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Genome-scale discovery of protein-coding and lncRNA gene function with 

CRISPRi and CRISPRa 

Max A. Horlbeck 

Abstract 
 
The genome sequencing efforts of the past decade have cataloged the universe of protein-coding 

and non-coding transcripts produced by the human genome. A central challenge now is to 

understand how these many thousands of genes act to mediate the vast array of cellular processes 

involved in either normal or disease states. To accomplish this, we require specific and scaleable 

tools to manipulate the expression of individual genes and measure their functional contribution 

in a given cellular context. In this thesis, I describe the initial development and subsequent 

refinement of genome-scale genetic screening technologies based on CRISPR-mediated 

interference and activation. I present the results of several screens for protein-coding genes that 

modulate cell proliferation and toxin susceptibility. Finally, I describe the application of CRISPR 

interference in the systematic repression of long non-coding RNA genes, a large class of genes of 

which very few genes have any known function. The screens described here identify nearly 500 

lncRNA genes that modify cell growth in at least one of seven diverse cell lines, and furthermore 

highlight the exquisite cell type-specificity of lncRNA function.  
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Chapter 1 

Introduction 

  



 2 

Each of the trillions of cells in the human body performs a set of specific functions and 

undergoes a distinct lifecycle of division, differentiation, and death – all while operating from a 

copy of the genome identical in sequence to every other cell. Following from the publication of 

the sequence of the human genome, numerous large-scale sequencing projects (1-5) were 

launched to understand and catalog how this phenotypic complexity arises from a shared 

sequence. Through these sequencing projects we now have a comprehensive annotation of the 

specific sets of genes in the genome transcribed in a given cell type, as well as the regulatory 

mechanisms that enforce this transcriptional program(6), but our understanding of the functional 

role of most genes in the genome lags far behind. This gap in understanding is due in part to the 

abundance and relative ease of technologies available for “observational genomics” as opposed 

to “functional genomics.” To remedy this, we require scalable and precise tools for 

systematically manipulating the expression of individual genes in order to characterize their 

function, and must apply these tools broadly across the spectrum of cell types found in the 

human body. 

In this thesis, I describe the development, refinement, and application of two such 

genome-scale screening tools based on CRISPR-mediated interference and activation (CRISPRi 

and CRISPRa, respectively). The CRISPRi and CRISPRa screening platforms enable systematic 

and specific repression or overexpression of targeted genes in a by building upon two 

foundational technologies: the CRISPR gene editing system and pooled genetic screening. 

CRISPR (Clustered Regularly Interspaced Palindromic Repeats) systems are a diverse 

group of adaptive genome defense systems employed by bacteria to recognize and excise viral 

genomes, and their discovery and recent application to the editing of other genomes has 

revolutionized biology (reviewed in (7)). While preceding methods (e.g. zinc finger nucleases 
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and transcription activator-like effector nucleases) also enabled site-specific gene editing 

functionality, CRISPR is unique and transformative because it can be targeted to the genome 

simply by providing a single guide RNA (sgRNA) that contains a ~20 base pair sequence 

complementary to the target site. This feature not only makes design of specific CRISPR 

reagents trivial for the average experimentalist (to first approximation) but also dovetails well 

with our current capabilities in highly multiplexed DNA synthesis and sequencing (8) that are 

critical in the pooled screening methods described below.  

Shortly after the initial publications describing the application of the S. pyogenes 

CRISPR effector protein Cas9 to gene editing in human cells (9-11), Qi and colleagues described 

a nuclease-dead variant (dCas9) that was capable of stably binding to DNA at the target site – 

and sterically interfering with bacterial and eukaryotic transcription when targeted to a gene 

body – but could not cut DNA (12). dCas9 has proven to be a versatile DNA-binding platform 

for a host of applications, including live cell DNA imaging (13), single base editing (14), and 

epigenome editing (15, 16), the basis for the work presented here. In particular, Gilbert and 

colleagues developed versions of dCas9 fused to broadly active transcriptional repressors or 

activators which were highly active in mammalian cells with minimal off-target effects (17, 18). 

These initial results showed that CRISPRi was generally more effective than RNA interference 

(RNAi) with little to no off-target effects typically seen with RNAi, while CRISPRa allowed for 

robust and programmable overexpression not previously achievable. Coupled with properly 

targeted sgRNAs, we expected these CRISPRi and CRISPRa to be powerful and complementary 

tools for systematically manipulating gene expression.  

In order to apply these reagents systematically, we turned to the pooled screening 

approach originally developed for RNAi (19-22). In brief, pooled screening utilizes highly 
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multiplexed DNA synthesis to generate pre-defined complex libraries of ~103-106 unique 

sequences (e.g. sgRNAs for CRISPR). This library is then introduced into a population of cells 

using lentivirus at low multiplicity of infection, thus stably integrating one unique sequence into 

the genome of the host cell. This sequence then acts both as a targeting molecule (again, an 

sgRNA targeting (d)Cas9 to the target gene) and as a molecular barcode that can be read out by 

deep sequencing of the library. Therefore, by simply taking samples of the cell population over 

the course of days of continuous cell culture, in untreated and drug/toxin-treated cell populations, 

or at different reporter gene expression levels, one can infer the phenotype caused by a particular 

sgRNA by measuring the enrichment or disenrichment of that sgRNA sequence in the selected 

populations. The approach is advantageous compared to systems where each perturbation is 

separately tested in an array because it requires only the ability to perform cell culture and 

molecular biology at medium scale, without the need for advanced robotics, and each 

perturbation is performed in the same pool, resulting in an internally-controlled experiment free 

from plate or batch effects (23, 24). The main limitations of the pooled screening method are the 

requirements for large numbers of cells to maintain statistical robustness (22) and the relatively 

low complexity readouts of the screen (e.g. pro-/anti-growth, toxin sensitivity/resistance) (25). 

Certain approaches are currently being developed to expand the richness of screen readouts, 

including coupling CRISPR-based perturbations to single-cell sequencing (26) and generating 

scalable genetic interaction maps for mammalian cells (21, 27). 

With CRISPRi and CRISPRa as versatile tools for manipulating gene expression, and the 

established RNAi pooled screening methods as a template for systematically and scalably 

applying these tools, I sought to create screening platforms to enable targeted repression and 

overexpression screening and thus define the function of any gene in the human genome. In 
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Chapter 2, I describe the development of a complex library designed to establish sgRNA design 

rules for CRISPRi and CRISPRa, the use of the resulting design principles to create genome-

scale platforms for CRISPRi/a screening, and analysis and validation of initial CRISPRi/a 

screens for cell growth and toxin susceptibility.  

Analysis of the results from the screens described in Chapter 2, along with additional 

screen data from collaborative projects, suggested that my initial sgRNA design rules did not 

fully capture the parameters governing sgRNA efficacy and that improved predictions for highly 

active sgRNAs could be used to generate substantially improved libraries. In Chapter 3, I 

describe the discovery that nucleosome occupancy at the sgRNA target site is strongly 

anticorrelated with sgRNA activity for CRISPRi and for CRISPR nuclease. In conjunction with 

in vitro results from the Tjian lab, I show that this effect is due to nucleosomes creating direct 

physical impediment to Cas9 access to DNA. In the work presented in Chapter 4, I leverage the 

nucleosome occupancy findings and other observations to generate a machine learning model for 

predicting sgRNA efficacy for CRISPRi and CRISPRa with high accuracy. I validate this by 

creating next-generation genome-scale libraries that exhibit greatly improved discrimination of 

positive control sgRNAs as well as a substantially greater fraction of highly active sgRNAs, 

resulting in state-of-the-art tools for controlling gene expression in both mouse and human cells.  

Finally, I sought to use these technologies to identify novel functions for genes that 

produce long non-coding RNAs (lncRNAs), transcripts longer than 200bp that are processed 

much like messenger RNAs but do not appear to code for proteins. While tens of thousands of 

lncRNA genes have been discovered through observational genomics (28), only a small fraction 

have been shown to mediate important functions (29). In Chapter 5, I describe the design of a 

genome-scale CRISPRi library targeting lncRNA genes and the results from screens for genes 
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that modulate cell proliferation across seven diverse human cell lines. These screens identify 499 

genes that modify robust cell growth and demonstrate the exquisite cell type-specificity of 

lncRNA function. These results underscore both the functional relevance of certain lncRNA 

genes as well as the importance of applying large-scale, unbiased, and systematic approaches in 

discovering gene functions. 
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Chapter 2 

Genome-scale CRISPR-mediated control of gene repression and activation 
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Summary 

While the catalog of mammalian transcripts and their expression levels in different cell types and 

disease states is rapidly expanding, our understanding of transcript function lags behind. We 

present a robust technology enabling systematic investigation of the cellular consequences of 

repressing or inducing individual transcripts. We identify rules for specific targeting of 

transcriptional repressors (CRISPRi), typically achieving 90-99% knockdown with minimal off-

target effects, and activators (CRISPRa) to endogenous genes via endonuclease-deficient Cas9. 

Together they enable modulation of gene expression over a ~1000-fold range. Using these rules, 

we construct genome-scale CRISPRi and CRISPRa libraries, each of which we validate with two 

pooled screens. Growth-based screens identify essential genes, tumor suppressors and regulators 

of differentiation. Screens for sensitivity to a cholera-diphtheria toxin provide broad insights into 

the mechanisms of pathogen entry, retro-translocation and toxicity. Our results establish 

CRISPRi and CRISPRa as powerful tools that provide rich and complementary information for 

mapping complex pathways. 
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Introduction 

Dramatic advances in sequencing technology have catalogued a universe of transcribed 

loci—greatly exceeding the number of canonical protein-coding open reading frames (ORFs)—

which collectively are responsible for carrying out the instructions encoded by the genome 

(Djebali et al., 2012). A central challenge now is to understand the biological role of these 

transcripts and how quantitative differences in their expression define cellular states in normal 

development and in disease. Despite intense efforts, the function of many protein-coding genes 

remains poorly defined. Even less is known about the biological roles of most non-canonical 

transcripts such as enhancer RNAs, upstream antisense RNAs, lncRNAs, or other intergenic 

RNAs (Cech and Steitz, 2014). Efforts to address this deficiency in our knowledge would be 

greatly aided by techniques that are capable of dynamically and precisely controlling the 

expression of individual transcripts.  

One way to explore the function of genes is to disrupt their expression through 

repression. The dominant tool for programmed knockdown of mRNAs is RNA interference 

(RNAi) (Chang et al., 2006). However, RNAi has pervasive problems with off-target effects, 

which can be especially confounding in the context of large-scale screens (Adamson et al., 2012; 

Jackson et al., 2003; Sigoillot et al., 2012). Additionally, because RNAi is mediated by 

cytoplasmic argounaute proteins, gene silencing through this approach is best suited to depletion 

of cytosolic mRNA targets.  

An alternative emerging strategy is the use of programmable genome editing methods 

that permanently delete or modify DNA using designable, sequence-specific endonucleases such 

as zinc finger, transcription activator-like effector (TALE) nucleases, or CRISPR (clustered 

regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) proteins 
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(Gaj et al., 2013; Sander and Joung, 2014). A series of elegant studies recently exploited the 

readily programmable nature of Cas9, in which the specificity is determined by a short guide 

(sg)RNA, to enable genome-scale loss-of-function screens (Koike-Yusa et al., 2014; Shalem et 

al., 2014; Wang et al., 2014). These studies established CRISPR-mediated cutting as a powerful 

screening technology complementary to RNAi and haploid mutagenesis screens (Carette et al., 

2009). Nonetheless, screening approaches based on genome editing are currently focused on 

loss-of-function studies involving irreversible frameshift disruptions, limiting their utility for the 

study of essential genes and long noncoding RNAs. Additionally, double-stranded DNA breaks 

can be cytotoxic (Huang et al., 1996; Jackson, 2002). Finally, indels formed from error-prone 

DNA repair are often short and in-frame, which could limit the ability to disable all of the alleles 

of a gene. 

A programmable DNA binding protein that can recruit an effector domain to turn 

transcription on and off in a dynamic and quantitative manner offers, in principle, a more flexible 

tool for interrogating the many transcripts in complex genomes. Pioneering experiments with 

designed chimeric zinc finger and TALE proteins fused to transcription effector domains 

demonstrate that such an approach can modulate transcription of endogenous genes (Beerli et al., 

1998, 2000; Zhang et al., 2011). However, as each transcript target requires a unique fusion 

protein, expanding these methods to genome-scale is arduous. 

Recently, we and others have used catalytically inactive Cas9 (dCas9) fusion proteins 

guided by gene-specific sgRNAs to localize effector domains to specific DNA sequences to 

either repress (CRISPRi) or activate (CRISPRa) transcription of target genes (Gilbert et al., 

2013; Sander and Joung, 2014). To date, a small number of sgRNAs have been tested, leaving 

unanswered whether CRISPRi/a is a feasible strategy for globally interrogating gene function 
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and, if so, how best to target a gene to activate or repress transcription while minimizing off-

target effects.  

Here, we describe the development and application of a method for high-specificity, 

genome-scale modulation of transcription of endogenous genes in human cells using CRISPRi/a. 

To accomplish this, we first performed a saturating screen in which we tested the activity of 

every unique sgRNA broadly tiling around the transcription start sites (TSSs) of 49 genes known 

to modulate cellular susceptibility to ricin (Bassik et al., 2013). From this, we extracted distinct 

rules for regions where either CRISPRi or CRISPRa maximally changes the expression of 

endogenous genes, as well as rules for predicting off-target effects, providing an algorithm to 

design two genome-scale libraries targeting each gene with 10 sgRNAs. We validated these 

libraries by screening for genes that control cell growth and response to a chimeric 

cholera/diphtheria fusion toxin (CTx-DTA) (Guimaraes et al., 2011). These experiments 

demonstrate that our CRISPRi/a screening platform is robust, showing high reproducibility and 

activity with undetectable intrinsic toxicity. More generally, we establish that transcriptional 

repression is inducible, reversible, and can target essential genes. We demonstrate that we can 

use CRISPRi and CRISPRa to control transcript levels for endogenous genes across a wide 

dynamic range. We also provide extensive evidence that properly designed CRISPRi reagents 

are highly specific. As such, these methods represent transformative tools for defining transcript 

function across the breadth of transcripts encoded by the human genome.  
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Results 

A High-Throughput Tiling Screen Defines Rules for CRISPRi Activity at Endogenous 

Genes  

CRISPRi can repress transcription by directly blocking RNA polymerase activity (dCas9) or 

through effector domain-mediated transcriptional silencing (dCas9-KRAB) (Gilbert et al., 2013; 

Qi et al., 2013). In order to better understand and optimize CRISPRi activity, we used a pooled 

high-throughput screen to define rules that determine CRISPRi repression of endogenous genes. 

We targeted 49 genes that we had previously shown to modulate cellular susceptibility to the AB 

toxin ricin (Bassik et al., 2013). The extent of gene repression for these genes typically has a 

monotonic relationship with the ricin resistance phenotype, allowing us to use a ricin resistance 

score calculated by monitoring sgRNA frequencies in a pooled screen to indirectly measure 

transcriptional repression.  

  Using massively parallel oligonucleotide synthesis, we generated a library of sgRNAs 

that tile the DNA in a 10-kilobase window around the TSS of these 49 genes (54,810 total 

sgRNAs) (Bassik et al., 2009) (Figure 1A). We also included 1,000 negative control sgRNAs 

derived from scrambled sequences corresponding to the same windows. 

We packaged this tiling library of sgRNAs into lentiviral particles and transduced K562 

human myeloid leukemia cells stably expressing dCas9 or a dCas9-KRAB fusion protein, which 

we have previously described (Gilbert et al., 2013). We harvested populations of cells expressing 

the library either at the outset of the experiment, after growth under standard conditions, or 

following ricin treatment. We then counted the frequency of each sgRNA in the library in each 

sample using deep sequencing to determine how each sgRNA in the library modulates cell 

growth and cellular susceptibility to ricin phenotypes. We defined these phenotypes 
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quantitatively as gamma (g) and rho (r), respectively (See Figure S1A and (Kampmann et al., 

2013)).  

Many sgRNAs potently repress gene expression, as evidenced by their impact on ricin 

sensitivity (Figure 1B and Figure S2A). Plotting this data for all 49 genes showed that active 

sgRNAs cluster around or just downstream from the TSS of each gene for dCas9-KRAB and 

dCas9, respectively (Figure 1C). We saw that strong CRISPRi activity is obtained by targeting 

dCas9-KRAB to a window of DNA from -50 to +300 bp relative to the TSS of a gene, with a 

maximum in the ~50-100 bp region just downstream of the TSS (Figure 1C-D). This suggested 

that optimal activity leverages the combined activity of dCas9 interference along with repression 

from the KRAB domain. We also observed that sgRNAs with protospacer lengths of 18-21 base 

pairs were significantly more active than sgRNAs containing longer protospacers (Figure S2B). 

Nucleotide homopolymers had a strongly negative effect on sgRNA activity (Figure S2D). 

However, neither the DNA strand that was targeted nor the sgRNA GC content across a broad 

range strongly correlated with sgRNA activity (Figure S2C and S2E).  

 To evaluate the feasibility of genome-scale genetic screens based on CRISPRi, we 

compared the strength of phenotypes obtained with CRISPRi to our previously published shRNA 

data. We applied the rules described above to data from our sgRNA tiling library to select all 

sgRNAs predicted to be highly active and then randomly subsampled sets of 10 or 24 sgRNAs. 

We calculated a normalized phenotype z-score by dividing mean phenotypes for each gene by 

the standard deviation of sgRNA phenotypes from the non-targeting control set (Figure S1B). 

We see significant ricin phenotypes for each of the 49 genes. Moreover, in virtually every case 

the normalized ricin phenotype z-score or p-value is stronger (in many cases far stronger) than 
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seen with a comparably-sized shRNA library (generated by sub-sampling our published data) 

(Figure 1E and Figure S2F). 

 

CRISPRi Transcriptional Silencing is Highly Sensitive to Mismatches between the Target 

DNA Site and the sgRNA 

To assess CRISPRi off-target activity at endogenous genes, we selected a set of 30 sgRNAs from 

our tiling library (6 sgRNAs/gene targeting 5 genes). For each of these sgRNAs, we tested the 

activity of a series of derivative sgRNAs with a variable number and position of mismatches 

(Figure 2). This experiment allowed us to measure the relative amount of gene repression for 

sgRNAs with or without mismatch base pairing targeting the same DNA locus. We found that 

even a single mismatch at the 3’ end of the protospacer decreased CRISPRi activity on average, 

while combinations of mismatches that pass our off-target filter abolished activity (Figure 2, 

Figure S3, and Extended Experimental Procedures). From this analysis, we concluded that 

properly designed CRISPRi sgRNAs have minimal off-target transcriptional repression activity. 

 

A High-Throughput Tiling Screen Defines Rules for CRISPRa Activity at Endogenous 

Genes  

We recently developed an improved CRISPRa method, termed sunCas9, in which expression of 

a single sgRNA with one binding site is sufficient to robustly activate transcription (Tanenbaum 

et al.) In the sunCas9 system, a single dCas9 fusion protein bound to DNA recruits multiple 

copies of the activating effector domain, thus amplifying our ability to induce transcription 

(Figure 3A).  
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To define rules for optimal CRISPRa sgRNA design, we used our tiling library, which 

targets genes capable of modulating cellular sensitivity to ricin. We previously showed for 

several of the genes in this tiling library that knockdown and plasmid overexpression resulted in 

opposite ricin phenotypes (Bassik et al., 2013). For example, knockdown of SEC23B sensitized 

cells to ricin, whereas SEC23B overexpression desensitized cells to ricin. These observations 

suggested that we should be able to observe reversed phenotypes in this tiling screen arising 

from CRISPRa activity.  

We transduced K562 cells stably expressing the sunCas9 system (Figure 3A) with the 

sgRNA tiling library and screened for ricin phenotypes as described for CRISPRi above. 

Analysis of data for individual genes or averaged data for all 49 genes demonstrated that many 

sgRNAs for each gene affected ricin resistance (Figure 3B and Figure S4A-B). Our negative 

control sgRNAs showed very little activity and were not correlated between biological replicate 

screens, suggesting that CRISPRa activity is specific. We observed a peak of active sgRNAs for 

CRISPRa at -400 to -50 bp upstream from the TSS (Figure 3B). This activity pattern fits with a 

model in which each VP16 domain can bind the mediator complex and recruit basal transcription 

machinery, activating transcription when spaced appropriately from a TSS (Mittler et al., 2003). 

With this system, we have shown we can turn on genes that are poorly expressed and increase 

the expression of well-expressed genes (Figure 3E). Overall, our CRISPRi/a tiling screens 

provide rules for how CRISPRi/a controls expression of endogenous genes.  

 

An Allelic CRISPRi/a Series of Transcript Activation and Repression Shows that Protein 

Abundance Dynamically Modulates the Cellular Response to Ricin 
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For many genes, we do not know how the relative abundance of the encoded protein relates to its 

function. We observed a marked anti-correlation in our ricin screens between CRISPRa 

phenotypes and CRISPRi phenotypes for individual genes (Figure 3C). As the genes targeted by 

our tiling library were selected based on a knockdown phenotype, all genes showed phenotypes 

in the CRISPRi screen, but only a subset showed phenotypes in the CRISPRa screen. 

To validate results from both the CRISPRi and CRISPRa tiling screens, we selected an 

allelic series of sgRNAs by phenotype from the screen and re-tested each sgRNA individually 

(38 sgRNAs targeting 4 genes). Our results show that our CRISPRi/a screens produced reliable 

phenotype scores, robustly reproduced upon re-testing, and that CRISPRi/a can activate and 

repress the transcription of endogenous genes over a wide dynamic range (up to ~1000-fold) 

(Figure 3D-E), enabling systematic interrogation of how gene dosage controls cellular functions 

of interest. 

 

A Robust and Highly Specific Genome-Scale CRISPRi Screening Platform  

The results of our tiling CRISPRi screen established our ability to pick active sgRNAs with low 

off-target activity and provided a set of rules enabling us to design a robust genome-scale 

sgRNA library. We chose a library size of 10 sgRNAs/gene for the following reasons. Over half 

of the sgRNAs conforming to these rules gave clear ricin phenotypes. For a library with 10 

sgRNAs/gene, 94% of the genes would thus have 2 or more highly active sgRNAs. Finally, 

computational sub-sampling of the phenotypic data from our tiling library data to 10 

sgRNAs/gene and calculation of z-scores for hit genes indicated that a library with 10 

sgRNAs/gene would reliably detect hit genes (Figure 1E).  
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We synthesized and cloned a genome-scale CRISPRi sgRNA library targeting 15,977 

human protein-coding genes (10 sgRNAs/TSS, targeting 20,898 TSS) with 11,219 non-targeting 

control sgRNAs for a total of 206,421 sgRNAs (Table S2). To evaluate this library, we first 

screened for genes essential for cell growth in K562 cells. Briefly, K562 cells stably expressing 

dCas9-KRAB were transduced in replicate with the entire genome-scale library, and each 

replicate was grown for 10 days at a minimum library coverage of 3,750 cells/sgRNA in a single 

spinner flask.  

To characterize our screening methodology and library design, we examined the 

correlation between screen replicates. Individual sgRNAs reproducibly showed dramatic 

depletion (up to 256-fold) over a 10-day screen, demonstrating that individual sgRNAs can have 

profound effects on cell growth (Table S2) (Figure 4A). The distribution of our negative-control 

sgRNAs was very narrow with little correlation between replicates (Spearman R = 0.036), 

suggesting that the off-target activity of these controls is very low (Figure 4A). Indeed, 99.7% of 

our negative controls had no detectable activity. The observed specificity is consistent with our 

previously published RNA-seq data (Gilbert et al., 2013). 

To further explore the prevalence of off-target effects, we examined two classes of genes 

not expected to show any on-target activity in our screen: olfactory receptors and genes on the Y 

chromosome. The sgRNAs that target these genes were designed and picked in the same manner 

as the rest of library; however, olfactory receptors should not be expressed in this cell type and, 

as K562 cells are derived from a female donor, sgRNAs that target genes on the Y chromosome 

lack a DNA target. As with the negative controls, these genes show no phenotype on average and 

exhibit very little correlation between replicates (Spearman R = 0.057 for olfactory genes and -

0.052 for Y-targeting) (Figure 4A). We also observed no evidence of non-specific toxicity due to 
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expression of dCas9-KRAB and our sgRNA library in K562 cells, suggesting that dCas9 bound 

to the genome is not toxic under these conditions (Figure 4B). Thus, CRISPRi is highly specific 

and non-toxic.  

To identify hit genes in this screen, we used a metric of average growth phenotype (g) for 

the top three sgRNAs for each gene (see Experimental Procedures and Table S3). Among the top 

hits were genes involved in essential cellular functions, including translation, transcription and 

DNA replication (Figure 4C and Figure S5A) (Huang et al., 2009a, 2009b), thus validating our 

approach as a screening platform. 

 

A Genome-Scale CRISPRa Screening Platform 

The results of our CRISPRa tiling screen established our ability to confidently measure gene 

phenotypes resulting from inducing expression with single sgRNAs. As with the CRISPRi tiling 

screens, our data enabled the development of a set of rules that allowed construction of a 

genome-scale CRISPRa library. Many of these rules overlapped with those of CRISPRi (e.g., 

sgRNA length and sequence preferences). A key difference is that the optimal window for 

targeting sgRNAs for CRISPRa lies upstream of the TSS (Figure 3B). We therefore constructed 

an independent CRISPRa library, designing 10 sgRNAs between 400 to 50 base pairs upstream 

of each TSS for 15,977 human genes, along with 5,968 non-targeting control sgRNAs, for a total 

of 198,810 sgRNAs.  

We evaluated our CRISPRa platform in a screen for genes that affect cell growth when 

induced in K562 cells constitutively expressing the sunCas9 system. Replicate screens were 

conducted as described above. The magnitude of growth defects seen in our CRISPRa screen 

was comparable to that of the above CRISPRi screen, although fewer sgRNAs caused a growth 
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phenotype (Figure S5B and Table S2). We analyzed control sgRNAs with no genomic target or 

Y chromosome targets and found minimal phenotypes, which lacked substantial correlation 

between experimental replicates (Spearman R = 0.155 and R = 0.010, respectively), indicating 

that the phenotype distribution observed in non-targeting controls was primarily a result of 

stochastic noise rather than off-target effects. Furthermore, the fraction of cells expressing 

sgRNAs and the sunCas9 system was stable over the course of the experiment, indicating that 

there was no general toxicity associated with the CRISPRa platform (Figure 4B). These data 

suggest that, like CRISPRi, CRISPRa is specific and non-toxic. 

 

Defining Regulators of Survival and Differentiation in Human Cells by CRISPRa 

We then investigated the genes whose induction caused cells to deplete over the course of our 

CRISPRa screen. We scored genes by the average γ of the three most active sgRNAs as above, 

and compared these phenotypes to those observed in the CRISPRi screen (Figure 4D and Table 

S3). The results from the two screens had little overlap, suggesting that few genes are both 

essential and toxic upon induction, and that wild-type expression levels of genes are generally 

optimal for K562 growth. Whereas CRISPRi hits are naturally limited to expressed genes, 

CRISPRa hits included genes across a broad range of endogenous expression levels (Figure 

S5D). We observed that the majority of genes that inhibited growth in the CRISPRa screen fell 

into three overlapping classes. 

The first class was tumor suppressor genes: 18 of the top 50 genes, including six of the 

top seven, are known to have potent tumor suppressor activity (Vogelstein et al., 2013; Zhao et 

al., 2013). These genes include p53-related protein TP73, cell cycle inhibitors CDKN1C (p57) 

and CDKN1A (p21), apoptotic factors BAK1 and BCL2L11 (BIM), and chromatin remodeling 
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factor ARID1A (Figure 4D and Table S4). Gene set enrichment analysis (GSEA) confirmed this 

observation, highlighting several genes important in the intrinsic pathway of apoptosis or in 

chronic myeloid leukemia (CML) homeostasis consistent with the origin of K562 cells as a 

clonal isolate from a CML blast crisis (ATCC) (Figure 4E). Similarly, top gene ontology 

annotations included “positive regulation of apoptosis” and “regulation of cell cycle” (Figure 

S5C). While tumor suppressors are classically considered to be mutated early in cancer 

progression (Vogelstein et al., 2013), these results demonstrate than many potential tumor 

suppressor genes remain functional but down-regulated, and suggest that CRISPRa can be used 

to pinpoint intact pathways and vulnerabilities in tumor cells. 

Transcription factor families with well-established roles in tissue development and 

differentiation represent another class of growth hits, accounting for 16 of the top 50 genes 

(K562 cells have known potential to undergo erythroid differentiation). These genes include 

CCAAT/Enhancer-binding proteins (CEBP), Homeobox genes, Forkhead box genes, Ikaros 

family zinc finger proteins, and hematopoietic differentiation factor SPI1 (PU.1) (Figure 4D and 

Table S4) (Spitz and Furlong, 2012). This observation is reflected in enriched annotations 

relating to multicellularity, cell differentiation, and development (Figure S5C). 

The complementary nature of the CRISPRi and CRISPRa screens is nicely illustrated by 

results from two gene pairs (SPI1/GATA1 and CEBPA/CEBPG) in which one member of each 

pair inhibits the function of the other. GATA1 and CEBPG were strong hits in the CRISPRi 

screen, consistent with their roles as inhibitors of myeloid differentiation. By contrast, both SPI1 

and CEBPA were robust hits in our CRISPRa activation screen. These observations are 

consistent with the inhibitory functions of SPI1 and CEBPA: silencing of CEBPA leads to de-
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repression of CEBPG (Alberich-Jordà et al., 2012) and the protein encoded by SPI1 (PU.1) is a 

direct binding partner of GATA-1 and inhibits its transcriptional activity (Zhang et al., 2000). 

Finally, several hit genes have key roles in mitosis. PLK4 controls centrosome 

duplication, and overexpression of the gene in U2OS cells leads to increased centriole number 

(Habedanck et al., 2005). The proteins encoded by KIF18B and KIF2C form a complex that 

destabilizes microtubules during mitosis (Tanenbaum et al., 2011).  

Overall, the results from our paired CRISPRi/a growth screens demonstrate that 

complementary information can be obtained by loss- and gain-of-function genetic screens, and 

highlight the utility of the platform for future studies into tumor biology and cell differentiation. 

 

Dynamically Controlling Gene Expression with CRISPRi 

The ability to reversibly tune the expression of select transcripts would be a powerful tool for 

evaluating transcript function. To evaluate the applicability of CRISPRi to this purpose, we 

cloned a lentiviral expression construct that places an optimized KRAB-dCas9 fusion protein 

under the control of a doxycycline-inducible promoter (Figure 5A-B). Induced expression of 

KRAB-dCas9 robustly depletes transcript levels from sgRNA-targeted genes (Figure 5C and 

S5E). To further assess dynamic control of CRISPRi, we inducibly repressed several genes 

identified in our genome-scale CRISPRi growth screen (Figure S5G). Cells that express sgRNAs 

targeting these essential genes showed almost no growth phenotype in the absence of 

doxycycline, but rapidly and robustly disappeared from the population upon addition of 

doxycycline (Figure 5D). Additionally, gene repression and resulting phenotypes were reversible 

(Figure 5C and S5E-F), indicating that KRAB-dCas9 does not create a permanently repressive 

chromatin state at targeted promoters.  
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To test our ability to dynamically control expression of essential genes on a larger scale, 

we cloned a sublibrary targeting 426 manually curated genes (10 sgRNAs / TSS or 4,923 

targeting sgRNAs plus 750 non-targeting controls). This library was transduced into K562 cells 

stably expressing our inducible KRAB-dCas9 fusion protein, and cell growth effects were then 

evaluated in the presence and absence of doxycycline. Only 4 sgRNAs were depleted strongly in 

the absence of doxycycline; however, with induction of KRAB-dCas9, many sgRNAs were 

strongly depleted (Figure 5E). Negative control sgRNAs again produced a narrow distribution of 

phenotypes with little correlation between biological replicates with or without doxycycline. 

Additionally, we found no evidence that targeted KRAB-dCas9 generally impedes cell growth 

(Figure 5F). Taken together, these results demonstrate CRISPRi is non-toxic, inducible and 

reversible. 

 

A Genome-Scale CRISPRi Screen Reveals Pathways and Complexes that Govern Response 

to Cholera and Diphtheria Toxin  

To test the performance of our CRISPRi approach for detecting genes controlling a more 

complex cellular phenotype, we performed a genome-scale CRISPRi screen for genes that 

modulate sensitivity to a chimeric toxin composed of the diphtheria toxin catalytic A subunit 

covalently linked to cholera toxin (CTx-DTA, Figure 6A). This chimera had been previously 

developed to provide a growth readout for cholera intoxication (Guimaraes et al., 2011). Some 

aspects of both cholera and diphtheria toxin entry and toxicity are well characterized, but open 

questions remain. The cell surface receptor for cholera toxin is the GM1a ganglioside (Van Ness 

et al., 1980). After endocytosis, the toxin traffics via the Golgi to the endoplasmic reticulum 

(ER), from which it retro-translocates into the cytosol, possibly through the ER-associated 
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degradation (ERAD) machinery. Once in the cytosol, the DTA moiety ADP-ribosylates the 

diphthamide residue in Elongation Factor 2, halting translation and killing the cell (Figure 6A).  

K562 cells expressing the CRISPRi sgRNA library and dCas9-KRAB were either grown 

under standard conditions or treated with several pulses of CTx-DTA over the course of 10 days. 

We observed highly correlated enrichment and depletion of many sgRNAs between replicates, 

indicating that CRISPRi can identify genes that modulate both resistance and sensitivity to a 

selective pressure (Table S2).  

We ranked genes by the average phenotype of their three strongest sgRNAs (Table S3, 

Figure 6B, and Figure S6). GSEA revealed that KEGG pathways enriched for top protective hit 

genes were “Infection with Vibrio cholerae” and “Glycosphingolipid biosynthesis, ganglio-

series” (Figure S7B), while gene sets for top sensitizing genes included “ribosome” and 

“proteasome” (Figure S7B). Since the diphtheria toxin catalytic subunit inhibits translation, 

depletion of the ribosome can be expected to sensitize cells to the toxin. Disruption of the 

proteasome also sensitizes cells to CTx-DTA, suggesting that the cytosolic toxin is a substrate 

for proteasomal degradation. Taken together, the unbiased GSEA analysis provides support for 

the high specificity in hit gene identification by our CRISPRi approach. 

We further defined the 50 hits with the strongest protective effect and the 50 hits with the 

strongest sensitizing effect as “top hits” (all of these are far outside of the range seen with 

otherwise matched negative control sgRNAs). We characterized these genes by assigning them 

to cellular pathways and protein complexes according to their previously characterized roles 

(Figure 6B and Figure S6). Our CRISPRi screen identified a protective effect of knockdown for 

all top hits recovered in the previously published haploid mutagenesis screen (white stars in 

Figure 6B). The two top pathways identified by haploid mutagenesis as modulating cellular 
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sensitivity to CTx-DTA are the diphthamide biosynthetic pathway (required to generate eEF-2-

diphthamide, the target of diphtheria toxin) and the ganglioside biosynthetic pathway (required 

to produce GM1a, the cell-surface receptor for cholera toxin). Our screen also identified many 

additional core components of each pathway. While knockdown of all hits in the diphthamide 

biosynthesis pathway had a protective effect, the results for ganglioside biosynthesis genes 

showed a more complex pattern: knockdown of enzymes involved in the production of GM1a 

were protective, whereas knockdown of enzymes that catalyze the production of other 

gangliosides (including GM1b) was sensitizing. These results provide genetic confirmation that 

GM1a is the relevant cell-surface receptor for CTx-DTA and more broadly illustrate the value of 

being able to reliably detect both sensitizing and protective genes to dissect biological pathways. 

Many of the top hits are components of cellular pathways and protein complexes 

previously identified in experiments to be important for retrograde trafficking and retro-

translocation of other toxins such as ricin and Shiga toxin (Bassik et al., 2013; Smith et al., 

2009). Retro-translocation of the catalytic chain of CTx has been proposed to be mediated by the 

ER-associated degradation (ERAD) pathway, although this pathway was not identified in 

previous genetic screens. Consistent with this proposed role for the ERAD machinery, 

knockdown of members of the ERAD E3 ubiquitin ligase complex, SYVN1 (encoding Hrd1) and 

SEL1L (the mammalian homolog of yeast Hrd3) rendered cells resistant to CTx-DTA. Factors 

that mediate cytosolic degradation of ERAD substrates (in particular UBXN4, also known as 

UBXD2 or erasin, and the proteasome) appeared as sensitizing hits, suggesting that they may 

reduce cytosolic levels of the toxin’s catalytic subunit in WT cells.  

To validate the suggested role of the identified ERAD factors in toxin retro-translocation 

from the ER to the cytosol, we quantified the amount of CTx chains in the cytosol and membrane 
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fractions. As expected, SEL1L knockdown resulted in a dramatic reduction of cytosolic CTx-A1, 

whereas levels in the membrane fraction were much less affected (Figure 7A-C). By contrast, 

knockdown of B4GALNT1, an enzyme required for the synthesis of the CTx receptor GM1a, 

resulted in a nearly complete absence of CTx chains from both the cytosolic and the membrane 

fraction (Figure 7A-C).  

An open question in CTx biology is how the toxin traverses the Golgi network (Wernick 

et al., 2010). Our screen revealed that COG and GARP complexes, which tether late endosomes 

to the trans-Golgi network or modulate intra-Golgi retrograde transport (Bonifacino and Rojas, 

2006) are critical host factors for CTx-DTA. These and other complexes and pathways we 

identify here (Figure 6B), including several involved in RNA processing, had not previously 

been linked to cholera toxin biology, highlighting the potential of CRISPRi as a discovery 

platform. Importantly, many top hits—even those not previously implicated in cholera or 

diphtheria pathogenesis—were tightly clustered in well-defined protein complexes and 

pathways. For several of these, the vast majority of components were hits, suggesting that 

CRISPRi screens can approach saturation.  

 

Potent Phenotypes and Knockdown Levels Achieved by the Genome-Scale CRISPRi 

Library 

To validate the results from this screen, we re-tested sgRNAs that putatively modulate cellular 

response to CTx-DTA in mechanistically diverse ways. For each sgRNA, we quantified both the 

ricin phenotypes as well as the change in abundance of the targeted transcript by qPCR. Our re-

test experiments were highly correlated with data from the primary screen (Figure 7D). In our 

validation experiments for the tiling ricin screen and the genome-scale CTx-DTA screen, the 
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activities of 71 out of 72 sgRNAs were robustly confirmed and were highly correlated 

(R2=0.879) with the results obtained in the primary screen. Finally, analysis of mRNA levels by 

qPCR data showed robust repression, with ~80-99% knockdown for each sgRNA and at least 

90% for every gene (Figure 7E).  

 

A Genome-Scale CRISPRa Screen of Cholera-Diphtheria Toxin Complements and Extends 

CRISPRi Results 

To further explore the biological insights gained from CRISPRa screening, we performed a 

genome scale CRISPRa screen for genes that modulate sensitivity to CTx-DTA (Table S2-3). As 

with the CRISPRi screen, GSEA revealed the specificity of the detected hits (Figure S7B). For 

some of the top hits, CRISPR-mediated transcriptional activation and repression caused opposite 

phenotypes (e.g. enzymes in ganglioside biosynthesis, Figure 6C), similar to what we observed 

for genes controlling ricin sensitivity (Figure 3C).  

CRISPRa also revealed additional and highly complementary information as illustrated 

by analysis of glycosphingolipid biosynthesis pathways. Induction of enzymes in the neolacto 

branch of sphingolipid biosynthesis protected cells from CTx-DTA (Figure 6C and Figure 

S7A,C). This pathway is a parallel branch to the ganglioside branch, which produces the CTx-

DTA receptor GM1a. Our findings suggest that upregulation of the neolacto branch diverts the 

common precursor lactosylceramide away from the ganglioside branch. Similarly, upregulation 

of the sulfatide-generating enzyme GAL3ST1 has a protective effect, presumably by diverting 

ceramide from the sphingolipid to the cerebroside pathway (Figure 6C). These results highlight 

the capacity of CRISPRa to complement CRISPRi by querying the consequences of upregulating 

pathways that may otherwise be inactive. 
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Effective Knockdown of non-coding RNAs 

Finally, we investigated whether CRISPRi was able to repress the transcription of long non-

coding RNAs (lncRNAs), a class of transcripts that have been difficult to systematically perturb 

by other methods (Bassett et al., 2014). Using our CRISPRi library design algorithm, we selected 

and cloned up to three sgRNAs each targeting six characterized lncRNAs (GAS5, H19, MALAT1, 

NEAT1, TERC, XIST) (Geisler and Coller, 2013) with good evidence of expression in K562 cells. 

We transduced the sgRNAs into cells expressing dCas9-KRAB and quantified the amount of 

transcript knockdown by qPCR. We achieved >80% knockdown for all but one of the lncRNA 

genes tested (Figure 7F). Overall, more than 50% of the sgRNAs yielded >85% knockdown. We 

confirmed the strong repression of XIST by RNA fluorescence in situ hybridization (FISH) and 

observed no residual expression along the X chromosome (Figure 7G). These results 

demonstrate that CRISPRi can effectively repress lncRNA expression, enabling future 

systematic studies of non-coding gene function. 
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Discussion 

Here, we establish CRISPRi and CRISPRa as robust tools for systematically manipulating 

transcription of endogenous genes in human cells. We demonstrate that CRISPRi/a can be used 

to rapidly screen for both loss-of-function and gain-of-function phenotypes in a pooled format. 

We identify both known and unexpected genes that control growth of K562 cells or that 

modulate sensitivity to a toxin (CTx-DTA). We also show that we can use CRISPRi/a to create 

allelic series of gene expression, spanning a broad range from ~100-fold repression to ~10-fold 

induction, allowing us to define how the abundance of a protein or transcript relates to its 

function. 

A key feature of CRISPRi is the low incidence of off-target effects, as evidenced by the 

near-absence of activity for three large and distinct classes of negative control sgRNAs in our 

genome-scale CRISPRi library. This feature simplifies validation and interpretation of screening 

results. The observed specificity likely stems from two distinct properties of our system. First, 

CRISPRi/a complexes bound outside a narrow window around the TSS largely fail to modulate 

transcription; this dramatically shrinks the sequence space across the genome where off-target 

binding could produce significant off-target activity. Second, CRISPRi activity is highly 

sensitive to mismatches between the sgRNA and target DNA, suggesting that off-target binding 

of dCas9 observed in ChIP-seq experiments is too transient to impact transcription (Duan et al., 

2014; Kuscu et al., 2014; Wu et al., 2014).  

CRISPRa screening provides a new approach for exploring the diversity of transcripts 

across complex genomes. Gene activation has been used to dissect the limiting component of a 

biochemical process, identify the molecular target of a drug, or activate key rate-limiting steps in 

a pathway (Davis et al., 1987; Rine et al., 1983). Recently, a combinatorial cDNA 
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overexpression screen identified genes that, when co-expressed, reprogram fibroblasts into 

pluripotent stem cells (Takahashi and Yamanaka, 2006). CRISPRa should greatly accelerate 

similar searches for combinations of factors with emergent properties. In addition, CRISPRa will 

likely provide insight into cellular pathways where redundancy hampers loss-of-function genetic 

approaches. CRISPRa will also enable the exploration of cellular states in which otherwise 

inactive pathways are induced, and thereby reveal functional coupling within complex cellular 

networks and suggest potential therapeutic strategies.  

Our ability to control transcription with high specificity simplifies the analysis and 

validation of high-throughput screening data. The genome-scale CRISPRi and CRISPRa libraries 

described here contain 10 sgRNAs per TSS. The resulting library size allows each to be screened 

in a population of 200 million cells, which can be easily grown in a single spinner flask. 

Furthermore, the observed high specificity and an improved understanding of rules governing 

sgRNA activity should enable us to create even more compact sgRNA libraries. Additionally, an 

sgRNA library designed to activate or repress a broader range of transcripts in the human 

genome could reveal the function of many non-canonical RNAs encoded in the human genome. 

As most non-coding transcripts are nuclear and lack an open reading frame, methods that directly 

modulate transcription are optimally suited for interrogating the function of these RNAs (Derrien 

et al., 2012).  

Systematic genetic interaction (GI) maps are powerful tools for revealing gene functions 

within pathways or complexes (Bassik et al., 2013; Boone et al., 2007; Costanzo et al., 2010). A 

CRISPRa GI map or a combined CRISPRi/a GI map could yield rich novel biology and help 

elucidate how networks of proteins dictate cellular function. More generally, quantitative 

methods of turning on and off one or multiple transcripts represent a critical tool for 
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understanding how expression of the genes encoded in our genomes controls cell function and 

fate.  
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Experimental Procedures 

CRISPRi/a Libraries 

Tiling libraries sgRNAs were designed targeting 49 genes (see Figure 1E) previously identified 

in shRNA screens as having ricin resistance phenotype. All possible sgRNAs within a 10kb 

window around the gene TSS and meeting certain criteria were included (see Extended 

Experimental Procedures). Negative controls were designed based on scrambled sequences from 

these 10kb windows and filtered by the same criteria as targeting sgRNAs. 

 

Genome-scale CRISPRi/a libraries Genes were selected from the entire set of protein coding 

genes, although a subset of genes with a RPKM of 0 in a K562 cell RNA-seq expression data set 

were excluded. sgRNAs conforming to rules including low predicted off-targets and minimal 

length (see Figure S2 and Extended Experimental Procedures) were selected from a window of -

50 to +300bp (CRISPRi) or -400 to -50bp (CRISPRa) with respect to the TSS. Negative controls 

we designed in the same way based on scrambled sequence derived from the same window of 

several hundred genes. 

 

Library Cloning Oligonucleotides encoding sgRNAs designed as described above were 

synthesized as pooled libraries. These were then cloned into lentiviral vectors for expression 

from a U6 promoter (see Extended Experimental Procedures). 

 

Cell Line Construction  

For constitutive and inducible CRISPRi screens, polyclonal cells expressing dCas9/KRAB 

fusion proteins driven from an SFFV or TRE3G promoter, respectively, were generated by viral 
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transduction. For CRISPRa screens, a clonal cell line expressing dCas9-SunTag and a scFV-

sfGFP-VP64 fusion was generated (See Extended Experimental Procedures).  

 

Growth and Toxin Screens 

Cells were grown at minimum library coverage of 1,000 for tiling screens and 3,750 for genome-

scale screens. For growth screens cells were grown in spinner flasks and harvested at 0 and 10 

days after puromycin selection. For toxin screens, cells were treated with pulses of ricin or CTx-

DTA (Bassik et al., 2013; Guimaraes et al., 2011) and harvested when sufficient selective 

pressure relative to untreated cells had been applied. Briefly, DNA was isolated, the cassette 

encoding the sgRNA was amplified by PCR, and relative sgRNA abundance was determined by 

next generation sequencing as previously described (Bassik et al., 2013; Kampmann et al., 2014). 

 

  



 35 

Acknowledgments 

The authors thank M. Tanenbaum, J. Tsai, K. Kostova, J. Zalatan, W. Lim, S. Weissman, J. 

Doudna, and R. Vale for unpublished reagents, technical advice and helpful discussion. L.S.Q. 

acknowledges support from the UCSF Center for Systems and Synthetic Biology. This work was 

supported by NIH P50 GM102706 (J.S.W.), NIH P50 GM081879 (L.S.Q., E.H.W.), NIH U01 

CA168370 and NIH R01 DA036858 (J.S.W.), as well as the Howard Hughes Medical Institute 

(J.E.V., Y.C., M.K., M.A.H., J.S.W.). B.A. is an HHMI Fellow of the Damon Runyon Cancer 

Research Foundation (DRG-[2182-14]). L.A.G. is a Fellow of the Leukemia and Lymphoma 

Society. M.A.H. is supported by the UCSF Medical Scientist Training Program. M.K. is 

supported by NCI/NIH Pathway to Independence Award K99CA181494.  



 36 

Figures 

  



 37 

Figure 1. A Tiling sgRNA Screen Defines Rules for CRISPRi Activity at Endogenous Genes 

in Human Cells  

(A) Massively parallel determination of growth or toxin resistance phenotypes caused by 

sgRNAs in mammalian cells expressing dCas9 or dCas9 fusion constructs. (B) UCSC genome 

browser tracks showing the genomic organization, GC content, and repetitive elements around 

the TSS of a representative gene, VPS54, across a 10kb window targeted by the tiling sgRNA 

library. sgRNA ricin resistance phenotypes (as z-scores, see Figure S1 and Experimental 

Procedures) in dCas9 and dCas9-KRAB expressing K562 cells are depicted in black on the top 

and bottom, respectively. See also Figure S2A for more examples. (C) Sliding-window analysis 

of all 49 genes targeted in a tiling sgRNA library. Green line: median sgRNA activity in a 

defined window for all genes. Orange region: observed average window of maximum CRISPRi 

activity. Data displayed as a phenotype signed z-score, excluding all guides longer than 22bp. 

(D) CRISPRi activity for all 49 genes in defined windows relative to the TSS of each gene. (E) 

Ricin resistance phenotypes, comparing CRISPRi sgRNAs selected by our rules to RNAi, for 

genes previously established to cause ricin resistance phenotypes when knocked down by RNAi. 

Mean ± SD phenotype-signed z-score of 100 sets of 10 randomly subsampled sgRNAs or 

shRNAs. See also Figure S2F. 
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Figure 2. CRISPRi Activity is Highly Sensitive to Mismatches Between the sgRNA and 

DNA sequence  

On- and off-target activity of dCas9, dCas9-KRAB and Cas9 for sgRNAs with a varying number 

and position of mismatches. Off-target activity of sgRNAs with mismatches is displayed as 

percent of the on-target activity for the corresponding sgRNA without mismatches. Asterisk 

indicates sgRNAs with 3, 4, or 5 mismatches randomly distributed across region 3 of the sgRNA 

sequence. Data is displayed for each mismatch position as the mean of all sgRNAs with that 

mismatch; see Figure S3 for individual sgRNA activities. sgRNAs were included in the analysis 

only if the fully matched guide was highly active (phenotype-signed z-score ³ 4); N=5 for 

dCas9, N=11 for dCas9-KRAB, and N=10 for Cas9.  
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Figure 3. A Tiling sgRNA Screen Defines Rules for CRISPRa Activity at Endogenous 

Genes in Human Cells  

(A) A schematic of the dCas9-SunTag + scFV-VP64 + sgRNA system for CRISPRa. (B) 

Activity of sgRNAs in K562 cells stably expressing each component of CRISPRa, as a function 

of the distance of the sgRNA site to the TSS of the targeted gene (Phenotype-signed z-scores; 

therefore, negative values represent opposite results than from knockdown). Top, sgRNAs 

targeting VPS54; Bottom, sliding-window analysis of all 49 genes targeted by our tiling library 

in green. Green line, median activity; orange, window of maximal activity. Guides longer than 

22bp were excluded. See also Figure S4. (C) CRISPRa phenotypes and CRISPRi (dCas9-

KRAB) phenotypes are anti-correlated for select genes. For each gene, a Mann-Whitney p-value 

is calculated using CRISPRi/a sgRNA activity relative to a negative control distribution for 24 

sub-sampled sgRNAs. Mean ± SD p-value of 100 randomly sub-sampled sets is displayed. (D) 

CRISPRi knockdown and CRISPRa activation of the same gene can have opposing effects on 

ricin resistance in both primary screens and single sgRNA validation experiments (mean ± 

standard deviation of 3 replicates). (E) Modulation of expression levels for 3 genes by CRISPRi 

and CRISPRa as quantified by qPCR plotted against the ricin resistance phenotype (mean ± 

standard deviation of 3 replicates) measured for each sgRNA.  
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Figure 4. Genome-Scale CRISPRi and CRISPRa Screens Reveal Genes Controlling Cell 

Growth  

(A) sgRNA phenotypes from a genome-scale CRISPRi screen for growth in human K562 cells 

(black). Three classes of negative control sgRNAs are color-coded: non-targeting sgRNAs 

(grey), sgRNAs targeting Y-chromosomal genes (green) and sgRNAs targeting olfactory genes 

(orange). (B) Co-expression of sgRNAs and dCas9-KRAB or dCas9-SunTag + scFV-VP64 is 

not toxic in K562 cell lines over 16 days. (C) Gene set enrichment analysis (GSEA) for hits from 

the CRISPRi screen. A histogram of gene distribution is shown under the GSEA curve. (D) 

CRISPRi versus CRISPRa gene phenotypes for genome-scale growth screens (black). For the 50 

genes in the CRISPRa screen with the most negative growth phenotype, each gene was annotated 

and labeled based on evidence of activity as a tumor suppressor (orange), developmental 

transcription factor (green), or in regulation of the centrosome (purple). Two additional CRISPRi 

hit genes that are discussed in the text are labeled in red. See Table S4 for annotations and 

references. (E) GSEA for hits from the CRISPRa growth screen. A histogram of gene 

distribution is shown under the GSEA curve. 
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Figure 5. CRISPRi Gene Silencing is Inducible, Reversible, and Non-Toxic  

(A) Expression construct encoding an inducible KRAB-dCas9 fusion protein. (B) Western blot 

analysis of inducible KRAB-dCas9 in the absence, presence, and after washout of 

doxycycline. (C) Relative RAB1A expression levels (as quantified by qPCR) in inducible 

CRISPRi K562 cells transduced with RAB1A-targeting sgRNAs in the absence, presence, and 

after washout of doxycycline. Mean ± standard error of technical replicates (N=2) normalized to 

control cells (assayed in the presence of doxycycline) from the day 2 time point. (D) Competitive 

growth assays performed with inducible CRISPRi K562 cells transduced with the indicated 

sgRNAs in the presence and absence of doxycycline. Data is represented as the mean ± standard 

deviation of replicates (N=3). See also Figure S5G. (E) A CRISPRi sublibrary screen for effects 

on cell growth was performed with inducible CRISPRi K562 cells in the presence and absence of 

doxycycline. (F) Cumulative growth curves from the sublibrary screen represented in (E) show 

no bulk changes to growth caused by induction of KRAB-dCas9. Mean ± standard deviation of 

replicate infections each screened in duplicate. 
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Figure 6. Genome-Scale CRISPRi and CRISPRa Screens Reveal Known and New 

Pathways and Complexes Governing the Response to a Cholera-Diphtheria Fusion Toxin 

(CTx-DTA)  

(A) Model for CTx-DTA binding, retrograde trafficking, retro-translocation and cellular toxicity. 

(B) Overview of top hit genes detected by the CTx-DTA screen. Dark red and blue circles: Top 

50 sensitizing and protective hits, respectively. Light red and blue circles: further hits that fall 

into the same protein complexes or pathways as top 50 hits. Circle area is proportional to 

phenotype strength. White stars denote genes identified in a previous haploid mutagenesis screen 

(Guimaraes et al., 2011). See also Figure S6 for hit gene names. (C) CRISPRi and CRISPRa hits 

in sphingolipid metabolism. Display as in (B), except that the left and right sides of each circle 

represent the phenotypes in the CRISPRi and CRISPRa screens, respectively.  
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Figure 7. CRISPRi Strongly Represses Gene Expression of Both Protein-Coding and Non-

Coding Genes, Resulting in Reproducible Phenotypes  

(A-C) Cells expressing a negative control sgRNA or an sgRNA targeting SEL1L or B4GALNT1 

were incubated with cholera toxin and fractionated to quantify cholera toxin present in the 

cytosolic and membrane fractions by Western blot. B4GALNT1 repression blocks toxin uptake 

whereas SEL1L repression prevents toxin retro-translocation from the membrane fraction to the 

cytosol. (D) Validation of CTx-DTA screen phenotypes with single sgRNA re-test experiments. 

Data is represented as the mean ± standard deviation of replicates (N=3). (E) CRISPRi 

knockdown of 13 hit genes (28 sgRNAs; sgRNAs correspond to 7D) identified in the CTx-DTA 

screen was quantified by qPCR. The gray shaded region denotes sgRNAs showing at least 90% 

knockdown for each gene. (F) CRISPRi knockdown of 6 lncRNA genes was quantified by 

qPCR. 2-3 sgRNAs computationally predicted to target each gene were cloned and transduced 

into K562 cells expressing dCas9-KRAB. (G) K562 cells expressing dCas9-KRAB were 

transduced with either a non-targeting sgRNA or an sgRNA targeting the XIST locus (sgXIST-1). 

The cells were then stained with DAPI and an RNA FISH probe for the XIST transcript. 200 non-

apoptotic interphase cells in each condition were scored for XIST RNA coating. XIST is 

undetectable in cells transduced with sgXIST-1. Scale bar represents 5µm. 
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Supplementary Figures 
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Figure S1. Mathematical Framework for Quantifying sgRNA Phenotype and Activity.  

(A) The formulas for deriving cellular phenotype from measurements of cell fraction in a 

population at discrete timepoints. Cells with a given genotype have an intrinsic growth rate g, 

often expressed as cell doublings per day. The log2 enrichment (log2e) of cells with a specific 

genotype in a population can be calculated from the fraction of cells in the population at the 

endpoint t versus that fraction at t0. In order to express this as the growth rate relative to wild-

type (γ), log2e is normalized to the median log2e of the negative control set and then divided by t. 

Similarly, the phenotype of cells exposed to a selective pressure (e.g. toxin treatment) can 

calculated from the log2e of treated and untreated populations to obtain ρ, which is +1 for 

completely resistant cells and -1 for cells with 2-fold sensitivity to the pressure relative to wild-

type. (B) In order to quantify the strength of individual sgRNA activity relative to noise in the 

experiment, sgRNA phenotype was divided by the standard deviation of negative control 

phenotypes to yield the z-score. For analyses of sgRNA strength in tiling screens, in which genes 

had known knockdown phenotypes for either sensitivity or resistance, z-scores were re-signed to 

give positive values where the phenotypes agreed with the expected phenotype and negative 

values otherwise. 
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Figure S2. Highly Active CRISPRi sgRNAs Are Close to the TSS, Short, and Do Not 

Contain Nucleotide Homopolymers.  

(A) For several example genes, the phenotypes observed for sgRNAs expressed in dCas9 or 

dCas9-KRAB cells as a function of their position with respect to the TSS are depicted. Each 

point is an sgRNA. (B) Shorter sgRNAs have, on average, significantly higher activity. Each 

point represents an sgRNA, with lines connecting related sgRNAs that target the same PAM site 

but have increasing protospacer base pair length. Black lines represent the median activity for 

sgRNAs of specific lengths. sgRNAs are depicted if there are multiple sgRNAs targeting the 

same site and at least one sgRNA at that site is highly active (phenotype-signed z-score ≥ 5). (C) 

The presence of homopolymers (AAAA, GGGG, UUUU) within an sgRNA reduces activity on 

average. (D) sgRNA sequences with very high or very low GC content are less active. (E) The 

DNA strand targeted by an sgRNA has no effect on activity. (F) A comparison of a subset of 

sgRNAs selected based on CRISPRi activity rules versus our previously published shRNA 

library. For each gene, the Mann-Whitney p-value was calculated using sgRNA or shRNA 

activity relative to a negative control distribution using 24 shRNAs or 24 sgRNAs. The 24 

shRNAs and sgRNAs were randomly selected 100 times from the shRNA library and sgRNAs 

meeting position and length rules, respectively, and the median and SD log10 p-value are 

displayed. 
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Figure S3. CRISPRi Activity is Highly Sensitive to Mismatches Between the sgRNA and 

DNA sequence  

The on- and off- target activity of dCas9, dCas9-KRAB and Cas9 was measured for a series of 

sgRNAs with a varying number and position of mismatches. Each sgRNA is a point with the 

related mismatch series connected by lines. The measured off-target activity of each sgRNA with 

one or more mismatch is displayed as percent of the on-target activity for the corresponding 

sgRNA with 0 mismatches. The sgRNA series denoted with a star represents sgRNAs with 3, 4, 

or 5 mismatch base pairs randomly distributed across region 3 of the sgRNA sequence. sgRNAs 

were included in the analysis only if the fully matched guide was highly active (phenotype-

signed z-score >= 4); N=5 for dCas9, 11 for dCas9-KRAB, and 10 for Cas9. 
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Figure S4. A Tiling sgRNA Screen Defines Rules for CRISPRa Activity at Endogenous 

Genes in Human Cells  

(A) The activity of sgRNAs in a CRISPRa cell line as a function of the distance of the sgRNA 

site to the TSS of the targeted gene for four example genes. Top, ARL1 and ST3GAL4 activation 

results in ricin resistance; bottom, SURF4 and RAB1A activation results in ricin sensitivity. (B) 

A sliding-window average only for genes with a significant CRISPRa ricin resistance phenotype 

targeted by our test library is shown in blue. The median activity is shown with a blue line while 

the window of maximal activity is shown in red. The data is displayed as a phenotype-signed z-

score. 
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Figure S5. CRISPRi/a Screens Reveal Genes Controlling Cell Growth And CRISPRI Can 

Inducibly and Rapidly Repress Transcription  

(A) The top 10 DAVID annotation clusters identified in our CRISPRi growth screen are strongly 

enriched for known essential cellular processes. (B) Growth phenotypes from a genome-scale 

CRISPRa screen carried out in duplicate in K562 cells. Two classes of negative control sgRNAs 

are shown: non-targeting sgRNAs (grey) and sgRNAs targeting Y-chromosomal genes (green). 

(C) The top 10 DAVID annotation clusters identified in our CRISPRa growth screen. (D) RNA-

sequencing RPKM (reads per kilo base per million) from K562 cells plotted for three gene sets: 

all genes and those genes identified to have activation or repression growth phenotypes by 

CRIPSRa or CRISPRi, respectively.  (E) ST3GAL4 expression levels (relative to ACTB, as 

quantified by qPCR) in inducible CRISPRi K562 cells transduced with ST3GAL4-targeting 

sgRNAs in the absence, presence, and after washout of doxycycline.  Data is normalized to 

control cells (assayed in the presence of doxycycline) at each time point and represented as the 

mean of technical replicates ± standard error. (F) Reversibility of ricin sensitivity (ST3GAL4-1) 

and resistance (RAB1A-2) phenotypes induced by CRISPRi.  Inducible CRISRPi cells 

transduced with the indicated sgRNAs were challenged with 0.4 ng / mL ricin toxin before and 

after 2 days of doxycycline treatment, as well as after removal of doxycycline from tissue culture 

media and following an 8 day recovery period.  Rho values were calculated as described.  Data 

represent the mean of ricin challenged replicates (N=3) ± standard deviation. (G) CRISPRi 

knockdown (mRNA levels relative to ACTB) of hit genes identified in the genome-scale growth 

screen (9 sgRNAs) was quantified by qPCR after two days of doxycycline treatment. The gray 

shaded region denotes sgRNAs showing at least 90% knockdown for each gene. See also Figure 

5D.  
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Figure S6. A Genome-Scale CRISPRi Screen Reveals Known and New Pathways and 

Complexes Governing the Sensitivity to a Cholera-Diphtheria Fusion Toxin.  

Same representation as Figure 6B, with added gene names.  
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Figure S7. Complementary Insights from CRISPRi and CRISPRa Screens for Sensitivity to 

a Cholera-Diphtheria Fusion Toxin 

(A) CRISPRi and CRISPRa hits in sphingolipid metabolism. Same representation as Figure 6C, 

with added gene names (B) Gene set enrichment analysis of top hits from genome-scale 

CRISPRi and CRISPRa screens for sensitivity to CTx-DTA. (C) CRISPRi versus CRISPRa gene 

CTx-DTA phenotypes. Phenotypes for genome-scale CTx-DTA CRISPRi and CRISPRa screens 

(black) were calculated based on the average resistance phenotype (ρ) of the three most active 

sgRNAs. Hit genes from either screen that were featured in Figure 6 as part of the 

glycosphingolipid biosynthesis pathway, proteasome, or diphthamide biosynthesis pathway are 

labele as indicated. 
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Supplementary Tables 

Table S1. sgRNA Sequences and qPCR Primer Pairs Used in Validation Experiments, 

Related to Figures 3, 5, and 7.  

Sequences of the sgRNA protospacers (Tab 1) and qPCR primers (Tab 2) used for individual 

validation experiments in this study. 

 

Table S2. Genome-Scale Library sgRNA Sequences and Phenotypes, Related to Figures 4 

and 6.  

sgRNA IDs, transcripts targeted, protospacer sequences, and growth (γ) and CTx-DTA 

sensitivity (ρ) phenotypes for the genome-scale CRISPRi (Tab 1) and CRISPRa libraries (Tab 2). 

Phenotypes are average of two biological replicates. 

 

Table S3. Gene Phenotypes from Genome-Scale Screens, Related to Figures 4 and 6.  

Gene phenotypes for growth (γ) and CTx-DTA (ρ) phenotypes calculated from the 3 most active 

sgRNAs as described. Phenotypes are average of two biological replicates. 

 

Table S4. Annotation of the Top 50 CRISPRa Growth Hits, Related to Figure 4.  

Categorization of the 50 genes with the most negative growth phenotype (γ). Genes were 

annotated as tumor suppressor genes, developmental transcription factors, and/or involved in 

centrosomal processes, as determined by published surveys of frequently mutated genes in 

cancer, individual reports, and gene family membership.  
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Nucleosomes Impede Cas9 Access to DNA in vivo and in vitro 
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Abstract 

 The prokaryotic CRISPR (Clustered Regularly Interspaced Palindromic Repeats)-

associated protein, Cas9, has been widely adopted as a tool for editing, imaging, and regulating 

eukaryotic genomes. However, our understanding of how to select single-guide RNAs (sgRNAs) 

that mediate efficient Cas9 activity is incomplete, as we lack insight into how chromatin impacts 

Cas9 targeting. To address this gap, we analyzed large-scale genetic screens performed in human 

cell lines using either nuclease-active or nuclease-dead Cas9 (dCas9). We observed that highly 

active sgRNAs for Cas9 and dCas9 were found almost exclusively in regions of low nucleosome 

occupancy. In vitro experiments demonstrated that nucleosomes in fact directly impede Cas9 

binding and cleavage, while chromatin remodeling can restore Cas9 access.  Our results reveal a 

critical role of eukaryotic chromatin in dictating the targeting specificity of this transplanted 

bacterial enzyme, and provide rules for selecting Cas9 target sites distinct from and 

complementary to those based on sequence properties. 
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Introduction 

CRISPR (Clustered Regularly Interspaced Palindromic Repeats) prokaryotic adaptive 

immune systems have yielded transformative tools for manipulating eukaryotic genomes. Most 

notably, the CRISPR associated Cas9 protein from Streptococcus pyogenes, together with a 

single chimeric guide RNA (sgRNA), provides a programmable endonuclease that has 

revolutionized our ability to edit genomes [1]. Cas9 has been further modified to a nuclease-dead 

form (dCas9) to provide a programmable DNA binding protein that can be fused to effector 

domains, making it possible to turn on or off targeted genes, mark specific genomic loci with 

fluorescent proteins, or alter epigenetic marks [1-8]. A central challenge in implementing these 

tools is identifying effective and specific sgRNAs. While much of the effort to define relevant 

rules has focused on the sequence of the target site and sgRNA [9-12], these only partially 

predict Cas9 activity and suggest that additional determinants likely exist. 

Chromatin structure may represent a key parameter governing Cas9 efficacy in 

eukaryotic cells. CRISPR evolved in archea and bacteria [13] and is likely not optimized to 

explore and modify large, chromatin-bound eukaryotic genomes, a hypothesis supported by 

several studies that pointed to a correlation between rates of DNA binding and cleavage in 

regions of open chromatin as measured by DNase I hypersensitivity [9, 14, 15]. Additionally, 

recent single-molecule imaging studies have shown that dCas9 explores euchromatin more 

frequently than it does heterochromatin [16].  

We hypothesized that nucleosomes, the basic unit of chromatin structure, are an 

important impediment to Cas9 recognition. Here, we addressed this hypothesis in vivo by 

leveraging large datasets collected from over 30 sgRNA tiling and genome-scale genetic screens 

[17]. We found that regions of high nucleosome occupancy in vivo, as determined by MNase-seq 
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(micrococcal nuclease sequencing) [18, 19], were strongly depleted of highly active sgRNAs for 

CRISPR interference (CRISPRi) [3, 17] and nuclease-active Cas9. We complemented these 

results with in vitro experiments demonstrating that formation of a nucleosome provides a direct 

and profound block to dCas9 binding and Cas9 cleavage. Despite this strong barrier to Cas9 

activity, we found that addition of a chromatin remodeling enzyme to chromatinized DNA in 

vitro can restore Cas9 access to nucleosomal DNA, highlighting one route by which CRISPR 

may still be able to modify chromatin in vivo. Our results reveal a fundamental aspect of the 

mechanism by which this transplanted bacterial enzyme interacts with eukaryotic chromatin, and 

provide a new dimension for selecting highly active sgRNAs. 
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Results 

CRISPRi activity is periodic and out-of-phase with nucleosome positioning 

In order to study features of chromatin that affect CRISPRi activity, we integrated data 

from whole-genome screens testing for a wide range of phenotypes performed with a previously 

described CRISPRi library targeting each gene with ~10 sgRNAs [17]. We selected 30 screens 

performed in the cell line K562 expressing dCas9-KRAB (M.L., B.A., B.B., C.Y.P., M.K., Y.C., 

J.F., and J.N., personal communication) and set a threshold for high-confidence hit genes, which 

allowed us to assess the relative strength of phenotypes for the sgRNAs targeting these genes. 

Specifically, we analyzed 18,380 sgRNAs targeting 1,539 genes, and generated “activity scores” 

by normalizing sgRNA phenotypes to the average of the 3 sgRNAs with the strongest 

phenotypes for each gene (Figure 1A and Table S1). To assess how CRISPRi activity varies with 

respect to the transcription start site (TSS), we plotted the average sgRNA activity score as a 

function of distance to the FANTOM-annotated TSS [20] (Figure 1B). This analysis revealed a 

robust, periodic pattern of activity, with peaks at ~190bp intervals relative to the TSS. This 

periodicity was highly reminiscent of patterns previously described for nucleosomes [21]. 

Indeed, analysis of K562 MNase-seq data from the ENCODE consortium [19, 22] revealed that 

the average nucleosome signal was strongly anti-correlated with CRISPRi activity (Figure 1B), 

suggesting that high nucleosome occupancy leads to low CRIPSRi activity.  

To further explore this inverse relationship between CRISPRi activity and nucleosome 

organization, we exploited the previous observation that nucleosome phasing is more 

pronounced in well-expressed genes [19]. We grouped genes by their expression in K562 [22, 

23] and analyzed CRISPRi activity and nucleosome occupancy within each group. In support of 
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a connection, we found that peak to trough amplitudes of both features were larger for highly 

expressed genes (Figures 1C,D). 

We also analyzed the MNase signal at each sgRNA target site to determine whether 

nucleosome occupancy could directly explain variation in CRISPRi activity between individual 

sgRNAs (Figure 1E). Consistent with the hypothesis that nucleosomes exclude dCas9, almost all 

of the highly active sgRNAs targeted sites corresponded with low MNase-seq signal. However, 

not all sgRNAs targeting sites with low nucleosome occupancy were highly active, matching 

previous findings that sgRNA and target DNA sequence features also influence efficiency of the 

CRISPR system [9-12]. To exclude the possibility that differences in sequence features alone 

between nucleosome-bound and -free regions could explain the periodicity of CRISPRi activity 

(rather than the presence of nucleosomes per se), we performed linear regression using MNase 

signal, sgRNA length [12, 17], and a validated sgRNA sequence scoring algorithm [10]. We 

found that each parameter individually correlated with sgRNA activity (p < 10-58 for each; Figure 

1F). Importantly, correction for sequence and length features had minimal impact on the ability 

of the MNase signal to predict CRISPRi activity (p < 10-85 after correction). Indeed, a linear fit of 

all three features provided a still stronger correlation (p < 10-221; Figure 1F, far right column), 

suggesting that incorporating nucleosome occupancy in future sgRNA design algorithms could 

significantly improve predictive value. We have recently developed a comprehensive algorithm 

for predicting highly active CRISPRi sgRNAs that, by accounting for nucleosome positioning, 

higher order sequence features, and non-linear relationships in these parameters, shows even 

greater correlation with this dataset that was already enriched for active sgRNAs using our 

original CRISPRi library design principles  [17]  (cross-validation R2=0.32; Horlbeck et al., 

manuscript in preparation [24]). 
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Nuclease-active Cas9 activity anti-correlates with nucleosome occupancy  

In order to generate a dataset for evaluating the effect of nucleosome positioning on 

nuclease-active Cas9 in K562 cells, we took advantage of our previously described library 

densely tiling sgRNAs in 10kb windows around the TSS of 49 genes known to modulate 

susceptibility to the toxin ricin [17, 25] and tested Cas9-expressing cells for resistance or 

sensitivity to ricin (Table S2). We observed phenotypes consistent with the expected knockdown 

phenotype primarily in coding sequences (CDS) but also in some promoter regions, consistent 

with recent results showing that modifications introduced by Cas9 can disrupt cis-regulatory 

regions [26]. Analysis of CDS-targeting sgRNAs revealed that strong phenotypes were found 

predominantly in regions of low MNase-seq signal (Figure 2A), although this relationship was 

less pronounced than for CRISPRi. This may be due to decreased phasing of nucleosomes within 

the gene body [21]. When we analyzed all sgRNAs in the library, thus incorporating information 

from cis-regulatory regions where nucleosomes are well phased, we found the effect of 

nucleosome position to be even stronger (Figure 2-figure supplement 1). Although nucleosome 

occupancy was predictive of CRISPR activity independent of sgRNA sequence features, a much 

stronger correlation was obtained when all features were considered (Figure 2B). Therefore, 

nucleosome organization likely represents an important feature for CRISPR sgRNA design and 

should be considered a key contributing factor in interpreting future tiling mutagenesis 

experiments of coding and non-coding regions. 

 

Nucleosomes are sufficient to fully block cleavage by Cas9 in vitro 

 Our in vivo experiments reveal a strong anti-correlation between Cas9 mediated 



 79 

downstream phenotypic outputs and nucleosome positioning, but do not directly report on the 

ability of Cas9 to access nucleosomal DNA. Factors other than Cas9 access could contribute to 

the observed correlation in our data. For example, (d)Cas9 may bind or cut equally well in 

nucleosome-bound and un-bound regions, but may exert the observed modulation of gene 

expression through interference with transcriptional pausing, splicing, regulatory looping, or 

binding of important regulatory factors, processes which also correlate with nucleosome 

organization [27-33].  

 To determine whether (d)Cas9 activity is indeed directly affected by the presence of 

nucleosomes, we turned to a purified in vitro reconstituted system. Mouse histones were 

recombinantly expressed, purified, and assembled into a nucleosome using 147bp of the Widom 

601 positioning sequence (Figures 3A,B) [34]. Conveniently, the 601 sequence contains 

numerous NGG protospacer adjacent motifs (PAMs) required for Cas9 recognition, spanning the 

full length of the DNA at different helical positions, allowing us to test the effects of position and 

solvent accesibility within the nucleosome (Figure 3C). We first tested the ability of Cas9 to 

cleave nucleosomal DNA. We pre-loaded purified Cas9-HaloTag with in vitro transcribed 

sgRNA, then introduced either naked 601 DNA or that same DNA assembled into a nucleosome 

(Figures 3A,D and Figure 3-figure supplement 1A). Fluorescent labeling of the DNA allowed us 

to visualize the cleavage products on a denaturing Urea-PAGE gel. In agreement with our in vivo 

data, the nucleosome protected its DNA from cleavage by Cas9, and complete protection from 

cleavage was observed to be independent of target position within the nucleosome (Figures 3E,F 

and Figure 3-figure supplement 1B,C). While our manuscript was under review, a study by Hinz 

and colleagues reported the similar in vitro finding that Cas9 nuclease activity is inhibited within 

the nucleosome but not at adjacent linker sequences[35]. Previous single-molecule and 
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biochemical studies have established that nucleosomal DNA undergoes transient unwrapping or 

breathing at the entry and exit sites, creating a gradient of accessibility along the nucleosome 

[36-41]. This property is often credited for the observed position dependent binding patterns of 

many transcription factors and DNA binding proteins. Interestingly, our data suggests that the 

cleavage activity of Cas9 in vitro is not detectably influenced by this effect, although less stable 

nucleosomes than the Widom 601 nucleosome or target sites closer to the nucleosome edge may 

exhibit more breathing and thus more accessibility than those tested here. 

 

Cas9 is unable to bind nucleosomal DNA in vitro 

 Cleavage of DNA by Cas9 has been described as a stepwise process [15, 16, 42] in which 

Cas9 must first scan for PAMs, unzip the DNA duplex, and fully pair the guide RNA and target 

DNA prior to cleavage. While our in vitro data show that full pairing and cleavage is prevented 

by the presence of a nucleosome, we wondered if binding without cleavage, especially at the 

more accessible ends of the nucleosome, might still occur. Additionally, the first step in binding, 

PAM recognition, may be governed by helical location within the nucleosome as well as its 

proximity to the more dynamic ends. Histones make contacts with the DNA at every helical turn, 

thus a PAM may fall on the outside of the nucleosome, exposing it to solvent, or on the inside at 

the DNA-histone interface. To test the influence of target location within the nucleosome on 

Cas9 binding, we used an electrophoretic mobility shift assay to monitor binding of dCas9 to 

Cy3 end-labeled 601 DNA (Figures 4A,B), either free or assembled into a nucleosome 

containing Alexa Fluor 647-labeled histone H2B (Figure 4-figure supplement 1A). Consistent 

with our cleavage results, binding by dCas9 was abolished by the presence of the nucleosome, 

regardless of the targeted dCas9 binding site (Figure 4C-E and Figure 4-figure supplement 
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2A,B). 

 To better understand how a nucleosome might impede Cas9 binding, we aligned the 

available crystal structures of DNA-bound Cas9 and the structure of the 601 nucleosome ([43], 

PDB ID 3LZ0; [44], PDB ID 4UN3). We superimposed the target DNA in the Cas9 crystal 

structure with the DNA in the nucleosome structure at a site where the two DNA paths gave the 

best fit. The resulting combined structure reveals that the Cas9 protein poses significant steric 

clashes with the histones (Figure 4F). Given the extent of overlapping densities in the two 

structures, it seems unlikely that the histones and Cas9 could co-occupy the same piece of DNA. 

Additionally, it may be important to note that unlike other DNA binders such as transcription 

factors, binding by Cas9 constitutes melting of target DNA, which may pose an additional barrier 

to binding on a nucleosome. This hypothesis leaves two possible outcomes of targeting Cas9 to 

nucleosomal DNA: either Cas9 is capable of displacing histones in order to engage nucleosomal 

DNA, or it is excluded altogether. Our data support the latter conclusion.  

 

The chromatin remodeling enzyme yChd1 can restore access to nucleosomal DNA in vitro 

 The nucleosome landscape of eukaryotic chromatin is dictated by both intrinsic DNA 

sequence preferences as well as extrinsic factors such as chromatin remodeling enzymes [21, 45, 

46]. In order to model how these dynamics affect Cas9 access to nucleosomal DNA in vitro, we 

turned to a chromatinized plasmid system. We dialyzed plasmid DNA containing a single 601 

nucleosome positioning sequence with a sub-saturating quantity of purified histone octamers, 

and confirmed the quality of the resulting chromatin assemblies by MNase digestion (Figures 

5A,B). We tested whether a nucleosome was positioned at the 601 sequence using restriction 

enzyme accessibility mapping, and found that sites within the 601 sequence were well protected 
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from digestion, suggesting high nucleosome occupancy, while sites immediately adjacent were 

not, suggesting precise positioning (Figure 5C). To recapitulate the effects of chromatin 

remodeling in vitro, we used a purified, truncated form of the Snf2-like chromatin remodeling 

enzyme Chd1 from Saccharomyces cerevisiae (yChd1), which had previously been shown to 

mediate nucleosome sliding in an ATP-dependent manner without additional co-factors [47, 48]. 

To confirm yChd1 activity on our chromatinized plasmid, we used the frequent cutter, HaeIII, to 

digest the chromatin in the presence or absence of the remodeler.  Upon addition of yChd1, we 

observed a shift toward lower molecular weight bands, indicative of dimished protection at 

HaeIII sites while still maintaining a chromatinized state (Figure 5D).  

 

 We next sought to test whether yChd1 could affect Cas9’s ability to access nucleosomal 

DNA. Before addition of the remodeler to our chromatinized plasmid, we found that sites within 

the 601 nucleosome were strongly protected from cleavage by Cas9, consistent with our 

mononucleosome results (Figure 5E-G, PAM sites without remodeler). However, when the 601 

nucleosome was remodeled by yChd1, as indicated by a loss of protection from restriction 

enzyme cleavage (approaching protection levels similar to those in the linker region), Cas9 

cleavage efficiency was restored to around 80% of the corresponding naked plasmid control 

(Figures 5E-G). Notably, the percent protection at the EcoRI site adjacent to the positioned 

nucleosome did not decrease upon addition of yChd1, demonstrating that the decrease in 

protection along the 601 sequence was mediated by the nucleosome displacement activity of 

yChd1 rather than by a non-specific effect on cleavage efficiency. While our data with the 

chromatinized plasmid system confirm our findings that a well-positioned nucleosome provides 

a profound block to Cas9 cleavage, our further finding that chromatin remodeling restores access 
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to nucleosomal DNA provides one potential mechanism by which Cas9 may efficiently modify 

broad portions of eukaryotic genomes. This plasmid model could be further exploited to assay 

the activity of Cas9 at nucleosome-free and boundary sites, and thus derive biophysical 

parameters governing Cas9-chromatin interactions. 
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Discussion 

 Despite its swift success as a repurposed tool for gene editing, imaging, and transcription 

modulation, the ability of this prokaryotic CRISPR/Cas9 system to effectively navigate 

eukaryotic chromatin has remained poorly understood. Here, we show that the nucleosome, the 

basic unit of chromatin, poses a strong barrier to Cas9, both in vitro and in vivo. By masking 

~147bp of DNA, the nucleosome effectively reduces the size of the eukaryotic genome available 

to Cas9. Previous studies using ChIP-seq to assay Cas9 binding have shown that off-target 

binding at PAM plus seed sequences more frequently occurs in regions of open chromatin [15, 

49]. Our data expand upon these findings to show that the discrete pattern of nucleosome 

organization is able to modulate the efficiency of Cas9 binding and cleavage at on-target sites. 

The practical implications of these observations are underscored by our finding that accounting 

for nucleosome occupancy offers a significant improvement in predictive power for sgRNA 

design. 

 While our data show that nucleosomes strongly protect their DNA from Cas9 binding and 

cleavage in vitro, their organization in cells is not static. Transient displacement of nucleosomes 

occurs during replication, remodeling, and transcription. By adding the chromatin remodeling 

enzyme yChd1 to nucleosomes in vitro, we demonstrate that this displacement can in fact restore 

Cas9 access to DNA. However, despite brief exposure of nucleosomal DNA during remodeling 

and various other cellular processes, we still observe a clear anti-correlation between Cas9 

activity and nucleosome occupancy in vivo, suggesting that the barrier to Cas9 target recognition 

exists even in a cellular environment. Indeed, the balance between nucleosome disruption, 

turnover, and repositioning in the cell leads to the average level of occupancy and positioning at 

each site observed by MNase-seq [19, 21]. Thus, our data suggest that it is likely the overall 
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effect of this average nucleosome positioning that leads to the observed anti-correlation with 

Cas9/sgRNA activity.  It is important to note, however, that there is likely a fundamental 

difference between applications that use dCas9 versus nuclease-active Cas9. Knock-down of 

transcription by CRISPRi likely requires persistent binding by dCas9 in order to continually 

block transcription, and would be largely ineffective during S-phase when transcription is 

globally shut down. In contrast, to make a genomic edit, Cas9 must succeed in cleaving DNA 

only once, and could potentially take advantage of nucleosome turnover during replication. The 

role these differences play in the dependence of Cas9 on nucleosome position is still not clear. 

We expect, however, that nucleosome position and occupancy will be of particular concern to 

applications that use the nuclease-dead Cas9 and require sustained binding. Future investigations 

into the role of cell cycle and nucleosome disruption may provide an additional piece to our 

understanding of the mechanism of Cas9 in eukaryotic cells. Furthermore, nucleosome 

organization represents only one aspect of eukaryotic chromatin, and thus, our results contribute 

a first step in understanding and exploiting how chromatin affects Cas9 activity in order to 

enable more sophisticated and precise rules for targeting Cas9.  
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Methods 

Analysis of CRISPRi sgRNA activity 

 The K562 dCas9-KRAB-BFP cell line was obtained from [17] and had been constructed 

from K562 cells obtained from ATCC. The resulting cell line tested negative for mycoplasma 

(MycoAlert Kit, Lonza, Basel, Switzerland) in regular screenings, and cytogenetic profiling by 

array comparative genomic hybridization (not shown) closely matched previous 

characterizations of the K562 cell line [50]. Data from 30 published [17] and unpublished 

screens (M.L., B.A., B.B., C.Y.P., M.K., Y.C., J.F., and J.N., personal communication), 

conducted using the CRISPRi sgRNA library described in Gilbert 2014 [17] in K562 cells 

constitutively expressing dCas9-KRAB-BFP, were processed through a standardized pipeline 

adapted from Bassik et al. 2013 [25], and Kampmann et al. 2013 [51]. Briefly, sgRNA 

phenotypes were calculated as the log2 enrichment of sequencing read counts between two 

conditions (e.g. initial and final timepoints for growth screens, untreated and treated for 

drug/toxin screens) and normalized to cell doubling differences where appropriate. Most screens 

were conducted in duplicate, and sgRNA phenotypes from the duplicates were averaged. To 

determine hit genes, each gene was given an effect size (average of strongest 3 sgRNA 

phenotypes by absolute value) and a confidence value (Mann-Whitney p-value of all ~10 

sgRNAs compared to negative controls), and hits were selected using a score that integrates 

effect size and statistical confidence (| effect Z score * log10 p-value | � 20 in any screen). For 

genes with multiple TSS, each TSS was analyzed separately and the gene was assigned the 

highest score. Finally, sgRNA phenotypes were extracted for hit genes from the screen in which 

the gene scored as a hit and normalized to the average of the strongest 3 phenotypes to generate 

the “sgRNA activity score.” 
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 sgRNA positions were defined as the genomic coordinate of the 3’ G of the NGG PAM (all 

genomic coordinates referenced in this text are from hg19). TSS positions were determined from 

the FANTOM5 project annotation (Riken) 

(http://fantom.gsc.riken.jp/5/datafiles/phase1.3/extra/TSS_classifier/TSS_human.bed.gz; 

accessed March 2, 2015), using the downstream genomic coordinate of the corresponding 

“p1@gene” BED file entry. All local averages were calculated in 50bp windows centered around 

the indicated point. As sgRNA lengths including the PAM were ~24bp and position was 

calculated relative to PAM, a window size of 50bp captures all sgRNAs that directly neighbor 

the center point at either the 3’ or 5’ end. In order to quantify amplitude, the local averages were 

first smoothed using a low-pass Butterworth filter (N = 4, Wn = 0.03; SciPy signal processing 

module) and then peaks and troughs were calculated by determining the local maxima and 

minima, respectively. As described for Figure 1D, Peak 0 was defined as the local maximum 

closest to the TSS, peak 1 was defined as the next maximum downstream of peak 0, and troughs 

were defined as the minima immediately downstream of the respective peaks. 

 

MNase-seq data analysis 

 K562 MNase-seq data was obtained from the ENCODE consortium as processed 

continuous signal data (BigWig file format; accession number ENCFF000VNN, Michael Snyder 

lab, Stanford University). sgRNA target site signal was calculated as the average signal at all 

positions between the 5’ end of the sgRNA and the 3’ end of the PAM. 

 

RNA-seq data analysis 

 K562 RNA-seq data was obtained from the ENCODE consortium as transcript 



 88 

quantifications (accession number ENCFF485YKK, Thomas Gingeras lab, Cold Spring Harbor 

Laboratories). Genes were assigned expression levels in units of FPKM according to their 

highest-expressed transcript. 

 

Linear regression 

 Sequence score was calculated by passing the specified 30bp target site for each sgRNA to 

the on_target_score_calculator.py script provided by Doench et al., 2015 (accessed October 9, 

2015) [10]. This sequence score, MNase signal as calculated above, and sgRNA length (base 

pairs in protospacer and PAM) were each compared to sgRNA activity scores by Pearson 

correlation. Linear fits of the specified parameters were computed using multidimensional linear 

regression (Sci-kit learn linear_model package), and correction of the activity scores for 

sequence and length features was performed by subtracting the predicted scores based on the 

combined fit. 

 

Ricin tiling screen 

 Screens for ricin susceptibility were performed essentially as previously described [17]. 

Briefly, K562 cells constitutively expressing Cas9-BFP from an SFFV (spleen focus-forming 

virus) promoter were transduced with our previously described pooled sgRNA tiling library 

packaged into lentivirus for a multiplicity of infection below 1. Duplicate screens were infected 

and subsequently treated independently. Infected cells were allowed to recover for 2 days, then 

selected with 0.75µg/mL puromycin (Tocris) for 2 days, and finally allowed to recover from 

puromycin treatment for 2 days. Cells were then cultured for 19 days and were either treated 

with three pulses of 0.5ng/mL ricin administered for 24 hours and followed by re-suspension in 
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fresh media, or passaged untreated. Genomic DNA was harvested from the endpoint untreated 

and treated samples and processed for high-throughput Illumina sequencing as previously 

described [17]. Screens were conducted at a minimum library coverage of 1,000 cells per 

sgRNA, and sequenced to a median depth of ~500 reads per sgRNA. Phenotypes were calculated 

as log2 enrichments of read counts between untreated and treated conditions, normalized to cell 

doubling differences, and averaged between duplicates. Phenotype-signed Z scores were 

calculated by dividing all scores by the standard deviation of negative control phenotypes and 

then multiplying phenotypes by -1 for sgRNAs targeting genes shown to produce sensitizing 

phenotypes upon knockdown [25] such that positive values represent “expected” phenotypes. 

 

Protein Purification 

Mouse histones H2B(T115C), and H4 were recombinantly expressed in 

BL21(DE3)pLysS cells from expression plasmids gifted by Dr. Karolin Luger. Expression and 

purification of mH4 was conducted as previously described by the Luger lab [52, 53], while 

mH2B(T115C) was expressed and purified as described by the Cairns lab [54] with the following 

exception: after purification, histones were dialyzed against multiple changes of double distilled 

water and 1mM β-mercaptoethanol (BME) before lyophilizing for storage. Purified recombinant 

mouse (Mus Musculus) histones H2A and H3 were gifts from Dr. Karolin Luger. 

 The labeling mutant, mH2B(T115C) was fluorescently labeled with ~5-fold molar excess 

Alexa Fluor 647 C2 maleimide dye (Thermo Fisher Scientific, Waltham, MA, USA) as follows. 2 

mg of lyophilized mH2B(T115C) was dissolved at 2 mg/mL in labeling buffer (7 M GuHCl, 50 

mM Tris-HCl pH 7.5, 1 mM TCEP) and nutated at room temperature for 30 minutes. 1 mg of the 

dye was then dissolved in 50 µl of anhydrous DMF under Argon gas, and approximately half of 
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the dye solution was slowly mixed with the dissolved mH2B(T115C) in the dark at room 

temperature to begin the labeling reaction. After nutating the reaction for 1 hour, the rest of the 

dissolved dye was slowly added and the reaction was moved to 4ºC overnight in the dark. In the 

morning, the reaction was quenched by adding over 100-fold molar excess of BME. 

 Histone octamers were refolded and purified as previously described [52]. Specifically, 

110 nmoles each mH3 and mH4 were refolded with 130 nmoles each mH2A and mH2B(T115C). 

The resulting octamer was concentrated using a 10,000 MWCO Spin-X UF concentrator 

(Corning, Tewksbury, MA, USA), then purified on a Superdex 200 HR (10/30) column (GE Life 

Sciences, Pittsburgh, PA, USA) using an Akta Explorer FPLC (GE Life Sciences, Pittsburgh, 

PA, USA) at 0.2 mL/min. Selected fractions were concentrated, flash frozen, and stored at -80ºC 

until use. 

 A new purification scheme was conceived to achieve exceptionally high purity (d)Cas9 

(Figure 4 – figure supplement 3). Nuclease active S. pyogenes Cas9-HaloTag was recombinantly 

expressed and purified from BL21(DE3)pLysS-Rosetta cells (Novagen/EMD Millipore, 

Darmstadt, Germany) using the expression plasmid pET302-6His-wtCas9-Halo-NLS, while the 

nuclease dead S. pyogenes dCas9(D10A,H840A)-HaloTag was recombinantly expressed and 

purified from BL21(DE3)pLysS cells using the expression plasmid pET302-6His-dCas9-Halo 

[16]. Bacterial cultures were grown in Terrific Broth II (MP Biomedicals, Santa Ana, CA, USA) 

at 37ºC until an OD600 reached 0.4. Cultures were then transferred to an ice bath for ~15 minutes 

until an OD600 reached 0.5, at which point expression was induced with 0.2mM IPTG, and the 

cultures were moved to an 18ºC shaker for 16 hours. Cells were harvested at 3000xg for 20 

minutes, then resuspended in lysis buffer (500 mM NaCl, 50 mM Hepes pH 7.6, 5% glycerol, 

1% Triton X-100, 10 mM imidazole, 1 mM benzamadine, 2.3 µg/mL aprotinin, 0.5 mM PMSF, 
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and 1 tablet per 50 mL of Protease Inhibitor Cocktail (Roche, Basel, Switzerland). Cells were 

lysed using sonication on ice at 50% duty cycle, power 8, 30 seconds on, 1 minute off (Misonix/ 

Qsonica, LLC, Newtown, CT, USA). The lysed cells were then ultracentrifuged at 4º, 40K rpms, 

for 40 minutes to remove cell debris. The supernatant was then allowed to bind to Ni-NTA 

agarose resin (Qiagen, Hilden, Germany) by nutating at 4ºC for 30 minutes. The resin containing 

bound (d)Cas9 was poured into a mini column (Bio-Rad, Hercules, CA, U.S.A.) and washed 

with 10 column volumes (CV) of lysis buffer, and 5 CVs of 20 mM Imidazole buffer (same as 

lysis buffer but with 20 mM imidazole). Elution of the (d)Cas9 was achieved using 250 mM 

Imidazole buffer (same as lysis buffer but with 250 mM imidazole), and fractions were checked 

on an SDS-PAGE gel. Chosen fractions were pooled and diluted to a starting NaCl concentration 

of 200 mM using Buffer A (0 M NaCl, 50 mM Hepes pH 7.6, 5% glycerol, 1 mM DTT, 0.5 mM 

PMSF). A 5 mL HiTrap Q-HP (GE Life Sciences, Pittsburgh, PA, USA) and a 5 mL HiTrap SP-

HP (GE Life Sciences, Pittsburgh, PA, USA) column were attached in tandem (Q first in line) 

and equilibrated on an Akta FPLC at 10% Buffer B (same as Buffer A except with 2 M NaCl). 

The pooled (d)Cas9 was filtered, then loaded onto the tandem columns at 2 mL/min. The 

columns were washed with 10% Buffer B until A280 and A260 returned to baseline, at which point 

the Q column was removed and (d)Cas9 was eluted from the SP column using a gradient from 

10% to 50% Buffer B over 10 CVs. Fractions were chosen using SDS-PAGE, pooled, and 

dialyzed into storage buffer (200 mM NaCl, 50 mM Hepes pH 7.6, 5% glycerol, 1 mM DTT) 

(Figure 4 – figure supplement 3). Aliquots were flash frozen in liquid nitrogen and stored at -

80ºC. 

 

Target DNA purification 
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 To make the fluorescent DNA used in this study, the 601 DNA sequence was amplified 

by PCR from plasmid pBSIISK+601 (parent 601 sequence plasmid gifted by K. Luger) with the 

primers listed below. Two different PCR products were produced; one labeling the Watson 

strand of the 601 sequence with a 5’ Cy3 dye (IDT, Coralville, IA, USA), and the other labeling 

the Crick strand. Large scale (~2 mL) PCR reactions using in-house produced Pfu DNA 

polymerase were ethanol precipitated before loading onto a 20cm x 20cm 12% native TBE-

PAGE gel for DNA purification. The PCR product was cut out of the gel, and the gel slice was 

crushed and soaked in 0.3 M Sodium Acetate pH 5.2 with multiple buffer changes. The pooled 

extract was ethanol precipitated, resuspended in 10 mM Tris-HCl pH 7.5, 10 mM NaCl, and 

stored at -20º until use. 

 

Watson Primer pair:  

LW021: 5’- /5Cy3/ATCGGATGTATATATCTGACACGTGC -3’ 

LW022: 5’- ATCTGAGAATCCGGTGCCG -3’ 

 

Crick Primer pair:  

LW025: 5’- /5Cy3/ATCTGAGAATCCGGTGCCGAG -3’ 

LW030: 5’- ATCGGATGTATATATCTGACACGTGC -3’ 

 

sgRNA Production for in vitro experiments 

sgRNA was produced by T7 transcription of a short DNA oligo template. To create this 

template, two oligos, one containing the T7 promoter and DNA target sequence, and the other 

encoding the invariable scaffolding of the sgRNA, were annealed and filled in using a single 
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PCR cycle. The DNA template was ethanol precipitated, then transcribed using the T7 Quick 

High Yield RNA Synthesis Kit (New England Biolabs, Ipswich, MA, USA) according to vendor 

instructions. The resulting sgRNAs were purified via 6% Urea-PAGE gel. The correct band was 

cut out and crushed and soaked in 0.3M NaOAc. After ethanol precipitation, and resuspension in 

double distilled water, aliquots were stored at -80ºC until use. SgRNAs targeting the 601 

sequence included 20bp of complimentarity 5’ to the targeted PAM, with the exception of PAM 

4, which has room for only 19bp of complimentarity. SgRNAs were used against PAMs 1, 3-15, 

and 17-20. PAM 2 did not have a long enough target sequence available within the 601. The 

non-sense guides used in this study contained the target sequence 5‘-

ACATGTTGATTTCCTGAAA-3’ or 5‘-GATTTCACCTCTCAGCGCAT-3’.  

 

Template oligonucleotides: 

 

5’- 

TTAATACGACTCACTATAGNNNNNNNNNNNNNNNNNNNNGTTTTAGAGCTAGAAAT

AGC -3’ 

5’- 

AAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTA

ACTTGCTATTTCTAGCTCTAAAAC -3’ 

 

Nucleosome assembly 

 Nucleosomes were assembled by salt gradient dialysis as previously described [52] using 

50 µL home made dialysis buttons and ~1 µM DNA. The Watson and the Crick labeled 601 
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DNA were assembled into separate nucleosomes. The best DNA:octamer molar ratio for optimal 

nucleosome assembly was selected by titrating octamer. The most homogenous assembly as 

judged by 6% Native TBE-PAGE gel was chosen for future assays. 

 

Cleavage and binding assays 

 (d)Cas9 cleavage and binding assays were both conducted in the same manner, 

exchanging dCas9 for wtCas9 during binding reactions. First, the complete ribonucleoprotein 

complex was formed by incubating 5-fold molar excess of the chosen sgRNA with (d)Cas9 at 

37ºC for 10 minutes. Next, the DNA substrate (either naked DNA or nucleosome) was added to 

40 nM (5-fold less than Cas9), and the reactions were returned to 37º for an hour. Reaction 

buffer contained 20 mM Hepes pH 7.5, 100 mM NaCl, 5 mM MgCl2, 1 mM EDTA, and 

importantly, 2.5 mg/mL insulin (Roche, Basel, Switzerland). Importantly, we found that 

including a nonspecific protein such as insulin prevents the nucleosomes from falling apart and 

getting lost to surfaces during binding and cleavage assays (Figure 4 – figure supplement 1B). 

Additionally, inclusion of insulin reduces nonspecific protein-protein interactions and 

aggregation. Binding reactions also contained 14.6% sucrose to allow direct loading onto a 

native gel without a loading buffer. At 1 hour, binding reactions were loaded onto a pre-run 6% 

native TBE-PAGE gel at 4ºC, while cleavage reactions were stopped using a 5X stop buffer (250 

mM EDTA, 2% SDS), and prepared to load onto a 10% Urea-PAGE gel by adding 2X loading 

buffer (95% formamide, 20% DMSO, 5 mM EDTA, 0.025% Orange G) and heating to 95ºC for 

5 minutes before snap cooling on ice. Binding and cleavage reactions were repeated at least 

twice each for most of the PAMs targeted. Gels were imaged using a PharosFX Plus (Bio-Rad, 

Hercules, CA, U.S.A.) and quantified using Image Lab (Bio-Rad, Hercules, CA, U.S.A.). For 
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binding and cleavage reactions, gels were scanned in the Cy3 fluorescence channel, while Alexa 

Fluor 647 fluorescence was also imaged for binding reactions. For cleavage reactions, labeling of 

either the Watson or Crick strand was chosen such that the fluorophore was always attached to 

the strand complimentary to the sgRNA used. 

 

Structure alignment and solvent accessibility 

 Molecular graphics and analyses were produced using the UCSF Chimera package 

(supported by NIGMS P41-GM103311) [55]. The crystal structures for the 601 nucleosome [43] 

(PDBID 3LZ0) and the Cas9-sgRNA-DNA ternary complex [44] (PDBID 4UN3) were 

superimposed by aligning the DNA path in both structures using MatchMaker and manual 

manipulation. The solvent accessible surface area of the DNA in the 601 nucleosome structure 

was computed using residue areaSAS. 

 

Reconstitution of nucleosomes on a plasmid 

 Supercoiled plasmid was produced using a Qiagen Maxi prep kit (Hilden, Germany). 

Histone octamers were prepared from purified histones as described above. DNA and histone 

octamer were mixed at a weight ratio of 1:0.8 (DNA to octamer) at a concentration of 20µg of 

DNA in 1X TE with 2M NaCl. 50µL homemade dialysis buttons were used to dialyse the 

solution by a step-wise gradient in 500mL at room temperature. The gradient was as follows; 1.5 

hr in 1M NaCl in TE, 2 hr in 0.8M NaCl in TE, 1.5 hr in 0.6M NaCl in TE, and 2 hr in 0.05M 

NaCl in TE. The resulting chromatin was stored at 4ºC until use.  

 

Micrococcal nuclease digestion assays of chromatin assembly reactions  
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 MNase (Sigma-Aldrich, St. Louis, USA) was resuspended at 200 units/mL in water and 

then disluted at  1:100, 1:500, or 1:1000 in a solution of 1X MNase reaction buffer (50mM Tris-

HCl pH7.9 and 5mM CaCl2 dihydrate), 0.1 mg/mL insulin, and 10% glycerol. Chromatinized 

plasmid assemblies in 1X MNase buffer were added to each MNase dilution. As a control, an 

equal amount of DNA as supercoiled plasmid was added to the lowest MNase dilution. Each 

reaction was incubated for 11 minutes at room temperature, then stopped in a solution with final 

concentrations of 20mM EGTA, 200mM NaCl, 1% SDS, 20 mg/mL GlycoBlue (Thermo Fisher 

Scientific, Waltham, MA, USA), and 13.4 mg/mL Proteinase K (Roche, Basel, Switzerland) and 

incubated at 37ºC for 30 minutes. Reactions were Phenol:Chloroform:Isoamyl Alcohol extracted, 

ethanol precipitated, and run on a 1.3% agarose gel in 0.5X TBE. 3µg 123bp DNA ladder 

(Thermo Fisher Scientific, Waltham, MA, USA) was used as a standard. 

 

Restriction enzyme accessibility assays 

 Chromatin assembly or supercoiled plasmid with equivalent amounts of DNA were 

added to restriction enzyme master mixes for final concentrations of 1X CutSmart buffer (New 

England Biolabs, Ipswich, MA, USA), 6 ng/µL DNA, and 0.4 U/µL of the indicated restriction 

enzyme (New England Biolabs). Reactions were incubated for 1 hour at NEB recommended 

temperatures. Reactions were stopped in final concentrations of 15mM EDTA, 0.75% SDS, 

150mM NaCl, and 15mg/mL Proteinase K and incubated at 37ºC for 30 minutes. DNA was 

extracted with Phenol:Chloroform:Isoamyl Alcohol, and ethanol precipitated, then resuspended 

in 1X CutSmart buffer and linearized by digesting with 1 U/µL DraIII-HF (New England 

Biolabs) at 37ºC for 1 hour. The full reactions were run on an agarose gel and quantified as 

above. 
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Chromatin remodeling assays 

 Reactions were set up with 40mM NaCl, 0.1 mg/mL BSA, 25mM Tris-Acetate pH 7.5, 

10mM Mg-Acetate, 1mM DTT, 1.2mM rATP, and 6 ng/ µL chromatinized or supercoiled DNA. 

For restriction enzyme accessibility, the indicated restriction enzyme was added at 0.5 units/mL. 

For Cas9 accessiblity, Cas9/sgRNA ribonucleoproteins assembled as described above were 

added at 15.62nM. Chromatin remodeling enzyme yChd1ΔNC (gift of Dr. Ashok Patel and Dr. 

Gregory Bowman) was added to the indicated reactions at 0.2 µM final concentration. Reactions 

were incubated at 27ºC for 1 hour, then processed as with the restriction enzyme accessibility 

assay above.  
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Figure 1. CRISPRi activity anti-correlates with nucleosome occupancy  

(A) Workflow for generating CRISPRi activity scores from pooled genetic screens. The resulting 

values are distributed around 0 for inactive sgRNAs and around 1 for highly active sgRNAs. (B) 

Average CRISPRi activity and MNase-seq signal relative to the TSS. Green line represents 

average CRISPRi activity score of all sgRNAs within a 50bp window around each position. 

Purple line represents the K562 MNase-seq signal at each position averaged across all genes 

analyzed. (C) Average CRISPRi activity and MNase-seq signal for genes grouped by expression 

value. Genes were grouped into lower expression (light lines; N=240), higher expression (heavy 

lines; N=368), and medium expression (omitted for clarity; N=930), and analyzed as in (B). 

Expression values were obtained as fragments per kilobase million (FPKM) from ENCODE 

K562 RNA-seq data. Average activity at positions with fewer than 10 sgRNAs within the 50bp 

window was not calculated. (D) Quantification of the amplitude of periodic CRISPRi activity. 

Peak and trough coordinates were obtained by calculating the local maxima and minima of the 

activity traces from analyses in (B) and (C). Peak 0 was defined as the local maximum closest to 

the TSS, peak 1 was defined as the next maximum downstream of peak 0, and troughs were 

defined as the minima immediately downstream of the respective peaks. (E) CRISPRi activity 

and target site nucleosome occupancy for individual sgRNAs. Target site nucleosome occupancy 

was calculated from the average MNase-seq signal at all genomic coordinates across the length 

of the sgRNA protospacer and the protospacer adjacent motif (PAM). sgRNAs were then binned 

by the target site nucleosome occupancy, displayed as box-and-whisker plots, and labeled 

according to the minimum value within the bin except where indicated. P-values were calculated 

by a two-tailed Mann-Whitney test comparing each bin to the =0.0 bin. (F) Linear regression for 

CRISPRi activity. The squared Pearson correlation was calculated for the sgRNA activity scores 
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compared to the indicated individual parameters (bars 1, 2, and 4) or linear fits of multiple 

parameters (bars 3 and 6). sgRNA activity scores were corrected for sequence and length 

features (bar 5) by subtracting the linear fit of those two features. 
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Figure 2
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Figure 2. Cas9 nuclease activity anti-correlates with nucleosome occupancy 

(A) Cas9 nuclease phenotypes and target site nucleosome occupancy for individual sgRNAs 

targeting CDS regions. Ricin susceptibility phenotypes for each sgRNA are expressed as a Z 

score and are positive if the phenotype matches the expected knockdown phenotype. Target site 

nucleosome occupancy was calculated as in Figure 1E. sgRNAs were then binned by the target 

site nucleosome occupancy, displayed as box-and-whisker plots, and labeled according to the 

minimum value within the bin except where indicated. P-values were calculated by a two-tailed 

Mann-Whitney test comparing each bin to the =0.0 bin. (B) Linear regression for Cas9 nuclease 

phenotypes. The squared Pearson correlation was calculated for the sgRNA activity scores 

compared to the indicated individual parameters (bars 1, 2, and 4) or linear fits of multiple 

parameters (bars 3 and 6). sgRNA activity scores were corrected for sequence and length 

features (bar 5) by subtracting the linear fit of those two features. 
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Figure 2 – figure supplement 1
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Figure 2—figure supplement 1. Cas9 nuclease activity anti-correlates with nucleosome 

occupancy at all target sites 

Cas9 nuclease phenotypes and target site nucleosome occupancy for individual sgRNAs. As in 

Figure 2A, but incorporating all CDS- and non-CDS-targeting sgRNAs in the ricin-susceptibility 

gene tiling library. 
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Figure 3. Cas9 nuclease activity is blocked by the presence of a nucleosome in vitro 

(A) Schematic of the experimental setup for in vitro cleavage assays. Mononucleosomes were 

assembled by salt gradient dialysis of purified mouse histone octamer with the minimal 

nucleosome positioning sequence, Widom 601 (147bp). Prior to assembly, DNA was 5’-end-

labeled with Cy3 and histone H2B was fluorescently labeled using an introduced cysteine 

(T115C) coupled to Alexa Fluor 647. Purified Halo-tagged Cas9 with in vitro transcribed 

sgRNAs were added to naked DNA or assembled nucleosomes, and DNA cleavage products 

were visualized using a denaturing gel imaged for Cy3-DNA fluorescence. See also Figure 3–

figure supplement 1A. (B) Confirmation that fully occupied, well-positioned nucleosomes were 

assembled. After assembly using salt gradient dialysis, the produced nucleosomes were 

visualized using a native PAGE gel imaged in the Cy3 and Alexa Fluor 647 channels. Full 

incorporation of the free DNA into a nucleosome occupying a single position on the DNA is 

indicated by the presence of a single shifted band containing all of the detectable Cy3-DNA and 

Alexa Fluor 647-H2B signal. (C) Available PAMs and solvent accessibility of the 601 

nucleosome positioning sequence. (Above) A schematic of the 601 sequence. The location of the 

histone octamer when assembled into a nucleosome is indicated by the gray oval. The location of 

PAMs within the double-stranded sequence are indicated with arrows spanning the 3 bp of the 

PAM, pointing in the 5’ to 3’ orientation of the NGG motif. The arrows are colored according to 

solvent accessibility at the center of the PAM as calculated from the crystal structure of the 601 

nucleosome (PDBID 3LZ0). (Below) Crystal structure of the 601 nucleosome. For clarity, the 

surface area of the histones in the crystal structure has been made transparent. The DNA in the 

crystal structure is colored according to solvent accessibility using the same color scale as the 

PAMs above. Residues colored teal are less accessible, while residues colored fuchsia are more 
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accessible by solvent. (D) Experimental conditions and timeline for cleavage assays. (E) 

Denaturing PAGE gel showing results of a cleavage assay targeting the indicated PAMs. 

Cleavage reactions containing naked DNA were loaded on the left half of the gel, while reactions 

containing nucleosomes were loaded on the right. The DNA was imaged via a Cy3 fluorophore 

attached to the 5’ end of the sgRNA-complimentary strand. A negative control was conducted 

with an sgRNA that had no sequence complementarity to the 601 sequence used (non-sense 

guide). See also Figure 3–figure supplement 1B,C for additional controls. (F) Quantification of 

the gel in (D). For each lane, percent cleavage was determined by calculating the percent of the 

total band signal corresponding to cleaved DNA. 
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Figure 3 – figure supplement 1
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Figure 3—figure supplement 1. HaloTagged Cas9 activity is indistinguishable from 

untagged Cas9 

(A) Diagram of the CDS region in the Cas9 expression plasmid used in this study. (B) Cleavage 

assay comparing the HaloTagged Cas9 construct used in this study with an untagged Cas9 

commercially purchased from New England Biolabs (NEB). Both forms of Cas9 were incubated 

with either naked DNA or the same DNA assembled into a nucleosome (see Figure 3A,C). A 

positive control used the restriction enzyme, StyI-HF (from NEB), to target a sequence at a 

location within the DNA known to be fully protected upon assembly into a nucleosome. Unless 

explicitly labaled as NEB, all constructs of Cas9 used were HaloTagged. 
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Figure 4. dCas9 is unable to bind nucleosomal DNA in vitro  

(A) Schematic of the experimental setup for in vitro binding assays. Either naked DNA or 

assembled nucleosomes were incubated with catalytically dead Cas9 (d-SpyCas9-Halo), and 

binding was assessed by an electrophoretic mobility shift assay (EMSA). (B) Experimental 

conditions and timeline for binding assays. (C) A native PAGE gel showing the results of an 

EMSA in which dCas9 was targeted to the indicated PAMs on either naked or nucleosomal 

DNA. Gels were scanned for fluorescence from Cy3 on the DNA (green) and Alexa Fluor 647 

on histone H2B (magenta). The two color channels were merged to identify the location of intact 

nucleosomes (white). See also Figure 4–figure supplement 1 and 3 for reagent preparation and 

experimental conditions, and Figure 4–figure supplement 2 for comparison with wtCas9 binding. 

(D) Quantification of the gel in (C). Percent bound was determined by calculating the percent of 

the total band signal in each lane corresponding to Cas9-bound target as determined by a shift in 

mobility within the gel. (E) Summary of binding and cleavage results for each PAM tested. The 

ability of Cas9 to bind or cleave nucleosomal DNA at a targeted PAM is displayed as percent 

protection by the nucleosome, and was calculated by taking the ratio of binding or cleavage on 

nucleosomal DNA to that on naked DNA. While only the largest error bars are visible, replicates 

were performed for 15 of the 30 data points and are displayed with error bars showing standard 

deviation from the mean. The DNA positions plotted correspond to the three nucleotides of the 

targeted PAM. In order to compare percent protection from binding and cleavage with solvent 

accessibility, the PAMs are overlaid with a plot of the solvent accessible surface area for each 

strand (Watson or Crick) of DNA in the 601 nucleosome structure. The percent protection at 

each PAM, as well as the solvent accessibility were plotted so that the 5’ end of each DNA 

strand begins at the left of the graph, where position 0 indicates the dyad. (F) Structural 
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assessment of the ability of Cas9 to bind nucleosomal DNA. Superposition of the Cas9-

guideRNA-DNA crystal structure [41] onto the 601 nucleosome crystal structure [40] was 

achieved by alignment of the DNA path in both structures. (Left) To better view the alignment of 

the Cas9 target DNA with the nucleosomal DNA, the Cas9 protein density has been removed. 

(Right) After alignment of the DNA, inclusion of the Cas9 protein density reveals extensive 

steric clashes with the histones. Histone surface area was made partially transparent to better 

reveal the overlapping densities with Cas9. 
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Figure 4—figure supplement 1. Quality control  

(A) H2B labeling is near complete. An SDS-PAGE gel after refolding and purifying the histone 

octamer containing fully labeled versus poorly labeled H2B. The arrow indicates a mobility shift 

of H2B corresponding to a fully labeled band. Each histone is present at equimolar ratios as 

indicated by PageBlue protein stain. (B) Nucleosome stability in Cas9 binding and cleavage 

assays is ensured by including a nonspecific protein in solution. On the left, a native PAGE gel 

showing naked DNA and nucleosomes under Cas9 binding and cleavage reaction conditions 

without a nonspecific protein in solution. On the right, the same conditions plus inclusion of a 

nonspecific competitor protein, insulin. 
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Figure 4— figure supplement 2. DNA binding by dCas9 is also representative of wtCas9 

binding  

(A) Two native PAGE gels showing the results of an EMSA binding assay comparing dCas9 and 

wtCas9. Binding to naked DNA is shown in the gel on the left, while binding to nucleosomes is 

shown in the gel on the right. Both gels were imaged in the Cy3-DNA channel, while the gel on 

the right was also imaged in the Alexa Fluor 647 – H2B channel (inset image). Binding 

conditions for both dCas9 and wtCas9 were identical, and were as described in the methods. (B) 

Quantification of the Native PAGE gel in (A). 
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Figure 4— figure supplement 3. (d)Cas9 purification strategy  

(d)Cas9 purification scheme (left). SDS-PAGE gel stained with PageBlue (Life Technologies, 

Carlsbad, CA) showing the elution fractions from the HiTrap SP-HP column during purification 

of 6His-dCas9-HaloTag (right). 
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Figure 5. Nucleosomes within chromatinized DNA can block cleavage by Cas9, but a 

chromatin remodeling factor can restore Cas9 access. 

(A) Schematic of the experimental setup. Supercoiled plasmid containing the 601 sequence 

inserted into a pBlueScript II SK (+) backbone (pBSIISK+601) was chromatinized by step 

gradient salt dialysis in the presence of histone octamer. Purified yeast Chd1 (yChd1) remodeling 

factor was used to test the effect of ATP-dependent remodeling factors on Cas9 access to 

nucleosomal DNA. (B) Quality assessment of the chromatinized plasmid used in this study. 

Titrated amounts of Micrococcal Nuclease (MNase) were incubated with the chromatinized 

plasmid and the resulting pattern of protection by assembled nucleosomes was visualized on a 

1.3% agarose gel post-stained with ethidium bromide (EtBr). As a control, the supercoiled 

plasmid was also incubated with the lowest concentration of MNase. (C) A restriction enzyme 

accessibility assay (REAA) was used to assess the occupancy and position of the nucleosome 

assembled at the 601 sequence within the chromatinized plasmid. A panel of unique restriction 

enzyme sites spanning the 601 sequence were incubated with either the supercoiled plasmid, or 

the chromatinized plasmid. Cleavage was stopped, and protein was removed by incubation with 

proteinase K followed by Phenol:Chloroform:Isoamyl Alcohol extraction and ethanol 

precipitation. (Top) The resulting DNA was then linearized using DraIII, and the level of 

cleavage by the restriction enzyme panel was visualized on a 1% agarose gel post-stained with 

EtBr. The label “P” represents supercoiled plasmid, while “C” represents chromatinized plasmid. 

(Bottom right) The location of the restriction sites used are indicated on a diagram of the 

plasmid. (Bottom left) After quantification of the gel, the percent protection from cleavage 

experienced in the chromatinized plasmid was plotted versus the location of the cleavage sites on 

the top strand of the 601 sequence. Experiment 1 refers to the REAA experiment shown in the 
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gel above, while experiment 2 refers to the REAA experiment without remodeler shown in 

Figure 5F. The grey shading indicates the borders of the 601 sequence, and the grey oval 

represents the corresponding nucleosome. (D) REAA experiment using the frequent cutter, 

HaeIII, to assess the remodeling activity around the chromatinized plasmid by the purified 

yChd1 chromatin remodeler. The resulting banding patterns were visualized on a 1.5% agarose 

gel post-stained with EtBr. Low molecular weight fragments indicate a high degree of HaeIII 

accessibility, while higher weight bands indicate protection from digestion. (E) Diagram 

showing the location of the restriction enzyme cleavage sites and the PAMs targeted by 

Cas9/sgRNA in the experiment shown in F and G. (F) An accessibility assay was performed 

essentially as in C using either restriction enzymes or Cas9/sgRNAs in the presence or absence 

of the remodeler yChd1. The level of cleavage by the restriction enzyme panel (left) or 

Cas9/sgRNAs (right) was visualized on a 1.3% agarose gel post-stained with EtBr. A negative 

control was conducted with an sgRNA that had no sequence complementarity to the plasmid 

used (non-sense guide). The concentration of yChd1 used was the same as in panel D. (G) 

Quantification of the gels shown in F. Percent protection from cleavage of the chromatinized 

plasmid in the presence or absence of the chromatin remodeler was calculated relative to the 

percent cleavage in the corresponding supercoiled plasmid control, and plotted at the location of 

the restriction enzyme cleavage sites or the center of the PAMs with respect to the 601 dyad. 
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Supplementary Tables 

Table S1. CRISPRi sgRNA annotations, activity scores, and target site MNase signal, 

related to Figure 1 

Table S2. Ricin tiling library sgRNA annotations, phenotype scores, and target site MNase 

signal, related to Figure 2 
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Chapter 4 

Compact and highly active next-generation libraries for CRISPR-mediated 

gene repression and activation 
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Abstract 

 We recently found that nucleosomes directly block access of CRISPR/Cas9 to DNA 

(Horlbeck et al., 2016). Here, we build on this observation with a comprehensive algorithm that 

incorporates chromatin, position, and sequence features to accurately predict highly effective 

single guide RNAs (sgRNAs) for targeting nuclease-dead Cas9-mediated transcriptional 

repression (CRISPRi) and activation (CRISPRa). We use this algorithm to design next-

generation genome-scale CRISPRi and CRISPRa libraries targeting human and mouse genomes. 

A CRISPRi screen for essential genes in K562 cells demonstrates that the large majority of 

sgRNAs are highly active. We also find CRISPRi does not exhibit any detectable non-specific 

toxicity recently observed with CRISPR nuclease approaches. Precision-recall analysis shows 

that we detect over 90% of essential genes with minimal false positives using a compact 5 

sgRNA/gene library. Our results establish CRISPRi and CRISPRa as premier tools for loss- or 

gain-of-function studies and provide a general strategy for identifying Cas9 target sites. 
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Introduction 

Highly multiplexed pooled genetic screening methodologies have emerged as powerful 

and broadly accessible tools for systematically profiling gene function at the scale of mammalian 

genomes (Paddison et al., 2004). Recently, a number of pooled screening platforms have been 

developed that utilize the bacterial CRISPR (Clustered Regularly Interspaced Palindromic 

Repeats)-associated nuclease Cas9 paired with libraries of single-guide RNAs (sgRNAs) to 

disrupt targeted genes (reviewed in (Shalem et al., 2015)). We and others have developed tools 

based on nuclease-dead Cas9 (dCas9)(Qi et al., 2013) to programmably interfere with (CRISPRi) 

or activate (CRISPRa) transcription (Gilbert et al., 2014; 2013; Konermann et al., 2015; Maeder 

et al., 2013; Perez-Pinera et al., 2013; Tanenbaum et al., 2014), and used these to systematically 

manipulate gene expression at genome scale (Gilbert et al., 2014; Konermann et al., 2015). 

Together, these screening platforms represent a powerful toolkit for unbiased forward gain-of-

function and loss-of-function genetic screens in mammalian cells. 

A key step in implementing CRISPR genetic screens is selecting sgRNAs that mediate 

high Cas9 activity. We and others recently found that nucleosomes provide a direct and profound 

impediment to Cas9 access to DNA (Hinz et al., 2015; Horlbeck et al., 2016; Isaac et al., 2016), 

an observation we expected to be particularly important for applications such as CRISPRi and 

CRISPRa, which require sustained binding of dCas9 to DNA. We found that nucleosome 

occupancy was predictive of Cas9 activity complementary to and independent of previously 

described sgRNA sequence features (Chari et al., 2015; Doench et al., 2014; Xu et al., 2015), 

adding an additional dimension to the set of parameters expected to influence Cas9 activity. 

These observations, along with the strong nucleosome-dependent phasing observed downstream 

of the FANTOM consortium-annotated transcription start site (TSS) (FANTOM Consortium and 
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the RIKEN PMI and CLST (DGT) et al., 2014; Horlbeck et al., 2016), suggested that a 

quantitative model incorporating all of these features could greatly enhance our ability to predict 

highly active sgRNAs for CRISPRi and CRISPRa.  

To test this, we developed a comprehensive machine learning pipeline trained on data 

collected from 30 CRISPRi and 9 CRISPRa screens. We found that the resulting models were 

highly predictive of sgRNA efficacy and strongly weighted nucleosome positioning and specific 

sequence features. We used these models to design and generate CRISPRi and CRISPRa version 

2 (v2) libraries, targeting human and mouse genomes, which are greatly enriched for sgRNAs 

with high predicted activity. These libraries include several additional improvements, including 

the option to screen with either 10 sgRNAs per gene or a compact half-library containing the top 

5 predicted sgRNAs for each gene. To benchmark this new algorithm, we validated the human 

CRISPRi v2 (hCRISPRi-v2) library with a screen designed to identify genes essential for robust 

cell growth. In this experiment, essential genes represent a large class of expected positive 

controls. We identified over 2,100 essential genes with high statistical confidence, significantly 

improving upon our CRISPRi v1 library (Gilbert et al., 2014), and precision-recall analysis 

showed increased discrimination of gold standard essential and non-essential genes with both 10 

sgRNA/gene and 5 sgRNA/gene hCRISPRi-v2 libraries (Hart et al., 2014). A large majority of 

the hCRISPRi-v2 sgRNAs targeting known essential genes produced robust growth phenotypes, 

a key advance over previous CRISPRi libraries (Evers et al., 2016), and our algorithm can 

accurately predict sgRNA activity for data from screens performed with an independently 

designed library and in different cell types. Furthermore, we observed that CRISPRi lacked any 

detectable non-specific toxicity associated with genomic DNA breaks and repair, enabling 

sensitive detection of genes with subtle growth phenotypes. We also conducted a screen for 
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genes that modify growth rates upon overexpression with our hCRISPRa-v2 and found this 

identified 60% more genes, with greater enrichment for previously established classes of hit 

genes, than our version 1 CRISPRa screen. Our results suggest that the CRISPRi and CRISPRa 

v2 libraries have numerous favorable properties relative to alternate approaches as a resource for 

targeted or genome-scale loss-of-function and gain-of-function studies in mammalian cells. 
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Results 

An integrated machine learning approach predicts highly active sgRNAs for CRISPRi and 

CRISPRa 

We sought to improve upon our first generation CRISPRi and CRISPRa libraries by 

taking a comprehensive approach that incorporated nucleosome positioning, sequence features, 

refinement of our original sgRNA design rules, and other potentially informative factors. In 

order to quantitatively model the contribution of these features to CRISPRi activity, we turned to 

our recently described CRISPRi activity dataset (Horlbeck et al., 2016) in which we integrated 

data from 30 CRISPRi screens to select 1,539 high-confidence hit genes, and normalized the 

phenotypes for sgRNAs targeting each gene to the strongest sgRNAs for that gene, resulting in 

“activity scores” for 18,380 sgRNAs. We used this set as training data for elastic net linear 

regression (Figure 1A) (Hui Zou, 2005). As many of the features included in the model were 

nonlinear with activity, we first adapted each feature set according to its relationship with 

activity. Categorical and non-linear parameters were binned prior to linear regression. Because 

the relationship between CRISPRi activity and target site distance from the TSS was highly 

periodic and asymmetric, as we had recently shown (Horlbeck et al., 2016), we fit sgRNA 

positioning features using support vector regression (SVR) to predict a continuous function for 

any target site (Supplementary Figure 1). An important improvement was the use of FANTOM 

consortium annotations instead of Ensembl/GENCODE to define the TSS (Cunningham et al., 

2015; FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al., 2014; Harrow et al., 

2012) (Table S2), a finding also recently reported by Radzisheuskaya and colleagues 

(Radzisheuskaya et al., 2016).  
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We first evaluated the performance of this algorithm using five-fold cross-validation. By 

performing regression on a training set of only 80% of the genes in the CRISPRi activity dataset, 

we found that the model was highly predictive of activity in the test set comprising the remaining 

20% of the genes, with a receiver operating characteristic area under the curve (ROC-AUC) of 

0.80 (Figure 1B). Importantly, this high predictive value was consistent across randomly selected 

training and test sets. As the sgRNAs in this dataset were pre-selected using our CRISPRi v1 

design rules, we also tested our ability to predict the performance of sgRNAs in our previously 

published data set in which we tiled every target site around the TSS of 49 genes known to 

modulate resistance or sensitivity to the toxin ricin (Gilbert et al., 2014) and obtained an ROC-

AUC of 0.91 (Figure 1B), indicating that we could identify active sgRNAs in the genome with 

high accuracy. 

We next analyzed which features contributed most to CRISPRi activity in the predictive 

model (Figure 1—figure supplement 2). Overall, the predicted scores were most influenced by 

the position relative to the TSS, including both distance from the TSS and avoidance of 

canonical nucleosome-occupied regions (Figure 1C and Figure 1—figure supplement 1). In 

particular, the nucleosome-deprived region immediately downstream of the TSS yielded the 

strongest predicted activity by SVR, likely due in part to the contribution of dCas9 directly 

interfering with early transcriptional initiation or elongation (Gilbert et al., 2013; Qi et al., 2013). 

Sequence features also represented a large contribution to the model, and salient relationships 

included the disfavoring of guanine directly downstream of the protospacer adjacent motif 

(PAM) which recapitulated previous findings (Doench et al., 2014; Xu et al., 2015). Additional 

parameters that contributed to the prediction, included sgRNA secondary structure as predicted 

by ViennaRNA (Doench et al., 2016; Lorenz et al., 2011a), sgRNA protospacer length, and 
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chromatin accessibility features not accounted for by the nucleosome positioning relationship. 

The contribution of each individual parameter was also remarkably consistent across 80%/20% 

divisions of the training dataset, suggesting that the model was capturing underlying biological 

signal rather than overfitting the data. 

Having established the robustness and accuracy of this approach, we used a version of 

our sgRNA predictions to design a CRISPRi genome-scale library targeting the human protein-

coding transcriptome (hCRISPRi-v2) (Table S3; an in silico library design based on the final 

version of our predictions, hCRISPRi-v2.1, is also available in Table S3). While the predicted 

scores for sgRNAs in our v1 library were broadly distributed, many sgRNAs of higher predicted 

activity were available in the genome, and by picking the top 10 predicted sgRNAs per gene we 

expected that we could greatly enrich the library for guides of high activity (Figure 1D). In 

constructing this library, we also incorporated empirical information for highly active sgRNAs 

where available, revised off-target filtering, and implemented changes to the sgRNA expression 

vector to facilitate the processing of screen samples for sequencing (see Methods). In addition, 

we cloned the library as separate pools for the top 5 and next-best 5 predicted sgRNAs per gene 

to facilitate screens where a smaller library may be advantageous, and further divided the pools 

into 7 thematic sublibraries based on our previous divisions of shRNA libraries (Kampmann et 

al., 2015) (Figure 1E). 

We then used the same approach to design a next-generation CRISPRa library. Due to the 

requirement for CRISPRa targeting to be upstream of the TSS for maximal activity (Gilbert et 

al., 2014), we collected an activity score dataset of 2,898 sgRNAs from 9 CRISPRa screens 

(Y.C. and M.K., personal communication) to train an independent predictive model (Figure 2A). 

While the input set was significantly smaller than for CRISPRi, the resulting linear regression 
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still had good predictive value (ROC-AUC 0.70; Figure 2B) and generally shared features of the 

CRISPRi model (Figure 2C and Figure 2—figure supplement 1-2). We observed that periodic 

relationship between distance to the TSS and sgRNA activity was less pronounced for CRISPRa 

than for CRISPRi (Figure 2—figure supplement 1; Figure 1—figure supplement 1), a difference 

we attributed to the reduced dynamic range in the nucleosome-depleted region around the TSS, 

and the smaller number and relatively lower expression of the genes targeted in the CRISPRa 

training dataset. We used the top 10 predicted sgRNAs for each gene to construct a next-

generation library, which significantly increased the predicted activity of the library over our v1 

designs (Figure 2D). The hCRISPRa-v2 library was partitioned into 14 sublibraries as described 

for the v2 CRISPRi library above (Figure 2E). Importantly, while several strategies have been 

described for CRISPR-mediated activation (Chavez et al., 2015; Gilbert et al., 2013; Hilton et al., 

2015; Konermann et al., 2015; Maeder et al., 2013; Perez-Pinera et al., 2013; Tanenbaum et al., 

2014; Zalatan et al., 2015), a recent comparison of these strategies observed that sgRNA activity 

generally correlated across all approaches (Tuttle et al., 2016). Our CRISPRa-v2 libraries are 

thus likely to serve as a valuable resource for effectively targeting most activator systems.  

Finally, we applied the CRISPRi and CRISPRa models to predict highly active sgRNAs 

targeting the mouse protein-coding transcriptome and generated corresponding genome-scale 

libraries (mCRISRPi-v2 and mCRISPRa-v2) (Figures 1E, 2E). All four library designs are 

included as Tables S3-6, sgRNA prediction and library design scripts are available online (see 

Methods), and the cloned lentiviral libraries are available on Addgene.  

 

The large majority of sgRNAs in the hCRISPRi-v2 library are effective 
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A central goal in developing the hCRISPRi-v2 library was to enrich for highly active 

sgRNAs, which would improve statistical confidence in hits and enable high sensitivity even 

with a compact 5 sgRNA/gene library. Underscoring the importance of this goal, Evers et al. 

generated a small-scale CRISPRi library targeting predetermined sets of essential and non-

essential genes and conducted screens for growth phenotypes in the bladder carcinoma cell line 

RT-112, and found that ~50% of the CRISPRi sgRNAs targeting essential genes were inactive 

(Evers et al., 2016), similar to rates observed using our CRISPRi v1 library. To test whether our 

next-generation sgRNA prediction algorithms were able to identify these inactive sgRNAs, we 

evaluated the predicted activity of the sgRNAs targeting known essential genes in this screen. 

Despite the screen being performed with an independently designed library, using an sgRNA 

constant region we have found to underperform our current design(Chen et al., 2013), and in a 

cell type not evaluated in any of our training or test datasets, predicted activity correlated well 

with the sgRNA growth phenotypes observed in the screen (Figure 3A; Pearson R = -0.58, P < 

10-37). Over 40% of the sgRNAs in this library had a predicted activity score less than 0.4, a 

regime in which the vast majority (over 87%) of sgRNAs were inactive, as defined by z-score > -

2 relative to non-essential gene-targeting sgRNAs, enabling a priori elimination of 60% of the 

inactive sgRNAs by simply applying this threshold. By contrast, of the sgRNAs in that library 

with predicted activity scores ³0.6, 77% are active. Use of the improved sgRNA constant region 

would be expected to further increase this fraction (Chen et al., 2013; Dang et al., 2015). 

In order to validate our hCRISPRi-v2 library design and directly compare its performance 

to our published v1 library screens (Gilbert et al., 2014), we conducted a screen for genes 

essential for robust growth in the chronic myeloid leukemia cell line K562. We calculated the 

growth phenotype (g) for each sgRNA (Bassik et al., 2013; Kampmann et al., 2013) and 
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averaged these values across two screen replicates (Figure 3—figure supplement 1 and Table 

S7). We found that the hCRISPRi-v2 sgRNA growth phenotypes targeting the Evers et al. 

essential gene sets correlated with predicted activity as above (Figure 3A; Pearson R = -0.42, P < 

10-21), and therefore designing the libraries based on the top predicted scores selected for highly 

active sgRNAs. To quantify the fraction of active sgRNAs in our genome-scale libraries, we 

performed sgRNA-level ROC analysis, ranking sgRNAs by growth phenotype g and classifying 

them as true or false positives if they targeted essential or non-essential genes, respectively 

(Evers et al., 2016). This analysis showed that hCRISPRi-v2 was greatly enriched for active 

sgRNAs (Figure 3B), and in particular the top 5 sgRNA/gene library contained 80% active 

sgRNAs at 5% false positives, comparable to the pilot nuclease library tested by Evers et al. This 

improvement was due to the significant reduction in the number of inactive sgRNAs rather than 

any difference in the noise as assessed by the background distribution of non-essential gene-

targeting sgRNAs (Figure 3—figure supplement 1B). In some instances, as with the known 

essential gene VCP, the difference in sgRNA phenotypes between v1 and v2 libraries was likely 

attributable to the transition from Ensembl to FANTOM as the TSS annotation source (Figure 

3—figure supplement 1C)(Cunningham et al., 2015; FANTOM Consortium and the RIKEN PMI 

and CLST (DGT) et al., 2014; Harrow et al., 2012). Taken together, the above observations 

indicate the lower fraction of effective sgRNAs in previous libraries was a result of the algorithm 

and the TSS annotation used rather than any intrinsic limitation of CRISPRi. 

 

The hCRISPRi-v2 library robustly identifies essential genes in precision-recall analysis 

We next sought to evaluate whether the enrichment for active sgRNAs in hCRISPRi-v2 

over CRISPRi v1 resulted in improved accuracy and confidence for calling hit genes. We 
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analyzed the screens with a consistent pipeline, scoring genes both by assigning a phenotype 

based on the mean of the top 3 sgRNAs targeting the gene (by absolute value) and by calculating 

the Mann-Whitney p-value of all 10 sgRNAs compared to the negative control sgRNAs. We 

visualized these gene scores as a volcano plot, with the phenotype effect size on the x-axis and p-

value on the y-axis (Figure 3C and Table S8). Many hit genes exhibited much stronger p-values, 

including a substantial fraction that reached the optimal p-value obtainable in the Mann-Whitney 

test, indicating that the phenotypes of all targeting sgRNAs for these genes were more 

pronounced than any of the 3,790 non-targeting control sgRNAs. We also modeled noise and 

off-target effects in the system by generating a large set of “negative control genes” comprised of 

randomly selected sets of 10 non-targeting sgRNAs and scoring these genes as we did for true 

genes. In order to classify genes as hits in the screen, we used a score that integrated effect size 

and statistical confidence and applied the same threshold to both v1 and v2 screens. While in 

both screens fewer than 0.21% of these negative control genes scored as hits by these criteria, 

representing a ~2% empirically estimated false discovery rate overall, we could confidently 

identify 2,150 essential gene hits in the v2 screen while our v1 screen identified 1,408 essential 

genes (Figure 3C). 

In order to assess whether the stronger sgRNA- and gene-level growth phenotype g scores 

produced by the hCRISPRi-v2 library resulted in improved discrimination of essential genes, we 

turned to precision-recall analysis of large “gold standard” essential and non-essential gene sets 

introduced by Hart and colleagues(Hart et al., 2014). We ranked genes by their growth 

phenotype (g) score and calculated at each phenotype threshold the trade-off between the recall 

of true essential genes and the avoidance of false positive non-essential genes, termed precision. 

In this analysis, the hCRISPRi-v2 library recalled over 91.2% of the gold standard essential 
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genes at 95% precision compared to 81.5% in CRISPRi v1 (Figure 3D). We also found that the 

precision-recall of the top 5 sgRNA/gene half library was essentially identical to the full 10 

sgRNA per gene library. Therefore, the 5 sgRNA/gene CRISPRi library represents a compelling 

tool for applications such as cell sorting-based screens(Liberali et al., 2015), or for in vivo 

screens where cell engraftment and library representation may represent a limiting factor (Braun 

et al., 2016; Chen et al., 2015). 

Finally, we wanted to benchmark our hCRISPRi-v2 library against other recent genome-

scale growth screens performed with nuclease-active Cas9 and novel second-generation libraries 

(Doench et al., 2016; Hart et al., 2015; Wang et al., 2015). Although these screens were 

performed in different labs and generally in different cell lines, precision-recall analysis offers a 

useful metric to compare these screens in an unbiased fashion (Hart et al., 2014). We found that 

our CRISPRi v2 library showed comparable or in many cases much greater discrimination 

(Figure 3—figure supplement 2). One published CRISPR nuclease screen was conducted in 

K562 (Wang et al., 2015) with a ~10 sgRNA/gene library, allowing for more direct comparison 

albeit still tempered by differences between labs and screening protocols. This screen recalled 

somewhat fewer (78.7% vs 90.8%) essential genes at 95% precision than our v2 library screen 

(Figure 3D). Together, these results indicate that our hCRISPRi-v2 library has a low false 

negative rate with few false positives, and the enrichment for highly active sgRNAs enables 

robust detection of phenotypes even with a compact library. 

 

CRISPRi does not induce non-specific toxicity at amplified genomic loci 

We were also intrigued by the observation by Wang and colleagues of K562-specific 

essentiality of many genes neighboring the BCR-ABL translocation, which they demonstrated to 
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be mediated by non-specific toxicity of CRISPR-induced double-stranded breaks in the 

amplified locus (Wang et al., 2015; Wu et al., 1995). This toxicity appears to be pervasive as 

similar effects have been observed across a range of cancer cell lines (Aguirre et al., 2016; 

Munoz et al., 2016). To test whether this toxicity could be caused by CRISPRi as well, we used 

our hCRISPRi-v2 screen as a representative dataset. When we compared the phenotypes of 

CRISPRi sgRNAs to CRISPR nuclease at the BCR amplicon, with all phenotypes standardized to 

the distribution of negative controls to facilitate comparison, we found that sgRNAs targeting 

BCR were strongly depleted in both screens, as expected based on the critical role of the BCR-

ABL fusion in this cancer cell line(Naumann et al., 2001), but few other CRISPRi sgRNAs in the 

region elicited growth defects (Figure 3E). We also found that CRISPR nuclease sgRNAs 

targeting the non-essential gene set were generally depleted relative to negative controls or 

chromosome Y-targeting sgRNAs, which should have no targets in the female-derived K562 cell 

line (Klein et al., 1976), suggesting that in a CRISPR screen Cas9 nuclease activity can lead to 

measurable toxicity not related to the function of individual genes but instead due to the 

formation of on-target DNA double strand breaks, even with alleles present only at 2-3 copies 

(Naumann et al., 2001). CRISPRi did not exhibit this generic toxicity at non-essential genes, 

allowing for detection of genes with subtle phenotypes relative to negative controls. Importantly, 

however, the vast majority of sgRNAs targeting essential genes showed clear separation from the 

non-essential gene distribution (Figure 3E), demonstrating the high degree of sensitivity for 

detecting loss-of-function phenotypes with both CRISPR nuclease and CRISPRi screens. 

 

The hCRISPRa-v2 library identifies more genes that modify robust growth rates upon 

overexpression 
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Finally, we sought to validate our hCRISPRa-v2 library design by conducting a screen 

for growth phenotypes in K562 cells expressing SunTag-VP64 constructs (Gilbert et al., 2014; 

Tanenbaum et al., 2014). We conducted two replicate growth screens (Figure 4—figure 

supplement 1A and Table S9) and analyzed the screen as with the hCRISPRi-v2 screen above to 

directly compare the results to our published CRISPRa screens (Gilbert et al., 2014). Our 

hCRISPRa-v2 screen identified 540 genes to modify robust growth rates upon overexpression, 

257 more than our previous CRISPRa screen (Figure 4A and Table S10). Beyond these 

additional hits, the v1 and v2 screens showed good agreement (Figure 4—figure supplement 1B), 

and the top categories in DAVID analysis of the v1 screen (Huang et al., 2009), enrichment for 

transcription factor genes (in particular homeobox and forkhead box transcription factors), 

received ~3-fold greater enrichment scores in the hCRISPRa-v2 hits (Figure 4—figure 

supplement 1C), indicating the strong biological coherence of the additional genes. Analysis of 

the sgRNA growth phenotype (g) scores for genes that were hits in both v1 and v2 screens 

showed that a greater fraction of sgRNAs were highly active (69.3% in hCRISPRa-v2 with 5 

sgRNAs/gene versus 45.1% in CRISPRa v1; Figure 4C and Figure 4—figure supplement 1D), 

further validating improvements in the library design. In addition, as with our CRISPRi results, 

several genes identified in the hCRISPRi-v2 screen but not in v1, including hematopoietically-

expressed homeobox HHEX and forkhead box C1 FOXC1, could be attributed to the use of the 

CAGE-based FANTOM5 TSS annotation (Figure 4D and Figure 4—figure supplement 1E). 

Finally, we compared the growth phenotypes from hCRISPRi-v2 to hCRISPRa-v2 and found 

that the two methods identified non-overlapping sets of genes that modify robust growth (Figure 

4—figure supplement 1F), consistent with our previous results and highlighting the 

complementary information provided by these two approaches.  
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Discussion 

Establishing design rules for effective reagents is critical to the implementation of 

genome-scale screening technologies. Our previous work established genome-scale CRISPRi 

and CRISPRa libraries as robust, specific, and complementary tools for dissecting biological 

pathways in human cells (Gilbert et al., 2014). Here, we significantly improve upon this 

technology by developing a comprehensive predictive model to accurately identify highly active 

sgRNAs. This model includes both features specific for CRISPRi and CRISPRa, such as 

positioning relative to the TSS, as well as features like nucleosome occupancy that we expect to 

be generally important for most Cas9-mediated applications (Horlbeck et al., 2016), and was able 

to accurately predict sgRNA activity in screen performed in a cell type it had not previously 

evaluated (Evers et al., 2016). We used this prediction algorithm to design four new genome-

scale libraries targeting human and mouse genomes. These libraries are available on Addgene 

and in silico to facilitate design of focused libraries or targeted experiments (Tables S3-6).  

By performing CRISPRi and CRISPRa screens for genes that modify robust growth, we 

validate our sgRNA predictions and find that our hCRISPRi-v2 and hCRISPRa-v2 libraries 

represent a significant advance over our previous work in the fraction of highly active sgRNAs, 

the number of hits detected, and the statistical confidence of these hits. For CRISPRi, these 

improvements result in the accurate discrimination of essential genes by precision-recall analysis 

even with a compact 5 sgRNA/gene library. We believe that the greatly improved sgRNA 

prediction and lack of non-specific toxicity due to nuclease activity, combined with our previous 

findings that CRISPRi enables inducible, reversible, and homogenous manipulation of gene 

expression (Gilbert et al., 2014; Mandegar et al., 2016; Qi et al., 2013), make CRISPRi a state-

of-the-art approach for loss-of-function studies. 
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While the libraries described here target genes annotated as protein-coding, CRISPRi and 

CRISPRa have been shown to be effective for repressing and activating transcription of non-

coding genes as well (Gilbert et al., 2014; Luo et al., 2016; Zhao et al., 2014). Our v2 sgRNA 

prediction algorithms may enable design of libraries to systematically manipulate expression of 

these transcripts as well. Furthermore, combining CRISPRi and CRISPRa with methods for 

robustly expressing multiple sgRNAs (Kabadi et al., 2014; Wong et al., 2016; Zalatan et al., 

2015) will allow for simultaneous control of several genes, facilitating dissection of cellular 

pathways and systematic mapping of mammalian genetic interactions (Bassik et al., 2013; 

Costanzo et al., 2010; Schuldiner et al., 2005). Broadly, increased quantitative understanding of 

the factors dictating (d)Cas9 activity and specificity will greatly enhance the expanding set 

CRISPR-mediated technologies for controlling gene expression (Hilton et al., 2015; Perez-Pinera 

et al., 2013; Vojta et al., 2016), imaging targeted loci (Chen et al., 2013; Shao et al., 2016), or 

precisely editing the genome (Komor et al., 2016; Tsai et al., 2014). 
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Methods 

Machine learning for CRISPRi and CRISPRa sgRNA activity 

Training and test datasets 

The CRISPRi activity score dataset was obtained from Horlbeck et al., 2016 (Horlbeck et 

al., 2016). CRISPRi and CRISPRa ricin tiling data was obtained from Gilbert et al., 2014 

(Gilbert et al., 2014). CRISPRa activity scores were generated as previously described for the 

CRISPRi activity dataset, using data from 9 published and unpublished screening datasets. Hit 

genes were selected using the formula |effect size Z-score x log10 p-value| ≥ 20 in any screen, and 

the phenotypes for sgRNAs targeting each gene were extracted from the screen in which the 

gene was a hit and normalized to the mean of the top 3 sgRNAs by absolute value. All datasets 

are included here as Table S1. 

 

Generating TSS annotations 

In order to leverage the high accuracy of the FANTOM TSS annotations but remain 

compatible with the comprehensive, systematic, and established Ensembl transcript models, a 

hybrid approach was taken. First, the full set of protein-coding genes and transcripts were 

selected as previously described (Gilbert et al., 2014), using Ensembl release 74 (corresponding 

to genome assemblies hg19 for human and mm10 for mouse; RRID:SCR_002344) and the 

APPRIS pipeline to identify the relevant functional transcripts and establish a preliminary set of 

TSS annotations (Cunningham et al., 2015). FANTOM CAGE peak BED files 

(RRID:SCR_002678; Human: 

http://fantom.gsc.riken.jp/5/datafiles/phase1.3/extra/TSS_classifier/TSS_human.bed.gz, accessed 

March 2, 2015; Mouse: 
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http://fantom.gsc.riken.jp/5/datafiles/phase1.3/extra/TSS_classifier/TSS_mouse.bed.gz, accessed 

June 28, 2015 and lifted over to mm10 coordinates with UCSC liftOver tool) were then used to 

refine this annotation. Specifically, for each gene, the TSS was identified as the same-stranded 

peaks within 30kb of any Ensembl TSS that matched the gene symbol and was labeled 

“p1@gene” (here referred to as “primary TSS”) or “p2@gene” (“secondary TSS”; included only 

where the peak passed the FANTOM robust threshold for TSS), and the annotation support was 

labeled as “CAGE, matched peaks.” If multiple matches were found the closest TSS to a known 

Ensembl TSS was used.  If no match was found, the gene could then be matched with any same-

stranded CAGE peak within 500bp labeled as “p1” or “p2,” and annotation support was 

considered “CAGE, primary peaks.” In the above cases, primary and secondary TSSs were 

targeted separately (i.e. by 10 sgRNAs each) if they were farther than 1kb apart, or together as 

one “P1P2” TSS. Where no matched or un-matched primary peaks were found, TSS annotations 

could be refined by any robust peaks or permissive peaks within 200bp of the annotation (labeled 

“CAGE, robust peak” or “CAGE, permissive peak”) or simply use the Ensembl/APPRIS 

annotation where no CAGE support was available (“Annotation”). This combined annotation is 

included as Table S2. 

 

Calculating features 

Position relative to the primary and secondary TSSs was calculated from the genomic 

coordinate of the 3’G of the PAM for each sgRNA to the upstream and downstream edge of each 

TSS range. Sequence features of the sgRNA and target sites were determined using custom 

scripts written in Python 2.7 (RRID:SCR_008394) with the Biopython module 

(RRID:SCR_007173)(Cock et al., 2009). The hCRISPRi-v2.1 algorithm included a change in 
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these scripts to fix how certain sequence homopolymers were scored. All other libraries were 

generated with this improvement incorporated, and all analysis in this paper was performed with 

the v2.1 algorithm. RNA folding metrics were calculated using the ViennaRNA package 

(RRID:SCR_008550; version 2.2.5) with default parameters (Lorenz et al., 2011b). Chromatin 

features at the target site were calculated as described previously (Horlbeck et al., 2016), 

averaging the signal at each base of the target site including the PAM. Custom Python scripts 

with the module bxpython (v0.5.0, https://github.com/bxlab/bx-python) to extract the processed 

continuous signal from the following BigWig files obtained from the ENCODE consortium: 

MNase-seq ENCFF000VNN (Michael Snyder lab, Stanford University), DNase-seq 

ENCFF000SVY (Gregory Crawford lab, Duke University), and FAIRE-seq ENCFF000TLU 

(Jason Lieb lab, University of North Carolina)(ENCODE Project Consortium, 2012). Beyond the 

nucleosome positioning information incorporated in the sgRNA positioning learning models, no 

chromatin data was used for predicting sgRNA activity for the mouse genome. 

 

Machine learning 

Training and test activity score sets were first divided into 80%/20% or 67%/33% sets of 

genes for CRISPRi or CRISPRa, respectively, as described in the results section. The training set 

parameters were then transformed according to their distribution as depicted in Figure 1A. For 

binning parameters, a fixed width was chosen for each feature and applied over the range of 

values, with the upper-most and lower-most bins collapsed with the neighboring bins if the 

number of data points at each edge were sparse. Each feature was then split into individual 

parameters for each bin and sgRNAs were assigned a 1 for the bin if the value fell within the bin 

or 0 if not. For linearizing sgRNA positioning parameters with continuous curves, sgRNA 
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positions were fit to the activity score (individually for the distance to each TSS coordinate) 

using SVR with a radial basis function kernel and hyperparameters C and gamma determined 

using a grid search approach cross-validated within the training set. The fit score at each position 

was then used as the transformed linear parameter. Binary parameters were assigned a 1 if true or 

a 0 if false. All linearized parameters were z-standardized and fit with elastic net linear 

regression, with the l1/l2 ratio set by cross-validated grid search. All machine learning and 

downstream analysis was performed with custom Python scripts and the scikit-learn suite, 

version 0.15.0 (RRID:SCR_002577) (Pedregosa et al., 2011). 

 

Design of next-generation CRISPRi and CRISPRa libraries 

Prediction of sgRNA activity scores 

All sequences within -25 and +500bp (for CRISPRi) or -550 and -25bp (for CRISPRa) of 

the upstream or downstream edge of the primary or secondary TSS and containing 19bp 

followed by an NGG PAM were extracted as potential sgRNAs for downstream scoring of 

predicted activity. All sequences were prepended with a 5’ G to enable robust transcription from 

the U6 promoter, whether or not this base was present in the genomic sequence. Parameters were 

calculated for all sgRNAs as above, and transformed and scored using the CRISPRi or CRISPRa 

regression model from an arbitrarily chosen training set (test set ROC-AUC corresponding to 

these sets reported in results section). 

 

Off-target scoring 

Prediction of sgRNA off-target effects was performed using weighted Bowtie (v1.0.0, 

RRID:SCR_005476 (Ben Langmead et al., 2009)) alignment largely as previously described 
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(Gilbert et al., 2014) with several adjustments. The “--tryhard” flag was added to the Bowtie 

command to increase sensitivity for mismatched sgRNA target sites. The hg19 and mm10 

genomes used for alignment were masked at mitochondrial sequences and pseudoautosomal 

sequence to eliminate “false positive” multiple alignments. Most importantly, as CRISPRi and 

CRISPRa have maximal effects proximal to the TSS, potential off-target alignments in these 

regions now were prioritized by creating a reference sequence corresponding to 1kb windows 

around each TSS as defined above, along with the 5’ end of every Ensembl transcript annotation. 

Reference sequences were generated using bedtools (v2.17.0, RRID:SCR_006646 (Quinlan and 

Hall, 2010)). In order to pass at the strictest threshold, sgRNAs were required to have no more 

than 1 alignment (the sgRNA target site itself) with “mismatch score” (Gilbert et al., 2014) less 

than 31 proximal to the TSS and under 21 in the genome. (For hCRISPRi-v2, 96.6% of sgRNAs 

incorporated passed at this threshold.) In cases of difficult to target genes or close gene families, 

sgRNAs were allowed at relaxed thresholds. In descending order, these were: 1 alignment under 

31 proximal to the TSS (no genomic threshold), 1 alignment under 21 in the genome, 2 

alignments under 31 proximal to the TSS, and 3 alignments under 31 proximal to the TSS. 

 

sgRNA selection 

sgRNAs were chosen for inclusion into the genome-scale libraries based on predicted 

activity scores, empirical activity scores where available, off-target filtering, overlap with other 

sgRNAs already selected, and sequences with no restriction sites for enzymes used in cloning or 

sequencing sample processing (BstXI, BlpI, and SbfI). Empirical activity scores for CRISPRi/a 

v1 sgRNAs were generated as for the training sets above at a lower discriminant threshold of 7, 

and the corresponding sgRNAs were standardized to 19bp with a 5’ G preprended as above and 
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subjected to the same revised off-target scoring procedure. For each TSS targeted by the library, 

up to 2 sgRNAs with the strongest empirical evidence were included first if the empirical activity 

score was at least 0.75, the sgRNA was less that 5kb from the revised v2 TSS, the sgRNA passed 

the most stringent off-target filter, the sgRNA plus flanking cloning sequences did not contain 

extra restriction sites, and the sgRNA target site was at least 3bp shifted from any previously 

selected target sequence. Once 2 empirically validated v1 sgRNAs were included, further 

sgRNAs fitting these criteria were not included but their predicted activity scores were increased 

by 0.2 to reflect the balance of information from the algorithm and empirical activity. Predicted 

sgRNAs were then sorted by best predicted activity score and included if the sgRNA passed the 

most stringent off-target filter, the sgRNA plus flanking cloning sequences did not contain extra 

restriction sites, the sgRNA target site was at least 3bp shifted from any previously selected 

target sequence, and no more than 10 sgRNAs had been selected for the TSS. If fewer than 10 

sgRNAs were selected by this algorithm, off-target stringency was iteratively relaxed as above 

and selection was continued to attain 10 sgRNAs. If 10 sgRNAs passing the most relaxed 

threshold could not be identified, the TSS was not targeted by the library. 

sgRNA on-target and off-target prediction algorithms, library design scripts, and 

associated files are available at https://github.com/mhorlbeck/CRISPRiaDesign. 

 

Negative controls 

For each library, the frequency of each DNA base at each position along the sgRNA 

protospacer sequence was calculated. Random sgRNA protospacer sequences weighted by these 

base frequencies were then generated to mirror the composition of the targeting sgRNAs. These 
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were then filtered for sgRNAs with 0 alignments with a mismatch score less than 31 proximal to 

the TSS and 0 alignments under 21 in the genome as above. 

 

Library cloning 

Protospacer sequences were appended with cloning sequences and then unique PCR 

adapters corresponding to the designated sublibrary. The half libraries were determined from the 

first 5 and second 5 sgRNAs selected into the library for each TSS according the the algorithm 

above. Genes were then partitioned into one of the 13 sublibraries defined by Kampmann et al., 

2015 (Kampmann et al., 2015), compressed into the indicated 7 groupings. Each sgRNA was 

ordered as two oligonucleotide sequences to produce a narrower distribution of sgRNA 

representation. Overall, oligo sequences were 84bp and had the following format: 

 

  5’ pcr adapter      BstXI        protospacer            BlpI      3’ pcr adapter 

==================CCACCTTGTTGGNNNNNNNNNNNNNNNNNNNGTTTAAGAGC

TAAGCTG================== 

                             ?||||||||||||||||||| 

Genomic 

sequence:  …………………………NNNNNNNNNNNNNNNNNNNNNGG……………  

 

Oligonucleotides were synthesized by Agilent Technologies (RRID:SCR_013575; Santa Clara, 

CA) on 244K oligo arrays, and cloned into the sgRNA expression vector as previously described 

(Gilbert et al., 2014). The library sgRNA expression vector “pCRISPRia-v2” was identical to the 
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CRISPRi/a v1 plasmid (pU6-sgRNA EF1Alpha-puro-T2A-BFP, Addgene #60955) with the 

addition of two SbfI restriction sites used for sequencing sample processing. 

 

Genome-scale CRISPRi and CRISPRa screen for essential genes 

The screens for genes required for robust growth were conducted essentially as 

previously described(Gilbert et al., 2014). Briefly, plasmid libraries were packaged into 

lentivirus in HEK293T cells (RRID:CVCL_0063) and infected into a previously established 

polyclonal K562 cell line stably expressing dCas9-KRAB grown in 3L spinner flasks (Bellco, 

Vineland, NJ). After two days, infected cells were selected with 0.75µg/mL puromycin (Tocris, 

Bristol, UK) for two days, allowed to recover for one day, and then cultured at a minimum of 

750x106 cells in 1.5L standard media (RPMI-1640 with 10% Fetal Bovine Serum and 1x 

supplemental glutamine, penicillin, and streptomycin) from “T0” to “endpoint,” determined by 

~10 cell doublings after T0. CRISPRi screen cells were mock-treated with 0.1% DMSO (Sigma-

Aldrich, St. Louis, MO) but otherwise left untreated. Screens were performed as independent 

replicates starting from the infection step. The K562 dCas9-KRAB and SunTag-VP64 cell lines 

were obtain from (Gilbert et al., 2014) and had been constructed from K562 cells originally 

obtained from ATCC (RRID:CVCL_0004). Cytogenetic profiling by array comparative genomic 

hybridization (not shown) closely matched previous characterizations of the K562 cell line 

(Naumann et al., 2001). All cell lines tested negative for mycoplasma contamination (MycoAlert 

Kit, Lonza, Basel, Switzerland) in regular screenings.  

Frozen samples of 250x106 cells collected at T0 and endpoint were processed as 

previously described (Gilbert et al., 2014), with the substitution of an SbfI restriction digest 

(SbfI-HF, New England Biolabs, Ipswich, MA) in place of the MfeI digest in the genomic DNA 
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fragmentation and enrichment step. The sgRNA-encoding regions were sequenced on an 

Illumina HiSeq-4000 using custom primers. Sequencing reads were aligned to the expected 

library sequences using Bowtie (v1.0.0, (Ben Langmead et al., 2009)) and read counts were 

processed using custom Python scripts (available at 

https://github.com/mhorlbeck/ScreenProcessing) based on previously established shRNA screen 

analysis pipelines (Bassik et al., 2013; Kampmann et al., 2013). sgRNAs represented with fewer 

than 50 sequencing reads in both T0 and Endpoint were excluded from analysis. sgRNA growth 

phenotypes (g) were calculated by normalizing sgRNA log2 enrichment from T0 to endpoint 

samples and normalizing by the number of cell doublings in this time period. CRISPRi v1 screen 

data from Gilbert et al., 2014 was re-analyzed using this pipeline, and the hCRISPRi/a-v2 5 

sgRNA/gene libraries were evaluated by analyzing the sgRNA read counts corresponding to only 

the 5 sgRNA/gene sublibraries. Gene ontology analysis was conducted using DAVID 6.7 (Huang 

et al., 2009) with default search categories and with background lists representing the genes 

targeted by the CRISPRa v1 or hCRISPRa-v2 libraries where appropriate. For Figure 4B and 

Figure 4—figure supplement 4C, “shared hit” genes were 70 genes that scored as strong anti-

growth hits (phenotype z-score x –log10 p-value ≤ -10) in both CRISPRa v1 and hCRISPRa-v2.  
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Figure 1. A machine learning approach for identifying highly active sgRNAs for CRISPRi. 

(A) Schematic of machine learning strategy and datasets. 808 features were calculated for each 

sgRNA, linearized as indicated, and z-standardized. A linear regression model was then 

generated using these features to fit to the activity scores of the CRISPRi training set (Horlbeck 

et al., 2016). 20% of the genes in the training set were reserved to test the predictive value of the 

resulting model. For display in Figures 1B, C, and Figure 1—figure supplement 2, five non-

overlapping 20% datasets were randomly selected and training was performed on the 

corresponding 80% sets. An orthogonal dataset, based on tiling of every possible sgRNA within 

10kb of the TSS of 49 genes known to modulate sensitivity to ricin (Bassik et al., 2013; Gilbert 

et al., 2014), was also used to assess the predictive value of this model. (B) ROC analysis of the 

ability of the machine learning approach in (A) to predict highly active sgRNAs. For test set 1, 

sgRNAs with an activity score greater than 0.75 were considered highly active. For test set 2, 

sgRNAs with a phenotype greater than 0.75 of the maximum phenotype for each gene were 

considered highly active. (C) Relative contribution of feature categories to the sgRNA predicted 

scores. The individual weighting of each feature assigned by the linear regression model (see 

Figure 2—figure supplement 2) was grouped by the indicated categories, and the summed 

weights for each sgRNA within the 20% test datasets was calculated. The scores of the 95th and 

5th percentile sgRNAs were subtracted to compute the overall contribution of the feature 

category to the distribution of predicted activity scores. Bars indicate the mean of the 

contributions from five 20% datasets (green circles). Target site position includes both the 

distance to the TSS and the periodic relationship as fit by SVR (Figure 1—figure supplement 1). 

(D) Distribution of predicted activity scores in next-generation CRISPRi libraries. (Top) 

Predicted CRISPRi activity correlates with empirical activity scores. For the 80%/20% division 
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used to predict sgRNAs for the hCRISPRi-v2.1 library, predicted scores for the 20% test set 

were plotted against the empirical activity score. Activity score percentiles are from all sgRNAs 

within 0.25 of the indicated activity score. Predicted activity was highly correlated with activity, 

with a Pearson R of 0.56 (P < 10-296). (Bottom) Distribution of predicted activity scores for 

CRISPRi v1, hCRISPRi-v2, and hCRISPRi-v2.1, as calculated by the hCRISPRi-v2.1 regression 

model. (E) Composition of hCRISPRi-v2 and mCRISPRi-v2 sublibraries. 

 

  



 165 

  



 166 

Figure 1—figure supplement 1. Relationship between CRISPRi activity and sgRNA 

position relative to the TSS as predicted by SVR.  

An SVR model with radial basis function kernel was trained on an 80% division of the CRISPRi 

activity score dataset, using the position of the sgRNA relative to the upstream end of the 

primary FANTOM TSS for each gene as the sole feature. Hyperparameter values for SVR were 

selected automatically using cross-validation within the training set. To display the relationship 

between sgRNA position and CRISPRi activity fit by this model, predicted scores were 

generated for each position within a 3kb window around the TSS. The resulting curve 

recapitulated the previously observed periodic relationship shown to be out-of-phase with 

nucleosome positioning (Horlbeck et al., 2016), and use of this SVR model within the general 

machine learning approach enabled regression against this highly complex relationship. The 

shaded area indicates the region relative to the TSS where predicted activity scores for all 

sgRNAs were calculated for potential inclusion in construction of the hCRISPRi-v2(.1) and 

mCRISPRi-v2 library designs. 
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Figure 1—figure supplement 2. Individual sgRNA feature contributions to predicted 

CRISPRi activity.  

Linear regression coefficients for each model trained according to the 80%/20% divisions 

displayed in Figure 1 are displayed, with bars indicating the mean of the five divisions and error 

bars indicating minimum and maximum feature coefficients. As each feature was z-standardized 

before linear regression, coefficients are directly comparable. For binned feature categories, x-

axis values represent the minimum value of the bin (inclusive) unless otherwise indicated.   
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Figure 2. A machine learning approach for identifying highly active sgRNAs for CRISPRa.  

(A) Schematic of CRISPRa datasets. CRISPRa activity scores were generated from screen data 

and subjected to 3-fold cross-validation due to the smaller sample size. Ricin tiling data was 

limited to 21 genes that were previously shown to modulate sensitivity to ricin upon CRISPRa 

overexpression (Gilbert et al., 2014). (B) ROC analysis of machine learning approach using 

CRISPRa datasets, conducted as in Figure 1B. (C) Relative contribution of feature categories for 

CRISPRa, calculated as in Figure 1C. (D) Distribution of predicted activity scores in next-

generation CRISPRa libraries. (Top) Predicted CRISPRa activity correlates with empirical 

activity scores. For the 67%/33% division used to predict sgRNAs for the hCRISPRa-v2 library, 

predicted scores for the 33% test set were plotted against the empirical activity score. Activity 

score percentiles are from all sgRNAs within 0.25 of the indicated activity score. Predicted 

activity was highly correlated with activity, with a Pearson R of 0.41 (P < 10-38). (Bottom) 

Distribution of predicted activity scores for CRISPRa v1 and hCRISPRa-v2 as calculated by the 

hCRISPRa-v2 regression model. (E) Composition of hCRISPRa-v2 and mCRISPRa-v2 

sublibraries. 
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Figure 2—figure supplement 1. Relationship between CRISPRa activity and sgRNA 

position relative to the TSS as predicted by SVR.  

An SVR model was trained on a 67% division of the CRISPRa dataset using sgRNA position 

relative to the downstream end of the primary FANTOM TSS for each gene. Analysis was 

conducted as described for Figure 1—figure supplement 1. The shaded area indicates the region 

relative to the TSS where predicted activity scores for all sgRNAs were calculated for potential 

inclusion in construction of the hCRISPRa-v2 and mCRISPRa-v2 library designs. 
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Figure 2—figure supplement 2. Individual sgRNA feature contributions to predicted 

CRISPRa activity.  

Linear regression coefficients for each model trained according to the 67%/33% divisions 

displayed in Figure 2 are displayed, with bars indicating the mean of the three divisions and error 

bars indicating minimum and maximum feature coefficients. As each feature was z-standardized 

before linear regression, coefficients are directly comparable. For binned feature categories, x-

axis values represent the minimum value of the bin (inclusive) unless otherwise indicated.   
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Figure 3. hCRISPRi-v2 outperforms CRISPRi v1 in screens for essential genes in K562.  

(A) Distribution and predicted scores for sgRNAs targeting essential genes. (Top) Predicted 

activity scores for sgRNAs from Evers et al., 2016 or hCRISPRi-v2 targeting essential genes as 

defined by Evers et al. (Evers et al., 2016), binned in increments of 0.1. (Bottom) sgRNA growth 

phenotypes of the sgRNAs in the above bins, z-standardized to the distribution of sgRNAs 

targeting Evers et al. non-essential genes. (B) ROC analysis of sgRNAs from CRISPRi v1 or 

hCRISPRi-v2 targeting essential and non-essential genes. sgRNAs were ranked by γ, and 

considered true or false positives if they targeted essential or non-essential genes, respectively, as 

defined by Evers et al. (C) Volcano plots of gene phenotypes and p-values for growth screens 

performed with CRISPRi v1 (Gilbert et al., 2014) and hCRISPRi-v2. For each screen, genes 

phenotypes were calculated by averaging the growth phenotype (γ) of the 3 sgRNAs with the 

strongest γ by absolute value, and gene p-values were calculated by performing the Mann-

Whitney test comparing all sgRNAs targeting the gene to the full set of negative control 

sgRNAs. For genes with multiple TSSs targeted, sgRNAs were grouped by TSS and the TSS 

with the lowest p-value was used for downstream analysis. A comparable number of negative 

control (NC) genes were generated by randomly sampling 10 non-targeting sgRNAs (with 

replacement) and analyzed as true genes. Empirically derived thresholds (dashed lines) were 

calculated as shown, using the NC gene distribution to derive the background standard deviation 

for z-score. (D) Precision-recall analysis of essential gene screens performed in K562. Statistical 

precision and recall of essential and non-essential gene sets (Hart et al., 2014) were calculated 

for genes ranked by growth phenotype in K562. For both CRISPRi and CRISPR nuclease 

screens(Wang et al., 2015), gene-level phenotypes were calculated as the average log2 fold-

change of all sgRNAs targeting the gene (termed CRISPR Scores in ref. (Wang et al., 2015)). (E) 
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Boxplots of CRISPRi and CRISPR nuclease sgRNA phenotypes for several gene sets. sgRNA γ 

scores (CRISPRi) or log2 enrichments (nuclease) were z-standardized to the corresponding 

negative control set. Boxplots display the distribution of the negative control sgRNAs or 

sgRNAs targeting genes on Y chromosome (excluding pseudo-autosomal genes), within the BCR 

amplicon, or in the gold standard essential sets used in (D). Individual phenotypes for sgRNAs 

targeting BCR are overlaid with the corresponding boxplot. 
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Figure 3—figure supplement 1. sgRNA phenotypes from CRISPRi v1 and hCRISPRi-v2 

growth screens.  

(A) hCRISPRi-v2 sgRNA phenotypes correlate between screen replicates. sgRNA γ scores were 

calculated by computing log2 enrichments of read counts between screen start and endpoint 

samples and normalizing by estimated cell doublings over the course of the screen. Phenotypes 

for non-targeting sgRNAs and sgRNAs targeting the Y chromosome generally do not correlate 

between screen replicates; Spearman R=0.08 (P < 10-7) and R = 0.05 (P = 0.5), respectively. (B) 

Histograms of growth phenotypes (γ) for sgRNAs used in the analysis in Figure 3B. Percentages 

indicate number of essential-targeting sgRNAs with negative γ more than two standard 

deviations from the mean of the non-essential-targeting sgRNAs. (C) UCSC Genome Browser 

tracks depicting Ensembl and FANTOM annotations for example gene VCP. CRISPRi v1 

sgRNAs were chosen to be -50bp to +300bp relative to the 5’ end of the VCP transcript model. 

hCRISPRi-v2 sgRNAs were the top predicted sgRNAs chosen from all sites -25bp to +500bp 

relative to the “p1@VCP” and “p2@VCP” FANTOM TSS annotation. FANTOM annotations 

were generated from CAGE sequencing of over 800 human cell types and tissues, summarized 

by the maximum CAGE sequencing counts track. 
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Figure 3—figure supplement 2. Precision-recall analysis of second-generation CRISPR 

nuclease essential gene screens.  

Analysis was conducted as in Figure 3D. CRISPRi, Wang et al., and Doench et al. datasets were 

ranked according to the average log2 fold-change of all sgRNAs targeting a given gene. For Hart 

et al., genes were ranked according to their published Bayes Factor scores as sgRNA-level data 

was unavailable (Doench et al., 2016; Hart et al., 2015; Wang et al., 2015). 
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Figure 4. hCRISPRa-v2 outperforms CRISPRa v1 in screens for genes that modify growth 

rates upon overexpression.  

(A) Volcano plots of gene phenotypes and p-values for growth screens performed with CRISPRa 

v1 (Gilbert et al., 2014) and hCRISPRa-v2, presented as in Figure 3C. (B) Cumulative 

distributions of fraction of highly active sgRNAs targeting strong hit genes shared between 

CRISPRa v1 and hCRISPRa-v2 screens. Highly active sgRNAs for CRISPRa were defined as 

those with negative γ scores more than two standard deviations from the mean of non-targeting 

control sgRNAs (see Figure 4—figure supplement NNN). (C) UCSC Genome Browser tracks 

depicting TSS annotations and CRISPRa growth phenotypes for example gene HHEX. 
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Figure 4—figure supplement 1. sgRNA phenotypes and gene category enrichment scores 

from CRISPRa v1 and hCRISPRa-v2 growth screens.  

(A) hCRISPRa-v2 sgRNA phenotypes correlate between screen replicates, presented as in Figure 

3—figure supplement 1A. Phenotypes for non-targeting sgRNAs and sgRNAs targeting the Y 

chromosome correlate poorly between screen replicates; Spearman R=0.10 (P < 10-8) and R = 

0.15 (P = 0.05), respectively. (B) Comparison of CRISPRa v1 and hCRISPRa-v2 gene growth 

phentoypes (γ). (C) DAVID enrichment scores for hit gene categories from CRISPRa v1 and 

hCRISPRa-v2 screens. CRISPRa v1 categories represent the top 5 categories identified. 

hCRISPRa-v2 categories include the top 3 identified along with homeobox and forkhead box 

categories. (D) Histograms of growth phenotypes (γ) for sgRNAs used in the analysis in Figure 

4B. Percentages indicate number of sgRNAs targeting v1 and v2 shared hit genes with negative γ 

more than two standard deviations from the mean of the non-targeting control sgRNAs. (E) 

UCSC Genome Browser tracks depicting TSS annotations and CRISPRa growth phenotypes for 

example gene FOXC1. (F) Comparison of hCRISPRi-v2 and hCRISPRa-v2 gene growth 

phenotypes (γ).
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CRISPRi-based genome-scale identification of functional long non-coding 

RNA loci in human cells 
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Abstract 

The human genome produces thousands of long non-coding RNAs (lncRNAs) – transcripts >200 

nucleotides long that do not encode proteins. While critical roles in normal biology and disease 

have been revealed for a subset of lncRNAs, the function of the vast majority remains untested. 

Here, we developed a CRISPR interference (CRISPRi) platform targeting 16,401 lncRNA loci in 

7 diverse cell lines including 6 transformed cell lines and human induced pluripotent stem cells 

(iPSCs). Large-scale screening identified 499 lncRNA loci required for robust cellular growth, of 

which 89% showed growth modifying function exclusively in one cell type. We further found 

that lncRNA knockdown can perturb complex transcriptional networks in a cell type-specific 

manner. These data underscore the functional importance and cell type-specificity of many 

lncRNAs. 
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Introduction 

Sequencing efforts have revealed that the human genome produces tens of thousands of 

long non-coding RNAs (lncRNAs), transcripts over 200 nucleotides that are often spliced and 

polyadenylated but have no apparent protein coding potential (1-3).  Certain lncRNAs play 

critical roles in cellular function, development, and disease (4, 5).  However, of the very large set 

of lncRNAs – many of which are differentially expressed in tissues and disease states – only a 

very small fraction have established biological functions, and even fewer are known to function 

in fundamental aspects of cell biology such as cell proliferation.  Currently, it is not possible to 

predict which lncRNAs are functional, let alone what function they perform.  Thus, a large-scale, 

systematic approach to evaluating the function of the vast population of lncRNAs is critical to 

understanding the roles that these non-coding transcripts play in cell biology.   

A central limitation to systematic efforts to evaluate lncRNA function has been the lack 

of highly specific, scalable tools for inhibiting lncRNA gene activity (6).  Gene deletion studies 

conducted in mice, flies, and human cells have yielded important biological insights about 

lncRNAs, but this approach is difficult to scale up (7-10).  CRISPR/Cas9 nuclease approaches 

based on introduction of indels – while both scalable and useful for targeted loss of function 

studies of protein coding genes by altering the coding frame – are not well suited for the study of 

lncRNA gene function, as small deletions do not generally disrupt their biological activity (11-

13).  Nonetheless, larger Cas9-mediated genetic deletions can be effective at eliminating lncRNA 

genes (6, 14-17). Screens based on RNA interference (RNAi) have been valuable (18, 19) 

despite challenges with off-target effects (20). However, many lncRNAs localize to the nucleus, 

where RNAi exhibits variable knockdown efficiency (21).  
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We previously developed CRISPRi, a technology which can repress transcription of any 

gene via the targeted recruitment of the nuclease-dead dCas9-KRAB repressor fusion protein to 

the transcriptional start site (TSS) by a single guide RNA (sgRNA) (22-24). As CRISPRi acts 

only within a small window (1kb) around the targeted TSS (23), and as dCas9 occludes only 

23bp of the targeted DNA strand (25), CRISPRi allows for precise perturbation of any lncRNA 

gene. By catalyzing repressive chromatin modifications around the TSS and serving as a 

transcriptional roadblock, CRISPRi tests a broad range of lncRNA gene functions including the 

production of cis- and trans-acting RNA transcripts (4), cis-mediated regulation related to 

lncRNA transcription itself (26-29), and enhancer-like function of some lncRNA loci (14, 15, 

30). The repressive chromatin modification H3K9me3 catalyzed by CRISPRi is highly specific, 

with little to no off-target effects due to either spurious dCas9 binding or unintended silencing of 

distal regulatory elements, as measured by ChIP-seq or RNA-seq (22, 31-34) see also Figure 4C 

below).   To enhance CRISPRi for large-scale screening, we have improved upon the design of 

CRISPRi sgRNA libraries to optimize on-target activity while further minimizing-off target 

effects, enabling highly sensitive detection of essential coding genes (35).    

Here, we developed CRISPRi libraries targeting 16,401 lncRNA loci (with 10 sgRNAs 

per TSS), and conducted screens for genes that are required for robust growth in 7 human cell 

types—6 transformed cell lines and induced pluripotent stem cells (iPSCs)(36).  These large-

scale screens, coupled with extensive validation studies, greatly increased the number of lncRNA 

genes known to have biological function and revealed lncRNA function to be highly cell type-

specific.  Our studies thus help elucidate the biology contained within the lncRNA genome, and 

provide a tool for both large-scale and targeted investigations of lncRNA function.   
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Results 

CRISPRi screens identify lncRNA loci that modify cell growth 

 We first designed an sgRNA library to enable genome-scale CRISPRi screening of 

lncRNA gene function.  We generated a comprehensive lncRNA gene set by merging three 

major non-coding transcriptome annotations (37-39), prioritized ~1/3 of these genes based on 

expression in any of a panel of cancer and non-transformed cell lines (Table S1), and designed 

10 sgRNAs targeting each lncRNA transcription start site (TSS) using the hCRISPRi-v2.1 

algorithm (35) (Figure 1A and S1). The cell lines represent a broad range of cell types studied by 

the ENCODE project (40), including a chronic myeloid leukemia cell line (K562), the cervical 

cancer line HeLa, a glioblastoma line (U87), and two mammary adenocarcinoma lines (MCF7 

and MDA-MB-231). We also chose an iPSC line that inducibly expresses CRISPRi components 

(33, 41). The library, termed “CRiNCL” for CRISPRi Non-Coding Library, is available as 

pooled lentiviral plasmid libraries on Addgene and in silico as Table S2. 

 We used this library to conduct screens for lncRNA loci that increase or decrease cell 

growth in each of 7 cell lines. We infected the full lentiviral library or targeted sublibraries 

(Figure S2A) into each cell line engineered to express dCas9-KRAB (22, 23, 33, 42), selected for 

infected cells by puromycin selection, and cultured for between 12 and 20 days, measuring 

sgRNA enrichment by Illumina sequencing (Figure 1B and Table S3). The fraction of cells 

infected with the sgRNA library remained stable over the course of the screen (23), indicating 

that CRISPRi targeting of lncRNA loci does not exhibit non-specific toxicity (Figure S2B). To 

facilitate comparisons between screens conducted for different durations and in cell lines with 

different growth rates, we normalized sgRNA enrichment by total cell doublings to obtain the 
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quantitative growth phenotype g, which reflects the positive or negative impact on cell growth 

caused by knockdown of a given gene (43) (Figure 1B). 

Analysis of biological replicates revealed that the g for targeting sgRNAs showed strong 

and reproducible phenotypes (Pearson r = 0.34-0.90) while non-targeting control sgRNAs were 

tightly distributed around 0 (Figure 1C and S2C, Table S3). We averaged replicate sgRNA 

phenotypes and used these to score lncRNA genes (23, 35), calculating gene phenotypes from 

the mean of the top 3 sgRNAs targeting the gene and Mann-Whitney p-values from all 10 

sgRNAs compared to non-targeting control sgRNAs (Figure 1D and S3A, Table S4). Within 

each screen, we also randomly sampled non-targeting sgRNA phenotypes to generate “negative 

control genes” and analyzed them as with lncRNA genes (see Methods), enabling us to estimate 

an empirical false discovery rate for each screen as well as the combined screen dataset (Figure 

S2D). LncRNA genes were considered to be hits if their combined phenotype effect size and p-

value (referred to here as “screen score”) exceeded a consistent threshold applied to each screen 

corresponding to an empirical false discovery rate of 5% (Figure S3C). Overall, we found 

between 28 and 438 lncRNA loci hits in each cell line (Figure 1E and S3A, Table S4).  

We observed that for 169 of these lncRNA hits, the TSS of the non-coding gene was 

within 1kb of the TSS of a coding gene previously found to be essential in a CRISPRi screen 

(23), making it difficult to determine whether the observed phenotypes were due to knockdown 

of the target lncRNA or direct inhibition of the neighboring coding gene (Figure S3B). We thus 

removed these hits from the total set of hit genes for downstream analyses (Figure 1E, S3A, 

S3D), resulting in 169 “neighbor hits” and 499 “lncRNA hits,” 299 of which are distal from any 

protein coding gene (~90% of which would not measurably impact growth upon knockdown). 

The 1kb threshold was chosen based on the maximum distance at which CRISPRi is effective as 
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revealed by analysis of dense sgRNA tiling and genome-scale screens (Figure S4) (23); 

increasing this threshold to 10kb classifies only an additional 19 genes as neighbor hits (Figure 

S3D). 

A larger fraction of lncRNAs hits were observed in the iPSC screen, suggesting that this 

cell line is either more susceptible to growth perturbations or that iPSCs were differentiating to 

other cell types with lower growth rates. We therefore investigated iPSC differentiation in a 

secondary fluorescence activated cell sorting (FACS)-based screen by assessing loss of 

pluripotency as indicated by decreased POU5F1/OCT4 expression.  CRISPRi targeting of only 9 

lncRNA loci reduced POU5F1/OCT4 expression (Figure S5, Tables S5-6), suggesting that the 

majority of lncRNA hits identified in iPSCs primarily affect cell growth. To confirm that the 

increased fraction of lncRNA hits in iPSCs was not due to technical differences in CRISPRi 

function between cell lines, we performed a CRISPRi screen for protein-coding genes required 

for cell growth in iPSCs (Figure S6A, Table S7). These results corresponded well with our 

previously published K562 growth screen (35) in both the number of genes found to have 

function and in the ability to specifically identify known essential genes (Figure S6B-C) (44). 

Taken together, our screens identified 499 lncRNA genes that modify cell growth and have no 

essential coding gene neighbors, representing a large set of unstudied non-protein-coding genes 

serving important functions in cell biology. 

 

lncRNA CRISPRi phenotypes are reproducible with robust knockdown  

Extensive validation studies argue for the low false-positive and -negative rates of our 

studies. First, we individually cloned the top two sgRNAs targeting 65 representative lncRNA hit 

loci, 41 of which were hits in only one cell line. We tested whether the observed phenotypes 
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from the screens were reproducible using internally-controlled growth assays, in which the 

fraction of cells infected with an sgRNA were measured over time by flow cytometry. We 

monitored the growth effects of sgRNAs in the cell lines in which they exhibited a phenotype in 

the screen, as well as several sgRNAs in cell lines where they showed no effect, and found that 

the individual sgRNA growth phenotypes (g) correlated well with the screen g (Pearson r = 0.72, 

Figure 2A). This confirmed both that lncRNA knockdown phenotypes were reproducible and 

that the difference in lncRNA phenotype between cell lines was not due to technical differences 

between genome-scale screens. Analyzing these phenotypes over time further revealed distinct 

kinetics of cell depletion mediated by lncRNA knockdown (Figure 2B). For 12 lncRNA hits, we 

measured the levels of knockdown by qPCR and found over 70-95% knockdown for most of the 

targeted transcripts (14/14 sgRNAs in U87; 10/16 sgRNAs in MCF7) despite the effect of 

cellular depletion (Figure S7A). 

In four cell lines, knockdown of lncRNA PVT1 had a pro-growth phenotype. As PVT1 

had previously been characterized as a proto-oncogene (45) and pro-growth phenotypes in cancer 

cell lines are uncommon (23, 46), we validated the pro-growth phenotype (Figure 2C and S7A) 

and investigated this complex locus further by conducting a CRISPRi screen in U87 cells with an 

sgRNA library tiling every possible site along the locus (17,469 sgRNAs). We found that only 

sgRNAs within 1kb of the most upstream TSSs, which is distal to any mapped enhancers, caused 

a consistent pro-growth phenotype (Figure 2D and S7B, Table S8). Within this TSS region, the 

majority of sgRNAs promoted cell growth, and knockdown of the major isoform was confirmed 

by qPCR (Figure S7A). sgRNAs outside of this 1 kb window around the TSS, which would not 

be expected to affect transcription of the major PVT1 isoform (23), showed no consistent impact 
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on growth, arguing that the observed pro-growth phenotype is mediated by transcriptional 

interference.  

 

Repression of lncRNA loci elicits lncRNA-specific transcriptome responses 

To better understand the consequences of lncRNA CRISPRi, we performed RNA-seq 

following CRISPRi knockdown of 42 lncRNA hits in 3 cell types. 32 of these lncRNA loci were 

hits in only one cell type. Selected lncRNA loci did not have essential coding gene neighbors, 

and 2 or more sgRNAs per gene were tested individually. Distinct sgRNAs targeting the same 

lncRNA TSS resulted in highly correlated transcriptome responses (mean Pearson r = 0.980; 

Figure 2E) that were generally proximal to each other in hierarchical clustering analysis (Figure 

S8A-D).  By contrast, pairs of sgRNAs targeting different hit lncRNA loci with the same 

phenotype direction had transcriptome responses that were more dissimilar (mean Pearson r = 

0.942, Mann-Whitney p-value compared to same-gene pairs =  6.4x10-08;), suggesting distinct 

molecular mechanisms of the lncRNAs despite having similar phenotypes (Figure 2E).  

RNA-seq analysis of differential gene expression also revealed several clusters of co-

expressed genes, suggesting that growth modifier lncRNA loci regulate critical pathways (Figure 

S8A-D and Table S9). For instance, 2 lncRNA knockdowns that caused increased growth in U87 

cells clustered by upregulation of translation genes (p = 3.2x10-37), while other pro-growth 

sgRNAs showed correlated changes in expression of DNA replication (p = 2.0x10-10) and post-

transcriptional regulation (p = 3.0x10-08).  Clusters enriched for genes in the p53 pathway (e.g. 

ATF3) were upregulated by many anti-growth sgRNAs in both U87 and HeLa cells. 

Interestingly, K562 cells showed clusters of genes enriched for platelet degranulation (p = 

1.6x10-05) and response to decreasing oxygen levels (p = 5.0x10-05). The median magnitude of 
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log2 fold changes for differentially expressed genes in U87, HeLa, and K562 were 0.67, 0.86, 

and 1.17, respectively (Figure S8E), with several genes exhibiting > 2 fold up- or down-

regulation consistently across many samples (Figure S8F). These results indicate that different 

lncRNAs can regulate distinct biological pathways that affect cell growth and proliferation. 

Analysis of the chromosomal location of differentially expressed genes did not reveal a 

global trend toward transcriptional changes on the targeted chromosome (Figure S9). We did 

however find that knockdown of 14 lncRNA loci resulted in local transcriptional changes within 

a 20 gene window (Figure S10), suggesting that certain lncRNAs may preferentially act locally.  

 

CRISPRi robustly inhibits lncRNA transcription  

 The fraction of growth modifier lncRNA loci identified in our screens (1-8% per cell 

line) was less than the fraction of essential protein-coding genes in previous reports (10-11%) 

(35, 46). We therefore wanted to assess whether lncRNA genes that did not appear as a hit in any 

screen were true negatives or simply a result of ineffective repression by CRISPRi. To this end, 

using all 10 sgRNAs per gene, we measured the knockdown of five arbitrarily selected lncRNA 

genes that had no observed phenotype in any cells and were expressed in both K562 and U87 

cells (Figure 2F and S7C). Of these 100 knockdown measurements, 61 showed over 90% 

repression of the targeted lncRNA. Furthermore, with the exception of LOC100506710 in U87 

cells, all lncRNAs were repressed by at least 90% by at least three different sgRNAs. For all 

sgRNAs, lncRNA knockdown efficiency correlated with their predicted CRISPRi activity, and 

the efficiency of knockdown was highly correlated between K562 and U87 cells (Pearson r = 

0.78; Figure 2G). Based on these findings, with the exception of cases where a small amount of 

residual transcript is sufficient for lncRNA function, we infer that the majority of lncRNA loci 
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that did not appear as a screen hit produce transcripts that are not essential for robust growth of 

the cell line screened. 

 

Growth modifier lncRNA function is highly cell type-specific  

We next determined the number of lncRNA hits that were unique to a specific cell type or 

common to any combination of two or more of the cell types screened.  The vast majority 

(89.4%) of lncRNA hits were unique to only one cell type, with none being a hit in 5 or more cell 

types (Figure 3A-C). Even when we restricted this analysis to the 1,329 lncRNAs expressed in 

all 7 cell types, 82.6% of the lncRNA hits modified growth in only one cell type (Figure 3B). 

Analysis of cell type-specificity scores based on the Jensen-Shannon distance, which quantifies 

how closely a given distribution resembles “perfect” specificity (37), revealed that the specificity 

of lncRNA screen scores was far greater than the specificity of lncRNA expression, for lncRNA 

hits (Figure 3D). Therefore, differential expression patterns alone are not sufficient to predict 

functional lncRNAs. Cross comparison of screen score distributions for lncRNAs that scored as 

hits in each cell type revealed that the threshold used for calling hits did not account for the cell 

type specificity (Figure 3E, S11D-E). Furthermore, cross-comparison of screen scores between 

replicates does not support technical variation as the source of the apparent cell type-specific 

function (Figure 3F and S11F).  

In contrast to the sparse cell type overlap of lncRNA hits, analysis of published protein 

coding screens across similar numbers of cell types (46, 47) revealed that the majority (54.8% in 

(47), 67.3% in (46)) of essential protein coding genes are hits in 2 or more cell types, with 20.4% 

and 30.8% being essential to all cell types screened in (47) and (46), respectively (Figure 3C, 

S11A-B). In addition, “neighbor hits” (lncRNA loci that are within 1kb of an essential protein 
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coding gene), were more likely to modify growth in multiple cell types, suggesting that CRISPRi 

targeted to these loci represses the adjacent essential coding gene, at least in some cases (Figure 

3C, S11C,E).  

 

Cell type-specific lncRNAs elicit highly divergent phenotypes 

We sought to better understand the cell type-specific function of specific lncRNAs. We 

focused on LINC00263, which despite being expressed in all 7 cell lines screened, had a much 

stronger negative growth phenotype in U87 than in any other cell line (Figure S12A). The 

abundance of LINC00263 transcript in a given cell line was also poorly correlated with the 

corresponding screen phenotype (Pearson r = 0.266). Validating these screen results, in internally 

controlled growth assays, two distinct sgRNAs to the TSS of LINC00263 reduced the 

propagation of only U87 cells and not K562, MCF7 or HeLa cells (Figure 4A). H3K9me3 is a 

chromatin modification that is a result of local dCas9-KRAB activity (31), and in both U87 and 

HeLa cells with LINC00263 CRISPRi targeting, ChIP-seq analysis demonstrated equal 

enrichment of H3K9me3 specifically at the LINC00263 promoter for two independent sgRNAs 

(Figure 4B,C, S12B,C). However, despite such evidence of equivalent and specific CRISPRi 

targeting, U87 and HeLa cells had substantially different transcriptome changes after LINC00263 

knockdown. While U87 cells upregulated genes related to ER stress (e.g. ATF4, CHAC1; GO 

term p = 4.51x10-09) and apoptosis (e.g. DDIT3, SOD2; GO term p = 3.39x10-08), only 

LINC00263 itself was differentially expressed in HeLa cells (adj. p < 0.05; Figure 4D). In K562 

cells, these same 2 sgRNAs also produced very little transcriptional change (Figure S12D). Of 

note, in all three cell lines, knockdown efficiency of LINC00263 was equivalent (Figure 4D, 

S12D). Consistent with our observations for LINC00263, knockdown of PVT1 and LINC00909, 
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which were hits in U87 but not in HeLa, produced many more differentially expressed genes in 

U87 (Figure S12E). By contrast, depletion of LINC00680, which was a hit in both U87 and HeLa 

cells, resulted in comparable numbers of differentially expressed genes in U87 and HeLa cells 

(Figure S12E). Our results suggest that the specificity of lncRNA function is not due to 

differences in CRISPRi activity, but is related to differences in transcriptional networks across 

cell types.  

We then targeted the LINC00263 lncRNA transcript with antisense oligonucleotides 

(ASOs) that degrade RNA via an RNaseH-based mechanism. In both U87 and HeLa cells, ASOs 

reduced LINC00263 transcript levels by 85-95% (Figure 4E). However, LINC00263 ASOs 

decreased proliferation in U87 cells but not in HeLa cells (Figure 4F,G). The magnitude of 

proliferation decrease was also comparable to CRISPRi (Figure S12F,G), further supporting the 

cell type-specific function of this lncRNA.  ASO knockdown of three other U87 lncRNA hits 

also reduced cell proliferation (Figure S12H,I), providing additional evidence for the functional 

contribution of the lncRNA molecule in these examples.  

 

Machine learning identifies features predictive of growth modifier lncRNAs 

Using data from our genome-scale screens, we sought to identify properties of the 

lncRNA hits that can distinguish them from non-hit lncRNAs. 18 classes of genomic data such as 

enhancer maps, expression levels, chromosomal looping data, conservation, and copy number 

variation from ENCODE (40), FANTOM (48), Vista (49), and other sources (50-52) were 

compared with all lncRNA loci screened in this study. 8 of these properties (expression, 

Pol2/CTCF looping by ChIA-PET, enhancers and super enhancers from (51), copy number 

variation) were cell type-dependent. Generalized linear models were constructed to assess which 
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genomic properties are predictive of lncRNA function (see Methods). Expression levels within 

each cell line, lncRNA gene body within 1kb of a mapped FANTOM Enhancer, lncRNA gene 

body within 5kb of a cancer-associated single nucleotide polymorphism (SNP) (50), and the 

number of exons were significant predictors of lncRNAs hits (p < 0.01) in repeated 10-fold cross 

validation (Figure 5, Table S10). 99.6% of lncRNA genes that were screened but not apparently 

expressed were not called as hits (Figure 5C).  Whether the 11 growth modifier hits of such 

“non-expressed” lncRNA loci represent non-lncRNA mediated effects, inaccurate quantitation of 

the transcript levels, or effects mediated by lncRNAs acting at low expression remains to be 

determined. In support of the latter possibility, HOTTIP has been reported to function despite 

being expressed at ~0.3 copies per cell (53). Nonetheless, many highly expressed lncRNAs were 

not hits (e.g. 154 non-hit lncRNAs were detected at FPKM > 100), and the accuracy for 

predicting lncRNA hits was greater for a model using all variables as compared to a model that 

relied only on expression levels (Figure 5B).  

Compared to non-hit lncRNAs, hit lncRNA gene bodies were 1.66 times more likely to 

be within 1kb of a mapped enhancer (Figure 5D). This represented 127 of the lncRNA hit loci 

identified in our screens. However, the FANTOM enhancer annotations used for our analyses 

were derived from hundreds of different cell types, and thus only a fraction of these enhancers 

are active in any given cell type in our screen (48, 49). Hit loci were also 1.4 times more likely to 

be within 5kb of a cancer-associated SNP (Figure 5E).  That our hits were enriched for multi-

exonic lncRNAs is consistent with the concept that lncRNA splicing can be an aspect of lncRNA 

function (26) (Figure 5F). However, the explanatory power of exon number was relatively low, 

and our screen did identify several single exon hits such as NEAT1. However, no genomic 

property analyzed, alone or in aggregate, fully predicted growth modifier lncRNAs in a given 
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cell type, underscoring the importance of performing loss-of-function screens for defining sets of 

functional genes. 
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Discussion 

 By employing CRISPRi for systematic, large-scale screens for lncRNA function in 

multiple cell lines, we identified 499 lncRNA loci that are required for robust cell growth. This 

work increases considerably the number of known functional lncRNAs and revealed that the 

large majority (89%) of lncRNA genes identified modified growth in just one cell type.  Studies 

of the protein-coding genome with similar large-scale screening efforts showed that an essential 

gene in one cell type is highly likely to be essential in the other cell types tested (46, 47).  In 

contrast to protein coding genes, of the 1,329 lncRNA genes expressed in all of the seven 

different cell lines tested, not one lncRNA gene was required for robust cell growth in all cell 

types, with the large majority of lncRNA gene hits being specific to just one cell line.  Our 

results thus reveal a critical role of cellular context in determining lncRNA function. 

 Several clues to this specificity of lncRNA function emerge from our analyses. First, 

although cell type-specific expression of lncRNAs was the strongest predictor of lncRNA hits in 

our machine learning model (Figure 5A,C), it did not fully explain this functional specificity 

(Figure 3, 5B). For example, RNA-seq analysis points to LINC00263 playing a role in a complex 

transcriptional network required for U87 cells, but that despite being expressed in other cell 

types, LINC00263 appears dispensable for the normal expression of nearly all genes in these 

other cells (Figure 4D and S12D,E). Taking advantage of the scale of our dataset, we have also 

begun to discover genomic features that predict growth modifying function. Our finding that 

enhancer proximity and chromosome contacts correlate with lncRNA function suggests that 

higher-order chromatin structure can play a role in such specificity of lncRNA function (28, 29) 

(30). The extent to which cell type-specific function of enhancer-templated lncRNAs results 

from repression of the transcript itself or its genomic locus remains an important open question. 
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In any case, the association of lncRNA function with higher order chromatin structure is 

consistent with the emerging view that chromosomal looping between lncRNA promoters and 

target genes differs between cell types (54) and is critical to lncRNA function (55). Finally, our 

finding that genomic regions containing growth modifier lncRNAs are enriched for cancer risk 

SNPs suggests that these lncRNAs may contribute to the pathogenesis of cancer. 

 Regardless of the mechanism(s) of the observed cell type-specificity of lncRNAs, this 

finding has implications for understanding the biological roles of lncRNAs. LncRNAs appear to 

have originated much later than protein coding genes, consistent with their not playing generic 

housekeeping roles (3, 56). Our study, which focused on lncRNAs required for robust cell 

growth, underestimates the true number of functional lncRNAs in these cell types, as lncRNAs 

have been shown to regulate more evolutionarily complex cellular decisions such as cell fate (7, 

19, 57, 58), cancer metastasis (59, 60), and perhaps neuronal function (61). The CRISPRi tools 

developed here can now be applied to the study of such higher order cellular processes, where 

lncRNAs might exhibit even greater richness of function.  Finally, the exquisite cell type-

specificity of lncRNA gene function has clear implications for targeted therapy.   
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Materials and Methods 

lncRNA CRISPRi library design 

lncRNA target selection 

LncRNA annotations were retrieved from Ensembl build 75 (using the biotypes lincRNA, 

antisense, 3 prime overlapping ncRNA, processed transcript, sense intronic, sense overlapping) 

(39), the Broad human lincRNA catalog (37), the MiTranscriptome (38) , and a set of human 

brain specific lncRNAs (42). Annotations were merged using the cuffmerge command in 

Cufflinks v2.2.1 (62). 

 

LncRNAs that were transcribed in at least one of the 7 cell lines in this study were identified by 

quantifying the expression of lncRNAs using RNA-seq data. RNA-seq data were obtained from 

ENCODE and other sources: HEK293T (GSE56010), HeLa (GSE30567, GSE33480, 

GSE23316), K562 (GSE30567, GSE33480, GSE23316), MCF7 (GSE30567, GSE33480), 

MDAMB231 (GSE73526, GSE45732), iPS (clone PCBC15hsi2012040401 (63)), HFF 

(GSE69906). RNA-seq was performed in-house for U87 cells, using the illumina TruSeq 

Stranded mRNA kit. Reads were quality trimmed using seqtk v1.0 and aligned to the human 

genome (GRCh37) with tophat v2.0.10, using the merged transcriptome reference as the 

transcriptome index, the prefilter-multihits flag, and strand specific flag when appropriate. 

Transcript abundance estimation was performed using Cufflinks v2.2.1. For each gene, the 

median FPKM value of the replicate samples were obtained. For each cell line, a minimum 

expression threshold was set between 0.25-0.50 FPKM in order to screen as many genes as 

possible, given cell culture scale limitations. 21,578 lncRNAs were identified. 
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Generating lncRNA TSS annotations 

From these 21,578 transcripts passing the expression filter, an initial set of 17,740 TSSs were 

obtained from transcripts belonging to the same gene and with 5’ ends within 100bp of each 

other. These TSS annotations were further refined using the FANTOM cap analysis of gene 

expression (CAGE)-based TSS annotations as previously described (35) with adjustments. 

LncRNA TSS annotations could not be directly matched to FANTOM “p1@gene” CAGE peaks, 

and instead were matched to any same-stranded CAGE peak within 400bp labeled as “p1” or 

“p2,” and annotation support was labeled as “CAGE, primary peaks.” If no primary peaks were 

found, annotations could instead be refined by robust or permissive peaks within 200bp of the 

starting annotation, and were labeled as “CAGE, robust peak” or “CAGE, permissive peak,” 

respectively. Where no CAGE peaks were found (due to the cell type-specific nature of lncRNA 

expression only 30% of TSS annotations were refined with CAGE peaks), the TSS as determined 

by the annotation sets above was used and labeled “Annotation.” 66 of the original TSSs were 

assigned the same start site by this method, reducing the total number targeted to 17,674. This 

annotation is included as Table S1. As detailed below, a further 692 TSSs could not be uniquely 

targeted, reducing the total TSSs to 16,982. Finally, to avoid redundant information from 

different TSSs located in close proximity, TSSs within 100bp of each other were assigned to a 

single gene ID (designated LHnnn in Tables S1-6,8) for a total of 16,401 distinct lncRNA target 

loci. 

 

sgRNA selection 

All potential sgRNAs within 25bp upstream and 500bp downstream of the refined lncRNA TSS 

annotations were scored for predicted activity using the hCRISPRi-v2.1 algorithm, scored for 
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off-target sites near TSSs and in the genome using weighted Bowtie v1.0.0 (64), and filtered for 

required restriction sites (BstXI, BlpI, and SbfI) and overlap with higher-ranking sgRNAs as 

previously described (35). For 692 TSSs, 10 sgRNAs passing all filters could not be found and 

were discarded. 87.5% of sgRNAs accepted into the library passed the highest off-target 

stringency threshold, while 10.9% passed at the second-highest stringency. Non-targeting control 

sgRNAs were generated randomly weighted by the per-base nucleotide frequencies of the 

targeting sgRNAs in the library, and filtered for no target sites in the genome. sgRNAs targeting 

lncRNA genes specifically expressed in a subset of cell types were assigned to the appropriate 

hierarchical sublibrary (along with a proportional number of non-targeting controls) to enable 

screening only the desired gene sets (Figure S2A). Sublibraries were designed as the intersection 

of genes expressed in the cell lines indicated in Figure S2A, and then the full set of genes for a 

given cell line could be generated by combining sublibraries as follows: 

iPSC = Common + (iPSC, HFF) + iPSC 

HFF (not screened in this study) = Common + (iPSC, HFF) + iPSC 

U87 = Common + Cancer common + (U87, HEK293T) + U87 

HEK293T = Common + Cancer common + (U87, HEK293T) +  HEK293T 

K562* = Common + Cancer common + (K562, HeLa, MCF7) + (K562, HeLa) + K562 

HeLa = Common + Cancer common + (K562, HeLa, MCF7) + (K562, HeLa) + HeLa 

MCF7/MDA-MB-231 = Common + Cancer common + (K562, HeLa, MCF7) + MCF7 

*all 13 sublibraries were screened in K562s to validate the cell line expression sublibrary 

strategy; see Figure 5C 
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Oligonucleotide pools were designed with flanking cloning and PCR sites as described, 

synthesized by Agilent Technologies (Santa Clara, CA), and cloned into the library sgRNA 

expression vector pCRISPRia-v2 (23, 35). 

 

For the PVT1 tiling library, all possible sgRNAs from 25bp upstream of the PVT1 locus to 25bp 

downstream that passed the second-highest off-target stringency filter and restriction site filters 

were included. Non-targeting sgRNAs matching this design in base composition and off-target 

stringency were included, and oligonucleotide pools were synthesized and cloned as above. 

 

CRISPRi screens 

Growth screens 

Several cell lines expressing dCas9-KRAB were obtained from previous publications: 

HEK293T(22), HeLa(22), K562 (23), iPSCs (WTC-CRISPRi Gen IC)(33), and U87(42). MCF7 

and MDA-MB-231 were generated for this study by infecting lentivirus expressing dCas9-

KRAB-BFP (Addgene #46911; (22)) and sorting for single cell clones stably expressing high 

BFP. Replicates for these cell lines were performed in different clones. All cell lines except 

iPSCs were infected in duplicate with sgRNA the sublibraries described above or the PVT1 tiling 

library, packaged with TransIT-LT1 (Mirus, Madison, WI) transfection in HEK293T cells (not 

expressing dCas9-KRAB), at an initial infection rate of 30-50% (300-500x coverage of the 

library). Cells were cultured for two days following infection, treated for two days with 0.75-

1.00 µg/mL puromycin, allowed to recover for one day, and then cultured at a minimum 

coverage of 1000x for 12 days (K562, HEK293T, U87, HeLa) or 20 days (MCF7, MDA-MB-

231) starting from this “T0.” K562 cells were passaged daily, while adherent cells were split on 
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alternate days. iPSCs were infected at ~15% infection (with double the starting cell population to 

yield 300x coverage), grown for 3 days, selected with 1.5 µg/mL puromycin for 9 days, and 

allowed to recover for 3 days. iPSCs were then divided into two independent replicates and 

treated daily with 2µM doxycycline starting from this T0 and for the following 18 days (with 

primary endpoint at 12 days used here unless otherwise specified). Cells with a minimum of 

1000x library coverage were harvested the day following puromycin recovery (T0) and at the 

endpoint, and processed for sequencing on Illumina HiSeq 2500 or 4000 as previously 

described(23, 35).  

 

Sequencing reads were aligned to the expected CRiNCL library sequences, counted, and 

quantified using the ScreenProcessing pipeline (https://github.com/mhorlbeck/ScreenProcessing; 

(35)) Negative control genes were generated by randomly sampling (with replacement) ~10 non-

targeting sgRNAs per negative control gene to match the true gene TSSs targeted by the library, 

and then scoring the negative control genes for effect size and Mann-Whitney p-value as was 

done for the true genes. Genes (LHnnn) with multiple TSSs were collapsed to a single score by 

selecting the one with the lowest Mann-Whitney p-value. 

 

In order to call hit genes from screens, we defined a “screen score” incorporating both the effect 

size and the p-values of genes in each screen. The screen score was calculated as | γ z-score from 

negative control gene distribution | x –log10 p-value, and for all screens a threshold of greater 

than or equal to 7 was applied to call hits. 
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Neighbor hits were classified by first calculating the distance between the each lncRNA TSS and 

the TSS of the closest protein coding gene (TSS-pc distance). LncRNAs whose TSS-pc distance 

was less than 1000 bp, and whose neighboring protein coding gene was 1) scored as essential in 

our previous screen in K562 cells (23), 2) expressed in the cell type in consideration, and 3) had 

the same phenotype direction as the lncRNA, were then classified as neighbor hits. Hits that did 

not meet these criteria were left as lncRNA hits.  

 

OCT4 FACS-based screen 

iPSCs were harvested 9 days post-doxycycline addition from the growth screen samples above 

and fixed with 4% paraformaldehyde for 10 minutes at room temperature followed by PBS wash. 

9 days was chosen to balance the longer duration of continuous target gene knockdown with 

dropout of cells containing sgRNAs conferring a negative growth phenotype. Cells were 

permeablized with 0.5% saponin (Sigma) in PBS with 4% FBS and 2mM EDTA, stained with 

1:100 mouse monoclonal α-OCT3/4 antibody (sc-5279, Santa Cruz Biotechnology), washed with 

permeablization buffer, and stained with 1:200 Goat α-Mouse IgG-488 (A11029, Invitrogen) 

(33). Cells in the top and bottom 30% of OCT4 signal as measured on the FITC-A channel were 

sorted for purity on a FACS AriaII custom. Sorted cells were then harvested for de-crosslinked 

genomic DNA using QIAamp DNA Formalin Fixed Paraffin Embedded Tissue kit (QIAGEN) 

following manufacturer’s instructions but omitting paraffin removal steps, using one column per 

million sorted cells. Genomic DNA was directly amplified for Illumina sequencing using Q5 

DNA polymerase (New England Biolabs) and sequenced on a HiSeq 4000. Sequencing data was 

analyzed as described above. 
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A screen for protein-coding genes required for robust growth in iPSCs was performed as with the 

iPSC lncRNA screen, with an endpoint at 14 days post-doxycycline addition. The screen was 

performed using the hCRISPRi-v2 H1 Drug Targets, Kinases, and Phosphatases sublibrary with 

5 sgRNAs/gene (35), and was analyzed as above. 

 

sgRNA Validation 

sgRNAs for individual validation were cloned by annealing oligo pairs containing the sgRNA 

protospacer and flanking BstXI and BlpI cloning sites and ligating the resulting fragment into the 

sgRNA expression vector pU6-sgRNA EF1Alpha-puro-T2A-BFP (Addgene #60955). Internally 

controlled growth assays were performed by infecting cells with sgRNA lentiviruses at MOI < 

1.0 and measuring the sgRNA+ fraction by BFP using flow cytometry on an LSRII (BD). 

Experiments were performed in biological triplicates from the infection step. 

 

RT-qPCR 

Cells were puromycin selected for 4 d (1 µg/mL) and subjected to 1 d recovery. K562 cells were 

infected for 48 hr, followed by 2 d puromycin treatment (3 µg/mL) and 2 d recovery. RNA was 

harvested with TRIzol and purified using the Direct-zol MiniPrep RNA purification kits (Zymo 

Research) with the on-column DNAse digestion step. cDNA were prepared with Transcriptor 

First Strand cDNA Synthesis Kit (Roche) using the oligo-dT protocol, and RT-qPCR was 

performed using LightCycler 480 SYBR Green I Master Mix (Roche) on a LightCycler 480 

instrument (Roche). Experiments were performed in biological triplicates from the infection step. 

sgRNA protospacer sequences and RT-qPCR primers are listed in Table S11.  
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RNA-seq sample preparation and data analysis following CRISPRi  

Cells were infected with sgRNA lentiviruses for 48 hr, followed by 4 d puromycin treatment (1 

µg/mL) and 1 d recovery. K562 cells were infected for 48 hr, followed by 2 d puromycin 

treatment (3 µg/mL) and 2 d recovery. RNA was harvested using TRIzol and purified using the 

Direct-zol MiniPrep RNA purification kits (Zymo Research) with the on-column DNAse 

digestion step. RNA integrity was confirmed using the Agilent 2200 RNA ScreenTape. RNA-seq 

libraries were generated using TruSeq HT Stranded mRNA kit according to manufacturer’s 

protocol (illumina). cDNA was validated using the Agilent 2200 DNA 1000 ScreenTape, Qubit 

2.0 Fluorometer (Life Technologies), and ddPCR (Bio-Rad). Cluster generation and sequencing 

was performed on a HiSeq 4000, using the single end 50 read protocol. Reads were aligned to 

the human genome (GRCh37) using the spliced read aligner HISAT2 v2.0.3 (65) against an 

index containing SNP and transcript information (genome_snp_tran). Quantification of Ensembl 

build 75 genes was carried out with featureCounts (66) using only uniquely mapped reads. 

 

Library complexity was calculated by counting the number of genes with greater than 2 reads, 

and knockdown efficiency was calculated by normalizing gene Transcripts per Million (TPM) 

for the experimental samples with the mean TPM of the control knockdown samples. Samples 

with fewer than 11,000 genes detected and weaker than 40% lncRNA knockdown were filtered. 

Pairwise Pearson correlations between RNA-seq samples were obtained using the sets of genes 

exhibiting significant variation within each cell type using the likelihood ratio test in DESeq2 

(67) with an adjusted p value threshold of 0.001. Differential expression analysis for individual 

lncRNA knockdowns was performed using the Wald test in DESeq2 with an adjusted p value 

threshold of 0.05, using unique sgRNAs against the same lncRNA TSS as biological replicates. 
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For hierarchical clustering of co-expressed genes across multiple samples, we first grouped cells 

by cell type and then by the direction of phenotype of the sgRNA. Within each subgroup, we 

obtained the set of variable genes using the likelihood ratio test in DESeq2 (67) with an adjusted 

p value threshold of 0.001. These genes were then used for complete linkage hierarchical 

clustering using Pearson correlation coefficients as the distance metric. Sequencing data are 

deposited in GSE85011. 

 

ChIP-seq sample preparation and data analysis 

Cells were infected with sgRNA lentiviruses for 48 hr, followed by 4 d puromycin treatment (1 

ug/mL) and 1 d recovery. Genome-wide histone modifications were determined by ChIP against 

H3K9me3 (Abcam ab8898) on 5 million cells as described in (68). Cells were cross-linked by 

adding 37% formaldehyde to a final concentration of 1% into culture medium and gently shaking 

for 10 min at room temperature. Reaction was quenched with glycine, and cells were then 

washed twice with ice-cold PBS containing protease inhibitors (1mM PMSF, 1X Roche 

cOmplete EDTA-free cocktail). Cells were scraped off of the plate using a cell lifter and pelleted 

for 5 min at 2,000 rpm at 4°C. Pellet was snap-frozen in liquid nitrogen and stored at −80°C. 

Pellet was then thawed and resuspended in Cell Lysis Buffer (5 mM PIPES pH 8, 85 mM KCl, 

freshly added 1% IGEPAL) with protease inhibitors (Pierce Halt Protease Inhibitor Cocktail). 

Cells were then homogenized using a type B glass dounce homogenizer, pelleted, and 

resuspended in Nuclei Lysis Buffer (50 mM Tris-HCl pH 8, 10 mM EDTA, 1% SDS). 

Chromatin was sonicated in Diagenode TPX tubes using the Diagenode Bioruptor for 20 cycles 

and DNA was ranged from 150–700 bps as determined by gel electrophoresis. Debris was 

pelleted and discarded, and an aliquot was removed for Input DNA sequencing from the 
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sonicated chromatin within the supernatant. Sonicated chromatin was then diluted 5-fold in IP 

Dilution Buffer (50 mM Tris–HCl pH 7.4, 150 mM NaCl, 1% IGEPAL, 0.25% deoxycholic acid, 

1 mM EDTA pH 8) with protease inhibitors and pre-cleared with Life Technologies Protein G 

Dynabeads for 2 hr at 4°C. 5 µg of antibody was added per million cells, and samples were 

incubated overnight at 4°C. Antibody-bound chromatin was then collected using Life 

Technologies Protein G Dynabeads and washed twice with IP Dilution Buffer, twice with IP 

Wash Buffer 2 (100 mM Tris–HCl pH 9, 500 mM LiCl, 1% IGEPAL, 1% deoxycholic acid), and 

once with IP Wash Buffer 3 (100 mM Tris–HCl pH 9, 500 mM LiCl, 150 mM NaCl, 1% 

IGEPAL, 1% deoxycholic acid). Precipitated chromatin was then eluted for 30 min at 65°C with 

Elution Buffer (1% SDS, 50 mM NaHCO3). ChIP and Input DNA crosslinks were reversed by 

adding 5 M NaCl and heating at 65°C overnight. The following day, 10 mg/ml RNase A was 

added to precipitated chromatin, and chromatin was incubated for 30 min at 37°C. DNA was 

then recovered using Agencourt AMPure XP Beads and quantified using the Life Technologies 

Qubit Fluorometer. 

 

ChIP DNA was then used for library preparation using the Kapa HyperPlus library preparation 

kit. 100ng of ChIP DNA was used for end repair and A-tailing. Illumina adapters were then 

ligated to the end-repair products. The library was amplified for 6 cycles before post-

amplification cleanup using SPRI beads. Libraries were then quantified with the Life 

Technologies Qubit Fluorometer, and library size was confirmed using Agilent TapeStation 

2200. ChIP-seq libraries were sequenced on a HiSeq 4000, 50 read single end. 
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Reads were aligned to the human genome (GRCh37) using bowtie v2.2.8 (69). Enrichment at 

promoter regions, which were defined as +/- 1kb of each TSS and generated from Ensembl 

GRCh37 build 75, were quantified using featureCounts v1.5.0-p2 (66). Signal was visualized 

using deepTools2 bamCoverage (70), normalizing reads to 1x sequencing depth. Differential 

H3K9me3 enrichment was analyzed using DESeq2 (67) , treating distinct sgRNAs against the 

same lncRNA TSS as replicate samples. Sequencing data are deposited in GSE85011. 

 

Antisense oligonucleotide knockdown and proliferation assay 

Antisense locked nucleic acid gapmers were designed against LINC00263 using the Exiqon web 

server. Cells were transfected with the specified ASOs including negative control “A” at a final 

concentration of 50nM using Lipofectamine RNAimax Reagent (Invitrogen) according to the 

manufacturer's instructions. After 48 hours of transfection cells were seeded in duplicate. In 

order to maintain gene depletion, cells were transfected for a second time 7 days after the first 

transfection. Cell counting was performed every 2 days using Countess Automated Cell Counter 

(Invitrogen).  

 

Flow cytometry for cell cycle analysis 

Cells were transfected with the specified ASOs as described above. After 72 hours of 

transfection cells were pulsed with 33 µM bromodeoxyuridine (BrdU) for 20 min, and afterwards 

fixed in 70% ethanol. Subsequently cells were stained with primary anti-BrdU antibody (Clone  

B44; BD Biosciences) for 1 h, followed by 1 h incubation with Alexa Fluor 488 anti-mouse IgG 

(Invitrogen). DNA was counterstained by 0.1 mg/ml propidium iodide supplemented with RNase 
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for 1 h at 37°C. Analysis was performed on a FACSCalibur using CellQuest software (BD). 

Quantification and analysis of cell-cycle profiles were obtained using FlowJo (Tree Star, Inc). 

 

Machine learning of lncRNA properties 

Genomic features were obtained from multiple sources. RNA-seq data were the same as used 

above for sgRNA library generation. Enhancer maps were obtained from the Fantom 5 

Transcribed Enhancer Atlas (48), and VISTA Enhancer Browser set of experimentally confirmed 

human enhancers (49). Cell type-specific enhancer and super-enhancer maps for HeLa, U87, 

K562, and MCF7 cells were obtained from (51). LncRNA loci were considered near a 

(super)enhancer if it overlapped with or was within 1kb of a mapped enhancer. Cancer 

associated SNPs from the NHGRI GWAS Catalog were obtained from (50) and noted if any 

were within 5 kb of a lncRNA locus. Cell type-specific copy number variation data for 

HEK293T, HeLa, K562, U87, and MCF7 cells were obtained from ENCODE (GSE40698) and 

intersected with lncRNA loci. ChIA-pet data for HeLa, K562, and MCF7 cell lines were 

obtained from ENCODE (GSE39495). LncRNA loci that were overlapped completely by a Pol2 

or CTCF loop with a score of at least 400 were noted. LncRNAs with mouse orthologs were 

identified using Slncky (52). 

 

To generate machine learning models, lncRNAs phenotypes were binarized as hit (1) or non-hit 

(0) and used as the response variable. Categorical variables were assigned as either 1 or 0. 

Missing data, e.g. super-enhancer or CNV information for cell lines for which data were not 

available, were assigned the value of 0. Predictor variables were then centered to the mean and z 

standardized. Expression levels were log transformed. To avoid confounding by nearby protein 
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coding genes, only lncRNAs whose TSS were > 1kb from a protein coding TSS were considered. 

Several classes of models were generated and tested, using the R package caret on randomly 

sampled training (75% of data) and testing (25% of data) sets from our screen results. Logistic 

regression outperformed both support vector machines (least squares, polynomial kernel, radial 

kernel) and random forests in accurately classifying test sets of lncRNAs as hits or non-hit. 

Therefore, we used logistic regression to identify significant predictors of lncRNA hits. 100 

iterations of ten-fold cross validation was performed by randomly withholding 10% of the 

dataset and training logistic regression models using the remaining data. Those predictors that 

repeatedly scored as significant (p < 0.01) were noted as reliable.  
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Figures 
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Figure 1. CRISPRi screens identify lncRNA genes that modify cell growth 

A) Schematic of CRISPRi library design strategy. Three lncRNA annotation sets were merged, 

prioritized by expression in the indicated cell lines, and targeted by 10 sgRNAs per TSS using 

the hCRISPRi-v2.1 algorithm. Heatmap represents expression as z-score of fragments per 

kilobase million (FPKM) within each cell line (see Figure S1 for TPM values). B) Schematic of 

growth screens performed in 7 different cell lines, and formula for calculation of the growth 

phenotype (γ). C) Scatter plot of sgRNA phenotypes from two independent replicates of a 

CRISPRi screen performed in iPSCs. D) Volcano plot of gene γ and p-value. Screen replicates 

were averaged, and sgRNAs targeting the same gene were collapsed into a growth phenotype for 

each gene by the average of the 3 top scoring sgRNAs by absolute value, and assigned a p-value 

by the Mann-Whitney test of all 10 sgRNAs compared to the non-targeting controls. Negative 

control genes were randomly generated from the set of non-targeting sgRNAs, and dashed lines 

represents a threshold for calling hits by screen score (see Methods). Neighbor hits are not 

displayed for clarity (see Figure S3A,B). E) Summary table of all CRISPRi growth screens 

performed. 
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Figure 2. Validation of screen results shows reproducible phenotypes, correlated 

transcriptome responses, and robust knockdown of target transcripts 

A) Individual sgRNA phenotypes from internally-controlled growth assays (B,C) compared to 

sgRNA phenotypes from screens. Individual growth phenotypes were calculated from relative 

fraction of sgRNA-containing cells at the endpoint, divided by the number of doublings from 4 

days post-infection. Screen growth phenotypes represent the replicate average phenotype from 

the indicated cell line. B) Internally-controlled growth assays performed with sgRNAs targeting 

lncRNA hit genes in U87 and K562. Cells were infected with lentivirus of the sgRNA expression 

vector (including a BFP marker gene) and passaged for 20 days. The fraction of sgRNA-

containing cells was measured as the fraction of high-BFP-expressing cells by flow cytometry, 

and expressed relative to the fraction at 4 days post infection. Points represent the mean and 

standard deviation of 3 biological replicates. C) Internally-controlled growth assays of PVT1-

targeting sgRNAs in 5 cell lines. Assays were performed as in (B). Asterisks represent t-test p-

values compared to the non-targeting (NT) sgRNA at the assay endpoint (* < 0.05, ** < 0.01, 

*** < 0.001). D) Boxplot of sgRNA growth phenotypes from tiling screen of PVT1 in U87 cells. 

TSS represents all sgRNAs within 1kb of the PVT1 “p1” and “p2” TSSs as annotated by 

FANTOM, exon represents sgRNAs targeting any PVT1 exon annotated by Ensembl, and intron 

represents all other sgRNAs (see Figure S7B). sgRNA γs are the average of two replicates. E) 

Pairwise correlation of gene expression profiles for independent sgRNAs. Expression profiles 

were measured by RNA-seq and correlations were calculated from transcripts per million (TPM) 

of genes with significant variation of expression (see Methods). “All” represents every sgRNA 

pair from the same cell line with the same phenotype direction, except same-sgRNA and same-

gene pairs. F) Relative RNA abundance in K562 of lncRNA genes that were not hits in any cell 
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line. RNA abundance for all 10 sgRNAs targeting the indicated genes in the CRiNCL library was 

measured by qPCR. Each bar represents the mean and standard deviation of 3 biological 

replicates, and is ordered by decreasing activity as predicted by the hCRISPRi-v2.1 algorithm. 

G) Correlation of lncRNA repression in K562 and U87. Points represent mean values from (F) 

and Figure S7C. 
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Figure 3. Growth modifier lncRNA function is highly cell type-specific  

A) Numbers of lncRNA hits for each set of cell types in the complete library and (B) common 

sublibrary (lncRNAs that were expressed and screened in all cell types). Blue bars indicate total 

number of lncRNA hits in each cell type. C) Cumulative distribution function for the proportion 

of cell types in which each gene is a hit. Protein coding hits were obtained from Hart et al. 2015 

using the authors’ 5% FDR Bayes Factor threshold. D) Distributions of the maximum 1 - Jenson 

Shannon distance (JSD) metric of cell type-specificity for lncRNA hit screen scores and 

expression values. Horizontal lines – median. E) Distributions of screen scores across all cell 

types for lncRNAs that were hits in iPSCs. Dashed line represents screen score threshold for 

calling hit genes. F) Distributions of screen scores across both replicates of iPS cells, for 

lncRNAs that would be called as hits in replicate 1 (left) and in replicate 2 (right).  
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Figure 4. Dissection of cell type-specific growth modifier lncRNA LINC00263 

A) Internally-controlled growth assays for 2 independent sgRNAs targeting the TSS of 

LINC00263 and non-targeting sgRNA in U87, K562, HeLa, and MCF7 cells. B) ChIP-seq 

against H3K9me3 in replicates of U87 and HeLa cells infected with non-targeting sgRNAs or 

LINC00263 sgRNAs. Values represent normalized reads. C) Volcano plots for ChIP-seq samples 

in (B), representing genome-wide differential enrichment of H3K9me3 at promoter regions. Fold 

changes are between LINC00263 sgRNAs over non-targeting sgRNAs. D) Volcano plots for 

RNA-seq differential expression following infection of LINC00263 sgRNAs compared to 

infection of non-targeting sgRNAs. E) qPCR of ASO knockdown of LINC00263 in U87 and 

HeLa cells. F) Proportion of cells at 13 days post ASO transfection, relative to control ASO. G) 

Percentage of cells in S or G2/M phases following ASO knockdown of LINC00263. * indicates p 

= 0.0029.  
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Figure 5. Machine learning identifies genomic features of growth modifier lncRNAs 

A) Results from logistic regression model using 18 classes of genomic data as possible predictors 

of growth modifier lncRNAs. Cell type dependent variables are marked. Odds ratios represent 

relative impact of 1 standard deviation increase of given variable. Significant variables (p < 0.01) 

are bolded. Results of 10-fold cross validation are represented as the % of cross validation 

iterations where the given variable is significant. B) ROC curves for full model compared to 

model using only expression data. C) Density plot of expression levels for lncRNAs that scored 

as hits and non-hits, aggregated across all cell types. D) Percentage of non-hit (red) and hit (blue) 

lncRNAs whose gene bodies resided < 1 kb from an annotated FANTOM enhancer. E) 

Percentage of non-hit (red) and hit (blue) lncRNAs whose gene bodies resided < 5 kb from a 

cancer associated SNP. F) Cumulative distribution function of number of exons for non-hit (red) 

and hit (blue) lncRNAs transcripts. 
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Figure S1. Expression levels of lncRNAs targeted in the CRiNCL library.  

Rows correspond to those used in Figure 1A. TPM, transcripts per million. 
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Figure S2. CRISPRi growth screens performed in seven cell lines. 

A) Schematic of sublibrary divisions of the CRiNCL library. The library was divided into 13 

sublibraries based on expression in 7 cell lines to facilitate library cloning and allow for targeted 

screens. Combinations of sublibraries were selected for screening in each cell line studied as 

described in Methods. B) Fraction of cells containing the sgRNA library over the course of the 

U87 and HeLa screens. sgRNA-containing fraction measured as the fraction of high-BFP-

expressing cells by flow cytometry. C) sgRNA γ for replicate screens performed in 6 cell lines, 

as in Figure 1C. Only one replicate was performed for HEK293T. D) Screen scores from 

replicate screens for individual lncRNA loci. Screen scores were calculated as described in 

Methods. 
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Figure S3. CRISPRi growth screen results and validation of thresholds used in screen 

analysis. 

A) Volcano plots for screens performed in 7 cell lines, as in Figure 1D. Hits that were considered 

neighbor hits (see B) are labeled. B) Schematic of definitions of “lncRNA hit” and “neighbor 

hit.” C) Fraction of negative control genes called as hits out of total number of hits above the 

indicated screen score threshold, calculated for each cell line and the combined dataset. D) 

Number of lncRNA hits classified after eliminating neighbor hits within the indicated distance 

from any essential protein-coding gene. A 1.0kb threshold was used for all analysis. 
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Figure S4. CRISPRi growth phenotypes relative to gold standard essential genes. 

Distribution of gene γ relative to the nearest gold standard essential protein-coding gene (44). 

Points indicate individual gene γ scores and blue shaded regions represent 5th, 25th, 50th, 75th, and 

95th percentiles of all genes within 10-fold of the position. Screen data plotted are from the 

indicated protein-coding screens ((35) and Figure S4) or lncRNA screens. 

 

  



 246 

  

Liu, Horlbeck et al., Figure S5
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Figure S5. A FACS-based screen for OCT4 expression identifies genes that modify iPSC 

differentiation. 

A) Representative FACS histogram of OCT4 staining of iPSCs, with high and low 30% fractions 

highlighted. 5x106 cells from each fraction were sorted and processed for Illumina sequencing. 

OCT4 signal enrichment was calculated as the fraction of each sgRNA present in the high 

sample versus the low sample. B) Volcano plot of screen results, as in Figure 1D. C) Gene 

growth phenotypes from iPSC screen compared to OCT4 signal enrichment. The results suggests 

that all OCT4 screen hits also modify cell growth rates, but that most growth screen hits are not 

accompanied by changes in OCT4 expression. 
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Figure S6. A CRISPRi screen for protein-coding genes that modify growth in iPSC.  

A) Volcano plot for iPSC screen performed with the hCRISPRi-v2 H1 sublibrary, 5 

sgRNAs/gene, displayed as in Figure 1D. Data are the average of two replicate screens. B) 

Scatter plot of gene γ from growth screens performed in K562 (35) and iPSC. K562 screen was 

performed with the genome-wide hCRISPRi-v2 library and reanalyzed here using only the H1 5 

sgRNAs/gene sublibrary. C) Discrimination of gold-standard essential genes from non-essential 

genes (44) for K562 and iPSC screens, ranked by gene γ. K562 genome-wide and H1 data were 

analyzed using the 5 sgRNAs/gene sublibraries.  
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Figure S7. lncRNA CRISPRi produces robust knockdown and is specific to the TSS. 

A) Relative RNA abundance of lncRNA hits upon knockdown with CRIPSRi. Bars represent 

mean and standard deviation of 3 biological replicates. B) sgRNA growth phenotypes from tiling 

screen of PVT1 in U87 cells by position. sgRNA position was calculated as the genomic 

coordinate of the protospacer adjacent motif (PAM) relative to the PVT1 p1 FANTOM TSS. 

sgRNA γ is the average of two replicates. TSS, exon, and intron are defined as in Figure 2D. 

Green line represents median phenotype of all sgRNAs within 250bp. C) Relative RNA 

abundance in U87 of lncRNA genes that were not hits in any cell line, as with Figure F,G. 
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Figure S8. lncRNA CRISPRi produces co-expressed transcriptome responses. 

Heatmaps of differentially expressed genes across samples segregated by (A) U87 pro-growth, 

(B) U87 anti-growth, (C) HeLa anti-growth, (D) K562 anti-growth. Significant gene ontology 

terms are indicated next to the clusters in which they are enriched, annotated with p value and 

enrichment. Fold changes are relative to non-targeting controls within the same cell type. E) 

Distributions of absolute value log2 fold changes for differentially expressed genes (adj. p < 

0.05) for each lncRNA knockdown. F) Panel of genes consistently upregulated or downregulated 

across multiple CRISPRi samples in U87. 
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Figure S9. Chromosome distribution of differentially expressed genes after each lncRNA 

knockdown.  

Red bars indicate chromosomes harboring the lncRNAs of interest (cis). Gray bars represent 

chromosomes that do not contain the lncRNAs of interest (trans). 
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Figure S10. Local transcriptional changes within 20 gene-windows surrounding each 

lncRNA of interest following CRISPRi knockdown.  

Red outline indicates targeted lncRNA. Blue bars indicate differentially expressed genes, among 

the broader set of differentially expressed genes genome-wide (DESeq2 adj. p < 0.05) upon 

knockdown.  
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Figure S11. lncRNA hit specificity is greater than essential protein coding gene specificity. 

A) Numbers of protein coding gene hits for each set of cell types screened in Hart et al. 2015 and 

(B) Wang et al. 2015. Wang et al. genes were considered hits if they passed a 5% false discovery 

threshold set by precision-recall analysis (44). C) Numbers of hits in our study that share 

promoters with essential protein coding genes (neighbor hits). Blue bars indicate total number of 

hits in each cell type. D) Distributions of screen scores across all cell types, for lncRNAs and (E) 

“neighbors” that were called hits in each given cell type. F) Distributions of screen scores across 

both replicates of each cell type, for lncRNAs that would be called as hits in replicate 1 (left) and 

in replicate 2 (right).  
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Figure S12. Cell type-specificity of LINC00263. 

A) Screen phenotype z scores (red) and expression values (blue) for LINC00263 across the 7 cell 

types.  B) Reproducibility of H3K9me3 ChIP-seq between sgRNA 1 and sgRNA 2 targeting the 

TSS of LINC00263 in U87 (left) and HeLa (right) cells. C) ChIP-seq enrichment of H3K9me3 

surrounding the TSS of LINC00263, comparing 2 independent sgRNAs in U87 and HeLa cells. 

Smoothed lines were obtained by applying a Gaussian kernel smoother against ChIP-seq 

coverage that had been background subtracted with coverage of H3K9me3 in cells infected with 

non-targeting control sgRNAs. Signal was then normalized to the peak of the highest smoothed 

line. Table summarizes relative enrichment of H3K9me3 at various distances beyond the TSS, 

obtained from the median value of the smoothed lines at each distance. D) Volcano plots for 

RNA-seq differential expression following infection of LINC00263 sgRNAs compared to 

infection of non-targeting sgRNAs in K562 cells. E) Numbers of differentially expressed genes 

(DESeq2 adj p < 0.05) following knockdown of lncRNAs in HeLa, K562, and U87 cells. For 

each gene, the same sgRNAs were used across the cell types. F) qPCR comparing LINC00263 

knockdown using CRISPRi and ASO. G) Proportion of cells at 14 days post sgRNA infection, or 

13 days post ASO transfection against LINC00263, relative to control sgRNA or control ASO, 

respectively.  H) qPCR of ASO knockdown of additional lncRNA hits in U87 cells. I) 

Percentage of cells in S and G2/M phases following ASO knockdown of additional lncRNA hits 

in U87. 

 

  



 262 

Supplementary Tables 

Table S1. TSS Annotations 

Table S2. CRiNCL library sgRNAs 

Table S3. Growth screen sgRNA read counts and phenotypes 

Table S4. Growth screen gene phenotypes and p-values 

Table S5. OCT4 screen sgRNA read counts and phenotypes 

Table S6. OCT4 screen gene phenotypes and p-values 

Table S7. iPSC protein-coding screen sgRNA and gene phenotypes 

Table S8. PVT1 tiling library sgRNAs and phenotypes 

Table S9. Differential expression of genes following lncRNA CRISPRi 

Table S10. Genomic Properties of lncRNAs 

Table S11. Individually cloned sgRNAs and primer pairs used in this study 
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