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ABSTRACT OF THE DISSERTATION 

 

Design and Development of Novel Routing Methodologies for Dynamic Roadway 
Navigation Systems 

 

by 

 

Weihua Zhu 

Doctor of Philosophy, Graduate Program in Electrical Engineering 
University of California, Riverside, March 2009 

Prof. Matthew Barth, Chairperson 
 

To date, traditional navigation systems have embedded algorithms that attempt to 

minimize trip distance and/or travel time. However, many drivers are now becoming 

increasingly concerned with fuel costs and vehicle emissions that are detrimental to the 

environment. Therefore, it is desirable to create new “environmentally-friendly” and 

“energy-friendly” navigation algorithms. Taking advantage of the latest navigation 

technology, in this dissertation, new navigation techniques have been developed that 

focus on minimizing energy consumption and vehicle emissions. These methods combine 

sophisticated mobile-source energy and emission models with route minimization 

algorithms that are used for navigational purposes. It is also known that different road 

types can play a significant role in emissions and fuel consumption. As such, a new 

standalone, high-accuracy road type classification methodology has been developed that 
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only uses a short vehicle velocity trajectory as input, without any external mapping 

system.  

Further, it was found that under chaotic traffic conditions (e.g., those caused by high 

demand, unexpected road closures, and natural disasters), a shortest-distance route 

algorithm might suggest a route with unreasonably long travel times, consuming a great 

deal of energy. On the other hand, under similar chaotic traffic conditions, a shortest-

duration routing algorithm might frequently advise a driver to switch routes to avoid 

congested roadways and maintain reasonable travel time. The number of possible routes 

varies by the roadway network topology and the location within the network. Thus, it is 

useful to know how many possible routes exist. Therefore, a new navigational mobility 

index (NMI) has been developed and justified with an initial focus on freeway networks. 

NMI can be based on the number of possible routes weighted by shared segments among 

routes from a source to a destination (referred to as node-to-node NMI). Based on node-

to-node NMI, node-NMI and area-NMI are also defined and justified. Different 

applications of NMI include: 1) measurement of the degree of freedom in which drivers 

can choose routes from a route choice perspective; 2) determination of the potential 

effectiveness of navigation systems; 3) determination of the overall connectivity level of 

an area; and 4) the guidance of the movement of people during an evacuation due to a 

disaster event. 

Based on the proposed NMI concept, a new routing methodology has been developed 

that is based on maximizing the degree of freedom for re-routing while driving from a 

known location to a desired destination. Not only is this routing methodology beneficial 
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for dealing with random incidents, it is also useful during major disaster situations when 

people in an affected area need to be quickly evacuated and relocated to safer areas. A 

variety of experiments have been carried out to determine the effectiveness of the 

proposed concept and routing methodology. 

The main contribution of this dissertation are as follows: 1) We prove that a shortest-

duration and a shortest-distance route are not necessary the most energy efficient route. 

We have combined a state-of-art energy/emissions model with navigation technologies to 

develop an environmentally-friendly navigation methodology, which is unique; 2) 

Because road type plays an important role in vehicle emission and energy consumption, 

we have developed a highly accurate, low complexity, and stand-alone road-type 

classification algorithm that only uses  a short vehicle speed trajectory as input without 

external support such as a map system; 3) We have originally proposed and defined a 

navigational mobility index (NMI) concept specifically for navigational purposes—

compared to other existing similar concepts, it has numerous desirable properties and can 

be used to evaluate the potential effectiveness of a navigation system; 4) Based on the 

original NMI concept,  node-NMI and area-NMI measures have been further defined that 

can be used to assess the overall degree of freedom of routing in an area; and 5) For 

emergency evacuation and navigation under chaotic traffic conditions (e.g., those due to 

high demand or unexpected road closures), drivers can maximize their degree-of-freedom 

when re-routing. This is highly desirable under emergency evacuation scenarios, in which 

drivers are more likely to arrive to the safe area using NMI-based navigation than using 

the traditional shortest-distance or shortest-duration navigation. 
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1. Introduction 

1.1 Problem Statement 

The total number of vehicle miles traveled (VMT) on roadways continues to increase 

worldwide, with people driving greater distances and for longer periods of time. This 

travel demand consumes large quantities of fuel, corresponding to approximately 50% of 

the United States’ energy costs [1]. Extensive roadway systems have already been built 

over the last century, and in many locations, expanding the network is now less likely due 

to several issues such as limited land use options and significantly higher building costs. 

Given this steadily increasing travel demand with limited infrastructure growth, highway 

congestion continues to get worse. People are driving longer distances and for longer 

periods of time than necessary. Several studies have been carried out examining roadway 

congestion in terms of lost productivity and wasted fuel; e.g., in 2003 it has been 

estimated that 2.3 billion gallons of fuel were wasted due to congestion [2]. There is now 

a strong need to make the highway travel as efficient as possible. As a result, a variety of 

intelligent transportation system (ITS) technology is being developed to use the existing 

roadway network more efficiently.  

One example of this ITS technology has been the development of navigation systems 

(see details in Chapter 2). In recent years, there has been significant advancement of both 

on-board in-vehicle and off-board internet-based navigation systems that primarily select 
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routes (i.e. paths, in this dissertation, routes and paths are used interchangeably) 

corresponding to the shortest-distance between an origin and a destination. It sometimes 

is also able to calculate a static shortest-duration route using the approximate speed of 

road segment according to the road type (e.g., freeways have an average free-flow speed 

of 95 km/h, arterials at 55 km/h, etc.). These systems use a static roadway map and do not 

use the real time information, and we call these static roadway navigation systems. In 

contrast, we call any navigation systems that utilize the real time traffic information 

dynamic roadway navigation systems.   

 For example, more recently, new generation systems are now capable of 

incorporating real time traffic information, providing the ability to find the dynamic 

shortest-duration path (e.g. [71-72], see details in Chapter 2), in addition to the static 

shortest-distance path and the static shortest-duration path. These systems can suggest an 

alternative route if traffic congestion happens and advise the drivers to re-route. “Re-

routing” is the point of this kind of dynamic shortest-duration navigation system.  

However, there exist some problems of these current navigation systems. First, these 

navigation systems do not take into account the energy consumption and vehicle 

emissions. In heavily congested traffic conditions, the static shortest-distance or the static 

shortest-duration route might result in much higher fuel consumption and vehicle 

emissions. Second, a dynamic shortest-duration algorithm might direct drivers to a route 

that actually does not have many routing choices, i.e. a route that has low degree of 

freedom in re-routing. For a route having low degree of freedom in re-routing, the 
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advantage of the dynamic shortest-duration algorithm is eliminated and the navigation 

systems will not be of much use.    

This dissertation is dedicated to the development of energy/emissions-efficient and 

better degree-of-freedom navigation algorithms. We first propose and develop novel 

navigation methodologies that focus on minimizing energy consumption and vehicle 

emissions. This navigation technique takes advantage of the real time traffic and 

combines a state-of-art Comprehensive Modal Energy and Emission Model [6-10] with 

route minimization algorithms. By the algorithm we developed, drivers are given choices 

of not only the traditional static shortest-distance, static shortest-duration routes, dynamic 

shortest-duration routes, but also a route consuming less energy and producing less 

emissions. Therefore, there will be four navigation algorithms available. 

As previously mentioned, when a driver gets real time traffic information, (s)he might 

be advised to switch routes if the current route is not desirable due to real time traffic 

conditions. With the ability to re-route based on changing network conditions, it is useful 

to develop an effectiveness index that gives an indication of the number of routing 

options. For example for an extreme case, if there is only one route between a source-

destination pair, choosing an alternative route based on real-time traffic conditions will 

not be feasible because there is no other available routes. Taken one step further, a 

network with low index value will not have many re-routing choices; and therefore, 

choosing an alternative route based on real-time traffic conditions will have limited value. 

On the other hand, a roadway network with a high index value will be able to provide 

numerous choices when traffic conditions change. In this dissertation, we then propose an 
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original navigational mobility index (NMI) concept for a source-destination pair to 

quantify the routing options between them. We further define a node-NMI and area-NMI 

based on overall roadway availability.     

Normally, drivers want to select any one of the four routing algorithms mentioned 

above, and would like the traffic conditions to be free-flowing and uninterrupted. 

However, adverse scenarios often occur; for example, roadway links might unexpectedly 

shutdown (or become highly congested) due to major incidents (i.e. accidents) or natural 

disasters (e.g. earthquakes). In these scenarios it is beneficial to re-route, and sometimes 

it might even be mandatory to re-route. In these cases, it is desirable that a navigation 

algorithm find an optimal route that offers the highest degree of freedom in re-routing. 

When considering this kind of optimal route, even if some roadway infrastructure is 

unusable, the drivers are still likely to find another route to reach their destination without 

being trapped in a dead end or backtracking too much, and arrive at the destination within 

a reasonable time. In this dissertation, based on the proposed concept NMI, we further 

describe a new routing methodology that is based on maximizing the routing choices 

when driving from a known location to a desired destination. Not only is this routing 

methodology beneficial for dealing with random incidents, it is also useful during major 

disaster situations when people in affected areas need to be quickly evacuated and 

relocated to safer areas.  

Therefore, in addition to the traditional shortest-distance/duration algorithms, we 

provide two possible choices for roadway navigation: environmentally-friendly 
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navigation algorithm providing a route consuming less energy and an NMI-based 

navigation algorithm providing a route giving better degree of freedom for re-routing. 

1.2 Contribution of the Dissertation 

In this dissertation, we consider novel navigation methodologies other than traditional 

shortest-distance/duration algorithms. Shortest-distance/duration methods have been 

proven to not necessary consume less energy or produce less pollutants. We first review 

the related research and give brief background information in Chapter 2. In Chapters 3 

and 4, we propose an energy efficient navigation methodology that can guide drivers to 

routes that consume less fuel and produce lower emissions. With rapid changing traffic 

conditions, a shortest-distance or shortest-duration routes might not be optimal in any 

sense (duration/energy consumption). Drivers frequently want to switch routes, especially 

in metropolitan areas. In the second part of this dissertation (Chapters 5 and 6), we 

propose a navigation algorithm that gives better degree of freedom for the drivers to 

switch routes. Specifically, the following lists the main contribution of this dissertation: 

• We prove that a shortest-duration and a shortest-distance routes are not necessary 

the most energy efficient routes. We combine the state-of-art Comprehensive Modal 

Energy and Emission Model with navigation technologies to develop an 

environmentally-friendly navigation methodology, which is unique.  

• Road type plays an important role in vehicle emission and energy consumption. We 

have developed a high accuracy, low complexity, and stand-alone road-type 
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classification algorithm based only on a short vehicle speed trajectory as input 

without external support such as a map system.  

• We originally propose and define a navigational mobility index (NMI) concept 

specifically for navigational purposes. Compared to other existing similar concepts, it 

has several desirable properties. NMI can be used to evaluate the potential 

effectiveness of a navigation system. 

• Node-NMI and area-NMI are further defined based on the definition of node-to-

node NMI. Node-NMI and area-NMI can be used to assess the overall degree of 

freedom of an area. Area-NMI is comparable across different areas. 

• For emergency evacuation and navigation under chaotic traffic conditions (highly 

congested or road link closure), drivers frequently want to switch routes. Based on the 

defined NMI, we originally propose a navigation methodology giving routes in which 

drivers have the best degree of freedom for re-routing.  This is highly desirable under 

emergency evacuation scenarios, in which drivers are more likely to arrive to the safe 

area using NMI-based navigation than using the traditional shortest-distance or 

shortest-duration navigation. 

1.3 Organization of the Dissertation 

The remaining chapters of this dissertation are organized as follows: in Chapter 2, a 

literature review and background information is provided. In Chapter 3 we present the 

development and application of the environmentally-friendly navigation system, 

including the methodology, justification and experimental results. From the results from 
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Chapter 3, we know that road type is a very important factor for fuel consumption and 

emissions. Chapter 4 then describes a methodology for road type classification based on 

the vehicle speed snippets only. In Chapter 5, we define the concept navigational 

mobility index (NMI) in detail, give simple illustrative examples, and rigorously prove 

the NMI properties. We then give a brief description of how to apply the NMI for 

roadway navigation. Experimental results are also given to prove its effectiveness. 

Chapter 6 expands the application of NMI on roadway navigation in Chapter 5, and uses 

an emergency evacuation scenario as a case study. We conclude the dissertation and 

highlight future work in Chapter 7.     

The dissertation is systematically organized and each chapter is closely related to 

each other. However, we also organize the dissertation in such a way that each chapter 

can be viewed as a separate and complete entity, and can be understood without reading 

the previous chapters. Each chapter itself contains enough information for understanding 

the material. For example, Chapter 6 bases the application of NMI in roadway navigation 

on Chapter 5, which defines the NMI concept in detail. However, Chapter 6 briefly 

summarizes the NMI definition in the background section, and if a reader is only 

interested in NMI-based navigation, he can skip Chapter 5 and the completeness is 

maintained.   
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2. Background and Literature Review 

In this chapter we introduce various background material for this dissertation, and 

conduct a literature review of related research. In Chapter 1, we briefly talked about the 

navigation systems. In Section 2.1, we discuss the current most advanced navigation 

technologies in detail, and use the TomTom HD traffic service [71-72] as an example. 

Section 2.2 describes related research focusing on fuel consumption and vehicle 

emissions. Section 2.3 reviews existing transportation network performance measures 

and points out the uniqueness of the defined the NMI (described in detail in Chapter 5). 

The next two sections describe background materials needed for this dissertation: the data 

sources and an introduction of the wavelet transformation. 

2.1 Navigation Technology 

One of the major successes in ITS technology lately has been in the area of Advanced 

Traveler Information Systems (ATIS). In Chapter 1, we introduced the static shortest-

distance, static shortest-duration, and dynamic shortest-duration algorithms. Here we give 

some examples.  

There are now several on-line Internet tools (e.g., MapQuest [59] and previous 

version of Google Map [58]) that provide directions from any origin to any destination in 

the roadway network. In addition, many vehicle manufacturers (as well as third party 

companies) now offer on-board navigation systems that use GPS technology combined 

with sophisticated mapping software to provide driving directions to specified 
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destinations. These systems do not use  dynamic real-time traffic information, and are 

examples of static navigation systems. As to the price, they are either free of charge 

(internet-based) or have an affordable price with no subscription fee. For example, the 

author has a Garmin Nuvi 270 portable GPS navigator [74], which is around $130. Due 

to the low price of these systems, they are still dominant in the market.     

Recently, more advanced navigation systems are emerging that use real-time traffic 

information on congestion and accidents to determine the best route to take to a desired 

destination. These advanced navigational tools are emerging on the Internet (e.g. current 

version of Google Map [58]) and are used where roadway performance data is available 

(where sensors exist). Further, several vehicle manufacturers and third parties have 

incorporated real-time traffic information into their on-board navigation systems. These 

dynamic navigation systems may report to the drivers the length and reason of the delay, 

travel time, and even alternative routes. These systems generally require a monthly 

subscription fee, and are slowly growing in the market.  

For example, a leading portable navigation solutions provider TomTom is providing a 

“high definition” (HD) traffic service [72] to users with real time traffic information 

(mainly in Europe), and a possible suggestions of alternative routes. According to [71], 

the HD traffic is available to the public in the Netherlands and being prepared for the 

introduction in a number of other countries in Europe in 2009. There are basically four 

data sources of TomTom’s HD service [71]. The first one and the largest one is data 

anonymously collected from cell phone networks. The second source of data is provided 

by users of connected navigation devices. These users provide anonymous, real-time GPS 
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location and velocity data. The third one is the third-party data providing accidents and 

roadway closure information, such as the data from a traffic management center. The 

anonymous historical GPS traces collected from TomTom navigation system users are 

the fourth data source. These historical data provide information on average speeds by 

roadway segments by time of the day.  

Therefore, it is possible that it covers much larger roadway network if there are 

enough number of drivers willing to provide such information through cell phones. The 

manufacture claims to cover up to ten times more roads than conventional traffic system. 

Figure 2.1 shows such a GPS unit capable of receiving TomTom HD traffic. 

 

Figure 2.1: TomTom one XL HD traffic GPS unit 

One point to clarify is that although these routes are calculated based on real time 

traffic information and they might suggest a desirable travel time, it cannot guarantee that 
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paths calculated in this way have the shortest duration, due to the fact that roadway 

incidents (accidents, road segment closure, etc.) cannot be predicted. Having this in mind, 

however, we still call it dynamic shortest-duration algorithm throughout this dissertation.   

2.2 Environment / Energy Navigation Research 

Navigation technologies described in Section 2.1 certainly helps to travel efficiently. 

In many cases, a time- or distance-minimizing algorithm will also minimize fuel 

consumption and emissions. However, there are cases where this is not true, particularly 

with congestion and in areas with significant road grade. A shortest-distance algorithm 

may have a driver travel through heavily congested conditions, resulting in higher fuel 

consumed. On the other hand, there will also be some cases where a shortest-duration 

(dynamic or static) route will result in longer distance traveled on less congested 

roadways. Travel at very high speeds for longer distance will generally result in higher 

fuel consumption (and emissions) compared to a more direct route.  

Several studies have shown that selecting different travel routes between the same 

origin-destination (OD) pair can result in significant differences in the amount of fuel 

consumed and the amount of emissions emitted [3, 4]. Further, an exploratory study in 

Sweden found that 46% of the trips were not made on the most fuel-efficient route. These 

trips could have saved fuel by an average of 8% with the help of a fuel-optimized 

navigation system [5]. Therefore, there is much to be done in terms of finding fuel 

efficient routes.  

However, only a few researchers have investigated methodologies that provide a 
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route consuming less energy and produce less emissions [60][63][64][12]. In this 

dissertation, we are not necessarily developing new path minimizing algorithms, but 

rather developing a new set of cost functions based on energy and emissions using the 

CMEM model. The use of fuel consumption and emissions as a cost function in roadway 

navigation is unique.  

2.3 Transportation Network Performance Measures 

As we know from Section 2.1, the dynamic shortest-duration navigation systems have 

the capability to re-route if the driver wishes to avoid a particular area of the roadway 

network. With the ability to re-route based on changing network conditions, it is useful to 

develop an effectiveness index that gives an indication of the number of routing options. 

A network with a low index value will not have many re-routing choices; and therefore, 

choosing an alternative route based on real-time traffic conditions will have limited value. 

On the other hand, a roadway network with a high index value will be able to provide 

numerous choices when traffic conditions change.  

There has been a variety of performance indices developed for different purposes of 

transportation network evaluation. These indices are generally used to quantify three 

performance measures, i.e. mobility, accessibility, and reliability. In the context of traffic 

engineering, mobility has been defined as “the potential for movement, the ability to get 

from one place to another,” according to Handy [42]. Further, Handy [42] also takes the 

traditional level of service as an example of measure of mobility: higher volume-to-

capacity ratio results in lower mobility.  
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Accessibility index can be interpreted as a measure of how easy it is to reach 

opportunities (e.g. goods, services, activities, educational places). It is more concerned 

about how easy it is to reach opportunities rather than how easy the travel itself is. 

Therefore, an accessibility index generally incorporates both an impedance factor 

indicating the cost (time, distance, fuel consumption, etc.) of reaching an opportunity and 

an attractiveness factor indicating the quality of that opportunity. A high level of mobility 

does not necessary result in high accessibility. For example in rural areas, although the 

traffic conditions are always good, the accessibility level is low because there are few 

things to reach. Ahmed and Levinson [43] as well as Handy [42] provide a good 

explanation of the difference and relationship between accessibility and mobility. There 

are plenty of accessibility indices proposed over the past several decades (see, e.g. [43, 44, 

45, 46, 47, 48], and see [43] and [44] for a comprehensive survey of various accessibility 

indices).  

In contrast to the previous two measures, reliability indicates how reliable (how much 

performance can be maintained) the transportation network is after certain links fail. 

Examples are connectivity reliability, travel time reliability [49], and capacity reliability 

[50]. 

In this dissertation, we propose a new transportation network performance measure  

called Navigational Mobility Index (NMI) to quantify the availability of different 

roadway facilities from one location to another (with an initial focus on freeways), 

specifically for navigational purposes. We further define a node-NMI and an area-NMI 

based on overall roadway availability. For the dynamic routing algorithms, one relevant 
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question that arises is that if a driver wishes to change his/her route based on real-time 

traffic information, how many reasonable route choices are possible? The proposed NMI 

will answer this question fundamentally. 

The NMI defined in this dissertation differs itself from any of the three measures 

previously mentioned. It is specifically defined for navigational purposes. Although we 

term it as “mobility index”, we do not intend to associate the proposed NMI with any 

previous measures. In the literature, the closest concept that may achieve similar 

functionality is Path-Size. In the context of route choice modeling, Bekhor et al. [51, 52] 

proposed the concept of Path-Size to account for the correlation between routes of a 

source-destination pair and defined it as the weighted number of paths. However, in later 

chapters we show that the Path-Size concept is not suitable for our navigational purposes. 

Based on the proposed NMI measure, we develop a routing algorithm giving the best 

degree of freedom for re-routing. To the best knowledge of the authors, we have not 

found any similar research to this topic.     

The next two sections describe background material useful for later chapters. 

2.4 Data Sources 

There are basically two types of data sources used for analysis in this dissertation. 

The first source is macroscopic traffic data, which are typically collected by embedded 

inductive loop detectors, magnetic sensors, microwave radar, video cameras, infrared 

sensors, etc. [70]. Raw data collected by these sensors can be processed to measure traffic 

flow, density, and average traffic speed [73].  
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Among all these kinds of sensors, inductive loop detectors have been used 

extensively on freeways. Figure 2.2 describes how a typical embedded inductive loop 

detector looks like. For this dissertation, we utilized California’s Freeway Performance 

Measurement System (PeMS) [14-15] operated by the California Department of 

Transportation (Caltrans) and the University of California, Berkeley to provide real-time 

macroscopic traffic parameters. The California PeMS system collects real-time traffic 

information from inductive loop detectors embedded in California’s freeways and makes 

it available for transportation management, research, and commercial use. The system 

provides real-time five-minute, per-loop averages of lane occupancy, flow, speed, and 

congestion for various links in the roadway network. The data are available over the 

Internet. For more information on PeMS, see http://pems.eecs.berkeley.edu. 

 

http://pems.eecs.berkeley.edu/�
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Figure 2.2: A picture of an embedded loop detectors. 

 

The second source is microscopic vehicle data, which are collected by GPS-equipped 

probe vehicles and are used to examine the second-by-second velocity trajectory of 

individual vehicles. At the College of Engineering – Center for Environmental Research 

and Technology (CE-CERT) at the University of California Riverside, a large database of 

these vehicle activity data is organized into different layers. In this dissertation, we use 

this database collected by CE-CERT for the microscopic vehicle data. Figure 2.3 shows 

an example probe vehicle we used.  

A variety of studies have taken place to develop relationships between microscopic 

vehicle data and macroscopic traffic data.  For example, in [69] it was found that the 
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macroscopic traffic data can be correlated with the velocity trace of the probe vehicle, 

acting as a representative of the general traffic flow. 

 

 

Figure 2.3: A picture of a probe vehicle. 

2.5 Wavelet Transform Application 

Wavelet transforms were developed primarily in the 1980’s as a tool to divide data or 

functions into different frequency components. Each time-series component can then be 

examined at different scales. Wavelet transforms are well known for their good 

localization of both time and frequency instead of a frequency-only technique like a 
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discrete Fourier transform (DFT). There has been a significant amount of activity in 

recent years applying wavelet techniques to transportation data. For example, Ping 

designed a wavelet-based linear prediction technique for traffic volumes [24]. Further, 

Yu investigated wavelet-based determination of aggregation levels for ITS data [25]. 

Jiang uses a wavelet packet-autocorrelation function method for traffic flow pattern 

analysis [26]. 

Wavelet transform is a branch of applied mathematics, and it is a fusion of ideas from 

several different fields, such as applied mathematics, digital signal processing, and 

physics. Basically, there are two kinds of wavelet transforms. The first one is continuous 

wavelet transform (CWT). Let )()( 2 RLtx ∈ , where )(2 RL is the set of all functions f such 

that the integral of 2f over the whole real line is finite, and )(tφ is the mother wavelet 

function, then the CWT of x(t) is  

∫ >=<
−

= )(),()()(1),( * ttxdt
a

ttx
a

aWT ax τφτφτ  (2.1) 

where a is the scale factor and τ  is the translation factor.  

CWT is calculated by computing the correlation between a signal and a continuously 

shifted and continuously scaled version of the mother function. Therefore, much 

redundancy exists in a CWT. At the same time, for most functions, the CWT has no 

analytical solutions and therefore needs to be numerically calculated by a computer. 

Moreover, in many practical applications, the signal is sampled time sequences. 

Therefore, a discrete wavelet transform (DWT) is more preferable. An important issue in 

any transform scheme is the question of reconstruction from the transform domain. It 
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turns out that it is possible to reconstruct a signal from its wavelet decomposition. DWT 

is quite suitable for discrete signal processing, for example, in speech, image, and time 

sequence processing. There are several ways to present the DWT: from a filter-bank 

theory approach or from a multiresolution analysis (MRA) point of view. The MRA 

approach is briefly reviewed (see [33] and [34] for further details).  

MRA describe mathematically the process of studying signals at different scales. 

MRA represents the whole space )(2 RL  by a sequence of embedded subspaces for an 

intelligent choice of appropriate subspaces for an application to get a compromise 

between accuracy and computation complexity. MRA studies the property of a sequence 

of subspace jV and jW , Zj∈ , which approximate )(2 RL by satisfying  

 jjj WVVWVVWVV ⊕=⊕=⊕= +1112001 ,,,,  

where: 

)()( 2 RLVUnion Zj
j =∈   (union of all jV is the whole space); Ο=∩ ∈

j
Zi V            

(intersection of all jV is empty); 

jj WV ⊥                       ( jV is orthogonal to jW  ); and 

',' jjWW jj ≠⊥        ( jW is orthogonal to 'jW  ). 

The Haar scaling function is defined as:  





∉
∈

=
)1,0[0
)1,0[1

)(
t
t

tφ  (2.2) 

and )2(2)( 2/ itt jjj −= φφ , andj ,...1,0=  12,...,1,0 −= ji . 
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The vector space jV is defined as 12,,1,0}{ −== ji
j

i
j spanV


φ . It is straightforward to see 

that 1+⊂ jj VV . The Haar wavelet function is defined as  








∈−
∈

=
otherwise
t
t

t
0

)1,2/1[1
)2/1,0[1

)(ϕ  
(2.3) 

and  )2(2)( 2/ itt jjj
i −= φϕ  ,...1,0=j  and 12,...,1,0 −= ji . 

The vector space jW is defined as 12,...1,0}{ −== ji
j

i
j spanW ϕ

 
such that 1+⊂ jj VW .  

By straightforward mathematical computation, we find that the Haar basis has this very 

important property: 

jjj WVV ⊕=+1  

In order to compute a Haar wavelet transform, we let NRf ∈ , where nN 2= , and 

expand this signal into 110 −⊕⊕⊕ nWWV   spanned by the basis vectors. This is 

accomplished by first expanding f into 11 −− ⊕ nn WV . The first step can be described as the 

following matrix-vector multiplication fWf 11 =  where 
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It can be seen that the first half rows correspond to the basis 1
12

1
1

1
0 ,,, −

−
−− nnn

iφφφ   that 

span 1−nV and the last four rows correspond to the basis vector 1
12

1
1

1
0 ,,, −

−
−− nnn

jϕϕϕ   that 

spans 1−nW .  

Step two is to expand f into 122 −−− ⊕⊕ nnn WWV . The second step can be described by 

the matrix-vector multiplication as 122 fWf = .                             
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This can be generalized to: 
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and fWWWf nnn 11−= , where nf is the wavelet coefficient. 
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3.  Environmentally-Friendly Navigation  

3.1 Introduction 

This chapter describes an innovative route selection methodology that is designed 

specifically for minimizing fuel consumption and vehicle emissions. The key innovation 

in this research is the integration of current navigation technology with sophisticated 

vehicle energy and emission models. This research now provides the ability for a driver 

to not only have a choice of selecting a shortest-distance or shortest-duration route, but 

also a route that minimizes the fuel consumed and/or pollutant emissions for that 

particular trip. 

As we already know from Chapter 2, although it is true that in many cases, a time- or 

distance-minimizing algorithm will also minimize fuel consumption and emissions, there 

are several cases where this is not true, particularly with high levels of congestion and in 

areas with significant road grade. In this chapter, we have carried out case studies to 

better understand these cases, estimating the effectiveness of the routing algorithms that 

minimize fuel consumption and emissions. 

In Section 3.2, background information on energy and emissions modeling is 

provided. Section 3.3 outlines the overall methodology of the research. Several case 

studies are illustrated in Section 3.4, along with their results.  
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3.2 Comprehensive Modal Energy and Emission Model 

In 1996, CE-CERT at the University of California Riverside began the development 

of a Comprehensive Modal Emissions Model (CMEM, [6-10]), sponsored by the 

National Cooperative Highway Research Program and the U.S. Environmental Protection 

Agency (EPA). The need for this type of microscale model that can predict second-by-

second fuel consumption and emissions based on different traffic operations was and 

remains critical for developing and evaluating transportation policy. In the past, large 

regional emissions inventory models were being applied for these types of microscale 

evaluations with little success. The majority of the CMEM modeling effort was 

completed in 2000 and the model has been updated and maintained since then under 

sponsorship from the U.S. EPA. CMEM is a public-domain model and has several 

hundred registered users worldwide. 

CMEM was designed so that it can interface with a wide variety of transportation 

models and/or transportation data sets in order to perform detailed fuel consumption 

analyses and to produce a localized emissions inventory. CMEM has been developed 

primarily for microscale transportation models that typically produce second-by-second 

vehicle trajectories (location, speed, acceleration). These vehicle trajectories can be 

applied directly to the model, resulting in both individual and aggregate energy/emissions 

estimates. Over the past several years, CMEM has been integrated into various 

transportation modeling frameworks, with a focus on corridor-level analysis and 

intelligent transportation system implementations (e.g., CORSIM, TRANSIMS, 
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PARAMICS, SHIFT, etc.). 

CMEM is comprehensive in the sense that it covers essentially all types of vehicles 

found on the road today. It consists of nearly 30 vehicle/technology categories from the 

smallest light-duty vehicles to Class-8 heavy-duty diesel trucks. With CMEM, it is 

possible to predict energy and emissions from individual vehicles or from an entire fleet 

of vehicles, operating under a variety of conditions. One of the most important features of 

CMEM (and other related models) is that it uses a physical, power-demand approach 

based on a parameterized analytical representation of fuel consumption and emissions 

production. In this type of model, the entire fuel consumption and emissions process is 

broken down into components that correspond to physical phenomena associated with 

vehicle operation and emissions production. Each component is modeled as an analytical 

representation consisting of various parameters that are characteristic of the process. 

These parameters vary according to the vehicle type, engine, emission technology, and 

level of deterioration. One distinct advantage of this physical approach is that it is 

possible to adjust many of these physical parameters to predict energy consumption and 

emissions of future vehicle models and applications of new technology (e.g., 

aftertreatment devices). 

CMEM has been rigorously validated [9]. It is also considered to be one of the most 

detailed and best tested estimates of vehicle exhaust emissions at different speeds and 

accelerations [11]. Further, CMEM also accounts for road grade effects. It has been 

shown that road grade has a significant effect on fuel consumption and emissions, e.g., 

[12] and [13]. For further information on the CMEM effort, please refer to [6-10]. 



25 

 

3.3 Methodology 

The overall methodology for developing environmentally-friendly navigation can be 

broken down into two general components: 1) For a given roadway network, link-based 

energy and emission factors have been developed that can be indexed by macroscopic 

link characteristics such as flow, density, speed, and road grade. Thus, given explanatory 

variables such as flow, density, and speed, energy and emission functions (calibrated for 

specific vehicles or fleets) can be used to estimate specific link factors. 2) Given these 

link-based energy and emission factors, network-wide routing algorithms have been 

developed that minimize fuel consumption and emissions. These routing algorithms 

utilize real-time data on traffic performance with the developed energy/emission factors 

for the roadway network under study.  

3.3.1 Link-Based Energy/Emissions Cost Factors 

The method used to build link-based energy and emission factors is illustrated in 

Figure 3.1. A large vehicle activity database has been collected from GPS-instrumented 

probe vehicles for this research, providing time-space indexed speed data of a sample 

vehicle in the traffic stream. Simultaneously, macroscopic traffic parameters are collected 

from the California PeMS system, in particular for the embedded vehicle detection 

station that the probe vehicle is traveling over. The trajectory snippets (e.g., several 

seconds before and several seconds after the vehicle passes over the sensor location) are 

then correlated to the macroscopic traffic parameters. We consider the following: 
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t is time lapse in seconds (t = 1, 2, … , T). For simplicity, we start t = 1 at the first 

second of the first full minute of time stamp; 

p is a 30-second period in which PeMS collects data, i.e. 

p = (t \ 30) + 1; 

i is an index for vehicle detector station (VDS), i.e. 

i = 1, 2, … , n; 

j is a lane number (j = 1, 2, … , m(i)), where lane 1 is the median lane and lane m(i) is 

the shoulder lane; 

ci is the spatial coverage of VDS i, i.e. 

;
2

,
2

11 




 ++

= +− iiii
i

llllc  

li is a centerline distance in km from a starting location (at t = 1) to VDS i. For 

simplicity, we assume l0 = 0 and ln+1 = ln + 1. 

Then, pjitjc Uv
i ,,,, ∈ where v is second-by-second speeds (i.e. speed snippet) of probe 

vehicles and U is macroscopic speed of the traffic. The probe vehicle data were collected 

on the Southern California freeway network at different times of day under different 

congestion conditions.  
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Figure 3.1: Link-level fuel consumption modeling methodology. 

This velocity snippet database was then run through CMEM (described in Section 3.2), 

for all vehicle/technology categories represented in the model. As a result, average fuel 

consumption and emissions factors can be developed for the corresponding macroscopic 

traffic parameters for each vehicle/technology category in CMEM. The lower part of 

Figure 3.1 illustrates these factors as a function of average freeway traffic speed using a 

curve fitting technique for a typical fleet mix in Southern California. The general 

equation used in the regression analysis is given below: 

ln(y) = b0 + b1∙x + b2∙x2 + b3∙x3 + b4∙x4 
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where:   

                        y is the fuel consumption or emissions in g/km; 

            x is average traffic speed in km/h and  

            bi represents the set of polynomial coefficients. 

It is clear that in the energy/emissions vs. average speed graph in Figure 3.1, a certain 

amount of data scatter results for a given average speed. This is in part attributable to the 

fact that the data points in Figure 3.1 are a result of the weighting among the various 

vehicle/technology categories in CMEM, which have different energy/emissions 

characteristics associated with the same driving patterns (i.e. snippets). 

Even for the same vehicle/technology category, the data points may still remain 

scattered, caused by different levels of congestion. For example, there are many vehicle 

trajectories that can have the same average speed, but have different energy/emissions 

results. Average traffic speed is currently used as the primary explanatory variable in our 

methodology as it has been shown to be the strongest explanatory variable for predicting 

energy and emissions. However, other macroscopic freeway traffic parameters (e.g. flow, 

density) can also be included as explanatory variables in conjunction with average speed 

to better differentiate congestion conditions and allow for more accurate fuel 

consumption and emission estimates. 

It is important to point out that although energy/emissions variances exist when 

estimating link-by-link energy/emissions cost factors based on average traffic speed 

alone, these variances are unlikely to propagate but rather partly cancel each other out 

when aggregating the energy/emissions of each link in a route. Therefore, the resulting 



29 

 

variance of the total route energy/emissions will likely be lower than the largest variance 

of the component links. This is especially true if a route is composed of a number of links 

so that the distribution of individual variances converges to the Gaussian shape. 

Further, it is worth mentioning that even if we include additional explanatory 

variables such as traffic density and flow rates, a certain degree of variance may still 

remain due to an individuals’ driving style (i.e. passive vs. aggressive). Ideally, the 

energy/emission estimation equation should be calibrated for each individual driver 

according to his/her personal driving style. This requires collecting driving data (i.e. 

speed trajectory) for individual drivers along with the other traffic variables, and creating 

functions based on these customized data sets. This is potentially a subject of future 

research. 

As mentioned previously, we are only considering freeway links at this time. It is 

clear that driving on surface streets (e.g., arterials, residential streets, etc.) will likely 

involve multiple stops, which can amount to a significant amount of delay (i.e. stopped 

delay). This will certainly affect vehicle fuel consumption and emissions [16]. We are 

currently collecting velocity trajectories on a number of these other road types and are 

developing additional energy/emissions functions specific for surface street driving. 

These other roadway link functions will be incorporated into our environmentally-

friendly navigation methods at a later date. 

Road grade is another critical variable for estimating link-based energy/emission 

factors. By comparing the measured fuel economy between a flat route and example hilly 

routes, it has been found that the vehicle fuel economy of the flat route is superior to that 
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of the hilly routes by approximately 15-20% [17]. Thus, road grade will also be another 

important factor in the environmentally-friendly navigation methodology. However, to 

date, digital roadway networks typically do not typically include road grade information; 

and thus, the incorporation of road grade in our navigation methodology is slated as 

future research. 

3.3.2 Link Fuel Consumption and Emissions Factor Assignment 

Most digital roadway networks consist of nodes (e.g., intersections, freeway on/off-

ramps, point of curvature, etc.) and links (i.e., the road sections between nodes). Specific 

link and node attributes define how the network is connected together and what the 

general features are of the different links/nodes (e.g., position, length, number of lanes, 

capacity, speed limit, etc.). Typical navigation algorithms usually consist of finding a 

particular path between two nodes in the network. This path is usually based on some 

optimality such as shortest-distance or shortest duration. Dijkstra’s algorithm [18] is a 

prime example of a solution to the macroscale route-planning problem; however, other 

more efficient algorithms exist (e.g. [19]). 

One of the key steps of this research is to assign specific fuel consumption and 

emissions factors to each link in the roadway network. Because these factors are a 

function of traffic parameters, ideally each link should have traffic performance data. For 

the freeway links, these traffic performance data are provided from the PeMS system. An 

example is given in Figure 3.2. In the figure, different traffic performance values are 

reported by VDS L through S, as indicated by different colors. These VDS have different 
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spacing distances where the typical spacing distance between two consecutive VDS is 

about 1.0-1.6 km. With the knowledge of the actual spacing distances between the VDS, 

a set of virtual links can be created where each virtual link carries the traffic performance 

data of the VDS it represents. The spatial coverage of a virtual link generally extends 

from the mid distance between its VDS and the adjacent VDS on one end to the mid 

distance between itself and the adjacent VDS on the other end. 

 

 L M N O Q P R S 

1 2 4 5 7 6 3 8 9 10  

Figure 3.2: Link-based energy/emissions factors assignment methodology. 

Each link in the roadway network representation (i.e. Links 1-10 in Figure 3.2) is then 

assigned a traffic performance value of the overlapping virtual link(s) weighted by the 

overlapping distance. For the example in Figure 3.2: 

E1 = (3/4)EL + (1/4)EM 

E2 = (3/7)EM + (4/7)EN 

E3 = EO 

E4 = EO 

E5 = EP 

E6 = EP 

E7 = (7/11)EQ + (4/11)ER 
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E8 = ER 

E9 = (3/5)ER + (2/5)ES 

E10 = ES 

Similarly, each link in the network should also have a road grade value. We have 

developed a methodology for determining road grade of each link; however, road grade 

has not yet been implemented in our algorithms. Once the link-based traffic data (and in 

the future road grade) are in place, then the fuel consumption and emissions (i.e., carbon 

dioxide (CO2), carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen 

(NOx)) values are calculated for each link, for each vehicle/technology type within 

CMEM. It is important to note that in addition to calculating environmentally-friendly 

paths for a specific vehicle/technology type (e.g., heavy-duty trucks), it is also possible to 

calculate the path for a fleet of vehicles. All that is needed is a vehicle fleet composition 

matrix, providing the percentage of each vehicle/technology group in the fleet for the area 

of interest. 

We have developed our methods using ArcGIS 9.1, a popular Geographical 

Information System (GIS) software environment that is produced by ESRI [20]. We have 

imported roadway network data for the southern California region. A specific module 

was developed to link the roadway network database with the real-time traffic 

performance data (i.e., PeMS), obtaining the data every five minutes. Further, several 

other fields were added to the roadway network database, specifically road grade, fuel 

consumption, CO2 , CO, HC, and NOx for the different vehicle/technology categories in 

CMEM. Using the Network Analyst toolbox, the path minimization feature is utilized, 
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which can be set to minimize based on any characteristics of the roadway link data. As a 

result, it is possible to compare minimal routing paths for distance, time, energy, and the 

various emissions. 

3.4 Results and Discussion 

As described earlier, a shortest-duration or shortest-distance path will often be the 

path that also minimizes energy or emissions. This makes sense since the shorter amount 

of time a vehicle spends on the roadway, the aggregated energy/emissions should be less. 

However, if there are roadway congestion and other factors, the energy and emissions 

could be different.  

3.4.1 Case Studies 

There are several freeway routes that provide access between downtown Los Angeles 

and the Inland Empire region, which is made up of many suburban communities. The 

typical travel pattern consists of work commutes from the Inland Empire to downtown 

Los Angeles in the morning, and return commutes back in the afternoon. Because of the 

high volume of commute trips, these freeways often suffer from congestion. To illustrate 

the effect of route choice on energy/emissions under various traffic conditions, we 

consider example trips from downtown Los Angeles to Chino, California. Two 

comparable freeway routes are available: 1) taking Interstate 10 followed by State Route 

71 (referred to I-10 route), and 2) taking State Route 60 (referred to SR-60 route). They 

are illustrated in Figure 3.3. These routes have approximately the same distance (around 
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45.6 km).  

In this chapter, we present four case studies that have different levels of congestion 

on the two alternative routes. For all four case studies, we consider energy/emissions of a 

typical light-duty truck or sports utility vehicle on the freeways under consideration. 

 

1) Case I:  Free-flow Conditions 

To demonstrate the case study where the minimal energy/emissions route is the same 

as the shortest-duration route, we consider an example trip on May 20, 2007 at 1:15 AM. 

Unsurprisingly, during this nighttime event, all freeways were uncongested and the traffic 

was at free-flow. The summary of distance, travel time, as well as estimated fuel 

consumption and emissions are given in Table 3.1 (a). Because of the uncongested 

conditions, a vehicle could travel at the free-flow speed on both routes. Therefore, the 

energy and emissions results are similar for either route (i.e., within a few percentage 

difference). 

 

2) Case II: Free-flow vs. Moderate Congestion 

To illustrate the case where the most environmentally-friendly route is not necessarily 

the same as the shortest-duration route, we consider a trip on June 9, 2007 at 12:20 PM. 

In this case, the SR-60 route was operating at near free-flow conditions while the 

alternative I-10 route was experiencing some moderate congestion. In this case, the SR-

60 route is definitely the faster route (about 5 minutes faster); however, the I-10 route is 
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more beneficial environmentally, as summarized in Table 3.1 (b). The reason that fuel 

consumption and emissions are less is because the vehicles are operating in a moderate 

congestion regime, where the slightly lower speeds require less load on the vehicle 

engines, resulting in lower fuel consumption and emissions [21]. 

 

3) Case III: Free-flow vs. Heavy Congestion 

Another case to consider is when one route is operating under free-flow conditions 

and the other route has heavy congestion. This was the case for I-10 on June 17, 2007 at 

5:10 PM. Because the travel time was significantly longer (71%), and the traffic was 

under stop-and-go conditions for the most part, the fuel use was higher than the free-flow 

route. This affirms that heavy congestion is typically detrimental to fuel consumption. 

We also observe that in Table 3.1 (c), the fuel consumption and emissions are not 

consistent, i.e. the fuel consumption and emissions of one route do not necessarily have 

to be consistently better than those of the other route. For example, the I-10 route 

produces more CO2, less CO, HC, and NOx than the SR-60 route. Figure 3.1 explains this 

phenomenon. In Figure 3.1, we can see that for the free-flow and heavy congestion 

portion, it is possible for them to have comparatively same amount of fuel consumption 

and emissions. Therefore, in heavy congestion vs. free-flow with very high speed 

situations, the comparison result of which route is better in terms of fuel consumption and 

various emissions is somewhat varied.   
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4) Case IV: Moderate Congestion vs. Heavy Congestion 

The last case is when one route is operating under moderate congestion and the other 

route experiences severe congestion, typically due to an accident. This occurred on I-10 

on June 28, 2007 at 2:35 PM. Although the trip on the SR-60 route took longer than it 

should have been, the trip on the I-10 route was much worse. It took more than twice as 

much travel time as the SR-60 route. This also resulted in dramatic negative impacts on 

energy and emissions.  

3.4.2 Estimating Overall Potential Energy/Emissions Benefits 

As traffic condition on freeways usually varies across different times of day, it is 

interesting to analyze as to how often each of the cases discussed above actually occurs in 

a typical time period (e.g. a month). This analysis provides a better idea on the degree to 

which the energy/environmentally-friendly navigation system can recommend a user to 

travel on the better route in terms of fuel consumption and emissions. Therefore, the 

analysis was performed for the I-10 and SR-60 routes used as examples above. Traffic 

data (in particular, the 5-minute average speed data) on these two routes were acquired 

from PeMS for the period from May 14 to June 14, 2007. The data were then used to 

estimate the travel time and fuel consumption of trips from downtown Los Angeles to 

Chino on both routes, assuming that a new trip pair starts at every 10 minutes throughout 

the days. This results in 4,601 travel time and fuel consumption estimates for each route. 

The travel time difference for each trip pair is calculated, which is shown in Figure 3.4. 

Overall, there is a chance of approximately 45% that this particular trip would require the 
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same amount of travel time no matter which route is taken. Between the two routes, 

traveling on I-10 is slightly more likely to reach the destination faster. 

The fuel consumption difference for each trip pair is also calculated, and its 

distribution is shown in Figure 3.5. We can see that about 40% of the trips would need 

approximately the same amount of fuel for each kilometer the vehicle traveled. 

However, the other 60% of the trips would consume different amounts of fuel per 

kilometer and the differences range from 0.8g/km to 9.2g/km. For an average fuel 

consumption of this trip (e.g. 82g/km), the saving could then be from 1% to 11%. 

Between the two routes, traveling on SR-60 is more likely to consume less fuel for each 

kilometer. 
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Table 3.1: Results for case studies. (a) Case 1: Free-flow vs. free-flow (05/20/2007 01:15:00; 

(b)Case 2: Free-flow vs. moderate congestion (06/09/2007 12:20:00); (c) Case 3: Free-flow 

vs. heavy congestion (06/17/2007 17:10:00); (d) Case 4: Moderate vs. heavy congestion 

(06/28/2007 14:35:00).  

(a): 
Measure SR-60 Route I-10 Route % Diff (SR-60 as base) 
Distance (km) 44.9 44.0 -2.0% 
Travel time (min) 23.6 22.7 -3.8% 
Fuel consumption (g) 3,780 3,767 -0.3% 
CO2 (g) 11,600 11,531 -0.6% 
CO (g) 133.8 143.1 7.0% 
HC (g) 3.90 3.99 2.3% 
NOx (g) 9.80 9.82 0.2% 

 
(b): 

Measure SR-60 Route I-10 Route % Diff (SR-60 as base) 
Distance (km) 44.9 44.0 -2.0% 
Travel time (min) 23.6 29.2 23.7% 
Fuel consumption (g) 3,800 3,459 -9.0% 
CO2 (g) 11,645 10,704 -8.1% 
CO (g) 141.2 88.0 -37.7% 
HC (g) 3.97 3.09 -22.2% 
NOx (g) 9.90 8.77 -11.4% 

 
(c): 

Measure SR-60 Route I-10 Route % Diff (SR-60 as base) 
Distance (km) 44.9 44.0 -2.0% 
Travel time (min) 24.0 41.1 71.3% 
Fuel consumption (g) 3,718 4,043 8.7% 
CO2 (g) 11,438 12,480 9.1% 
CO (g) 122.4 119.1 -2.7% 
HC (g) 3.73 3.58 -4.0% 
NOx (g) 9.59 9.57 -0.2% 

 
(d): 

Measure SR-60 Route I-10 Route % Diff (SR-60 as base) 
Distance (km) 44.9 44.0 -2.0% 
Travel time (min) 41.0 93.4 127.8% 
Fuel consumption (g) 3,361 4,777 42.1% 
CO2 (g) 10,505 14,918 42.0% 
CO (g) 46.3 63.0 36.1% 
HC (g) 2.36 2.83 19.9% 
NOx (g) 8.09 9.24 14.2% 
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(a): 

 

(b): 

 

(c): 

 

(d): 

 

Figure 3.3: (a): Road network for case study 1: free-flow conditions on both freeways 

between Los Angeles and Chino; (b): Road network for case study 2: free-flow conditions on 

SR-60 and moderate congestion on I-10; (c): Road network for case study 3: mostly free-flow 

condictions on SR-60 and heavy congestion on I-10; (d): Road network for case study 4: 

moderate condiction on SR-60 and heavy congestion on I-10. Note that roadway links are 

colored based on their real-time speeds( 0-40 km/h” magenta; 40-65 km/h: orange; 65-90 

km/h: blue; 90+ km/h: green). This also applies to (b), (c), and (c). 
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Figure 3.4: Histogram of travel time difference between the two routes during May 14-June 

14, 2007. 
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Figure 3.5: Histogram of trip fuel consumption difference between the two routes during May 

14-June 14, 2007. 
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Figure 3.6: Percentage frequency distribution of the paired trip fuel consumption. 

The next step in the analysis is to examine in detail how frequently and how much the 

fuel consumption of these two routes differs in each bin. In this step, the fuel 

consumption estimates for each trip pair were allocated to the corresponding cells in the 

frequency distribution matrix shown in Figure 3.6. The frequency value in each cell was 

then normalized by the total number of trips (i.e. 4601). The diagonal cells of the matrix 

in Figure 3.6 refer to those trip pairs that would not have significant fuel consumption 

difference no matter which route is taken. These trip pairs account for about 44% of the 

total simulated trips. On the other hand, the remaining 56% of the trips (which fall in the 

non-diagonal cells of the matrix) would have significantly different fuel consumption 

depending on which route is taken. For these trips, the energy/environmentally-friendly 

navigation system could direct the driver to a route that helps save fuel.  
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Figure 3.7 presents the potential fuel saving due to the use of the 

energy/environmentally-friendly navigation system. The curves in Figure 3.7 are derived 

from the fuel consumption vs. speed relationship shown in Figure 3.1. It can be seen that 

the fuel saving is highly dependent on traffic conditions (i.e. average traffic speed). In the 

low speed regime (<72 km/h), a fuel savings will be achieved if the average speed on one 

route is higher than the other. This is opposite for the high speed regime (>72 km/h). 

Further, an 8 km/h speed difference that occurs at moderate congestion (e.g. 80 km/h) 

does not give the same amount of fuel saving as an 8 km/h speed difference that occurs at 

free-flow condition (e.g. 120 km/h). These are all due to the non-linear shape of the fuel 

vs. speed curve.  

In Figure 3.1, the bottom of the curve seems somehow flat, a question might be 

asked: will the fuel consumption corresponding to average speeds between 48 km/h and 

112 km/h be different? The answer is true. This speed range corresponds to the final 

speed values (x axis in Figure 2.7) of between 64km/h and 96km/h. The red solid line in 

Figure 3.7 suggests that the fuel saving in this speed regime could be from 2% to 10%. 

For the non-flat part of the curve in Figure 3.1, a significant amount of fuel saving (larger 

than 10%) could happen if, for example, we lower the speed higher than 112 km/h down 

by 16 km/h, or increase the speed lower than 44 km/h up by 16 km/h.  
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Figure 3.7: Potential fuel saving due to the use of energy/environmental-friendly navigation. 

By combining the results in Figure 3.4, 3.5, 3.6 & 3.7, it is estimated that for this 

particular example the energy/environmentally-friendly navigation system could 

potentially help save fuel by an average of 1.4 g/km, if the more fuel efficient route for 

each trip pair is always selected for all the 4601 trip pairs. It is important to note that this 

estimate is based on the assumption that the probability of making a trip is equal across 

the days. This assumption unintentionally causes an underestimation of the fuel saving 

benefit. If only peak periods (morning and afternoon commutes) were used in the 

analysis, the potential fuel saving would have been much higher because the traffic 

conditions of these two routes are likely to be different more frequently. 
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4. Vehicle Trajectory-Based Road Type 
and Congestion Recognition using 
Wavelet Analysis 

 

4.1 Introduction 

From Section 2.4 we know that there are basically two kinds of data sources for 

measuring roadway-traffic performance. One is macroscopic traffic data, which can be 

collected from fixed embedded inductive loop detectors. Data from these detectors are 

very useful for transportation officials who are interested in historical and current 

roadway performance, in order to better manage traffic. In addition, these systems are 

beneficial for drivers who want to see where congestion is occurring in real-time and 

want to estimate travel time for interested link segments via ATIS technology, i.e. 

navigation tools. 

There are still many roadways that do not have embedded loop detectors, or they 

haven’t been hooked up yet to a traffic management center. As a duality and complement 

to fixed embedded loop sensor systems, probe vehicles can also be used to gather 

information on the roadway. In general, probe vehicles carry on-board instrumentation to 

measure their own velocity trajectories and/or travel times as they traverse the roadways; 

in many applications, the probe vehicles’ information can be used as a surrogate for 

average traffic data, such as average speed or travel time on a section of roadway. The 
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measurements can either be relayed back to a management center in real-time via some 

type of communication, or be stored locally for later analysis.  

In addition to simply estimating average traffic speed, probe vehicle trajectory data 

can be interpreted to determine further characteristics of traffic and the roadway. Rather 

than transmitting velocity and position trajectory information to a centralized location for 

analysis (requiring high communications bandwidth), it is possible to perform on-board 

trajectory interpretation for purposes of determining roadway type and localized 

congestion conditions. This information can be useful in several applications: 

1) centralized traffic management systems: sending locally-processed data greatly 

reduces the bandwidth required when probe vehicle relay information back to a 

centralized traffic management center; 

2) de-centralized traffic management systems: there has been a good deal of interest 

lately in eliminating the need for a centralized traffic management system; instead 

it has been proposed to have vehicles communicate among themselves to determine 

traffic conditions (see, e.g. [22] and [23]). 

3) in-situ emissions and/or energy management control systems: based on the type of 

driving the vehicle is experiencing, intelligent control systems can modify their 

internal emissions control system parameters to minimize pollutants and energy 

consumption. Further, for hybrid vehicles, parameterized driving information can 

be used to optimize their energy management systems. 
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4) energy consumption and emissions estimation: understanding fleet-based fuel 

consumption and developing an emissions inventory as a function of traffic 

conditions is important in many congested cities. 

5) traffic simulation model calibration: the understanding of real-world second-by-

second velocity patterns associated with different roadtype/congestion levels can 

potentially be used to calibrate microscopic traffic models implemented for the 

same network. Default vehicle behavior parameters (e.g., car-following logic) in 

these models typically need to be calibrated for local traffic conditions. 

In this chapter, a method is described to recognize roadway types and congestion 

conditions simply by analyzing short-term vehicle velocity trajectories (i.e., 128-second 

snippets). Normally, a location system can be used to determine roadway type and 

congestion levels when tied in with a traffic information system (e.g., based on embedded 

loop detector data). However, we propose that roadway type and congestion conditions 

can be determined without these external systems, making the task simpler and more 

robust by analyzing snippets of local velocity patterns.  

The implementation hardware for this application should be made small, economic, 

and easy to use. Therefore, the associated algorithms should have low complexity. In our 

implementation, Haar waveform transformations are computed and principal component 

analysis (PCA) is used on the leading wavelet coefficients, meeting the criteria for low 

complexity. The hardware can consist of a simple embedded system with sufficient 

memory in order to extract the first several wavelet coefficients and then using these 

coefficients for further processing. After evaluating this initial approach, it was found that 
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better recognition could be achieved by using the Adaboost algorithm [27-28] to 

intelligently select the wavelet coefficients that are important for classification, rather 

than ignoring the tail wavelet coefficients in the PCA approach. 

An introduction of PCA and the reason why Harr wavelet is suitable for this 

application is given in Section 4.2. Section 4.3 that describes the proposed methodology 

including PCA and the Adaboost algorithm to recognize roadway facility type and 

congestion levels. Section 4.4 describes overall results. Section 4.5 of the chapter 

presents the conclusions and future work. 

4.2 Background 

One method to deal with the problem of high dimensionality is to reduce the 

dimensionality by combining features. Linear combinations are preferable because they 

are simple to compute. Principal components analysis (PCA) is one kind of such linear 

combination methods and it seeks a projection that best represents the data in a least 

square sense. PCA finds components that are useful for representing data.  The main 

application of PCA is to reduce the dimensionality of data while keep as much 

information as possible. Since an eigenvalue decomposition of the covariance matrix is 

necessary, the computation complexity can be high. Further details on the technique can 

be found in [35]. 

In the case of using vehicle velocity trajectories as the time-series data, there are two 

key properties: (1) a vertical shifting variance; and (2) a trend variance. It is assumed that 

average speed of the short vehicle velocity trajectory is an important indicator of the road 
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type. Therefore, roadtype classification is highly sensitive to vertical shifting. Tilting the 

sequence also affects roadtype classification greatly. We find that the Haar wavelet 

transform is good for roadtype classification since its first coefficient is the average of the 

data. Haar coefficients are also sensitive to the general trend because tilting the sequence 

affects all the Haar coefficients [36]. In this research, we first use discrete wavelet 

transform for feature extraction. The resulting feature vectors have many useful 

properties. They give us a good representation of the natural features of the original time 

series, not only at small scale, such as sharps peaks, but also at large scale, such as wide 

mountains. After the feature extraction of wavelet transform, initially PCA is applied to 

wavelet subbands to extract features further and therefore reduce the dimensionality. 

Later, it was found that if we use the Adaboost algorithm to intelligently select features 

(wavelet coefficients), better classification results can be achieved. 

4.3 Methodology 

4.3.1 Method using DWT and PCA 

Figure 4.1 illustrates the overall process of calculating the wavelet transform and 

PCA on the fly for vehicle velocity trajectory snippets (128 seconds). Data are 

continuously acquired, typically through an interface to the vehicle’s on-board bus that 

monitors the vehicle velocity as one of many parameters. This time-series data are pre-

processed, applying noise filtering. The discrete wavelet transform is first applied, which 

extracts a set of features from each time series. Based on these feature vectors, we can do 
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further analysis for classification. This is indeed a problem of dimension reduction. The 

combination of discrete wavelet transform combined with principal components analysis 

is applied to achieve this dimensionality reduction. After the feature vectors are extracted 

(dimension reduction), the classification step follows. There are several classification 

methods, such as multiclass LDA, nearest-neighbor matching, and neural networks. A 

multiclass LDA approach tries to project the data in such directions that are efficient for 

discrimination. For LDA, the data have to be linear discriminable. A K-nearest-neighbor 

classifies a time series by assigning the label most frequently represented among the k 

nearest samples in the training set. In other words, a decision is made by looking at the 

labels on the k nearest neighbors and choosing the majority. For a neural network 

approach, many layers might be required and a large amount of neurons might be needed. 

Further, the convergence might be very slow and the computation complexity is high. In 

this application, a nearest-neighbor algorithm is applied. In the last step, it is desired to 

estimate the roadway type and congestion level. Note that training data are required for 

this recognition.  
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Figure 4.1: Process diagram of the project. 

In the proposed methodology, the Haar DWT transform is used as the feature 

extractor for the roadtype and congestion classification. Subsequently, PCA is applied to 

further reduce the dimensionality. In the road type and congestion classification problem, 

the probability distribution of the velocity speed is unknown due to many uncertain 

factors affecting the velocity speed, such as general traffic interaction, time of weekday 

or weekend, weather conditions, and personal driving behavior. We do not have prior 

information about the probability density function. Therefore, nearest neighbor is chosen 

as the classification rule in the final step, which is a nonparametric technique and doesn’t 

assume a probability distribution. 

Adopting the same metric as in [31], [32], we use the square root of the sum of 

squared difference as distance function to measure the similarity between two sequences. 

The distance between two time sequences yx, of equal length n is 
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A nearest neighbor method is used instead of setting a hard threshold ε to determine 

“similar” sequences. It should be noted that for other applications, such as range query in 

database, hard thresholds for decision of similar sequences are typically used. In [32], it 

is shown that the Euclidean distance is preserved under Haar wavelet transforms and 

using the first several coefficients of Haar transform will not cause false dismissal for a 

range query. In this chapter, based on the multi-resolution analysis and the Haar 

transformation matrix described in the previous section, we show a similar idea in a much 

simpler way. Although we are not using a hard decision rule, we still include the proof of 

no false dismissal here for completeness. 

Lemma 1.  Euclidean distances of both coefficients in time domain and in transformed 

wavelet domain are the same for Haar DWT transformation. In other words, Euclidean 

distance is preserved under Haar DWT transformation. 

Proof:  from last section, we have fWWWf nnn 11−= , where iW is unitary matrix. 
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Lemma 2. If only the first several dimensions of the Haar transformation coefficients are 

selected, no false dismissal will occur. 

Proof:  Considering the inequality ε≤),( yxD  
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If we only select the first h dimensions of the transformation coefficients,  

))(),((),( yxyx WTWTDD =  
                                ∆+= )):1)((),:1)((( hWThWTD yx  

                                                                 ε≤  
where ∆ is a nonnegative number. We employ the MATLAB syntax where 

):1)(( hWT x means the 1 to h rows of )(xWT . Therefore, we 

have ε≤)):1)((),:1)((( hWThWTD yx , which guarantees no false dismissal. 

We use Haar wavelet transform before PCA considering the computation complexity. 

The computation complexity of PCA is very high. The computation of computing the 

eigenvector from a covariance matrix of a dataset is )( 3No , where N is the dimension of 

the dataset. If the number of training vectors M is less than N, the computation 

complexity is reduced to )( 3Mo . Therefore, the computation complexity can be expressed 

as )( 3po , where ),min( NMp = . 

4.3.2 Method using DWT and Adaboost 

The method in the previous section assumes that the tail wavelet coefficients of the 

signal are not important for the classification. However, we know that this assumption is 

not strong, or at least not guaranteed.  

In terms of the feature selection process, boosting algorithms were originally 

proposed by Schapire and Freund [27], [28]. The most recent version, referred to as 

Adaboost, has been shown to be very effective. These boosting algorithms have very 

broad applications, including face recognition [29], medical imaging [30], etc. These 

methods are effective for improving the accuracy of a learning algorithm. It produces a 



53 

 

very accurate classification rule by combining weak or moderately accurate rules with 

accuracy only slightly better than random guessing. It repeatedly reweights the examples 

in the training set and reruns the weak learning algorithms on these reweighted training 

examples.  

In this section, the Adaboost algorithm is used instead to intelligently select the 

wavelet coefficients that are important for classification, i.e. as part of the feature 

selection process. The value of this type of boosting algorithm is that it effectively forces 

the weak learning algorithm to concentrate on the hardest examples. The final combined 

hypothesis is a weighted vote of the weak hypotheses. If we assume Thhh ...,,, 21 is a set of 

weak hypothesis, then 

∑
=

=
T

t
tt xhxf

1
)()( α  

where tα  is the weight of each weak hypothesis within the set, )(xf is the final 

classification hypothesis. 

In real world, many problems are multiclass classification problems, such as 

roadtype/congestion classification in this chapter, handwritten digit recognition, vehicle 

classification, etc. Multiclass learning problems can be generally solved by reducing 

them into binary classification problems. Several ways are typically used to achieve this. 

The most straightforward reduction is to use a binary learner to learn each individual 

class. Therefore, this approach learns k individual binary functions kff ,,1  , one for each 

class. Finally we will have a collection of hypotheses, each of which tries to predict 

whether an instance belongs to one particular class. To assign a new item, X, to one of the 
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classes, all if will be evaluated for X, and X will be assigned class j with highest )(Xf i . A 

separate rule will be used to break ties. This is called one-per-class approach, following 

the terminology of [37]. 

Another approach, first proposed by Sejnowski [38], is to associate with each class a 

unique binary string of length n, which is referred to as “codewords”. One hypothesis is 

learned for each of the n bit positions. When we train for an example from class k, we 

specify the desired outputs of these n hypotheses by the n-bit binary string associated 

with class k. A test instance is then classified to belong to the class whose codewords (n-

bit string) is closest in hamming distance to the string of predictions generated by the n 

hypothesis.  

Based on this approach, Dietterich’s algorithm [39] tries to pick the codewords 

associated with the classes to belong to error-correcting codes which have some special 

properties in communication theory. This error-correcting code approach suggests that 

we can view the machine learning as a kind of communications problem. The true 

identity that is the correct output class for a new instance is transmitted over a channel. 

The channel generally can be understood to consist of the features selection process, the 

collection of training examples, and the learning algorithms. The class information is 

corrupted due to the errors introduced by the imperfect channel. If we encode the class 

into error-correcting codes and transmit each bit sequentially, we might be able to recover 

errors introduced by channel.  

Motivated by the Adaboost and error-correcting algorithms, Schapire [37] developed 

one algorithm called Adaboost.OC, having the performance advantages of boosting while 
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relying only on binary weak learner. Guruswami [40] proposed a variant of this algorithm 

called Adaboost.ECC that uses a better weighting of the weak hypothesis, and in fact 

chooses the weights purely as a function of the error of the binary weak hypothesis, and 

therefore represents a more direct reduction of multiclass learning to binary learning. 

Table 4.1 and Table 4.2 below contain a formal description of the two algorithms 

with application to the roadtype/congestion classification problems. In this chapter, we 

follow the terminology of [37] and use the notation Ψ  that is defined to be 1 if 

propositionΨ  holds, and 0 otherwise. Basically these two algorithms are given m training 

examples in the form ),( ii yx where ix is from some space X, and the corresponding 

known label iy is from a set Y with kY = , where k is the cardinality. On each round t a 

distribution tD is computed over the training examples, and a mapping function 

}1,0{: →Ytµ , which is referred to as coloring and which divides the label set Y into two 

parts. The data is then relabeled according to tµ ,  the k classification problem will then 

be reduced to binary problem, and the weak learner will be trained on this relabeled data 

weighted according to tD . For example, if there are four classes, we can randomly 

compute the function  tµ  at round t as }14,03,12,01{: →→→→tµ . Therefore, for 

training example )1,(x , it will be relabeled as )0,(x , for )2,(x , it will be relabeled as 

)1,(x , and for )4,(x , it will be relabeled as )1,(x , Please refer to [39] for how to select the 

coloring function through error-correcting codes and [37], [40] for the details and 

theoretical analysis of these two algorithms. 
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Table 4.1: Schapire’s algorithm. 

Adaboost.OC 
Given the training set: 

YyXxyxyx iimm ∈∈ ,:),(,),,( 11   
Initialization: 

)1(
1),(1 −

=
km

liD
  if iyl ≠ , 

otherwise 0),(1 =liD
  

For t =1:T 
Compute coloring };1,0{: →Ytµ  

Let ∑
∈

≠=
Yl

titt
t

t lyliD
U

iD )()(),(1)( µµ
 , and tU  is a scaling 

factor. 
Get hypothesis }1,0{: →Xht from the weaker 

learner for distribution tD  
Let )}.()(:{)( lxhYlxh ttt µ=∈=


 

Let ∑∑
= ∈

∈+∉⋅=
m

i Yl
itititt xhlxhyliD

1
2
1 ).)()((),(

ε  

Let ).
1

ln(2
1

t

t
t ε

ε
α 

−
=  

Update 
)})()((exp{),(),( 1

1 ititittZt xhlxhyliDliD
t


∈+∉⋅=+ α  

and tZ  is a scaling factor . 
Output the final hypothesis: 

∑
=

∈ ∈=
T

t
ttYlf xhlxH

1
)(maxarg)(


α  
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Table 4.2: Guruswami’s algorithm. 

ABOOST.ECE 
Given the training set: YyXxyxyx iimm ∈∈ ,:),(,),,( 11   
Initialization: 

)1(
1),(1 −

=
km

liD
  if iyl ≠ , otherwise 0),(1 =liD

  

For t =1:T 
Compute coloring };1,0{: →Ytµ  

Let ∑
∈

≠=
Yl

titt
t

t lyliD
U

iD )()(),(1)( µµ
 , and tU  is a scaling 

factor. 
Compute hypothesis }1,0{: →Xht from the weaker learner 
Compute the weight of positive and negative votes tα and 

tβ respectively: 
















==
∑
∑

≠

=

)()(:

)()(:
2
1

)(

)(
ln

itit

itit

yxhi
t

yxhi
t

tt iD

iD

µ

µβα  

Define tt xg α=)(  if 1)( +=xht  

tt xg β−=)(  if 0)( =xht  
Update  

}2/))1)(2()(

)1)(2()(exp{(),(),( 1
1

−⋅−

−⋅⋅=+

itit

tittZt

yxg

lxgliDliD
t

µ

µ


 

and tZ  is a scaling factor. 
Output the final hypothesis: 

∑
=

∈=
T

t
ttYlf lxgxH

1
)()(maxarg)( µ  

4.4 Experiments and Results 

In order to determine the recognition capability of our proposed method, probe 

vehicle data were necessary for establishing a training set. As part of another vehicle 

activity study, probe vehicle velocity data were collected for approximately 40 days in 

Southern California for many different roadway types (e.g., freeways, arterial roads, and 

residential streets) under different congestion conditions. The data were collected using a 

GPS receiver on a set of vehicles, with a sampling frequency of 2 Hz. where both 
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position and velocity information were acquired. The data collection was conducted 

between 8AM and 8PM and consisted of a variety of congestion conditions while 

excluded extreme conditions such as gridlocked traffic. The datasets were subsequently 

post-processed, identifying the roadway type and congestion level based on map-

matching and an existing traffic performance system (see, e.g., [15] and [41]). 

As part of the experimentation, three things were investigated for the wavelet/PCA 

algorithm. In the previous section, it was claimed that the Haar transform of the velocity 

trajectory data concentrates the energy of the signal in the first few coefficients. Next, it 

was of interest to determine how the recognition precision varies with the PCA level. 

Finally, it is desired to determine how the recognition rate depends on the number of the 

sequences in the training dataset.  

It is well known that the magnitudes of wavelet coefficients of a signal at each 

resolution level are proportional to the corresponding energy in the signal. In Figure 4.2, 

the energy concentration is plotted as a function of resolution. Fifty-four sequences for 

each class were used in the training set for this experiment. Each sequence has a 

dimension of 256. Resolution "0" corresponds to the low frequency component, and 

resolutions 1 through 8 correspond to the high frequency components. The low frequency 

component and resolution 1 through 8 together make the Haar wavelet transform. 

For this analysis, concentration is defined as follows: 

resolaincoefall

resolainamp

numberSum
Sum
ionconcentrat

___

___

×
=

 
(4.2) 
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where  resolainampSum ___  is the sum of all the values of amplitudes with a resolution, 

allSum is the sum of all the amplitudes of  all resolutions, and resolaincoefnumber ___  is the 

number of coefficients within a resolution. 

We can see from Figure 4.2 that for three roadway types with mixed congestion 

levels, they all have their energy concentrated in the first few scales. This verifies our 

original hypothesis. It is interesting to note that within the three types of roads, freeway 

roadways concentrate their energy in the first few coefficients much more than arterial 

and residential streets. There is no significant difference between the arterial and 

residential streets regarding energy concentration. 

 

Figure 4.2: Energy concentration per coefficient vs. resolution. 
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In the following experiments, the cut off resolution is chosen at 4 since the 

coefficients after resolution 4 are negligible. We use the overall recognition rate as a 

major performance measurement for this application of roadtype classification, which is 

defined as  

total

correct

Num
Numcongestionnrecognitio =/  

(4.3) 

where correctNum is the number of sequences that are correctly classified, and the totalNum  is 

the total number of testing sequences. 

In this experiment, 300 sequences are used for training purposes, 100 of each class 

and 150 sequences for testing, 50 of each class. Each sequence has a dimension of 256. 

The results are shown in Table 4.3. From Table 4.3, it can be seen that using PCA levels 

6 can provide sufficient performance, and further reduce the dimension from 16 to 6. 

Table 4.3: Recognition rate vs. PCA levels, 300 sequences for training, 150 for testing. 

PCAlevel 2 4 6 8 10 12 
Reco.Rate 0.7933 0.8600 0.9133 0.9000 0.9000 0.9267 

 

Next, it was desired to see how the number of training sequences affects the overall 

recognition performance. The PCA level is set to 6. Each sequence has a length of 256, 

and the cut off resolution is chosen to be 4. The same testing set is used, consisting of 150 

testing sequences, 50 of each class. For the training sequences, a multiple of 60 was 

chosen, and each class has the same testing number of sequences. It can be seen in Figure 

4.3 that by a general trend, the recognition rate increases as the number of training 

sequences increases. 
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Figure 4.3: General trend of recognition rate vs. number of training sequences, PCA level 6. 

Simulations were also performed for the Adaboost algorithm. Both Schapire’s and 

Guruswami’s algorithms were investigated. Since there are three classes, the coloring 

functions are randomly (with equal probability) selected as: 









→→→
→→→
→→→

=
}13,02,01{
}03,12,01{
}03,02,11{

tµ . 

In this experiment, 562 instances are used for training, 135 in freeway, 230 in arterial, 

and 197 in residential road. We also used 60 items for testing, 20 of each class. The 

overall testing error is illustrated in Figure 4.4. It can be seen that generally the 

Guruswami’s algorithm is more accurate than Schapire’s algorithm for the 

roadtype/congestion classification problem. When is the number of iterations is more 
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than 600 hundred, the Guruswami’s algorithm is stable and can achieve an accuracy of 

0.9167. It can be expected that with an increased number of training items, the accuracy 

will continue to increase. It can also be inferred that 600 iterations are enough to achieve 

good performance. 

 

Figure 4.4: A comparison of Schapire’s Adaboost.OC and Guruswami’s Adaboost.ECC 

algorithm: overall testing error vs. the number of iterations. 

 

Although it is observed that there is not an apparent advantage of the 

wavelet/Adaboost algorithm over the wavelet/PCA algorithm in terms of the performance, 

the Adaboost algorithm is more suitable for real-time processing.  For the PCA algorithm, 

the nearest-neighbor algorithm is necessary for the final classification, i.e., when each test 

instance is classified, it is necessary to compute the Euclidean distance between this test 

instance’s final computed features and all the training instances’.  For each test instance, 
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it is necessary to process the entire dataset, even though the training step was previously 

completed. The complexity will grow rapidly with the size of the training set. For the 

Adaboost algorithm, once the trained simple final hypothesis is computed, the 

computation will no longer depend on the training dataset.  For each test instance, it is not 

necessary to go over the whole training dataset. Therefore, we conclude that if the 

training dataset is small, wavelet/PCA and wavelet/Adaboost will have similar 

performance and complexity, however, when the training dataset is large, 

wavelet/Adaboost will have a large advantage over the wavelet/PCA algorithm in terms 

of computational complexity.  
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5. Defining a Freeway Mobility Index for 
Roadway Navigation 

 

5.1 Introduction 

As described in previous chapters, today’s latest navigation systems are able to 

monitor real time traffic conditions, and have the capability to suggest an alternative path 

for re-routing if the traffic conditions are bad in a particular area. With the ability to re-

route, it is useful to develop an effectiveness index that gives an indication of the possible 

number of routing options for an origin-destination pair. With a larger the number of the 

routing options, drivers have a better freedom to re-route. Further, a network with a low 

index value will not have many re-routing choices; and therefore, dynamic shortest-

duration algorithm based on real-time traffic conditions will have limited value in this 

area. On the other hand, dynamic shortest-duration algorithm will have larger value in a 

roadway network with a high index value. In this chapter, we will develop and justify 

such an effectiveness index.  

The remainder of this chapter is organized as follows. Section 5.2 describes the 

overall methodology, including the definition of node-to-node NMI, node-NMI, and area-

NMI. Also, a justification is given for the proposed concepts, along with the search 

algorithm. Section 5.3 presents experimental results and discussions using freeway 

networks in California as case studies.  
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5.2 Methodology 

In this section, we: 1) explain the network structure and the concept of critical node 

used, 2) propose a new mobility index for navigational purposes based on the availability 

of freeway facilities, 3) justify the effectiveness of the new index, 4) discuss various 

forms of the new index, and 5) present an algorithm to implement the index in navigation 

applications. 

5.2.1 Network Representation 

In this research, we initially consider the network connectivity of a freeway system 

without loss of generality when it is extended to other roadway facility types (e.g., 

arterials, local streets, etc.). In the experiment, we use the latest census-based 

TIGER/Line map roadway shapefiles as our data source [53], but any roadway network 

representation will also be sufficient. In the roadway shapefiles, a freeway segment is a 

polyline connecting one node to another. An actual freeway is typically represented by a 

series of segments in the network file to account for its curvature and connectivity. We 

define a “location” in a freeway network as a critical node, i.e. an intersection of 

freeways or a start point/end point of a physical roadway segment. There are a number of 

non-critical nodes that are used to represent only curvature in the roadway shapefiles. 

However, we do not consider these nodes due to the following reason. Assume one driver 

is traveling over a pre-selected route; according to the real-time traveler information 

system, the driver finds that an accident has occurred and the traffic ahead is jammed. 
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The driver will then want to switch to another route that has reasonable travel time and 

distance. However, the driver can only switch to another route at a critical node, i.e. 

freeway intersection (again, if not considering arterial roads). 

Because of this reason, we only consider the connectivity between critical nodes of 

the freeway network and combine all map lines representing physical roadway segments 

into “edges” connecting critical nodes. An edge is defined as a roadway segment with a 

specific direction. A simple example is given in Figure 5.1 to illustrate the concept above. 

Figure 5.1 is a map representing a simple roadway network. Piecewise lines are used to 

represent the curvatures of roadway segment. Each line consists of a start node and an 

end node represented by white dots in the figure. It can be seen that one physical freeway 

segment consists of a series of connected lines. For example segment 2-5 of freeway a 

consists of line 2-3, 3-4, and 4-5. In our modified network, these lines are combined into 

one segment represented by 2-5. After combining the lines, the remaining critical nodes 

in Figure 5.1 are 2, 5, 6, 7, 10 and 14.  
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Figure 5.1: A simple example of roadway infrastructure. 

In the following discussions, all of the “nodes” denote the “critical nodes” in our 

abstract graph, and the terms are used interchangeably. The edges denote the combined 

segments in the abstract graph. A graph can be represented either by an adjacent matrix 

or a linked list [18]. Further, a route is defined as a loopless path for a source-destination 

pair in the constructed network, and will be used interchangeably with the term (loopless) 

path. There exist several possible routes between a source destination pair, and each route 

normally consists of several segments. 

5.2.2 Navigational Mobility Index Based on the Availability of Freeway 

Facilities 

In order to find K shortest routes from node i to node j, Yen’s K-shortest path 

algorithm can be used for the computation. Yen’s algorithm is a deviation algorithm 
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where only loopless paths are determined. For a network consisting of N nodes, we first 

summarize the notations in Table 5.1. A brief summary of Yen’s algorithm is then given 

in Table 5.2. Please refer to [54] for the details and analysis of this algorithm. The 

computation complexity of this algorithm is ))log(( nneKnO +  if the Dijkstra algorithm is 

used to find the shortest path, where e is the number of edges and n is the number of 

nodes in the network. Surprisingly, there has been no significant improvement in terms of 

worst computation complexity since its first development in the 1970’s. Please refer to 

[55] for a slightly faster implementation of Yen’s algorithm using new data structures.  

Table 5.1: Selected notations of Yen’s K-shortest path algorithm. 

.,,2,1),( Nii = is used to denote the node of a path, where )1( is the origin and )(N is 
the destination, i.e. )1( is the first node of a path and )(N  is the last node of a path; 

1),()()1( ≠≠≠−−−  jiji is used to represent a path from )1( to )( j  passing through 
)(i and the following nodes; 

jidij ≠≥ ,0  is the distance of the direct arc from )(i to )( j  if the arc exists, otherwise it is 
infinite; 

KkNQA k
k

kkk ,,2,1),()()3()2()1(  =−−−−= be the kth shortest path from )1(  
to )(N where )(,),3(),2( k

k
kk Q are the 2nd 3rd,…, thQk  node of the kth shortest path and 

1−= NQk . 
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Table 5.2: The procedure of Yen’s algorithm. 

Iteration 1. Determining 1A  using any shortest path algorithm, such as Dijkstra or A*         
algorithm [23]. 

Iteration k ),,3,2( Kk = . Determining kA . This is an iterative method, therefore in 
order to find kA , all previous routes ),,( 121 −kAAA   must have been computed. kA may 
be computed by the following steps:  

1) For each of 1,,2,1 −= kQi  do the following:  

a. Updating the network. Check if the subpath consisting of the first i 
nodes of 1−kA coincide with the subpath consisting of the first i nodes 

of 1,2,1, −= kjA j  . If it coincides any of those subpath, set iqd of those 
sA j to infinity, where (q) is the (i+1)th node of jA , otherwise make no 

changes. 

b. Applying a shortest-path algorithm to find the shortest path from (i) to 
(N),                   allowing it to pass only those nodes that are not yet 
included in the path to avoid loops. The subpath from (1) to (i) is called 

k
iR and the subpath from (i) to (N) is called k

iS . 

c. Constructing k
iA by joining k

iR and k
iS and add k

iA to list B.  

2) Finding from List B the path(s) that have the minimum length. 
If the path(s) found plus the path(s) already in List A exceed K, we are done. Otherwise 
denote this path by kA and move it from List B to List A. Keep the rest of the paths in 
List B still in List B. Go to iteration k+1.  

 

Dial [56] proposed a concept of “efficient path” assuming that drivers are supposed to 

select efficient paths. A path is efficient “if every link in it has its initial node closer to 

the origin than is its final node, and has its final node closer to the destination than its 
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initial node” [56]. Paths selected by the K shortest path algorithms might not be efficient 

paths. However, in this chapter we consider the situation where severe traffic conditions 

occur, and we believe it is a common practice nowadays that a driver is willing to 

backtrack slightly to avoid severe traffic conditions. 

5.2.2.1 Definition and Formulation of NMI 

Motivated by Yen’s K-shortest path algorithm [54], the NMI for a source-destination 

pair is defined in a recursive way as follows. The NMI is the cumulative weighted 

number of paths of all possible routes for a source-destination pair. First, we assume that 

the shortest path is the only freeway facility available for this node pair, and we next 

consider the contribution of the next-shortest path if it is added to the existing facility 

considering the possible overlapping segments with the previous shortest path, and so on. 

We first use Yen’s algorithm to find K shortest paths (the shortest, the second shortest, 

and so on), and store them in a set setKPaths in an increasing order (according to the 

path length, i.e. 1A for the shortest one, and 2A for the second shortest one, and so on). 

Each path normally consists of multiple segments. We proceed in the order from 

1A to .KA  Next, we have another set called segmentsIncluded to collect all road 

segments whose contributions to NMI have been counted. The set segmentsIncluded is 

initially empty. The detailed steps are given below. 

1. We begin from the shortest route 1A : the contribution (weighted number of path) 

of 1A to the NMI is calculated as 1 since none of its segments is in set 
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segmentsIncluded. We then add all the segments of this route to the set 

segmentsIncluded. 

2. For the second shortest route 2A  , its contribution to the NMI is calculated as  

∑
∈ 2

||
||

2Ll
l

a

a

a
G

L
l

 
(5.1) 

where 2L is the collection of all segments of route 2A , || 2L is the total length of route 2A , 

and || al is the length of segment al . 
al

G is a general function depending on al and the set 

segmentsIncluded. In this chapter we specifically choose
al

δ for
al

G , where
al

δ is a 

function whose value is 1 if segment al  is not already in the set segmentsIncluded, and is 

0 if otherwise. We then add all sL '2  segments into the set segmentsIncluded. 

3. Repeat step 2 for all the remaining shortest paths. 

4. Compute the total NMI of the freeway facility available for this source-destination 

pair as 

∑ ∑
= ∈

=
K

k Ll
lL

l

ka

ak

a GNMI
1

||
||

 

(5.2) 

We specifically choose
al

δ for
al

G because it is simple and intuitive. Using 
al

δ , we do 

not consider the contribution to NMI of a new route’s segments that has already been 

counted in previous routes. However, in order to grant some small weighted contribution 
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of these segments, 
al

G can be selected as a general function inversely proportional to the 

number of occurrences of al  in the set segmentsIncluded. For example, we can construct: 

)( a
a

lO
lG −= β  

where )( alO is the number of occurrence of al  in the set segmentsIncluded, and β  is a 

constant larger than 1 (e.g. 2).  

When drivers are selecting routes, unreasonably long routes are usually not 

considered. Therefore, in the calculation of K shortest paths, another criterion is 

implemented: whenever an mth (m < K) shortest route whose length is longer than 

shortestLengthratio ∗ is found, the K-shortest path algorithm stops. For a moderately complex 

freeway network in an urban area, a large value of K is usually selected and the ratio 

parameter is normally set at around 1.5. Therefore, the K-shortest path algorithm usually 

stops before the Kth shortest path is found. 

Even for the routes whose lengths are shorter than shortestLengthratio ∗ , their 

attractiveness to drivers could still be different due to having different lengths; i.e., a 

shorter route might be more attractive than a longer one. We define an appealing function 

to quantify the attractiveness of a route to drivers in terms of the route length. Therefore, 

the appealing function should have a maximum value of 1 for the shortest route and a 

minimum value of 0 when the route length is longer than a threshold (i.e. 

shortestLengthratio ∗ ). For example, we could have the following three simple forms of this 

function: 
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

 ≤

=
otherwise

ratiox
xP

0
1

)(0 , 

2
21 )(

)1(
1)( ratiox

ratio
xP −

−
= , 

or, 2
22 )1(

)1(
11)( −
−

−= x
ratio

xP  

where )(xPj , j = 0, 1, 2 is the appealing function, and x is the path length divided by the 

length of the shortest path. For )(0 xP , it is assumed that routes with different lengths are 

equally appealing if their lengths are shorter than shortestLengthratio ∗ . For )(1 xP  and )(2 xP , 

shorter routes are generally considered more attractive than longer routes. We could also 

apply other appealing functions by using the route choice model. There is a large body of 

literature on discrete route choice model, e.g. [51, 52]. However, we do not encourage 

incorporating the complex route choice model into the NMI definition. First, the NMI 

definition is simple and intuitive; incorporating the route choice model will incur 

difficulty in understanding the concept as well as introducing greater complexity in 

computation. Second, in the route choice model, a similar concept of “path-size” was 

proposed. We think it is problematic to use some existing concepts to construct a new 

concept achieving similar functionalities. 

In the definition of NMI described earlier in this section, we implicitly used the )(0 xP  

as the appealing function. However, we could also use other appealing functions, such 

as )(1 xP , )(2 xP , or other functions by modifying (5.2). That is, 

∑ ∑
= ∈
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where ||
||

1L
L

k
kx =  and || 1L is the length of the shortest route. Throughout this chapter, we use 

)(0 xP  as the appealing function for illustration purpose due to its simplicity. Therefore, 

the appealing function will not be explicitly included in calculation due to the property of 

)(0 xP (i.e. being 1 if within a range). 

5.2.2.2 Numerical Example 

 

 

Figure 5.2: Counter intuitive cases. 

Here, we give a simple illustrative example of how NMI is calculated. In case II in 

Figure 5.2, there are four possible routes from node A to node B. Assuming 1.5 for ratio, 

all the four routes are included and we have setKPaths = {A-C-B; A-D-B; A-C-D-B; A-

D-C-B}, where A-C-B is used to denote a path from A to to C to B. We proceed from 

route A1 = A-C-B (shortest) to A4 = A-D-C-B (longest) according to their length. Set 

segmentsIncluded is used to collect all road segments whose contributions to NMI have 

been counted and is initially empty. 
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1. We begin from the shortest route 1A : the contribution (weighted number of path) 

of 1A to the NMI is calculated as 1 since none of its segments is in the set 

segmentsIncluded. We then put all the segments (with accumulative number of 

occurrences) of this route into the set segmentsIncluded, i.e.  

segmentsIncluded = {AC(1); CB(1)} 

2. For the second shortest route 2A , its contribution to the NMI is calculated as  

115.015.0
20
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20
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||

2 2

=⋅+⋅=

+=∑
∈
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a GGG

L
l

a
a  

 

if alG is selected as alδ . We then add all sL '2  segments into the set 

segmentsIncluded, i.e.  

segmentsIncluded = {AC(1); CB(1); AD(1); DB(1)} 

3. For the third shortest route A3 = A-C-D-B, its contribution to the NMI is calculated as 

2.004.012.004.0
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if alG is selected as alδ . We then add all sL '3  segments into the set 

segmentsIncluded, i.e.  

segmentsIncluded = {AC(2); CB(1); AD(1); DB(2);CD(1) } 

4. For the fourth shortest route A4 = A-D-C-B, its contribution to the NMI is calculated as 
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if alG is selected as alδ . We then add all sL '4  segments into the set 

segmentsIncluded, i.e.  

segmentsIncluded = {AC(2); CB(2); AD(2); DB(2);CD(1); DC(1) } 

5. Compute the total NMI of the freeway facilities available for the source-destination (A, 

B) pair as 

4.22.02.011
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5.2.2.3 Comparison with Other Approaches 

To the best knowledge of the authors, the concept that could achieve the most similar 

functionality (calculating the cumulative weighted number of paths between a source-

destination pair) is the Path-Size concept [52]. Originally, the Path-Size concept is 

proposed for computing the probability of a driver selecting a specific route and it works 

very well for that purpose. Bekhor et al. [52] used the Path-Size to account for the 

correlation (overlap) between routes and defined it as the weighted number of paths for 

one path between a source destination pair. Mathematically, for path k (k=1, 2, …, n),  

knPS  can be written as:  
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(5.3) 
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where al is the length of link a, kL is the length of path k; ajδ  is 1 if link a is within path j 

and 0 otherwise, kΓ is the set of all links of path k, and γ is a positive parameter.  

We could use this definition for our calculation of the total number of weighted routes 

between a pair of source and destination by calculating all the feasible knPS (k=1, 2, …, 

n)of each route between this source-destination pair and adding them together to 

formulate the total weighted number of paths between the given source-destination pair. 

However, if calculated in this way, the resulting number of paths tends to be 

underestimated. A comparison of the total cumulative weighted number of paths between 

a source-destination pair using the proposed NMI and the Path-Size for Figure 5.2 is 

shown in Table 5.3. From Figure 5.2 and Table 5.3, we can see that adding additional 

infrastructure (from C to D) only increases the weighted number of paths from 2 to 2.04 

if using the Path-Size concept. Therefore, we could not use the Path-Size concept in this 

scenario. 

Table 5.3: Comparisons of weighted number of paths using NMI and Path-Size of the two 

special cases. 

Case Weighted # 
using NMI 

Weighted # using 
Path-Size ( 0=γ ) 

Weighted #  using 
Path-Size ( 1=γ ) 

Weighted #   using 
Path-Size ( 2=γ ) 

I 2 2 2 2 
II 2.4 2 2.02 2.04 
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5.2.3 Properties of the Navigational Mobility Index 

The proposed definition of NMI has several attractive properties. We already observe 

that the K shortest paths have some overlapping segments among them and these 

overlapping segments have to be taken care of. Thus, a dependency matrix is used to 

represent the correlation (overlapping segments) among all the K shortest routes (or m 

smaller than K if the algorithm stops earlier), and to prove important properties of the 

proposed definition of NMI. The dependency matrix (having size m by m) is constructed 

as shown in (5.4), and is divided into blocks with each block representing the correlation 

of one route pair (e.g. jiD , represents the correlation between route i and route j). Blocks 

are arranged from short to long in terms of their lengths, e.g., the block 1,1D  represents the 

correlation between the shortest path and itself. 
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with 
jrQ being the number of segments of route j. For the block jiD ,  representing the 

correlation between route i and route j, the row within this block represents the segments 

of route i, and the column within this block represents the segments of route j. If the 
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`thp segment of route i overlap with the `thq segment of route j, the value of element (p, q), 

i.e. qj
pir
,

, , in this block is the length of the overlapping segment. In other words, the 

element qj
pir
,

,  represents the overlapping length of the `thp segment of the `thi path with the 

`thq  segment of the `thj path. Note that for two segments, either they completely overlap 

or the overlap is 0 due to the way the matrix is constructed.  

Again, we give a simple illustrative example of how to construct a dependency matrix 

using case II in Figure 5.2. There are 4 routes all together, and the dependency matrix is 

constructed as 
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Next, we use block jiD ,  to represent the correlation between route i and route j. For 

example, for route A2 = A-D-B and route A3 = A-C-D-B, 

 

Therefore, the dependency matrix is: 
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The proposed definition of NMI has some attractive properties as follows:  

1. The dependency matrix is symmetric with ijji DD ,, = ; 

2. All diagonal elements of the dependency matrix are nonzero; 

3. For each row of each block, at most one element is nonzero. For each column of 

each block, at most one element is nonzero; 

4. In any row of the dependency matrix that has other nonzero elements besides the 

diagonal elements, the value of all those nonzero elements is equal to the value of 

the diagonal element; and 

5. Most importantly, adding additional infrastructures will NOT decrease the NMI 

value. 

Properties 1 and 2 are relatively straightforward. Property 3 is due to the fact that the 

route is loopless, i.e. each route can only pass one segment and one node at most once. 

Property 4 is due to the fact that each row of the dependency matrix is representing if one 
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segment overlaps with the segments of other routes. If it overlaps, the corresponding 

value will be the length of that segment, otherwise 0. Property 5 is important and needs a 

proof.                                

                     

 

2  

1  
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6  
0  

3  

5  4  

 
 

  

 

 
  

 

 

 

 

Figure 5.3: A sample roadway network with added facility. 

Proof:   

We have an existing freeway network structure represented by solid lines in Figure 

5.3. Assume there is an additional freeway facility (i.e. the freeway segment between 

node 2 and node 6) added to the network. If using function
al

δ in the calculation of NMI, 

then the NMI for any source-destination pairs is not supposed to decrease. For one 

specific source-destination pair, assume a large value of K is selected, and the K-shortest 

path algorithm stops early when the mth route ( shortestm LengthratioLength ∗>+1 ) is found. The 

dependency matrix for that specific source-destination pair after the additional freeway 

segment is added, assuming that only one additional route is added, can be written as:  
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(5.5) 

Without loss of generality, assume that only one additional route is added. Thus, in (5.5) 

we have one additional column and one additional row of blocks added. Suppose the 

additional route is the thj shortest route. Therefore, blocks 1,,1,, += mkD kj   and 

1,,1,, += mkD jk   are added. All the values of other existing blocks remain unchanged.    

To calculate the NMI, we proceed from the top left of the dependency matrix to the 

bottom right. We first compute the weighted contribution of the first route by considering 

block 1,1D . The weighted contribution for the first path is 1 according to the definition. 

We then compute the weighted contribution of the second shortest path by looking at the 

blocks 2:1,2:1D , where vuD :1,:1  is the submatrix consisting of blocks qpD , , where up ≤≤1  and 

vq ≤≤1 . We check all diagonal elements of 2,2D  by starting from the element 1,2
1,2r . We 

examine all the elements that are at the same column as 1,2
1,2r  in the dependency matrix and 

whose row index in the dependency matrix is smaller than the row index of 1,2
1,2r . If any 

such element is nonzero, the contribution to the second path of this element is 0 since the 

contribution of this segment to the NMI has already been counted when calculating the 

previous route. We do the same thing with all other diagonal elements of block 2,2D . We 

then repeat the same procedure for all other diagonal blocks. 
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When we process block jjD ,  (which is due to the added infrastructure), we find that 

all the elements of path j are shared with other routes except the newly added segment (it 

is possible that the new route j will utilize other new roadway facilities that have not been 

included before, but in that scenario, the NMI will be increased even more). Segments 

could be shared by route j with other routes either longer than, equal to, or shorter than 

route j.  

For segments shared by route j with routes shorter than it, the contribution to NMI of 

these segments under route j is zero since it has already been counted when calculating 

the previous routes. For segments shared by route j with routes longer than it, the 

contribution to NMI of these segments should be calculated now under route j instead of 

under the later routes. Since the length of route j is smaller than the length of the later 

routes, the contribution to NMI of these segments will be larger according to the 

definition. The contribution of the newly added facility is also computed under route j, 

which increases the value of NMI even more. Similarly, we can follow the same process 

to prove property (5) for any 
al

G other than
al

δ . This concludes the proof.  

5.2.4 Node-NMI and Area-NMI 

Thus far, we have discussed the definition of a node-to-node NMI, which provides 

the foundation for the definition of a node-NMI and an area-NMI.  

In general, a node-to-node index can be extended to measure the performance of one 

location and the performance of one area. Assume there is an area consisting of N 
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locations and one specific kind of index from location i to location j is defined as ija . An 

integral index was first introduced in [48] for each location i in an area consisting of N 

locations and an extension was proposed in [45] as 

∑
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1
  (5.6) 

This integral accessibility index can be used to compare the performance among different 

locations within an area. However, it does not capture the overall performance over an 

entire area and is not comparable among locations belonging to different areas. Bruce et 

al. [45] further extended the integral to an overall index as: 
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The resulting overall index quantifies the performance of an entire area. Since it is 

normalized with respect to the number of location pairs in an area, it can be compared 

across different areas. 

In this chapter, the node-NMI is defined by adopting the definition of the integral 

accessibility index in (5.6), and the node-NMI for node i is defined as: 
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 (5.8) 

One important application of the node-NMI is its potential usage in emergency 

evacuation. Natural disasters (e.g. flood, earthquake, hurricane, and forest fire) and 

terrorism attacks always pose a potential threat to the security of any cities. During these 

events, people need to relocate from dangerous locations to safer locations as soon as 
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possible. During this movement, the routes to be taken should be chosen in such a way 

that also provides the best possible re-routing options due to uncertain conditions of the 

roadway network. That is, we should evacuate along the roads (intersections) that have 

high node-NMI value and avoid those nodes that have low node-NMI value.    

For an area-wide measure of navigational mobility, we adopt the definition of the 

overall accessibility index presented in (5.7), which is averaged over all node pairs, i.e.  
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1  (5.9) 

where N is the total number of critical nodes in an area. 

The value of ANMI gives an estimate of the average number of effective routes 

between two randomly selected nodes in an area. It is a good measure of the degree of 

travel freedom within an area. Therefore, the area-NMI can be used to evaluate the 

vulnerability of roadway network layout in an area. Transportation agencies can use the 

area-NMI to systematically identify (and even rank) roadway links that are critical to the 

mobility of road users. For example, if a roadway link was to be close for maintenance or 

due to structural failure (e.g., I-35W bridge collapse in Minnesota in December 2007), it 

is important to know how much the area-NMI would decrease (i.e., how many alternative 

routes remain available to road users without that particular roadway link). On the other 

hand, constructing the same length of roadway segments can result in different area NMI 

values. Thus, the area-NMI can serve as another planning tool in determining how to 

design the layout of roadway network efficiently. Since A NMI is normalized with respect 

to the number of nodes in an area, it can be compared across different areas.  



86 

 

5.2.5 NMI-based Navigation Algorithm 

As previously mentioned, there has been a significant proliferation of both on-board 

and off-board navigation systems that primarily provide routing advice across a roadway 

network (e.g. Google map [57] and MapQuest [58]). Some of these systems are now 

capable of incorporating real-time congestion delays, providing the ability to find the 

shortest-duration path and minimum fuel consumption path [60] in addition to the more 

standard shortest-distance path. However, in a network that is prone to incidents or high 

congestion, all the above navigation algorithms may not work well. With the ability to re-

route based on changing network conditions, NMI is useful in giving an indication of the 

number of routing options. A network with a low NMI value will not have many re-

routing choices; and therefore, the ability to choose an alternative route based on real-

time traffic conditions will have limited value.  

Normally, drivers want to select either a shortest-duration or shortest-distance path, 

and would like the traffic conditions to be free-flow and uninterrupted. However, various 

scenarios sometimes evolve where links are unexpectedly shutdown/highly congested 

due to major incidents (i.e., accidents) or natural disasters (e.g., earthquakes). In these 

scenarios the driver must mandatorily re-route. In this section, we briefly present a new 

navigational methodology based on NMI that could be used for mandatory re-routing 

scenarios. Please refer to Chapter 5 and [61] for more comprehensive presentation and 

discussion. 
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In circumstances when a “good and feasible” route needs to be found for a pair of 

source and destination nodes, node-to-node NMI values can be applied as part of the 

navigational methodology. We first calculate all the node-to-node NMI values of the 

pairs from each node in the network to the destination node. We then attach the 

corresponding node-to-node NMI value to each node, respectively. In order to 

incorporate the NMI value into the generalized cost, we have to convert the NMI value to 

a connectivity cost using the following function: 

ω







=

NMI
NMICost maxmin*

 
(5.10) 

where min is the minimum nonzero node-to-node NMI value in the network, max is the 

maximum node-to-node NMI value in the network, ω  is a positive parameter, and NMI is 

the actual node-to-node NMI value.    

Currently, we have an NMICost value attached to each critical node. For a link going 

from Node A to Node B, the NMICost value of this link is defined as the NMICost of the 

end Node, i.e. Node B. The reason for this is that when a driver is on the link, (s)he has 

no other routing choices until (s)he reaches the end node where (s)he can change routes. 

Finally, we define the generalized cost incorporating both distance and NMI value as 

)()( NMICostglengthfCost ∗=  (5.11) 

where f(length) is a function depending on how much weight needs to be put on the 

distance. In this chapter, it is chosen as  

klengthlengthf )()( =  



88 

 

where k is a parameter for the weight. The term g(NMICost) is a function depending on 

how much weight needs to be put on the NMICost. For example, it can be chosen as 

ω)()( NMICostNMICostg =  

whereω is a parameter for the weight. In Chapter 5 and [61] different forms of function f 

and g are also investigated. 

Since we have to calculate all the node-to-node NMI values of the pairs from each 

node in the network to the destination node, the computation complexity will be 

))log(( 2 nneKnO +  if the Dijkstra algorithm is used to find the shortest path, where e is the 

number of edges and n is the number of nodes in the network. Thus, the calculation of the 

generalized cost depends on the size and complexity of the networks (e.g. for the 

experiment in section 5.3.4, it takes a couple minutes). This calculation and the 

subsequent routing determination may be performed off-board on a fast computer server 

before the result is transmitted to an on-board device for display. Alternatively, a 

methodology may be developed to significantly reduce the computation time, thus 

allowing for on-board calculation. The methodology may involve establishing a 

meaningful search area (i.e. using a small searching area instead of the entire map) in 

order to eliminate unnecessary calculations. This is to be addressed in future work. 
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5.3 Experimental Results and Discussion 

5.3.1 Experimental Setup 

The freeway networks of the Los Angeles (LA) County in Southern California and 

the San Francisco (SF) Bay Area in Northern California were selected as case studies due 

to having the moderate number of nodes and multiple parallel corridors. Census 2000 

TIGER/Line shapefiles [53] were used for the experiment. Using ArcGIS 9.1, we 

extracted all the roadway segments whose Census Features Class Codes (CFCC) belongs 

to categories A1, A2, and A3 corresponding to the freeway categories. Abstract graphs 

were then built using the corresponding database file to describe the roadway 

connectivity. Any nodes connected to two other nodes are considered non-critical nodes 

and the adjacent lines represented by non-critical nodes are combined. Any nodes 

connected to more than two nodes are intersections and considered critical nodes. Any 

nodes connected to only one other node are end nodes and are also considered critical 

nodes. In the end, the LA County has 542 critical nodes and the SF Bay Area has 400 

critical nodes. 

5.3.2 Comparison of Area-NMI between the LA County and the SF Bay 

Area 

In this section, we compare the area-NMI of the LA County network and the SF Bay 

Area network. We suspect that the area-NMI results may be sensitive to the coverage of 
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the area. Therefore, instead of using Equation (5.9), we use the following equation to 

calculate the area-NMI of the networks:  

∑ ∑
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r
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i

NMI
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1
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(5.12) 

where, r
iS is the set of all nodes that fall in the circle whose radius is r and is centered at 

node i, and r
iS is the number of nodes in the set r

iS . In essence, this area-NMI provides a 

general indication of the number of possible routes between any node pairs within an area. 

Figure 5.4 shows the comparison of the area-NMI between the LA County and the SF 

Bay Area. It implies that the LA County network is better than the SF Bay Area network 

in terms of the connectivity of freeways at all radius values. This is primarily due to the 

fact that the Bay Area network is geographically separated by the bay, which reduces the 

overall connectivity of the network.    
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Figure 5.4: Area NMI of the LA County and the San Francisco Bay area with different radius 

values. 

5.3.3 Sensitivity Analysis of the Area Coverage 

Similar to Section 5.3.2, instead of using Equation (5.8), we use the following 

equation to calculate the NMI of node i in the network:  
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(5.13) 

In this experiment, we select K (the number of shortest paths) as 10. Whenever a path m 

where shortestm LengthLength ∗> 5.1  is found, the iteration stops at m. The value of r is 

selected as 10 miles, 50 miles, and 1000 miles (i.e. the coverage is the whole area). 

Figures 5.5(a) through 5.7(a) show the comparisons of freeway connectivity between the 

LA County network and Bay Area network. We use Google Earth [59] for the display. 

Each link is assigned a “link NMI” whose value is the average between the NMI values 

of the start node and end node of this link. The link is colored in a way that green 

represents the highest NMI (2.6) and red represents the lowest value (0).     

We can see that the maximum value of link NMI is comparable for the two areas. 

However, the LA County network has many more links that have high NMI values. 

Further, the NMI value is sensitive to the range of coverage. When the coverage is small, 

the number of nodes included is also small, resulting in small values of the average NMI. 

When the coverage is very large, the number of nodes included is also very large. 

However, these nodes include many isolated nodes in distant areas, inversely causing the 

average NMI values to be small. From the comparisons in Figures 5.5(b) through 5.7(b), 

it can be seen that in general the LA County network provides more freedom of route 

selection. The number of nodes in the LA County having high NMI values is larger than 

that in the Bay Area. It also can be observed that the distributions of NMI values loosely 

follow a Gaussian distribution. The outliers with very low NMI values are mostly those 

isolated nodes and road segments. 
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Figure 5.5(a): NMI of each link in LA County (upper) and in Bay area (bottom), radius 10 miles. 
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Figure 5.5(b): The distribution of NMI values, radius 10 miles. 
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Figure 5.6(a): NMI of each link in LA County (upper) and in Bay area (bottom), radius 50 miles. 

 



96 

 

 

0

5

10

15

20

25

0.
2

0.
4

0.
6

0.
8 1

1.
2

1.
4

1.
6

1.
8 2

2.
2

2.
4

2.
6

2.
8 3

NMI

N
or

m
al

iz
ed

 N
um

be
r o

f N
od

es

the LA County
the SF Bay Area

 

Figure 5.6 (b): The distribution of NMI values, radius 50 miles. 
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Figure 5.7(a): NMI of each link in LA County (upper) and in Bay area (bottom), radius 1000 
miles. 
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Figure 5.7(b): The distribution of NMI values, radius 1000 miles. 

5.3.4 NMI-Based Navigation 

In this section, we compare the shortest-distance route and the least generalized cost 

route. For this analysis, we use the network of the South Bay Area in Northern California 

as a case study. The generalized cost is constructed as in (5.11). The selection of ω  

depends on how much weight is to be placed on the NMI. If ω  is 0, then it is simply a 

shortest-distance routing algorithm. The higherω  is, the more weight we put on the NMI. 

In this experiment, we select a moderate value 3 for ω . 

Figure 5.8 shows the results of the recommended routes according to different criteria. 

The purple-colored route is based on the shortest-distance, and the blue-colored route is 

according to the least generalized cost. We can see from the figure that these two routes 
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have a significant number (about 50%) of non-overlapping segments. The least 

generalized cost route does not include those nodes along the SF Bay because those 

nodes generally have low values of NMI to the destination.    

 

Figure 5.8: The routes selected by the shortest-distance (purple), and the least generalized 

cost (blue). 

A generalized cost incorporating both distance and NMI can be particularly useful 

when traffic conditions change frequently and unexpectedly, for example, during rush 

hour, when multiple accidents occur. It can also be useful for disaster evacuation 

purposes (see Chapter 5 and [61]). Ultimately, the NMI can serve as another meaningful 
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metric when performing route optimization in addition to the standard metrics of distance, 

time, and fuel consumption.  
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6. Mobility Index-Based Navigation for 
Mandatory Re-Routing Scenarios 

 

6.1 Introduction 

Current dynamic navigators have the capability to re-route if the driver wishes to 

avoid a particular area of roadway network due to traffic conditions. In Chapter 5, we 

have developed a navigational mobility index (specifically for navigational purpose) that 

quantifies the number of possible routing options, e.g. the weighted number of possible 

routes between an origin-destination pair. Basically, the NMI was used to quantify 

connectivity of facility from one location to another. Furthermore, corresponding node-

NMI and area-NMI were also defined.  

In this chapter, we develop a new navigational methodology based on NMI for 

dealing with mandatory re-routing scenarios. Normally, drivers want to select either a 

shortest-duration or shortest-distance path, and would like the traffic conditions to be 

free-flow and uninterrupted. A mandatory re-routing situation occurs when one or more 

links in a roadway network are closed (or highly congested) and it is preferable 

(sometimes it is even mandatory) to choose a different path. There are basically two 

scenarios where mandatory re-routing might be need: one is disaster evacuation, and the 

other is navigation under chaotic conditions. 

Disasters (earthquakes, hurricanes, tornados, forest fires, floods, terrorist attacks, etc.) 
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can happen anywhere anytime and can have severe consequences. For example, in the 

recent Wenchuan earthquake (May 12, 2008) in China, over 69,000 people were killed 

and a significant amount of roadway infrastructure was destroyed. During these disasters, 

roadway facilities can be damaged but their conditions may not be known immediately to 

the navigation systems. Nevertheless, it is extremely important to relocate drivers in 

affected areas to safer locations as soon as possible. In these scenarios, drivers might 

have to re-route frequently due to the failure of roadway segments. It is very important 

that drivers are able to re-route. In another word, the degree of freedom of re-routing 

should be as high as possible to avoid reaching a dead end. Both shortest-distance and 

shortest-duration algorithms may recommend routes that are not high in degree of 

freedom for re-routing, causing the drivers less likely to reach their destinations. 

Nowadays, traffic conditions are often unpredictable. Roadway incidents happen 

frequently and cause traffic interruptions. Dynamic shortest-duration algorithms typically 

use roadway real time speed data, as well as historical data (long term and short term) 

[66, 71] when calculating a shortest-duration route. This works well when there are no 

roadway incidents happening that causes severe congestion. However, when an incident 

happens and the traffic becomes congested, the navigator might advice the drivers to re-

route. This is another scenario of mandatory re-routing. Although this may not really be 

“mandatory”, and re-routing is just an option, we still call it mandatory re-routing 

because staying in the old route is no longer desirable. In this scenario, new shortest-

duration route will not exist if there are no route choices available (for example, if the 

driver is on a bridge with no other connections). This emphasizes that the degree of 
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freedom in re-routing may be a desirable property for determining an optimal route 

provided by navigation system.   

In these cases, it is desirable that a navigational algorithm find an optimal route that 

offers the highest degree of freedom in re-routing. When considering this kind of optimal 

route, even if some roadway infrastructure is unusable, the drivers are still more likely to 

find another route to reach their destination in a reasonable travel time without being 

trapped in a dead end or backtracking too much, compared to other navigation 

algorithms.  

The remainder of this chapter is organized as follows. Section 6.2 summarizes the 

overall methodology including the definition of NMI and the routing algorithm. Section 

6.3 presents the experimental results of two mandatory re-routing scenarios and provides 

discussions. 

6.2 Methodology 

6.2.1 Review of Navigation Mobility Index 

NMI was proposed in Chapter 5 and [65] to quantify the connectivity of roadway 

facilities from one location to another indicating the weighted number of available routes. 

Corresponding node-NMI and area-NMI were proposed to indicate the connectivity of a 

node and connectivity of an area, respectively. The definition of node-to-node NMI is 

briefly summarized below.  

Yen’s algorithm [54] is first used to find a total of K shortest paths (i.e. the shortest, the 
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second shortest, and so on), and they are stored in set setKPaths in an increasing order 

(according to the route length, i.e. 1A for the shortest one, 2A for the second shortest one, 

and so on). Each path consists of multiple segments (components of a route). We proceed 

in the order from 1A to .KA Next we have another set called segmentsIncluded to collect 

all road segments whose contribution to NMI has been counted. The set 

segmentsIncluded is initially set to empty. The detailed steps are given below: 

1. We begin from the shortest route 1A : the contribution (weighted number of path) 

of 1A  to the NMI is calculated as 1 since none of the segments is in set 

segmentsIncluded. We then put all the segments of this route to the set 

segmentsIncluded. 

2. For the second shortest route 2A , its contribution to the NMI is calculated as: 

∑
∈ 2 ||

||

2Ll
l

a

a
a

G
L
l  (6.1) 

where 2L  is the collection of all segments of route 2A , || 2L  is the total length of route 2A , 

and || al  is the length of segment al . 
al

G  is a general function depending on al  and set 

segmentsIncluded. In this chapter we specifically choose 
al

δ  for 
al

G , where 
al

δ  is a 

function whose value is 1 if segment al  is not within the set segmentsIncluded, and is 0 

if otherwise. We then add all sL '2  segments into the set segmentsIncluded. 

3. Repeat step 2 for all the remaining shortest paths. 

4. Compute the total NMI of the roadway facilities available for this origin-

destination pair as 
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In this chapter, we specifically choose 
al

δ  for
al

G  because it is simple and intuitive. Using 

al
δ , we do not consider the contribution to NMI of a new route’s segments that has 

already been counted in previous routes. In order to grant some small weighted 

contribution of these segments, 
al

G  can be selected as a general function inversely 

proportional to the number of occurrences of al being within set segmentsIncluded.  

When drivers are selecting routes, unreasonably long routes are usually not 

considered. Therefore, in the calculation of K shortest paths, another criterion is 

implemented: whenever an mth (m < K) shortest route whose length is longer than 

shortestLengthratio∗  is found (where shortestLength is the length of the shortest path), the K-

shortest path algorithm stops. For a moderately complex freeway network in an urban 

area, a large value of K is usually selected and the ratio parameter is normally set at 

around 1.5. 

This definition of NMI described above has some attractive properties. One of them is 

that adding additional infrastructure will not decrease the value of the index. Please refer 

to Chapter 5 and [65] for other properties and their proofs. Due to limited space, please 

also refer to Chapter 5 and [65] for simple illustrative examples of how NMI is 

computed. 

The corresponding node-NMI for node i is defined as: 
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and the area-NMI are NMI averaged over all node pairs: 
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where N is the total number of nodes in the area. 

6.2.2 NMI-based Navigation Algorithm 

As previously mentioned, there has been a significant proliferation of on-board and 

off-board navigation systems that primarily provide routing advice across a roadway 

network. With the ability to re-route based on changing network conditions, NMI is 

useful in giving an indication of the number of routing options. A network with low NMI 

value will not have many re-routing choices and therefore choosing an alternative based 

on real-time traffic conditions will have limited value.  

In contrast, it may be desirable to choose a preferred route also based on the number 

of available routing options. This is particularly valuable if the roadway network changes 

frequently due to the freeway incidents, congestion, etc. Instead of using duration or 

distance only, a generalized cost considering multiple measurements (distance, routing 

options, emission/energy, etc.) can be used. In essence, a “good” route can be chosen that 

provides a smallest generalized cost that incorporate both distance and freedom of route 

selection, if the network characteristics (i.e. traffic conditions) change.  

Such kinds of routing methods are even more important for disaster evacuation. 

During an evacuation, people need to be relocated to safer areas as soon as possible. 
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Some roadway infrastructure is likely to be damaged and vehicles might not be able to 

get through. For disaster evacuation, there are basically two requirements: the first one is 

that the probability that vehicle is trapped in dead ends should be minimized; the second 

one is that the distance traveled should also not be long.   

Node-to-node NMI can be used for mandatory re-routing. A route providing the 

highest degree of freedom in re-routing needs to be found for an origin-destination pair. 

We first calculate the node-to-node NMI value of all the pairs from each node in the 

network to destination nodes. We then attach the corresponding node-to-node NMI value 

to each node, respectively. In order to incorporate the NMI value into the generalized 

cost, we have to convert the NMI value to a connectivity cost first using a mapping 

function. The mapping function has to be inversely proportional to the NMI value. An 

example is given below: 

 
ω







=

NMI
NMICost maxmin*  (6.5) 

where min is the minimum nonzero node-to-node NMI in the network, max is the 

maximum node-to-node NMI value.  So far, we have an NMI value for each node. We 

define the NMI value of a link as follows. For a link going from Node A to Node B, the 

NMI value of this link is defined as the NMI of the end node, i.e. Node B. The reason for 

this is that when a driver is on the link, (s)he has no other routing choice until (s)he 

reaches the end node before (s)he can change routes. Finally we define the generalized 

cost incorporating both distance and NMI value as  

)()( NMICostglengthfCost ∗=  (6.6) 
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where f(length) is a function depending on how much weight need to be put on the 

distance, and in this chapter it is chosen as  

klengthlengthf )()( =  (6.7) 

where k is a parameter for the weight. The term g(NMICost) is a function depending on 

how much weight needs to be put on the NMICost, and in this chapter it is chosen as 

NMICosteNMICostg =)(  (6.8) 

After we have the generalized cost for each link, we are able to do the NMI-based 

navigation for mandatory routing. Disaster evacuation is selected for the illustration of 

the navigational method, but routing under severe congestion should be very similar. 

In the disaster evacuation scenario, we only have the original “unaffected” map, 

which is the map with all roadway infrastructures in good condition before a disaster. We 

also assume that when a driver is at a node, he is able to observe if a segment he is 

moving onto next is in serviceable condition or not by watching the general traffic flow 

in that segment or traffic signs/bulletins in that segment . 

 The steps of the mandatory re-routing based on least generalized cost are: 

1. the generalized cost for each link; 

2. Find the least generalized cost path between the origin-destination pair using any 

shortest-path finding algorithms (e.g. Dijkstra [18], A*[19] [62], etc.); 

3. Proceed from the origin node; 

4. Decide if the next link to move onto is in serviceable condition;  

5. If the link to move onto for step 4 is not serviceable, go to step 6; otherwise move 
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one link forward, and if the next node is destination, stop at destination, but if the 

next node is not destination, go to step 4; 

6. Stay at the node; disable the unserviceable segment in the map, and find another 

least generalized cost path (going backwards is allowed). If such a route does not 

exist, this vehicle is trapped in a dead end and the routing fails. If such route 

exists, go to step 4. Please note that the generalized cost is not re-computed to 

avoid intense computation. Therefore, the overhead of the re-calculation of routes 

is just the computation of the shortest path (e.g. Dijkstra), which is small. 

Mandatory re-routing can also be based on shortest-distance if we choose the shortest-

distance path instead of the least generalized cost path each time when we recalculate 

an optimal route after a segment failure (each time when we encounter a failed segment 

in the calculated path, we need to recalculate). Section 6.3 gives a comparison of the 

performance.  The mandatory re-routing algorithm applies to navigation under 

congestion in a similar way. 

6.3 Experimental Results 

In this section, disaster evacuation is selected for performance comparison, but the 

navigation under congestion is expected to have similar results. 

6.3.1 Disaster Evacuation: Performance Comparison 

In a set of experiments, we use the freeway network of Riverside County in Southern 

California, using the Census 2000 TIGER/Line shapefile format [53] as a case study. 
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Using ArcGIS 9.1 Geographical Information System tools[20], we extracted all the 

roadway segments whose Census Features Class Codes (CFCC) belongs to categories A1, 

A2, and A3 corresponding to the freeway categories. Abstract graphs were then built 

using the corresponding database files to describe the roadway connectivity. We assume 

that in a hypothetical emergency, people in the west area need to be relocated to the east. 

As shown in Figure 6.1, the map was divided into 8 sub areas manually according to the 

geographic clustering. People in area 1 through area 5 need to be relocated to area 6, area 

7, or area 8. Two or three random nodes in each of the areas 1-5 and areas 6-8 are 

selected. There are 66 origin-destination pairs in total. 

 

Figure 6.1: Map of Riverside County, southern California, with separate sub areas. 

The following damage probabilities were used:  5%, 10%, 15%, 20%, 25%, 30%, 

35%, and 40%. Each damage probability was applied to each direction of roadway 

segments (i.e. each direction of roadway segments is likely to be destroyed with a 

probability equal to the damage probability). Various seeds were used to generate the 

random destruction. The destruction of each direction of one roadway segment is 
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assumed to be independent of each another.  

In this experiment, the generalized cost function is set as 

NMIelengthCost
maxmin*

∗=  
(6.9) 

putting a small weight on the length. 

 

Figure 6.2: Success ratio vs. damage probability of roadway segments. 

Figure 6.2 shows the results. The X axis is the damage probability, and y axis is the 

success ratio, which is defined as 

))(&&)((
))(&&)((

NMIFalsedistanceTrueN
distanceFalseNMITrueNioSuccessRat =  

where N(True(NMI)&&False(distance)) means the number of occurrences when the 

NMI-based mandatory routing can lead the driver to the destination successfully without 
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being trapped in a dead end while shortest-distance -based mandatory routing failed 

(leading to a dead end).  We can see that the NMI-based mandatory routing is universally 

better than the shortest-distance based mandatory routing (the ratio is always larger than 

1). The result of the 5% damage probability is not shown in Figure 6.2 because 

N(True(distance)&&False(NMI)) is equal to zero. If either the roadway infrastructure is 

completely undamaged or a large portion (e.g. over 50%) of the roadway infrastructure is 

damaged by disaster, the two navigation algorithms will give pretty much the same 

results. However, when the infrastructure is destroyed mildly or moderately (i.e. 10-

40%), the NMI-based mandatory routing will give better results.  

Since we put a small weight on the length, one question might be asked: will the 

NMI-based mandatory routes be unreasonably longer than the shortest-distance-based 

mandatory routes? The answer is no. Figure 6.3 presents the statistics of trip length 

differences between all the successful trip pairs (for a successful trip pair, both the NMI-

based and the shortest-distance-based mandatory routing are successful in leading the 

driver from the origin to the destination without being trapped in a dead end). The trip 

length difference is presented as a percentage, and is based on the distance of shortest-

distance-based mandatory routing.  We can see that for 48% of the trips, the two routing 

algorithms are the same distance-wise. For most of the trips, the trip length difference is 

within 3%.   
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Figure 6.3: Histogram of trip length difference between successful trip pairs. 

6.3.2 Disaster Evacuation: Case Study 

The environment for the experiment in this section is as follows. The Riverside 

Country freeway network is again used, and people in the west need to be relocated to the 

east. The source node is Node 9 is area 1, and the destination node is Node 82 in area 7. 

The damage probability is 25%, i.e., each direction of each roadway segment is likely to 

be damaged with a probability of 25%. The destruction of each direction of one roadway 

segment is assumed to be independent from another.  

From the two resulting routes shown in Figure 6.4, we can see that the NMI-based 

mandatory re-routing gives a reasonable route avoiding those links with low NMI. On the 

other hand, the shortest-distance-based routing provides a route that is trapped in area 4 
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due to a roadway failure.  

 

Figure 6.4: Example routing trajectories of NMI-based and distance-based mandatory re-

route. 

6.3.3 Navigation under Congested Conditions 

The same algorithm can be applied to navigation under chaotic traffic conditions with 

a small modification. To avoid repetition, a pure simulation similar to section 6.3.1 is not 

included. However, for navigation under congestion conditions, it is possible to use real 

traffic data [67] for evaluation purposes, which is considered future work. 

NMI-based mandatory re-routing is expected to be very useful since freeway 

incidents sometimes happen frequently. According to the incident data from PeMS [67], 

there were a total of 52,042 incidents that occurred on monitored Californian freeways 

from April 1, 2008 to April 30, 2008. Those incidents cause severe congestion, resulting 

in a lot of energy consumption and higher emissions. Figure 6.5 shows a plot of the 

number of incidents per day on a 59-mile section of State Route 91-E in Los Angeles 

area. The number of incidents each day is generally larger than 20. 
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Figure 6.5:  Number of incidents for each day in April, 2008. 
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7. Conclusions and Future Work 

In this dissertation, we have presented the development and application of an 

environmentally-friendly navigation system, described a wavelet-based roadway type 

classification, defined and justified the navigational mobility index concept, and proposed 

the NMI-based best degree of freedom routing algorithm. From this work, we can draw  

conclusion and identify some future work for each sub topic.  

7.1 Environmentally-Friendly Navigation 

This research presents the development of an environmentally-friendly navigation 

system methodology, which can calculate not only distance- and time-minimizing paths, 

but also energy- and emissions-minimizing paths. In this navigation system, a standard 

route minimization algorithm is applied to a new set of cost functions based on energy 

and emissions. These link-based energy/emissions factors were derived from a state-of-

the-art mobile-source energy/emissions model that has been calibrated with real-world 

vehicle activity patterns. It was found that in many cases, a time-minimization path also 

minimizes energy and emissions. However, when congestion occurs, there are cases 

where this is not true. Because energy and emissions are often higher at congested 

speeds, a heavily congested (but shorter) path may not be the most environmentally 

friendly. In contrast, moderate congestion often provides a better choice from an energy 

and environmental perspective. Moderate congestion generally reduces average traffic 
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speeds from higher free-flow conditions, where vehicles have increased fuel consumption 

and emissions due to higher loads placed on the vehicle engines. Using historical data of 

two comparable freeways in the Los Angeles area, it was shown that for almost half of 

the time, the developed energy/environmentally-friendly navigation system can help a 

driver choose the best travel route that consumes the least fuel and/or produces the least 

amount of emissions. This may be highly desirable during this time period when fuel 

prices continue to hit record high and global warming as well as climate change have 

become major concerns worldwide.  

To date, our studies have taken place on roadways that have real-time traffic 

performance data available, i.e., mostly on freeways in southern California. However, the 

method is also applicable to other types of roadways. For those roadways that do not have 

real-time traffic data, an estimated average speed value can be used. As the coverage of 

real-time traffic data expands (to include arterials and other roadways), the energy- and 

emissions-minimization navigation will be even more beneficial. 

Further, road grade can also have a significant impact on fuel consumption and 

emissions of vehicles, especially for heavy-duty trucks. Thus, the developed energy and 

environmentally-friendly navigation system can be expanded to take into account road 

grade information in its routing decision, which can contribute to significant fuel savings. 

In the future, we will develop a prototype on-board navigation system that not only 

provides the real-time shortest-duration and shortest-distance routing choices, but also the 

lowest energy and emissions choices. 
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 7.2 Vehicle Velocity-Based Roadway Type Recognition by 
Wavelet Analysis 

 

In this sub topic, a wavelet-based pattern recognition methodology has been proposed 

to classify real-time vehicle velocity trajectories from probe vehicles. This potentially 

allows the probe vehicle to estimate roadway facility type and possibly congestion 

conditions (e.g. level-of-service or LOS). This information is complementary to standard 

traffic monitoring systems (i.e., those that rely on embedded loop detectors in the 

roadway). The system can correctly estimate roadway conditions 90% of the time. This 

performance can be improved with additional data in the original training set. 

In terms of future work, it is planned to expand the experimentation with additional 

training sets and evaluation runs. Congestion level classification is currently underway 

and will continue as part of the future work. Further, with the basic vehicle trajectory 

recognition system operating successfully, it is planned to develop functional 

relationships between the estimated congestion levels and traffic flow and speed data 

obtained from macroscale roadway sensors. In this way, it will be possible to estimate 

localized fuel consumption and pollutant emissions based simply on traffic flow and 

speed data. 
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7.3 Navigation Mobility Index 

Due to dynamic traffic conditions, a certain pre-selected freeway route corresponding 

to standard measures of travel distance, time, or energy cost may not always be 

achievable. In this study, the NMI based on the availability of freeway route choices has 

been developed and proposed with demonstrated applications in roadway navigation. 

NMI can be based on the number of possible routes weighted by shared segments among 

routes from a source to a destination (node-to-node NMI), or a single source to a 

destination (node-NMI) or on an average of nodes in a specific area. The proposed NMI 

has several attractive properties, among which the most important one is adding 

additional infrastructures will not decrease the NMI. 

The NMI can be used to: 1) measure the degree of freedom in which drivers can 

choose routes; 2) evaluate the potential effectiveness of navigation systems in an area; 3) 

assess the overall degree of freedom level of an area; 4) guide the movement of people 

during emergency evacuation; and 5) determine a route having the least generalized cost 

incorporating both the distance and the NMI in route selection. Experimental results were 

presented to show the effectiveness of the proposed concepts and algorithms. Specifically, 

the LA County network and the SF Bay Area network were compared, and it was found 

that the LA County network has better freeway connectivity in terms of re-routing 

options.  

In terms of future work, we plan to: 1) consider additional cities/counties to be studied 

and determine their navigational mobility indices that can be compared. Additional 
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roadway types (e.g. arterials) will be included in the analysis; 2) develop a faster 

algorithm/implementation that enables real-time deployment in large networks; 3) 

investigate how to construct a more effective generalized cost based on NMI, and to 

investigate how to construct a more effective general function
al

G . 

7.4 NMI-Based Mandatory Re-Routing Algorithm 

In Chapter 6 we discuss two possible scenarios of mandatory re-routing: traffic under 

severe congestion and evacuation in a disastrous event. Traffic conditions are often 

unpredictable in metropolitan areas as unexpected freeway incidents occur on a regular 

basis. During traffic congestion, drivers normally want to change routes because the pre-

defined shortest-distance or shortest-duration route is no longer optimal. We propose an 

NMI-based mandatory re-routing method that gives drivers the highest degree of freedom 

in choosing routes if they would like to change routes while in travel. The NMI-based 

mandatory re-routing can also be used in evacuation applications. During disasters, 

roadway infrastructure may be damaged, and people in affected areas need to be 

relocated to safe area as soon as possible without an accurate map of the latest roadway 

conditions. Experimental results from a hypothetical case study show that the success 

ratio is universally higher than 1, which suggests a better performance of the NMI-based 

mandatory re-routing over the shortest-distance-based mandatory re-routing. 

Future work includes the following aspects: 1) integrate a practical disaster (e.g. 

earthquake) roadway infrastructure destruction model. For example, in [68] the 

researchers developed methods for evaluating the performance of highway systems 
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subjected to a severe earthquake. They explicitly modeled the transportation network 

performance and introduced probabilistic earthquake scenarios. In this research, we 

assume that destruction of each road segment and destruction of each direction of one 

roadway segment are independent. However, this may not be the case; 2) integrate the 

real time traffic speed collected from loop sensors (e.g. PeMS system), and use those data 

to calculate the travel time for comparison purposes; 3) find new forms of a generalized 

cost function and associated parameters that gives better performance in terms of success 

ratio and more robust routes. 
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