207.536d <i>12</i>	5 -		
211.4407+x ⁱ 17	6 +		
226.569 [@] 11	6 +		
$2\ 3\ 1$. $0\ 5\ 2\ 3+x\ ^{e}$ 25	6 –	>80 ns	$T_{1/2}$: 80 ns< $T_{1/2}$ <1 µs (1992Dr03) from two-parameter Eγ-t measurements. Note, however, that adopted value is 36 ns 2.
256 . $997 + x^{\#}$ 7	7 –		
$287.585 + x^{f}$ 4	7 –		
288.124 ^c 12	6 -		
298.125+x <i>j</i> 6	7+		
$302.36 + y^k$ 6	(6-)		
334.250+xh 5	(5-)		
341.836 ^{&} 12	7+		
$353.017 + z^m 8$			
367.484+x ^e 6	8 -		
$368.208 + z^n$ 14			
409.088+u ⁰ 23			
415.45+x 20			
417.448+x ⁱ 5	8+		
423.644 ^a 22	6 +		
423.678 ^d 12	7 –		
424.178+x [§] 9	8 -		
433.57+yl 6	(7-)		
460 . $244^{@}$ 12	8 +		
469 . $140+x^{f}$ 7	9 -		
474.890 + xg 13	(6-)		
$496.855+z^{n} 15$			
507.792 ^b 14	7 +		
524.616 ^c <i>12</i>	8 -		
563.386+xĴ <i>6</i>	9+		

¹⁶⁶Tm Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	Comments
k		
$591.72 + y^{K}$ 6	(8-)	
$592.556 + x^{e}$ 9	10-	
605.300×12	9+	
609.621 + x'' 12	9-	
$633.206 + X^{-1} I9$	(7-)	
$642 50 \pm 110 6$	0 +	
$684 \ 337 \pm 7m \ 15$		
$700 755 + z^n 18$		
$733 228 + x^{i} 7$	10+	
733.680 ^d 15	9-	
736.302 ^b 14	9+	
$737.614 + x^{f}$ 11	11-	
760.33+y ¹ 6	(9-)	
772.725 [@] 16	10+	
808.715+xg 20	(8-)	
850.022 ^c 13	10-	
$875.08+z^{n}-\!$		
$904.430 + x^{e}$ 12	12-	
915.964a 14	10+	
922.170+x j <i>9</i>	11+	
946.232 ^{&} 15	11+	
962.98+y ^k 6	(10-)	
$1000.738 + x^{h}$ 22	(9-)	
1042.994 ^D 15	11+	
$1092.228 + x^{1}$ 13	13-	
$1097.65 + z^{m} 4$		
1130.469° <i>10</i>	11-	
$1152.546 + x^2 - 9$ $1157.120^{\circ} - 22$	12+	
$1171 \ 64 \pm y \ 6$	(11 -)	
1208.7 + xg 10	(10-)	
1268.615 ^c 25	12-	
1279.678a 20	12+	
1299.527+x ^e 14	14-	
1313 . $51+z^{n}$ 6		E(level): not adopted; in Adopted Levels, Gammas, a 455.6γ deexcites this band member.
1350.36+x j 4		
1368.11 & 5	13+	
$1419.75 + y^k$ 7	(12-)	
1433.80 ^b 3	13+	
1528.157+xf 17	15-	
$1576.64 + z^m$ 12		E(level): not adopted. See comment on 478.99γ.
$1599.63 + x^{i} 6$	14+	
1610.03 [@] 3	14+	
1612.07 ^u 16	13-	E(level): not adopted; the 481.6γ deexciting level here is placed elsewhere in Adopted Levels, Gammas.
1669.39+y ¹ 7	(13-)	
1722.63ª 8	14+	
1/70.17+xe 4	16-	
1//4.59° 14	14-	
1030.3U+XJ D	15+	
1000.00- 0 1008.46b 5	15+	
2038 33+vf 12	17-	
$2110.1 + x^{i} 4$	16+	E(level): not adopted. In Adopted Levels, Gammas, a 532-39 feeds the 1600+x level not the 510-5
2120 5@ 4	10	multiply-placed γ suggested in 1995Ma07.
212U. 5~ 4	10+	
$2307.01 + X^{\circ} II$ 2381.17 + vi 0	10-	
2450 9& 10	17+	E(level), not adopted. In Adopted Levels. Cammas, a 557 4v feeds the 1866 level, not the 585 0v
~ 100.0 10	17.	suggested in 1995Ma07.
2463.72 ^b 10	17+	
$2\ 6\ 1\ 4\ .\ 0\ 9+x\ f\ 1\ 9$	19-	
		Continued on next page (footnotes at end of table)

¹⁶⁶Tm Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	Comments
2725.7? [@] 11	18+	E(level): not adopted. In Adopted Levels, Gammas, a 569.7 γ feeds the 2121 level, not the 605.2 γ
$2\ 9\ 0\ 6$. $4 + x^{e}$ 8	20-	suggesteu in 1995mau/.

 $^\dagger~$ From least-squares fit to Ey.

 ‡ Authors' values based on deduced band structure and transition multipolarities.

§ (A): $K\pi=6-$, $\alpha=0$ (π 7/2[404])+(ν 5/2[523]) band. 1995Ma07 assigned only the bandhead but a number of unplaced transitions

associated with this band were placed by the evaluator in accord with Adopted Levels, Gammas. # (B): K\pi=6-, α =1 (π 7/2[404])+(ν 5/2[523]) band. See comment on signature partner of this band.

(C): $K\pi=2+$, $\alpha=0$ (π 1/2[411])-(ν 5/2[642]) band. Note that adopted J values are one unit higher than shown here.

& (D): $K\pi=2+$, $\alpha=1$ (π 1/2[411])-(ν 5/2[642]) band. See comment on signature partner of this band.

a (E): Kπ=3+, α=0 (π 1/2[411])+(v 5/2[642]) band. Note that adopted J values are one unit higher than shown here and π is opposite. The configuration proposed in 1995Ma07 also differs from the adopted Kπ=3- configuration=(π 1/2[541])+(v 5/2[642]).

b (F): $K\pi=3+$, $\alpha=1$ (π 1/2[411])+(ν 5/2[642]) band. See comment on signature partner of this band.

c (G): $K\pi=3-$, $\alpha=0$ (π 1/2[411])+(ν 5/2[523]) band. Note that adopted J values are one unit higher than shown here and π is opposite. The configuration proposed in 1995Ma07 also differs from the adopted $K\pi=3+$ configuration=(π 1/2[541])+(ν 5/2[523]).

d (H): $K\pi=3-$, $\alpha=1$ (π 1/2[411])+(ν 5/2[523]) band. See comment on signature partner of this band.

e (I): $K\pi=6-$, $\alpha=0$ (π 7/2[523])+(ν 5/2[642]) band.

f (J): $K\pi=6-$, $\alpha=1$ (π 7/2[523])+(ν 5/2[642]) band.

g (K): K π =5-, α =0 (π 7/2[404])+(v 3/2[521]) band. Note that adopted J values are two units higher than shown here and π is

opposite. The configuration proposed in 1995Ma07 also differs from the adopted K π =6+ configuration=(π 7/2[523])+(ν 5/2[523]).

h (L): $K\pi=5-$, $\alpha=1$ (π 7/2[404])+(v 3/2[521]) band. See comment on signature partner of this band.

i (M): $K\pi=6+$, $\alpha=0$ (π 7/2[404])+(ν 5/2[642]) band. Note that adopted J values are one unit higher than shown here.

j (N): K\pi=6+, $\alpha=1$ (π 7/2[404])+(v 5/2[642]) band. See comment on signature partner of this band.

k (O): $K\pi$ =4-, α =0 (π 7/2[404])+(ν 1/2[521]) band. Note that adopted J values are three units higher than shown here. The configuration proposed in 1995Ma07 also differs. From the adopted K π =1- configuration=(π 7/2[523])-(ν 5/2[642]).

P): $K\pi=4-$, $\alpha=1$ (π 7/2[404])+(ν 1/2[521]) band. See comment on signature partner of this band.

^m (Q): Band #1.

n (R): Band #2.

⁰ (S): Possible band fragment.

$\gamma(^{166}Tm)$

$E\gamma^{\dagger}$	E(level)	$\underline{ \ \ \ } I\gamma^{\dagger}$	Mult.‡	δ§	Comments
(v)	0.0 + v				
(x)	$1 \ 0 \ 9$. $3 \ 3 \ 8 + x$				Eγ: x<25 keV (1995Ma07). However, see comment on 109.338 level.
34.418# 1	109.338	130 50			
39.867 <i>2</i>	149.2083 + x	26 6			Placed from 211+x level in Adopted Levels, Gammas.
53.71	341.836				-
56.532 <i>2</i>	287.585 + x	29 5			
57a	131.736				
^x 5 7 . 5					
$59.488^{\#}2$	$2\ 3\ 1$. $0\ 5\ 2\ 3 + x$	50 <i>3</i>	E1		Mult.: α(L)exp<0.5 (1995Ma07).
62.225 2	171.5647+x	62 15	E1		Mult.: $\alpha(L)exp=0.18 \ 2, \ \alpha(M+)exp<0.1 \ (1995Ma07).$
62.231 <i>2</i>	$2\ 1\ 1$. 4 4 0 7 + x	67 17	E1		Mult.: from α(L)exp<0.3 (1995Ma07).
74.45 3	226.569	3.94 25			
74.903 [@] 11	74.903	11.0@ 21	E2		Mult.: α(L)exp=5.6 15 (1995Ma07).
74.920 ^{#@} 3	74.920	23.5 [@] 25	E2		Mult.: $\alpha(L)exp=5.7$ 4, $\alpha(N+)exp=0.45$ 6 (1995Ma07).
					Transition has both prompt and delayed components.
75.793 4	207.536	8.32 24			
77.195 2	152.100	13.4 3	D+Q		Mult.: $A_2 = -0.41$ 3.
79.888 <i>9</i>	367.484 + x	11.2 4			~
80.584 4	288.124	7.5 15			$L/M += 4.07$ 12 for $80.6\gamma + 80.7\gamma$ (1995Ma07).
80.682 3	605.300	4.6 9			Mult.: L/M+=4.07 12 for 80.67+80.77 (1995Ma07).
82.298 8	82.298 + v	4.50 20			
85.973 20	85.973+y	4.74 19			
86.696 9	298.125+x	20.5 4	M1 + E2	+0.32 2	Mult.: $\alpha(L) \exp[=0.44 \ 20, \ \alpha(M+) \exp[=0.24 \ 10, \ A_2]=+0.20 \ 2$ (1995Ma07).

$\gamma(^{166}Tm)$ (continued)

${f E}\gamma^{\dagger}$	E(level)	$I\gamma^\dagger$	Mult.‡	δ§	Comments
86.918 4	207.212 + z	5.65 30			The evaluator has reversed the order of the 86.9 γ and 120.29 γ in order to achieve consistency with Adopted
00 00 1	0.4.0 0.0.0	1 90 15			Levels, Gammas.
96.23 4 08 1020 5	940.232	1.29 <i>13</i>			
98.1045 5	131.730	7.05 10 7.05 10			
	184.07+y	7.05 <i>10</i>			
100 000 0	207.536	7.05 10			
100.939 3	524.616	4.18 19	141 50	0 00 1	
101.657 3	469.140+x	27.4 5	MI+E2	+0.20 1	Mult.: $A_2 = +0.09 T (1995Ma07)$.
101.929 5	736.302	1.77 3			
102.102 2	211.4407 + x	16.4 3	D		Mult.: $A_2 = -0.25 \ 8 \ (1995 Ma07)$.
115.269 2	341.836	16.6 7			
116.3 ^a	850.022				
118.284 4	302.36 + y	7.68			
118.4 ^a	460.244				
118.480 4	152.100	24.3 23	E2		Mult.: α(L)exp=0.91 23; α(M+)exp=0.22 6 (1995Ma07).
119.324 3	$4\ 1\ 7\ .\ 4\ 4\ 8+x$	24.8 4	M1+E2	+0.44 1	Mult.: $A_2 = +0.37 \ 3$, $A_4 = +0.07 \ 4 \ (1995 Ma07)$.
120.294 5	$1\ 2\ 0$. $2\ 9\ 4 + z$	5.54 16			The evaluator has reversed the order of the 86.9γ and 120.29γ in order to achieve consistency with Adopted Levels, Gammas.
$121.710^{\#}5$	231.0523+x	16.9 <i>3</i>	M1		Mult.: K/L=6.7 15: L/M+=4.1 8: α (L)exp=0.28 9 (1995Ma07).
122.809 4	334 . $250+x$	6.83 16			Placed here as a γ linking to a different band; however, in Adopted Levels, Gammas, this is an intraband
	***				transition.
123.416 6	592.556+x	34.8 5	M1+E2	+0.22 1	Mult.: $A_2 = +0.08 \ 3 \ (1995 Ma07)$.
126.577 4	634.371	2.79 23			
127.030 4	1042.994	2.5 3			
128.645 7	496.855 + z	3.05 18			
129.588 6	$2\ 0\ 7$. $2\ 1\ 2 + z$	1.76 5			
131.215 4	433.57+y	6.5 4			
132.6364	207.536	7.36 21			
135.554 <i>3</i>	423.678	11.8 3	D+Q		Mult.: A ₂ =-0.642 22 (1995Ma07).
136.022 3	288.124	12.05 25	D+Q		Mult.: A ₂ =-0.36 6 (1995Ma07).
136.445 9	367.484 + x	1.02 22			
140.641 12	474.890 + x	7.4 7			
145.061 ^c 3	605.300	10 ^c 3			
	$7\ 3\ 7\ .\ 6\ 1\ 4+x$	30 ^c 6			
145.805 4	353 . $017+z$	6.6 7			
145.939 <i>3</i>	563.386 + x	15.4 7	M1+E2	+0.47 2	Mult.: α (K)exp=0.43 20 (1995Ma07); A ₂ =+0.41 3, A ₄ =+0.09 4 (1992Dr03). A ₄ =+0.09 40 in 1995Ma07 is presumably a misprint.
147.656 7	$2\;5\;6\;.\;9\;9\;7+x$	10.6 3	D+Q		Mult.: A ₂ =+0.47 7, A ₄ =+0.08 9 (1995Ma07). Placement from 1996Dr07.
151.666 1	226.569	100.0 8	E2		Mult.: A2=+0.316 18, A4=-0.036 25 (1995Ma07).
154.184	1433 . 80	2.63 25			
156.409 7	288.124	5.00 4			Mult.: A ₂ =+0.70 21 (1995Ma07).
158.148 14	591.72 + y	8.8 9	D+Q		Mult.: A ₂ =-0.16 5, A ₄ =+0.10 7 (1995Ma07).
158.329 15	$6\ 3\ 3\ .\ 2\ 0\ 6+x$	6.2 9	D+Q		Mult.: A ₂ =+0.14 8, A ₄ =-0.18 11 (1995Ma07).
160.998 15	368 . $208+z$	6.8 <i>3</i>			
166.819 7	904.430 + x	24.3 7	M1 + E2	+0.25 1	Mult.: $A_2 = +0.14 \ 2$, $A_4 = +0.13 \ 2$ (1995Ma07).
167.180 5	424.178+x	7.4 3	(D+Q)		Mult.: $A_2 = +0.29$ 5, $A_4 = -0.10$ 6 (1995Ma07). Placement from 1996Dr07.
167.4	772.725		D 6		
168.609 5	760.33+y	7.39 23	D+Q		Mult.: $A_2 = -0.139 \ 22$, $A_4 = +0.04 \ 3 \ (1995Ma07)$.
169.841 5	733.228+x	7.04	M1+E2	+0.66 19	Mult.: $A_2 = +0.62$ 15, $A_4 = +0.18$ 17 (1995Ma07).
173.46 8	946.232	2.3 <i>3</i>			
175.514 9	808.715 + x	4.8 3			
179.664 7	915.964	3.35 26			
181.552 9	469.140 + x	4.5 5	E2		Mult.: A ₂ =+0.27 11, A ₄ =+0.04 15 (1995Ma07).
182.775 8	524.616	2.58 10	D+Q		$A_2 = -0.47 \ 3 \ (1995 Ma 07).$
184.4 2	$4\ 1\ 5\ .\ 4\ 5+x$		E2		Mult.: α(K)exp=0.21 8 (1995Ma07).
185.441 9	$6\ 0\ 9$. $6\ 2\ 1 + x$	5.84			Mult.: A ₂ =+0.36 <i>16</i> (1995Ma07). Placement from 1996Dr07.

¹⁶⁵ Ho(α, 3nγ)	1995Ma07,1992Dr03 (continued)	
---------------------------	-------------------------------	--

$\gamma(^{166}Tm)$ (continued)

$E\gamma^{\dagger}$	E(level)	Iγ [†]	Mult.‡	δ§	Comments
187 482 6	684 337+z	4 4 8			
187.796 5	1092.228 + x	18.6 7	M1+E2	+0.444	Mult.: $A_{a}=+0.32$ 8 (1995Ma07).
188.925 8	922.170 + x	6.3.4	M1+E2	+0.63.14	Mult.: $A_{c} = +0.58$ 16. $A_{c} = +0.30$ 21 (1995Ma07).
189.733 3	341.836	54.4 6	E2	10100 11	Mult.: $A_{2} = +0.314$ 14. $A_{3} = -0.046$ 19 (1995Ma07).
192 023 11	1000 738 + x	4 0 5	22		
192 8 2	1042 994	2 0 5			
194 032 7	194 032+1	503	D+0		Mult : $A_{0} = -0.67$ 13 $A_{1} = +0.23$ 18 (1995Ma07)
202 649 8	962 98 + v	10 5 3	214		m_{4} (0.2010) (1000 m_{4}).
203.894 12	700.755 + z	2.4.3			
206.004 5	417.448 + x	17.5 4	E2		Mult.: $A_{0} = +0.22$ 2. $A_{1} = -0.01$ 2 (1995Ma07).
207.20 4	207.212 + z	4.5.8			
207.295 5	1299.527 + x	14.4 11	D+Q	+0.17 1	Mult.: $A_{a} = +0.07$ 2. $A_{a} = +0.174$ 3 (1995Ma07).
208.0	1208.7+x		- • •		
208.659 15	1171.64 + v	5.8.3			
209.081 13	733.680	7.2.6	D+Q		Mult.: $A_{0} = -0.46 \ 8 (1995 Ma 07)$.
210.177 3	1132.348 + x	4.4.4	- • •		
210.7 ^a	634.371				
210.893 25	1157.129	9.1 3			
211.671 26	736.302	5.36 25			
215.056 21	409.088+u	3.68 12			
216.139 12	423.678	12.3 3	E2		Mult.: $A_{0} = +0.33$ 6. $A_{4} = -0.10$ 10 (1995Ma07).
218	1350.36 + x	1.8 4			Δ
x219.41 4		3.94			
225.056 17	592.556 + x	10.2 4	E2		Mult.: $A_{0} = +0.31$ 4. $A_{4} = -0.04$ 6 (1995Ma07).
228.533 15	736.302	12.0 10			
228.622 10	1528.157+x	13.0 10	(D+Q)		Mult.: $A_0 = +0.23 \ 2$, $A_4 = -0.01 \ 3 \ (1992 Dr 03)$.
233.675 5	460.244	95.4 15	E2		Mult.: $A_0 = +0.326 \ 13$, $A_4 = -0.054 \ 18 \ (1995 Ma07)$.
236.484 10	524.616	19.4 8			2 4 4
236.688 15	1279.678	4.58 21			
242.05 4	1770.17 + x	7.5 3			
244.718 7	850.022	13.2 8	E1+M2		Mult.: α(K)exp<0.065 (1995Ma07); A ₂ =-0.73 3 (1995Ma07).
248.08 3	1419.75+y	6.0 10	D+Q		Mult.: $A_{2} = +0.08$ 4, $A_{4} = -0.03$ 5 (1995Ma07).
249.52 ^c 7	433.57+y	3.0 ^c 10			L 12
	1599.63+x	1.0 ^c 5			
	1669.39+y	2.5 ^c 10			
251.5 ^a	353.017+z				
263.466 6	605.300	57.5 6	E2		Mult.: $A_2 = +0.326$ 12, $A_4 = -0.054$ 16 (1995Ma07).
265.263 11	563.386 + x	35.6 <i>3</i>	E2		Mult.: $A_2 = +0.34$ 2, $A_4 = -0.06$ 2 (1995Ma07).
268.479 10	$7\ 3\ 7$. $6\ 1\ 4 + x$	15.4 10	E2		Mult.: $A_2 = +0.28 \ 2$, $A_4 = -0.04 \ 3 \ (1995 Ma07)$.
268.5 5	$2\ 0\ 3\ 8$. $3\ 3+x$	4.0 10			
269.32 9	$2\ 3\ 0\ 7$. $6\ 1+x$	1.8 4			
270.30 4	1042.994	6.3 5			
271.543 19	423.644	4.1 5			
276.058 13	736.302	16.8 3	D		Mult.: A ₂ =-0.24 3.
276.6	1433 . 80				
280.446 8	1130. 469	6.2 10			
281.228 16	507.792	22.0 20	D+Q		Mult.: A ₂ =-0.19 6 (1995Ma07).
281.597 13	915.964	8.5 10	E2		Mult.: $A_2 = +0.32$ 15, $A_4 = -0.08$ 20 (1995Ma07).
288.9	1722.63				
289.36 7	5 9 1 . 7 2 + y	6.0 6			
289.615	496.855+z	5.5 6			
292.534 14	634.371	17.9 4	D+Q		Mult.: A ₂ =-0.109 26 (1995Ma07).
x294.379 22		10.4 4			$A_2 = +0.28$ 7, $A_4 = +0.14$ 9 (1995Ma07).
298.89 9	$6\ 3\ 3\ .\ 2\ 0\ 6+x$	4.0 12	(E2)		Mult.: A ₂ =+0.27 4, A ₄ =+0.08 6 (1995Ma07).
306.5 5	$2\ 6\ 1\ 4\ .\ 0\ 9+x$	< 0.7			
306.685 9	1042.994	20.6 4	E2		Mult.: A ₂ =+0.31 4, A ₄ =-0.06 5 (1995Ma07).
309.977 16	733.680	14.3 4	E2		Mult.: A ₂ =+0.353 16, A ₄ =-0.11 3 (1995Ma07).
310.662 19	915.964	11.9 7	D		Mult.: A ₂ =-0.25 5 (1995Ma07).
311.855 19	904.430 + x	21.0 6	E2		Mult.: A ₂ =+0.20 7, A ₄ =-0.06 8 (1995Ma07).
312.484 12	772.725	50.9 <i>9</i>	E2		Mult.: A ₂ =+0.363 19, A ₄ =-0.063 26 (1995Ma07).

$\gamma(^{166}{ m Tm})$ (continued)							
Ev [†]	E(lovel)	ъt	Mult İ	Comments			
<u>Ε</u> γ	E(level)	1.4.	Muit.+	Comments			
314.87 4	424.178 + x			Ey: from (α,3nγ) experiment of 1995Ma07, but data reported only in conjunction with data from a different reaction in 1996Dr07. Placement from 1996Dr07.			
315.735 17	733.228+x	33.5 12	E2	Mult.: $A_2 = +0.32$ 2, $A_4 = 0.00$ 3 (1995Ma07).			
322.27 7	1268.615	3.4 4	D+Q	Mult.: $A_{2}^{2} = -0.73 \ 16 \ (1995 Ma07).$			
325.423 12	850.022	22.5 3	E2	Mult.: $A_{2}^{2} = +0.325 \ 27$, $A_{4} = -0.06 \ 4 \ (1995 Ma07)$.			
326.89 8	760.33+y	5.4 9	E2	Mult.: $A_2 = +0.16$ 7, $A_4 = -0.12$ 10 (1995Ma07).			
331.323 21	684.337 + z	11.7 5	E2	Mult.: $A_2 = +0.33$ 4, $A_4 = -0.03$ 5 (1995Ma07).			
332.58 <i>3</i>	$7\ 0\ 0$. $7\ 5\ 5+z$	11.4 4	E2	Mult.: $A_2 = +0.290$ 16, $A_4 = -0.113$ 21 (1995Ma07).			
333.5	1279.678						
333.78 <i>3</i>	808. 7 1 5 + x	6.4 7					
340.928 10	946 . 232	43.0 4	E2	Mult.: A ₂ =+0.314 25, A ₄ =-0.07 3 (1995Ma07).			
352.66 4	609.621+x			Eγ: from (α,3nγ) experiment of 1995Ma07 but data reported only in conjunction with data from a different experiment in 1996Dr07. Placement from 1996Dr07.			
354.5	1722.63						
354.61 6	1 0 9 2 . 2 2 8 + x	21.9 16	E2	Mult.: $A_2 = +0.32$ 2, $A_4 = -0.07$ 2 (1995Ma07).			
358.80 1	922.170 + x	34.5 8	E2	Mult.: $A_2 = +0.324$ 21, $A_4 = -0.07$ 3 (1995Ma07).			
363.76 5	1279.678	9.54	E2	Mult.: $A_2 = +0.21$ 3, $A_4 = -0.09$ 5 (1995Ma07).			
367.52 5	1000.738 + x	6.4 3	E2	Mult.: $A_2 = +0.47 \ 8, \ A_4 = -0.24 \ 9 \ (1995 Ma07).$			
371.2	962.98+y	0 0 0	Ea				
378.22 5	8/5.08+z	9.8 3	EZ	Mult.: $A_2 = +0.297/24$, $A_4 = -0.12/3$ (1995Ma07).			
384.406 21	1157.129	27.74	E2	Mult.: $A_2 = +0.287 \ 18, \ A_4 = -0.032 \ 24 \ (1995 Ma07).$			
390.77 3	1433.80	18.2 3	E2 E2	Mult.: $A_2 = +0.352 \ 20$, $A_4 = -0.08 \ 4 \ (1995 Ma07)$.			
395.12 2	1130 469	12 0 10	E2	Mult: $A_2 = +0.28 \ 2, \ A_4 = -0.07 \ 2 \ (1995 Ma07)$. Mult: $A_{-+0.27} \ 8 \ A_{0.11} \ 10 \ (1995 Ma07)$			
399 16 2	1130.403 $1132.348 \pm x$	25 8 9	E2	Mult: $A_2 = +0.27$ b, $A_4 = -0.11$ fb (1335Ma07). Mult: $A_2 = +0.31$ 2 $A_3 = -0.06$ 2 (1995Ma07)			
404 14 3	$1350 36 \pm x$	434	22	Mult.: $R_2^{-+0.51}$ 2, $R_4^{0.00}$ 2 (1955 Ma07).			
411 21 11	1000.00+x 1171.64+x	263	0	Mult : $A_{1} = +0.37$ 13 $A_{2} = +0.08$ 13 (1995Ma07)			
413.31 3	1097.65 + z	9.98	ъ Е2	Mult.: $A_0 = +0.37$ 3. $A_4 = -0.04$ 5 (1995Ma07).			
418.603 22	1268.615	15.5 4	Q	Mult.: $A_2 = +0.347$ 26. $A_4 = -0.07$ 4 (1995Ma07).			
421.88 4	1368.11	18.5 21	Q	Mult.: $A_{2} = +0.34$ 4, $A_{4} = -0.19$ 8 (1995Ma07).			
428.19 4	$1\ 3\ 5\ 0$. $3\ 6+x$	21.1 8	Q	Mult.: $A_{2} = +0.37$ 1, $A_{4} = -0.08$ 2 (1995Ma07).			
435.97 2	1528.157 + x	21.0 10	Q	Mult.: $A_{2}^{2} = +0.23 \ 2$, $A_{4}^{2} = -0.12 \ 3 \ (1995 Ma07)$.			
438.43 <i>3</i>	1313.51+z	6.4 6		Placement not adopted.			
442.95 7	1722.63	6.5 10	Q	Mult.: $A_2 = +0.40$ 4, $A_4 = -0.02$ 6 (1995Ma07).			
448.56 6	642.59 + u	4.1 4					
452.904 22	1610.03	13.5 4	Q	Mult.: $A_2 = +0.34$ 6, $A_4 = -0.19$ 9 (1995Ma07).			
456.91 16	$1\ 4\ 1\ 9$. $7\ 5+y$	1.5 4					
467.28 6	1 5 9 9 . 6 3 + x	13.2 8	Q	Mult.: A ₂ =+0.37 5, A ₄ =-0.04 7 (1995Ma07).			
470.60 4	$1\ 7\ 7\ 0$. $1\ 7+x$	10.7 8	Q	Mult.: $A_2 = +0.45$ 19, $A_4 = -0.2$ 2 (1995Ma07).			
474.66 3	1908.46	11.0 20	Q	Mult.: A ₂ =+0.37 12, A ₄ =-0.10 16 (1995Ma07).			
478.99 ^{&} 11	1576.64 + z	8.6 10					
481.60 16	1612.07	4.76					
x486.1							
486.14 4	1836.50 + x	15.8 4	Q	Mult.: $A_2 = +0.30$ 6, $A_4 = -0.03$ 8 (1995Ma07).			
497.77 ^c 3	1669.39+y	1.0 ^c 5					
505 07 10	1865.88	10.00 15					
505.97 13	1774.59	6.9 <i>8</i>					
510.5 3 510.50 4	2038.33+X	18 4		Discoment not adapted, and comment or 0110 or lovel			
510.5 4	2110.1+X	1.5 25		riacement not adopted; see comment on 2110+x level.			
597 99 11	212U.D	8.5°15					
511.30 11 511 67 6	2381 17 v	3.80 81/	0	Mult : $\Lambda = +0.34.7$ $\Lambda = -0.06.0 (19920 m02)$			
555 26 0	201.1/+X	0.14 566	Ŷ	$muit n_2 = +0.347, n_4 = -0.003(1332D103).$			
575 76 14	2614 09±v	4 1 4					
585.0	2450.9			Placement not adopted; see comment on 2451 level.			
				1			

1995Ma07,1992Dr03 (continued)

¹⁶⁵Ho(α, 3<u>nγ</u>)

 † From 1995Ma07; many of these data were already reported in 1992Dr03. E γ data for the six transitions measured by 1988Pe08 using a curved-crystal spectrometer are in excellent agreement.

Footnotes continued on next page

Placement not adopted; see comment on 2726 level.

 $2\ 9\ 0\ 6$. 4 + x

2725.7?

< 0.5

598.8 8

605.2^a

$\gamma(^{166}Tm)$ (continued)

- [‡] From ce data of 1995Ma07, when available; otherwise, from $\gamma(\theta)$ data. 1995Ma07 normalized photon and electron intensity scales using unspecified transitions of known multipolarity from other reaction channels or from ¹⁶⁶Tm decay. $\gamma(\theta)$ data combined with 15 ns FWHM for $\gamma\gamma$ coin have been used by the evaluator to rule out $\Delta\pi$ =yes for a number of transitions, based on RUL.
- § From authors' analysis of $\gamma(\theta)$ (1992Dr03), except as noted.
- # Delayed transition (1995Ma07).
- [®] 1995Ma07 report a close doublet in their curved-crystal spectrometer data; $E\gamma$ =74.920 *3*, $I\gamma$ =23.5 *25* and $E\gamma$ =74.903 *11*, $I\gamma$ =11.021, the former being the isomeric transition.
- & Placement not adopted. In Adopted Levels, Gammas, $E\gamma$ =478.3 3 is placed in the signature partner of the band suggested here and an interband $E\gamma$ =479.1 1 feeds the 875+Z level. However, no other evidence exists for excitation of the signature partner band in (α , $3n\gamma$) and the intraband 461.9 γ expected to accompany the interband 479 γ is absent in (α , $3n\gamma$).
- a Placement of transition in the level scheme is uncertain.
- b Multiply placed; undivided intensity given.
- ^c Multiply placed; intensity suitably divided.
- $^{\mathbf{x}}$ $~\gamma$ ray not placed in level scheme.

 $^{166}_{69} Tm_{97}$

344

 $^{166}_{69}$ Tm₉₇

(P) $K\pi=4-$, $\alpha=1$ (π 7/2[404]) +(ν 1/2[521]) band. (Q) Band #1.

(R) Band #2.

(S) possible band fragment.

 $^{166}_{69}$ Tm₉₇

 $^{166}_{69} Tm_{97}$

 $^{16}_{69}^{6}\mathrm{Tm}_{97}$

 $^{16}_{69}^{6}\mathrm{Tm}_{97}$

¹⁶⁵ Ho(α, 3nγ)	1995Ma07,1992Dr03 (continued)	
---------------------------	-------------------------------	--

or ¹⁶⁶ Tm

(S)

(R)

 $^{166}_{69} Tm_{97}$

Level Scheme

Intensities: relative Ιγ & Multiply placed; undivided intensity given @ Multiply placed; intensity suitably divided

Level Scheme (continued)

Intensities: relative Ιγ & Multiply placed; undivided intensity given @ Multiply placed; intensity suitably divided

Level Scheme (continued)

Intensities: relative Ιγ & Multiply placed; undivided intensity given @ Multiply placed; intensity suitably divided

Level Scheme (continued)

Intensities: relative Ιγ & Multiply placed; undivided intensity given @ Multiply placed; intensity suitably divided

20-	2906.4 + x	
18+	 2725.7	
19-	2614.09+x	
17+	 2450.9	
17+	2381 17+x	
10	0007.01	
10-	2307.01+X	
16+	. 2110.1+x	
17-	2038.33+x	
15+	1908.46	
15+	1836.50+x	
14-	 1774.59	
14+	 1722.63	
(13-)	1669.39+y	
14+	<u>1599.63+x</u>	
15-	 1528.157+x	
(10)	1410 75	
(12-)	- 1419.75+y	
	- 1350.36+x	
12-	1268.615	
(10-)	1208.7+x	
12+	. 1157.129	
13-	 1092.228+x	
(9–)	1000.738+x	
11+	 946.232	
	875.08+z	
(8-)	808.715+x	
9+	 736.302	
	684.337+z	
4-	 131.736	
5	120.294+z	
6-	109.338+x	340 ms
(4)	109.338	
<u>(4-)</u> 1+	82.298+v	
	74.920	
4+	74.903	
3+	33.620	
	0.0+v	
	0.0+y	
2+	/ 0.0	

 $^{166}_{69}$ Tm₉₇

Er(p,xnγ) 1976Sv01

 $^{167}{\rm Er}(p,2n\gamma),~{\rm E}(p){=}8{-}12~{\rm MeV};~91.5\%~^{167}{\rm Er}$ target.

¹⁶⁶Er(p,nγ), E(p)=10, 12 MeV; 94.9% ¹⁶⁶Er target.

1976Sv01 report a few weak transitions, attributed to 166 Tm, observed during their investigations of 165 Tm and 167 Tm using Er(p,xn γ) reactions. Detectors: LEPS, FWHM 0.5 keV at 80 keV (for E γ <300 keV); Si(Li) detector mounted in magnetic spectrometer with 16% momentum resolution (for ce measurements). Measured E γ , E(ce), ce(t).

¹⁶⁶Tm Levels

E(level) [†]	T	Comments
0.0 82.32 <i>6</i>	385 ps 40	T _{1/2} : from ce(L)(t) for 82-keV transition.
† From Eγ		
		$\gamma(^{166}Tm)$

Εγ	E(level)	Comments
x75 82.32 6 x123 x171 x182	82.32	Eγ: from table 1 of 1976Sv01.

 $^{\mathbf{x}}~~\gamma$ ray not placed in level scheme.

Er(p,xnγ) 1976Sv01 (continued)

Level Scheme

Adopted Levels, Gammas

 $Q(\beta^{-}) = -5570 \ \ \mathcal{30}; \ S(n) = 9373 \ \ \mathcal{29}; \ S(p) = 5942 \ \ \mathcal{8}; \ Q(\alpha) = 2329 \ \ \mathcal{8} \ \ 2003 Au03.$

For isotope shift data see, e.g., 1989Sp04, 1991Ho27.

Other reactions:.

 $\overline{1^{24}Sn(^{48}Ca, xn\gamma)}$, E=205 MeV; ESSA30 Compton-suppressed Ge detector array; investigated rotational damping γ quasicontinuum (1989KhZY).

¹⁶⁶Yb Levels

Cross Reference (XREF) Flags

	A ¹⁶⁶ Lu B ¹⁶⁶ Lu C ¹⁶⁶ Lu D ¹³⁰ Te E ¹⁶⁸ Yb	ε Decay (2.65 min ε Decay (1.41 min ε Decay (2.12 min (⁴⁰ Ar,4nγ) (p,t)	n) n) n)	F 124 Sn $(^{48}$ Ca,6n $\gamma)$ G 186 W $(n,4p17n\gamma)$ H 154 Sm $(^{16}$ O,4n $\gamma)$, 159 Tb $(^{11}$ B,4n $\gamma)$ I Er $(\alpha,xn\gamma)$, 166 Er $(^{3}$ He,3n $\gamma)$		
E(level) [†]	Jπ [‡]	XREF	T _{1/2} §	Comments		
0.0	0 +	ABCDEFCHI	56.7 h <i>1</i>	$\label{eq:selection} \begin{split} &\%\epsilon{=}100. \\ &T_{1/2}\colon from 1970Ka23~(182\gamma(t)).~Other~measurements:~1954Mi16, \\ &1955Ne03,~1957Go40,~1959Ba12,~1960Bu27,~1963Pa08. \\ &Assignment:~^{181}Ta(p,4p12n),~E(p){=}340~MeV,~chem,~ms,~parent~^{166}Tm~(1955Ne03);~^{169}Tm(p,4n),~E(p){=}230~MeV,~ion~chem,~parent~^{166}Tm~(1960Bu27). \\ &\Delta {<}r^2{>}(166,176){=}{+}0.577~17~(1994Ma57,~deduced~from~isotope~shift~data~of~1982Bu21). \\ &<}r^2{>}r^2{>}^{1/2}(charge){=}5.250~6~(2004An14). \end{split}$		
102.37 ^d 3	2 + #	ABCDEFGHI	1.24 ns 6	Jπ: stretched E2 102γ to 0+ g.s.		
330.48d 4	4 + #	ABCDEFGHI	52.9 ps 17	Jπ: stretched E2 228γ to 2+ 102.		
667.97d 5	6 + #	A D GHI	7.8 ps 3			
932.38 ^e 5	(2)+	BEHI		$J\pi :$ M1 830 γ to 2+ 102, 932 γ to 0+ g.s., fit to a band.		
1039.14 ^e 5	(3)+	AB HI		$J\pi$: E2 937 γ to 2+ 102, (E2) 709 γ to 4+ 330, fit to a band.		
1043 [†] 10	(0+)	E		E(level): from (p,t).		
				$J\pi: L(p,t)=(0).$		
1098.25 ^d 6	8+#	A D GHI	2.14 ps 24			
1144.29 ^f 22	(2+)	I		$J\pi$: 1042 γ to 2+ 102, 1144 γ to 0+ g.s., fit to a band.		
1162.74 ^e 6	(4)+	AB I		$J\pi$: M1+E2 832 γ to 4+ 330; 494 γ to 6+ 668; 1060 γ to 2+ 102.		
1315.22 14		В		$J\pi$: 985 γ to 4+ 330.		
1327.85 ^e 5	(5)+	A D HI		Jπ: M1+E2 997γ to 4+ 330; (E2) 660γ to 6+ 668; E2 289γ to (3)+ 1039; not J=4 from 997γ-228γ(θ) in ¹⁶⁶ Lu ε decay (2.65 min).		
1342.5 ^f 3	(4+)	I		J π : γ to 4+, possible γ to 2+, band assignment.		
1358.93g 7	1 –	С		J π : log ft=5.3 from J=0 in ¹⁶⁶ Lu(2.12 min) decay; π from independently-established π =- for band.		
1386.05 11	(2+,3,4+)	В		$J\pi$: γ 's to 2+ and 4+.		
1418.6g 3	(3) – ^c	I				
1451.38 20		В		$J\pi$: gammas to 2+ 102 and (3)+ 1039.		
1482.43 ^e 6	(6)+	A I		J π : M1 814 γ to 6+ 668, 319 γ to (4)+ 1163, fit to a band.		
1503.37J 7	(2-) ^b	B I		$J\pi$: γ 's to 3+ and 2+, fit to a band.		
1505.40 7	(5) –	A I		$J\pi$: E1+M2 838 γ to 6+ 668, γ to 4+.		
1529.67 9	1 –	С		$J\pi$: ¹⁶⁶ Lu(2.12 min) ε decay from 0– is allowed.		
1570.58 ^g <i>15</i> 1579.87 <i>25</i>	(5) – (2+)	A I CE		J π : γ 's to 4+ and 6+, fit to a π =- band. XREF: E(1581).		
				Jπ: 1578γ to 0+ g.s., 1249γ to 4+ 330.		
1605.94ª <i>16</i>	10 + #	D GHI	1.0 ps 5			
1607.42 20	(2+,3,4+)	В		$J\pi$: γ 's to 2+ and 4+.		
1608.01 ^f 11	6 +	I		$J\pi$: 940 γ to 6+ 668 has an E0 component.		
1616.78J 5	(4-) ^D	A D HI				
1684.80 14	(2+,3,4+)	AB		$J\pi$: 1582 γ to 2+ 102, 1354 γ to 4+ 330.		
1704.54 ^e 18	(7)+	D HI		Jπ: M1+E2 1037γ to 6+ 668, fit to a band.		
1724.85 11	(6+,7+)	Α		$J\pi$: 397 γ to (5)+ 1328, possible 625 γ to 8+ 1098.		
1744.27 6	(3+,4+)	В		Jπ: 812γ to (2)+ 932, 705γ to (3)+ 1039, (E2) 212γ from (5,6)+ 1957.		
1790.33 ^h 7	(5-)@	A D HI		$J\pi$: fit to a band, γ 's to 4+ and 6+.		
1812.47 ^e 13	(8+) ^c	A I				
1818.28 20	(4+,5,6+)	Α		$J\pi$: 1151 γ to 6+ 668, 1487 γ to 4+ 330.		
1833.3g 5	(7) -	A I		$J\pi$: E1 1165 γ to 6+ 668, band assignment.		
1835.42j <i>20</i>	(6-) ^b	D HI				

Adopted Levels, Gammas (continued)

¹⁶⁶Yb Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	XRE	F	Y	Comments
1852 91f 19	8+		T		$I\pi$: 755% to 8+ 1098 has an E0 component
1865 411 5	(6)_&	A D	н		π : M1 360y to (5) = 1505 (E1) 383y to (6) + 1482 hand assignment
1923 1 1	(0) = 0 (1 + 2)	л D С	111		π : 1923y to 0+ α s = 1820y to 2+ 102
1923.1 4	(1, 2+)	C	т		J_{π} , F_{1} , g_{42} , to g_{\pm} , 1020 , hand assignment
1940.908 21	(9) = (5, 0)				$J\pi$: E1 8457 to 8+ 1098, band assignment.
1957.13 0	(5,6)+	A	н		$J\pi$: M1 629 γ to (5)+ 1328, $\Delta J \le 1$ 209 γ from $J \ge 6$, 2166.
1958.93" /	/	A D	HI		$J\pi$: EI 861 γ to 8+ 1098, EI 1291 γ to 6+ 668.
2016.35 22	(4+,5,6+)	A			$J\pi$: 1482 γ to 4+ 330, possible 534 γ to (6)+ 1482.
2029.32 /	(3-,4-)	В			$J\pi$: E1 2857 to (3+,4+) 1/44, 5267 to (2-) 1503, 16987 to 4+ 331.
2030.14 ^m 22	8+4 (0)8	D	1		$J\pi$: γ to 8+ has an EU component.
2072.331 19	(8-)@	D	ні		$J\pi$: (E2) 2087 to (6)-1865, band assignment.
2098.61 12	1 -	C			$J\pi$: ¹⁰⁰ Lu(2.12 min) ε decay from 0– is allowed (log t =5.3).
2137.13J 24	(8-)	D	HI ,		
2143.110 23	(10) +	P	1		$J\pi$: M1 53/ γ to 10+ 1606, fit to a band.
2150.32° 23	(9)+		HI		$J\pi$: M1+E2 1053 γ to 8+ 1098, 445 γ to (7)+ 1705, fit to a band.
2165.77 7	(6,7)+	A			$J\pi$: 1067 γ to 8+ 1098, 1497 γ to 6+ 668, M1+E2 209 γ to J≤6, π =+ 1957.
2176.02ª 22	$12 + \pi$	D	GHI	0.64 ps 33	
2209.90 ¹¹ 24	(9) – @	D	ні		$J\pi$: El 1111 γ to 8+ 1098, fit to a band.
2214.89 ^k 18	10+a		1		$J\pi$: γ to 10+ has an EU component.
2233.36 6	6-,7-	A	HI	<10 ns	$T_{1/2}$: from ¹⁰⁵ Lu ε decay (2.65 min).
					$J\pi$: ¹⁰⁰ Lu(2.65 min) ε decay from J=6 is allowed (log <i>ft</i> =4.7); M1
					274γ to 7-1959, M1 368 γ to (6)-1865.
					Low log ft from configuration containing the (v 5/2[523]) orbital
					implies the presence of the $(\pi 7/2[523])$ orbital in the
			_		configuration of this level.
2319.561 25	(10+)	_	1		J π : 713 γ to 10+ 1606, 507 γ to (8+) 1812, band assignment.
2361.451 <i>21</i>	(10-)&	D	HI		
2417.51" 24	(11) – "	D	HI		166- (
2426.44 17	1-	С			$J\pi$: ¹⁰⁰ Lu(2.12 min) ε decay from 0- is allowed.
2491.1J 3	(10-)0	D	HI		
2531.3K 3	$12 + \alpha$	D	ні		$J\pi$: γ to 12+ is M1, fit to a band.
2609.68 3	$(12+)^{c}$		1		$J\pi$: (M1) 433 γ to 12+2176, 467 γ to (10)+2143, band assignment.
2646.76 4	$(11) + (10)^{8}$	P	HI		$J\pi$: stretched E2 intraband 496 γ to (9)+ 2150.
2728.91 4	(12-) «	D	HI	0 51 00	
2779.54 3	$14 + \pi$	D	GHI	0.51 ps 30	
2802.9 ¹¹ 3	(13) = 0	D	HI		
2891.0J 3	$(12-)^{5}$	D	HI		
2897.9 3	$14 + \infty$	D	н		
3100.3° 3	(14-) =	D	п		In stratched () introduced 550% to (11), 2647
3190.7° 7	(13+)-	D	п uı	1 14 nc 27	5π : stretched Q intraband 550γ to (11)+ 2647.
3273.74 3 3350 ei 5	(14)b	D		1.14 ps 27	
2254 oh 2	$(14-)^{\circ}$	D	и п		
2400 1d 2	(15=)-	D	и и		
3665 qi 5	(16-)&	ם ח	н		
3782 0k 1	18+a	D D	нт	0 82 ns 10	
3878 11 7	$(16-)^{b}$	D D	н	0.05 p3 10	
3892 2h 4	$(17) - ^{@}$	n	н		
4189.9d 4	$(18+)^{\#}$	D	н		
4218.7 ⁱ 5	(18-)&	– D	н		
4370.6k 4	20 + a	– D	н	0.41 ps 3	
4470.8 <i>j</i> 9	$(18-)^{b}$	D	н	o. II po o	
4478 7h 4	$(10)^{-@}$	D	н		
4819 2 ¹ 6	$(20-)^{\&}$	D	н		
4922.8d 4	20+#	D			
5036.9 ^k 5	22 + a	D	н	0.201 ns 21	
5108.7h 5	(21-)@	D	н	ko wi	
5119.1J <i>10</i>	$(20 -)^{b}$	– D	н		
5468.6 ⁱ 6	(22-)&	– D	н		
5649.7d 7	$(22+)^{\#}$	D			
5775.5 ^k 5	24+a	– D	н	0.125 ps 14	
5782.7 ^h 5	(23-)@	– D	н	· · · · · ·	
5814.0J <i>11</i>	(22-)b	D			
6173.4 ⁱ 7	(24-)&	D			

Adopted Levels, Gammas (continued)

¹⁶⁶Yb Levels (continued)

E(level) [†]	J π^{\ddagger}	XREF	T _{1/2} §	Comments
6378 12d 10	$(24+)^{\#}$	D		
6507 6h 6	$(25-)^{@}$	D		
6551.8. <i>12</i>	$(24-)^{b}$	D		
6581.8 ^k 6	26+a	D	0.083 ps 7	
6940.0 ⁱ 7	$(26-)^{\&}$	D	1	
7294.7 ^h 6	(27-)@	D		
7334.6?j 15	$(26-)^{b}$	D		
7452.0 ^k 6	28+ ^a	D	0.069 ps 7	
7773.6 ⁱ 7	(28-)&	D	•	
8148.5 ^h 8	(29-)@	D		
8387.0 ^k 6	30 + a	D	0.055 ps 7	
8677.0 ⁱ 9	(30-)&	D		
9071.3 ^h 9	(31-)@	D		
9385.8 ^k 8	32 + a	D	0.042 ps 7	
9648.6 ⁱ 10	(32-)&	D		
10057.5 ^h <i>11</i>	(33-)@	D		
10445.8 ^k 10	34 + a	D	0.035 ps 7	
11102?h <i>2</i>	(35-)@	D		
11557.8 ^k 11	(36+)a	D		$J\pi$: from probable band assignment.
12186?h 2	(37-)@	D		
12716? ^k 2	(38+) ^a	D		$J\pi$: from probable band assignment.
0.0+x ¹	J	F		
$162.6 + x^m 10$	J + 1	F		
334.9+x ¹ <i>13</i>	J + 2	F		
$524.9 + x^m$ 13	J + 3	F		
735.5+x ¹ 16	J + 4	F		
$966.4 + x^m 16$	J + 5	F		
1217.0+x ¹ 18	J + 6	F		
1486 . $2 + x^m$ 18	J + 7	F		
1772.7+x ¹ 18	J + 8	F		
$2\ 0\ 7\ 5\ .\ 2+x^m\ 1\ 9$	J + 9	F		
2392.6+x ¹ 19	J + 1 0	F		
$2722.6 + x^m 20$	J + 1 1	F		
3064.1+x ¹ 20	J + 1 2	F		
3416.6+x ^m 21	J + 1 3	F		
3778.4+x ¹ 21	J + 1 4	F		
$4149.6 + x^m 22$	J + 1 5	F		
4531.2+x ¹ 23	J + 1 6	F		
$4921.6 + x^m 24$	J + 1 7	F		

 † From least-squares fit to Ey, assigning 1 keV uncertainty to data for which authors did not state an uncertainty.

[‡] Values given without comment are based on band structure deduced in the $(\alpha, xn\gamma)$, $(^{16}O, 4n\gamma)$ and $(^{40}Ar, 4n\gamma)$ reaction studies and supported in part by transition multipolarities.

§ The half-lives of excited states are from ($^{40}{\rm Ar},4n\gamma$), unless otherwise noted.

[#] Based on known Jπ=0+ for the g.s. bandhead, stretched E2 character for the 102γ connecting the J=0 and 2 members and stretched Q character for a number of other intraband transitions, firm Jπ assignments are adopted for J≤22 members of the g.s. band.

- [®] Based on established $J\pi$ =7- for the 1959 level and regular progression of Ey and Iy for cascade gammas in band, many of which are stretched Q.
- & The regularity and the stretched Q character of the cascade transitions populating the (6)– 1865 level justify the classification of this cascade as a band.
- a Based on established $J\pi$ =8+ and 10+ for the 2030 and 2215 levels, respectively, and E2 character of the 375 γ connecting the J=16 and 14 members of the band, firm $J\pi$ assignments have been adopted for the J=8 through 36 members of this band.
- ^b Tentatively assigned on the basis of systematics (1984Fi18).
- c Fit to a band.
- d (A): $K\pi{=}0{+}$ g.s. band. A=16.99, B=-=0.027.
- e (B): $K\pi=2+\gamma$ -vibrational band. A=13.86, B=0.021 (even J); A=17.58, B=-0.036 (odd J).
- f (C): $K\pi{=}0{+}$ $\beta{-}vibrational band. A{=}17$ if B=0.
- g~ (D): K π =(0)- band. π =- for band is established by E1 1165 γ and 843 γ to π =+ g.s. levels.
- h (E): K = 5-, α = 1 band.
- i (F): K =5-, $\alpha =0$ band.
- j (G): $K\pi = (2-)$ band.
- $k~~(H)\colon \pi{=}{+}$ super band. Becomes yrast for J216.

Footnotes continued on next page
¹⁶⁶Yb Levels (continued)

I): ((π 7/2[523])+(π 7/2[404]))(v i_{13/2}²)? band. Configuration assignment supported by large B(M1)/B(E2) ratios, bandhead energy and crossing frequency arguments (1994Ol04).
 M) (J): ((π 7/2[523])+(π 7/2[404]))(v i_{13/2}²)? band. See comment on signature partner of this band.

E(level)	Εγ [‡]	$I\gamma^\dagger$	Mult.§	δ	α	Comments
102.37	102.38 ^a 3	100 ^a	E2		2.93	Mult.: from ce data in ¹⁶⁶ Lu ε decay (2.65 min). Β(Εθ(Wur) = 101 10
330.48	228.12 ^a 3	100 ^a	E2		0.1743	B(E2)(W.u.)=191 10. Mult.: from ce data in ¹⁶⁶ Lu ε decay (2.65 min).
667.97	337.50 ^a 3	100 ^a	E2		0.0521	B(E2)(W.u.)=272 9. Mult.: from α (L)exp in ¹⁶⁶ Lu ε decay (2.65 min) and α (K)exp and γ (θ) in (α ,xn γ).
		,				B(E2)(W.u.)=291 12.
932.38	830.06 ^b 9	100b 5	M1		0.01134	
	932.35 ^b 7	78b 5				
1039.14	708.82 ^a 7	20.0 ^a 21	(E2)		0.00774	Other I γ : 17 5 in ε decay (1.41 min), 25 in (¹⁶ O,4n γ), 54 6 in (α ,xn γ).
	936.79 ^a 7	100 ^a 4	E2		0.00424	
1098.25	430.28 ^a 3	100 ^a	E2 ^e		0.0264	B(E2)(W.u.)=320 40.
1144.29	$1042.0^{\#}$ 3	100#				
	1144.2 3					Ey: for doubly-placed transition in $(\alpha, xn\gamma)$.
1162.74	494.2 ^a 8	4 a 2				
	832.20 ^a 8	100 ^a 7	M1+E2	+0.6 2	0.0097 8	δ: from 832γ-228γ(θ) in ¹⁶⁶ Lu ε decay (2.65 min); larger δ solution rejected based on measured α(K)exp.
	1060.28 ^a 11	21.8 ^a 14				,
1315.22	152.49 ^a 13	65 ^a 5				
	984.6 ^a 6	100a 20				
1327.85	289.3 <i>3</i>	7.98	E2		0.0829	Eγ: from $(\alpha, \mathbf{xn}\gamma)$.
						Iγ: from (α, xnγ). Others: <10.9 in ε decay (2.65 min)
	659.93 ^a 5	20.5 ^a 14	(E2)		0.00911	Other E γ : 659.2 3 in (α , xn γ).
	997.38 ^a 5	100 ^a 4	M1+E2	-10 +3-13	0.00376 7	δt = 0.2 <i>I</i> or $-10 + 3 - 13$ from 997γ-228γ(θ) (2007Mc08) in ¹⁶⁶ Lu ε decay (2.65 min); α(K)exp=0.0036 <i>3</i> in (α, xnγ) rules out the first option.
1342.5	1012.0 3					Eγ: from $(\alpha, \mathbf{x}\mathbf{n}\gamma)$.
	1238.9 ^f 3					Eγ: from $(\alpha, \mathbf{x}\mathbf{n}\gamma)$.
1358.93	1256.64 ^a 10	100 ^a 10				
	1358.79 ^a 10	88 ^a 11				
1386.05	345.0 ^{bfg} 6	< 1 4 ^b g				
	1054.7 ^b 6	23b <i>11</i>				
	1283.45 ^b 21	100 ^b 20				
1418.6	1316.2 [#] 3	100#				
1451.38	412.20 ^b 20	100 ^b 9				
	1349.4 ^b 6	45 ^b 18				
1482 . 43	318.6 ^{#f} 3	24.3 [#] 24				
	814.46 5	100 9	M1		0.01189	Eγ: from ε decay (2.65 min). Ιγ: from (α ,xnγ).
	1151.7g <i>4</i>	< 8 . 5 g				Eγ: weighted average of 1151.1 4 in ε decay (2.65 min) and 1152.0 3 in (α,xnγ).
						Iγ: from ε decay (2.65 min).
1503.37	464.29 ^b 7	24b 7				
	570.93 ^b 9	100 ^b 10				
1505.40	837.57a <i>8</i>	62a 4	E1+M2	0.31 + 3 - 4	0.0044 6	
	1174.80 ^a 13	100a g				

$\gamma(\frac{166}{Yb})$ (continued)

E(level)	Eγ [‡]	$I\gamma^\dagger$	Mult.§	δ	α	Comments
1529.67	1427.18 ^c 14	100 ^c 10				
	1529.73 ^c 11	48 c 3				
1570.58	901.5a 6	30a 12				
	1240.05a 25	100a <i>12</i>				
1579.87	1249.4 ^c 8	56 ^c 22				
	1477.5 ^c 3	100 ^c 17				
	1579.4 ^c 6	39 ^c 17				
1605 . 94	507.2 <i>2</i>	100	E2		0.01718	Mult.: Q from $\gamma(\theta)$ in $({}^{16}O, 4n\gamma)$; not
						M2 from RUL. B(E2)(W.u.)=310 <i>160</i> .
1607.42	568.5 ^b 6	64 ^b 27				
	1276.92 ^b 22	100 ^b 27				
	1504.9 ^b 6	100 ^b 27				
1608.01	939.5 [#] 3	100#	E0+M1+E2		0.0063 21	
1616.78	288.87 ^{ag} 5	< 4 8 ^a g				
	453.86 ^a 8	38.9 ^a 25				Other I γ : 55 5 in (α , xn γ).
	577.70a 5	100a 6	[E1]		0.00444	
1684.80	1354.35a <i>15</i>	100a <i>21</i>				
	1582.2a 6	14a 7				
1704.54	$376.9^{\#}3$	42# 4				
	1036.6# 3	100# 11	M1+E2		0.0050 16	
1724.85	397.02^{a} 10	70.6ª 20				
	625.29 ^{a1} 46	20ª 6				
1744 07	1056.3ª 6	100 ^a 22				
1/44.2/	705.085 11 911 oph 6	455 4				
1700 22	811.925 0 210 AB 2	1005 0				
1790.33	1199 388 8	598 2				
	1459 638 10	100a 5				
1812 47	330 9ag 5	- 87ag				
1012.17	714 39a 15	100 ^a 10				
	1144.5a 5	80a 20				
1818.28	490.4a 5	42a 12				
	1151.1ag 4	42 a g 12				
	1487.3ª 4	100a <i>19</i>				
1833.3	735.2 ^a 6	90 ^a 30				
	1165.2 ^a 6	100 ^a 40	E1		1 . $14\!\times\!10^{-3}$	
1835.42	217.9 [#] 3	< 4 #				
	507.4 [#] 3	100 # 10				
1852.91	754.8 [#] 3	100# 10	E0 + M1 + E2		0.011 4	α : based on $\alpha(K)exp$ in (HI,xn γ).
	1184.1# 3	90# 10				
1865.41	74.92ª 10	11.0ª <i>15</i>	M1 , E2		8.9 12	Mult.: from α(exp) in ¹⁶⁶ Lu ε decay (2.65 min).
	248.53 ^a 7	59a <i>3</i>	(E2)		0.1324	Mult.: from α(K)exp in ¹⁶⁶ Lu ε decay (2.65 min).
	294.8 ^a 3	4.5 ^a 10				
	360.09 ^a 7	44 ^a 4	M1		0.0966	Mult.: from α(K)exp in ¹⁶⁶ Lu ε decay (2.65 min).
	382.97a 4	37.5 ^a 25	(E1)		0.01110	Mult.: from α(K)exp in ¹⁶⁶ Lu ε decay (2.65 min).
	537.64 ^a 4	100a 4	(E1)		0.00518	Mult.: D from $\gamma(\theta)$ in $({}^{16}O, 4n\gamma)$ from $\alpha(K) \exp$ in ${}^{166}Lu \epsilon$ decay (2.65 min).
	1197.2 ^a 3	7.0 ^a 10				
1923.1	1820.4 ^a 6	38 ^a 19				
	1923.2 ^a 4	100 ^a <i>13</i>				
1940.90	843.3# 3	100#	E1		0.00207	
1957.13	139.0 ^a 3	5.9a <i>18</i>				
	166.6 ^a	а				
	212.4 ^a 3	16.4 ^a 18	(E2)		0.220	Mult.: from ¹⁶⁶ Lu ε decay (2.65 min).
	272.2 ^a 5	23a 3				
	386.7ª 6	4.1ª 18				
	4/4./44 0	39.24 <i>23</i>				

$\gamma(^{166}$ Yb) (continued)

E(level)	$E\gamma^{\ddagger}$	Iγ [†]	Mult.§	δ	α	Comments
1957.13	629.32 ^a 7	100 ^a 6	M1		0.0227	Mult.: from α(K)exp in ¹⁶⁶ Lu ε decay (2.65 min)
	794.41a 5	43a <i>3</i>				(2.00 mm).
	1626.6a 3	13.5a 23				
1958 93	93 2a 5	2 1 ^a 4	[M1 E2]		4 17 11	
1000100	860 56 ^a 11	33 5a 21	E1 + (M2)		0 014 13	Other Iv: 98 10 in $(\alpha \times n\nu)$
	1290.71 ^a 20	100 ^a 7	E1		1.01×10^{-3}	Mult.: from $\alpha(K)$ exp in $(\alpha, xn\gamma)$ and $\gamma(\theta)$ in $({}^{16}O, 4n\gamma)$.
2016.35	330.9 ^f g 5	< 1 0 0 g				
	445.8ª 4	41a 16				
	534.2 ^{af} 6	100a <i>31</i>				
	1685.85a 25	92a 15				
2029.32	285.07 ^b 5	100 ^b 5	E1		0.0226	Mult.: from α(K)exp in ε decay (1.41 min).
	345.0 ^{bg} 6	< 5 ^b g				
	421.26 ^b 9	19 ^b 1				
	526.01b 10	27b 3				
	643.2 ^b 1	32b <i>3</i>				
	866.4 ^b 4	11b 2				
	1698.7b 4	12b 3				
2030.14	547.5 [#] 3	< 1 4 [#]				
	932.1 [#] 3	100# 10	E0+M1		0.116 12	α : from $\alpha(K)$ exp in $(\alpha, xn\gamma)$.
2072.33	112.9 3	10 5				Iy: from $(^{40}Ar, 4n\gamma)$.
	207.6 3	100 50	(E2)		0.237	Other Ey: 206.0 5 in (¹⁶ O, 4n γ) and (⁴⁰ Ar, 4n γ).
0000 01	510 02 0	78 0				1γ: from (~Ar,4nγ).
2098.61	518.04 8	74 3				
	1996.25ª <i>15</i>	21 ^a 6				
	2098.6^{a} 2	100^{a} 12	(50)			
2137.13	300.8# 3	100# 11	(E2)		0.0733	Mult.: Q intraband γ in (100,4n γ).
0140 11	433.2" 3	< 2 2 "				
2143.11	331.0"5 3	<110 " 5	24		0 0040	
0150 00	537.2# 3	100# 10	MI		0.0340	
2150.32	445.4# 3	<207#	[EZ]		0.0241	
	1052.5# 3	100# 10	E2+M1		0.00334	Mult.: D+Q from $\gamma(\theta)$ in (1.0,4n γ); $\alpha(K) \exp in (\alpha, 4n\gamma).$
2165.77	208.65 ^a 10	100 ^a 10	M1+E2	0.94	0.34 5	Mult.: from ¹⁰⁰ Lu ε decay (2.65 min).
	1067.34ª 20	68ª g				
	1497.33ª 23	20 ^a 4				
2176.02	570.6# 3	100#	E2e		0.01290	Other Ey: 569.4 2 in (40 Ar, 4ny), 569.7 2 in (16 O, 4ny). B(E2)(W n)=270, 140
2209.90	1111.4# 3	100#	E1		1.24×10^{-3}	、 ,(, =
2214.89	361.3# 3	< 4 5 [#]				
	402 7# 3	< 4.5 #				
	608 9# 3	77# 8	F0 + M1 + F2		0 052 26	a: based on a(K)eyn in (a yny)
	$1117 1^{\#} 3$	100# 10	LUIMIIIES		0.002 20	a. bused on a(k)exp in (a,xii)).
2233.36	67.57a 4	12.7a 13	E1		0.943	Mult.: from ¹⁶⁶ Lu ε decay (2.65 min). Β(Ε1)(W μ)>4.2×10 ⁻⁶
	274.41 ^a 4	31.8 ^a 20	M1		0.200	Mult.: from 166 Lu ε decay (2.65 min). B(M1)(W.u.)>1.5×10 ⁻⁵ .
	276.28 ^a 4	43.6 ^a 26	(E1)		$0\;.\;0\;2\;4\;4$	Mult.: from 166 Lu ε decay (2.65 min). B(E1)(W.u.)>2.1×10 ⁻⁷ .
	367.95 ^a 3	100 ^a 3	M1		0.0913	Mult.: from ¹⁶⁶ Lu ε decay (2.65 min). B(M1)(W.u.)>2.0×10 ⁻⁵ .
	442.87a 20	1.7ª 4				
2319.56	507.4g 3					Eγ: from (α ,xnγ).
	713.3 <i>3</i>					Eγ: from (α ,xnγ).
2361 . 45	151.3 [#] 3	59 [#] 6				Iy: see comment on 289.2y.

$\gamma(\frac{166}{Yb})$ (continued)

E(level)	<u></u> Εγ [‡]	Iγ [†]	Mult.§	α	Comments
2361.45	289.2 [#] 2	100# 6	(E2)	0.0831	Mult.: Q from DCO ratio in $({}^{40}$ Ar,4n γ) for intraband γ . However, γ may be a doublet in this reaction based on $V(289)/V(151y)=2$ 4 of adouted value of 1.7.2
	420 6# 3	94# 9			on $1(2897)/1(1517)=8$ 4 cf. adopted value of 1.7 2.
2417.51	$477.2^{\#}3$	< 3 4 [#]			
	811.0 [#] 3	100# 10	(E1)	0.00223	Mult.: D from $\gamma(\theta)$ in (¹⁶ O, 4n γ), $\Delta \pi$ =(yes) from level scheme.
2426.44	1067.32 ^c 20	60 ^c 10			Senemer
	2324.6 ^c 3	100 ^c 8			
	2425.9 ^c 6	6 ^с 3			
2491.1	341.0 5				Εγ: from (¹⁶ Ο,4nγ). Ιγ: weak γ in (¹⁶ Ο,4nγ).
	353.7 <i>3</i>	100	(E2)	0.0455	Eγ: from (α,xnγ). Mult.: Q intraband γ from γ(θ) in (16 O,4nγ).
2531.3	355.8 [#] 3	65# 7	M1	0.0998	
	$924.7^{\#}3$	100# 10			
2609.6	433.2# 3	< 2 0 0 #	(M1)	0.0594	
	466.9#3	100# 10			
2646.7	496.47 3	100#	EZ (E2)	0.0182	Mult , O introhond & from DCO notio in (40An Ana)
2728.9	307.5" 3 602.6# 2	100#	(E2) E20		Mult.: Q intraband γ from DCO ratio in (**Ar,4n γ). P(E2)(W u)=250,150
2779.3	445 4# 3	72# 8	E2 -	0.01122	B(E2)(W.u.)=230/130. Mult : O intrahand x from DCO ratio in $({}^{40}\Lambda r 4nx)$
2002.5	686 3 [#] 3	100# 10	(E2) E1	0.00310	Mutt.: § Intrabanu / from Deo ratio in (Ar, 417).
2891.6	$400.2^{\#}$ 3	100 # 11	(E2)	0.0322	
	715.8# 3	< 36#	. ,		
2897.9	366.0 5	9 5	(E2)	0.0413	Mult.: Q from DCO ratio in (40 Ar.4n γ) for intraband γ .
	722.1 2	100 10	(E2)	0.00742	Mult.: Q from DCO ratio in ($^{40}Ar.4n\gamma$), $\Delta\pi$ =no from level scheme.
3166.5	437.6 2	100	(E2)	0.0252	Mult.: Q intraband γ from DCO in (⁴⁰ Ar, 4n γ) and from $\gamma(\theta)$ in (¹⁶ O, 4n γ).
3196.7	$550.0^{\&}5$	100&	(E2)	0.01405	Mult.: from $\gamma(\theta)$ in $({}^{16}\text{O},4n\gamma)$ for intraband γ .
3273.7	375.8 2	22.6 23	E2e	0.0383	$B(E2)(W.u.)=220 \ 60.$
0050 0	494.32	100 10	E2e	0.0184	B(E2)(W.u.)=250 70.
3350.6	459.0^{π} 3		(E2) (E2)d	0.0222	Mult.: Q from $\gamma(\theta)$ in (100,4n γ) for intraband γ .
3334.0	490.8 2 575 1 5	32 16	(E2)-	0.0187	Mult : from $\gamma(\theta)$ in $({}^{16}\Omega, 4n\gamma)$
3490 1	592 5 2	63 6	D		
	710.5 2	100 10	(E2) ^d	0.00770	
3665.9	499.4 2	100	(E2) ^d	0.0179	
3782.0	508.3 2	100	[E2]	0.01711	$B(E2)(W.u.)=370\ 50.$
3878.1	527.5 ^{&} 5	100&	(E2)d	0.01557	
3892.2	403.0 & 5	49&			Iγ: for possible doublet.
	538.1 2	100	(E2)d	0.01483	Iγ: from (¹⁶ O,4nγ).
4189.9	699.8 <i>2</i>	100	(E2)d	0.00797	
4218.7	552.8 2	100	(E2) ^d	0.01388	
4370.6	588.5 2	100	E2e	0.01192	$B(E2)(W.u.)=360 \ 30.$
4470.8	592.7 5	100	[E2] (E2)d	0.01172	
44/8.7		100	(E2)d	0.01202	
4019.2	732 9 2	100	(E2)d	0.00718	
5036.9	666.3 <i>2</i>	100	E2e	0.00891	$B(E2)(W,u_{2})=390.40$
5108.7	630.0 <i>2</i>	100	(E2) ^d	0.01015	2(22)(114) 000 101
5119.1	648.3 5	100	· · ·		
5468.6	649.4 <i>2</i>	100	(E2) ^e	0.00945	
5649.7	726.9 5	100	(E2) ^d	0.00731	
5775.5	738.6 2	100	[E2]	0.00706	B(E2)(W.u.)=380 50.
5782.7	674.0 <i>2</i>	100	(E2)d	0.00868	
5814.0	694.9 5	100			
6173.4	704.8 2	100	(E2)d	0.00784	
6378.1?	728.5 ^t 5	100	(E2) ^a	0.00728	
6507.6	724.9 2	100	[E2]	0.00736	
0001.8 6581 9	131.83 80622	100	F98	0 00592	$B(F2)(W_{11}) = 370, 30$
0001.0	000.0 2	100	L. 6. 1	0.00000	$D(D_{0})(w, u, j = 0, 0, 0, 0)$

$\gamma(^{166}Yb)$ (continued)

E(level)	Eγ [‡]	Iγ [†]	Mult.§	α	Comments
6940 0	766 6 2	100	(F2)d	0 00650	
7294 7	787 1 2	100	(E2)d	0 00614	
7334 6?	783 0f 5	100	(12)	0.00011	
7452 0	870 2 2	100	[E2]	0 00495	$B(E2)(W_{H}) = 300.30$
7773 6	833 6 2	100	(E2)d	0 00542	B(E2)(W.d.)=000 00.
8148 5	853 8 5	100	$(E2)^d$	0 00515	
8387 0	935 0 2	100	E2e	0 00426	$B(E2)(W_{H}) = 260.40$
8677 0	903 4 5	100	(E2) d	0 00457	
9071 3	922 8 5	100	(E2)	0 00438	
9385.8	998.8 5	100	(E2)d	0.00372	$B(E2)(W,u_{.})=250.50$
9648 6	971 6 5	100	(E2)d	0 00393	
10057.5	986.2 5	100	(E2)d	0.00381	
10445.8	1060.0 5	100	[E2]	0.00329	$B(E2)(W,u_{.})=220.50$
11102?	$1045.0^{f}5$	100	()		_()() === ===
11557.8	1112.0 5	100			
12186?	1084.0 ^f 5	100			
12716?	1158.0f 5	100			
162.6+x	162.6@	100			
334.9 + x	172.3@	100			
524.9+x	190.0@				
	362.3 [@]				
735.5+x	$210.6^{@}$				
	400.6 ^{@f}				
966.4 + x	230.9@				
	441.5@				
1217.0+x	250.6 [@]				
	481.5 ^{@f}				
1486. $2+x$	$269.2^{@}$				
	519.8 [@]				
1772.7+x	$286.5^{@}$				
	555.7 [@]				
$2\ 0\ 7\ 5$. $2+x$	302.5@				
	589.0 [@]				
2392.6+x	317.4@				
	619.9@				
2722.6+x	$330.0^{@}$				
	647.4 [@]				
3064.1 + x	341.5@				
	671.5 [@]				
$3\ 4\ 1\ 6$. $6 + x$	$352.5^{@}$				
	694.0 [@]				
3778.4 + x	361.8@				
	714.3@				
$4\ 1\ 4\ 9$. $6+x$	371.2@				
	733.0 [@]				
$4\ 5\ 3\ 1$. 2 + x	$381.6^{@}$				
	752.8 [@]				
4921.6+x	390.4 ^{@f}				
	772.0 [@]				

 † Relative photon intensity normalized to 100 at strongest photon deexciting each level. From (40 Ar,4n γ), except as noted.

[‡] From ¹³⁰Te(⁴⁰Ar, 4n γ), unless otherwise noted.

§ From $\alpha(K)exp$ in $(\alpha, xn\gamma)$, except as noted.

[#] From $Er(\alpha, xn\gamma)$.

[@] From ${}^{124}Sn({}^{48}Ca, 6n\gamma)$.

& From ¹⁵⁴Sm(¹⁶O,4nγ).

a From ¹⁶⁶Lu ε decay (2.65 min) (1974De09).

^b From ¹⁶⁶Lu ε decay (1.41 min) (1974De09).

^c From ¹⁶⁶Lu ε decay (2.12 min) (1974De09).

d~Q from $\gamma(\theta)$ in ($^{16}O,4n\gamma)$ and/or from DCO ratio in ($^{40}Ar,4n\gamma)$ for intraband transition.

 $^{e}~$ Q from DCO ratio in ($^{40}Ar,4n\gamma);$ not M2 from RUL.

f Placement of transition in the level scheme is uncertain.

g Multiply placed; undivided intensity given.

(A) $K\pi = 0 + g.s.$ band.

(B) $K\pi = 2 + \gamma$ -vibrational band.

(C) $K\pi=0+\beta$ -vibrational band.

(D) Kπ=(0)- band.

(E) $K\pi=5-$, $\alpha=1$ band.

(F) K π =5-, α =0 band.

(G) Kπ=(2-) band.	(H) π=+ super ba	nd.	(I) ((π 7/2[523])+(π 7/2[404])) (ν i _{13/2} ²)? band.
			$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	(38+)	12716	$ \underbrace{\begin{array}{c} (J)J+1 \\ J \end{array}}_{0.0+x} \underbrace{\begin{array}{c} \\ \hline \\ \end{array}}_{0.0+x} \underbrace{{c} \end{array}}_{0.0+x} \underbrace{{c} \\ \end{array}}_{0.0+x} \underbrace{{c} \end{array}}_{0.0+x} \underbrace{{c} \end{array}}_{0.0+x} \underbrace{{c} \end{array}}_{0.0+x} \underbrace{{c} \end{array}}_{0.0+x} \underbrace{{c} \end{array}}_{0.0+x} \underbrace{{c} \end{array}}_{0.0+x} \underbrace{{c} \end{array}}_{0.0+x} \underbrace{{c} \end{array}}_{0.0+x} \underbrace{{c} \end{array}}_{0.0+x} \underbrace{}_{0.0+x} \underbrace{{c} \end{array}}_{0.0+x} \underbrace{}_{0.0+x} \underbrace{{c} \end{array}}_{0.0+x} \underbrace{}_{0.0+x} \underbrace{\end{array}}_{0.0+x} \underbrace{_{0.0+x} \underbrace{}_{0.0+x} \underbrace{}_{0.$
	<u>(</u> 36+)	ý 11557.8	-
	34+	v 10445.8	-
	_32+	v 9385.8	-
	30+	v 8387.0	-
(26)7334.0	28+	y 7452.0	-
<u>(24–)</u> 6551.8	326+	v 6581.8	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22+ 22+ 20+	v 5775.5 v 5036.9 <u>4370.6</u>	-
		3782.0	-
(10)	<u> </u>	2897.9	-
(8-) (6-) (2137.1)	$\frac{3}{10+}$	2531.3	-
(B)(7) + (4-) (1616)	(A)12+	2030.14	-
	$\frac{(C)8+}{(B)(8+)}$		-
(B)(4)+	$(A) 10+ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$		-
$(B)(3) + \psi \psi \psi$	(A)8+	\	-

(J) $((\pi 7/2[523])+(\pi 7/2[404]))$ $(\nu i_{13/2}^2)$? band.

J+17		4921.6 + x
(I) J + 16	Ŵ	
J+15		4149.6+x
(I) J+14	<u> </u>	
J+13	<u> </u>	<u>3416.6+x</u>
(I) J+12	\ \	
J+11		2722.6+x
(I) J+10		_/
J+9	\ <u> </u>	2075.2+x
(I) J+8	\ <u>¥</u>	_/
J+7	<u>//</u>	1486.2 + x
(I) J + 6	<u> \</u>	
J+5	<u>\</u>	966.4+x
(I) J+4	\¥	
J+3	V <u> </u>	524.9+x
(I) J+2	\ <u> </u>	_/
J+1	<u> </u>	162.6+x
(I) J	<u> </u>	

		Bands for ¹⁶⁶	Yb		
(A)	(B)	(C	:)	(D)	(E)
					(97.)
					(37-)
					1084.0
					(35-)
					1045.0
					<u> </u>
					986.2
					922.8
					(29-)
					853.8
					<u> </u>
					787.1
728.5					724.9
(22+)					674.0
726.9 20+					(21-)
732.9					630.0 v (19)-
$\frac{(18+)}{600}$					586.5 v (17)-
<u>16+</u>				403 	.0 538.1 (15-) (H)
710.5 592.5	(13+) 550.0			575	1 490.8 (A) (13)- (B)
603.6 433.2 466.9	<u>12+)</u> <u>(11)+</u> 496.4		(10+)	686	445.4 (11)- (0) (E)
$\frac{12+}{570.6} 4 \\ 537.2 \\ 331.0 \\ $	$\frac{10)+}{(8+)}$ $(9)+$ (445.4)	507.4 713.3	8+	477 (9) - 811 (7) - 71	$\begin{array}{c} 2 \\ 0 \\ \hline 0 \\ \hline 5 \\ \hline 3 \\ \hline 3 \\ \hline 3 \\ \hline 2 \\ \hline 3$
$\frac{10+}{507.2} \sqrt[7]{14.39} \frac{330.9}{318.6}$	$\frac{(6)+1052.5}{(4)+1000}$	754.8	6+ (4+) 735.2 (1165.2)	(5) - 219 (3) - 860 (1111)	$\begin{array}{c} 4 \\ 56 \\ -4 \\ -4 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8$
	(4)+1036.6 (2)+659.93 (2)+659.93 (2)+659.93	939.5. 1184.1 1012.0	(2+) 843.3 (0+) 843.3 1240.05 1256.64	1122. 1459.0 1290.	(A) 33
$\begin{array}{c} 5^+ & 4^- & 151.7, \\ \hline 337.50 & 150.50, \\ 4^+ & 1060.28 \\ \hline 228 & 12 \\ \hline \end{array}$	936.79	1238.9	1316.2		(A)
<u>2+ ~~~ W</u>	¥				

	A			
	-	Bands for ¹⁶⁶ Yb		
(E)	(F)	(G)	(H)	(I)
				$\frac{J+16}{381.6}$ (I)
				752.8 ¥(J)
				$\begin{array}{c c} 3+14 & (I) \\ \hline 361.8 \\ 714.2 & (I) \\ \end{array}$
				$\frac{J+12}{J+12}$ (I)
				671.5 341.5 (J)
				$\frac{J+10}{619.9}$ (I)
				$\frac{J+8}{2865}$ (I)
				555.7 $1(J)J+6 (I)$
				$\begin{array}{c} 481.5 \\ 1 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 481.5 \\ 1 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1$
				$\frac{400.6}{J+2} \xrightarrow{210.6} \xrightarrow{(1)} (J)$
			(38+)	$\underline{J} \underbrace{J} \underbrace{J} \underbrace{J} \underbrace{J} \underbrace{J} \underbrace{J} \underbrace{J} \underbrace$
(37-)			1158.0	
1084.0			(20.)	
(05.)			(30+)	
<u> </u>			1112.0	
1045.0			<u> </u>	
<u> </u>			1060.0	
986.2	(32-)		32+	
<u> </u>	971.6		008.8	
922.8	<u> </u>		398.8	
<u> (29–)</u>	903.4			
853.8	<u> </u>		935.0	
<u> </u>	833.6	(26-)	28+	
787.1	(26-)	783.0	870.2	
<u> </u>	766.6	737.8	806.3	
(23-)	704.8	(22-)	24+	
674.0	<u> </u>	694.9	738.6	
620.0	649.4	<u>(20-)</u>	<u> </u>	
<u> </u>	600.4	(18-)	666.3 v 20+	
586.5	<u> </u>	592.7	588.5	
403.0 538.1	<u> </u>	527.5	<u> </u>	
575.1 490.8	<u>499.4</u> <u>(14-)</u>	$\frac{\psi(14-)}{459.0}$	<u>16+</u> 3 375.8	
(H) (13) - (H) (H) (H) (H) (H) (H) (H) (H) (H) (H)	$\frac{437.6}{(12-)}$	(12-)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1.3 - \frac{\sqrt{10}}{289.2} (10) 34$	1.0 353.7 355	5.8 <u>10+</u>	
(B) 811.0 7– 11 (A) $1/7$ (5–) 74 (B) -219.4	2.9 - 207.6 - (6) - 43 .92 - 248.53	3.2 300.8 $(6-)$ 402217.9 $(4-)$ 608		
B1111.4 537 A1122.38 1197	.97 .64 .2	8.87 $(2-)$ 924 1117 7.4 1117 1127	.1	
(I1459.63 (±1290.71	45 57	3.86 7.70		
(A) (A)				

Level Scheme

Intensities: relative photon branching from each level & Multiply placed; undivided intensity given

Level Scheme (continued)

Intensities: relative photon branching from each level & Multiply placed; undivided intensity given

Level Scheme (continued)

Intensities: relative photon branching from each level & Multiply placed; undivided intensity given

Level Scheme (continued)

Intensities: relative photon branching from each level & Multiply placed; undivided intensity given

Level Scheme (continued)

Intensities: relative photon branching from each level & Multiply placed; undivided intensity given

J+17		4921.6+x	
J+16		4531.2+x	
J+15		4149.6+x	
J+14		3778.4+x	
J+13		3416.6+x	
J+12		3064.1+x	
J+11		2722.6+x	
J+10		2392.6+x	
J+8		1772.7+x	
J+6		1217.0+x	
J+4		735.5+x	
J+2		334.9+x	
(38+)		12716	
(37–)		12186	
(36+)		11557.8	
(35-)		11102	
34+		10445.8	0.035 ps
(33-)		10057.5	•
32+		9385.8	0.042 pc
(31-)		9071.3	0.042 ps
(30-)		8677.0	
(29-)		8148.5	
(28-)		7773.6	
(27-)		7294 7	
(26-)		6940.0	
(25_)		6507.6	
(23-)		6173.4	
24+		5775 5	
(22-)		5468.6	0.125 ps
(20-)		4819.2	
(18+)		4189.9	
(16-)		3878.1	
16+		3490.1	
(14-)		3166.5	
		1315.22	
(4)+		1162.74	
(2+)		1144.29	
$\frac{8+}{(3)+}$		1098.25	2.14 ps
(2)+		932.38	
6+		667.97	7.8 ns
4+	_\ <u> ¥ ¥ 1 </u>	330.48	52.9 ps
2+		102.37	1.24 ns
0+		0.0 د	56.7 h

¹⁶⁶Lu ε Decay (2.65 min) 1974De09,2007Mc08

 $Parent \ ^{166}Lu: \ E=0. \ ; \ J\pi=6-; \ T_{1/2}=2.65 \ min \ \textit{10}; \ Q(g.s.)=5570 \ \textit{30}; \ \%\epsilon+\%\beta^+ \ decay=100.$

2007Mc08: measured γγ(θ) out-of-beam for three cascades using 8 Compton suppressed segmented YRAST Ball Clover HPGe detectors. These data are a byproduct of a study of ¹⁶⁸Ta ε decay for which the source was produced using 130-MeV ¹⁶O bombardment of ¹⁵⁹Tb; the ¹⁶⁶Lu component may be a mixture of all three isomers, but the 6- isomer's presence is confirmed by the observation of the 997γ which is known from that decay but not from the 0- or 3(-) isomer decays.

¹⁶⁶Yb Levels

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2}	Comments
0.0	0+		
102.38 3	2+		
330.48 4	4 +		
667.95 5	6+		
(932.38 5)			E(level); from Adopted Levels.
1039.20 6	(3)+		
1098.24 6	8+		
1162.87 6	(4) +		
1327.81 5	(5)+		
1482.39 6	(6)+		
1505.38 7	(5) -		
1570.55 15	(5) -		
1616.85 6	(4-)		
1684.82 15	(2+, 3, 4+)		
1724.81 11	(6+,7+)		
1744.6 3	(3+,4+)		
1790.31 7	(5-)		
1812.62 16	(8+)		
1818.01 23	(4+,5,6+)		
1833.2 5	(7) –		
1865.39 6	(6) –		
1957.06 6	(5,6)+		
1958.89 7	7 -		
2016.34 22	(4+,5,6+)		
2165.73 7	(6,7)+		
2233.32 6	6-,7-	< 10 n s	

 $^\dagger~$ From least-squares fit to Ey.

[‡] From Adopted Levels.

β^+,ϵ Data

Eε‡	E(level)	Iβ+§	I冧	Log ft [†]	$I(\epsilon+\beta^+)$ §	Comments
2947	9999 99	10 1	50 1	4 60 4	60 5	27 ER-1046 14: cK-0 608 7: cL-0 0052 11: cM-0 0287 4
$(3610^{\#} 30)$	1957.06	0.74	1.5 7	4.09 4 6.30 <i>22</i>	2.2 11	av $E\beta = 1040$ 14, $\epsilon K = 0.008$ 7, $\epsilon L = 0.0953$ 11, $\epsilon M + = 0.0287$ 4. av $E\beta = 1171$ 14; $\epsilon K = 0.548$ 7; $\epsilon L = 0.0857$ 11; $\epsilon M + = 0.0258$ 4.
(3780 [#] 30)	1790.31	1.1 7	1.7 11	6.3 <i>3</i>	2.8 18	av E β =1246 14; ϵ K=0.512 7; ϵ L=0.0800 11; ϵ M+=0.0241 3.
(3850 30)	1724.81	1.5 2	2.3 4	6.16 8	3.8 6	av Eβ=1276 14; εK=0.498 7; εL=0.0778 10; εM+=0.0234 3.
(4060 30)	1505.38	1.5 3	1.7 3	6.32 9	3.2 6	av E\beta=1376 14; EK=0.453 6; EL=0.0706 10; EM+=0.0212 3.
(4240 30)	1327.81	2.2 8	2.3 8	6.25 16	4.5 16	av E\beta=1458 14; EK=0.418 6; EL=0.0651 9; EM+=0.0196 3.
(4410 30)	1162.87	1.4 5	3.1 11	8.00 ¹ u <i>16</i>	4.5 16	av Eβ=1513 14; εK=0.577 5; εL=0.0921 9; εM+=0.0278 3.
(4900 30)	667.95	3.68	2.1 4	6.40 10	5.7 12	av Eβ=1762 14; εK=0.307 5; εL=0.0477 7;
						$\epsilon M + = 0.01433 \ 21.$
(5240 30)	330.48	2.0 7	2.2 7	8.45 ¹ u <i>15</i>	4.2 14	av $E\beta = 1885$ 14; $\varepsilon K = 0.441$ 5; $\varepsilon L = 0.0698$ 8; $\varepsilon M + = 0.02104$ 23.

 † The total intensity of γ rays not placed in the decay scheme is 14%; consequently, Ie and log ft values are given for only

the strongest branches, and the values for the 2233 level alone can be considered to be reliable.

 $^{\ddagger}~E(\beta^{+})$ to the 2233-keV level has been measured as 2225 keV 160.

§ Absolute intensity per 100 decays.

Existence of this branch is questionable.

$\gamma(^{166}{\rm Yb})$

1974De09 pointed out that the following γ rays definitely belong to 166 Lu decay but could not be assigned with sufficient certainty to one of the three activities. The intensity given for these lines is normalized to the ground-state decay values of 166 Lu.

Ēγ	Iγ	Eγ	Ιγ	
308.8 <i>6</i>	0.6 3	1389.8	6 1.2	 6
312.9 4	0.8 4	1548.2	6 0.5	3
401.7 3	1.1 3	1594.5	6 0.6	3
416.1 5	0.6 3	1620.2	6 0.6	3
549.6 6	0.8 4	1654.0	6 0.8	4
612.1 6	1.6 4	1693.9	6 0.6	3
671.6 4	1.5 4	1809.3	6 0.6	3
697.3 <i>6</i>	0.9 3	1888.1	6 0.6	3
735.2 6	0.9 3	2149.2	6 0.6	3
769.4 8	0.4 2	2259.0	6 1.0	3
915.9 6	0.7 4	2262.8	6 1.0	3
942.6 6	0.94	2362.6	10 1.0	3
948.0 6	1.0 4	2448.5	6 1.2	3
962.1 6	0.8 4	2481.5	6 0.5	3
1011.6 6	0.9 4	2489.6	6 0.5	3
1171.0 6	1.0 4	2547.5	6 0.5	2
1316.6 10	0.6 3	2762.5	5 0.4	2

 $\begin{array}{l} \mbox{Conversion coefficient data from 1974De09 normalized so $\alpha(K)exp(337.5\gamma)=0.0383=\alpha(K)(E2$ theory). Iγ normalization: no β^+ or ϵ feeding to ^{166}Yb g.s. is expected ($\Delta J=6$), so $\Sigma(I($\gamma$+ce) to g.s.)=100$. \end{array}$

Εγ	E(level)	Ιγ [‡]	Mult. [†]	δ	α	I(γ+ce) [‡]	Comments
67.57 4	2233.32	9.7 10	E1		0.943		$\begin{aligned} &\alpha(\mathbf{K}) \!=\! 0.767 \ 11; \ \alpha(\mathbf{L}) \!=\! 0.1379 \ 20; \\ &\alpha(\mathbf{M}) \!=\! 0.0310 \ 5; \\ &\alpha(\mathbf{N}\!+\!) \!=\! 0.00802 \ 12. \\ &\alpha(\mathbf{N}) \!=\! 0.00708 \ 10; \\ &\alpha(\mathbf{O}) \!=\! 0.000901 \ 13; \end{aligned}$
							$\alpha(P) = 3.22 \times 10^{-5} 5.$
							$(\alpha(exp) have been deduced$
							from γγ coincidence
							measurement) (1974De09).
74.92 10	1865.39	2.2 3	M1 , E2		8.9 12		$\alpha(\mathbf{K}) = 4.0 \ 25; \ \alpha(\mathbf{L}) = 4 \ 3;$ $\alpha(\mathbf{M}) = 0.9 \ 7; \ \alpha(\mathbf{N}_{\pm}) = 0.23 \ 18$
							$\alpha(N)=0.21 \ 16; \ \alpha(O)=0.024 \ 17;$
							$\alpha(P) = 0.00024 \ 16.$
							Mult.: from $\alpha(exp)=9.4\ 20$
							measurement (1974De09).
93.2 5	1958.89	0.5 1	[M1, E2]		4.17 11		$\alpha(K)=2.3 \ 12; \ \alpha(L)=1.4 \ 9;$
							$\alpha(M) = 0.35 \ 23; \ \alpha(N+) = 0.09 \ 6.$
							$\alpha(\mathbf{N}) = 0.08 \ b; \ \alpha(\mathbf{O}) = 0.009 \ b; \ \alpha(\mathbf{P}) = 0.00013 \ 8.$
×99.53 20		1.1 1					
102.38 3	102.38	61.5 30	E2		2.93		$\alpha(K) = 0.968 \ 14; \ \alpha(L) = 1.501 \ 22;$
							$\alpha(M) = 0.370 \ 6; \ \alpha(N+) = 0.0941 \ 14.$
							$\alpha(\Omega) = 0.00970 \ 14$:
							$\alpha(P) = 4.10 \times 10^{-5} 6.$
							Mult.: from $\alpha(K)\exp=1.1$ 3,
							$\alpha(L)exp=1.4$ 3 and
							$\alpha(M+N)=0.51 \ g \ (1974De09).$
							%17=25.4 b assuming recommended normalization.
139.0 3	1957.06	1.0 3					
x160.0 6		0.6 3					
$166.6^{\#}$	1957.06						From fig. 7 of 1974De09; absent
X101 9 2		192					from tabulated data.
x195.54 15		2.1 3					

				γ(¹⁶⁶ Yb) (com	ntinued)		
Eγ	E(level)	Iγ [‡]	Mult. [†]	δ	α	I(γ+ce) [‡]	Comments
208.65 10	2165.73	9.1 9	M1+E2	0.9 4	0.34 5		$\begin{aligned} &\alpha(\mathbf{K}) = 0.26 \ \ &\beta; \ \alpha(\mathbf{L}) = 0.060 \ \ &4; \\ &\alpha(\mathbf{M}) = 0.0138 \ \ &11; \\ &\alpha(\mathbf{N}+) = 0.00365 \ \ &24. \end{aligned}$
							$\alpha(N) = 0.00321 \ 23;$ $\alpha(O) = 0.000423 \ 13;$ $\alpha(P) = 1.5 \times 10^{-5} \ 4.$ Mult: from $\alpha(K) \exp[=0.27 \ 5]$
212.4 3	1957.06	2.8 3	(E2)		0.220		(1974De09). $\alpha(K)=0.1391\ 21;\ \alpha(L)=0.0621\ 10;$ $\alpha(M)=0.01499\ 23;$ $\alpha(N+)=0.00387\ 6.$
							$\alpha(N)=0.00344 b;$ $\alpha(O)=0.000417 7;$ $\alpha(P)=6.59\times10^{-6} 10.$ Mult.: from $\alpha(K)\exp=0.28 18$ (1974De09).($\alpha(K)\exp$ p consistent with M1 or E2 but $\Delta J=2$ from decay scheme).
219.4 <i>3</i> 228.12 <i>3</i>	1790.31 330.48	0.8 <i>1</i> 188.5 <i>14</i>	E2		0.1743		$\begin{aligned} &\alpha(\mathbf{K}) \!=\! 0.1136 \ 16; \ \alpha(\mathbf{L}) \!=\! 0.0466 \ 7; \\ &\alpha(\mathbf{M}) \!=\! 0.01121 \ 16; \\ &\alpha(\mathbf{N}_{+}) \!=\! 0.00290 \ 4. \\ &\alpha(\mathbf{N}) \!=\! 0.00258 \ 4; \\ &\alpha(\mathbf{O}) \!=\! 0.000314 \ 5; \\ &\alpha(\mathbf{C}) \!=\! 5.47 \!\times\! 10^{-6} \ 8. \end{aligned}$
248 53 7	1865 39	11 8 6	(F2)		0 1324		Mult.: from $\alpha(K)\exp=0.10 I$, $\alpha(L)\exp=0.045 4$ (1974De09) and A ₂ =+0.104 20, A ₄ =+0.005 26 for 228 γ -102 $\gamma(\theta)$ (2007Mc08). $\alpha(K)=0.0891 J^3$; $\alpha(L)=0.0333 5$;
240.00 /	1000.00		(22)		0.1024		$\begin{aligned} &\alpha(M) = 0.00797 \ 12; \\ &\alpha(M) = 0.00797 \ 12; \\ &\alpha(N+) = 0.00206 \ 3. \\ &\alpha(N) = 0.00183 \ 3; \\ &\alpha(O) = 0.000226 \ 4; \\ &\alpha(P) = 4.38 \times 10^{-6} \ 7. \\ &\text{Mult.: from } \alpha(K) \exp = 0.14 \ 6 \end{aligned}$
^x 268.16 <i>16</i>		2.0 2					(1974De09).
272.2 <i>5</i> 274 41 4	1957.06	4.05	M1		0 200		$\alpha(\mathbf{K}) = 0.1678.24; \alpha(\mathbf{I}) = 0.0252.4;$
271.11	2200.02	21.1.10			0.200		$\begin{aligned} &\alpha(M) = 0.00564 \ 8; \\ &\alpha(M) = 0.00564 \ 8; \\ &\alpha(N) = 0.001523 \ 22. \\ &\alpha(N) = 0.001324 \ 19; \\ &\alpha(O) = 0.000190 \ 3; \\ &\alpha(P) = 1.015 \times 10^{-5} \ 15. \end{aligned}$
276.28 4	2233.32	33.4 20	(E1)		0.0244		Mult.: from $\alpha(K) \exp = 0.184$ 26 (1974De09). $\alpha(K) = 0.0205$ 3; $\alpha(L) = 0.00304$ 5; $\alpha(M) = 0.000677$ 10;
							$\begin{split} &\alpha(N+)=0.000180\ 3.\\ &\alpha(N)=0.0001575\ 22;\\ &\alpha(O)=2.18\times10^{-5}\ 3;\\ &\alpha(P)=1.031\times10^{-6}\ 15.\\ &\text{Mult.: from }\alpha(K)\exp=0.058\ 20\\ &(1974De09). \end{split}$
288.87§ 5	1327.81	4.67 [§] 11	E2		0.0829		$\alpha(K) = 0.0585 \ 9; \ \alpha(L) = 0.0187 \ 3;$ $\alpha(M) = 0.00446 \ 7;$ $\alpha(N+) = 0.001159 \ 17.$ $\alpha(N) = 0.001028 \ 15;$ $\alpha(O) = 0.0001286 \ 18;$ $\alpha(O) = 0.0001286 \ 5;$
	1616.85	4.67§ 11					$u(r) = 2.57 \times 10^{-5} J.$

				$\gamma(^{166}$ Yb) (cont	inued)		
Εγ	E(level)	Iγ [‡]	Mult. [†]	δ	α	I(γ+ce) [‡]	Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1865.39	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
337.50 <i>3</i>	2016.34 667.95	1.1 [§] 2 100	E2		0.0521		$\begin{aligned} &\alpha(\mathbf{K}) = 0.0383 \ \ \delta; \ \alpha(\mathbf{L}) = 0.01066 \ \ 15; \\ &\alpha(\mathbf{M}) = 0.00252 \ \ 4; \\ &\alpha(\mathbf{N}+) = 0.000657 \ \ 10. \\ &\alpha(\mathbf{N}) = 0.000581 \ \ 9; \\ &\alpha(\mathbf{O}) = 7.40 \times 10^{-5} \ \ 11; \\ &\alpha(\mathbf{P}) = 2.00 \times 10^{-6} \ \ 3. \\ & \text{Mult.: from } \alpha(\mathbf{L}) \exp[=0.011 \ \ 3 \\ &(1974De09). \end{aligned}$
^x 353.96 <i>20</i> 360.09 7	1865.39	1.3 <i>3</i> 8.8 <i>7</i>	M1		0.0966		$\alpha(K)=0.0811 \ 12;$ $\alpha(L)=0.01210 \ 17;$ $\alpha(M)=0.00270 \ 4;$ $\alpha(N+)=0.000730 \ 11.$ $\alpha(N)=0.000635 \ 9;$ $\alpha(0)=9.09\times10^{-5} \ 13;$ $\alpha(P)=4.89\times10^{-6} \ 7.$ Mult.: from $\alpha(K)\exp=0.103 \ 25$ (1074D=00)
367.95 <i>3</i>	2233.32	76.7 23	М1		0.0913		$\begin{aligned} & (1974)2609).\\ & \alpha(K)=0.0766\ 11;\\ & \alpha(L)=0.01142\ 16;\\ & \alpha(M)=0.00255\ 4;\\ & \alpha(N+)=0.000689\ 10.\\ & \alpha(N)=0.000599\ 9;\\ & \alpha(O)=8.58\times10^{-5}\ 12;\\ & \alpha(P)=4.61\times10^{-6}\ 7.\\ & Mult.:\ from\ \alpha(K)exp=0.085\ 8,\\ & \alpha(L)exp=0.014\ 3\ (1974)De09). \end{aligned}$
^3//.4 4 382.97 4	1865.39	0.9 2	(E1)		0.01110		$\label{eq:alpha} \begin{split} &\alpha(K) \!=\! 0.00936 \ 14; \\ &\alpha(L) \!=\! 0.001357 \ 19; \\ &\alpha(M) \!=\! 0.000302 \ 5; \\ &\alpha(N+) \!=\! 8.06 \!\times\! 10^{-5} \ 12. \\ &\alpha(N) \!=\! 7.03 \!\times\! 10^{-5} \ 10; \\ &\alpha(O) \!=\! 9.82 \!\times\! 10^{-6} \ 14; \\ &\alpha(P) \!=\! 4.84 \!\times\! 10^{-7} \ 7. \\ & \text{Mult.: from } \alpha(K) \!\exp\! \!=\! 0.029 \ 14 \\ &(1974 \!De09). \end{split}$
386.76 397.0210 430.283	1957.061724.811098.24	0.73 3.6 <i>I</i> 12.27	E2		0.0264		$\begin{aligned} &\alpha(\mathbf{K}) = 0.0203 \ 3; \ \alpha(\mathbf{L}) = 0.00470 \ 7; \\ &\alpha(\mathbf{M}) = 0.001096 \ 16; \\ &\alpha(\mathbf{N}+) = 0.000288 \ 4. \\ &\alpha(\mathbf{N}) = 0.000254 \ 4; \\ &\alpha(\mathbf{O}) = 3.32 \times 10^{-5} \ 5; \\ &\alpha(\mathbf{P}) = 1.098 \times 10^{-6} \ 16. \end{aligned}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2233.32 2016.34 1616.85 1957.06 1818.01 1162.87	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					a(1)-1.000/10 10.
-523.9 5 534.2 [#] 6	2016.34	1.24 <i>12</i> 1.3 4					Eγ, Iγ from table 1a of 1974De09, assignment to 2.65 min decay from fig. 7 of 1974De09.

				γ(¹⁶⁶ Yb) (cont	tinued)		
Εγ	E(level)	Iγ [‡]	Mult. [†]	δ	α	I(γ+ce) [‡]	Comments
537.64 4	1865.39	20.0 8	(E1)		0.00518		$\begin{aligned} &\alpha(K) \!=\! 0.00438 \ 7; \\ &\alpha(L) \!=\! 0.000622 \ 9; \\ &\alpha(M) \!=\! 0.0001379 \ 20; \\ &\alpha(N+) \!=\! 3.70 \!\times\! 10^{-5} \ 6. \\ &\alpha(N) \!=\! 3.22 \!\times\! 10^{-5} \ 5; \\ &\alpha(O) \!=\! 4.53 \!\times\! 10^{-6} \ 7; \\ &\alpha(P) \!=\! 2.31 \!\times\! 10^{-7} \ 4. \end{aligned}$ Mult.: from $\alpha(K) \!\exp\! =\! 0.016 \ 8$
577.70 5	1616.85	9.96	[E1]		0.00444		$\begin{aligned} &(1974De09).\\ &\alpha(K)=0.00376\ 6;\\ &\alpha(L)=0.000531\ 8;\\ &\alpha(M)=0.0001177\ 17;\\ &\alpha(N+)=3.16\times10^{-5}\ 5.\\ &\alpha(N)=2.75\times10^{-5}\ 4;\\ &\alpha(O)=3.88\times10^{-6}\ 6;\\ &\alpha(P)=1.99\times10^{-7}\ 3. \end{aligned}$
625.3 [#] 5 629.327	1724.81 1957.06	1.0 <i>3</i> 17.1 <i>10</i>	M1		0.0227		$\begin{split} &\alpha(K) \!=\! 0.0191 \; 3; \; \alpha(L) \!=\! 0.00280 \; 4; \\ &\alpha(M) \!=\! 0.000624 \; 9; \\ &\alpha(N+) \!=\! 0.0001688 \; 24. \\ &\alpha(N) \!=\! 0.0001466 \; 21; \\ &\alpha(O) \!=\! 2.10 \!\times\! 10^{-5} \; 3; \\ &\alpha(P) \!=\! 1.140 \!\times\! 10^{-6} \; 16. \\ &\text{Mult.: from } \alpha(K) \!\exp\! \!=\! 0.016 \; 6 \\ &(1974 \!De09). \end{split}$
*648.1 <i>6</i> 659.93 <i>5</i>	1327.81	1.03 9.06	(E2)		0.00911		$\begin{aligned} &\alpha(\mathbf{K}) = 0.00738 \ 11; \\ &\alpha(\mathbf{L}) = 0.001343 \ 19; \\ &\alpha(\mathbf{M}) = 0.000307 \ 5; \\ &\alpha(\mathbf{N}+) = 8.15 \times 10^{-5} \ 12. \\ &\alpha(\mathbf{N}) = 7.14 \times 10^{-5} \ 10; \\ &\alpha(\mathbf{O}) = 9.72 \times 10^{-6} \ 14; \\ &\alpha(\mathbf{P}) = 4.12 \times 10^{-7} \ 6. \end{aligned}$
(705.08)	1744.6					≈1.0	Eγ.I(γ+ce): from Adopted Gammas. I(γ+ce) based on adopted branching and I(γ+ce) feeding level, assuming no ε+β ⁺ branch to level.
708.82 7	1039.20	2.8 3	(E2)		0.00774		$\begin{aligned} &\alpha(\mathbf{K}) = 0.00631 \ 9; \\ &\alpha(\mathbf{L}) = 0.001113 \ 16; \\ &\alpha(\mathbf{M}) = 0.000253 \ 4; \\ &\alpha(\mathbf{N}+) = 6.75 \times 10^{-5} \ 10. \\ &\alpha(\mathbf{N}) = 5.91 \times 10^{-5} \ 9; \\ &\alpha(\mathbf{O}) = 8.08 \times 10^{-6} \ 12; \\ &\alpha(\mathbf{P}) = 3.53 \times 10^{-7} \ 5. \end{aligned}$
714.39 <i>15</i> 735.2 <i>6</i> ×760.9 <i>6</i> 794.11 <i>5</i>	1812.62 1833.2 1957.06	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					
(811.92)	1744.6					≈2.4	$\begin{split} & E\gamma, I(\gamma+ce)\colon from \ Adopted \\ & Gammas. \ I(\gamma+ce) \ based \ on \\ & adopted \ branching \ and \ I(\gamma+ce) \\ & feeding \ level, \ assuming \ no \\ & \epsilon+\beta^+ \ branch \ to \ level. \end{split}$
814.46 5	1482.39	16.5 <i>9</i>	М1		0.01189		$\begin{aligned} &\alpha(\mathbf{K}) = 0.01002 \ 14; \\ &\alpha(\mathbf{L}) = 0.001454 \ 21; \\ &\alpha(\mathbf{M}) = 0.000324 \ 5; \\ &\alpha(\mathbf{N}+) = 8.76 \times 10^{-5} \ 13. \\ &\alpha(\mathbf{N}) = 7.61 \times 10^{-5} \ 11; \\ &\alpha(\mathbf{O}) = 1.093 \times 10^{-5} \ 16; \\ &\alpha(\mathbf{P}) = 5.94 \times 10^{-7} \ 9. \end{aligned}$

				$\gamma(^{166}Yb)$ (conti	nued)	
Eγ	E(level)	Iγ [‡]	Mult. [†]	δ	α	Comments
832.20 <i>8</i>	1162.87	14.7 <i>II</i>	M1+E2	+0.6 2	0.0097 8	$\begin{split} &\alpha(K) \!=\! 0.0082 \ 7; \ \alpha(L) \!=\! 0.00121 \ 9; \\ &\alpha(M) \!=\! 0.000270 \ 18; \ \alpha(N+) \!=\! 7.3 \!\times\! 10^{-5} \ 5. \\ &\alpha(N) \!=\! 6.3 \!\times\! 10^{-5} \ 5; \ \alpha(O) \!=\! 9.1 \!\times\! 10^{-6} \ 7; \\ &\alpha(P) \!=\! 4.8 \!\times\! 10^{-7} \ 4. \\ &\delta: \ from \ A_2 \!=\! +0.019 \ 15, \ A_4 \!=\! +0.075 \ 25 \ for \\ &832\gamma \!-\! 228\gamma(\theta) \ (2007 Mc08). \ (evaluator's \\ &analysis \ gives \ \delta\!=\! +0.50 \ +\! 8\!-\! 7 \ or \\ &-2.6 \ +\! 5\!\!-\! 7; \ second \ solution \ is \ rejected \end{split}$
837.57 8	1505.38	6.74	E1+M2	0.31 +3-4	0.0044 6	because α(K)exp from (α, xnγ) implies pure M1). α(K)=0.0037 5; α(L)=0.00056 8; α(M)=0.000126 17; α(N+)=3.4×10 ⁻⁵ 5.
						$\alpha(N)=3.0\times10^{-5}$ 4; $\alpha(O)=4.2\times10^{-6}$ 6; $\alpha(P)=2.2\times10^{-7}$ 3.
860.56 11	1958.89	8.0 5	E1(+M2)		0.014 13	$\begin{split} &\alpha(\mathbf{K})\!=\!0.012 \ 11; \ \alpha(\mathbf{L})\!=\!0.0019 \ 17; \\ &\alpha(\mathbf{M})\!=\!0.0004 \ 4; \ \alpha(\mathbf{N}\!+\!)\!=\!0.00012 \ 11. \\ &\alpha(\mathbf{N})\!=\!0.00010 \ 9; \ \alpha(\mathbf{O})\!=\!1.4\!\times\!10^{-5} \ 13; \\ &\alpha(\mathbf{P})\!=\!8.\!\times\!10^{-7} \ 7. \end{split}$
901.5 <i>6</i> 936.79 <i>7</i>	1570.55 1039.20	$\begin{array}{ccc} 1 & 0 & 4 \\ 1 & 4 & 0 & 6 \end{array}$	E2		0.00424	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.00352 \; \textit{5}; \; \alpha(\mathbf{L}) \!=\! 0.000564 \; \textit{8}; \\ &\alpha(\mathbf{M}) \!=\! 0.0001271 \; \textit{18}; \; \alpha(\mathbf{N}\!+\!) \!=\! 3.40\!\times\!10^{-5} \; \textit{5}. \\ &\alpha(\mathbf{N}) \!=\! 2.97\!\times\!10^{-5} \; \textit{5}; \; \alpha(\mathbf{O}) \!=\! 4.14\!\times\!10^{-6} \; \textit{6}; \\ &\alpha(\mathbf{P}) \!=\! 1.98\!\times\!10^{-7} \; \textit{3}. \end{split}$
*975.0 <i>6</i> 997.38 <i>5</i>	1327.81	0.8 <i>3</i> 43.9 <i>18</i>	M1+E2	-10 +3-13	0.00376 7	$\begin{split} &\alpha(K) = 0.00313 \ 6; \ \alpha(L) = 0.000493 \ 8; \\ &\alpha(M) = 0.0001108 \ 18; \ \alpha(N+) = 2.97 \times 10^{-5} \ 5. \\ &\alpha(N) = 2.59 \times 10^{-5} \ 5; \ \alpha(O) = 3.62 \times 10^{-6} \ 6; \\ &\alpha(P) = 1.76 \times 10^{-7} \ 3. \\ &\text{Mult.: from Adopted Gammas. Consistent with} \\ &\alpha(K) \exp = 0.006 \ 4 \ (1974 De09). \\ &\delta: \ from \ Adopted \ Gammas. \ \delta = -0.2 \ 1 \ or \\ &-10 \ +3-13 \ from \ authors' \ analysis \ of \\ &A_2 = -0.21 \ 2, \ A_4 = -0.03 \ 1 \ for \ 997\gamma - 228\gamma(\theta) \\ &(2007 Mc08). \end{split}$
x1021.2 5 1056.3 6 1060.28 11 1067.34 20 1122.38 8 1144.5 5 1151.1§ 4	1724.81 1162.87 2165.73 1790.31 1812.62 1482.39	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				(2007/4006).
1165.2 6	1833.2	1.13 3	E1		1.14×10 ⁻³	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.000965 \ 14; \ \alpha(\mathbf{L}) \!=\! 0.0001315 \ 19; \\ &\alpha(\mathbf{M}) \!=\! 2.90 \!\times\! 10^{-5} \ 4; \ \alpha(\mathbf{N} \!+\!) \!=\! 1.82 \!\times\! 10^{-5} \ 3. \\ &\alpha(\mathbf{N}) \!=\! 6.79 \!\times\! 10^{-6} \ 10; \ \alpha(\mathbf{O}) \!=\! 9.70 \!\times\! 10^{-7} \ 14; \\ &\alpha(\mathbf{P}) \!=\! 5.22 \!\times\! 10^{-8} \ 8; \ \alpha(\mathbf{IPF}) \!=\! 1.038 \!\times\! 10^{-5} \ 21. \end{split}$
1174.80 <i>13</i> ×1185 2 6	1505.38	10.8 10 2 0 6				
×1186.9 6		1.0 4				
1197.2 <i>3</i>	1865.39	1.4 2				
x1234.2 3		2.1 4				
1240.05 25	1570.55	3.3 4				
^x 1261.7 6 1290.71 20	1958.89	0.8 <i>4</i> 23.9 <i>17</i>	E1		1.01×10 ⁻³	$\alpha(\mathbf{K}) = 0.000806 \ 12; \ \alpha(\mathbf{L}) = 0.0001093 \ 16; \alpha(\mathbf{M}) = 2.41 \times 10^{-5} \ 4; \ \alpha(\mathbf{N}_{+}) = 6.70 \times 10^{-5} \ 10. \alpha(\mathbf{N}) = 5.65 \times 10^{-6} \ 8; \ \alpha(\mathbf{O}) = 8.07 \times 10^{-7} \ 12; \alpha(\mathbf{P}) = 4.36 \times 10^{-8} \ 7; \ \alpha(\mathbf{P}) = 6.05 \times 10^{-5} \ 0. $
^x 1301.9 4		1.6 3				$\omega_{(1)} = 4.00 \times 10^{-7}$, $\omega_{(1111)} = 0.00 \times 10^{-7}$.
^x 1306.0 5		1.2 3				
×1310.8 7		1.3 2				
1354.35 15	1684.82	4.2 9				

			γ(¹⁶⁶ Yb) (continued)	
Eγ	E(level)	Iγ [‡]	Εγ	E(level)	Iγ [‡]
×1398.0 9		1.8 5	1626.63 25	1957.06	2.3 4
1459.63 10	1790.31	19.2 10	×1640.3 6		0.9 3
1487.3 4	1818.01	2.6 5	x1645.4 6		0.7 3
1497.33 23	2165.73	1.8 4	1685.85 25	2016.34	1.20 20
x1505.1 4		1.8 4	x 1720.3 6		0.6 3
1582.2 6	1684.82	0.6 3			

.

[†] From Adopted Gammas, unless otherwise noted.

[‡] For absolute intensity per 100 decays, multiply by 0.414 23.

 $\ensuremath{\S}$ Multiply placed; undivided intensity given.

¹⁶⁶LuεDecay (1.41 min) 1974De09

¹⁶⁶Yb Levels

Parent ¹⁶⁶Lu: E=34.37 22; $J\pi$ =3(-); $T_{1/2}$ =1.41 min 10; Q(g.s.)=5570 30; %ε+%β⁺ decay=58 5.

$E(level)^{\dagger}$ $J\pi^{\ddagger}$ E(level)[†] Jπ‡ E(level)[†] Jπ‡ 0.0 (4)+ (2+,3,4+) 0 +1162.84 8 1607.93 10 102.38 3 2+ 1315.32 15 $1\,6\,8\,4$.84 15 (2+,3,4+) 330.50 4 1386.02 11 1744.25 7 (3+,4+) (2+,3,4+) 4+ 932.37 5 1451.40 20 2029.29 7 (2)+ (3-,4-) 1039.16 5 (3)+ 1503.37 7 (2-)

 $^\dagger~$ From least-squares fit to Eq.

[‡] From Adopted Levels.

β+,ε Data

Eε		E(level)	Iβ ^{+‡}	$I\epsilon^{\dagger\ddagger}$	Log ft [†]	$I(\epsilon+\beta^+)^{\ddagger}$	Comments
(3580	30)	2029.29	7.6 17	15 3	4.99 10	23 5	av EB=1154 14: EK=0.556 7: EL=0.0871 11: EM+=0.0262 4.
(3860	30)	1744.25	1.2 4	1.7 7	6.01 17	2.9 11	av E β =1283 14; ϵ K=0.495 7; ϵ L=0.0773 10; ϵ M+=0.0232 3.
(4150§	30)	1451.40	0.86 24	0.9 <i>3</i>	6.33 13	1.8 5	av Eβ=1417 14; εK=0.435 6; εL=0.0679 10; εM+=0.0204 3.
(4290	30)	1315.32	1.8 5	1.8 4	6.09 12	3.6 9	av $E\beta = 1479 \ 14$; $\epsilon K = 0.409 \ 6$; $\epsilon L = 0.0637 \ 9$; $\epsilon M + = 0.0192 \ 3$.
(4570	30)	1039.16	1.3 6	1.0 5	6.39 21	2.3 11	av Eβ=1606 14; εK=0.360 5; εL=0.0560 8; εM+=0.01683 24.
(4670	30)	932.37	3.1 9	2.2 6	6.07 13	5.3 15	av Eβ=1656 14; εK=0.342 5; εL=0.0532 8; εM+=0.01599 23.

[†] The total intensity of γ rays not placed in the decay scheme is 7%; consequently, Iε and log *ft* values are shown for only the strongest branches, and the values for the 2029 level alone can be considered to be reliable.

[‡] Absolute intensity per 100 decays.

§ Existence of this branch is questionable.

$\gamma(^{166}Yb)$

I γ normalization: The basis of the intensity normalization is that no $\epsilon+\beta^+$ feeding to the ground state of ¹⁶⁶Yb is expected ($\Delta J=3$), so $\Sigma(I(\gamma+ce)$ to g.s.)=100.

Εγ	E(level)	Iγ‡	Mult. [†]	δ†	α	Comments
102.38 <i>3</i>	102.38	114 27	E2		2.93	α (K)=0.968 <i>14</i> ; α (L)=1.501 <i>22</i> ; α (M)=0.370 <i>6</i> ; α (N+)=0.0941 <i>14</i> . α (N)=0.0844 <i>12</i> ; α (O)=0.00970 <i>14</i> ; α (P)=4.10×10 ⁻⁵ <i>6</i> .
152.49 13	1315.32	13 1				
228.13 <i>3</i>	330.50	138 40	E2		0.1742	$\alpha(\mathbf{K})=0.1135 \ I6; \ \alpha(\mathbf{L})=0.0466 \ 7; \ \alpha(\mathbf{M})=0.01121 \ I6; \ \alpha(\mathbf{N}+)=0.00290 \ 4.$
285.07 5	2029.29	100 5	E1		0.0226	$\alpha(\mathbf{X}) = 0.00236 +, \alpha(\mathbf{C}) = 0.000214 +, \alpha(\mathbf{M}) = 0.000625 - 9; \alpha(\mathbf{K}) = 0.0001665 - 24. \alpha(\mathbf{N}+) = 0.0001665 - 24. \alpha(\mathbf{N}) = 0.0001655 - 24. \\\alpha(\mathbf{N}) = 0.0001655 - 24. \\\alpha(\mathbf{N}) = 0.0001655 - 24. \\\alpha($
						$Mult : from \alpha(K) exp = 0.026.20 (1974De09)$
345 08# 6	1386 02	4 § 1				$\mathbf{M} \mathbf{u}(\mathbf{r}) = \mathbf{u}(\mathbf{r}) \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v}$
040.0 0	2029 29	4 \$ 1				
×407 0 6	2020120	4 2				
412.20 20	1451.40	11 /				
421.26 9	2029.29	19 /				
464.29 7	1503.37	7 2				
x470.4 5		5 2				
526.01 10	2029.29	27 3				
568.5 <i>6</i>	1607.93	73				
570.93 <i>9</i>	1503.37	29 <i>3</i>				
x581.0 6		11 3				
x625.3 6		6 2				
643.20 10	2029.29	32 <i>3</i>				
^x 680.9 4		6 2				
^x 701.9 3		9 1				
705.08 11	1744.25	40 4				

		_	LueDe	ecay (1.41	mm) 1974	
				γ(1	⁶⁶ Yb) (contin	ued)
Eγ	E(level)	Iγ [‡]	Mult. [†]	δ^{\dagger}	α	Comments
708.82 <i>13</i>	1039.16	13 4	(E2)		0.00774	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.00631 \; g; \; \alpha(\mathbf{L}) \!=\! 0.001113 \; I6; \; \alpha(\mathbf{M}) \!=\! 0.000253 \; 4; \\ &\alpha(\mathbf{N}_{+}) \!=\! 6.75 \!\times\! 10^{-5} \; I0. \\ &\alpha(\mathbf{N}) \!=\! 5.91 \!\times\! 10^{-5} \; g; \; \alpha(\mathbf{O}) \!=\! 8.08 \!\times\! 10^{-6} \; I2; \; \alpha(\mathbf{P}) \!=\! 3.53 \!\times\! 10^{-7} \; 5. \end{split}$
x747.1 5		4 1				
811.92 6	1744.25	89 5				
830.06 9	932.37	93 <i>5</i>	M1		0.01134	$\alpha(K) = 0.00956 \ 14; \ \alpha(L) = 0.001387 \ 20; \ \alpha(M) = 0.000309 \ 5; \ \alpha(N+) = 8.35 \times 10^{-5} \ 12. \ \alpha(N) = 7.25 \times 10^{-5} \ 12. \ \alpha(N) = 7.25 \times 10^{-5} \ 12. \ \alpha(N) = 7.25 \times 10^{-7} \ 8.5 \times 10^{-7} \ 10^{-7} \ 8.5 \times 10^{-7} \ 10^{-7}$
832.49 10	1162.84	248	M1+E2	+0.6 2	0.0097 8	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.0082 \ 7, \ \alpha(\mathbf{L}) = 0.00121 \ 9; \ \alpha(\mathbf{M}) = 0.000270 \ 18; \\ &\alpha(\mathbf{N}+) = 7.3 \times 10^{-5} \ 5; \\ &\alpha(\mathbf{N}) = 6.3 \times 10^{-5} \ 5; \ \alpha(\mathbf{O}) = 9.0 \times 10^{-6} \ 7; \ \alpha(\mathbf{P}) = 4.8 \times 10^{-7} \ 4. \end{aligned} $
866.4 4	2029.29	11 2				
932.35 7	932.37	73 5				
936.79 <i>5</i>	1039.16	755	E2		0.00424	$\alpha(\mathbf{K}) = 0.00352 \ 5; \ \alpha(\mathbf{L}) = 0.000564 \ 8; \ \alpha(\mathbf{M}) = 0.0001271 \ 18; \alpha(\mathbf{N}+) = 3.40 \times 10^{-5} \ 5. \alpha(\mathbf{N}) = 2.97 \times 10^{-5} \ 5; \ \alpha(\mathbf{O}) = 4.14 \times 10^{-6} \ 6; \ \alpha(\mathbf{P}) = 1.98 \times 10^{-7} \ 3.55 $
984.6 6	1315.32	20 4				
×1023.8 6		63				
1054.7 6	1386.02	8 4				
1060.28 11	1162.84	5 2				
1276.92 22	1607.93	11 3				
1283.45 21	1386.02	35 7				
1349.4 6	1451.40	5 2				
1354.35 15	1684.84	9 <i>9</i>				
1504.9 6	1607.93	11 3				
1582.2 6	1684 . 84	2 2				
1698.74	2029.29	12 3				
x1801.3 6		9 <i>3</i>				
x1974.0 6		6 <i>3</i>				

¹⁶⁶Lu & Decay (1.41 min) 1974De09 (contin ued)

[†] From Adopted Gammas.
[‡] For absolute intensity per 100 decays, multiply by 0.110 23.
[§] Multiply placed; undivided intensity given.
[#] Placement of transition in the level scheme is uncertain.

 $^{\mathbf{x}}$ $~\gamma$ ray not placed in level scheme.

¹⁶⁶LuεDecay (2.12 min) 1974De09

 $\begin{array}{l} \text{Parent} \ ^{166}\text{Lu: E=43.0 } \textit{4}; \ J\pi=0-; \ T_{1/2}=2.12 \ \text{min} \ \textit{10}; \ Q(g.s.)=5570 \ \textit{30}; \ \%\epsilon+\%\beta^+ \ \text{decay=90} \ \textit{10}. \\ ^{166}\text{Lu}-\%\epsilon+\%\beta^+ \ \text{decay: >0.80 \ from 1974De09; normalization of decay scheme assumes, therefore, a value of 0.90 \ \textit{10}. \end{array}$

¹⁶⁶Yb Levels

E(level)	Jπ+
0.0	0 +
102.37 3	2 +
330.49 5	4 +
1358.93 7	1 –
1529.67 9	1 –
1579.87 25	(2+)
1922.8 6	(1,2+)
2098.61 12	1 –
2426.42 17	1 –

 † From least-squares fit to Ey.

[‡] From Adopted Levels.

Eε		E(level)	$I\beta^{+\dagger}$	Ιε [†]	Log ft	$I(\epsilon+\beta^+)^\dagger$	Comments
(3190	30)	2426.42	3.2 12	11 4	5.22 16	14 5	av Eβ=978 14; εK=0.639 7; εL=0.1005 11; εM+=0.0302 3.
(3510	30)	2098.61	5.7 22	12 5	5.25 17	18 7	av E β =1126 14; ϵ K=0.569 7; ϵ L=0.0892 11; ϵ M+=0.0268 4.
(3690‡	30)	1922.8	1.1 4	1.9 7	6.10 17	3.0 11	av E β =1206 14; ϵ K=0.531 7; ϵ L=0.0831 11; ϵ M+=0.0250 4.
(4080	30)	1529.67	14 5	16 6	5.26 17	30 11	av E β =1385 14; ϵ K=0.449 6; ϵ L=0.0700 10; ϵ M+=0.0211 3.
(4250	30)	1358.93	10 4	10 4	5.51 18	20 8	av Eβ=1463 14; εK=0.416 6; εL=0.0648 9; εM+=0.0195 3.
(5610	30)	0.0	< 1 8	< 6.3	>5.9	< 2.4	av E β =2093 14; ϵ K=0.220 3; ϵ L=0.0341 5; ϵ M+=0.01024 15.

 β^+,ϵ Data

Footnotes continued on next page

¹⁶⁶Lu ε Decay (2.12 min) 1974De09 (continued)

$\beta^{\scriptscriptstyle +}, \epsilon$ Data (continued)

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

$\gamma(^{166}Yb)$

I γ normalization: The normalization is based on the assumption that the $\epsilon+\beta^+$ feeding to the ground state of 166 Yb is first-forbidden; log ft>5.9 then implies a g.s. branch of <24%, so $\Sigma(I(\gamma+ce)$ to g.s.)=88 12.

$E\gamma^{\dagger}$	E(level)	$I\gamma^{\dagger}$ §	Mult.‡	α	Comments
102.38 <i>3</i>	102.37	73 <i>35</i>	E2	2.93	$\alpha(\mathbf{K})=0.968 \ 14; \ \alpha(\mathbf{L})=1.501 \ 22; \ \alpha(\mathbf{M})=0.370 \ 6; \ \alpha(\mathbf{N}+)=0.0941 \ 14.$ $\alpha(\mathbf{N})=0.0844 \ 12; \ \alpha(\mathbf{O})=0.00970 \ 14; \ \alpha(\mathbf{P})=4.10\times10^{-5} \ 6.$ $\alpha(\mathbf{N})=0.4 \ 10^{-5} \ 6.$
228.12 3	330.49	28 28	E2	0.1743	$\alpha(\mathbf{K}) = 0.1136 \ 1.6; \ \alpha(\mathbf{L}) = 0.0466 \ 7; \ \alpha(\mathbf{M}) = 0.01121 \ 1.6; \ \alpha(\mathbf{N}+) = 0.00290 \ 4. \\ \alpha(\mathbf{N}) = 0.00258 \ 4; \ \alpha(\mathbf{O}) = 0.000314 \ 5; \ \alpha(\mathbf{P}) = 5.47 \times 10^{-6} \ 8.$
518.0 8	2098.61	73			
1067.32 20	2426.42	376			
1249.4 8	1579.87	10 4			
1256.64 10	1358.93	100 10			
1358.79 10	1358.93	88 11			
1427.18 14	1529.67	151 15			
1477.5 3	1579.87	18 3			
1529.73 11	1529.67	73 5			
1579.4 6	1579.87	73			
1820.4 6	1922.8	6 <i>3</i>			
1923.2 4	1922.8	16 2			
1996.25 15	2098.61	22 6			
2098.60 20	2098.61	106 13			
2324.6 3	2426.42	62 5			
2425.9 6	2426.42	4 2			

[†] From 1974De09.

[‡] From Adopted Gammas.
 § For absolute intensity per 100 decays, multiply by 0.135 45.

¹⁶⁶Lu ε Decay (2.12 min) 1974De09 (continued)

¹²⁴Sn(⁴⁸Ca,6nγ) 1994Ol04

Other: 2001Bu11; E=215 MeV; measured recoil-gated conversion electron spectra with and without a gate on the L line of the 228-keV 4+ to 2+ g.s. band transition in ¹⁶⁶Yb.

1940104: E=210, 220 and 225 MeV; 97%¹²⁴Sn target stack; HERA array consisting of 20 Compton-suppressed Ge detectors and an inner ball of 40 BGO detectors; measured Eγ and γγ coin.

¹⁶⁶Yb Levels

E(level) [†]	Jπ	E(level) [†]		E(level) [†]	Jπ
$0.0 + x^{\ddagger}$	J‡	$1217.0 + x^{\ddagger}$ 18	J + 6 ‡	3064.1+x [‡] 20	J+12 [‡]
162.6+x § 10	J + 1 §	1486.2+x [§] 18	J + 7 §	3416.6+x [§] 21	J + 1 3 §
334.9+x [‡] 13	J + 2 ‡	$1772.7 + x^{\ddagger} 18$	J + 8 ‡	3778.4+x [‡] 21	J + 1 4 ‡
524.9+x§ 13	J + 3 §	2075.2+x [§] 19	J + 9 §	4149.6+x [§] 22	J + 1 5 §
735.5+x [‡] 16	J + 4 ‡	$2392.6 + x^{\ddagger}$ 19	$J + 10^{\ddagger}$	$4531.2 + x^{\ddagger} 23$	$J + 16^{\ddagger}$
966.4+x [§] 16	J + 5 §	2722.6+x § 20	J+11§	$4921.6+x^{\$}24$	J+17§

 † From least-squares fit to Ey, assigning $\Delta E{=}1$ keV for all data.

[‡] (A): $((\pi 7/2[523])+(\pi 7/2[404]))(v i_{13/2}^2)$? band. Configuration assignment supported by large B(M1)/B(E2) ratios, bandhead energy and crossing frequency arguments (1994Ol04).

§ (B): $((\pi 7/2[523]) + (\pi 7/2[404]))(v i_{13/2}^2)$? band. See comment on signature partner of this band.

 $\gamma(^{166}Yb)$

r t					
Eγ	E(level)	<u>Εγ</u>	E(level)	<u>Εγ</u>	E(level)
162.6	162.6+x	341.5	3064.1 + x	555.7	1772.7+x
172.3	334.9 + x	352.5	$3\ 4\ 1\ 6$. $6 + x$	589.0	$2\ 0\ 7\ 5\ .\ 2+x$
190.0	524.9 + x	361.8	3778.4 + x	619.9	$2\ 3\ 9\ 2$. $6 + x$
210.6	735.5 + x	362.3	524.9 + x	647.4	2722.6 + x
230.9	966.4 + x	371.2	$4\ 1\ 4\ 9$. $6+x$	671.5	3064.1 + x
250.6	$1\ 2\ 1\ 7$. $0 + x$	381.6	4531.2 + x	694.0	$3\ 4\ 1\ 6$. $6 + x$
269.2	1486. $2+x$	390.4‡	4921.6+x	714.3	3778.4 + x
286.5	1772.7+x	400.6‡	735.5 + x	733.0	$4\ 1\ 4\ 9\ .\ 6+x$
302.5	$2\ 0\ 7\ 5\ .\ 2+x$	441.5	966.4 + x	752.8	$4\ 5\ 3\ 1$. 2 + x
317.4	2392.6+x	481.5‡	$1\ 2\ 1\ 7$. $0+x$	772.0	4921.6+x
330.0	2722.6+x	519.8	1486.2 + x		

[†] From 1994Ol04; uncertainty unstated by authors.

[‡] Placement of transition in the level scheme is uncertain.

$^{166}_{70}$ Yb₉₆-34

¹²⁴Sn(⁴⁸Ca,6nγ) 1994Ol04 (continued)

(A) ((π 7/2[523])+(π 7 (v i _{13/2} ²)? ban	7/2[40 d.	D4]))	(B) ((π 7/2[523])+(π 7/2[404])) (ν i _{13/2} ²)? band.			
				J+17		- 1	4921.6+x
J+16	1	4	1531.2+x	(A)J+16			
(B)J+15				J+15	_	v	4149.6+x
J+14		3	3778.4+x	(A)J + 14			
(B)J+13		<u> </u>		J+13	¥		3416.6+x
J+12	\¥	<u> </u>	3064.1+x	(A)J + 12	\	¥	/
(B)J+11	<u> </u>			J+11	\		2722.6+x
J+10	$\land \downarrow$	2	2392.6+x	(A)J+10)		
(B)J+9	\ <u> </u>			J+9	<u> </u>		2075.2+x
J+8	\ <u> </u>	<u>+/_</u>	772.7+x	(A)J+8	\¥		/
(B)J+7	∖¥	₩/_		J+7	<u>\</u>	-¥/	1486.2+x
J+6	<u>//</u>	¥—//ī	217.0 + x	(A)J+6	<u>\</u>		
(B)J+5	/└───₩	$\square \Gamma$		J+5	<u></u>	<u> </u>	966.4+x
J+4	γ <u> </u>	¥—/~7	/35.5+x	(A)J + 4	\ <u> </u>	/	
(B)J+3	<u>∖</u> ¥	<u>-</u>		J+3	/	¥/	524.9+x
J+2	\ <u> </u>	¥—/_3	334.9+x	(A) J+2	\¥	\downarrow	
(B)J+1	\`,	żΖ		J+1	\`₩		162.6+x
J	└────¥──		0.0 + x	(A)J		, v	<u></u>

¹²⁴Sn(⁴⁸Ca,6nγ) 1994Ol04 (continued)

¹²⁴Sn(⁴⁸Ca,6nγ) 1994Ol04 (continued)

Level Scheme

¹³⁰Te(⁴⁰Ar,4nγ) 1987Be07,1986Ba61,1976Bo27

Other: 1983De02 (¹³⁰Te(⁴⁰Ar,4n), E(⁴⁰Ar)=185 MeV).

1987Be07: ¹³⁰Te(⁴⁰Ar,4n), E(⁴⁰Ar)=180 MeV; measured Eγ, γγγ-coin, DCO ratios (40°, 90°).
 1987Ba06, 1986Ba61: ¹³⁰Te(⁴⁰Ar,4n), E(⁴⁰Ar)=180 MeV; measured lifetimes, Doppler shift attenuation.
 1976Bo27: ¹³⁰Te(⁴⁰Ar,4nγ), E(⁴⁰Ar)=170-190 MeV; measured recoil distance Doppler shift, Eγ, semi.

¹⁶⁶Yb Levels

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2}	Comments
0.0§	0 +	56.7 h 1	$J\pi$, $T_{1/2}$: from Adopted Levels.
102.37§ 3	2 +	1.24 ns ^c 6	1/2 •
330.27§ <i>21</i>	4 +	52.9 ps ^c 17	
667.8§ 3	6 +	7.8 ps ^c 3	
1098.0 [§] 4	8+	2.14 ps ^c 24	
1328.5 # 11	5 +		
1605.2 [§] 4	10+	1.0 ps ^c 5	
1617.5 9	(4-)		
1704.8# 6	7+		
1789.8 [@] 6	(5-)		
1836.8 ^b 11	(6-)		
1865.5 ^{&} 8	6 –		
1958.2 [@] 5	(7-)		
2071.5 ^{&} 6	8 -		
2138.0 ^b 12	(8–)		
2151. 0 [#] 6	9+		
2174.6 [§] 5	12+	0.64 ps ^c 33	
2208.9 [@] 6	9 –		
2360.7 ^{&} 6	10-		
2416.7 [@] 5	11-		
2492.4 ^b 13	(10-)		
2530.6 ^a 6	12+		
2727.786	12-		
2778.3§ 5	14+	0.51 ps ^c 29	

			¹⁶⁶ Yb Lev	els (cont	inued)
E(level) [†]	_Jπ [‡]	T_1/2	E(level) [†]	Jπ [‡]	T _{1/2}
2862.5 [@] 5	13-		5781.9 [@] 7	23-	
2892.4 ^b 14	(12-)		5815.0b 18	(22-)	
2896.6a 5	14+		6172.1& 8	24-	
3165.3& 7	14-		6377.1?§ 9	(24+)	
3272.5 ^a 5	16+	1.14 ps ^c 27	6506.8 [@] 8	25-	
3351.4 ^b 15	(14-)	•	6552.8 ^b 19	(24-)	
3353.3 [@] 5	15-		6580.5 ^a 7	26+	0.083 ps ^d 7
3489.0 [§] 5	16+		6938.7 ^{&} 8	26-	-
3664.7& 7	16-		7293.9 [@] 9	27-	
3780.8ª 6	18+	0.82 psd 10	7335.8?b 19	(26-)	
3879.1 ^b 16	(16-)	-	7450.7a 7	28+	0.069 psd 7
3891.4 [@] 6	17-		7772.3& 9	28-	
4188.8 [§] 6	18+		8147.7 [@] 10	29-	
4217.5& 7	18-		8385.7 ^a 8	30+	0.055 ps ^d 7
4369.3 ^a 6	20+	0.41 psd 3	8675.7 ^{&} 10	30-	-
4471.8 ^b 17	(18-)	-	9070.5 [@] 11	31-	
4477.9 [@] 6	19-		9384.5 ^a 9	32+	0.042 psd 7
4817.9& 8	20-		9647.3 ^{&} 11	32-	
4921.7 [§] 6	20+		10056.7 [@] 12	33-	
5035.6 ^a 6	22+	0.201 psd 21	10444.5a 10	34+	0.035 psd 7
5107.9 [@] 6	21-	-	11101.7? [@] 13	(35-)	
5120.1 ^b 17	(20-)		11556.5 ^a 12	36+	
5467.3 ^{&} 8	22-		12185.7? [@] 17	(37–)	
5648.6 [§] 8	22+		12714.5? ^a 13	(38+)	
5774.2a 7	24+	0.125 psd <i>14</i>			

¹³⁰ Te(⁴⁰ Ar,4nγ)	1987Be07,1986Ba61,1976Bo27 (continued)
--	--

 $^\dagger~$ From least-squares fit to Ey.

[‡] From fig. 7 of 1987Be07.

§ (A): K=0+ g.s. band.

[#] (B): $K=2+\gamma$ -vibrational band.

@ (C): Kπ=5-, α=1 band.

& (D): $K\pi=5-$, $\alpha=0$ band.

a (E): Super band. Becomes yrast for $J \ge 16$.

b (F): $K\pi$ =(2-) band. Although no parity assignment is indicated in fig. 7 of 1987Be07, π =- is assigned in table 2.

c From recoil distance Doppler shift (1976Bo27).

d From Doppler shift attenuation (1987Ba06).

γ(¹⁶⁶Yb)

Eγ‡	E(level)	Iγ§	Mult.†	α	Comments
102.37# 3	102.37				
113.0 5	2071.5	0.50 25			
152.0 5	2360.7	0.8 4			
206.0 5	2071.5	5.0 25	Q		DCO=1.04 13 (1987Be07).
227.9 2	330.27	100 10			
248.0 5	1865.5	0.50 25			
289.0 5	1617.5				I γ : masked by contaminant γ .
289.2 2	2360.7	6.5 7	Q		DCO=1.07 12 (1987Be07).
301.2 5	2138.0	2.1 11	Q		DCO=0.9 3 (1987Be07).
337.5 2	667.8	93 <i>9</i>	E2@	0.0521	DCO=0.97 5 (1987Be07).
354.4 5	2492.4	2.1 11			DCO=0.7 2 (1987Be07).
356.0 5	2530.6	1.1 6			
366.0 5	2896.6	1.4 7	Q		DCO=1.0 2 (1987Be07).
367.0 2	2727.7	11.0 11	Q		DCO=1.03 12 (1987Be07).
375.8 2	3272.5	7.0 7	E2@	0.0383	DCO=1.00 12 (1987Be07).
400.0 5	2892.4	3.0 15	Q		Mult.: DCO=1.1 3 (1987Be07).
430.2 2	1098.0	90 <i>9</i>	E2@	0.0264	DCO=0.88 6 (1987Be07).
437.6 2	3165.3	12.0 12	(E2)	0.0252	Mult.: DCO=0.98 12 (1987Be07).
445.9 5	2862.5	3.0 15	Q		Mult.: DCO=0.90 18 (1987Be07).
459.0 5	3351.4	3.0 15	(Q)		Mult.: DCO=0.66 17 (1987Be07).
490.8 2	3353.3	10.0 10	(E2)	0.0187	Mult.: DCO=0.92 9 (1987Be07).

¹³⁰Te(⁴⁰Ar,4nγ) 1987Be07,1986Ba61,1976Bo27 (continued)

$\gamma(^{166}Yb)$ (continued)

Eγ [‡]	E(level)	Iγ§	Mult.†	α	Comments
494.3 <i>2</i>	3272.5	31 3	E2@	0.0184	Mult.: DCO=0.77 4 (1987Be07).
499.4 2	3664.7	13.2 13	(E2)	0.0179	Mult.: $DCO=0.96 \ 10 \ (1987Be07).$
507.2 2	1605.2	123 12	[E2]	0.01720	<i>Iγ</i> : for 507.2γ+508.3γ triplet.
			. ,		DCO=0.85 4 (1987Be07) for 507.2γ+508.3γ triplet.
508.3 ^{&} 2	1836.8	123 ^{&} 12			<i>Iγ</i> : for 507.2γ+508.3γ triplet.
					DCO=0.85 4 (1987Be07) for 507.2γ+508.3γ triplet.
	3780.8	123 ^{&} 12	[E2]	0.01711	Iγ: for 507.2γ+508.3γ triplet.
			. ,		DCO=0.85 4 (1987Be07) for 507.2γ+508.3γ triplet.
527.7 5	3879.1	2.2 11			
538.1 2	3891.4	12.0 12	(E2)	0.01483	Mult.: DCO=0.71 12 (1987Be07).
552.8 2	4217.5	12.0 12	(E2)	0.01388	Mult.: DCO=0.71 12 (1987Be07).
569.4 2	2174.6	64 6	E2@	0.01291	DCO=0.84 4 (1987Be07).
575.1 5	3353.3	3.2 16	(D)		Mult.: DCO=1.6 4 (1987Be07).
586.5 2	4477.9	11.1 11	(E2)	0.01202	Mult.: DCO=0.74 11 (1987Be07).
588.5 2	4369.3	31 <i>3</i>	E2@	0.01192	Mult.: DCO=0.74 5 (1987Be07).
592.5 <i>2</i>	3489.0	7.1 7			Mult.: DCO=0.64 12 (1987Be07).
592.7 5	4471.8	2.0 10	[E2]	0.01172	
600.4 <i>2</i>	4817.9	9.5 10	(E2)	0.01137	Mult.: DCO=0.76 12 (1987Be07).
603.6 <i>2</i>	2778.3	48 5	E2@	0.01122	Mult.: DCO=0.89 12 (1987Be07).
630.0 <i>2</i>	5107.9	6.5 7	(E2)	0.01015	Mult.: DCO=0.75 15 (1987Be07).
648.3 5	5120.1	1.9 10			
649.4 <i>2</i>	5467.3	8.2 8	(E2)	0.00945	DCO=0.87 12 (1987Be07).
666.3 <i>2</i>	5035.6	22.0 22	E2 [@]	0.00891	Mult.: DCO=0.76 7 (1987Be07).
674.0 2	5781.9	6.1 6	(E2)	0.00868	Mult.: DCO=0.95 13 (1987Be07).
687.8 <i>2</i>	2862.5	6.9 7	(D)		Mult.: DCO=1.4 4 (1987Be07).
694.9 5	5815.0	1.4 7			
699.8 <i>2</i>	4188.8	7.5 8	(E2)	0.00797	Mult.: DCO=1.01 12 (1987Be07).
704.8 2	6172.1	7.5 8	(E2)	0.00784	Mult.: DCO=0.98 15 (1987Be07).
710.5 2	3489.0	11.3 11	(E2)	0.00770	Mult.: DCO=1.03 <i>12</i> (1987Be07).
722.1 2	2896.6	15.0 15	Q		Mult.: DCO=1.02 <i>12</i> (1987Be07).
724.9 5	6506.8	5.0 25	[E2]	0.00736	Mult.: DCO=0.65 3 (1987Be07).
726.9 5	5648.6	4.3 22	(E2)	0.00731	Mult.: $DCO=1.0.2$ (1987Be07).
728.54 5	6377.17	1.9 <i>10</i>	(E2)	0.00728	Mult.: $DCO=1.0.2$ (1987Be07).
732.9 2	4921.7	5.90	(E2)	0.00718	$DCO=1.0\ 2\ (1987Be07).$
730 6 9	5774 9	1.2 0	[E9]	0 00706	$M_{\rm H}$ + DCO 0.68 12 (1087 $P_{\rm c}$ 07)
766 6 2	5774.2	5 8 6	[E2]	0.00708	Mult.: DCO=0.08 I2 (1987Be07). $Mult: DCO=0.0.2 (1987Be07)$
783 08 5	7335 82	105	(E2)	0.00030	Mult.: DCO=0.9 2 (1987Be07).
787 1 2	7293 9	4 6 23	(F2)	0 00614	Mult : $DCO = 0.9.2$ (1987Be07)
806 3 2	6580 5	12 0 12	E2@	0 00583	Mult: $DCO=0.89 \ 10 \ (1987Be07)$
811.6 2	2416.7	5.8 6			Ev. Iv: possibly contaminated by another transition (1987Be07).
					DCO=1.33 19 (1987Be07) for possibly contaminated y.
833.6 2	7772.3	5.1 5	(E2)	0.00542	Mult.: DCO=0.77 14 (1987Be07).
853.8 5	8147.7	3.5 18	(E2)	0.00515	Mult.: DCO=0.75 16 (1987Be07).
860.0 5	1958.2	0.6 3	. ,		
870.2 2	7450.7	7.88	[E2]	0.00495	Mult.: DCO=1.0 12 (1987Be07).
903.4 5	8675.7	3.1 16	(E2)	0.00457	Mult.: DCO=0.7 2 (1987Be07).
922.8 5	9070.5	2.5 13	[E2]	0.00438	Mult.: DCO=0.50 17 (1987Be07).
935.0 2	8385.7	6.4 6	E2@	0.00426	Mult.: DCO=0.82 15 (1987Be07).
971.6 5	9647.3	1.3 7	(E2)	0.00393	Mult.: DCO=0.7 2 (1987Be07).
986.2 5	10056.7	1.6 8	(E2)	0.00381	Mult.: DCO=0.7 2 (1987Be07).
998.8 5	9384.5	3.7 18	(E2)	0.00372	Mult.: DCO=0.77 15 (1987Be07).
1037.0 5	1704.8	2.5 12			
1045.0 ^a 5	11101.7?	1.3 7			
1053.0 5	2151.0	1.0 5			
1060.0 5	10444.5	2.9 15	[E2]	0.00329	Mult.: DCO=1.4 3 (1987Be07) for contaminated line.
1084 ^a	12185.7?	1.0 5			
1111.2 5	2208.9	2.5 13			
1112.0 5	11556.5	1.6 8			Mult.: DCO=1.0 3 (1987Be07).
1122.0 5	1789.8	0.8 4			
1158.0 ^a 5	12714.5?	1.0 5			
1290.5 5	1958.2	1.2.6			

Footnotes continued on next page

¹³⁰Te(⁴⁰Ar,4nγ) 1987Be07,1986Ba61,1976Bo27 (continued)

$\gamma(^{166}\text{Yb})$ (continued)

- [†] From DCO ratios, assigning $\Delta \pi$ =(no) for stretched Q intraband transitions, unless otherwise noted. Note that expected values for DCO ratios from 1987Be07 are 2 for stretched D and 1 for Q (ΔJ =2) or D (ΔJ =0); however, due to deorientation of the reference state, values for expected ΔJ =2 transitions from J>10 states are systematically low (DCO=0.50 *17* in the worst case).
- [‡] From 1987Be07, unless otherwise noted. ΔE =0.2 keV, except for weakest transitions; ΔE =0.5 keV for the latter and the evaluator assigns this uncertainty if I γ ≤5.
- § From $^{130}\text{Te}(^{40}\text{Ar},4n)$, $E(^{40}\text{Ar})=180$ MeV (1987Be07). Iy data are mostly obtained from gated coincidence spectra and normalized to the 228.1y. Intensity values are known to 10%, except for weakest peaks for which uncertainties can be up to 50%. The evaluator assumes the latter to be those for which Iy ≤5.
- # From Adopted Gammas.
- @ Q from DCO ratio; not M2 from RUL.
- & Multiply placed; undivided intensity given.
- a Placement of transition in the level scheme is uncertain.

¹³⁰Te(⁴⁰Ar,4nγ) 1987Be07,1986Ba61,1976Bo27 (continued)

¹³⁰Te(⁴⁰Ar,4nγ) 1987Be07,1986Ba61,1976Bo27 (continued)

	¹³⁰ Te(⁴⁰ Ar,4nγ)	1987Be07,1	986Ba61,1976Bo	27 (continued)	_
		Band	s for ¹⁶⁶ Yb		
(A)	(B)	(C)	(D)	(E) (38+)	(F)
	_	(37-)		1158.0	
		1084	-	36+	
	_	(35-)		1112.0	
		1045.0		v 34+	
	_	<u> </u>		1060.0	
		986.2	32	v <u>32+</u>	
	_	<u> </u>	971.6	998.8	
		922.8	<u> </u>	v <u>30+</u>	
	_	<u> </u>	903.4	935.0	
	_	853.8 <u>27-</u>	833.6	<u> </u>	(26-)
		787.1	<u> </u>	870.2	783.0
(24+)	_	<u> </u>	766.6 -	<u> </u>	(24-)
728.5	_	724.9 v 23-	704.8	<u> </u>	(22-)
726.9		674.0	<u> </u>	738.6	694.9 (20-)
<u>20+</u>	_	630.0	<u> </u>	666.3	648.3
732.9 <u>18+</u>	_	<u>v 19–</u> 586.5	600.4 	<u> </u>	<u>(18-)</u> 592.7
699.8	_	<u> </u>	552.8 <u>16-</u>	v 18+	<u>(16-)</u> 527.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	575.1	<u>490.8</u>	499.4 	$\frac{508.3}{16+}$	<u>(14-)</u> 459.0
<u>14+ v</u>		<u> </u>	$\begin{array}{c} 437.6 \\ 494. \\$	3 + 14 + 366.0 + 12 + 12 + 12 + 12 + 12 + 12 + 12 + 1	400.0 (12-)
603.6 <u>12+</u>	9+ /	<u>v 11-</u> 9- 15	$52.0 - \frac{10}{289.2} - 356.$	0	354.4 (8-) 301.2
$ \begin{array}{c} 569.4 \\ \underline{10+} & 1053 \\ 7 \end{array} $	$\frac{7}{1111.2}$	(5-)	<u>₩</u> <u>₩</u> 6	508.	.3
	$2 \frac{5+///}{1122.0}$ 1122.0 1290.5 //			¥	
$\begin{array}{c c} 430.2 \\ \hline 6+ \\ 337.5 \end{array}$					
$\frac{\frac{4+}{2+}}{0+} \frac{227.9}{102} \frac{37}{2}$					

¹³⁰Te(⁴⁰Ar,4nγ) 1987Be07,1986Ba61,1976Bo27 (continued)

Level Scheme

Intensities: relative Ιγ & Multiply placed; undivided intensity given

¹³⁰Te(⁴⁰Ar,4nγ) 1987Be07,1986Ba61,1976Bo27 (continued)

Level Scheme (continued)

Intensities: relative Ιγ & Multiply placed; undivided intensity given

(38+)	12714.5	
(37–)	12185.7	
36+	11556.5	
(35–)	11101.7	
34+	10444.5	— 0.035 ps
33-	10056.7	
32-	9647.3	
32+	9384.5	— 0.042 ps
31-	9070.5	_
30-	8675.7	
30+	8385.7	— 0.055 ps
29-	8147.7	
28-	7772.3	_
27	7203.0	
26-	6938.7	_
0.5		
23- =		
24-	6172.1	
24+	5774.2	— 0.125 ps
22-	5467.3	_
21-	_ 5107.9	
20-	4817.9	
(18-)	4471.8	
18+	4188.8	
(16-)		
12+	2174.6	
9+	2151.0	— 0.04 ps
(8-)	/_2138.0	
8		
(7-)		_
6-		_
(5)		_
7+		_
(4-)		
10+		— — 1.0 рs
5+		
8+		— 2.14 ps
<u>6+</u>	$ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	— 7.8 ps
4+ 2+	v 5° 5° <u>330.27</u> v • S [°] 109.97	— 52.9 ps
<u>0+</u>		— 1.24 ns
VT		— 56.7 h

Other measurements: 1965St03; 159 Tb(11 B,4n γ), E=56 MeV, measured E γ . Includes 154 Sm(16 O,4n γ), 159 Tb(14 N, $\alpha\gamma$), 159 Tb(14 N, $\alpha\gamma$), 158 Dy(12 C,4n γ), 159 Tb(11 B,4n γ). 1977HaYI (158 Dy(12 C,4n γ))

1977InZV (159 Tb(14 N,x), E=95 MeV), 1978KaZK (159 Tb(14 N, $\alpha\gamma$), E=115 MeV),

1981Si02: $^{154}Sm(^{16}O,4n\gamma),$ E=73, 85 MeV; measured Ey, Iy, $\gamma\gamma$ coin, γ multiplicity.

1981Wa23: 154 Sm(16 O,4n γ), E(16 O)=80 MeV; measured $\gamma\gamma$ -coin, E γ , I γ , $\gamma(\theta)$, unenumerated Ice.

1967Ne02: ¹⁵⁹Tb(¹¹B,4n γ), E=54 MeV; measured E γ , I γ , $\gamma(\theta)$.

¹⁶⁶Yb Levels

E(level) [†]	_Jπ [‡]	T	E(level) [†]	$J\pi^{\ddagger}$	E(level) [†]	$_J\pi^{\ddagger}$
0.0#	0 + §	56.7 h [§] 1	2150.7 [@] 7	9+	3353.9& 7	15-
$102.1^{\#}4$	2 +		2175.2# 6	12+	3489.1 # 7	16+
330.2 # 5	4 +		2209.0& 7	9 -	3665.6a g	16-
667.7# 5	6 +		2232.5 7	(7-)	3782.1 ^b 8	18+
932.1@ 4	2 +		2360.9a 7	10-	3878.8 ^c 11	(16-)
1038.6@6	3+		2417.2 & 7	11-	3892.1 ^{&} 8	17-
1097.9# 6	8+		2491.5 ^c 7	(10-)	4190.1 # 9	18+
1327.5 [@] 6	5 +		2531.2 ^b 7	12+	4218.4 ^a 10	18-
1605.6# 6	10+		2647.4 [@] 8	(11+)	4370.5 ^b 9	20+
1616.8 7	(4-)		2728.5a 7	12-	4470.8 ^c 12	(18-)
1704.8@7	7+		2778.8# 7	14+	4478.3& 9	19-
1789.9& 6	(5-)		2863.0& 7	13-	4818.5ª 12	20-
1835.5 ^c 7	(6-)		2891.9 ^c 8	(12-)	5037.5b 10	22+
1865.1 ^a 6	6 –		2897.2 ^b 6	14+	5108.3 ^{&} 11	21-
1956.5 7	(6+)		3166.1 ^a 7	14-	5119.8 ^c 13	(20-)
1957.9 ^{&} 6	(7-)		3197.4 [@] 10	(13+)	5467.5 ^a 13	22-
2071.5 ^a 7	8 -		3273.1 ^b 7	16+	5776.5 ^b 11	24+
2137.0 ^c 7	(8-)		3351.3¢ 9	(14-)	5782.3& 11	23-

 $^\dagger~$ From least-squares fit to Ey.

[‡] From table I of 1981Wa23.

§ From Adopted Levels.

[#] (A): K=0+ g.s. band.

@ (B): $K=2+\gamma$ -vibrational band.

& (C): $K\pi=5-$, $\alpha=1$ band.

a (D): $K\pi=5-$, $\alpha=0$ band.

 b (E): Super band. Becomes yrast for J $\geq \! 16.$

c (F): $K\pi$ =(2-) band. Although no parity assignment is indicated in fig. 3 of 1981Wa23, π =(-) is assigned in table I.

$\gamma(^{166}Yb)$

 $\gamma(\theta)\colon$ $A_2,A_4,$ extracted by 1967Ne02, 1981Wa23.

Eγ‡	E(level)	Iγ§	Mult.†	α	Comments
102.2 5	102.1		(E2)	2.95 7	Eγ: from 1973Sa14. Other Eγ: 102.2 3 (1972Li34).
					$A_2 = +0.27$ 3, $A_4 = -0.06$ 3 (1981Wa23); $A_2 = +0.063$ 9, $A_4 = -0.027$ 12 (1967Ne02).
114.0 5	2071.5				
152.05	2360.9				
206.0 5	2071.5	16	[E2]	0.243	$A_2 = +0.21$ 7, $A_4 = -0.05$ 8 (1981Wa23) for possible doublet.
228.1 2	330.2	987	(E2)	0.1743	$A_2 = +0.30$ 3, $A_4 = -0.09$ 3 (1981Wa23); $A_2 = +0.210$ 7, $A_4 = -0.061$ 9 (1967Ne02).
248.0 5	1865.1	8			Eγ,Iγ: for possible doublet.
274.0 5	2232.5				Iγ: weak (1981Wa23).
276.0 5	2232.5				Iγ: weak (1981Wa23).
289.0 5	1616.8				
289.4 2	2360.9	5 5	(E2)	0.0824	$A_2 = +0.30 \ 2$, $A_4 = -0.10 \ 2 \ (1981Wa23)$.
301.4 5	2137.0	14	(E2)	0.0729	$A_2 = +0.42$ 5, $A_4 = +0.02$ 5 (1981Wa23).
337.5 <i>2</i>	667.7	1000	(E2)	0.0521	$A_2 = +0.32$ 3, $A_4 = -0.11$ 3 (1981Wa23); $A_2 = +0.233$ 10, $A_4 = -0.069$ 13 (1967Ne02).
341.0 5	2491.5				Iγ: weak.
354.4 5	2491.5	28	(E2)	0.0453	$A_2 = +0.28$ 3, $A_4 = -0.03$ 4 (1981Wa23).
356.0 5	2531.2	16			$\tilde{E}\gamma, I\gamma$: for possible doublet.
366.0 5	2897.2	5			· · ·

$\gamma(^{166}Yb)$ (continued)

Eγ [‡]	E(level)	Iγ§	Mult.†	α	Comments
367.6 <i>2</i>	2728.5	6 5	(E2)	0.0408	A_2 =+0.29 2, A_4 =-0.15 2 (1981Wa23) for doublet dominated by this transition
368.0 5	2232.5				
375.8 5	3273.1	37	(E2)	0.0383	$A_2 = +0.27 \ 2$, $A_4 = -0.12 \ 3$ (1981Wa23).
400.4 2	2891.9	51	(E2)	0.0321	$A_2 = +0.34 \ 3, A_4 = -0.10 \ 3 \ (1981 Wa23).$
403.0 5	3892.1	17			Εγ, Iγ: for possible doublet.
430.2 2	1097.9	856	(E2)	0.0264	A_2 =+0.31 3, A_4 =-0.13 3 (1981Wa23); A_2 =+0.242 16, A_4 =-0.073 20 (1967Ne02).
432.05	2137.0				Iγ: weak.
437.6 2	3166.1	63	(E2)	0.0252	$A_2 = +0.27 \ 3$, $A_4 = -0.08 \ 3 \ (1981Wa23)$.
445.8 5	2863.0	33			$A_2 = +0.14$ 9, $A_4 = -0.02$ 7 (1981Wa23) for doublet.
					I γ : for 446.0 γ +445.8 γ doublet.
446.0 5	2150.7	3 3	[E2]	0.0240	Iy: for $446.0\gamma + 445.8\gamma$ doublet.
					A ₂ =+0.14 9, A ₄ =-0.02 7 (1981Wa23) for doublet.
459.4 5	3351.3	27	(E2)	0.0222	$A_2 = +0.36$ 5, $A_4 = -0.19$ 5 (1981Wa23).
490.8 5	3353.9	43	(E2)	0.0187	$A_2 = +0.32$ 6, $A_4 = -0.07$ 9 (1981Wa23).
494.3 2	3273.1	128	(E2)	0.0184	$A_2 = +0.35$ 1, $A_4 = -0.09$ 1 (1981Wa23).
496.7 5	2647.4	22	(E2)	0.0181	$A_2 = +0.38$ 4, $A_4 = -0.18$ 5 (1981Wa23).
499.5 5	3665.6	45	(E2)	0.0179	$A_2 = +0.33$ 3, $A_4 = -0.13$ 3(1981Wa23).
507.7 2	1605.6	645	(E2)	0.01716	$A_2 = +0.32$ 8, $A_4 = -0.09$ 7 (1981Wa23); $A_2 = +0.217$ 77, $A_4 = -0.058$ 22 (1967Ne02).
508.0 5	1835.5		(5.2.)		lγ: weak or doublet.
509.0 5	3/82.1	160	(E2)	0.01705	$A_2 = +0.23$ 3, $A_4 = -0.11$ 3 (1981Wa23).
527.5 5	38/8.8	14 1	(EZ)	0.01559	$A_2 = +0.26$ /, $A_4 = -0.01$ // (1981Wa23).
538.0 5	2802 1	19	D (E9)	0 01499	$A_2 = -0.20 \ 24, \ A_4 = -0.10 \ 25 \ (1981 \ Wa25).$
550 0 5	2107 4	15	(E2)	0.01485	$A_2 = +0.47$ 15, $A_4 = +0.04$ 14 (1301Wa23).
330.0 3	5157.4	15	[122]	0.01405	$R_2 = +0.22$ 4, $R_4 = +0.03$ 7 (1381 Wa23) for possible doublet. Ev.Iv: for possible doublet.
552.8 5	4218.4	32	(E2)	0.01388	$A_2 = +0.20$ 5, $A_4 = -0.03$ 8 (1981Wa23).
569.7 <i>2</i>	2175.2	480	(E2)	0.01290	$A_2 = +0.33$ 3, $A_4 = -0.11$ 3 (1981Wa23); $A_2 = +0.26$ 4, $A_4 = -0.05$ 5 (1967Ne02).
575.1 5	3353.9	17	D(+Q)		$A_2 = -0.30$ 18, $A_4 = +0.15$ 17 (1981Wa23).
586.2 5	4478.3	30	[E2]	0.01204	$\tilde{E\gamma}$, I γ , Mult.: A ₂ =+0.22 7, A ₄ =+0.34 9 (1981Wa23) for possible doublet.
588.4 2	4370.5	69	(E2)	0.01193	$A_2 = +0.36 5$, $A_4 = -0.02 8$ (1981Wa23).
592.0 5	3489.1	14			$A_2 = +0.27 \ 17$, $A_4 = -0.07 \ 22 \ (1981Wa23)$ for doublet.
	4470.8	10			A ₂ =+0.27 17, A ₄ =-0.07 22 (1981Wa23) for doublet.
600.1 5	4818.5	2 5	(E2)	0.01138	$A_2 = +0.25$ 12, $A_4 = +0.05$ 13 (1981Wa23).
603.5 <i>2</i>	2778.8	250	(E2)	0.01123	Mult.: $A_2 = +0.31$ 2, $A_4 = -0.13$ 2 (1981Wa23); $A_2 = +0.19$ 7, $A_4 = -0.02$ 9 (1967Ne02).
629.0 5	1956.5	24			Εγ,Ιγ: for 629.0γ+630.0γ doublet.
	* 1 0 0 0				$A_2 = +0.29$ 3, $A_4 = -0.05$ 7 (1981 Wa23) for doublet.
630.0 5	5108.3	25 /			1γ : for 629.0 γ +630.0 γ doublet.
640 0 5	5110 9				$A_2 = +0.29$ 3, $A_4 = -0.03$ 7 (1981 wa23) for doublet.
649.0 5	5467 5	1.0			iy: weak.
660 0 5	1397 5	7			E ₁ , for accurate. Ev Iv: for possible doublet
667 0 5	5037 5	25			E 1,11. Ior possible doublet.
674 0 2	5782 3	13	[F2]	0 00868	$\Delta_{-} = \pm 0.13.9$ $\Delta_{-} = -0.33.9$ (1981Wa23) for possible doublet
687.8 5	2863.0	45	[] D	0.00000	$A_2 = -0.21$ 2, $A_3 = +0.10$ 3 (1981Wa23).
701.0 5	4190.1				2 , 4 , 4 , , , , , , , , , , , , , , ,
709.0 5	1038.6	4			
710.3 5	3489.1	39	(E2)	0.00770	$A_{2} = +0.34$ 3, $A_{4} = -0.02$ 5 (1981Wa23).
722.0 2	2897.2	69	Q		$A_2 = +0.35$ 1, $A_4 = -0.05$ 2 (1981Wa23).
739.0 5	5776.5				
811.6 5	2417.2	39	D	0.00223	$A_2 = -0.15$ 7, $A_4 = +0.01$ 6 (1981Wa23).
830.0 5	932.1	22			-
860.0 5	1957.9	10			
925.6 5	2531.2	15			$A_2 = +0.27$ 5, $A_4 = -0.16$ 7 (1981Wa23).
932.0 5	932.1	21			
936.0 5	1038.6	16			
997.3 5	1327.5	38	D+Q		Mult.: $A_2 = -0.19$ 3, $A_4 = +0.15$ 7 (1981Wa23).
1037.0 5	1704.8	22	D+Q		$A_2 = -0.31$ 6, $A_4 = +0.05$ 7 (1981Wa23).
1053.0 5	2150.7	16	D+Q		Mult.: from A ₂ =-0.31 7, A ₄ =+0.03 8 (1981Wa23).

$\gamma(^{166}$ Yb) (continued)

Eγ [‡]	E(level)	Ιγ§	Mult. [†]	α	Comments
1111.2 5	2209.0	19	E1	1 . 2 4 $\times 10^{-3}$	Mult.: from A_2 =-0.22 4, A_4 =+0.04 5 and conversion coefficient measurements of 1981Wa23.
1122.0 5	1789.9	8			
1290.0 5	1957.9	2 5	D		$A_2 = -0.19 \ 4$, $A_4 = +0.06 \ 4$ (1981Wa23).
1460.0 5	1789.9				

[†] From γ(θ), assigning Δπ=(no) for stretched Q intraband transitions, unless otherwise noted.
 [‡] From 1981Wa23, unless otherwise noted. ΔE=0.2 keV if Iγ≥50 but ΔE rises to 0.5 keV for weaker transitions.
 § From ¹⁵⁴Sm(¹⁶O,4nγ), E(¹⁶O)=80 MeV (1981Wa23). Uncertainties unstated by the authors.

 $^{166}_{70}$ Yb₉₆

 $^{16\,6}_{7\,0}\rm Yb_{96}$

 154 Sm(16 O,4n γ), 159 Tb(11 B,4n γ) 1981Wa23,1967Ne02 (continued)

From NNDC(BNL) program ENSDAT $^{166}_{70}
m Yb_{96}-51$

Er(α, xnγ),¹⁶⁶Er(³He, 3nγ),¹⁶⁹Tm(d, 5nγ),¹⁶⁹Tm(p, 4nγ) 1984Fi18,1972Li34

 $Includes \ ^{164}{\rm Er}(\alpha,2n\gamma), \ ^{166}{\rm Er}(\alpha,4n\gamma), \ ^{170}{\rm Er}(\alpha,8n\gamma), \ ^{166}{\rm Er}(^{3}{\rm He},3n\gamma), \ ^{169}{\rm Tm}(d,5n\gamma), \ ^{169}{\rm Tm}(p,4n\gamma).$

Others: 1966Mo01, 1971DeZE, 1972Be39, 1972Da33, 1973Sa14, 1973Bi10, 1983Fa11, 1983Fi12, 1983Na14.

1984Fi18,1983Fi12: ¹⁶⁶Er(³He,3nγ), E(³He)=33 MeV; measured Εγ, γγ-coin. ¹⁶⁴Er(α,2n), Eα=24 MeV; measured Εγ, Ιγ,

 α (K)exp. 1984Fi18 presumably supersedes 1983Fi12; however, several transitions are reported in 1983Fi12 alone and some α (K)exp values differ in the two publications.

1983Fa11: ¹⁶⁹Tm(d,5n γ), E=52 MeV; Si(Li) detector; measured ce(θ).

 $1983 Na14: \ ^{166} Er(\alpha, 4n\gamma), \ E\alpha = 47 \ MeV; \ Ge \ and \ LEPS \ detectors, \ triple \ focusing \ electron \ spectrometer; \ measured \ E\gamma, \ I\gamma, \ \gamma\gamma \ Nather a state of the state$

coin, $\gamma(\theta)$, I(ce) ($\theta=90^{\circ}$ and 180°).

1973Bi10: ¹⁶⁹Tm(p,4nγ), E(p)=30-57 MeV; measured Eγ, Iγ, excit.

1973Sa14: $Er(\alpha, xn\gamma)$, E=20-43 MeV; measured E γ .

1972Li34: ¹⁷⁰Er(α ,8n γ), E=100-112 MeV; measured E γ , $\gamma(\theta)$, $\gamma\gamma$ coin; deduced level T_{1/2}<2 ns for J=2-14 members of g.s. band and J=16, 18, 20 members of γ band based on prompt $\gamma\gamma$ coin. See also 1972Da33 and 1972Be39. 1966Mo01: ¹⁶⁶Er(α ,4n γ), E α =52 MeV; measured E γ (g.s. band, J<10).

¹⁶⁶Yb Levels

E(level) [†]	Jπ [‡]	T_1/2	E(level) [†]	$_J\pi^{\ddagger}$	E(level) [†]	Jπ [‡]
0.0 [§]	0 + ⁱ	56.7 h ⁱ 1	1616.16 ^d 24	(4-)	2232.40 25	
102.26 [§] 10	2 +		1704.1 # 3	7 +	2318.9 [@] 4	10+
330.28§ 14	4 +		1789.6 ^{&} 3	5 –	2360.6a <i>3</i>	10-
667.75§ <i>21</i>	6+		1811.7 [#] 3	8+	2417.7& 4	11-h
931.6# 3	2+		1833.6 ^c 4	7 –	2490.7d 4	(10-)
1038.56# 20	3+		1834.71 ^d 25	(6-)	2531.7be 4	12+
1097.70 [§] 24	8+		1852.5 [@] 3	8 +	2609.3 [#] 4	12+
1144.23 [@] 22	2+		1864.40 ^a 23	6 -	2646.3 # 5	11+
1162.5# 3	4 +		1940.5 ^c 3	9 -	2728.1 ^a 5	12-
1327.27 [#] 21	5 +		1958.1 ^{&} 3	7 –	2779.3 [§] 5	14+
1342.3@ 4	4 +		2029.5 ^b 3	8 +	2862.7& 4	13-g
1418.5 ^c 4	3 –		2071.7ª <i>3</i>	8 -	2891.4d 4	(12-)
1481.60 [#] 24	6+		2136.6 ^d 3	(8-)	3273.8 ^b 6	16+
1502.1 ^d 3	(2-)		2142 . 6 [#] 3	10+	3350.4 ^d 5	(14-) ^f
1504.5 3			2149.9 [#] 3	9 +	3782.9 ^b 6	18+
1569.0 ^c 3	5 –		2176.0 [§] 3	12+	4371.7 ^b 7	20+
1605.4 [§] 3	10+		2209.2& 4	9 -		
1607.0 [@] 3	6 +		2214.3 ^b 3	10+		

 $^\dagger\,$ From least-squares fit to Ey.

[‡] From 1984Fi18.

§ (A): K=0+ g.s. band.

[#] (B): K=2+ γ -vibrational band.

[@] (C): $K=0+\beta$ -vibrational band.

& (D): $K\pi=5-$, $\alpha=1$ band.

a (E): $K\pi=5-$, $\alpha=0$ band.

b (F): Super band. Becomes yrast for $J \ge 16$.

c (G): $K\pi=0-$ band.

d (H): $K\pi=(2-)$ band.

e g-factor=-0.14 4 (1983Na14), deduced from measured multipolarities and branching ratios of the interband transitions.

f Assigned by evaluator, consistent with Adopted Levels.

 $^{\rm g}$ The adopted band assignment is shown here. 1984Fi18 assigned level as J=13 member of 0- band instead.

 $^{\rm h}$ The adopted band assignment is shown here. 1984Fi18 assigned level as J=11 member of 0- band instead.

ⁱ From Adopted Levels.

γ(¹⁶⁶Yb)

 $\gamma(\theta)\colon$ $A_2,A_4,$ extracted by 1967Ne02, 1972Li34 (or 1972Be39).

Eγ [‡]	E(level)	Ιγ§	Mult. [†]	δ	α	Comments
102.26 10	102.26	33 3	(E2)		2.95	$\begin{split} &\alpha(K) = 0.970 \ 14; \ \alpha(L) = 1.509 \ 23; \ \alpha(M) = 0.372 \ 6; \\ &\alpha(N+) = 0.0946 \ 14. \\ &\alpha(N) = 0.0848 \ 13; \ \alpha(O) = 0.00975 \ 15; \\ &\alpha(P) = 4.11 \times 10^{-5} \ 6. \\ & E\gamma: \ from \ 1973Sa14. \ Other \ E\gamma: \ 102.9 \ 3 \\ &(1984Fi18), \ 102.2 \ 3 \ (1972Li34). \\ & Mult.: \ A_2 = +0.25 \ 3, \ A_4 = -0.11 \ 4 \ (1972Li34). \end{split}$

				γ(¹⁶⁶ Yb) (cor	itinued)	
Бv‡	E(level)	ī√§	Mult [†]	δ	a	Comments
112.9 3	2071.7					Eγ: unresolved from unidentified contaminant transition (1984Fi18).
151.3 3	2360.6	1.00 10	(120)		0.007	
207.6 3	2071.7	4.1 4	(EZ)		0.237	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1484 \ 22; \ \alpha(\mathbf{L}) = 0.0682 \ 11; \\ &\alpha(\mathbf{M}) = 0.0165 \ 3; \ \alpha(\mathbf{N}+) = 0.00424 \ 7. \\ &\alpha(\mathbf{N}) = 0.00378 \ 6; \ \alpha(\mathbf{O}) = 0.000457 \ 7; \\ &\alpha(\mathbf{P}) = 7.00 \times 10^{-6} \ 11. \end{aligned}$
217.9 3	1834.71	< 1				
228.05 10	330.28	163 <i>16</i>	(E2)		0.1744	$\begin{split} &\alpha(K) \!=\! 0.1137 \ 16; \ \alpha(L) \!=\! 0.0467 \ 7; \\ &\alpha(M) \!=\! 0.01122 \ 16; \ \alpha(N+.) \!=\! 0.00290 \ 4. \\ &\alpha(N) \!=\! 0.00258 \ 4; \ \alpha(O) \!=\! 0.000315 \ 5; \\ &\alpha(P) \!=\! 5.48 \!\times\! 10^{-6} \ 8. \\ & \text{E}\gamma: \ from \ 1973Sa14. \ Other \ E\gamma: \ 227.8 \ 3 \\ &(1984Fi18); \ 228.1 \ 3 \ (1972Li34). \end{split}$
						$A_2 = +0.30$ 1, $A_4 = -0.03$ 2 (1972Li34).
247.8 3	1864.40	3.2 <i>3</i>				
288.6 3	2360.6	1.70 10				
289.3 <i>3</i>	1327.27	1.00 10	[E2]		0.0825	$\begin{split} &\alpha(\mathbf{K}) = 0.0583 \ \ \mathcal{G}; \ \ \alpha(\mathbf{L}) = 0.0186 \ \ \mathcal{G}; \\ &\alpha(\mathbf{M}) = 0.00443 \ \ \mathcal{F}; \ \ \alpha(\mathbf{N}+) = 0.001153 \ \ \mathcal{I}\mathcal{F}, \\ &\alpha(\mathbf{N}) = 0.001022 \ \ \mathcal{I}\mathcal{F}; \ \ \alpha(\mathbf{O}) = 0.0001279 \ \ \mathcal{I}\mathcal{G}; \\ &\alpha(\mathbf{P}) = 2.96 \times 10^{-6} \ \ \mathcal{F}. \end{split}$
295.6 3	1864 . 40	8.1 8				
300.8 <i>3</i>	2136.6	4.6 5				
318.6 ^a 3	1481.60	1.80 <i>18</i>				
331.00 3	1811.7	1.90b 19				
337.2 <i>3</i>	2142.6 667.75	1.905 19	E2		0.0523	$\begin{aligned} &\alpha(K) = 0.0384 \ 6; \ \alpha(L) = 0.01070 \ 16; \\ &\alpha(M) = 0.00252 \ 4; \ \alpha(N+) = 0.000659 \ 10. \\ &\alpha(N) = 0.000583 \ 9; \ \alpha(O) = 7.42 \times 10^{-5} \ 11; \\ &\alpha(P) = 2.00 \times 10^{-6} \ 3. \end{aligned}$
	2400 7	1 00 10				Eγ: other Eγ: 337.7 3 (1972Li34); 337.3 2 (1973Sa14). Mult.: from α (K)exp=0.0455 10 (1984Fi18) and A_2 =+0.30 1, A_4 =-0.03 2 (1972Li34).
355 8 3	2490.7	1.20 12	M1		0 0998	$\alpha(N) = 0.000655 \ 10^{\circ} \alpha(O) = 9.39 \times 10^{-5} \ 14^{\circ}$
361.3 <i>3</i>	2214.3	<1.0				
367.5 ^b 3	2232.40	3.2 ^b 3				
276 0 2	2728.1	3.20 3				
398.1 3	2232.40	<1.0				
400.2 3	2891.4	2.8 3	(E2)		0.0322	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0245 \ \ 4; \ \alpha(\mathbf{L}) = 0.00595 \ \ 9; \\ &\alpha(\mathbf{M}) = 0.001393 \ \ 20; \ \alpha(\mathbf{N}+) = 0.000366 \ \ 6. \\ &\alpha(\mathbf{N}) = 0.000322 \ \ 5; \ \alpha(\mathbf{O}) = 4.18 \times 10^{-5} \ \ 6; \\ &\alpha(\mathbf{P}) = 1.309 \times 10^{-6} \ \ 19. \end{aligned}$
402.7.3	2214.3	<1.0				man.: ποι α(κ)exp=0.0157 0 (1984F118).
420.6 3	2360.6	1.60 16				
x425.4 3		<1.0				1984Fi18 indicate that this γ deexcites the J=13 member of the K π =5- band but such a placement is inconsistent with the adopted ¹⁶⁶ Yb level scheme.

Er(α,xnγ),¹⁶⁶Er(³He,3nγ),¹⁶⁹Tm(d,5nγ),¹⁶⁹Tm(p,4nγ) 1984Fi18,1972Li34 (continued)

				γ(¹⁶⁶ Yb) (co	ntinued)	
$E\gamma^{\ddagger}$	E(level)	Iγ§	Mult.†	δ	α	Comments
429.9 3	1097.70	46 5	E2		0.0265	$ \begin{aligned} &\alpha(K) = 0.0204 \ 3; \ \alpha(L) = 0.00472 \ 7; \\ &\alpha(M) = 0.001099 \ 16; \ \alpha(N+) = 0.000289 \ 4. \\ &\alpha(N) = 0.000255 \ 4; \ \alpha(O) = 3.33 \times 10^{-5} \ 5; \\ &\alpha(P) = 1.100 \times 10^{-6} \ 16. \\ &\text{Mult.: from } \alpha(K) \exp = 0.0202 \ 5 \ (1984 \text{Fi18}) \text{ and} \\ &A_2 = + 0.33 \ 2, \ A_4 = -0.05 \ 3 \ (1972 \text{Li34}). \\ &\text{E}\gamma: \text{ from } 1984 \text{Fi18}. \text{ Other } \text{E}\gamma: \ 430.4 \ 2 \\ &(1973 \text{Sa14}), \ 430.2 \ 3 \ (1972 \text{Li34}). \end{aligned} $
433.2b <i>3</i>	2136.6 2609.3	<1b <1.0b	(M1)		0.0594	$\begin{split} &\alpha(K) \!=\! 0.0499 \ 7; \ \alpha(L) \!=\! 0.00740 \ 11; \\ &\alpha(M) \!=\! 0.001652 \ 24; \ \alpha(N+) \!=\! 0.000447 \ 7. \\ &\alpha(N) \!=\! 0.000388 \ 6; \ \alpha(O) \!=\! 5.56 \!\times\! 10^{-5} \ 8; \\ &\alpha(P) \!=\! 3.00 \!\times\! 10^{-6} \ 5. \end{split}$ Mult.: from $\alpha(K) \!\exp\! >\! 0.026 \ (1984 \! Fi18). \end{split}$
443.1 <i>3</i> 445.4 ^{@b} 3	2232.40 2149.9 2862 7	<1.0 2.8 ^b 3 2.8 ^b 3				
453.2 <i>3</i>	1616.16	1.20 12				Mult.: α(K)exp=0.014 2 (1984Fi18); too high for E1 multipolarity implied by level scheme.
459.0 <i>3</i>	3350.4	<1.0				Placed by evaluator, consistent with Adopted Levels, Gammas. 1984Fi18 place it between the J=12 and J=10 members of the γ band but, in Adopted Levels, Gammas, Eγ=466.9 for that transition.
463.5 3	1502.1	<1.0				En Ly from 1082Ei19
400.9 3	2417.7	<1.0				$\alpha(K) \exp[=0.012/3]$ (1984Fi18).
494.5 3	3273.8		Q			E_{γ} : from 1972 Li (34.
496.4 <i>3</i>	2646.3	1.80 18	E2		0.0182	$\begin{aligned} A_2 &= +0.41 \ \ \beta, \ A_4 &= -0.03 \ \ I4 \ (1972 L134). \\ \alpha(K) &= 0.01427 \ \ 20; \ \alpha(L) &= 0.00301 \ \ 5; \\ \alpha(M) &= 0.000697 \ \ I0; \ \alpha(N+) &= 0.000184 \ \ 3. \\ \alpha(N) &= 0.0001618 \ \ 23; \ \alpha(O) &= 2.15 \times 10^{-5} \ \ 3; \\ \alpha(P) &= 7.82 \times 10^{-7} \ \ I1. \end{aligned}$
507.4 [#] 3	1605.4	25.8 <i>26</i> 25.8 ^b <i>26</i>	(E2)		0.01718	$\begin{split} &\alpha(\mathrm{K}) = 0.01354 \ 19; \ \alpha(\mathrm{L}) = 0.00282 \ 4; \\ &\alpha(\mathrm{M}) = 0.000652 \ 10; \ \alpha(\mathrm{N}+) = 0.0001722 \ 25. \\ &\alpha(\mathrm{N}) = 0.0001514 \ 22; \ \alpha(\mathrm{O}) = 2.01 \times 10^{-5} \ 3; \\ &\alpha(\mathrm{P}) = 7.44 \times 10^{-7} \ 11. \\ &\mathrm{A_2} = +0.35 \ 2, \ \mathrm{A_4} = -0.10 \ 4 \ (1972\mathrm{Li34}). \end{split}$
	2318.9	25.8 ^b 26				
509.1 <i>3</i>	3782.9	b				Eγ: from 1972Li34.
547.5 <i>3</i>	1864.40 2142.6 2029.5	<1 <1	M1		0.0340	$\begin{split} &\alpha(N) = 0.000221 \ \textit{4;} \ \alpha(O) = 3.17 \times 10^{-5} \ \textit{5;} \\ &\alpha(P) = 1.711 \times 10^{-6} \ \textit{24.} \\ &\alpha(N) = 0.000221 \ \textit{3;} \ \alpha(O) = 3.17 \times 10^{-5} \ \textit{5;} \\ &\alpha(P) = 1.711 \times 10^{-6} \ \textit{24.} \\ &\text{Mult.: from } \alpha(K) \exp = 0.040 \ \textit{10} \ (1984Fi18). \\ &\alpha(K) \exp = 0.055 \ \textit{53} \ (1984Fi18). \end{split}$
570.6 ^D 3	1502.1 2176.0	1.80 ^b 18 1.80 ^b 18	(E2)		0.01285	$\begin{split} &\alpha(K) = 0.01026 \ 15; \ \alpha(L) = 0.00200 \ 3; \\ &\alpha(M) = 0.000460 \ 7; \ \alpha(N+) = 0.0001220 \ 18. \\ &\alpha(N) = 0.0001070 \ 15; \ \alpha(O) = 1.439 \times 10^{-5} \ 21; \\ &\alpha(P) = 5.68 \times 10^{-7} \ 8. \\ & \text{E}\gamma: \ other \ E\gamma: \ 569.3 \ 4 \ (1973Sa14); \ 569.7 \ 3 \\ &(1972Li34). \\ & \text{Mult.: } \ \alpha(K) exp = 0.018 \ 5 \ (1984Fi18) \ (0.018 \ 2 \\ & \text{in } 1983Fi12) \ for \ doublet; \ A_2 = +0.32 \ 3, \\ & A_4 = -0.05 \ 5 \ (1972Li34) \ for \ line \\ & \text{contaminated by } E2 \ \gamma \ in \ ^{207}\text{Pb}. \end{split}$

Er(α,xnγ),¹⁶⁶Er(³He,3nγ),¹⁶⁹Tm(d,5nγ),¹⁶⁹Tm(p,4nγ) 1984Fi18,1972Li34 (continued)

EI(u, xhy), EI(he, shy), Im(u, shy), Im(p, 4hy) Iso4FIIO, 1572EIS4 (continueu	Er(α,xnγ)	, ¹⁶⁶ Er(³ He,3nγ), ¹⁰	⁶⁹ Tm(d,5nγ), ¹⁶⁹ Tm(p	,4nγ) 1984Fi18	,1972Li34 (continued)
---	-----------	--	--	----------------	-----------------------

$\gamma(^{166}Yb)$ (continued)

Eγ [‡]	E(level)	Iγ§	Mult. [†] δ	α	Comments
577.0 3	1616.16	2.20 22	[E1]	0.00445	$\begin{split} &\alpha(K) \!=\! 0.00377 \; 6; \; \alpha(L) \!=\! 0.000532 \; 8; \\ &\alpha(M) \!=\! 0.0001181 \; 17; \; \alpha(N+) \!=\! 3.17 \!\times\! 10^{-5} \; 5. \\ &\alpha(N) \!=\! 2.76 \!\times\! 10^{-5} \; 4; \; \alpha(O) \!=\! 3.89 \!\times\! 10^{-6} \; 6; \\ &\alpha(P) \!=\! 2.00 \!\times\! 10^{-7} \; 3. \\ &\text{Mult.: } &\alpha(K) \!\exp\! =\! 0.012 \; 3 \; (1984 \! \mathrm{Fi18}); \; \mathrm{too \; high} \\ &\text{for E1 multipolarity implied by level} \end{split}$
588.8 <i>3</i>	4371.7		(E2)	0.01191	scheme. Ey: from 1972Li34.
603.3 <i>3</i>	2779.3	<1.0	E2	0.01124	A_2 =+0.44 17, A_4 ==-0.04 25 (1572L134). Mult.: A_2 =+0.34 5, A_4 ==-0.05 9 (1972L134); α (K)exp=0.020 13 (1984Fi18). Ey: other Ey: 603.8 2 (1972L134), 603.3 4 (1973Sa14)
608.9 <i>3</i>	2214.3	1.70 17	E0+M1+E2	0.053 26	(19, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62
659.2 <i>3</i>	1327.27	3.8 4	(E2)	0.00913	$\alpha(K) = 0.00740 \ II; \ \alpha(L) = 0.001347 \ I9; \alpha(M) = 0.000307 \ 5; \ \alpha(N+) = 8.18 \times 10^{-5} \ I2. \alpha(N) = 7.16 \times 10^{-5} \ I0; \ \alpha(O) = 9.75 \times 10^{-6} \ I4; \alpha(P) = 4.13 \times 10^{-7} \ 6. Mult.: from \ \alpha(K) exp = 0.006 \ 4 \ (1984 Fi18) (0.007 \ I in 1983 Fi12)$
686.3 <i>3</i>	2862.7	3.94	E1	0.00310	$\alpha(K) = 0.00263 \ 4; \ \alpha(L) = 0.000368 \ 6; \alpha(M) = 8.16 \times 10^{-5} \ 12; \ \alpha(N+) = 2.19 \times 10^{-5} \ 3. \alpha(N) = 1.91 \times 10^{-5} \ 3; \ \alpha(O) = 2.70 \times 10^{-6} \ 4; \alpha(P) = 1.405 \times 10^{-7} \ 20. $
708.5 <i>3</i>	1038.56	6.5 7	(E2)	0.00775	$\begin{aligned} &\alpha(K) = 0.00631 \ 9; \ \alpha(L) = 0.001115 \ 16; \\ &\alpha(M) = 0.000254 \ 4; \ \alpha(K) +) = 6.76 \times 10^{-5} \ 10. \\ &\alpha(N) = 5.91 \times 10^{-5} \ 9; \ \alpha(O) = 8.09 \times 10^{-6} \ 12; \\ &\alpha(P) = 3.53 \times 10^{-7} \ 5. \end{aligned}$ Mult.: from $\alpha(K) \exp = 0.0035 \ 10 \ (1984Fi18) \\ &(0.0066 \ 7 \ in \ 1983Fi12). \end{aligned}$
713.3&b <i>3</i>	1811.7 2318.9	<1 ^b <1.0 ^b			
715.8 <i>3</i> 754.8 <i>3</i>	2891.4 1852.5	<1.0 3.0 3	E0+M1+E2	0.022 4	$\begin{split} &\alpha(K) = 0.009 \ 4; \ \alpha(L) = 0.0014 \ 4; \ \alpha(M) = 0.00030 \ 9; \\ &\alpha(N+) = 8.2 \times 10^{-5} \ 25. \\ &\alpha(N) = 7.1 \times 10^{-5} \ 21; \ \alpha(O) = 1.0 \times 10^{-5} \ 4; \\ &\alpha(P) = 5.1 \times 10^{-7} \ 21. \\ &\text{Mult.}, \alpha: \ \text{from } \alpha(K) \exp = 0.017 \ 3 \ (1984 \text{Fi18}) \\ &(0.020 \ I \ \text{in } 1983 \text{Fi12}). \end{split}$
811.0 <i>3</i> 813.7 <i>3</i>	2417.7 1481.60	2.9 <i>3</i> 7.4 <i>7</i>	M1	0.01192	$\begin{aligned} &\alpha(\mathbf{K}) \!=\! 0.01005 \ 14; \ \alpha(\mathbf{L}) \!=\! 0.001458 \ 21; \\ &\alpha(\mathbf{M}) \!=\! 0.000325 \ 5; \ \alpha(\mathbf{N}\!+\!) \!=\! 8.78\!\times\! 10^{-5} \ 13. \\ &\alpha(\mathbf{N}) \!=\! 7.62\!\times\! 10^{-5} \ 11; \ \alpha(\mathbf{O}) \!=\! 1.095\!\times\! 10^{-5} \ 16; \\ &\alpha(\mathbf{P}) \!=\! 5.96\!\times\! 10^{-7} \ 9. \end{aligned}$
829.4 <i>3</i>	931.6	3.4 4	M1	0.01136	Mult.: from $\alpha(K)\exp=0.010$ <i>I</i> (1984Fi18). $\alpha(K)=0.00958$ <i>I</i> 4; $\alpha(L)=0.001389$ <i>20</i> ; $\alpha(M)=0.000309$ <i>5</i> ; $\alpha(N+)=8.37\times10^{-5}$ <i>I</i> 2. $\alpha(N)=7.26\times10^{-5}$ <i>II</i> ; $\alpha(O)=1.044\times10^{-5}$ <i>I5</i> ; $\alpha(P)=5.68\times10^{-7}$ <i>8</i> .
831.7 <i>3</i>	1162.5	7.2 7	M1	0.01129	Mult.: from $\alpha(K)\exp=0.010$ <i>1</i> (1984Fi18). $\alpha(K)=0.00952$ <i>14</i> ; $\alpha(L)=0.001380$ <i>20</i> ; $\alpha(M)=0.000307$ <i>5</i> ; $\alpha(N+)=8.31\times10^{-5}$ <i>12</i> . $\alpha(N)=7.21\times10^{-5}$ <i>11</i> ; $\alpha(O)=1.036\times10^{-5}$ <i>15</i> ; $\alpha(P)=5.64\times10^{-7}$ <i>8</i> . Mult.: from $\alpha(K)\exp=0.0103$ <i>4</i> (1984Fi18).

Er(α,xnγ),¹⁶⁶Er(³He,3nγ),¹⁶⁹Tm(d,5nγ),¹⁶⁹Tm(p,4nγ) 1984Fi18,1972Li34 (continued)

$\gamma(^{166}Yb)$ (continued)

$E\gamma^{\ddagger}$	E(level)	Iγ§	Mult. [†]	δ	α	Comments
837.0 <i>3</i>	1504.5	4.1 <i>4</i>	E1+M2	0.31 +3-4	0.0045 6	$\begin{split} &\alpha(K) \!=\! 0.0037 \; 5; \; \alpha(L) \!=\! 0.00056 \; 8; \\ &\alpha(M) \!=\! 0.000126 \; 17; \; \alpha(N+) \!=\! 3.4 \!\times\! 10^{-5} \; 5. \\ &\alpha(N) \!=\! 3.0 \!\times\! 10^{-5} \; 4; \; \alpha(O) \!=\! 4.2 \!\times\! 10^{-6} \; 6; \\ &\alpha(P) \!=\! 2.2 \!\times\! 10^{-7} \; 3. \end{split}$ Mult., & from \$\alpha(K) \!exp \!=\! 0.0037 \; 4\$ (1984 \!Fi18). \$
843.3 <i>3</i>	1940.5	4.0 4	E1		0.00207	Gammas. α(N)=1.256×10 ⁻⁵ 18; α(O)=1.78×10 ⁻⁶ 3; α(P)=9.42×10 ⁻⁸ 14.
859.7 <i>3</i>	1958.1	3.9 4	E1+(M2)		0.014 <i>13</i>	Mult.: from $\alpha(K)\exp=0.0018 \ 10 \ (1984Fi18).$ $\alpha(K)=0.012 \ 11; \ \alpha(L)=0.0019 \ 17;$ $\alpha(M)=0.0004 \ 4; \ \alpha(N+)=0.00012 \ 11.$ $\alpha(N)=0.00010 \ 9; \ \alpha(O)=1.4\times10^{-5} \ 13;$ $\alpha(P)=8.\times10^{-7} \ 7.$
924.7 <i>3</i>	2531.7	2.00 20				 Mult.: from α(K)exp=0.0037 7 (1984Fi18). Mult.: α(K)exp<0.0010 (1984Fi18). 1984Fi18 indicate that this γ also deexcites the 1039 level, but Eγ does not fit that placement. See 1983Na14 for 925y(θ).
932.1 <i>3</i> 932.4 ^a 3	2029.5 931.6	7.3 7	E0+M1		0.116 12	Mult., α : from α (K)exp=0.0089 <i>9</i> (1984Fi18). E γ : from 1983Fi12. All or most of 932.4 γ +932.1 γ doublet I γ belongs to the 932.1 γ based on γ assignment in 1984Fi18
936.0 <i>3</i>	1038.56	12.0 <i>12</i>	E2		0.00425	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00352 \ 5; \ \alpha(\mathbf{L}) = 0.000565 \ 8; \\ &\alpha(\mathbf{M}) = 0.0001274 \ 18; \ \alpha(\mathbf{N}+) = 3.41 \times 10^{-5} \ 5. \\ &\alpha(\mathbf{N}) = 2.98 \times 10^{-5} \ 5; \ \alpha(\mathbf{O}) = 4.15 \times 10^{-6} \ 6; \\ &\alpha(\mathbf{P}) = 1.98 \times 10^{-7} \ 3. \end{aligned}$
939.5 <i>3</i>	1607.0	1.70 17	E0+M1+E2		0.0063 <i>21</i>	Mult.: from $\alpha(K) \exp[=0.004 \ I \ (1983Fi12).$ $\alpha(K) = 0.0053 \ I8; \ \alpha(L) = 0.00079 \ 23;$ $\alpha(M) = 0.00018 \ 5; \ \alpha(N+) = 4.8 \times 10^{-5} \ I4.$ $\alpha(N) = 4.1 \times 10^{-5} \ I2; \ \alpha(O) = 5.9 \times 10^{-6} \ I8;$ $\alpha(P) = 3.1 \times 10^{-7} \ I1.$ Mult.: from $\alpha(K) \exp[=0.026 \ 5 \ (1984Fi18)$ $(0.020 \ 4 \ h) \ 1082Fi12)$
996.8 <i>3</i>	1327.27	12.6 13	M1+E2		0.0055 <i>18</i>	$\begin{aligned} \alpha(K) = 0.0046 \ 15; \ \alpha(L) = 0.00068 \ 20; \\ \alpha(M) = 0.00015 \ 5; \ \alpha(N+) = 4.1 \times 10^{-5} \ 12. \\ \alpha(N) = 3.6 \times 10^{-5} \ 10; \ \alpha(O) = 5.1 \times 10^{-6} \ 15; \\ \alpha(P) = 2.7 \times 10^{-7} \ 10. \end{aligned}$ Mult.: from $\alpha(K) \exp = 0.0036 \ 3$ (1984Fi18).
1012.0 3	1342.3					E γ ,Mult.: $\alpha(K)$ exp<0.01 (1984Fi18) but γ is unresolved from unidentified contaminant transition.
1036.6 <i>3</i>	1704.1	3.6 4	M1+E2		0.0050 16	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0042 \ 14; \ \alpha(\mathbf{L}) = 0.00062 \ 18; \\ &\alpha(\mathbf{M}) = 0.00014 \ 4; \ \alpha(\mathbf{N}+) = 3.7 \times 10^{-5} \ 11. \\ &\alpha(\mathbf{N}) = 3.3 \times 10^{-5} \ 9; \ \alpha(\mathbf{O}) = 4.6 \times 10^{-6} \ 14; \\ &\alpha(\mathbf{P}) = 2.4 \times 10^{-7} \ 9. \end{aligned}$
1042.0 3	1144.23					Mult.: from α(K)exp=0.0049 b (1984F118). Eγ,Mult.: α(K)exp<0.05 (1984Fi18) but γ is unresolved from unidentified contaminant
1052.5 <i>3</i>	2149.9	1.50 <i>15</i>	E2+M1		0.0048 15	$\alpha(K) = 0.0041 \ 13; \ \alpha(L) = 0.00060 \ 17; \alpha(M) = 0.00013 \ 4; \ \alpha(N+) = 3.6 \times 10^{-5} \ 10. \alpha(N) = 3.1 \times 10^{-5} \ 9; \ \alpha(O) = 4.5 \times 10^{-6} \ 13; \alpha(P) = 2.4 \times 10^{-7} \ 8. Mult.: \ \alpha(K) \exp = 0.0022 \ 4 \ (1984Fi18).$
1111.4 <i>3</i>	2209.2	3.4 <i>3</i>	E1		$1 \cdot 2 4 \times 10^{-3}$	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001051 \ 15; \ \alpha(\mathbf{L}) = 0.0001434 \ 20; \\ &\alpha(\mathbf{M}) = 3.17 \times 10^{-5} \ 5; \ \alpha(\mathbf{N}+) = 1.063 \times 10^{-5} \ 15; \\ &\alpha(\mathbf{N}) = 7.41 \times 10^{-6} \ 11; \ \alpha(\mathbf{O}) = 1.058 \times 10^{-6} \ 15; \\ &\alpha(\mathbf{P}) = 5.68 \times 10^{-8} \ 8; \ \alpha(\mathbf{IFF}) = 2.10 \times 10^{-6} \ 4. \end{aligned}$ Mult.: $\alpha(\mathbf{K}) \exp < 0.001 \ (1984Fi18).$

1 7 0 Y D ₉₆ - 5 /	1	66	Y	b	96	_	5	7
--	---	----	---	---	----	---	---	---

Er(α,xnγ), ¹⁶⁶ Er(³ He,3nγ), ¹⁶⁹ Tm(d,5nγ), ¹⁶⁹ Tm(p,4nγ)	1984Fi18,1972Li34 (continued)
--	-------------------------------

 $\gamma(^{166}$ Yb) (continued)

	E (1))	- 8	N 11 [†]		
Εγ+	E(level)	173	Mult.	α	Comments
1117.1 3	2214.3	2.20 22			
1144.2 ^b 3	1144.23	1.70 ^b 17			
	1811.7	1.70 ^b 17			
1152.0 3	1481.60	<1.0			
1165.8 <i>3</i>	1833.6	<1.0	E1	$1 . 14 \times 10^{-3}$	$ \begin{aligned} &\alpha(K) \!=\! 0.000965 \ 14; \ \alpha(L) \!=\! 0.0001313 \ 19; \ \alpha(M) \!=\! 2.90 \!\times\! 10^{-5} \ 4; \\ &\alpha(N+\ldots) \!=\! 1.83 \!\times\! 10^{-5} \ 3. \end{aligned} $
					$\alpha(N) = 6.79 \times 10^{-6} \ 10; \ \alpha(O) = 9.70 \times 10^{-7} \ 14; \ \alpha(P) = 5.21 \times 10^{-8} \ 8; \\ \alpha(IPF) = 1.053 \times 10^{-5} \ 17.$
					Mult.: from α(K)exp<0.0019 (1984Fi18).
1173.9 <i>3</i>	1504.5	6 1			γ is unplaced in 1984Fi18; placed by evaluator, consistent
					with Adopted Levels, Gammas.
1184.1 3	1852.5	2.7 3			•
x1201.6 3		3.4 3	E2	0.00257	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00215 \ \ 3; \ \alpha(\mathbf{L}) = 0.000325 \ \ 5; \ \alpha(\mathbf{M}) = 7.28 \times 10^{-5} \ \ 11; \\ &\alpha(\mathbf{N}+) = 2.46 \times 10^{-5} \ \ 4. \end{aligned}$
					$\alpha(N)=1.703 \times 10^{-5} 24; \ \alpha(O)=2.40 \times 10^{-6} 4; \ \alpha(P)=1.211 \times 10^{-7} 17; \ \alpha(IPF)=5.10 \times 10^{-6} 8.$
					Mult.: from α(K)exp=0.0022 6 (1984Fi18).
1238.9ab <i>3</i>	1342.3	4.6 ^b 5			
	1569.0	4.6 ^b 5			
1290.2 3	1958.1	4.0 4	E1	$1 . 0 1 \times 1 0^{-3}$	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.000807 \ 12; \ \alpha(\mathbf{L}) = 0.0001094 \ 16; \ \alpha(\mathbf{M}) = 2.41 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{N}+) = 6.68 \times 10^{-5} \ 10. \end{aligned} $
					$ \begin{aligned} &\alpha(\mathbf{N}) = 5.65 \times 10^{-6} \ \ \ \ \alpha(\mathbf{O}) = 8.08 \times 10^{-7} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
					Mult.: from α(K)exp=0.0007 4 (1984Fi18).
1316.2 3	1418.5	< 1.0			-
1459.7 3	1789.6	5.8 6			

[‡] From 1984Fi18, unless otherwise noted. 1984Fi18 report $\Delta E=0.1$ keV; however, that uncertainty appears to have been underestimated based on the large number of energies that differ by at least 3σ from the value expected from a least-squares fit to E γ . The evaluator has, therefore, increased the uncertainty to 0.3 keV to overcome this problem.

§ From $^{164}\text{Er}(\alpha, 2n\gamma)$, E α =24 MeV (1984Fi18, except as noted). I γ data are from 55° singles spectrum.

 $^{\#}$ 1984Fi18 report $\alpha(K)exp{=}0.0118$ 6 for the 507.4 triplet.

[@] 1984Fi18 report $\alpha(K)exp=0.014$ 4 for the 445.4 doublet.

& 1984Fi18 report $\alpha(K)exp=0.016$ 6 (cf. 0.018 4 in 1983Fi12) for the 713.3 doublet.

^a Placement of transition in the level scheme is uncertain.

b Multiply placed; undivided intensity given.

x γ ray not placed in level scheme.

Er(α,xnγ),¹⁶⁶Er(³He,3nγ),¹⁶⁹Tm(d,5nγ),¹⁶⁹Tm(p,4nγ) 1984Fi18,1972Li34 (continued)

(A) K=0+ g.s.
 (B) K=2+ γ-vibrational band.
 (C) K=0+ β-vibrational band.
 (D) Kπ=5-, α=1 band.

Er(α,xnγ),¹⁶⁶Er(³He,3nγ),¹⁶⁹Tm(d,5nγ),¹⁶⁹Tm(p,4nγ) 1984Fi18,1972Li34 (continued)

 $^{166}_{70}$ Yb₉₆

Er(α,xnγ),¹⁶⁶Er(³He,3nγ),¹⁶⁹Tm(d,5nγ),¹⁶⁹Tm(p,4nγ) 1984Fi18,1972Li34 (continued)

Level Scheme

Intensities: relative I γ from (α , 2n γ), E=24 MeV & Multiply placed; undivided intensity given

Er(α,xnγ),¹⁶⁶Er(³He,3nγ),¹⁶⁹Tm(d,5nγ),¹⁶⁹Tm(p,4nγ) 1984Fi18,1972Li34 (continued)

Level Scheme (continued)

Intensities: relative I γ from (α , 2n γ), E=24 MeV & Multiply placed; undivided intensity given

20+	4371.7
18+	3782.9

_(14-)	3350.4
16+	3273.8

¹⁶⁸Yb(p,t) 1973Oo01

1973Oo01: E=19 MeV; 18.25% ¹⁶⁸Yb target; magnetic spectrometer with nuclear emulsions and position sensitive detectors in focal plane (FWHM=10-12 keV); measured $Q(\beta^-)$ value, $d\sigma/d\Omega(E(t),\theta)$.(4 angles).

¹⁶⁶Yb Levels

E(level) [†]	_Jπ [‡]	_L_	$\Sigma\sigma(c.m.) \ \mu b/sr^{\S}$
0.0#	0+	0	647 22
101# 10	2+		267 16
329# 10	4 +		55 <i>8</i>
931 10	(2+)		58 <i>8</i>
1043@ 10	(0+)	(0)	76 11
1581 10			30 16

 † A search at 27.5° (near the L=0 maximum) revealed no additional states stronger than 10% of the g.s. between 2200 and 3300 keV.

 ‡ Authors' assignments are based on comparison of the (p,t) angular distributions with those for levels with previously known J π .

§ Center of mass cross section summed over θ =12.5°, 27.5°, 42.5°, 55° (in µb/sr).

(A): $K\pi = 0 + g.s.$ band.

(B): K=0+ β -vibrational band.

¹⁸⁶W(n,4p17nγ) 2000Ya22

 $E=250-600 \; MeV \; from \; LANSCE/WNR \; spallation \; neutron \; source; \; 4 \; HPGe \; detectors \; in \; close \; geometry; \; measured \; E\gamma, \; \gamma\gamma \; coin.$

¹⁶⁶Yb Levels

E(level) [†]	$J\pi^{\ddagger}$
102 [§]	2 +
330 [§]	4 +

3300	-4 +
667§	6 +
1097§	8 +
1604§	10+
2173§	12+
2777§	14+

 $^\dagger~$ From Ey, assuming adopted value (rounded) for the 2+ level.

[‡] From Adopted Levels.

§ (A): $K\pi=0+$ g.s. band.

γ(¹⁶⁶Yb)

$E\gamma^{\dagger}$	E(level)
228	330
337	667

- 430 1097
- 507 1604
- 569 2173
- 604 2777

[†] From fig. 2 of 2000Ya22.

¹⁸⁶W(n,4p17nγ) 2000Ya22 (continued)

(A) Kπ=0+ g.s. band.

14+	2777
12+	2173
10+	1604
8+	1097
6+	667
4+	$\frac{330}{102}$
	102

¹⁸⁶W(n,4p17nγ) <u>2000Ya22</u> (continued)

¹⁸⁶W(n,4p17nγ) 2000Ya22 (continued)

Level Scheme

 $^{166}_{70}$ Yb₉₆

Adopted Levels, Gammas

 $Q(\beta^{-})=-2160 \ 40; \ S(n)=7650 \ 40; \ S(p)=3020 \ 40; \ Q(\alpha)=3040 \ 40 \ 2003 Au 03.$

 $Assignment: daughter {}^{166}Hf, chem. \ \gamma ({}^{166}Yb) \ (1969Ar23); {}^{169}Tm({}^{3}He, 6n), \ E({}^{3}He) = 45 - 80 \ MeV, \ excit, \ \gamma ({}^{166}Yb) \ (1974De09); \$ 170 Yb(p,5n), E(p)=52 MeV, γ (166 Yb) (1974De09).

For hfs and isotope shift data, see 1998Ge13. Other Reactions: ¹²³Sb(⁴⁸Ca,5nγ) (1990McZY): identified four rotational bands; details of results not given.

¹⁶⁶Lu Levels

Cross Reference (XREF) Flags

A ¹⁶⁶Lu IT Decay (1.41 min)

- B ¹⁶⁶Hf ε Decay C ¹³⁹La(³⁰Si,3n γ)

 $D^{-152}Sm(^{19}F,5n\gamma)$

 $E^{159}Tb(^{12}C, 5n\gamma)$

E(level) [†]	Jπ [‡]	XREF	T_1/2	Comments
0.0	6 - #	ABCDE	2.65 min 10	$\%\epsilon + \%\beta^{+} = 100.$ $\mu = +2.912$ /2 (1998Ge13); Q=+4.33 4 (1998Ge13).
				Δ <r²>(170Lu,100Lu)=-0.412 (1998Ge13). μ,Q: from collinear fast-beam LASER spectroscopy. Sign from 2005St24.</r²>
				$< r^2 > 1/2$ (charge)=5.298 5 (2004An14).
				J π : J=6 from collinear fast-beam LASER spectroscopy (1998Ge13). π from allowed ϵ decay to π =- 2233 level of ¹⁶⁶ Yb.
				Configuration: (π 7/2[411])+(ν 5/2[523]). Unhindered allowed ϵ decay to a ¹⁶⁶ Yb level implies the presence of the (ν 5/2[523]) orbital in the
				g.s. configuration in this mass region, and the 7/2+ g.s. of ^{167}Lu has the configuration (π 7/2[404]). For a deformed odd-odd nucleus, the 6–
				coupling is expected to lie lower in energy than the 1
				T _{1/2} : from 1974De09. Other: 1969Ar23.
34.37 22	3 (–) #	AB	1.41 min 10	%IT=42 5; %ε=58 5 (1974De09).
				μ =+0.189 5 (1998Ge13); Q=+2.715 21 (1998Ge13).
				$\Delta < r^2 > ({}^{170}Lu, {}^{166}Lu) = -0.444 \ (1998Ge13).$
				μ,Q : from collinear fast-beam LASER spectroscopy. Sign from 2005St24.
				T _{1/2} : from 1974De09.
				J π : J=3 from collinear fast-beam LASER spectroscopy (1998Ge13). π from (M3) 34 γ to 6- g.s.
				Configuration: $(\pi \ 1/2[411]) + (\nu \ 5/2[523])$.
				Assignment: ¹⁶⁹ Tm(³ He,6n), E(³ He)=45-80 MeV, excit γ(¹⁶⁶ Yb); ¹⁷⁰ Yb(p,5n), E(p)=52 MeV, γ(¹⁶⁶ Yb) (1974De09).
43.0 4	0 - #	В	2.12 min 10	$\pi^{-1} = 10000000000000000000000000000000000$
				$\Delta < r^2 > ({}^{170}Lu, {}^{166}Lu) = -0.448$ (1998Ge13).
				Assignment: ¹⁶⁹ Tm(³ He,6n), E(³ He)=45-80 MeV excit, γ(¹⁶⁶ Yb); ¹⁷⁰ Yb(p,5n),
				$E(p)=52$ MeV, $\gamma(^{166}Yb)$ (1974De09).
				T _{1/2} : from 1974De09.
				$J\pi$: J=0 from collinear fast-beam LASER spectroscopy (1998Ge13). π from
				allowed ε decay to π =- 1359 level in ¹⁶⁶ Yb.
	4			configuration: (π 5/2[402])-(v 5/2[523]) (1974De09).
57.2 3	(1) – #	В		$J\pi$: E1 79 γ from 1+ 136; 23 γ to 3(-) 34; configuration assignment.
	(-) #	_		configuration: $(\pi 7/2[404]) - (\nu 5/2[523])$ (1974De09).
60.5 4	(3+)#	В		$J\pi$: 483 γ from 1+544; likely configuration.
00 50 10	(5 6 7)	C F	0.0 7	configuration: $(\pi 1/2[541])+(\sqrt{5/2[523]})$ (19/4De09).
83.50 10	(5,6,7)+	CΕ	92 ns /	$J\pi$: E1 847 to 6-g.s. The fram controld shift between 82 fix and 85 fix in $(120$ fixe)
125 0 2	1.	D		$I_{1/2}$. Itom centroid sint between 85.57 and 85.57 in ($C, 517$).
133.5 3	1+	Б		$\sin t = 10000000000000000000000000000000000$
144 79 14	(6, 7, 8) -	СF		I_{π} : F1 61v to (5.6.7) + 84 level: Λ [<1.142v from I>7.287
189 8 10	(0, 7, 0) =	CDF		$I\pi$: E1 45y to (6.7.8) = 145 level: hand assignment
196.0 ^c 10	J	CDE		$J\pi$: γ to (5.6.7)+ 84 level.
287.21a 14	(8) –	CDE		J π : $\Delta\pi$ = no 1437 to (6,7,8)-145 level; possibly E1 2047 to (5,6,7)+ 84; band assignment.
$290.5^{@}$ 11	(8+)	CDF		
303.29? 24	(+)	E		Existence of level is doubtful; it should have been seen in $(^{19}F, 5n\gamma)$ and
		-		in $({}^{30}Si, 3n\gamma)$ also, but was not.
				$J\pi$: (E1) 159 γ to (6,7,8)-145.
336.0 ^c 11	J + 2	CDE		

¹⁶⁶Lu Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	XREF	Comments
341.10 ^b 16	(9-)	CDE	
341.2 4	1	В	J π : allowed or first forbidden ε decay from 0+ (log <i>ft</i> =5.8).
358.2§d 11	(8-)	CDE	
399.1 <i>3</i>	1 (+)	В	J π : ϵ decay from 0+ is allowed or first-forbidden (log ft=5.4); 355 γ to 0- 43; 339 γ to (3+)
			61.
425.5 ^{&} 11	(9+)	CDE	
426.58 ^a 23	(10-)	CDE	
434.7 4	1 (+)	В	J π : ϵ decay from 0+ is allowed or first-forbidden (log ft=5.5). 378 γ to 0- 43.
505.28e 17	(9-)	D	
539.10 ^b 24	(11-)	CDE	
543.7 4	1+	В	$J\pi$: log ft=5.2 for ε decay from 0+.
587.48u 4	(10-)	CDE	
591.2 ^e 11	(10+)	CDE	
591.8° <i>11</i>	J+4	CDE	
694.62ª 25	(12-)	CDE	
780.23 13	(11-)	D	
867 ab 2	(11+)	CDE	
907.9-5 907.08d 11	(13-)	CDE	
961 6C 11	(12-) I+6	CDE	
1004.6° 11	(12+)	CDE	
1083 5 ^a 3	(12+)	CDE	
1145.8 ^{§e} 1.3	(13-)	D	
$1250.5^{\&}$ 11	(13+)	CDE	
1312.9b 3	(15-)	CDE	
1323.9§d <i>11</i>	(14-)	CDE	
1433.4 ^c 11	J + 8	CDE	
1512.0@ 11	(14+)	CDE	
1574.8 ^a 3	(16-)	CDE	
1589.0 ^{§e} 13	(15-)	D	
1799.5 ^{&} 11	(15+)	CDE	
1834.4§d <i>11</i>	(16-)	CDE	
1856.9 ^b 4	(17-)	CDE	
1991.3 ^c 12	J + 1 0	CDE	
2096.5 [@] 11	(16+)	CDE	
2111.9 ^{§e} 13	(17-)	D	
2152.2 ^a 4	(18–)	CDE	
2416.8 ^{&} 11	(17+)	CDE	
2430.6 ⁹⁰ 11	(18-)	CDE	
2482.60 4	(19-)	CDE	
2615.7° <i>12</i>	J + IZ	CDE	
2710.23 14	(19-)	CDE	
2800 0a 1	(10+)	CDE	
3069 7 ^{&} 19	(19+)	CDE	
3098.5§d 12	(20 -)	CDE	
3173.0 ^b 7	(20)	CD	
3285.7° 16	J+14	D	
3375.9§e 17	(21-)	D	
3430.9 [@] 13	(20+)	CDE	
3499.5a 5	(22-)	CDE	
3773.9& 16	(21+)	CD	
3819.3§d <i>12</i>	(22-)	CDE	
3892.5 ^b 12	(23-)	С	
3974.7? ^c 19	(J+16)	D	
4104.4§e 20	(23-)	D	
4167.0@ 17	(22+)	С	
4248.6 ^a 11	(24-)	С	
4520.9?& <i>19</i>	(23+)	D	
4591.8 ^{§d} 16	(24-)	D	
4673.3 ^D 16	(25-)	С	
$0 \cdot 0 + x ? t$	(8+)	D	
130.4+x8 <i>8</i>	(9+)	D	

¹⁶⁶Lu Levels (continued)

E(level) [†]		Jπ [‡]	XREF	
286 . $9 + x f$	8	(10+)	D	
470. 2 + x g	10	(11+)	D	
$690.6 + x^{f}$	11	(12+)	D	
928.8 + xg	12	(13+)	D	
$1 1 9 8 . 0 + x^{f}$	13	(14+)	D	
1486.2+xg	13	(15+)	D	
$1785.9 + x^{f}$	14	(16+)	D	
$2114.2 + x^{g}$	17	(17+)	D	

[†] From least-squares fit to Εγ, assigning 1 keV uncertainty to data for which the authors gave no uncertainty.

[‡] Values given without comment are based on deduced band structure. It should be noted, however, that different authors may disagree on the spin of a given level, even when they agree on the configuration assignment. See detailed comments on the individual bands.

§ Level energy is dependent on the validity of the 163 γ and 251 γ transitions linking the K π =2- and Δ J=2 bands; these gammas were reported in (³⁰Si.3n γ) and (¹²C,5n γ) but not in (¹⁹F,5n γ).

- # Assignments for the lowest energy levels are consistent with systematics for neighboring nuclides (1974De09). Based on low-energy structure of odd-odd Lu isotopes, the 7/2[404], 1/2[411] and 5/2[402] proton orbitals are expected to lie lowest in energy (and at almost the same energy) for N=95, with the 1/2[541] and 9/2[514] orbitals at somewhat higher energy. Unhindered allowed ε decay from the g.s. to a ¹⁶⁶Yb level and a (v 5/2[523]) g.s. for ¹⁶⁵Yb support the inclusion of the (v 5/2[523]) orbital in the g.s. configuration in this mass region, so low-energy 6-, 3- and 0- levels are anticipated based on the Gallagher-Moszkowski rule, with 1- and 3+ states a little higher in energy.
- (A): $K\pi$ =6+, α =0 (π 7/2[404])+(ν 5/2[642]) band. J values are from (^{19}F , 5n γ), based on level energy systematics for similar bands in neighboring odd-odd nuclei and checked by the alignment additivity rule; they are one unit higher than suggested in independent (^{12}C , 5n γ) (1992Ho02) and (^{30}Si , 3n γ) (2000Le25) studies.
- & (B): $K\pi=6+$, $\alpha=1$ (π 7/2[404])+(v 5/2[642]) band. See comment on signature partner band.

a (C): $K\pi=7-$, $\alpha=0$ (π 9/2[514])+(ν 5/2[642]) band (2000Le25). J values are based on energy systematics, the alignment additivity rule and systematics of signature inversion for low-lying states for yrast bands in odd-odd Lu isotopes; these values are from (^{19}F , 5n γ) and (^{30}Si , 3n γ) and they are one unit higher than suggested in an earlier (^{12}C , 5n γ) study (1992Ho02).

- b (D): $K\pi=7-$, $\alpha=1$ (π 9/2[514])+(ν 5/2[642]) band (2000Le25). See comment on signature partner band.
- ^c (E): $\Delta J=2$ band (2000Zh51). Assigned as $K\pi=2+$, $\alpha=0$ (π 1/2[411])-(ν 5/2[642]) band (with $J\pi(196 \text{ level})=6+$) in (¹⁹F, 5n γ) (2000Zh51), based on similarity of level structure to that for the $\alpha=0$ band in ¹⁶²Tm with the same configuration assignment. However, assigned as signature partner of the $K\pi=2-$ (π 1/2[541])-(ν 5/2[642]) band (with $J\pi(196 \text{ level})=7-$) in (³⁰Si, 3n γ) (2000Le25). If the adopted $J\pi$ values for the $\alpha=0$ (π 1/2[541])-(ν 5/2[642]) band are correct, the former configuration would imply M2 multipolarity for the three transitions linking it to the $\Delta J=2$ band. The alternative scenario is problematic also because a different band has already been assigned as the signature partner of the $K\pi=2-$ band.
- d (F): $K\pi=2-$, $\alpha=0$ (π 1/2[541])-(ν 5/2[642]) band (2000Zh51). Configuration assignment supported by similarity of band structure to that for bands in ¹⁶²Tm and ¹⁶⁴Tm with the same configuration assignment (large signature splitting, low-spin signature inversion, delayed BC crossing and small B(M1) to B(E2) in-band cascade to crossover transition probability ratios) (2000Zh51).
- e (G): $K\pi=2-$, $\alpha=1$ (π 1/2[541])-(ν 5/2[642]) band (2000Zh51). $\alpha=1$ sequence is observed only in (¹⁹F, 5n γ). See comment on signature partner of this band.
- f (H): $K\pi$ =5+, α =0 (π 5/2[402])+(v 5/2[642]) band (2000Zh51). Configuration assignment supported by similarity of band structure to that for a ¹⁶²Tm band with the same configuration assignment. Strongly coupled, weakly populated band reported in (¹⁹F,5n γ) alone.
- g (I): $K\pi = 5+$, $\alpha = 1$ ($\pi 5/2[402]$)+($\nu 5/2[642]$) band (2000Zh51). See comment on signature partner of this band.

γ(¹⁶⁶Lu)

E(level)	$\underline{\qquad E\gamma^{\dagger}}$	Iγ [‡]	Mult.§	α	Comments
34.37	34.37# 22	100#	(M3)	8.6×10^{4}	B(M3)(W.u.)=0.074 12.
57.2	(14.3)	#	[M1]		Mult.: from L/M in ε decay. Εγ: from level energy difference.
60.5	(26.1)		[E2] [E1]	2.55	Eγ: from level energy difference.
83.50 135.9	83.5 [#] 1 78.76 [#] 10	100# 5	EI E1	0.560	B(E1)(W.u.)= 2.68×10^{-6} 21. Mult.: from α (L)exp in ε decay.
144.79	93.05#20 61.3 1	8 [#] 1 100	(E1) E1	0.423 7 0.240	Mult.: from $\alpha(L)exp$ in ϵ decay.
189.8 196.0	45 112.5 [@]	100	E1	0.566	
287.21	142.5 2	100	M1 (+E2)	1.12 23	

$\gamma(^{166}Lu)$ (continued)

E(level)	$E\gamma^{\dagger}$	Iγ [‡]	Mult.§	α	Comments
287.21	203.7 1	< 1 5 8	(E1)		Mult.,Iy: possibly unreliable; measurement was for a contaminated line.
290.5	100.8 2	100	M1 (+E2)	3.43 18	
303.29?	158.5a 2	100	(E1)	0.1046	
336.0	139.9 2	100	[E2]	0.959	
341 10	54 0 3	100	[M1(+F2)]	24 21	y not observed but its existence is implied by vy coin
541.10	196.3 <i>1</i>	100	(E2)	0.2956	data and presence of 139 γ crossover transition; possibly highly converted. Mult.: M1,E2 from intensity balance in ($^{12}C,5n\gamma$); $\Delta J>1$
341.2	$283.92^{\#}$ 20	93 [#] 36			trom level scheme.
	306.8" 4	100# 23			
358.2	162.4 3	100			
399.1	338.98# 15	25# 12			
	341.82# 10	100 * 9			
	$355.1^{\#}5$	23 # 11			
425.5	135.0 2	100	[M1 (+E2)]	1.33 24	
	235.7 2	72			
426.58	85.5 2	100	[M1(+E2)]	6.0 <i>3</i>	
	$139.0^{@}$	< 1 0 7	[E2]	0.982	
434.7	298.77 [#] 20	33 # 10			
	377.6 [#] 5	100 # 29			
505.2	148.0 ^{&a}	100			
539.10	112.5 1	100	[M1 (+E2)]	2.38 25	
	198.0 3	< 3 0	[E2]	0.287	
543.7	407.91# 10	100# 19			
	483.05# 10	91 # 16			
587.4	229.3 <i>2</i>	100			
	251.3 3				
591.2	165.6 2	92	[M1 (+E2)]	0.7018	
	300.8 <i>2</i>	100			
591.8	255.8 2	100			
694.62	155.5 1	100	[M1 (+E2)]	0.85 20	
	268.1 2	34			
786.2	198.2&				
	281.08				
786.9	195.7 2	83	[M1 (+E2)]	0.42 13	
	361.4 2	100			
867.9	173.3 1	100	[M1 (+E2)]	0.61 16	
	328.8 2	48			
907.0	319.6 2	100			
961.6	369.8 2	100			
1004.6	217.7 2	62	[M1 (+E2)]	0.31 10	
	413.4 2	100			
1083.5	215.6 1	100	[M1 (+E2)]	0.32 11	
	388.7 2	84			
1145.8	238.6 ^{&}				
	359.1&				
1250.5	245.9 2	99			
	463.5 2	100			
1312.9	229.5 2	81			
	445.3 2	100			
1323.9	416.9 2	100			
1433 . 4	471.8 3	100			
1512.0	261.5 3	100			
	507.4 3	70			
1574.8	261.9 2	100			
	491.0 2	75			
1589.0	265.4				
	442.4*				
1799.5	287.7 <i>3</i>	78			
	549.1 3	100			
1834.4	510.5 2	100			

 $\gamma(^{166}Lu)$ (continued)

E(level)	$E\gamma^{\dagger}$	Iγ [‡]	Mult.§	α
1956 0	281 0 2	100		
1850.5	544 1 2	81		
1991 3	557 9 3	100		
2096 5	207 1 3	100		
2030.3	584 3 3	100		
2111 9	277 5&	100		
	522.48			
2152.2	295.3 2	100		
	577.4 2	84		
2416.8	617.3 3	100		
2430.6	596.3 2	100		
2482.6	330.2 <i>3</i>	73		
	625.7 2	100		
2615.7	624.4 3	100		
2710.2	280.1&			
	597.7 ^{&}			
2739.3	642.8 3	100		
2800.0	317.2 3	71		
	647.9 2	100		
3069.7	652.9 3	100		
3098.5	667.9 <i>3</i>	100		
3173.0	373.2@			
	690.2 [@]			
3285.7	670.0 ^{&}	100		
3375.9	665.7&	100		
3430.9	361.4@			
	691.4 [@]			
3499.5	326.3			
	699.5 <i>3</i>			
3773.9	704.2	100		
3819.3	720.8 3	100		
3092.3	719.5~	100		
3974.7? 4104 4	728 58	100		
4104.4	726.2@	100		
4107.0	749 1@	100		
4520 92	743.1 747&a	100		
4591 8	779 5&	100		
4673 3	780.8 [@]	100		
130.4 + x	130.3&a	100	[M1]	1.727
286.9 + x	156.3&			
	287.0 ^{&} a			
470.2 + x	183.2&			
	339.8&			
690.6+x	220.2			
	403.8&			
928.8+x	238.1&			
	$458.6^{\&}$			
$1 \ 1 \ 9 \ 8 \ . \ 0 + x$	269.18			
	507.68			
$1\ 4\ 8\ 6$. $2+x$	288.0&			
	557.4&			
$1\ 7\ 8\ 5$. $9+x$	299.5&			
	588.1 ^{&}			
$2\ 1\ 1\ 4\ .\ 2+x$	328.0 ^{& a}			
	628.0 ^{&}			

[†] From 159 Tb(12 C,5n γ), except as noted. E γ data from (30 Si,3n γ) are in excellent agreement; however, E γ data from (19 F,5n γ) are consistently lower by as much as 1.5 keV.

[‡] Relative photon intensity normalized to 100 for strongest photon deexciting each level. From ¹⁵⁹Tb(¹²C, 5nγ), except as noted.

From intensity balance in ¹⁵⁹Tb(¹²C,5nγ), except as noted.
 # From ¹⁶⁶Hf ε decay.
 @ From (³⁰Si,3nγ) (2000Le25).

Footnotes continued on next page

 $\gamma(^{166}Lu)$ (continued)

 $\ensuremath{\overset{\,}{_{\sim}}}\xspace$ From $({}^{19}\text{F},5n\gamma)$ (2000Zh51). a Placement of transition in the level scheme is uncertain.

(A) $K\pi=6+$, $\alpha=0$ (π 7/2[404]) +(ν 5/2[642]) band. (B) $K\pi=6+$, $\alpha=1$ (π 7/2[404]) +(ν 5/2[642]) band. (C) $K\pi=7-$, $\alpha=0$ (π 9/2[514]) +(ν 5/2[642]) band (2000Le25).

(0.0)	4107.0				(24-)		4248.6
(22+)	4167.0	-					
		(21+)	1	3773.9	_		
					(22_)		, 3499.5
(20+)	¥ 3430.9	-			_(~~)		3433.3
					(D)(21-)		
(B)(19+)		(19+)		3069.7		¥	
(18+)	2739.3	_			(20-)	¥	2800.0
		(17+)		2416.8	(D)(19-)	¥	
					(10)		
(16+)	¥ 2096.5	_			(18-)	Y	2152.2
					(D)(17-)	v	
(B)(15+) v		(15+)		/ 1799.5		v	
(14+)	y 1512.0	$(\Lambda)(1.1+)$			(16-)		1574.8
	1312.0	(A)(14+)	¥		-		
(B)(13+)		(13+)		1250.5	(D)(15-)	¥	
(19.)	1004.6	(A)(19.)			(14-)		1083.5
(12+)	¥ 1004.0	(A)(12+)	¥		– (D)(13–)	,	
(B)(11+)		(11+)	,	786.9	- (12-)		694.62
(10+)	591.2	(A)(10+)			(D)(11-)		
(B)(9+)		$\frac{(9+)}{(\Lambda)(8+)}$	~,	425.5	(D)(9-)		
(8+)	290.5	- (7)+	¬↓_	189.8	(8)-	<u> </u>	287.21
(B)(7)+		(6,7,8)-	v		- (6,7,8)- (5,6,7)+	¬↓↓	

 $^{166}_{71}$ Lu₉₅

(D) Kπ=7-, α=1 (π 9/2[514])
 +(v 5/2[642]) band (2000Le25).

(E) ΔJ=2 band (2000Zh51).

(F) $K\pi=2-, \alpha=0$ (π 1/2[541]) -(ν 5/2[642]) band (2000Zh51). (G) $K\pi=2-$, $\alpha=1$ (π 1/2[541]) -(ν 5/2[642]) band (2000Zh51).

(25-)	4673.3	_						
				(24-)	4591.8	-		
						(23-)		4104.4
(8.2.)		(J+16)	3974.7					
(23-)	3892.5	-		(22-)	3819.3	_		
						_		
						(21-)		3375.9
(- · ·)		J+14	<u>ý 3285.7</u>	_				
(21-)	3173.0	-		(20 -)	3098.5			
						-		
(C)(20-) ¥		_				(10.)		0710 0
		I+12	2615.7			(19–)	Y	2710.2
(10.)	. 9499.6	5115	2010.1	_				
(19-)	2482.0	-		(18-)	2430.6	(F)(18-)		
(C)(18-)								
		_				(17-)	<u> </u>	2111.9
		J+10	<u>v 1991.3</u>	_				
(17-)	1856.9	_		(16-)	1834.4	(F)(16-)	v l	
(C)(16-)						(15-)	Į.	1589.0
		-	1400.4			_, _,		
(15)	1010.0	J+8	¥ 1433.4	- (14.)	1222 0	$(\mathbf{E})(1A_{-})$		
(15-)	1312.9	_		(14-)	1525.5	(1)(14-)		
(C)(14.)						(13-)		1145.8
<u>(C)(14-)</u> <u>y</u>		-	0.01.0					
(13_)	867 9	J+0	961.6	(12-)	907.0	(F)(12-)		
	007.0	_				(11-)	v	786.2
(C)(12-) ¥		_				(E)(10)		
(11-)	539.10	J+4	¥ 591.8		¥ 587.4	$-\frac{(F)(10-)}{(9-)}$	¥	505 2
(C)(10-)		-		(8-)	358.2	(3-)	¥	303.2
	341.10	J+2	¥ 336.0	(E)J+2	¥_/	(F)(8-)	ÿ	
<u>(C)(8)</u>		-1	196.0	(E)J		_		
(v, /, 8) – <u>V</u>		(5,6,7)+				_		

 $^{166}_{71}$ Lu₉₅

 $^{166}_{71}$ Lu₉₅
	Adopted			
(A)	(B)	(C)	(D)	(E)

 $^{166}_{71}Lu_{95}$

		Bands	for ¹⁶⁶ Lu		
(F)		(G)	(H)		(I) (17+)
			(16+)	328.0	628.0
				299.5	
			588.1	×	<u>v (15+)</u>
			(14+) v		557.4
			507.6	269.1	y (13+)
			(12+) v	238.1	458.6
			403.8	220.2	y (11+)
			(10+) v	183.2	339.8
			287.0	156.3 130.3	y (9+)
(24-)	_		(0+)	r	
772.5		(23-)			
(22-)					
	_	728.5			
720.8		y (21–)			
<u>(20–)</u>	_	665.7			
667.9		(19_)			
	280.1	<u> </u>			
<u>(18–)</u> v	/	597.7			
596.3		v (17–)			
(16.)	277.5	599.4			
(10-)	V	522.4			
510.5	265.4	<u>(15-)</u>			
<u>(14–) v</u>		442.4			
416.9	238.6	<u>v (13–)</u>			
<u>(12-)</u>	/	359.1			
$\begin{array}{c} 319.6\\ (10-) \end{array}$	198.2	281.0			
251.3 229.3 (E) $(8-)$	148.0	v (9−)			
(E)/ 162.4 (E)/					

Level Scheme

Intensities: relative photon branching from each level

Level Scheme (continued)

Intensities: relative photon branching from each level

_(17+)	2	114.2+x
_(16+)	1	785.9+x
_(15+)	1	486.2+x
(14+)	1	198.0+x
(13+)	9	28.8+x
(12+)	6	90.6+x
_(11+)	4	70.2+x
(15+)		799.5
(15-)		589.0
	//_1	574.8
(14+)	///_1	512.0
<u>J+8</u>	////_1	433.4
	/////_1	323.9
	/////_1	312.9
	///// <u>1</u>	250.5
	····· ///////_1	145.8
	////////	083.5
		004.6
	///////////////////////////////////////	07.0
	_/////////////////////////////////////	67.9
	-/////////////////////////////////////	86.9
	.//////////////////////////////////////	86.2
	////////6	94.62
	///////////////////////////////////////	91.8
	///////////////////////////////////////	91.2
	////////5	87.4
<u>_1+</u>	///////_5	43.7
	////////_5	39.10
<u>(9-)</u>	////////_5	05.2
1(+)	///////////////////////////////////////	34.7
	///////////////////////////////////////	26.58
	///////////////////////////////////////	25.5
	///////////////////////////////////////	99.1
	///////////////////////////////////////	58.2
	///////////////////////////////////////	41.2
	/////////////////////////////////////	26.0
	///////////////////////////////////////	03 20
	///////////////////////////////////////	90.5
	//////////////////////////////////////	87.21
		96.0
<u>(1)+</u> <u>+</u>	<u>ا اااال</u> ا	89.8
	Ş <u>3</u> [1	44.79
	Ś 1	35.9
	5 6	0.5
	<u>"" 5</u>	7.2
	<u>-</u> //////_4	3.0 2.12 mir
	<u></u>	4.37 1.41 mir
	0 للا	0.0 2.65 mir

 $^{166}_{71}$ Lu₉₅

Level Scheme (continued)

Intensities: relative photon branching from each level

(17+)		2114.2+x
(16+)		1785.9+x
(15+)		1486.2+x
(14+)		1198.0+x
(13+)		928.8+x
(12+)		690.6+x
(11+)		470.2+x
(10+)		286.9+x
(9+)		130.4+x
(25-)		4673.3
(23+)		4520.9
(24-)		4248.6
(23-)		4104.4
(23_)		3802 5
(21+)		- 3773.9
(20+) 		<u>3430.9</u> 3285.7
(19+)		- 3069.7
(18+)		- 2739.3
J+12		2615.7
(17+)		2416.8
(17–)		- 2111.9
J+10		1991.3
(15+)		: 1799.5
(16-)		1574.8
J+8		1433.4
(15-)		<u>1312.9</u>
<u>(8)</u> -		287.21
(7)+		189.8
(6,7,8)-	<u> </u>	144.79
$\frac{1+}{(5, 0, 7)}$		135.9
$\frac{(3,6,7)+}{(3+)}$	////	$\int \frac{83.50}{60.5}$ 92 ns
(1)-		57.2
0-		43.0 9.19
3(-)		34.37 1.41
6-		<u>1.41</u> <u>2.65</u>

.12 min .41 min

.65 min

¹⁶⁶Lu IT Decay (1.41 min) 1974De09

Parent ¹⁶⁶Lu: E=34.37 22; $J\pi$ =3(-); $T_{1/2}$ =1.41 min 10; %IT decay=42 5. ¹⁶⁶Lu-%IT decay: The 34.37-keV level decays 42% 5 by IT decay and 58% 5 by (ϵ + β ⁺).

¹⁶⁶Lu Levels

E(level) [†]	_Jπ [‡]	T _{1/2}	<u></u>		Comments
0.0 34.37 <i>22</i>	6 – 2 3 (–)	2.65 min <i>10</i> 1.41 min <i>10</i>) %IT=42 5;	%ε=58 5 (1974	4De09).
† From E [,] ‡ From A	γ. dopted Leve	ls.			
					γ(¹⁶⁶ Lu)
Εγ	E(level)	Mult.	α	I(γ+ce) [†]	Comments
34.37 22	34.37	(M3)	8.6×10 ⁴ 4	100	Eγ,Mult.: from Adopted Gammas. ce(L)/(γ+ce)=0.725 24; ce(M)/(γ+ce)=0.217 12; ce(N+)/(γ+ce)=0.058 4. ce(N)/(γ+ce)=0.052 4; ce(O)/(γ+ce)=0.0064 4; ce(P)/(γ+ce)=0.000118 7.

 † $\,$ For absolute intensity per 100 decays, multiply by 0.42 $\,$ 5.

¹⁶⁶Lu IT Decay (1.41 min) 1974De09 (continued)

¹⁶⁶HfεDecay 1974De09

 $Parent \ ^{166}Hf: \ E=0.0; \ J\pi=0+; \ T_{1/2}=6.77 \ min \ \ 30; \ Q(g.s.)=2160 \ \ 40; \ \%\epsilon+\%\beta^+ \ decay=100.$

¹⁶⁶Lu Levels

E(level) [†]	Jπ [‡]	[‡]			
0.0	6 –	2.65 min 10			
34.37 22	3 (–)	1.41 min 10			
43.0 4	0 -	2.12 min 10			
57.2 <i>3</i>	(1) –				
60.5 4	(3+)				
135.9 3	1 +				
341.2 4	1				
399.1 <i>3</i>	1 (+)				
434.7 4	1 (+)				
543.7 4	1 +				

 $^\dagger~$ From least-squares fit to Ey.

[‡] From Adopted Levels.

β^+,ϵ Data

Eε		E(level)	Ιβ+†	Ιε [†]	Log ft	$I(\epsilon+\beta^+)^\dagger$	Comments
(1620	40)	543.7	0.029 9	9.2 13	5.22 7	9.2 13	av E β =284 <i>18</i> ; ϵ K=0.8210 <i>5</i> ; ϵ L=0.1347 <i>3</i> ; ϵ M+=0.04113 <i>11</i> .
(1730	40)	434.7	0.034 12	5.7 14	5.49 11	5.7 14	av Eβ=332 18; εK=0.8192 10; εL=0.1339 4; εM+=0.04084 12.
(1760	40)	399.1	0.054 14	7.3 11	5.39 7	7.4 11	av Eβ=347 18; εK=0.8184 11; εL=0.1336 4; εM+=0.04074 12.
(1820	40)	341.2	0.034 10	3.5 8	5.75 11	3.5 8	av Eβ=373 18; εK=0.8168 14; εL=0.1330 4; εM+=0.04057 13.
(2020	40)	135.9	1.5 3	69 <i>6</i>	4.54 5	716	av Eβ=463 18; εK=0.8078 24; εL=0.1308 6; εM+=0.03984 17.
(2100‡	40)	57.2	< 0.098	< 3.4	> 5.9	< 3.5	av Eβ=497 18; εK=0.803 3; εL=0.1297 6; εM+=0.03951 19.
(2120‡	40)	43.0	< 0.10	< 3.4	> 5.9	< 3.5	av $E\beta = 504$ 18; $\epsilon K = 0.802$ 3; $\epsilon L = 0.1295$ 6; $\epsilon M + = 0.03944$ 19.

[†] Absolute intensity per 100 decays.

‡ Existence of this branch is questionable.

¹⁶⁶Hf & Decay 1974De09 (continued)

$\gamma(^{166}{\rm Lu})$

 $\gamma\gamma$ coin: (78.8 $\gamma)(Lu \; x-ray, \; 298.8\gamma, \; 407.9\gamma) \; semi-semi \; (1974De09).$

Iv normalization: Assuming-7% feeding to the five lowest-energy levels. Negligible feeding is expected to the 6-g.s., 3(-) 35 level and (3+) 61 level. Feeding to the 0-43 level and (1)-57 level would be first-forbidden and log ft>5.9 would imply $\%\epsilon+\%\beta^+<3.5$ to each level.

Eγ [†]	E(level)	I㇧	Mult.	α	I(γ+ce) ^{‡§}	Comments
(14.2)	57.2		[M1]	191	74	$ce(L)/(\gamma+ce)=0.772 \ 8; \ ce(M)/(\gamma+ce)=0.175 \ 4;$
						$ce(N+)/(\gamma+ce)=0.0477$ 10.
						$ce(N)/(\gamma+ce)=0.0413 \ 8; \ ce(O)/(\gamma+ce)=0.00610 \ 12;$ $ce(P)/(\gamma+ce)=0.000375 \ 8.$
						Eγ: from level-energy difference; transition not observed.
22.85 22	57.2		[E2]	3110 160	137	$ce(L)/(\gamma+ce)=0.76 \ 3; \ ce(M)/(\gamma+ce)=0.187 \ 13;$
						$ce(N+)/(\gamma+ce)=0.048$ 4.
						$ce(N)/(\gamma+ce)=0.043 \ 3; \ ce(O)/(\gamma+ce)=0.0051 \ 4; ce(P)/(\gamma+ce)=2.56\times10^{-6} \ 19.$
						Ey: the conversion line at E(ce)=20.74 22 was
						interpreted as the M-conversion line of an E2 transition.
(26.1)	60.5		[E1]	2.55	12.9	$ce(L)/(\gamma+ce)=0.557$ 5; $ce(M)/(\gamma+ce)=0.1283$ 21;
						$ce(N+)/(\gamma+ce)=0.0323 \ b.$ $ce(N)/(\gamma+ce)=0.0288 \ 5; ce(O)/(\gamma+ce)=0.00338 \ 6;$
						$ce(P)/(\gamma+ce)=0.0208$ 3, $ce(G)/(\gamma+ce)=0.00000$ 5, $ce(P)/(\gamma+ce)=9.74\times10^{-5}$ 17.
						Eγ: from level-energy difference; transition not observed.
34.37 22	34.37		(M3)	8.6×10^{4} 4		$\alpha(L)=6.2E4$ 3; $\alpha(M)=1.86E4$ 9; $\alpha(N+)=5.02E3$ 22.
						$\alpha(N)=4.46E3\ 20;\ \alpha(O)=549\ 24;\ \alpha(P)=10.1\ 4.$
						$E\gamma:$ conversion lines at $E(ce){=}25.05$ 22 and 32.44 22
						were interpreted as the L- and M-conversion
						lines of the isomeric M3 transition.
						L:M=36 20:20 12.
78.76 10	135.9	100 5	E1	0.651		$ \begin{array}{l} \alpha(\mathrm{K}) = 0.531 \ \ 8; \ \alpha(\mathrm{L}) = 0.0932 \ \ 14; \ \alpha(\mathrm{M}) = 0.0210 \ \ 3; \\ \alpha(\mathrm{N}+) = 0.00553 \ \ 8. \end{array} $
						$\alpha(N)=0.00485$ 7; $\alpha(O)=0.000652$ 10; $\alpha(P)=2.77\times10^{-5}$ 4.
						Mult.: from α(L)exp=0.13 4 (1974De09).
						$%I\gamma = 43.6$ 20 assuming recommended normalization.
93.05 <i>20</i>	135.9	8.0 10	(E1)	0.423 7		$ \begin{array}{l} \alpha(\mathrm{K}) = 0.347 \ \ 6; \ \alpha(\mathrm{L}) = 0.0588 \ \ 9; \ \alpha(\mathrm{M}) = 0.01323 \ \ 21; \\ \alpha(\mathrm{N}+) = 0.00349 \ \ 6. \end{array} $
						$\alpha(N)=0.00306\ 5;\ \alpha(O)=0.000416\ 7;\ \alpha(P)=1.85\times10^{-5}\ 3.$
X170 0 0						Mult.: from α(L)exp<1.3 (1974De09).
*170.0 6		1.1 4				
283 02 20	341 2	3.0 12				
298 77 20	434 7	3 2 10				
306.8 4	341.2	4.2 10				
338.98 15	399.1	2.9 14				
341.82 10	399.1	11.4 10				
355.1 5	399.1	2.6 13				
377.6 5	434.7	9.8 28				
407.91 10	543.7	11.0 21				
x430.74 <i>10</i>		3.2 7				
483.05 10	543.7	10.0 18				

[†] From 1974De09, except as noted.

[‡] From 1974De09.

 $\$ For absolute intensity per 100 decays, multiply by 0.436 $\it 24.$

 $^{x}~\gamma$ ray not placed in level scheme.

I(Lu K x-ray)=208 128 if Iγ(78.76γ)=100.

¹⁶⁶HfεDecay 1974De09 (continued)

¹³⁹La(³⁰Si,3nγ) 2000Le25

E=120 MeV; Tsukuba Ball consisting of 10 BGO Compton-suppressed HPGe detectors and one LEPS detector; measured E γ , $\gamma\gamma$ coin, DCO ratios (unenumerated).

¹⁶⁶Lu Levels

E(level) [†]	Jπ [‡]	E(level) [†]	$_{J\pi^{\ddagger}}$	E(level) [†]	$_{J\pi^{\ddagger}}$
0.0	6 - [§]	867.5 ^a	(13-)	2430 . 8 ^c	(18-)
83.5	(5,6,7)+§	907.2 ^c	(12-)	2482.6 ^a	(19–)
144.8	(6,7,8)– [§]	962.1 ^b	(13-)	2616.0 ^b	(19-)
189.8#	(6+)	1004.9@	(11+)	$2739.7^{@}$	(17+)
196.0 ^b	(7-)	1083.0&	(14-)	2799.6&	(20-)
287.0 ^{&}	(8-)	1250.8#	(12+)	3069.7 [#]	(18+)
290.3 [@]	(7+)	1312.5 ^a	(15-)	3098.9 ^c	(20-)
336.1 ^b	(9-)	1324.1 ^c	(14-)	3172.8 ^a 7	(21-)
340.8 ^a	(9-)	1433.9 ^b	(15-)	3431.1 [@] 7	(19+)
358.4 ^c	(8-)	1512.4@	(13+)	3499.1& 7	(22-)
$425.6^{\#}$	(8+)	1574.4&	(16-)	3773.9# 8	(20+)
426.2&	(10-)	1799.6#	(14+)	3820.6 ^c 9	(22-)
538.8 ^a	(11-)	1835.0 ^c	(16-)	3892.3ª 7	(23-)
587.6 ^C	(10-)	1856.3 ^a	(17-)	4167.3 [@] 8	(21+)
591.3 [@]	(9+)	1991.6 ^b	(17-)	4248.2 & 7	(24-)
592.1 ^b	(11-)	2097.0@	(15+)	4673.1 ^a 8	(25-)
694.3 ^{&}	(12-)	2151.5&	(18-)		
786.8#	(10+)	2417.0#	(16+)		

 † From least-squares fit to Ey, assigning equal weight to all data.

‡ Authors' values.

§ From Adopted Levels.

[#] (A): $K\pi=6+$, $\alpha=0$ (π 7/2[404])+(ν 5/2[642]) band.

[@] (B): $K\pi=6+$, $\alpha=1$ (π 7/2[404])+(ν 5/2[642]) band.

& (C): $K\pi$ =7-, α =0 (π 9/2[514])+(ν 5/2[642]) band. J values are based on energy systematics, the alignment additivity rule, and systematics of signature inversion for low-lying states for yrast bands in odd-odd Lu isotopes; they are one unit higher than suggested in an earlier (^{12}C , 5n γ) study (1992Ho02).

 a (D): K = 7-, $\alpha = 1$ (m 9/2[514])+(v 5/2[642]) band. See comment on signature partner band.

b (E): $\pi = -$, $\alpha = 1$ ($\pi 1/2[541]$)(v 5/2[642]) band. Note that this band assignment differs from that in Adopted Levels.

c (F): $\pi = -$, $\alpha = 0$ ($\pi 1/2[541]$)($\nu 5/2[642]$) band.

				γ(¹⁶⁶ Lu)				
Eγ	E(level)	Εγ	E(level)	Eγ	E(level)			
45	189.8	256.0	592.1	471.8	1433.9			
54.0	340.8	261.6	1512.4	491.4	1574.4			
61.3	144.8	261.9	1574.4	507.5	1512.4			
83.5	83.5	268.0	694.3	510.9	1835.0			
85.6	426.2	281.9	1856.3	543.8	1856.3			
100.5	290.3	287.2	1799.6	548.8	1799.6			
112.5	196.0	295.2	2151.5	557.9	1991.6			
	538.8	297.4	2097.0	577.1	2151.5			
135.3	425.6	301.0	591.3	584.6	2097.0			
139.0	426.2	315.5†‡	907.2	595.6	2430.8			
139.9	336.1	317.0	2799.6	617.4	2417.0			
142.2	287.0	319.6	907.2	624.4	2616.0			
155.5	694.3	320.0	2417.0	626.3	2482.6			
162.6	358.4	322.7	2739.7	642.7	2739.7			
165.7	591.3	326.3	3499.1	648.1	2799.6			
173.2	867.5	328.7	867.5	652.7	3069.7			
195.5	786.8	330.0	3069.7	668.1	3098.9			
196.1	340.8	331.1	2482.6	690.2	3172.8			
198.0	538.8	361.2	786.8	691.4	3431.1			
203.5	287.0	361.4	3431.1	699.5	3499.1			
215.5	1083.0	370.0	962.1	704.2	3773.9			
218.1	1004.9	373.2	3172.8	719.5	3892.3			
229.3	587.6	388.7	1083.0	721.7	3820.6			
229.5	1312.5	413.6	1004.9	736.2	4167.3			
235.8	425.6	416.9	1324.1	749.1	4248.2			
245.9	1250.8	445.0	1312.5	780.8	4673.1			
251.3	587.6	464.0	1250.8					

¹³⁹La(³⁰Si,3nγ) <u>2000Le25 (continued)</u>

 † From level-energy difference; E γ =281.1 in figure 2 of 2000Le25 appears to be erroneous. Consequently, transition is shown as tentative. [‡] Placement of transition in the level scheme is uncertain.

¹³⁹La(³⁰Si,3nγ) 2000Le25 (continued)

(B) $K\pi=6+$, $\alpha=1$ (π 7/2[404]) +(ν 5/2[642]) band. (C) $K\pi=7-$, $\alpha=0$ (π 9/2[514]) +(ν 5/2[642]) band.

				(24-)	4248.2
	(21+)		4167.3	_	
(20)	9779 0				
(20+)	3773.9				
				(22_)	3/00 1
	(19+)	, in the second s	3431 1		9455.1
	(10+)		0101.1	-	
				(D)(21-) y	
(18.)	2060 7 (1)(19.)				
(18+)	5009.7 (A)(10+)	¥		-	
				(20-)	2799.6
(B)(17+)	(17+)	V	2739.7		
				-	
				(D)(19–) ¥	
(16+)	2417.0 (A)(16+)	<u>¥</u>		_	
				(18_)	2151 5
(B)(15+)	(15+)	Į.	2097.0	(10-)	2131.5
				-	
				(D)(17)	
(14+)	1799.6 (Δ)(14+)	J.		(D)(17-) <u>v</u>	
(11)	(R)(14+)	¥		-	
				(10)	1574.4
(B)(13+)	(13+)	, in the second s	1512 4	(18-)	¥ 1574.4
(B)(10+)	(10+)	¥	1012.1	-	
				(D)(15-)	
(12+)	1250.8 (A)(12+)	v			
				(14)	1082.0
(D)(11.)	(11.)		1004.0	(14-)	1083.0
<u>(B)(11+)</u> <u><u>v</u></u>	(11+)	Y	1004.9	-	
				(D)(12)	
(1.0.)	#00.0 (1)(10.)			<u>(D)(13-)</u>	
(10+)	786.8 (A)(10+)	¥		-	
				(12-)	v 694.3
(B)(9+)	(9+)	, v	591 3		
(=)(0·)	(01)	Y	001.0	(D)(11-)	
				(10)	496.9
(8+)	425.6 (A)(8+)	¥		(D)(0,)	¥ 426.2
(B)(7)			000.0	(D)(A-)	
(B)(/+) ¥	(7+)	¥	290.3	(8–)	¥ 287.0
(0+)	(A)(6+)			- (6.7.8)	
(6,7,8)-				(5, 6, 7) · · · · · · · · · · · · · · · · · ·	
				(0,0,/)+ ¥	

 $^{166}_{71}$ Lu₉₅

¹³⁹La(³⁰Si,3nγ) 2000Le25 (continued)

 $^{166}_{71}$ Lu₉₅

 $^{166}_{71}Lu_{95}$

444

Level Scheme

 $^{166}_{71} Lu_{95} - 23$

 $^{139}La(^{30}Si, 3n\gamma)$

2000Le25 (continued)

 $^{166}_{71} Lu_{95} - 23$

¹⁵²Sm(¹⁹F,5nγ) 2000Zh51

¹⁶⁶Lu Levels

 $E=97\ MeV;\ array of ten\ HPGe\ detectors,\ each\ equipped\ with\ a\ BGO\ Compton-suppression\ shield;\ measured\ E\gamma,\gamma\gamma\ coin,\ unenumerated\ DCO\ ratios\ (\theta=38^\circ,\ 90^\circ,\ 144^\circ,\ for\ some\ transitions).$

E(level) [†]	Jπ‡	E(level) [†]	_Jπ [‡]	E(level) [†]	$J\pi^{\ddagger}$
$0 . 0 + x^{\# k}$	(7)+	$690.4 + v^{d}$	12+	2070 . $1+u^{b}$	18-
0.0+y@j	(8–)	764.1+z ^a	12+	$2\ 1\ 1\ 4\ .\ 0+v\ ^{e}$	17+
0.0+z ^{ai}	(6+)	$787.5 + u^{c}$	13-	2189 . $6 + y^{\&}$	19-
0.0+u ^{bh}	(8) –	793.1+y@	14-	$2 2 2 2 . 2 + x^{\#}$	17+
0.0+v?d	(8+)	813.1+x [§]	12+	2350. 2 + u ^c	19-
53.8+y&	9 -	928.6+v ^e	13+	$2\ 4\ 1\ 5\ .\ 6+z\ a$	18+
100. $2 + x$ §	8+	964.7+u ^b	14-	$2506.6 + y^{@}$	20-
$1\ 3\ 0\ .\ 3+v\ e$	9+	1022.0+y	15-	2544.7+x§	18+
138.4+y@	10-	$1058.4 + x^{\#}$	13+	2737.7+ub	20-
139 . $3 + z^{a}$	8+	1197.8+v ^d	14+	$2873.6+x^{\#}$	19+
$1\ 4\ 7\ .\ 6+u\ ^{c}$	9 -	1230.0+u ^c	15-	2877.9+y&	21-
$2\ 2\ 9\ .\ 7+u^{b}$	10-	1235.1+z ^a	14+	3015.9+u ^c	21-
$2\ 3\ 5$. 0 + x $^{\#}$	9+	$1283.3 + y^{@}$	16-	3085 . $6 + z^{a}$	20+
$250.0+y^{\&}$	11-	1319. $6 + x$ §	14+	3204.9+y@	22-
286.7+vd	10+	$1474.9+u^{b}$	16-	3 2 3 4 . 4 + x §	20+
394 . 7 + z a	10+	1486.0+v ^e	15+	3458. 2 + u b	22-
400 . $4 + x$ §	10+	1564.9+y&	17-	3576.6 + x?	21+
$405.2 + y^{@}$	12-	$1606.4 + x^{\#}$	15+	3744.4+u ^c	23-
428 . $3+u^{c}$	11-	$1752.4 + u^{c}$	17-	3774.6+z? ^a	22+
470 . $4 + v^{e}$	11+	1785.7+v ^d	16 +	3923.7+y? [@]	24 - 9
548 . $8 + u^{b}$	12-	1792.2+z ^a	16+	3953.4+x?§	22+f
$578.1 + y^{\&}$	13-	1859.4+y@	18-	$4230.7+u^{b}$	24-
$595.4 + x^{\#}$	11+	1902.7+x§	16+	4323 . $6 + x$? #	23+

 $^\dagger\,$ From least-squares fit to Ey, assigning equal weight to all Ey data.

- [‡] Authors' values.
- § (A): $K\pi=6+$, $\alpha=0$ (π 7/2[404])+(ν 5/2[642]) band. J values are based on level energy systematics for similar bands in neighboring odd-odd nuclei and checked by the alignment additivity rule; they are one unit higher than suggested in independent ($^{12}C, 5n\gamma$) (1992Ho02) and ($^{30}Si, 3n\gamma$) (2000Le25) studies.
- # (B): $K\pi = 6+$, $\alpha = 1$ (π 7/2[404])+(ν 5/2[642]) band. See comment on signature partner band.
- [@] (C): $K\pi=7-$, $\alpha=0$ (π 9/2[514])+(ν 5/2[642]) band.
- & (D): $K\pi=7-$, $\alpha=1$ (π 9/2[514])+(ν 5/2[642]) band.
- a (E): $K\pi=2+$, $\alpha=0$ (π 1/2[411])-(ν 5/2[642]) band. Assigned as $\pi=-$, $\alpha=1$ (π 1/2[541])(ν 5/2[642]) band (with J values one unit higher than here) in two independent (HI,xn γ) studies (1992Ho02 and 2000Le25). Present assignment supported by similarity of level structure to that for $\alpha=0$ band in ¹⁶²Tm with same configuration assignment.
- b (F): $K\pi=2-$, $\alpha=0$ (π 1/2[541])-(ν 5/2[642]) band. Configuration assignment supported by similarity of band structure to that for bands in ¹⁶²Tm and ¹⁶⁴Tm with the same configuration assignment (large signature splitting, low-spin signature inversion, delayed BC crossing and small B(M1) to B(E2) in-band cascade to crossover transition probability ratios) (2000Zh51).
- C (G): Kπ=2-, α=1 (π 1/2[541])-(v 5/2[642]) band. See comment on signature partner of this band. α=1 sequence is reported in this reaction alone.
- d (H): $K\pi$ =5+, α =0 (π 5/2[402])+(ν 5/2[642]) band. Configuration assignment supported by similarity of band structure to that for a ¹⁶²Tm band with the same configuration assignment. Very weakly populated, strongly coupled band reported in this reaction alone.
- e (I): K = 5+, α = 1 (π 5/2[402])+(v 5/2[642]) band. See comment on signature partner of this band.
- f Not adopted; tentative deexciting 719 γ differs from adopted 736.2 γ deexciting the J=22 band member.
- g Not adopted; tentative deexciting 718.8 γ differs from adopted 749.1 γ deexciting the J=24 band member.
- h From Adopted Levels, u=358.2.
- i From Adopted Levels, z=196.0.
- j From Adopted Levels, y=287.2.
- k From Adopted Levels, x=189.8.

γ(¹⁶⁶Lu)

Eγ	E(level)
53.6	53.8+y
84.7	138.4+y
100.1	100.2 + x
111.7	250.0+y

) 110	1,011) 20002	anor (continue
				γ(¹⁶⁶ Lu) (co	ntinued)
Εγ	E(level)	Εγ	E(level)	Εγ	E(level)
130.3§	$1\ 3\ 0$. $3 + v$	286.7	$1\ 6\ 0\ 6$. $4+x$	543.0	1564.9 + y
134.8	$2\ 3\ 5\ .\ 0+x$	287.0 [§]	286 . $7+v$	548.1	$1\ 6\ 0\ 6$. $4+x$
138.5	138 . $4 + y$	288.0	$1\;4\;8\;6\;.\;0+v$	557.1	1792.2 + z
139.3	$1 \ 3 \ 9 \ . \ 3 + z$	294.5	1859.4 + y	557.4	$1\;4\;8\;6\;.\;\;0+v$
148.0 [§]	1 4 7 . 6 + u	296.2	$1 \ 9 \ 0 \ 2$. $7 + x$	576.0	1859.4 + y
154.7	$4\ 0\ 5\ .\ 2+y$	299.5	1785 . $7 + v$	583.2	$1 \ 9 \ 0 \ 2$. 7 + x
156.3	$2\ 8\ 6$. $7+v$	300.2	$4\ 0\ 0$. $4 + x$	588.1	1785 . $7 + v$
165.3	$4\ 0\ 0$. $4 + x$	317.1	$2\ 5\ 0\ 6$. $6+y$	595.2	$2\ 0\ 7\ 0$. 1 + u
172.8	578.1 + y	319.2	548 . $8+u$	597.7	$2\ 3\ 5\ 0$. $2+u$
183.2	$4\ 7\ 0$. $4+v$	327.1	$3204 \cdot 9 + y$	615.8	$2\ 2\ 2\ 2\ 2$. 2 + x
194.8	595.4 + x	328.0	578.1 + y	623.4	$2\ 4\ 1\ 5\ .\ 6+z$
196.4	250.0+y		$2\ 1\ 1\ 4\ .\ 0+v$	625.0	$2\ 1\ 8\ 9$. $6+y$
198.2	428 . $3+u$	330.1	$2\ 1\ 8\ 9$. $6+y$	628.0	$2\ 1\ 1\ 4\ .\ 0+v$
214.7	793.1+y	339.8	$4\ 7\ 0$. $4 + v$	642.0	$2\ 5\ 4\ 4$. 7 + x
217.6	8 1 3 . 1 + x	359.1	787.5+u	647.1	$2\ 5\ 0\ 6$. $6 + y$
220.2	$6\ 9\ 0$. $4+v$	360.5	595.4 + x	651.4	$2\ 8\ 7\ 3$. $6+x$
228.8	$1\ 0\ 2\ 2$. $0 + y$	369.4	764.1+z	665.7	$3\ 0\ 1\ 5\ .\ 9+u$
229.3	$2\ 2\ 9$. 7 + u	371.4	2877.9 + y	667.6	2737.7+u
235.1	$2\ 3\ 5\ .\ 0+x$	388.0	793.1 + y	670.0	3085 . $6+z$
238.1	928 . $6+v$	403.8	690.4+v	688.3	$2\ 8\ 7\ 7$. $9+y$
238.6	787.5+u	412.7	8 1 3 . 1 + x	689 [§]	3774.6 + z?
245.2	$1\ 0\ 5\ 8$. 4 + x	416.1	964.7+u	689.7	$3\ 2\ 3\ 4$. 4 + x
255.4	394.7+z	442.4	1230. $0+u$	698.1	3204.9 + y
261.1	$1\ 3\ 1\ 9$. $6+x$	444.0	1022.0+y	703.0 [§]	3576.6 + x?
261.3	$1\ 2\ 8\ 3$. $3+y$	458.6	928.6+v	718.8 [†] §	3923.7 + y?
265.4	$1\ 2\ 3\ 0$. $0 + u$	463.0	$1\ 0\ 5\ 8$. $4+x$	719 [‡] §	3953.4 + x?
267.0	405.2 + y	471.0	$1\ 2\ 3\ 5$. $1+z$	720.5	3458 . 2 + u
269.1	$1\ 1\ 9\ 7$. $8 + v$	490.1	1283.3 + y	728.5	3744.4+u
277.5	$1\ 7\ 5\ 2$. $4+u$	506.6	$1\ 3\ 1\ 9$. $6+x$	747§	$4\ 3\ 2\ 3\ .\ 6+x\ ?$
280.1	$2\ 3\ 5\ 0$. 2 + u	507.6	$1\ 1\ 9\ 7$. $8+v$	772.5	4230. 7 + u
281.0	428.3+u	510.2	1474.9+u		
281.4	1564.9 + y	522.4	1752.4+u	1	

152 Sm $(^{19}$ F $, 5n\gamma)$	2000Zh51	(continued)
		(continucu)

[†] Not adopted; see comment on 3924+y level.

Not adopted; see comment on 3953+x level.
 § Placement of transition in the level scheme is uncertain.

 $^{166}_{71}$ Lu₉₅

(I) $K\pi=5+$, $\alpha=1$ (π 5/2[402]) +(ν 5/2[642]) band.

 $^{166}_{71}Lu_{95}$

 $^{166}_{71}Lu_{95}$

Level Scheme

 ${}^{166}_{71}Lu_{95}$

Level Scheme (continued)

24- 4230.7-a 24. 3423.7-a 24. 3423.7-a 23. 744.4-a 24. 3475.4-x 25. 3458.2-a 26. 3458.2-a 27. 3458.2-a 28. 3458.2-a 29. 301.5.4-a 19. 301.5.4-a 19.<	23+		4323.6+x
342 3923.7xy. 23 3744.4u 24. 376.61 x. 32 368.7 x. 22. 3015.9 x. 21. 3015.9 x. 22. 2873.6 x. 20. 2737.7 - u. 20. 2737.7 - u. 20. 293.6 x. 10. 295.2 x.u 10. 295.0 2.u. 10. 295.0 2.u. 10. 196.7 x. 10. 197.7 x. 10. 1	24-		4230.7+u
24 3428. 7+9. 23 3744. 4-9. 24 3576.6-x. 22 3124. 5+y. 24 3126. 5+y. 25 3124. 5+y. 21 3126. 5+y. 22 3124. 5+y. 24 3126. 5+y. 25 3126. 5+y. 26 257. 5+y. 27 21 28 29 29 2130. 5+y. 20 2130. 5+y. 20 2130. 5+y. 20 2130. 5+y. 20 2130. 5+y. 21 214. 20 2130. 5+y. 21 214. 22 214. 23 214. 24 214. 25 214. 26 2130. 5+y. 27 214. 28 214. 29 2130. 5+y. 214. 214. 215. 12 214. 216. 2130. 5+y. 217. 214. 218. 14 2130. 5+y. 219. 15+y. 214. 214. 214. 215. 15+y. 214. 216. 214. 217. 15+y.<			
23 3744.4+a 21. 3576.6+x 22. 3458.2+a 22. 3458.2+a 22. 3458.2+a 22. 3458.2+a 23. 3015.0+x 24. 3015.0+x 25. 3015.0+x 26. 2737.7+a 26. 2506.6+y 19. 2506.2+y 19. 2506.2+y 19. 2506.2+y 19. 2506.2+y 19. 2507.2+a 19. 2507.2+y	24-		3923.7+v
21 3744.4-u 21. 3756.4:x. 22. 3458.2-u 22. 3015.9-u 19. 2873.6-x 20. 2737.7-u 20. 2737.7-u 20. 2506.6-y 19. 2506.6-y			
21- 376.0+x 22- 3456.2+u 22- 3204.9+y 21- 3015.9+u 19- 2473.6+x 20- 2737.7+u 20- 2356.2+u 19- 2456.2+u 19-	23-		3744.4+u
22- 3456.2-u 22- 3456.2-u 21- 3015.0-u 19- 2473.6-x 20- 2366.6-y 21- 2066.6-y 20- 2366.2-u 19- 2366.2-u 10- 2366.2-u	21+		3576 6+v
22- 3388 / 40 22- 3015.9+u 19- 2873.6+x 20- 2377.7+u 20- 2396.6+y 19- 2396.6+y 19- 2180.6+y 18- 1002.7+x 18- 1082.7+x 19- 185.7+y 19- 185.7+y 11- 1785.7+y 12- 185.4+x 13- 1785.7+y 11- 1785.7+y 12- 184.8+u 11- 1785.7+y 12- 184.9+u 13- 1785.7+y 14- 1785.7+y 12- 184.9+u 13- 184.9+u			3370.0+X
22- 3204.9-v 21- 3015.9-u 19- 2673.6-x 20- 2308.6-v 19- 2350.2-u 19- 2350.2-u 19- 2100.6-v 19- 200.1-u 10- 200.1-u 10- 100.4-v 11- 100.4-v 12- 100.4-v 12- 100.4-v 13- 100.4-v 14- 100.4-v 12- 100.4-v 13- 100.4-v 14- 100.4-v 10- 100.4-v 10- 100.4-v 10- 100.4-v 10- 100.4-v 10- 100.2-v 10- 100.2-v 10- 100.2-v 10- 100.2-v 10- 100.2-v 10- 100.2-v	_22-		3438.2+U
22- 3204.9-y 21- 3015.9-u 19- 2737.7-u 20- 2506.6-y 19- 2506.6-y 19- 2506.2-u 10- 2506.2-u 11- 100.2-u 11- 100.2-u 11- 100.2-u 11- 100.2-u 11- 100.2-u 12- 100.2-u 13- 100.2-u 10- 100.2-u 10- 100.2-u 10- 100.2-u 10- 100.2-u 10- 100.2-u 10- 100.2-u <tr< td=""><td></td><td></td><td></td></tr<>			
21- 3015.9+u 19- 273.6+x 20- 2737.7+u 20- 2506.6+y 19- 2506.6+y 19- 2506.2+u 19- 2507.2+u 18- 2070.1+u 18- 1902.7+x 19- 2507.4+u 19- 1004.4+u 19- 1004.4+u 19- 1004.4+u 190.270.0+u 1004.4+	22-		- 3204.9+y
21- 3015 3+0 19- 2873.6+x 20- 2737.7+u 20- 2350.6+y 19- 2350.2+u 19- 2350.2+u 19- 2189.6+y 18- 2070.1+u 16- 1785.7+x 16- 1785.7+x 16- 1785.7+x 11- 555.4+x 12- 556.4+x 11- 556.4+x 12- 1785.7+x 16- 1785.7+x 16- 1785.7+x 11- 190.2.7+x 12- 198.6+x 11- 198.6+x 12- 198.6+x 13- 198.6+x 13- 198.7+x 14- 198.7+x 15- 198.6+x 12- 198.6+x 13- 198.6+x 13- 198.6+x 14- 198.6+x 15- 198.6+x 16- 198.7+x 17- 198.6+x 18- 199.7+x 19- 199.7+x 19- 199.7+x 19- 199.7+x 19- 199.7+x 19- 199.7+x <td< td=""><td>0.1</td><td></td><td>- 2015 0</td></td<>	0.1		- 2015 0
19- 2873.6+x 20- 2737.7+u 20- 2506.6+y 19- 2350.2+u 19- 2188.6+y 18- 2070.1+u 16- 1785.7+y 16- 1785.7+y 17- 506.4+x 18- 506.4+x 19- 506.4+x 19- 506.4+x 11- 1785.7+y 12- 506.4+x 13- 1785.7+y 14- 1785.7+y 12- 506.4+x 13- 18.4+y 14- 19.4 14- 19.4 15- 19.4 10- 19.4 11- 19.4 12- 19.4 13- 19.4 13- 19.4 13- 19.4 13- 19.4 10- 19.4 10- 19.4 <td>21-</td> <td></td> <td>3015.9+u</td>	21-		3015.9+u
20- 237.7+u 20- 2506.6+y 19- 2350.2+u 19- 2350.2+u 18- 2070.1+u 16+ 1902.7+x 16+ 1902.7+x 16+ 1785.7+y 12+ 890.4+y 13- 758.1+z 12- 758.1+z 13- 758.1+z 12- 140.4+x 13- 15.2+z 10- 140.4+x 10- 140.4+x 10- 140.4+x 10- 140.4+x 10- 140.4+x 11- 140.4+x 10- 140.4+x 11-	19+		2873.6+x
20- 2506.6+y 19- 2350.2+u 19- 2189.6+y 18- 2070.1+u 16- 1902.7+x 16- 1785.7+x 16- 1785.7+x 178.1+y 596.4+x 178.1+y 596.4+x 178.1+y 596.4+x 178.1+y 178.1+x 18- 1785.7+x 19- 18- 11- 192.7+x 10- 192.7+x 10- 194.4+x 11- 194.4+x 12- 194.4+x 130.1+x 194.1+x 10- 194.1+x 10- 194.1+x 10- 194.1+x 10- 194.1+x 10- 194.1+x 11- 194.1+x	20-		2737.7+u
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20-		2506.6+y
19^- 230.4±u 19^- 2188.6±y 18^- 2070.1±u 16^+ 1902.7±x 16^+ 1902.7±x 16^+ 1785.7±v 12^+ 680.4±v 11^+ 305.4±x 11^+ 305.4±x 11^+ 305.4±x 11^+ 304.4±v 11^+ 304.7±z 10^+ 0.4±x 10^+ 286.7±v 10^+ 286.7±v 10^+ 10.4±v 11^+ 11.4±v 10^+ 10.4±v	10		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19-		2350.2+u
18- 2070.1+u 16+ 1902.7+x 16+ 1785.7+v 1785.7+v 680.4+v 595.4+x 595.4+x 178.1+v 548.8+u 11+ 548.8+u 12- 470.4+v 11- 548.8+u 10+ 400.4+x 10+ 405.2+y 10+ 405.2+y 10+ 250.0+y 10- 250.0+y 235.0+x 250.0+y 235.0+x 138.4+y 10- 100.2+x 9- 138.4+y 10- 100.2+x 33.8+y 0.0+x 100-10 0.0+x 100-10 0.0+x	19-		- 2189.6+y
16+ 1902.7+x 16+ 1785.7+v 12+ 1785.7+v 11+ 595.4+x 12- 578.1+y 12- 578.1+y 12- 548.8+u 11+ 14 10+ 104 10+ 104 10+ 104 10+ 11- 9- 8+ 10- 104 11- 125.0+x 12- 11- 9- 8+ 10- 104 10- 104 10- 104 10- 104 10- 11- 9- 8+ 10- 104 10- 104 10- 104 10- 104 10- 104 10- 104 10- 104 10- 104 10- 104 10- 104 10- 104 10- 104 10- 104 10- 104 10- 104 10- 104 10- 104 10- 104	18-		2070.1+u
10- 1902.7+x 16+ 1785.7+v 12+ 1785.7+v 11+ 595.4+x 12- 578.1+y 11+ 578.1+y 12- 578.1+y 11+ 578.1+y 12- 578.1+y 10+ 10+ 10+ 10- 10+ 10- 10+ 10- 10+ 10- 10+ 286.7+v 10+ 250.0+y 250.0+y 235.0+x 229.7+u 138.4+y 139.3+z 139.3+z 138.3+y 100.2+x 9- 10- 9- 10- 10- 0.0+u 100.2+x 0.0+u 100.2+x 0.0+u 100.2+x 0.0+u	10		1008 7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10+		1902.7+X
$\begin{array}{c} 11+\\ 11+\\ 13-\\ 12-\\ 11+\\ 11-\\ 12-\\ 10+\\ 10+\\ 10+\\ 10+\\ 10+\\ 10+\\ 10+\\ 10+$	10+		$\frac{1785.7+v}{690.4+v}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11+		595.4 + x
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13-		578.1+y
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12-		$470.4 \pm v$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11-		428 3+11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12-		405.2+y
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10+		400.4+x
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10+		394.7+z
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10+		286.7+v
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11-		250.0+y
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9+		235.0+x
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10-		229.7+u
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9-		<u>147.6+u</u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8+		139.3+z
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10-		138.4+y
$\begin{array}{c c} 0 + & & & & & & & & & & & & & & & & & &$	9+		130.3+V
$\begin{array}{c c} 3 \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ & & \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline$	<u>8+</u>		100.2+x
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9-		0.0+y
	(8)_		/ 0.0+v
	(6+)]; ``	$\frac{0.0+u}{0.0+z}$
	(8-)	<u>Λ ૨ ૭ ↓ ૨ μ−τ</u> Σ ₂ Ω	0.0+v
	(7)+		// 0.0+x

 $^{166}_{71}$ Lu₉₅

¹⁵⁹Tb(¹²C,5nγ) 1992Ho02

E=75-90 MeV; two Ge detectors with BGO Compton suppression and a high-resolution planar detector; measured E γ , I γ and $\gamma\gamma$ coin; statistical precision was inadequate to enable extraction of $\gamma(\theta)$ information.

¹⁶⁶Lu Levels

E(level) [†]	Jπ‡	T _{1/2}	Comments
0 0	6_		Iz: from Adopted Lovels
83.50 10	(6+)	92 ns 7	$T_{1/2}$: from centroid shift between 83.5 γ and the prompt 85.5 γ . Other: 91 ns <i>8</i> from slope of 83.5 γ time spectrum.
144.79 14	(6-,7-)		
189.8 [§] 10	(6+)		
287.21 [@] 14	(7-)		
290.5 # 11	(7+)		
303.29? 24			
341.10& 16	(8-)		
425.5 [§] 11	(8+)		
426.59 [@] 24	(9-)		
539.12 ^{&} 24	(10-)		
591.2 [#] 11	(9+)		
694.6 [@] 3	(11-)		
786.9§ 11	(10+)		
867.9 ^{&} 3	(12-)		
1004.6# 11	(11+)		
1083.5 [@] 3	(13-)		
1250.5 [§] <i>11</i>	(12+)		
1313.0 ^{&} 3	(14-)		
1512.0 [#] 11	(13+)		
1574.8 [@] 3	(15-)		
1799.6 [§] 11	(14+)		
1856.9& 4	(16-)		
2096.3 [#] 11	(15+)		
2152.2 [@] 4	(17-)		
2416.9 [§] 11	(16+)		
2482.6 & 4	(18–)		
2739.1# 12	(17+)		
$2800.0^{@}$ 4	(19–)		
3069.8 [§] 12	(18+)		
3203.6& 11	(20-)		E(level): not adopted; γ deexciting the J=20 member of this band was missed by 1992Ho02 and the 721 γ placed from this level probably deexcites a higher-energy band member.
3430.1 [#] 16	(19+)		
3499.5 [@] 5	(21-)		
$0 \cdot 0 + x^{b}$	(7-)		E(level): x=196 from Adopted Levels, where this level is seen to decay to 83.5 level via a 112.5γ.
$1\ 3\ 9\ .\ 9\ 0\ +\ x\ b\ \ 2\ 0$	(9–)		
$162.4 + x^{a}$ 3	(8-)		
391.7+x ^a 4	(10-)		
395.7+x ^b 3	(11-)		
711.3+x ^a 3	(12-)		
$765.5 + x^b 4$	(13-)		
$1\ 1\ 2\ 8\ .\ 2+x\ ^{a}$ 5	(14-)		
$1\ 2\ 3\ 7\ .\ 3+x\ b\ 5$	(15-)		
$1638.7 + x^{a}$ 5	(16-)		
$1\ 7\ 9\ 5\ .\ 2+x\ b\ 6$	(17–)		
$2\ 2\ 3\ 5\ .\ 0+x\ a\ 6$	(18–)		
$2\ 4\ 1\ 9\ .\ 6+x\ ^b$ 7	(19–)		
2902 . 9 + x ^a 7	(20-)		
$3623.7 + x^{a}$ 7	(22-)		
 [†] From least-squ [‡] Authors' values § (A): Kπ=6+. α= 	1ares fit to E s. 0 (π 7/2[404]]	γ.)+(v 5/2[642]) h	and.

- # (B): $K\pi=6+$, $\alpha=0$ (π 7/2[404])+(ν 5/2[642]) band.
- @ (C): $K\pi$ =7-, α =1 (π 9/2[514])+(ν 5/2[642]) band. Note that $J\pi$ values assigned by 1992Ho02 for this configuration are one unit lower than those in Adopted Levels.
- & (D): K π =7-, α =0 (π 9/2[514])+(ν 5/2[642]) band. See comment on signature partner band.

a (E): $\pi = -$, $\alpha = 0$ ($\pi 1/2[541]$)($\nu 5/2[642]$) band.

b (F): π =-, α =1 (π 1/2[541])(ν 5/2[642]) band. Note that this band assignment differs from that in Adopted Levels.

¹⁵⁹<u>Tb(¹²C,5nγ)</u> 1992Ho02 (continued)

 $\gamma(^{166}Lu)$

$E\gamma^{\dagger}$	E(level)	Iγ [‡]	Mult.§	α	Comments
45	189.8		E1	0.566	
54.0 3	341.10		[M1(+E2)]	24 21	γ not observed but its existence is implied by $\gamma\gamma$ coin data and presence of 139γ crossover transition; possibly highly converted.
61.3 1	144.79	47.9	E1	0.240	
83.5 1	83.50	64.0	E1	0.560	
85.5 2	426.59	8.1	[M1(+E2)]	6.0 <i>3</i>	
100.8 2	290.5	8.9	[M1+E2]	3.43 18	
112.5 1	539.12	13.1	[M1(+E2)]	2.38 25	
×115#		4.6			
135.0 2	425.5	8.6	[M1 (+E2)]	1.33 24	
139@	426.59	8.7	[E2]	0.982	1γ : 8.7 for $139\gamma + 139.9\gamma$.
139.9 2	139.90 + x	8.7	[EZ]	0.950	17: 8.7 for 1397+139.97.
142.5 2	287.21	1.4	MI(+E2)	1.12 23	
155.5 <i>I</i> 158.5 [@] 2	303 202	10.9	[MI(+E2)]	0.83 20	
×160 7# 3	303.23.	5.0	(E1)	0.1040	
162.4@ 3	162.4 + x	2.7	[M1(+E2)]	0.74 19	
165.6 2	591.2	6.6	[M1(+E2)]	0.70 18	
×172#		3.7			
173.3 1	867.9	13.9	[M1(+E2)]	0.61 10	
^x 181.3 [#] 3		4.5			
195.7 2	786.9	6.6	[M1(+E2)]	0.42 13	
196.3 1	341.10	10.0	M1,E2	0.42 13	
198.0 <i>3</i>	539.12	< 3.9	[E2]	0.287	Iy: 3.9 for multiplet.
203.7 1	287.21	<11.7	(E1)		Iγ,Mult.: Iγ=11.7 for multiplet; second component not identified by 1992Ho02. Authors assign mult=E1 based on intensity balance, but this may not be reliable because the 2044 is a multiplet
215.6 1	1083.5	10.5	[M1(+E2)]	0.32 11	sou is a mattiplet.
217.7 2	1004.6	5.5	[M1(+E2)]	0.31 10	
229.3 2	391.7 + x	5.6	[0.01 10	
229.5 2	1313.0	7.9			
235.7 2	425.5	6.2			
245.9 2	1250.5	7.2			
251.3 [@] 3	$3 \ 9 \ 1$. 7 + x				
255.8 <i>2</i>	395.7 + x	8.2			
261.5 3	1512.0	4.0			
261.9 2	1574.8	7.5			
268.1 2	694.6	5.7			
281.9 2	1856.9	7.9			
287.73	1/99.0	3.5			
293.3 2 997 1 [@] ?	2096 3	э.1			
300 8 2	591 2	72			
317.2 3	2800.0	3.6			
319.6 2	711.3+x	6.9			
328.8 2	867.9	6.7			
330.2 <i>3</i>	2482.6	4.0			
361.4 2	786.9	8.0			
369.8 2	765.5 + x	6.6			
388.7 <i>2</i>	1083.5	8.8			
413.4 2	1004.6	8.9			
416.9 2	1128.2+x	7.7			
445.3 2	1313.0	9.8			
403.5 2	1250.5	7.3			
4/1.8 3	1231.3+X	4.3			
401.0 2 507 1 2	1512 0	3.0 9.2			
510 5 2	1638 7+v	2.0 7 0			
544.1 2	1856.9	6.4			
549.1 3	1799.6	4.5			
557.9 <i>3</i>	$1\ 7\ 9\ 5\ .\ 2+x$	2.5			

¹⁵⁹Tb(¹²C,5nγ) 1992Ho02 (continued)

$\gamma(^{166}Lu)$ (continued)

$E\gamma^{\dagger}$	E(level)	Iγ [‡]	$_{\rm E\gamma^{\dagger}}$	E(level)	<u>Ιγ[‡]</u>	$\underline{} E \gamma^{\dagger}$	E(level)	Iγ [‡]
577.4 2	2152.2	4.3	625.7 2	2482.6	5.5	691 [@]	3430.1	
584.3 <i>3</i>	2096.3	3.3	642.8 3	2739.1	3.1	699.5 <i>3</i>	3499.5	2.9
596.3 <i>2</i>	$2\ 2\ 3\ 5\ .\ 0+x$	5.6	647.9 2	2800.0	5.1	720.8 [@] 3	3623.7 + x	3.9
617.3 <i>3</i>	2416.9	3.1	652.9 3	3069.8	3.0	721 [@]	3203.6	
624.4 3	$2\ 4\ 1\ 9$. $6+x$	2.3	667.9 <i>3</i>	2 9 0 2 . 9 + x	3.9			

[†] $\Delta E=0.1$ keV assigned by evaluator if I γ >10, 0.2 keV if 5<I γ <10, 0.3 keV if I γ <5, based on the general comment that 0.1 $\leq \Delta E \leq 0.3$ (1992Ho02).

¹ Relative photon intensity for $E(^{12}C)=82$ MeV; uncertainties range from 10% to 30% (1992Ho02).

§ Deduced by authors from intensity balance.

Depopulates (7-) 287.2 and/or (8-) 341.1 level (1992H002). However, existence of transition has not been confirmed in either of two subsequent (HI,xnγ) studies (2000Zh51, 2000Le25).

[@] Placement of transition in the level scheme is uncertain.

 $^{\mathbf{x}}$ $~\gamma$ ray not placed in level scheme.

¹⁵⁹Tb(¹²C,5nγ) 1992Ho02 (continued)

(A) $K\pi=6+$, $\alpha=0$ (π 7/2[404]) +(ν 5/2[642]) band. (B) $K\pi=6+$, $\alpha=1$ (π 7/2[404]) +(ν 5/2[642]) band. (C) $K\pi=7-$, $\alpha=1$ (π 9/2[514]) +(ν 5/2[642]) band. (D) $K\pi=7-$, $\alpha=0$ (π 9/2[514]) +(ν 5/2[642]) band.

					(21-)		3499.5	_		
		(19+)	:	3430.1	-					
								(20-)		3203.6
(18+)	3069.8									
		-								
		(17.)		0700 1	(19-)		2800.0	_		
		(17+)	¥	2739.1	-					
					(D)(18-)	V		(18-)		2482.6
(16+)	<u>¥ 2416.9</u>	-								
					(17-)	,	2152 2	(C)(17-)	,	
		(15+)	<u> </u>	2096.3				(0)(1)		
					(D)(16-)	V		(16-)		1856.9
(14+)	1799.6	(A)(14+)	<u>v</u>			I		(10)		100010
					(15 -)	N	1574.8	(C)(15-)	V	
<u>(B)(13+)</u> <u>¥</u>		(13+)	¥	1512.0	_					
(12+)	1250.5	(A)(12+)			(D)(14-)	¥		(14-)		<u>v 1313.0</u>
	120010	(11)(12+)			-					
					(13-)		1083.5	(C)(13-)	V	
<u>(B)(11+)</u> <u>¥</u>		(11+)	¥	1004.6	-					
					(D)(12-)	-, ↓		- (12-)		867.9
(10+)	v 786.9	(A)(10+)	<u> </u>		(11-)		694.6	(C)(11)		
					(D)(10-)	\		(()(11-)	¥	
(B)(9+)	L	_ (9+)	¥	591.2	- (9-)	٦ J	426.59	- (10-)		539.12
(8+)	425.5	- (A)(8.)			$(D)(8_{-})$	۲ ـــــ		- (C)(9–)	J,	╄/
(B)(7+)	₩-/	(A)(0+)	¥_		(D)(0-)	\ <u> </u>	007.01		<u>v</u>	341.10
(6+)	189.8	(7+)	¥	290.5	(/-)	<u></u>		- (C)(7–)	L V	
(67-)	¥_/	(A)(6+)	V		(6-,7-)	¬ ↓		(67-)	Į.	
					(6+)	<u> </u>			L	

¹⁵⁹Tb(¹²C,5nγ) 1992Ho02 (continued)

	_	¹⁵⁹ Tb(¹² C,5nγ)	1992Ho02 (cont	tinued)	
		Ba	ands for ¹⁶⁶ Lu		
(A)	(B)	(C)	(D)	<u>(22–)</u> (E)	(F)
				720.8	
				<u>(20–) v</u>	
				667.9	(19_)
				<u>(18–)</u>	(13-)
				500.0	624.4
				596.3	v (17–)
				<u>(16-) v</u>	557.9
				510.5	v (15-)
				<u>(14-)</u>	471.8
				416.9	471.0
				$\frac{(12-)}{319.6}$	369.8
				<u>(10-)</u>	v (11–)
				(8-) $(8-)$ (162.4)	255.8 (9-)
	(19+	<u>+)</u> (21–)	-	×	¥ (7-)
(18+)	691	699.5	(20-)		
652.9		- <u>)</u> (19–) v	721		
<u>(16+)</u>	642.8	647.9	1/.2 		
617.3	, (15+	<u>(17-)</u>	330.2 		
<u>(14+)</u>	297.1 584.3	577.4	95.3 (16-)		
549.1	287.7 (13+	<u>(15-)</u>	281.9 / 544.1		
(12+) v	261.5	491.0	61.9 Vv (14-)		
463.5	245.9 v (11+	+) (13-) v	229.5 445.3		
(10+) v	217.7	388.7	173.3 (12-)		
361.4	195.7 165.6 (9+	$\frac{(11-)}{268.1}$	328.8 55.5 (10-)		
(8+) 235.7	105.0 135.0 107+ 300.8 (7+	(9-) $(7-)$ $(7-)$ $(9-)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
(6+)	100.8	<u> </u>			

 $^{166}_{71}Lu_{95}$

Level Scheme

Intensities: relative $I\boldsymbol{\gamma}$

Adopted Levels, Gammas

 $Q(\beta^{-}) = -7760 \ 40; \ S(n) = 10290 \ 40; \ S(p) = 4710 \ 40; \ Q(\alpha) = 3550 \ 30 \ 2003Au03.$

Assignment: ¹⁷⁰Yb(³He,7n), E(³He)=80 MeV chem, γ(¹⁶⁶Yb) (1974De09); ¹⁸¹Ta(p,2p14n), E(p)=660 MeV, chem, γ(¹⁶⁶Er) (1969Ar23).

Other Reaction.

¹³⁰Te(⁴⁰Ca,4nγ), E=167.5-182.5 MeV: Te on Gd target, backed by Au; transient field technique used to determine g-factor at 5 beam energies for pre-yrast high-spin states in ¹⁶⁶Hf (1996We01). Individual values of 0.23 *3*, 0.21 *4*, 0.16 *2*, 0.21 *3* and 0.22 *3*, each with an additional systematic uncertainty of 0.02 lead to an average g-factor=+0.19 *4* (2005St24).

¹⁶⁶Hf Levels

Quasiparticle orbitals used in band labels are as follows:

$$\begin{split} & \mathsf{A} = (\mathsf{v} \ 5/2[642]), \ \alpha = + 1/2, \\ & \mathsf{B} = (\mathsf{v} \ 5/2[642]), \ \alpha = - 1/2, \\ & \mathsf{C} = (\mathsf{v} \ 3/2[651]), \ \alpha = + 1/2, \\ & \mathsf{D} = (\mathsf{v} \ 3/2[651]), \ \alpha = - 1/2, \\ & \mathsf{E} = (\mathsf{v} \ 5/2[523]), \ \alpha = - 1/2, \\ & \mathsf{F} = (\mathsf{v} \ 5/2[523]), \ \alpha = - 1/2, \\ & \mathsf{G} = (\mathsf{v} \ 3/2[521]), \ \alpha = - 1/2, \\ & \mathsf{H} = (\mathsf{v} \ 3/2[521]), \ \alpha = - 1/2, \\ & \mathsf{H} = (\mathsf{v} \ 3/2[521]), \ \alpha = - 1/2, \\ & \mathsf{H} = (\mathsf{r} \ 3/2[404]), \ \alpha = - 1/2, \\ & \mathsf{h} = (\mathsf{r} \ 1/2[600]), \ \alpha = + 1/2, \\ & \mathsf{h} = (\mathsf{r} \ 9/2[514]), \ \alpha = - 1/2, \\ & \mathsf{g} = (\mathsf{r} \ 1/2[541]), \ \alpha = - 1/2, \\ \end{split}$$

Cross Reference (XREF) Flags

Α	¹⁶⁶ Ta	£	Decay

- B (HI, xnγ)
- $C^{96}Zr(^{74}Ge, 4n\gamma)$
- $D^{-186}W(n, 2p19n\gamma)$

E(level) [†]	Jπ [‡]	XREF	T _{1/2} §	Comments
0 0a	0 +	ABCD	677 min 30	% £ + % B ⁺ = 100
0.0	0.1		0	T ₁₀ ; from 1974De09. Other: 1969Ar23.
				$J\pi$: g.s. of even-even nucleus.
158.64 ^a 5	2+	ABCD	497 ps <i>23</i>	$J\pi$: E2 159 γ to 0+ g.s.
470.46 ^a 6	4 +	ABCD	16.4 ps 5	$J\pi$: stretched E2 312 γ to 2+ 159 in (HI.xn γ).
809.96 ^s 6	(2+)&	Α	1	J\pi: 6517-1597(0) consistent with 2(810)-2+(159)-0+(g.s.) sequence in ϵ decay; γ to 0+.
897.17 ^a 12	6+	ABCD	3.24 ps <i>19</i>	Jπ: continuation of g.s. band.
1007.16 ^s 6	(3+)&	A C		J π : γ 's to 2+ and 4+; band assignment.
1064.99 10	(0+)	Α		J π : E consistent with X(5) prediction for second 0+ state; 906 γ -159 $\gamma(\theta)$ in ϵ decay is consistent with 0 - 2+ - 0+ cascade.
1162.70 8		Α		Jπ: γ to 4+.
1218.76 8	2 +	Α		J π : strong γ branches to 0+, to 2+ and to 4+ levels.
1332.41 7	(2+,3,4+)	Α		$J\pi$: γ 's to 2+ and 4+.
1404.85 7		Α		J π : 1247 γ to 2+ 159 and 398 γ to (3+) 1007, so J π =(1+,2,3,4+).
1406.4 ^a 6	8+	BCD	1.05 ps <i>10</i>	Jπ: continuation of g.s. band.
1418.98 14	(5+)&	С		J π : γ 's to (3+) and 4+; band assignment.
1466.3Ĵ <i>6</i>	(5-)#	BC		Jπ: 259γ from (7–) 1726, D 996γ to 4+ 470; band assignment.
1551.39 ^k 10	(4-)@	ABC		Jπ: 289γ from (6–) 1841, 544γ to (3+) 1007; band assignment.
1603.05 21	(2+,3,4+)	Α		Jπ: 1144γ to 2+ 159, 1133γ to 4+ 470.
1726.3 ^j 6	(7-)#	BC		Jπ: J=5,7 from stretched D 829γ to 6+ 897; not J=5 based on 320γ to 8+ 1406; band assignment.
1841.1 ^k 6	(6-)@	BC		Jπ: 421γ to (5+) 1419, D 944γ to 6+, γ from (8–); band assignment.
1971.9 ^a 6	10+	BCD	0.7 ps 5	Jπ: continuation of g.s. band.
2078.5Ĵ <i>6</i>	(9-)#	BC	1.7 ps 4	
2197.3 ^k 6	(8-)@	BC		
2376.5 ⁿ 16	(8–)	С		
2496.7 <i>j 6</i>	(11-)#	BC		Jπ: stretched D 525γ to 10+ 1972; band assignment.
2539.7 ^k 6	(10-)@	BC		
2565.8 ^a 7	12+	BC	0.9 ps 7	$J\pi$: continuation of g.s. band.
2680.1 ⁿ 16	(10-)	С		$J\pi:$ stretched Q 4847 to (8–) 2197; band assignment.
2734.6° 7	12+d	BC		Jπ: stretched E2 275γ from 14+ 3009; stretched Q 763γ to 10+ 1972.

¹⁶⁶Hf Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	XREF	T _{1/2} §	Comments
2793.10 18	(11-)	С		
2910.9K 6	$(12 -)^{@}$	BC		
2962.2J 7	$(13 -)^{\pi}$	BC		
3009.20 7	14+u	вс	6.9 ps 7	$J\pi$: stretched E2 443 γ to 12+ 2566.
3023.9º 18	(12+)	C		$J\pi$: 460 γ to 12+ 2566; 1054 γ to 10+ 1972; band assignment.
3085.8" 17	(12 -)	C DC		In startshad O 0450 to 10, 0500
3211.15 /	14(+)	вс		$J\pi$: stretched Q 6457 to 12+ 2566.
3231.4° 18 2275 1k 7	(13-)	RC RC		
2440 00 8	(14-)-	BC		
3449.0- 8 3479.61 7	(15-)#	BC		
3515 88 18	(13-)	DC C		Im. 952y to 12+ 2566: 192y to (12+) 3021; hand assignment
3585 6 ⁿ 18	(14-)	C		5%. 666 [to 12+ 2000, 466] to (12+) 6624, band assignment.
$3779 \ 4^{0} \ 18$	(15-)	C		
3817.4 ^f 20	(15-)	c		$J\pi$: 811 γ to 14+ 3009; band assignment.
3835.2 ^b 8	(16+)	BC		
3920.3k 8	(16-)@	BC		
3972.1g 20	(15-)	С		J π : 965 γ to 14+ 3009; band assignment.
4009.2 ^c 8	18+d	BC		
4030.1j <i>8</i>	(17-)#	BC		
4064.7 ^e 19	(16+)	С		
4163.5 ⁿ 19	(16-)	С		
4228.5^{m} 19	(16-)	С		
4374.0 ^f 20	(17-)	С		Jπ: 927γ to 16+ 3449; intraband 557γ to (15-) 3817.
$4400.4^{0}21$	(17-)	С		
4443.4g 20	(17-)	С		J π : 997 γ to 16+ 3449; intraband 471 γ to (15–) 3972; band assignment.
4445.4 ⁱ 20	(14-)	С		
4459.3 ^b 9	(18+)	BC		
4516.0 ^k 8	(18–)@	BC		
4582.0 ^h 19	(15-)	С		Jπ: 1575γ to 14+ 3009; band assignment.
4625.2Ĵ <i>9</i>	(19–)#	BC		
4641.4 ^m 19	(18-)	С		Jπ: stretched Q 723γ to (16-) 3920.
4671.0 ^c 9	20+d	BC		
4677.4 ^e 20	(18+)	С		
4744.91 19	(16-)	С		
4823.5 ¹¹ 22	(18-)	С		
4937.1" <i>19</i>	(17-)	C		
5005.6 ¹ 20	(19-)	C		
5031.35 20	(19-)	C		
5086 ol 22	(19-)	C		
5089 6k a	$(20-)^{@}$	BC		
5121 7b 9	$(20+)^{-1}$	BC		
5157.5 ^r 21	(19+)	C		$J\pi$: 1151v to 18+ 4009; band assignment
5160.0 ⁱ 20	(18-)	c		
5214.3 ^m 20	(20 -)	c		
5253.3J 9	$(21 -)^{\#}$	BC		
5313.0 ^e 21	(20+)	C		
5409.9 ^c 9	22+d	BC		
5410.0h 21	(19-)	С		
5510.5 ⁿ 24	(20-)	С		
5665.9 ¹ 23	(21-)	С		
5672.7 ^f 22	(21-)	С		
5678.8 ^k 9	(22-)@	BC		
5687.1 ⁱ 21	(20-)	С		
5720.4g 21	(21-)	С		
5784.40 25	(21-)	С		
5798.5 ^r 21	(21+)	С		Jπ: 1130γ to 20+ 4671; band assignment.
5851.7 ^b 10	(22+)	BC		
5897.3^m 22	(22-)	С		
5926.9 <i>j 10</i>	(23-)#	BC		
5986.0 ^e 23	(22+)	С		
5987.8 ^h 22	(21-)	С		

¹⁶⁶Hf Levels (continued)

E(level) [†]	Jπ [‡]	XREF	Comments
6201.2 ^c 10	24+d	BC	
6243n <i>3</i>	(22-)	С	
6310.6 ⁱ 22	(22-)	С	
$6331.0^{1}24$	(23-)	С	J π : stretched Q 1080 γ to (21-) 5253; band assignment.
6356.4 ^k 10	(24-)@	BC	
6385.7 ^f 25	(23-)	С	
6441.48 <i>23</i>	(23-)	С	
6531 ⁰ 3	(23-)	С	
6536.5r 24	(23+)	С	
6615.0 ^b 22	(24+)	С	
6641.3^m 24	(24-)	С	
6650.6 ^h 23	(23-)	С	
6665.5Ĵ <i>10</i>	(25-)#	BC	
6978 ⁿ 3	(24-)	С	
7006.6 ⁱ 23	(24-)	С	
7030.1 ^c 10	26+d	BC	
7078.2 ¹ 25	(25-)	С	
7137.4 ^k 10	(26-)@	BC	
7145 ^f 3	(25-)	С	
7199.48 25	25-	С	
7314 ⁰ 3	(25-)	С	
7342 ^r 3	(25+)	С	
7363.6 ^h 23	(25-)	С	
7392.1 ^b 23	(26+)	С	
7444 ^m 3	(26-)	С	
7481.1Ĵ <i>11</i>	(27-)#	BC	
7713.6 ⁱ 24	(26-)	С	
7770 ⁿ 3	(26-)	С	
7894.7 ^c 11	28+d	BC	
7899 ¹ 3	(27-)	С	
7954 ^f 3	(27-)	С	
8007g <i>3</i>	(27-)	С	
8017.3 ^k 11	(28-)@	BC	
8062.7 ^h 24	(27-)	С	
8222.0 ^b 25	(28+)	С	
8303 ^m 3	(28-)	С	
8375.4J <i>11</i>	(29-)#	BC	
8426.4 ⁱ 25	(28-)	С	
8767 ¹ 3	(29-)	С	
8800.7 ^c 15	30+d	BC	
8808.1 ^h 25	(29-)	С	
8817 ^f 3	(29-)	С	
8871g 3	(29-)	С	
8980.0 ^k 15	(30-)@	BC	
9116 ^b 3	(30+)	С	
9212 ⁱ 3	(30-)	С	
9216 ^m 3	(30-)	С	
9337.8J <i>15</i>	(31-)#	BC	
9635h <i>3</i>	(31-)	С	
96821 3	(31-)	С	
9734 ^f 4	(31-)	С	
9753.5 ^c 18	32+d	BC	
9771g 3	(31-)	С	
9991.2 ^k 18	(32-)@	BC	
10009 ^b 3	(32+)	С	
10080?i 3	(32-)	С	
10167 ^m 4	(32-)	С	
10330j <i>2</i>	(33-)#	BC	
10721 ^f 4	(33-)	С	
10747.5 ^c 21	34+d	BC	
10933 ^b 3	(34+)	С	
10994k 4	(34-)@	С	
11298J 4	(35-)#	С	

$^{166}_{72}\text{Hf}_{94}\text{--}4$

Adopted Levels, Gammas (continued)

¹⁶⁶Hf Levels (continued)

E(level) [†]	Jπ [‡]	XREF	E(level) [†]	$J\pi^{\ddagger}$	XREF	E(level) [†]	XREF
11751 ^c 4	36+d	С	16006? ^c 4	(44+)d	с	3665.0+x9 <i>16</i>	С
11928 ^b 4	(36+)	С	0 . 0 + x q		С	4083.1+x9 17	С
12005k 4	(36-)@	С	236.0+x9 8		С	0.0+yP	С
12289J 4	(37-)#	С	486.0+x9 8		С	204.0+yP 8	С
12762 ^c 4	38+d	С	759.0+x9 10		С	438.0+yp 8	С
13038 ^k 4	(38-)@	С	1064. $1+x$ q 11		С	697.0+yp 10	С
13328J <i>4</i>	(39-)#	С	1387.7+x9 <i>12</i>		С	977.0+yP 11	С
13800 ^c 4	40 + d	С	1734.9+x9 <i>13</i>		С	$1274.0+y^{p}$ 12	С
14096k 4	(40-)@	С	2095.8+x9 <i>13</i>		С	1582.0+yP 13	С
14424j <i>4</i>	(41-)#	С	2475.9+x9 <i>14</i>		С	1905.0+yP 13	С
14879 ^c 4	42+d	С	2860.7+x9 15		С	2240.0+yP 14	С
15575?j 4	(43-)#	с	3256.1+x9 15		С	u u	

 † From least-squares fit to Ey, assigning 1 keV uncertainty to data for which the authors did not state an uncertainty.

 ‡ Values given without comment are from (⁷⁴Ge, 4n γ) and based on deduced band structure, alignment gains, B(M1)/B(E2) ratios and comparison with structures in neighboring nuclides.

 $\ensuremath{\$}$ The half-lives of excited states are from recoil Doppler measurements in (HI,n\gamma), except as noted.

The interband transition between side band 1 and the ground-state band show angular distributions of pure stretched dipole type, most likely E1.

- [@] Transitions connecting the two side bands have positive anisotropies and are interpreted as mixed M1,E2 transitions (1987Bl06) in (HI,xnγ).
- & Proposed by 1977Le08 in ε decay.
- ^a (A): $K\pi=0+$ g.s. band. A=26.5 if B=0.
- b (B): BC band (2000Ri11).

c (C): AB band (2000Ri11). Yrast above J=14. Alignment gain 10h at hω=0.25 MeV. Becomes ABCDfg band at high spin with possible admixture of ABEFfg.

d J π established for J=12 through J=42 band members based on smooth progression of E γ for intraband cascade, J π =14+ for 3007 level and E2 intraband 275 γ to 2566.

- e (D): EFBC band (2000Ri11).
- f (E): AGEF band (2000Ri11).
- g (F): AGEH band (2000Ri11).

h (G): $K\pi=10-$, $\alpha=0$ gfAE band (2000Ri11). Likely configuration: v (5/2[642]+5/2[523])+ π (1/2[541]+9/2[514]); strongly supported by measured B(M1)/B(E2) ratios.

i (H): K π =10-, α =1 geAE band (2000Rill). See comment on K π =10- signature partner band.

- j (I): $K\pi$ =5- AE band (2000Ri11). A=13.7 if B=0.
- k (J): AF band (2000Ri11).
- $l_{\rm -}$ (K): AGBC band (2000Ri11). Large alignment, consistent with four-quasineutron structure.
- $^{\rm m}$ (L): AHBC band (2000Ri11).
- $^{\rm n}\,$ (M): BE band (2000Ri11). Low alignment at low J.
- ⁰ (N): BF band (2000Ri11).
- P (O): Band 1 (2000Ri11).
- 9 (P): Band 2 (2000Ri11).
- r (Q): Band 3 (2000Ri11).
- s (R): K = 2+ $\gamma vibrational$ band.

$\gamma(^{166}\text{Hf})$

E(level)	$E\gamma^{\dagger}$	$I\gamma^{\dagger}$ §	Mult.‡	α	Comments
158.64	158.64# 4	100#	E2	0.636	B(E2)(W.u.)=128 7.
					Mult.: stretched Q from $\gamma(\theta)$ in (HI,xn γ); not M2 from RUL.
470.46	311.87 # 5	100#	E2	0.0706	B(E2)(W.u.)=202 7.
809.96	651.26 [#] 5	93.6 [#] 20			
	810.0 [#] 3	100# 9			
897.17	426.7# 1	100#	E2	0.0292	B(E2)(W.u.)=221 13.
1007.16	536.81 # 7	15.7# 16			
	848.41 # 6	100# 7			
1064.99	906.35 [#] 9	100#	(E2)	0.00500	Mult.: Q from $906\gamma - 159\gamma(\theta)$ in ε decay.
1162.70	692.23 [#] 6	100#			
1218.76	748.25 # 7	100# 7			
	1060.2# 1	77# 10			
	1218.8# 3	33# 13			

$\gamma(^{166}\text{Hf})$ (continued)

E(level)	$E\gamma^{\dagger}$	Iγ [†] §	Mult. [‡]	α	Comments
1332 41	861 97# 7	92# 5			
1005.41	$1173.74^{\#}$ 7	100# 7			
1404.85	397.6# 1	51# 5			
	594.65# 10	100# 16			
	1246.37 # 7	95 [#] 5			
1406.4	509.5 <i>3</i>	100	E2	0.0185	$B(E2)(W.u.)=280 \ 30.$
1418.9	413&				
	949&				
1466.3	995.8 10	100	D		
1551.39	544.27# 10	59# 11			
	1080.86# 12	100# 13	D		
1603.05	1132.75# 11	100# 12			
	1444.4" 2	92# 4			
1726.3	259@				
	3200	100	D		
1841 1	029.33 280.23	34 7	D		
1041.1	374 7 3	100 10			
	421&	100 10			
	944.3 3	90 10	D		
1971.9	565.5 3	100	E2	0.0129	B(E2)(W.u.)=250 + 640 - 110.
2078.5	352.2 3	28 <i>3</i>	E2	0.0495	B(E2)(W.u.)=250 60.
	672.2 3	100 5	D		
2197.3	356.3 <i>3</i>	100 10			
	471.0 3	80 <i>8</i>			
2376.5	537&				
2496.7	418.1 3	100 10	(E2)	0.0308	
	524.7 3	626	D		
2539.7	342.5 3	100 10			
2565 9	401.2 3	879	E9	0 01971	$P(F2)(W_{11}) = 155 + 550 - 70$
2505.8	304&	100	Eź	0.01271	B(E2)(W.U.)=133 + 330 - 70.
2000.1	484&		Q@		
2734.6	168&		*		
	762.7 3	100	(E2)	0.00721	
2793.1	716&	100			
2910.9	371.3 <i>3</i>	100 10	(E2)	0.0427	
	414.0 3	474			
2962.2	396.4 <i>3</i>	8.2 16			
	465.4 3	100 5	(E2)	0.0232	
3009.2	274.6 3	22.3 24	E2	0.1037	$B(E2)(W.u.) = 168 \ 17.$
2002 0	443.4 3	100 5	E2	0.0264	B(E2)(W.u.)=70 7.
3023.9	460@				
3085 8	406&				
5005.0	547&				
3211.1	645.3 <i>3</i>	100	(E2)	0.01048	
3231.4	438&		. ,		
	737&		$\mathbf{Q}^{@}$		
3375.1	413&				
	464.2 3	100	(E2)	0.0234	
3449.0	439.8 3	100	(E2)	0.0269	
3472.6	261 ^{&}				
0515 0	510.4 3	100	(E2)	0.0184	
3515.8	492∞ 052&				
3585 6	902∽ 500&	100			
3779 4	548&	100			
5775.1	819&		Q [@]		
3817.4	811&		*		
3835.2	624 ^{&}	100			
3920.3	448&				
	545.2 3	100	(E2)	0.01561	

$\gamma(^{166}\text{Hf})$ (continued)

E(level)	$_{\rm E\gamma^{\dagger}}$	$I_{\gamma^{\dagger}}$	Mult.‡	α
3972.1	965&	100		
4009.2	560.2 3	100	(E2)	0.01462
4030.1	557.5 <i>3</i>	100	(E2)	0.01479
4064.7	549&			
	856&			
4163.5	578 ^{&}	100		
4228.5	643&	100		
4374.0	557			
	927			
4400.4	621&	100		
4443.4	471&			
	997&			
4459.3	623 ^{&}	100		
4516.0	595.7 <i>3</i>	100		
4582.0	137&			
	1373&			
	1575&			
4625.2	595.1 3	100		
4641.4	413&			
	478 ^{&}		~ <i>@</i>	
	723&		Q^{ee}	
4671.0	661.8 <i>3</i>	100		
4677.4	6130			
4744 0	844			
4/44.9	163@			
	2990		D@	
4099 E	1298-	100	D	
4823.3	1028	100		
4557.1	355&			
	1491&			
5005 6	562&			
000010	632&			
	999&			
5031.3	588&			
	657&			
	1025&		D@	
5071.4	671&	100		
5086.9	1059&	100	(Q) [@]	
5089.6	573.6 <i>3</i>	100		
5121.7	662.3 <i>3</i>	100		
5157.5	1151&	100		
5160.0	223&			
	415&			
	1153&			
5214.3	573 ^{&}			
	700 ^{&}		Q ^w	
5253.3	628.1 3	100	(E2)	0.01115
5313.0	636 ^{&}			
5400 0	856~	100	(12.2.)	0.00555
5409.9	/38.93	100	[E2]	0.00779
5410.0	200°			
5510 5	4/3~	100		
5665 0	5798	100		
3003.3	1043			
5672 7	667&	100		
5678 8	589 2 3	100		
5687.1	2778			
	527&			
5720.4	689&			
	1052&			
5784.4	713&	100		
$^{166}_{72}\rm Hf_{94}{-7}$

Adopted Levels, Gammas (continued)

$\gamma(^{166}\text{Hf})$ (continued)

E(level)	$_{\rm E\gamma^{\dagger}}$	$I\gamma^{\dagger}$ §	Mult. [‡]	E(level)	$E\gamma^{\dagger}$	$I_{\gamma^{\dagger}}$
5798 5	641&			8817	863&	100
0100.0	1130&			8871	864&	100
5851.7	730.0 3	100		8980.0	962.7 10	100
	1180&			9116	894&	100
5897.3	683 ^{&}			9212	404&	
5926.9	673.6 <i>3</i>	100			786 ^{&}	
5986.0	673 ^{&}			9216	913&	100
	867 ^{&a}			9337.8	962.4 10	100
5987.8	301&			9635	423&	
	578&				827 ^{&}	
6201.2	791.3 <i>3</i>	100		9682	915&	100
6243	733&	100		9734	917&	100
6310.6	323&			9753.5	952.7 10	100
	623 ^{&}			9771	900&	100
6331.0	665			9991.2	1011.2 10	100
	1080		$Q^{@}$	10009	893 ^{&}	100
6356.4	677.6 <i>3</i>	100		10080?	445&a	
6385.7	713&	100			867&a	
6441.4	721&	100		10167	951&	100
6531	747&	100		10330	992.5 10	100
6536.5	738 ^{&}	100		10721	987 ^{&}	100
6615.0	766 ^{&}			10747.5	994 1	100
	1208&			10933	924 ^{&}	100
6641.3	744	100		10994	1007	100
6650.6	340*			11298	972	100
	663×	100		11751	1009~	100
6665.5	738.6 3	100		11928	995&	100
6978	735	100		12005	1011@	100
7006.6	356			12289	991@	100
7000 1	696~	100		12762	10110	100
7030.1	828.93 7178	100		13038	1033	100
1018.2	11558			13328	1039	100
7137 4	781 0 3	100		14096	1058&	100
7137.4	750&	100		14090	1096&	100
7199 4	758&	100		14424	1079&	100
7314	783&	100		15575?	1151&a	100
7342	806&	100		16006?	1127&a	100
7363 6	357&	100		236 0+x	236&	100
1000.0	713&			486.0+x	250&	100
7392.1	777&				486&	
	1195&			759.0+x	273&	
7444	803&	100			523&	
7481.1	815.6 3	100		1064.1+x	305&	
7713.6	350&				578 ^{&}	
	707 ^{&}			1387.7+x	323&	
7770	792 ^{&}	100			629 ^{&}	
7894.7	864.6 3	100		1734.9 + x	347&	
7899	821&	100			671&	
7954	809&	100		$2\ 0\ 9\ 5$. $8+x$	361&	
8007	808&	100			708&	
8017.3	879.9 <i>3</i>	100		$2\ 4\ 7\ 5\ .\ 9+x$	380 ^{&}	
8062.7	349&				741&	
	699&			$2\ 8\ 6\ 0$. 7 + x	385&	
8222.0	830&	100			765	
8303	859&	100		$3\ 2\ 5\ 6\ .\ 1+x$	396&	
8375.4	894.3 3	100			780&	
8426.4	364			3665.0+x	409 ^{&}	
	713&				804	
8767	868 ^{&}	100		4083.1+x	418 ^{&}	
8800.7	906 1	100			827 ^{&}	
8808.1	382&			204.0+y	204*	100
	745 ^{&}			438.0+y	234*	

$^{166}_{72}\text{Hf}_{94}\text{--8}$

Adopted Levels, Gammas (continued)

$\gamma(^{166}Hf)$ (continued)

E(level)	$\underline{\qquad \qquad } E\gamma^{\dagger}$	E(level)	$\underline{\qquad } E\gamma^{\dagger}$	E(level)	$\underline{} E \gamma^\dagger$
438.0+y	438&	1274.0+y	297&	1905.0+y	631&
697.0+y	259&		577&	2240.0+y	335&
	493&	1582.0+y	308&		658 ^{&}
977.0+y	280&		605&		
0	539&	1905.0+y	323&		

 $^\dagger~$ From (HI,xny), unless otherwise noted.

[‡] From $\gamma(\theta)$ and/or DCO ratio in (HI,xn γ), except as noted. Q transitions are not M2 from RUL if value is shown without parentheses; $\Delta \pi$ =(no) has been assigned to all other intraband stretched Q transitions.

\$ Relative photon intensity normalized to 100 for strongest photon deexciting each level; from (HI,xn γ), except as noted.

[#] From ¹⁶⁶Ta ε decay.

 $^{@}$ From DCO ratios in 96 Zr(74 Ge,4n γ), assigning intraband stretched Q transitions as (E2).

& From ${}^{96}{
m Zr}({}^{74}{
m Ge},4n\gamma)$.

^a Placement of transition in the level scheme is uncertain.

(A) $K\pi = 0 + g.s.$	(B) BC band (2000Ri11).	(C) AB band (2000Ri11).	(D) EFBC band (2000Ri11).	(E) AGEF band (2000Ri11).
band.				

12+

10+

8+

6+

4+

 $^{166}_{72}$ Hf₉₄

(F) AGEH band (2000Ri11).

(G) Kπ=10-, α=0 gfAE band (2000Ri11). (H) Kπ=10-, α=1 geAE band
 (2000Ri11).

					(32-)		10080
		(31-)		9635	(G)(31-)		i
(91)	0771	(H)(30-)	\		(30-)	<u></u>	9212
(31-)	9771	(29-)	N	8808.1	(G)(29-)		/
		(H)(28-)	\\↓		(28-)	\\ v /	8426.4
(29-)	8871	(27-)		8062.7	(G)(27-)		
		$(H)(26_{-})$			(26-)	\\ _ _/	7713.6
(07)	0007	(25-)		7363 6	(G)(25-)	\\ <u></u> /	
(27-)	¥ 8007	$-\frac{(20)}{(H)(24)}$	N L Ť		(24-)	\\\¥/	7006.6
		(23_{-})	\\¥	6650.6	(G)(23-)	\\ <u> </u>	
25-	v 7199.4	(20)	N J		(22-)		6310.6
		(21_{-})	\ <u>\</u> ₩		(G)(21-)	\\ <u> </u>	/
(23-)	v 6441.4	(21-)	N J Ť		(20-)	\\\¥/	5687.1
(01)	5700 4	(11)(20-)	\ <u> </u>		(G)(19-)	\\ <u> </u>	
(21-)	5720.4	(19-)			$-\frac{(18-)}{(18-)}$		5160.0
(19-)	5031.3	(H)(18-)			$-\frac{()}{(G)(17-)}$		/
<u>(C)20+</u>		<u>(1/-)</u>	<u> </u>		$\frac{(a)(1)}{(16-)}$	\ <u> </u>	4744 9
<u>(17–)</u>	4443.4	<u>(H)(16–)</u>			$-\frac{(10)}{(C)(15)}$		5
(E)(17-)	_ _/	(15-)	/ _	4582.0	$-\frac{(0)(13-)}{(14-)}$	7	1 4 4 4 5 4
(C)18+	v	(H)(14-)	/		$-\frac{(14-)}{(C)^{10}}$	/V	4445.4
(15-)	3972.1	(C)16+			$-\frac{(C)18+}{(C)10}$	/	L
(C)16+	′ 	(B)14(+)	\¥_ _		(C)16+	¥	
(C)14+	¥	(C)14+	└──── <u>↓</u> ▼───				

(I) Kπ=5- AE band (2000Ri11).

(J) AF band (2000Ri11).

(K) AGBC band (2000Ri11).

(43–) 15575

(41-)	v 14424	_						
		(40-)		_	14096	_		
	10000							
(39–)	¥ 13328	(38-)		4	13038			
		(00)		1	10000	-		
(37-)	v 12289							
		(36-)		¥	12005	_		
()								
(35-)	¥ 11298	(34_)			1000/			
		(34-)		Ť	10554	_		
(33-)	10330	_						
		(32-)		¥	9991.2			
(21)	0227 8					(31-)		9682
	y <u>5337.8</u>	- (30-)			8980.0			
		(00)		1		(29-)	¥	8767
(29-)	¥ 8375.4	(28-)	٦		8017.3	_		
		(20-)	٦/	<u> </u>	6256 4	- (27-)	¥	7899
(27-)	7481.1	(22-)	1		5678.8	_		
		(20-)		_¥/	5089.6	(25-)	<u> </u>	7078.2
(25-)	v 6665.5	_ (18–)			4516.0	_		
		(16-)		_ + //	3920.3	<u>(23–)</u>	<u> </u>	6331.0
(23-)	y 5926.9	(I)(15-)	_\\\\		/	$-\frac{(1)(23-)}{(21-)}$	k k	5665.0
(21-)	5253.3	(14-)	-\\\\	<u>+</u> _///	3375.1	$-\frac{(21-)}{(1)(21-)}$		3003.9
(19-)	4625.2	(I)(13-)	-\\\\\	_¥///		$-\frac{(1)(21-)}{(19-)}$		5086 9
(17-)	4030.1	(12-)		↓ ////	2910.9	(I)(19-)		
$\frac{(13-)}{(B)14(+)}$	3472.0	(10-)	אווווי	<u>+</u> -////	2339.7	(1)(17)		L
(13-)	2962.2	(8-)		_¥_/////	2197.3	(1)(17-)	¥	
(A)12+	¥//	(I)(9-)		_ _ _////		_		
(11-)	2496.7	(6-)			1841.1	_		
(9-)	2078.5	(I)(7-)		┬─////	/	_		
(A)10+	Ţ/	(4-)			1551.39	_		
	1726.3	(I) (5-)		¥_//	l,	_		
	1466.3	(R)(5+)		<u> </u>	l	_		
(A)6+	L	(K)(3+) (A)6+	╶───┟┤┟			_		
(A)4+	<u>_</u>	(A)4+			٦	_		

 $^{166}_{72}$ Hf₉₄

(L) AHBC band (2000Ri11).	(M) BE band (2000Ri11).	(N) BF band (2000Ri11).	(0) Band 1 (2009Rid b) _{* v}	(P) Band 2 (2000Ri11).
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

(32-) 10167	_			
_(30-) 9216	-			
_(28-) v 8303	-			
	(26-)	7770	_	
(26-) 7444	-		(25-)	7314
	(24-)	v 6978	_	
(24-) v 6641.3	_		(23-)	6531
(22-) 5897.3	(22-)	6243	_	
(20-)	-		(21-)	v 5784.4
(18-)	(20-)	5510.5	_	
(J)(18-)	-		(19-)	5071.4
(16-)	(18-)	¥ 4823.5	_	
(M)(16-)	(16-)	4163.5	(17-)	¥ 4400.4
(J)(16-)		3585.6	- (15-)	3779 4
(M)(14-) v	(12-)	3085.8	- (13-)	3231.4
	(10-)	2680.1	- (I)(13-)	
	(J)(10-)	±//	- (11-)	2793.1
	(8-)	2376.5	- (I)(11-) <u> </u>	
	(J)(8-)	x /	- (I)(9-)	,
	(J)(6-)			

CITATION: Nuclear Data Sheets (1992)

(Q) Band 3 (2000Rill). (R) $K\pi=2+\gamma$ -vibrational

band.

(25+)			7342
(23+)	1	/	6536.5
(21+)		/	5798.5
(19+)		/	5157.5
(C)20+			
(C)18+	V.		

Bands for ¹⁶⁶ Hf								
(A)	(B)	(C)	(D)	(E)	(F)			
		(44+)						
		1127						
		42+						
		1079						
		<u>40+</u>						
		1038						
		<u>38+ y</u>						
	(36+)	36+						
	995	1009						
	<u>(34+)</u>	34+		(33-)				
	(32+) 924	994		987				
	893	<u>32+</u>		<u> </u>	(31-)			
	<u>(30+)</u>	952.7		917	900 v (29-)			
	894	<u>30+</u> 906		863	864			
	(28+) ¥ 830	28+		<u>(27-)</u> _	<u>v (27–)</u>			
	(26+) v	864.6		809	808 V 25-			
	$(24+)$ $\sqrt{777}$ $(24+)$ $\sqrt{11}$	$95 \frac{26+\psi}{828.9}$		759	758			
	766	24+	(22+)	(23-)	721			
	$\frac{(22+)}{730.0}$	791.3	673	<u>(21-)</u>	<u>(21-)</u>			
	(20+) 11	80 22+ 738.9	(20+)	(19-)	689 v (19–)			
	$(18+) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	20+	$\frac{1}{\sqrt{18+1}} - \frac{1}{99}$	$6\frac{32}{1000}$ $6\frac{5}{1000}$				
	623 (16+)	<u>18+</u>	$\frac{844}{\sqrt{549}}$ $\frac{(16+)}{92}$	$7 - \dots + 1023$ $7 - \dots + 1023$ $7 - \dots + 1023$ $7 - \dots + 1023$	471 ↓ (15–) (C			
	624 14(+)	$\frac{16+}{439.8}$	856 $(14+)$ 87	1965	(C			
	645.3	$14 + \frac{14}{\sqrt{12+274.6}}$	$\frac{952}{460} \psi^{-(12+)} \psi^{-(12+$	······/	(C			
594.0	¥7		054		(A			
<u> </u>		. ¥	۷		(A			
509.5					(A)			
426.7					(A			
58.64					{A			

		Ba	ands for ¹⁶⁶ Hf				
(G)	(H)	(I)	(J)	— (K	()	(L)	
		. ,		,			
		(43-)					
		1151					
		(41-)					
		1096		(40-)			
		(39–)	1058				
		1039	¥	(38-)			
		(37-)	1033				
		991	¥	(36-)			
		(35-)	1011				
		972	¥	(34-)			
	(22)	<u>(33–)</u> v				(32-)	
(31-) 445	867	992.5	v	(32-)	(31-)	951	_
827 423 827	(30-)	<u>(31–)</u>		91	5	(30-)	_
(29-) y $(29-)$ y $(29-$	786	962.4	¥	<u>(30–)</u>	(29-)	913	
(27-)	712	<u>(29–)</u>	962.7	(28_)	8	<u>(28–)</u>	_
699 349 699 1.350	<u>(26–)</u>	894.3	879.9		(27-)	859	
$\frac{(25-)}{712}$ 357	707	<u>(27-)</u> 815.6		(26-)	(25-)	(20-) ¥ 803	_
(23-) 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	696	<u>(25–)</u>	781.0	74	7	(24-)	_
(21-) V 323	<u>(22-)</u> 623	738.6	<u> </u>	$\frac{(24-)}{\sqrt{66}}$	(23-)	(22) 744	
578 $301(19-) 277$	<u> </u>	673.6	¥		(21-)	683	
(17) (17)	$\frac{327}{\sqrt[4]{(18-)}}$	$\frac{(21-)}{628}$		(20-) 1043 4	9 (19-)	$(20-)$ $\sqrt{573}$	_
$-\sqrt{\frac{355}{137-192}}$	$\frac{16-}{299}$	<u>(19–)</u>	573.6	<u>//</u> (18–)1059		(18-) $(13-)$	(C
491 1153 1298		595.1 (17–) ¥	595.7	(16-)		$f_{2} \frac{316}{\sqrt{2}}$	-643{N C
575 		(15-) $(15-)$ $(15-)$ $(15-)$	448 545.2	(14-)		-	(M
y		$(13-)^{510.4}$	413 464.2	<u>(12–)</u>			(I)
		$(11-) \psi$	414.0 371.3 461.2 342.5	(10-)			
		FO A 77 A 10 1					24
		524.7 + 418.1		<u>(6-)</u>			(I)
		524.7 - 418.1 - 478.	$37\frac{4}{4.7}$	(6-) (4-421) 544.27			(I) (J) (R

 $^{16\,6}_{7\,2}\mathrm{Hf}_{9\,4}$

(M)

Level Scheme

Intensities: relative photon branching from each level

Level Scheme (continued)

Intensities: relative photon branching from each level

6.77 min

Level Scheme (continued)

Intensities: relative photon branching from each level

6.77 min

Level Scheme (continued)

Intensities: relative photon branching from each level

 $^{166}_{72}$ Hf₉₄

Level Scheme (continued)

Intensities: relative photon branching from each level

 $^{166}_{72}$ Hf₉₄

¹⁶⁶Τa ε Decay 2005Mc01,1977Le08

Parent ¹⁶⁶Ta: E=0; $J\pi=(2)+$; $T_{1/2}=34.4 \text{ s } 5$; $Q(g.s.)=7760 \ 40$; $\%\epsilon+\%\beta^+$ decay=100.

 166 Ta produced using 159 Tb(16 O,9n) reaction at E=147 5 MeV (1977Le08) or E=155 MeV (2005Mc01). 1977Le08: measured Eq. Iq. qr coin, parent T $_{1/2}$.

2005Mc01: aluminized Kapton tape transport of reaction recoils to low background area; three Compton-suppressed Clover HPGe detectors and one low-energy photon spectrometer; measured E γ (E<2400), I γ , $\gamma\gamma$ coin, $\gamma\gamma(\theta)$ (two cascades).

¹⁶⁶Hf Levels

The decay scheme is adopted from 2005Mc01; it differs significantly from that proposed in 1977Le08 on the basis of limited coincidence information. The authors of 2005Mc01 introduce new levels at 897, 1405, 1551 and 1603; they also reject those at 695, 852, 909, 1023, 1213 and 1447 proposed in 1977Le08. However, the deduced $\varepsilon+\beta^+$ feeding and the J π of the levels fed still fail to present an entirely consistent picture, suggesting that the scheme is incomplete, as might be expected given that Q=7760 and no E γ >2400 transitions have been measured.

E(level) [†]	Jπ‡	T_1/2 [‡]	E(level) [†]	Jπ‡
0.0	0 +	6.77 min 30	1162.70 8	
158.644	2 +		1218.76 8	2 +
470.47 6	4 +		1332.41 7	(2+,3,4+)
809.96 <i>6</i>	(2+)		1404.85 7	
897.16 12	6 +		1551.39 10	(4-)
1007.16 6	(3+)		1603.18 11	(2+,3,4+)
1064 99 10	(0+)			

.

 $^\dagger~$ From least-squares fit to Ey, omitting the 1133y from the 1603 level because that Ey may contain a typographical error.

‡ From Adopted Levels.

Eε	E(level)	Ιβ ^{+†}	<u>Ι</u> ε [†]	Log ft	$I(\epsilon+\beta^+)^{\dagger}$	Comments
(6160 40)	1603.18	1.99 15	0.61 5	6.54 4	2.60 19	av Eβ=2344 19; εK=0.194 4; εL=0.0306 6; εM+=0.00933 17.
(6210 40)	1551.39	0.81 9	0.56 7	8.75 ¹ u 6	1.37 16	av E β =2315 19; ϵ K=0.341 5; ϵ L=0.0548 8; ϵ M+=0.01674 24.
(6360 40)	1404.85	6.0 5	1.6 1	6.14 4	7.6 6	av E β =2437 19; ϵ K=0.178 3; ϵ L=0.0282 5; ϵ M+=0.00857 15.
(6430 40)	1332.41	4.8 3	1.3 1	6.26 4	6.1 4	av E β =2471 19; ϵ K=0.173 3; ϵ L=0.0273 5; ϵ M+=0.00832 15.
(6540 40)	1218.76	2.7 3	0.68 8	6.55 6	3.4 4	av E β =2525 <i>19</i> ; ϵ K=0.165 <i>3</i> ; ϵ L=0.0261 <i>5</i> ; ϵ M+=0.00793 <i>14</i> .
(6600 40)	1162.70	1.92 15	0.46 4	6.72 4	2.38 18	av E β =2551 19; ϵ K=0.161 3; ϵ L=0.0255 5; ϵ M+=0.00775 13.
(6700 40)	1064.99	0.93 14	0.21 3	7.07 7	1.14 17	av Eβ=2597 19; εK=0.155 3; εL=0.0244 4; εM+=0.00744 13.
(6750 40)	1007 16	4 9 5	1 1 1	6 99 5	506	Log ft: much too low for a $\Delta J=2$, $\Delta \pi=$ no transition.
(0750 40)	1007.10	4.0 5	1.1 1	0.38 5	5.50	$\epsilon M += 0.00727 \ 12.$
(6860 40)	897.16	0.55 8	0.12 2	7.36 7	0.67 10	av E β =2677 19; ϵ K=0.1447 24; ϵ L=0.0228 4; ϵ M+=0.00695 12.
						Iɛ,Log <i>ft</i> : apparent feeding inconsistent with $J\pi$ of level fed.
(6950 40)	809.96	15.1 11	3.05 23	5.95 4	18.1 13	av E β =2718 <i>19</i> ; ϵ K=0.1397 <i>23</i> ; ϵ L=0.0220 <i>4</i> ; ϵ M+=0.00671 <i>11</i> .
(7290 40)	470.47	12.8 7	2.21 12	6.13 3	15.0 8	av E β =2878 19; eK=0.1223 19; eL=0.0193 3; eM+=0.00587 10.
						Log ft: much too low for a $\Delta J=2$, $\Delta \pi=no$ transition.
(7600 40)	158.64	31 3	4.74	5.84 4	36 <i>3</i>	av E β =3026 <i>19</i> ; ϵ K=0.1086 <i>17</i> ; ϵ L=0.0171 <i>3</i> ; ϵ M+=0.00521 <i>8</i> .

 β^+,ϵ Data

[†] Absolute intensity per 100 decays.

Nuclear Data Sheets (1992)

CITATION:

¹⁶⁶Τa ε Decay 2005Mc01,1977Le08 (continued)

$\gamma(^{166}{\rm Hf})$

I γ normalization: The normalization assumes that there is no $\epsilon+\beta^+$ feeding to the ground state ($\Delta J=(2)$, $\Delta \pi=no$); then, Σ (I(γ +ce) to g.s.)=100%.

$E\gamma^{\dagger}$	E(level)	Iγ†&	Mult.‡	α	Comments
159 64 4	159 64	100 0 20	F9	0 626	$\alpha(\mathbf{K}) = 0.215.5; \alpha(\mathbf{I}) = 0.245.4; \alpha(\mathbf{M}) = 0.0606.0; \alpha(\mathbf{N}) = 0.01502.22$
138.04 4	138.04	100.0 30	E2	0.030	$\alpha(\mathbf{K}) = 0.515 \ 5, \ \alpha(\mathbf{L}) = 0.245 \ 4, \ \alpha(\mathbf{M}) = 0.0000 \ 9, \ \alpha(\mathbf{N}+) = 0.01595 \ 25.$
					$\alpha(N) = 0.01409 \ 20; \ \alpha(O) = 0.00182 \ 3; \ \alpha(P) = 1.97 \times 10^{-6} \ 3.$
					$I\gamma = 100.0.55 \text{ III} 1977 \text{Leo8}.$
107 5@2	1007 16				$I\gamma = 54.1\%$ 8, assuming recommended decay scheme normalization.
197.5°=	1007.10				$1\gamma: < 0.40 (2005Mc01).$
211.0	1210.70				$1\gamma: < 0.15 (2005Mc01).$
211 97 5	1004.99	44 7 0	E9	0 0706	$\alpha(K) = 0.0405$ 7; $\alpha(L) = 0.01616$ 22; $\alpha(M) = 0.00288$ 6;
511.07 5	470.47	11.7 5	22	0.0700	$\alpha(N_{+}) = 0.01036 15$
					$\alpha(N) = 0.001030 13$ $\alpha(N) = 0.000008 13; \alpha(O) = 0.0001240 18; \alpha(P) = 3.56 \times 10^{-6} 5$
					$10^{-52} = 6.21$ in 10771 of 8
325 3@a	1332 41				$V_{\rm r} = 53.0 \ 21 \ {\rm m} \ 1577 \ {\rm levol}.$
323.5 330 5@a	800 96				$V_{1} < 0.27 (2005 Mc01)$
353.5 352 g@a	1162 70				$V_{1} < 0.51 (2005Mc01)$
397 6# 1	1404 85	2 9# 3			17. <0.51 (2005MC01).
408 8 [@] a	1218 76	2.0 0			Iv: <0.69 (2005Mc01)
426 7# 1	897 16	1 21# 17	F2	0 0292	$\alpha(K) = 0.0220 3; \alpha(I) = 0.00549 8; \alpha(M) = 0.001297 19;$
120.7 1	007.10	1.21 1/	12	0.0202	$\alpha(N_{+}) = 0.000349.5$
					$\alpha(N) = 0.0000045$ $\alpha(O) = 4.28 \times 10^{-5} 6 \alpha(P) = 1.660 \times 10^{-6} 24$
522 5@a	1332 41				$I_{V} < 0.65 (2005Mc01)$
536 81 7	1007 16	202			$F_{V} = 536.0.4$ $I_{V} = 7.5.10$ in 1977Le08: probably included large
000.01 /	1007.10	2.0 2			contribution from 537 $6v$ in ¹⁶⁶ Vb (2005Mc01)
$544.27^{\#}10$	1551.39	$0.94^{\#}$ 18			
×552.4§ 4		5.6 [§] 18			Attributed in 2005Mc01 to 552.0 γ from ¹⁶⁴ Lu ε decay.
594.65 10	1404.85	5.79			Placement from 1065 level in 1977Le08 rejected in 2005Mc01
					based on vy coin data.
651.26 5	809.96	18.9 4			$I_{\gamma}=16.1$ <i>11</i> in 1977Le08.
					Mult.: $651\gamma - 159\gamma(\theta)$ consistent with $2 + (810) - 2 + (159) - 0 + (g.s.)$
					sequence $(W(\Delta\theta=75^\circ)/W(\Delta\theta=15^\circ)=0.99 \ 12)$ (2005Mc01).
692.23 6	1162.70	4.4 3			$E\gamma = 693.2 5$, $I\gamma = 1.2 5$ in 1977Le08.
×742.8§ 4		13.3§ 12			Attributed to ¹⁶⁴ Yb in 2005Mc01.
748.25 7	1218.76	3.0 2			An E γ =750.0 5, I γ =10.4 18 transition was placed, instead,
					from a 909 level in 1977Le08.
×750.0 [§] 5		10.4 [§] 18			May include the 748.25 γ from 2005Mc01 and a large
					contribution from the 747.8 γ in ¹⁶⁴ Yb.
793.2 ^{@a}	1603.18				Iγ: <0.33 (2005Mc01).
810.0 3	809.96	20.2 18			Iγ=18.6 16 in 1977Le08.
848.41 6	1007.16	12.7 9			Eγ=847.4 4, Iγ=13.6 27 in 1977Le08.
×851.7§ 6		3.48 14			Absent in 2005Mc01 (Ιγ<0.3).
861.97 7	$1\ 3\ 3\ 2$. $4\ 1$	5.4 3			Iγ=7.1 20 in 1977Le08.
×864.1§ 5		9.2 [§] 23			Attributed in 2005Mc01 to 863.9 γ from 164 Lu ϵ decay.
906.35 <i>9</i>	1064.99	2.1 3	(E2)	0.00500	$\alpha(K)=0.00411$ 6; $\alpha(L)=0.000689$ 10; $\alpha(M)=0.0001570$ 22;
					$\alpha(N+)=4.30\times 10^{-5}$ 6.
					$\alpha(N)=3.71\times10^{-5}$ 6; $\alpha(O)=5.54\times10^{-6}$ 8; $\alpha(P)=3.21\times10^{-7}$ 5.
					Iγ: 11.5 <i>15</i> in 1977Le08.
					Mult.: from $906\gamma - 159\gamma(\theta)$ consistent with
					0(1065)-2+(159)-0+(g.s.) sequence
					$(W(\Delta\theta=75^{\circ})/W(\Delta\theta=15^{\circ})=0.50 \ 10) \ (2005Mc01).$
934.4 ^{@a}	1404.85	0			$I\gamma: <0.17$ (2005Mc01).
×977.08 8		4.78 11			Absent in 2005Mc01 (Ιγ<0.15).
1004.1 ^{@a}	1162.70	c			$I\gamma: <0.15 \ (2005Mc01).$
*1054.4 [§] 10		8.3 [§] 13			Attributed to ¹⁰⁰ Yb in 2005Mc01.
1060.2# 1	1218.76	$2.3^{\#}3$			
1080.86# 12	1551.39	1.6# 2			
1132.75# 11	1603.18	2.5# 3			Eγ: from table I of 2005Mc01; Eγ=1133.75 <i>11</i> in table II and 1134 in fig. 3. <i>1132</i> .75 fits placement well, 1133.75 does not
1173.74 7	1332.41	5.94			
$1218.8^{\#}.3$	1218.76	$1.0^{\#}$ 4			
1246.37# 7	1404.85	5.4# 3			
×1288.3§ 12		5.8§ 21			Absent in 2005Mc01 (Ιγ<0.12).
					• •

¹⁶⁶TaεDecay 2005Mc01,1977Le08 (continued)

$\gamma(^{166}Hf)$ (continued)

$\mathrm{E}\gamma^{\dagger}$	E(level)	$I\gamma^{\dagger}\&$	Comments
1444.4 [#] 2 ×1447.0§20	1603.18	$2.3^{\#}$ 1 6.38 16	2005Mc01 report no evidence in singles for this γ.
† From 2005M	lc01, except as not	ed.	

From Adopted Gammas, except as noted.
 § From 1977Le08.

 $^{\#}~$ Not reported previously in $^{166} Ta~\epsilon$ decay.

@ Approximate energy from level-energy difference for unobserved but spin-allowed transition; upper limit for intensity is given in comments and transition is omitted from Adopted Levels, Gammas.

 $\&\,$ For absolute intensity per 100 decays, multiply by 0.541 $\it 17.$

a Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁶⁶Τa ε Decay 2005Mc01,1977Le08 (continued)

Decay Scheme

⁹⁶Zr(⁷⁴Ge,4nγ) 2000Ri11

2000Ri11: E=310 MeV; 85.25% ⁹⁶Zr target; EUROBALL III array equipped with 30 Tapered and 15 Cluster Ge-detectors, all Compton-suppressed; measured E γ , $\gamma\gamma$ coin, $\gamma\gamma(\theta)$ (DCO, θ =90° and =154°).

¹⁶⁶Hf Levels

Quasiparticle orbitals used in band labels: $A=(v 5/2[642]), \alpha=+1/2.$ $B=(v 5/2[642]), \alpha=-1/2.$ $C=(v 3/2[651]), \alpha=+1/2.$ $D=(v 3/2[651]), \alpha=-1/2.$ $F=(v 5/2[523]), \alpha=-1/2.$ $G=(v 3/2[521]), \alpha=-1/2.$ $A=(\pi 7/2[404]), \alpha=+1/2.$ $b=(\pi 7/2[404]), \alpha=+1/2.$ $k=(\pi 1/2[660]), \alpha=+1/2.$ $e=(\pi 9/2[514]), \alpha=+1/2.$ $f=(\pi 9/2[514]), \alpha=-1/2.$ $g=(\pi 1/2[541]), \alpha=-1/2.$

E(level) [†]	$J\pi^{\ddagger}$	E(level) [†]	$J\pi^{\ddagger}$	E(level) [†]	$J\pi^{\ddagger}$
0.0§	0+	2494.6 ^e 17	11-	3469.9 ^e 18	15-
158.0§ 10	2 +	2538.5 ^f 16	10-	3515.8& 18	14+
470.0§ 13	4 +	2563.8 [§] 17	12+	3585.6 ⁱ 18	14-
895.9 [§] 15	6 +	2680.1 ⁱ 16	10-	3779.4 j <i>18</i>	15-
1005.9 ⁿ 13	(3+)	2731.9@ 18	12+	3817.4 ^a 20	15-
1405.0 [§] 16	8+	2793.1 <i>j</i> 18	11 -	3833.3 [#] 19	16+
1418.9 ⁿ 14	(5+)	2909.5 ^f 17	12-	3918.2 ^f 18	16-
1465.9e 15	5 –	2960.4e 17	13-	3972.1b 20	15-
1550.6 ^f 14	4 -	3006.8 [@] 18	14+	4006.5 [@] 20	18+
1725.0 ^e 15	7 –	3023.9 ^{&} 18	12+	4027.9 ^e 21	17-
1839.8 ^f 14	6 –	3085.8 ⁱ 17	12-	4064.7& 19	16+
1970.0 [§] 17	10+	3209.0 # 18	14+	4163.5 ⁱ 19	16-
2076.8 ^e 16	9 -	3231.4 <i>j</i> 18	13-	4228.5 ^h 19	16-
2196.1 ^f 15	8 -	3373.4 f 18	14-	4374.0a 20	17-
2376.5 ⁱ 16	8 -	3446.6@ 19	16+	4400.4j <i>21</i>	17-

E(level) [†] $J\pi^{\ddagger}$ E(level) [†] $J\pi^{\ddagger}$ E(level) [†] $J\pi^{\ddagger}$ 4443.4b2017-6536.5m24 $(23+)$ 10009#332+4445.4d2014-6615.0#2224+10080d332+4545.4f2018+6660.6c2323-10326*433-4582.0c1915-6662*324-10721#434+4621.4b1918+7006.6d2324-10933#334+4641.4b1918+7078.282525-11298*434-4677.4&2018+7078.282525-11298*435-505.6#2020+7028.2825-12005f436-505.6#2019-7342#3(25+)12762#438+5071.3b2019-7342#3(25+)12762#438+5071.3b2019-7392.1#2326-13308f440+518.7#21(19+)7713.6d2426-14424*41-5160.0d2018-77701.326-14879#442+5313.0&2/120-7898f.327-160067#44+5160.0d2018-77701.326-14424*41-5160.0d2119-7392.1#2328+150067#43-5313.0&2/1 <t< th=""><th></th><th></th><th></th><th>¹⁶⁶H</th><th>f Levels (continued)</th><th>_</th></t<>				¹⁶⁶ H	f Levels (continued)	_
4443.4 b 20 $17 6536.5m$ 24 $(23+)$ $10009^{\#}$ 3 $32+$ 4445.4 d 20 $14 6615.0^{\#}$ 22 $24+$ $10080d$ 3 $32-$ 4456.7 20 $18+$ $6641.3h$ 24 $24 10167h$ 4 $33 4582.0^{C}$ 19 $15 6662^{C}$ 3 $25 10721a$ 4 $33 4622.9^{C}$ 29 $19 6978^{1}$ 3 $24 10934^{\#}$ $34+$ 4688.5^{\oplus} 20 $20+$ 7026.1^{Θ} 25 $25 110934^{\#}$ $34+$ 4668.5^{Θ} 20 $20+$ 7026.1^{Θ} 25 $25 110934^{\#}$ $34+$ $4677.4k$ 20 $18+$ $7078.2k$ $25 11092k^{\#}$ $36+$ $4744.9d$ 19 $16 7136^{T}3$ $26 11751^{\Theta}4$ $36+$ $4937.1c$ 19 $77 7199.4b$ $25 12005f$ 4 $37 5031.3b$ 20 $19 7342m$ 3 $(25+)$ $12762^{\Theta}4$ $38+$ $5071.4j$ 23 $19 7363.6^{C}$ 23 $25 13038f$ 4 $48 518.5^{T}2$ $20 744k^{A}3$ $26 13480^{\Theta}4$ $40+$ $518.757.6^{C}4$ $43 518.5^{T}2$ $20 748k^{A}3$ $27 160067^{\Theta}4$ $40 518.5^{T}2$ $20 789k^{A}3$ $27 160067^{\Theta}4$ $42+$ <	E(level) [†]	Jπ [‡]	E(level) [†]	$J\pi^{\ddagger}$	E(level) [†]	Jπ [‡]
4443.40201/-6536.5m24(23+)10009 d332+4456.7f2018+6615.0f2224+10167h32-456.7f2018+6661.0f2224-10167h33-452.0f1915-6662f325-10721f433-4622.9f2219-6678f324-1093f334+4681.4h1918-7006.6f2324-1093f334+4687.4k2018+7078.2f2526+1093f334+4687.4k2018+7078.2f2525-1128f436+4823.5i2218-7145a325-1128f436+4937.1f1916-7136f325-12005f437-505.6a2019-7342m3(25+)12762f438+5071.4j2319-7363.6f2325-13038f440+518.7f2120+7478f326-13800f440+518.7f2220-7444h326-13800f440+518.7f2120+7778326-14879f442+518.7f2018-7770i326-144879f44+518.7f2120+7890f327-0.0+x14	the these	1.7	0500 FM 04	(00)	10000# 0	
4445. 7^{4} 2014-0015. 7^{2} 24+10080 7^{3} 32-4514.3 f2018+6650.6C2323-10326 4 33-4582.0 c1915-6662 6 25-10721 8 434-4641.3 h1918-7006.6 d 2324-10933 4 34+4641.4 h1918-7006.6 d 2324-10933 4 34+4668.5 6 2020+7026.1 6 2526+10994 f34-4677.4 k2018+7078.2 k25-1128 t36+4937.1 c1916-7136 f325-11208 t36+4937.1 c1917-7199.4 b2525-12005 f36+5005.6 a2019-7342 m3(25+)1276 t38+5071.4 j2319-7363.6 C2325-13038 f438-5088.6 g2219-7342 m2326+1332 k t40+40+518.7 f2120+7478 t327-14096 f40+518.7 f2120+7478 t327-16006 t 440+518.7 f2120+798 t327-16006 t44+513.0 k2120+798 t327-16006 t44+513.0 k2120+798 t327-236.0 e k 1 k517.5 m21 <td< td=""><td>4443.45 20</td><td>17-</td><td>6536.5^m 24</td><td>(23+)</td><td>10009" 3</td><td>32+</td></td<>	4443.45 20	17-	6536.5 ^m 24	(23+)	10009" 3	32+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4445.44 20	14-	0015.0" 22	24+	10080ª 3	32-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4450.7" 20	18+		24-	10167" 4	32-
4.862.01.91.90.00232.31.074243.34.641.4 h jg 187006.6 d 232410933 3 3.44.661.4 h jg 187026.1 25 26+10934 d 3.44.667.4 d 20 187078.2 25 2511298 d 36+4.823.5 1 22 1871458 3 2511928 d 36+4.837.1 $1g$ 177199.4 b 25 2512005 f d 36+4.837.1 $1g$ 197342 $3g$ 2512005 f d 36+5005.6 20 197314 3 2512005 f d 36+5071.4 23 197363.6 2 25 12005 f d d 5071.4 23 197363.6 2 25 13038 f d d 5086.98 22 197392.1 23 26 13308 d d d 518.7 21 (19+)7713.6 24 26 14424 d d d 518.7 21 (19+)7713.6 24 26 14424 d d d 510.6 24 20 7898 27 160067 d d d d 5113.7 50 21 187701 3 28	4514.5 20	18-	66626 2	25	103268 4	22
402.1.3 122 13-13-13-13-13-13-13-13-4641.41918-7026.62.32.4-10933109333.4+4668.52.02.0+7026.12.52.6+10933109333.4+4667.48.22.018+7078.22.5-1129843.5-4744.91916-713632.6-1175143.6+4937.11917-7199.42.5-1208543.6-505.62.019-734432.5-1228943.8+5071.42.319-7363.62.32.5-130387.43.8-5086.92.219-7392.12.32.6+1332844.0+517.52.12.0+747832.7-1409644.0+518.72.12.0+747832.7-1409644.2+514.32.02.0-78932.7-1409644.2+513.52.12.0+795432.7-16006?444+513.0.82.12.0+795432.7-16006?444+513.0.82.12.0+795432.7-16006?444+514.32.02.0-7892.8-1487944.2+525.0.82.12.0+795432.7-	4382.0 13	10	60791 2	2 3 -	10721 4	24
1.1.11.21.0 <th< td=""><td>4671 4h 10</td><td>18-</td><td>7006 6d 23</td><td>24-</td><td>10933# 3</td><td>34+</td></th<>	4671 4h 10	18-	7006 6d 23	24-	10933# 3	34+
1000.11000.11000.11000.11000.14677.4& 2018+7078.28251122835-4744.91916-7136326-11751436+4823.512218-7145325-11928436+4837.11917-7199.42525-12005436-5005.62019-7314325-12289437-5031.32019-7363.62325-13038438-5080.92219-7392.12326+13328440+517.521(19+)7770326-1480040+41-5160.02018-7770326-14879442+517.521(19+)77848327-16006744+510.62420-7891328+155757443-5250.82421-7898327-0.0+x185410.02119-8015328-486.0+x185410.02119-8015328-138.0+x1105665.92321-8303328-138.0+x1115677.32422-837329-1734.9+x1135677.32422-8376329-2475.9+x1145784.41 </td <td>4668 5[@] 20</td> <td>20+</td> <td>7000.0 25 7026 1[@] 25</td> <td>26+</td> <td>10994 f 4</td> <td>34-</td>	4668 5 [@] 20	20+	7000.0 25 7026 1 [@] 25	26+	10994 f 4	34-
1.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.1 $4744.9d$ 19 $16 7136f$ 3 $26 11751f$ 4 $36+$ $4937.1c$ 19 $17 7199.4b$ $25 11928f$ 4 $36+$ $4937.1c$ 19 $17 7199.4b$ $25 12288f$ $36+$ $505.6a$ 20 $19 7342m$ 3 $(25+)$ $12762f$ 4 $38+$ $5071.4J$ 23 $19 7362.1f$ 23 $26+$ $13328f$ 4 $39 5086.8f$ 22 $19 7342m$ $26+$ $13800f$ 4 $40+$ $517.5m$ 21 $20+$ $7478f$ 3 $27 14096f$ 4 $40 5157.5m$ 21 $(19+)$ $7713.6d$ 24 $26 14879f$ $42+$ $214.3h$ 20 $20 7891f$ 3 $28+$ $155757f$ 4 $43 5160.0d$ 20 $18 770i$ 3 $26 14879f$ $42+$ $41+$ $5116.0c$ 21 $19 8015f$ 3 $27 16006f$ 4 $41+$ $5410.0c$ 21 $19 8015f$ 3 $27 236.0+x1$ 8 $5410.0c$ 21 $19 8015f$ 3 $28 1387.7+x1$ 12 $565.9f$ 23 $21 8003h$ $28 1387.7+x1$ 13 $5657.7f$ 4 $22 8376f$ 29	4677 4& 20	18+	7028.1 25 7078 28 25	25-	11298e 4	35-
4823.512218-7145 ^a 325-11928 [#] 436+4937.1 ^c 1917-7199.4 ^b 2525-12005 ^f 436-5005.6 ^a 2019-7314 ^j 325-12289 ^e 437-5031.3 ^b 2019-7363.6 ^c 2325-13038 ^f 438+5071.4 ^j 2319-7363.6 ^c 2325-13038 ^f 438-5086.9 ^f 2219-7392.1 [#] 2326+13328 ^e 439-5088.3 ^f 2220-7444 ^h 326-1489 [@] 440+5157.5 ^m 21(19+)7713.6 ^d 2426-14424 ^e 41-5160.0 ^d 2018-7770 ⁱ 326-14879 [@] 442+513.3 ^b 2020-7891 [@] 327-160067 [@] 444+5313.3 ^b 2120+7998327-236.0 ⁺ x ¹ 85400.0 ^c 2119-8015 ^f 328-1887.7 ⁺ x ¹ 105675.7 ^a 2222+8007 ^b 327-236.0 ⁺ x ¹ 85510.5 ⁱ 2420-8062.7 ^c 2427-759.0 ⁺ x ¹ 105677.3 ^f 2422-873 ^e 29-1734.9 ⁺ x ¹ 135677.3 ^f 2422-873 ⁶ 29-2356.1 ⁺ x ¹ 135784.1 ^j 2121-876 ^f 8 <td< td=""><td>4744.9d 19</td><td>16-</td><td>7136^f 3</td><td>26-</td><td>$11751^{@}4$</td><td>36+</td></td<>	4744.9d 19	16-	7136 ^f 3	26-	$11751^{@}4$	36+
4937.1 i <t< td=""><td>4823.5ⁱ 22</td><td>18-</td><td>7145a 3</td><td>25-</td><td>$11928^{\#}$ 4</td><td>36+</td></t<>	4823.5 ⁱ 22	18-	7145a 3	25-	$11928^{\#}$ 4	36+
5005.62019-7314j325-12289e437-5031.32019-7342m3(25+)12762@438+5071.4j2319-7363.6 c 2325-13038f438-5086.95219-7392.1#2326+13328e439-5088.3f2220-7444h326-13800@440+5118.7*2120+7713.62426-14879@442+5160.0d2018-77701328+15575?e443-5250.8e2421-7899f327-16006?@444+5313.0&2120+7954a27-236.0+xl85410.0c2119-8015f328-486.0+xl85510.5i2420-8062.7c2427-236.0+xl85677.3f2422-8373e29-1734.9+xl135677.3f2422-8373e29-2475.9+xl145788.5m2121-8797@30+2860.7+xl155848.7#2121-8797@30+2860.7+xl155847.4j2521-8797@30+2860.7+xl165897.3h2222-8871b30-0.0+yk85987.8c2324-912d30-0.0+yk8598	4937.1 ^c 19	17-	7199.4b 25	25-	12005f 4	36-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5005.6 ^a 20	19-	7314J <i>3</i>	25-	12289 ^e 4	37-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5031.3 ^b 20	19-	7342 ^m 3	(25+)	12762 [@] 4	38+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5071.4J 23	19-	7363.6 ^c 23	25-	13038 ^f 4	38-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5086.9g 22	19-	7392.1 [#] 23	26+	13328 ^e 4	39-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5088.3 f 22	20-	7444h <i>3</i>	26-	13800@ 4	40+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5118.7# 21	20+	7478° 3	27-	14096 f 4	40-
5160.0d2018-7770 i326-14879@442+5214.3h2020-7891@328+15575?443-5250.8e2421-7899B327-16006?@444+5313.0&2120+7954a27-0.0+x155407.2@2222+8007b327-236.0+x185410.0c2119-8015f328-486.0+x185510.5i2420-8062.7c2427-759.0+x1105665.9B2321-8303h328-1387.7+x1125672.7a2221-8303h328-1387.7+x1125675.7i5422-8373e29-1734.9+x1135687.1d2121-8767829-2475.9+x1145784.4j2521-8797@330+2860.7+x1155848.7#2121-8767829-3665.0+x1165897.3h2222-8871h29-3665.0+x1165986.0&2322+9116#330-0.0+yk5986.0&2322+9335e31-977.0+yk106243i322-9635c331-977.0+yk166331.0g2423-9682g31-157.0+yk136355f324-9734a31-190	5157.5 ^m 21	(19+)	7713.6 ^d 24	26-	14424 ^e 4	41-
$5214.3h$ 20 $20 7891^{\textcircled{e}}3$ $28+$ $155757^{e}4$ $43 5250.8^{e}$ 24 $21 789993^{\circ}3$ $27 160067^{\textcircled{e}}4$ $44+$ $5313.0^{\textcircled{k}}$ 21 $20+$ $7954a^{\circ}3$ $27 0.0+x^{1}$ $44+$ $5407.2^{\textcircled{e}}$ 22 $22+$ $8007b^{\circ}3$ $27 236.0+x^{1}8$ 8 $5410.0^{\circ}2^{\textcircled{e}}$ 22 $22+$ $8007b^{\circ}3$ $27 236.0+x^{1}8$ 8 $5510.5^{1}24$ $20 8062.7^{\circ}24$ $27 759.0+x^{1}10$ 10 $5665.98^{\circ}23$ $21 8222.0^{\#}25$ $28+$ $1064.1+x^{1}11$ $5677.3^{f}24$ $22 8373^{e}3$ $29 1734.9+x^{1}13$ $5687.1^{d}21$ $20 8426.4^{d}25$ $28 2095.8+x^{1}13$ $5720.4^{b}21$ $21 87678^{\circ}3$ $29 2475.9+x^{1}14$ $578.5^{m}21$ $(21+)$ $8808.1^{\circ}25$ $29 3256.1+x^{1}15$ $5848.7^{\#}21$ $22+$ $8871b^{\circ}3$ $29 3665.0+x^{1}16$ $5987.3h^{2}2$ $22 8871b^{\circ}3$ $29 4083.1+x^{1}17$ $5923.5^{e}25$ $23 8976f^{\circ}4$ $30 0.0+y^{k}$ $5987.8^{c}22$ $21 9212d^{\circ}3$ $30 697.0+y^{k}10$ $6243^{1}3$ $22 9335e^{\circ}3$ $31 977.0+y^{k}11$ $6310.6d^{22}$ $22 9635c^{\circ}3$ $31 977.0+y^{k}13$ $6355^{f}3$ $24 9734a^{\circ}4$ $31 1905.0+y^{k}13$ <td>5160.0^d 20</td> <td>18-</td> <td>7770 i <i>3</i></td> <td>26-</td> <td>14879@ 4</td> <td>42+</td>	5160.0 ^d 20	18-	7770 i <i>3</i>	26-	14879@ 4	42+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5214.3 ^h 20	20-	7891 [@] 3	28+	15575?e 4	43-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5250.8 ^e 24	21-	7899g <i>3</i>	27-	16006? [@] 4	44 +
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5313.0 ^{&} 21	20+	7954 ^a 3	27-	0.0+x ¹	
5410.0° 21 $19 8015^{\circ}$ $28 486.0+x^{1}$ 8 5510.5° 24 $20 8062.7^{\circ}$ 24 $27 759.0+x^{1}$ 10 5665.96 23 $21 8222.0^{\#}$ 25 $28+$ $1064.1+x^{1}$ 11 $5672.7a$ 22 $21 8303h$ $28 1387.7+x^{1}$ 12 5677.3° 24 $22 8373^{\circ}$ $29 1734.9+x^{1}$ 13 5687.1° $21 87678$ $29 2475.9+x^{1}$ 14 $5784.4j$ 25 $21 8797^{\odot}$ $30+$ $2860.7+x^{1}$ 15 5798.5^{m} 21 $(21+)$ 8808.1° $29 3256.1+x^{1}$ 15 $5848.7^{\#}$ 21 $22+$ $8871b$ $29 3665.0+x^{1}$ 16 $5897.3h$ 22 $22 8871b$ $30 0.+yk$ 8 5987.8° 22 $21 9212d$ $30 0.0+yk$ 8 5987.8° 22 $22 8871b$ $30 0.+yk$ 8 5987.8° 22 $21 9212d$ $30 697.0+yk$ 10 6197.1^{\odot} 23 $24+$ $9216h$ $30 697.0+yk$ 12 6331.06 24 $23 96826$ $31 1274.0+yk$ 12 6331.06 24 $23 96826$ $31 1905.0+yk$ 13 6385° $23 9749^{\odot}$ $32+$ $2240.0+yk$ <td>5407.2[@]22</td> <td>22+</td> <td>8007^b 3</td> <td>27-</td> <td>236.0+x¹ 8</td> <td></td>	5407.2 [@] 22	22+	8007 ^b 3	27-	236.0+x ¹ 8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5410.0 ^c 21	19-	8015 f 3	28-	486.0+x ¹ 8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5510.5 ⁱ 24	20-	8062.7 ^c 24	27 -	$759.0 + x^{1}$ 10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5665.98 <i>23</i>	21-	$8222.0^{\#}25$	28+	$1064.1 + x^{1}$ 11	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5672.7 ^a 22	21-	8303 ^h <i>3</i>	28-	1387.7+x ¹ 12	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5677.3 ^f 24	22-	8373 ^e 3	29-	1734.9+x ¹ 13	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5687.1 ^d 21	20-	8426.4 ^d 25	28-	$2095.8 + x^{1}$ 13	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5720.4 ^b 21	21-	8767g 3	29-	$2475.9 + x^{1}$ 14	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5784.4J 25	21-	8797 [@] 3	30+	$2860.7 + x^{1}$ 15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5798.5m 21	(21+)	8808.1 ^c 25	29-	$3256.1 + x^{1}$ 15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5848.7# <i>21</i>	22+	8817a 3	29-	$3665.0 + x^{1}$ 16	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5897.3n 22	22-	8871 ^D 3	29-	$4083.1 + x^{1}$ 17	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5923.5° 25	23-	89761 4	30-	$0 \cdot 0 + y^{\mathbf{K}}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5986.0 [∞] 23	22+	9116# <i>3</i>	30+	$204.0+y^{K}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5987.8° 22	21-	9212ª 3	30-	$438.0+y^{k}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6197.1° 23	24+	9216" 3	30-	697.0+y 10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6243* 3 6210 ed 22	22-	93350 4	31-	977.0+y K 12	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6221 09 24	22-	9033° 3 06939 2	31-	1274.0+y=12 1582 0.4 k 12	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6355f 2	24-	90028 3	31-	1302.0+y=13 1905 0+yk 12	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6385 78 25	23-	9734- 4	32+	$2240 0 \pm v^{k} 14$	
6531J 3 23- 9987 ^f 4 32-	6441 4b 22	23-	9771b 3	31-	2270.0+y 14	
	6531 <i>j</i> 3	23-	9987 f 4	32-		

$^{96}{\rm Zr}(^{74}{\rm Ge},4n\gamma)$ 2000Rill (continued)

 $^\dagger\,$ From least-squares fit to Ey, assigning 1 keV uncertainty to each datum.

[‡] Authors' values, based on band structure, alignment gains, B(M1)/B(E2) ratios and comparison with structures in neighboring nuclides.

§ (A): $K\pi=0+$ g.s. band.

(B): BC band.

(C): AB band. Yrast above J=14. Alignment gain 10ħ at ħω=0.25 MeV. Becomes ABCDfg band at high spin with possible admixture of ABEFfg.

& (D): EFBC band.

a (E): AGEF band.

b (F): AGEH band.

^c (G): $K\pi = 10-$, $\alpha = 0$ gfAE band (2000Ri11). Likely configuration: $v (5/2[642]+5/2[523]) + \pi (1/2[541]+9/2[514])$; strongly supported by measured B(M1)/B(E2) ratios.

d (H): $K\pi$ =10-, α =1 geAE band (2000Rill). See comment on $K\pi$ =10- signature partner band.

e (I): $K\pi=5-AE$ band.

f (J): AF band.

g (K): AGBC band. Large alignment, consistent with four-quasineutron structure.

Footnotes continued on next page

¹⁶⁶Hf Levels (continued)

h (L): AHBC band.
 i (M): BE band. Low alignment at low J.

j (N): BF band. k (O): Band 1.

l (P): Band 2.

 $\ensuremath{^{m}}$ (Q): Band 3.

ⁿ (R): π =(+) band fragment.

$\gamma(^{166}Hf)$

$E\gamma^{\ddagger}$	E(level)	Mult. [†]	Comments
137	4582.0		
158	158.0		
163	4744.9		
168	2731.9		DCO=1.50 <i>15</i> .
192	4937.1		
204	204.0+y		
223	5160.0		
234	438.0+y		
236	236.0+x		
250	5410.0		
	486.0+x		
259	1725.0		
	697.0+y		
261	3469.9		
273	759.0+x		
275	3006.8		
277	5687.1		
280	977.0+y		
289	1839.8		
297	1274.0+y		
299	4744.9		
204	2680 1		
205	1064 1		
303	1582 0+v		
319	1332.0+y		
320	1725 0		
323	6310 6		
020	1387 7 + x		
	1905.0+v		
335	2240.0+y		
340	6650.6		
342	2538.5		
347	1734.9 + x		
349	8062.7		
350	7713.6		
352	2076.8		
355	4937.1		
356	2196.1		
	7006.6		
357	7363.6		
361	$2\ 0\ 9\ 5$. $8+x$		
364	8426.4		
371	2909.5		
374	1839.8		
380	$2\ 4\ 7\ 5\ .\ 9+x$		
382	8808.1		
385	$2\ 8\ 6\ 0$. 7 + x		
396	$3\ 2\ 5\ 6\ .\ 1+x$		
397	2960.4		
404	9212		
406	3085.8		
409	3665.0+x		

$\gamma(^{166}\text{Hf})$ (continued)

$E\gamma^{\ddagger}$	E(level)	Mult. [†]	Comments
413	1/18 9		
415	3373 4		
	4641.4		
415	2909.5		
	5160.0		
418	2494.6		
	4083.1 + x		
421	1839.8		
423	9635		
426	895.9		
438	3231.4		
	$4\ 3\ 8\ .\ 0+y$		
440	3446.6		
443	3006.8	Q	DCO=0.96 2.
4458	10080		
448	3918.2		
460	3023.9		
462	2538.5		
464	33/3.4		
400	2960.4		
471	2190.1		
473	5410 0		
478	4641 4		
484	2680.1	Q	DCO=0.98 <i>8</i> .
486	486.0+x	·	
492	3515.8		
493	697.0+y		
500	3585.6		
509	1405.0		
	3469.9		
523	759.0+x		
524	2494.6	D	DCO=1.68 22.
527	5687.1		
536	1005.9		
537	2376.5		
539	977.0+y		
545	1330.0		
547	3085 8		
548	3779.4		
549	4064.7		
557	4374.0		
558	4027.9		
560	4006.5		
562	5005.6		
565	1970.0		
573	5214.3		
574	5088.3		
577	1274.0+y		
5/8	4103.3		
	JJ07.0 1064 1±v		
579	5665 9		
588	5031.3		
589	5677.3		
594	2563.8		
595	4622.9		
596	4514.3		
605	1582.0+y		
613	4677.4		
621	4400.4		
623	4456.7		

$\gamma(^{166}\text{Hf})$ (continued)

$E\gamma^{\ddagger}$	E(level)	Mult. [†]	Comments
623	6310.6		
624	3833.3		
628	5250.8		
629	1387.7 + x		
631	1905.0+y		
632	5005.6		
636	5313.0		
641	5798.5		
643	4228.5		
645	3209.0		
657	5031.3		
658	2240.0+y		
000	4823.3		
002	4008.0		
669	5118.7 6650 6		
665	6221 0		
667	5672 7		
671	5071 4		
071	1734 9+v		
672	2076 8		
673	5923 5		
070	5986 0		
678	6355		
683	5897.3		
687	5510.5		
689	5720.4		
696	7006.6		
699	8062.7		
700	5214.3	Q	DCO=0.99 10.
707	7713.6		
708	2095.8 + x		
713	5784.4		
	6385.7		
	7363.6		
	8426.4		
716	2793.1		
721	6441.4		
723	4641.4	Q	DCO=1.04 17.
730	5848.7		
733	6243		
735	6978		
137	3231.4	Ų	DCD=0.30 8.
738	6336.3		
139	3407.2		
741	2475 Q V		
741	6641 3		
745	8808 1		
747	6531		
	7078.2		
758	7199.4		
759	7145		
762	2731.9		
765	2860.7+x		
766	6615.0		
777	7392.1		
780	$3\ 2\ 5\ 6\ .\ 1+x$		
781	7136		
783	7314		
786	9212		
790	6197.1		
792	7770		

$\gamma(^{166}\text{Hf})$ (continued)

$E\gamma^{\ddagger}$	E(level)	Mult.†	Comments
803	7444		
804	3665.0+x		
806	7342		
808	8007		
809	7954		
811	3817.4		
810	7478	0	
019 991	7800	Q	DC0=1.10 20.
827	9635		
021	$4083 1 \pm x$		
829	1725 0	D	DCO-1 77 23
020	7026.1	2	
830	8222.0		
844	4677.4		DCO=0.89 25.
848	1005.9		
856	4064.7		DCO=0.8 3.
	5313.0		
859	8303		
863	8817		
864	8871		
865	7891		
867§	5986.0		
	10080		
868	8767		
879	8015		
893	10009		
894	8373		
	9116		
900	9771		
906	8/9/		
915	9210		
917	9734		
924	10933		
927	4374.0		
944	1839.8		
949	1418.9		
951	10167		
952	3515.8		
	9749		
961	8976		
962	9335		
965	3972.1		
972	11298		
987	10721		
991	10326		
0.0.2	12289		
993	10742		
999	1465 9		
990	1405.5		
999	5005 6		
1007	10994		
1009	11751		
1011	9987		
	12005		
	12762		
1025	5031.3	D	DCO=1.4 3, 1.6 4.
1033	13038		
1038	13800		
1039	13328		
1043	5665.9		DC0=1.1 3.

$\gamma(^{166}Hf)$ (continued)

Eγ‡	E(level)	Mult. [†]	Comments
1052	5720.4		
1054	3023.9		
1058	14096		
1059	5086.9	(Q)	DCO=1.08 26.
1079	14879		
1080	1550.6		
	6331.0	Q	DCO=1.03 21.
1096	14424		
1127\$	16006?		
1130	5798.5		
1151	5157.5		
	15575?		
1153 [§]	5160.0		
1155	7078.2		
1180	5848.7		
1195	7392.1		
1208	6615.0		
1298	4744.9	D	DCO=0.47 17 (Δ J=1, D gate); DCO=1.01 22 (Δ J=2 gate). Interpreted by authors as D, Δ J=0 transition.
1373	4582.0		
1491	4937.1		$DCO=0.86$ 22 ($\Delta J=1$, D gate).
1575	4582 0		
10.0	1002.0		

[↑] From DCO ratios measured using gates on △J=2 transitions, (quadrupole gated), unless otherwise noted.
[↓] Uncertainties unstated by authors.
§ Placement of transition in the level scheme is uncertain.

(A) Kπ=0+ g.s. band.	(B) BC band.	(C) AB band.	(D) EFBC band.	(E) AGEF band.
band.				

<u>4+</u><u>470.0</u> <u>2+</u><u>158.0</u>

12+

10+

8+ 6+

0+ 0.0

 $^{166}_{72}$ Hf₉₄

(F) AGEH band.

(G) Kπ=10-, α=0 gfAE band (2000Rill). (H) Kπ=10-, α=1 geAE band (2000Rill). (I) Kπ=5- AE band.

									43-		·[15575
									41-		¥	14424
									39-		¥	13328
									37		<u> </u>	12289
									35-		<u> </u>	11298
		<u>31-</u>	N .	9635	<u>32-</u> (G)31- 30-	<u> </u>		$\int \frac{10080}{9212}$	33-		<u> </u>	10326
31-	9771	<u></u>		8808.1	(G)29- 28-		¥	8426.4			<u> </u>	9335
29-	8871	(H)26 25		8062.7	$\frac{(G)27-}{26-}$	<u> _↓</u>	¥	7713.6	- - <u>29</u> -		¥	8373
25-	v 7199.4	(H)24- 23-		6650.6	$\frac{24}{(G)23}$		¥	6310.6	27-		<u> </u>	7478
23-	6441.4	(H)22- 21- (H)20-	VV	5987.8	(G)21- 20-			5687.1	25		¥	6662
$\frac{21}{19}$	5720.4	<u>19–</u> (H)18–		4937.1	$\frac{(G)19}{18}$ (G)17-	<u> </u>	¥	5160.0	<u>- 23-</u> - <u>21-</u> 19	۱	¥	5923.5 5250.8
(C)20+ 17- (E)17-		(H)16- 15-		4582.0	$\frac{16-}{(G)15-}$				<u> </u>		¥	4027.9 3469.9
$\begin{array}{c c} (C) 18+ \\ \hline 15- \\ \hline (C) 16+ \end{array}$	3972.1	(H)14- (C)16+ (B)14+	(v		$\frac{(C)18+}{(C)16+}$	Ý	v		- (B)14+ - 13- $- (A)12+$			2960.4
(C)14+		(C)14+	<u> </u>		-				$\frac{11-}{9-}$		\equiv	2494.6
									(A)10+ 7- 5-		<u>+</u>	1725.0
									(A)8+ (A)6+ (A)4+			ī ~

(J) AF band.

(K) AGBC band.

(L) AHBC band.

(M) BE band.

40-		14096						
38-		13038						
36-		12005						
34-		10994						
32-		9987	31-	9682	32-	10167	-	
30-	v	8976				v 9216	-	
28-		$\frac{8015}{7136}$	<u>29– v</u>	8767	28-	v 8303	-	
24- 22-		6355	27- v	7899		7444		7770
<u>20-</u> 18-		5088.3	23- V	6331.0	24-	6641.3		<u>v 6978</u>
<u>16-</u> (I)15-		3918.2	(I)23- 21- V	5665.9		5897.3 5214.3		<u>v 6243</u>
<u>(I)13-</u> 12-	·		(I)21- V 19-	5086.9	$-\frac{18}{(J)18}$	4641.4	- 18-	v 4823.5
10- (I)11-			(I)19- (I)17-		$-\frac{16-}{(M)16-}$	4228.5		4163.5 3585.6
8- (I)9-		2196.1			(M) 14- V		12-	¥ 3085.8 2680.1
6- (I)7-							(J)10- 8-	2376.5
4- (I)5-							(J)8- (J)6-	¥/
(R)(3+) (A)(3+)								
(A)4+	·							

(N) BF band.	(0) Band 1.	(P) Band 2.	(Q) Band 3.	(R) π=(+) band
	2240.0+y			fragment.
	/1905.0+y			
	1582.0+v			
	V 1274 0+V			
	V 977.0+y			
	\ <u>\</u> <u>\</u> <u>\</u> <u>\</u> <u>\</u> <u>\</u> <u>\</u> <u>\</u> <u>\</u> <u>\</u> <u>\</u> <u>\</u> <u>\</u>			
	$\frac{ \psi\psi }{438.0+y}$			
	$\sqrt{\frac{\psi}{\psi}}/\frac{204.0+y}{204.0+y}$	4083.1+x		
	<u> </u>	3665.0+x		
		$\sqrt{3256.1+x}$		
	/	$\sqrt{2860.7+x}$		
	l. l. l. l. l. l. l. l. l. l. l. l. l. l	2475 9+x		
	l,	2005.8.1		
	l,	V V 2095.8+X		
	1	<u> </u>		
	,	1387.7+x		
	, ,	1064.1+x		
		v v 759.0+x		
))	$\frac{1}{486.0+x}$		
	l. l.	$\frac{\psi}{\psi}$ 236.0+x		
	L	V V 0.0+x		

(25+)		7342
(23+)	v	6536.5
(21+)		5798.5
(19+)	¥	5157.5
(C)20+	V I	
(C)18+		

		⁹⁶ Zr(⁷⁴ Ge,4nγ)	2000Rill (contin	nued)	
		Ba	unds for ¹⁶⁶ Hf		
(A)	(B)	(C)	(D)	(E)	(F)
		44+			
		1127			
		42+ w 1079			
		<u>40+</u> v			
		1038 38+			
	36+	1011	-		
	995	<u>36+</u>			
	$\frac{34+}{924}$	<u>34+ v</u>		33-	
	32+ v	-32+		987 V 31-	31-
	893 30+	952		917	900
	28+	$\frac{30+}{906}$		<u> </u>	<u> </u>
		— 1			. 97

28+ 27-830 809 808 865 26+ 25-25-26+ 7 7 758 1195 759 24+ 829 23-23-24-766 22+ 713 721 1208 22+ 790 673 ¥ 636 21-867 " / 21-730 22+ 20+ 689 667 19 - 1052 562/ 17 - 6571180 20+ 19-.73 856 662 20+ 18+ 588632 ...(C) 613 ¥ 549 18+ ₩ 844 999 -----662 623 16+ 471 18 +55 15-...(C) 16-5-1 ----560 645 14+ 856 624 16+ 14+ (C) 965 492 1 14+ ¥ -(B) (C) 952 460 1054 12+ 2 $\frac{12+}{168}$ 12+ ..(A) 762 443 594 10+ (A) 565 8+ (A) ¥ 509 6+ (A) 426 $\frac{4+}{2+}$..(A) 312 -158 ...(A)

 $^{166}_{72}{
m Hf}_{94}$

		⁹⁶ Zr(⁷⁴ Ge,4nγ)	2000Ri11 (continued)		
		В	ands for ¹⁶⁶ Hf		
(G)	(H)	(I)	(J)	(K)	(L)
		43-			
		1151			
		<u>41-</u>	40-		
		1096			
		<u>39-</u> v			
		1039	<u> </u>		
		<u>37-</u> v	1033		
		991	<u> </u>		
		<u>35-</u> v			
		972	<u> </u>		
		32- <u>33- v</u>			32-
31-	445 867	991	<u> </u>	31-	951
827	423	<u>30-</u> <u>31- y</u>		915	<u>30-</u>
<u>29-</u>	404 	962	<u> </u>	<u> </u>	913
745 27-	364 712	<u>28–</u> <u>29–</u> v		868	<u>28-</u>
699	349 / 13	26- 894	<u> </u>	<u> </u>	859
<u>25-</u>	-350 707 357 1	$\frac{21-\psi}{24-\psi}$	26-	821	$\frac{26-\psi}{26-\psi}$
23-	356 696	<u>25-</u>	781	747	24-
663	340 323	22- 739	$\frac{24}{24}$	23-	744
<u>21-</u> 578	-301-1 623	<u>20-</u> <u>23-</u> <u>673</u>		665 v 21-	$\frac{22-}{682}$
$\frac{19-473}{473}$	-250^{-2} 527	<u>18-</u> <u>21-</u> v	589 // 201043	579 v 19-	20-
$17 - \frac{1}{15 - 355}$	-192 + 3 + 415	16 - 19 - 4	574		700 573
491	-13/7 23911531298	14 - 595 17 - 4	596		$7236 - \frac{413}{\sqrt{100}}$
373 575		¥ 558 1ε	448 545		¥643(43(
¥	¥	$261 - \psi$			·`
		397 465) (
		524 - 418	462 342 <u>8-</u>		
		$\frac{\sqrt{52}}{672}$			(
		829 //			
		996			

 $^{16\,6}_{7\,2}\mathrm{Hf}_{9\,4}$

499

Level Scheme

 $^{16\,6}_{~7\,2}\mathrm{Hf}_{9\,4}$

 $^{166}_{72}\rm Hf_{94}$

Level Scheme (continued)

 $^{166}_{72}\rm Hf_{94}$

Level Scheme (continued)

		2240.0+y
		1582.0+y
		977.0+v
		438 0+v
		4083.1+x
		3665.0+x
		3256.1+x
		2860.7+x
		24/5.9+X
		1734.9+x
		1064.1+x
		486.0+x
44+		16006
43-		15575
42+		14879
41-		14424
40+		13800
38-		13038
15-		3779.4
14-		3585.6
14+		3515.8
16+		3469.9
14-		3373.4
13-		3231.4
14+		3209.0
12-	1	3085.8
14+		3006.8
13-	1	2960.4
12-		2909.5
11-		2793.1
12+		2731.9
12+		2563.8
10-		2538.5
11-		2494.6
8-		2376.5
8-		2196.1
9-		2076.8
6-		1839.8
7-		1725.0
4-		1550.6
5-		1465.9
(5+)		1418.9
8+		1405.0
<u>(3+)</u> 6+		895.9
4+		470.0
2+		158.0
0+		0.0

 $^{166}_{72}{
m Hf}_{94}$
¹⁸⁶W(n,2p19nγ) 2000Ya22

 $E=250-600~MeV~from~LANSCE/WNR~spallation~neutron~source;~4~HPGe~detectors~in~close~geometry;~measured~E\gamma,~\gamma\gamma~coin.$

¹⁶⁶Hf Levels

E(level) [†]	Jπ‡
0.0§	0+
158§	2 +
470 [§]	4 +

 $\begin{array}{ccc} 8\,9\,8\,^{\textstyle \$} & 6\,+ \\ 1\,4\,0\,8\,^{\textstyle \$} & 8\,+ \end{array}$

1973[§] 10+

† From Eγ.

[‡] From Adopted Levels.

§ (A): $K\pi=0+$ g.s. band.

<u>γ(¹⁶⁶Hf)</u>

$E\gamma^{\dagger}$	E(level)
158	158
312	470
426	898
F 1 0	1400

510 1408

565 1973

[†] From fig. 2 of 2000Ya22.

¹⁸⁶W(n,2p19nγ) 2000Ya22 (continued)

 $^{166}_{72}$ Hf₉₄

¹⁸⁶W(n,2p19nγ) 2000Ya22 (continued)

¹⁸⁶W(n,2p19nγ) 2000Ya22 (continued)

```
Level Scheme
```


(HI,xnγ) 1987Bl06,1983Ag01,1977Bo14

See separate data set for information from $^{96}Zr(^{74}Ge,4n\gamma).$

 $Other: 1990 JaZR \ (^{142}Ce(^{29}Si,5n\gamma), \ E=160 \ MeV; \ searched \ for \ large-deformation \ triaxiality \ in \ ^{166}Hf).$

 $2006Mc02:\ ^{122}Sn(^{48}Ti, 4n)\ E(^{48}Ti) = 200\ MeV;\ SPEEDY\ detector\ array\ (8\ Compton-suppressed\ HPGe\ clover\ detectors,\ \theta = 41.5^{\circ})$ and 138.5°); measured $T_{1/2}$ using recoil distance Doppler shift and differential decay curve method applied in coincidence mode (gate on shifted component of a feeding γ).

 $1987B106:\ ^{148}Sm(^{22}Ne, 4n)\ E(^{22}Ne) = 106 - 117\ MeV;\ measured\ E\gamma,\ I\gamma,\ DCO\ ratios\ (30^\circ,\ 90^\circ,\ Q\ \gamma\ in\ gate),\ \gamma\gamma-coin.$

 $1983 Ag01:\ ^{150} Sm(^{20} Ne, 4n)\ E(^{20} Ne) = 105\ MeV,\ measured\ E\gamma,\ I\gamma,\ \gamma\gamma(\theta),\ \gamma\gamma-coin.\ \gamma-ray\ angular\ correlations\ were\ measured$ with two Ge(Li) detectors at 10 angles between 90° and 360° with respect to the beam direction.

1977Bo14: ¹²²Sn(⁴⁸Ti,4n) E(⁴⁸Ti)=195 MeV, measured recoil distance Doppler shift, I_Y. Other measurements: 1973Ne08, 1965St03.

¹⁶⁶Hf Levels

E(level) [†]	Jπ§	T _{1/2} ‡	Comments
0.0@	0 +	6.77 min <i>30</i>	T: from Adopted Levels.
158.5 [@] 3	2+	497 ps 23	$T_{1/2}$ from 1977Bo14.
470.3@ 5	4 +	16.4 ps 5	$T_{1,0}^{1/2}$; weighted average of 16.8 ps 10 (1977Bo14) and 16.3 ps 6 (2006Mc02).
$896.9^{@}5$	6+	3.24 ps <i>19</i>	$T_{1/2}^{1/2}$: weighted average of 3.5 ps 5 (1977Bo14) and 3.19 ps 21 (2006Mc02).
1406.4 [@] 6	8+	1.05 ps 10	$T_{1/2}^{1/2}$: weighted average of 1.2 ps 5 (1977Bo14) and 1.04 ps 10 (2006Mc02).
1466.3 6	(5-)	Ĩ	
1551.8 6	(5-)		$J\pi$: adopted value is (4-).
1726.3 ^{&} 6	7 -		•
1841.1 6	(6-,7-)		$J\pi$: adopted value is (6–).
1971.9 [@] 6	10+	0.7 ps 5	T _{1/2} : from 1977Bo14.
2078.5 ^{&} 6	9 -	1.73 ps 35	T _{1/2} : from 2006Mc02.
2197.3 ^a 6	8 - #		
2496.7 ^{&} 6	11-		
2539.7 ^a 6	10-#		
$2565.8^{@}$ 7	12+	0.9 ps 7	T _{1/2} : from 1977Bo14.
2734 . 6 ^c 7	12+		
2910.9 <i>a</i> 6	12-#		
2962.2 ^{&} 7	13-		
3009.2 ^c 7	14+	6.9 ps 7	T _{1/2} : from 2006Mc02.
3211.1 ^b 7	14+		
3375.1 ^a 7	14-#		
3449.0 ^c 8	16+		
3472.6& 7	15-		
3835.2 ^b 8	16+		
3920.3 ^a 8	16-#		
4009.2 ^c 8	18+		
4030.1 ^{&} 8	17-		
4459.3 ^b 9	18+		
4516.0 ^a 8	18-#		
4625.2 ^{&} 9	19-		
4671.0 ^c 9	20+		

Continued on next page (footnotes at end of table)

		(H1,xnγ)	(H1,XNY) 198/B106,1983Ag01,1977Bo1					
			¹⁶⁶ Hf	Levels (continued)	-			
E(level) [†]	Jπ§	E(level) [†]	Jπ§	E(level) [†]	Jπ§			
5089.6 ^a 9	20-#	6356.4ª 10	24-#	8800.7 ^c 15	30+			
5121.7 ^b 9	20+	6665.5 ^{&} 10	25-	8980.0ª 15	(30-)#			
5253.3 ^{&} 9	21-	7030.1° 10	26+	9337.8& 15	(31-)			
5409.9 ^c 9	22+	7137.4a 10	26-#	9753.5 ^c 18	32+			
5678.8 ^a 9	22-#	7481.1& 11	27-	9991.2 ^a 18	(32-)#			
5851.7 ^b 10	22+	7894.7 ^c 11	28+	10330.3?& 18	(33-)			
5926.9 ^{&} 10	23-	8017.3 ^a 11	28-#	10747.5 ^c 21	(34+)			
6201.2 ^c 10	24+	8375.4& 11	29-					

.... 1087B106 1083Ag01 1077Bo14 (c ••

6201.2^c 10 24+

[†] From least-squares fit to Eγ.

[‡] From recoil distance Doppler shift measurements by 1977Bo14 and/or 2006Mc02, as indicated in comment on each level.

§ Authors' values (1987Bl06). See Adopted Levels for evaluator's assignments.

Transitions connecting the two side bands have positive anisotropies and are interpreted as mixed M1/E2 transitions (1987Bl06).

@ (A): K=0+ g.s. band. The assignment is based on γ -angular distributions and supported by the intensity balance.

& (B): Side band 1. The interband transition between side band 1 and the ground-state band show angular distributions of pure stretched dipole type, most likely E1.

 $a\$ (C): Side band 2.

_

b (D): $\pi = +$, $\alpha = 0$ band.

c (E): Super band. The assignment is based on $\gamma(\theta)$ and supported by intensity balance.

 $\gamma(^{166}Hf)$

 A_2 and A_4 normalized to the 565.8710+ to 8+ E2 transition.

$E\gamma^{\dagger}$	E(level)	Iγ‡	Mult.§	α	Comments
158.5 <i>3</i>	158.5	272 14	E2 ^e	0.638 10	$A_2 = +0.33$ 3; $A_4 = -0.12$ 5 (1983Ag01). DCO=0.52 1 (1987Bl06).
274.6 3	3009.2	758	E2 ^e	0.1037	$A_2 = +0.32$ 7; $A_4 = -0.11$ 8 (1983Ag01). DCO=0.9060 (1987Bl06).
289.2 3	1841.1	10 2			DCO=0.95 25 (1987Bl06).
311.8 <i>3</i>	470.3	929 47	E2 ^e	0.0706	$A_2 = +0.32$ 2; $A_4 = -0.10$ 3 (1983Ag01). DCO=0.81 2 (1987Bl06).
342.5 3	2539.7	67 7			DCO=0.87 8 (1987Bl06).
352.2 3	2078.5	576	E2e	0.0495	$A_2 = +0.29$ 7; $A_4 = -0.15$ 8 (1983Ag01). DCO=1.08 14 (1987Bl06).
356.3 <i>3</i>	2197.3	596			DCO=1.00 <i>13</i> (1987Bl06).
371.3 <i>3</i>	2910.9	114 11	(E2)	0.0427	$A_2 = +0.28$ 7; $A_4 = -0.09$ 8 (1983Ag01). DCO=0.98 8 (1987Bl06).
374.7 3	1841.1	29 3			DCO=0.87 <i>21</i> (1987Bl06).
396.4 <i>3</i>	2962.2	21 4			DCO=0.56 19 (1987Bl06).
414.0 3	2910.9	54 <i>5</i>			DCO=0.84 19 (1987Bl06).
418.1 3	2496.7	193 10	(E2)	0.0308	$A_2 = +0.28$ 5; $A_4 = -0.09$ 6 (1983Ag01). DCO=1.01 4 (1987Bl06).
426.6 3	896.9	1000	E2 ^e	0.0292	$A_2 = +0.34 \ 2$; $A_4 = -0.10 \ 3 \ (1983 \text{Ag}01)$. DCO=0.98 $\ 2 \ (1987 \text{Bl}06)$.
439.8 3	3449.0	354 17	(E2)	0.0269	$A_2 = +0.27$ 4; $A_4 = -0.06$ 5 (1983Ag01). DCO=1.07 3 (1987Bl06).
443.4 3	3009.2	336 17	E2e	0.0264	$A_2 = +0.32$ 4; $A_4 = -0.02$ 5 (1983Ag01). DCO=1.01 2 (1987Bl06).
461.2 3	2539.7	586			DCO=0.98 <i>18</i> (1987Bl06).
464.2 3	3375.1	190 10	(E2)	0.0234	$A_2 = +0.30$ 5; $A_4 = -0.10$ 6 (1983Ag01). DCO=0.97 4 (1987Bl06).
465.4 3	2962.2	255 13	(E2)	0.0232	$A_2 = +0.31$ 4; $A_4 = -0.09$ 5 (1983Ag01). DCO=1.09 4 (1987Bl06).
471.0 3	2197.3	475			DCO=1.15 25 (1987Bl06).
509.5 <i>3</i>	1406.4	@	E2 ^e	0.0185	$A_2 = +0.29$ 3; $A_4 = -0.09$ 5 (1983Ag01). DCO=1.03 2 (1987Bl06).
510.4 3	3472.6	@	(E2)	0.0184	$A_2 = +0.31$ 4; $A_4 = -0.07$ 5 (1983Ag01). DCO=0.97 3 (1987Bl06).
524.7 3	2496.7	120 12	D#		$A_2 = -0.25$ 7; $A_4 = -0.08$ 9 (1983Ag01). DCO=0.68 8 (1987Bl06).
545.2 3	3920.3	167 17	(E2)	0.01561	$A_2 = +0.25 \ 6$; $A_4 = -0.14 \ 6 \ (1983 Ag 01)$. DCO=0.89 8 (1987 Bl06).
557.5 <i>3</i>	4030.1	191 19	(E2)	0.01479	$A_2 = +0.35 4$; $A_4 = -0.02 6$ (1983Ag01). DCO=1.07 6 (1987Bl06).
560.2 <i>3</i>	4009.2	340 17	(E2)	0.01462	$A_2 = +0.29 \ 6$; $A_4 = -0.16 \ 8 \ (1983 Ag 01)$. DCO=1.11 2 (1987Bl06).
565.5 <i>3</i>	1971.9	699 <i>35</i>	E2 ^e	0.01429	$A_2 = +0.35$; $A_4 = -0.07$ (1983Ag01). DCO=1.04 3 (1987Bl06).
573.6 <i>3</i>	5089.6	110 11			DCO=0.90 11 (1987Bl06).
589.2 <i>3</i>	5678.8	103 10			DCO=1.28 16 (1987Bl06).
594.0 3	2565.8	&	E2 ^e	0.01271	$A_2 = +0.35$ 3; $A_4 = -0.09$ 4 (1983Ag01). DCO=1.02 4 (1987Bl06).
595.1 3	$4\ 6\ 2\ 5\ .\ 2$	&			DCO=1.06 5 (1987Bl06).
595.7 <i>3</i>	4516.0	&			DCO=1.13 9 (1987Bl06).
624.1 ^f 3	3835.2	176 ^f 18			DCO=0.96 11 (1987Bl06) for doublet.
	4459. 3	176 ^f 18			DCO=0.96 11 (1987Bl06).
628.1 3	5253.3	168 17	(E2)	0.01115	$A_2 = +0.27 \ 8$; $A_4 = 0.00 \ 9$ (1983Ag01). DCO=1.03 5 (1987Bl06).
645.3 <i>3</i>	3211.1	123 12	(E2)	0.01048	$A_2 = +0.25$ 6; $A_4 = -0.03$ 7 (1983Ag01). DCO=0.90 13 (1987Bl06).
661.8 <i>3</i>	$4\ 6\ 7\ 1\ .\ 0$	310 16			DCO=0.98 3 (1987Bl06).
662.3 <i>3</i>	5121.7	70 7			DCO=1.1 3 (1987Bl06).

Continued on next page (footnotes at end of table)

		(HI,x	nγ) 1987	Bl06,1983A	g01,1977Bo14 (continued)
				γ(¹⁶⁶ Hf)	(continued)
$E\gamma^{\dagger}$	E(level)	Iγ [‡]	Mult.§	α	Comments
672.2 3	2078.5	204 10	D#		$A_{a} = -0.25$ 5; $A_{a} = +0.03$ 6 (1983Ag01), DCO=0.80 10 (1987B106).
673.6 3	5926.9	122 12			DCO=1.03 7 (1987Bl06).
677.6 3	6356.4	72 7			DCO=1.38 16 (1987Bl06).
730.0 3	5851.7	42 4			$DCO=1.1 \ 3 \ (1987Bl06).$
738.6 <i>3</i>	6665.5	а			DCO=1.12 9 (1987Bl06).
738.9 <i>3</i>	5409.9	а			$A_0 = +0.16$ 10; $A_4 = -0.06$ 13 (1983Ag01). DCO=1.12 5 (1987Bl06).
762.7 3	2734.6	90 <i>9</i>	(E2)	0.00721	$A_2 = +0.45 \ 10; A_4 = -0.06 \ 12 \ (1983 Ag01). \ DCO = 1.06 \ 15 \ (1987 Bl06).$
781.0 3	7137.4	616			DCO=1.04 23 (1987Bl06).
791.3 <i>3</i>	6201.2	170 17			DCO=1.19 8 (1987Bl06).
815.6 3	7481.1	70 7			DCO=0.92 18 (1987Bl06).
828.9 3	7030.1	b			DCO=1.15 10 (1987Bl06).
829.3 <i>3</i>	1726.3	b	$D^{\#}$		A ₂ =-0.29 8; A ₄ =-0.07 9 (1983Ag01). DCO=0.65 19 (1987Bl06).
864.6 3	7894.7	69 7			DCO=0.84 14 (1987Bl06).
879.9 <i>3</i>	8017.3	28 6			DCO=1.4 7 (1987Bl06).
894.3 <i>3</i>	8375.4	51 5			DCO=1.3 4 (1987Bl06).
906.0 10	8800.7	42 8			DCO=0.91 22 (1987Bl06).
944.3 <i>3</i>	1841.1	26 3	D		DCO=0.45 31 (1987Bl06).
952.7 10	9753.5	44 8			DCO=1.4 4 (1987Bl06).
962.4 10	9337.8	38 c			DCO=0.7 4 (1987Bl06).
962.7 10	8980.0	с			DCO=0.5 4 (1987Bl06).
992.5g 10	10330.3?	21 4			
994.0 10	10747.5	d			DCO=1.9 9 (1987Bl06).
995.8 10	1466.3	d	D		DCO<0.3 (1987Bl06).
1011.2 10	9991.2	19 4			DCO<0.5 (1987Bl06).
×1057		< 1 3			
1081.4 10	1551.8	16 3	D		DCO<0.5 (1987Bl06).

[†] From 1987Bl06. Others: 1965St03, 1983Ag01.

^{\ddagger} From 1987Bl06 determined from spectra coincident with 158.5 γ and 311.8 γ and normalized so I γ (426.6 γ)=1000.

§ Q from $\gamma(\theta)$ (1983Ag01), except as noted. Not M2 from RUL if value is shown without parentheses; $\Delta \pi$ =(no) assigned for all other intraband stretched Q transitions.

From DCO ratio (1987Bl06).

@ Iγ=1132 57 for 509.5γ+510.4γ.

& $I_{\gamma}=836 \ 42 \text{ for } 594.0\gamma+595.1\gamma+595.7\gamma.$

a Iy=265 13 for 738.6y+738.9y.

b Iγ=203 10 for 828.9γ+829.3γ.

c $I\gamma=38$ 4 for 962.4 γ +962.7 γ .

d Iγ=45 5 for 994.0γ+995.8γ.

e Stretched Q from $\gamma(\theta)$; not M2 from RUL.

f Multiply placed; undivided intensity given.

g Placement of transition in the level scheme is uncertain.

 $\mathbf{x} \quad \gamma \text{ ray not placed in level scheme.}$

(HI,xnγ) 1987Bl06,1983Ag01,1977Bo14 (continued)

	(H1,xnγ)	1987BI	06,1983Ag01,19	77Bo14 (continu	ed)
			Bands for ¹⁶⁶	⁹ Hf	
(A)	(E	3)	(C)	(D)	(E) (34+)
		(33-)			
			(32-)		994.0
	992	.5			32+
		(31-)	1011.2		
			(30-)		952.7
	962	.4			30+
		29-	962.7		906.0
			28-		
	894	.3			<u> </u>
	¥	27-	879.9		864.6
	815	.6	<u> </u>		26+
		25-	781.0		
	729	6	v 24-		828.9
	, 30	23_	677.6		<u> </u>
			22-	22+	791.3
	673	21_	589.2	730.0	22+
		<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u> </u>	<u> </u>	738.9
	020	19-	573.6	662.3	<u> </u>
	595	.1	<u>v 18–</u>	<u> </u>	661.8
	¥	17-	595.7	624.1	<u>18+</u>
	557	.5	545.2	<u> </u>	560.2
	¥	15-	<u> </u>	624.1	16+
	510	.4 <u>13-</u>	464.2	$\sqrt{\frac{\sqrt{14}+}{\sqrt{14}+}}$	439.8
12+	396.4 465	.4 414	.0 371.3	5.3	274.6
594.0	V	<u>11</u> .1 461	.2 342.5	y 762.	7
10+	524.7 	9- 471	<u> </u>		
565.5	672.2	7-			
<u>8+</u>	// 829.3				
509.5					
426.6	r				
4+ 311.8	_				
$\frac{2+}{0+}$ 158.5	_				

(HI,xnγ) 1987Bl06,1983Ag01,1977Bo14 (continued)

 $^{166}_{72}\rm Hf_{94}$

CITATION: Nuclear Data Sheets (1992) $^{166}_{72}\rm{Hf}_{94}{-}51$

 $^{166}_{72}\rm{Hf}_{94}{-}51$

Adopted Levels, Gammas

 $Q(\beta^{-})=-4206\ 3\theta;\ S(n)=8310\ 3\theta;\ S(p)=1750\ 4\theta;\ Q(\alpha)=4310\ 8\theta\ 2003Au03.$

¹⁶⁶Ta Levels

Cross Reference (XREF) Flags

Α ¹⁶⁶W ε Decay Β ¹⁴¹Pr(²⁸Si,3nγ)

E(level) [†]	$J\pi^{\ddagger}$	XREF	T	Comments
0.0	(2)+	A	34.4 s 5	$%ε+%β^+=100.$ Assignment: ¹⁵⁹ Tb(¹⁶ O,9n), E(¹⁶ O)=147 MeV, excit (1977Le08). T _{1/2} : from 1982Li17. Other: 32 s 3 (1977Le08). Jπ: M1+E2 126γ from 1+ 126; allowed ε decay to 2+ 159 in ¹⁶⁶ Hf. The adopted Jπ=(2)+ is in conflict with a previous assignment of (2-) based, in part, on apparent $ε+β^+$ feeding to 4+ and (0+) levels. The ¹⁶⁶ Ta $ε+β^+$ decay scheme is probably incomplete (large Q value), so the above feedings might be accounted for by as yet unobserved transitions; the strongest $ε+β^+$ branches feed 2+ levels.
$0 . 0 + x^{\#}$	(9-)	В		
53.6+x§ 8	(10-)	в		
125.79 18	1+	A		J π : allowed (log ft =4.0) ε decay from 0+. The apparently unhindered allowed ε decay to this state and the probable (v 5/2[523]) g.s. for ¹⁶⁵ W suggest that the configuration for the ¹⁶⁶ Ta(126 level) includes the (π 7/2[523]) orbital.
$147.6 + x^{\#}8$	(11-)	В		
298.3 <i>3</i>		Α		$J\pi$: γ to 1+ 126.
320.1+x [§] 10	(12-)	В		
350.34 <i>25</i>		A		E(level): relative order of the 45.8 and 224.6 transitions is not established. The reverse order would define a level at 171.6. J π : γ to 1+ 126.
395.93 <i>20</i>	1 +	Α		J π : allowed (log ft=4.9) ϵ decay from 0+.
$495.0 + x^{\#}$ 11	(13-)	в		
754.6+x [§] 12	(14-)	в		
$992.2 + x^{\#}$ 13	(15-)	в		
1309.2+x [§] 13	(16-)	в		
1597.8+x [#] 14	(17-)	В		
1946.3+x [§] 15	(18-)	В		
$2\ 2\ 7\ 3$. 2 + x [#] 15	(19-)	В		
2626.7+x [§] 16	(20-)	В		
2972 . 1 + x $^{\#}$ 17	(21-)	В		
3304.9+x [§] 17	(22-)	В		
3653 . 9 + x $^{\#}$ 18	(23-)	В		
3972.1+x [§] 19	(24-)	В		

 $^\dagger~$ From least-squares fit to Eq.

¹ Values given without comment are from ¹⁴¹Pr(²⁸Si, 3nγ). Bandhead J assumes smooth energy variation with Z for levels with assigned configuration in neighboring isotones. J for higher-energy levels is based on observed band structure.
 ⁸ (A): (i, j, j) ⊗(z, h, j) = 0, band Carfieureric passignment is based on users hand configuration of (i, j, j) ond (z, h, j) = 0.

 \hat{s} (A): (v $i_{13/2}$) \otimes (π $h_{11/2}$), α =0 band. Configuration assignment is based on yrast band configurations of (v $i_{13/2}$) and (π $h_{11/2}$), respectively, for yrast bands in ¹⁶⁵Hf and ¹⁶⁵Ta (1997Zh11).

 ${}^{\#}$ (B): (v $i_{13/2}) \otimes (\pi \ h_{11/2}), \ \alpha {=} 1$ band. See comment on signature-partner band.

 $\gamma(^{166}Ta)$

E(level)	$E\gamma^{\dagger}$	Ιγ [‡]	Mult.	δ	α	Comments
53.6+x	53.6	100				
125.79	125.8 [§] 2	100	M1 + E2	0.8 + 8 - 5	1.98 24	Mult., δ : from $\alpha(K)$ exp in ε decay.
147.6 + x	94.0					
	147.6					
298.3	172.5§ 3	100	[M1, E2]		0.71 22	
320.1 + x	172.5					
	266.5					
350.34	224.6 [§] 2	100	[M1, E2]		0.32 13	
395.93	45.8 [§] 4	268	[M1]		7.21 22	
	97.6 [§] 4	35 4	[M1, E2]		4.4 4	
	270.1§ 2	43 4	[M1, E2]		0.19 8	

Continued on next page (footnotes at end of table)

$\gamma(^{166}Ta)$ (continued)

E(level)	$E\gamma^{\dagger}$	Iγ [‡]	Mult.	α	E(level)	$E\gamma^\dagger$
395.93	395.9§ 3	100 2	[M1, E2]	0.07 3	$2\ 2\ 7\ 3$. $2+x$	326.9
495.0 + x	174.9					675.4
	347.4				2626.7 + x	353.5
754.6+x	259.6					680.4
	434.5				2972.1+x	345.3
992.2 + x	237.6					698.8
	497.3				$3304 \cdot 9 + x$	332.8
$1\ 3\ 0\ 9$. $2+x$	317.0					678.2
	554.6				3653.9 + x	349.0
1597.8+x	288.6					681.8
	605.6				3972.1 + x	318.2
1946.3 + x	348.5					667.2
	637.1					

[†] From ¹⁴¹Pr(²⁸Si,3nγ), except as noted. Authors did not state uncertainty.
 [‡] Relative photon intensity normalized to 100 at strongest photon deexciting each level. From ¹⁶⁶W ε decay.
 § From ¹⁶⁶W ε decay.

$^{166}_{73}$ Ta $_{93}$ -3

Adopted Levels, Gammas (continued)

(A) (Y	v i _{13/2})⊗(π h _{11/2}), band.	α=0	(B) (νi _{13/2})⊗(πh ₎ band.	_{11/2}), α=1
(24-)		3972.1 + x	_		
(B)(23-)			(23-)		3653.9+x
(22-)		3304.9 + x	(A)(22-)	v	
(B)(21-)			(21-)		2972.1+x
(20-)		2626.7+x	(A)(20-)		
(B)(19-)	Y		(19-)		2273.2+x
(18-)		1946.3+x	(A)(18-)	\	¥/
(B)(17-)	Į.	I	(17-)		1597.8+x
(16-)		1309.2+x	(A)(16-)	\ <u> </u>	<u>+/</u>
(B)(15-)	<u> </u>	J	(15-)	<u></u>	<u><u> </u></u>
(14-)	<u> </u>	754.6+x	(A)(14-)	/└──¥───	
(B)(13-)	\ ↓	//	(13-)	//	495.0+x
(12-)	\v	320.1+x	(A)(12-)	// /	
(B)(11-)	\setminus \downarrow \Box		(11-)	\mathbb{N}	147.6+x
(10-)	\¥	53.6+x	(A)(10-)	/	
(B)(9-)	<u> </u>		(9-)	\ <u> </u>	0.0+x

 $^{166}_{73}$ Ta $_{93}$

Adopted Levels, Gammas (continued)

Level Scheme

Intensities: relative photon branching from each level

¹⁶⁶WεDecay 1989Hi04

 $Parent \ ^{166}W: \ E=0.0; \ J\pi=0+; \ T_{1/2}=19.2 \ s \ {\it 6}; \ Q(g.s.)=4206 \ {\it 30}; \ \%\epsilon+\%\beta^+ \ decay=99.965 \ {\it 12}.$

¹⁶⁶Ta Levels

E(level)	$J\pi^{\dagger}$	Comments
0.0	((2)+	
125.79	18 1	l +	
298.3 3			
350.34	25		E(level): relative order of the 45.8 and 224.6 transitions is not established. The reverse order would define a level at 171.6.
395.93	20 1	l +	J π : log ft<5.9 from 0+ independent of multipolarities assumed for transitions deexciting the 396 level.

[†] From Adopted Levels.

β⁺,ε Data

Eε	E(level)	Ιβ ^{+†}	Ιε [†]	Log ft	I($\epsilon+\beta^+$) [†]	Comments
(3810 30)	395.93	3.4 5	6.6 10	4.87 7	10.0 15	av Eβ=1259 14; εK=0.546 6; εL=0.0883 10; εM+=0.0271 3.
(3860 [‡] <i>30</i>)	350.34	< 0.3	< 0.5	>6.0	< 0.8	av Eβ=1280 14; εK=0.537 6; εL=0.0868 10; εM+=0.0267 3.
(3910 [‡] <i>30</i>)	298.3	< 0.3	< 0.4	>6.1	< 0.7	av Eβ=1304 14; εK=0.527 6; εL=0.0851 10; εM+=0.0262 3.
(4080 30)	125.79	36 4	54 7	4.02 6	90 11	av E β =1382 14; ϵ K=0.493 6; ϵ L=0.0796 10; ϵ M+=0.0245 3.

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

¹⁶⁶WεDecay 1989Hi0<u>4</u> (continued)

$\gamma(^{166}Ta)$

γγ coin (Ta K x ray)(125.8γ, 395.9γ).

 $I\gamma normalization: The basis of the intensity normalization is that negligible $\epsilon+\beta^+$ feeding to the ground state is expected ($\Delta J=(2)$, $\Delta \pi=no$)$, so $\Sigma(I(\gamma+ce) to g.s.)=100$.}$

Eγ	E(level)	Iγ‡	Mult.	δ	α	Comments
45.8 4	395.93	1.4 4	[M1]		7.21 22	α(L)=5.59 17; α(M)=1.27 4; α(N+)=0.355 11. α(N)=0.303 9; α(O)=0.0480 15; α(P)=0.00331 10. Mult.: if placement of 46γ is correct, E2 is ruled out because it would imply negative ε+β ⁺ feeding of the 350 level; M1 would imply no ε+β ⁺ branch to 350 level.
97.74	395.93	1.9 2	[M1 , E2] [†]		4.4 4	$\alpha(K)=2.4$ 15; $\alpha(L)=1.5$ 9; $\alpha(M)=0.37$ 23; $\alpha(N+)=0.10$ 6. $\alpha(N)=0.09$ 6; $\alpha(O)=0.012$ 7; $\alpha(P)=0.00022$ 15. EY: 97.7 from fig. 3 of 1989Hi04, consistent with E(level) difference. EY=97.1 from table 4 appears to be a misprint.
125.8 2	125.79	100	M1+E2	0.8 +8-5	1.98 24	$\alpha(K)=1.4$ 5; $\alpha(L)=0.47$ 15; $\alpha(M)=0.11$ 4; $\alpha(N+)=0.031$ 10. $\alpha(N)=0.027$ 9; $\alpha(O)=0.0038$ 11; $\alpha(P)=0.00012$ 5. Mult 5: from $\alpha(K)\alpha_{N}=1.4$ 4.
172.5 <i>3</i>	298.3	5.8 7	$[\mathrm{M1}$, E2] †		0.71 22	$\begin{aligned} &\alpha(\mathbf{N}) = 0.5 \ \beta; \ \alpha(\mathbf{L}) = 0.15 \ 4; \ \alpha(\mathbf{M}) = 0.037 \ 10; \\ &\alpha(\mathbf{N}_{+}) = 0.0099 \ 23. \\ &\alpha(\mathbf{N}_{+}) = 0.0986 \ 21; \ \alpha(\mathbf{Q}) = 0.00124 \ 21; \ \alpha(\mathbf{P}) = 4 \ \times 10^{-5} \ 3 \end{aligned}$
224.6 2	350.34	7.85	[M1 , E2]		0.32 13	$\alpha(N) = 0.00331, \alpha(L) = 0.0039520; \alpha(M) = 0.014111; \alpha(N+) = 0.0033420. \alpha(N) = 0.00334200. \alpha(N) = 0.0034200. \alpha(N) = 0.00342000. \alpha(N) = 0.00342000. \alpha(N) = 0.00342000000000000000000000000000000000$
270.1 <i>2</i>	395.93	2.3 2	[M1 , E2]		0.19 8	$\alpha(\mathbf{N}) = 0.0000023, \alpha(\mathbf{G}) = 0.00000101, \alpha(\mathbf{H}) = 2.2 \times 10^{-1} 10.$ $\alpha(\mathbf{N}) = 0.015, 8; \alpha(\mathbf{L}) = 0.032, 3; \alpha(\mathbf{M}) = 0.0075, 4;$ $\alpha(\mathbf{N}) = 0.00179, 10; \alpha(\mathbf{G}) = 0.00027, 3; \alpha(\mathbf{P}) = 1.3 \times 10^{-5}, 8$
395.9 <i>3</i>	395.93	5.4 14	[M1 , E2]		0.07 3	$\begin{aligned} &\alpha(\mathbf{K}) = 0.05 \ 3; \ \alpha(\mathbf{L}) = 0.0099 \ 25; \ \alpha(\mathbf{M}) = 0.0023 \ 5; \\ &\alpha(\mathbf{N}+) = 0.00063 \ 15. \\ &\alpha(\mathbf{N}) = 0.00054 \ 13; \ \alpha(\mathbf{O}) = 8.3 \times 10^{-5} \ 23; \ \alpha(\mathbf{P}) = 5.\times 10^{-6} \ 3. \end{aligned}$

Coincident with K x ray(Ta) only.

 $^\dagger~$ From intensity balance assuming no $\epsilon+\beta^+$ feeding to 298.3 level.

[‡] For absolute intensity per 100 decays, multiply by 0.33 3.

¹⁴¹Pr(²⁸Si,3nγ) 1997Zh11

E=127 MeV; 98.0% ¹⁴¹Pr metallic stacked-foil target; γ detector array (seven Compton-suppressed HPGe detectors and one planar HPGe detector); measured Eγ, excit (E=123, 127, 131 MeV), x-γ coin, γγ coin (127 MeV).

¹⁶⁶Ta Levels

 $\gamma(^{166}Ta)$

E(level) [†]	Jπ‡	E(level) [†]	_Jπ‡	E(level) [†]	$J\pi^{\ddagger}$
$0.0 + x^{\#}$	(9-)	992.3+x [#] 12	(15-)	2972.1+x [#] 17	(21-)
53.6+x [§] 8	(10-)	1309.2+x [§] 13	(16-)	3304.9+x [§] 17	(22-)
147 .6+ $x^{\#}$ 8	(11-)	1597 .8+ $x^{\#}$ 14	(17–)	$3653.9 + x^{\#}$ 18	(23-)
320.1+x§ 10	(12-)	1946.3+x [§] 15	(18–)	3972.1+x [§] 19	(24-)
$495.0 + x^{\#}$ 11	(13-)	$2\ 2\ 7\ 3$. $2 + x^{\#}$ 15	(19–)		
754.6 + x § 11	(14-)	2626.7+x§ 16	(20-)		

 $^\dagger\,$ From least-squares fit to Ey, assigning 1 keV uncertainty to each datum.

[‡] Authors' values. Bandhead J assumes smooth energy variation with Z for levels with assigned configuration in neighboring isotones. J for higher-energy levels is based on observed band structure.

§ (A): (v $i_{13/2}$) \otimes (π $h_{11/2}$), α =0 band. Configuration assignment is based on yrast band configurations of (v $i_{13/2}$) and (π $h_{11/2}$), respectively, for yrast bands in ¹⁶⁵Hf and ¹⁶⁵Ta (1997Zh11).

(B): (v $i_{13/2}$) \otimes (π $h_{11/2}$), α =1 band. See comment on signature-partner band.

$E\gamma^\dagger$	E(level)	$\underline{E\gamma^{\dagger}}$	E(level)	$\underline{E\gamma^{\dagger}}$	E(level)
53.6	53.6+x	318.2	3972.1+x	554.6	$1\ 3\ 0\ 9$. 2 + x
94.0	1 4 7 . 6 + x	326.9	$2\ 2\ 7\ 3$. $2+x$	605.6	1597.8 + x
147.6	1 4 7 . 6 + x	332.8	$3\ 3\ 0\ 4$. 9 + x	637.1	1 9 4 6 . 3 + x
172.5	$3 \ 2 \ 0 \ . \ 1 + x$	345.3	2972.1 + x	667.2	3972.1 + x
174.9	495.0+x	347.4	495.0+x	675.4	$2\ 2\ 7\ 3$. $2 + x$
237.6	992.3 + x	348.5	1946.3 + x	678.2	$3\ 3\ 0\ 4$. 9 + x
259.6	754.6+x	349.0	3653.9 + x	680.4	$2\ 6\ 2\ 6\ .\ 7+x$
266.5	$3 \ 2 \ 0 \ . \ 1 + x$	353.5	2626.7 + x	681.8	3653.9 + x
288.6	1597.8 + x	434.5	754.6+x	698.8	$2\ 9\ 7\ 2$. 1 + x
317.0	1309.2 + x	497.3	992.3+x		

 † Uncertainty unstated by authors.

¹⁴¹Pr(²⁸Si,3nγ) 1997Zh11 (continued)

(A) ((A) $(v \ i_{13/2}) \otimes (\pi \ h_{11/2}), \ \alpha=0$ band.			ν i _{13/2})⊗(π h _{11/2} band.), α=1
(24-)		3972.1 + x	_		
(B)(23-)	v		(23-)		3653.9 + x
(22-)	v	3304.9+x	(A)(22-)	v	
(B)(21-)			(21-)	_	2972.1+x
(20-)		2626.7+x	(A)(20-)		
(B)(19-)	<u> </u>		(19-)		<u>2273.2+x</u>
(18-)	<u> </u>	<u>1946.3+x</u>	(A)(18-)	<u>\</u>	_/
(B)(17-)	\	/	(17-)		1597.8+x
(16-)		1309.2+x	(A)(16-)		
(B)(15-)		//	(15-)	<u></u>	-1/992.3+x
(14-)	<u>\</u>	754.6+x	(A)(14-)		_//
(B)(13-)		//	(13-)		495.0+x
(12-)		320.1+x	(A)(12-)]/
(B)(11-)		//	(11-)	_\\	147.6+x
(10-)		53.6+x	(A)(10-)		_//
(B)(9-)	└───¥ <u>↓</u> ₩	<i>'</i>]	(9-)	\ <u> </u>	<u> </u>

 $^{166}_{73}$ Ta $_{93}$

¹⁴¹Pr(²⁸Si,3nγ) 1997Zh11 (continued)

¹⁴¹Pr(²⁸Si,3nγ) 1997Zh11 (continued)

Level Scheme

 $^{166}_{73}$ Ta $_{93}$

Adopted Levels, Gammas

 $Q(\beta^{-})=-10040 \ SY; \ S(n)=11101 \ 27; \ S(p)=3326 \ 20; \ Q(\alpha)=4856 \ 4 \ 2003Au03.$ $\Delta Q(\beta -) = 90$ (2003Au03).

Assignment: ¹⁵⁶Dy(¹⁶O,6n), E(¹⁶O)=124.6 MeV excit (1975To05).

¹⁶⁶W Levels

Cross Reference (XREF) Flags

A ¹⁴²Nd(²⁸Si,4nγ) B ¹⁰⁶Pd(⁶³Cu,p2nγ) C ¹⁷⁰Os α Decay D ¹⁶⁶Re s Decay

				D ¹⁶⁶ Re ε Decay
E(level) [†]	Jπ‡	XREF	T	Comments
0.0#	0 + Š	ABCD	19.2 s 6	%α=0.035 12; %ε+%β ⁺ =99.965 12. %α: 0.035 12 is the 0.03 1 datum of 1989Hi04 after adjustment by the evaluator assuming adopted α(126γ, ¹⁶⁶ Ta)=1.98 24 (the authors used α=2.51 +10-17). Others: 0.6 2 (1981HoZM, 1979Ho10; from Iα(from ¹⁶⁶ W)/Iα(from ¹⁶² Hf)); this implies r ₀ (¹⁶² Hf) much larger than expected from r ₀ systematics (which suggest %α=0.075 (1998Ak04)). %α<30 (1984ScZQ). Jπ: g.s. of even-even nucleus.
				T _{1/2} : weighted average of 22.0 s <i>10</i> (1992HeZV), 18.8 s <i>4</i> (1989Hi04, from ¹⁶⁶ W ε decay), 19.6 s <i>12</i> (1989Hi04, from ¹⁶⁶ W α decay), 16 s <i>3</i> (1975To05 and 1984ScZQ, from ¹⁶⁶ W α decay)
$252.0^{\#}$ 3	2 + §	AB D		$J\pi$: E2 252 γ to 0+ g.s.
675.7# 4	4 + §	AB D		
1225.9# 4	6 + §	AB D		
1587.3@ 6	(5-)	AB		
1864.8 # 5	8 + §	AB		
1928.5 [@] 6	(7-)	AB		
2020.2 ^{&} 10	(6-)	В		
2337.3 [@] 7	(9–)	AB		XREF: A(2333.4).
2349.5 ^{&} 9	(8-)	В		
$2551.6^{\#}5$	10+§	AB		
2573.2& 10	(10-)	В		
2742.5 [@] 9	(11-)	AB		
2946.6° 14	(12 -)	В		
3031.2^{π} 6	(12+) s	AB		
$3173.0^{\circ} I0$	(13-)	AB		
3330.2" U	$(14+)^{-5}$	AD D		
3474.5 18	(14-)	AB		
$3821.3^{\#}8$	(16+)§	AB		
4127.0 & 20	(16-)	В		
4378.1@ 12	(17-)	AB		
4388.4 # 9	(18+)§	AB		
4870.7 ^{&} 23	(18-)	В		
5027.3 [#] 11	(20+)§	AB		
5114.3 [@] 13	(19–)	AB		
5579.5 ^{&} 25	(20-)	В		
5729.1# <i>12</i>	(22+) \$	AB		
5853.6 ^w 17	(21-)	В		
6169 [∞] 3	(22 -)	В		
6492.4" 13 6496.2@ 20	(24+)3	AB		
69112& 2	(23-)	D		
7170 52 [@] 22	(24-)	B		
$7312.7^{\#}$ 14	(26+)§	AB		
7520?& 3	(26-)	В		
7917.0? [@] 24	(27-)	в		
8184.3 # 17	(28+)§	В		
8290?& 4	(28-)	В		
8725? [@] 3	(29–)	В		
9106.9 [#] 20	(30+)§	В		
10075.7?# 22	(32+)§	В		

¹⁶⁶W Levels (continued)

- † From least-squares adjustment of Ey, assigning ΔE_{γ} =1 keV to Ey values to which the authors did not assign an uncertainty.
- [‡] Based on measured transition multipolarities and band structure deduced in (HI,xnγ) studies, supported by cranked shell model calculations of 1992Si12 and systematics of band properties in neighboring nuclides.
- § A cascade of stretched Q intraband transitions exists between the J=18 and the J=0 band members; the 0+ g.s. is the band head, and an E2 353γ links the J=2 and 0 members. Definite J π values have, therefore, been assigned below the first band crossing (i.e., to J=0 through 10 band members).
- [#] (A): $K\pi=0+$ yrast band (1992Si12). Becomes (v 3/2[651])² band at $\hbar\omega=262$ 4 keV.
- ^(e) (B): (v 3/2[551])(v 3/2[521]), $\alpha = +1/2$ band (1992Si12). Crossed by 4 quasineutron $(3/2[651])^2(3/2[521])(1/2[660])$ band at $\hbar\omega = 348$ keV 4. (AE band crossed by AEBC band). Stretched dipole interband transitions link this band to the 0+ g.s. band. Many of the intraband cascade transitions are stretched Q. $\pi = -$ consistent with systematics of the odd-parity sidebands in heavier W nuclei.
- & (C): (v 3/2[651])(v 3/2[521]), $\alpha = -1/2$ band (1992Si12). Crossed by 4 quasineutron (3/2[651])²(3/2[521])(1/2[660]) band at $\hbar\omega = 336$ keV 4. (AF band crossed by AFBC band).

$\gamma(^{166}W)$

E(level)	Eγ [†]	Iγ‡	Mult.§	α	Comments
252.0	252.0 3	100	E2@	0.1452	Weighted average of 251.7 2 in $({}^{28}Si,4n\gamma)$ and 252.3 2 in ε decay.
					Mult.: Q from $\gamma(\theta)$, not M2 from intensity balance in $({}^{28}Si, 4n\gamma)$.
675.7	423.7 2	100	(E2)@	0.0321	Other Ey: 423.9 2 in ε decay.
1225.9	550.22	100	(E2)@	0.01661	
1587.3	911.5 5	100	D		
1864.8	638.9 [∞] 2	100	(E2)	0.01171	Mult.: stretched Q, based on DCO ratios for doublet dominated by this intraband transition.
1928.5	341.0 5	42 3	(E2)	0.0584	Other Ιγ: 39 <i>4</i> from (²⁸ Si,4nγ).
	702.7 5	100 8	D		
2020.2	432 . $8^{\#}$	100			
2337.3	408.8 5	100 5	(E2)	0.0353	Placement is from (⁶³ Cu,p2nγ); order of 405γ and 409γ was reversed in (²⁸ Si,4nγ).
	$472.7^{\#}$	26.6 22	D		
2349.5	$329.3^{\#}$	100 21	(E2)	0.0646	
	$421.1^{\#}$	91 15			
2551.6	686.8 <i>2</i>	100	(E2)	0.00995	
2573.2	223.8#	100 10			
	235.7#	74 7	D		
2742.5	405.2 5		(E2)	0.0362	Other E γ : 406.2 in (⁶³ Cu,p2n γ).
					Placement is from ($^{63}Cu,p2n\gamma$); order of 405 γ and 409 γ was reversed in ($^{28}Si,4n\gamma$).
2946.6	373 . $4^{\#}$	100	(E2)	0.0452	
3031.2	479.6 2	100	(E2)	0.0233	
3173.0	430.5 5	100	(E2)	0.0308	
3356.2	325.0 2	100	(E2)	0.0671	
3474.3	527.7#	100	(E2)	0.0184	
3722.1	549.15	100	(E2)	0.01669	Ey: 546.2 in $(^{63}Cu, p2n\gamma)$.
3821.3	465.15	100	(E2)	0.0252	
4127.0	$652.7^{\#}$	100	(E2)	0.01115	
4378.1	656.0 5	100	(E2)	0.01103	
4388.4	567.1 <i>5</i>	100	(E2)	0.01545	E γ : 568.0 in (⁶³ Cu,p2n γ).
4870.7	743.7#	100	(E2)	0.00835	
5027.3	638.9 ^{&} 5	100			
5114.3	736.2 5	100	(E2)	0.00854	
5579.5	708.8#	100			40
5729.1	701.8 5	100	(E2)	0.00948	$E\gamma$: 701.1 in ($^{os}Cu, p2n\gamma$).
5853.6	739.3#	100			
6169	589.7#	100	(E2)	0.01409	69 .
6492.4	763.3 5	100	(E2)	0.00789	E γ : 765.1 in (63 Cu,p2n γ).
6496.3	642.6#	100			
6811?	641.7#a	100	(5.2.)		
7170.5?	674.2 ^{# a}	100	(E2)	0.01037	
/312.7	820.35	100	(E2)	0.00677	
7520?	/08.8 ^{# a}	100			
/91/.0/	/40.5" ^a	100	(E9)	0 00500	
0104.3	0/1.0" 770 5#2	100	(E2)	0.00396	
0290(//U.5"ª	100			

Continued on next page (footnotes at end of table)

$\gamma(^{166}W)$ (continued)

E(level)	$E\gamma^{\dagger}$	Iγ‡
8725?	808.2 ^{#a}	100
9106.9	922.6#	100
10075.7?	968.8 [#] a	100

[†] From (²⁸Si,4n γ), except as noted. [‡] Relative-photon intensity, normalized to 100 for the strongest γ deexciting each level; from (⁶³Cu,p2n γ), except as noted.

§ Based on measured DCO ratios in ($^{63}Cu, p2n\gamma$), assigning $\Delta \pi$ =(no) for intraband transitions, except as noted.

[#] From (⁶³Cu,p2nγ); uncertainty unstated by authors.
 [®] Transition is member of stretched E2 cascade to 0+ g.s.

& Multiply placed.

a Placement of transition in the level scheme is uncertain.

	Bands for	r ¹⁶⁶ W
(32+) (A)	(B)	(C)
968.8		
(30+)		
922.6	(29–)	
(28+)	808.2	(28-)
	(27-)	770 5
871.6		
(26+)	746.5	(26-)
	(25-)	708.8
820.3	674.2	(24-)
(24+) v	(23-)	641.7
	642.6	(22-)
763.3	(21-)	589.7
<u>(22+)</u>		(20-)
701.8	739.3	
(20+) y	<u>(19–)</u>	- 708.8
638.9	736.2	v (18-)
(18+)	(17-)	743.7
567 1		— v (16–)
(16+)	656.0	652 7
465.1	<u>(15-)</u>	- (14)
(14+)	- (12) 549.1	<u> </u>
325.0 (12+)	$-\frac{(13-)}{430.5}$	- 327.7
479.6	<u>(11–)</u>	373.4
<u>10+ y</u>	405.2	$235.7 \qquad 223.8 \\ \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$
686.8	472.7 408.8	421.1 329.3
<u>8+</u> v	(7-)	/ 432.8
638.9	702.75-)	<i>\</i>
<u>6+</u>		
550.2	511.3	
<u>4+</u>	/	
42 ¹ / _{3.7}		
252.0		

Adopted	Levels,	Gammas	(continued)
---------	---------	--------	-------------

 ${}^{166}_{74}\rm W_{92}$

Level Scheme

Intensities: relative photon branching from each level * Multiply placed

 ${}^{166}_{74}W_{92}$

¹⁶⁶ReεDecay 1992Me10

 $Parent \ ^{166}Re: \ E=0.0; \ J\pi=?; \ T_{1/2}=2.25 \ s \ 21; \ Q(g.s.)=10040 \ syst; \ \%\epsilon+\%\beta^+ \ decay>76.0. \\ \ ^{166}Re-\%\epsilon+\%\beta^+ \ decay: \ \%(\epsilon+\beta^+)>76 \ based \ on \ \%\alpha<24 \ estimated \ assuming \ a \ g.s. \ to \ g.s. \ transition \ and \ HF>1 \ for \ ^{166}Re \ \alpha$ decay. See comment on $\%\alpha$ for ^{166}Re g.s. In ^{166}Re Adopted Levels.

1992Me10: sources from 141 Pr(32 S,pxn), E=204 MeV; measured E γ , I γ , K x ray- γ coin, $\gamma\gamma$ coin, E α (166 Re), γ excitation functions, $\gamma(t),\,\alpha(t).$ Isotopic identification from excit and cross bombardments.

The partial decay scheme is taken from 1992Me10. It has not been normalized because $Q(\epsilon)$ is large (=10 MeV) and the scheme is almost certainly very incomplete.

¹⁶⁶W Levels

E(level) [†]	$J\pi^{\ddagger}$
0.0	0+
252.3 2	2 +
676.2 <i>3</i>	4 +
1226.4 3	6+

 $^\dagger~$ From Eq.

[‡] From Adopted Levels.

β⁺,ε Data

Eε	E(level)
(8814 [†])	1226.4
(9364 [†])	676.2
(9788 [†])	252.3

[†] Existence of this branch is questionable.

 $\gamma(^{166}W)$

$E\gamma^{\dagger}$	E(level)	$I\gamma^\dagger$	Mult.‡	α	Comments
252.3 <i>2</i>	252.3	100	E2	0.1447	$ \begin{array}{l} \alpha(\mathrm{K}) \!=\! 0.0903 \ 13; \ \alpha(\mathrm{L}) \!=\! 0.0414 \ 6; \ \alpha(\mathrm{M}) \!=\! 0.01020 \ 15; \ \alpha(\mathrm{N} \!+\!) \!=\! 0.00277 \ 4. \\ \alpha(\mathrm{N}) \!=\! 0.00242 \ 4; \ \alpha(\mathrm{O}) \!=\! 0.000346 \ 5; \ \alpha(\mathrm{P}) \!=\! 7.49 \!\times\! 10^{-6} \ 11. \end{array} $
423.9 <i>2</i>	676.2	526	(E2)	0.0321	Coincident with K x ray(W). α(K)=0.0237 4; α(L)=0.00639 9; α(M)=0.001529 22; α(N+)=0.000421 6. α(N)=0.000364 6; α(O)=5.46×10 ⁻⁵ 8; α(P)=2.14×10 ⁻⁶ 3.
550.2 <i>2</i>	1226.4	264	(E2)	0.01661	Coincident with K x ray(W) and γ^{\pm} . $\alpha(K)=0.01289$ 18; $\alpha(L)=0.00286$ 4; $\alpha(M)=0.000675$ 10; $\alpha(N+)=0.000187$ 3. $\alpha(N)=0.0001611$ 23; $\alpha(O)=2.47\times10^{-5}$ 4; $\alpha(P)=1.184\times10^{-6}$ 17.

† From 1992Me10.

‡ From Adopted Gammas.

¹⁶⁶Re ε Decay 1992Me10 (continued)

¹⁷⁰Os α Decay 1996Pa01,1995Hi02,1982En03

Parent ¹⁷⁰Os: E=0; J π =0+; T_{1/2}=7.37 s 18; Q(g.s.)=5539 3; % α decay=9.5 10. ¹⁷⁰Os-% α decay: from weighted average of % α (to ¹⁶⁶W g.s.)=12 1 (1982En03), 8.6 6 (1996Pa01), 10 3 (2004GoZZ). The unweighted average is 10.2 10. Others: %α=3 estimated by 1978Sc26 based on comparison of measured α intensities and calculated excitation function for reaction producing ^{170}Os ; $\%\alpha$ =5 1 (1995Hi02, assuming 162 γ and 216 γ in ^{170}Re are M1), or % α =9 2 (1995Hi02, neglecting internal conversion of 162 γ and 216 γ).

Parent T1/2=7.37 s 18 from weighted average of 7.2 s 2 (2004GoZZ, a(t)) 9.0 s 10 (1996Pa01), 7.9 s 3 (1995Hi02, from $\alpha(t)),\ 8.5\ s\ 5\ (1995 Hi02,\ from\ 216\gamma(t)),\ 9.3\ s\ 16\ (1995 Hi02,\ from\ 162\gamma(t)),\ 6.9\ s\ 8\ (1984 Sc06),\ 7.1\ s\ 2000$ (1982En03), 7.1 s 5 (1972To06). Other: 4.0 s 2 (1978Sc26). The unweighted average is 7.9 s 3.

¹⁶⁶W Levels

E(level)	Jπ	T _{1/2}		Comments			
0.0	0+	19.2 s 6	$J\pi, T_{1/2}$: fr	om Adopted Levels.			
				α radiations			
Εα	E(le	evel) Ια ^{†§}	HF [‡]	Comments			
5407.1 24	0.0	97 <i>3</i>	1.0	Eα: weighted average of 5410 5 (2004GoZZ), 5407 10 (2002Ro17), 5408 15 (2002Ro17), 5403 7 (1995Hi02), 5393 8 (1984Sc06), 5411 4 (1982De11), 5405 10 (1982En03), 5403 10 (the 5400 10 datum of 1972To06, after adjustment by 1991Ry01). Other Eα: 5400 10 (1978Sc26) for line with discrepant $T_{1/2}$. Eα=5406 3 implies Q(α)=5537.4 24 cf. 5539 3 in 2003Au03.			

 † This is the only lpha observed. Were there a 5161lpha to the 2+ 252 level of 166 W, the requirement that HF exceed 1 implies that its intensity must be <6% of all $^{170}Os~\alpha$ decays. Consequently, the evaluator adopts 97 3 for I(g.s.)/I\alpha(total).

ŧ r_0 =1.560 *6* from HF=1 for α to ¹⁶⁶W g.s., consistent with r_0 systematics for W.

§ For α intensity per 100 decays, multiply by 0.095 *10*.

¹⁰⁶Pd(⁶³Cu,p2nγ) 1992Si12

1992Si12 (supersedes 1990HaZP): E(⁶³Cu)=285, 290 MeV; self-supporting foil targets. POLYTESSA array (20 Ge detectors with BGO suppression shields), θ =101°, 117°, 143°, recoil separator; measured Ey, Iy, $\gamma\gamma$ coin, recoil- γ coin, DCO ratios $(I\gamma(40^{\circ},40^{\circ})/I\gamma(40^{\circ},79^{\circ})$ and, from recoil-gated spectrum, $I\gamma(40^{\circ})/I\gamma(79^{\circ})$). TESSA3 array (16 Ge detectors with 50-element inner ball of BGO detectors), θ=30°, 60°, 90°, 120°, 150°; measured Εγ, Ιγ, γγ coin, feeding transition DCO ratios $I\gamma(30^\circ,30^\circ)/I\gamma(30^\circ,90^\circ)$. Cranked shell model calculations.

		_	¹⁰⁶ Pd(⁶³ Cu	1,p2nγ) 1992Si12	continued)
				¹⁶⁶ W Levels	_
E(level) [†]	Jπ [‡]	E(level) [†]	Jπ [‡]	E(level) [†]	Jπ [‡]
0.0§	0 +	3030.6§ 23	12+	5851# 3	21-
252.08 10	2 +	3174.1# 23	13-	6169 [@] 3	22-
675.9 [§] 15	4 +	3356.1 [§] 25	14+	6494# 4	(23-)
1225.9 [§] 17	6 +	3474.1 [@] 24	14-	6494.1 [§] 40	24+
1587.0 [#] 17	5 –	3720.3 [#] 25	15-	6811? [@] 4	(24-)
1864.6 [§] 18	8+	3821§ 3	16+	7168?# 4	(25-)
1928.1 # 17	7 –	4127 [@] 3	16-	7314 [§] 4	26+
2019.9 [@] 18	6 -	4376 [#] 3	17-	7519? [@] 4	(26-)
2337.3 [#] 18	9 -	4389§ 3	18+	7915?# 4	(27-)
2349.2 [@] 18	8 -	4870 [@] 3	18-	8186 [§] 4	28+
2550.9§ 21	10+	5028§ 3	20+	8290? [@] 4	(28-)
2573.0 [@] 19	10-	5112 [#] 3	19-	8723?# 4	(29-)
2743 . 5 [#] 21	11-	5579 [@] 3	20-	9108 [§] 4	30+
2946.4 [@] 22	12-	5729§ 4	22+	10077?§ 4	(32+)

 $^\dagger~$ From least-squares fit to Eq, assigning an uncertainty of 1 keV to all data.

 \ddagger Authors' values, based on measured DCO ratios and deduced band structure.

§ (A): Yrast 0+ g.s. band. Becomes (v 3/2[651])² band at $\hbar\omega=262$ keV 4.

(B): (v 3/2[651])(v 3/2[521]), $\alpha = +1/2$ band. Crossed by 4 quasineutron (3/2[651])²(3/2[521])(1/2[660]) band at $\hbar \omega = 348$ keV 4. (AE band crossed by AEBC band).

$\gamma(^{166}W)$

$E\gamma^{\dagger}$	E(level)	Iγ [‡]	Mult.§	Comments
223 8	2573 0	11 1 11		DC01=0 87 10 DC02=0 89 14 DC03=0 74 5
235.7	2573.0	8.2.8	D	DCO1=0.50 4. $DCO2=0.69$ 7. $DCO3=0.80$ 5.
252.0	252.0	100.0 16		DCO1 = 0.76 3. $DCO2 = 0.82$ 4. $DCO3 = 0.83$ 2.
325.5	3356.1	41.3 16	Q	DCO1=1.01 4. $DCO2=1.01$ 8. $DCO3=0.99$ 3.
329.3	2349.2	6.8 14	ò	DC01=0.90 13. DC02=0.95 16. DC03=1.04 9.
341.1	1928.1	9.76	ò	DC01=0.96 10. DC02=0.92 12. DC03=0.97 6.
373.4	2946.4	10.96	ò	DC01=0.89 8. DC02=1.09 8. DC03=0.90 5.
406.2	2743.5	21.7 12	ò	DC01=1.05 8. DC02=0.93 6. DC03=0.99 4.
409.1	2337.3	26.7 14	ò	DC01=0.86 9. DC02=0.92 5. DC03=0.91 3.
421.1	2349.2	6.2 10	v	
423.9	675.9	100.0	Q	DC01=0.89 4, DC02=0.89 4, DC03=0.89 2.
430.6	3174.1	19.5 11	Q	DCO1=0.99 7, DCO2=0.93 7, DCO3=1.17 6.
432.8	2019.9	3.9 10	-	
465.2	3821	37.4 15	Q	DCO1=1.02 4, DCO2=1.08 5, DCO3=1.10 3.
472.7	2337.3	7.1 6	D	DCO1=0.51 6, DCO2=0.52 5, DCO3=0.57 5.
479.7	3030.6	41.6 16	Q	DCO1=0.90 4, DCO2=0.97 4, DCO3=1.05 3.
527.7	3474.1	10.7 10	Q	DCO2=1.09 14, DCO3=1.07 6.
546.2	3720.3	17.6 18	Q	DCO1=0.97 9, DCO2=0.94 16, DCO3=0.94 5.
550.0	1225.9	89.3 20	Q	DCO1=1.03 4, DCO2=1.00 5, DCO3=0.94 2.
568.0	4389	32.0 16	Q	DCO1=0.90 5, DCO2=1.08 5, DCO3=0.99 4.
589.7	6169	5.4 16	Q	DCO2=1.08 14, DCO3=1.24 11.
638.8	1864.6	53 <i>3</i>		DCO1=1.06 4, DCO2=1.05 6, DCO3=0.95 3; for doublet.
	5028	24.4 18		DCO1=1.06 4, DCO2=1.05 6, DCO3=0.95 3; for doublet.
641 . 7 $^{\#}$	6811?	3.8 16		
642.6	6494	8.4 12		
652.7	4127	10.4 14	Q	DCO1=0.95 13, DCO2=1.07 17, DCO3=1.04 9.
655.8	4376	14.2 16	Q	DCO1=0.99 14, DCO2=1.09 19, DCO3=1.12 9.
$674.2^{\#}$	7168?	5.1 8	Q	DCO2=1.02 14, DCO3=1.18 18.
686.3	2550.9	43.3 16	Q	DCO1=1.07 6, DCO2=1.02 5, DCO3=1.08 3.
701.1	5729	14.6 8	Q	DCO1=0.90 8, DCO2=1.06 9.
702.2	1928.1	22.9 18	D	DCO1=0.56 7, DCO2=0.60 13.
708.8	5579	9.3 16		DCO1=0.90 8, DCO2=1.16 20, DCO3=0.92 15; for doublet.
	7519?	9.3 16		DCO1=0.90 8, DCO2=1.16 20, DCO3=0.92 15; for doublet.
736.0	5112	10.5 20	Q	DCO2=1.02 20.
739.3	5851	8.6 20		DCO2=1.2 3.

Continued on next page (footnotes at end of table)

¹⁰⁶Pd(⁶³Cu,p2nγ) 1992Si<u>12</u> (continued)

$\gamma(^{166}W)$ (continued)

$E\gamma^\dagger$	E(level)	Iγ [‡]	Mult.§	Comments
743.7	4870	8.9 18	Q	DC02=1.2 3, DC03=1.01 11.
746.5#	7915?	4.4 12	·	
765.1	6494.1	10.3 10	Q	DCO1=0.92 8, DCO2=0.98 8, DCO3=1.04 7.
770.5#	8290?	1.9 10		
808.2 [#]	8723?	3.0 12		
819.8	7314	7.4 8	Q	DCO2=0.98 13.
871.6	8186	3.9 6	Q	DC01=1.10 20, DC02=1.08 13.
911.1	1587.0	10.2 6	D	DCCO=0.55 7, DCO2=0.61 13, DCO3=0.64 6.
922.6	9108	2.5 5		DCO2=0.97 22.
968 . $8^{\#}$	10077?	1.8 5		

[†] Uncertainties unstated by 1992Si12.

 ¹ Relative photon intensity for E(⁶³Cu)=285 MeV, normalized so Iγ(423.9)=100.
 ⁸ Based on measured DCO1=Iγ(30°,30°)/Iγ(30°,90°), DCO2=Iγ(40°,40°)/Iγ(40°,79°) and/or DCO3=Iγ(40°)/Iγ(79°) recoil gated. For all three ratios, values of 0.5 and 1.0 are expected for stretched D and stretched Q (or D, $\Delta J=0$) transitions, respectively.

Placement of transition in the level scheme is uncertain.

¹⁰⁶Pd(⁶³Cu,p2nγ) 1992Si12 (continued)

	Bands for ¹⁶	⁶ W
(32+) (A)	(B)	(C)
968.8		
<u>30+ v</u>	-	
922.6	(29-)	
<u>28+</u>	808.2	(28-)
871.6	(27-)	770.5
<u>26+</u>	746.5 - (25-)	708.8
819.8	674.2	(24-)
<u>24+</u>	(23-)	641.7
765.1	642.6 21-	<u>22-</u> 589.7
22+ 4	- 739.3	<u> </u>
<u>20+</u>	<u>- 19- v</u>	708.8
638.8	736.0	743.7
18+ v 568.0	<u> </u>	<u>16-</u>
<u>16+</u>	- <u>15- v</u>	652.7
14+ 325.5	- 546.2 - 13- V	<u> </u>
12+ ¥ 479.7	- 430.6 <u>11- v</u>	<u> </u>
<u>10+</u>	- 406.2 2 9- 2	
<u>вн</u>	472.7 409.1 42	21.1 329.3 6-
638.8	702.2	
6+ ¥ 550.0	_// 911.1	
4+		
2+ v	_	

¹⁰⁶ Pd(⁶³ Cu,p2nγ)	1992Si12 (continued)
---	----------------------

 ${}^{166}_{74}\rm W_{92}$

¹⁰⁶Pd(⁶³Cu,p2nγ) 1992Si12 (continued)

Level Scheme

Intensities: relative $I\gamma$

 ${}^{166}_{74}W_{92}$

¹⁴²Nd(²⁸Si,4nγ) 1985Ge05

 $^{142}Nd(^{28}Si,4n\gamma),\ E=150\ MeV;\ stacked\ foil\ target,\ chopped\ beam;\ measured\ E\gamma,\ I\gamma(\theta)\ (6\ angles,\ \theta=0^{\circ}-90^{\circ}),\ \gamma\gamma\ coin,$ $\gamma X{-}ray$ coin. Compton-suppressed detectors.

¹⁶⁶W Levels

E(level)	†	<u></u>	E(level)	1	<u></u>	E(level)	†	Jπ‡
0.0§		0 +	2551.3§	5	10+	4388.1 [§]	9	18+
251.7 [§]	2	2 +	2742 . 2 $^{\#}$	9	11(-)	5027.0 [§]	11	20+
675.4 [§]	3	4 +	3030.9 [§]	5	12+	5114 . 0 $^{\#}$	14	(19)
1225 . 6 §	4	6+	3172 . 7 $^{\#}$	10	13(-)	5728.8 [§]	12	(22)
1587 . 0 $^{\#}$	5	5 (-)	3355.9 [§]	6	14+	6492 . 1 §	13	(24)
1864.5 [§]	4	8+	3721 . 8 $^{\#}$	12	(15)	7312.4§	14	(26)
1928 . 2 [#]	6	7 (–)	3821.0 [§]	8	16+			
2333 . 4 $^{\#}$	8	9 (–)	4377 . 8 $^{\#}$	13	(17)			

 † From least-squares fit to Ey. ‡ Authors' values, based on measured $\gamma(\theta)$ and deduced band structure.

§ (A): Yrast π =+ band.

(B): π =- sideband.

 $\gamma(^{166}W)$

$E\gamma^{\dagger}$	E(level)	Ιγ	Mult.‡	Comments
251.7 2	251.7	100	E2	Mult.: Q from A_2 =+0.17 3, A_4 =-0.09 2; not M2 from intensity balance at the 252 level.
325.0 2	3355.9	33 1	Q	$A_2 = +0.17 5$, $A_4 = -0.10 5$.
341.0 5	1928.2	8.2 8		$A_2 = +0.7 \ 2, \ A_4 = -0.3 \ 2.$
405.2 [§] 5	2333.4	238 4		$A_2 = +0.21$ 5, $A_4 = -0.15$ 5 for contaminated γ .
408.8 5	2742.2	28 3		$A_2 = +0.3 \ I, A_4 = -0.1 \ I.$
423.7 2	675.4	86 4	Q	$A_2 = +0.19 \ 4, \ A_4 = -0.08 \ 5.$
430.5 5	3172.7	13 1		$A_2 = +0.20 \ 9, \ A_4 = -0.1 \ 1.$
465.1 5	3821.0	22 2		$A_2 = +0.27 \ 8.$
479.6 2	3030.9	38 2		$A_2 = +0.20 \ \theta, \ A_4 = -0.7 \ \theta.$
549.1 [@] 5	3721.8	11@ 1		$A_2 = +0.19 \ 2$, $A_4 = -0.06 \ 3$ for doublet.
550.2 [@] 2	1225.6	68 [@] 1		$A_2 = +0.19 \ 2$, $A_4 = -0.06 \ 3$ for doublet.
567.1 # 5	4388.1	16#4		$A_2 = +0.26 \ g.$
638.9 [@] 2	1864.5	52 [@] 2		$A_2 = +0.14$ 4, $A_4 = -0.07$ 4 for doublet.
638.9 [@] 5	5027.0	11@ 4		$A_2 = +0.14 \ 4$, $A_4 = -0.07 \ 4$ for doublet.
656.0 5	4377.8	9 2		$A_2 = +0.4 \ 1.$
686.8 <i>2</i>	2551.3	48 2	Q	$A_2 = +0.18 \ 5, \ A_4 = -0.11 \ 5.$
701.8§ 5	5728.8	8§ 3		
702.7 5	1928.2	21 4	D	$A_2 = -0.3 \ 2.$
736.2 # 5	5114.0	5#2		а.
763.3 5	6492.1	4 1		
820.3 5	7312.4	3 1		
911.5 5	1587.0	14 1	D	$A_2 = -0.20$ 7, $A_4 = -0.17$ 8.

 † 1985Ge05 report ΔE_γ =0.2 keV for strong lines (interpreted by the evaluator as those with I γ >30) and 0.5 keV for weak lines.

[‡] Based on $\gamma(\theta)$, except as noted.

§ From coincidence data; contaminated by $^{167}W~\gamma$ in singles spectrum.

 $^{\#}\,$ From coincidence data; contaminated by impurity line in singles spectrum.

[@] From coincidence data. Unresolved doublet in singles data.

¹⁴²Nd(²⁸Si,4nγ) 1985Ge05 (continued)

_	Bands for ¹⁶⁶ W
(26) (A)	(B)
820.3	
(24)	
(24)	
763.3	
<u>(22)</u>	
701.8	
	(19)
<u>20+</u>	—
638.9	736.2
<u>18+</u> v	<u>v (17)</u>
567 1	
10.	656.0
<u>10+ y</u>	<u>(15)</u>
465.1	549.1
325.0	
<u>12+ y</u>	430.5
479.6	<u> </u>
<u>10+ y</u>	40 ⁸ .8
686.8	
	405.2
<u>8+ y</u>	341.0
638.9	702.7 - 5(-)
<u>6+</u> v	/
550.2	911.5
4+ v	
423.7	
<u>2</u> +	
251.7 0+	

¹⁴²Nd(²⁸Si,4nγ) 1985Ge05 (continued)

 ${}^{166}_{74}W_{92}$

¹⁴²Nd(²⁸Si,4nγ) <u>1985Ge05</u> (continued)

Level Scheme

Intensities: relative $I\boldsymbol{\gamma}$

 $^{166}_{74}W_{92}$
Adopted Levels, Gammas

 $Q(\beta^{-})=-6410 SY; S(n)=9260 SY; S(p)=280 SY; Q(\alpha)=5510 SY 2003Au03.$

Uncertainty in $Q(\beta^{-})$, S(n), S(p) and $Q(\alpha)$ is 90, 90, 90 and 70, respectively (2003Au03).

 $Q(\alpha)$: 2003Au03 deduce $Q(\alpha)$ from E α in ¹⁶⁶Re α -decay (1992Me10 and 1996Pa01) assuming an E(level)=150 50 to g.s.

transition. If, instead, it were a g.s. to g.s. transition, those two measurements would imply $Q(\alpha)$ = 5657 16.

Assignment: ⁹³Nb(⁸⁴Kr,α7n), ⁸⁹Y(⁸⁴Kr,7n), E=5.1 to 5.5 MeV/u and 5.8 to 6.4 MeV/u, excit (1978Sc26); ¹⁴¹Pr(³²S,pxn), E=204 MeV, excit (1992Me10).

¹⁶⁶Re Levels

Cross Reference (XREF) Flags

A 170 Ir α Decay (0.87 s)

B 170 Ir α Decay (811 ms)

E(level) [†]	Jπ	XREF	T _{1/2}	Comments
0 0	‡	А	2 25 s [§] 21	% <i>α<24</i> ·%ε+%β⁺>76
0.0		A	2.23 30 21	where 24, wet where 240. %α: both α decay and ε decay have been observed, but the branching has not been measured. Based on a comparison of excitation function data for the various nuclides they studied, 1978Sc26 estimate $30 \le %\alpha(^{166}\text{Re}) \le 100$. However, based on $T_{1/2}$ and assuming $r_0(^{162}\text{Ta}) = 1.562$ 3 (unweighted average of $r_0 = 1.567$ 24 (^{160}Hf), 1.556 16 (^{162}W), 1.563 11 (^{164}W) from 1998Ak04), %α<24 for HF>1 if a g.s. to g.s. transition is assumed and %α<6 if Q(α)=5510 70 from 2003Au03; further, if this is an unhindered decay, HF<4 would imply %α>6 or >1.35 respectively, for these two Q(α) possibilities. The evaluator adopts an upper limit of 24 for %α, implying %ε+%β ⁺ >76 since p decay is not expected (S(p)>0 from 2003Au03). The much higher estimate of %α in 1978Sc26 might be unreliable due to the similarity of both Eα and $T_{1/2}$ for the ¹⁶⁶ Re and ¹⁶⁵ Re decays.
$0 \cdot 0 + x$		В		E(level): it is not known whether this is the g.s. or an excited state.
0.0+y	(3-)	A		E(level): this may or may not be the g.s.; if it is, y=0. However, a comparison of Eα from low-spin ¹⁷⁰ Ir α decay with Q(α) from systematics (2003Au03) suggests that it is not. Jπ: α decay is possibly unhindered (HF=4.4 18) from (3-) low-spin isomer in ¹⁷⁰ Ir.
5 3 + x		В		E(level): an alternative value of 69+x is possible because the order of the 53 γ and the 69 γ has not been established. π probably opposite to $\pi(0+x)$ level based on (E1) 53 γ to 0.0+x level.
65 + x		в		π probably same as $\pi(0+x)$ level based on (E1) 110 γ from 175+x level.
75 + x		В		E(level): 70+x 14 from energy difference between possible α group feeding this level and the 6121 α feeding the 0+x level. π probably same as $\pi(0+x)$ level based on (M1) 75x to 0.0+x level
1 2 2 + x		В		 E(level): 117+x 12 from energy difference between possible a group feeding this level and the 6121a feeding the 0+x level. Throbably opposite to T(0+x) level based on (E1) 122x to 0 0+x level
175+x		В		E(level): $174+x$ 14 from energy difference between possible α group feeding this level and the 6121 α feeding the 0+x level. π probably opposite to $\pi(0+x)$ level based on (E1) 175y to 0.0+x level.

 $^\dagger~$ From Ey, except as noted.

[‡] The lowest-energy orbitals available for the 75th proton are probably 1/2[411] ($d_{3/2}$) and 9/2[514] ($h_{11/2}$) based on possible $J\pi$ =(1/2+) and (9/2-) for the g.s. of ¹⁶⁵Re and ¹⁶⁷Re, respectively; the lowest-energy neutron orbital available to the 91st neutron is probably 5/2[523] ($f_{7/2}$) based on $J\pi$ =(5/2-) for the g.s. of the isotone ¹⁶⁵W (1995Hi02). If the deformation is large enough for the Gallagher-Moszkowski rule to be valid, low-lying 3- and 7+ states might be expected, but no low-lying isomeric excited state has been identified in ¹⁶⁶Re as yet. ε decay to ¹⁶⁶W indicates an intensity imbalance at each of the 2+, 4+ and 6+ levels observed so far; this is probably the result of a very incomplete decay scheme, so this provides no useful indication of $J\pi$ (g.s.) for ¹⁶⁶Re. The possibility that the 0+x or the 0+y level is, in fact, the g.s. cannot be ruled out.

§ Weighted average of 2.23 s 27 from 252γ(t) and 2.28 s 34 from 424γ(t) in ε decay (1992Me10). Other data: 2.2 s 4 (1978Sc26, for Eα=5495 10); 1.9 s 11 (1992Me10, for Eα=5501 13; however, A=165 contribution cannot be ruled out); the Eα=5506 10, 2.4 s 6 line assigned by 1981Ho10 to ¹⁶⁵Re has $T_{1/2}$ and Eα consistent with those for ¹⁶⁶Re (to which 1978Sc26 assign their 5495 10 line and 1982De11 assign their 5527 4 line) but 1996Pa01 confirm its assignment to ¹⁶⁵Re. $T_{1/2}$ =2.8 s 3 (1984Sc06, for Eα=5372 10) was assigned by those authors to ¹⁶⁶Re, but neither 1992Me10 nor 1996Pa01 see this line so the evaluator presumes it to have been misassigned. Note that the assignment of this $T_{1/2}$ to the ¹⁶⁶Re g. there is at variance with the assumption in 2003Wa32 that the observed ¹⁶⁶Re α decay takes place from an excited state, unless both states have comparable $T_{1/2}$.

$\gamma(^{166}\text{Re})$

E(level)	$E\gamma^\dagger$	Mult.‡	α	Comments
53+x	53§	(E1)	0.410	See comments on 53y from 175+x level.
6 5 + x	(65)	[M1]	3.12	Eγ,Mult.: γ expected to form a cascade with 110γ to 0+x level in ¹⁷⁰ Ir α decay (811 ms); may be a highly-converted transition because transition is not evident in relevant α-γ coin spectrum, so 2007Ha45 suggest M1 multipolarity, consistent with
75+x	75	(M1)	11.75	level scheme. Mult.: suggested in ¹⁷⁰ Ir α decay (811 ms) based on 6053α-γ coin spectrum which includes significant I(K x ray) attributed to internal conversion of the 75γ; analogous to authors' observations for known M1 92γ from ¹⁷¹ Re α decay.
1 2 2 + x	(47)			Eγ: highly tentative; however, observation of $2007\alpha-75\gamma$ coin (2007Ha45) suggests the existence of a transition connecting the 122+x and 75+x levels and such a transition may be too highly converted to be seen in $\alpha-\gamma$ coincidence spectrum. Level scheme implies $\Delta \pi$ =(yes), suggesting a multipolarity of M2 or higher.
	69	[M1]	2.62	
	122	(E1)	0.229	Mult.: since $I(75\gamma)/I(K\alpha x ray)$ in ¹⁷⁰ Ir α decay (811 ms) is approximately the same in spectra gated by the 6053 α and by the 6007 α , 2007Ha45 conclude that the 122 γ is probably E1 since it provides no significant contribution to K x ray peak's intensity via internal conversion.
175+x	53§#	[M1 , E2]	40 40	 This second placement of 53γ is suggested by energy difference between 175γ and 122γ that deexcite the same level. Mult.: assumed, based on level scheme; however, I(53γ)/I(122γ) in ¹⁷⁰Ir α decay (811 ms) is approximately the same in the spectra gated by 5951α or by the 6007α (2007Had5), authors for the multipolarity for this component and E1 for the other
	110	(E1)	0.300	Mult.: based on an argument similar to that used by 2007Ha45 to assign multipolarity to 1227.
	175	(E1)	0.0906	Mult.: based on an argument similar to that used by 2007Ha45 to assign multipolarity to 1227.

[†] From ¹⁷⁰Ir α decay (811 ms); uncertainties unstated by authors.

[‡] Very tentative values from arguments based on γ and K x ray intensities in α - γ coin spectra in ¹⁷⁰Ir α decay (811 ms), except

as noted.

§ Multiply placed.
Placement of transition in the level scheme is uncertain.

* Multiply placed

¹⁷⁰Ir α Decay (0.87 s) 2004GoZZ,2002Ro17,1996Pa01

Parent ¹⁷⁰Ir: E=0.0; $J\pi$ =(3-); $T_{1/2}$ =0.87 s +18-12; Q(g.s.)=6110 syst; % α decay=5.2 17.

 $^{170} Ir - \% \alpha$ decay: from $\% \alpha {=} 5.2$ 17 for 5815α in 2002Ro17.

1996Pa01: ¹⁷⁰Ir produced in 354 MeV ⁷⁰Ge bombardment of ¹⁰⁶Cd; measured E α , α (t), parent-daughter α correlations. 2002Ro17: ¹⁷⁰Ir produced by α decay of ¹⁷⁴Au; Si strip detector; measured E α , parent-daughter α correlations, T_{1/2} for ¹⁷⁰Ir.

2004GoZZ: ¹⁷⁰Ir from α decay of ¹⁷⁴Au produced by ⁹²Mo(⁸⁴Sr,pn) at E=390, 395 MeV; fragment mass analyzer and double-sided Si strip detector (for recoils and decay α particles) surrounded by 4 Ge detectors and a low-energy photon spectrometer; recoil decay tagging technique; measured E α , I α , recoil- α - γ coin, α (t), parent-daughter α correlations.

 170 Ir α decay: please see summary tabulation of data from the two known 170 Ir isomer decays at the beginning of the 170 Ir α decay (811 ms) data set.

Adopted low-spin parent $T_{1/2}$: 0.87 s +18-12 from 5815 α (t) (2002Ro17). It is unclear whether any other observed α from ¹⁷⁰Ir also originates from the low-spin isomer. E α =6045 10 and E α =6030 10 (1978Sc26) each has a compatible $T_{1/2}$, but the 5815 α , the only α from low-spin ¹⁷⁰Ir reported by 2002Ro17 or 2004GoZZ, was absent in the study by 1978Sc26. E α =6027 5 (1982De11) may be the same line that 1978Sc26 reported, but $T_{1/2}$ was not measured. The evaluator considers the 6045 α , 6030 α and 6027 α to be of uncertain parentage.

¹⁶⁶Re Levels

E(level)	Jπ	Comments
0 + x	(3-)	E(level): this may or may not be the g.s.; comparison of E α with Q(α) from systematics (2003Au03) suggests that it is not. J π : α decay possibly unhindered from low-spin (3-) ¹⁷⁰ Ir.
		α radiations

E α E(level)I α^{\ddagger} HF † Comments5815 40+x1004.418E α : weighted average of 5815 10 (2002Ro17) and 5815 5 (2004GoZZ). This E α would imply
Q(α)=5955 4 were this a g.s. to g.s. transition; this is 150 keV lower than 6110 50 from
systematics in 2003Au03.
Correlated with α from low-spin isomer of ¹⁷⁴Au (2002Ro17, 2004GoZZ).

[†] $r_0 = 1.5602$ 23, the unweighted average of r_0 (¹⁶⁶W) = 1.555 9 and r_0 (¹⁶⁶Os) = 1.565 3 (from this evaluation), and r_0 (¹⁶⁴W) = 1.563 11 and r_0 (¹⁶⁸Os) = 1.558 8 from 1998Ak04.

[‡] For α intensity per 100 decays, multiply by 0.052 17.

¹⁷⁰Ir α Decay (811 ms) 2007Ha45,2004GoZZ,1996Pa01

Parent ¹⁷⁰Ir: E=0.0+x; $J\pi$ =(8+); $T_{1/2}$ =811 ms 18; Q(g.s.)=6110 syst; % α decay=38 5.

 170 Ir-% α decay: from weighted average of % α =36 10 (1996Pa01) and % α =39 6 (2004GoZZ). Note, however, that E α values reported by 1996Pa01 and 2004GoZZ for one strong α differ from values from 2007Ha45.

```
Others: 1977Ca23, 1978Ca11, 1978Sc26, 1982De11, 2002Ro17.
```

1996Pa01: 170 Ir produced in 354 MeV 70 Ge bombardment of 106 Cd; measured E α , parent-daughter α correlations.

2002Ro17: ¹⁷⁰Ir produced by α decay of ¹⁷⁴Au; Si strip detector; measured E α , parent-daughter α correlations, T_{1/2} for ¹⁷⁰Ir.

2004GoZZ: ¹⁷⁰Ir from α decay of ¹⁷⁴Au produced by ⁹²Mo(⁸⁴Sr,pn) at E=390, 395 MeV; fragment mass analyzer and double-sided Si strip detector (for recoils and decay α particles) surrounded by 4 Ge detectors and a low-energy photon spectrometer; recoil decay tagging technique; measured Eα, Iα, recoil-α-γ coin, α(t), parent-daughter α correlations.

2007Ha45: ¹⁷⁰Ir source from ¹¹²Sn(⁶⁰Ni,pn), E(⁶⁰Ni)=266 MeV; 93% enriched, self-supporting target; JUROGAM spectrometer (43 EUROGAM type Compton-suppressed HPGe detectors) for prompt-γ detection; fusion-evaporation products selected using RITU gas-filled recoil separator and GREAT spectrometer (2 double-sided Si strip detectors, a multiwire proportional avalanche counter and an array of 28 Si PIN diode detectors); Ge detector near RITU focal plane to detect isomeric γ decay; measured Εγ, Εα, α-γ coin, γγ coin, α-recoil correlated γγ coin; Ιγ and Ια not enumerated.

Εα		%α(Ir)	Half-life		Reference(s)	Correlation(s)
5815	10	5.2 17	0.87 s +18-12	L	2002Ro17	$^{174}Au(6538\alpha)$
5815	5	-	-	L	2004GoZZ	¹⁷⁴ Au (6547α)
5951	10	-	0.83 s +6-5	Н	2007Ha45	-
6045	10	-	0.8 s 2	?	1977ScYH	-
6030	10	-	1.05 s 15	?	1978Sc26	-
6027	5	-	-	?	1982De11	-
6010	10	-	1.1 s 2	H?	1977Ca23,1978Ca11	-
6003	10	-	-	Н	1996Pa01	¹⁶⁶ Re(5515α)
6007	10	-	$0.802 \ s + 30 - 28$	Н	2007Ha45	-
6053	10	-	0.826 s + 30 - 28	Н	2007Ha45	-
6083	11	36 10	0.83 s <i>30</i>	H?	1996Pa01	-
6082		-	0.43 s 5	?	2002Ro17	$^{174}Au(6544\alpha#)$
6088 3	5	39 6	0.82 s 3	H?	2004GoZZ	^{174}Au (6433 α ,
						6471α , 6618α)
6121?	10	-	0.80 s 6	н	2007Ha45	_

Summary of $^{170}\,Ir~\alpha$ decay data (for both isomers):

consistent with 2004GoZZ if this is assumed to be the sum peak from $6471\alpha\,(^{174}Au\,)\,-153\,ce\,(^{170}Ir\,)$ coin.

L - associated with low-spin ¹⁷⁰Ir decay.

H – associated with high-spin $^{170}\,I\,r\,$ decay.

Parent $T_{1/2}$: 811 ms 18 is the authors' recommended value from 2007Ha45, based on the following $\alpha(t)$ data: 802 ms +30-28 (6007 α), 826 ms +30-28 (6053 α), 830 ms +58-53 (5951 α), 801 ms +63-57 (6121 α). Others: 0.43 s 5 (2002Ro17, 6082 α), 0.83 s 30 (1996Pa01, 6083 α), 0.82 s 3 from 6088 $\alpha(t)$ (2004GoZZ; from table 5.1, but note that fig. 6.7 shows 0.82 s 2). The result from 2002Ro17 is inconsistent and the reason for this is not understood. 0.8 s 2 (1977ScYH, 6045 α), 1.05 s 15 (1978Sc26, 6030 α) and 1.1 s 2 (1977Ca23 and 1978Ca11, 6010 α) are reported for lines whose parentage the evaluator considers to be unclear.

¹⁶⁶Re Levels

E(level) [†]	Comments
$0 \cdot 0 + x$	
5 3 + x	E(level): an alternative value of 69+x is possible because the order of the 53 γ and the 69 γ could not be established (2007Ha45).
65 + x	
75 + x	Other E: 70+x 14 from energy difference between α group feeding this level and the possible 6121α feeding the 0+x level.

Continued on next page (footnotes at end of table)

¹⁷⁰Ir α Decay (811 ms) 2007Ha45,2004GoZZ,1996Pa01 (continued)

¹⁶⁶Re Levels (continued)

E(level) [†]	Comments
1 2 2 + x	Other E: 119+x 12 from energy difference between α group feeding this level and the possible 6121 α feeding the 0+x
175+x	Other E: 174+x 14 from energy difference between α group feeding this level and the possible 6121 α feeding the 0+x level.

 $^\dagger\,$ From least-squares fit to Eq.

α radiations

Eα	E(level)	Comments					
5951 10	175+x	E α : reported by 2007Ha45 only.					
		Coincident with 110y and 175y as well as 53y, 75y and 122y.					
6005 7	1 2 2 + x	E α : weighted average of 6003 <i>10</i> (1996Pa01) and 6007 <i>10</i> (2007Ha45). Other: 6010 <i>10</i> (1977Ca23, 1978Ca11); however, this α has T _{1/2} =1.1 s <i>2</i> , somewhat longer than value adopted for ¹⁷⁰ Ir high spin isomer.					
		6003 α correlated with 5533 α from ¹⁶⁶ Re (1996Pa01). Strong coincidence with 122 γ as well as 53 γ , 69 γ , 75 γ (2007Ha45).					
6053 10	7 5 + x	Ea: from 2007Ha45. Other Ea: 6088 5 (2004GoZZ), 6083 11 (1996Pa01), 6082 (2002Ro17); the inconsistency between these data and the adopted Ea=6053 10 is troubling and unexplained.					
		Correlated with 6544 $lpha$ from 174 Au (1996Pa01); correlated with 6433 $lpha$, 6471 $lpha$ and 6618 $lpha$ from high-spin 174 Au					
		(2004GoZZ). No correlation with $lpha$ decay from 166 Re was observed (1996Pa01). Coincident with 75 γ and Re K x ray.					
6121 # 10	$0 \cdot 0 + x$	E α : from 2007Ha45 only; shown as tentative because authors cannot rule out the possibility that this is a sum peak arising from 6053 α +ce(L)(75 γ) and/or 6007 α +ce(L)(122 γ).					
		No coincidence with γ or Re(K x ray) observed by 2007Ha45.					

Existence of this branch is questionable.

$\gamma(^{166}Re)$

$E\gamma^{\dagger}$	E(level)	Mult.	α	Comments
(47)	122+x			Eγ,Mult.: highly tentative γ; however, observation of $6005\alpha-75\gamma$ coin (2007Ha45) suggests the existence of a transition connecting the 122+x and 75+x levels and such a transition may be too highly converted to be seen in the $\alpha-\gamma$ coincidence spectrum. However, level scheme suggests $\Delta\pi=$ (yes) so multipolarity of M2 or higher may be implied.
53 [‡]	5 3 + x	(E1)	0.410	$\alpha(L) = 0.317 \ 5; \ \alpha(M) = 0.0732 \ 11; \ \alpha(N+) = 0.0199 \ 3.$ $\alpha(N) = 0.01723 \ 25; \ \alpha(O) = 0.00258 \ 4; \ \alpha(P) = 0.0001057 \ 15.$
				See comments on 53γ from 175+x level.
	175 + x	[M1, E2]	40 40	$\alpha(L)=28 \ 24; \ \alpha(M)=7 \ 6; \ \alpha(N+)=1.9 \ 17.$
				Mult.: assumed, based on level scheme; however, $I(53\gamma)/I(122\gamma)$ is approximately the same in the spectra gated by the 5951 α and by the 6007 α (2007Ha45). Authors favor M1 multipolarity for this component and E1 for the other.
				This second placement of 53 γ is suggested by energy difference between 175 γ and 122 γ (2007Ha45).
(65)	65 + x	[M1]	3.12	$\alpha(L)=2.41$ 4; $\alpha(M)=0.551$ 8; $\alpha(N+)=0.1578$ 22.
				$\alpha(N)=0.1337$ 19; $\alpha(O)=0.0225$ 4; $\alpha(P)=0.001638$ 23.
				Mult.: expected by 2007Ha45 to form a cascade with 110γ to 0+x level. γ is absent in 5951α-γ spectrum; this may indicate significant conversion, and authors suggest M1 multipolarity, consistent with level scheme.
69	122 + x	[M1]	2.62	α (L)=2.02 3; α (M)=0.463 7; α (N+)=0.1325 19.
				$\alpha(N) = 0.1123$ 16; $\alpha(O) = 0.0189$ 3; $\alpha(P) = 0.001376$ 20.
				Eγ,Mult.: Eγ coincides with energy of Kβ x ray(Re) but peak is too strong relative to Kα x ray in 6007α-γ coin spectrum to be attributed entirely to Re Kβ x ray. Authors tentatively suggest M1 multipolarity based on the level scheme.
75	7 5 + x	(M1)	11.75	α(K)=9.70 14; α(L)=1.588 23; α(M)=0.363 5; α(N+)=0.1039 15. α(N)=0.0880 13; α(O)=0.01479 21; α(P)=0.001079 16. Mult.: suggested by 2007Ha45 based on 6053α-γ coin spectrum which includes significant I(K x ray) attributed to internal conversion of the 75γ; analogous to
				authors' observations for known M1 92 γ from 171 Re α decay.

Continued on next page (footnotes at end of table)

¹⁷⁰Ir α Decay (811 ms) 2007Ha45,2004GoZZ,1996Pa01 (continued)

$\gamma(^{166}Re)$ (continued)

$\underline{} E \gamma^{\dagger}$	E(level)	Mult.	α	Comments
110	$1\ 7\ 5+x$	(E1)	0.300	$\alpha(K)=0.245$ 4; $\alpha(L)=0.0427$ 6; $\alpha(M)=0.00978$ 14; $\alpha(N+)=0.00271$ 4. $\alpha(N)=0.00233$ 4; $\alpha(O)=0.000366$ 6; $\alpha(P)=1.90\times 10^{-5}$ 3.
				Mult.: based on an argument similar to that used by 2007Ha45 to assign multipolarity to 1227.
122	$1\ 2\ 2 + x$	(E1)	0.229	$\alpha(K)=0.188$ 3; $\alpha(L)=0.0322$ 5; $\alpha(M)=0.00738$ 11; $\alpha(N+)=0.00205$ 3.
				$\alpha(N)=0.001758\ 25;\ \alpha(O)=0.000278\ 4;\ \alpha(P)=1.479\times10^{-5}\ 21.$
				Mult.: since $I(75\gamma)/I(K\alpha \; x\; ray)$ is approximately the same in spectra gated by the
				$6053lpha$ and by the $6007lpha$, $2007Ha45$ conclude that the 122γ is probably E1 since it
				provides no significant contribution to K x ray peak's intensity via internal conversion.
175	175 + x	(E1)	0.0906	$\alpha(K)=0.0748$ 11; $\alpha(L)=0.01223$ 18; $\alpha(M)=0.00279$ 4; $\alpha(N+)=0.000782$ 11.
				$\alpha(N) = 0.000668 \ I0; \ \alpha(O) = 0.0001073 \ I5; \ \alpha(P) = 6.19 \times 10^{-6} \ 9.$
				Mult.: based on an argument similar to that used by 2007Ha45 to assign multipolarity
				το 122γ.

[†] From 2007Ha45; uncertainty unstated by authors.
[‡] Multiply placed.
§ Placement of transition in the level scheme is uncertain.

¹⁶⁶₇₅Re₉₁

Adopted Levels, Gammas

 $\label{eq:Q(\beta^-)=-12230} Q(\beta^-)=-12230 \ SY; \ S(n)=11860 \ SY; \ S(p)=2070 \ 30; \ Q(\alpha)=6139 \ 4 \ 2003 Au03.$ Uncertainty in $Q(\beta^{-})$ and S(n) is 200 and 200, respectively (2003Au03). Assignment: ¹⁰⁶Cd(⁶³Cu,p2n), ¹⁰⁷Ag(⁶³Cu,4n) E=400 MeV, excit (1978Ca11,1977Ca23).

¹⁶⁶Os Levels

Cross Reference (XREF) Flags

Δ	170Pt	α	Decay
A	- Pt	α	Decav

- B $^{106}Cd(^{63}Cu, p2n\gamma)...$
- C ¹⁶⁷Ir p Decay (35.2 ms)
- $\begin{array}{l} D & {}^{167}\text{Ir } p \text{ Decay (30.0 ms)} \\ E & {}^{106}\text{Cd}({}^{64}\text{Zn}, 2p2n\gamma) \end{array}$

E(level) [†]	Jπ‡	XRE	CF T _{1/2}	Comments
0.0#	0 + §	ABC	DE 199 ms <i>3</i>	%α=72 13 (1981Ho10); %ε+%β ⁺ =18 13.
				$J\pi$: even-even nucleus ground state.
				$T_{1/2}$: weighted average of 200 ms 7 (1996Pa01; 6000 α (t)), 194 ms 17 (1991Se01) and
				181 ms 38 (1981Ho10). Other: 0.3 s 1 (1978Ca11).
432.0# 3	2 + §	в	Е	$J\pi$: stretched E2 γ to 0+.
1021.0# 5	4 + §	в	Е	J π : stretched intraband Q γ to 2+; continuation of g.s. band.
1562.3 [@] 7	(3-)		Е	
1725.0# 7	6 + §	в	Е	J π : stretched intraband Q γ to 4+; continuation of g.s. band.
1931.3 [@] 7	(5-)		Е	
2351.3 # 9	8 + [§]	в	Е	J π : stretched intraband Q γ to 6+; continuation of g.s. band.
2426.0?& 11	(6-)		Е	-
2452.4 @ 9	(7-)		Е	
3009.4 # 12	10+§		Е	
3025.5?& 11	(8-)		Е	
3520.7 # 13	(12+)§		Е	
3910.8?# 16	(14+)§		Е	

 † From least-squares fit to adopted Ey.

 ‡ Values given without comment are based on band structure deduced in 106 Cd(64 Zn,2p2n γ), similarities of band structure to that in ^{168}Os and on measured γ asymmetry.

§ Definite Jπ assigned for J≤10 g.s. band members based on J π =0+ for even-even nucleus g.s., mult=E2 for the J=2 to 0 432γ and stretched Q character for several other intraband transitions.

(A): Yrast band (2002Ap03). g.s. band crossed at $\hbar\omega$ =0.30 MeV (with 11 \hbar gain in alignment) by v $i_{13/2}^2$ band (2002Ap03).

 (B): Kπ=(3-), α=1 band (2002Ap03). Bandhead deexcites to J=2 and 4 members of g.s. band; structure of band appears to be
 (B): Kπ=(3-), α=1 band (2002Ap03). similar to that of a 3- band in ¹⁶⁸Os. Possible configuration: v $(i_{13/2})(h_{9/2}, f_{7/2})$.

& (C): π =(-), α =0 band (2002Ap03). Very weak band decaying through the (3-) band, analogous to a side band known in ¹⁶⁸Os; on this basis, authors tentatively assign π =- and even spin. Possible configuration: v $(i_{13/2})(h_{9/2},f_{7/2})$.

$\gamma(^{166}Os)$

E(level)	$E\gamma^{\dagger}$	$\underline{ I\gamma^{\dagger}}$	Mult. [‡]	α	Comments
432.0	432.0 3	100	E2	0.0330	Mult.: Q from γ asymmetry, not M2 from intensity balance in $(^{64}Zn, 2p2n\gamma)$.
1021.0	589.2 4	100	(E2)	0.01539	
1562.3	541.6 7	68 24	D		
	1129.2 9	100 24			
1725.0	704.0 5	100	(E2)	0.01031	
1931.3	368.8 5	100 29	(E2)	0.0505	
	910.9 <i>9</i>	71 43	D		
2351.3	626.3 5	100	(E2)	0.01337	
2426.0?	494.8 [§] 9	100			
2452.4	521.1 6	100			
3009.4	658.1 8	100			
3025.5?	573.0§ 9	33 <i>83</i>			
	599.6§ <i>9</i>	100 83			
3520.7	511.3 5	100			
3910.8?	390.1 [§] 9	100			

Footnotes continued on next page

$\gamma(^{166}Os)$ (continued)

- [†] From ¹⁰⁶Cd(⁶⁴Zn,2p2nγ). Note that Eγ data from ¹⁰⁶Cd(⁶³Cu,p2nγ) (uncertainty 0.2 or 0.3 keV) are consistently lower than these data by 1.2 to 2.2 keV. From angular correlation data in 106 Cd(64 Zn,2p2n γ), assigning $\Delta \pi$ =(no) for intraband stretched Q transitions.
- § Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas (continued)

 $^{166}_{76} \mathrm{Os}_{90}$

¹⁶⁷Ir p Decay (35.2 ms) 1997Da07

Parent ¹⁶⁷Ir: E=0.0; $J\pi=1/2+$; $T_{1/2}=35.2$ ms 20; Q(g.s.)=1071 5; %p decay=32 4.

¹⁶⁷Ir-%p decay: from 1997Da07.

1997Da07: source from 357-MeV ⁷⁸Kr bombardment of ⁹²Mo; fragment mass analyzer with position-sensitive parallel plate avalanche counter at focal plane, double-sided Si strip detector; measured E(p), $E\alpha$, p(t), $\alpha(t)$, recoil-p- α correlations.

Parent $J\pi$ and $T_{1/2}$ are from 1997Da07. Q(g.s.) is from measured E(p)=1064 δ (1997Da07) for g.s. to g.s. transition.

¹⁶⁶Os Levels

E(level)[†] Jπ

0.0 0+

† From 1997Da07.

Protons

E(p))	E(¹⁶⁶ Os)	L
1064	6	0.0	0

¹⁶⁷Ir p Decay (30.0 ms) 1997Da07

Parent ¹⁶⁷Ir: E=175.3 22; Jπ=11/2-; T_{1/2}=30.0 ms 6; Q(g.s.)=1071 5; %p decay=0.4 1.

¹⁶⁷Ir-%p decay: from 1997Da07.

1997Da07: source from 357-MeV ⁷⁸Kr bombardment of ⁹²Mo; fragment mass analyzer with position-sensitive parallel plate avalanche counter at focal plane, double-sided Si strip detector; measured E(p), $E\alpha$, p(t), a(t), recoil-p- α correlations.

Parent $J\pi$ and $T_{1/2}$ are from 1997Da07. Q(g.s.) is from measured E(p)=1064 δ (1997Da07) for g.s. to g.s. transition. The parent excitation is from measured proton energy difference (1997Da07).

¹⁶⁶Os Levels

E(level)	$J\pi$		Comments
0.0	0 +	Jπ: fr	om Adopted Levels.
			Protons
E(p)	E(¹⁶⁶ Os)) <u>L</u>	Comments
1238 7	0.0	5	E(p),L: from 1997Da07.

¹⁷⁰Pt α Decay 2004GoZZ,2004Ke06,1997Uu01

Parent ¹⁷⁰Pt: E=0; $J\pi=0+$; $T_{1/2}=13.93$ ms 24; Q(g.s.)=6708 4; % α decay=98 4.

 170 Pt-% α decay: % α =98 4 (2004GoZZ). Other: % α =98 calculated by 1981HoZM.

Others: 1981Ho01, 1996Bi07, 1998Ki20.

2004GoZZ: 84Sr+^{92,94,96}Mo, E(84Sr)=380-395 MeV; recoil-decay tagging technique; measured Eα, %α.

2004Ke06: ¹⁷⁰Pt obtained both as daughter of ¹⁷¹Au proton decay and directly from fusion-evaporation reaction 96 Ru+⁷⁸Kr (E(⁷⁸Kr)=361-391 MeV, mid-target). Measured E α , parent T_{1/2}.

1997Uu01: ¹⁷⁰Pt obtained as daughter of mass-separated ¹⁷⁴Hg produced using ³⁶Ar+¹⁴⁴Sm fusion reaction at $E(^{36}Ar)=180-230$ MeV. Measured E α , parent $T_{1/2}$, α correlations.

 $T_{1/2}^{(170}Pt) = 13.93 \text{ ms } 24$ (weighted average of 14.7 ms 5 (1996Bi07), 13.5 ms 3 (1998Ki20) and 14.0 ms 2 (2004Ke06)). Others: 6 ms +5-2 (1981Ho10), 15 ms +16-6 (1997Uu01).

¹⁶⁶Os Levels

E(level)	<u>Jπ</u>	T _{1/2}		Comments
0.0	0+ 181	ms <i>38</i>	T _{1/2} : from	m 1981Ho10.
				α radiations
Εα	E(level)	<u>Ια‡</u>	HF^{\dagger}	Comments
6548.4 <i>18</i>	0.0	100	1.0	Eα: weighted average of 6545 8 (1981Ho10), 6553 11 (1997Uu01), 6545 5 (2004GoZZ) and 6549 2 (2004Ke06). This Eα implies Q(α)=6706.2 18 cf. Q(α)=6708 4 from 2003Au03.

† $r_0=1.5638 \ 12 \text{ from HF}=1 \text{ if } Q(\alpha)=6706.2 \ 18.$

[‡] For α intensity per 100 decays, multiply by 0.98 4.

¹⁰⁶Cd(⁶³Cu,p2nγ),¹¹²Sn(⁵⁸Ni,2p2nγ) 2000Ki33

2000Ki33: E(⁶³Cu)=292 MeV, E(⁵⁸Ni)=286 MeV; JUROSPHERE spectrometer consisting of 14 EUROGAM detectors and 10 TESSA detectors; measured Ey, Iy and yy coin.

¹⁶⁶Os Levels

E(level)‡	$J\pi^{\dagger}$
0.0§	0+
430.8 [§] 2	(2+)
1017.8 [§] 3	(4+)
1719.9 [§] 4	(6+)
2345.0? [§] 5	(8+)

† Authors' tentative values.

‡ From Eγ.

§ (A): Yrast sequence.

 $\gamma(^{166}Os)$

$E\gamma^{\dagger}$	E(level)	$I\gamma^{\dagger}$
×367.3 <i>3</i>		20 3
430.8 2	430.8	100 6
587.0 2	1017.8	70 5
625.1 [‡] 3	2345.0?	17 5
702.1 2	1719.9	474

† From 2000Ki33.

 $\begin{array}{l} \ddagger \\ Placement of transition in the level scheme is uncertain. \\ x \\ \gamma ray not placed in level scheme. \end{array}$

¹⁰⁶Cd(⁶³Cu,p2nγ),¹¹²Sn(⁵⁸Ni,2p2nγ) 2000Ki33 (continued)

(A) yrast sequence.

¹⁰⁶Cd(⁶³Cu,p2nγ),¹¹²Sn(⁵⁸Ni,2p2nγ) 2000Ki33 (continued)

¹⁰⁶Cd(⁶³Cu,p2nγ),¹¹²Sn(⁵⁸Ni,2p2nγ) 2000Ki33 (continued)

Intensities: relative Iy

¹⁰⁶Cd(⁶⁴Zn,2p2nγ) 2002Ap03

2002Ap03: E(⁶⁴Zn)=334 MeV; 80% enriched ¹⁰⁶Cd target; JUROSPHERE detector array (5 NORDBALL (at 79°), 5 TESSA (at 101°) and 15 EUROGAM phase I (at 134° or 158°) Ge detectors); RITU gas-filled separator; recoils implanted into $16-strip\ position-sensitive\ Si\ detector;\ recoil\ decay\ tagging\ technique;\ measured\ E\gamma,\ I\gamma,\ recoil-\alpha-\gamma-\gamma\ coin,\ \gamma$ asymmetry.

¹⁶⁶Os Levels

E(level) [†]	Jπ‡	Comments
0.0 [§]	0+	
432.0 [§] 3	2+	
1021.0 [§] 5	4+	
1562.3 # 7	(3–)	
1725.0 § 7	6 +	E(level): an alternative value (E=1647.3) is possible because the order of the 626γ–704γ cascade is not established.
1931.3# 7	(5–)	
2351.3§ 9	8+	
2426.0?@ 11	(6–)	
2452 . 4 $^{\#}$ 9	(7–)	
3009.4 [§] 12	(10+)	
3025.5?@ 11	(8–)	
3520.7 [§] 13	(12+)	
3910.8?§ 16	(14+)	

 $^\dagger~$ From least-squares fit to Ey.

 ‡ Authors' values, based on deduced band structure, measured transition multipolarities and analogy to structures in 168 Os.

(A): Yrast sequence. g.s. band crossed at $\hbar\omega$ =0.30 MeV (with 11 \hbar gain in alignment) by (v i_{13/2}²) band (2002Ap03).

(B): $K\pi=(3-)$, $\alpha=1$ band. Bandhead deexcites to J=2 and 4 members of g.s. band; structure of band appears to be similar to that of a 3- band in ¹⁶⁸Os. Possible configuration: v $(i_{13/2})(h_{9/2},f_{7/2})$.

@ (C): π =(-), α =0 band. Very weak band decaying through the (3-) band, analogous to a side band known in ¹⁶⁸Os; on this basis, authors tentatively assign π =- and even spin. Possible configuration: v (i_{13/2})(h_{9/2},f_{7/2}).

$\gamma(^{166}Os)$

$E\gamma^{\dagger}$	E(level)	Iγ	†	Mult. [‡]	α	Comments
×171.3 5		7	3			$I\gamma(158^\circ)/(I\gamma(79^\circ)+I\gamma(101^\circ))=0.74~$ 8. Authors suggest that this γ may belong to decay from (3–) band to yrast band.
x321.5 9		7	7			
368.8 5	1931.3	21	6	(Q)		$I\gamma(158^{\circ})/(I\gamma(79^{\circ})+I\gamma(101^{\circ}))=0.84$ 5.
390.1 [§] 9	3910.8?	3	22			
432.0 3	432.0	100	2	E2	0.0330	$I\gamma(158^{\circ})/(I\gamma(79^{\circ})+I\gamma(101^{\circ}))=0.90$ 3.
						Mult.: Q from γ asymmetry; not M2 from intensity balance at 432 level.
x443.3 6		14	5	D(+Q)		$I\gamma(158^{\circ})/(I\gamma(79^{\circ})+I\gamma(101^{\circ}))=0.44$ 4.

Continued on next page (footnotes at end of table)

¹⁰⁶Cd(⁶⁴Zn,2p2nγ) 2002Ap03 (continued)

$\gamma(^{166}Os)$ (continued)

$\underline{} E \gamma^{\dagger}$	E(level)	$I\gamma^{\dagger}$	Mult. [‡]	Comments
×482.2 9		8 4		
494.8§ 9	2426.0?	6 5		
511.3 5	3520.7	18 5		
521.1 6	2452.4	18 6		
541.6 7	1562.3	176	D	$I\gamma(158^{\circ})/(I\gamma(79^{\circ})+I\gamma(101^{\circ}))=0.66$ 7.
573.0 [§] 9	3025.5?	2 5		
589.2 4	1021.0	78 <i>2</i>	Q	$I_{\gamma}(158^{\circ})/(I_{\gamma}(79^{\circ})+I_{\gamma}(101^{\circ}))=0.92$ 6.
599.6 [§] 9	3025.5?	65	-	
x614.0 5		8 5		
626.3 5	2351.3	32 7	Q	$I_{\gamma}(158^{\circ})/(I_{\gamma}(79^{\circ})+I_{\gamma}(101^{\circ}))=1.20$ 14.
658.1 8	3009.4	13 5	-	
704.0 5	1725.0	33 <i>9</i>	Q	$I_{\gamma}(158^{\circ})/(I_{\gamma}(79^{\circ})+I_{\gamma}(101^{\circ}))=0.88 \ 8.$
910.9 <i>9</i>	1931.3	15 9	D	$I_{\gamma}(158^{\circ})/(I_{\gamma}(79^{\circ})+I_{\gamma}(101^{\circ}))=0.46$ 9.
1129 2 9	1562 3	25 6		

[†] From 2002Ap03.

[‡] Based on γ asymmetry in recoil- α - γ data, except as noted. Values for ¹⁶⁵W transitions of known multipolarity, also observed in this experiment, served as an asymmetry calibration. Values expected for pure stretched D are 0.55 and, for stretched Q (or D, Δ J=0), 1.0.

\$ Placement of transition in the level scheme is uncertain.

 $^{\mathbf{x}}$ $~\gamma$ ray not placed in level scheme.

$^{166}_{76}\mathrm{Os}_{90}\mathrm{-12}$

¹⁰⁶Cd(⁶⁴Zn,2p2nγ) 2002Ap03 (continued)

¹⁰⁶Cd(⁶⁴Zn,2p2nγ) 2002Ap03 (continued)

 $^{166}_{76} \mathrm{Os}_{90}$

¹⁰⁶Cd(⁶⁴Zn,2p2nγ) 2002Ap03 (continued)

Level Scheme

Intensities: relative $\ensuremath{\mathrm{I}}\xspace\gamma$

 $^{16\,6}_{7\,6}\mathrm{Os}_{90}$

Adopted Levels

 $Q(\beta^{-})=-8410 SY; S(n)=9650 SY; S(p)=-1152 8; Q(\alpha)=6724 6 2003Au03.$

Uncertainty in $Q(\beta^{-})$ and S(n) is 540 and 300 (2003Au03).

Assignment: targets of elements from Mo through Sn and V through Ni were irradiated with beams of ⁵⁸Ni and ¹⁰⁷Ag, respectively. Specific beam energies were in the range between 4.4 MeV/U and 5.9 MeV/U. Velocity filter, ion implantation in Si (surface-barrier and position-sensitive) detectors (1981Ho10,1981HoZM); ⁵⁸Ni bombardment of ¹¹²Sn, E=297 MeV (1996Pa01).

¹⁶⁶Ir Levels

Cross Reference (XREF) Flags

A ¹⁷⁰Au α Decay (0.29 ms) B ¹⁷⁰Au α Decay (0.62 ms)

E(level)	$J\pi^{\dagger}$	XREF	T_1/2	Comments
0.0	(2-)	А	10.5 ms 22	$\alpha = 93 \ 3 \ (1997 Da 07); \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
				$\%\alpha:$ from 1997Da07. 99% calculated by 1981HoZM. Only α decay was investigated by 1981Ho10.
				$J\pi$: d _{3/2} proton emission observed from level (1997Da07). Probable
				configuration= $(\pi d_{\alpha/2}) \otimes (\nu f_{\tau/2})$; the Nordheim strong rule predicts that the lowest
				energy state for this configuration will have $J\pi=2-$ (1997Da07) (possibly (π
				3/2[402] - v 7/2[514]) at small prolate deformation).
				T _{1/2} : 10.5 ms 22 from 1997Da07 (6565α(t)). Others: 17 ms +12-5 (2004Ke06), 12 ms 1
				(1996Pa01, 6556α(t)), >5 ms (1981Ho10).
172 6	(9+)	В	15.1 ms 9	$\alpha = 98.2 \ 6 \ (1997 Da07); \ \ p = 1.8 \ \ 6 \ \ (1997 Da07).$
				E(level): from 1997Da07, based on measured E(p)=1316 8 and 1145 8, respectively, to
				165 Os g.s. from this level and from 166 Ir g.s. (uncertainty takes into account the
				cancellation of systematic uncertainty included in quoted E(p)).
				T _{1/2} : from 6561α(t) (1997Da07). Other: 14.3 ms +19-15 (2004Ke06) from 6545α(t).
				$J\pi$: $h_{11/2}$ proton emission observed from level (1997Da07). Probable
				configuration= $(\pi h_{11/2}) \otimes (\nu f_{7/2})$; the Nordheim weak rule favors J π =9+ or possibly 2+
				(which should not be isomeric) for the lowest energy state for this configuration
				(1997Da07) (possibly π 11/2[505]+ ν 7/2[514] at small prolate deformation).

[†] Based on a comparison between measured and calculated partial half-lives for proton emission to (7/2-) ¹⁶⁵Os, 1997Da07 conclude that the odd proton occupies the d_{3/2} orbital in ¹⁶⁶Ir(g.s.) (L=2 proton emission) and the h_{11/2} orbital in ¹⁶⁶Ir(172 level) (L=5 proton emission). At very small deformation, the 89th neutron is expected to occupy an f_{7/2} orbital.

¹⁷⁰AuαDecay (0.29 ms) 2004Ke06

Parent ¹⁷⁰Au: E=0.0; $J\pi$ =(2-); $T_{1/2}$ =0.29 ms +5-4; Q(g.s.)=7170 10; % α decay=11 10.

 170 Au-% α decay: based on %p(170 Au)=89 10 (2004Ke06).

2004Ke06: source from ⁹⁶Ru⁽⁷⁸Kr,p3n), E⁽⁷⁸Kr)=385 MeV; tof and energy-loss gas detector and position-sensitive focal plane detector; observed correlated recoil-proton- α decay chain; measured T_{1/2}, %p, E α for ¹⁷⁰Au α decay, α - α correlations (2004Ke06).

Parent J\pi: unhindered (HF<4) α decay to (2–) $^{166} Ir.$

¹⁶⁶Ir Levels

E(level)	$J\pi^{\dagger}$
----------	------------------

0.0 (2-)

[†] From Adopted Levels.

α radiations

Eα	E(level)	Iα‡	HF [†]	Comments
7001 10	0.0	100	2.2 21	Iα: only one α group has been observed. Eα: from 2004Ke06; this Eα implies $Q(\alpha)$ =7170 <i>10</i> , cf. 7168 <i>21</i> from 2003Au03.

Correlated with known α decays from g.s. of ¹⁶⁶Ir and ¹⁶²Re (2004Ke06).

Footnotes continued on next page

¹⁷⁰Au α Decay (0.29 ms) 2004Ke06 (continued)

α radiations (continued)

[†] If $r_0=1.56~I$, estimated from $r_0(^{164}Os)=1.554~I7~(1998Ak04)$, $r_0(^{166}Os)=1.5638~I2$ (this evaluation), $r_0(^{168}Pt)\approx1.55$;

 $r_0(1^{166}Pt)$ not known; $Q(\alpha)=7170$ 10 (from E α =7001 10); $T_{1/2}=0.29$ ms +5-4 from combination of p(t) and $\alpha(t)$ data (2004Ke06). [‡] For α intensity per 100 decays, multiply by 0.11 10.

for a mensicy per roo accays, matcipity by onr ro.

¹⁷⁰Au α Decay (0.62 ms) 2004Ke06,2002Ma61

Parent ¹⁷⁰Au: E=275 12; $J\pi$ =(9+); $T_{1/2}$ =0.62 ms +5-4; Q(g.s.)=7170 10; % α decay=42 5.

¹⁷⁰Au-%α decay: based on %p(¹⁷⁰Au)=58 5 in fig. 6 and table III of 2004Ke06 (but reported as 59 6 in text). Other %p: 75 15 (misprinted as 0.75 15) from 2002Ma61; from simultaneous observation of 1735-keV proton and 7056-keV α, but that Eα differs significantly from Eα reported in 2004Ke06.

2004Ke06: source from 96 Ru(78 Kr,p3n), E(78 Kr)=385 MeV; tof and energy-loss gas detector and position-sensitive focal plane detector; observed correlated recoil-proton- α decay chain; measured T_{1/2}, %p, E α for 170 Au α decay, α - α correlations.

2002Ma61: source from $^{96}\text{Ru}(^{78}\text{Kr},\text{p3n}), \ \text{E}(^{78}\text{Kr})=400 \ \text{MeV}; \ \text{fragment mass analyzer, gas-filled position sensitive parallel-grid counter, double-sided Si strip detector; measured E(p), E\alpha, %p, parent T_{1/2}. Parent J\pi: unhindered (HF<4) <math display="inline">\alpha$ decay to (9+) $^{166}\text{Ir}.$

¹⁶⁶Ir Levels

E(level)	$J\pi^\dagger$	Comments

172 6 (9+) E(level): from 2004Ke06.

[†] From Adopted Levels.

α radiations

Εα	E(level)	Iα [‡]	HF^{\dagger}	Comments		
7107 6	172	100	2.6 4	Εα: from 2004Ke06. Other Εα: 7056 <i>15</i> (2002Ma61); reason for discrepant value is unknown. Ια: only one α group has been observed. Correlated with known excited-state α decays from ¹⁶⁶ Ir, ¹⁶² Re and ¹⁵⁸ Ta (2004Ke06).		

[†] If $r_0 = 1.56 \ I$, estimated from $r_0(^{164}Os) = 1.554 \ I7 \ (1998Ak04)$, $r_0(^{166}Os) = 1.5638 \ I2 \ (this evaluation)$, $r_0(^{168}Pt) = 1.55$; $r_0(^{166}Pt)$ not known; $Q(\alpha) = 7170 \ I0 \ (from E\alpha = 7001 \ I0 \ for g.s. to g.s. decay)$; $T_{1/2} = 0.62 \ ms \ +5-4 \ from \ combination \ of \ p(t) \ and \ \alpha(t) \ data \ (2004Ke06) \ (other \ value: 0.57 \ ms \ +31-15 \ (2002Ma61))$.

[‡] For α intensity per 100 decays, multiply by 0.42 5.

$^{166}_{78} Pt_{88} - 1$

Adopted Levels

$$\begin{split} S(p) = & 460 \ SY; \ Q(\alpha) = & 7286 \ 15 \ 2003 Au 03. \\ \Delta S(p) = & 550 \ (2003 Au 03). \\ Production: \ ^{92} Mo(^{78} Kr, X), \ E = & 357, 384 \ MeV; \ ^{96} Ru(^{78} Kr, 2n2p), \ E = & 420 \ MeV. \ Measured \ T_{1/2}, \ E\alpha \ (1996Bi07). \end{split}$$

¹⁶⁶Pt Levels

E(level)	Jπ	T	Comments			
0.0	0+	300 μs <i>100</i>	%α=100. Jπ: g.s. of even-even nucleus. T _{1/2} : from 1996Bi07.			

KEYNUMBERS

10460.95	10625.17	1071U.VD	1070Be40	10001044	10070012
19406023	1903Ful7	1971611	19795440	1900Ka44	1997Gals
1949C015	1963Ge09	1971SkZX	1979B008	1988Pe08	1997Uu01
1949Gr01	1963Gi03	1972Ad14	1979Ho10	1989Ab05	1997Zh11
1949Ke22	1963Gr36	1972Be39	1979Pa15	1989Ad11	1998Ak04
1949Wi03	1963Ho15	1972Ca42	1980Al34	1989Ad12	1998Fa15
1950An12	1963Ja06	1972Da33	1980Bu26	1989Ch45	1998Ge13
1950Bu30	1963Li04	1972Do01	1980Pe15	1989Da18	1998K i 20
1950Mc22	1963Ma08	1972Dr02	1980Vv77	1989Du03	1998Wu04
1050Mc70	10620r02	10725102	10818040	100000000	100000027
195000079	19030102	19721104	19810040	198911104	19990037
19505120	1963Pa08	1972L134	1981Bu24	1989KnZY	1999DeZX
1952Bu18	1963Pr13	1972Ma37	1981Ho01	1989Kr16	1999Wo07
1952Mc05	1963Ra15	1972To06	1981Ho10	1989Sp04	2000As04
1952Mi18	1963Ve11	1972Yu03	1981Ho31	1990Ha34	2000De59
1954Mi16	1963Yo09	1973Be40	1981HoZM	1990HaZP	2000Ga22
1954Su12	1964Br10	1973Bi10	1981Ka37	1990JaZR	2000Gr33
1955Fr06	1964Gr33	1973De22	1981Kr12	1990Ka21	2000He14
1955Gr07	1964KaZZ	1973Di18	1981La27	1990McZY	2000Hi01
1955Ne03	1964Pr02	1973He15	1981Ma43	1991Be38	2000Ki33
10568054	10650:02	10724028	10815000	10010027	20001.025
1057Ce40	10655-01	10721012	10015:00	1001021	20001223
19576040	1905Fa01	1973K013	19813102	1991Ky01	2000PT03
1957Mc34	1965Hu01	1973La32	1981Wa23	19915e01	2000Pr10
1958Co61	1965Ma39	1973Me17	1982BI28	1991Zi01	2000Ri11
1958Co76	1965Mc03	1973Ne08	1982Bo39	1992Ar06	2000Ya22
1958K148	1965Re02	19730001	1982Bu21	1992Be29	2000Zh51
1958Sk59	1965Sc09	1973 P r Z I	1982De11	1992Br07	2001Bu11
1959Ba12	1965St03	1973Sa14	1982De37	1992Bu16	2001Me07
1959Bi10	1965St06	1974Ar28	1982E102	1992Dr03	2002Ap03
1959B057	1966Be12	1974De09	1982En03	1992Fa01	2002Be04
1959Br17	1966Da04	1974Gr41	19821117	1992He7V	2002Ca46
1050Dr75	10661016	1074K-02	10825012	10021027	2002Ca40
19590175	10668012	1974Ka02	10823012	10021002	2002Ma01
19596100	1900Ka13	1974Ke04	1983Ag01	1992Ka07	20021017
1959J033	1966M001	1974L111	1983De02	1992Me10	2002Un02
1960AI27	1966Ne06	1974Ry01	1983Fa11	1992Sh31	2003Au03
1960Be28	1966Zy01	1974Sh12	1983Fi12	1992Si12	2003ChZS
1960Bo29	1967Bu14	1974Wo01	1983Hu01	1992Th04	2003Pr03
1960Bu27	1967Gu04	1975Ba39	1983KeZS	1992Un01	2003Wa32
1960Ge04	1967Ku07	1975Le22	1983Na14	1992Wa10	2004An14
1960Ge12	1967Mo05	1975Mo13	1983Ro11	1992Wa33	2004GoZZ
1960Gr15	1967Ne02	1975Pa15	1984Fi18	1993AdZY	2004Ke06
1960He09	1968Da24	1975To05	1984Ic01	1993BaZS	2005Ic02
1960Ja08	1968Fo11	1976Bo27	1984Ic02	1993Br09	2005K i ZT
1960Ma19	1968He24	1976Da10	1984Ke15	19931112	2005Mc01
1060Ma28	10684010	10765006	1084Ko7V	1004Coll	20055+24
10600.05	106884002	1076Mc04	10845.06	10040002	20053124
1960R003	1908Ku03	1970Me04	19843000	19940002	2006De30
1960W112	1968Me17	1976Ra32	1984ScZQ	1994KuZY	2006HaZ1
1961Bj02	1968Mi13	1976Sv01	1985A122	1994Ma57	2006Ku03
1961B005	1968Mu01	1976We24	1985DaZV	1994Mi22	2006Mc02
1961Bo15	1968Ne02	1977Al27	1985Fi04	19940104	2006MuZX
1961De34	1968Ni06	1977Bo14	1985Ge05	19940sZZ	2007ChZX
1961Es02	1968Tj02	1977Ca23	1985Ma22	1995Gi10	2007Ha45
1961Ge14	1969Ar23	1977Fi01	1986Ba61	1995Hi02	2007Ha57
1961Gr33	1969Bu01	1977Ge12	1986Bo36	1995KrZX	2007Mc08
1961Ha14	1969Fo09	1977HaYI	1986Br21	1995Ma07	
1961Ha23	1969He02	1977InZV	1986Do13	1996A131	
1961Kr01	1969Ka7V	1977Ka30	19861c02	19964 \$ 05	
1061Ku02	1060Mc75	1077Ko06	10860402	10068:07	
10617:09	1060Ne09	10771.009	1087Be06	1006B	
19012902	19091002	1977Leus	19876400	19966109	
19620103	19695u07	1977Mc11	1987Be07	1996Dr07	
1962EI12	1970Ap03	1977ScYH	1987B106	1996Fa21	
1962En04	1970Bo29	1977Wo03	1987Ic04	1996Ic01	
1962Ge02	1970Ka23	1978Ba78	1987Kr12	1996 KrZW	
1962Gr29	1970Ka45	1978Ca11	1988Ad05	1996Ma16	
1962Gu03	1970McZQ	1978KaZK	1988Ad12	1996Ma18	
1962Ha46	1970Re16	1978Mc02	1988Al04	1996Mo11	
1963Bo19	1971Be74	1978Sa14	1988Ba79	1996Pa01	
1963C102	1971Ca08	1978Sc10	1988Bu08	1996We01	
1963De21	1971DeZE	1978Sc26	1988Ch44	1997Da07	
1963Fo02	1971HeYO	1979Ad06	1988DaZX	1997Ga11	