UCLA

Posters

Title

Single Channel Estimation Algorithm for Acoustic OFDM Communication Systems

Permalink

https://escholarship.org/uc/item/8cr1m922

Authors

Lin, David Barbieri, Alan Mitra, Urbashi

Publication Date

2007-10-10

Peer reviewed

CENS Center for Embedded Networked Sensing

Single Channel Estimation Algorithm for Acoustic OFDM Communication Systems

David Lin, Alan Barbieri, Urbashi Mitra, Giuseppe Caire

Communication Sciences Institute – University of Southern California - http://csi.usc.edu/

Acoustic Testbed for Network/Communication Applications

Motivation

- Inexpensive, easy to program wireless communications infrastrcture
- Used to validate algorithms for a variety of wireless communication environments
 - point to point cellular communications
 - cooperative communications
 - multiple-input/multiple-output systems
 - underwater acoustic communication
 - ultrawideband communication

System Hardware

All and a second second

Hardware Specifications

- M-Audio Delta 1010 24 bit 96 kHz Digital Recording System
- SM Pro Audio PR8-MK2 8-channel mic-line preamp
- Behringer Studio C-2 Condenser microphones
- PC with Matlab/Simulink and speakers

State of Development: Orthogonal Frequency Division Multiplexing Point-to-Point Link

OFDM Communication

Cyclic Prefixes

 A segment from the end of data, whose length is longer than the channel impulse response, is repeated at the beginning, thus eliminating the effects of intersymbol interference (ISI)

• Orthogonality of Sub-Carriers

 OFDM uses multiple carrier frequencies simultaneously; since they are orthogonal to each other, there is no interference from adjacent subcarriers. This *efficiently uses the available bandwidth*.

Channel Modulation Experiment

OFDM Modulator

- Messages created by randomly generated QPSK symbols
- Signal sent over 2048 subcarriers
- Cyclic prefix 512 samples long
- Suppression carrier 200 samples long

Pulse

Shaper

• Start of Frame Detector

 OFDM block synchronization algorithm evaluates the autocorrelation between two sequences to determine the start of the message

OFDM DeModulator

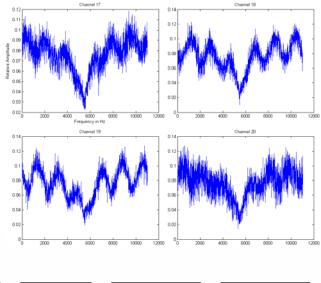
OFDM

Modulator

 Received signal compared with original message to create frequency channel response

s(t) ∖]/

Mixer


√/ r(t)

Experiment Results

Experiments performed at USC's UltRa Lab Sampling Rate - 22050 Hz

Baud Rate – 2000 symbols/sec Carrier Frequency – 5000 Hz

Frequency Response over Time

Start of Frame

Detector

OFDM

DeModulator

Resampler

DeMixer