
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Policy driven development : SOA evolvability through late binding

Permalink
https://escholarship.org/uc/item/8d79f7r4

Author
Demchak, Barry

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8d79f7r4
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Policy Driven Development:

SOA Evolvability through Late Binding

A dissertation submitted in partial satisfaction of the requirements for

the degree Doctor of Philosophy

in

Computer Science

by

Barry Demchak

Committee in charge:

Professor Ingolf Krüger, Chair

Professor William Griswold

Professor Kevin Patrick

Professor Ramesh Rao

Professor Stefan Savage

2013

Copyright

Barry Demchak, 2013

All rights reserved.

iii

SIGNATURE PAGE

The Dissertation of Barry Demchak is approved, and it is acceptable in

quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2013

iv

DEDICATION

First, to God

… without whose grace this contribution would not be possible.

Second, to Franca

… my loving and patient wife.

Third, to all of my family and friends

… who encouraged me every step of the way.

And finally, to those who seek truth

… with integrity, creativity, sensitivity, and love.

v

EPIGRAPH

Anyone who lives within their means

suffers from a lack of imagination.

Oscar Wilde

(On the true meaning of graduate school)

All the world’s a stage.

And all the men and women merely players;

They have their exits and their entrances,

And one man in his time plays many parts,

William Shakespeare

As You Like It (Act 2, scene 7, lines 139-143)

(An early definition of SOA)

vi

TABLE OF CONTENTS

Signature Page ... iii

Dedication ... iv

Epigraph .. v

Table of Contents .. vi

List of Abbreviations .. xi

List of Figures ... xviii

List of Tables ... xxii

Acknowledgements .. xxiii

Vita ... xxvi

Abstract of the Dissertation .. xxix

Chapter 1 Policy Driven Development Improves Evolvability 1
1.1 The Evolvability Problem at Scale .. 2
1.2 Policies and Evolvability – Then and Now ... 5

1.2.1 SOARS: A History of the Wrong People Making Right

Decisions .. 5
1.2.2 How Policy-based Solutions Have Fallen Short (So Far) 10
1.2.3 Better Evolvability Leads to More Productive Stakeholders . 13
1.2.4 Why has the Evolvability Problem Not Been Solved? 13
1.2.5 How Other Existing Approaches Fall Short 14

1.3 PDD – A Vision for Rapid Requirement Injection 17
1.3.1 How PDD Differs from Existing Methodologies 18
1.3.2 PDD’s Perspective on Workflows .. 20
1.3.3 Policy Programmers Enfranchise Stakeholders 22
1.3.4 Lifting the Policy Abstraction .. 24
1.3.5 PDD’s Focus on Simple Workflows .. 26
1.3.6 The PDD Hypothesis ... 27

vii

1.4 Contributions of this Dissertation .. 28
1.5 How to Read this Dissertation ... 28
1.6 A Vision of SOARS in a PDD World ... 30
1.7 Summary .. 32

Chapter 2 Existing Approaches to Choice and Composition 33
2.1 Background .. 42

2.1.1 What is a Requirement? .. 43
2.1.2 What is a Workflow? ... 48

2.2 Models of Computation .. 52
2.2.1 Turing Machines.. 54
2.2.2 Petri Nets .. 55
2.2.3 π -calculus ... 58
2.2.4 𝝀-calculus .. 60

2.3 Software Development Methodologies ... 64
2.3.1 Modular Programming .. 65
2.3.2 Structured Programming ... 66
2.3.3 Object Oriented Programming .. 66
2.3.4 Aspect Oriented Programming .. 69

2.4 Mechanisms .. 71
2.4.1 Fundamental Mechanisms ... 72
2.4.2 Declarative Representations .. 74
2.4.3 Execution Frameworks ... 76
2.4.4 Policy Engines ... 78
2.4.5 Workflow Context in Distributed Systems 83
2.4.6 Ponder Policy Verification ... 87

2.5 Patterns .. 88
2.5.1 Object Oriented Design Patterns ... 91
2.5.2 Workflow Patterns ... 93
2.5.3 Enterprise Application Architecture Patterns 94
2.5.4 Enterprise Integration Patterns ... 94

2.6 Related Concepts .. 94
2.6.1 SCA Infrastructure .. 95
2.6.2 Spring Framework ... 95
2.6.3 ORC Language .. 95
2.6.4 WS-Policy ... 96
2.6.5 Business Process Modeling Notation (BPMN) 96
2.6.6 Policy as Commitments ... 97

2.7 Summary .. 99
2.7.1 Workflow Specification .. 103
2.7.2 Workflow Injection .. 104
2.7.3 State Management ... 106
2.7.4 Modeling ... 107
2.7.5 Deployment .. 108
2.7.6 Assessment .. 109

viii

Chapter 3 A Running Example – PALMS’ GetStudyList Workflow 112
3.1 Relationship to PALMS ... 114
3.2 GetStudyList Data Flow ... 116
3.3 Relationship to Requirements ... 117
3.4 Policy Preview ... 118
3.5 Representative Workflow .. 119
3.6 Summary .. 120

Chapter 4 A Foundation for Policy Composed on Workflow 122
4.1 A SOA Approach to Policy-based Workflow Composition 125

4.1.1 Rich Services ... 126
4.1.2 Service Definition .. 135
4.1.3 Service Composition .. 138
4.1.4 Service Decomposition ... 138
4.1.5 Message Interception ... 140
4.1.6 Services and Workflows ... 140

4.2 Policies ... 141
4.2.1 Policies and Workflows .. 141
4.2.2 Compound Service Interactions .. 144
4.2.3 Control Policies ... 145
4.2.4 Filter Policies .. 147
4.2.5 A Simple Policy Evaluation Service .. 148
4.2.6 Feature Injection and Obligations ... 150
4.2.7 Policy Composition .. 152

4.3 Context System ... 155
4.4 Addressing Gaps Identified in Existing Choice Mechanisms 162
4.5 Summary .. 163
4.6 Acknowledgments ... 165

Chapter 5 Policy in the PALMS Cyberinfrastructure – A Case Study 167
5.1 The PALMS Project and the PALMS-CI ... 170

5.1.1 Exposure Biologists – the Core PALMS Community 173
5.2 The Basic PALMS Requirements .. 174
5.3 The PALMS Logical Rich Service ... 178
5.4 The PALMS Deployment Rich Service .. 185
5.5 The PALMS-CI Design ... 188

5.5.1 Repositories ... 189
5.5.2 Interface between Browser UI and PALMS-CI 196
5.5.3 Interface between PALMS-CI Internal Services 200
5.5.4 Workflow Implementation ... 208

5.6 PALMS’ Policy System .. 225
5.6.1 PALMS Basic Policy Language ... 228
5.6.2 Policy Repositories and Authorship .. 243
5.6.3 Policy Evaluator .. 269
5.6.4 Feature Injection .. 277

ix

5.6.5 PALMS Domain Specific Languages (DSLs) 280
5.6.6 Policy Development and Debugging 291

5.7 Summary .. 293
5.8 Acknowledgments ... 296

Chapter 6 PALMS’ Experience with PDD .. 298
6.1 Development Time... 302
6.2 Stakeholder Ease of Use .. 306
6.3 Execution time .. 309

6.3.1 Test Platform and Circumstances .. 310
6.3.2 End to End Tests .. 312
6.3.3 Single Interaction Baseline .. 319
6.3.4 Null Policy Baseline ... 321
6.3.5 Control Policy .. 323
6.3.6 Filter Policy ... 326
6.3.7 Execution Time Hypotheses .. 332

6.4 Summary .. 334

Chapter 7 PDD as Compared to Other Approaches ... 336
7.1 Workflows, Requirements, and Late Binding 338

7.1.1 Aspect Oriented Software Design (AOSD) 342
7.1.2 Policy-based Design .. 344

7.2 Workflow Context ... 346
7.2.1 Struts ... 346
7.2.2 REST ... 348
7.2.3 AJAX ... 350

7.3 Orchestration Languages and Workflow Systems 351
7.4 Policy Evaluation Systems ... 353

7.4.1 PERMIS .. 353
7.4.2 xESB .. 362
7.4.3 Ponder2 ... 368
7.4.4 Policy Deployment ... 369
7.4.5 Policy Languages ... 369
7.4.6 Policy Versioning .. 375

7.5 Verification and Validation .. 376
7.6 Policy Programmers and Enfranchised Stakeholders 380

7.6.1 Survey of Stakeholder Policy Authorship 381
7.6.2 Policy Programming ... 385
7.6.3 Complimentary Approaches ... 389

7.7 Building and Maintaining PDD Applications 392
7.8 Gaps and Insights ... 395

7.8.1 Gap in Service Contract Checking 396
7.8.2 Gap in Testing and Fidelity Assessment 399
7.8.3 Requirement Feedback Loops... 400
7.8.4 Implementation Platforms ... 400

x

7.9 Summary .. 401

Chapter 8 Summary and Outlook ... 404
8.1 Gaps .. 409
8.2 Outlook .. 410

Appendices .. 417

References .. 446

xi

LIST OF ABBREVIATIONS

ABAC Attribute Based Access Control

ACL Access Control List

ADL Architecture Definition Language

AEV Application and Environment-related Value

AO-ADL Aspect Oriented Architecture Definition Language

AOD Aspect Oriented Design

AOP Aspect Oriented Programming

AORE Aspect Oriented Requirement Engineering

AOSA Aspect Oriented System Architecture

AOSD Aspect Oriented Software Design

API Application Programming Interface

BPEL Business Process Execution Language

BPMN Business Process Modeling Notation

CABIG Cancer Biomedical Informatics Grid

CCS Calculus of Computing Systems

CI Cyberinfrastructure

xii

CIS Context Infrastructure Service

CPN Colored Petri Net

CSP Communicating Sequential Processes

CSS Cascaded Style Sheets

CYCORE Cyberinfrastructure for Comparative Effectiveness

DBMS Database Management System

DLL Dynamic Linked Library

DSL Domain Specific Language

DOM Document Object Model

EA Early Aspects

EAA Enterprise Application Architecture

EB Exposure Biology

EI Enterprise Integration

EPAL Enterprise Privacy Authorization Language

EPC Event-driven Process Chain

ESB Enterprise Service Bus

EU European Union

xiii

FOSD Feature Oriented Software Development

FR Functional Requirement

GAARDS Grid Authentication and Authorization with Reliability

Distributed Services

GEI Genes, Environment and Health Initiative

GPS Global Positioning System

GUI Graphical User Interface

GUID Globally Unique Identifier

GWT Google Web Toolkit

HIPAA Health Insurance Portability and Accountability Act

HTTP Hypertext Transfer Protocol

IA Information Assurance

IRB Institutional Review Board

IM Interservice Message

ISO International Standards Organization

IV Independent Value

LTL Linear Temporal Logic

xiv

JAAS Java Authentication and Authorization Service

JMS Java Message Service

JSON JavaScript Object Notation

MSC Message Sequence Chart

MDA Model Driven Architecture

MDE Model Driven Engineering

MSOD Multisession Separation of Duties

NFR Nonfunctional Requirement

NIH National Institutes of Health

NSF National Science Foundation

OCL Object Constraint Language

OMG Object Management Group

OO Object Orientation

OOD Object Oriented Design

OOI-CI Ocean Observatory Initiative Cyberinfrastructure

OOP Object Oriented Programming

OWL Web Ontology Language

xv

PALMS Physical Activity Location Measurement System

PALMS-CI PALMS Cyberinfrastructure

PBD Policy Based Design

PDD Policy Driven Development

PDP Policy Decision Point

PEP Policy Enactment Point

PERMIS Privilege and Role Management Infrastructure Standards

PI Principal Investigator

POJO Plain Old Java Object

RA Research Assistant

RAS Rich Application Service

RBAC Role Based Access Control

RDBMS Relational Database Management System

RDL Requirements Definition Language

REST Representational State Transfer

RIS Rich Infrastructure Service

RPC Remote Procedure Call

xvi

RS Rich Service

RSDP Rich Service Development Process

SCA Service Component Architectures

SDC Service/Data Connector

SIV Service Interaction-related Value

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOARS Student Online Administration and Reporting System

SoS System of Systems

SQL Structured Query Language

SYN/ACK Synchronize Acknowledgement

TCP/IP Transmission Control Protocol/Internet Protocol

UCSD University of California, San Diego

UDDI Universal Description Discovery and Integration

UI User Interface

UML Unified Modeling Language

URN User Requirements Notation

xvii

US United States of America

VM Virtual Machine

WFMS Workflow Management System

WS-CDL Web Services Choreography Description Language

WS-POLICY Web Services Policy Language

WSCL Web Services Conversion Language

XACML Extensible Access Control Markup Language

XHTML Extended Hypertext Markup Language

XML Extensible Markup Language

YAWL Yet Another Workflow Language

xviii

LIST OF FIGURES

Figure 1. Relationship of PDD to Traditional Programming 24

Figure 2. Dissertation Flow ... 29

Figure 3. Requirements, Workflows, and Policy Injection 35

Figure 4. Hypothetical SOARS Bursar Workflow .. 36

Figure 5. Chapter 2 Flow ... 39

Figure 6. GetStudyList Generic Workflow .. 112

Figure 7. Chapter 3 Flow ... 113

Figure 8. GetStudyList Generic Workflow (with sample policies injected) 119

Figure 9. Chapter 4 Flow ... 124

Figure 10. A Typical Rich Service .. 128

Figure 11. RIS Injection Achieves System of Systems Integration 133

Figure 12. Rich Service with Input and Output Channels 136

Figure 13. Composing Two Services P and Q ... 137

Figure 14. Rich Services Routing Service (with sub-services; SDC not shown) . 139

Figure 15. Service Refinement for Alternate Choice ... 142

Figure 16. Simple Allow/Deny Policy Evaluation .. 149

Figure 17. Context Containing AEVs, SIVs, and IVs .. 157

Figure 18. Context Management .. 160

Figure 19. Chapter 5 Flow ... 168

Figure 20. PALMS Community Growth over Time ... 171

Figure 21. PALMS Studies – Structure and Flow .. 176

Figure 22. Rich Services Development Process .. 179

file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971766
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971767
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971768
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971769
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971770
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971771
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971772
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971773
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971774
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971775
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971777
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971778
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971779
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971780
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971781
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971782
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971783
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971784
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971785
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971786
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971787

xix

Figure 23. PALMS-CI Logical Rich Service ... 182

Figure 24. PALMS Deployment.. 186

Figure 25. PALMS User Interface ... 187

Figure 26. PALMS-CI Repositories.. 194

Figure 27. Query Edit Constrains Original Query to Post-2010 Results 196

Figure 28. Sample Dataset .. 198

Figure 29. The ListResults Workflow ... 201

Figure 30. Sample Dataset .. 204

Figure 31. AttributeCollection Model .. 205

Figure 32. Sample Query ... 207

Figure 33. Simplified PALMS Interceptor Sequencing .. 213

Figure 34. Mule Interservice Message and Service Tracking Implementation 219

Figure 35. PALMS Policy System Composed onto PALMS Service 227

Figure 36. Example of Post-Filter Policy Injection ... 229

Figure 37. Example of Access Control Policy Injection 231

Figure 38. PALMS Credentials and Authorization Services 234

Figure 39. PALMS Role Ontology .. 236

Figure 40. Simplified PALMS Grouper Tree .. 239

Figure 41. PALMS Policy Domains ... 247

Figure 42. Policy Package ... 259

Figure 43. PALMS Policy Evaluator ... 272

Figure 44. Filter Evaluation Sequence ... 273

Figure 45. Control Evaluation Sequence .. 275

file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971789
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971790
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971791
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971792
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971793
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971794
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971795
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971796
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971797
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971798
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971800
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971801
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971802
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971803
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971804
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971806
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971808
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971809
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971810

xx

Figure 46. PALMS Audit System Composed onto PALMS Service via Policy 278

Figure 47. PALMS XQuery Library Hierarchy .. 286

Figure 48. PALMS Audit Operators ... 287

Figure 49. Chapter 6 Flow ... 300

Figure 50. How Policy Use Avoids Entanglement ... 303

Figure 51. PALMS Policy Template Expansion ... 308

Figure 52. End-to-End Execution Time ... 315

Figure 53. PALMS Execution Timeline without Context or Policy Evaluation 315

Figure 54. PALMS Server Contribution to Overall Execution 316

Figure 55. Network and Web Services Times with and without Context

Interceptors ... 317

Figure 56. PALMS-Storage Execution with Context Interceptors 318

Figure 57. PALMS Execution Timeline with Context Interceptors 319

Figure 58. PALMS Interaction Baseline Times .. 320

Figure 59. PALMS Execution Timeline with Context Interceptors 321

Figure 60. PALMS Policy Evaluation with No Policy .. 322

Figure 61. PALMS Execution Timeline with Interaction but No Policy 323

Figure 62. PALMS Control Policy Evaluation with No Policy 325

Figure 63. PALMS Execution Timeline with 1, 2, 5, and 10 Control Policies 326

Figure 64. PALMS Filter Policy Evaluation with Few Elements 329

Figure 65. PALMS Filter Policy Evaluation with Many Elements 330

Figure 66. PALMS Execution Timeline with Filter Policies 330

Figure 67. Chapter 7 Flow ... 338

file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971811
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971812
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971813
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971814
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971815
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971816
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971817
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971818
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971819
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971820
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971820
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971821
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971822
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971823
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971824
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971825
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971826
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971827
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971828
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971829
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971830
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971831
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971832

xxi

Figure 68. UML Activity Diagram of Multisession Separation of Duties 355

Figure 69. Policy Applied to Decomposed Workflow ... 385

Figure 70. Chapter 8 Flow ... 409

Figure 71. Styles of UML Class Entities ... 419

Figure 72. UML Associations .. 420

Figure 73. n-ary Association and Association Class... 421

Figure 74. Sample UML Sequence Diagram ... 423

Figure 75. UML Activity Diagram .. 425

Figure 76. Workflow Sketch ... 426

Figure 77. OOP Strategy Pattern .. 444

Figure 78. OOP Composite Pattern ... 445

file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971833
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971834
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971835
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971836
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971837
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971838
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971839
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971840
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971841
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971842
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971843

xxii

LIST OF TABLES

Table 1. Contributions of Existing Methodologies and Technologies 38

Table 2. Summary of Existing Work ... 100

Table 3. PALMS Study Components... 114

Table 4. GetStudyList Message Contents.. 117

Table 5. Types of Composition ... 122

Table 6. Gaps Addressed Foundationally... 163

Table 7. Major DSL Functions .. 282

Table 8. DSL Helper Functions ... 284

Table 9. Existing Contributions Addressed in PDD .. 337

Table 10. MSoD DSL Functions .. 358

Table 11. Gaps Addressed in this Dissertation .. 410

file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971844
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971846
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971847
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971848
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971849
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971850
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971851
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971852
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971853
file:///D:/My%20Documents/Dweeb/Grad%20School/Thesis/Work%20in%20progress/Current%20Paper/Barry%20Demchak%20-%20Ph.D.%20Thesis%20II.docx%23_Toc344971854

xxiii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Ingolf Krüger, for his constant

and generous encouragement, moral support, advice, and overall

leadership. This work would not have been possible without his help and good

ideas. I also thank my advisor and Professors William G. Griswold, Ramesh R.

Rao, and Kevin Patrick for their financial support and for their generosity in

widening my view of the computing world. I thank Massimiliano Menarini for

his support in getting this thesis written and for the years of collaboration and

friendship as my office mate, coauthor, and mentor. I also thank my friend

and former office mate, Lucas Lee, for years of encouragement and good

humor. Finally, I thank all the members of my dissertation committee for

reading this manuscript and providing feedback.

Chapter 4, in part, is a reprint of material as appeared in 3 papers:

1) A paper currently being prepared for submission for publication of the

material. B. Demchak, C. Farcas, E. Farcas, I. Krüger. The dissertation author

was a co-investigator and co-author of this material.

2) B. Demchak and I. Krüger, “Policy Driven Development: Flexible Policy

Insertion for Large Scale Systems,” in 2012 IEEE International Symposium on

Policies for Distributed Systems and Networks, Chapel Hill. IEEE Computer

Society, Jul. 2012, pp. 17-24. The dissertation author was the primary

investigator and author of the text used in this chapter.

https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=214
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=214

xxiv

3) B. Demchak, J. Kerr, F. Raab, K. Patrick, and I. H. Krüger, “PALMS: A

Modern Coevolution of Community and Computing Using Policy Driven

Development,” in 45th Hawaii International Conference on System Sciences

(HICSS), Maui, Hawaii. Jan. 2012. The dissertation author was the primary

investigator and author of the text used in this chapter.

Chapter 5, in part, is a reprint of material as appeared in 3 papers:

1) B. Demchak and I. Krüger, “Policy Driven Development: Flexible Policy

Insertion for Large Scale Systems,” in 2012 IEEE International Symposium on

Policies for Distributed Systems and Networks, Chapel Hill. IEEE Computer

Society, Jul. 2012, pp. 17-24. The dissertation author was the primary

investigator and author of the text used in this chapter.

2) B. Demchak, J. Kerr, F. Raab, K. Patrick, and I. H. Krüger, “PALMS: A

Modern Coevolution of Community and Computing Using Policy Driven

Development,” in 45th Hawaii International Conference on System Sciences

(HICSS), Maui, Hawaii. Jan. 2012. The dissertation author was the primary

investigator and author of the text used in this chapter.

3) B. Demchak, C. Farcas, E. Farcas, and I. Krüger, “The Treasure Map for

Rich Services,” in Proceedings of the 2007 IEEE International Conference on

Information Reuse and Integration (IRI), Las Vegas, USA. IEEE, Aug. 2007, pp.

400-405. The dissertation author was a co-investigator and co-author of this

material.

https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=214
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=214
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=149
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=149

xxv

© 2010 IEEE. Reprinted, with permission, from B. Demchak and I. Krüger,

“Policy Driven Development: Flexible Policy Insertion for Large Scale Systems,”

in 2012 IEEE International Symposium on Policies for Distributed Systems and

Networks, Chapel Hill. IEEE Computer Society, Jul. 2012, pp. 17-24.

© 2011 IEEE. Reprinted, with permission, from B. Demchak, J. Kerr, F.

Raab, K. Patrick, and I. H. Krüger, “PALMS: A Modern Coevolution of

Community and Computing Using Policy Driven Development,” in 45th Hawaii

International Conference on System Sciences (HICSS), Maui, Hawaii. Jan. 2012.

© 2007 IEEE. Reprinted, with permission, from B. Demchak, C. Farcas, E.

Farcas, and I. Krüger, “The Treasure Map for Rich Services,” in Proceedings of

the 2007 IEEE International Conference on Information Reuse and Integration

(IRI), Las Vegas, USA. IEEE, Aug. 2007, pp. 400-405.

https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=214
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=149

xxvi

VITA

1975-1977 Principal, Chama Corporation

1979 Bachelor of Arts, University of California, San Diego

1980-1982 Director of Software, Advanced Computer Design

1982-1986 Principal, Software Construction, Inc

1986- Principal, Torrey Pines Software, Inc

2008 Master of Science, University of California, San Diego

2013 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

B. Demchak and I. Krüger, “A Model-Driven Engineering Approach to

Requirement Elicitation for Policy-Reactive Cyberinfrastructures,” Tech. Rep.

CS2012-0988, University of California, San Diego, Computer Science and

Engineering Department, Sep. 2012.

B. Demchak and I. Krüger, “Policy Driven Development: Flexible Policy

Insertion for Large Scale Systems,” in 2012 IEEE International Symposium on

Policies for Distributed Systems and Networks, Chapel Hill. IEEE Computer

Society, Jul. 2012, pp. 17-24.

I. Krüger, B. Demchak, and M. Menarini, “Dynamic Service Composition and

Deployment with OpenRichServices,” Software Service and Application

Engineering, vol. 7365, M. Heisel, Ed. pp. 120–146, Springer Berlin / Heidelberg,

2012.

B. Demchak, J. Kerr, F. Raab, K. Patrick, and I. H. Krüger, “PALMS: A Modern

Coevolution of Community and Computing Using Policy Driven

Development,” in 45th Hawaii International Conference on System Sciences

(HICSS), Maui, Hawaii. Jan. 2012.

https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=216
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=216
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=214
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=214
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203

xxvii

N. Nikzad, C. Ziftci, P. Zappi, N. Quick, P. Aghera, N. Verma, B. Demchak, K.

Patrick, H. Shacham, T. S. Rosing, I. Krueger, W. Griswold, and S. Dasgupta,

“CitiSense - Adaptive Services for Community-Driven Behavioral and

Environmental Monitoring to Induce Change,” Tech. Rep. CS2011-0961,

University of California, San Diego, Jan. 2011.

B. Demchak, V. Ermagan, E. Farcas, T.-J. Huang, I. Krüger, and M. Menarini, “A

Rich Services Approach to CoCoME,” The Common Component Modeling

Example, Comparing Software Component Models, A. Rausch, R. Reussner, R.

Mirandola, and F. Plásil (Eds.), Lecture Notes in Computer Science, vol. 5153,

pp. 85-115, Springer Berlin / Heidelberg, Aug. 2008.

B. Demchak, V. Ermagan, C. Farcas, E. Farcas, I. H. Krüger, and M. Menarini,

“Rich Services: Addressing Challenges of Ultra-Large-Scale Software-Intensive

Systems,” in Proceedings of the ICSE 2nd International Workshop on Ultra-

Large-Scale Software-Intensive Systems (ULSSIS 2008), Leipzig, Germany. New

York, NY, USA: ACM, May 2008, pp. 29-32.

B. Demchak and I. H Krüger, “Rich Feeds for RESCUE,” in Proceedings of the

5th International Conference on Information Systems for Crisis Response and

Management (ISCRAM 2008), F. Fiedrich and B.K Van de Walle (Eds.),

Washington, D.C. May 2008.

B. Demchak and I. H Krüger, “Composable Chat: Towards a SOA-based

Enterprise Chat System,” Tech. Rep. CS2008-0918, UCSD, Apr. 2008.

B. Demchak, W. G. Griswold, and L. A. Lenert, “Data Quality for Situational

Awareness during Mass-Casualty Events,” in Proceedings of the American

Medical Informatics Association Annual Fall Symposium 2007, Chicago. Nov.

2007, pp. 176-180.

B. Demchak, C. Farcas, E. Farcas, and I. Krüger, “The Treasure Map for Rich

Services,” in Proceedings of the 2007 IEEE International Conference on

Information Reuse and Integration (IRI), Las Vegas, USA. IEEE, Aug. 2007, pp.

400-405.

M. Arrott, B. Demchak, V. Ermagan, C. Farcas, E. Farcas, I. H. Krüger, and M.

Menarini, “Rich Services: The Integration Piece of the SOA Puzzle,” in

Proceedings of the IEEE International Conference on Web Services (ICWS), Salt

Lake City, Utah, USA. IEEE, Jul. 2007, pp. 176-183.

S. W. Brown, W. G. Griswold, B. Demchak, and L. A. Lenert, “Middleware for

Reliable Mobile Medical Workflow Support in Disaster Settings,” in Proceedings

of the American Medical Informatics Association Annual Fall Symposium 2006,

Washington. American Medical Informatics Association, Nov. 2006, pp. 309-

313.

https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=202
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=202
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=162
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=164
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=164
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=217
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=217
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=149
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=149
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=218
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=218

xxviii

FIELD OF STUDY

Major Field: Software Engineering

Sub-fields: Software Architecture

 Service-Oriented Systems

xxix

ABSTRACT OF THE DISSERTATION

Policy Driven Development:

SOA Evolvability through Late Binding

by

Barry Demchak

Doctor of Philosophy in Computer Science

University of California, San Diego, 2013

Professor Ingolf Krüger, Chair

Software maintenance is a significant cost driver in the value

proposition of large scale software systems such as cyberinfrastructures (CIs) –

it is often the longest and most expensive phase of software production.

Because software maintenance and delivery cycles are often long and risky,

stakeholder requirements are often not realized in timeframes meaningful to

stakeholders. Such delays impair software system value due to lost

opportunities, costs exceeding benefits, and stakeholder disenfranchisement.

As a solution, my dissertation proposes a new methodology called

Policy Driven Design (PDD), which enables the composition of stakeholder

xxx

requirements onto an unprepared application at runtime. PDD models an

application as a collection of base workflows that implement stakeholder

requirements. It defines a policy as a decision that chooses amongst

alternative workflows – stakeholder requirements can be expressed and

realized as policies injected into a base workflow.

An important source of delays under existing methodologies is early

binding, which occurs when requirements (as policies) are integrated into

applications during design and coding phases, often causing entanglement

and scattering at both abstract and coding levels, and resulting in delays and

mis-implementations.

PDD introduces late binding as the injection of requirements (as

policies) into running systems without incurring traditional development risks

and delays. PDD policies are expressed using Domain Specific Languages

tailored to requirement domains, thereby enabling stakeholders to participate

directly in defining, vetting, and evolving policies.

To demonstrate and evaluate PDD, I designed and implemented a

successful real world cyberinfrastructure (PALMS-CI) using PDD principles.

PALMS’ late binding demonstrated policy injection with acceptable overhead

in common cases. Its workflow support proved effective in significantly

reducing entanglement and scattering, and its DSL support demonstrated

stakeholder enfranchisement resulting in quick and accurate requirement

realization.

xxxi

PDD leverages Aspect Oriented Software Design (AOSD) and Service

Oriented Architecture (SOA) principles, and contributes:

 a SOA foundation for policy definition and injection

 a family of policy languages that enable programmer/stakeholder

collaboration

 a working cyberinfrastructure that realizes PDD and serves as a platform

for future development

Given the intensifying contradiction between greater system

complexity, increasing stakeholder demands, and shorter delivery timeframes,

PDD uncovers a low cost route to high value.

1

CHAPTER 1

POLICY DRIVEN DEVELOPMENT IMPROVES EVOLVABILITY

The topic of this dissertation is a new development methodology called

Policy Driven Development (PDD), which is my approach to designing

complex systems so as to improve their evolvability over time. In this

dissertation, I argue that under existing software development methodologies,

large scale computing systems do not realize stakeholder requirements quickly

enough to meet the needs of large and diverse stakeholder groups, and that

the viability of such systems is threatened as a result.

I observe that for systems expressed as Service Oriented Architectures

(SOAs), stakeholder requirements can be represented as workflows, and

systems can be formed by composing workflows together. I argue that an

important cause of slow system evolution is performing this composition early

in the software development cycle, thereby resulting in inflexible systems that

exhibit long delays between requirement discovery and the delivery of

systems incorporating them. To address this problem, I propose the PDD

methodology, which results in the composition of requirements late in the

software development cycle, thereby dramatically reducing delays between

requirement discovery and delivery.

To achieve this, PDD envisions a unique collaboration between

programmers and stakeholders, where both cooperate to cast requirements

as policies represented as workflows and the conditions under which they are

2

activated. PDD then leverages and extends existing features of SOAs to

enable the injection of policies into running systems. As a result, stakeholder

requirements can be realized with speed, accuracy, and low cost

unachieved with existing methodologies.

My contributions to this vision include a SOA foundation for policies and

policy injection, a family of policy languages that enable

programmer/stakeholder collaboration, and a real-world case study that

realizes them and serves as a platform for future development.

In this chapter, I briefly describe unsolved issues affecting the evolution

of large scale systems having large and diverse stakeholder groups and how

these issues threaten the viability of such systems. Specifically, I focus on the

relationship between the evolution of both stakeholders’ requirements and

the systems that reflect them. I discuss various approaches to requirement

realization in this context, and describe the PDD vision, which includes a

realignment of the roles of programmers and stakeholders in evolving such

systems. Finally, I explain my contributions and give an outline for the

remainder of this dissertation.

1.1 The Evolvability Problem at Scale

Since shortly after programs were first written, software maintenance [1]

has been a significant cost driver in the software value proposition – it is often

the longest and most expensive phase of software production [2] [3] [4].

Software maintenance encompasses many post-delivery activities, including

3

bug fixes, adaptation to environmental change, and evolution responsive to

changes in requirements. While the purpose of software is to realize

articulated requirements (including those that change or are presented

anew), application developers often address the unspoken requirement of

“evolvability” as an afterthought, if at all [5]. In the process, stakeholders

become disenfranchised because their new and evolving requirements are

not met on a timely basis, thereby limiting productivity and flexibility that could

contribute to their own success.

I define evolvability as the ability of a system to address new needs,

easily fulfill new requirements, and do so at relatively low cost [6] [7] [8].

Improvements in evolvability can result in the liberation of resources to

advance stakeholder interests, which may include faster time to market,

increased efficiency, reliability, robustness, more (and more sophisticated)

feature sets, and fewer bugs, to name but a few.

Many improvements in software engineering have directly impacted

evolvability, including advances in programming languages [9]; programming

models [10] [11] and system architectures [12] [13] [14]; and development

models [15] [16], design patterns [17], and modeling languages [17] [18]. Even

so, as these advances extend the volume and complexity of requirements

that can be addressed by software systems, stakeholders offer even more

(and more complex) requirements (requiring faster delivery, to boot).

4

Evolvability is especially critical for cyberinfrastructures (CIs) and, by

extension, other large scale systems, where the timely and accurate

identification and realization of emergent requirements drives system success

[19] [20] [21]. A cyberinfrastructure [22] [23] is a computing ecosystem that

simultaneously fulfills the diverse requirements of classes of producers,

consumers, and operators; its purpose is to serve a diverse community of

stakeholders having interests that bind them and which form the basis for the

community. It is a scalable Internet-based computing environment that

supports data acquisition, storage, management, integration, mining, and

visualization, in addition to related computing and information processing

services. In order for a stakeholder to contribute data, consume data, or

contribute resources, the CI must meet the stakeholder’s requirements even

as those requirements evolve – to the extent that both current and emergent

requirements are satisfied, the ecosystem thrives and the community benefits.

As a community enabler, the CI also serves as a means to recruit other

stakeholders, which strengthens the community and contributes additional

requirements. Through this synergy, the community and the CI co-evolve, and

the coevolution often depends on the rapid realization of these new

requirements [24]. In a virtuous cycle, continued participation of some

stakeholder groups attracts and enables participation by other stakeholder

groups, and the CI better serves the community. In a vicious cycle, unmet

requirements that threaten the participation of one stakeholder group

5

eventually threaten the participation of others, resulting in the disaffection

and eventual opt-out of some or many stakeholders.

Cyberinfrastructures have long lifetimes (measured in decades), and

not only accrue maintenance issues and new requirements from existing

stakeholder groups, but also accrete new stakeholder groups having new and

unanticipated classes of requirements. These requirements represent both

changes to existing system features and the creation and composition of

completely new feature sets.

1.2 Policies and Evolvability – Then and Now

To motivate a discussion of evolvability, I briefly describe an ancient

real world system (SOARS) that was not easily evolvable, and use it to

introduce existing policy-based solutions and explain their limitations. I then

introduce other relevant approaches and give a brief overview of their

limitations. (A more detailed survey of existing approaches is presented in

Chapter 2.) In Section 1.3, I present PDD as my vision for a solution.

1.2.1 SOARS: A History of the Wrong People Making Right Decisions

When I was 18 years old, I was a principal in a company that created

and sold the SOARS1 software, a state-of-the-art system that automated the

work of a small-to-medium size university, replacing largely paper-based

processes. I was responsible for programming a collection of major

subsystems, while my four partners created other subsystems. The year was

1
 Student Online Administration and Reporting System, a product of Chama Corporation written in

timeshared Basic

6

1975, and even then, university operations encompassed complex workflows

and rules. The development process was an iteration of a basic sequence:

collect and negotiate requirements, instantiate the requirements in code, and

present the results to the customer for evaluation and rework.

A particularly complex domain was student accounts – managing

billing, payments, and credits for students depending on their attendance,

financial aid, payment arrangements, and so on. There were simply too many

cases to express conveniently as requirements, and I, as the programmer,

made many guesses and deductions regarding how to conceptualize,

organize, and handle each case. While the deliverables were judged correct

and greatly beneficial by the student accounts office, it occurred to me that I

was making a great number of decisions that I was unqualified to make, and

a portion of which were likely wrong or subject to revision. The consequences

of my wrong decisions could have been minor (requiring re-coding) to

catastrophic (losing data or having critical functionality incorrect at critical

times). Independent of my decisions, university administrators frequently asked

for new features and asked that working features be changed to work

differently. Furthermore, bug fixes and new feature implementations were

usually deployed in a formal release process that occurred infrequently,

thereby deferring (and possibly compromising) their benefit to users.

This vignette is true, and is representative of the state of enterprise

application development processes both before 1975 and after, continuing to

present day. At that time, the purpose of an enterprise software program was

7

to realize stakeholder requirements so as to deliver some (usually economic)

value to the stakeholders – generally, a greater value than the alternatives.

Major drivers of application value were the quality of requirement elicitation,

the fidelity of delivered code relative to those requirements, and the delay

between requirement elicitation and code delivery. The nascent discipline of

software engineering was often more concerned with technique than with

delivering or optimizing value – the hot topics were modularity and

information hiding [25], use of goto statements [26], and the art and styles of

programming [27]. Additionally, software projects were executed most often

using a plan-driven approach, which involved long latencies between

requirement specification (as either formal or informal exercises) and actual

system delivery. Often, upon system delivery, initial requirements were found

to be insufficient, wrong, outdated, or misinterpreted, thereby necessitating

subsequent (time consuming) remedial development and release cycles.

Such software projects often resulted in expensive cost and calendar

overruns, and many projects failed.

While the software value proposition today is the same as in 1975, the

value drivers have changed significantly, and they continue to evolve.

Today’s stakeholders are more numerous, diverse, and have more complex

requirements than those for legacy applications. These requirements

encompass increasing degrees of scalability, manageability, distributability,

evolvability, auditability, reusability, and reliability while incorporating

information assurance [28] values such as security, availability, integrity,

8

authenticity, confidentiality, non-repudiation. While some requirements can

be realized independent of others, many stakeholders’ requirements crosscut

basic system functionality and other stakeholders’ requirements. Significantly,

stakeholder expectations of application quality (as reflected in code fidelity

and coverage of the requirements space) and delivery times have remained

relatively constant.

Since the mid 1970s, disciplines, techniques, methodologies, and tools

have evolved to accommodate stakeholders’ increasingly complex

requirements while reducing software development risk. Disciplines such as

requirements engineering [29] and system architecture have contributed to

the capture, refinement, elaboration, disambiguation, evolution, and

realization of requirements. Techniques such as modular design, object

orientation, aspect orientation, standards-based design, service orientation,

and functional languages have enabled programmers to manage

complexities associated with distributed and heterogeneous systems, cross-

platform development, and embedded systems more efficiently and

effectively. The agile family of methodologies has enabled programmers to

better leverage stakeholders to reduce delivery times and focus these

deliveries on high value propositions. Finally, tools such as integrated

development environments (IDEs), modeling systems, theorem provers, version

and configuration control, and improved languages have reduced the risk in

creating large and complex code bases that realize large and complex

requirement sets.

9

Even so, this evolution has occurred as incremental improvements to

the 1970s programming discipline – stages of the development process have

been deconstructed and elaborated, optimized, or rearranged in order to

create significant economic benefits. For example, agile methodologies were

developed as alternatives to plan-driven methodologies specifically to enable

rapid response to changing stakeholder requirements. As a process

improvement, it combines a requirement prioritization process with constant

stakeholder engagement and frequent system releases to deliver applications

that meet stakeholder requirements prioritized on a timely basis according to

stakeholder values. It substantially reuses existing requirements engineering

and architecture disciplines, though it emphasizes techniques whose

incremental cost closely matches the incremental value provided.

In modern large scale systems such as CIs, successful development

depends on modern disciplines, techniques, methodologies, and tools to

deliver timely and relevant computing capabilities to stakeholders whose

mission depends on them. However, taken singly or in combination, they do

not address the need stakeholders have for rapid and reliable realization of

requirements. Consequently, stakeholders’ requirements go unmet, and the

health of the CI degrades accordingly. For example, though agile

development methodologies intend to quickly enact stakeholder

requirements, they are a poor fit for CI development and maintenance, as CI

communities tend to be large, diverse, geographically dispersed, and unable

to engage in the day-to-day interaction and evaluation needed for

10

requirement definition, refinement, and prioritization. Additionally, because CI

communities are often distributed worldwide, CIs are often required to be

highly available on a 24 hour a day, 7 days a week basis, thus making even

the high frequency agile release schedule very expensive. Indeed, the risks

associated with deployment of even small changes make the prospect of

releases themselves unattractive. Furthermore, to the extent that a CI has

cyber-physical [30] components, the modification and redeployment of such

components can be particularly risky and expensive in terms of energy and

time. Consequently, re-deployment occurs only infrequently, which defeats

the agile proposition of shareholder enfranchisement through rapid response.

1.2.2 How Policy-based Solutions Have Fallen Short (So Far)

A common technique for implementing stakeholder requirements and

avoiding release latencies is replacing hard-coded branch expressions

(incorporated into application workflows at development time) with policy

decisions based on policy expressions supplied at runtime. Policy decisions are

commonly used to implement access control or application feature selection

based on a user’s credentials or on the state of the application or operating

environment. More generally, they use policy expressions to choose between

two or more workflows at a decision point in a base workflow. While this

technique can address requirements known at development time, it has

limited value at runtime – it can only select amongst workflows known at

development time. Addressing changing or emerging requirements that result

in new or changed workflows – or in new decision points – generally requires

11

application modifications and re-deployment, which are often lengthy, costly,

and error-prone processes. Furthermore, existing policy techniques do not

account for the integration of independent policies provided by multiple,

independent stakeholder groups.

An implicit assumption in implementing a new or changed requirement

is that not only will the application correctly and completely implement the

requirement, but the implementation of unrelated requirements will be

unaffected. Under most development methodologies (including waterfall and

agile) continued correct operation is demonstrated by regression tests.

However, because such tests do not typically cover all branch paths and

corner cases, they suggest correctness but do not prove it. As a CI evolves

and becomes more complex, the system-wide guarantees offered by

regression tests become weaker, and such applications require improved

strategies for achieving low risk of maintenance. Similarly, modern program

development tools include theorem provers that can be used to evaluate

properties implying code correctness. However, such tools are limited by the

size and complexity of the code under test, and their use becomes less

feasible as the CI evolves and becomes more complex. Furthermore,

regression tests and theorem provers work well when code contains hard-

coded branching expressions, and are less robust against decision points

evaluating the universe of runtime-supplied policy expressions.

An issue that diminishes the value of embedded policy decisions,

regression testing, and theorem proving is the entanglement of multiple

12

independent concerns in a single workflow. While many programming

languages encourage entanglement for the sake of compactness,

performance, and intelligibility, entangling such concerns risks intelligibility

over time as a workflow representing a concern becomes more complex.

When complex workflows are combined, the clarity of policy decisions

diminishes, the number and complexity of regression tests multiplies, and the

tractability of theorem proofs is reduced. Consequently, the costs of

maintenance and the risks of undetected errors increase.

Finally, insofar as the requirement elicitation process involves a handoff

of information from stakeholders to programmers, requirements are subject to

omission, misstatement, incomplete statement, and mis-implementation,

leading to application errors whose remediation results in costly and risky

application or policy re-deployment [31]. To date, facilities enabling intimate

collaboration between programmers and stakeholders (e.g., domain-specific

policy languages, policy editors, visualizers, and validity checkers) are under-

developed.

13

1.2.3 Better Evolvability Leads to More Productive Stakeholders

Through enabling the rapid and accurate realization of stakeholder

requirements in cyberinfrastructures, PDD aims to maintain and improve the

cyberinfrastructure value proposition along a number of dimensions:

 Stakeholders can leverage critical capabilities in timeframes that suit

their needs

 Stakeholders can participate directly in the realization of requirements,

thereby improving the requirements elicitation process, and leading to

implementations that address actual requirements more quickly

 Cyberinfrastructures can quickly accommodate requirements that

increase in number and complexity from stakeholder groups that

increase in number and diversity.

 Cyberinfrastructures can become simpler and more reliable, while their

code becomes more reusable and scalable even as they continue to

leverage new technologies and capabilities that exist outside of the

cyberinfrastructure.

1.2.4 Why has the Evolvability Problem Not Been Solved?

Existing methodologies, techniques, and strategies are challenged

because the architectures and code they produce are often entangled,

brittle, and scattered, particularly as they encode multiple stakeholders’

requirements realized on workflows spread throughout an application. Such

architectures and code cannot evolve to address long-lived requirement

streams quickly, consistently, and with high fidelity to requirements. Errors in

requirement implementation are particularly problematic, as they represent

lost time and opportunity for the community (at best) or economic damage

and lost credibility (at worst). Such errors arise from numerous sources,

including poor coding; challenges in understanding and modifying

entangled, brittle, and scattered designs and coding [32]; poor testing; and

14

improper understanding or statement of requirements either by technical

staff, stakeholders, or both. Perversely, in the time taken to address

requirements (either properly or improperly), requirements may change,

become obsolete, or may be superseded.

Paradoxically, efforts to broaden the appeal of a CI by recruiting more

stakeholders (as users) often results in an influx of more and varied

requirements, which leads to longer implementation times and poorer quality

implementations. Consequently, communities relying on CIs maintained using

existing disciplines are often underserved due to the time it takes to realize

their requirements or due to mismatches between real requirements and

actual implementations. Ultimately, this discourages growth of the CI and the

community it serves.

Essentially, as the seeds of a CI’s success, stakeholders and

requirements are also the seeds of its failure.

1.2.5 How Other Existing Approaches Fall Short

The concepts of code entanglement, brittleness, and scattering are

well documented by the Aspect community (represented by disciplines such

as Aspect Oriented Design, Aspect Oriented Programming, Aspect Oriented

Software Design, and others described in subsequent chapters), and the

Aspect community has proposed a family of solutions (i.e., aspect weaving)

that gives valuable and significant insights into improving code maintenance

15

and, to an extent, the management and implementation of requirements

themselves.

Commonly, software engineering problems are often approached by

means of divide-and-conquer or indirection. The Aspect solutions seek to

divide an application into workflows that can then be recombined, but do

not sufficiently address issues such as conditional injection of workflows at

runtime, deep composition of workflows, and state management that enables

System of Systems architectures.

Additional evolvability challenges have related, but deeper roots,

originating in programming philosophies invented with the first programs –

particularly committing decisions and workflows so early in the development

process that changing them to suit emergent requirements impacts working

and unrelated code inordinately. While this practice has virtues in code and

project management, and application testing and verification, it results in

highly complex programs requiring the attention of highly skilled designers and

programmers (so-called traditional programmers) -- they are often culturally

and physically separate from stakeholders, especially when the stakeholder

community is large and diverse.

The traditional practice of software engineering has long recognized

that quickly implementing new requirements reduces time to market and

drives software value. Consequently, in strategic situations, statically coded if

statements (and their equivalents, representing early bound requirements

16

tightly coupled with specific implementations and with other requirements)

have given way to a combination of late binding and indirection-oriented

approaches that leverage declared interfaces to enable a coarse grained

realization of partial application behaviors. Late bound (or not-so-early

bound) interfaces are leveraged to create loose coupling in methodologies

and techniques such as modular programming, object oriented

programming, dynamic link libraries, plugins and plugin architectures, hooking

strategies, Web Services, REST architectures, and service oriented

architectures (SOAs).

While potent, these solutions have come up short by requiring the

constant participation of traditional programmers as guardians and stewards

of highly complex programs that get only more complex as the number,

complexity, and diversity of requirements increase. Consequently, they also

keep stakeholder communities at a distance instead of enlisting and

leveraging them as solution bearers.

Many solutions envision system evolution in terms of replacing old

systems with new systems in full or in part, thereby incurring operational risks

and inconveniences to stakeholders that often have nothing to gain in return

(because they don’t benefit directly from the new requirements implemented

in the new systems).

In Chapter 2, I examine different classes of solutions that bear partially

or substantially on these issues, and I demonstrate that they are insufficient

17

(individually or in obvious combination) to solve the CI evolvability problems

posed above. I start by examining potential contributions found in

fundamental abstractions (i.e., models of computation) and software

engineering methodologies, and then survey particular mechanisms and best

practices (i.e., patterns).

1.3 PDD – A Vision for Rapid Requirement Injection

To answer the challenges of rapid requirement realization and

stakeholder engagement in a CI context, I have created a new methodology

called Policy Driven Development (PDD), which seeks to fulfill stakeholder

requirements via application changes effected while an application is

running. It leverages the observation that stakeholder requirements are often

realized by a combination of decisions and follow-on workflows.

Under traditional methodologies, requirement realization follows a

common process: decisions and workflows are programmed, then tested, and

then deployed as code. From a runtime perspective, this programming

amounts to an early binding of requirement implementations, which places a

drag on application evolution. PDD seeks to enable rapid evolution by shifting

portions of the application development process from the static domain to

the dynamic domain, where the workflows and decisions implementing

stakeholder requirements are specified at runtime. This late binding of

requirement implementations offers the potential of lower latency between

requirement specification and realization, invites more direct participation by

18

the stakeholder in the implementation process, and results in a tighter

coupling between stakeholder requirements and their implementation.

As such, PDD represents the bifurcation of the existing application

development process into complimentary static and dynamic domains. To

facilitate the rapid realization of requirements in the dynamic domain,

developers in the static domain are encouraged to create short and simple

workflows that focus on implementing discrete concerns. The development

process in the dynamic domain focuses on combining and constraining such

workflows to realize stakeholder requirements.

1.3.1 How PDD Differs from Existing Methodologies

Under traditional methodologies (e.g., modular programming and

object oriented design), an application consists of a collection of workflows

that are related as to purpose and/or state. The sequence of activities in a

workflow is determined at design time and is fixed in deployable code – the

actual activities executed in the workflow depend on decisions (i.e., if()

statements and their equivalents) embedded in the workflow, following a

Strategy pattern [33] (as briefly described in Appendix C). For example, for

workflows expressed in Java, activities can be expressed as assignments and

function calls, and decisions can be expressed as if() statements that choose

between workflows. Fundamentally, realizing a new stakeholder requirement

in an existing workflow involves augmenting, changing, or removing existing

workflow code or changing the decisions that choose between workflows.

Using traditional programming techniques, these decisions are often

19

entangled, leading to the entanglement of the concerns they control. As

requirements change, the maintenance of static Strategy patterns often

preserves or increases entanglement, thereby increasing testing time, risking

fidelity to stakeholder requirements, and leading to long intervals between CI

re-deployments.

The key insight of PDD is that by deferring the creation of the Strategy

pattern until runtime (i.e., as a late-bound Strategy pattern), new stakeholder

requirements can be realized on an executing application without incurring

the delays and risks endemic to early-bound Strategy patterns. Specifically, it

envisions the runtime injection of a decision (using a dynamic Inversion of

Control pattern [34]) into an otherwise unprepared workflow, where the

decision chooses between continuing the workflow, executing a different

workflow, or both. Workflows can execute using parameters supplied by the

decision or externally, and can be initially deployed with the application,

deployed after the application, supplied as part of the decision, or created

dynamically. Consequently, by augmenting, changing, or removing decisions

and associated workflows at runtime, PDD enables the realization of

stakeholder requirements without suffering the development and deployment

latencies incurred by existing approaches. Furthermore, PDD encourages the

separate definition and maintenance of injectable decisions and workflows,

which discourages the entanglement that leads to increased testing,

development risk, and long deployment latencies in traditional

methodologies.

20

1.3.2 PDD’s Perspective on Workflows

PDD envisions the creation of applications as collections of simple

workflows (possibly related as to purpose and/or state) that represent basic

application functionality. The workflows (called base workflows) represent an

application’s most rudimentary requirements, forming a skeleton that is

fleshed out at runtime by composing additional requirements (represented by

other decisions and workflows) onto it based on criteria also defined at

runtime. An example of a trivial application workflow is a calculator that

accepts a numerical input, adds 10 to it, and outputs the result. An auditing

requirement can be realized by interjecting an auditing workflow between

the addition and output activities. The auditing workflow would record some

pertinent information either synchronously or asynchronously relative to the

base calculator workflow. Furthermore, the execution of the auditing workflow

could be predicated on some decision criteria such as a user’s membership in

a group.

The participation of multiple independent stakeholder groups admits

the likelihood of multiple stakeholder groups having different policies

tendered to the same decision location – or, similarly, a single stakeholder

group tendering multiple policies to the same location. This necessitates a

strategy for composing coincident policies. Following the calculator workflow

example, a Scientists group could insist that any calculator use by a member

of the Engineers group be logged for audit, and Engineers could insist that

calculator use by Scientists be logged. Possible compositions of these policies

21

include evaluating the Scientist policy only if there is no Engineer policy, or

vice versa, or always evaluating both policies. In general, PDD forms a policy

composition by executing a composition policy tendered to a particular

workflow location. Composition policies are defined, authored, and

maintained using the same process as other policies, and follow the same

principles of policy injection. In this case, the stakeholder controlling the

composition policy would have an oversight role that crosscuts all other

stakeholder groups, and which would likely default to the CI development

team.

Under PDD, the decision of whether to interject a workflow, where in

the base workflow to make the decision, and which workflow to inject are all

made at runtime based on externally supplied predicates called policy tuples.

Loosely speaking, a policy tuple consists of a decision location and a policy,

and a policy consists of decision criteria and a collection of candidate

workflows. A policy is said to be injected into the workflow at the decision

location. A policy tuple is authored in the context of the application’s existing

workflows – the decision criteria may have access to the base workflow’s

transient or permanent state, and can communicate this state to the

candidate workflows. Whereas in traditional application development, a

requirement would be implemented by explicitly recoding the application

(e.g., using an if() statement and a function call), under PDD it would be

implemented as a policy tuple applied onto the executing application. This

22

amounts to a late-bound, loosely coupled Strategy pattern resulting in low

latency between requirement elicitation and enactment.

To take advantage of late decision binding, application workflows must

be exposed for inspection at runtime, it must be possible to interrupt transitions

between workflow activities, and it must be possible to inject a workflow

between activities or replace an entire workflow. Furthermore, while workflow

activities themselves can be atomic (as in adding 10 to a numerical input),

they can also be composed of workflows, thus extending the opportunities to

realize late binding benefits deeply into an application. With traditional

imperative and functional programming languages, these prerequisites can

be met through introspection, though few (if any) such languages have

compilers that generate appropriate metadata. However, at a conceptual

level, Service Oriented Architectures (SOAs) provide a clean mapping

between workflows and logical or deployment architectures, and include

interception features that enable this injection. Consequently, I discuss PDD in

terms of services and SOAs, though services and SOAs are not required to

realize PDD, per se.

1.3.3 Policy Programmers Enfranchise Stakeholders

The ability to create and inject decisions and workflows at runtime

encourages the participation of new classes of stakeholders in the application

definition, authorship, and maintenance process. Under traditional

application development, policy and workflow authorship are generally in the

purview of professional developers, as they are both expressed using general

23

purpose programming languages and systems whose operation requires

specialized training. Under PDD, the decision location, decision criteria, and

workflow choices are decoupled and can be expressed in languages most

appropriate for both their authors and their purpose. This admits the possibility

of using domain specific languages (DSLs [35]) that enable stakeholders

themselves to define or closely scrutinize decision criteria, if not actual

workflows, thus freeing professional programming resources to focus on system

design and complex workflow implementation in the static domain. Such DSLs

can be highly congruent with domain concepts, thereby fostering a high

fidelity between stakeholder requirements and their actual implementation.

Additionally, runtime policy authorship invites the creation of a new role

in the stakeholder ecosystem: the policy programmer, who collects and

refines stakeholder requirements; defines, implements, and refines appropriate

policy DSLs; and writes and maintains PDD policies on behalf of other

stakeholders. A policy programmer must be familiar with stakeholder domains,

application workflows, and the technologies used for authoring policies and

workflows, then injecting them into base workflows. The policy programmer

role represents a specialization and combination of the programmer and

stakeholder roles, and adds value by relieving other stakeholders of policy-

level implementation.

24

Under my vision, as shown in Figure 1, the benefit of the policy

programmer role is time to market while maintaining fidelity to stakeholder

requirements. As traditional programming relies on well-developed tools that

generate fast and efficient code and can coordinate with model checkers to

deliver basic guarantees, policy programming does not yet have such

support. Consequently, it offers a tradeoff between execution time (as

described in Section 6.3), strong guarantees (as discussed in Sections 1.1 and

7.5), and time to market. Additionally, as policy programming tools evolve to

provide stronger guarantees, more complex policies become more routinely

feasible.

1.3.4 Lifting the Policy Abstraction

At an abstract level, composition of workflows realizes a System of

Systems architecture, where each workflow may comprise or be a part of a

standalone application, and combining workflows results in a complex system

that represents a fusion of two or more concerns. Each workflow maintains its

Traditional
Programming

Runtime
Workflow

Composition

Time To Market
Less More

More

Sp
e

e
d

,
C

o
m

p
le

xi
ty

,
St

ro
n

g
G

u
ar

an
te

e
s

Traditional
Programmer

Policy
Programmer

Figure 1. Relationship of PDD to Traditional Programming

25

own state according to its own rules, defining state transitions and lifecycles

appropriate for its function, and possibly sharing state with other workflows.

The fusion results from composing an injected workflow into a target workflow

at a location in the target workflow via a policy.

The injected workflow qualifies as a standalone application, as it draws

input (from the target workflow); makes some decision, performs some

function, or both; and then outputs results (to the target workflow). Using the

example of the calculator workflow, the injected audit workflow accepts

credentials saved as part of the calculator state, and uses them to determine

whether to record an audit event on a local database. Furthermore, the

workflow that records audit events is part of a collection of workflows

comprising an independent audit application (as described in Section 5.6.4),

where other workflows implement the query, visualization, and maintenance

of audit events. The System of Systems consists of the combination of the

calculation application and audit application, as joined by the injected

workflow.

Inasmuch as a policy contributes a workflow, the injected workflow

itself can serve as a target for the injection of another policy. Using the

example of the calculator’s audit workflow, consider a new application

requirement to manage data as a database in the Cloud. Given a workflow

that stores data in the Cloud, the new requirement can be met by injecting

the Cloud workflow into the audit event workflow, replacing the activity that

stores audits event on the local database. Composing policies on policies in

26

this way enables the realization of System of Systems architecture whose

targets are themselves System of Systems architectures.

Finally, given that a workflow implements one or more stakeholder

requirements, or that a single requirement can be implemented by more than

one workflow, composite policies injected into multiple decision locations (in

either a single workflow or in multiple workflows) enable the implementation of

crosscutting requirements as defined in [32].

1.3.5 PDD’s Focus on Simple Workflows

Consistent with Aspect Oriented approaches, PDD’s focus on injection

of policies promotes the creation of applications as simple workflows that can

act as either injection targets or injected workflows, themselves. By combining

applications that expose simple workflows, PDD encourages the creation of

hierarchical Systems of Systems, where workflows are well characterized, are

separately maintained and validated, are reusable, and form the basis for the

rapid realization of stakeholder requirements.

27

1.3.6 The PDD Hypothesis

Realizing my PDD vision requires leveraging and advancing existing

techniques and methodologies, and I frame the exercise as addressing

hypotheses based on a general proposition that CIs can be modeled as

workflows that reflect requirements. My hypotheses are:

 New requirements can be realized in existing applications by

composing new workflows onto existing workflows.

 Such compositions can be implemented via the injection of policies,

which themselves consist of a decision that selects between alternative

workflows.

 The expression of a policy as a DSL enables stakeholder participation in

the process of realizing requirements.

 Policy injection can be performed on a deployed application, thereby

realizing stakeholder requirements quickly and accurately.

28

1.4 Contributions of this Dissertation

The contributions of this dissertation derive from proving or disproving

the hypotheses, particularly in the context of the PALMS case study described

in Chapter 5. They include:

1. An engineering approach to the realization of stakeholder

requirements in SOA-based cyberinfrastructures (CIs) via runtime

policy injection

2. A demonstration of a SOA-based CI that enables runtime policy

injection

3. A demonstration of the creation and use of Domain Specific

Languages (DSLs) to articulate injectable policy

4. An evaluation of runtime policy injection (in the context of PALMS)

5. An evaluation of the use of DSLs (in the context of PALMS)

6. Insights for improving the performance of injected policies and

widening the stakeholder audiences they address

1.5 How to Read this Dissertation

The bulk of this dissertation is devoted to explaining the foundational

underpinnings of PDD (Chapter 4), a case study that demonstrates PDD

(Chapter 5), and an evaluation of PDD as implemented in the case study

(Chapter 6), as shown in gold in Figure 2.

29

Because PDD addresses requirement composition at such a

fundamental level, I devote significant time and material to describing the

state of the art (Chapter 2) and comparing PDD’s results to existing

contributions (Chapter 7). Additionally, Chapter 7 delivers numerous insights

into how fundamental PDD features can be supported through additional

work, and how PDD itself can be improved in the future.

For grounding and efficiency of discussion, I frame much of this work

relative to the GetStudyList workflow, which is a simplification of a common

workflow found in the PALMS case study, and which is described in Chapter 3.

Introduction

Choice and
composition in

existing systems

A running example
(GetStudyList)

Foundation for
policy composed on

workflow

Policy in PALMS
cyberinfrastructure

PALMS’ experience
with PDD

PDD compared to
other approaches

Summary and
Wrapup

Chapter
1

Chapter
2

Chapter
3

Chapter
4

Chapter
5

Chapter
6

Chapter
7

Chapter
8

Legend

Expained
in

Appendices

Core Contributions

Figure 2. Dissertation Flow

30

Each chapter builds on the material presented in previous chapters, so

a straight-through reading of chapters will result in a clear understanding of

PDD fundamentals, their implementation, and the evaluations and

comparisons at the end.

For a simple understanding of how PDD works and its implementation in

the PALMS case study, reading Chapter 4 and Chapter 5 is sufficient.

Note that sections are liberally cross-referenced, so reading for

targeted information is feasible.

1.6 A Vision of SOARS in a PDD World

As described in Section 1.2.1, SOARS was built more than 35 years ago,

and replaced manual processes that were simpler than many of today’s

processes – they collected less data, involved fewer steps and contingencies,

involved fewer stakeholder groups, and had lower expectations regarding

flexibility, scalability, availability, robustness, and evolvability.

Were SOARS to be implemented today, it might be implemented as a

CI due to the large numbers and types of stakeholders now found in a

university, the need for high availability and scalability, and the need for

alignment between the capabilities of CIs and stakeholders requirements.

Whereas the SOARS of 1975 was framed as a productivity tool for

university administration, a modern SOARS would likely be framed as an

infrastructure supporting a vibrant, highly interconnected, and dynamic

university community. To the extent that modern SOARS could evolve to

31

accommodate stakeholder requirements on a timely basis, the community

would thrive (as described in Section 1.2.1 and exemplified in Chapter 6).

By structuring modern SOARS as a collection of reusable, hierarchically

defined workflows using PDD principles, SOARS itself would represent a class of

applications, where a particular instance would be derived by coupling

SOARS workflows (created in the static domain) with a set of policies that

coordinate the workflows (created in the dynamic domain) – stakeholder

requirements would be realized quickly and with high fidelity through policy

injection in the dynamic domain.

Under PDD, the SOARS technical staff’s job would be to factor an initial

set of stakeholder requirements into workflows, then seed the policy set to

bind workflows according to those stakeholder requirements. To the extent

that follow-on requirements and requirement changes represent constraints

on existing workflows or compositions of new or existing workflows and systems,

policy changes represent application evolution at low development cost and

deployment latency.

Given this, policy programmers (described in Section 1.3.3) represent a

critical role that enables an alignment between stakeholder requirements and

CI capabilities by positioning stakeholders themselves as integral to both the

definition of requirements and the timely and correct implementation of

systems based on principles of PDD.

32

As a result, modern SOARS could be much more responsive to new and

changed stakeholder requirements than the SOARS of 1975, even as the CI

scales to meet the demands of new and existing stakeholder groups. For

stakeholders, the result is greater, more effective, and more timely

collaboration.

1.7 Summary

In this introduction, I framed the critical problem of rapid realization of

stakeholder requirements in terms of system evolvability, and posed my

methodology, Policy Driven Development (PDD), as a means to address

evolvability in large scale systems. I briefly described existing policy and non-

policy approaches that fail the challenge in one way or another, and I

propose my PDD vision where policy programmers collaborate with

stakeholders to quickly and accurately realize new and changed

requirements by defining and injecting policies into running systems. As a straw

man, I described the ancient SOARS system, which was not easily evolvable –

in subsequent chapters, I revisit this example to illustrate evolvability in resulting

from existing approaches and PDD.

In the next chapter, I survey existing approaches and explain how they

come up short against the evolvability challenge; an explanation of the PDD

solution begins with Chapter 3.

33

CHAPTER 2

EXISTING APPROACHES TO CHOICE AND COMPOSITION

The problem of realizing requirements quickly and efficiently in

computer systems arrived with the creation of the first computer system, and a

great deal of attention has been paid to defining and improving theories,

methodologies, techniques, and processes that bear upon creating these

systems. They address defining what a system is, how requirements are

gathered and transformed into systems, how systems are organized and

modeled, how models are transformed into working code, how code is

deployed, and proving the correspondence between all of these results and

the original requirements. In one way or another, each of these issues bears

on achieving or maintaining crucial alignment between system requirements

and their implementation, even as a system evolves to realize new or

changed requirements.

A dominant paradigm for software development is to bind

requirements to system design and software coding early in the authorship

process, and to deliver and deploy verified and validated software as the final

product. In both waterfall and agile processes, requirements are factored into

designs, designs are evolved into workflows, workflows are coded as

programs, and programs are tested and deployed monolithically or in

modules. As explained in Chapter 1, the insight of PDD is to bind new and

changed requirements (as workflows) to base workflows late in the authorship

34

process – such workflows can be constructed and injected into delivered

software even as the software executes.

Under both early and late binding paradigms, the nature of the

junction between a base workflow and an injected workflow is key. Figure 3

shows this relationship as a UML class diagram (explained in Appendix A),

where policy injection addresses the association of new workflows

(representing new requirements) with existing workflows (representing existing

requirements). It includes the criteria (i.e., a decision) and composition rules

for doing so – a decision determines whether an injected workflow (or which

of possibly several workflows) is executed. Additionally, while workflows express

activity sequences, decisions and computations encoded within the workflow

may depend on state maintained by or for the workflow. Consequently,

injection of an independent workflow is strongly tied to the injection of

independent state.

In this dissertation, I describe how PDD addresses the foundations and

implementation of late bound workflows via policy injection, which in turn

enables rapid, stakeholder-centric system evolution. In this chapter, I examine

existing methodologies and technologies as contributions tuned to support

early requirement binding but which may apply to a late binding paradigm.

Chapter 4 describes a foundational basis for PDD, and Chapter 5 presents an

implementation case study. In Chapter 7, I revisit the existing contributions

(described in this chapter) in direct comparison to the foundations and case

study presented in Chapter 4 and Chapter 5.

35

To frame an examination of existing contributions, consider a straw man

situation that demonstrates the value of late binding, as drawn from the

SOARS example in Section 1.2.1. Under SOARS, students could register for

classes on a single day called “registration day”, where each student would

appear in an auditorium and visit a registrar (who would enter the student’s

class selections into an online database) followed by a bursar (who would

retrieve the class selections, print a bill, and collect fees). The bursar’s program

would execute the workflow shown in Figure 4a, which included the hidden

step of posting the student’s billing to the campus general ledger. From the

students’ perspective, the success of “registration day” was critical because

without class enrollment and (eventual) bill paying, they could not attend

Figure 3. Requirements, Workflows, and Policy Injection

Requirement

Workflow

New Requirement

New Workflow

Policy Injection

Decision Composition Rule

*

* *

*

36

class. Similarly, from the separate perspectives of the registrar, bursar, and

business office, unsuccessful, inconsistent, or incorrect data capture could

result in lost revenue and thousands of extra hours of manual data entry,

recoding, and auditing. As re-running a registration day would be prohibitively

expensive, last minute SOARS changes to accommodate additional

stakeholder requirements were forbidden.

However, as with many systems supporting a growing and diverse

stakeholder community, SOARS requirements changed frequently, and often

included the integration of requirements from previously excluded

stakeholders. In a hypothetical (but realistic) situation, the financial aid

Fetch
Class List

Calculate
Fees

Print Bill

Enter in
General
Ledger

Fetch
Class List

Calculate
Fees

Print Bill

Enter in
General
Ledger

Notify
Financial

Aid

In Work
Study?

Yes

No

(a) Base Workflow (b) New Workflow Composed onto Base Workflow

Check on
Work
Study

Work Study
Flag

Figure 4. Hypothetical SOARS Bursar Workflow

37

department realizes on the day prior to registration that it could save

hundreds of hours by receiving automatic notification of students that enroll in

work study classes and have a printed bill. As shown in Figure 4b, this

requirement could be recognized as a separate concern realized as the

composition of a stateful workflow (consisting of checking the class list, setting

a flag, and later deciding whether to send the notification) onto a base

workflow. Correct composition requires, among other things, interspersing

activities in the new workflow with appropriate activities in the base workflow.

Using the technology underlying SOARS, the injection of this workflow

would require reprogramming and re-deploying SOARS, which likely would not

be allowed because of the enormous risks to other stakeholders should the

registration day workflow be interrupted or broken (as could happen under

even the simplest of program modification and re-deployment scenarios).

Under a PDD scenario, the new requirement could be realized via workflow

injection at runtime, with minimal risk to other stakeholders.

This straw man example represents one of many high value scenarios

addressable via late binding, and illustrates a valuable requirement that could

not be anticipated by the SOARS programming staff and could not be

addressed on a timely basis using traditional programming methods under

acceptable risk/reward scenarios. Variations of this scenario include allowing

injection of other workflows at the same time (e.g., automatically e-mailing a

copy of the printed bill to parents), or replacing a portion of the base

38

workflow (e.g., posting to a different general ledger, depending on attributes

associated with the student’s identity).

To examine existing methodologies and technologies as contributions

that may support this late binding paradigm I focus on how they support

decisions and workflow composition, and organize them into the broad

categories in Table 1.

As shown in Figure 5, I begin by giving working definitions of the key

PDD concepts of workflows and requirements (in Sections 2.1.1 and 2.1.2).

Sections 2.2 through 2.5 address the contributions listed in Table 1. I end with

Section 2.7, where I present a summary of how well these contributions

address late binding, where gaps exist, and give a rationale for the

capabilities developed in PDD as described in Chapter 4 and implemented in

Chapter 5.

Table 1. Contributions of Existing Methodologies and Technologies

Category Section Importance of Contribution

Models of Computation 2.2 give rise to fundamental approaches to

computing
Software Development

Methodologies

2.3 justify both strategic and tactical

mechanisms that realize workflow

injection
Mechanisms 2.4 encode and realize workflow injection
Patterns 2.5 encode and realize workflow injection

39

I evaluate each contribution according to how it could support the

runtime injection of workflows (as representatives of requirements) and

associated state, particularly regarding the implementation of key

capabilities:

 selection and execution of a workflow in a given context

 composition of one workflow onto a base workflow

 decomposition of a workflow action into a finer grained workflow

 composition of workflows onto composed workflows

 composition of multiple workflows in a given context

 maintenance of persistent state by or amongst composed workflows

 abstractions that enable the specification of workflow selection and

composition, focusing on those that avoid entanglement of otherwise

separate concerns

Requirement &
Workflow

Background

Models of
Computation

Software
Development

Methodologies

Section
2.1

Section
2.2

Section
2.3

Legend

Expained
in

Summary and
Wrapup

Section
2.7

Mechanisms

Patterns

Related Concepts

Section
2.4

Section
2.5

Section
2.6

Figure 5. Chapter 2 Flow

40

 reflection features that enable workflow selection and composition to

be specified at runtime

 simulation of composed workflows and proof of relevant properties

 deployment of workflow selection and composition

I identify 17 different facets of this support, organized for convenience

into five groupings:

Workflow specification: the ability to specify a sequence of calculations

as a unit separate from other workflows (separate workflows). A workflow

interface is an abstraction that specifies semantics, and may be expressed as

dependencies (e.g., typed parameter lists) and results (e.g., typed return

values) independent of the means by which results are achieved. Contract

enforcement is a mechanism that verifies that interface pre-conditions and

post-conditions are met.

Workflow Injection: the ability to compose a choice (including a

decision and alternate workflows – workflow selection) into an existing

workflow at a specified site. Choice on choice is the ability to compose a

choice onto an injected workflow. Composite choice is the ability to evaluate

multiple choices composed on the same site. Centralized concerns is the

ability to compose one or more choices pertaining to a concern without

incurring scattering or entanglement, and visualization is the ability to inspect

and understand the composition relationship of two or more workflows.

State Management: the ability to reference and modify state whose

context is unique to a workflow instance (workflow unique), shared amongst

41

workflow instances (instance shared), global to all workflows (global), and to

define state lifecycle that depends on its use (custom lifecycle) (e.g., dynamic

allocation and deallocation).

Verification and modeling: the ability to verify that a policy implements

a requirement for all workflows (verification), and the ability to demonstrate

system properties in the presence of injected workflows (model checking).

Deployment: the ability to deploy choice reliably and authoritatively

(secure deployment), and the providing a guarantee that a consistent set of

policies is in use (consistent deployment).

Note that while Figure 3 establishes the entities and relationships at

stake, it leaves open the many possible strategies and details of how and

when to instantiate and evolve them.

Note that while this section discusses existing contributions that might

apply to late binding, there are a number of related contributions that are

either subsumed by contributions described in this section or are tangential to

them. For completeness, I address a number of these in Section 2.6.

For background specifically on computational models, software

development methodologies, and other existing contributions, see Appendix

B.

42

2.1 Background

In this section, I describe how workflows are appropriate abstractions

for implementing single requirements or collections of requirements in the

context of computing systems, and that additional or changed requirements

(including crosscutting concerns) can be implemented as workflows

composed onto these base workflows. This discussion frames both the

investigation of existing contributions in this section, the presentation of PDD

foundations in Chapter 4, the case study described in Chapter 5, and the

comparison of PDD relative to existing contributions in Chapter 7.

At a high level, a policy can be considered to be a rule that defines

how or when such a composition occurs, and may result in the addition of a

new workflow to a base workflow, or the replacement of the base workflow

with the new one. More concretely, a policy consists of a choice (or decision)

that results in the insertion of a workflow into another workflow, where the

choice is based on the state of the computing system, and it may select the

execution one of a number of candidate workflows in addition to or instead of

the base workflow. The term I use to encompass this choice and the resulting

workflow is policy injection.

The speed and efficiency of computer system evolution are strongly

influenced by the process by which requirements are mapped to workflows

and are then composed onto base workflows – these factors are key in

maintaining high stakeholder productivity and satisfaction. In the following

sections, I survey several approaches to realizing new and changed

43

requirements as policy-mediated workflows, focusing on minimizing the time

required to deliver implementation of new or changed requirements to

stakeholders, and maximizing the likelihood that the implementation will

address the stakeholders’ true requirements.

2.1.1 What is a Requirement?

As defined in [36], the primary measure of the success of a software

system is the degree to which it meets the purpose for which it was intended,

and the purpose of the study of software requirements engineering is to:

 identify the stakeholders and their needs (either stated or implied,

including constraints)

 model, document, and communicate these needs to interested parties

(including implementers)

 detect and resolve conflicting needs

 participate in the verification and validation of designs and software

that implement requirements

Additionally, requirements engineers must reprise these activities as the

stakeholder population and its requirements evolve.

Commonly, requirements are categorized as functional requirements

and non-functional requirements, though other taxonomies exist [37].

Functional requirements (FRs) relate inputs to outputs using some

transformation, and can be expressed in a number of ways, including user

stories [38], use cases [39], UML actor diagrams [40], formal documents [41],

business process modeling [42], and many others. Non-functional

requirements [43] (NFRs, or quality requirements; for example, information

assurance [28] requirements such as security, safety, accuracy, confidentiality,

44

privacy, and availability) often express constraints on the inputs, outputs, and

realization of functional requirements, and are often stated late in the

requirement elicitation process. NFRs often crosscut either FRs or other NFRs.

Considering that software systems are designed to realize requirements,

discovery of FRs and NFRs are primary drivers of software cost and delivery

time – in incomplete or late requirement discovery can lead to retracing of

development steps, leading to cost and schedule overruns where the costs

depend on the development process in use. For example, late requirement

discovery in a waterfall process [44] may cause the rework of significant

design and implementation work. Other processes anticipate the discovery of

new requirements and the refinement or evolution of existing requirements,

thereby reducing the cost of late requirement discovery: Agile processes [45]

decrease the time required to address such requirements by producing

frequent, incremental releases; and spiral processes [46] [47] partition the

development process into stages organized as a restartable pipeline, which

leverages and reuses work previously done. (These processes are not mutually

exclusive, and a particular development may take advantage of the

strengths of different processes at different times.)

Numerous strategies [48] [41] have been created for the early

elicitation, capture, and tracking of both FRs and NFRs. Particularly, elicitation

of NFRs are notoriously difficult because they are often incidental to FRs, are

difficult to quantify and test, must often be inferred during FR elicitation, or

must be gathered using processes tailored to the application development

45

process. Among such tailored processes, [49] integrates a NFR-oriented view

into UML class diagrams for an application’s logical model, thereby

discovering relationships between FRs and trust, entitlement, decision points,

and sources of authority, leading to improvements in use case and logical

model coverage. [50] applies to early elicitation phases, and seeks to identify

NFRs by discovering unwanted behaviors using misuse cases to identify

triggers, assumptions, preconditions, threats, mitigations, and risks so as to

account for them early in the application design. Other approaches elicit trust

models [51], testing strategies [52] [53], model-aligned security [54] [55], and

access control [56].

Elicitation processes that address domain-specific concerns (e.g., [49],

[51], [54], [55], and [56]) produce requirements that can be considered as

aspects composed on a requirement base [57] conceptually similar to the

composition of aspects in Aspect Oriented Programming [32] [58],

architectural connectors onto architectures [59], and features in Feature-

Oriented Software Development (FOSD) [60] [61] [62] [63] [64]. In each case,

the composition of requirements, architectures, features, or code

contemplates the integration of two concerns, where I identify one of the

concerns as the base or target concern, and the other as the injected

concern.

Whereas the base concern is defined by a subset of FRs fundamental

to the application or a class of applications, an injected FR or NFR embellishes

the base concern by constraining the base concern’s behavior, adding

46

behaviors to it, or both. When injected requirement domains are agnostic as

to the specific requirements or functions of a base set (for example,

encryption between two points), they can be conceptualized independently

of the base set except for associating them with particular requirements. In

contrast, requirement domains may interact with base requirements (for

example, fault detection or access control) by depending on contextual

information consequent to base requirements or supplying context relevant to

base requirements. Similarly, injected requirements may interact with each

other.

Ultimately, the objective of requirement elicitation is the construction of

high level workflows that represent entities, activities, structure, and

relationships embedded in the requirement set. Choosing base concerns

relative to the requirement set carries over to defining base workflows, and

similarly injected concerns correspond to injected workflows. Using the

workflow analogy, concerns representing aspects of requirements can be

refined into collections of sub-concerns having well-defined relationships

between them.

Given a set of concerns, the problem of choosing the base concern is

closely related to the well-known problem of the dominant decomposition

[65]. Choosing one concern as the base drives the definition of injected

concerns relative to the base. To the extent that injected concerns compose

cleanly onto the base, the underlying system can be understood, built, tested,

and maintained efficiently in modular fashion. Strict modularity is violated

47

when an injected concern depends on some property of the base concern or

it must be injected onto multiple sub-concerns of the base. Such injected

concerns are called dependent and crosscutting, respectively. A poor choice

of base concerns leads to many dependent and crosscutting concerns,

resulting brittle and entangled systems. Discovery of crosscutting concerns

late in the requirement elicitation process often causes extensive design

rework in redefining the base concern (and injected concerns) to maximize

modularity and minimize entanglement.

Additionally, the detection and resolution of conflicts between

requirement sets is an active area [66], as is the detection and resolution of

feature interactions in FOSD [61]. Furthermore, complex requirements can be

decomposed into simpler requirements using various strategies [39] [67] that

ultimately produce sets of possibly interacting requirements. Given a set of

finely grained requirements or features, complex requirements and features

can be constructed using compositional calculi [68] and goal orientation [67];

finely grained requirements and features can be reused in multiple

compositions.

Changes to requirement sets can take a variety of forms, ranging from

adding new concerns, removing concerns, or altering existing concerns. Such

changes can be reflected in existing workflows by altering the workflows to

reflect the new requirement base, or by composing new workflows onto the

existing workflows, where the resulting workflows provide additional

functionality or replace existing functionality.

48

2.1.2 What is a Workflow?

There is wide disagreement regarding the definition of a workflow, as

the term serves a number of interests and purposes. A simple definition

compatible with the viewpoints of most interested parties is presented by the

creators of the Orc [69] workflow orchestration language:

A workflow consists of a set of activities generating output in the

form of data or events which may trigger further actions. These

activities can be executed in sequential or parallel order.

In Orc, data is an abstract container passed between activities, and an

event is a container with no content.

I adopt YAWL’s [70] complimentary definition of activity:

A description of a unit of work that may need to be performed

as part of a workflow

A workflow activity can be characterized as a computational link

between pre-conditions and post-conditions linked to the fulfillment of one or

more requirements [71].

I observe that a procedural view of a workflow is an orchestration of

activities that satisfies the data flow and control dependencies for a task [72],

and that an activity itself may be implemented as a workflow, which fulfills the

workflow activity’s pre- and post-conditions.

Equivalently, I observe that a functional view of a workflow is a relation

that transforms one set of inputs into a set of outputs. Conversely, a set of input

channels is related to a set of output channels via a transform represented by

49

a workflow -- the main function of a workflow is to pair valid inputs with valid

outputs.

Whether the workflow definition drives the input and output channel

definitions, or vice versa, the result is the same -- the procedural and

functional perspectives are duals of each other.

As in [71] [73], the relationship between activities can be modeled as a

graph, where each activity is represented as a node, and an edge connects

two nodes iff one node (called a source) emits data that the other node

(called a target) consumes and acts upon. Therefore, the target depends on

data from a source – an edge is directed, and indicates the direction of flow

from source to target. A source can be defined to connect to one or more

target, and can be defined to emit data to some or all of its targets

simultaneously. Similarly, a target that accepts data from multiple sources can

be defined to execute upon the receipt of data from some or all sources. Any

target receiving data executes in parallel relative to other targets receiving

data. A choice node is a source that is defined to emit data to some targets

and not others based on some criteria evaluated at runtime.

Composition and decomposition of activities are described by [69],

[73], and [74], where an activity can be decomposed into a self-contained

workflow (called a subflow) or can be an atomic operation. Conversely, a

workflow can be considered an activity in another workflow. As such,

workflows follow a Composite pattern [33] (as briefly described in Appendix C)

50

where an atomic activity is the leaf, a workflow is the composite, and an

activity is the component. Workflows can also be considered independent

objects (as in a workflow management system [75]) and can be reused as

components of other workflows. Given that a particular workflow represents a

process at a given level of abstraction, the decomposition of an activity

represents the refinement of the workflow via increased activity granularity,

with data flows defined accordingly.

This general description of workflows is common to many workflow

models (e.g., UML Activity diagrams [40], Business Process Modeling Notation

(BPMN) [76], the Action Port Model [77], and Petri Nets [78]), where each

model provides embellishments (e.g., exception handling, typed data

exchange, interface definitions, and grouping notations) and naming

conventions (e.g., fork-join, and-split, and-join, or-split, and or-join) that

facilitate and emphasize different abstractions important to different

communities (e.g., visual modeling, reduction and correctness proofs [79],

and liveness and safety proofs).

Generally, the connections between nodes and the behavior of each

node are defined at application design time pursuant to application

requirements. Cyclic paths represent loops and exceptions, and a particular

workflow can often be transformed into equivalent workflows that are

semantically identical but are simpler to analyze or maintain. In [74], rules are

given for normalizing workflows by eliminating redundancies and for

constructing views as workflow subsets, though such transformations may

51

produce misleading semantics if dynamic workflow behavior is not accounted

for.

Insofar as a workflow activity is defined by its inputs, outputs, and

action, one version of an activity is interchangeable with another so long as

both versions accept the same inputs and produce the same outputs – their

actions need not be the same. Furthermore, there is no restriction on the

external resources (e.g., state) a workflow activity can access or change in

order to perform its function, though some workflow systems attempt to

document or constrain such access. Considering that a workflow activity can,

itself, be decomposed into a workflow, the same relationships hold for an

entire workflow: a workflow can be characterized by its inputs, outputs, and

action, and can be replaced by an equivalent workflow.

Note that while a workflow identifies data flow and control flow

dependencies, its definition allows for the existence of multiple simultaneous

workflow instances, each processing different or similar data. The state of a

workflow instance is composed of a) the data flows and control flows

spawned by an initial workflow activity, and b) a collection of workflow state

variables. Workflow state variables come into existence upon the execution of

an initial workflow activity, are available to constituent activities, and are

extinguished when all constituent activities have ceased.

For acyclic workflows, the dependency relationships between activities

are apparent by inspection. This may also be true for workflows containing

52

cycles, though cycles introduce ambiguity as to valid sequences of data

exchanges between activities. State machines may be used to specify

constraints on the ordering and content of data exchanges, thereby

disambiguating the workflow. The sequence of valid exchanges amongst

activities is a protocol.

Based on this, I observe that a workflow activity and a workflow are

interchangeable, and that the SOA definition of a service fits both definitions,

too. Consequently, I use the terms workflow, workflow activity, relation, and

service interchangeably as duals where:

 Workflow emphasizes a description of data and control flow, as is useful

in the business domain

 Workflow activity emphasizes a component of a workflow that may be

decomposed

 Relation emphasizes the formal properties of workflows as

transformations of a domain (inputs) into a range (outputs)

 Service applies to an implementation domain (e.g., SOA), and

emphasizes interface specifications, protocols, and functionality

2.2 Models of Computation

Models of computation [80] present the principles important in the

realization of a calculation without attending to details of concrete

implementation – they include machines and process algebras [81].

Machines (described in Sections 2.2.1 and 2.2.2) represent a set of rules

that combine to realize a computational result.

Process algebras [81] (described in Sections 2.2.3 and 2.2.4) are logic

systems that enable a rigorous characterization of a workflow for the purpose

53

of reasoning about their behavior, equivalence, and properties [82]). They

describe both serial and parallel execution in small and large systems,

focusing on interactions between processes, including processes distributed

across a computing network. Considering that a workflow can be viewed in

terms of both control flow and the transitions of ephemeral or persistent state,

process algebras support reasoning about both control flow and state

maintenance. A workflow can affect state private to a single workflow

instance, shared amongst multiple workflow instances, or shared amongst

different workflows. Process algebras may support any or all of these modes.

A number of computation models attempt to describe workflows, each

from a different perspective, and many computation models provide

foundation for other computation models.

In this section, I describe prominent computational models, and discuss

how they address (and fail to address) decision making and workflow

composition (including associated state management), which are central

requirements of PDD’s policy injection. The models I choose are foundational

for classes of machines and process algebras that focus on describing control

and data flow, specifically pertaining to addressing computations, process,

and structure. Other models address abstractions that don’t apply directly to

PDD-based policy injection (e.g., StackAnalyzer and SCR) – [83] presents a list

of over 100 process algebras.

54

2.2.1 Turing Machines

A Turing machine [84] is a very basic process description briefly

explained in Section B.1.1. The concept of workflow state is related to the

concept of a Turing machine state, but they are not the same. Abstractly, a

workflow state exists as parameter values referenced by workflow actions and

decisions. As Turing machines do not directly encode many parameterized

actions and decisions, a state machine definition contains (often very large

and complex) networks of states to represent the workflow state concept. In

essence, networks of Turing machine states are used to represent

combinations of workflow control flow and state values. As such, the

realization of an application requirement may be encoded as a Turing

machine, but would not be easily written or maintained.

A decision in a Turing machine is represented by a transition function,

where a new state is chosen (deterministically or not) based on the current

state and the current input. Intuitively, composition of two Turing machines

(representing two workflows) can be achieved using algorithms as in [85] and

[86]. Hypothetically, while a Turing machine state itself can be decomposed

into a Turing machine, there is little, if any, support for this in standard Turing

machine definitions.

Requirements are bound into Turing machine programs at the time the

machine is created. Because standard Turing machine definitions do not

provide facilities for runtime composition of workflows, runtime workflow

injection is not supported.

55

2.2.2 Petri Nets

A Petri Net [78] [87] is a graphical notation briefly explained in Section

B.1.2. Under Petri Nets, a transition is an abstraction of a decision based on

abstractions of conditions (as input places) and producing abstractions of

results (as output places), with all input and output places representing roles

relative to the decision. A place abstraction can represent state shared

between workflow instances or amongst all workflows, but does not

conveniently represent state for a single workflow instance. A place can, itself,

be decomposed into a lower level abstraction implemented by a Petri Net,

where each of the place’s incoming and outgoing arcs are mapped to

places in the lower level Petri Net [88]. This amounts to an encapsulation that

enables modeling of state as workflow and vice versa.

Using the service algebra proposed in [89], Petri Nets can be

composed by using the following composition operators: ordered sequential,

unordered sequential, alternative choice, iteration, parallel (with

communication), join, service selection, and refinement. With the exception of

service selection and refinement, each operator gives rules and semantics for

combining two independent workflows.

The service selection operator is defined to choose amongst alternative

workflows according to an independently specified selection function. In [89],

the selection function is defined to operate in a Web Services context;

accordingly, the selection operator queries each workflow for information

about itself, and then calls the selection function to evaluate the workflow

56

properties and choose a workflow. In a more generalized operator, the

selection function would base its decision on whatever data the Petri Net

runtime system might expose to the selection function.

The refinement operator is defined to substitute a workflow for an

operation represented by a transition, thereby creating a specialization of the

original workflow via hierarchical composition. This is accomplished by

mapping the transition’s input and output places to input and output places

within the substitute workflow (as distinct from [88], where a place is

replaced.) This enables a base workflow to act as a template for a class of

workflows. When used with the service selection operator, the refinement

operator allows the selection from an array of workflow alternatives derived

from a workflow template, which defines the workflow interface.

Both place- and transition-based refinement are accomplished via the

mechanical manipulation of the Petri Net graph, so there is very little

information on which to judge semantic compatibility of the refinement

workflow as compared to its injection site. A refinement operation seeks to

maintain arc connections without regard to the associated place or transition

semantics.

Processes encoded as Petri Nets often integrate multiple concerns that

themselves can be modeled by separate Petri Nets. The challenge of

integrating separate concerns expressed as Petri Nets is partially addressed by

the refinement operations proposed by [88] and [89], where [88] replaces a

57

place (representing a data flow) with a workflow, and [89] replaces a

transition (representing a control flow). In either case, they inject a single

workflow at a single location in a base workflow and do not address the issue

of injecting multiple workflows coordinating activities via shared state. View-

oriented composition and decomposition techniques proposed in [74]

address this, but for lack of a convenient integration language, they fail to

create an integration path that itself is intelligible and maintainable in a

programming setting.

Petri Nets (including the extensions described above) are statically

defined process models, and as such, implementation of new or changed

requirements involves a manual modification and release cycle. While the

combination of the selection and refinement operators enable runtime

decisions to determine actual workflows executed, these operators are

placed statically in a workflow and provide no facility for after-delivery

decisions that define which workflows to inject and where to inject them.

While Petri Nets and related service algebra can express and compose

complex, stateful process flows, they are poor abstractions for application

authorship, as the abstractions of place, arc, and transition are too fine

grained for general programming. Additionally, they lack contract

enforcement (e.g., type and range safety), organizational abstractions (e.g.,

classes and modules) crucial for efficient system development and

maintenance, state maintenance for workflow instances, and convenient

features for mathematical calculation. However, Petri Nets are useful for

58

modeling concurrent systems and are well supported by modeling and

simulation tools. For instance, by evaluating all possible markings for a Petri

Net, simulation tools can determine liveness (where there is always at least

one transition that can fire), safety (where no place ever contains more

tokens than it can hold), and domain properties of interest as constrained by

limits of time and space related to evaluation state space explosion.

Petri Nets have been extended in numerous ways, including facilities for

modularization. Notably, Colored Petri Nets [90] (CPNs) enable types and

data content attributes for tokens, enable types for places, allow conditions to

specify whether an arc incoming to a transition can contribute to the

transition being enabled, and allow expressions that compute tokens

outbound from a transition. Consequently CPNs are much more expressive

than Petri Nets, but for the purposes of refinement and runtime workflow

selection and composition, they have the same characteristics as basic Petri

Nets.

2.2.3 π -calculus

π-calculus [91] is a process algebra briefly explained in Section B.1.3.

Under π-calculus, decisions are modeled incidentally as conditionals

executed within a process. A decision that chooses between workflows

chooses between multiple process or channel references present in a

message (already received by the process) [92], or sets a process reference or

channel reference contained in a message (which is passed to a waiting

process). While its dynamic channel and process definition features enable

59

clean implementation of a Strategy pattern [33], the universe of available

strategies are those processes explicitly authored prior to program execution –

they implement primitive forms of functors and polymorphism.

While the channel abstraction is a convenient and flexible

implementation of a data structure, π-calculus relies on derived languages

(e.g., Pict [93]) to define persistence, encapsulation, or life cycles necessary to

create separate, stateful concerns. Notably, [94] proposes the Piccola

composition language, which seeks to create a new component by

encapsulating an existing component (using so-called composition scripts),

and supports the composition using Active Objects (which represent stateful,

concurrent, distributed, and mobile processes), components, inter-object

glue, mappings between object models, message-level reflection, and a high

level syntax. Piccola envisions employing these features to define agents and

enable their interaction; it does not envision the definition and runtime

composition of agents foreign to the application.

Because channel transmission and process invocation in π-calculus are

bound at compile time, they represent instances of early binding not

amenable to either composition of orthogonal concerns or the runtime

definition and replacement of channels and processes. Additionally, channels

modeled by π-calculus define the act of content transmission as atomic,

thereby limiting opportunities for workflow injection at runtime via interception

of messages in flight. Consequently, the implementation of new or changed

requirements in π-calculus expressions (and derived languages) involves a

60

manual modification and release cycle. Furthermore, because

implementation of independent requirements may require encapsulation

transformations (per [94]), the implementation of more than a few such

requirements may lead to significant application-wide entanglement.

Note that [94] observes that for an encapsulation-style composition,

channel values contributed by the core component must be transmitted

alongside of values contributed by the encapsulating component, yet must

remain separate so as to maintain their separate concerns. This problem is

solved in [94] by introducing separate name spaces for the two. Furthermore,

state shared amongst multiple instances of the same workflow, and state

global to all workflows can be implemented via channel references

embedded in messages.

While π-calculus does not support PDD’s concept of runtime-defined

workflow injection, it offers insights into the features needed to support the

composition of separate concerns, including the management of concern-

related state both during workflow execution and across workflow executions,

state exchange between workflows, and syntax suitable for expressing

composable concerns.

2.2.4 𝝀-calculus

λ-calculus is a process algebra briefly explained in Section B.1.4. Under

basic λ-calculus, a workflow is created as a consequence of the expression

reduction process, where a function can be reduced only if its arguments

61

have already been reduced to constants – if an argument is a function, its

usage must be reduced to a constant before its value can be used. Choice is

encoded as three clauses: a “decision” function, a “then” function, and an

“else” function. The “decision” function evaluates to either a “true” function or

a “false” function; the “true” function returns the “then” function, and the

“false” function returns the “else” function. The function that is ultimately

returned (by the “true” or “false” function) is the result of the choice, which is

then further evaluated. The “decision”, “then”, and “else” functions can be

supplied as part of the authored application, as a text string assembled at

runtime, or as a text string fetched at runtime from external store. As such,

while the choice calculation can be specified either at the time of program

authorship or at execution time, the actual decision site (and the program

flow that results) is bound at execution time.

Variables in λ-calculus exist to bind expressions and have scope local to

an enclosing function (and whatever functions it defines). Consequently,

basic λ-calculus simulates global state by using local scoping, and functions

cannot have side effects that equate to changing this state. Practically

speaking, this defeats the modularization that is necessary for decomposing

an application into maintainable and reusable objects [25] [95], including

process and agents. Additionally, λ-calculus has no concept of concurrent

execution distinct from serial execution, as its main focus is on reducibility.

Consequently, it provides no features addressing synchronization and variable

consistency. Extensions to λ-calculus add support for concurrent execution

62

[96]. Functional languages such as Schema, ML, and Clojure add support for

global-, module-, and thread-based variable scope, functions with side

effects, and support for synchronization and variable consistency.

Given this support, functional composition (including workflow

modeling) is inherent in functional languages – combining two functions can

be as simple as passing both to a third function, which then reduces the

functions and combines their results. However, because variable binding and

function calls are atomic at runtime, composition ultimately results from early

bound decisions, and ad-hoc runtime composition of orthogonal concerns or

runtime replacement is difficult. Consequently, the implementation of new or

changed requirements in λ-calculus expressions (and derived languages)

involves a manual modification and release cycle. Even though functional

languages such as ML and Clojure provide encapsulation and polymorphism

in the style of object orientation, integration of independent requirements into

existing functions may still lead to significant application-wide entanglement.

Under basic λ-calculus, higher order functional programming is

enabled by allowing variables to contain functions, functions to be passed as

parameters to other functions, and functions to return functions. This enables

and leads to various strategies for expressing workflows more flexibly and

readably than in other calculi. Notably, monadic programming [97] [98]

focuses on λ-calculus-compliant techniques that implement workflows and

support exception handling, sharing of state, mutable values, input/output,

and non-deterministic choice. The main intuition in monadic programming is

63

that instead of a function returning a result , a function returns a proxy

function that returns the result , and is bound to a variable internal to .

Therefore, can return on demand, but can also return other values

bound to other variables internal to , including error information, state

information, logging text, and alternate results. Ultimately, a monadic

expression (called a monad) can be transformed into a non-monadic λ-

calculus expression, though one that would be difficult to read or maintain.

An example of monadic programming in Clojure is [99], which

demonstrates a simple workflow that accumulates a log as it executes.

Workflow steps are orchestrated by a decider function (called bindM in [97]),

which interacts with the proxy function () to set and fetch its variables,

including both function results () and internal variable (). While the decider

function must execute the workflow steps as intended by the workflow author,

it also interacts with the proxy function (or other functions) to implement either

related or orthogonal concerns – such functions can be either first order or

monadic in nature. Depending on the decider and how it interacts with the

proxy functions, a decider can compose workflows onto a base workflow,

cause replacement of steps in a base workflow, or inspect or alter values

passed from one workflow step to another.

Because of the scoping rules of λ-calculus, state maintained by a

monad can be defined either within the lexical scope of the monad or within

the scope of the proxy functions it engages. State can be shared between

monad executions by either executing the monads within an outer scope or

64

by storing and retrieving it via an external entity (though, this would violate the

intention that λ-calculus be free of side effects). Consequently, state can be

shared amongst activities in a workflow, multiple instances of a workflow, or all

workflows.

While monads offer powerful ways of implementing stakeholder

requirements by combining otherwise independent workflows or altering

existing workflows, such monads (particularly the decider and proxy functions)

are subject to the same early binding limitations as basic λ-calculus.

2.3 Software Development Methodologies

Anecdotally, over time, stakeholders’ expectations for the delivery time

and maintenance cost for software systems has trended downward while their

expectation for attention to NFRs has increased. Programming concerns were

responsible for the development of early methodologies, including modularity,

structured programming, and object-oriented programming. Recognition of

the increasingly difficult and important task of requirement elicitation and

management (reflecting more sophisticated and complex demands by

increasingly diverse stakeholder communities) has helped drive modern

methodologies, including object-oriented programming, and aspect-oriented

programming.

In each case, the practice of existing methodologies expects that

system design and software coding are performed early in the authorship

process, and lead to discrete testing and delivery phases. In this section, I

65

describe major methodologies that represent the mainstream of the evolution

of software engineering, and focus on the degree to which each supports

binding workflows late in the authorship process.

2.3.1 Modular Programming

As described in Section B.2.1, modular programming [100] enables the

creation and maintenance of systems larger and more complex than the

monolithic programming style of its time, it envisions a problem decomposition

that is strictly hierarchical. As such, the implementation of crosscutting

concerns eliminates many modular programming advantages by entangling

separate concerns throughout a code base. Furthermore, the focus of

modular programming is to ease the programmer’s job, without attending

directly to the definition or implementation of stakeholder requirements.

Consequently, requirement realization is subject to a process where the

programming and re-delivery activity is the bottleneck.

Though not envisioned in [100], an application can be updated or

upgraded at runtime using techniques such as dynamic binding (e.g.,

Dynamic Linked Libraries), which enables alternative implementations of

module-level abstractions. With sufficiently flexible interfaces and deployment

planning, this enables programmers to replace a portion of an application

without affecting the remainder of the application.

However, this technique serves new and changed requirements only to

the extent they can be implemented as variations of existing modules

66

orchestrated in existing workflows, and is subject to programming team

bottlenecks. It does not bear directly on the realization of new requirements

composed upon new or existing workflows, and does not avoid the

programming and re-delivery bottleneck.

2.3.2 Structured Programming

As described in B.2.2, a major benefit of structured programming is the

management of complexity of large applications via a divide-and-conquer

approach. However, as with modular programming, it provides little support

for the incorporation of crosscutting concerns (without entanglement), and is

focused on binding requirements early in the application authorship process.

Structured programming techniques can conflict with or support modular

programming analyses, and can be used effectively to inform a fruitful

modularization of application code.

Note that while structured programming does not address or provide

mechanisms for late binding of code or requirements, it provides an analysis

framework that justifies the injection of a decision as a choice coupled with a

workflow. In a top-down analysis, it enables reasoning about where such an

injection can occur; in a bottom-up analysis, it enables reasoning about the

effects of an injection.

2.3.3 Object Oriented Programming

As described in Section B.2.3, Object-oriented programming [101]

(OOP) uses of interfaces to define an object and uses runtime call resolution

to promote the loose coupling of objects both at design time and at runtime.

67

While the mechanisms and benefits of OOP as compared to modular

programming are extensive, a key enabler of workflow expression is the object

interface definition, which has a similar form and function to interfaces found

in modular programming. Additionally, data encapsulation and multiple

object instantiation support enable the creation of multiple, independent

workflows, thereby supporting the decomposition abstraction of structured

programming.

OOP’s polymorphism and runtime call resolution support the design

time and runtime selection of one workflow over others. At design time, given

the existence of multiple objects implementing a common interface, one

workflow is chosen over another by explicitly instantiating an object

corresponding to the workflow – leveraging the common interface allows the

exploitation of common semantics, and leveraging polymorphism allows the

exploitation of common base functionality. At runtime, the choice of

workflows occurs via subtyping, where fungible workflows are represented by

a base class, which resolves to a real object when accessed at runtime.

(Commonly, a Factory pattern [33] is used to realize such an object.) As such,

this subtyping implements a choice, where the decision is made during

instantiation in the factory, and the workflow is executed at runtime when its

method is called – this amounts to a distributed Strategy pattern [33] (as briefly

described in Appendix C).

As with modular programming, the focus of OOP is a hierarchical

decomposition of abstractions, which can be discovered using Object

68

Oriented Analysis and Design [102] and Model Driven Design [103] techniques.

Additionally, the decomposition ultimately encodes workflows, expressed as

calling relations between objects. While OO processes and features enable

design, deployment, and maintenance of larger, more complex applications

that satisfy requirements from larger and more diverse stakeholder

populations, the implementation of crosscutting concerns leads to scattered

and entangled code bases just as with modular programming.

The combination of OOP’s data encapsulation, object instantiation,

and subtyping facilities creates the means to associate state with workflows

both for the lifetime of the workflow, for access by groups of workflows, and

for access by all workflows. Additionally, the dynamic creation and

destruction of objects enables state lifecycles customized to OOP-based

workflow abstractions.

While the OOP interface and messaging paradigm combine to create

loose coupling between objects at both design time and run time, such

relationships are established by programmers, are essentially bound in the

programming process, and ultimately represent requirements that are heavily

refactored during the OOP design and implementation process. Additionally,

the hypothetical exchange of messages between object is most often

implemented as function calls not subject to ad-hoc interception.

Consequently, as with modular and structured programming, the realization of

new and changed requirements occurs only through programming and re-

delivery activities, which remain bottlenecks.

69

2.3.4 Aspect Oriented Programming

As described in Section B.2.4, Aspect-oriented programming (AOP) [32]

has a number of implementations, each defining its own join point model,

pointcut language, and advice language, and the particular capabilities of

AOP vary with the implementation. For example, under AspectJ, it is possible

to specify the lifecycle of variables declared private to an aspect: persistent

across all executions, associated with an advised object, and persistent across

a control flow.

The use of AOP improves maintainability of complex code bases by

maintaining separate concerns as distinct aspects, thereby promoting

reasoning about each concern in isolation, and avoiding expensive re-

modularization that occurs when entangled concerns are (manually)

injected. The decision regarding whether to compose advice into a workflow

is made by an aspect weaver – it matches aspects’ pointcuts to target

workflows, and injects advice at matching locations.

Most AOP implementations perform weaving during the compile phase

prior to code deployment. As with OOP, the implementation of requirements

via AOP composition and the relationships between aspects and base

workflows are defined and maintained by programmers, and the realization of

new and changed requirements occurs only through programming and re-

delivery activities, which remain bottlenecks.

70

Furthermore, the high specificity of pointcuts enables the composition

of advice throughout base code, which creates de-facto interfaces on which

advice relies, but which can be easily and accidentally perturbed by

common code maintenance activities performed by oblivious base code

programmers – the result is invalid aspect compositions that result in

application breakage that can be difficult to discover, diagnose, and repair

[104]. Additionally, as either base code or aspects evolve, the independence

of aspect code (relative to the base code and other aspects) can make a

comprehensive understanding of an application more difficult than with non-

aspect implementations – casual inspection of an advised code base does

not reveal the capabilities of the aspect-woven application. While some AOP

communities have created visualization tools [105] that inform interactions

between base code and aspects, these tools are not available for all AOP

implementations.

Experimental approaches to weaving create base/aspect

compositions either at program load time [106] or dynamically [107] [108]

[109], while the code executes. The load time approach results in the

fulfillment of aspect-implemented requirements only by restarting all or part of

an application. Both approaches require the intervention of programmers

intimately familiar with the base workflow code and fluid and loosely defined

interfaces – all of which preserves bottlenecks caused by the programming

process.

71

Finally, while AOP provides for the composition of workflows onto a

base workflow, it does not provide for composition of aspects on aspects, as

discussed in [110]. Consequently, aspect weaving does not address the

composition of requirements upon requirements.

AOP is one facet of an overall philosophy that maintains separate and

crosscutting concerns distinct from base concerns, thereby enabling

reasoning about individual concerns distinct from other concerns. It represents

programming design and implementation strategies supported by Aspect

Oriented Requirement Engineering (AORE) [111], Aspect Oriented System

Architecture (AOSA) [112], and a host of similarly motivated activities aimed

at different facets of application development (e.g., Aspect Oriented

Software Design (AOSD) and Aspect Oriented Design (AOD)). In particular,

AORE addresses requirement decomposition and factoring, and leads to the

formulation of corresponding base and separate workflows that enable PDD

to leverage dynamically composed workflows effectively.

2.4 Mechanisms

While the basic pattern for a choice is a decision and a consequent

workflow, the concept of choice is so basic to both imperative and functional

programming that it occurs in nearly all designs and programming constructs.

In this section, I survey major choice mechanisms, and examine how they

relate to the realization of workflows injected at runtime. First, I inventory

simple and fundamental mechanisms (in Section 2.4.1) that serve both the

imperative and declarative styles (in Section 2.4.2). Then, I describe how

72

choice is injected into workflows at runtime as managed by execution

frameworks (in Section 2.4.3) and assisted by policy engines (in Section 2.4.4).

Finally, I show how workflow context is maintained in common distributed

systems (in Section 2.4.5).

2.4.1 Fundamental Mechanisms

The most basic forms of a choice are represented by the conditional

branch or jump table usually present in machine-level instruction set

abstractions. In modern imperative languages, they have the form of if(),

switch(), goto(), and related statements; they represent a close coupling

between such decision predicates and an associated workflow. In the

tradition of CSP’s [113] external choice, predicates are based on parameters,

local variables, global variables, application state, environment state,

property files, database fields, or calculations based on these values.

The idea of choosing a workflow based on decision predicates serves

both algorithmic function (as might occur in a bubble sort) and in the

composition of separate concerns. My dissertation pertains to the latter.

73

Examples of values that drive predicates to select amongst workflows

at runtime include:

 Constants available at compile time

 Attributes in directories (e.g., permissions, owners, and groups for files in

a file system)

 Permissions in property files (e.g., Tomcat’s catalina.policy file per JAAS

[114])

 Attributes and permissions in registries (e.g., Microsoft’s group policies

present in an Active Directory, Facebook’s privacy settings, and Oracle

database permissions)

 Attribute Based Access Control (ABAC) and Role Based Access Control

(RBAC) [115]

Predicates based on resources external to an application are a

common means of selecting amongst workflows. However, predicates

encoded into conditional branches and jump tables are defined at the time

of design and coding, as are the workflows they select. Consequently, they

cannot be changed at runtime to reflect new or changed requirements.

Note that many choices pertain to controlling access to a particular

resource (e.g., a file or process). Access control predicates often reference

identity proofs (e.g., credentials) authenticated by some authority. The

process or details related to generating these proofs are not part of this

dissertation.

Other choices pertain to the selection of a workflow appropriate to a

configuration or circumstance (e.g., look and feel driven by Windows’ group

policies).

74

2.4.2 Declarative Representations

Because of the close connection between a decision and a workflow,

choices are often naturally posed in imperative terms recognizable as flow

diagrams.

2.4.2.1 Functional Languages

However, choice can be represented declaratively, where flow is

abstracted as dependence relationships (and inferred by an execution

engine), as is common in functional programming languages (e.g., Clojure

[116] and Orc [69]). In this context, the realization of a requirement derives

from the composition of one function with or onto another, where the

composed function represents a decision and an alternative function

(analogous to a decision and alternative workflow in an imperative

construction).

For example, a choice encoded under Orc can declare a predicate

and some number of alternatives. Unlike an imperative interpretation, a

declarative interpretation may or may not execute all alternatives; based on

the predicate, it propagates the result of only one alternative (and assumes

that all alternatives are side-effect free). Functions defined in Orc (and Lisp

descendants) are specified as data, which may be specified at the design

and coding phase or at runtime. Consequently, realization of new or changed

requirements in an arbitrary workflow can occur at runtime – existing code

(either as source or as an existing function reference) would be composed

into a new function incorporating a decision and alternate workflows.

75

However, to date, such declarative systems often lack a means to specify

where in an existing workflow to inject a choice, or a mechanism to form this

composition at runtime once a site is identified.

2.4.2.2 Modeling Languages

Modeling languages are often used as declarative representations of

application structure or sequence. Message Sequence Charts [117], for

example, define protocols involving role abstractions – choice takes the form

of alt blocks, where the decision is a predicate and alternate workflows are

sub-protocols. Similarly, diagrams created using Uniform Modeling Language

(UML) [40] (e.g., class and object diagrams) allow guards written on

relationships between entities – guards are written in Object Constraint

Language (OCL), and enable or disable the guarded relationship. Because

models usually depict only partial structure or behavior, composition of

models to form an executable system is often impossible or undecidable. To

the extent that modeling languages are directly executable (as base and

injectable workflows that can be composed at runtime), the question of how

to combine predicates arises should multiple concerns affect the same

workflow. When modeling languages allow the composition of either structure

or sequence, one option is to combine such decisions nondeterministically, as

an internal choice under CSP, which leads to unmanageable state, entity,

and relationship explosions as seen with Turing machines and Petri Nets.

Modeling languages that support imperative representations (e.g.,

Business Process Modeling Notation (BPMN) [76] and UML via sequence, state,

76

and activity diagrams) represent choice explicitly as decision blocks that

encode first order logic to distinguish between alternative workflows, and can

be augmented with other logics (e.g., temporal logic [118]). Composition of

such models has been demonstrated for UML state diagrams [119] using

aspect-oriented techniques, but has not been demonstrated as a runtime

technique.

2.4.2.3 Structured Query Language (SQL)

Structured Query Language (SQL) is a declarative language suited to

the manipulation of relational databases (RDBMS). As such, SQL statements

fulfill aspects of stakeholder requirements projected onto the database

domain. Whereas SQL statements can be statically coded in applications

(and are therefore resistant to runtime modification), most SQL engines enable

the storage of SQL statements as views residing in the RDBMS. In this form, an

SQL statement is available for requirement composition via modifications to its

select and where clauses, which can be performed at runtime. Whereas SQL

statements represent partial requirements, the composition of constraints via

these clauses is not well supported because of the difficulty of parsing and

regenerating SQL statements. Fully supporting requirement realization cannot

be accomplished via SQL alone.

2.4.3 Execution Frameworks

In this section, I describe how choice and composition are

implemented in common execution frameworks that integrate loosely

coupled services (and therefore could present policy injection features), or

77

explicity evaluate and enact policy, or both. While such execution

frameworks comprise a diverse collection, the frameworks presented below

are representative of the class.

2.4.3.1 SQL Engines

SQL engines evaluate an SQL statement according to a basic three

activity workflow: a) client issues a query, b) engine evaluates the query, and

c) client processes the results. These engines allow the declaration of

constraints and triggers as a means to compose supplemental workflows onto

the base workflow. A constraint is a choice composed onto an operation that

stores a field value, where the decision verifies that the value is semantically

consistent with a column definition, other values in the row, and other rows in

the table – the alternate workflow is an exception that indicates a constraint

violation. A trigger is a choice composed onto a workflow’s interactions (i.e.,

a-b or b-c), where the decision is based on the SQL operation being

performed, and the alternate workflow is a combination of the base workflow

and a call to a stored procedure. Ultimately, constraints and triggers support

stakeholder requirements, and SQL engines are designed to accept and

execute them at runtime, thereby allowing the realization of new or changed

stakeholder requirements at runtime. While stored procedures can store and

retrieve state, and they can access application data, they are oblivious to the

application workflow context from which they’re called, and therefore cannot

coordinate activities within such a workflow. Ultimately, this workflow injection

78

capability addresses only the data storage aspects of stakeholder

requirements, which is usually a small part of an overall application.

2.4.3.2 Enterprise Service Bus

As described in Section B.2.5, in an Enterprise Service Bus (ESB) [120], a

workflow is defined as a routing, which can be associated with a predicate

that can enable it (similar to the use of OCL for UML-based sequence

modeling) or identify actual routing targets based on information contained in

the routed message. Choice can be injected into a base workflow by

intercepting a message in flight and using its contents to decide whether to

continue the original routing, route to a different target, or both. While an ESB

can execute a workflow, it doesn’t maintain workflow state or enable

decisions based on workflow, environment, application, or other persistent

state. Consequently, while ESBs can support the runtime injection of

stakeholder requirements that leverage message-based information,

additional features are necessary before they can support crosscutting

requirements that rely on state having specialized lifecycles.

2.4.4 Policy Engines

As described in Section B.2.6, policy engines enable application

developers to design decision and execution points into applications while

deferring the decision definition until runtime. This deferral represents a

separation between workflows and policies (as business rules), and is usually

leveraged to implement access control decisions (e.g., denying access to a

resource based on identity or environment). Adding or changing a decision

79

point (PDP), execution point (PEP), or alternate workflows requires explicitly

recoding and redeploying the application.

2.4.4.1 PERMIS (Privilege and Role Management Infrastructure

Standards)

In the PERMIS policy infrastructure [121] (described in Section B.2.6), the

PDP and PEP represent decisions and workflow selection logic that is statically

placed in a workflow at program development time, and which selects or

parameterizes statically defined alternate workflows. As such, decision criteria

and workflows are decoupled, thereby providing flexibility in isolating and

exposing decision criteria (e.g., RBAC-based access control [115]) for

dynamic definition. However, this does not enable policy and workflow

injection that implements data flow filtering or feature composition responsive

to stakeholder requirements that emerge at runtime.

PERMIS evaluates declarative RBAC-based policy based on first order

logic expressed in XML, and PERMIS provides a GUI that assists a policy writer in

assembling the different elements in an XML-based policy statement. A

PERMIS policy is framed from the standpoint of a security practitioner, and not

a domain expert interested in constraining or augmenting workflows. In this

regard, PERMIS is representative of other policy systems, both in how they

integrate into an application and their approach to policy language – the

policy authorship process and the policy language itself generally does not

align with a stakeholder’s understanding of domain problems, and therefore

80

would not be used to engage a stakeholder in creating and maintaining

solutions to domain-oriented requirements.

2.4.4.2 BPEL Process Integration with Business Rules

As described in Section B.2.6, BPEL [122] doesn’t address scalability or

verifiability, and it doesn’t provide a mechanism for composing workflows

onto workflows, a dynamic external policy mechanism and support system, or

a sub-workflow concept, as PDD does. As a scripting language, BPEL provides

no independent methodology, and particularly provides no guidance for

integration of crosscutting concerns and features. (BPEL-SPE supports sub-

processes.)

Under, Oracle’s BPEL Process Integration with Business Rules [123]

choice is implemented as a statically coded call to the decision service – first,

the application declares its state (as input facts); second, it calls the decision

service to evaluate the input facts according to the business rules; and third,

the decision service returns a result (as output facts) to the application.

Coding input facts, invoking the decision service, and interpreting the output

facts are performed via calls explicitly coded into the application. The

business rules are defined as Boolean and arithmetic expressions via a GUI

wizard, and are stored in a rules repository. As such, the combination of the

decision service and a business rule amounts to a service having an interface

defined by the input and output facts, which are tightly bound to the

application, though the particular rule is loosely bound by virtue of its

presence in the repository. A rule can call an external (web services) function,

81

which amounts to a workflow bound at runtime. Therefore, a rule qualifies as a

choice, where a decision can select amongst workflows. However, adding,

changing, or removing decision service calls requires recoding and

redeploying the application. External functions enable policies to maintain

their own state and access application and environment state, though

workflow state is not automatically tracked.

2.4.4.3 xESB: Integration of Policy with ESBs

Under xESB [124] (described in Section B.2.6), a rule is phrased as a

decision and an action, where the decision is based on the interaction

message content, message context, and rule state. An action can include

allowing the interaction to proceed, returning an error message, modifying

the message and proceeding, delaying the interaction, or executing an

external recovery process. Consequently, rules can be introduced onto a

workflow without explicitly programming PDPs and PEPs – they are essentially

injected onto every workflow. Because rules can be stateful, their injection

onto a workflow effectively creates a System of Systems composition, with the

injected rule comprising a small system. However, there is no facility that

allows rules to be composed onto rules, thereby limiting the depth of

composition.

An interaction message is constrained to a uniform, normalized format,

which places limits on the processing needed to determine whether a rule

applies during a particular interaction, and also limits the processing needed

to evaluate the decision and execute the action. Consequently, the content

82

of interaction messages and the scope of decisions and actions an xESB

policy can express are also limited. As a result, xESB can quickly determine the

applicability of a single policy in an interaction context, and can execute

policies quickly and efficiently.

The xESB policy language is tuned to address access and usage control

requirements, though without provisions enabling policy composition by

unrelated stakeholder communities. Additionally, like PERMIS, its policy

language is a formulation of first order logic that does not align with a

stakeholder’s understanding of domain problems, and therefore would not be

used to engage a stakeholder in creating and maintaining solutions to

domain-oriented requirements.

2.4.4.4 Ponder2

Ponder2 [125] is an event based system that uses an interceptor-based

approach to executable policy statements associated with particular events.

Policies are expressed in PonderTalk, a mature and robust variant of SmallTalk.

Ponder2 allows the association of a method in a policy class with a particular

object’s outbound request, inbound request, outbound reply, or inbound reply

channels.

As such, Ponder2 models applications as a network of connected

components instead of a collection of workflows. To the extent that a decision

must be made in the context of a service interaction, the policy must encode

and evaluate the interaction relationship before determining how to operate.

83

Also, PonderTalk itself offers no state lifecycle that corresponds to a workflow

variable. Finally, Ponder2 offers little support for the runtime specification of

policy bindings or the composition of external workflows as separate

concerns. Consequently, while Ponder2 offers the benefits of separation of

business rules (encoded as separate policies) from application code, it

cannot easily compose workflows, compose workflows onto workflows, or

inject workflows at runtime to implement emergent stakeholder requirements.

2.4.5 Workflow Context in Distributed Systems

As programming languages enable the definition of workflows, they

provide state management features (e.g., local, global, class, and package

variables) whose lifecycles suit the language’s purpose (as described in

Section B.3). Analogously, modern frameworks and architectures that support

distributed systems frame the maintenance of state based on the workflow

assumptions underlying their target applications. In this section, I describe

context maintenance in Struts, REST, and AJAX, as examples of different

tradeoffs, particularly regarding how they enable state maintenance during a

workflow and on behalf of workflows injected into a base workflow. I also

examine how they enable tracking of workflow state as an application scales

into a distributed system.

2.4.5.1 Struts

The Struts [126] system is a server-based Java environment that

executes workflows on behalf of clients. Under Struts, state is maintained as

84

Java beans, with request, session, and application lifecycles as described in

Section B.3.1.

Under Struts, a single workflow executes in a single thread on a single

computer. Consequently, as workflows do not extend to distributed systems,

enabling access to a workflow’s request beans beyond a single thread is not

implemented.

However, a Struts application can execute different workflows under

different threads or on different computers. Consequently, session and

application beans represent state available to all workflows executing on all

computers in a distributed system, and are maintained by an independent,

thread-safe service.

The Struts programming model assumes workflows are statically defined

and deployed as a monolithic application. Consequently, it has no facilities to

compose workflows dynamically into an application, and also has no facilities

for maintaining state for such workflows.

2.4.5.2 REST

Under the REST (Representational State Transfer) [127] architectural style

(described in Section B.3.2), application state resides on clients, which

themselves can reside on separate computers. Workflows are implemented as

interactions between a client and a server, which can, in turn, act as a client

in an independent interaction. REST applications are therefore inherently

scalable to distributed systems. To implement state that is accessible to all

85

activities in a workflow, the state must be passed on all interactions comprising

the workflow, and all servers must automatically propagate such state, which

violates principles of separation of concerns. Consequently, REST applications

favor state exchanged via localized client-server interactions over workflow-

wide state.

REST encourages state common to all (or a subset) of clients and

servers (similar to Struts’ application beans) via calls to an application-defined

server that keeps such state – it performs the work of Struts’ independent state

repository.

Workflow decomposition under REST can be accomplished by defining

a server to be a proxy, which then orchestrates communication with some

number of other servers to implement the original request – each downstream

server request incorporates a combination of original request values and

orchestration-local values according to the downstream server’s interface

specification.

Note that REST servers are accessed via URL, which functions as the

Internet version of a routing system that supports workflow orchestration.

Dynamic behavior can be implemented as a client calling a server whose URL

is provided by another server. However, receiving the URL requires explicit

coding within the client in anticipation of the dynamic behavior, which does

not support the concepts of composing oblivious workflows or composing

multiple workflows.

86

Consequently, because REST’s implementation of workflow context

and dynamic behavior does not support workflow composition,

implementation of diverse stakeholder requirements (e.g., access control,

auditing, provenance tracking, quality of service, and failure management)

represents application-wide entanglement of concerns in REST applications.

2.4.5.3 AJAX

AJAX [128] [129] is a collection of technologies aimed at providing a

fluid experience for users executing client-server application in a web browser,

as described in B.3.3. Under AJAX, JavaScript executes client-side workflows

based on client-resident state, which may be held as global variables and in

closures, particularly closures associated with server requests. For example

(following the illustration in Section B.3.3), in a REST model, a closure would

maintain a copy of parameters passed to a server, thereby allowing the client

to correlate a server reply with the parameters that generated it.

JavaScript closures represent workflow state private to a single

workflow interaction, characterized by a client source sending a request to

the server and a client target receiving the server reply – the closure pairs

source state with the server reply. New state is manually generated for each

client/server interaction. This contrasts with more pervasive workflow state,

which persists across all interactions in a workflow. JavaScript alone does not

provide a mechanism that maintains state for an entire workflow.

87

For internal workflows, JavaScript code is not automatically organized

to segregate orchestrations as workflow activities with well-specified

interfaces, and therefore does not admit injection of workflows representing

new or changed requirements. Additionally, for JavaScript applications

coded to execute multiple workflows concurrently, tracking of workflow state

is done ad-hoc, and is not automatically amenable to tracking state of

injected workflows.

For workflows in which a web browser interacts with an external server,

application developers have a choice of creating a RESTful or non-RESTful

server, with either implementation having the character described for REST in

Section 2.4.5.2).

2.4.6 Ponder Policy Verification

As described in Section B.4, Ponder is a highly successful environment

that implements the Ponder policy language [130], and represents a class of

predicate-based policy languages that focus on system management and

authorization requirements. Given the mission-critical nature of such policies in

real applications, there have been numerous contributions towards rigorous

analysis of policy specification and refinement (e.g., [131] [132]) enabling

checking for modality conflicts (i.e., both enabling and disabling the same

action), separation of duty conflicts (described in Section 7.4.1), improper

refinement of a base policy, and redundancy in refinements.

88

Similarly, [133] transforms a collection of Ponder policies into a graph

that relates attributes and conditionals. It discovers policies that partially or

completely negate other policies, or situations where an action is both

permitted and prohibited. For Ponder meta-policies, it detects situations

where a policy depends on another policy, but the dependent policy is

disabled.

Insofar as policy-based verification avoids obvious policy-driven

application errors, such verification is valuable and necessary, analogous to

syntax and model checking built into modern Integrated Development

Environments (IDEs). However, such approaches do not perform similar

analysis at a requirements level, particularly regarding the suitability (including

completeness, correctness, and conflicts) of requirements relative to each

other (including base and add-on requirements) or their fidelity to the policy

expressions that represent them.

2.5 Patterns

Choice mechanisms can be defined and referenced generally in terms

of design patterns, which codify best practices pertaining to methodologies

and key implementation domains. While various pattern sets address different

application architecture, design, and implementation concerns, the pattern

sets I discuss represent key enterprise application concerns. For a design and

programming perspective, I use the well-known Object Oriented Design

(OOD) patterns [33] to frame the discussion. Workflow patterns [70], Enterprise

89

Application Architecture (EAA) patterns [134], and Enterprise Integration (EI)

patterns [135] inform the use and context of these choice mechanisms.

Various pertinent pattern sets overlap or compliment these sets, but

don’t contribute additional choice mechanisms, including Orchestration

Environment patterns [136], Service Oriented Architecture patterns [137],

Service Interaction patterns [138], and others.

Note that many of these patterns are represented in computational

models (Section 2.2), software development methodologies (Section 2.3), and

mechanisms (Section 2.4) presented in this chapter. I deal with them

separately here because they crosscut these other topics.

Two important and related principles are sometimes referred to as

patterns, though they are not specified as such, and are not contained within

a formal pattern set: Inversion of Control [34] (IoC) and Dependency Inversion

[139] (DI). IoC assembles a workflow out of compatible components specified

as interfaces that provide the basis for service contracts. IoC can suffice as

the process by which workflows can be customized based on some

configuration-time decision. IoC can realize interfaces using the DI principle,

which replaces a reference to an interface with an instance that satisfies the

interface. The workflow then executes using the realized interfaces.

In simple IoC and DI implementations, workflow configuration and

realization is based on choices made at load time via configuration. However,

the distinction between load time and runtime blur when the IoC’s

90

component assembly and DI’s dependency realization are carried out at

runtime immediately before executing a workflow, or even as their results are

modified at runtime.

The configuration mechanisms of IoC and DI are, themselves, choice

mechanisms that result in selecting amongst sub-workflows at configuration

time (before a workflow executes). To the extent that IoC and DI can occur

while a workflow is executing, they would qualify as workflow injection

mechanisms. However, this is not how IoC and DI are generally interpreted,

and neither principle on its own or in combination touch on the nature of

workflow selection decisions or the runtime criteria on which they may be

based.

91

2.5.1 Object Oriented Design Patterns

OOD patterns [33] assume the existence of basic decision (i.e.,

comparison and branching) primitives, OOP’s distinctive inheritance and

subtyping, and compile-time, link-time, or load-time resolution. The most

prominent choice pattern is the Strategy pattern, supplemented by the Bridge

and State patterns. The Strategy pattern uses the result of a decision to

choose among candidate algorithms, where the algorithms each observe a

common interface (according to the Bridge pattern) and can be called

interchangeably. The State pattern conditions a workflow’s definition

according to values supplied to the workflow at instantiation or thereafter.

These patterns can be realized in several ways (which can be combined):

 In the code design:

o via simple mechanisms that pair the decision directly with a resulting

workflow (e.g., if() or switch() statements)

o via class structure where a base class has two or more

specializations, and a pointer records the decision of which

specialization to call (e.g., where an instance is created via a

Factory pattern based on some criteria)

o via a functor mechanism where the functor class represents an

abstract workflow that is reified when the class is instantiated, or by

State settings specified during execution

 In the compilation support system:

o via command line and environment variables that causes a

compiler or build system to choose amongst workflows

o via a link editor that causes some modules or methods to be linked

instead of others

 In the runtime system:

o via loader configuration (including environment variables) that

selectively loads one module instead of another

o via deployment configuration that installs one set of loadable

libraries instead of others (e.g., as dynamic link libraries)

92

Other patterns (e.g., Factory, Decorator, Façade, Plugin, Adapter, and

Proxy) incorporate decision making that can be characterized as Strategy,

Bridge, and State patterns where choice is encoded at program authorship

time and can be influenced at runtime by State, but is not defined at runtime.

Note that Strategy and State patterns can exist even when the

decision (or state storage) and consequent workflow are separated in time or

are realized in different workflows (e.g., the separation resulting from a Factory

pattern creating an object compared to the eventual use of the object).

While OOD patterns are intended to serve OOP, the Strategy, Bridge,

and State (and other) patterns are common to patterns useful for other

methodologies and mechanisms, including modular and functional

programming. For example, under higher-order programming (e.g., λ-

calculus), a Strategy pattern occurs when a function is assigned to a variable

based on some decision criteria, a Bridge pattern occurs as a consequence

of the function’s parameter list and semantics, and a State pattern drives

monad behavior. Even in these situations, the decisions are encoded at

program authorship time, and are not defined at runtime.

The Template and Visitor patterns address different approaches to

implementation of requirements as workflow customizations. The Template

Method pattern calls for the compile-time injection of functions that

implement workflow activities, and the Visitor pattern accomplishes a similar

result by enabling the choice of function injection at runtime. In both patterns,

93

the workflows and the injected functions are defined only at compile-time,

and as such, constitute compile-time IoC and DI.

In any case, the OOD patterns are presented in terms of imperative

languages (particularly OOP languages), and therefore are responsive to

requirements identified in the development or maintenance process. While

this implies the realization of new and changed requirements through

redesign or reprogramming, then re-deploying code, such a process is

required in these patterns.

2.5.2 Workflow Patterns

Workflow patterns describe the types of control and data flows that

can occur in modeling business processes. Control flow patterns represent

variations on choices that can be made in executing workflow activities,

including the choice of one workflow instead of another, executing multiple

workflows, or merging workflows. Data flow patterns describe the lifecycle and

scope of data a workflow can access, how data can be used in a workflow,

how it is transmitted between tasks, and how it affects the choice of task to

execute.

Workflow patterns assume that a choice is made, regardless of the

mechanism, and that workflows and data flows are orchestrated as a result.

While they address different outcomes of choices, they are agnostic as to the

process of realizing such workflows based on new or added requirements.

94

Consequently, while workflow patterns are often realized in static design and

coding contexts, they apply equally to early and late bound choice.

2.5.3 Enterprise Application Architecture Patterns

EAA patterns seek to describe major architectural components of

enterprise applications and how they relate to each other. Decisions and

workflows are not emphasized in these patterns, though they underpin various

patterns (e.g., Model View Controller).

Notably, the Separated Interface pattern corresponds roughly to the

OOP Bridge pattern, but the OOP Strategy pattern is considered an

implementation detail. Consequently, EAA patterns are agnostic as to the

process of realizing such workflows based on new or added requirements.

2.5.4 Enterprise Integration Patterns

EI patterns address the integration of applications in a broad sense,

including at the levels of information and business functions, processes, and

services. As such, it depends on choices implemented as policies within

workflows to affect either control flow or message content. For example, the

Content-Based Router pattern, which performs routing based on the contents

of a message – similar examples include the Filter, Recipient List, Splitter,

Aggregator, and Resequencer.

2.6 Related Concepts

PDD represents a methodology and technology in the space of

enterprise computing, which contains a number of systems, languages, and

95

standards addressing both disjoint and overlapping concerns. While some of

these are tangential to PDD and its support technologies, others relate more

directly to PDD, but not to a degree that justifies in-depth comparison of their

relationship to PDD. For convenience, I briefly present a number of these

topics in this section.

2.6.1 SCA Infrastructure

SCA (Service Component Architectures) [140] is a suite of specifications

that defines a protocol- and platform-neutral SOA language describing the

interconnection of services. It does not have an interceptor concept, and

does not propose features for service decomposition. Consequently, it doesn’t

address workflow composition, policy, or the infrastructure that supports them.

2.6.2 Spring Framework

Spring [141] is an application framework comprising a number of

technologies relevant to building server-based enterprise applications. Spring

uses the AspectJ pointcut language to compose concerns, and includes

before, after returning, after throwing, finally, and around advices. Spring is

declarative, and does not admit the PDD features of dynamic composition,

policy evaluation, and message-based interception. Consequently, feature

addition to a Spring application must be done at the source level, which

creates development dependencies and defeats obliviousness.

2.6.3 ORC Language

Orc [69] is an orchestration language that enables invocation of

sequential, parallel, and pruning flows. It enables vertical and horizontal

96

integration. The larger language (including Cor) allows interception by

closure. PDD features of policy evaluation, a context infrastructure, and

workflow substitution are not represented in Orc, though could exist through

extensions to Orc.

2.6.4 WS-Policy

WS-Policy [142] specifies an XML-based policy statement as a

collection of policy alternatives containing policy assertions. Applied to web

services, a service is said to support a requestor if one or all policy assertions

are satisfied. PDD uses policies to filter messages and to drive the composition

of workflows. WS-Policy doesn’t leverage the context system (including the

current message) that PDD can provide. WS-Policy can statically compose

policies into an XML policy statement, while PDD achieves composition

through XQuery expressions evaluated at runtime.

2.6.5 Business Process Modeling Notation (BPMN)

BPMN [143] [144] is a notation that graphically represents behavioral

aspects of workflows and is capable of expressing workflow patterns identified

by [70]. While there are notational and stylistic differences between BPMN

and UML Activity Diagrams [40], their major difference is in the audiences they

seek to address – BPMN for business process designers, and Activity Diagrams

for modeling software development. Consequently, while the high level

entities addressed by these notations are tailored to their audiences, the

semantics of the workflows they express are similar. Neither has direct support

97

for injection of crosscutting concerns, though extensions exist that address

them for BPMN [145] (to compliment [146]) and for UML [147].

Given this functional equivalence, I use only UML Activity Diagrams

(and derivatives) in this dissertation because they are more familiar to

software engineering audiences, though my discussions apply equally well

using BPMN.

2.6.6 Policy as Commitments

In this dissertation, I conceive of a policy as a combination of a

decision that selects amongst alternate workflows. Such workflows represent a

process as an orchestration of activities that satisfy a data flow and control

dependencies (as with BPMN), often with workflow activities representing

computational constructs.

A higher level view [148] conceives of policies as engagement

relationships between business services operating on behalf of one party or

another. In this paradigm, a policy is a collection of commitments, which are

relationships between parties within the scope of an organizational context. A

party can be a concrete or abstract entity, and a context represents an

environment in which relationships exist, exceptions are understood and

handled, and non-conformant behavior is sanctioned. Basic commitment

operations include creation (where a party activates a commitment),

discharge (where a party satisfies a commitment), assignment and delegation

98

(where a party transfers a commitment to another party), and release (where

a party removes another party from further participating in a commitment).

Commitment-oriented systems are based on both standardized and

novel patterns expressed as workflows that orchestrate communication

between parties (or their computationally-oriented proxies) and facilitate

sharing state. Commitment-oriented policies model business relationships

vividly and flexibly, independent of a particular implementation. Decisions are

made at two levels: within workflows that implement the behavior of a party,

and within workflows that express and enforce a commitment. Given this,

commitment-oriented systems may leverage workflow-based decisions (as

PDD-style policy, addressed in this dissertation), but they don’t affect decision

mechanisms or the workflows they select.

99

2.7 Summary

Table 2 presents a summary of the capabilities of computational

models, methodologies, mechanisms, and patterns as applied to the

realization of requirements as workflows through late bound choice.

Specifically, it identifies potential solutions in the key areas set out at the

beginning of this chapter. These capabilities are discussed in previous sections

-- in this section, I summarize those discussions and provide further insight into

their value in addressing late binding issues. Section 2.7.6 ties the discussions

together.

Note that the table includes an additional row, which corresponds to

the PDD capabilities represented as contributions of this dissertation. Section

2.7.6 gives a brief glimpse into their implementation in Chapter 4 (as

foundation) and Chapter 5 (as case study).

100

Table 2. Summary of Existing Work

101

102

Table 2. Summary of Existing Work, Continued

Legend

A Separate Workflows

B Workflow Interface

C Contract Enforcement

D Specified Site

E Workflow Selection

F Choice on choice

G Composite Choice

H Centralized Concerns

I Visualization

J Workflow Unique

K Instance Shared

L Global

M Customized Lifecycle

N Verification

O Model Checking

P Secure Deployment

Q Consistent Deployment

Modeling

State Management

Workflow Injection

Workflow Specification

Deployment

103

2.7.1 Workflow Specification

While most contributions allow the articulation of a workflow with a

corresponding call interface (though not a semantic interface), OOP provides

contract enforcement via types and encoded assertions, and AOP enables

enforcement as a separate concern [149]. SQL’s constraint injection is also a

form of contract enforcement.

Contract enforcement exists in practical programming systems and

frameworks as a means for harmonizing workflow activities a priori so as to

avoid bugs by detecting obvious semantic incompatibilities. It most often

relies on the compile-time or link-time evaluation of declared program meta-

information, though it also appears in runtime implementations as JavaScript

[150] function calls and UDDI [151] searches, both of which rely on function

signatures as expressions of contracts.

Achieving a similar degree of certainty regarding runtime workflow

injection requires that the contracts be available (at runtime) for each

injectable workflow as well as source-target interaction onto which a workflow

can be injected. Given that, a means must exist for comparing these

contracts before an injected workflow can execute. While this has been

demonstrated at the function signature level (e.g., JavaScript and UDDI,

which includes verifying messages based on type), it has not been

demonstrated for interactions occurring in a runtime context and depending

on workflow or application state (as would be the case for a complex

protocol).

104

2.7.2 Workflow Injection

While the computational models, methodologies, and mechanisms

enable choice (including a decision and alternate workflows) to be

composed onto a base workflow, most solutions require that the injection site

be determined manually, and that the choice be explicitly coded prior to

application testing, release, and deployment. Given this manual orientation,

they also support explicitly coding the composition of non-base concerns,

including the composition of multiple choices at a single site. However, they

also suffer from scattering and entanglement when workflows represent

crosscutting concerns.

AOP differs by allowing the injection site to be chosen automatically

(via pointcut), thereby enabling the concentration of crosscutting concerns

as separable modules, which avoids scattering and entanglement. Similarly,

execution frameworks (e.g., ESBs and SQL engines) enable the concentration

of crosscutting concerns as separable modules, though they can be injected

into workflows at runtime (via interceptors, transformations, and dynamic

routing that implement IoC and DI). Policy engines allow the concentration of

decision criteria as separable modules, but require that the injection site and

alternative workflows be provided manually at the coding phase. xESB is

exceptional in that it does not require the manual injection of policy and

workflows, though it is limited in the types of workflows it can inject. All three

approaches provide little support for composing choice onto injected

workflows or composing multiple choices that affect a common site.

105

Because both manual and automatic workflow composition breed

complexity that can result in increased maintenance costs and failure to meet

stakeholder requirements, much attention has been given to workflow

visualizations appropriate for each programming methodology and

mechanism. Particularly, because AOP separates composed workflows from

base workflows, visualization support is needed so that programmers can

readily appreciate the effects of composition [152].

While OOD patterns, workflow patterns, EA patterns, and EI patterns

offer guidance regarding the essential qualities of choice, the forms that

choice can take, and how choice can effect various control and data flows,

they are largely silent regarding specific mechanisms useful in the early or late

binding of choice. This is true, also, of IoC and DI, which bind workflows before

execution time, and offer little guidance regarding the binding of workflows

into executing workflows.

Note, however, that IoC and DI do provide the bases for injecting

policy evaluation at each stage of workflow execution as a concern that

crosscuts all workflow activities. Chapter 4 and Chapter 5 demonstrate how

this can be parlayed into runtime-defined choice that can result in the

injection of workflows implementing requirements not known at the time of

application authorship or deployment.

Achieving the injection of requirements (as workflows) into a running

system requires that workflow interactions be exposed for reflection at

106

runtime, that workflow interactions support the injection of requirements from

multiple sources, that choice between injected workflows be made based on

runtime state, and that requirements must be composable onto composed

requirements. No single or combination of contributions meets these

challenges, though various contributions offer insights into a solution.

2.7.3 State Management

Given that a requirement may decompose into a number of workflows

injected upon multiple locations within a single or multiple base workflows,

workflow coordination requires that associated state have a lifecycle

matching the workflow duration, multiple workflow durations (i.e., a session), or

across all workflows. Additionally, to the extent that workflows can be injected

onto oblivious base workflows at runtime, state must also be defined and

injected at the same time.

In the algebras, methodologies, mechanisms, and patterns surveyed,

state is most often explicitly declared at program authorship time, and its

injection has the same limitations and drawbacks (including contributing to

entanglement and scattering) as manual workflow injection. AOP, SQL, and

policy engines enable state injection at runtime (coincident with workflow

injection), though they do not address state management on a workflow or

session basis because they do not model or track such information.

107

No single or combination of contributions enables the injection of

workflow-based state onto oblivious workflows, though various contributions

provide inspiration for modeling state having other lifecycles.

2.7.4 Modeling

The value of verifying and model checking injectable workflows (as

proxies for requirements) is to determine that workflows implement

requirements alone or in combination with other workflows, and that they do

not disturb the implementation of uninvolved requirements.

Extensive work has been done with programming methodologies in

verifying that manually written programs meet articulated requirements and

that their code guarantees important properties (e.g., livelock avoidance,

state avoidance). Indeed, computational models exist, in part, to

demonstrate how properties are maintained or guarantees are broken. While

execution frameworks are not exploited in this way, declarative models (e.g.,

UML [55]) and policies evaluated by policy engines are (as in Section 2.4.6

and [153]), though primarily in the security domain, which focuses on

consistency, completeness, and correctness. Additionally, unit testing and

model checking techniques are applied directly against code produced

under various programming methodologies.

Generally, verification and model checking are applied to workflows at

the modeling, design, and authorship stages, resulting in iterations over those

stages until the workflows achieve the desired properties.

108

Insofar as a composed requirement (via composition of one or more

workflows) represents an incremental change to base workflows, applying

such techniques requires an understanding of both the base and injected

workflows at one of multiple levels (requirement, modeling, or coding) with

assurances that applying such techniques at abstraction levels (i.e.,

requirement or modeling) ultimately confers guarantees at the coding level.

The contributions I surveyed contemplate verification and model

checking at the modeling or coding level in the context of an entire system,

and compliment the monolithic application delivery model. For distributed

systems containing components that may not be available for such

verification and model checking, the monolithic approach may be too costly

if it is possible at all.

To the extent that a requirement represents a partial system behavior,

the workflow(s) that implement it can be independently verified or model

checked, though no contributions are situated to do this at runtime either at

the requirement, model, or code level.

2.7.5 Deployment

While computational model expressions are generally not deployed as

executable applications, means exist for deploying all other kinds of

applications completely and authoritatively. However, where components of

an application (e.g., DLLs, policies, POJOs, constraints, and stored

procedures) can be delivered separately, only ad-hoc means provide

109

guarantees that all such components are consistent with the deployed

application and with each other. Policies evaluated by policy engines have

been packaged as atomic modules when they relate to each other via

shared state, and are therefore consistent by design. Even so, the execution

of one policy at one time may set state that is semantically different than is

expected by a policy deployed and executed at another time – this is an

unsolved problem.

2.7.6 Assessment

The dominant programming paradigms involve binding requirements

early in the design and coding process, and take the form of manually

selecting workflow injection sites, decision, and workflows. Additionally, such

binding may lead to scattered and entangled code. While AOP solutions

avoid this, they still rely on early-bound aspects to achieve this and provide

little facility for scaling applications.

Prominent programming and enterprise application patterns are

agnostic as to early binding. Execution frameworks enable late binding, but

fail to support injection of workflows onto injected workflows, the injection of

multiple workflows onto a single site, and the maintenance of state across the

execution of a workflow. While existing policy engines enable late binding of

decision criteria, most rely on early bound injection site and workflow

alternatives.

110

While early binding of requirements enables a significant testing phase

prior to deployment, binding requirements at runtime doesn’t involve any pre-

deployment testing phase. While significant visualization, verification, and

model checking support would greatly benefit the fidelity and reliability of

late-bound applications, such support is underdeveloped for the execution

frameworks that support such applications.

Finally, while policy engines enable secure deployment of decision

criteria and (to a degree) support the deployment of consistent policies, no

solution deploys site selection, alternate workflows, and decisions in a secure

and consistent manner.

For reference, a quick list of additions needed relative to existing

contributions (i.e., a gap list) includes:

 Identification of policy (including decision leading to selection amongst

alternative workflows) injection site at runtime

 Injection of policy at runtime

 Tracking policy -centric state to allow coordination of multiple policies

injected on a base workflow

 Composition of multiple policies onto a single injection site

 Enabling composed workflows to act as base workflows for other

compositions

 Verification that an injected policy is interface- and semantically-

compatible with its injection site

 Incremental testing and proofs that policies implement requirements

 Enabling a consistent relationship between state and policy across

policy deployments

The PDD contributions described in this thesis (per Section 1.4) address

gaps pertaining to workflow specification, workflow injection, and state

111

management at the foundational level and as a case study. In Chapter 4, I

describe the means by which policy can be injected into existing workflows at

runtime. Fundamentally, PDD leverages an equivalence between workflow

activities and services, where workflows are cast in terms of SOAs whose

interactions can be identified and intercepted at runtime. PDD exploits this by

injecting policy evaluation and state propagation services that crosscut all

service interactions. The result is to provide an opportunity to fill each of the

gaps identified above. Chapter 5 demonstrates the implementation of PDD in

the context of a real world system.

Chapter 7 describes how the PDD approach fills the gaps identified in

this chapter. As discussed in Sections 7.5, 7.4.4, and 7.4.6, PDD does not

address gaps pertaining to modeling and deployment – these gaps must be

filled before late binding can be reliably supported in production

environments, and are left to future work.

112

CHAPTER 3

A RUNNING EXAMPLE – PALMS’ GETSTUDYLIST WORKFLOW

The concept of the injection of choice can be demonstrated and

discussed using a single interaction between two workflow activities. However,

as a motivating example, Figure 6 presents a realistic workflow (called

GetStudyList) that implements a stakeholder requirement end-to-end in the

PALMS case study (described in Chapter 5), and which I will use throughout

the remainder of this dissertation.

(As described in Chapter 5, the PALMS case study is an example of a

cyberinfrastructure that serves diverse stakeholder communities having

different interests, and whose requirements change over time. The

GetStudyList example is representative of all PALMS workflows, any of which

could be similarly subject to evolving stakeholder requirements, as addressed

in this dissertation. Finally, while GetStudyList represents PALMS workflows, it

equally represents other types of workflows and workflow patterns as

described in Section 2.5.2.)

PALMS ListStudies
Study

Repository

❽ StudyList Message ({m, a, f}, r)
❼ StudyList Message ({m, a, f}, r)
❻ StudyList Message ({m, a, f}, r)
❺ Data Message (d, r)

Client

❸❶ ❷

❽ ❺❻❼

Storage

❹

❶ GetStudyList Request (i, s)
❷ GetStudyList Request (s)
❸ GetStudyList Request (q, o)
❹ QueryData (q, o)

Figure 6. GetStudyList Generic Workflow

113

As an example of a generic workflow (as described in Section 2.1.1),

GetStudyList shows processing and information flow. It shows five activities

(e.g., services) that interact in a request/reply pattern, where each activity

sends a message to another activity, which in turn replies with a message.

GetStudyList provides context to demonstrate the realization of several

different types of additional stakeholder requirements, including:

 Various forms of access control

 Data stream filtering

 System of Systems integration

 Composition of choice on choice

It also provides context for a discussion of requirements that affect

multiple interactions and share state.

Relationship to
PALMS

GetStudyList Data
Flow

Relationship to
Requirements

Section
3.1

Section
3.2

Section
3.3

Legend

Expained
in

Summary and
Wrapup

Section
3.6

Policy Preview

Representative
Workflow

Section
3.4

Section
3.5

Figure 7. Chapter 3 Flow

114

As shown in Figure 7, this chapter describes the GetStudyList workflow in

terms of its relationship to PALMS (Section 3.1), its data flow (Section 3.2), how

it can be affected by emergent requirements (Section 3.3), how policy can

be used to effect emergent requirements (Section 3.4), and how it relates to

other kinds of workflows (Section 3.5).

3.1 Relationship to PALMS

The objective of this workflow is to return a list of studies to a client,

which may be a Web browser acting on behalf of a user (represented by the

Client activity). A study is an abstraction central to the PALMS application -- it

is a research activity that organizes observational and other data, and is

described by attributes (as metadata) in Table 3.

Conceptually, the Client retrieves a list of studies for display to a user.

The Client allows the user to select a study, which then enables the Client to

view or modify observational and other data associated with the study.

Table 3. PALMS Study Components

Value Meaning

studyID GUID unique to the study

studyName textual description of study

groupName name of collection of roles associated

with study’s access control rights

attributesXML collection of Client-defined metadata

accessSchemaXML schema describing Client-defined

metadata

formsXML Client data structures enabling

metadata display and maintenance

primarySubjectAttr name of data containing study

subject ID in subject repository

115

PALMS maintains a number of abstractions similar to a study, and there are

similar workflows involving each.

To accomplish this, the Client activity interacts with the PALMS activity,

which encapsulates all PALMS capabilities – in this example, it exposes the

study list retrieval capability, but in a fleshed out system, it exposes additional

capabilities. In general, PALMS either invokes a workflow appropriate to the

request (e.g., ListStudies, described below) or rejects a client's request. This

pattern is repeated for each downstream activity.

The ListStudies activity represents an abstraction that returns a list of

existing studies (if) or a particular study (if). It fetches study

information through interaction with the Study Repository activity (described

below). It qualifies the scope and format of the study list and packages the

resulting information for return to the Client.

The StudyRepository activity represents an abstraction that maintains a

collection of studies, and is capable of adding, modifying, or removing a

study, its attributes, or its observational and other data. The StudyRepository

abstraction defines and enforces semantics for each study attribute, including

how each attribute relates to other attributes. It implements study attribute

storage by interacting with the Storage activity (described below), and returns

study attributes as received from Storage.

Finally, the Storage activity stores a collection of related elements so

they can be retrieved as a unit (e.g., as a row in a table). The Storage

116

abstraction does not maintain any semantics for any element, and is reused

by other PALMS workflows that store and retrieve related elements.

In this example, each activity represents an abstraction that transforms

input messages into output messages, and can be decomposed as

combinations of internal computation and interactions with some number of

other activities. As such, an activity can be implemented in any number of

ways, so long as it interacts appropriately with activities that interact with it.

(These concepts are elaborated upon more precisely and robustly in Chapter

4.) For example, while the StudyRepository activity leverages the Storage

activity to persist study attributes, an alternative implementation might

translate attributes returned by Storage, assemble attributes from multiple

sources, or calculate or synthesize them based on some criteria.

3.2 GetStudyList Data Flow

In Figure 6, by convention, arrows going from left to right indicate

requests, and arrows going from right to left indicate replies. Requests and

replies are tagged by a number (e.g., ❶) that indicates their sequence in the

workflow, and which matches a message tag in the legend. The associated

message entry contains a textual description and lists values contained in the

message, as listed in Table 4.

117

While the particular contents and semantics of each message and its

elements is highly relevant to the interactions in which they are exchanged,

they are not important to this discussion, except to recognize that each

interaction is defined in terms of messages it exchanges, as described in

Chapter 4.

3.3 Relationship to Requirements

Each activity represents an abstraction that adds value to a data flow

in some way. The activities in the example were created to add this value

responsive to abstractions present in a decomposition of high level user

requirements. Consequently, an interaction pattern represents such an

abstraction.

The sample workflow arose from a PALMS requirement that the user be

able to see a list of available studies. Each activity interacts with at most one

other activity only because this simple pattern satisfies the PALMS requirement.

Table 4. GetStudyList Message Contents

Element Meaning Comment

i Identity credential X.509 certificate for requesting user

s Study ID Primary key for study metadata

o Option collection Formatting directives for result

q Query statement Predicate describing data to be fetched

{} Collection of tuples Container for list of metadata tuples

m Study metadata Study ID, name, group, etc

a AccessSchema Study accessShema

f Form Study GUI form

r Result Error text if request was rejected

118

3.4 Policy Preview

As explained more fully in Chapter 4 and Chapter 5, PDD addresses

new and changed requirements as modifications to the base workflows that

reflect the existing requirements. For example, consider two new

requirements:

1) If the user (represented by) is European, use a study repository located

in the EU; otherwise, use a local (US) repository. In any case, if the

system is in test mode, use a test repository.

2) Return only studies the user has permission to view

Requirement 1 addresses a hypothetical preference of European users

that private data be stored on European servers, subject to European privacy

laws. It also addresses system testing. Requirement 2 is a form of access

control.

A back-of-a-napkin illustration of responsive policies using informal

notation is shown in Figure 8 as follows:

A policy that implements Requirement 1 would apply to the

StudyRepository-Storage interaction (❹-❺), and would choose amongst

different Storage activities, depending on a user attribute or a system

environment variable.

A policy that implements Requirement 2 would apply to ListStudies-

StudyRepository interaction, and could be implemented in two ways, given a

set containing the studies the user is allowed to view. On ❸, query could

be constrained (via rewriting) to fetch only studies , or on ❻, the tuple list

could be filtered to contain only studies .

119

Both policies assume the availability of the user identity in the affected

interactions. A close inspection of Figure 6 reveals that is not directly

available to those interactions. As explained in Chapter 4 and Chapter 5, such

values represent context that crosscuts base workflows, and are accessible to

policies through a context support system. Additionally, system environment

variables and attributes related to the user are themselves instances of

separate concerns exposed via domain-specific policy libraries that support

those concerns – such libraries expose functions that calculate and return ,

access and return system environment variables, or implement other

functionality that supports a policy expression.

3.5 Representative Workflow

While the motivating example provides a means for the discussion of

injectable choice, it is representative of a wider class of workflows to which

the discussion also applies. As depicted, GetStudyList is structured as a series

of request/reply interactions, but my discussion applies to other interaction

ListStudies
Study

Repository

❸

❺❻

Storage

❹

Test
Storage

EU
Storage

1: if (isTesting) ® TestStorage
elseif (i.isEuro) ® EUStorage
else ® Storage

...

...

2a: q = constrain(q, X)

2b: m = filter(m, X)

Figure 8. GetStudyList Generic Workflow (with sample policies injected)

120

patterns, as well. For example, an activity could interact with multiple activities

in parallel. Similarly, a modified request/reply interaction could involve three

activities, where one activity makes a request of a second activity, and the

second activity delegates the response to a third activity.

The possible variations in relationships between activities are given in

[70]. Note that this list includes a conditional relationship (“Multi-choice”)

where an activity could interact with any of several activities, but chooses a

subset based on some criterion. This workflow relationship corresponds to the

policy injection that PDD seeks to leverage.

3.6 Summary

In this chapter, I presented the GetStudyList workflow, which I will

reference throughout subsequent chapters. It illustrates properties key in the

discussion of PDD, including data flow relationships between activities, and

activities that represent transformational abstractions that can be further

decomposed. It hints at how policy injection can be used to implement new

or changed requirements without perturbing a base workflow. It also hints at a

system that supports state required for the composition of complex,

orthogonal concerns on workflows.

In Chapter 4, I lay a theoretical foundation for the discussion of

activities and their interactions, where an interaction between two activities is

understood independent of other interactions, and is characterized by

sequences of responses and replies. It also describes how an activity can be

121

decomposed into a workflow that implements the interaction pattern the

activity supports.

In Chapter 5, I present a real world case study that illustrates the

application of the PDD foundation in a running system (i.e., PALMS), making

extensive use of the GetStudyList workflow as it exists on a running system.

122

CHAPTER 4

A FOUNDATION FOR POLICY COMPOSED ON WORKFLOW

PDD policies enable the realization of stakeholder requirements as

concerns that crosscut a base workflow. In general, PDD defines a policy as a

decision that is injected into a base workflow, and may lead to the

composition of a new workflow onto the base. The decision can incorporate a

number of factors, including data flows (or histories of data flows) managed

by the base or other workflows, or the state of the application or external

system. The composition is achieved by applying the composed workflow to a

data or control flow as in Table 5.

For convenience, I refer to the injection of a decision that may lead to

the composition of a new workflow onto a base workflow as policy injection.

The implementation of a requirement may involve the injection of

several different policies onto one or more workflows. While policies can act

independently (as might occur when one policy encodes a data flow, and

the other policy decodes it), policies can also coordinate via shared state.

Table 5. Types of Composition

Flow Type Action Example

Data Tap Operate on copy of data flow Auditing
Filtering Modify data flow Augment/decimate data

Control Combination Add a new workflow Obligation enforcement
Replacement Replace an existing workflow Access control as Allow/Deny

decisions

123

A major consequence of policy injection is the opportunity to drive the

integration of separate concerns (including crosscutting concerns and feature

sets) into a system at runtime, thereby enabling faster and more flexible

system integration (including System of Systems integration).

Furthermore, workflows composed via policy can, themselves, be

considered as base workflows eligible for policy injection -- PDD mechanisms

enable policies on policies, thereby enabling the composition of requirements

on requirements. Finally, because policy evaluation is, itself, a workflow, PDD

mechanisms enable policies to affect the policy evaluation process itself.

Consequently, these mechanisms lead to flexible ways of combining and

evaluating multiple policies, possibly provided by multiple stakeholders across

multiple domains, all oblivious to each other.

Realizing this vision requires solving challenges not met by in the existing

systems described in Chapter 2, specifically:

 a clear definition of a policy

 a means to locate where in a workflow to inject a policy

 a means for composing a single policy onto a workflow interaction

(including onto workflows contributed by policies)

 a means for composing multiple policies onto a single workflow

interaction

 a means for maintaining policy state separate from state maintained

for other policies

 a means to verify the suitability of policies relative to requirements and

existing policies

 policy languages that encourage and leverage stakeholder participation in

policy authorship

124

In this chapter, I answer these challenges at a foundational level, and

present a real world case study implementation in Chapter 5, followed by an

evaluation of how PDD met these challenges in Chapter 7.

Briefly, this chapter articulates several of the major contributions of my

dissertation: foundations for policy definition, injection of policy into a

workflow, and composition of multiple policies at a single injection point. It

also presents an architecture for maintaining workflow-based policy state as

part of a larger context system. This foundational work motivates and

underpins the PALMS case study described in Chapter 5.

As shown in Figure 9, I first describe basic service orchestration

concepts, starting with definitions of service, service interactions, service

contracts, and service composition, all framed under a Rich Services SOA

model (in Section 4.1). Next, I explain the mechanisms by which a crosscutting

SOA-based
composition &
decomposition

Policies injected
onto workflows

Separate context
for separate
workflows

Section
4.1

Section
4.2

Section
4.3

Legend

Expained
in

Addressing gaps in
existing work

Summary and
Wrapup

Section
4.4

Section
4.5

Figure 9. Chapter 4 Flow

125

concern (represented as policy evaluation) is injected onto a base workflow

(in Section 4.2). Finally, I demonstrate mechanisms that enable workflows to

maintain state separate from other workflows (in Section 4.3).

Note that π-calculus (described in Section 2.2.3) is a process algebra

that describes workflows in terms of message-based process interactions and

aligns well with models developed in this chapter. However, requirements

modeled by π-calculus (and executable languages based on it) are bound at

authorship time, and injecting emergent requirements (as policies) at runtime

is left unaddressed. Relative to π-calculus, the contributions of PDD include a

means to locate where in a process to inject policy, a foundation for

composition of policy onto a process interaction, a foundation for maintaining

independent context for composed workflows, and a foundation for realizing

requirements using a stakeholder-centric language instead of a process-

centric language. From a π-calculus perspective, this enables the integration

of separate concerns without incurring entanglement and scattering, which,

in turn, enables the maintenance and analysis of separate concerns

separately. From the perspective of executable languages based on π-

calculus, it also represents requirement integration at runtime, where

stakeholders can be active participants in realizing requirements.

4.1 A SOA Approach to Policy-based Workflow Composition

Given an equivalence between workflows and service orchestrations, I

frame the foundational discussion of PDD and its mechanisms in terms of a

Service Oriented Architecture (SOA), particularly the Rich Services [154] (RS)

126

architectural blueprint (as described in Section 4.1.1), which aligns well with

the PDD concepts of workflows, workflow element decomposition, and

workflow injection. Using RS as a backdrop, I explain an interface-centric

foundation for service interactions (in Section 4.1.2), which I leverage to define

service composition (in Section 4.1.3) and decomposition (in Section 4.1.4)

leading to a foundational basis for policy evaluation via message interception

(in Section 4.1.5).

In subsequent sections (4.2 and 4.3), I define PDD policies and use

these mechanisms to show how policies can be injected into base workflows

at runtime, thereby enabling late binding of stakeholder requirements.

4.1.1 Rich Services

Rich Services [154] (RS) is a SOA-based architectural blueprint (i.e., a

specialized SOA) that aligns well with the PDD concepts of workflows,

workflow element decomposition, and workflow injection. I chose a SOA-

based approach over other approaches (e.g., AOSD or pure OOP) because

of how it aligns with many objectives of building large scale systems capable

of servicing multiple evolving stakeholder communities and because it

addresses multiple development and application concerns. Particularly, SOA’s

message-based service interactions enable interface-based component

reuse (via loose coupling and late binding); inherent reusability, scalability,

and distributability (via message routing); and the opportunity to constrain

and augment workflows (via message interception), while retaining the

freedom to use other approaches to build services themselves.

127

As a SOA, the RS blueprint inherits these SOA properties. It can

represent either a logical model (as in Section 5.3), a deployment model (as in

Section 5.4), or both (given a mapping from a logical RS to a deployment RS).

In the abstract, a Rich Service is a service that transforms one or more

streams of input messages into one or more streams of output messages, and

consists of a service interface and an orchestration of loosely coupled (sub-)

Rich Services comprising orchestrations that implement the service interface.

Since Rich Services can be built from other Rich Services, they form a service

hierarchy conforming to a Composite pattern [33] (as briefly described in

Appendix C).

Critically, Rich Services includes the concept of Rich Infrastructure

Services (RISs), which enables the injection of service processing that

implements crosscutting concerns (e.g., failure detection and mitigation [155],

encryption [156], auditing, and access control, all defined in terms of policies

injected responsive to stakeholder requirements).

A Rich Service can model functionality at either the logical level

(relating interactions and hierarchies involving services in the abstract) or at

the physical level (relating realized services and the communications

channels that connect them). A common use of Rich Services is to model at

both levels, with a deployment mapping that translates logical modes to

physical models (as described in Sections 5.3 and 5.4).

128

This section briefly describes the structure and semantics of the Rich

Services blueprint, which creates a robust context for discussing policy

injection that leads to the rapid realization of stakeholder requirements.

4.1.1.1 Rich Service Structure

As shown in Figure 10, a Rich Service contains five major components:

the Service/Data Connector (SDC) ①, a collection of Rich Application

Services ② and Rich Infrastructure Services (RISs) ③, a message transport ④,

and a message router ⑤.

Se
rv

ic
e

/D
a

ta

C
o

n
n

e
ct

o
r W Router

Messenger

Service/Data
Connector{

Rich
« Infrastructure »

Services

Rich
« Application »

Services

PALMS

①

②

③

④

⑤

⑥

Study
Repository

Service/Data
Connector

Policy
Evaluator

Router

Messenger

Service/Data
Connector

Client

Service/Data
Connector

ListStudies

{

Service/Data
Connector

Storage

Service/Data
Connector

Policy
Evaluator

System

Figure 10. A Typical Rich Service

129

The SDC defines the RS’s input streams and output streams,

representing a definition of the RS’s service interface (as a Bridge pattern [33]

at the logical level, and a Messaging Gateway pattern [135] at the physical

level). An SDC can be modeled in a number of ways, including as explicit

mappings between input and output values (in the λ-calculus tradition

described in Section 2.2.4), as lists of imported and exported function

definitions [156], and as Message Sequence Charts.

A Rich Application Service (RAS) is a service that implements business

rules and application processing supporting a dominant decomposition, and

itself is modeled as a Rich Service. As such, it implements a service interface

and can be implemented as a service orchestration or as an atomic action.

Additionally, a RAS’ SDC can perform translation services between the inputs

presented to the RAS and the workflow that implements the RAS, and similarly

between the workflow and the RAS outputs. In this respect, the RAS’ SDC

implements a Mediator pattern [33].

A Rich Infrastructure Service (RIS) is a service that implements behaviors

that crosscut RAS orchestrations, and are therefore injected into those

orchestrations in one or more place. Structurally, it is identical to a RAS and

can be modeled as a Rich Service. For example, a requirement to encrypt a

message travelling between a source and target service may be

implemented as two RISs (an encryption RIS and a decryption RIS, not shown)

where one RIS is injected to encrypt a message sent by the source service,

and the other RIS is injected to decrypt a message received by the target

130

service. (Under PDD, the RIS feature is used to evaluate policies that may lead

to workflow composition, as described throughout this chapter.)

The message transport transfers messages between services, where the

messages are formatted in some way compatible with the SDC of the source

and target service.

The router is coupled to the message transport, and implements a RAS-

to-RAS service interaction by accepting a message from a source service and

routing it to the target service, as an example of the Mediator pattern [33]. It

can also enable crosscutting processing by interposing a RIS into the

interaction, thereby creating a RAS-to-RIS-to-RAS interaction, which leads to

policy injection.

Considering that both RASs and RISs can be Rich Services, each with

SDCs ⑥, RASs, RISs, and message routing of their own, they complete the

Composite pattern.

For a RS, the existence of an SDC signals a decomposition

implemented by an encapsulated orchestration, where either a single service

or multiple services may be orchestrated to implement a workflow. For simple

services, the SDC may be trivial (or non-existent), thereby leaving the service

functionality to be implemented by the service itself.

131

The Rich Service shown in Figure 10 models the GetStudyList motivating

example described in Chapter 3. It represents three levels of hierarchy:

 An interaction between the Client and PALMS services (within the

System model)

 The decomposition of the PALMS service as an orchestration of the

ListStudies, StudyRepository, and Storage services

 The possible decomposition of the Client, ListStudies, StudyRepository,

and Storage services into their own service orchestrations (not shown)

Additionally, it shows two (possibly different) Policy Evaluator RISs. Within

the PALMS RS, the RIS represents the possibility of policy injection on

interactions between the PALMS SDC, ListStudies, StudyRepository, and

Storage services. Within the System model, the RIS represents the possibility of

policy injection on interactions between the Client and PALMS services.

It does not show the actual service interactions depicted in Chapter 3 –

they would be encoded in the routing tables or rules implemented within the

router. Likewise, it does not show the interfaces defined by each of the SDCs –

they would be specified separately as attributes of each SDC.

Note that RASs and RISs can maintain state that drives service behavior

over time. Whereas such state is generally encapsulated within a service,

sharing state amongst services can be modeled by a common shared

service, such as Storage represents to the ListStudies and StudyRepository

services.

132

4.1.1.2 System of Systems (SoS) Composition using Rich Services

From the perspective of the Rich Service in Figure 10, the Policy

Evaluator RISs at the System and PALMS level are independent. However,

given that RISs can share state, they can be modeled from another viewpoint

as integrated, thereby implementing a single concern. As such, they can be

modeled as RASs within a separate Rich Service-based policy support system.

This represents a System of Systems (SoS) composition as described below.

Figure 11 presents the System and PALMS services and their relationship

to Policy System services using a UML class diagram for brevity. It shows

interaction relationships as encoded at the Rich Services router level. The

classes along the top represent System and PALMS RAS services (from Figure

10), which are related by service interaction relationships. The second tier

(including ClientPolicyEvaluator and PALMSPolicyEvaluator) represents System

and PALMS RIS services (from Figure 10), which are related to the RAS

interactions by association classes that model interception. The second tier

and third tier combine to represent interacting RASs in the Policy System

application, in which policy is stored in a policy repository, is defined by a

policy UI, and is evaluated by PolicyEvaluator classes. The PolicyEvaluator

services share state via a common policy state RAS. As such, this demonstrates

the use of RIS injection to merge two independent applications as a SoS

integration via service composition.

133

Figure 11. RIS Injection Achieves System of Systems Integration

134

P
A

L
M

S
 S

D
C

L
is

tS
tu

d
ie

s
S

tu
d

y
R

e
p

o
s

it
o

ry
S

to
ra

g
e

P
A

L
M

S
P

o
li

ic
y
E

v
a

lu
a

to
r

P
A

L
M

S
P

o
li

c
y
E

v
a

lu
a

to
r

P
A

L
M

S
P

o
li

c
y
E

v
a

lu
a

to
r

P
o

li
c

y
R

e
p

o
s

it
o

ry
P

o
li

c
y
U

I

P
A

L
M

S
 R

ic
h

 S
e

rv
ic

e

P
A

L
M

S
 R

A
S

P
o

li
c
y
 S

y
st

e
m

L
e

g
e

n
d

C
li

e
n

t

C
li

e
n

tP
o

li
c

y
E

v
a

lu
a

to
r

P
o

li
c

y
S

ta
te

135

While the Policy System is an example of a complex application, and its

integration with the base application is a high value integration, the same

principles apply to the injection of other concerns into a base workflow –

injected concerns can represent large, small, or trivial systems, each of which

can be independent of each other or of the base application. In subsequent

sections, I position policies and collection of policies as representatives (or

actual implementations) of large, small, or trivial systems.

I explain the criteria and mechanisms for this composition in the

following sections.

4.1.2 Service Definition

In this section, I describe how Rich Services (aka services) logically

interact with each other, notwithstanding mediation by the message router.

Specifically, I define how messages are exchanged and the meaning of

message exchange, which form the basis for interception that enables policy

injection. My definition of message exchange is based on Streams, as defined

in [157] and [117] (as component refinement).

I define a relation implemented by Rich Service as ⃗ ⃗⃗ ; and

 are disjoint sets of names of directed channels, where a channel contains a

message at time , called a channel valuation at time . Relative to ,

represents input channels, represents output channels, and defines the

syntactic I/O interface of the service, represented by the SDC (as shown in

Figure 12).

136

I define as the collection of names of input and output

channels for a Rich Service. For a set of channel names and a set of

messages , I define ̃ , a set of time-ordered valuations of the

channels named in . Finally, I define ⃗ ̃ , where ⃗ is the infinite valuation

or history of the channels named in [158]. Therefore, ⃗ denotes the channel

history for input channels, ⃗⃗ represents the channel history for output channels,

and ⃗ represents the channel history for both input and output channels.

I define a service contract as the set of channel valuations for which

 ⃗ ⃗⃗ in the context of where ⃗⃗ can be generated by given input ⃗.

 is said to fulfill a service contract if it maps ⃗ to ⃗⃗ as defined in the service

contract.

(Note that this view of Stream-based semantic compatibility is more

restrictive than the semantic-free view present in Petri Nets presented in

Section 2.2.2 -- it leads to an understanding of compatibility between services,

including which services can substitute for other services. This view of service

contracts is complimentary to the Design by Contract [159] (DbC) view,

where a service is defined by pre-conditions, post-conditions, and invariants. It

is also complimentary to Interface Oriented Design [160] (IOD), which

I0 O0

I1

I...

O1

O...
RS

S
D
C

S
D
C

I O

Figure 12. Rich Service with Input and Output Channels

137

advocates the separation of interface from implementation. Rich Services

defines interfaces more broadly as message streams, and defines correct

execution in terms of valid output streams reactive to valid input streams,

which enables service interactions to be framed in terms of protocols and

guarantees.)

Finally, I define as a relation ⃗ ⃗⃗ , which produces the power

set of ⃗⃗ because can execute non-deterministically.

Note that this definition allows broad discretion in choosing how to

map to ; itself determines which input channels to read, when to read

them, which output channels to write, what to write onto them, and when to

write them. This discretion applies to both RASs and RISs.

Note that the execution of may incorporate choice in its

computation. CSP [113] differentiates internal and external choice, where

internal choice leads to non-determinism, and external choice relies on

external state. When modeling external choice, external state is accessed via

one or more channels constituting .

P
IP

OP

OP, IQ

IP,OQ Q
OQ

IQ

P⨂Q

Figure 13. Composing Two Services P and Q

138

4.1.3 Service Composition

Two services, and are said to interact when at least one output

channel of is connected to an input channel of , or vice versa, and I use

the notation to represent the interaction of and . More precisely, I

define a service composition between the two services as where some

of ’s input channels (called
 are connected to some of ’s output

channels, and vice versa, as shown in Figure 13. Such channels are called

hidden channels , and include
 and

 in the figure. The

input and output channels of are all of the input and output channels of

 and except those in . The service contract defined for hidden

channels is called the hidden channel service contract.

Note that the definition allows the composition broad discretion

similar to defined above, and channel valuations and channel history for

the composition is defined similarly to . Channels not connecting the two

services are free to connect with other services.

In Figure 10, the StudyRepository and Storage services might be

composed to realize retrieval from a repository.

4.1.4 Service Decomposition

I define decomposition of a Rich Service as an orchestration of sub-

services to achieve the functionality of , given as ⃗ ⃗⃗ (from

above). A service orchestration can result from the conditional or

unconditional interactions of serially and concurrently executing services,

139

thereby implementing the workflows described in [70]. also denotes the

collection of sub-services that interact (via composition) to implement its

functionality:

where
 is the SDC for ; the SDC initiates (and may terminate) the

orchestration. The orchestration consists of the interactions

where the service contracts for each service and are fulfilled.

The orchestration is driven by a collection of services that perform

routing functions that compose sub-services. For each sub-service and

paired in a composition, contains a service where the composition is

implemented as where mediates between and (as shown in

Figure 14). In this example, .

In Figure 10, the composition of the Study Repository and Storage

services is mediated by a routing function in the message router ⑤, which

contains .

 𝐷 =

 𝐷

 Ä

I

O

RSD

OP

RPQ

P Q
IQ

OQ

IP

Figure 14. Rich Services Routing Service (with sub-services; SDC not shown)

140

4.1.5 Message Interception

 must fulfill the hidden service contract for in its interactions

with both and , and can do so simply by acting as a pass-through for their

hidden channels. It is also free to interact with a different service instead of

 , provided that fulfills ’s service contract.

Beyond this, is free to interact with RISs provided it continues to fulfill

its own service contracts. Considering that a RIS is a Rich Service that

implements a workflow, a routing function interacting with a RIS equates to

composing a workflow onto the base workflow represented by .

In Figure 10, a router function is defined for each possible pair of

interacting services (including the PALMS SDC and each of the three RASs).

Each router function may communicate with the Policy Evaluator RIS (or any

other defined RIS), which can conditionally execute any service (either

synchronously or asynchronously), and may replace target service with an

alternative (e.g., a service that returns an access control error), provided the

alternative fulfills the service contract in effect between the source service

and the original target service.

4.1.6 Services and Workflows

Under Rich Services, workflow actions are represented as Rich

Application Services (RAS), and data flowing between actions are

represented as messages. A workflow (called a base or target workflow) is

implemented as a service orchestration by routing messages between RASs.

141

Crosscutting concerns are implemented by intercepting such messages and

routing them to Rich Interface Services (RISs), which implement injected

workflows that process the messages.

Rich Services (including both RISs and RASs) can be decomposed into

orchestrations of finer grained RASs representing finer grained abstractions.

Accordingly, Rich Services enables workflow injection at each level of this

abstraction hierarchy, as evidenced in Section 4.1.1.2

4.2 Policies

Under PDD, a policy is a decision that affects the data flowing between

services or the operations performed on the data. Conceptually, it leverages

the duality between service orientation and data flow orientation. Under a

service-centric view, a service represents an action consuming input channels

and producing output channels; under a channel-centric view, input

channels beget output channels via a transform implemented as a service.

4.2.1 Policies and Workflows

To understand how policies can cause an alternate workflow to be

composed onto a base workflow, consider a simple service interaction

consisting of a one-way exchange:

→

where is a source service, is a target service, is a message of type ,

and the service interface for supports a service interaction that

142

accepts a message of type . A refinement of this relationship allows the

choice of an alternate target service as shown below and in Figure 15:

→

where is a policy evaluator service that returns , a service having a

service interface that includes ’s service interface (relative to), and may, in

fact, be itself. is a policy expression that is evaluated by (by calling

internal evaluator service), subject to some context , and returns . The

notation dereferences the result of the service, thereby specifying the

actual interaction target. Because now interacts with , I say that policy

on results in the substitution of for in the service interaction. The

context is the information references in its policy evaluation – its content is

implementation specific, but at least includes the message (as
 defined

in Section 4.1.3) and may include application, environment, workflow, or other

state per Section 4.3.

Note that for , the policy evaluator is iterated on the interaction

 , thus allowing the evaluation of policy defined on ® .

P Q P [S]

m m {π,P,Q, K}

S S

Figure 15. Service Refinement for Alternate Choice

143

 has wide latitude in choosing an appropriate target service so long

as the target fulfills ’s service contract, it is not constrained as to its activity or

effect. Exploiting this allows such policies to inject services that execute

workflows implementing application features as separate concerns

maintaining their own state. Further, policies are also free to coordinate with

each other through shared state independent of the workflows on which they

are composed. For example, a control policy that sets state can combine

with a filter policy that tests state and executes a workflow, thereby enforcing

an obligation. While state is conceptually present in channel histories, it is

more conveniently accessed according to Section 4.3.

Below are examples using my own notation, where if is a service, then

 ® denotes replacing with an orchestration that invokes followed by

 , and denotes replacing with two services and both of

which receive ’s message and execute concurrently.

Below, message is routed to , which transforms into , which is

routed to . acts as a filter transformation.

→ where

→

Below, message is routed to , a workflow that implements one or

more obligations [161] (defined as altering or acting upon persistent state, but

not altering message) before is routed to .

→ where

→

144

Below, message is routed to both and , which execute

concurrently.

→ where

An inventory of workflow configurations is given in [70].

4.2.2 Compound Service Interactions

While the one-way interaction is simple, policy can result in workflow

substitution in more complex interactions following the same principles. An

important example is a request/reply interaction on below:

→ followed by

→

where is a query message, is an answer message, and is correlated with

a particular . Both and play the role of message above. In a

request/reply interaction, a replacement service fulfills ’s service contract if

it returns an to a particular instance of , just as would.

A policy that transforms before invoking is called a pre-filter, and a

post-filter is a policy that transforms before returning it to . A policy that

replaces with some service is called a control policy. All three policy types

can apply to a single service interaction, either alone or in combination. Using

Figure 6 as an example, a pre-filter policy might qualify the query (on ❹), a

post-filter policy might remove undesired data (on ❺), and a control policy

(on ❹, after a pre-filter policy) might prohibit data access for uncredentialed

users.

145

In the general case of multiple interactions between and , both

and must fulfill the service contract governing the interactions, and the

contract is bound to the specific instances of and in play. The service

contract can be discovered in various ways, including via a service registry.

Under the simplifying assumption of a request-reply interaction, the registry

maintains , the type of reply due from , and must return a reply of type

 .

Note that it is not guaranteed that a replacement service can

function or produce full benefit under the service contract defined by . For

example, suppose must return a result of type not acceptable to . This

fundamental mismatch can properly be recognized as a new requirement on

the base workflow – the requirement can be captured and the base

workflows can be evolved in an orderly manner. Recognizing the mismatch

can be done at runtime (if typed messages are exchanged and typing is

checked) or at design time (given service modeling or model checking

support [162] that ties in with the policy language), and is beyond the scope

of this dissertation, though is considered further in Section 7.8.1.

4.2.3 Control Policies

Leveraging the service-centric view, a control policy calculates a

service to replace service (in) such that fulfills ’s service

contract (and could be itself). is calculated by , is the

source service, and is the default target service, and is the workflow

context (defined in Section 4.3, and including inputs
 as message). The

146

corresponding router interaction (per Section 4.1.4) is
 where

is composed with the calculated service
 instead of the default service

 .

A control policy has wide latitude in choosing , and it usually consists

of control policy expression that acts as a decision function by

choosing between various pre-identified candidate services -- the is

also free to create and return a novel on the fly. The can reference

any criteria, including the input channel history ⃗
, the channel history

 ⃗ , or the channel history for other interactions in the system.

A control policy is authored by a stakeholder or policy programmer,

and is inserted into a policy repository indexed by the service interaction

 to which it applies. It represents a means by which new workflows can

be composed into a base workflow pursuant to emerging stakeholder

requirements.

Note that a valid control policy may return a service that

incorporates a replacement service composed with the default service . The

composition could be serial, parallel, or complex, sufficient to implement the

intent of the policy. Furthermore, service may itself fulfill its service contract,

or fulfillment can be delegated to another component of the composition.

147

4.2.4 Filter Policies

Leveraging the channel-centric view, a filter policy calculates a

service to intercept ’s inputs
 (as message) and replace them with

other values

 that are valid inputs to . is a function whose

arguments are the same as for . The corresponding router interaction is

 .

Similar to a control policy, a filter policy acts as a decision function that

has wide latitude in choosing , which consists of a filter policy expression

 that either effects the channel value transformation or simply

returns
 without any transformation.

A filter policy expression can reference the same criteria as a control

policy expression, and is authored and stored in the same manner. It

represents a means by which data flows can be constrained, augmented,

inspected, or replaced consistent with emerging stakeholder requirements.

The router function , executes both control and filter policies for an

interaction, and injects the resulting workflows. When both a control and filter

policy exist for an interaction, the filter policy is executed before the control

policy, and the input channel is transformed before the target service is

executed. In Figure 14, a control policy replaces the service , while a filter

policy replaces the hidden channel
.

148

4.2.5 A Simple Policy Evaluation Service

A simple example of policy evaluation is a control policy (Section 4.2.3)

that makes an Allow/Deny decision involving the

interaction in the GetStudyList workflow in Chapter 3. The objective is to

evaluate available information to determine whether to allow the Storage

interaction or to return an error message instead. In this example, I make a

simplifying assumption that a user credential is available in the request

message ❹, and that the Allow/Deny decision is based on it – Figure 6

doesn’t show this, and Section 4.3 describes a more likely source for user

credential information.

Figure 16 is a UML sequence diagram that shows services in a policy

evaluation as described in Section 4.2.1. It assumes that the composition

(representing) adheres to a request/reply pattern (as

described in Section 4.2.2), and that the service contract supports an error

return. The request message
 (included in context) contains the user

credential. A control policy is associated with the interaction in a

policy repository, and it evaluates
 to return either the default service (for

the Allow case) or a replacement service (for the Deny case), which in turn

returns an error.

In more detail, the router function delegates the policy evaluation

to the policy evaluator RIS , which implements a three step workflow: it

fetches the control policy (i.e.,), executes it , and returns the workflow

(i.e., or). The is expressed in a language (e.g., XQuery) that can be

149

interpreted by the evaluator service (not shown here, but described in

Section 4.2.1).

An expression could be as simple as “
 ”,

where a user identity is fetched from the input channel and is compared to a

static string.

To fetch and evaluate a pre-filter policy (not shown in Figure 16), can

be called at ① to fetch and evaluate the policy and return . If

exists, is executed to transform
 before executing the access control

policy.

Note that apart from the request interaction between and (or ,

the reply interaction between (or and is eligible for interception by a

post-filter policy. (It is not eligible for interception by a control policy because

P:Study

Repository
RPQ

IQh

Err: Reject

 Q:Storage E:Error

P,Q,K

W

Oqh/Err...

IQh

OQh

IQh

Alt

①

②

Figure 16. Simple Allow/Deny Policy Evaluation

150

under a request/reply pattern, the service contract for requires a response,

which the router function must guarantee.) If the post-filter exists,
 is

transformed and fed to
, which consumes. Figure 16 shows the router

function relaying the result
 to , but does not show a call to (at ②) to

return or the transformation of
 before relaying it to

In this example, applying a pre-filter to the inbound message
 is

useful for altering or qualifying a query request to the Storage service.

Applying a filter to the outbound interaction
 is useful for altering,

augmenting, or decimating the study collection returned by the Storage

service. While pre- and post-filters can be used to enforce access control in

this way, they can also be used to enforce HIPAA-style requirements that call

for altering or augmenting data.

Because the user credentials may not be contained in an outbound

channel (which contains a study collection, in this example), a post-filter

would rely on access to credential using means described in Section 4.3.

4.2.6 Feature Injection and Obligations

Note that a control expression has wide latitude regarding the

process it uses to determine which service it returns. The expression may

call services and instigate separate workflows so long as the expression returns

a service that fulfills the service contract of the default service. Filter

expressions have similarly wide latitude provided they return an

appropriate (or no) service. Particularly, a feature can be composed into an

151

interaction by a control or filter expression by interacting with a service that

implements it. The feature service may or may not terminate before the

completion of the expression. Similarly, a feature may be composed into

services returned by control and filter expressions.

For example, a feature that produces an audit stream may

synchronously or asynchronously log the contents of an interaction message.

There are several ways to implement such a feature, including:

 within a control expression, invoke the audit service and return the

default service (or any other appropriate service)

 within the service returned by a control expression, invoke the audit

service and then the default service (or any other appropriate

service)

 within a filter expression, invoke the audit service and return no service

(or an appropriate other service)

 within the service returned by a filter expression, invoke the audit

service and then a filter service (including a passthru filter)

An independent workflow maintains state pertinent to meeting its

requirements. However, the policy decision (or) that returns the

workflow can, itself, maintain state via SIVs and IVs as in Section 4.3. Such state

can be accessed in future control and filter decision functions, or can

constitute parameters to an injected workflow. Policies and groups of policies

that maintain and consume state are, themselves, injectable features in that

they implement a discrete requirement set independent of their relationship to

base workflows. An important use of policies-as-applications is in

implementing obligations [161], which constitute actions to be executed in

152

the future based on past decisions, and in creating a System of Systems (SoS)

as described in Section 4.1.1.2.

4.2.7 Policy Composition

A service interaction may be subject to multiple filter or control policies,

particularly when multiple independent stakeholders each propose

requirements that affect the interaction. Synthesis of multiple policies cannot

be done naively, as a synthesis that accounts for the intent of all stakeholders

is itself a matter of application design, not mechanics.

For example, given inputs
, filter policy returns service , which

produces replacement inputs

 (per Section 4.2.4), as does service

returned by policy . Casting a service as a function,

 , two filter

services and
 maintain the commutative property under composition if

 (

) (

). Logically, commuting filter services can be

executed in any order, and so serial application results in a logically consistent

result, and a composition policy that executes one filter after another would

be appropriate.

However, factors such as the administrative or security domain that

supplied the policy may dictate a hierarchical approach to correctness,

where if returns a service filter, should not be executed at all. For

example, if represents a default filter, and represents a user-supplied

filter, the user filter should replace the default filter. Other approaches to

correctness are possible, too.

153

With non-commuting filters, dependency relationships (based on either

external state or the contents of
) are violated, and composing such filters

requires a means for determining execution order and compatibility. For

example, filter services and
 must be ordered if deletes information

on which
 relies. They are incompatible if each deletes information on

which the other relies. Additionally, such filters are subject to the additional

administration and security that apply to commuting filters.

Determining whether filters commute (either logically, administratively,

or securely) requires deep inspection of filter code and an understanding of

the environment in which the filters are deployed, and are beyond the scope

of this dissertation.

Composition of control policies poses similar considerations. Section

4.2.3 describes the combination of control policies as serial, parallel, or

complex compositions. While control policies don’t transform messages in

flight, they can modify system state, and can therefore be order dependent

or incompatible. Additionally, administrative and security concerns may drive

ordering and compatibility decisions. For example, given control policies

and representing access control decisions contributed by different

domains, each policy can generate its own error message if their access

control criteria are not met. While serially composing these policies allows

resource access only if both sets of criteria are met, the particular error

154

message returned may be a function of which policy is executed first, and

would follow scenarios similar to those for filter policies.

In general, composition policies address the combination of filter or

control policies as policies on policies. A composition policy is a policy that

combines policies consistent with the service interaction to which those

policies apply individually, and consistent with the application’s administrative

and security concerns. Composition policies exist separately for control

policies, pre-filter policies, and post-filter policies.

For each interaction , the policy evaluator executes a separate

four stage workflow for pre-filter, control, and post-filter policies. In general:

 retrieve a collection of policy expressions from one or more

policy repositories

 retrieve a composition policy expression from a composition policy

repository

 evaluate

 return

For composing control policies, if | | , is returned. For

composing filter policies, if | | , nothing is returned. If is undefined

and | | , an error occurs. (For control composition policies, is a

control service, and for filter composition policies, is a filter service.)

Analogous to the Simple Policy case in Section 4.2.5, is the

composition policy expression specific to the composition, and has wide

latitude in evaluating members of and combining the resulting workflows.

155

An example of a simple policy is a multi-expression Allow/Deny control policy

that Allows if all policy expressions Allow, or chooses an error to return if at

least one policy expression Denies. It calculates a collection of workflows

generated by members of : , and

returns (where the choice of the particular

 is determined by the composition policy).

While the router function executes services based on filter and

control policies, it calls the policy evaluator RIS to calculate filter and

control compositions. (is not the simple RIS defined in Section 4.2.1, though

it serves the same function. Instead, executes the composition calculation

workflow defined in this section, which in turn calls the simple RIS .)

4.3 Context System

While the injection of a policy into a workflow is a critical contribution to

the rapid realization of stakeholder requirements, the ability to coordinate

policies injected into a single interaction or multiple interactions is key to

realizing requirements that produce or depend on state, especially within a

workflow (as exemplified by the Work Study Flag in the SOARS Bursar workflow

in Chapter 2). A key contribution of my dissertation is a design for a Context

System, which enables composed workflows to maintain private or shared

state either during or beyond the execution of a target workflow. Ultimately,

this capability enables a collection of policies to act as a separate,

composable application in its own right (assuming appropriate restrictions on

access to policy state from other policies), thereby powering System of

156

Systems integration. Recognizing that a Context System can be implemented

in a number of ways, this section presents a design that harmonizes with the

policy foundations laid in Section 4.2 – a concrete implementation is

presented as part of the PALMS case study in Chapter 5.

In order to map ⃗ to ⃗⃗ per Section 4.1.2, a service may rely on its own

state, state maintained by other services, or the channel history for any

service. (Arguably, except for services’ initialization states, the state of any

service derives from its channel history, and discrete state is a convenience

that captures a part of channel history for later use. A service’s access to

external state can be considered a channel into or out of a service that

manages the external state.) When composing a policy onto a base

workflow, a key challenge is in correlating the policy service state with the

base workflow instance to which it applies, then extinguishing the state when

the base workflow is complete. The Context system meets these challenges by

creating and managing state containers tied to workflow instances (observing

their lifecycles) and providing composed policies with access to that state.

As in Section 4.2.1, a policy is a service that returns a service

responsive to a set of inputs . Relative to a base workflow, policy represents

a separate concern equivalent to a requirement composed on a set of base

requirements, and its choice of is based on its own state independent of

state maintained by the base orchestration. Furthermore, two policies and

 may share state in selecting their respective services and .

157

When policies and cooperate, one depending on generated by

the other, they form a separate workflow whose data flow is mediated by

 .

Each state is associated with a state collection called a SIV

(service interaction-related values) or IV (independent values), and a context

 can contain numerous SIVs, IVs, and AEVs (application and environment-

related values) as shown in Figure 17.

A SIV is a container of uniquely named states (e.g.,) that have

similar lifecycles or other implementation characteristics – SIV contents may

be produced or consumed by one or more services (e.g., policies) composed

Figure 17. Context Containing AEVs, SIVs, and IVs

158

onto the same or different base workflow instances. I define as the set of all

SIVs (i.e.,) where

and contains a set of states common to one or more policies. (Note that

the operator specifies a disjoint union, which is a union that maintains

identical sets as distinct members.)

IVs are similar to SIVs, except their lifecycles are determined explicitly by

the services that create and use them. AEVs include application and system

states, and have lifecycles independent of workflows.

Whereas service composition supports the separation of concerns into

base concerns and policy-injected concerns, execution contexts support this

separation by enabling independent data flows between services

implementing those concerns. In this discussion, I consider SIVs as carriers for

data exchanged between services that implement separate concerns

composed into a base workflow. Three prominent PALMS SIVs are interaction

messages , Workflow SIVs, and Session SIVs.

A message carries data shared by two service instances. The data is

created by the source service, and is consumed (or destroyed) by the target

service, as described in Section 4.2. (Note that for request/reply interactions,

the request message – as described in Section 4.2.2 – is accessible in the

reply interaction as a SIV element.)

 =

 +

159

A Workflow SIV carries data that applies to a single instance of a base

workflow. The data is created and accessed by concerns (e.g., policy)

composed onto the workflow, and is destroyed when the workflow is

complete. Data for each concern is named by convention to be unique to

the concern, so as not to interfere with another concern’s data.

A Session SIV is similar to a Workflow SIV, except that its data is created

and accessed by concerns composed onto multiple instances of a workflow

or onto multiple workflows. Its duration is determined by some external criteria,

such as the lifecycle of a client-based workflow.

Other SIVs are possible, as demonstrated in Section 5.5.4.

Consistent with SOA principles, service and policy execution can occur

within a distributed computing system, with different services executing on

different platforms, and possibly including services running in different

processes. Consequently, SIVs must be available to services and policies

wherever they execute, and cannot depend on values available in a

common memory space. SIVs may contain actual data elements (if the data

lifecycle spans only a service interaction – for example, message) or a

reference to a data container (for data that spans service interactions).

References are globally unique (GUIDs) resolved in a globally available

Context Infrastructure Service (CIS), which itself can be distributed, and

access to which can be regulated by policy.

160

When multiple instances of a base workflow exist, SIVs must be properly

correlated with instances of service interactions. The context system maintains

the association between a base workflow and its SIV values by composing

them (or their references) into the workflow service orchestration’s message

flow as shown in Figure 18. Each interaction message in

 is replaced

with an interservice message , which is a composition of all SIVs relevant to

an orchestration:

→ , where exists for the sole purpose of conveying an

interaction message along with its context (as inspired by π-calculus, per

Section 2.2.3) from a source service to a target service as formally defined:

 is created immediately when sends , and is extracted from

immediately before is invoked, thereby fulfilling the service contracts

P Q
m mIM=

{m0,m1,m2…}
CIS Keystore

Session context GUID
Workflow context GUID

manages

Message m

p Context Servicescalls

accessesaccesses

AEV Accessors

Independent Value GUID

uses

Figure 18. Context Management

 =

 +

161

between and . (In a SOA context, this substitution can be performed via

interceptor services injected onto each service interaction, as demonstrated

in Section 5.5.4.) I use to refer to the service interaction message

wrapped in an , and each is a distinct, different SIV that represents a

collection of states. (A message is also a collection of states, though with a

lifecycle lasting for only a service interaction, and therefore is also a SIV.)

Using Context Services (as in Figure 18), a policy or feature (represented

by) can maintain its own state in a SIV, and can control the lifecycle of the

state subject to the SIV lifecycle. For example, a value (e.g., a counter or

Boolean) set by a policy in a Workflow SIV can be tested by the policy later in

the workflow, and is automatically deallocated at the end of the workflow.

Similarly, a session value can be set in a Session SIV, can be tested across

multiple workflows sharing the session, and is automatically deallocated when

the session is terminated.

(While Figure 18 portrays the conceptual relationships between a pair

of existing services, injected policy, and context management, Figure 33

(explained in Section 5.5.4.1) shows a set of components, control flows, and

data flows that implement these relationships in the PALMS case study.)

Common examples of SIV values include user credentials, channel

histories for important workflow services, a service history for a particular

thread, and so on. Particularly, features such as failure detection/mitigation

and information assurance can use histories to reason about the state of an

162

application. Additionally, features can be implemented by a combination of

policies (as in Section 4.2.6), where some policies save important channel

values during a workflow, and other policies act upon them.

Unlike SIVs, AEVs are state defined and maintained by the application

or the environment, and are not associated with a particular workflow. AEVs

are accessible by policies and features through interaction with application

and environment services. Examples of AEVs include values in application

repositories, the system time of day, and application analytics. Note that

policies can be defined on interactions with application and environment

services, thereby creating security and additional value added processing

connected with accessing AEVs.

Note that while Workflow and Session SIVs establish context relative to

workflow-oriented lifecycles, IVs allow policies to establish persistent state

independent of these lifecycles by interacting directly with the CIS (via

Context Services) to store and retrieve values. Such policies must choose

context GUIDs that do not conflict with GUIDs that could be chosen for SIVs,

and these GUIDs must be communicated amongst the policies via out-of-

band means.

4.4 Addressing Gaps Identified in Existing Choice Mechanisms

In the sections above, I addressed many of the gaps identified in

Section 2.7.6 (and summarized in Table 6). The service and composition

definitions in Sections 4.1.2 and 4.1.3 describe the basic mechanisms

163

underlying the injection of a crosscutting concern on an interaction between

two services, while Section 4.2 describes the particular mechanisms of policy

injection as relates to control flows, data flows, and policy compositions.

Consequently, they demonstrate means by which choice can be late-bound

to a workflow without requiring workflow recoding and re-release, thereby

enabling the runtime injection of workflows that implement stakeholder

requirements. Section 4.3 describes a context system that allows the

implementation of crosscutting concerns to be stateful, thereby lifting policy

injection to a System of Systems composition. This chapter does not address

policy verification or testing of policies and injected concerns – these topics

are considered further in Sections 7.5 and 7.8.

4.5 Summary

In this chapter, I have explained the principles behind policy-oriented

service composition, where a policy evaluation concern crosscuts all service

interactions in a Service Oriented Architecture. This composition occurs at the

Table 6. Gaps Addressed Foundationally

Section Gap

4.2.2 Identification of policy injection site at runtime
4.2 Injection of policy at runtime
4.3 Tracking workflow-based policy -centric state

4.2.7 Composition of multiple policies onto a single injection site
4.1.3 Enabling composition onto injected workflow

 Verification of interface and semantic compatibility between

policy and base workflow
 Incremental testing and proofs that policies implement

requirements
 Enabling a consistent relationship between state and policy

across policy deployments

164

service level, thereby enabling the policy-defined injection of workflows

representing application-level crosscutting concerns.

As groundwork, I described a formal relationship between services, and

extended the relationship to describe general composition as interception.

Next, I defined the conditional injection of workflows onto base workflows

(mediated by a policy evaluation interceptor), and described control and

filter policies that enable the transformation of both data flows and control

flows. I also described a strategy (as composition) for integrating multiple

policies defined on the same service interaction. Finally, I described how

policies can maintain and access state, thereby creating injectable concerns

that are in fact systems in their own right. The ability to define the injection of a

simple workflow, of stateful workflows, or of systems of state-sharing workflows

onto base workflows parallels the composition of requirements onto a set of

base requirements, and is therefore a suitable implementation of both simple

and complex requirements onto existing applications.

In defining policy evaluation as the processing of collections of policies

mapped to service interactions at runtime, I demonstrate how such

requirements can be injected into an application at runtime, thereby

avoiding the deployment delays and risks endemic in traditional software

engineering practices. Finally, by couching policy expressions in terms of DSLs,

I invite a collaboration between programmers (who are familiar with base

workflows) and stakeholders (who are familiar with requirements) in quickly

and reliably realizing new and changing requirements.

165

Based on this perspective, the story of policy injection consequently

rises to a story of System of Systems composition, where policy injection can

be used to compose systems onto both base systems and onto each other.

From the viewpoint of any one system, policy injection presents a linkage

point between systems, as will be demonstrated by the injection of the policy

system itself and other systems in Chapter 5.

In Chapter 5, I present the PALMS-CI case study, which demonstrates

these principles with real world implementations that are evaluated in

Chapter 6. In Chapter 7, I present comparisons to existing systems that either

share goals with PDD, or implement portions of PDD using different

approaches. Additionally, I make a case for the new role of Policy

Programmer, which combines and extends the roles of programmer and

stakeholder described in this section. Finally, Chapter 7 also describes the

successes and shortcomings of both PDD foundations and implementations

relative to gaps identified in Chapter 2.

4.6 Acknowledgments

Chapter 4, in part, is a reprint of material as appeared in 3 papers:

1) A paper currently being prepared for submission for publication of the

material. B. Demchak, C. Farcas, E. Farcas, I. Krüger. The dissertation author

was a co-investigator and co-author of this material.

2) B. Demchak and I. Krüger, “Policy Driven Development: Flexible Policy

Insertion for Large Scale Systems,” in 2012 IEEE International Symposium on

https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=214
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=214

166

Policies for Distributed Systems and Networks, Chapel Hill. IEEE Computer

Society, Jul. 2012, pp. 17-24. The dissertation author was the primary

investigator and author of the text used in this chapter.

3) B. Demchak, J. Kerr, F. Raab, K. Patrick, and I. H. Krüger, “PALMS: A

Modern Coevolution of Community and Computing Using Policy Driven

Development,” in 45th Hawaii International Conference on System Sciences

(HICSS), Maui, Hawaii. Jan. 2012. The dissertation author was the primary

investigator and author of the text used in this chapter.

© 2010 IEEE. Reprinted, with permission, from B. Demchak and I. Krüger,

“Policy Driven Development: Flexible Policy Insertion for Large Scale Systems,”

in 2012 IEEE International Symposium on Policies for Distributed Systems and

Networks, Chapel Hill. IEEE Computer Society, Jul. 2012, pp. 17-24.

© 2011 IEEE. Reprinted, with permission, from B. Demchak, J. Kerr, F.

Raab, K. Patrick, and I. H. Krüger, “PALMS: A Modern Coevolution of

Community and Computing Using Policy Driven Development,” in 45th Hawaii

International Conference on System Sciences (HICSS), Maui, Hawaii. Jan. 2012.

https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=214
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203

167

CHAPTER 5

POLICY IN THE PALMS CYBERINFRASTRUCTURE – A CASE STUDY

In Chapter 4, I described the core principles that enable the

conditional composition of workflows at runtime via executable policy. In this

chapter, I describe how I implemented those principles in the PALMS

Cyberinfrastructure (PALMS-CI), a large scale system designed to support

exposure biology research while incorporating requirements from multiple

independent stakeholder communities.

The PALMS-CI currently serves a growing, worldwide community of

researchers, successfully meets a number of important requirements, and is

evolving to capture more requirements, based on policies injected onto base

workflows. In demonstrating the implementation of PDD, it shows how PDD

can be used to improve evolvability along two important dimensions:

workflow maintenance costs and timely realization of requirements responsive

to new and changed stakeholder requirements.

In this chapter (as shown in Figure 19), I begin by explaining the basic

PALMS-CI requirements, both in terms of the stakeholder community it serves

and technical design drivers (in Sections 5.1 and 5.2). Next, I outline the

PALMS-CI design process and rationale (in Sections 5.3 and 5.4).

168

Section 5.5 explains the design of the infrastructure that supports

workflows and maintains separate contexts for composed workflows, which

realizes context foundations laid in Section 4.3. Section 5.6.1 describes the

conceptual framework on with PALMS policy languages are built, and Section

5.6.2 discusses how policies are managed and authored. Section 5.6.3

describes the mechanics of policy evaluation, which realize the injection and

policy definition foundations laid in Section 4.2.

Requirements and
technical design

drivers

Design process and
rationale

Infrastructure for
workflows and

separate contexts

Policy language
conceptual
framework

Policy management
and authorship

Policy Evaluation

Example: feature
injection

Building DSLs

Debugging DSLs and
policies

Sections
5.1 & 5.2

Sections
5.3 & 5.4

Section
5.5

Section
5.6.1

Section
5.6.2

Section
5.6.3

Section
5.6.4

Section
5.6.5

Section
5.6.6

Requirements/design

Infrastructure

Policy Language

Policy Execution

Commentary

Legend
Section 4.2

Section 4.3 Expained
in

Foundation

Summary and
Wrapup

Section
5.7

Summary

Figure 19. Chapter 5 Flow

169

Section 5.6.4 gives an example of how PALMS policies can be used to

inject novel features (as separate and crosscutting concerns) not addressed

(or originally conceived of) in PALMS’ base workflows.

Section 5.6.5 describes how to build and use DSLs as policy languages

within PALMS; Section 5.6.6 addresses developing and debugging policies

and DSLs that support them.

Chapter 6 follows up with an evaluation of how well the PALMS-CI’s

policy system meets these goals. It shows that PALMS’ policy implementation

meets the goals of PDD by successfully enabling policy articulation and

injection leading to the realization of stakeholder requirements at runtime. It

demonstrates that this injection occurs at an acceptable cost in many cases.

It also identifies costly cases that give insights into future evolution paths.

Chapter 7 compares the PDD approach and its PALMS-CI

implementation to existing theoretical and practical systems, and gives

additional perspective on the approach and implementation, including how

PDD succeeds or falls short in addressing the gaps identified in Chapter 2.

Note that the GetStudyList motivating example presented in Chapter 3

is used throughout this dissertation to demonstrate PDD principles, and is a

simplified subset of the PALMS-CI discussed in this chapter. Simplification

notwithstanding, GetStudyList is similar to each workflow implemented in the

PALMS-CI, and fairly represents other types of workflows and workflow patterns

as described in Section 2.5.2.

170

Note that while this chapter discusses PDD as applied to building and

evolving a cyberinfrastructure (defined in Section 1.1), it applies equally well

to other classes of large scale systems in the general category of Ultra-Large-

Scale Systems (ULS) [163] [164] [165], including grid systems [166], Systems of

Systems, and distributed cyber-physical systems [30] (including automotive

and aeronautical systems). Such systems have a number of requirements in

common, including a need to address emergent requirements from

continuously changing stakeholder populations operating under multiple

policy domains. Additionally, they require continuous evolution and

development while maintaining high availability and quality of service. Each

type of system has different development and deployment constraints, and

each would benefit critically from the user-controlled evolution and online

modification capabilities at the heart of PDD.

5.1 The PALMS Project and the PALMS-CI

The PALMS (Physical Activity Location Measurement System) Project

[167] was chartered by the National Institutes of Health (NIH) to study exposure

biology (EB) questions answerable using geo-tagged data collected from

biosensors worn by targeted populations. The PALMS-CI was created at the

University of California, San Diego, to serve a then-unformed EB community,

while accounting for differences between study data, analysis, and personnel

organization, and facilitating NIH, HIPAA, and other policy objectives.

The PALMS-CI realizes these requirements, and currently serves a

growing community of over 40 research groups worldwide, manages over 170

171

EB studies with over 150GB of data, and offers 24/7 availability. It supports 81

top level workflows (each implementing a PALMS API call, and all similar to the

GetStudyList example presented in Chapter 3), 440 services, 440 service

interaction message definitions (expressed as Java classes), all of which is

contained in 2070 Java files. Figure 20 shows the community growth over time,

beginning in 2010. Both the number of users and study groups (corresponding

to one or more studies managed by the same group of users) has grown over

time. It also shows that data under management has grown faster – the plot

shows the size of compressed backup data, which grows as the logarithm of

the actual data size.

Figure 20. PALMS Community Growth over Time

0

1

2

3

4

5

6

7

8

9

0

10

20

30

40

50

60

70

80

Ja
n

 2
0

1
0

M
ar

 2
0

1
0

M
ay

 2
0

1
0

Ju
l 2

0
1

0

Se
p

 2
0

1
0

N
o

v
2

0
1

0

Ja
n

 2
0

1
1

M
ar

 2
0

1
1

M
ay

 2
0

1
1

Ju
l 2

0
1

1

Se
p

 2
0

1
1

N
o

v
2

0
1

1

Ja
n

 2
0

1
2

M
ar

 2
0

1
2

M
ay

 2
0

1
2

Ju
l 2

0
1

2

G
ig

ab
yt

e
s

U
se

rs
/G

ro
u

p
s

Users Groups log(Backup Size (GB))

172

From the outset, major PALMS-CI challenges included the ability to

customize access to data and application features on a per-study basis, and

to add new features quickly and reliably. Examples of per-study

customizations include access control policies (e.g., allowing research

assistants to add study participants or sensor data, but not delete either) and

sharing policies (e.g., enabling a guest to view only anonymized sensor data

instead of a raw data stream). Examples of new features include auditing and

data provenance tracking added to the CI’s basic data access workflows.

Given the PALMS project’s tight funding and time constraints, I

conceived the PALMS-CI as a highly evolvable, but complex system of systems

(SoS), where different concerns are modeled and implemented separately,

and are composed into a functioning system conditionally and incrementally

without imperiling existing functionality. Furthermore, for the PALMS-CI to

remain agile and responsive to changing stakeholder requirements, it was

essential that decisions regarding which concerns to compose, which other

concerns to compose them with, and the conditions and parameters of the

composition be made at runtime.

To meet this challenge, I employed the emerging Policy Driven

Development technique, which leverages Rich Services (described in Section

5.3) and the Rich Services Development Process (described in Section 5.2) to

create a highly responsive service oriented architecture (SOA) and

corresponding implementation. I chose a SOA-based approach over existing

approaches (e.g., AOSD or pure OOP) because SOA’s message-based

173

service interactions enabled interface-based component reuse (via loose

coupling and late binding), inherent scalability and distributability (via

message routing), and the opportunity to constrain and augment workflows

(via message interception), while retaining the freedom to use other

approaches to build components themselves.

I developed PDD to leverage SOA’s workflow and message

interception features to define and inject new and unanticipated concerns

without endangering existing CI functionality, while remaining highly

responsive to stakeholder requirements and maintaining maximum PALMS-CI

availability. (As described in Chapter 2, other existing solutions were

inappropriate.) Using the PALMS-CI, I demonstrate how PDD simplifies and

improves access control decisions, simplifies policy problems (such as

Separation of Duties) relative to other solutions, enables feature composition,

and in the process facilitates system evolution, which is the key to

simultaneously satisfying the requirements of multiple stakeholder

communities.

5.1.1 Exposure Biologists – the Core PALMS Community

In 2007, the NIH began funding the Genes, Environment and Health

Initiative (GEI), having two main components [168]. The Genetics Program was

chartered to analyze “genetic variation in groups of patients with specific

illnesses”. The Exposure Biology (EB) program is chartered “to produce and

validate new methods for monitoring environmental exposures that interact

with genetic variation to result in human diseases”, and includes the PALMS

174

project [5] at the University of California, San Diego (UCSD). PALMS’ mission is

to develop an integrated suite of hardware (e.g., sensor devices), software,

and database solutions that support real-time capture and subsequent

analyses of data on physical activity energy expenditure from a geospatial

perspective. PALMS is intended to help answer questions such as the

percentage of a person’s energy expenditure that occurs at various locations,

and while moving between locations.

Historically, the EB community has consisted of a number of

independently operating principal investigators (PIs) attempting to answer

questions relating to human disease as a function of environmental exposures,

diet, physical activity, psychological stress, and addictive substances. Like

PALMS investigators, they select (or create) their own sensor hardware,

software, and database systems to support the capture and analysis of their

own data.

5.2 The Basic PALMS Requirements

In 2008, PALMS investigators realized that their own data capture,

storage, analysis, and visualization requirements and workflows were

conceptually similar to those of many other EB researchers, and that

economies of scale weighed in favor of creating a web-based system that

could perform such functions for EB projects similar to PALMS, thereby

delivering significant technical, economic, and collaborative benefits to the

EB community. This was particularly important given the emergence of small

person-worn Global Positioning System (GPS) devices and a new field of

175

precise location and activity measurement. Leveraging existing knowledge of

GPS processing, the PALMS-CI aimed to provide many benefits, including:

 Elimination of redundant programming, debugging, and maintenance

of common data acquisition, analysis, and visualization code

 Centralized, secure, scalable and highly available data management

(including backups)

 Computational resources scalable to large datasets and complex

analysis

 Sharing of processing protocols, allowing standardized comparison and

more rapid scientific advances

 Logging of data manipulations and analyses

 Standardized interfacing to external packages (e.g., Microsoft Excel,

Google Earth, and ESRI’s ArcGIS modeling tools)

 Streamlined discovery and sharing of observation data and results

PALMS investigators postulated that the organization and workflow of

each EB researchers’ data collection and processing was substantially similar

(as shown in Figure 21, and as validated at a number of international

workshops and presentations to EB community members):

 PIs and research teams manage multiple studies

 Studies include collection of time-stamped data from multiple sensors,

where the data must be stored securely according to Institutional

Review Board (IRB) ethical guidelines

 A study incorporates a collection of subjects, where each subject

wears one or more sensor device (e.g., a GPS unit, an accelerometer,

a heartbeat monitor), each of which produces a stream of time-

tagged observations

 A study also incorporates one or more calculations that filter

observation data; correlates observations with time and location; and

produces result sets containing inferred trips, bouts, physical activity

levels, and other parameters of exposure

 Over the course of a study, subjects may be added, sensor

observations may be captured and uploaded, and calculations may

be run at any time. The ultimate result of a study may be a calculation

176

result set or a product that an external package creates from a

calculation result set

 Data are aggregated and summarized

 Primary and secondary data analyses are performed by the original

study investigators and other investigators now and, ideally, in the

future

 Information assurance (IA) [28] is implicit

Additionally, the following key differences between studies were

recognized:

 Demographic characteristics and geographic location of study

populations

 Study aims and outcomes

 The intensity, frequency, and duration of data collection, with different

devices deployed according to feasibility and research question

 Subject information collected (e.g., sex, age, home location, work

location, etc.)

 Calculations, parameters, and thresholds used during analysis

 Particular roles, privileges, and responsibilities of research personnel

(e.g., PIs, research assistants, guests, etc.)

SPSS

ESRI

GPS Device

Accelerometer

Others

PALMS

Study StudyStudy

Study

Filtering Filtering Filtering

Scoring

Analyzing

Scoring Scoring

Analyzing Analyzing

External

Data

Subject

Data
Raw Data

Others

...

...

Google Maps Viewer Other Local Viewer

Figure 21. PALMS Studies – Structure and Flow

177

PALMS investigators defined two challenges in building the PALMS-CI:

 create a technical design that could leverage the common data

organization and workflows to deliver the benefits listed above, yet

enable study customization that accounted for differences between

study data, analysis, and personnel organization

 attract a community of investigators interested in both advancing

PALMS-CI capabilities and collaborating to define and leverage data,

analyses, and visualizations beneficial to the overall EB mission

A key insight derived from these propositions is that for the PALMS-CI to

be viable, the requirements of all stakeholders (including system operators,

data producers, and data consumers) must be simultaneously and

continuously met, both in the technical and the community governance

domains – otherwise, a disenfranchised stakeholder may opt-out, thereby

weakening the entire PALMS community. In traditional system development,

the lag between the discovery of a new stakeholder requirement and its

enactment in a delivered system is often several months, which increases

pressure on stakeholders to opt-out. PALMS-CI must quickly respond to

requirement changes, and must do so without becoming unstable or

compromising usage by other stakeholders.

To meet the challenge of community formation, we gathered an

expert advisory board; recruited willing, early adopter-investigators worldwide

as initial users; hosted the annual International Users Conferences (two, so far);

partnered with key organizations (e.g., GPS Health Research Network [169]

and caBIG [170]); and generated instructional collateral useful in creating

178

relationships with prospective collaborators and their respective Institutional

Review Boards (IRBs).

5.3 The PALMS Logical Rich Service

We designed and currently maintain the PALMS-CI using the Rich

Services Development Process (RSDP) [47], which is a multi-stage, end-to-end

software engineering process ranging from requirement elicitation to physical

network deployment. The RSDP is compatible with agile development

methodologies, leverages Model Driven Architecture (MDA) [171] and Model

Driven Engineering (MDE) techniques, and is geared specifically toward

producing hierarchically decomposable Rich Services. It produces a clean

separation between logical and deployment models, where a logical model

depicts relationships between logical entities, a deployment model depicts

relationships between physical entities, and a deployment mapping can

derive a deployment model from a logical model.

179

The RSDP is structured into three phases, each of which is subdivided, as

shown in Figure 22. The major phases include:

 Service Elicitation gathers use cases, extrapolates crosscutting

concerns, constructs a domain model, identifies service roles, and then

defines services and workflows

 Rich Service Architecture articulates a Rich Service that incorporates

those services and workflows

 System Architecture Definition creates a service hierarchy, defines a

corresponding virtual network, and then maps the virtual network onto

a set of physical networks and compute engines

While each phase (and sub-phase) is sequential and depends on a

previous phase, RSDP allows and encourages the re-execution of earlier

phases (in spiral fashion [46]) as new requirements come to light in later

phases.

Figure 22. Rich Services Development Process

Rich Services Virtual Network

 Rich Services

RAS4

Services

Service S1

Roles

U1

U2

U3

U4

U5

Use Case Graph

Concerns
C1 C2 C3

C4
CC1

CC2CC3

Domain Model

R1 R2

R3 R4

R5 R6

R1 R2

msg

R3

CC1

CC2

Role Domain Model

R1 R2

R3 R4

R5 R6

CC1 CC2 CC3

Router/Interceptor

Messenger/Communicator

RAS1 RAS2

CC1 CC4 CC5

Router/Interceptor

Messenger/Communicator

RAS5 RAS6RAS3

S

/

D

S

/

D

RIS:

RIS:

S
e

rv
ic

e
 E

li
c

it
a

ti
o

n
R

ic
h

 S
e

rv
ic

e
 A

rc
h

it
e

c
tu

re

RAS7

Preliminary

Infrastructure Design

RAS1 RAS2 RAS3

RAS5 RAS6 RAS7

Deployment

H8

H5 H7H6

D
e

v
e

lo
p

m
e

n
t

Implementation
A

n
a

ly
s
is

M
a

p
p

in
g

A
n

a
ly

s
is

Id
e

n
ti
fi
c
a

ti
o

n

D
e

fi
n

it
io

n

C
o

n
s
o

lid
a

ti
o

n

Verification,

Validation, and

Refinement

Hierarchic

composition
Refinement

Logical Model

S
y

s
te

m
 A

rc
h

it
e

c
tu

re

D
e

fi
n

it
io

n

Deployment Loop

Logical Architecture Loop

H1 H2 H3

H5 H6 H7

H4

RAS1

RAS5 RAS6 RAS7

CC2

CC4 CC5

CC3

CC1RAS7

RAS5 RAS6

RAS4RAS3

RAS2 CC2 CC3

H4 CC4 CC5

H1 RAS1 H2 RAS2 H3 RAS3 H9 CC1

180

During the PALMS-CI development, I followed RSDP by first soliciting user

stories (as text), refining them into use cases (organized as pages in an Excel

spreadsheet with traceability implemented as inter-page links), and eliciting

additional requirements by using low resolution user interface mockups.

Per RSDP, I segregated requirements into two groups:

 those that described data storage, data transfer, and data analysis (so-

called “base workflow” requirements)

 those that bore on decisions and workflow options (crosscutting

concerns as so-called “policy” requirements).

Data flow requirements were modeled using standard RSDP – as

domain models (expressed as UML [40] class and sequence diagrams using

Enterprise Architect [172]), and then as roles and services, which were

factored into a candidate Rich Service. Policy requirements were set aside as

candidates for future policy definition and execution, as described in Section

5.6. (These substantially involved access control decisions, but also included

other crosscutting concerns such as logging, auditing, provenance tracking,

and the mapping of calculation execution to available processors.)

A simplified version of the resulting logical Rich Service is presented in

Figure 23. It shows the relationship between a Browser User Interface and a

PALMS Service, which is decomposed into a PALMS system layer containing

services representing a repository of studies and of community-authored

calculation and sensor device functions that can be shared amongst studies.

The Study Repository service is further decomposed into sub-services

181

representing a number of repositories, including calculations and devices

actually used in the study, a study’s participants and observations, and data

analysis results.

182

Figure 23. PALMS-CI Logical Rich Service

183

184

Critically, the policy execution function is represented as a RIS capable

of intercepting interactions between any and all services. It is discussed in

Section 5.6.

Finally, I used the logical Rich Service to generate a deployment Rich

Service by assigning the User Interface to a PC, the PALMS Service to a server,

and defining the message bus between them as the Internet as described in

Section 5.4

In the case of the PALMS-CI, the RSDP approach resulted in a clear

definition of services and basic workflows, separate from a pool of

crosscutting requirements that can be composed onto the workflows by using

policies.

As a result of basing the PALMS-CI on Rich Services, it was highly

evolvable from the outset. Separate concerns were implemented as peers in

a distributed System of Systems (SoS), as described in Sections 5.6 and 5.6.4.

They could be conditionally composed into other workflows, and were primed

to accommodate the injection of unanticipated foreign workflows.

Additionally, the PALMS-CI included a set of seed policies that inject known

crosscutting concerns, such as access control decisions.

Note that while the PALMS-CI supports the PALMS project, and the

PALMS Service is a component of the PALMS-CI, going forward, I use “PALMS”

as shorthand and rely on the reader to infer either “PALMS project”, “PALMS-

CI”, or the “PALMS service” from the context. The majority of PALMS references

185

are to the PALMS service. When an inference would be ambiguous, I use the

longhand form.

Relative to the PALMS service, the Browser User Interface functions as a

Client, and is referred to as such in workflow depictions such as Figure 6 and

Figure 29. Similarly, the PALMS service is referred to as PALMS.

5.4 The PALMS Deployment Rich Service

While the logical Rich Service described in Section 5.3 describes service

definitions, it does not specify the technologies used to implement or link the

services, nor how the services are deployed. Under RSDP, applying a

deployment mapping function to the logical RS yields a deployment model in

which links and service deployments are specified, as shown in Figure 24.

Consistent with the logical architecture (Figure 23), the PALMS-CI

deployment is implemented in two major parts: the Browser User Interface (UI)

service and the PALMS service.

186

The Browser User Interface service maps to a largely browser-based

application that serves as the PALMS Community’s main interface to PALMS. In

Figure 24, it is represented by the “Web Browser (UI)”, which displays and

manages screen content, and “Browser Proxy (UI)”, which functions as the

Browser User Interface’s Service Data Connector (SDC) by proxying the PALMS

service. It is implemented using the Google Web Toolkit [173], a toolkit

specially built and optimized for building complex, performant browser-based

applications, and which leverages a large collection of pre-existing user

interface widgets. It was chosen to provide a rich interface for community

members, while enabling PALMS developers to efficiently add new features.

While the code for both types of Browser User Interface services resides on the

PALMS Server Machine, the screen management services execute on a PC

browser, and the proxy services execute on the PALMS Server Machine.

Web Browser

(UI)

PALMS

Service

GWT RPC

Mule Messaging

Browser

Proxy (UI)

PALMS

Subservices

CXF Web Services
Mule Messaging

CXF Web Services
 GWT RPC

PALMS Server VM

PC Browser PALMS Server Machine

Client in JAVA (GWT) PALMS in JAVA (Mule ESB)

Figure 24. PALMS Deployment

187

Communications between these services uses GWT’s proprietary remote

procedure call protocols across the Internet.

An example of a Browser User Interface screen is shown in Figure 25. It

shows a graphical representation of activity and location data collected for a

study.

PALMS (represented in Figure 24 as “PALMS Service” and “PALMS

Subservices”) is written in Java and leverages the Mule Enterprise Service Bus

(ESB) [174], which was chosen because it provides message transmission,

message routing and interception, and service execution features that closely

match the relationships modeled in a logical Rich Service framework.

Therefore, the deployment mapping function for the PALMS service is one-to-

one, with each PALMS logical service being implemented by an actual Java-

Figure 25. PALMS User Interface

188

coded Mule-hosted service. PALMS executes on the PALMS Server machine

on top of an Apache Tomcat server v6.0.20, and stores its data using a local

MySQL v5.0.77-4 DBMS. The Browse User Interface proxy services communicate

with PALMS using Apache CXF Web Services protocol [175].

The PALMS Server runs Red Hat Linux, and is hosted as a VMware virtual

machine (VM) at UCSD under a high availability, secure infrastructure that

includes an intrusion detection system, automatic multilevel backup, and

automatic live migration. The VM uses 8GB RAM and one 2.0GHz Xeon

processor. User ID authentication services are provided by caBIG’s Dorian ID

Provider [176], which verifies PALMS users’ credentials, and returns an X.509

certificate [177], which in turn, PALMS uses as proof of user identity. caBIG’s

Grouper [178] implementation is used to securely store and manage role, user

group, permission, and access control list (ACL) information.

5.5 The PALMS-CI Design

As described in Sections 5.3 and 5.4, the PALMS-CI consists of a user

interface component and a PALMS-CI service component. While PDD can be

used in the design and realization of both components, it was used primarily in

creating the PALMS service, which implements basic workflows leveraged by

the user interface. As such, the PALMS service presents a service interface

(defined by its Service/Data Connector) that is agnostic as to caller, and can

be reused to provide PALMS functionality in other contexts.

189

While PALMS embodies many design decisions that attend to the

diverse issues of production worthy services, I describe PALMS in terms of

service interface and workflow considerations that influence or leverage PDD.

A complete description is beyond the scope of this dissertation.

Most importantly, in Chapter 6, I describe PALMS from the perspective

of workflow maintenance costs and timely delivery responsive to stakeholder

requirements, where stakeholders represent multiple, independent domains. In

this section, I lay a foundation for describing PALMS’ PDD implementation by

describing key PALMS-CI workflows, including key workflow activities, and the

information exchanged between workflow activities. Section 5.5.1 describes

repositories, which are key PALMS workflow activities, and themselves

demonstrate opportunities to add value using policy injection. Section 5.5.2

describes the messages exchanged between the Browser UI and PALMS,

whereas Section 5.5.3 describes message exchanged within PALMS. Finally,

Section 5.5.4 describes high level details of an implementation that enables

and supports policy injection. The policy evaluation system itself is described in

Section 5.6.

5.5.1 Repositories

All PALMS functions are expressed as workflows that either manipulate

or rely on state information either maintained by PALMS or available to it.

When data is intended to persist across workflows, one or more workflow

activities perform operations that maintain the persistence abstraction. They

190

have wide latitude in implementing the abstraction, including calling on

encapsulated workflows according to a Mediator pattern [33].

Each such workflow activity represents a transformation of input data

(e.g., a query) to output data (e.g., a row set), and can maintain the

persistence abstraction by:

 fetching from persistent (database) store

 direct calculation

 returning pre-initialized data

 redirecting the operation to another workflow activity

 caching and memoization

 other mechanisms

 any combination of the above

PALMS implements the persistence abstraction by using a repository

model, which is described in [103] and [134] (as Data Mapper). According to

[103], the advantages of repositories include:

 presenting a simple model for obtaining persistent objects and

managing their lifecycle

 decoupling application and domain design from persistence

technology or multiple data sources

Particularly, because a repository combines a computational and

storage model, it allows flexibility in maintaining a persistent data abstraction,

even as underlying implementation requirements (e.g., speed and physical

location) and dependency assumptions (e.g., underlying database table

definitions) evolve. Though it’s possible to achieve this flexibility at the

database level through the use of stored procedures, lifting the persistence

191

abstraction to the workflow activity level enables access to calculations, data

sources, and workflow-based state generally unavailable at the database

layer. Furthermore, traditional structuring of stored procedures (as either

monoliths or hierarchies) presents little opportunity for runtime evolution via

mechanisms such as policy injection because of their tight coupling to the

database engine and other stored procedures. Repositories implemented as

workflow activities loosely coupled with other workflow activities encourage

policy injection. Finally, while databases generally present data in terms of low

level types and inter-table links, repositories are unconstrained in this way, and

can define and manipulate data along other dimensions, including standard

or custom ontologies and logic systems.

On the other hand, in a repository model, the data and its semantics

are not invested completely (if at all) in the storage system. Because a

repository encapsulates its calculations and storage mechanisms, external

assumptions about underlying storage are often invalid or can easily become

invalid. Consequently, repository data can be accessed only through a

repository interface, and combining data models from multiple repositories

must be done explicitly by repository clients (at a cost of development time,

execution time, and memory). By contrast, a database-centric model

presents a data abstraction that encompasses multiple data models (as

groups of related tables), and combining models is simple and efficient using

facilities (e.g., join) of the database management system.

192

I chose the repository abstraction (over a database-centric model) for

its flexibility in implementing data models isolated from other data models,

thereby reducing possible hidden dependencies between data models and

leveraging loose coupling to improve PALMS’ responsiveness to evolving

requirements affecting base workflows. Additionally, for repositories realized

by encapsulated workflows (e.g., via access to external storage systems or

other repositories), the service interactions implementing those workflows

present additional opportunities for policy injection, thereby improving

prospects for quickly responding to evolving stakeholder requirements as they

arise.

193

PALMS maintains repositories that track system-wide resources such as

calculations (PALMSCalculation, for data analysis), device profiles

(PALMSDevice, which define a data acquisition device), and schema

(PALMSSchema, which defines data ontologies). It also maintains a repository

containing study metadata (PALMSStudy), and a hierarchy of repositories that

tracks various study-specific attributes and data as shown in Figure 26. They

include:

 Calculation – collection of PALMSCalculations available to analyze

study data

 Protocol – collection of parameter sets associated with execution of

calculations

 Device – collection of PALMSDevices that can contribute study

observation data

 Dispatch – collection of execute-ready calculations and their

parameters

 Forms – collection of UI screen layouts for displaying and entering

repository contents

 Schema – collection of metadata definitions, including those for

subject data

 ResultSet – collection of metadata describing result data generated by

calculations

 Result – collection of result data generated by calculations

 ObservationSet – collection of metadata describing observation data

contributed by devices

 Observation – collection of observation data contributed by devices

 Subject – collection of data for each study subject

(Note that the repositories shown in Figure 23 model the PALMS-CI, the

model is simplified and does not show all repositories. The list in this section is

complete.)

194

While each repository supports the abstraction of storing, fetching, and

managing a collection of objects, its strategy for implementing the

persistence abstraction varies according to the relationship of its data to other

PALMS data and the performance requirements and logistics of accessing it.

Many study repositories represent tabular data stored as rows in a

database, and data persistence is realized via interactions with a storage

service that implements a tabular data abstraction by using a DBMS, as shown

in Figure 6 and Figure 29. In Figure 26, these are marked by and include

the subject, observation, result, schema, forms, dispatch, and protocol

repositories.

PALMS-CI

Community Calculation Community SchemaStudy Community Device

Calculation

Protocol

ResultSet

Result

Device

ObservationSet

Dispatch

Forms

Schema

Observation

Subject

Metadata

Data

DataSet

Legend
Decomposition
Reference

C

I

↗

Pre-initialized data

From Database

Redirected

Calculated

C C C I

↗

↗

C

C ↗

↗

↗

Figure 26. PALMS-CI Repositories

195

Repositories marked by C realize data persistence both by

interacting with a storage service and by inline transformation and synthesis.

They include the system level calculation, study, and device repositories, and

the study level result set and observation set repositories.

Repositories marked by ↗ realize data persistence both by

interacting with both a storage service and other repositories. For example,

the study calculation repository data model combines data in its own study-

based calculation table with data maintained in the PALMSCalculation

repository.

Repositories marked by I realize data persistence by accessing pre-

defined and compiled-in data.

The DataSet repository (marked by ↗) virtualizes data repositories that

can act as inputs or outputs for analysis calculations. It defines a name space

that allows calculations to access to the observation, result, and subject data

repositories without differentiating between them. It implements this

abstraction by delegating each repository function to an equivalent function

in the workflow activity that implements the repository.

The Repository pattern creates a clean separation between a data

abstraction it represents and the implementation of the abstraction.

Interaction between a repository workflow activity and activities that

implement it are fertile ground for policy-based workflow injection (including

196

access control, data transformation, and new features) responsive to

emerging stakeholder requirements. For example, a query message (such as

defined in Section 5.5.3.1) can be edited to constrain, filter, or augment

repository data by a policy injected between the repository and its storage

activity as shown in Figure 27.

5.5.2 Interface between Browser UI and PALMS-CI

Logically, the PALMS SDC exposes 72 functions, each of which

decomposes to a service orchestration. Each function consumes an input

channel (containing function parameters), and fills an output channel

(representing function results), thereby implementing a request/reply pattern.

The Mule ESB offers a number of protocols for realizing the input and output

channels, including simple TCP/IP, simple HTTP, and Web Services. The PALMS

SDC is implemented as a Web Service (using CXF [175]), which allows Java-

String

Column

Select From

Query

resultName

Constant

StringString

String Column

Column >=

updateDate

Select From Where

Query

resultName

2011

Figure 27. Query Edit Constrains Original Query to Post-2010 Results

197

style typing of input and output channels, SOAP-based marshaling and de-

marshaling of channel values, and automatic dispatch of function requests to

appropriate service orchestrations.

In order to preserve the option of using other protocols, PALMS’

channel messages are defined on simple data types, including scalars (e.g.,

Booleans, integers, and floating point), byte arrays, Unicode strings, and

untyped XML documents (as strings). Defining channel messages as a mixture

of typed and untyped data leverages the benefits of both. A typed definition

sets the structure of a message sufficiently to detect a gross mismatch in the

service contracts fulfilled by interacting services. Untyped XML self-defines its

structure, which can vary from interaction to interaction. This enables a

dynamic definition within the context of the overall typed definition, but

requires that interacting services verify untyped XML contents at runtime.

On input channels, a PALMS message includes untyped XML

parameters to represent context-sensitive processing options and complex

data whose structure and semantics are agreed upon by interacting services

a priori, with missing values being assigned pre-defined defaults. For example,

a data retrieval service may accept an untyped XML parameter that specifies

an output format, where including the element <format>csv</format> results

in comma-separated values, and including no <format> element defaults to

tab-separated values. In this way, services are free to add functionality (to

198

support different service interactions) without invalidating existing service

interactions.

On output channels, a PALMS message includes untyped XML to

convey datasets whose structure can change over time, including datasets

defined uniquely for each PALMS study, and which are subject to revision by a

study’s PI over the lifetime of the study. Consequently, the XML document

pairs a data sub-document with a schema definition sub-document that

describes the data. (It also contains a forms sub-document, which contains

user interface screen layout information.) For example, a simplified version of a

dataset containing a GPS location and heart rate value might appear as in

Figure 28. For purposes of illustration, each schema entry contains a data

<document-root>

<schema>

<lat>

<class>PALMS.Latitude</class> <type>xsd:double</type>

</lat>

<lon>

<class>PALMS.Longitude</class> <type>xsd:double</type>

</lon>

<heartrate>

<class>PALMS.HeartRate</class> <type>xsd:int</type>

</heartrate>

</schema>

<values>

<row index='0'>

<lat>32.868345</lat> <lon>-117.235204</lon>

<heartrate>72</heartrate>

</row>

<row index='1'>

<lat>32.871255</lat> <lon>-117.216044</lon>

<heartrate>84</heartrate>

</row>

</values>

<forms>

</forms>

</document-root>

Figure 28. Sample Dataset

199

value name, an ontology identifier (<class>), and a data type (<type>) – an

actual schema entry contains more information.

By convention, all input channel messages contain an X.509 certificate

that securely provides the identity on behalf the calling service operates. All

output channel messages contain a result structure that, if non-empty, gives

the reason for the failure of a service function.

As a result of using Web Services protocols, input channel messages are

automatically tagged with a PALMS function identifier, and output channel

messages are automatically tagged with a document type unique to the

responding PALMS function. Additionally, other message protocols (e.g.,

TCP/IP or HTTP) can easily include this information so as to achieve the same

effect.

Consequently, interactions between the Browser UI and PALMS services

bear sufficient information to qualify as good candidates for policy-based

workflow injection responsive to emerging stakeholder requirements. (In fact,

Section 5.5.4 describes how the X.509 certificate is captured from an inbound

message and is exposed to downstream policies as a workflow variable.)

Note that the message bus that carries interactions between the

Browser UI and PALMS is the Internet itself, which does not offer message

interception capabilities directly. However, interception can be effected by

proxies (e.g., a Web Service or proxy server) as intermediaries between the

Browser UI and PALMS. Such proxies can execute policies consistent with those

200

described in this dissertation, but are not implemented in the PALMS case

study, and so are not discussed here.

5.5.3 Interface between PALMS-CI Internal Services

Each function exposed by the PALMS SDC is executed by an

orchestration of services internal to PALMS. Each orchestration can involve

interacting services, decomposed services, or both. Chapter 3 presents a

logical workflow that represents a common PALMS function (GetStudyList),

and a corresponding Rich Service is presented in Figure 10. A more robust

version of the Rich Service is presented in Figure 23, which serves as a model

for the actual PALMS-CI and grounds the discussion of the implementation of

the GetStudyList workflow.

The interaction ❶/❽ is described in Section 5.5.1 (as

the interaction between the Browser User Interface and the PALMS server). The

 interaction ❷/❼ is implemented by the PALMS

Service/Data Connector (SDC) operating as a dispatcher to the

encapsulated List Studies service – the SDC serves as a dispatcher for all

PALMS function requests, and mediates all function replies. The

 interaction ❸/❻ is implemented as a peer-

level request/reply interaction between the List Studies and Study Repository

services. Finally, the interaction ❹/❺ is

implemented by a peer-level request/reply interaction between the Study

Repository and Storage services.

201

Within PALMS, messages are passed to peer-level services or to

encapsulated service orchestrations (through an SDC) via the Mule message

bus and are subject to interception via Mule’s router provisioned with

interceptor functions. Messages are implemented as Java classes, with a

different class for each PALMS internal service interaction. Services are

implemented as POJOs (i.e., Plain Old Java Objects), though a POJO can

house several services, each of which accepts a message of a different Java

class. Mule directs a message to a POJO, and then automatically pairs the

message with a service that accepts it.

Note that while an SDC presents a service interface to peer services, it

also mediates interactions between an encapsulated service and the SDC’s

peer services – this essentially defines and mediates the external services

accessible to encapsulated services. An example of this is the execution of

PALMS’ ListResults function, which ultimately accesses the ResultSet Repository

(as a sub-service of the Study Repository), as shown in Figure 29.

The ListResults workflow involves activities similar to the GetStudyList

workflow, except that it contains an interaction between the StudyRepository

and ResultRepository activities. As shown in Figure 23, the ResultRepository

service is encapsulated in the StudyRepository service and is therefore

accessible only through the StudyRepository SDC. As a subservice of the

PALMS ListResults
Study

Repository
Client

ResultSet
Repository

Storage

Figure 29. The ListResults Workflow

202

StudyRepository service, it has no direct access to the Storage service.

Instead, Storage access is mediated by the StudyRepository SDC, which

exposes a Storage service to the ResultRepository service, and interacts with

the actual Storage service on behalf of the ResultRepository.

The Mule messaging system allows the interception of all messages,

starting with messages inbound to the PALMS service, and including

interactions between peer services, and between SDCs and sub-services.

Consequently, policy injected between peer services can implement an

abstraction (e.g., failure management) on a service orchestration distinct

from an abstraction on an encapsulated orchestration. When such policies

coordinate (as described in Section 7.4.1), the composition exemplifies a

System of Systems.

5.5.3.1 PALMS Internal Message Contents

A key criterion on which policy can be decided or enacted is the

message exchanged between interacting services. In this section, I present

a general description of messages exchanged between services internal to

PALMS and discuss how these messages contain data conveniently

accessible to policies.

Internal services exchange messages as instances of Java classes via

Mule’s VM protocol, where each interacting service pair exchanges a

message of a class unique to the pair. This uniqueness is not a requirement of

the message exchange, but serves the administrative purpose of verifying that

203

service pairs exchange messages consistent with their channel definitions. To

achieve this, the PALMS relies on the Mule behavior of passing a message only

to a service whose Java function signature matches the message class.

Additionally, to preserve the option of scalability in a distributed

environment via a marshaled protocol (e.g., JMS [179]), I constrained

message classes to contain only base types (and compositions on base

types), similar to Section 5.5.12. Particularly, references (e.g., pointers) to

service-local data not contained in the message (and therefore not

resolvable by a policy) are avoided.

By convention, PALMS services interact in a request/reply pattern,

where each request generates a single reply. A reply message contains data

responsive to the request, and a PALMSResult structure indicating the reason

for the service failure, if the request failed. Figure 30 shows a simplified version

of the request and reply messages involved in the

 interactions ❸/❻ in Figure 6.

2
 An experimental version of the PALMS-CI leverages this to distribute PALMS’ data analysis

calculations to virtual machines in Amazon’s Elastic Cloud service.

204

5.5.3.1.1 AttributeCollections

Note that the GetStudyListResult message contains an

AttributeCollection, which is the structure used by PALMS to represent

untyped, hierarchically composed data. An AttributeCollection maps

attribute names to values, where the values can be scalars or

AttributeCollections (thereby implementing a Composite pattern).

AttributeCollections encode mandatory values, optional values, and

structures such as row sets and data set queries as shown in Figure 31. An

AttributeCollection maps conveniently to a number of forms, including an

XML document, which can be easily accessed, parsed, and returned by

policies.

public class GetStudyListMessage {

 private String studyID;

 public GetStudyListMessage(String studyID)

 { this.studyID = studyID; }

 public String getStudyID() { return studyID; }

}

public class PALMSResult {

 private String error;

 public PALMSResult(String error) { this.error = error; }

 public String getError() { return error; }

}

public class GetStudyListResult extends PALMSResult {

 private AttributeCollection studies;

 public GetStudyListResult(AttributeCollection studies)

 { this.studies = studies; }

 public AttributeCollection getStudies() { return studies; }

}

Figure 30. Sample Dataset

205

5.5.3.1.2 SQLTupleTrees

PALMS models each repository as a list of independent rows

conforming to a repository-specific data schema, as described in Section

5.5.1. Optionally, a repository service can process queries expressed in an SQL-

like language that can be encoded equivalently either as XML or as a PALMS-

CI SQLTupleTree structure, and is therefore amenable to examination and

manipulation by an injectable policy. The XML form is passed to PALMS (by a

PALMS Client) and is converted to the SQLTupleTree form before being

Figure 31. AttributeCollection Model

Value

AttributeCollection AttributeCollectionList

String String[]

Row RowList

null

Key

*

*

*

*

206

passed to the target repository. Commonly, a query can be built using a

Hibernate-like Criteria API [180] [181] adapted to meet PALMS repository

constraints [182].

An example is a query on the ResultSet repository (referenced in Figure

29), which contains metadata describing the results of an analysis of study

data, and is shown in Figure 32. The example returns the result name and

update time of results whose name begins with “Test”.

207

SQL
select resultName,

 (date_format(updateDate, '%Y-%m-%d% %h:%i:%s')) as updated

 from

 where resultName like “Test%”

XML
<QUERY>

 <SELECT>

 <COLUMN><STRING>resultName</STRING></COLUMN>

 <AS>

 <FUNCTION>

 <STRING>date_format</STRING>

 <COLUMN><STRING>updateDate</STRING></COLUMN>

 <CONSTANT><STRING>%Y-%m-%d% %h:%i:%s</STRING></CONSTANT>

 </FUNCTION>

 <COLUMN><STRING>updated</STRING></COLUMN>

 </AS>

 </SELECT>

 <FROM></FROM>

 <WHERE>

 <LIKE>

 <COLUMN><STRING>resultName</STRING></COLUMN>

 <CONSTANT><STRING>Test%</STRING></CONSTANT>

 </LIKE>

 </WHERE>

</QUERY>

SQLTupleTree

Constant

Constant StringStringStringString

String ColumnColumn

String

Column

Function

As Like

resultName%Y-%m-%d%
%h:%i:%s

Select From Where

Query

resultName

updateDate updateddate_format Test%

Figure 32. Sample Query

208

Note that because the query is directed to a particular repository

(which represents an abstraction of a single table), the From clause is omitted

or ignored in all forms.

The SQLTupleTree is represented by a package of Java classes that

instantiate tree nodes and can return an equivalent SQL and XML expression.

Both the SQLTupleTree and XML forms enable queries to be evaluated and

manipulated by a policy without incurring the time and space penalties of

parsing the SQL form. Furthermore, by representing a query in this form, PALMS

focuses on defining the data set to be returned, independent of a particular

SQL implementation. As such, it can exclude unsupported (and

unsupportable) SQL language features available in robust SQL

implementations.

5.5.4 Workflow Implementation

Under Rich Services, a workflow is implemented as an orchestration of

service interactions, where a service may, itself, decompose into an

orchestration of services. As described in Sections 5.3 and 5.4, the Mule ESB

facilitates the execution and interaction of PALMS services via messages, and

enables the interception of those messages by a policy evaluator service. As

described in Section 4.2.1, policy evaluation requires that the identities of an

interaction’s source and target services (called Service Tracking) be known so

that appropriate composition, control, and filter policies can be selected for

evaluation. However, Mule does not provide this basic workflow support, nor

does it implement the abstraction of an interservice message , as described

209

in Section 4.3, both of which are necessary to implement workflow

composition.

In this section, I describe the mechanics of PALMS service interactions

beyond the message passing and routing that Mule provides. First, I describe

the design of s and service tracking under PALMS, including how PALMS

leverages Mule features to implement them. Next, I describe higher level

workflow support facilities layered onto them, including support for data flows

for composed policies. (Note that the examples in this section are actual

PALMS interactions, but simplified or renamed to improve ready

understanding.)

The key challenges are in exposing the service interaction endpoints to

the policy evaluator, and enabling composed policy services to store state

correlated with a workflow instance (via s).

210

5.5.4.1 Basic Interservice Messages (IM) and Service Tracking

PALMS incorporates basic workflow support services as crosscutting

concerns composed upon all service interactions (and which ultimately

mediate the higher level crosscutting concerns represented by injected

policy). From a Rich Service perspective, these relationships (shown

conceptually in Figure 18 and described in Section 4.3) are modeled and

implemented as RISs, which provide the and service tracking abstractions,

where service tracking is provided as a SIV in an :

 SIV Pack/Unpack RIS implements the abstraction. It intercepts all

messages incoming-to and outgoing-from a service and consists of two

sub-services. SIV Pack intercepts an outgoing interaction message ,

and then creates an out of and all other available SIVs. SIV

Unpack intercepts an incoming message , extracts its and other

SIVs, and makes them available to other RISs and the target service

itself.

 Service Tracking RIS implements the service tracking abstraction. It

intercepts a message incoming-to a service and records its source

and target service in the Service Tracking SIV.

 Context RIS implements the SIV abstraction (as Context Services, per

Section 4.3). It is called by the SIV Pack/Unpack and Service Tracking

RISs to manage SIVs associated with a service invocation. When a SIV

containing a reference is accessed by a RIS or RAS, the Context RIS

resolves the reference via interaction with the standalone Context

Infrastructure Service (CIS). (Note that for performance reasons, the

Service Tracking SIV contains a tuple instead of a tuple

reference – no interaction with CIS is needed to resolve a Tracking

Service SIV.)

Figure 33 shows a simplified schematic of the sequencing of RIS

interceptor services relative to interactions between the Client, PALMS, and

ListStudies activities of the ListStudies workflow.

211

As shown on the left margin, messages travelling between the Client

and Mule (on the Internet) are SOAP-encoded. Messages travelling to and

from internal PALMS-CI services (i.e.,) are encoded as

interservice message s, and a message processed by interceptors

associated with a PALMS-CI service are encoded as a service message .

Using encoding between services enables all information pertinent to an

interaction (i.e., SIVs, including) to be carried between a source and target

service regardless of where in a distributed or multi-process system each

service executes. Fundamentally, the purpose of an is to associate SIVs

(including) across process boundaries.

Mule guarantees that the execution of a service and its associated

interceptors occurs within the same process. The Context RIS (not shown)

leverages this to store SIVs (retrieved by SIV Unpack) as thread-local variables

CX for the duration of service execution, thereby enabling ready access to

SIVs by the target service and composed concerns (including the policy

evaluator). When SIV Pack creates an , it calls the Context RIS to render

current SIV copies (from CX) into the .

Focusing on the ListStudies Service, a message from the PALMS Service

arrives as an , which is unpacked by the SIV Unpack RIS – the ’s SIVs are

stored in CX, and is forwarded to the Service Tracking RIS. While Mule

reveals a message’s target service (as the target queue name), it does not

reveal the source service. Consequently, the Service Tracking RIS assumes that

the previous target service is the next source service – it updates the Service

212

Tracking SIV in CX and forwards an unaltered message to the Policy

Evaluator interceptor. Finally, policy is evaluated (as described in Section 5.6).

Assuming the policy allows the ListStudies Service to be executed, it returns a

reply , which is processed by each RIS in reverse of the inbound order – this

nesting of RISs corresponds to the nesting of abstractions represented by the

RISs (i.e., Policy Evaluation builds on Service Tracking, which builds on s).

Ultimately, the SIV Pack RIS returns a new to the PALMS Service – it

synthesizes the from the response and the SIVs in CX thread-local

variables.

A similar sequence is used for the execution of the PALMS Service. Note

that the original source of a message bound for the PALMS Service is the

Client Service, which exchanges its message in SOAP format, not as . To

facilitate this, the SIV Pack/Unpack RIS includes additional subservices, Pre-SIV

Pack and Pre-SIV Unpack, that perform services analogous to SIV Pack and

SIV Unpack. Pre-SIV Pack creates an from the SOAP-encoded and

initializes each other SIV. Pre SIV Unpack encodes as SOAP and deallocates

all other SIVs.

213

PALMS
Service

ListStudies
Service

Pre-SIV Pack

SIV Pack

SIV Unpack

Service
Tracking

Policy (in-
filter, replace)

I
M

m

m

SIV Pack

Service
Tracking

Policy (out-
filter)

SIV Unpack

SIV Unpack

Service
Tracking

Policy (in-
filter, replace)

SIV Pack

Service
Tracking

Policy (out-
filter)

Pre-SIV
Unpack

I
M

Internet/
SOAP

Context (CX)

Thread-local service context

A

B

B

D

E

E

Client

C

D

C G

G

E

H

F

F

B

A

B

C

D

E

F

G

H

Convert m0 in SOAP to m0 in IM

Extract m0 from IM, store IM in CX

CX.Src ¬ CX.Targ, CX.Targ ¬ m0.Dest

Invoke Policy Evaluator (inbound)

Create IM from C, insert m0 into IM

Invoke Policy Evaluator (outbound)

-nothing-

Convert m0 in IM to m0 in SOAP

Intercept on Request message

Intercept on Reply message

Legend

S
O
A
P

Browser

Mule

Figure 33. Simplified PALMS Interceptor Sequencing

214

Note that the objective of maintaining the source and target service in

a SIV is to accurately identify an interaction to which a policy can be

applied. While the Service Tracking RIS properly identifies as the source and

 as the target, it fails when is decomposed into a service orchestration

 . Semantically, the decomposition is encapsulated, and peer

services should be oblivious to the decomposition – is the source service in

 whether or not is decomposed. However, the Service Tracking RIS

naively records the last service of the decomposition (in) as

the source service for interactions, thus breaching the encapsulation

and representing the interaction incorrectly. As a solution, PALMS recognizes

the encapsulation by saving the Service Tracking SIV before a decomposition,

and restoring it afterward.

5.5.4.2 RAS and RIS Implementation in Mule

All PALMS RASs are implemented as Mule POJOs that accept messages

from a Mule message queue dedicated to it. A Mule configuration (in a Mule

configuration file, palms.xml) associates a message queue with a POJO, and

defines routing between a POJO (as a message source) and a message

queue (as a message destination). Considering the bijective relationship

between queues and service POJOs, queue and service names are

effectively synonyms.

215

For example, in Figure 33, the queue associated with the ListStudies

service might be defined via an endpoint-identifier element in PALMS’ Mule

configuration file:

 <endpoint-identifier name="PALMS.ListStudies.queue"

 value="vm://PALMS.ListStudies.queue" />

where the queue is named PALMS.ListStudies.queue (via the name= attribute),

and is implemented using the Mule VM messaging protocol using the name

//PALMS.ListStudies.queue (via the value= attribute).

From a Mule viewpoint, each PALMS service is defined by a tuple

consisting of its queue, a POJO, and a list of interceptor services that pre-

processes a message after it is removed from the queue and before it is

passed to the POJO, and then post-process a message after it is returned from

the POJO. For example, the ListStudies service might be defined via a mule-

descriptor element:

<mule-descriptor name="PALMS ListStudies"

 implementation="org.palms.study.PALMSListStudies">

 <inbound-router>

 <endpoint address="PALMS.ListStudies.queue" synchronous="true" />

 </inbound-router>

 <interceptor className="PolicyInterceptors"/>

</mule-descriptor>

where the service is named PALMS ListStudies (via the name= attribute), and it

is implemented using the org.palms.study.PALMSListStudies Java class (via

the implementation= attribute). The PALMS.ListStudies.queue queue is bound

to the POJO (via the address= attribute), and is configured for a request/reply

216

pattern (via the synchronous= attribute). Finally, the PolicyInterceptors

names the list of interceptors (via the className= attribute).

Mule defines an interceptor list as a sequence of Java classes to call in

order, with the interaction message as a parameter. Nominally, each Java

class can examine and change the message, then pass it to the next

interceptor or the target service (if there are no more interceptors in the list).

Each interceptor (or the target service) returns a message to the interceptor

that preceded it. An interceptor can also change the message flow, thereby

cancelling remaining interceptors and routing to a different target service. For

example, an interceptor list associated with PALMS might be defined:

 <interceptor-stack name="PolicyInterceptors">

 <interceptor className="org.palms.SIVInterceptor"/>

 <interceptor className="org.palms.ServiceTrackingInterceptor"/>

 <interceptor className="org.palms.policy.PolicyEvalInterceptor"/>

 </interceptor-stack>

where the interceptors implement the SIV Pack/Unpack, Service Tracking, and

Policy Evaluator RISs.

The interceptor list preceding the PALMS Service is slightly different, and

accounts for the Pre-SIV Pack and Pre-SIV Unpack operations needed to

bootstrap the PALMS service interactions described above:

<interceptor-stack name="PrePolicyInterceptors">

 <interceptor className="org.palms.PreSIVInterceptor"/>

 <interceptor className="org.palms.SIVInterceptor"/>

 <interceptor className="org.palms.ServiceTrackingInterceptor"/>

 <interceptor className="org.palms.policy.PolicyEvalInterceptor"/>

</interceptor-stack>

217

where the PreSIVInterceptor interceptor performs these functions, and is

followed by the normal PolicyInterceptors stack. (PreSIVInterceptor can

be grouped with the standard PolicyInterceptors because Mule guarantees

that Web Services processing is performed in the same process as the PALMS

Service.) Note that the actual PrePolicyInterceptors list contains additional

interceptors, as described in Section 5.5.4.3.

Figure 34 depicts the structural relationship between entities in PALMS’

workflow system from a Mule perspective. Mule realizes a correspondence

between services and messages, thereby executing service interactions. Each

interaction is subject to intervention by interceptors per Figure 33, where the

SIV Pack/Unpack functions establish the relationship between SIVs (as part of

an) and the thread-local Context (CX) where polices can store and access

independent state. Service tracking functions maintain source/target service

information, which the Policy Evaluator uses to determine policy appropriate

for the interaction.

Note that Figure 34 does not show either the Context services or the

Context Infrastructure Services (CIS). Context services manage SIV access and

are accessible to all services and interceptors (including policies). Context

Infrastructure Services provide GUID-based persistent store (as shown in Figure

18) and are accessible to all services and interceptors via Context services.

218

Note that while the message is strictly speaking a SIV, Mule enables

services to access as an argument passed to the service’s POJO – services

do not access through Context services is would be the case for other SIVs.

219

Figure 34. Mule Interservice Message and Service Tracking Implementation

220

 c
la

s
s

 W
o

rk
fl

o
w

 I
m

p
le

m
e

n
ta

ti
o

n

In
je

c
te

d
 P

o
li

c
y

In
je

c
te

d
 W

o
rk

fl
o

w

«
in
te
rc
e
p
to
r»

P
o

li
c

y
 E

v
a

lu
a

to
r

S
IV

s

A
E

V
/I

V

T
h

re
a

d
-l

o
c

a
l

C
o

n
te

x
t

(C
X

)

S
e

rv
ic

e
 T

ra
c

k
in

g
W

o
rk

fl
o

w
S

e
s

s
io

n
P

o
li

c
y

S
e

rv
ic

e

M
e

s
s

a
g

e
 I

M

M
u

le

«
in
te
rc
e
p
to
r»

S
IV

 P
a

c
k

/U
n

p
a

c
k

«
in
te
rc
e
p
to
r»

S
e

rv
ic

e
 T

ra
c

k
in

g

M
e

s
s

a
g

e

c
h

o
o

s
e

,

e
x

e
c

u
te

a
c

c
e

s
s

c
re

a
te

,
a

c
c

e
s

s

a
c

c
e

s
s

*

s
u

p
p

ly

a
c

c
e

s
s

,
u

p
d

a
te

tr
a

c
k

e
x

e
c

u
te

re
p

re
s

e
n

t

a
c

c
e

s
s

,u
p

d
a

te

221

5.5.4.3 Workflow and Other SIVs

While a message represents a data flow between services

implementing a base workflow, other SIVs represent state associated with all

concerns (e.g., RISs and policies) composed on a workflow instance. A SIV is

implemented as a named AttributeCollection (per Section 5.5.3.1) that

stores key-value pairs and is transported in an – if a SIV does not exist when

a key-value pair is stored into it, the SIV is automatically created and added

to the ’s SIV list. A SIV is destroyed at the end of a workflow, though data it

references may not be destroyed – the Workflow and Session SIVs (described

below) are examples of different data lifecycles. A concern can access key-

value pairs (including creating, reading, storing, deleting, and cloning them)

via Context services.

The values maintained in SIVs constitute channels into or out of a

service (including a RIS or policy), and are therefore part of the service

interface. Consequently, the and SIV implementation constitute

fundamental support for the workflow composition.

PALMS maintains a number of SIVs (shown in Figure 34):

 Service Tracking SIV supports tracking of source and target services by

identifying the current service interaction. The tracking service updates

it on every message exchange (per Figure 33), and the Policy Evaluator

service queries it to determine applicable policies.

 Workflow SIV supports policies composed onto a base workflow by the

Policy Evaluator. Key-value pairs are stored in the Context Infrastructure

Service (CIS), subordinated to a globally unique identifier (GUID)

assigned to the workflow and stored in the SIV. One or more policies

can use Context system functions to store and retrieve key-value pairs

222

that persist for the lifetime of the workflow. At the end of the workflow,

the GUID and all subordinated key-value pairs are destroyed.

 Session SIV supports policies similarly to a Workflow SIV, except that the

CIS-backed GUID is created and destroyed explicitly by request of the

Client. Consequently, session key-values are accessible to multiple

instances of the same or different workflows.

 Policy SIV supports the Policy Evaluator, which maintains state that

avoids infinite recursion due to the execution of policy while a policy is

being executed. It has the same lifecycle as a Workflow SIV.

For example, a Service Tracking SIV contains a tuple

identifying the endpoint services in a service interaction. For the interaction

 , the service tracking tuple would be:

 {PALMS.ServiceDataConnector.palmsGetStudyList,

 vm://PALMS.ListStudies.queue}

For the interaction :

 {vm://PALMS.ListStudies.queue,

 vm://PALMS.StudyRepository.queue?method=list}

(As described in Section 5.5.4.2, PALMS services are identified by their

queue names. However, the source service in the

interaction begins with a Web Services entry point, which is not a queue, and

is identified by the SDC function name instead. Additionally, the

StudyRepository service is qualified by a targeted subservice list.)

As SIVs maintain state information for separate concerns, channel

content (and channel history) is determinative for such state. SIVs can be used

to maintain this information in a number of ways.

223

For example, while policy decisions are often made based on channel

contents (as represented by the current message or other SIVs), legitimate

decisions can also encompass an interaction’s channel history, which can be

represented as a list of messages exchanged on an the interaction. Such a

list would be indexed by the interaction’s tuple. Maintaining

the list as a component of the Workflow SIV would capture only history relating

to the current workflow, and maintaining it as an IV would capture history

across all workflows. Channel history can be used to implement temporal

logic policy predicates such as “if this request was made twice in the last 5

minutes”.

Similarly, a channel trace can be implemented as a member of the

Workflow SIV by accumulating a list of tuples and messages

for each interaction throughout a workflow. A trace can be used to

implement predicates based on control or data flows leading up to an

interaction.

Maintaining channel history or traces is often not cost effective

because of the storage, bandwidth, or time it requires, particularly because

such information must be stored in the CIS so as to be available to any service

regardless of the process in which it executes. As an optimization, policies can

extract values from messages and store them in the CIS (via a Workflow SIV,

Session SIV) or as an IV depending on the longevity required. An example of

this is the Multiple Session Separation of Duties (MSoD) solution presented in

Section 7.4.1.

224

The Policy Evaluator (described in Section 5.6) depends on channel

history collected in this way. By convention, a message presented to the

PALMS Service (from a Client) must contain a credential identifying the user.

An interceptor (CredentialInterceptor, not shown in Figure 33 or Figure 34)

called before the PALMS Service invocation extracts the credential and stores

it as a Workflow SIV value available for subsequent policy evaluation.

The PALMS model for the Workflow SIV lifecycle requires an event that

unambiguously signals termination of a workflow, after which the SIV’s CIS

GUID and referents are deallocated. In a serially executing workflow, the

workflow is considered complete (and deallocation can occur) when it

returns a result to the caller (after the SIV Pre-Unpack service in Figure 33).

However, for workflows that spawn long-lived threads, concurrency and

termination detection issues arise. Particularly, while concurrent access to CIS

values are serialized via message-based protocol, PALMS has no locking and

transaction system that would enable workflows with embedded concurrency

to operate safely when multiple, coordinated values must be stored.

Additionally, PALMS has no means of monitoring the creation or termination of

an internal thread, where the creation and termination should delay the

deallocation of a Workflow SIV until all such threads are terminated.

5.5.4.4 New SIVs

While an SIV groups state that has similar lifecycles, SIVs can group

state based on other criteria, including security, where one SIV can be

transmitted (in an) in the clear, and another must be transmitted under

225

encryption. Similarly, access to one SIV’s values may be unconstrained, while

access to another SIV’s values must be policy-protected (by policy composed

onto interactions with the CIS service).

For example, the Workflow and Policy SIVs both maintain state that

persists until the workflow ends. However, state in the Policy SIV bears on the

reliability of the Policy Evaluator, while state in the Workflow SIV bears on data

flows for policy-defined concerns. Mixing both states in the same SIV risks

accidental or purposeful state corruption.

To create a new SIV, lifecycle and all other SIV properties must be

addressed. Creating a SIV is a lazy process – a new SIV is created if a concern

calls Context services to store a value in the SIV, but the SIV has not been

created. Deallocating a SIV is performed by an interceptor in the

PrePolicyInterceptors list, which executes at workflow termination. As

Context services are also responsible for transitioning an SIV from thread-local

storage to an , Context services are a natural encryption point. Currently,

Context services are a self-contained, monolithic library service. Implementing

such SIV transformations arbitrarily would require re-implementing Context

services as an orchestration or plugin architecture.

5.6 PALMS’ Policy System

The policy system is designed as a separate application, and consists of

services implementing policy authorship, a policy repository, and a policy

evaluator modeled as a Rich Service as shown in Figure 35. The Authoring

226

System service interacts with the Policy Repository to store and deploy

policies, and the Policy Evaluator service interacts with the Policy Repository to

retrieve policies for execution. Policies in the Policy Repository apply to service

interactions tracked in the Interaction Repository.

As described in Section 5.5.4.1, the Policy Evaluator service is

composed upon PALMS workflows by intercepting every service interaction,

determining whether one or more policy applies to the interaction, and then

executing any policies that do. Figure 35 depicts this by showing the Policy

Evaluator service acting both as a RIS in the PALMS Rich Services and a RAS in

the Policy System Rich Service. Considering that policy execution is, itself, a

separate concern relative to PALMS base workflows, it is natural to model it as

a loosely coupled composable service that is defined, developed, and

maintained separately from the PALMS service. Integrating services using this

RIS-RAS pattern enables the creation of a System of Systems that relies on the

composed service observing the service contracts in force at the target

service injection points.

As described in Section 4.2.1, the policy evaluator inherently observes

all such service contracts, and delegates the contract fulfillment requirement

to services returned by policy evaluation.

227

In this section, I describe the policy evaluation system, beginning with a

description of the basic policy language, followed by a motivating example,

a description of policy expression dependencies, the interaction and policy

repositories, the authoring system, and the implementation of control, filter,

and composition policies.

Event

Logger

Service/

 Data

Connector

Policy

Evaluator

Policy

Repository

PALMS Policy System

Context

Management

Policy

Evaluator

Interaction

Repository

Service/

 Data

Connector

Community

Calculation

Repository

PALMS

Community

Device

Repository

StorageList Studies
Study

Repository

Event

Logger

Policy

Evaluator
Context

Management

Authoring

System

Figure 35. PALMS Policy System Composed onto PALMS Service

228

5.6.1 PALMS Basic Policy Language

The discussion in Section 4.2 is agnostic as to the form or language of a

policy expression, so long as the result of its execution is a service that fulfills

the service contracts defined for the service interaction to which the policy

applies. In order to make decisions, a policy must have access to the contexts

described in Section 5.5.4, though to serve the purpose of rapid realization of

stakeholder requirements, policies must also be easily correlated with

requirements, and must be injectable at runtime with minimum ceremony.

In PALMS, policy expressions are written as XQuery [183] expression, and

are executed by the Saxon XQuery processor [184]. XQuery was chosen as

the base policy language for a number of reasons:

 Assuming that service interaction messages (expressed as Java

objects), are easily fungible with XML documents (via XStream libraries

[185]), the XQuery language and its close cousins, XPath and XSLT, can

easily and efficiently interpret, filter, or transform messages in flight

 XQuery expressions can draw on library functions written either as

XQuery functions or Java code, including domain-specific libraries and

Context service functions

 XQuery can be written and executed as plain text, thereby avoiding

compiler and runtime system dependencies in the authoring and

repository services – and XQuery can be just-in-time-compiled

 XQuery expressions can be succinct enough to encode domain-level

abstractions (as a DSL) without incurring undue notational overhead

The choice of XQuery as a language for policy expression does not

address policy execution speed or secure, complete, and consistent

deployment. Additionally, it does not result in any guarantees regarding

important properties of coordinated policies, such as correctness,

229

completeness, consistency, safety, and liveness. Execution speed is addressed

in Section 6.3, deployment is addressed in Section 7.4.4, and policy

guarantees are addressed in Section 7.5.

5.6.1.1 Policy Example

In PALMS, access control decisions drove the design of an access

control DSL based on XQuery expressions (as described in Section 5.6.1).

Access control requirements were specified by PALMS stakeholders as a

spreadsheet that correlated desired decisions with particular workflow

functions. From these requirements, I abstracted a set of primitives that would

filter messages (as pre-filters and post-filters) or produce the desired

allow/deny decisions (as control policies). Both filtering and control decisions

depend on the user’s identity (carried in an X.509 credential issued by the

caBIG ID Provider [176] to the Client), as correlated with a hierarchically

defined role-based (RBAC [186]) and access control list-based (ACL)

taxonomy maintained in Grouper [178] by stakeholders themselves, described

in Section 5.6.1.3.

An example of a post-filter can be applied to a list of studies returned

by the Study Repository to the ListStudies workflow activity, as excerpted in

ListStudies
Study

Repository

palms:filter-by-role('PI')

Figure 36. Example of Post-Filter Policy Injection

230

Figure 36. The list is described in Section 3.1 and is returned from the Study

Repository as a message . The post-filter returns a new containing only

studies for which the current user is the principal investigator (i.e., the user is

contained in the study’s 'PI' role).

The filter policy is an XQuery expression palms:filter-by-role('PI')

where palms: is an XQuery namespace, and the filter-by-role('PI')

function calls an XQuery library function that accesses the current message ,

finds the study list, and eliminates all studies where the current user is not listed

as one of the study’s PIs. In this process, the policy accesses four different

contexts: the current message , the Workflow SIV (to determine the current

user’s identity, described in Section 5.5.4.3), application context (i.e., an AIV,

to determine the location of the PI role in the RBAC hierarchy), and the RBAC

hierarchy itself.

An example of a control policy can be applied to prevent

uncredentialed users from accessing the Study Repository in the ListStudies

workflow, as excerpted in Figure 37. A decision is injected on the interaction

between the ListStudies and Study Repository workflow activities. Per Section

4.2.3, the decision returns either the Study Repository service or the Return Error

service, which is then executed and completes the interaction with the

ListStudies service.

231

The control policy is an XQuery expression such as:

 if (palms:subject-in-study-role('PI') then ()

 else palms:control-error('Invalid role for this operation')

The subject-in-study-role function calls an XQuery library function

that returns true if the current user is listed in the RBAC study hierarchy as one

of the study’s PIs. If so, the interaction with the Study Repository workflow

activity is continued. Otherwise, an interaction with the Control Error workflow

activity is selected, and that activity returns an error result.

In this section, I describe control policies, filter policies, composition

policies, and the various XQuery library functions the policies can call. I also

show how policies can be used to inject features into a base workflow to

create a System of Systems, and how to create a DSL that is implemented as

an XQuery library.

5.6.1.2 Policy Expression Dependencies

The simplest control policy returns the default service (, as described in

Section 4.2.3), and the simplest filter policy returns the message that was

ListStudies
Study

Repository

“if” predicate ...
Return
Error

Figure 37. Example of Access Control Policy Injection

232

passed to it. Policies that implement richer requirements base their decisions

and calculations on information from a number of sources, depicted as

accessible or updateable to Services in Figure 34. Particularly:

 the contents of the interaction message

 the identity of the user on whose behalf the workflow is executed,

which may be:

o passed as a parameter to the workflow and captured in the

Workflow SIV per Section 5.5.4.3

o obtained from a repository (to support deferred workflow execution)

 state created and maintained in the Workflow, Session, or other SIVs for

and by policy expressions

 state created and maintained as an IV per Section 5.5.4.3

 state available as an AIV via service interactions with base application

services or services presented by other concerns, or via system calls

The PALMS Policy support XQuery library provides access to each

source via XQuery function calls, as described in Section 5.6.5.

5.6.1.3 Identity, RBAC,and ACLs

Many types of access control and filter policies rely on either a user’s

identity, a role within a virtual organization, or permissions associated with

either the identity or the role as applied to particular resources. Such policies

include access control (i.e., resulting in an allow/deny verdict), resource

allocation and scheduling, auditing, provenance, and information filtering.

These decisions rely on an authenticated identity and a repository that

maintains a mapping between identities and roles and permissions.

Traditionally, these concerns are called authentication and authorization,

though authorization has a narrow connotation relative to the broader

capabilities represented by policy injection, where a combination of identity,

233

role, and permission can be used to inject features or determine parameters

to composed workflows.

Typical predicates evaluated in PALMS policies are framed relative to a

group of studies (called a study group) that contains the PALMS study

involved in the current workflow. A predicate may test whether a user is

associated with a particular study group role, or whether a user has particular

permissions as a result of the user having a particular role.

PALMS roles and permissions are easiest to configure relative to a study

group, not an individual study. Typical predicates include:

 Does the user hold the “PI” role?

 Does the user hold any (or all) of the “PI,RA,Guest” roles?

 Does the user hold a role (e.g., “Collaborator”) relative to a user (e.g.,

bdemchak)?

 Does the user hold the “addStudy” permission?

 Does the user hold any (or all) of the “addStudy,viewStudy”

permissions?

PALMS implements credential and authorization services as separate

Rich Services in support of policy evaluation as shown in Figure 38. Credential

services accept an X.509 credential, validate the credential and cache the

result, and render embedded identity information (e.g., an X.500 Distinguished

Name such as /O=UCSD/OU=LOA1/OU=Dorian/CN=bdemchak) for use in policy

expressions. Authorization services return the mapping between roles,

permissions, and user identities stored in caBIG’s Grouper system, which is

234

maintained by caBIG’s GAARDS-UI user interface. They return the mapping in

an XML form augmented with information that assists in policy calculations.

Note that PALMS’ credential and authorization services do not

generate an X.509 credential. Such credentials are generated on behalf of

clients of the PALMS service (via calls to caBIG Dorian APIs), and are included

in all interactions with the PALMS SDC (as described in Section 5.5.2). The

credential is saved as state in the Workflow SIV (as described in Section

5.5.4.3), where it is available to policies executing under the Policy Evaluator

service.

5.6.1.3.1 Roles and Permissions under Grouper

Grouper is a general use Internet2 repository that organizes users and

permissions into groups. Under Grouper, groups can include other groups (by

reference), and can be hierarchically defined. Grouper enables credentialed

access and maintenance of group nodes, thereby enabling group

Service/

 Data

Connector

Credentials

Credential

Manager

Service/

 Data

Connector

Authorization

Authorization

Manager
GrouperGAARDS-UI

Event

Logger

Service/

 Data

Connector

Policy

Evaluator

Policy

Repository

PALMS Policy System

Context

Management

Policy

Evaluator

Interaction

Repository

Authoring

System

Figure 38. PALMS Credentials and Authorization Services

235

management by individuals on behalf of virtual organizations (VOs), examples

of which include staff and participants in a PALMS study or associates of an

investigator.

PALMS leverages Grouper (as shown in Figure 40) to enable decisions

based on a user’s membership in a role in a study group or VO. Additionally,

decisions can be based on the user having permissions associated with one or

more roles, and on the user being included in an access control list (ACL) for a

study object (e.g., a Result Set).

Roles for study groups are organized under the StudiesBranch, where

each study group can have a number of roles (e.g., PI, Manager, Helper,

Guest), and a user can be a member of any role (as exemplified in Figure 39).

The roles for a particular study group are defined by PALMS administrators and

users according to the requirements for studies in that group. Additionally,

roles can have sub-roles as organized in a Composite pattern [33] (e.g., under

Helper, sub-roles Day and Night for shift workers) as required to define policy

predicates with fine granularity.

236

As a matter of convention, a user is considered to have a particular

role if it is associated with that role or any of its subroles. For example, a test for

a user having the Helper role returns positive if the user actually holds the

Helper:Day role, though the converse is not true. This enables fine grained role

predicates.

Roles for virtual organizations are organized under the

OrganizationsBranch, where an organization is simply a group of stakeholders

having similar interests or common relationships. As with study groups,

organization roles are organized into a hierarchy following the Composite

pattern. Examples of organizations include PowerUser and Barry, where

PALMS

Studies Orgs

StudyA

StudyB

PI Mgr Guest

PI Mgr
Helper

Barry

Power

User

Friend Mentor

Scientist Student

NightDay

Figure 39. PALMS Role Ontology

237

PowerUser may include Scientist and Student roles, and Barry may include

Mentor and Friend roles.

The focus of study group roles is to enable, constrain, or qualify activities

performed in the course of conducting a study (e.g., deleting data). The focus

of organization roles is to enable activities outside of a study’s operations. For

example, organizational roles can be used to implement various data sharing

models, including a coarse model (i.e., people who can view data vs those

that can’t) or a concentric model (i.e., people who can view a constrained

version of the data, people who can view full data, and people who can

view and modify data).

Roles can be associated with lists of permissions, where a permission is a

token assigned a meaning important to a policy decision (e.g., p_AddStudy).

Permissions are defined within permission lists under the PermissionsBranch (in

Figure 40), and permission lists can contain permission lists according to a

Composite pattern. A predicate that tests for a user having a permission

essentially tests whether any of the user’s roles (e.g., relative to the current

study’s study group or relative to any organization to which the user belongs)

are associated with the permission.

Writing policy predicates that test for permissions enables flexibility in

structuring and maintaining role complex hierarchies for study groups and

organizations without affecting existing policies. However, the tradeoff is

complexity in maintaining the association between roles and permissions.

238

For example, the control policy example in Section 5.6.1.1 makes a

decision (subject-in-study-role('PI')) based on whether the current user is

a member of the PI role for the study group containing the current study. An

alternative would be a decision based on a permission (e.g., p_ListStudies)

using an expression such as ('p_ListStudies' = permissions-for-subject-

in-study-role()), where permissions-for-subject-in-study-role() returns

a list of permissions associated with the current user’s roles in the current

study’s study group3.

Permission-based decisions enable the flexible assignment of

permissions to roles without hard-coding role names in policy expressions, and

they simplify policy expressions by allowing a decision based on the user’s

having any of the roles associated with a permission, instead of having to

enumerate these roles.

Currently, PALMS provides no means for users to delegate their roles or

permissions to other users.

3
 Note that the XQuery ‘=’ operator returns true if a string is contained in a list of strings.

239

Figure 40. Simplified PALMS Grouper Tree

240

G
ro

u
p

e
r

O
rg

a
n

iz
a

ti
o

n
s

B
ra

n
c

h
P

e
rm

is
s

io
n

s
B

ra
n

c
h

A
C

L
B

ra
n

c
h

S
tu

d
ie

s
B

ra
n

c
h

S
tu

d
y
G

ro
u

p

-
n

a
m

e
:

 S
tr

in
g

A
C

L
S

tu
d

y

-
st

u
d

y
:

 G
U

ID

P
e

rm
is

s
io

n
C

o
m

p
o

s
it

e

O
rg

R
o

le

-
n

a
m

e
:

 S
tr

in
g

O
rg

R
o

le
C

o
m

p
o

s
it

e O
rg

P
e

rs
o

n

-
n

a
m

e
:

 X
5

0
0

D
N

P
e

rm
is

s
io

n

-
n

a
m

e
:

 S
tr

in
g

P
e

rm
is

s
io

n
L

is
t

-
n

a
m

e
:

 S
tr

in
g

S
tu

d
y
R

o
le

C
o

m
p

o
s

it
e

S
tu

d
y
P

e
rs

o
n

-
n

a
m

e
:

 X
5

0
0

D
N

S
tu

d
y
R

o
le

-
n

a
m

e
:

 S
tr

in
g

O
rg

a
n

iz
a

ti
o

n

A
C

L
O

b
je

c
t

P
e

rm
is

s
io

n
A

s
s

o
c

ia
ti

o
n

P
e

rm
is

s
io

n
U

s
e

r

P
e

rm
is

s
io

n
P

e
rs

o
n

-
n

a
m

e
:

 X
5

0
0

D
N

*
*

*

*

*

*

*

*

*

* * *

241

Finally, individual users and groups of users can be assigned particular

permissions relative to specific study objects (e.g., the ResultSet repository or a

particular result tracked by that repository) by creating a

PermissionAssociation under the ACLBranch (of Figure 40). A predicate that

tests for a user having a permission evaluates ACLs (in addition to permissions

granted in the StudiesBranch and OrganizationsBranch) if the predicate

identifies a study and object.

PALMS’ use of the Grouper database combines roles as defined by

standard RBAC with permissions of a standard ACL model, thereby enabling

choice and flexibility in maintaining role hierarchies and in tailoring policy

predicates to match stakeholder requirements. To that end, it improves on the

standard RBAC model by enabling role hierarchies and combining RBAC-

based permissions with ACL-style permissions.

5.6.1.3.2 Role and Permission Namespace

A role or permission identified in a predicate names a node under a

main branch of the Grouper tree (e.g., StudiesBranch). In general, a node’s

full name is formed by a “:” followed by the names of all ancestor nodes,

separated by “:”.

For example, a role Helper in a study group StudyB would have the full

name :StudyB:Helper and would be contained under the StudiesBranch.

Sub-roles Day and Night for Helper would have the full names

:StudyB:Helper:Day and :StudyB:Helper:Night. As a shorthand, a study

242

group role can be interpreted relative to the study group of the current study

by leaving off the initial “:”, the study group name, and its “:” separator. For

example, if the current study’s study group is StudyB, the full names above

could be abbreviated Helper, Helper:Day and Helper:Night. Thus, with the

simple predicate example given in Section 5.6.1.1, the PI role is interpreted

relative to the study group for the current study.

As a matter of convention, a user holding a role assumes all permissions

associated with that role, and for all ancestor roles. For example, a user

associated with a Helper role holds permissions associated with the Helper

role, but not the Day subrole. A user associated with the Day subrole holds Day

permissions and Helper permissions, but not Night permissions. This enables the

differentiation of roles and permissions by sub-role, thereby enabling fine

grained role and permission predicates.

When predicates involve checking for multiple roles (i.e., any roles or all

roles) in a list, the roles can be enumerated in a comma-separated list. For

example: Helper:Day, Helper:Night.

Identical rules hold for predicates on roles under the

OrganizationsBranch, except all names must be full names (e.g.,

:Barry:Collaborators), as there is no default organization node in any

context.

For permissions, all names must be full names under the

PermissionsBranch, formed as “:” followed by a “:”-separated list of

243

permission list names, and ending with the name of a permission. This allows

the disambiguation of identical permission names used in different permission

hierarchies. Examples of permission names include

:StudyPermissions:Admin:addStudy and :StudyPermissions:viewStudy. By

convention, associating a permission list with a role gives the role all

permissions present in ancestor lists. Using the example above, associating the

:StudyPermissions:Admin permission list with a study group’s PI role gives PI

users the addStudy and viewStudy permissions.

5.6.2 Policy Repositories and Authorship

As described in Section 5.6 (and shown in Figure 31), the policy system

contains the Interaction Repository, a Policy Repository, and an Authoring

System. The Interaction Repository implements the abstraction of service

interaction identification described in Section 4.2.2. The Policy Repository

implements the policy abstractions described in Sections 4.2.3, 4.2.4, and 4.2.6.

The Authoring System allows policies to be defined and maintained.

This section describes the implementation of each of these abstractions

specific to PALMS-CI use cases. Section 5.6.2.1 describes how the Interaction

Repository maintains service interaction information tailored to the

implementation of the PALMS-CI on the Mule ESB. Section 5.6.2.2 explains how

the Policy Repository implements control, filter, and composition policies

responsive to the PALMS concept of study groups. Finally, Section 5.6.2.3

describes PALMS’ simple system for editing and staging policy information.

244

5.6.2.1 The Interaction Repository

The Interaction Repository represents a collection of service interaction

definitions, which identify candidates for policy injection. An interaction

definition is a tuple consisting of:

 Location is a unique, human-readable name by which policies can

identify their injection site

 Source Service is endpoint that emits a message intercepted by a

control or pre-filter policy – for a post-filter, it is the endpoint that

receives the message

 Target Service is endpoint that receives a message intercepted by a

control or pre-filter policy – for a post-filter, it is the endpoint that emits

the message

 Return Message Type hints the type of the reply message expected by

the Source Service in a request/reply interaction

The Interaction Repository accesses interaction tuples stored in the

interactions.properties property file in tag format. A sample interaction tuple is:

 Interaction1.location = Get Study List (Repository)

 Interaction1.sourceService = vm://PALMS.ListStudies.queue

 Interaction1.targetService = vm://PALMS.StudyRepository.queue

 Interaction1.returnMessage = org.palms.messages.GetStudyListResult

The Interaction Repository reads and caches the property file at system

startup time, and it presents a service that returns an interaction that matches

both a Source Service and Target Service key.

While the interaction tuple identifies service endpoints (as Mule queue

names), it does not describe either the input or output channels, including

their type, content, or semantics. Furthermore, considering that the interaction

itself may be part of a larger protocol, the channel contents may change

depending on the state of the protocol. Channel contents are defined and

245

enforced by services themselves, and form a service contract that can be

complex, and the description of which is not addressed in this dissertation, but

is considered further in Section 7.8.1.

In PALMS, interactions appear once in a workflow, so all protocols are

simple request/reply interactions. Nevertheless, a workflow can occur more

than once in the context of a higher level workflow. When policy is injected

into a workflow, the policy itself can keep state that enables it to make

decisions appropriate to the channel definitions for the interaction at the time

the policy executes, per Section 5.5.4.3.

Given that PALMS interactions typically follow a request/reply pattern,

the Return Message Type enables a control policy to return a service

appropriate for multiple interactions. The service uses the Return Message

Type to determine the type of response that can fulfill the interaction with the

Source Service. Using the example in Section 5.5.3.1 (and as shown in Figure

37), if the Return Message Type is GetStudyListResult, the workflow returned

by the control policy must return an instance of GetStudyListResult to satisfy

the interaction service contract.

An error handler is an example of a workflow the can be returned by a

control policy. As a practical matter, most PALMS messages extend the

PALMSResult class, and are defined to contain only PALMSResult members

when an error occurs. An error handler service returns a response of type

Return Message Type, with the PALMSResult members set.

246

Note that if the service returned by a control policy is unable to fulfill

the service contract, it is likely due to a mismatch between the application

requirements and the services available to fulfill them. Consequently, this is a

signal that the base workflow must evolve before a requirement can be

injected, or that the injected service may require helper services. These

evolution and mitigation paths are beyond the scope of this dissertation, but

are considered further in Section 7.8.3.

5.6.2.2 The Policy Repository

The Policy Repository represents a collection of policies, including

control, filter, and composition policies, each of which identifies the service

interaction to which it applies. Because PALMS requirements include the ability

to impose separate policies on separate domains (studies, study groups, and

the PALMS system as a whole), policies are grouped according to domain (as

shown in Figure 41):

 PALMS policies apply to interactions in workflows that serve studies and

those that maintain system-level resources, including devices and

calculations.

 Study Group policies apply to interactions serving studies. Policies for a

particular study group apply to all studies in the study group (as defined

in Section 5.6.1.3.1).

 Study policies apply to interactions serving particular studies.

 Composition policies combine multiple PALMS, Study Group, and Study

policies defined on a single interaction (per Section 4.2.7).

247

Within each domain, policies are grouped as to purpose and form for

maintenance convenience. A policy can be expressed as a standalone

XQuery expression with metadata, or can reference a template (which

contains the XQuery expression and metadata) and provide fillin parameters.

Policy groupings include:

 Access Control includes control policies that implement access control

 Audit includes filter policies that implement auditing functions

 Policy includes any control and filter policies (for the PALMS, Study

Group, and Study domains) or control and filter composition policies

(for the Composition domain)

Note that the list of policy domains and the grouping of policies reflects

the circumstances under which policies are executed or maintained, and

Figure 41. PALMS Policy Domains

Manifest

Composition Domain PALMS Domain Study Group Domain

- groupName: String

Study Domain

- studyID: GUID

Policy Audit Access Control

Template

Policy Set

Interaction

Interaction Repository

* *

*

248

therefore address stakeholder concerns expressed by PALMS system

administrators. They have no effect on policy meaning or execution

mechanics, which are described in Sections 4.2 and 5.6.3.

All policies are stored in property files in tag file format. Policy files are

indexed in a manifest property file, also in tag file format, where the index keys

are domain and category, and the Study Group and Study domains are sub-

indexed by the name or GUID of particular study groups and studies. A

sample manifest is:

palms.palms.accesscontrol = palms.accesscontrol.properties

palms.palms.policy = palms.policy.properties

palms.palms.template = palms.template.properties

palms.palms.audit = palms.audit.properties

studygroup.TestGroup.accesscontrol = \

 TestGroup.accesscontrol.properties

studygroup.TestGroup.policy = TestGroup.policy.properties

studygroup.TestGroup.template = TestGroup.template.properties

studygroup.TestGroup.audit = TestGroup.audit.properties

studygroup.CWPHS.accesscontrol = CWPHS.accesscontrol.properties

studygroup.CWPHS.policy = CWPHS.policy.properties

studygroup.CWPHS.template = CWPHS.template.properties

studygroup.CWPHS.audit = CWPHS.audit.properties

study.d182a31a-2003-4aa7-8d60-622ecd.accesscontrol = \

 d182a31a-2003-4aa7-8d60-622ecd.accesscontrol.properties

study.d182a31a-2003-4aa7-8d60-622ecd.policy = \

 d182a31a-2003-4aa7-8d60-622ecd.policy.properties

study.d182a31a-2003-4aa7-8d60-622ecd.template = \

 d182a31a-2003-4aa7-8d60-622ecd.template.properties

study.d182a31a-2003-4aa7-8d60-622ecd.audit = \

 d182a31a-2003-4aa7-8d60-622ecd.audit.properties

study.86e822ca-f21f-4834-a5f4-8522f7.accesscontrol = \

 86e822ca-f21f-4834-a5f4-8522f7.accesscontrol.properties

study.86e822ca-f21f-4834-a5f4-8522f7.policy = \

 86e822ca-f21f-4834-a5f4-8522f7.policy.properties

study.86e822ca-f21f-4834-a5f4-8522f7.template = \

 86e822ca-f21f-4834-a5f4-8522f7.template.properties

study.86e822ca-f21f-4834-a5f4-8522f7.audit = \

 86e822ca-f21f-4834-a5f4-8522f7.audit.properties

composition.composition.accesscontrol = \

 composition.accesscontrol.properties

249

composition.composition.policy = composition.policy.properties

composition.composition.template = composition.template.properties

composition.composition.audit = composition.audit.properties

The PALMS policy domains correspond to groups of stakeholders that

can contribute policies for evaluation, including system administrators

(PALMS), principle investigators (Study Group and Study), and PALMS

programmers (Composition). Domains exist as a consequence of being

identified in the Manifest, being tracked and returned by the Policy

Repository, and being selected by Composition policies (as described in

Section 5.6.2.2.4). Enabling PALMS to evaluate policies submitted by arbitrary

groups of stakeholders is feasible by upgrading the Manifest parsing and

repository tracking, and changing applicable Composition policies.

250

5.6.2.2.1 Control Policies

A control policy is a triple consisting of a policy name, an XQuery

expression, and the name of the interaction to which it applies. As described

in Section 4.2.3, the XQuery expression returns the service to execute. By

convention, returning an empty service selects the interaction’s default target

service.

A control policy can be expressed in one of three formats, each of

which responds to different authorship intent. In the simplest and most general

format, the XQuery expression is specified directly (e.g., a control policy

injected into the interaction (in Figure 37)):

 GetStudyListPolicy.location = Get Study List (Repository)

 GetStudyListPolicy.capability = Get a study list (control)

 GetStudyListPolicy.controlExpression = \

 if (palms:subject-in-study-role('PI') then () \

 else palms:control-error('Invalid role for this operation')

The .location matches the name of an interaction managed by the

Interaction Repository (per Section 5.6.2.1). The .capability names the policy

for reference in policy execution logs and in error messages. The

.controlExpression is the XQuery expression to execute – in this example, it

uses an XQuery library function to determine whether the current user has the

PI role for the study group containing the current study. If so, it returns an

empty service, indicating that the target service is the interaction’s target

service. Otherwise, it returns a service calculated by the control-error

XQuery library function, which returns an error result. The .controlExpression

251

can return any service that fulfills the interaction source service’s contract,

and can be based on any calculation.

A more complex policy might involve a compound predicate, an

XQuery FLWR construct, an entire XQuery function body, or XQuery function

declarations and usage. An example of a compound access control

predicate is:

 if ((palms:subject-in-study-roles('Researcher,PI')

 or (palms:subject-in-org-role(':Barry:Collaborator:Close'))

 and palms:has-acl-permission('p_peek_list'))) then ()

 else palms:control-error

 ('Insufficient permissions for this operation.')

where access is granted if the current user has the p_peek_list permission as

a consequence of any roles it holds, and the user either holds the Researcher

and/or PI roles for the current study or is one of Barry’s close collaborators.

Note that it is possible to define policies on interactions that result from

a control policy evaluation. In the examples above, the policies are defined

on the interaction, but may result in a

 interaction if the control-error() function returns

a reference to the PolicyError service (as in Section 5.6.3.2). Such a policy

would be defined directly on the interaction.

252

For convenience, a second control policy format assumes that the

alternate workflow returns an error (as in the example above), and involves

breaking the control expression into a predicate and an error without

manually forming a complete XQuery expression:

 GetStudyListPolicy.location = Get Study List (Repository)

 GetStudyListPolicy.capability = Get a study list (control)

 GetStudyListPolicy.controlExpression = \

 palms:subject-in-study-role('PI')

 GetStudyListPolicy.controlErrorMessage = \

 'Invalid role for this operation'

The complete error expression is formed by the Policy Repository by

combining the template’s .controlErrorMessage with the literal value

“palms:control-error”, and the entire control expression is formed by

combining the .controlExpression predicate with the literals “if” and “then

() else“. In this example, the result is the .controlExpression in the triple in

the example above.

For access control policies, a third form of a control policy is a template

reference, where the template may be shared amongst several access

control policies and configured via fillin parameters. The template facility is

provided as a convenience supporting optimized production of access

control policies – once a template exists, it can to generate an access control

policy by supplying parameter values appropriate for the policy.

253

An example of the template-based access control policy (which

generates the policy above) is:

 GetStudyListPolicy.templateReference = GetStudyListTemplate

 GetStudyListPolicy.templateParameter.RoleList = PI

The .templateReference refers to a group of attributes in the template

(i.e., the GetStudyListTemplate group). The .templateParameter entries

identify key names and values for substitution into the template’s control

expression (i.e., RoleList is the key, and PI is the value). There can be multiple

.templateParameter entries if the template accepts multiple substitutions.

The accompanying template could be:

 GetStudyListTemplate.location = Get Study List (Repository)

 GetStudyListTemplate.capability = Get a study list (control)

 GetStudyListTemplate.controlErrorMessage = \

 Invalid role for this operation

 GetStudyListTemplate.controlExpression = \

 palms:subject-in-study-role ('%RoleList%')

 GetStudyListTemplate.paramList = RoleList

The policy’s .location and .capability attributes are fetched directly

from the template’s .location and .capability attributes.

The control expression predicate is formed by inserting parameter

values listed in the reference’s .templateParameter (e.g., RoleList = PI) into

the template’s .controlExpression (e.g., at %RoleList%). The template’s

.paramList enumerates the list of required parameters. As in the examples

above, if the .controlErrorMessage is present, the full control expression is

formed by combining the .controlExpression with the

254

.controlErrorMessage. Otherwise, the .controlExpression is assumed to

contain the entire control expression.

Policies that don’t fit the access control template mechanism can be

defined as a standard control policy triple. The use of access control

templates does not preclude the processing of other templates for other

purposes, but such template processing would first need to be added to

PALMS.

5.6.2.2.2 Filter Policies

A filter policy is a four element tuple consisting of a policy name, an

XQuery expression, the name of the interaction to which it applies, and filter

library support. As described in Section 4.2.4, a filter policy returns a service

that transforms an input message into a new message . Under PALMS, the

filter expression also executes the filter, thereby effecting the message

transformation – the filter expression is free to return the original message if

no transformation is appropriate. An example of an output filter policy

injected into the interaction (in Figure 36) is:

 GetStudyListPolicy.location = Get Study List (Repository)

 GetStudyListPolicy.capability = Get a Study List (filter)

 GetStudyListPolicy.outFilterExpression = \

 palms:(:NameSpace-~:)(:~-NameSpace:)filter-by-role('PI')

 GetStudyListPolicy.outFilterSupportFile = FilterRemove.support.xq

 GetStudyListPolicy.outFilterSupportParameter.1 = studies/studyList

 GetStudyListPolicy.outFilterSupportParameter.2 = studyRow/rowValue

The .location matches the name of an interaction managed by the

Interaction Repository (per Section 5.6.2.1). The .capability names the policy

255

for reference in policy execution logs and in error messages. The

.outFilterExpression is the XQuery expression to execute – in this example, it

uses the filter-by-role() function, which is implemented as a support

function (described below) in an XQuery library; it eliminates all studies where

the current user is not listed as one of the study’s PIs.

(The (:NameSpace-~:)(:~-NameSpace:) construct is described further in

Section 5.6.2.2.4, and can be ignored in the discussion of filter policies.)

Note that the examples in this section apply to post-filters, as indicated

by each of the attribute names starting with .outFilter. The discussion

applies equally well to pre-filters, whose attribute names start with .inFilter

instead.

Note that a filter can be defined as a template reference in a manner

analogous to template references described in Section 5.6.2.2.1.

The filter-by-role() function assumes that the message has been

transformed from its normal Java object form to an XML form. It then uses

XQuery operators and PALMS XQuery library functions to:

 find each study in the XML document

 find the study group associated with the study

 determine whether the current user’s X.500 identity is contained in any

of the roles listed in the role parameter (i.e., PI in this example)

 drop any studies where the user does not have one or more roles

 return a new XML document containing studies that were not dropped

256

The XML document produced by the function is transformed to its

normal Java object form, and forwarded to the interaction’s target service. A

simplified example of an XML document corresponding to the Java object

produced by the Study Repository list function is:

 <org.palms.ListStudyResult>

 <studies>

 <studyList>

 <studyRow>

 <rowValue>

 <entry>

 <string>studyid</string>

 <string>Study1A2B3C</string>

 </entry>

 <entry>

 <string>groupname</string>

 <string>TestGroup</string>

 </entry>

 </rowValue>

 </studyRow>

 </studyList>

 </studies>

 </org.palms.ListStudyResult>

where a <studyRow> element exists for each study.

A filter function such as filter-by-role() is defined in a filter support

file named by the .outFilterSupportFile attribute. The support file contains

all of the XQuery support needed to define and execute the function. The

filter-by-role() function is parameterized to be flexible regarding where in

the XML document it looks for a list of study elements, and where to find a

study group within a study element. Such parameters are considered part of

the support file definition, and are expressed as .outFilterSupportParameter

attributes. In the filter-by-role() example, .outFilterSupportParameter.1

indicates the element containing a study list (e.g., studies/studyList), and

257

.outFilterSupportParameter.2 indicates the sub-element containing the

study group (e.g., studyRow/rowValue). A given filter function may have its

own support file and parameter set.

Note that the process of parameterizing a filter depends on the XQuery

language support provided by the XQuery processor. For PALMS, the XQuery

processor is Saxon, which provides different language support depending on

the license purchased. Paid versions of Saxon provide functional language

programming constructs that enable function customization at runtime. The

free version is used by PALMS, and such constructs are not available. PALMS

overcomes this by rewriting the function immediately before execution, with

parameter values substituted directly into the function text. A simplified version

of the filter-by-role() function (shown without other supporting functions) is

an example of this:

 declare function palms:filter-by-role($Roles as xs:string) as

node() {

 palms:substitute($Message/*[1]/(:1-~:)study list param(:~-1:),

 palms:select-children-by-role(

 $Message/*[1]/(:1-~:)study list param(:~-1:)/*,

 "groupname",

 $Role))

 };

258

The substitution site for parameter 1 (i.e.,

.outFilterSupportParameter.1) is bracketed by (:1-~:)…(:~-1:); the site for

parameter 2 is bracketed by (:2-~:)…(:~-2:) and so on. The result of the

substitution for the example (with substitution sites in bold) above would be:

 declare function palms:filter-by-role($Roles as xs:string) as

node() {

 palms:substitute($Message/*[1]/studies/studyList,

 palms:select-children-by-role(

 $Message/*[1]/studies/studyList/*,

 "groupname",

 $Role))

 };

5.6.2.2.3 Policy Packages

When a requirement calls for the implementation of more than one

policy on one or more service interactions (as described in Section 7.4.1),

defining each policy independently is effective, but fails to establish that the

policies are related. This leads to either external documentation, which

atrophies, or policy maintenance errors. PALMS addresses this in a primitive

way by grouping related policies together as a policy package. Each policy

in a package is called a sub-policy and is named distinctly from other sub-

policies in the package. But for their grouping with other sub-policies, a sub-

policy is a complete control or filter policy as shown in Figure 42.

259

Figure 42. Policy Package

260

P
o

li
c

y
 B

a
s

e

-
n

a
m

e
:

 S
tr

in
g

P
o

li
c

y
 P

a
c

k
a

g
e

-
c
a

p
a

b
il

it
y
:

 S
tr

in
g

-
p

a
ra

m
e

te
rs

:
 M

a
p

<
S

tr
in

g
,S

tr
in

g
>

P
o

li
c

y

-
c
a

p
a

b
il

it
y
:

 S
tr

in
g

-
lo

c
a

ti
o

n

C
o

n
tr

o
l

P
o

li
c

y
P

re
-f

il
te

r
P

o
s

t-
fi

lt
e

r

F
il

te
r

-
fi

lt
e

rS
u

p
p

o
rt

F
il

e
:

 S
tr

in
g

-
fi

lt
e

rS
u

p
p

o
rt

P
a

ra
m

e
te

rs
:

 M
a

p
<

S
tr

in
g

,S
tr

in
g

>

X
Q

u
e

ry

E
x

p
re

s
s

io
n

T
e

m
p

la
te

 R
e

fe
re

n
c

e

-
p

a
ra

m
e

te
rs

:
 M

a
p

<
S

tr
in

g
,S

tr
in

g
>

T
e

m
p

la
te

-
p

a
ra

m
L

is
t:

S

tr
in

g

E
rr

o
r

M
e

s
s

a
g

e

0
..

1
0

..
1

0
..

1

S
u

b
P

o
li

c
y

*

0
..

1

re
fe

re
n

c
e

s

261

For example, combining the control and post-filter policies from

Sections 5.6.2.2.1 and 5.6.2.2.2 would result in the following:

 GetStudyListPolicy.capability = Get a study list (package)

 GetStudyList.templateParameter.RoleList = PI

 GetStudyListPolicy.subpolicy.p1.location = \

 Get Study List (Repository)

 GetStudyListPolicy.subpolicy.p1.capability = \

 Get a study list (control)

 GetStudyListPolicy.subpolicy.p1.controlExpression = \

 if (palms:subject-in-study-role(%RoleList%) then () \

 else palms:control-error('Invalid role for this operation')

 GetStudyListPolicy.subpolicy.p2.location = \

 Get Study List (Repository)

 GetStudyListPolicy.subpolicy.p2.capability = \

 Get a study list (filter)

 GetStudyListPolicy.subpolicy.p2.outFilterExpression = \

 palms:(:NameSpace-~:)(:~-NameSpace:)filter-by-role(%RoleList%)

 GetStudyListPolicy.subpolicy.p2.outFilterSupportFile = \

 FilterRemove.support.xq

 GetStudyListPolicy.subpolicy.p2.outFilterSupportParameter.1 = \

 studies/studyList

 GetStudyListPolicy.subpolicy.p2.outFilterSupportParameter.2 = \

 studyRow/rowValue

Specifically, the GetStudyListPolicy.capability names the policy

package, and each sub-policy (e.g., p1 and p2) can be injected onto a

different interaction, named by its own .location attribute. Note that the

GetStudyList.templateParameter attribute provides fillin values (e.g.,

RoleList = PI) useful in maintaining consistency in sub-policies – they are

named and used in the same way as the template parameters described in

Section 5.6.2.2.1.

Policy packages can contain policy packages according to a

Composite pattern. When a fillin value is evaluated, the .templateParameter

262

attribute for the closest parent policy package is used – it overrides all

ancestor .templateParameter attributes.

5.6.2.2.4 Composition Policies

A composite policy is a tuple consisting of between two and eight

elements, including a policy name and the name of the interaction to which it

applies, as with control and filter policies described in Sections 5.6.2.2.1 and

5.6.2.2.2. As described in Section 4.2.7, a composition policy determines the

effective policy when multiple policies are defined on the same service

interaction. A separate composition policy is defined for control, pre-filter, and

post-filter policies.

For control policies, a composition policy’s

.controlCompositionExpression attribute defines the composition function

(as an XQuery expression), and its .controlCompositionSupportFile attribute

identifies the library file (if any) containing the composition function and/or

the XQuery functions that support it.

Similarly, the .inFilterCompositionExpression and

.outFilterCompositionExpression attributes defines the composition

functions for pre-filters and post-filters, and the

.inFilterCompositionSupportFile and .outFilterCompositionSupportFile

attributes identify the library file supporting functions.

263

An example of a composition policy specification is shown below. It

defines composition policies for control, pre-filter, and post-filter policies:

 Comp1.location = Get Study List (Repository)

 Comp1.capability = Get a study list

 Comp1.controlCompositionExpression = local:compose-unanimous()

 Comp1.controlCompositionSupportFile = ControlComposition.support.xq

 Comp1.inFilterCompositionExpression = local:compose-all()

 Comp1.inFilterCompositionSupportFile = \

 InFilterComposition.support.xq

 Comp1.outFilterCompositionExpression = local:compose-all()

 Comp1.outFilterCompositionSupportFile = \

 OutFilterComposition.support.xq

The parameters for a control composition policy are defined by the

control policies associated with the service interaction. For example, if there

are two control policies bound to the Get Study List (Repository)

interaction, the control expressions for each policy would be parameters to

the control composition expression.

As with filter policies (described in Section 5.6.2.2.2), the Saxon XQuery

processor used by PALMS does not support functional programming, so

control expressions cannot be passed directly as parameters. Instead, before

a composition function is executed, its supporting library is rewritten to contain

each control expression. The control composition then:

 chooses which control policy to execute

 executes the control policy

 returns the target service the control policy calculates

A similar process is undertaken for filter composition functions. However,

because a filter support file itself is customized by rewriting it with filter

parameters (as described in Section 5.6.2.2.2), the customized filter is included

264

in the rewritten filter composition support library. Different instances of filter

support are distinguished by assigning a unique local namespace identifier

(e.g., N1-, N2-, etc) to each instance’s global identifiers (such as helper

function names) and references (e.g., calls to helper functions).

Consequently, filter functions (including filter expressions in filter policies)

contain markers (:NameSpace-~:)(:~-NameSpace:) indicating sites for this

namespace insertion.

For example, the full .outFilterExpression associated with the

GetStudyListPolicy is:

 palms:(:NameSpace-~:)(:~-NameSpace:)filter-by-role('PI')

and the full filter-by-role() function is:

 declare function palms:(:NameSpace-~:)(:~-NameSpace:)filter-by-role

 ($Roles as xs:string) as node() {

 palms:(:NameSpace-~:)(:~-NameSpace:)substitute(

 $Message/*[1]/(:1-~:)study list param(:~-1:),

 palms:(:NameSpace-~:)(:~-NameSpace:)select-children-by-role(

 $Message/*[1]/(:1-~:)study list param(:~-1:)/*,

 "groupname",

 $Role))

 };

The rewritten expression is:

 palms:N1-filter-by-role('PI')

and the rewritten function is:

265

 declare function palms:N1-filter-by-role($Roles as xs:string) as

node() {

 palms:N1-substitute($Message/*[1]/(:1-~:)study list param(:~-1:),

 palms:N1-select-children-by-role(

 $Message/*[1]/(:1-~:)study list param(:~-1:)/*,

 "groupname",

 $Role))

 };

Note that if control or filter policies are defined on a service interaction,

but without a complimentary composition policy or without a corresponding

Interaction Repository entry, the Policy Evaluator will report an error.

A simplified example of a control composition policy (compose-

unanimous(), shown below) composes two control policies, where if one

policy returns a replacement service, the second policy is not evaluated. If

either policy returns a replacement service, the service will be used instead of

the base workflow service.

266

 declare variable $Policies as element()* :=

 <policies>

 <policy name="(:Name1-~:)(:~-Name1:)" valid="

 (:Valid1-~:)(:~-Valid1:)"/>

 <policy name="(:Name2-~:)(:~-Name2:)" valid="

 (:Valid2-~:)(:~-Valid2:)"/>

 </policies>;

 declare function local:policy-names() as xs:string* {

 for $policy in $Policies/policy

 return if ($policy/@valid = "") then $policy/@name else ()

 };

 declare function local:policy1() as item()* {

 (:Text1-~:)'undefined1'(:~-Text1:)

 };

 declare function local:policy2() as item()* {

 (:Text2-~:)'undefined2'(:~-Text2:)

 };

 declare function local:exec-policy($PolicyName as xs:string)

 as item()* {

 if ($PolicyName = "(:Name1-~:)(:~-Name1:)")

 then local:policy1()

 else if ($PolicyName = "(:Name2-~:)(:~-Name2:)")

 then local:policy2()

 else ()

 };

 declare function local:execute-policy-sequence(

 $PolicyNames as xs:string*,

 $ReturnVal as item()*) as item()* {

 if (fn:empty($PolicyNames) or fn:count($ReturnVal) > 0)

 then $ReturnVal

 else local:execute-policy-sequence(

 fn:remove($PolicyNames, 1),

 local:exec-policy($PolicyNames[1]))

 };

 declare function local:compose-unanimous() as item()* {

 local:execute-policy-sequence(local:policy-names(), ())

 };

As described above, the control composition policy is formed by

inserting each control policy via a rewriting operation, where markers in the

form of pre-defined comments indicate insertion sites. Comments of the form

(:Name1-~:)(:~-Name1:) indicate sites in which a policy name is inserted;

267

comments of the form (:Valid1-~:)(:~-Valid1:) indicate sites that mark

valid substitutions; and comments of the form (:Text1-~:)(:~-Text1:)

indicate sites in which policy text is inserted.

The compose-unanimous() function uses the policy-names() function to

collect a list of valid control policies, then uses the execute-policy-

sequence() function to choose which policies to evaluate, and finally, uses the

exec-policy() to evaluate a control policy. The sample composition policy

accommodates only two control policies – actual composition policies can

accommodate any fixed number of policies (by adding more insertion sites).

Filter composition policies use similar techniques.

5.6.2.3 The Authoring System

PALMS policies are stored in a Policy directory and are organized as

text-based property files per Section 5.6.2.2. They are read and cached by the

Policy Repository service when the PALMS Policy System (described in Section

5.6) starts, and the cache is periodically refreshed to capture changes in the

policy files. Policies read from this directory are expected to be syntactically

well formed, and if they are not, the PALMS system shuts down. Well-

formedness means that each property (attribute) can be parsed, and

template references can be resolved to templates actually defined.

Policy files are mirrored in a Policy_Staging directory, and are edited

there either with a standard text file editor or with a GUI utility. A policy author

can use a text file editor to replace a staged copy. The user can then execute

268

a maintenance utility that invokes a Policy Repository service that verifies well-

formedness of all staged files. The service either returns an error or copies

staged files to the Policy directory, where the Policy Repository can read them

and put them into effect.

PALMS exposes services that allow a GUI utility (under development) to

read and update template-based access control policies (as described in

Section 5.6.2.2.1), thereby allowing the GUI utility to display and assign roles to

access control checks on pre-defined service interactions. The GUI can

examine the template to determine its description (via its .capabilities

attribute) and the parameters it requires (via its .paramList attribute). Based

on these, the GUI utility presents access control as a relationship between user

identities and roles in the context of each interaction. This allows stakeholders

to configure policies without being exposed to the underlying policy

language. As such, the GUI is a high level DSL.

Policy development and debugging are discussed in Section 5.6.6.

Authorship of interaction tuples (in the interactions.properties file

described in Section 5.6.2.1) follows similar lines, where a text editor is used to

add, change, or delete interaction definitions, which are cached in the

Interaction Repository. The Interaction Repository’s interaction cache is

periodically refreshed to capture interaction tuple changes.

269

5.6.3 Policy Evaluator

The PALMS Policy Evaluator is a service injected into all PALMS service

interactions, as described in Section 5.5.4.1. It assumes a request/reply service

interaction where is the source service, is the target service, and messages

 and exchanged between and (as in Section 4.2.2):

 followed by

The reply interaction is optional, though most PALMS interactions

require it. (Messages and are instances of message from previous

discussions.)

The Policy Evaluator intercepts (outbound from) and returns

(inbound to) intuitively as follows:

The Policy Evaluator’s internal workflow consists of three main stages (as

shown in Figure 43):

 marshaling the policy execution context

 fetching the policies for the current interaction

 executing the policies.

The marshaling phase interacts with various PALMS and composed

services to collect information needed to fetch and execute policies. The

Interaction Repository (Section 5.6.2.1) returns the service contract that must

fulfill. The Credentials Repository (Section 5.6.1.3) returns the user’s identity (for

use in policy decisions), and the Authorizations Repository (Section 5.6.1.3)

270

returns the mapping between user identity, roles, and permissions. The Study

Repository returns the study group associated with the study ID contained in

message .

Fetching policies depends not only on the current interaction, but on

the study and study group associated with the interaction message – the

Policy Repository (Section 5.6.2.2) returns pre-filter, control, and post-filter

policies pertaining to the PALMS, study group, and study domains, and also

returns composition policies pertaining to the current service interaction.

Finally, the XQuery processor is called to execute the pre-filter, control,

and post-filter policies in order, thereby transforming message to message ,

and returning to . Filter and control policy evaluation are described in

Sections 5.6.3.1 and 5.6.3.2. Note that such policies are evaluated only in the

context of a composition policy, which evaluates any and all policies

appropriate for an interaction as described in Section 5.6.2.2.4. In this section,

filter and control policy evaluation is assumed to be within the context of an

appropriate composition policy. Note that if a policy is defined on an

interaction, PALMS requires that a corresponding composition policy be

defined on the interaction, too – if there is less or more, PALMS signals an error.

Because the Policy Evaluator is injected into every PALMS interaction, it

is possible that Policy Evaluator recursion could result during either the

marshaling activities or policy execution. Policy Evaluation during the

marshaling phase is an opportunity for infinite recursion – a Policy Evaluation

271

interacts with a repository, and the interaction results in a second Policy

Evaluation, which attempts the same repository interaction, thereby triggering

the infinite recursion. The Policy Evaluator prevents this by setting a lock in the

Policy SIV (described in Section 5.5.4.3), and checking the lock immediately

upon entry. If the lock is set, service is executed (and message is returned)

without any policy intervention – essentially, policies cannot be applied to

repository interactions conducted by the Policy Evaluator.

A Policy Evaluator execution consequent to policy execution is

desirable, as this amounts to policy on injected concerns. This does not result

in infinite recursion because an atomic (non-decomposed) service will

eventually be injected.

Note that Figure 43 shows marshaling operations performed in parallel –

no marshaling operation depends on another marshaling operation. In fact,

PALMS’ Policy Evaluator performs these operations serially as a coding

convenience. To execute in parallel (or to enable Policy Evaluator to function

in a multi-threaded workflow), the Policy SIV lock would have to be upgraded

to a semaphore.

272

5.6.3.1 Evaluation of Filter Policies

As described in Section 5.6.2.2.2, a pre-filter is evaluated in the same

way as a post-filter, with the difference being that a pre-filter transforms a

message passed to a service, and the post-filter transforms a message

returned from a service. In this section, the description of PALMS’ filter

Figure 43. PALMS Policy Evaluator

Intercept from P

Intercept to P

message a

message q

Policy Ev aluator

message a

message q

Get Lock Status

Execute Q

Execution Context

Marshal Execution Context

Execution Context

Execution Context,

Policies

Get Policies

Execution Context,

Policies

Execute Policies

message q'

pre-Filter Policy

message q' message a
Control Policy

message a
Post-filter

Policy message a'

Get Serv ice

Tracking

Get Serv ice

Interaction

Get

Authentication

Get Identity

Get Study

Group

Get StudyID Get

Authorizations

[Unlocked]

[Locked]

[Interaction Defined][No Interaction Defined]

273

processing applies equally to pre- and post-filters, which are composed using

pre- and post-filter composition policies (as in Section 5.6.2.2.4).

For a given service interaction, if a filter composition policy is defined,

all filter policies for the interaction are processed by the filter composition

policy to determine the effective filter expression. Considering that the Mule

ESB transports Java objects, and PALMS services process Java objects, a filter

expression transforms one Java object to another. The transformation occurs

as shown in Figure 44 (for pre-filters).

The XStream Java library [185] is used to convert the Java object to an

XML document, and the Saxon Java library is used to convert the XML

document to an internal Saxon format. The converted message and the

execution context are assigned to global variables in a Saxon context object,

ListStudies
Study

Repository

post-filter

Java
Object XML Xdm

Item Xdm
Item XML Java

Object

X
St

re
am

X
St

re
am

Sa
xo

n

Sa
xo

n

X
Q

ue
ry

Policy
(XQuery)

Execution
Context

pre-filter control

Figure 44. Filter Evaluation Sequence

274

and the policy expression is then evaluated by the Saxon XQuery parser. While

a null policy simply returns the converted message, a more substantial policy

(e.g. as in Section 5.6.2.2.2) returns a transformation of the converted

message, possibly using the execution context during the transformation.

Finally, the returned message is converted back to XML, and then back to a

Java object.

5.6.3.2 Evaluating Control Policies

Unlike a filter (which returns a message that is forwarded to a service), a

control policy returns the service to be executed next (per Section 5.6.2.2.1).

While the evaluation sequence for a control policy (as shown in Figure 45) is

similar to the sequence for a filter policy, a control policy returns an array of

Saxon-formatted values that may represent a workflow, and may be

configured in three ways:

 Null or empty – indicates that the default service should be executed

 Single string value – indicates the name of the Mule queue

corresponding to the service that replaces

o Optionally, an XML document contains a new message to

pass to the replacement service instead of the normal

interaction message , and is realized as a Java object using the

Saxon and XStream functions used during filter evaluation (as in

Figure 44)

275

Returning the optional XML document is functionally equivalent to

returning a dynamically constructed workflow that decomposes into two

services: a transformation of message to , followed by service .

Note that Section 4.2.3 calls for a control policy to return a workflow.

Because under Rich Services, a service itself can decompose into a workflow,

a policy can be said to inject either a service or, equivalently, a workflow.

Within this definition, there are no limitations on the calculation that can be

performed by the control policy decision expression, or on the activity of the

injected workflow. Furthermore, the injected workflow can be parameterized

or customized by the control policy, so long as it realizes the original service

contract.

ListStudies
Study

Repository
or [Service]

post-filter

Java
Object XML Xdm

Item Xdm
Value

X
St

re
am

Sa
xo

n

Sa
xo

n

X
Q

ue
ry

Policy
(XQuery)

Execution
Context

pre-filter control

Service

Service
Message

Figure 45. Control Evaluation Sequence

276

The common case under PALMS is for an existing service to represent

and implement the workflow as a service decomposition – this case is

implemented by returning a Mule queue name. The uncommon case of

returning a dynamically created workflow is represented by the Policy

Evaluator constructing the workflow based on returning both the service and

a service message. Other workflow constructions are possible, though not

implemented in PALMS.

For example, consider the control policy in Section 5.6.2.2.1:

 if (palms:subject-in-study-role('PI') then () \

 else palms:control-error('Invalid role for this operation')

The () service corresponds to specifying that the default service be

executed.

The palms:control-error() function returns a Mule queue name and

replacement message as follows:

 ("Policy.Error.queue",

 <org.palms.messages.PALMSResult>

 <error>{$ErrorText}</error>

 </org.palms.messages.PALMSResult>

)

where Policy.Error.queue corresponds to the PolicyError service, which

returns the replacement message. The replacement message in this example

is the org.palms.messages.PALMSResult XML document, which contains the

text of the error (derived from the control-error() parameter $ErrorText).

277

Note that the dynamic construction of the error message represents

the myriad processing opportunities available to a replacement service such

as control-error(). Other possibilities include customizing the type of the XML

document according to the interaction specification, logging the error, and

performing failure detection and/or remediation.

5.6.4 Feature Injection

PALMS’ base workflows focus on data storage and retrieval, and do

not entangle orthogonal concerns (i.e., features) such as auditing,

provenance tracking, failure management, and information assurance issues.

Given that the requirements that define such features are often fluid and are

managed by diverse stakeholder communities having different interests, such

features are natural candidates for policy-based injection as described in

Section 4.2.6. Stakeholders define the policies, which in turn express which

information is captured and under what conditions.

As an example, I cast an auditing concern as an independent

application comprising acquisition, storage, and visualization sub-concerns as

shown in Figure 46 (with an abbreviation of the policy system shown in Figure

35). Injection of the acquisition sub-concern into PALMS base workflows

creates a System of Systems where both PALMS and the audit application can

evolve independently.

The audit system consists of a listener service that is invoked by a policy

expression (described in Section 5.6.5.3), a repository for audit information,

278

and an audit information visualizer. The listener stores audit information by

interacting with the repository service. The visualizer is invoked to view and

analyze audit information, and interacts with the repository service. Given that

the audit services participate in a workflow, their interactions are subject to

composition of yet other concerns, such as encryption, failure management,

and data flow augmentation (e.g., time stamping).

Note that a real world auditing system would store audit information in

a secure, tamperproof store, and may include commercial visualizers such as

Crystal Reports [187]. The PALMS audit system stores audit information in local

tab-separated text files, which can be viewed and analyzed in Excel.

Service/

 Data

Connector

...

...

PALMS Policy System

Policy

Evaluator

Service/

 Data

Connector

Community

Calculation

Repository

PALMS

Community

Device

Repository

StorageList Studies
Study

Repository

Event

Logger

Policy

Evaluator
Context

Management

Event

Logger

Service/

 Data

Connector

Policy

Evaluator

Repository

PALMS Audit System

Context

Management

Listener Visualizer

Figure 46. PALMS Audit System Composed onto PALMS Service via Policy

279

An example of feature injection is implemented as a post-filter on the

 interaction:

 AuditLow.location = Get Study List (Repository)

 AuditLow.outFilterSupportFile = FilterAudit.support.xq

 AuditLow.outFilterExpression =

 palms:(:NameSpace-~:)(:~-NameSpace:)audit(

 "AuditID1",

 ("event", "success"),

 ("user", xf:get-workflow-user()))

 AuditLow.capability = Audit Study List (low level)

As a filter, the .outFilterSupportFile attribute names the XQuery file that

contains functions that define an audit Domain Specific Language (see

Section 5.6.5); the .outFilterExpression attribute specifies a filter expression that

returns the current message , which is supplied as a member of the policy

execution context.

Ultimately, the audit() function relies on interactions with the separate

Listener service. Such feature injection is facilitated by the call-service()

function described in Section 5.6.5.3.

As an independent application, the audit system maintains state

pertinent to meeting its requirements, and control or data flow within the

application can be workflow-dependent if the CIS workflow GUID is passed to

it. However, the policy decision that results in an interaction with the audit

system can, itself, maintain state via IVs as in Section 5.6.5.1. Such state can

affect either future decisions, can constitute part of the information

exchanged with the audit system, or can affect other policy decisions and

workflows derived from them.

280

Policies and groups of policies that maintain and consume state are,

themselves, injectable features in that they implement a discrete requirement

set, which may or may not be further implemented by injection of workflows

as demonstrated in Section 7.4.1.

5.6.5 PALMS Domain Specific Languages (DSLs)

While the PALMS policy system enables the composition of control and

filter policies on service interactions, the policy expressions (described as in

Section 4.2.1) themselves reflect the intentions of the policy writers. An

important insight of PDD is to enable policy phrasing in terms of languages

congruent with the domain concepts understood by the writers, and which

can therefore be easily, accurately, and repeatably authorable. To achieve

this, PDD promotes the use of Domain Specific Languages [35] (DSLs) to

compose policy expressions, where DSLs can be tailored by and for a

stakeholder community interested in expressing policy.

The XQuery language supports the concept of DSLs by allowing:

 parameterized definition of functions using basic data structures,

including strings, arrays, collections, and structured types such as XML

 combination of functions in logical expressions

 control structures, including looping, encapsulation, and

decomposition

 composition of functions to create higher abstractions

 automatic parallelization of expression evaluation

 access to external information sources and transformations

PALMS includes a number of DSLs useful in expressing policy in different

domains, thereby catering to interests of diverse stakeholder groups that have

281

been important to PALMS so far. Additionally, XQuery enables the

improvement of existing languages and the definition of new languages

simply through declaring new XQuery functions. The current list of PALMS’ DSLs

reflect the interests of PIs (for controlling access to study data, results, and

calculations), PALMS operators (for combining or prioritizing policies submitted

by stakeholders), and PALMS administrators (for tracking resource access and

billing) – additional DSLs (or evolution of existing DSLs) are possible and are

encouraged so as to address the requirements of new or existing stakeholders.

They include:

 Access Control (described in Sections 5.6.1.1, 5.6.2.2.1, and 5.6.2.2.2)

allows a determination of whether a user holds a role, a list of roles, or

any in a list of roles within a study or virtual organization. It also allows

similar calculations based on permissions based on such memberships.

 Policy Composition (described in Section 5.6.2.2.4) allows the

combination of multiple control and filter policies defined on a single

interaction.

 Audit (described in Section 5.6.4) allows injection of audit tracing on a

single interaction.

 Feature Injection (described in Section 5.6.4) allows injection of arbitrary

services on a single interaction.

The design of the Access Control DSL followed a traditional

development process, where I marshaled access control requirements and

use cases, then abstracted primitives that filter data flows and produce

desired allow/deny decisions as described in Section 5.6.1.1. Each other DSL

was designed using the same technique, while making incremental

modifications and upgrades to DSLs to reflect emerging requirements.

282

In particular, major functions available in each DSL are listed in Table 7.

Section 5.6.3.2 presents an example of the use of an Access Control

control function that returns a Boolean value (which determines a service to

return) and the control-error() function. Section 5.6.2.2.2 presents an Access

Table 7. Major DSL Functions

Domain Function Parameters Return

Access

Control

subject-in-any-study-

roles

subject-in-all-study-roles

subject-in-any-org-roles

subject-in-all-org-roles

$role-list boolean

 subject-in-study-role

subject-in-user-role

$role boolean

 has-acl-permission $object,

$permission-list

boolean

 permissions-for-subject-

in-study-role

 permission-

list

 permissions-for-subject-

in-user-role

$role permission-

list

 filter-by-attribute $name, $value message

 filter-by-any-role $role-list message

 filter-by-role $role message

 control-error $queue,

message

$queue,

message

Policy

Composition

compose-unanimous

compose-override

 message

 compose-all

compose-preemptive

compose-hierarchical

 $queue,

message

Audit audit $auditID

{,(name, value)}*

message

 audit-if $boolean-

condition,

$true-param-list,

$false-param-list

param-list

Feature

Injection

call-service $queue,

$message

message

283

Control filter function that returns a message. The has-acl-permissions()

function returns a Boolean value if a user holds one or more permissions

pertaining to a particular study object. Similar functions exist for determining

whether the user has one or more permissions as a result of roles it holds.

Section 5.6.2.2.4 describes the compose-unanimous() control

composition policy, which evaluates each control policy, and returns the

default service if no control policy overrides it. Similarly, the compose-

override() policy performs a compose-unanimous() composition on PALMS-

level policies (if any exist), or study group-level policies (if no PALMS-level

policies exist), or study-level policies if no PALMS-level or study group-level

policies exist.

For filter composition policies, the compose-all() policy evaluates each

filter, one after the other. The compose-hierarchical() policy evaluates the

PALMS-level filters, then the study group-level filters, and study-level filters in

order. The compose-preemptive() policy evaluates filters using the same rules

as the compose-override() control policy.

The Audit functions and the Feature Composition function are

described in Section 5.6.5.3.

5.6.5.1 XQuery Library Functions

A number of helper functions are available for authoring DSL functions

(including the DSL functions themselves), and policy authors are free to add

284

helper functions as appropriate. A sample of existing helper functions are

listed in Table 8.

All helper functions service control, filter, and composition policies.

Each policy can define its own helper functions, and persistent common

functions can be added to the XQuery libraries described in Section 5.6.5.2.

Additionally, helper functions can call other helper functions and DSL

functions. Notably, the call-service() function can be used to create AEV

functions by interacting with pre-existing services in the PALMS or other Rich

Services.

Table 8. DSL Helper Functions

Topic Function Parameters Return

Current

Message

cur-name() $role-list Java object class

 cur-elements() $xml-element-name XML document

 cur-value() $xml-element-name value of element

Inbound

Message

inbound-name() $role-list Java object class

 inbound-elements() $xml-element-name value of element

 inbound-value() $xml-element-name value of element

SIV get-workflow() $element value of element

 get-workflow-user() X.500 user name

AEV get-study-list() $study-id XML document

IV create-iv-id() GUID

 clone-iv-id() $context-id GUID

 drop-iv-id() $context-id true

 get-iv-value() $context-id,

$key

value of element

 get-iv-values() $context-id XML document

 set-iv-value() $context-id,

$key,

$value

true

 delete-iv-value() true

285

The Current Message functions return values from the message

exchanged in interaction for which the policy is being evaluated. For a pre-

filter or control policy, this is the message (interactions ❶/❹ in Figure 6),

and for a post-filter policy, this is the message (interactions ❺/❽). The

Inbound Message functions always refer to message regardless of the

policy.

The SIV, AEV, and IV functions set and return context values as

described in Section 5.5.4.

Note that there are no functions that alter the contents of a message.

Using standard XQuery, an XML document cannot be altered – instead, a

new document containing the desired alterations must be generated. An

XQuery function can leverage the auth-utils functions described in Section

5.6.5.2 for this.

5.6.5.2 XQuery Policy Support Libraries

Filter and composition policy definitions can refer to XQuery support

libraries that are available only for the duration of the policy evaluation (as

described in Sections 5.6.2.2.2 and 5.6.2.2.4). Other XQuery support libraries

are available to all policies at all times. PALMS’ XQuery libraries are arranged

as a layered architecture, where top-level libraries leverage low-level libraries

as in Figure 47.

286

The auth-utils and auth-msg libraries contain utility functions that

apply to XML documents in general, and PALMS messages in particular. The

auth-tree library contains functions that query the PALMS Grouper tree for

role and permission inclusion (described in Section 5.6.1.3.1), and the auth-

query library contains functions that support access control decisions

(described in Section 5.6.5) by calling auth-tree functions. The palms library

provides interface functions for access control functions by calling auth-query

functions.

Other DSL support functions reside in individual libraries, and they call

utility functions in the palms stack.

5.6.5.3 Specialized DSLs

The Audit DSL is an example of a specialized policy language that

supports injection of the independent audit concern. DSLs supported under

PALMS’ XQuery execution model are expressed as named XQuery functions

that transform parameters into a result, with the function possibly having side

Service Audit Composition Filters

palms

auth-query

auth-treeops

auth-utils auth-msg

RBAC
(Xdm)

Basic access
control and
messaging

Figure 47. PALMS XQuery Library Hierarchy

287

effects. To create the Audit DSL, I modeled the roles and relationships

supporting the audit abstraction (using a UML class diagram as shown in

Figure 48), then expressed the audit operations as XQuery functions.

Abstractly, the audit operator generates an audit event based on

values available from the context system (described in Section 5.5.4),

including the interaction message . It chooses an audit repository, an event

type, and the contents of a tuple forming the event description. Tuple

elements are key-value pairs. Finally, it returns a new message , which is

propagated through the service interaction. For an audit operation, .

I posited that each repository would have its own schema. From

implementation experience, I posited that the choice of repositories could be

fixed for a given audit operation, and that choice determined the types of

Figure 48. PALMS Audit Operators

SIV

AEV

IV

Current Message

New Message

Audit Repository

- name: String

Ev ent

- description: String

Value

- key: String

- value: String

Application Data

Audit

Schema

equals

choose Audit Repository, Event, Values

*

to Interaction

from Context System

*

from Interaction

*

288

events and tuple values. However, the choice of actual event and tuple

values depended on the system state at the time of audit.

Consequently, the audit operators in the DSL are audit() and audit-

if() where audit() writes a tuple to a repository, and audit-if() chooses the

event and tuple to write. The XQuery function declarations are:

 declare function palms:audit($AuditRepository as xs:string,

 $KeyValueList as xs:string*) as node() {

 declare function palms:audit-if($Chooser as xs:boolean,

 $TrueReturn as xs:string*,

 $FalseReturn as xs:string*) as xs:string*

A simple example of an audit DSL expression is:

 palms:audit("AuditGetList",

 palms:audit-if(palms:cur-value("error") = "",

 (("event", "success"),

 ("user", xf:get-workflow-user()),

 (("event", "failure"),

 ("error", palms:cur-value("error"))))))

The hypothetical AuditGetList audit repository is defined to maintain

an event type and a single key-value pair describing the event. The actual

event and key-value pair depend on whether the interaction message

contains an error. If so, the error is fetched from the message and logged. If

not, the user’s name is fetched from the Workflow SIV and logged. Note that

the message contents and user name are fetched using context library

functions described in Section 5.6.5.1. Using combinations of SIV, AEV, and IV

functions (including message functions), the audit() function can log

application, environment, and policy state in addition to message contents.

289

While the audit-if() function is defined completely using XQuery, the

audit() function interacts with a service representing the audit system listener

(described in Section 5.6.4). As shown below, the audit() parameters are

packaged as an XML document and passed to the call-service() function,

which converts the XML document to a Java object (using the XStream Java

library) and sends it to the audit listener service POJO using the Mule ESB

(either synchronously or asynchronously):

 let $audit := element org.palms.audit.AuditRequest {

 element auditRepository {$AuditRepository},

 element keyValuePairs {palms:make-key-value-list($KeyValueList)}}

 xf:call-service("vm://Audit.AuditRecord.queue", $audit)

An example of a policy defined using the audit DSL is presented in

Section 5.6.4, where an audit() call is used to implement feature injection.

Note that the audit DSL is implemented in the FilterAudit.support.xq

XQuery support file, which is referenced in the audit policy definition.

While the Audit DSL reflects simple requirements, and is implemented

using simple XQuery function definitions, more complex DSLs can be modeled

and created using the same techniques. For example, a DSL for provenance

tracking would take a similar form, including identifying source data, passing

the data to an independent service, and resuming the base workflow. Section

7.4.1 presents an example of an MSoD policy realized as a DSL.

Note that while XQuery (and therefore policy expressions) can include

complex predicates, control flows, and data flows, such complexity works

290

against the easy, reliable, and unambiguous expression of requirements. A DSL

can be used to encapsulate such complexity, when complex relationships

can be encoded as higher level abstractions. This greatly reduces the need

for complex policy expressions, and shifts policy debugging load to the DSL

author, as described in Section 5.6.5.4.

As the requirements driving a DSL change, the DSL can change, too. In

the simplest scenario, additional functions can be made available in the

XQuery support library without affecting existing functionality. The XQuery

language itself supports type overloading, thereby enabling a degree of

evolution without changing function names. PALMS does not currently support

any versioning system that would correlate a policy expression with a version

of supporting XQuery library.

5.6.5.4 Policy Support Development and Debugging

While the PALMS system development and debugging support are

provided by a combination of Eclipse [188] and the Java log4j library [189],

there is no equivalent system for XQuery-based DSL development.

DSL support libraries can be developed in vitro using the oXygen XML

Editor IDE [190] and a suite of test cases and test results. In vivo development is

supported by logging using XQuery calls to audit() functions as described in

Section 5.6.5.3. Note that the Saxon XQuery engine freely prunes execution

paths that do not contribute to a result. Consequently, in vivo debugging

291

within an XQuery function may yield results that shed insufficient light on

internal function execution (and at first may be confusing and inscrutable).

Note that under PALMS, replacing an XQuery library with an updated

version automatically results in PALMS using the new version, thereby

contributing to online experimentation.

5.6.6 Policy Development and Debugging

Policies are authored by policy programmers who are aware of the

domain to which a policy applies, and the DSLs available for the expression of

that policy. When a DSL supports a policy well, it provides parameter-driven

XQuery functions that succinctly express the policy, and its implementation is

vetted as in Section 5.6.5.4. To the extent this is true, policy debugging focuses

on the complete and correct expression of requirements using DSL

functionality, including correct composition of such policies onto the base

workflow. Additionally, policies can be written without DSL support simply by

writing an appropriate XQuery expression.

292

The interests of a policy programmer are, themselves, a crosscutting

concern addressable in the policy domain. While PALMS provides no explicit

policy debugging DSL, existing DSL functions can be used for that purpose:

 Calls to the audit() and call-service() functions (described in

Section 5.6.5.3)can be incorporated into a DSL support library to shed

light on DSL execution. They can also be incorporated into a policy

expression itself (as shown below). Particularly, the call-service()

function can be used to call custom debugging facilities by invoking

external services using programmer-supplied data.

 Audit policies can be injected into interactions between a policy

expression and the Context system (described in Section 5.5.4) to track

SIV and IV variables.

Additionally, the Policy Evaluator (described in Section 5.6.3) records a

log of all policies evaluated, including their parameters and result.

Examples of coupling a policy expression with an audit() or call-

service() function call include:

 palms:subject-in-study-role('PI') and

 palms:audit('TestLog', 'message', $Message)

 palms:subject-in-study-role('PI') and

 xf:call-service("vm://Testing.queue", $Message)

Note that the use of DSLs or raw XQuery expression generally relies on

knowledge of the structure and semantics of the message(s) exchanged

during the interaction. While the Interaction Repository (described in Section

5.6.2.1) defines the interaction endpoints and the type of message

expected by the source service in a request/reply interaction, it does not

describe the message sent by the source service to the target service – a

293

more robust interaction description would include this information. Regardless,

coordinating (request or reply) message structure and semantics with policies

that depend on them is not addressed in this dissertation, but is considered

further in Section 7.8.1.

A simple example of a possible mismatch between a message and

policy occurs when using the audit() function to capture information from

the reply message of a exchange (as

described in Section 5.6.2.2.2). The org.palms.ListStudyResult message

contains a studies element but contains no device element. Attempting to

inject an audit policy referencing a non-existent device element would result

in recording a blank value, without detecting an error either during policy

authorship, policy injection, or policy execution:

 palms:audit('TestLog', 'deviceName', palms:cur-value('device'))

In order to inject a policy that matches the structure and semantics of

an interaction message, a policy programmer must know the structure and

semantics ahead of time.

5.7 Summary

In this chapter, I presented the PALMS-CI as a case study

demonstrating an implementation of the principles explained in Chapter 4,

and which currently serves a growing worldwide user base. It addresses a

number of practical issues, starting with the choice of service implementation

(i.e., ESBs, particularly Mule), conventions on message passing and message

294

content, support for user-based access control requirements (as an example

that can be applied to other requirement domains), and the mechanics of

maintaining workflow context in systems that can be scaled and distributed

across platforms.

I chose the Rich Services blueprint as a modeling framework for the

PALMS-CI, which allowed the expression of workflows in terms of service

interfaces, orchestrations, and decompositions, and allowed the expression of

policy evaluation as an interceptor-based infrastructure service. Rich Services

closely aligns with the vision of cyberinfrastructures as System of Systems that

realize stakeholder requirements as a composition of partial behaviors. I

described the implementation of context in the policy system as a relationship

between workflows, infrastructure services, and interservice messaging, all

within the Rich Services paradigm.

Based on this, I described the purpose and operation of the Policy

Repository, which is a key entity in the management of policy, independent of

policy definition and actual policies. It makes the runtime connection

between collections of control and filter policies, policies that compose them,

and the service interactions onto which they are composed. As the Policy

Repository is conceptually agnostic as to the base policy language (e.g.,

XQuery), it serves as a conduit connecting the policy authorship process with

the policy evaluation process.

295

This chapter also examined the conceptualization and use of DSLs

tailored to particular requirement sets (given an XQuery substrate), including

the mechanics of authoring such policies, on one hand, and executing them,

on the other. It described how new DSLs can be created and deployed to

address new and emerging stakeholder concerns, all responsive to

stakeholder requirements at runtime.

The PALMS-CI demonstrates how ubiquitous policy evaluation

combined with state management at the service, workflow, application, and

other levels can enable the conceptualization of requirements as systems that

can then be combined with base workflows into a System of Systems

integration (e.g., the Audit system). This concept is further developed in

Section 7.4.1.

Finally, Chapter 6 presents an evaluation of the use of PDD in PALMS-CI

case study, particularly demonstrating that policy injection occurs at an

acceptable cost in many cases, while identifying costly cases that give

insights into future PALMS-CI evolution paths.

Chapter 7 compares PDD and its PALMS-CI implementation to

alternative approaches and implementations. It explains how PDD fulfills the

gaps identified in Chapter 2, and also describes outstanding issues.

296

5.8 Acknowledgments

Chapter 5, in part, is a reprint of material as appeared in 3 papers:

1) B. Demchak and I. Krüger, “Policy Driven Development: Flexible Policy

Insertion for Large Scale Systems,” in 2012 IEEE International Symposium on

Policies for Distributed Systems and Networks, Chapel Hill. IEEE Computer

Society, Jul. 2012, pp. 17-24. The dissertation author was the primary

investigator and author of the text used in this chapter.

2) B. Demchak, J. Kerr, F. Raab, K. Patrick, and I. H. Krüger, “PALMS: A

Modern Coevolution of Community and Computing Using Policy Driven

Development,” in 45th Hawaii International Conference on System Sciences

(HICSS), Maui, Hawaii. Jan. 2012. The dissertation author was the primary

investigator and author of the text used in this chapter.

3) B. Demchak, C. Farcas, E. Farcas, and I. Krüger, “The Treasure Map for

Rich Services,” in Proceedings of the 2007 IEEE International Conference on

Information Reuse and Integration (IRI), Las Vegas, USA. IEEE, Aug. 2007, pp.

400-405. The dissertation author was a co-investigator and co-author of this

material.

© 2010 IEEE. Reprinted, with permission, from B. Demchak and I. Krüger,

“Policy Driven Development: Flexible Policy Insertion for Large Scale Systems,”

in 2012 IEEE International Symposium on Policies for Distributed Systems and

Networks, Chapel Hill. IEEE Computer Society, Jul. 2012, pp. 17-24.

https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=214
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=214
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=149
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=149
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=214

297

© 2011 IEEE. Reprinted, with permission, from B. Demchak, J. Kerr, F.

Raab, K. Patrick, and I. H. Krüger, “PALMS: A Modern Coevolution of

Community and Computing Using Policy Driven Development,” in 45th Hawaii

International Conference on System Sciences (HICSS), Maui, Hawaii. Jan. 2012.

© 2007 IEEE. Reprinted, with permission, from B. Demchak, C. Farcas, E.

Farcas, and I. Krüger, “The Treasure Map for Rich Services,” in Proceedings of

the 2007 IEEE International Conference on Information Reuse and Integration

(IRI), Las Vegas, USA. IEEE, Aug. 2007, pp. 400-405.

https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=203
https://sosa.ucsd.edu/ResearchCentral/download.jsp?id=149

298

CHAPTER 6

PALMS’ EXPERIENCE WITH PDD

Policy Driven Development has proven effective in improving the

evolvability of PALMS relative to both its early versions and established policy

execution systems. PDD itself is not specific to PALMS, and can be applied to a

broad spectrum of scenarios where simultaneously satisfying evolving

requirements of multiple stakeholders quickly is crucial (e.g., OOI-CI [191],

CitiSense [192], and CYCORE [193]).

PDD can be evaluated along dimensions that include:

 execution speed

 contributions to evolvability

o development time

o stakeholder ease of use

o deployment time

 policy expressability

 scalability

 security

The execution speed of policy evaluation determines the hardware

requirements and network topology needed to support PDD – or, alternately,

the workflows on which policy can be economically evaluated on a single

processor. To the extent policy evaluation takes any time, the pool of

workflows that are candidates for policy injection is diminished. However, the

execution cost of policy injection must be weighed against the costs and risks

of the traditional regimen of application redeployment (as exemplified in the

SOARS motivating example from Chapter 2), which are multidimensional, but

299

include stakeholder dissatisfaction (as their requirements go unmet until a

redeployment occurs). Application redeployment costs and risks and the cost

of stakeholder disaffection are difficult to quantify, and are not the focus of

this dissertation. Consequently, my evaluation of execution speed focuses on

where and why bottlenecks in PDD occur (as in Section 6.3). Briefly, it shows

that in PALMS, delays caused by the PDD policy mechanisms per-se are

minimal and likely imperceptible, but can become noticeable depending

primarily on the size and complexity of the data set contained in a service

interaction message, and secondarily on the number of policy evaluations

performed on a service interaction. These observations (summarized in Section

6.3.7) do not invalidate the premises of PDD, but may lead to evolution of the

implementation of PDD within PALMS as described in Section 7.4.5.

Nevertheless, bottlenecks due to policy evaluation are in line with those in

comparable policy evaluation systems, and I defer a discussion of those

bottlenecks to Section 7.4.2.

Though a major premise of this dissertation pertains to evolvability

improvements, evolvability metrics relating to policy injection and concern

separation [32] are poorly developed. As a proxy, I choose to evaluate PDD-

related evolvability improvements in terms of development time and

stakeholder ease of use (as in Sections 6.1 and 6.2).

The overall chapter flow is shown in Figure 49.

300

The short deployment time of policies in the PALMS-CI (due to ease of

policy authorship and quick physical deployment) compares favorably to

times required to the long release cycles of traditional development

techniques (even including agile techniques, which are defined by their

comparatively short iterations). However, the larger view of deployment time

includes testing and verification, which are often built into traditional

techniques, but are not yet present in PDD or the PALMS-CI. Consequently, no

meaningful comparison can be made in this regard. However, considering

that PALMS’ DSLs rest on the development of XQuery libraries, and base and

composed workflows rely on SOA-related techniques, comparisons to

Effects on
Application

Development Time

Enfranchising
Stakeholders

Execution Timings

Section
6.1

Section
6.2

Section
6.3

Legend

Expained
in

Summary and
Wrapup

Section
6.4

Figure 49. Chapter 6 Flow

301

between PDD (as PALMS) and traditional techniques can and have been

made in Chapter 7.

An important evaluation would be the likelihood of delivering an

application that fulfills stakeholder requirements based on the ease of

creating, validating, and deploying a policy using one of PALMS’ DSL-based

policy languages versus using existing policy languages or versus inline coding.

Such comparisons are far ranging and require more experience in exposing

workflows to policy programmers and creating DSLs for their use – this is

beyond the scope of this dissertation. However, a direct comparison between

a PALMS DSL and policy expressed under a leading policy evaluation system is

appropriate, and is presented in Section 7.4.1.

The non-functional requirements of scalability and security can be

critical to real-world deployments. To the extent that PDD is designed to be

scalable, it inherits the scalability characteristics of the Rich Services

architecture on which the base application is built. Similarly, the security

characteristics of PDD are defined partially by the design of the base

application. PDD was not designed to answer scalability or security criteria,

per se, where other policy evaluation systems (e.g., PERMIS, per Section 7.4.1)

were, and lessons can be taken from them. Consequently, I do not attempt to

evaluate PDD or PALMS on these dimensions.

302

6.1 Development Time

Initial implementations of PALMS had no explicit policy subsystem.

Consequently, access control decisions were coded directly into base

workflows, which is a common access control paradigm in many applications.

The key information needed to make an access control decision was the user

credential (as described in Section 5.6.1.3). For early PALMS versions, the

credential was passed as a parameter on all Web Services calls and then

incorporated into all internal workflow messages so as to anticipate the

possibility that any service might make an access control decision. PALMS

messages are defined as Java classes, and so adding this information

required changing all message classes to derive from a base class containing

the credential. Additionally, it was also necessary to change all services to

propagate the credential from inbound messages to outbound messages. To

accomplish this, nearly 900 Java files were manually modified, requiring

approximately 20 hours’ work.

303

This situation is shown in Figure 50, which shows a subset of the

GetStudyList workflow (from Chapter 3) where Java data flows are added to

the diagram (in blue). Interaction ❶ shows the Client activity passing data s0

as a Web Services parameter. The PALMS activity creates a message m1

having value s1 and uses it to interact with the ListStudies activity, which

performs a similar sequence to interact with the StudyRepository activity.

Workflow A is the original base workflow where identity credential i is not

passed. Workflow B represents the same workflow, but with the credential (in

red) passed in ❶, then manually added to messages m1 and m2, and then

manually propagated in the PALMS and ListStudies activities. The manual

operations are costly in terms of time, and increase entanglement and

scattering in the workflow code. Workflow C is described below.

PALMS
m1.s1=f1(s0)

ListStudies
m2.s2=f2(s1)

Study
Repository

Client

❸❶ ❷

(s0)

s1

m1

s2

m2

PALMS
m1.s1=f1(s0)

m1.i=i

ListStudies
m2.s2=f2(s1)

m2.i=i

Study
Repository

Client

❸❶ ❷

(i,s0)
s1

i

m1
s2

i

m2

PALMS
m1.s1=f1(s0)

ListStudies
m2.s2=f2(s1)

Study
Repository

Client

❸❶ ❷

(i,s0)

s1

m1

s2

m2

Capture i as
workflow variable

Injected policy

B) Entangled
 identity (i)

A) No identity (i)

C) Unentangled
 identity (i) via
 policy

Figure 50. How Policy Use Avoids Entanglement

304

Java type checking was insufficient to guarantee that such changes

were complete and correct, as correctness relied both on subclassing and on

the manual credential propagation code in each service. Completeness and

correctness were verified by extending a pre-existing suite of external unit

tests.

Subsequently, adding service tracking information (as described in

Section 5.5.4) to each message required changing only the message base

class, but still required manual modifications to all services to calculate and

propagate the source and target service names across the workflow. Again,

approximately 20 hours of work was required to manually update nearly 450

Java files, and completeness and correctness were verified via external unit

tests. (Under Java, other implementation choices exist, but choice leads to

other, equivalent, forms of entanglement and scattering.)

While these are classic refactoring exercises, their cost speaks to the

need for separate context maintenance for separate concerns – in this case,

policy evaluation, which depends on workflow-based contexts. This is shown in

Workflow C, which shows how a credential is passed in ❶, then captured as a

workflow variable, thus eliminating the need for manual message and activity

changes downstream. A policy that makes use of the credential can fetch it

using the context system (not shown).

Using the refactoring method, the programming exercise involved

repetitions of the modify-compile-test cycle, followed by redeploying the

305

application. Using the PDD policy method, the programming exercise involved

repetitions of writing the capture policy, injecting it, and testing any

 interaction. Since the policy method is simpler and involves far

fewer modifications, it is much faster and is reliable to the extent it does not

modify the control or data flow. (See Section 7.5 for a discussion of PDD

verification.)

Cost minimization is an important evolvability requirement, and

evolution involves adding unanticipated concerns, which access control

represented to the early PALMS design. The PDD context abstraction was

added to address separation of context for separate concerns. Once the

context system was implemented, re-implementing the credential and service

tracking propagation took only an hour, and adding the custom Policy

Context (described in Section 5.5.4.3) took another hour.

Philosophically, this approach leverages classic Aspect Oriented

Programming (AOP) techniques [32] in separating the credential and service

tracking concerns. However, PDD’s service-oriented state maintenance and

propagation techniques (as described in Section 5.5.4) – particularly the

combination of interservice messages and a ubiquitous workflow-aware

context system – are unique to PDD, and account for these productivity gains.

By using these mechanisms to achieve separation of concerns, PDD

encourages practices that result in a clear time improvement over Java-

based refactoring. Furthermore, by avoiding these concern entanglements,

306

PDD encourages the decentralized implementation of such concerns (i.e., as

small sets of composed workflows), thereby promoting reliable code evolution

and encouraging proofs of correctness at both the base and composed

workflow levels. Finally, because separate concerns are composed

dynamically at runtime, large scale and time consuming release cycles can

be reduced or avoided.

6.2 Stakeholder Ease of Use

As a test of the authorability of various types of policies, stakeholders

(including both exposure biologists and programmers) were asked to author

or maintain control policies using a general policy format, described as the

first format in Section 5.6.2.2.1. Many stakeholders complained that this policy

meta-language (including interaction references, XQuery expressions, and the

tag file format in general) requires them to specify more information than is

necessary to define or maintain a policy, and that because the

comprehension and creation of new policies is overly complex, their use of

the policy system would be rare. This lead to the insight that when a policy

injected onto a particular interaction can be parameterized for use in

different domains (e.g., the PALMS, study group, and or study domains

differentiated in Section 5.6.2.2), a meta-language that requires the

stakeholder to specify only a template and parameters reduces cognitive

load on policy authors while enabling more uniform policy definition.

As shown in Figure 51, a single template can reference a particular

interaction, and can combine with parameters provided by a template

307

reference to form a complete policy. A single template can be reused by

PALMS, Study Group, and Study policies composed onto the interaction.

For example, Section 5.6.2.2.1 initially describes the Get a study list

(control) policy in a policy meta-language consisting of a triple containing a

free-form XQuery expression:

 GetStudyListPolicy.location = Get Study List (Repository)

 GetStudyListPolicy.capability = Get a study list (control)

 GetStudyListPolicy.controlExpression = \

 if (palms:subject-in-study-role('PI') then () \

 else palms:control-error('Invalid role for this operation')

It defines a simpler meta-language (i.e., the third form) that recasts the

triple as a template (GetStudyListTemplate) referenced by a simpler policy:

 GetStudyListPolicy.templateReference = GetStudyListTemplate

 GetStudyListPolicy.templateParameter.RoleList = PI

Consequently, reliance on templates reduced the skillset (e.g., XQuery

programming) required to create policy variants for different study groups

and studies, thereby enabling stakeholders trained as programmers but

untrained as policy authors to confidently write and insert such policies. They

wrote and deployed twenty template-based access control policies within

two hours. With the templates defined, stakeholders were able to experiment

with different permissions (expressed as RoleList parameters in the example

above) fluidly.

308

Stakeholder reactions to other aspects of PDD shed further light on how

PDD can enfranchise stakeholders in the requirement enactment process;

they are discussed further in Section 1.1.

While the use of XQuery expressions presents an opportunity to align policies

with stakeholder requirements quickly and easily (as described in Section

5.6.5), the policy meta-language itself is a DSL addressing the concerns of

policy authorship, and the bifurcation of policy definition under a template-

Figure 51. PALMS Policy Template Expansion

Interaction

- source

- target

Composition

Policy

Raw XQuery

Expression

Template

Reference

Template

PALMS Domain
Study Group

Domain
Study Domain

Study Group Study

Policy

Parameter

expands

*

*

*

**

references

*

values

*

fil l ins

*

309

and-reference model aligns PALMS’ requirements for policy creation with the

stakeholders’ concept of policy authorship.

6.3 Execution time

As described in Section 5.3, the PALMS system comprises a browser-

based GUI accessing the PALMS server through Web Services-based API calls.

My evaluation of PDD focuses on the PALMS server, where policy injection

applies, though with an eye toward the overall user experience, which derives

from the combination of server execution time, Web Services marshaling and

transmission time, and the speed of the GUI itself.

The objective of the execution time tests was to understand the

contribution of policy execution to overall workflow execution times. I

hypothesized that:

1. The contribution of the Policy Evaluation RIS to execution time is

negligible when:

a. an interaction is not contained in the Interaction Repository

b. an interaction is contained in the Interaction Repository, but no

policy is defined

2. The contribution of policy evaluation is small compared to the end-to-

end workflow when:

a. a control composition and control policy are defined

b. a filter composition and filter policy are defined

Figure 6 shows the GetStudyList workflow, which is a common PALMS

workflow that includes five activities: a browser (Client), a PALMS API entry

point (PALMS), two stages of processing (ListStudies and StudyRepository), and

a storage (Storage) activity. For calibration and context, I measured baseline

end-to-end times through all activities, and for policy measurements, I

310

measured the time for the interaction on which policy was injected. In order

to evaluate my hypotheses, I created tests that started with simple scenarios

and progressed in complexity:

 End-to-end measurement of trivial GetStudyList workflow with:

o no Context interceptors and no Policy Evaluation

o Context interceptors, but no Policy Evaluation

 Single service interaction with:

o no Policy Evaluation

o empty Interaction Repository (1a)

o single interaction, with no policy defined (1b)

o control composition policy with:

 control policy (2a)

o filter composition policy with:

 null filter policy injected (2b)

o filter-by-role() policy with:

 no studies in list (2b)

 one study in list, no studies filtered out (2b)

 97 studies in list, all studies filtered out (2b)

 97 studies in list, no studies filtered out (2b)

Each test is useful in evaluating the hypotheses, and tests that bear on

particular hypotheses are identified as to the hypothesis they address.

The policy tests represent policies and scenarios that I expect to be

typical in normal PALMS execution, and which, in fact, are typical at this time.

6.3.1 Test Platform and Circumstances

As shown in Figure 24, the PALMS server ran on a 64 bit VMware virtual

machine under Tomcat 6.0.20 on Red Hat Centos 5.4 under vSphere 4.1 with

1.5GB non-shared RAM, a single core hyperthreaded processor, and a 1Gbps

network connection. PALMS is written in Java, and ran on JVM v1.7.0_04-b20.

While the physical server supports several other VMs, all were inactive during

311

our tests, and the datacenter network and wide area network (serving the

browser GUI) were unloaded.

Even with an unloaded physical server, virtual machine, datacenter

network, and wide area network, variability is introduced into execution and

transmission times by occasional service execution, incidental network traffic,

and garbage collection. To mitigate these effects, I ran large numbers of tests

and generally reported the median time – the average time was often

skewed by a very small number of outliers. When a mode could be

calculated, it was generally very close to the median, thereby validating this

approach. Additionally, when showing test results on graphs, I remove outliers,

and for easier understanding, I sort trials by their execution times and rename

them using contiguous trial numbers (wherein I assume that each trial is an

independent test).

In general, for each test, a test pass was executed before a second

test pass, which was measured. This guaranteed that the Mule ESB had

loaded all pertinent POJOs, Java had loaded all pertinent classes, the

database had loaded and cached all pertinent data, and all other caches

were primed.

Measuring execution taking place entirely on a VM risked inaccuracies

originating with VMware’s strategy of clock tick simulation as an average of

ticks over real time [194]. To mitigate this risk, I measured only loops that

iterated over code under test, where each loop ran several seconds. This

312

afforded VMware the opportunity to accurately simulate clock ticks on

average, and to obviate any small deficiency in the simulation at the end of

the measured interval.

In any case, the objective of the execution time tests was to

understand the contribution of policy execution to overall workflow execution

times. Because test execution times were significant and had substantial

differences compared to baseline times, sophisticated statistical analysis was

unnecessary.

For tests involving a single service interaction, the

interaction was used, and measurements reflect times for a request/reply

round trip. The interaction is representative of all other

PALMS service interactions. For the purpose of these tests, the ListStudies

service was altered to return a constant result – it did not interact with other

services to return the result. In all testing, light weight intermediary

components (e.g., intermediate routers and Web Service stacks) and mocks

(e.g., simulated database queries) were used to isolate the processing costs of

interest, similar to the approach taken by [195].

6.3.2 End to End Tests

End-to-end tests were used to establish an overall context for

interpreting the remaining tests. They measured the total execution time of the

entire GetStudyList workflow, and differentiated client, network, and PALMS

server contributions. No PALMS studies were defined, so all workflow services

313

performed only minimal processing. Note that the client was a PC-based

browser, but had only minimal code (as JUnit tests) and did not execute any

GUI functions. As such, its execution time would be an order of magnitude less

than a GUI browser client.

6.3.2.1 End to End with No Interceptors

In the first test, Mule was configured to exclude all interceptors (i.e., all

RISs). As a result, no SIVs or interservice messages (as described in Section

5.5.4) were created, used, or destroyed, and no service tracking or policy

evaluation occurred. Only the PALMS SDC and individual services (comprising

base workflows) were executed, and they all exchanged only raw interaction

messages .

314

Figure 52 shows the workflow execution time over 2,000 trials (sorted by

App Time, with outliers removed) as follows:

 App Time (63ms median) indicates the number of milliseconds

(measured at the PC browser) taken to send a GetStudyList request

across the network, have it evaluated at the server (including any

database query at the Storage service), and return a study list across

the network. It included nominal browser processing, Web Services call

overhead, message passing, and POJO invocation.

 Latency (1.3ms median) indicates the round trip time for a packet to

travel between the PC and the PALMS VM. It was measured by

WireShark as the time required to receive a TCP SYN/ACK reply to the

TCP SYN packet used to establish a TCP/IP connection.

 Server Time (7.2ms median) indicates the time required by Mule to

process the Web Services call and return (prior and after the PALMS

service), and execute each GetStudyList workflow service. It was

measured by Wireshark directly, and is reported including Latency.

 In-App (55.2ms median) indicates the time spent in the PC browser,

calculated by subtracting Server Time (including Latency) from App

Time.

 In-Server (12% median) indicates the ratio of Server Time and Latency

to App Time, as a way of demonstrating the impact of PALMS server

interactions on the overall responsiveness of the browser GUI.

315

Figure 53 shows the timeline for the baseline operations using median

times, with emphasis on the time for the PALMS server portion of the

GetStudyList workflow.

This test shows that the PALMS user experience is dominated by

latencies within the PALMS Browser itself, and that the network latency and

PALMS server execution combine to account for only a small portion of overall

execution time. Considering that the GUI version of the PC browser is much

slower than the PC-based JUnit test actually executed, the server contribution

Figure 52. End-to-End Execution Time

0

50

100

150

200

250

300

350

400

1
7

0
1

3
9

2
0

8
2

7
7

3
4

6
4

1
5

4
8

4
5

5
3

6
2

2
6

9
1

7
6

0
8

2
9

8
9

8
9

6
7

1
0

3
6

1
1

0
5

1
1

7
4

1
2

4
3

1
3

1
2

1
3

8
1

1
4

5
0

1
5

1
9

1
5

8
8

1
6

5
7

1
7

2
6

1
7

9
5

1
8

6
4

1
9

3
3

M
ill

is
e

co
n

d
s

Trial

App Time Latency Server Time In-App In-Server %

PC Browser
Network

Transmission
PALMS ListStudies

Study
Repository

Storage

55.2ms 1.3ms
7.2ms

Web
Services

Figure 53. PALMS Execution Timeline without Context or Policy Evaluation

316

to a running PALMS system is tiny, as shown in Figure 54 (sorted by Server Time).

Alternately, the PALMS server can be expected to service numerous PALMS

clients simultaneously without contributing to user-perceived delay, and so

minimizing server-side execution (including policy evaluation) is important.

6.3.2.2 End to End with Context Interceptors

In the second series of tests, Mule was configured to include all

interceptors except the Policy Evaluator. As a result, SIVs were created, used,

and destroyed, and interservice messages were exchanged between

services (as described in Section 5.5.4). In this configuration, PALMS operated

with the entire policy system (including service tracking on each interaction)

except for Policy Evaluation itself.

Figure 54. PALMS Server Contribution to Overall Execution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

7
3

1
4

5

2
1

7

2
8

9

3
6

1

4
3

3

5
0

5

5
7

7

6
4

9

7
2

1

7
9

3

8
6

5

9
3

7

1
0

0
9

1
0

8
1

1
1

5
3

1
2

2
5

1
2

9
7

1
3

6
9

1
4

4
1

1
5

1
3

1
5

8
5

1
6

5
7

1
7

2
9

1
8

0
1

1
8

7
3

1
9

4
5

G
e

tS
tu

d
yL

is
t

Ex
e

cu
ti

o
n

Trial

Server Time Latency In-App

317

The first test measured the time taken to send a message from the

Browser PC to the PALMS service and retrieve a reply, both with and without

interceptors that create and destroy SIVs before and after the PALMS-Storage

workflow executes (i.e., the PrePolicyInterceptors, less

PolicyEvalInterceptor). The measurement was timed using WireShark, and

includes network transmission time, the time to process the Web Services call

and return, and the time to start a mock PALMS service.

Figure 55 shows the round trip time over 2,000 trials (sorted, with outliers

removed) as follows:

The second test measured the time added by interceptors that

maintain service tracking and the abstraction of interservice messages

within the workflow (i.e., the PolicyInterceptors, less

Figure 55. Network and Web Services Times with and without Context Interceptors

0

5

10

15

20

25

30

35

40

1

7
0

1
3

9

2
0

8

2
7

7

3
4

6

4
1

5

4
8

4

5
5

3

6
2

2

6
9

1

7
6

0

8
2

9

8
9

8

9
6

7

1
0

3
6

1
1

0
5

1
1

7
4

1
2

4
3

1
3

1
2

1
3

8
1

1
4

5
0

1
5

1
9

1
5

8
8

1
6

5
7

1
7

2
6

1
7

9
5

1
8

6
4

1
9

3
3

M
ill

is
e

co
n

d
s

Trial

Without Context With Context

318

PolicyEvalInterceptor). It executed the ListStudies, StudyRepository, and

Storage services, including the ,

 , and interactions.

To address possible jitter issues with the VMware-simulated tick counter (as

described in Section 6.3.1), each trial timed 2,000 executions of the workflow

and reported the time divided by 2,000.

Figure 56 shows the round trip time over 50 trials (sorted) as follows:

Figure 57 shows the timeline for round trips using median times.

Executing the Context interceptors adds 1.72ms to the total GetStudyList

workflow execution before the PALMS Mock, and 1.7ms after. Note that Figure

53 shows an end-to-end round trip time of 7.2ms, which includes the actual

PALMS service and no context interceptors. Figure 57 shows a slightly different

scenario, which takes 6.77ms and includes the PALMS Mock and context

interceptors. The difference between the PALMS and PALMS Mock execution

times accounts for this discrepancy. The main point, though, is to establish

Figure 56. PALMS-Storage Execution with Context Interceptors

0

0.5

1

1.5

2

2.5

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

M
ill

is
e

co
n

d
s

Trial

PALMS-Storage Execution

319

approximate baseline execution times for comparison against Policy

Evaluation scenarios later in this section, and to show that the time overhead

contributed by the Context interceptors is tiny.

The two tests together provide a measurement of the overhead of the

context system needed to support Policy Evaluation, without actually invoking

Policy Evaluation functions. End-to-end, the cost is less than 2ms per round trip.

6.3.3 Single Interaction Baseline

As a baseline for evaluating the cost of policy evaluation for a single

service interaction, I measured three scenarios using the

 interaction:

 a logging interceptor (not part of normal PALMS)

 Context interceptors that implement the interservice messages

abstraction

 Policy interceptor that performs Policy Evaluation

Note that each scenario adds to the previous scenario. The logging

interceptor makes a simple log4j call to log an interaction to a disk file. The

Context interceptors are those measured in Section 6.3.2.2. The policy

interceptor was executed with no interaction defined in the Interaction

PC Browser
Network

Transmission
PALMS
Mock

ListStudies
Study

Repository
Storage

55.2ms 3.35ms
5.07ms

Web
Services

(without)
(with) 1.70ms (with)

Figure 57. PALMS Execution Timeline with Context Interceptors

320

Repository for the interaction, so execution proceeds at

the ListStudies service – this is the shortest path through the Policy Evaluator.

As in Section 6.3.2.2, for each scenario, I ran 50 trials of 2,000 interaction

iterations each, and times are listed as the time for 2,000 iterations divided by

2,000. Figure 58 shows the round trip time for each scenario (sorted) as follows:

Figure 59 shows the timeline for round trips using median times.

Executing a round trip interaction intercepted by only the logger required

0.116ms. Adding the Context interceptors increased the interaction to

0.162ms, and adding the Policy Evaluator increased the interaction to

0.318ms.

Figure 58. PALMS Interaction Baseline Times

0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

M
ill

is
e

co
n

d
s

Trial

Logger Only Context + Logger Context + Logger + Policy

321

The incremental cost of the Context interceptors is 0.046ms, and the

incremental cost of the Policy Evaluator interceptor is 0.156ms. The overall cost

of the policy system (including the Context interceptors and a null Policy

Evaluation) is 0.202ms per interaction.

6.3.4 Null Policy Baseline

As a baseline for evaluating the cost of different kinds of policies and

data configurations, I measured two scenarios using the

 interaction:

 an interaction for PALMS-ListStudies defined in the Interaction

Repository

 a simple control composition policy defined on the interaction

Note that each scenario adds to the previous scenario. In addition to

processing the logging, Context, and Policy Evaluator interceptors, the first

scenario defines an Interaction Repository entry for the

interaction, which causes the Policy Evaluator to query the Policy Repository

for policies defined on the interaction. In this scenario, there are none, so the

Policy Evaluator exits and execution continues with the ListStudies service.

PALMS Logger
Policy

Evaluation
ListStudies

0.116ms

Context

0.162ms
0.318ms

Figure 59. PALMS Execution Timeline with Context Interceptors

322

In the second scenario, a simple control composition policy (compose-

all()) is defined, which causes the Policy Evaluator to check for control

policies defined on the interaction. In this scenario, there are none, so the

Policy Evaluator exits and execution continue with the ListStudies service.

As in Section 6.3.2.2, for each scenario, I ran 50 trials of 2,000 interaction

iterations each, and times are listed as the time for 2,000 iterations divided by

2,000. Figure 60 shows the round trip time for each scenario (sorted) as follows:

Figure 61 shows the timeline for round trips using median times.

Executing a round trip interaction with an Interception Repository entry for the

interaction required 0.323ms, and executing a round trip with a control

composition policy but no control policy required 0.325ms.

Figure 60. PALMS Policy Evaluation with No Policy

0.31

0.315

0.32

0.325

0.33

0.335

0.34

0.345

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

M
ill

is
e

co
n

d
s

Trial

Interaction Only Interaction w/Composition Policy

323

Given that the Context and Policy Evaluation interceptors are applied

to each PALMS interaction, the cost for the Policy Evaluator to process an

interaction in the Interaction Repository is 0.005ms, and the additional cost of

processing a composition policy having no injected policies is 0.002ms.

6.3.5 Control Policy

Defining a control policy on an interaction results in the Policy Evaluator

inserting the control policy into a control composition policy, then executing

the control composition policy to determine a replacement service (if any),

per Section 5.6.2.2.4. The process for preparing a message for evaluation,

then evaluating the policy is described in Section 5.6.3.2.

I measured four scenarios using control policies composed onto the

PALMS-ListStudies interaction:

 1 control policy

 2 control policies

 5 control policies

 10 control policies

The time for single policy evaluation demonstrates the cost of injecting

the control policy into a composition policy, compiling the composition policy,

PALMS Logger
Policy

Evaluation
ListStudies

0.323ms

Context

0.325ms

(interaction)

(composition)

Figure 61. PALMS Execution Timeline with Interaction but No Policy

324

preparing the current message for evaluation, evaluating the composition

policy expression, and interpreting the result. Note that whether a control

policy is originally expressed as a raw XQuery expression or a template

reference (as described in Section 5.5.1), the Policy Repository translates all

control policies to raw XQuery expressions as the policies are loaded (as

described in Section 6.2). Consequently, this translation does not contribute to

times for policy evaluation during service interactions.

The time for multiple policy evaluation captures all of the costs for single

policy evaluation, and includes the time needed to insert each policy into the

composition policy, to compile the composition policy, and for the

composition policy to evaluate each (as occurs with the compose-unanimous()

composition policy described in Section 5.6.5). Preparing the current message

 occurs only once for the entire composition policy. Injecting multiple control

policies reflects the use case of multiple policies being injected by multiple

stakeholders, possibly in different domains, and possibly oblivious to each

other. In this test, the same control policy was injected, though in a realistic

scenario, different policies would be injected.

325

Similar to Section 6.3.2.2, for each scenario, I ran 10 trials of 200

interaction iterations each, and times are listed as the time for 200 iterations

divided by 200. The control policy was similar to the policy described in

Section 5.6.3.2, where the policy returned the default service. Figure 62 shows

the round trip time for each scenario (sorted) as follows:

Figure 63 shows the timeline for round trips using median times.

Executing a round trip interaction with 1, 2, 5, and 10 control policies required

76.82ms, 77.19ms, 78.24ms, and 79.35ms.

Figure 62. PALMS Control Policy Evaluation with No Policy

74

75

76

77

78

79

80

81

1 2 3 4 5 6 7 8 9 10

M
ill

is
e

co
n

d
s

Trial

1 Control Policy 2 Control Policies 5 Control Policies 10 Control Policies

326

Adding a single access control policy, the interaction time rose from

the baseline 0.325ms (in Section 6.3.4) to 76.82ms. Adding and evaluating a

second policy required an additional 0.365ms. The average additional cost for

the fifth policy was 0.356ms, and the average additional cost for the tenth

policy was 0.280ms. According to the definition of the compose-unanimous()

composition policy, each copy of the policy would have been executed.

Therefore, the additional cost accounts for both the additional compilation of

the policy and its execution.

While the cost of an additional policy was very low, the cost of the first

control policy was high, though still small relative to the time consumed in the

PC browser.

6.3.6 Filter Policy

Defining a filter policy on an interaction results in the Policy Evaluator

inserting the filter policy into a filter composition policy, then executing the

filter composition policy to determine a filter service, execute it, and return a

replacement message (if any), per Section 5.6.2.2.4. The process for

PALMS Logger
Policy

Evaluation
ListStudies

76.82ms

Context

77.19ms

(1 policy)

(2 policies)

79.35ms (10 policies)

78.24ms (5 policies)

Figure 63. PALMS Execution Timeline with 1, 2, 5, and 10 Control Policies

327

preparing a message for evaluation, then evaluating the policy is described

in Section 5.6.3.1.

I measured five scenarios using filter policies composed onto the reply

phase of the interaction – the filter policies are

post-filters. Note that a different interaction is used for these scenarios as

compared to the examined in previous sections. The

timing characteristics of this interaction are the same as for other interactions,

but the message is appropriate for filtering, whereas the equivalent reply

message on the interaction has already been

processed (by the ListStudies service) and would not be a good candidate for

filtering.

In all scenarios, the filter operated on a list of studies whose cardinality

was part of the scenario, and had an effect on the result. Each scenario built

on the previous scenario, starting with a trivial filter on trivial data – it returned

all data it is receives. The non-trivial filter was the filter-by-role() filter

described in Section 5.6.2.2.2. In both cases, the composition filter policy was

the compose-all() filter described in Section 5.6.5. The scenarios were:

 Passthru filter operating on a list of 0 studies

 Filter returns 0 of 0 studies

 Filter returns 1 of 1 study

 Filter returns 0 of 97 studies

 Filter returns 97 of 97 studies

328

The time for the passthru policy evaluation demonstrates the nominal

cost of injecting the filter policy into a composition policy, preparing the

current message for evaluation, evaluating the policy expression, and

recasting the result as a new message . Note that whether a filter policy is

originally expressed as a raw XQuery expression or a template reference (as

described in Section 5.5.1), the Policy Repository translates all filter policies to

raw XQuery expressions as the policies are loaded (as described in Section

6.2). Consequently, this translation does not contribute to times for policy

evaluation during service interactions.

Evaluation times for multiple filter policies are similar to those for multiple

control policies, as the policy composition functions are similar.

However, evaluation times for a single filter policy depend on the

number of elements in the input message, the complexity of the filter

calculation, and the number of elements in the result message, as shown in

Figure 64 and Figure 65. (Figure 65 shows all scenarios, and Figure 64 shows

three scenarios that have lower execution times and are hard to differentiate

in Figure 65.)

The “Passthru 0 of 0 studies” test establishes the baseline as a trivial

input message, no filter calculation, and the same trivial message returned.

The “Return 0 of 0 studies” test requires additional XQuery compilation time

(for the non-trivial filter) and adds a loop over the (trivial) message. The

“Return 1 of 1 studies” test adds message translation time for the single study

329

entry on both the input and return messages, consistent with the evaluation

sequence described in Section 5.6.3.1.

The “Return 0 of 97 studies” test accepts an input message listing 97

studies, and the filter criteria results in a return message reflecting rejection of

all studies. The “Return 97 of 97 studies” test accepts the same message and

returns a result message reflecting acceptance of all studies.

Figure 64. PALMS Filter Policy Evaluation with Few Elements

70

75

80

85

90

95

1 2 3 4 5 6 7 8 9 10

M
ill

is
e

co
n

d
s

Trials

Passthru 0 of 0 studies Return 0 of 0 studies Return 1 of 1 studies

330

Figure 66 shows the timeline for round trips using median times.

There are three differences between the “Return 0 of 0 studies” and

“Return 1 of 1 studies” scenarios (per Section 5.6.3.1):

 an input message must be translated from Java object to XML (via

XStream) and then to Saxon native XDM format (via Saxon APIs)

 the filter must execute on the single study (which, for filter-by-role()

means extracting the study group, using the user’s identity to discover a

Figure 65. PALMS Filter Policy Evaluation with Many Elements

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10

M
ill

is
e

co
n

d
s

Trials

Passthru 0 of 0 studies Return 0 of 0 studies Return 1 of 1 studies

Return 97 of 97 studies Return 0 of 97 studies

ListStudies Logger
Policy

Evaluation
Study

Repository

78.94ms

Context

84.83ms

(passthru 0/0)

(return 0/0)

360.27ms (return 0/97)

91.98ms (return 1/1)

818.38ms (return 97/97)

Figure 66. PALMS Execution Timeline with Filter Policies

331

role list relative to the study group, and then comparing the role list to

the filter-by-role() parameter)

 a result message must be translated from Saxon native XDM format

back to XML, and then back to a Java object

The additional time for both translations and the XQuery expression

execution is 7.15ms.

Similar differences exist between the “Return 0 of 0 studies” and “Return

97 of 97 studies” scenarios, with the later requiring 7.56ms per study. This differs

with the previous 7.15ms by 0.41ms or approximately 6%, for unknown reasons,

possibly including coding efficiencies, non-linearities, and assumptions in either

XStream, the Saxon API, or the Saxon XQuery engine.

Finally, the difference between the “Return 0 of 97 studies” and “Return

97 of 97 studies” scenarios is that for the former, the result message translation

is trivial (because 0 studies are returned). By subtraction, the result message

translation time is 4.72ms per study, and the combination of the input message

translation and XQuery expression evaluation is 2.84ms per study.

Note that these timings depend heavily on the data being processed.

For a study list (as discussed in Section 3.1), a study entry contains six elements,

where three of the elements are XML and could be several kilobytes long.

Messages containing a different number of fields, different field lengths, and

structured fields may take more or less time to process by the XQuery engine

and to render using XStream and Saxon APIs. However, the factors that

determine relative execution times remain the same.

332

6.3.7 Execution Time Hypotheses

In evaluating the hypotheses posed in Section 6.3, I refer to the timings

presented in this section to demonstrate that hypotheses 1.a and 1.b are

supported, and hypotheses 2.a and 2.b are conditionally supported.

Section 6.3.2.1 establishes that the end-to-end execution time for a

typical PALMS workflow (including a trivial PC browser application) is 63ms,

approximately 55ms of which is in the PC browser application. (A practical PC

browser application would take an order of magnitude longer.) Regardless,

Section 6.3.2.2 demonstrates that the cost of the Context system at the start of

a workflow is 1.72ms, and Section 6.3.3 demonstrates that the Context system

interceptor support for each interaction costs 0.046ms, and that the cost of a

Policy Evaluation for an interaction not registered in the Interaction Repository

is 0.156ms.

With the cost of 2.01ms relative to a baseline workflow cost of 63ms, the

Context system and Policy Evaluation system (absent any interaction or policy

definitions) increases workflow execution costs by about 3%, which supports

hypothesis 1.a.

Section 6.3.4 shows that interactions registered in the Interaction

Repository and having a composition policy require 0.007ms longer to

execute than interactions not registered in the Interaction Repository.

Therefore, hypothesis 1.b is supported.

333

Section 6.3.5 shows that control policy evaluation adds between 76

and 80ms (or longer) to an interaction, depending on the size and complexity

of the interaction message, the policies and their composition policy, and

how many policies are evaluated. Relative to a baseline workflow time of

63ms, this is a significant cost, especially if a control policy is defined for more

than one interaction in the workflow. However, a realistic PC browser likely

requires an order of magnitude longer to execute, thereby rendering control

policy execution time as insignificant. Notably, control policy execution times

can become significant if they are embedded in loops or workflows must be

executed on behalf of multiple users at the same time. Therefore, hypothesis

2.a is conditionally supported.

Section 6.3.6 shows that filter policy evaluation adds between 78 and

818ms (or longer) to an interaction, depending on the same factors as for

control policies, with the size and complexity of the interaction message

returned by the filter. Relative to the baseline workflow time of 63ms, this is a

more significant cost, especially for large or complex interaction messages –

pre-filters would likely incur costs at the low end of this range (because

request messages are normally small and simple), and post-filters would likely

incur costs at the high end of this range (because request messages can be

large and complex, as in Section 6.3.6). Furthermore, as with control policies,

these costs are magnified if the interaction is embedded within a loop or

other workflow or must be executed on behalf of multiple users at the same

time. However, in the case of PALMS, users infrequently execute post-filtered

334

workflows and times allocable to the PALMS Browser GUI significantly exceed

the cost of the post-filter execution. Therefore, hypothesis 2.b is conditionally

supported, but is weaker than hypothesis 2.a.

6.4 Summary

In this chapter, I used the PALMS-CI case study to evaluate PDD along

multiple dimensions, including development time, stakeholder

enfranchisement, and execution time.

Through context composition mechanisms (in Section 6.1), I

demonstrated a dramatic reduction in development time because PDD

mechanisms enabled the separation of workflow-oriented concerns from

base workflows (with commensurate decreases in maintainable code and

complexity). Though the objective of PDD is to enable policy-based workflow

composition, the reduction in workflow development time lends credence to

PDD’s context composition as an enabler of policy-based workflow

composition.

In Section 6.2, I described the evaluation of policy language usage in

constructing access control policies, and how the policy language syntax was

evolved to satisfy stakeholder-perceived ease-of-use criteria. As a result,

untrained stakeholders were able to write and inject simple access control

policies. As a follow up, I discuss policy verification issues in Section 7.5.

Section 6.3 presents a number of tests that describe how policy

execution times affect the overall execution of workflows, particularly how

335

they vary with policy and interaction message size and complexity. The tests

showed that for interactions on which no policies are associated, the time

added to workflow execution is negligible. For control policy execution, the

incremental cost is non-trivial but not significant so long as interaction

messages remain small – a likely scenario, given that control policies are

generally executed on request messages in a request/reply interaction. For

filter policy execution, the incremental cost is non-trivial and can be significant

for large and complex interaction messages. Using the same reasoning as for

control policies, pre-filter policy execution is not likely to be significant.

However, it was demonstrated to be significant for post-filter policies

processing non-trivial interaction messages.

In Chapter 7, I compare PDD to systems and approaches that address

a number of aspects of PDD, resulting in a wider perspective of how PDD

succeeds and how it can evolve. Particularly, in Section 7.4.2, I describe how

policy execution costs impact workflow execution in the xESB system, and

offer contrasts and comparisons that put policy execution times into

perspective. In Section 7.4.5, I discuss how changing the relationship between

policy language, policy compilation, and interaction message structure can

be altered to influence these costs.

336

CHAPTER 7

PDD AS COMPARED TO OTHER APPROACHES

In the preceding three chapters, I described a foundation of policy

composition (as PDD in Chapter 4), its implementation in the PALMS-CI

(Chapter 5), and important measures of its performance (Chapter 6). In this

chapter, I summarize the approach and contributions of PDD, describe how

PDD’s approach fills gaps exposed in the existing solutions identified in

Chapter 2, and compare and contrast PDD with other existing contributions

that bear on issues either solved or unsolved under PDD. I round out the

discussion by explaining my vision for a new role of policy programmer,

describing how to use PDD to build large scale systems responsive to

emergent stakeholder requirements, and exposing gaps remaining to be filled

within PDD.

In this Chapter 2, I examined existing methodologies and technologies

as contributions tuned to support early requirement binding but which may

apply to a late binding paradigm, and described how each approach could

contribute to late binding but somehow fell short. In the individual sections of

this chapter, I revisit the PDD foundations and case study implementation as

solutions to those shortcomings (as summarized in Table 9) and shown in Figure

67.

337

In Section 7.6, I describe my work in developing the role of policy

programmer (introduced in Section 1.3.3) and how it relates to traditional

application development.

In Section 7.7, I explain processes and techniques useful in building or

maintaining an application created under PDD principles.

Finally, in Section 7.8, I discuss both issues addressed and unaddressed

by PDD, opportunities uncovered in the course of my PDD research, and

insights useful in moving PDD forward.

Table 9. Existing Contributions Addressed in PDD

Topic Discussion of

Existing Work

Comparison to

PDD

Injecting Crosscutting Concerns 2.3.3
2.3.4

7.1
Workflow Context Management 2.4.5 7.2
Orchestration and Workflows 2.4.4 7.3
Policy Evaluation Systems 2.4.4 7.4.1

7.4.2

7.4.3

Policy Deployment 2.4.4.1 7.4.4
Policy Languages 2.4.4.1

2.4.4.4

2.4.6

7.4.5

Policy Versioning 2.4.4.1
2.4.4.2

2.4.4.3

7.4.6

Verification 2.4.6 7.5

338

7.1 Workflows, Requirements, and Late Binding

PDD’s focus on abstracting decisions at the workflow level reflect the

assumptions that workflows are accurate models of stakeholder requirements

and:

 stakeholder requirements are separable and composable

 individual requirements (and workflows) can be decomposed into sub-

requirements (and sub-workflows),

 requirement changes or additions represent increments composed

onto existing requirements

Workflows,
requirements, &

late binding

Workflow context

Orchestration
languages &
workflows

Policy evaluation
systems

Verification &
validation

Policy programmers
& enfranchising

stakeholders

Building &
maintaining PDD

applications

Insights and
remaining gaps

Summary and
Wrapup

Section
7.1

Section
7.2

Section
7.3

Section
7.4

Section
7.5

Section
7.6

Section
7.7

Section
7.8

Section
7.9

PDD relative to Gaps

General discussion

Commentary

Legend

Expained
in

Summary

Figure 67. Chapter 7 Flow

339

While these assumptions are substantially true and relevant, they can

be shown false in various important circumstances – notably, workflows are a

synthesis of structural relationships (between abstracted entities), data flow,

and control flow, while most precisely representing only control flow. Changes

to structural relationships and data flows sometimes have application

repercussions beyond incremental modifications to workflows, though they

can often be addressed through workflow modification.

Given that evolvability is a major application requirement and

evolution is a major cost driver for long-lived, large scale applications that

serve many stakeholder populations, it is incumbent on an application

architecture to support multiple evolution paths. Explicitly enfranchising

stakeholders in the change process is critical to system success, but is yet

inadequately addressed at the architectural level (often via plugins and

hooks constrained at system design time). SOAs rely on strong correlation

between service orchestrations (as proxies for workflows) and stakeholder

requirements. PDD’s SOA foundations (particularly, leveraging Rich Services)

and the DSL orientation of its policy expression strategy further enfranchises

stakeholders by enabling them to drive the reuse of existing workflows quickly

and accurately relative to existing programmer-centric strategies, with the

highly granular workflows being most likely to recombine with other workflows

– all responsive to emergent requirements not anticipated during the

traditional design and programming process.

340

At its heart, PDD represents the lifting of a Strategy pattern (as briefly

described in Appendix C) based on hitherto static or dynamic binding of

workflows, and identifies a unique point on the continuum of binding

behaviors. Whereas an embedded “if” statement represents a static (or

“early”) workflow binding, use of dynamic linked libraries and discoverable

services (as in Web Services [196], IoC [34], and DI [139]) represents a dynamic

(or “late”) workflow binding. (Language-based polymorphism and Aspect

Oriented point-cut-based code weaving represent other points close to

“early” binding.)

With PDD’s policy injection, the decisions that discriminate between

alternate workflows are abstracted out, and are bound and evaluated at the

point of execution. In the process, alternate workflows themselves are

abstracted out, too, and such workflows can implement filters, alternate use

cases, or independent features. This avoids creating systems made inflexible

through unnecessarily premature choices and entangled workflows, as often

occurs with hard-coded “if”s.

(As a point of reference, while dependency injection (DI) and policy

injection share the concept of “injection”, they differ in what is being injected

and when. For DI, a workflow activity is created and bound to a workflow at a

location determined at workflow authorship time. The workflow activity is

realized before the workflow executes, and the choice of workflow activity is

made without accessing state internal to the workflow. For policy injection,

the workflow selection decision, the collection of selectable workflows, and

341

the location in the target workflow are all determined at runtime using

information available to the workflow as it executes.)

That said, PDD presents challenges that must be overcome before PDD

can be widely used in large scale systems.

While policy injection improves evolvability when a stakeholder

requirement maps a single decision (and alternate workflows) onto a single

base workflow, complications arise when a requirement results in the injection

of multiple sub-policies into various workflows (as in the MSoD example in

Section 7.4.1), possibly involving alternate workflows that, themselves, only

partially address the full requirement. From an authorship viewpoint, the

complication arises in traceability between components of a requirement

and sub-policies of a policy, and in the structural and semantic compatibility

of information shared between sub-policies. From a verification viewpoint, the

complication arises in demonstrating sub-policy data flow and dependency

relationships congruent with their corresponding requirement components.

These issues are not unique to PDD, and are at the core of large system

maintenance. It is variously addressed by the FOSD community [197], and by

techniques such as dependency visualization [198], type systems, requirement

and goal decomposition and traceability, and verification (per Section 7.5).

In the following sections, I compare and contrast other approaches to

workflow composition that address these issues, though from different

viewpoints.

342

7.1.1 Aspect Oriented Software Design (AOSD)

PDD complements, leverages, and extends work already done by a

number of investigators, particularly in the areas of AOSD. PDD draws

inspiration from AOSD, which defines highly precise joins and point-cuts,

enabling advice around or instead of almost any code in a baseline

application. Point-cuts, however, amount to ad-hoc interfaces, which are

easily broken by accident by oblivious application programmers – this results in

brittle advice and advised code [104]. PDD’s alternate workflows are

analogous to AOSD’s advice, and PDD allows interception only at the service

interface, which has a clearly defined and infrequently changed protocol

and semantics characterized by a service contract. Because workflow and

policy writers can rely on service contracts, brittleness is reduced and oblivious

service coding is encouraged.

Additionally, AOSD implements a form of message interception

(enabling inbound and outbound filtering) via around-advising parameter-

laden function calls or point-cuts at function entry and exit points. This function

call mechanism does not gracefully distribute across distributed computing

systems, whereas PDD’s reliance on explicit message passing scales naturally

in such situations.

While both AOSD and PDD encourage advice on concerns, the AOSD

code weaving strategy discourages advice on advice except in the special

circumstance of advice calling advisable functions. Under PDD, because of

ubiquitous policy evaluation, composing workflows and features is

343

encouraged, thereby improving evolvability of existing workflows and

features.

Early AOSD work [32] suggests that workflows can be simplified by

reducing entanglement using AOSD principles. Since then, various metrics

have arisen to quantify the effects and other complexity-related code

characteristics (e.g., Crosscutting Degree, Coupling on Method Call, etc)

[199]. Such metrics are designed to drive workflow simplification and promote

refactoring as aspects. As PDD rests on AOSD principles, PDD’s focus on

defining base and orthogonal workflows joined by policy produces

applications that can be evaluated in the same way, though with tools

extended to evaluate the PDD policy language (e.g., XQuery).

However, as a vehicle for the integration of both small and large scale

components as Systems of Systems, PDD’s injected workflows can be

completely encapsulated (as with the Policy and Audit systems in Sections 5.6

and 5.6.4) or can share state with related workflows (as in Section 7.4.1). PDD

discourages entanglement and promotes such encapsulation, and would

naturally produce cohesive systems with low coupling. Whereas existing AOSD

implementations discourage aspects on aspects, PDD encourages them,

which can lead to complex workflow inter-relationships, including cyclic

relationships, at the system level. Extensions of AOSD metrics would be helpful

in assessing policy-based system complexity and maintainability, though

defining such metrics would be challenging, as policies are free to choose

344

amongst many workflows (or even create new workflows) based on dynamic

conditions.

AOSD conceives of the issue of composing multple policies on a single

interaction as aspect interference and provides both ad-hoc and model-level

mechanisms for detecting and prioritizing interfering aspects [200] [201]. PDD

addresses this through composition policies, which are specified and

executed at runtime, responsive to both dynamic state and changing

stakeholder population and relationships, as described in Sections 4.2.7 and

5.6.2.2.4. PDD makes no attempt to discover or resolve compositions of

conflicting policies, and leaves this to policy programmers (in the short term)

and future work (in the long term).

7.1.2 Policy-based Design

Policy-based Design (PBD) [202] defines a crosscutting concern in terms

of abstractions reused throughout an application. It defines a policy class as a

type-based interface representing a concern, and advocates that

application designers and coders create and reference a policy class

whenever they make design choices that can be deferred. While a policy

class carries type information, the emphasis of its definition is behavioral.

Therefore, a class (or application) is assembled out of policy class interfaces

that represent orthogonal behavioral or structural aspects of an application

design.

345

PDB’s objective is to manage the combinatorial explosion of design

choices encountered in the application design and code authorship process,

and create an ecosystem that addresses new requirements as

recombinations of new and existing policy implementations. By leveraging a

collection of such policy classes and their implementations, an application

can integrate and orchestrate a concern without committing to an

implementation until compile time.

PDB relies on the C++ concepts of templates (generic programming)

and multiple inheritance to compose type-safe policies into an application.

For a given policy class, there may be several concrete classes, each of which

represents a different set of characteristics and design choices in realizing the

particular policy class abstraction. Templates enable the relatively safe type-

and functional-parameterization of policy classes, and multiple inheritance

exposes policy methods so they can be easily used during coding.

PDB attempts to recognize crosscutting concerns early in the design,

coding, and re-engineering process. As such, it encourages building workflows

that emphasize base concerns, and then composing policy abstractions into

them. As with PDD, policy abstractions can implement filtering, control flows,

and feature compositions. Similarly, as with PDD, PDB encourages the

composition of one policy onto another, and on to base or composed

features. Its contribution is to address evolvability at the coding and re-release

level, but not to address emergent requirements at runtime or to enfranchise

stakeholders directly. Additionally, it has no inherent contribution to large

346

scale distributed systems capabilities beyond what is expressly coded into

policy class instances.

7.2 Workflow Context

PDD contexts (described in Sections 4.3 and 5.5.4) focus on the

availability of message-, workflow-, session-, and application-based state for

workflow activities executing in a distributed system, which is not well

addressed by other approaches. In subsequent sections, I compare and

contrast PDD concepts of state and workflow management in popular and

successful application architectural frameworks that represent different views

of workflow context.

7.2.1 Struts

While composing context references and transporting them via

interservice messages is unique to PDD, the lifecycles of such contexts are

inspired by the Struts [126] system, which executes workflows on behalf of

clients, similar to PDD, and is described in Section 2.4.5.1.

Whereas a Struts workflow is guaranteed to execute on a single

computer in a single thread (thereby simplifying its request bean

implementation), PDD has no such guarantee, which results in PDD

maintaining workflow state in the thread-safe CIS as a service reachable by all

computers. Consequently, PDD workflows are scalable across distributed

systems, whereas Struts workflows are not.

347

Maintaining a Struts session bean depends on a session reference

passed using an HTTP protocol between a client (browser) and the Struts

system – via a cookie or URL rewriting. PDD does not assume an HTTP protocol

or that the client is a web browser – while the PALMS implementation uses

Web Services to communicate with clients, the Mule ESB on which it runs

allows various protocols, including HTTP and others. Consequently, automatic

session creation, passing, and deletion are not implemented in PALMS –

sessions are passed and maintained under explicit request of a client. As a

result, PDD sessions are not limited to representing users – they can represent

any persistent context, including a user.

A Struts application bean is created by a workflow and can be

accessed by any workflow for the duration of the application execution. A

PDD IV has similar scope and function. PDD implements IVs using its

independent, thread-safe CIS service, similar to a corresponding Struts service.

Unlike Struts, PDD supports the dynamic composition of a workflow onto

a base workflow, and supports segregation of state for each workflow. Its CIS

service allows storage and retrieval of key-value pairs for workflow contexts

(and all other contexts), where key names can be dynamically generated by

workflow activities (similar to the π-calculus approach described in Section

2.2.3). So long as a composed workflow activity generates a unique key

name, it can store and retrieve workflow-scoped values without conflict with

other composed workflows. Furthermore, PDD enables the creation of multiple

348

workflow-based contexts (on behalf of multiple, separate concerns), which

further segregates workflow-based state.

7.2.2 REST

A RESTful application (described in Section 2.4.5.2) executes a workflow

where an interaction is implemented as message exchanged between a

state-laden client and a server. Such an interaction can be modeled using

the service concepts of Section 4.1.2, and includes both request-only and

request/reply interactions.

REST can simulate PDD policy evaluation (per Section 4.1.3) by

replacing every server with a policy evaluator proxy that wraps the server,

evaluates policy, and then modifies a request or response, or directs a service

request according to the policy. Additionally, REST can simulate PDD’s IV-style

variables, which PDD implements as REST-style calls to its CIS service.

However, to service a workflow injected by a policy evaluator proxy,

workflow variables (or a CIS-style reference to them) must be included in all

server requests (including propagation through downstream server requests),

thereby accomplishing the objectives of PDD’s interservice message feature

(described in Section 4.3). This can be arranged in remote procedure call

(RPC) proxies linked into RESTful clients and servers (to the extent that such

code interacts via RPC proxies), but this would require relinking and

redeploying RESTful client and server code, which may not be available or

possible for an given application or set of remote services. For clients and

349

servers that don’t interact via RPC proxies or cannot be relinked and

redeployed, the alternative is to encode the equivalent of interservice

messages explicitly in the REST client and server code, followed by

redeployment.

In sum, the policy evaluator proxy and the manual propagation of

workflow variables impose burdensome requirements on REST style

applications (just as they did on PALMS services before PDD was implemented

in PALMS, as described in Section 6.1), making it difficult for them to react

quickly to stakeholders’ emergent requirements.

Note that REST servers are accessed via URL, which functions as the

Internet version of a routing system. Consequently, from a routing viewpoint,

replacement of a REST server can be a simple and low risk proposition – via

changes to DNS or other mapping tables. However, to simulate interaction

interception that could enable workflow injection, the routing system would

need to somehow encode both the source and the target services so as to

enable policies to associate with a source-target pairing (as in Section 4.1.5).

Current DNS-based routing is source-agnostic.

Additionally, the process of generating and deploying a replacement

server incurs the bottlenecks attendant to traditional programming disciplines,

and can be time consuming and risky.

Under unmodified REST, implementation of diverse stakeholder

requirements (e.g., access control, auditing, provenance tracking, quality of

350

service, and failure management) represents entanglement of concerns

application wide.

7.2.3 AJAX

An AJAX application (as described in Section 2.4.5.3) implements

workflow state as a closure whose life cycle is limited to a single external

service call. Maintaining workflow state across successive server interactions is

performed via manual coding.

Considering that a closure implements a pairing of requestor state with

reply data, a closure can be implemented under PDD as a workflow variable,

where the source service explicitly stores the closure as a workflow SIV, and

the target explicitly fetches and deletes it. Services can access SIV values

using SIV access libraries.

Note that PDD-style policy under AJAX is possible, though with

significant restrictions. PDD policies enable policy injection on interactions as

characterized by a source and target service. Under AJAX, the client is always

the source, and the server is always the target. Any finer distinction would

require message-level information as a matter of convention, thereby

imposing a bookkeeping burden on all requestors in the client, and on a

message hook in the server. Given this, the servlet could be proxied by a

policy evaluator service (as in Section 7.2.2), but access to SIVs common to

client and server would require further study.

351

A browser-based client-side policy system is hampered by both the

difficulty of intercepting interactions between functions in JavaScript, and the

security requirement that such a client communicate only with a single server.

Note that these limitations apply to the GetStudyList workflow

described in Chapter 3 – in the PALMS implementation, the Client has a REST-

style AJAX relationship with the PALMS server. The bulk of my dissertation

applies to workflows defined within the PALMS server (not the client) where

interactions can be easily intercepted, service tracking can be readily

implemented, and alternate services can be readily invoked.

7.3 Orchestration Languages and Workflow Systems

There are a number of orchestration languages and workflow

management systems that address portions of the core PDD requirement

space.

Scripting and orchestration languages (e.g., Groovy, BPEL, WS-CDL,

WSCL, MSCs, UML and Orc) provide routing that includes decomposition (in

addition to looping and other control flows), and provide scoped variables

supporting global and workflow contexts, but not session context, message

interception, or static policy-based workflow substitution. With no facility for

aspect definition or injection, such languages encourage entanglement of

concerns, which complicate the implementation of exception handling,

access control, business rules, and feature composition.

352

In contrast, AO4BPEL [146] defines point-cuts on BPEL, where advice

occurs at the service interface level, thus enabling modular maintenance of

business rules composed into an orchestration at runtime. By composing

aspects at the service interaction level, AO4BPEL avoids much of AOSD’s

brittleness. AO4BPEL relies on runtime uptake of static point-cut and advice

specifications, thereby enabling a degree of dynamic composition, though

only on service interactions identified by developers during the code

authoring process. However, it has no mechanism for specifying point-cuts at

runtime, and so provides limited opportunities for an application to react to

stakeholders’ emergent requirements via injectable policy.

Similarly, BPEL Business Rules Integration [203] (described in Section

2.4.4.2) extends BPEL by composing business rules onto service interactions,

but without enabling the selection of rule injection points at runtime.

Workflow Management Systems [75] (WFMSs) assume centralized

knowledge of workflows and available roles; WFMS performs centralized

access control and scheduling of tasks. [204] distributes WFMS knowledge and

decisions to create a mediator-free fabric based on task discovery protocols.

Under PDD, knowledge of a workflow and access control policies exists at the

site of policy injection, without any centralized or distributed control. WFMSs

represent top-down workflow management, which PDD represents as bottom-

up. As such, PDD’s strategy encourages fluid policy contributions by multiple

stakeholder groups.

353

WS-CDL [205] is a web services choreography language that defines

rules that govern the ordering of messages exchanged during service

interactions. It defines choreographies relative to a root choreography. At its

heart, a choreography is a functional language (or ADL) describing the

relationships to be imposed between services, including how service outputs

and inputs are coordinated, and does not discriminate based on authority

domains or other types of policy. As such, it defines the coordination of

workflows, and presides over the coordination. Unlike PDD, it contains no

provision for crosscutting concern or feature composition, scalability, or

conditional composition.

7.4 Policy Evaluation Systems

At an abstract level, policy evaluation systems attempt to implement

requirements as crosscutting concerns composed (via policy) upon workflows.

They differ in the assumptions they make about scope of policy and its

relationship to base workflows. This section describes how PDD represents

different choices on these and other dimensions.

7.4.1 PERMIS

Historically, the dominant use of policy-enabled systems is in defining

and enforcing access control, trust relationships, and data security. A

common paradigm occurs in the application coding process, where a static

decision is lifted to a dynamic decision through the use of a policy evaluation

system (as discussed in Section 7.1.2).

354

As described in Section 2.4.4.1, the PERMIS policy languages express

concepts important to security practitioners, but do not service other domains

(e.g., failure management, data filtering, auditing, and intrusion detection).

Additionally, their formulation in XML leverages standards that represent

security and trust concerns, but neither the standards nor the XML encodings

are easily understood by many communities (even with GUI support). While

PDD’s concept of DSL-oriented policy languages is more flexible and

accessible to diverse communities, such DSLs have not yet been defined to

replace, extend, or map to the standardized XML-oriented languages.

355

Solving the classic access control problem of Multisession Separation of

Duties (MSoD)4 [206] demonstrates PERMIS’ and PDD’s (as PALMS) contrasting

policy statement and evaluation styles. Under MSoD, a user cannot exercise

conflicting roles even if the user is a member of both roles. As shown in Figure

68, MSoD occurs in a shared context (represented by ObjectA), where a user

attempting a particular operation must have a role that qualifies to execute

the operation, and cannot have already executed a conflicting operation (as

recorded in a hypothetical History log):

More generally, while role membership can be used to allow or deny a

user access to an activity, relationships between roles themselves provide a

separate layer of logic that extends and refines these constraints.

For example, in a bank, a user can fill multiple roles, including separate

teller and auditor roles. Were access to a teller or audit function to be based

solely on the roles a user holds, a user could be both a teller and an auditor in

4
http://www.sans.edu/research/security-laboratory/article/it-separation-duties,

http://www.niiapp.org/fileadmin/files/2010-05-20-procedure-policy-template.pdf,

http://sec.cs.kent.ac.uk/permis/DevPlans.shtml#separation,

http://www.cs.colostate.edu/~iray/research/dbsec08.pdf

User Operation1 Operation2

Actor.Roles ∩ Operation1.Roles ¹ Λ && History(Actor, Operation2, ObjectA) = Λ

Actor.Roles ∩ Operation2.Roles ¹ Λ && History(Actor, Operation1, ObjectA) = Λ ObjectA

ObjectA

Figure 68. UML Activity Diagram of Multisession Separation of Duties

http://www.sans.edu/research/security-laboratory/article/it-separation-duties
http://www.niiapp.org/fileadmin/files/2010-05-20-procedure-policy-template.pdf
http://sec.cs.kent.ac.uk/permis/DevPlans.shtml#separation
http://www.cs.colostate.edu/~iray/research/dbsec08.pdf

356

the same bank branch (i.e., common context). This contradicts common

financial checks and balances (i.e., Separation of Duties or SoD).

The example qualifies as “Multisession” because the teller workflow is

completely separate in time from the independent auditor workflow (and

may execute on a different computer) – state maintained only in a workflow

context, a login session, or on a single computer is insufficient to enforce the

Separation of Duties. The MSoD problem is further complicated when Virtual

Organizations are in play – role sets defined in multiple, dynamic authority

domains cannot be evaluated at any time except during actual workflow

execution.

Both PERMIS and PDD solve the problem by maintaining application-

level state outside of a workflow or session context. PERMIS introduces a

“business context” (which tracks the events pertaining to a set of constrained

activities such as might result in an MSoD conflict) and a “role constraint”

(called multi-session mutually exclusive roles or MMER) that defines when, in a

business context, the activation of a role is forbidden. A sample PERMIS MSoD

policy is:

 <MSoDPolicy BusinessContext="Branch=*, Period=!">

 <LastStep operation="CommitAudit"

 targetURI="http://audit.location.com/audit"/>

 <MMER ForbiddenCardinality = "2">

 <Role type="employee" value="Teller"/>

 <Role type="employee" value="Auditor"/>

 </MMER>

 </MSoDPolicy>

357

The policy specifies that the business context applies to all bank

branches (i.e., Branch=*) and all time periods (i.e., Period=!). It identifies the

roles in play as Teller and Auditor, and it uses set logic to enforce that an

employee cannot hold both roles (i.e., ForbiddenCardinality = “2”) in the

business context. This policy assumes that a) the policy system tracks all events

pertinent to all bank branches and time periods, b) it tags all events with the

role that initiated the event, and c) an employee declares the role being

exercised at some point (e.g., during signon). It asserts that for the business

context, the history can be deleted once the CommitAudit event occurs. To

support this policy, an application must identify when a user is exercising a

role, and when the CommitAudit event occurs. Additionally, it must evaluate

the policy immediately before the CommitAudit activity commences.

An analogous MSoD policy in PALMS might be that a research assistant

adding participants to a study cannot be the one that deletes them. For

consistency in this example, though, I use PDD policy principles to address the

PERMIS MSoD banking scenario.

Under PDD, suppose a RBAC-oriented banking DSL that evaluates

whether a user is a member of a role, and that the user can hold several roles

simultaneously. To execute a workflow based on role membership alone (such

as a Teller workflow), a plausible requirement could be phrased as

palms:user-in-role('Teller'), and similarly palms:user-in-role('Auditor')

for an Auditor workflow.

358

However, implementing the role conflict rules requires persistent state

indexed by bank branch and role, and containing a list of users exercising a

particular role. The list must be augmented when a user exercises the role, and

must be checked when the user is about to exercise a conflicting role.

A hypothetical MSoD DSL might be useful in articulating MSoD policies

in terms directly related to MSoD requirements. Assuming the branch is a value

in a message (though it could be in a workflow or session context), the DSL

might have the functions in Table 10.

The msod-valid() function would fetch the bank branch from the

current message , check for the user having held the $test-role role at the

branch, and if not, register the user as holding the $add-role role at the

branch, and then continue the workflow. msod-valid('Auditor', 'Teller')

would be used to guard a teller workflow, and msod-valid('Teller',

'Auditor') would be used to guard an auditor workflow.

The msod-clear() function would delete the branch’s role lists at the

end of the CommitAudit workflow.

A policy incorporating the msod-valid() function would be injected

into an interaction that commences an MSoD-sensitive workflow:

Table 10. MSoD DSL Functions

Function Parameters Return

msod-valid $test-role, $add-role boolean

msod-clear

359

 if (palms:MSoD-valid('Teller', 'Auditor')) then () \

 else palms:control-error('denied')

Similarly, a filter containing the msod-clear() function would be

injected immediately after an audit workflow.

Using the library functions described in Section 5.6.5.1, an msod-valid()

function would test whether the user was present in a role list for the branch,

and would add the user to a role list for the branch. The following example

shows how to use PALMS’ Context system (CIS service) to store MSoD-related

state as an IV, which persists across service interactions, workflows, and

sessions:

 declare function msod-valid($test-role as xs:string,

 $add-role as xs:string)

 as xs:boolean {

 let $msod-context := "MSOD Context"

 let $test-key := concat(palms:cur-value("branch"),

 ".", $test-role)

 let $add-key := concat(palms:cur-value("branch"), ".", $add-role)

 let $cur-user := palms:get-workflow-user()

 let $users-in-test-role := get-iv-value($msod-context, $test-key)

 let $users-in-add-role := get-iv-value($msod-context, $add-key)

 return if ($cur-user = $users-in-test-role) then

 false

 else

 palms:set-iv-value($msod-context, $add-key,

 ($users-in-add-role, $cur-user))

 }

Note that under PDD, the CIS stores key-value pairs, each of arbitrary

composition. A suitable key for this event stream would be the name of the

bank branch, and a Teller and an Auditor sub-key would contain a

collection of users that have exercised the Teller or Auditor roles for the

360

branch. By definition, the CIS resolves key-value pairs for policies executing a

distributed system.

By avoiding PERMIS’ XML and set logic constructs, a PDD policy more

directly tracks the stakeholder’s understanding of the issue, invites stakeholder

interaction, and reduces the likelihood of conceptual or formulation errors – all

of which contribute to efficient and effective system evolution. Because PDD

supports DSLs via XQuery libraries, it extends this benefit to multiple stakeholder

groups simultaneously.

Because XQuery has many features of a general programming

language, the creation of complex policies under PDD is quick and simple. For

example, if the MSoD rules were declared to be non-operational on

weekends, a simple predicate could be added to the MSoD (or other) DSL

language:

 if (palms:is-weekend() \

 or palms:MSoD-valid('Teller', 'Auditor')) then () \

 else palms:control-error('denied')

Relative to a base workflow, an MSoD policy represents a separate

access control concern. The PERMIS authorization system abstracts the

particular policy (as XML) but not its insertion into the base workflow. PERMIS

acts as a Policy Decision Point (PDP), but not a Policy Evaluation Point (PEP).

Therefore, invocation of a PERMIS policy requires that a base workflow be

coded to call PERMIS and act on the policy result (both to guard a workflow

and to signal a policy event, as in the example above). To add a new policy

361

requires not only entanglement of the base workflow and the authorization

concern, but also a separate deployment of the resulting code. As an

alternative, PDD requires no modification of base workflow code, allows

separate concerns to remain separate, and enables complex policies to be

written and injected using a language that reflects the requirements of the

concern.

While the MSoD calculation consists of a simple logic comparison,

expressing more complex calculations follows the same pattern. Under the

PERMIS approach, no facility exists to compose policy onto a complex

calculation (e.g., making it inoperable on weekends). However, under PDD,

such a policy could be composed onto complex calculations that themselves

are expressed as workflows. In essence, PERMIS’ emphasis on access control

renders its composition shallow, while PDD’s emphasis on feature injection

results in potentially deep composition.

Note that while PERMIS does not address runtime policy injection, it

presents an end-to-end secure policy execution solution, which encompasses

transmission of principal attributes, secure policy storage and distribution, and

role and attribute management in a distributed environment. Notably, PERMIS

leverages distributed attribute and trust fabrics to service Virtual Organizations

(VOs), where an organization can maintain attributes autonomously relative

to other organizations, thereby granting or denying its members access to

resources regulated by existing and new policies. PALMS achieves a similar

effect by accessing role and permission definitions in Grouper, and phrasing

362

policy in terms of those roles and permissions (as described in Section

5.6.1.3.1).

Under PALMS, the XQuery engine functions as the PDP, and a control

policy returns a workflow to the Policy Evaluator, which then executes it. The

policy performs part of the work of the PEP (i.e., selecting the workflow), and

the Policy Evaluator performs the other part (i.e., executing the workflow).

PERMIS does not have a good analog for deciding and executing filter

policies.

7.4.2 xESB

The xESB system (described in Section 2.4.4.3) extends the ESB concept

to include policy evaluation on every service interaction, where policies act to

constrain behavior of workflows that incorporate the interactions. Constraints

are expressed as rules and obligations based on [207] and [208], where rules

implement a verdict as the combination of a decision and an action, and

obligations maintain state upon which rules rely. xESB maintains state as

counters, timers, and hashes, all globally declared and instantiated. xESB

policies can simulate a session by using a hash variable indexed by user

identity, though this assumes that multiple users with the same identity should

share common state.

Insofar as xESB represents an extension to ESBs, neither xESB nor the

ServiceMix ESB it extends has a concept of workflow. While it is conceivable

that a workflow concept could be introduced into an ESB (given that PDD has

363

accomplished this using the Mule ESB), this has not been done. Consequently,

xESB’s context system is simple and does not support the diverse scoping of

PDD’s SIVs.

Additionally, since xESB applications do not explicitly model workflow,

xESB does not model workflow composition and decomposition (as supported

in Section 5.5.3), and does not support workflow- and session-based state, it

does not address System of Systems composition.

Examining alternate solutions to xESB example of a multisession video

delivery requirement demonstrates xESB’s and PDD’s (as PALMS) contrasting

execution time characteristics, policy statement, and evaluation styles. Similar

to PDP, xESB injects policies into SOA service interactions directly at runtime,

though it does so differently: it evaluates all policies on each service

interaction. The comparison of xESB to PDP focuses on runtime performance,

the policy language, and its suitability for composing complex requirements

(as workflows) to create System of Systems architectures.

In [124], xESB was evaluated while running under Java on the Apache

ServiceMix ESB v3.3 on a 32 bit 2.6GHz processor, and claims times of

approximately 1ms per policy per service interaction to determine whether a

policy applies to the interaction. No time was given for the execution of a

policy action.

A comparison to the PALMS policy system would encompass porting

the , ,

364

 workflow to xESB, and then evaluating a rule

collection for each of the three service interactions in the workflow. Supposing

a robust rule set of xESB rules, each interaction would require approximately

 milliseconds (at 1ms per interaction), or milliseconds for a complete

workflow execution. To match PALMS functionality, the rules must contain

pre-filters, control policies, and post-filters. Considering that xESB has no

construct that accomplishes PDD’s composition policies, I make a simplifying

assumption of implicit composition policies that evaluate all policies that

apply to a particular interaction.

Per Section 6.3.2.2, the PALMS system adds 1.7ms for the entire test

workflow, assuming each interaction is registered in the Interaction Repository

but no interaction is actually associated with a policy. The cost for adding a

pre-filter, control, or post-filter policy varies with the message data and the

complexity of the policy, but (unlike xESB) is paid only when a policy is actually

associated with an interaction. Per Sections 6.3.5 and 6.3.6, the time required

to execute a single control policy or filter policy is between 76.82ms and

78.94ms, varying according to the size and complexity of the interaction

message and the policy.

Considering that the PALMS tests were run on a much faster CPU than

the xESB tests, it is fair to say only that the xESB cost per interaction is a fixed

function of , and for interactions that have no policies, its execution time is

comparable to PALMS’. However, for large policy collections, the xESB time

can be an order of magnitude greater when interactions have few if any

365

policies. Because [124] does not include execution time for policy actions,

numerical comparisons to PALMS’ policy execution time cannot be made.

However, because xESB constrains the format of interaction messages to

match its constrained policy language, it does not incur PALMS’ overheads of

message format conversion, XQuery expression compilation, and XQuery

engine execution. Consequently, I expect that xESB policies would run much

faster than PALMS’ policies, assuming the policy requirement could be

expressed in the xESB policy language.

On balance, more measurements are required to determine the time

relationship between xESB and PALMS policies, and the answers would

depend on the density of policies relative to service interactions, the size and

complexity of interaction messages, and the complexity of policies

themselves.

366

Additionally, the xESB policy language is tuned to address access and

usage control requirements [209], where PALMS’ policy language addressed

workflow composition in general, which is a superset of access and usage

control. Whereas PALMS posits DSLs that align with requirement statements of

various stakeholder communities, the xESB policy language is structured for

use by programmers writing code responsive to user requirements. An

example of the xESB policy language addresses a video calling service whose

requirement is that a “Silver” customer can call for at most three hours per

month:

 default-action { allow; }

 // Total duration of video calls, in seconds

 hash videoDuration = 0;

 timer resetDuration = next month;

 obligation {

 if invocation

 when { resetDuration.fired }

 do {

 clear videoDuration;

 arm resetDuration fire next month;

 }

 }

 obligation {

 if response

 when { h "Type" equals "video-call" && h "Success" equals

"True"

 && h "Customer-Type" equals "Silver" }

 do { update-counter videoDuration[source] += h "Duration"; }

 }

 rule {

 if invocation

 when { h "Type" equals "video-call"

 && h "Customer-Type" equals "Silver"

 && videoDuration[source] > 10800 }

 do { block; }

 }

367

The policy is stated in three parts: two obligations and a rule. An

obligation sets rule state – the first obligation executes before a video call

service, and the second obligation executes after, thereby capturing the

cumulative duration of video calls for a customer. The rule executes before

the video call service, and checks to see whether the accumulated duration

has exceeded three hours – if so, it waits until next month.

As shown in Section 7.4.1, an equivalent PALMS approach would be to

define a DSL that abstracts these video accounting functions, and then used

the DSL functions as policies injected onto appropriate service interactions.

This has the immediate advantage of reducing the proliferation of accounting

policy code, including variations on the policy, and eases the burden on

domain-interested stakeholders in inspecting, verifying, and contributing to

such policies.

Note that XQuery does not provide an equivalent of a scheduling or

event sink function. However, the PALMS Feature Composition DSL (described

in Section 5.6.5) exposes the call-service() function, which can be used to

invoke a scheduling or event sink service capable of executing an XQuery

policy or other workflow at an appropriate time.

xESB and PDP have generally similar performance – xESB’s execution

time depends on the value each policy lends to each service interaction, and

PDP’s execution time depends on the complexity of the message data and

the query compilation time. However, PDP’s DSL-oriented policy language

368

approach invites stakeholder participation in the requirement implementation

process, where xESB’s does not. While xESB’s policy language was formulated

with an eye towards the validation and verification of policies, PDP’s policy

approach does not emphasize this – instead, it leverages validated DSL

support libraries and DSL-simplified policy statements to achieve reliability ad-

hoc. (It would be possible to specify a PDP DSL similar to xESB’s policy

language, and therefore similarly verifiable. However, this would defeat the

goal of readability and stakeholder participation.)

While xESB’s constraints on message format and content simplify and

accelerate policy processing, PDP has fewer constraints, thereby enabling

policies applied to services that aren’t conceived under the xESB messaging

model. PDP also enables injection of policies from multiple stakeholders

(through composition policies) and enables the composition of requirements

onto requirements, both of which enable the construction and scaling of

cyberinfrastructures as large Systems of Systems.

7.4.3 Ponder2

In contrast to PDD’s workflow-oriented model, Ponder2 (as described in

Section 2.4.4.4) applications are implemented as a network of connected

components. To the extent that the two abstractions accomplish similar goals,

workflows represent a lifting of the connected component model by enabling

the execution of multiple interactions under a common context.

Consequently, in addition to its limited facility for runtime policy and workflow

369

injection (as described in Section 2.4.4.4), PonderTalk offers no state lifecycle

that implements the concept of SIVs (as described in Section 4.3).

7.4.4 Policy Deployment

PDD does not define the practical aspects of policy, user, and attribute

management, and so is not an end-to-end solution in the PERMIS sense (as

described in Section 7.4.1). The PALMS case study does demonstrate the use

of Grouper as a securely managed attribute store and the use of X.509

certificates to prove user identity. However, PALMS does not claim the

robustness claimed by PERMIS – it does not have either a secure policy or

attribute distribution capability. Under PALMS, policies are imported and

activated periodically (e.g., once a minute) from files placed in a policy

staging directory, which is secured by the underlying operating system.

Secure and robust policy distribution systems and methodologies exist

and can be adopted or leveraged by applications such as PALMS as the

need arises: [210] provides a general-purpose policy deployment and

execution model that is independent of underlying policy enforcement

mechanisms. It is agnostic as to the type or language of a policy, and focuses

on policy instantiation, distribution, enabling/disabling, unloading, evaluation,

and deletion of policies in a distributed environment.

7.4.5 Policy Languages

A central focus of the policy community is access control, usage

control, trust relationships, and digital rights management, as exemplified by

the Ponder language [130] (Section 7.4.3), xESB’s usage control language

370

[124] (Section 7.4.2), OSL [207] (for obligations), PERMIS’ policy languages

(Section 7.4.1), SPL [211] (for complex constraints), EPAL [212] (for privacy),

and others as enumerated in [213].

Generally, each of these languages seeks to articulate and implement

relationships in a particular domain. Their design approach is minimalist so as

to enable arguments for sufficiency and completeness, and to position them

to allow validation and verification of the properties of domain interest.

Minimalism also serves implementability and tends to control execution

overhead partially because of their simplicity, and sometimes at the expense

of a rich dataflow between entities. These approaches generally produce

languages that declaratively express requirements directly as mathematical,

logical, and relational concepts, and are intended for use by programmers

with those skills. Such languages are often inaccessible to stakeholders in other

domains, even when expressing relationships from those domains – the PERMIS

MSoD policy in Section 7.4.1 is an example of this.

371

While my approach to the PDD policy languages (as exemplified in the

PALMS languages described in Section 5.6) adopted the decision-action

paradigm of many policy language, its objective was to strike a balance

between:

 enabling stakeholders to understand and possibly write policies

themselves

 promoting extensibility to meet unanticipated requirements of existing

and future domains

 enabling the composition of external workflows in the context of base

workflows (for System of Systems integrations)

 enabling injection of policies at runtime without requiring elaborate

compilation or binding

 accessing diverse sources of data (for decision making)

 supporting rich interactions between services by accommodating (and

not constraining) data exchanges

My choice of XQuery as the basis for a family of functional languages

designed and presented as DSLs (as described in Section 5.6.5) demonstrates

progress towards stakeholder enfranchisement (as described in Sections 6.2

and 1.1) and meets the challenges of enabling workflow composition and rich

service interactions.

372

As described in Section 6.3.7, service interactions on which policies are

evaluated are significantly slower compared to service interactions with no

policies. (The policy system presents negligible overhead for service

interactions where no policies are evaluated.) The evaluation time depends

on:

 the complexity and size of the interaction message

 the time required by the XQuery engine to compile and execute the

policy

 the complexity and size of the new interaction message (for filter

policies)

From the perspective of the execution of an entire workflow, the policy

contribution to execution time can be significant even when service

execution times are included. To improve interaction times, a number of

strategies can be adopted, following the experiences of xESB, Ponder,

Ponder2, and others.

Particularly, the XQuery compilation and execution times can be

reduced by pre-compiling policy expressions or caching compiled

expressions. In the PALMS implementation, policies are read and staged by

the Policy Repository service (described in Section 5.6.2.2). The effective policy

is produced in the Policy Evaluator by combining the interaction’s composite

policy with corresponding control and filter policies based on the study or

study group contained in the interaction message (as described in Section

5.6.3). The effective policy calculation can be relocated to the Policy

Repository. Regardless of where the policy is calculated, caching the

373

compiled policy would amortize the cost of a compilation over the life of the

policy.

Additionally, message format conversions can be reduced or

eliminated by harmonizing the message format with the policy execution

language processor. PALMS messages are transported by the ESB as Java

objects defined according to the needs of the service interaction they serve.

However, the same information can be encoded as Saxon XDM structures, or

other structures native to the XQuery processor, thereby avoiding ingress and

egress transcoding (as described in Section 5.6.3). This would complicate the

encoding and decoding of messages within services themselves, thereby

violating the principle of interceptors adding value to otherwise oblivious

service interactions (though this is just what xESB did). Alternatively, I observe

that the PALMS DSLs are functional programs that can be expressed in Java,

which consumes Java objects naturally. Java-based policies would access

message data quickly and efficiently, and can use Java introspection to

access or build variable data structures.

The benefits of minimalist design of existing policy languages inure not

only to validation and verification, but to economical execution based on

constraining message formats and contents, coding policies directly to the

expected messages, constraining the complexity of messages, and native

compilation of policies.

374

In contrast, the XQuery language enables workflow coders and policy

writers to ignore these considerations – as an abstraction, it works well on

structured data expressed as text (i.e., XML) and transformations (i.e., policy

expressions as XQuery code) expressed as text. Consequently, policy

programmers can easily create and evolve DSLs. However, the flexibility of

XQuery can be acquired through judicious use of other languages, including

Java, combined with expression pre-processing (similar to what already

occurs with XQuery policy fragments as described in Section 5.6.2.2) and just-

in-time compilation. The choice of query language and associated pre-

processing can be managed at the Policy Repository level, thereby preserving

all PDD abstractions.

This calls the question of what support is minimally required to define

and evolve a DSL, and what skill sets are required to do this. To meet the goals

of PDD, DSLs must be capable of evolving quickly and responsively to evolving

stakeholder requirements. The skills must be available in the general

programming population or from stakeholders themselves. Debugging DSL

support libraries must be simple and reliable, and versioning and deployment

must be addressed.

These issues drive the evolution of PDD and are discussed briefly in

Section 1.1, but are beyond the scope of this dissertation.

375

7.4.6 Policy Versioning

Under PDD, a policy represents the implementation of a crosscutting

concern composed onto a workflow, where the implementation may be a

simple decision (based on no state, and maintaining no state), or may

maintain state that affects its future behavior or is relied upon by other

concerns. Insofar as a policy maintains a set of guarantees, a policy is

incorrect if the guarantees are not met.

When an existing version of a policy is replaced with a new version, the

new version must maintain not only its set of guarantees, but the guarantees

of the original policy. Otherwise, the concern represented by the policy may

fail overall.

For example, the MSoD concern (described in Section 7.4.1)

guarantees that if a role executes one function, it cannot execute a second,

proscribed function. The concern is represented by a policy that saves state in

an IV-based key-value pair where the key and value have policy-defined

structure. The policy can provide the guarantee so long as the policy uses the

key-value pair consistently.

If a new version of the MSoD policy maintains this guarantee, though by

using a different key-value pair, the new version is internally consistent, yet fails

to maintain the guarantee of its predecessor. Consequently, a role may

execute a proscribed function undetected, which would be an error. The

state skew between policy versions over time is one example of how both a

376

new and old policy version can be correct, but the guarantees of the

concern can go unmet, and there are numerous other examples.

The general problem of maintaining concern guarantees in the face of

policy evolution is a variation of the timeless problem of guaranteeing upward

compatibility of applications over time, and includes deployment

synchronization in distributed systems, and is yet unsolved. The problem is

addressed in theory by [208], which proposes that guarantees be only

strengthened over time.

PDD makes no attempt to solve this problem, and the problem exists in

policies provisioned under PERMIS (in Section 7.4.1), Ponder [210] (and in

Section 7.4.3), xESB (in Section 7.4.2), and other policy evaluation systems,

whether policy is provisioned statically or at runtime.

7.5 Verification and Validation

PDD’s focus on maintaining and reusing separate concerns

discourages entanglement, resulting in reduced complexity of individual

workflows, which eases assessment of workflow completeness and

correctness, and lowers evolution costs. Additionally, because PDD leverages

hierarchical decomposition available in Rich Services, it encourages a

hierarchical approach to verification and validation of workflows.

In part, complexity shifts to assessing the completeness, correctness,

and consistency of policy statements and their relationship to each other and

377

to alternate and base workflows. Such complexity may be tackled by

evolving existing visualization [198] and verification tools.

In this discussion, I use the terms verification and validation as they are

commonly understood:

Software verification provides objective evidence that the

design outputs of a particular phase of the software

development life cycle meet all of the specified requirements for

that phase by checking for consistency, completeness, and

correctness of the software and its supporting documentation.

Validation, on the other hand, is the confirmation by

examination and provision of objective evidence that software

specifications conform to user needs and intended uses, and

that the particular requirements implemented through software

can be consistently fulfilled. [214]

While automated verification of PDD policies has not been attempted,

automated verification involving related policy approaches has been

accomplished in a number of ways, including proof, simulation, and

comprehensive examination.

Structural modeling techniques (described in Section 1.1) enable proofs

based on factoring OCL in UML models [215] as aspects, though the carryover

to workflow-based models is incomplete.

Verification of aspects [216] focuses on the correctness of an aspect

relative to its specification, which contains assumptions regarding the base

application and guaranteed properties after the aspect is woven into it. It

model checks a linear temporal logic (LTL) expression that includes the

assumptions, join points, and aspect advice. The authors claim to create

378

modular proofs on weakly invasive aspects. This aspect verification strategy

aligns well with PDD, given that composed workflows can be characterized by

their property guarantees. However, pursuing this is beyond the scope of this

dissertation.

Insofar as workflows (including applications containing numerous

workflows) can be modeled using Colored Petri Nets (CPNs) [90], policy

composition can also be modeled [74] (as workflows composed upon

workflows). Given this, modeling policy-injected applications as CPNs may be

able to verify domain-specific properties and properties such as liveness,

safety, and reachability – this has not been tried with PDD-based policies. The

ability to leverage composed workflows as CPNs aligns well with the PDD

concept of policy injection, and therefore holds promise as an avenue for

PDD policy verification. Similarly, [217] and [218] propose process algebra-

based verification methods that act upon hierarchically composed workflows.

However, pursuing this is beyond the scope of this dissertation.

Considering that PDD policies are intentionally broadly defined so as to

enable expression of domain concepts for diverse stakeholder groups (via

DSLs), a single policy language cannot be identified. Furthermore, the effects

of PDD policies that inject feature sets (leading to System of Systems

integrations) can be opaque to verification techniques. Factoring an arbitrary

PDD policy into predicates that can be expressed to a model checker has not

been done. Consequently, much work would be required before PDD policies

could be verified via proofs.

379

Similarly, graph techniques such as those applied to Ponder (as

described in Section 2.4.6) require a simple and unambiguous set of policy

operations, which contradicts the real diversity of PDD-oriented DSLs.

The RBAC model used by Ponder is hierarchical, similar to the PALMS

model described in Section 5.6.1.3, but without distinguishing study-based and

organization-based roles, and without support for permissions and ACLs.

Additionally, Ponder has a concept of meta-policies, which are policies that

determine which policies are allowed in a system, including disallowing

conflicting policies. Meta-policies are similar to PDD’s composite policies (as

described in Section 4.2.7), though with different objectives – PDD composite

policies determine how multiple filter and control policies compose onto an

interaction, while meta-policies determine whether polices are allowed at all.

Note that Ponder and other policy languages enable proof and graph

techniques by focusing on logical predicates minimalistically defined. Given

the flexibility of the PDD’s DSL approach, DSLs designed along the same

minimalist logic lines may be eligible for verification via proof and graph

techniques, too. However, pursuing this is beyond the scope of this

dissertation.

To the extent that policy injection represents a System of Systems

composition (as with the MSoD policies in Section 7.4.1, and with the Audit

system in Section 5.6.4), unit testing strategies can provide a practical means

for achieving confidence that an injected concern functions as intended,

380

and provides a means for testing the composition in isolation. In the PDD

context, a unit test would consist of a workflow into which subject policies are

injected. For the PALMS implementation, recording results can be

implemented with calls from the workflow directly to log4j [189] functions or

Audit system services.

Finally, validation activities pertain to the relationship between

stakeholders, their requirements, and how their requirements are reflected as

stated requirements. This is beyond the scope of this dissertation.

7.6 Policy Programmers and Enfranchised Stakeholders

A long term goal of PDD is to enable stakeholders to inject policies into

an application quickly, accurately (with respect to requirements), and

directly, without depending on the availability of trained programmers to

implement (or misinterpret [219]) requirements. Conversely, this goal implies

that trained programmers would be relied upon to maintain workflows

encoded using traditional programming systems, thereby creating skeletons of

applications, which stakeholder policies would customize. Realizing this goal

requires a close mapping between stakeholder requirements and high level

workflows that can automatically be refined into executable workflows. In

turn, this requires both requirement organization disciplines that are still

evolving and an understanding of what information must be added or

discarded at each step of workflow refinement.

381

7.6.1 Survey of Stakeholder Policy Authorship

To explore the idea of stakeholders authoring and contributing policy

directly to workflows, I created and executed an experiment where four

domain experts familiar with PALMS were asked to create policies applicable

to a high level PALMS workflow [220]. The domain experts were exposure

biologists and computer programmers aware of the objectives of PALMS and

familiar with PALMS system operations. Preparation for the experiment

included:

 a brief tutorial on workflows as expressed using UML Activity Diagrams

(using a prominent PALMS workflow)

 examples of access control policies (formulated as a conditional

coupled with an alternate workflow)

 examples of filter policies (expressed as filters on request and reply

data)

The tutorials included explanations of requirements and the simple

policy DSL that expressed them in a PALMS context.

The hypothesis was that a PALMS-aware domain expert could:

 understand PALMS in terms of a workflow diagram

 formulate a requirement that could be enacted in PALMS

 write and inject a policy expression given a textual requirement

382

To test this, subjects were asked to:

 correlate a text-based requirement with a DSL-based policy expression

(and vice versa)

 phrase a text-based requirement given a DSL-based policy expression

 verbally describe how policies could affect a workflow

 author one or more policies

 conceive of a new requirement

As a group, the subjects had mixed success in accomplishing each

objective, but they shed valuable light on my assumptions related to

articulating policies and composing them onto workflows. In each case,

subjects were able to understand the relationship between the UML Activity

Diagram and the PALMS workflow they already understood, they were

receptive to the relationship, and they could determine where in a workflow

an access control policy should be injected. They also understood the

translation between a textual requirement and a DSL-based policy expression,

and vice versa. One biologist readily wrote a compound policy expression

using Boolean logic, and two subjects asked for additional Activity Diagrams

depicting workflows into which they were interested in injecting policy.

On the other hand, more than one subject questioned whether the

injection of a single access control policy in a single workflow could reliably

suffice to fulfill an access control requirement application-wide. Additionally,

one subject expressed doubt that a workflow diagram could accurately

represent application control- and data-flow, and so was unconvinced that

383

injecting a correct and complete policy in an actual running application

would meaningfully affect application behavior.

Several subjects conceived policy only in terms of access control, and

not in terms of filtering data flow or feature injection. Given this, the

specification of an alternate workflow for a control policy (for returning an

access control error) seemed redundant and unnecessary – they believed

that access control policies could be stated by predicates amounting to

guard expressions. One subject did attempt to write a filter policy, but

expressed it as a predicate on the data flow instead of as a function call

(despite being familiar with the DSL beforehand).

More than one subject attempted to create requirements that

evaluated data not available to the application (e.g., requiring that a user

have a certificate from an Institutional Review Board). This created confusion

because he didn’t realize that not all attributes are available at all times, and

that making a particular attribute available is itself a requirement. (This

amounts to a requirement derived from a requirement, and is addressed

further in Section 7.8.3.)

Ultimately, no subject could consistently express a requirement as a

DSL-based policy expression. Reasons for the failures included unfamiliarity

with the DSL expression syntax, an imprecise understanding of the data

exchanged in an interaction between workflow activities, general disinterest

384

in function calls and alternate workflows, and disinterest in rigorous

requirement articulation and decomposition.

Some requirements identified by subjects could not be written as

policies injectable into the high level workflow, as the requirement actually

targeted an interaction present only in a workflow refinement, which could

only be expressed as a decomposition of a workflow activity.

Figure 69 shows an example of policy injection into a decomposed

workflow. The figure shows two simple horizontal UML Activity Diagrams

stacked one on top of the other. The top Activity Diagram depicts a simple

workflow for creating a new PALMS study (and is not related to the workflow

described in Chapter 3), where the user creates a study, and then associates

a data collection device with the study. The bottom Activity Diagram depicts

a decomposition of the Add Device activity, where a user adds a device by

listing the available devices, selecting one device, and adding it to the

study’s device list. The rectangles attached to activity ovals represent data

passed to or by an activity, and which is also available for use in a policy

expression. (Note that UML Activity Diagrams have a formal notation for

activity decomposition, but it is not concise. In Figure 69, slanted lines

represent activity decomposition.)

In this example, the stakeholder’s requirement is that only a research

assistant (RA) should be allowed to add a GPS device to a study, as indicated

in the cloud marked “1:”. However, the requirement cannot be effected on

385

the high level workflow because the user has not selected any device, and

the user could select a non-GPS device. Instead, the requirement is effected

on the decomposed workflow, after the device to be added is known.

7.6.2 Policy Programming

Knowledge of where in a workflow to inject a policy depends on

knowing service contracts for each interaction in the workflow (and are often

under-specified), the workflow control flows and data dependencies, the

data on which the policy depends, and the intent of the stakeholder. While it

is plausible that a stakeholder might be able to determine the interaction on

which to inject policy, and then phrase policies formed according to DSL rules,

feedback from test subjects indicate this expectation is not realistic for

domain experts not constantly and intimately involved with PALMS workflows.

List Devices Select Device Add to Study
User,
Study,

Dev

User,
Study

User,
Study,
Devs

Create Study Add Device

Return Error

1. Stakeholder
expresses constraint

on high level
workflow activity

2. Constraint is
re-expressed in

workflow
refinement

User,
Study

1: Only RA can
add GPS device

2: User {“RA”}
&& Dev {“GPS”}
è normal flow,
else error flow

Figure 69. Policy Applied to Decomposed Workflow

386

Tool support could empower stakeholders to locate policy injection points

and properly phrase policy expressions. For example, a tool could have the

following features:

 graphically show workflows, and drill down on workflow decompositions

 show data available on each workflow interaction

 allow form-based policy specification, where a policy expression is

automatically composed from form fields

 show workflows composed onto workflows

 maintain an inventory of alternate workflows that can be composed

onto workflows

While such an authoring aid would benefit all policy programmers in

writing control policies and filters, it does not address the general problem of

authoring policy-based feature composition (as described in Sections 4.2.6

and 5.6.4) or creating novel, stateful coordinated policies (such as the MSoD

solution in Section 7.4.1). As observed by study subjects, placement of a policy

does not guarantee that a requirement is completely addressed.

For these reasons, PDD requires the participation of a policy

programmer who can both precisely understand application workflows and

dataflows, and precisely understand the requirements posed by stakeholders.

A person operating in such a role would have software engineering skills that

would enable the design, maintenance, and upgrade of DSLs that track

stakeholder concerns. The policy programmer would interface intimately with

stakeholders to discover and elaborate stakeholder requirements, and review

exact policy expressions with stakeholders to verify that policies maintain

fidelity to actual requirements. (A defensible analogy is the relationship

387

between a business analyst and stakeholders in designing and implementing

business processes.)

The policy programmer role exists in contrast to the role of traditional

programmer, which I define as someone who uses traditional programming

techniques (e.g., agile and waterfall processes, requirements elicitation, and

integrated development environments) to create applications that are

delivered in installments over time. They deliver application functionality slowly

and often without fidelity to requirements from a stakeholder perspective, or

deliver applications too slowly to keep up with emerging requirements.

As described in Section 1.3.3 (including Figure 1), the benefit of the

policy programmer role is time to market while maintaining fidelity to

stakeholder requirements. While traditional programming relies on well-

developed tools that generate fast and efficient code and can coordinate

with model checkers to deliver basic guarantees, policy programming does

not yet have such support. Consequently, it offers a tradeoff between

execution time (as described in Section 6.3), strong guarantees (as discussed

in Sections 1.1 and 7.5), and time to market. Additionally, as policy

programming tools evolve to provide stronger guarantees, more complex

policies become more routinely feasible.

For either the policy programmer or the traditional programmer,

functional requirements represent opportunities to inject policy (or code) into

a limited number of interactions, and provide definitive tests that the

388

application works as intended. In contrast, non-functional requirements define

how a function must perform, and often result in composition of concerns

onto many workflows. This often requires a thorough knowledge of all

workflows, and is more likely under the purview of traditional programmers.

Section 1.1 addresses complimentary approaches to implementing both

functional and non-functional requirements completely.

In practice, on the PALMS project, policies are written and injected by

trained programmers filling the policy programmer role as described above.

Additionally, while the traditional and policy programmer roles address

separate development concerns, there exist potential conflicts that are not

currently addressed within PDD. Workflows and interfaces in traditional

applications (without policy injection) are free to change responsive to

stakeholder requirements as a consequence of traditional development

processes – control and data flows are certified as valid before an application

update is released, and their consistency and coherency are the responsibility

of the traditional developer. Considering that a valid policy relies on and

adheres to the service contract for the interaction into which it is injected, a

valid policy can be rendered invalid should the service contract change. This

can happen accidentally (as described in Section 7.1.1) during normal

development. However, to the extent that service interfaces change rarely,

the likelihood of a policy becoming accidentally invalid is low. Furthermore,

because the policy system correlates policies to service interactions,

detection of an impending incompatibility between new code and existing

389

policy can be detected and reported automatically to an otherwise oblivious

traditional developer during the application development process.

7.6.3 Complimentary Approaches

During the policy authorship survey described in Section 1.1, I found

that engaging subjects in detailed discussions focused on workflows (as

Activity Diagrams) and possible policies (as both text and DSL expressions)

resulted in the elicitation of then-undiscovered tangential and on-point

requirements that could be addressed either at the base workflow or policy

level. As a requirement elicitation exercise, a policy walkthrough is similar to

the lifecycle walkthrough proposed in [221], which builds a secure system via

a walkthrough of resources and a review of their lifetimes. Although [221]

focuses on allow/deny decisions related to access control, it can be

extended to address request and reply filtering addressed by PDD’s pre- and

post-filter policies.

Note that Activity Diagrams are not the only notation by which

workflows can be evaluated. [219] conducts an experiment that evaluates

Activity Diagrams compared to Event-driven Process Chains (EPCs) used by

either engineers or end users (i.e., stakeholders) to define a workflow based on

requirements, or to understand an existing workflow. The authors showed that

Activity Diagrams performed better than EPCs when used by requirements

engineers, but could not make a statement regarding their usefulness to end

users. Sans an interactive exploration tool (as proposed above), this argues for

the premise of a policy programmer having engineering skills.

390

More than one subject in my study (described in Section 1.1) preferred

to state both access control and filter policies as predicates that either

enabled access or constrained data flow. As a language syntax, [222]

proposes a rule-based, template-oriented declarative language (EARS) to

express requirements using natural language while avoiding ambiguity,

complexity, and vagueness. In a workflow setting, these rules would appear as

preconditions and triggers, which could be further translated to DSL

expressions appropriate for the requirement domain. As such, this syntax could

contribute to the policy authorship tool proposed above, and could be

extended to include feature composition.

The PALMS system was architected based on the Rich Services

Development Process (RSDP, as described in Section 5.3), which follows

principles of Model Driven Engineering that relate requirements to domain

models, service models, and service orchestrations that define workflows. In a

robust process, elements of each model are traceable to elements in other

models. For example, workflows are traceable to the services that comprise

them, which are traceable to elements in domain models. Both workflows and

domain models trace to original requirements. These traces can be leveraged

to assist in determining whether a policy set provides guarantees that critical

requirement properties are implemented. For example, UMLSec [55] and

SecureUML [223] both aim to leverage class diagrams annotated with OCL to

improve application security by demonstrating complete coverage of security

policies. These techniques apply at application design time, but are available

391

to policy programmers to assist in determining PDD policy placement and

content. Model-driven security has been studied by a number of groups, and

includes UMLSec, security aspects, intrusion detection aspects, AVISPA, SMV,

and Alloy, all of which are compared in [224].

Because PDD relies on workflows as models of service orchestration, a

rigorous expression of a workflow (in the guise of a rigorously drawn Activity

Diagram) provides a combination of data flow specification and activity

decomposition useful in the precise placement and definition of policy

expressions. To the extent that an Activity Diagram rigorously represents

application workflows (as is proposed in [225]) an interactive policy definition

tool can be used to help generate a policy that maintains the service

contract of the service interaction into which it is injected, though one has not

yet been implemented.

Note that given an Activity Diagram that rigorously represents

application requirements (as workflows), the automatic decomposition (or

refinement) of the diagram into workflows that directly map to services (or

other direct implementations) is not well understood, and is therefore typically

produced by human programmers in stepwise fashion. However, once such

refinements exist, [71] proposes a methodology for verifying that the

refinement meets the pre- and post-conditions of the refined diagram.

Similarly, for BPMN diagrams, [226] provides a process semantic for

BMPN diagrams based on CSP [113] (discussed in Section 2.2.3), and

392

demonstrates refinement of BPMN-based models (using CSP refinement

relations) and automatic behavioral proofs related to such models (using the

automated FDR model checker). Separately, [227] and [228] adopt an OWL-

based ontological approach to refinement checking as part of larger model-

driven engineering products.

7.7 Building and Maintaining PDD Applications

As described in this dissertation, a PDD application is a SOA that

employs policy injection techniques to compose requirements (as workflows)

onto existing workflows, where the content of a workflow reflects a separation

of concerns, and workflow composition reflects the creation of a System of

Systems. Section 5.3 and 5.4 describe the basic process of framing an

application as a Rich Service, which captures the concepts of hierarchical

workflow decomposition in the MDA-compatible RSDP process.

A major challenge in creating an application addressable by PDD is in

eliciting, organizing, and modeling requirements as separate concerns, which

may stand alone or may exist as higher level concerns that combine and

orchestrate lower level concerns. While RSDP’s service elicitation phase

assumes that requirements are gathered, factored into a (possibly UML-

based) domain model, and eventually transformed into service-based

workflows, RSDP does not prescribe any modeling process to achieve this – it

can be chosen or designed situationally.

393

Modeling processes appropriate for separating requirements as base

and composed workflows are provided by the Aspect community [229]. The

AoURN [230] is an aspect-oriented variant of the User Requirements Notation

[231] (URN) standard that creates a framework that models use cases, NFRs,

and other concerns, and provides guidelines for concern identification – it

captures concern dependencies, conflicts, and resolutions, resulting in a

partitioning of the requirement space that informs subsequent aspect-

oriented design. Similarly, [232] describes a repertory grid technique that

identifies aspects at the requirements phase based on analysis of terminology

and goal descriptions, and [233] describes the EA-Miner tool-based approach

for automatically extracting aspect-oriented requirements models from

natural language text in requirements documents.

Insofar as MDA envisions and supports the translation of requirements

models into domain models, RSDP incorporates this flow as an intermediate

step towards a service-oriented workflow model. Existing aspect-oriented

techniques [234] [235] support modeling requirements separable from a base

model, yet composable onto it, and [108] demonstrates interactive testing

and verification of such models. Encapsulation-oriented design rules [104] can

assist in formulating base workflows and composable aspects so as to

maintain independence that allows both to evolve independently. As a

refinement and extension of these techniques, [236] demonstrates a

methodology for expressing software product lines as orthogonal concerns in

the FOSD domain.

394

The COMPASS [237] approach combines aspect-oriented requirements

elicitation and domain modeling (as application architecture) into a single

process, where requirements are expressed in an aspect-oriented

requirements specification language (RDL) and transformed into the

COMPASS architectural definition language (AO-ADL). Under the RSDP

process, the AO-ADL model is manually transformed into concrete services

and workflows as Rich Services.

Note that in the RSDP process described in Section 5.3, crosscutting

concerns that are discovered during the requirements elicitation phase are

carried into subsequent phases, and result in the creation of RISs injected into

crosscut service interactions. PDP presents and encourages an additional

option: coding crosscutting concerns as workflows selected by injectable

policies. Aspect-oriented requirements extraction techniques formalize and

improve the detection of such crosscutting concerns as compared to ad-hoc

methods. Because crosscutting concerns are coupled to base workflows via

restrictive and well-defined interfaces, separate concerns can be developed

in parallel RSDP instances, with the expectation of runtime linkage via injected

policy (as in Section 5.6.4). During any RSDP execution, it is quite possible that

developers would discover conceptualization errors and hidden

dependencies, necessitating changes in the base workflow, injected

workflow, or both. As a spiral development process, RSDP tolerates this well,

providing a graceful path looping back to incremental refactoring and

395

remodeling. Changes that affect workflows (as services) in development in

interdependent RSDP efforts can cause similar looping within those processes.

7.8 Gaps and Insights

Section 2.7.6 identifies a number of gaps in existing contributions that

must be filled in order to implement the PDD vision. Most (but not all) of these

gaps are addressed by the methodology presented in Chapter 4 as realized

by the case study in Chapter 5 and evaluated in Chapter 6. This section

discusses PDD’s successes and shortcomings relative to those gaps.

The identification of policy injection sites is addressed as an

implementation issue via the Interaction Repository in Section 5.6.2.1, while the

actual runtime injection of policy is addressed in Sections 4.2 and 5.6.3, and is

evaluated in Section 6.3.

Sections 4.3 and 5.5.4 describe how state is composed onto a workflow

and how it can be leveraged by injected policies. They also describe state

maintenance according to other lifecycles, including session-oriented and

application-oriented (i.e., global) scopes.

The composition of multiple policies onto a single injection site is

performed via composition policies, as described in Section 4.2.7 and

implemented in Section 5.6.2.2.4 as a reflection of the structure of PALMS

community.

The ability of composed workflows to act as base workflows for further

composition is inherent in the PDD policy injection theory described in Section

396

4.1.1.2 and demonstrated in Section 5.6.4. The combination of this

composition capability with PDD’s context system results in an understanding

of composed workflows as Systems of Systems, where both the source and

target workflows can be specified, developed, and maintained separately.

This results in the scalability and reusability of requirement sets and the

development efforts that implement them, consistent with the overall goals of

SOAs.

The ability to guarantee a consistent relationship between policy state

and policies themselves has been addressed in Section 7.4.6, and remains an

unfilled gap in PDD (and other policy evaluation systems).

7.8.1 Gap in Service Contract Checking

As described in Section 4.1.2, PDD requires that injected policies

adhere to the service contracts defined for a service interaction. Given that a

service contract defines the validity of input channels consumed by a service

and output channels produced by a service, failure of a policy to adhere to a

service contract can have unpredictable (including erroneous) results.

(Additionally, adherence to service contracts is no guarantee that a policy

actually implements functionality faithful to a requirement.)

Under PDD, policy adherence to a service contract means that the

policy decision and the workflow it selects must consume the same input

channel (i.e., input message) as the target service, and the selected workflow

must produce the output channel (i.e., output message) expected by the

397

source service (per Section 4.1.3). Under PALMS, channels consist of Java

objects, so a service contract specifies channels consisting of typed Java

objects.

The description of a service contract in PALMS is simplistic (as described

in Section 5.6.2.1) and functional, but cannot be used to guarantee that a

policy fulfills a service contract. The PALMS service contract specification

identifies the type of a valid response message acceptable to the source

service in a simple request/reply interaction pattern. More complete

specifications would represent both the source and target services, and might

include message types (as a syntactic interface), channel definitions (as a

primitive semantic interface), and interactions (e.g., MSCs, as a more context-

laden semantic interface), each leading to different guarantees. (Interaction

specifications would cover not only interactions involving a given service pair,

but a history of other interactions that lead to it, and could also depend on

the actual channel contents for a particular interaction.)

Sans any contract checking, it is up to a policy itself to verify that its

input channel is valid for its decision and the service it returns, and that the

selected service produces a valid output channel. This is a weak guarantee.

In strongly typed languages (e.g., Java), syntactic guarantees for

injected functions (e.g., functors) would be enforced by a compiler for both

input and output channels (based on function signatures), and model

398

checking would demonstrate semantic assertions (based on channel

properties, represented by actual parameter values).

Achieving syntactic guarantees for PALMS policies would require that

service interface specifications (e.g., Java message types) be specified for

policy decisions, service alternatives, and source and target services in base

workflows. Static (compiler-style) contract checking can tentatively evaluate

the compatibility of a policy with a service interaction at policy definition time,

though a more reliable check would occur at runtime during policy injection.

Semantic checking can be performed at runtime as dynamic model

checking that compares service interactions (including policy injections) to an

interaction specification [238].

A strongly typed language provides guarantees based on inspection of

function source, which can reveal whether a function plausibly meets a

syntactic interface through inferences that typed input channels can

generate typed output channels. The XQuery compiler (that processes

XQuery-based PALMS policies) provides typed function interface guarantees

pertaining to XML structures (which differentiate between a string, a list of

string, or a tree of nodes), but not Java object types (which describe PALMS

messages). So, there is no simple way to verify that an XQuery-encoded

decision or selected workflow adheres to service interface specifications.

Alternatively, extending strong type checking onto a policy (including

the decision and alternate workflows) can be achieved by changing the

399

policy language to one whose structure and semantics align with PALMS

messages (i.e., Java objects) and includes strong type checking, yet fulfills the

criteria that led to the selection of XQuery as PALMS’ policy language (i.e.,

message processing, runtime injectability, and accessibility to stakeholders

and policy programmers, per Section 5.6.1). One possibility is Groovy, which

accepts and emits Java objects. Given the availability of embeddable Java

compilers, a combination of Java and a higher level macro facility may also

suffice for this. Using Java would admit additional pre-existing model checking

systems that could guarantee semantic properties of decisions and alternate

workflows. Alignment of the policy language with interaction messages would

also address substantial performance penalties incurred through the use of

XQuery, as discussed in Section 6.3.7.

PDD does not address how service contract checking might be

performed, and PALMS does not implement it -- this represents future work.

7.8.2 Gap in Testing and Fidelity Assessment

As a methodology, PDD offers means for framing requirements as

policies and injecting them upon unprepared workflows. However, PDD gives

little guidance in the testing and verification of such policies either as to their

fidelity to requirements or their relationship to base workflows.

As described in Section 7.5, a number of modeling and simulation

techniques can be adapted to help demonstrate basic policy guarantees

400

such as liveness and reachability, provided that policy decisions and

workflows are modeled at the interface level.

However, the fidelity of a collection of policies to a requirement is left

unaddressed. Model Driven Engineering techniques have proven effective in

defining and refining requirements leading to application architectures [8]

[239] [240], including RSDP as described in Section 5.3.

While such techniques can be used or adapted to produce and test

policies, as to PDD, they represent future work.

7.8.3 Requirement Feedback Loops

A variant of the problem of defining and realizing requirements occurs

when attempting to inject a policy onto a workflow, where the policy must

rely on information not available to the workflow or must produce information

not handled by the workflow. Examples of this are described in Sections 5.6.2.1

and 1.1, which provide signals that the requirement implemented by the new

workflow interacts with base requirements, and implies that the base

requirements (and the workflows that implement them) are themselves

incomplete and must evolve. Such requirement feedback loops are within the

purview of MDE techniques described above.

7.8.4 Implementation Platforms

As described in Section 1.3.2, taking advantage of late decision

binding requires that workflow interactions be exposed for interruption and

modification at runtime. PDD is framed in SOA terms because SOAs provide

401

these capabilities at a conceptual level, and ESB frameworks (as platforms for

SOA execution) enable their realization. However, to the extent that service

interactions can be exposed and interrupted in other frameworks, PDD’s

policy injection can provide composition value in a workflow context. When

Web Services are mediated by SOAP-based remote procedure calls (RPCs),

and are implemented using proxies at both the source and target service,

PDD can be implemented by replacing both the source and target proxies

with new proxies that pass parameters as part of an interservice message, with

the target proxy also calling a policy evaluator service (as in Sections 4.3 and

5.5.4). Unlike implementation at the ESB level, this requires that developers

have control over the RPC proxy libraries linked to a Web Service, and this is

often not the case. Implementing PDD under Web Services is beyond the

scope of this dissertation.

7.9 Summary

In this chapter, I compared PDD to a number of composition, context,

and policy evaluation approaches, and discussed a number of issues bearing

on a robust deployment of policy within real world environments.

In Section 7.1, I compared PDD to Aspect Oriented Software Design

and Policy-based design, and observed that both methodologies apply

crosscutting concerns at the program design and compile stage. Furthermore,

both methodologies focus on optimization of programming processes and

concerns, and not on mapping of requirements onto workflows. Therefore,

they do not directly support the runtime policy injection, workflow context

402

support, and feature injection support provided by PDD for general

requirement composition onto workflows.

In Section 7.2, I compared PDD’s context management features to

state management in important distributed processing paradigms, including

Struts, REST, and AJAX. In each case, I demonstrated various degrees and

types of support for workflow and distributed state, showing that none of these

paradigms support these capabilities sufficiently to enable runtime-based

workflow composition.

In surveying prominent workflow and orchestration languages and

systems (in Section 7.3), I demonstrate they generally provide no functionality

that enables runtime workflow injection, they are no scalable, they provide no

workflow context support, or all three. Consequently, they are not well suited

for runtime composition of stakeholder requirements onto existing workflows.

I compared PDD to important features in a number of policy evaluation

systems in Section 7.4. Whereas PERMIS is a well-developed policy evaluation

and management system, it supports a PDP/PEP policy model that integrates

policy evaluation with applications at the source code level at the time of

development and compilation. While xESB allows the composition of policy

onto running systems, it provides no support for requirement-oriented workflow

injection. Both PERMIS and xESB evaluate policies as first order logic

expressions, and not as DSLs designed to enfranchise stakeholders.

403

In Section 7.5, I surveyed various program verification techniques and

strategies as applied to policy and policy-injected workflows, and discussed

additional work needs to be done to enable validation of policy-mediated

workflow injections.

Finally, in Section 7.6, I presented a vision of a policy programmer

whose activities focus on realizing stakeholder requirements at runtime, where

such requirements can be expressed as the policy-based composition of

workflows onto base workflows, given a knowledge of (but not the ability to

change) interactions in base workflows. This role contrasts with the definition of

a traditional programmer, who is free to realize requirements as new workflows

with new service interactions, implemented at the source code level, with

attendant deployment delays and risks.

404

CHAPTER 8

SUMMARY AND OUTLOOK

In the previous chapters, I presented a new development

methodology called Policy Driven Development (PDD), which is my approach

to designing complex systems (particularly cyberinfrastructures) so as to

improve their evolvability over time. By nature, a cyberinfrastructure serves a

community of multiple collaborating stakeholder groups, each with a stream

of different requirements that must be met quickly in order for stakeholders to

remain engaged and for the cyberinfrastructure to thrive. Paradoxically, as

the cyberinfrastructure becomes larger and more complex, requirement

realization and re-deployment require more time, potentially creating long lag

times between the articulation of stakeholder requirements and their

realization in delivered systems. These delays can be traced to the practice of

binding requirements into an application early in the development process

(so-called early binding), which is common to many current design and

programming techniques.

PDD seeks to improve cyberinfrastructure evolvability by dramatically

reducing the time needed to realize stakeholder requirements. PDD’s overall

strategy starts with viewing a cyberinfrastructure as a collection of base

workflows that implement partial behaviors, and viewing a requirement as a

collection of workflows that also implement partial behaviors and can be

conditionally composed onto the cyberinfrastructure. Requirements can

405

represent constraints on workflows, concerns that crosscut multiple

requirements (and workflows), or standalone applications that implement

substantial feature sets. As such, requirement composition represents a System

of Systems integration, where both sets of workflows represent partial

behaviors composed together.

A conditional composition involves a decision and a set of alternative

workflows, and is called a policy. The two key insights of PDD are a) to express

a policy in a Domain Specific Language (DSL) custom-designed to align with

the stakeholders’ view of a requirement, and b) to inject a policy into a base

workflow at runtime (so-called late binding). PDD proposes a new

programmer role (called policy programmer) that designs a DSL responsive to

stakeholder requirements, collaborates with stakeholders to express

requirements as policy, and injects policies into an executing system.

Critically, PDD provides mechanisms that a) enable the composition of

multiple policies (representing requirements tendered by independent

stakeholders) onto the same base workflow, b) enable injected workflows to

function as base workflows onto which new workflows can be composed, and

c) enable related policies to maintain and share state.

An application built using PDD principles can be expressed as a Service

Oriented Architecture (SOA), where workflows are represented by service

orchestrations, and all service interactions are subject to policy injections.

406

My contributions to PDD are described below, and include:

 An engineering approach to the realization of stakeholder

requirements in SOA-based cyberinfrastructures (CIs) via runtime policy

injection

 A demonstration of a SOA-based CI (PALMS) that enables runtime

policy injection

 A demonstration of the creation and use of Domain Specific

Languages (DSLs) to articulate injectable policy

 An evaluation of runtime policy injection (in the context of PALMS)

 An evaluation of the use of DSLs (in the context of PALMS)

 Insights for improving the performance of injected policies and

widening the stakeholder audiences they address

In Chapter 2 of this my dissertation, I first surveyed the means by which

choice (as policy) and workflow composition are represented in existing

contributions, including computational models, software development

methodologies, implementation mechanisms, and pertinent pattern sets.

Chapter 2 presents an analysis of gaps in existing contributions that must be

addressed in the course of realizing PDD.

Chapter 3 presented the GetStudyList workflow as a running example

drawn from the PALMS case study in Chapter 5 and used to motivate and

illustrate features of PDD beginning in Chapter 4.

In Chapter 4, I presented a Rich Service-based foundation that

addresses the key PDD issues responsive to the gaps identified in Chapter 2. At

a high level, I defined policies in the abstract, defined semantics for a service

interaction, and defined the semantics for the injection of policy into a service

interaction. I distinguished between three types of policies, where control

407

policies influence control flow, filter policies customize data flow, and

composition policies determine the effective control or filter policy when more

than one of these policies is defined for a particular service interaction. Finally,

I defined a context system that composes workflow-based data flows – the

dual of control flows – to enable policies to maintain state valid across a

workflow in a distributed (and scalable) system.

As a real world demonstration of PDD foundations, Chapter 5

presented the PALMS Cyberinfrastructure (PALMS) as a Rich Service

implemented on an Enterprise Service Bus (ESB) and supporting a worldwide

community of researchers. PALMS implements DSLs based on XQuery syntax

and using XQuery-based libraries, with DSLs for access control, policy

composition, auditing, and general feature injection. I also described the

specific ESB-based message interception mechanisms by which PALMS

policies are injected into PALMS workflows, including how interaction and

policy repositories function to deliver actionable policy during workflow

execution, how policies are evaluated and enacted in a service interaction,

and how the context system is implemented to support workflow state for the

duration of a workflow and for other lifecycles.

In Chapter 6, I evaluated the PALMS PDD implementation along key

performance dimensions, including contributions to evolvability, ease of

stakeholder use, and execution speed. PALMS’ PDD implementation

demonstrated substantial productivity gains (10x) in the maintenance of

PALMS workflows (via OOP techniques) by making use of both composed

408

workflows and data flows. I also demonstrated a process whereby a key DSL

was evolved to enable greater synergies between stakeholder and policy

programmer, thereby enabling easier and more fluid access control policy

maintenance. Finally, I reported on a number of time tests that profiled policy

execution in common scenarios. They demonstrated acceptable execution

costs for typical combinations of control policies, filter policies, and message

payloads, and they revealed high costs for processing complex message

payloads (which I address further in Chapter 6 and later in this chapter).

In Chapter 7, I compared PDD (and its PALMS implementation) to the

existing contributions identified in Chapter 2, particularly regarding how it

addresses the technology gaps I identified. I found that PDD filled gaps

relating to workflow injection and workflow state management, while leaving

policy modeling, secure deployment, and verification issues unaddressed as

further discussed in Section 8.1. I described how a user study informed my

definition of the role of the policy programmer as distinct from a stakeholder

who defines and injects policy directly. In addition, I surveyed a number of

approaches that are complimentary to PDD and which can be used to refine

requirements and workflows, and I demonstrated critical properties of

particular workflow compositions, including correctness and completeness at

either the model or code level.

Together, these results demonstrate that PDD techniques can enable

the rapid composition of requirements (represented by policies) onto

applications designed and implemented according to PDD principles,

409

thereby dramatically improving the evolvability of the overall system, inuring

to the benefit of existing and emerging stakeholder communities. However,

insofar as policy programming opens a new (and parallel) front in the

relationship between programmers and stakeholders, it presents challenges to

process, design, and code management; to verification; and to secure and

consistent deployment as discussed in Section 8.2.

As shown in Figure 70, the remainder of this chapter is devoted to describing

the gaps addressed and unaddressed in this dissertation (Section 8.1) and the

outlook for further PDD development (Section 8.2).

8.1 Gaps

In Chapter 2, I summarize my analysis of existing contributions that

might bear on a comprehensive technical solution to cyberinfrastructure

evolvability using a late binding strategy. In this section, I reprise the summary

as a roadmap to such a solution, and as a way of measuring the contribution

of this dissertation towards that solution.

Gaps

Outlook

Section
8.1

Section
8.2

Legend

Expained
in

Figure 70. Chapter 8 Flow

410

As shown in Table 11, of the eight gaps I identified, PDD solves the five

that pertain to the foundations (as described in Chapter 4) and mechanics

(as described in Chapter 5) of policy definition and injection. Additionally,

PDD demonstrates the use of DSLs as a means for engaging and enfranchising

stakeholders directly in the policy programming activity.

The remaining gaps (and other issues) are discussed in Section 7.8 and

are further addressed in Section 8.2.

8.2 Outlook

I began this dissertation with a look back at the ancient SOARS system,

which played the role in 1975 that a modern cyberinfrastructure would play

today. I described how SOARS was functional but incapable of evolving

quickly, and how programmers made many decisions that were more

appropriately made by domain experts (as stakeholders). Since then, the field

of software engineering has produced significant advances in disciplines,

Table 11. Gaps Addressed in this Dissertation

Addressed Gap

Yes Identification of policy injection site at runtime
Yes Injection of policy at runtime
Yes Tracking workflow-based policy -centric state
Yes Composition of multiple policies onto a single injection site
Yes Enabling composition onto injected workflow
No Verification of interface and semantic compatibility between

policy and base workflow
No Incremental testing and proofs that policies implement

requirements
No Enabling a consistent relationship between state and policy

across policy deployments

411

techniques, methodologies, and tools (as described in Chapter 2) responsive

to stakeholders’ increasingly complex requirements while reducing software

development risk.

As large systems evolve from being productivity tools into being the

substrate on which communities develop, they grow to reflect the

relationships between stakeholder groups comprising these communities.

Ultimately, I believe that large software systems (e.g., cyberinfrastructures) that

support dynamic and interconnected communities will coevolve with the

community to function as vehicles for the integration of complex systems as

Systems of Systems (SoS). To the extent that such systems can evolve quickly

and reliably responsive to new and changed stakeholder requirements

(including new value drivers), these systems can support the vitality of such a

community. Conversely, when they react slowly or non-responsively, they

threaten community vitality.

In this dissertation, I have defined and demonstrated the Policy Driven

Design (PDD) methodology, which supports the design and implementation of

large scale systems able to respond to new and changing stakeholder

requirements quickly and accurately. By enabling the composition of

requirements (as workflows) at runtime via policies articulated using DSLs, PDD

enables the formation and transformation of complex systems, and it

encourages stakeholders to participate directly in requirement realization that

produces rapid system evolution.

412

However, PDD is young and has yet to adopt processes and

mechanisms that enable robust end-to-end guarantees required in a mission-

critical industrial setting. The remainder of this section is devoted to discussing

opportunities for extensions and improvements to PDD that could enable

PDD’s use in this environment.

PDD policy authorship and injection represent a separate and parallel

activity relative to traditional system development processes. This presents

significant challenges in maintaining coherence between the PDD-based and

traditional development tracks. These challenges can be addressed at both

development and deployment time. Chapter 7 identifies and discusses issues

in maintaining a priori a semantic match between these tracks by focusing on

a shared and consistent view of service contracts via Model Driven

Development (MDD) and language definition techniques. It discusses similar

issues at deployment time via a combination of MDD, modeling, model

checking, and simulation techniques aimed both at producing policies that

align with requirements and demonstrating the fidelity between requirements

and policy execution. PDD must leverage these techniques in order to

demonstrate end-to-end fidelity to requirements – there is much work to be

done here.

Similarly, consistency issues arise across multiple generations of a single

policy collection, particularly where policies are stateful, and the states’

semantics are not consistently observed from one policy generation to

another. This is discussed in Chapter 7, as are issues pertaining to secure and

413

consistent policy deployment. The importance of these issues increases as a

system scales into a highly distributed environment and policy programmers

become adept at requirements discovery and injection, while ignoring the

complexities of application distribution that systems and application

programmers routinely manage. There is much work to be done here.

While Chapter 7 describes the process of building an application under

PDD principles, this dissertation does not specifically address the process or

prospects for using PDD principles on large scale systems not created using

PDD principles. Additionally, real world Systems of Systems are often

assembled from not only new (possibly PDD-observant) components, but from

a mix of legacy services and other non-PDD services. As a practical matter,

this common case must be addressed, perhaps using the implementation

platform discussion in Chapter 7 as a point of departure.

In Chapter 6, I evaluate a group of performance-related hypotheses

relative to tests performed on the PALMS implementation of PDD. While timings

indicate that PALMS’ PDD implementation performs acceptably well for

typical combinations of control policies, filter policies, and message payloads,

they reveal high costs for processing complex message payloads. The primary

cost driver is the size and complexity of messages exchanged during a service

interaction intercepted by a policy evaluation – such messages incur

significant translations costs between Java object form (suitable for service

interactions) and XML form (suitable for XQuery-based policy evaluation). By

harmonizing interaction message formats with the underlying policy execution

414

language, the costs of policy evaluation for these cases can be better reflect

their benefits. There is much work to be done here.

As designed, PDD contemplates policy injection on service interactions

where the participating services can be uniquely named. While this injection

criteria is sufficient for many cases, other criteria can be leveraged to refine

the injection decision for greater specificity, including a history of previous

interactions and an evaluation of channel history, as described in Chapter 7.

Similarly, while the result of a policy evaluation (as described in Chapter 4) is

defined as a workflow, the PALMS implementation of PDD returns only a

service, which acts as a workflow proxy that manifests an actual workflow

through decomposition. Under PALMS, it is difficult for a policy to calculate

and return a workflow dynamically – PALMS provides no way to express a

workflow object or to execute one directly. Furthermore, if it did, identifying

policy injection points within the dynamic workflow would require further

study, as such workflow interactions might not be identifiable in advance,

when policy authorship occurs. This limits deep SoS composition available for

non-dynamic services, and suggests a need for pattern-based injection

criteria based on behavior or workflow structure. Additionally, the possibility of

executing dynamic workflows may result in revisiting the choice of using an

ESB to orchestrate PALMS’ workflows, as ESBs (so far) do not execute dynamic

routings, and it may make little sense to have an execution engine for base

workflows distinct from injected workflows. These considerations provide food

for thought in choosing a next generation PDD execution platform – such a

415

project may also encompass the choice of message format as presented

above. Answers to both questions may arise out of combining emerging

functional programming-based frameworks such as OpenRichServices [241]

with yet-to-be-developed workflow pattern matching facilities. There is much

work to be done here.

Insofar as policies represent separate concerns, maintaining policies as

separate, composable entities removes the risk of entanglement and

scattering represented in early binding approaches. However, PDD does not

eliminate entanglement and scattering – it relocates them to the composition

policy level, which seeks to resolve execution ordering and administrative

priority issues when two policies are injected into the same service interaction.

Significantly, composition policies serve to encapsulate this entanglement so it

can be addressed definitively as a separate concern. Additionally, while

scattering still occurs when elements of a policy collection are injected into

different interactions, managing the consequences of scattering can still be

done at the composition policy level. Ultimately, PDD encapsulates the issues

of entanglement and scattering, but does not eliminate them --

understanding management of entanglement and scattering is an area for

further study.

In summary, the PDD methodology and my experiences in using it to

build a real-world cyberinfrastructure strongly suggest the value of building

complex systems as flexible and highly evolvable Systems of Systems by

leveraging a late binding paradigm to achieve composition at runtime. While

416

stakeholders in a modern SOARS system would reap benefits from

participating in policy programming via quick and accurate requirement

realization (especially assuming the improvements to PDD described above),

the approach has potential to pay future dividends should the university align

itself with other institutions either virtually, ephemerally, or both, where PDD

principles can be employed to realize computing systems that parallel and

support inter-institutional relationships.

This scenario suggests that the true value of PDD’s late binding

approach is to preserve and unleash value that is currently lost in non-PDD

systems due to choices made prematurely via early binding.

417

APPENDICES

APPENDIX A – Graphical Notations

In this dissertation, I use both standard notations and ad-hoc notations

to convey important relationships. In this appendix, I explain these notations.

A.1.1 Unified Modeling Language

The Unified Modeling Language consists of modeling standards defined

and maintained by the Object Management Group [242] (OMG), which

manages standards useful in the practice of Model Driven Architecture [171]

(MDA)5. Over time, the OMG has published a number of UML versions, with

each version defining a number of modeling diagrams, their form, and their

semantics. Each diagram can be used to model some aspect of a software

engineering project. According to [243], UML v2.2 contains 14 types of

diagrams covering both application structure and behavior. In this

dissertation, I use UML class diagrams to show structural relationships, and both

UML sequence and activity diagrams to show behavior. The following sections

give brief tutorials on my use of these diagrams, which uses only a subset of

UML. The full UML language offers much richer features and semantics useful

outside of this dissertation. A more extensive tutorial is presented in [40], and

UML style tips are presented in [244].

5
 OMG defines MDA as “an open, vendor-neutral approach to the challenge of business and

technology change” … which “separates business and application logic from underlying platform

technology”.

418

Note that common use of UML varies from the very informal (back-of-

napkin) to the very formal (directly executable). In this dissertation, I use UML

informally as a way of defining relationships for the sake of discussion, but not

formally enough to use in the context of other formal models.

Note that UML allows the use of color in class diagrams, but allows

each diagram to define its own color scheme. In my diagrams, I use color to

group related elements.

A.1.2 Class Diagrams

A class diagram depicts a collection of related entities and the

ontological relationships between them, and enables reasoning about the

entities and their relationships.

In my class diagrams, an entity is an abstraction representing an

information container and a collection of pertinent methods. It may be

possible to instantiate the entity, or the entity can be used as a component of

another entity’s definition or its content. Class diagrams are commonly

understood in terms of Object Oriented Programming (OOP) principles, where

an entity equates to a class, and relationship is represented by an association

that may relate two or more classes. Examples of OOP associations include

subclassing, referencing, and encapsulation, all of which are binary

relationships. Domain-specific associations are often binary, though they can

be n-ary.

419

As shown in the class examples in Figure 71, all classes have names,

and may have data elements and/or methods. They are represented visually

by rectangles, with separate regions for class name, data elements, and

methods – empty regions can go undisplayed. Classes can be adorned with

stereotypes, which endow class properties and behaviors that are defined

elsewhere.

A number of association examples are shown in Figure 72. Binary

associations are displayed as lines between classes, where classes play roles

within an association. For relationships defined under OOP, lines have different

appearances to indicate different kinds of associations. Figure 72 shows a

number of OOP relationships: the Cat and Fish classes are subclasses (i.e.,

kinds) of Animal; a Cat is associated with (i.e., references) a Bed (though the

Bed is not part of the Cat); and a Cat has (i.e., contains) Legs, each of which

are part of the same Cat.

An association can have a descriptive name, and when a class fulfills a

role in an association, the class can be annotated with the name of the role it

Animal Cat Fish

name:string + swim(): void

No data,
no methods

Some data,
no methods

No Data,
some methods

<milkmaker>

Cow

No Data,
no methods,

with stereotype

Figure 71. Styles of UML Class Entities

420

plays. In the example, Eats is an association that applies to the Cat (as

Predator) and Fish (as Prey).

If an association places a constraint on the number of instances that

can fulfill a role, the association can be annotated with a multiplicity

indicating the constraint (with “*” indicating any number, including zero). In

the example, many Cats can eat a Fish, a Cat can eat many Fish, and a

Cat can have between zero and four legs.

Finally, if a role is oblivious to other association roles, the line that

connects to the class ends in an open arrow. In the example, the Bed is

oblivious to the Cat.

For n-ary associations, lines are connected through a diamond, and is

shown in Figure 73 as an Ecosystem relationship between a River that flows, a

Cat that sips water, and a Fish that swims in the water.

Figure 72. UML Associations

Animal

Cat

LegBed

Fish

+ swim() : void

0..4

+Predator

* Eats

+Prey

*

421

An association class is a combination of an association and a class. It

not only defines relationships between roles, but also defines data and

methods pertinent to the relationship. Figure 73 shows that the Fish’s Swim

relationship is adorned with a Vector indicating direction and speed.

A.1.3 Sequence Diagrams

A sequence diagram depicts a collection of roles and the interactions

between them, and enables reasoning about the entities and their

interactions.

In my sequence diagrams (exemplified in Figure 74), a role represents

an instance of a class (shown as a rectangle) coupled with a lifeline (shown as

a drop-down line terminate by a black mark). The lifeline represents time,

which starts at the top of the line and proceeds toward the bottom. Two roles

can interact if one class (i.e., the source) is capable of sending a message

and the other class (i.e., the target) is capable of receiving it. In this context, a

Figure 73. n-ary Association and Association Class

Cat

Fish

Riv er

Ecosystem

Vector

- direction: polar

- speed: int

Swims

Flows

Sips

422

message represents a typed communication (including a structured packet, a

parameter list, or other data-laden entity). Interactions are shown as events

positioned on the lifeline, thereby establishing interaction ordering and

proving a basis for discussions of causality.

As shown in Figure 74, the name of the role is the same as the class it

represents, and can be qualified by an instance identifier for the sake of

differentiating roles having the same class. An interaction is represented by a

directed line originating at a source role and terminating at a target role, and

intersects a lifeline below all previous interactions. Different line patterns and

arrows represent assumptions regarding message transmission and relationship

to other messages. In my sequence diagrams, a solid line with a solid arrow

indicates a request, and a dashed line with an open arrow indicates its reply.

A solid line with an open arrow indicates an asynchronous request, which may

or may not have a reply. I annotate each interaction with the message

contents it represents.

Figure 74 shows Role1 sending a request Msg1 to Role2 (at the top), with

Role2 replying Resp1 (at the bottom). After the request, and before the reply,

Role2 sends a request to Role3.

A sequence diagram that contains mutually exclusive sequences of

messages groups alternative sequences in compartments in an Alt box, where

one compartment is separated from another by a dashed line. This is shown in

423

Figure 74 as Role3 choosing to return either Resp2a or Resp2b, depending on

some criterion evaluated by Role3.

A.1.4 Activity Diagrams

An activity diagram depicts a workflow as a collection of activities

related by flowing data, and enables reasoning about the control flows and

data flows. At a high level, an activity diagram begins, performs processing

(via one or more activities), and ends. Activities themselves can be

decomposed along the same lines.

Figure 75 shows a simple activity diagram that models a dog grooming

service. The service begins when the dog arrives (marked by a black initial

node) and ends when the dog leaves (marked by a hollowed final node). The

service itself accepts an object (i.e., Dirty Dog) and produces an object (i.e.,

Done Dog), and exists as a decomposed activity that transforms input to

Role1 Role2

Msg1

Resp2b

Role3

Resp1

Msg2

Resp2aAlt

Figure 74. Sample UML Sequence Diagram

424

output. The lines connecting nodes and activities are directed to indicate

flow, and implicitly carry an object that is supplied by the source and

consumed by the target. For clarity, the type of object produced or

consumed can be articulated by joining a parameter pin rectangle, a line,

and an activity, then labeling the pin with the type of object type (e.g., the

Dirty Dog and Done Dog pins).

My activity diagrams model time in simple terms – there is no time

quantum, and when an object is produced by a source activity, it is

consumed by a target activity. An activity diagram defines a workflow that

can be instantiated many times, where each instance executes

independently of other instances, maintains its own state, and processes its

own data.

The Dog Grooming activity consists of a number of activities that

consume and produce objects (in this case, a dog). A directed path can be

qualified by a guard expression (displayed within brackets, e.g., Healthy vs

Unhealthy), and can be forked into multiple paths that execute

independently (displayed as a black bar that consumes an object and

duplicates it along independent flows, e.g., the Wash/Dry, and Clip Nails

paths). Independent paths can also be joined (displayed as a black bar that

consumes an object on any of several paths, and forwards it to a downstream

activity).

425

A.2 Workflow Sketch

A workflow sketch is my own notation for compactly representing

interactions between activities (in a workflow model) or, equivalently, services

as representations of activities. Activities are represented by named

rectangles, and messages are represented by directed lines, as shown in

Figure 76. A request/reply pattern is indicated by two services sharing two

Figure 75. UML Activity Diagram

Dog arrives

Dog Grooming

Inspect

Clip Nails

Wash

Dry

Charge

Money

Dog Leaves

[Healthy]

Done Dog

Dirty Dog

[Unhealthy]

426

directed lines (as shown for Activity1 and Activity2). Each message line

(called an interaction) is marked with a numeral, which is unique to the

sketch.

When appropriate, a sketch can contain a legend that correlates a

message line with message content, thereby indicating the data exchanged

between two activities. For example, interaction ❷ passes a message called

Msg2, which contains values c and d.

Note that a workflow sketch shows only activity interactions, but does

not specify the composition or decomposition that produced those

interactions. For example, in Figure 76, each of the three activities could be

elements of a single workflow. It is also possible that Activity 1 decomposes

into Activity 2 interacting with Activity 3. In a workflow sketch, interactions are

the focus of the discussion, and not the structure of the workflows that

produced the interactions.

Activity2 Activity3

❹ Resp1(g,h)
❸ Resp2 (e,f)

Activity1

❶ ❷

❹ ❸

❶ Msg1(a,b)
❷ Msg2(c,d)

Figure 76. Workflow Sketch

427

APPENDIX B Existing Contributions

In this dissertation, I compare facets of PDD to existing contributions,

which can be categorized as computational models, software development

methodologies, mechanisms, and patterns. In this appendix, I introduce these

contributions so as to position them in a discussion on choice, workflow

specification and composition (as injection), and state management,

verification and modeling, and deployment elsewhere in this dissertation.

B.1 Models of Computation

Computational models are generally not intended as programming

languages used to author and deliver applications. Instead, they abstract out

some aspect of an application so as to answer particular questions about it

(e.g., determining liveness, safety, or reachability) without enduring the

complexity introduced by issues unrelated to the question. However, as

logical frameworks, they underlie and inspire important features of

programming methodologies, mechanisms, and techniques that can either

support PDD or can be recognized as insufficient to support PDD, and thereby

provide inspiration and theoretical support for components of PDD. In this

section, I describe the computational models and process algebras that

inspire PDD and provide counterpoints to it.

B.1.1 Turing Machines

A Turing machine is a very basic process description first proposed by

Alan Turing in 1936 [84]. Turing machines (and related finite state automata)

express computing processes as transitions between states, where a start state

428

represents the beginning of a computation, and accept and reject states

represent the end of a computation. Based on input data, a Turing machine

sequences from state to state (including intermediate states) according a

transition function, and it generates output data (which may be subsequently

used as input data, depending on the type of Turning machine in use).

The fundamental purpose of a Turing machine is as a framework for

organizing and evaluating the inputs, state spaces, state transitions, and

output so as to determine whether particular output can be generated from

particular input, and to determine the time and space needed to achieve

this.

B.1.2 Petri Nets

A Petri Net [78] [87] is a graphical notation invented by Carl Adam Petri

in August, 1939, to describe states and transitions in chemical processes; it has

been extended in a number of forms to model computing processes. At its

heart, a Petri Net is a relationship between places, transitions, and arcs, all of

which cooperate to manage the flow of data elements called tokens. A

place represents a state, and is a repository for tokens – one or more places

are connected via directed arcs to a transition. Relative to a transition, places

at an arc source are called input places, and places at an arc destination are

called output places. A transition is enabled (and can fire) if all input places

connected to it contain at least one token. When a transition fires, it removes

a token from each input place, and places tokens on each output place. A

token present in a place represents a condition, and a transition represents an

429

event – an event can fire if all conditions are met. A particular configuration of

tokens on each place in an entire system is called a marking; a marking

represents a system state.

In a Petri Net, time is modeled as a forward-only sequence of quanta,

where in each quantum all transitions are evaluated, and transitions that can

fire do fire.

B.1.3 π-calculus

π-calculus [91] is an algebra developed by Robin Milner in 1992 based

on the CCS process algebra [245]; it models concurrent systems in terms of

messages exchanged by processes. Under π-calculus, a process represents a

computational unit that accepts input and produces output over channels,

where a channel carries a message and acts as a connection between

processes. A message represents a collection of data elements, which may

include references to one or more channels6, and a process can propagate

those channel references in subsequent messages or can send messages itself

on those channels. A π-calculus expression can model the creation of

channel and process instances dynamically at runtime.

To receive input, a process waits for a message on a channel, and its

execution is blocked until another process sends a message on that channel.

Multiple processes can write to a channel, and there is no guarantee of the

6
 CCS cannot do this.

430

ordering of the messages accepted by the channel, or of the order in which

processes that become unblocked will execute.

Because π-calculus can model communications between dynamically

created and connected process instances, it forms a workable basis for

modeling dynamically configurable systems (aka mobile, including agent-

based systems). Numerous extensions to π-calculus have been proposed

[246], including providing better definition of message content [247] and

conveying processes themselves as payloads in channel messages [248].

While π-calculus and its derivative calculi are generally not used for general

programming (due to their focus on low-level message passing and

synchronization at the expense of code organization abstractions), they can

be used for modeling protocols in various contexts, are supported by model

checkers (to determine deadlock, livelock, and other properties), and have

influenced the concurrency and message passing models of existing

programming languages, including BPEL [249] and Orc [250], and Service

Oriented Architectures (SOAs).

B.1.4 𝝀-calculus

λ-calculus is an algebra created by Alonzo Church in 1936 as a

mathematical logic for describing and analyzing computations [251]. At its

heart, it defines a computation as a function that may perform a calculation

or decompose into other functions. A function accepts arguments and returns

a value, which in turn may be used as an argument to another function, may

be bound to a variable, or may be used as a function itself. Executing a λ-

431

calculus expression involves reducing it to a single result according to the λ-

calculus reduction rules and their implementation strategies.

A strict definition of λ-calculus involves only a minimum set of operators,

and is therefore inconvenient as a programming language. A number of so-

called functional languages have been defined based on λ-calculus

principles, including Scheme, ML, Lisp, and Clojure [116]; they incorporate

various convenience functions, syntactic sugar, special forms, and typing

systems that improve the economics of programming and maintaining λ-

calculus expressions.

B.2 Software Development Methodologies

Programming methodologies exist to enable application developers to

organize their approach to requirement gathering and factoring, application

architecture and design, and coding and maintenance. Historically, a new

programming methodology emerges when the economics of existing

methodologies are strained due to any of a number of factors, including the

complexity of requirement sets, diversity of stakeholder groups, the number

and complexity of concerns addressed in an architecture or design, and the

size and complexity of a code base. In this section, I describe the software

development methodologies that inspire PDD and provide counterpoints to it.

B.2.1 Modular Programming

According to [100], modular programming is a discipline that enables

the creation and maintenance of large systems by decomposing the system

into concerns packaged as modules with clear interfaces and boundaries.

432

Accordingly, multiple modules can be programmed in parallel, thereby

reducing time to market. Additionally, product changes that can be isolated

to one module demonstrably don’t affect other modules, thereby reducing

maintenance and testing costs and improving reusability. Finally, whereas an

entire application can be large and complex, modules represent subsets that

can be more easily understood than the whole, thereby improving prospects

for good design decisions. Module definition focuses on the implementation

of arguably independent abstractions, which then can be orchestrated to

realize a program’s requirements. Modular programming was first supported in

languages such as assembly, C, Cobol, and Fortran.

B.2.2 Structured Programming

Structured programming is a design and programming technique that

progressively refines a high level abstraction into an orchestration of low level

abstractions via decomposition, and was first supported in languages such as

Pascal. It leverages the Böhm-Jacopini theorem [252] which claims that

workflows can be decomposed into combinations of three normalized

patterns: a sequence, a choice, and a loop. As a corollary, each pattern has

a single definable entry and exit point [253], with definable entry and exit

properties useful in defining and verifying properties of the higher level

abstraction. Such reasoning forms the basis of replacing one workflow with

another, yet preserving the semantics of the higher level abstraction.

433

B.2.3 Object Oriented Programming

Object-oriented programming (OOP) is a programming style that

supports the Object-oriented design methodology, and was first supported in

languages such as Java, C++, and Smalltalk. As defined in [101], it features

object definition explicitly via an interface, data encapsulation,

polymorphism, inheritance, and open recursion. Generally, object

functionality is accessed via a call to a method whose actual code is resolved

at runtime. The call is modeled as a message exchange, though it can be

implemented in numerous ways, including as an actual message exchange or

a stack-oriented function call.

B.2.4 Aspect Oriented Programming

Aspect-oriented programming (AOP) [32] is a programming

mechanism that seeks to eliminate the code scattering and entanglement

created when crosscutting concerns are implemented in base workflows. It

organizes such concerns centrally (as advice) and defines composition rules

(called pointcuts) that together form an aspect. A pointcut determines where

in a base workflow to inject a new workflow, and possible injection locations

are called join points. A join point identifies an activity in a workflow, and a

pointcut is a predicate that identifies one or more join points. The aspect

encodes both an injected workflow and its relationship to join points, including

executing before the join point, after the join point, or around (possibly

replacing) the join point.

434

AOP is implemented as extensions to many common languages and

frameworks, including Java (as AspectJ [11]), BPEL (as AO4BPEL [146]), and

others. Each implementation defines its own join point model, pointcut

language, and advice language. Consequently, the particular capabilities of

AOP vary with the implementation.

B.2.5 Execution Frameworks

Enterprise Service Bus

An Enterprise Service Bus (ESB) [120] executes workflows by routing

messages between service components. Abstractly, a workflow is specified as

a graph where service components are nodes that are connected by edges

representing unidirectional message routings (connecting a source to a

target). A routing can be defined statically (and encoded in a declarative

language such as XML) when the workflow is authored, and nodes or routings

can be added or removed at runtime. Interceptors [254] are functions that

can intercept and process a message in flight, and can be assigned either

statically or dynamically to an interaction between a source node and a

target node.

B.2.6 Policy Engines

The topic of policy-based access control has been addressed by [204]

and others, and assumes the execution of policy statements by a policy

engine built specifically to implement secure identity, attribute, and policy

management services that implement choice in workflows. The relationship of

a policy engine to an application is defined in ISO 10181-3 [255], and includes

435

a policy decision point (PDP, where a decision is made) and a policy

enactment point (PEP, where a workflow is selected based on the decision). A

policy engine manages predicates (called policies) written in a policy

language (e.g., Ponder, XACML, X-Sec, PERMIS, and Akenti) and evaluates a

policy on behalf of a PDP. Policies are typically written by programmers and

are deployed while an application is running. Commonly, PDPs and PEPs are

coded explicitly into an application, as are the alternate workflows selected

by the PEP. Policies executed by policy engines are oriented toward access

control decisions, and can maintain their own state, but usually cannot

access workflow, application, and environment state.

PERMIS (Privilege and Role Management Infrastructure Standards)

The PERMIS policy infrastructure [121] is a mature policy evaluation

system that incorporates a policy engine as a component of an overall

strategy to implement and manage injection of access control decisions into

enterprise applications. It encompasses secure identity, attribute, and policy

management services that feed into a policy decision point (PDP) separate

from an enactment point (PEP) as described above. Typically, a programmer

encodes a call to a PDP, which evaluates a policy identified in the call and

returns a decision (often allow/deny) which is then used in a PEP to

parameterize a workflow or distinguish between alternate workflows. PERMIS

functions as a PDP, whereas the PEP is application-dependent, and is often

statically coded to interpret and act upon the PDP’s decision.

436

BPEL Process Integration with Business Rules

BPEL [122] is a block structured scripting language for sequencing

services in workflows. Recent versions have variables, XML support, looping

control constructs, transaction management, fork/join, and exception

handling. Similar to PERMIS, Oracle’s BPEL Process Integration with Business

Rules [123] defines a decision service that evaluates business rules to render a

decision.

xESB: Integration of Policy with ESBs

xESB [124] represents a different approach to runtime policy injection –

it intercepts messages exchanged by interacting services in a SOA executing

on an ESB. It executes policies that affect either the base control flow or data

flow, and represents crosscutting concerns as business rules (i.e., policies)

maintained separately from the base application.

Under xESB, rules exist in a collection that is examined in toto on each

and every service interaction – the collection also contains statically defined

counters, timers, and hashes that track rule state.

B.3 Workflow Context in Distributed Systems

By nature, programming languages define workflows, and workflow

activities depend on either control-related or data-related context. Each

programming language defines workflows and context in terms (and with

limitations) that suit the language’s purpose. For example, in Java, workflow

activity orchestration is organized as sequential statements, with

decomposition implemented as method calls. Similarly, variables defined in

437

method blocks and as method parameters function as workflow variables and

messages, while variables defined in classes and packages have more global

lifecycles.

Analogously, modern frameworks and architectures that support

distributed systems frame the maintenance of state based on the workflow

assumptions underlying their target applications. In this section, I describe

context maintenance in Struts, REST, and AJAX, as examples of different

tradeoffs.

B.3.1 Struts

The Struts [126] system is a server-based Java environment that

executes workflows on behalf of clients. Under Struts, state is maintained as

Java beans, with request, session, and application lifecycles.

A request bean is associated with a single workflow executing in a

single thread on a single computer.

A session bean is associated with a particular client (via a browser

cookie or URL rewriting). Conceptually, a session exists for each client (as

represented by a browser), but session memory and attributes are not actually

allocated until a workflow accesses the session. The session is deleted when

the browser leaves the application, which is approximated by a combination

of the cookie being a browser “session cookie” and the session timing out

according to a Struts-based session policy. Multiple workflows may access the

session serially or in parallel, and so Struts provides a measure of thread-safe

438

access. The client can assume that session beans are secure from client to

client, but that they are visible to all requests on behalf of a given user. The

maintenance of a session bean depends on a session reference passed using

an HTTP protocol between a client (browser) and the Struts system – via a

cookie or URL rewriting.

An application bean is equivalent to a global variable, and represents

state available to all workflows executing on all computers in a distributed

system.

B.3.2 REST

A RESTful application follows the principles of the REST (Representational

State Transfer) [127] architectural style, which distinguishes application state

from data (so-called hypermedia). Application state resides on clients, and

hypermedia (and other resources) resides on servers. A client accesses a

server via a self-contained request that makes no assumptions about state

stored on the server, and specifies data (and computing resources) as a

resource identifier that the server can map to a real resource instance. In

contrast to Struts, REST client state is local (and not distributed), which gives

clients flexibility in responding to server failures, and promotes server

scalability.

B.3.3 AJAX

AJAX [128] [129] is a collection of technologies aimed at providing a

fluid experience for users executing client-server application in a web browser.

Under AJAX, a web application communicates with a single server by sending

439

a request and then continues executing without waiting for a response. When

the server’s response arrives, the client invokes a function registered for the

exchange. AJAX applications generally exchange XML or JSON data, and

manage workflows and user interfaces using JavaScript, the Document

Object Model (DOM), and XHTML/CSS.

From a high level perspective, AJAX applications involve a collection of

clients interfacing with a single server, where the server maintains common

data, and clients maintain the state of the user interface. A workflow is

defined as a series of one or more exchanges between a client and server,

and can involve keeping state on both the client and server (as well as the

sequential execution of callback functions on the client and API calls on the

server). For example, a server that implements servlet [256] capabilities stores

session-oriented state that persists until a (configurable) inactivity timeout

occurs, and the state can be used in combination with client requests to drive

server workflows.

Alternatively, a developer can define a server using a REST model,

where the server maintains no state, and server resources are identified by

reference. In this case, the client-server protocol involves simple request-reply

exchanges, and the client maintains state pertaining to both the user

interface and the server.

For example, a typical AJAX workflow may fetch a long list in chunks,

issuing one request for each chunk, and ordering the requests starting with the

440

beginning of the list and proceeding in order to the end. In a REST model,

each request would contain the list’s resource identifier and an index. In a

servlet model, a series of requests could set the resource identifier, and could

then fetch successive chunks, with the resource identifier and the index

retained at the server. Other designs are possible, and depend on tradeoffs

between the ability of a client to maintain state and consistency guarantees

made by the server (which often come at the cost of server scalability).

In any case, JavaScript executes client-side workflows based on client-

resident state, which may be held as global variables and in closures,

particularly closures associated with server requests. For example, in a REST

model, a closure would maintain the index passed to the server, thereby

allowing the client to correlate a server reply with the index that generated it.

B.4 Ponder Policy Verification

Ponder is a highly successful environment that implements the policy

Ponder language [130]. Ponder policies are written in a unique declarative

language expressed in terms of subjects, targets, actions, and conditionals. A

subject identifies the principals to which the policy applies. A target identifies

the objects (e.g., resources and service providers) to which the policy applies,

and which may expose custom methods accessible within the policy’s actions

and conditionals. An action is a program fragment that executes some series

of operations that, themselves, may have constraints and may execute

methods. A conditional determines when the policy becomes active, and

can incorporate external factors as well as set-based calculations involving

441

Ponder’s RBAC [115] database (which follows a hierarchical role model, similar

to Grouper [178]). Ponder supports numerous policy types, including

authorization, obligation, delegation, information filtering, and refrain policies.

Additionally, Ponder has a concept of meta-policies, which are policies

that determine which policies are allowed in a system, including disallowing

conflicting policies.

442

APPENDIX C Patterns for Object Oriented Programming

As described in [33], design patterns capture solutions that have

developed and evolved over time. Twenty three patterns pertaining to Object

Oriented Programming (OOP) are presented in [33], where many of these

patterns apply to design and architecture beyond OOP.

In this dissertation, I focus on the Strategy and Composite patterns,

which are well described abstractly and concretely in [33], and are

summarized in this Appendix for convenience.

C.1 Strategy Pattern

Generally, a Strategy pattern represents a decision that chooses

between a number of algorithms, and is abstractly similar to a policy as

defined in this dissertation. At its core, a Strategy pattern contemplates the

use of an algorithm, where the particular algorithm chosen is deferred.

443

In concrete terms, an OOP programmer can implement a Strategy

pattern in a number of ways. For example, supposing a program feature is

implemented by an algorithm that is explicitly called, and a stakeholder

requires a choice of algorithms instead, and the choice is made at runtime.

The programmer can virtualize the algorithm at compile time and choose the

particular algorithm at runtime as follows:

1. Create an interface (as an interface class, abstract class, or base class)

that functionally defines the algorithm

2. Create the existing algorithm as an instance of the interface

3. Create alternative algorithms as other instances of the interface

4. Replace the use of the algorithm with a reference (e.g., pointer) to a

class that implements the interface

5. Based on some criteria evaluated before use of the reference, choose

an algorithm and assign an instance of it to the reference

6. Use the reference instead of the original algorithm

The result can be graphically depicted as shown as a UML class

diagram in Figure 77, where an application exercises three different features

during its execution. Each of the features have alternative algorithms, each of

which implements the interface for the feature it implements. When the

application executes a feature, it calls an instance of one of the algorithms

that implements it.

444

The deferred algorithm definition envisioned in OOP requires that the

algorithms and the choice that distinguishes amongst them be explicitly

coded into the application, whereas PDD’s vision is to inject the choice and

call at runtime.

C.2 Composite Pattern

A Composite pattern represents a data structure defined recursively

and can be thought of as a tree of nodes where all nodes derive from a

common base class (and therefore expose common attributes and

operations). As shown in the UML class diagram in Figure 78, a node can be

either a standalone data structure or can itself be a Composite pattern that

may have children (thereby creating the recursion).

Figure 77. OOP Strategy Pattern

Application

«interface»

Feature 1

«interface»

Feature 2

«interface»

Feature 3

Algorithm 1a

Algorithm 1b

Algorithm 2a

Algorithm 2b

Algorithm 2c

Algorithm 3a

Algorithm 3b

Algorithm 3c

Algorithm 3d

call

445

A common example of a Composite pattern is a hierarchical file

system. Following the model in Figure 78, a file would be a Leaf – it has no

children. A directory would be a Composite – it may have children that are

either files or directories. The common base class (called Component) – could

have a timestamp element, which both files and directories would inherit.

From a PDD viewpoint, a service is an example of a Composite pattern

because it can implement its function by orchestrating interactions between

a collection of services – and those services can be either decomposed

further or can implement a self-contained calculation.

Figure 78. OOP Composite Pattern

Component

+ commonAttribute: int

+ commonOperation() : void

Leaf

+ commonOperation() : void

Composite

+ commonOperation() : void

+parent

+child

*

446

REFERENCES

[1] Canfora, G., and Cimitile, A. (2000). Software Maintenance. In S. K. Chang,

Handbook of Software Engineering and Knowledge Engineering (pp. 91-

120). Singapore: World Scientific Publishing Co. Ptc. Ltd.

[2] Luer, C., Rosenbaum, D., and van der Hoek, A. (2001). The evolution of

software evolvability. Proceedings of the 4th International Workshop on

Principles of Software Evolution (IWPSE) (pp. 134-137). Vienna, Austria: ACM

Press.

[3] Meyer, B. (1997). Object-Oriented Software Construction (2nd edition).

Upper Saddle River: Prentice Hall.

[4] Lientz, B. P., and Swanson, E. B. (1979, April). Software Maintenance: A

User/Management Tug of War. Data Management, pp. 26-30.

[5] Ciraci, S., and ven den Broek, P. (2006). Evolvability as a Quality Attribute of

Software Architectures. The International ERCIM Workshop on Software

Evolution 2006 (EVOL 2006), (pp. 29-31). Lille.

[6] Martufi, G. (2007). Software Evolvability: An industry's view. Proceedings of

the 2nd Open Workshop on Resilience in Computing Systems and

Information Infrastructures (ReSIST). Rome, Italy.

[7] Cook, S., Ji, H., and Harrison, R. (2000). Software Evolution and Software

Evolvability. University of Reading.

[8] Ghezzi, C., Jazayeri, M., and Mandrioli, D. (2002). Fundamentals of

Software Engineering, 2nd Edition. Upper Saddle River: Pearson Education,

Inc.

[9] Chaumun, M. A., Keller, R. K., and Lustman, F. (2002). Design Properties and

Evolvability of Object-Oriented Systems. In H. Erdogmus, and O. Tanir,

Advances in Software Engineering (pp. 197-224). New York: Springer-

Verlag.

[10] Trieber, M., Juszczyk, L., Schall, D., and Dustdar, S. (2010). Programming

Evolvable Web Services. Proceedings of the 2nd International Workshop on

Principles of Engineering Service-Oriented Systems (PESOS '10) (pp. 43-49).

Cape Town: Association for Computing Machinery.

[11] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold,

W. G. (2001). An Overview of AspectJ. Proceedings of the 15th European

Conference on Object-Oriented Programming (pp. 327-353). London:

Springer-Verlag.

447

[12] Bosch, J. (2000). Design and Use of Software Architectures: Adopting

and Evolving a Product-Line Approach. New York: Addison-Wesley

Professional.

[13] Mannaert, H., Verelst, J., and Ven, K. (2012). Towards evolvable software

architectures based on systems theoretic stability. Software -- Practice &

Experience, 89-116.

[14] Medvidovic, N. (1996). A Classification and Comparison Framework for

Software Architectural Description Languages. Irvine: University of

California, Irvine.

[15] Martin, R. C. (2002). Agile Software Development, Principles, Patterns,

and Practices. Upper Saddle River: Prentice Hall.

[16] Beck, K., and Andres, C. (2004). Extreme Programming Explained:

Embrace Change (2nd Edition). Addison-Wesley Professional.

[17] Verelst, J. (2004). The influence of the level of abstraction on the

evolvability of conceptual models of information systems. Proceedings of

the 2004 International Symposium on Emprical Software Engineering (ISESE

'04) (pp. 17-26). Redondo Beach: IEEE Computer Society.

[18] Cook, S., Harrison, R., and Wernick, P. (2006). Information System

Evolvability, Feedback and Pattern Languages. University of Reading.

[19] Khurana , H., Bobba, R., Yardley, T., Agarwal, P., and Heine, E. (2010).

Design Principles for Power Grid Cyber-Infrastructure Authentication

Protocols. Proceedings of the 2010 43rd Hawaii International Conference

on System Sciences (HICSS '10) (pp. 1-10). Kauai: IEEE Computer Society.

[20] National Science Foundation. (2007, March). Cyberinfrastructure Vision

for 21st Century Discovery. Retrieved October 28, 2012, from

http://www.nsf.gov/pubs/2007/nsf0728/nsf0728_1.pdf

[21] Seidel, E. (2008, November 16). The Importance of Cyberinfrastructure

for Research and Education. Retrieved October 28, 2012, from

http://www.nsf.gov/sbe/secure/advcom1108/Presentations/04.Seidel_SBE_

Advisory.pdf

[22] Atkins, D., Droegemier, K., Feldman, S., Garcia-Molina, H., Klein, M.,

Messerschmitt, D., et al. (2003). Revolutionizing Science and Engineering

Through Cyberinfrastructure. Washington, DC: National Science

Foundation.

[23] National Science Foundation. (2007, March). Cyberinfrastructure Vision

for 21st Century Discovery. Retrieved June 3, 2011, from

http://www.nsf.gov/pubs/2007/nsf0728/nsf0728.pdf

448

[24] Demchak, B., Kerr, J., Raab, F., Patrick, K., and Krüger, I. H. (2012).

PALMS: A Modern Coevolution of Community and Computing Using Policy

Driven Development. Proceedings of the 2012 45th Hawaii International

Conference on System Sciences (HICSS '12) (pp. 2735-2744). Maui: IEEE

Computer Society.

[25] Parnas, D. L. (1972). On the Criteria to be Used in Decomposing Systems

into Modules. Communications of the ACM, 1053-1058.

[26] Dijkstra, E. W. (1968). Go To Statement Considered Harmful.

Communications of the ACM, 147-148.

[27] Kernighan, B. W., and Plauger, P. J. (1974). The Elements of Programming

Style. New York: McGraw Hill.

[28] McKnight, W. L. (2002, July). What is Information Assurance? Crosstalk:

The Journal of Defense Software Engineering, pp. 4-6.

[29] Nuseibeh, B., and Easterbrook, S. (2000). Requirements Engineering: A

Roadmap. Proceedings of the Conference on The Future of Software

Engineering (pp. 35-46). Limerick, Ireland: Association for Computing

Machinery.

[30] Lee, E. A., and Seshia, S. A. (2011). Introduction to Embedded Systems -

A Cyber-Physical Systems Approach. Berkeley: LeeSeshia.org.

[31] Wiegers, K. (2003). Software Requirements (2nd Edition). Redmond:

Microsoft Press.

[32] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,

J., et al. (1997). Aspect-Oriented Programming. Proceedings of the Eur

Conf on OOP. Helsinki, Finland: Springer-Verlag LNCS 1241.

[33] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley

Professional.

[34] Fowler, M. (2005, June 26). InversionOfControl. Retrieved October 5,

2012, from http://martinfowler.com/bliki/InversionOfControl.html

[35] Fowler, M. (2010). Domain-Specific Languages. Addison-Wesley.

[36] Bashar, N., and Easterbrook, S. (2000). Requirements engineering: a

roadmap. Proceedings of the Conference on the Future of Software

Engineering (pp. 35-46). Limerick: ACM Press.

[37] QFD Institute. (n.d.). Retrieved March 31, 2012, from www.qfdi.org

449

[38] Cohn, M. (2004). User Stories Applied: For Agile Software Development.

Redwood City: Addison Wesley Longman Publishing Co., Inc.

[39] Cockburn, A. (2000). Writing Effective Use Cases. Boston: Addison-Wesley

Longman Publishing Co., Inc.

[40] Fowler, M. (2003). UML Distilled: A Brief Guide to the Standard Object

Modeling Language (3rd Edition). Boston: Addison-Wesley Longman

Publishing Co., Inc.

[41] Withall, S. (2007). Software Requirement Patterns. Redmond: Microsoft

Press.

[42] Arkin, A. (2002). Business Process Modeling Language. Retrieved Sept 29,

2011, from http://www.bpmi.org/downloads/BPML1.0.zip

[43] Chung, L., and Leite, J. (2009). On Non-Functional Requirements in

Software Engineering. In A. T. Borgida, V. K. Chaudhri, P. Giorgini, and E. S.

Yu, Conceptual Modeling: Foundations and Applications (pp. 363-379).

Berlin Heidelberg: Springer-Verlag.

[44] Bennington, H. D. (1987). Production of large computer programs.

Proceedings of the 9th international conference on Software Engineering

(pp. 299-310). Monterey: IEEE Computer Society Press.

[45] Martin, R. C. (2002). Agile Software Development. Upper Saddle River:

Prentice Hall PTR.

[46] Boehm, B. (1986). A Spiral Model of Software Development and

Enhancement. SIGSOFT Software Engineering Notes, 14-24.

[47] Demchak, B., Farcas, C., Farcas, E., and Krueger, I. (2007). The Treasure

Map for Rich Services. Proceedings of the 2007 IEEE International

Conference on Information Reuse and Integration (IRI) (pp. 400-405). Las

Vegas, USA: IEEE.

[48] Young, R. R. (2004). The Requirements Engineering Handbook. Norwood,

MA: Artech House, Inc.

[49] Cysneiros, L. M., and Leite, J. (2001). Using UML to reflect non-functional

requirements. In Proceedings of the 2001 conference of the Centre for

Advanced Studies on Collaborative research (CASCON '01). Toronto: IBM

Press.

[50] Sindre, G., and Opdahl, A. (2005). Eliciting security requirements with

misuse cases. Requirements Engineering, 34-44.

[51] Mouratidis, H., Manson, G. A., and Giorgini, P. (2003). Analysing Security

Requirements of Information Systems Using Tropos. Procedings of the 5th

450

International Conference on Enterprise Information Systems, (pp. 623-626).

Angers, France.

[52] Wang, L., Wong, E., and Xu, D. (2007). A Threat Model Driven Approach

for Security Testing. Proceedings of the 3rd International Workshop on

Software Engineering for Secure Systems (SESS '07). Minneapolis: IEEE

Computer Society.

[53] Krüger, I. H., Meissinger, M., and Menarini, M. (2007). Runtime verification

of interactions: from MSCs to aspects. Proceedings of the 7th international

conference on Runtime verification (pp. 63-74). Vancouver: Springer-

Verlag.

[54] Alam, M., Breu, R., and Hafner, M. (2007). Model-Driven Security

Engineering for Trust Management in SECTET. Journal of Software, 47-59.

[55] Juerjens, J. (2003). Secure Systems Development with UML. Berlin

Heidelberg: Springer-Verlag.

[56] Burt, C. C., Bryant, B. R., Raje, R. R., Olsen, A. M., and Auguston, M.

(2003). Model Driven Security: Unification of Authorization Models for Fine-

Grain Access Control. Proceedings of the 7th IEEE International Enterprise

Distributed Object Computing Conference (EDOC 2003) (pp. 159-173).

Brisbane: IEEE Computer Society.

[57] Cysneiros, L. M., and Leite, J. (2004). Nonfunctional Requirements: From

Elicitation to Conceptual Models. IEEE Transactions on Software

Engineering, 328-350.

[58] Rashid, A., and Chitchyan, R. (2008). Aspect-oriented requirements

engineering: a roadmap. Proceedings of the 13th international workshop

on Early Aspects (pp. 35-41). Leipzig: Association for Computing

Machinery.

[59] Oldevik, J., and Haugen, Ø. (2007). Architectural Aspects in UML. In

Model Driven Engineering Languages and Systems (LNCS) (Vol. 4735/2007,

pp. 301-315). Berlin Heidelberg: Springer-Verlag.

[60] Zave, P. (2010). Modularity in Distributed Feature Composition. In B.

Nuseibeh, and P. Zave, Software Requirements and Design: The Work of

Michael Jackson (p. 267). Chatham, New Jersey: Good Friends Publishing

Company.

[61] Kim, C., Kästner, C., and Batory, D. (2008). On the Modularity of Feature

Interactions. Proceedings of the 7th international conference on

Generative programming and component engineering (pp. 23-34).

Nashville: Association for Computing Machinery.

451

[62] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S.

(1990). Feature-Oriented Domain Analysis (FODA). CMU/SEI-90-TR-21.

Pittsburgh: Carnegie-Mellon University Software Engineering Institute.

[63] Apel, S., Lengauer, C., Möller, B., and Kästner, C. (2008). An Algebra for

Features and Feature Composition. Proceedings of the 12th international

conference on Algebraic Methodology and Software Technology (pp. 36-

50). Urbana: Springer-Verlag.

[64] Stoiber, R., Fricker, S., Jehle, M., and Glinz, M. (2010). Feature Unweaving:

Refactoring Software Requirements Specifications into Software Product

Lines. Proceedings of the 2010 18th IEEE International Requirements

Engineering Conference (RE '10) (pp. 403-404). Sydney: IEEE Computer

Society.

[65] IBM Corporation. (n.d.). Morphogenic Software. Retrieved May 19, 2012,

from http://www.research.ibm.com/morphogenic/

[66] Robinson, W. N., Pawlowski, S. D., and Volkov, V. (2003). Requirements

Interaction Management. ACM Computing Survey, 132-190.

[67] Van Lamsweerde, A. (2001). Goal-Oriented Requirements Engineering: A

Guided Tour. Proceedings of the 5th IEEE International Symposium on

Requirements Engineering (pp. 249-263). Toronto: IEEE Computer Society.

[68] Apel, S., and Hutchins, D. (2010). A calculus for uniform feature

composition. ACM Transactions on Programming Languages and Systems

(TOPLAS), 19:1-19:33.

[69] Cook, W. R., Patwardhan, S., and Misra, J. (2006). Workflow Patterns in

Orc. Coordination'06, volume 4038 of LNCS (pp. 82-96). Berlin Heidelberg:

Springer-Verlag.

[70] van der Aalst, W., and ter Hofstede, A. (2010). Workflow Patterns.

Retrieved Sept 29, 2011, from http://workflowpatterns.com/

[71] Jurack, S., Lambers, L., Mehner, K., and Taentzer, G. (2008). Sufficient

Criteria for Consistent Behavior Modeling with Refined Activity Diagrams.

Proceedings of the 11th international conference on Model Driven

Engineering Languages and Systems (MODELS '08) (pp. 341-355). Toulouse:

Springer-Verlag.

[72] Leymann, F., and Roller, D. (1999). Production Workflow: Concepts and

Techniques. Prentice Hall.

[73] Eder, J., Gruber, W., and Pichler, H. (2005). Transforming Workflow

Graphs. First International Conference on Interoperability of Enterprise

Software and Applications (pp. 23-25). Genf, Switzerland: Springer-Verlag.

452

[74] Pankratius, V., and Stucky, W. (2005). A formal foundation for workflow

composition, workflow view definition, and workflow normalization based

on petri nets. Proceedings of the 2nd Asia-Pacific conference on

Conceptual modelling - Volume 43 (pp. 79-88). Newcastle, New South

Wales, Australia: Australian Computer Society, Inc.

[75] Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., and Mock, S.

(2004). Kepler: an extensible system for design and execution of scientific

workflows. 16th International Conference on Scientific and Statistical

Database Management, (pp. 423-424). Santorini.

[76] Object Management Group. (2012). BPMN Information Home. Retrieved

September 21, 2012, from http://www.bpmn.org/

[77] Carlsen, S. (1997). Conceptual Modeling and Composition of Flexible

Workflow Models. Information Systems Group, Department of Computer

and Information Science. Trondheim: Norwegian University of Science and

Technology.

[78] Petri, C. A., and Reisig, W. (2008). Petri net. Scholarpedia, 6477.

[79] Sadiq, W., and Orlowska, M. E. (1999). Applying Graph Reduction

Techniques for Identifying Structural Conflicts in Process Models.

Proceedings of the 11th International Conference on Advanced

Information Systems Engineering (pp. 195-209). Heidelberg: Springer-

Verlag.

[80] Fernández, M. (2009). Models of Computation. London: Springer-Verlag.

[81] Baeten, J., Basten, T., and Reniers, M. (2010). Process Algebra:

Equational Theories of Communicating Processes. Cambridge, England:

Cambridge University Press.

[82] Baeten, J. (2005). A brief history of process algebra. Theoretical Compter

Science - Process algebra, 131-146.

[83] British Computer Society Formal Aspects of Computing Science

Specialist Group. (2012, January 12). Formal Methods Wiki. Retrieved

March 8, 2012, from http://formalmethods.wikia.com/wiki/Formal_methods

[84] Michael, S. (2006). Introduction to the Theory of Computation. Boston:

Thomson Course Technology.

[85] Holzmann, G. J. (1991). Design And Validation Of Computer Protocols.

Englewood Cliffs, New Jersey: Prentice-Hall.

[86] Composition of State Machines. (n.d.). Retrieved May 25, 2012, from

http://cs.ioc.ee/~margo/aat/03_Composition_of_state_machines.pdf

453

[87] Johnsonbaugh, R. (n.d.). 8.5 Petri Nets. Retrieved March 5, 2012, from

condor.depaul.edu/rjohnson/dm7th/petri.pdf

[88] Fehling, R. (1993). A Concept of Hierarchical Petri Nets with Building

Blocks. 12th International Conference on Applications and Theory of Petri

Nets: Advances in Petri Nets 1993 (pp. 148-168). London: Springer-Verlag.

[89] Hamadi, R., and Benatallah, B. (2003). A Petri net-based model for web

service composition. Proceedings of the 14th Australasian database

conference - Volume 17 (pp. 191-200). Adelaide, Australia: Australian

Computer Society, Inc.

[90] Jensen, K. (2009). Coloured Petri Nets. Berlin Heidelberg: Springer-Verlag.

[91] Milner, R. (1999). Communicating and Mobile Systems: The π-calculus.

Cambridge, England: Cambridge University Press.

[92] Nestmann, U., and Pierce, B. C. (1996). Decoding Choice Encodings.

Proceedings of the 7th International Conference on Concurrency Theory

(pp. 179-194). London: Springer-Verlag.

[93] Pierce, B. C., and Turner, D. N. (1997). Pict: A programming language

based on the pi-calculus. In Proof, Language and Interaction: Essays in

Honour of Robin Milner (pp. 455-494). MIT Press.

[94] Lumpe, M. (1999, January). A π-Calculus Based Approach for Software

Composition. PhD Thesis. Bern, Switzerland: Institute of Computer Science

and Applied Mathmatics, The University of Bern.

[95] Abelson, H., Sussman, G. J., and Sussman, J. (1996). Structure and

Interpretation of Computer Programs. Cambridge, MA: The MIT Press.

[96] Niehren, J., Schwinghammer, J., and Smolka, G. (2006). A Concurrent

Lambda Calculus with Futures. Theoretical Computer Science, 338-356.

[97] Wadler, P. (1992). The Essence of Functional Programming. Nineteenth

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (pp. 1-14). Albuquerque: Prentice Hall.

[98] Jones, S. L., and Wadler, P. (1993). Imperative functional programming.

Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (POPL '93) (pp. 71-84). Charleston: ACM.

[99] Marick, B. (2011, March 21). Monad Tutorial, Part 4 (State Monad, Parts

of a Monad). Retrieved March 24, 2012, from http://vimeo.com/21307543

[100] Parnas, D. L. (1972). On the criteria to be used in decomposing systems

into modules. Communications of the ACM, 1053-1058.

454

[101] Pierce, B. C. (2002). Types and Programming Languages. Cambridge:

MIT Press.

[102] Booch, G. (1994). Object-oriented analysis and design with applications

(2nd ed). Redwood City: Benjamin-Cummings Publishing Co., Inc.

[103] Evans, E. (2004). Domain-Driven Design. Addison-Wesley Professional.

[104] Sullivan, K., Griswold, W. G., Song, Y., Cai, Y., Shonle, M., Tewari, N., et al.

(2005). Information Hiding Interfaces for Aspect-oriented Design.

Proceedings of the 10th European Software Engineering Conference

(ESEC/FSE '13) (pp. 166-175). Lisbon: Association for Computing Machinery.

[105] Clemente, P. J., Hernandez, J., and Sanchez, F. (2007). Driving

Component Composition from Early Stages Using Aspect-Oriented

Techniques. 40th Annual Hawaii International Conference on System

Sciences (HICSS'07) (p. 257a). Hawaii: IEEE Computer Society.

[106] Xerox Corporation. (n.d.). Load-Time Weaving. Retrieved May 31, 2012,

from http://www.eclipse.org/aspectj/doc/released/devguide/ltw.html

[107] Lakhani, J., Akkawi, F., Bader, A., and Elrad, T. (2001). Dynamic Weaving

for Building Reconfigurable Software Systems. Proceedings of OOPSLA 2001

Workshop on Advanced Separation of Concerns in Object-Oriented

Systems (pp. 152-184). Tampa Bay: Springer-Verlag.

[108] Fuentes, L., and Sánchez, P. (2009). Dynamic Weaving of Aspect-

Oriented Executable UML Models. In S. Katz, H. Ossher, R. France, and J.-M.

Jézéquel, Transactions on Aspect-Oriented Software Development VI (pp.

1-38). Berlin/Heidelberg: Springer-Verlag.

[109] Greenwood, P., and Blair, L. (2006). A Framework for Policy Driven Auto-

adaptive Systems Using Dynamic Framed Aspects. In A. Rashid, and M.

Aksit, Transactions on Aspect-Oriented Software Development II (pp. 30-

65). Berlin/Heidelberg: Springer-Verlag.

[110] Ossher, H., and Tarr, P. (2000). Multi-Dimensional Separation of Concerns

and The Hyperspace Approach. Retrieved May 31, 2012, from

http://researchweb.watson.ibm.com/hyperspace/Papers/sac2000.pdf

[111] Rashid, A. (2008). Aspect-Oriented Requirements Engineering: An

Introduction. Proceedings of the 2008 16th IEEE International Requirements

Engineering Conference (RE '08) (pp. 306-309). Barcelona: IEEE Computer

Society.

[112] Navasa, A., Pérez, M., Murillo, J., and Hernández, J. (2002). Aspect

Oriented Software Architecture: a Structural Perspective. Proceedings of

the 1st International Conference on Aspect-Oriented Software

455

Development (Workshop on Early Aspects). Enschede: Association for

Computing Machinery.

[113] Hoare, C. A. (1978). Communicating sequential processes.

Communications of the ACM (pp. 666-677). New York: Association for

Computing Machinery.

[114] Oracle Corporation. (2001, August 8). Java Authentication and

Authorization Service (JAAS) Reference Guid. Retrieved June 6, 2012, from

http://docs.oracle.com/javase/1.4.2/docs/guide/security/jaas/JAASRefGu

ide.html

[115] Sandhu, R. S., and Samarati, P. (1994). Access Control: Principles and

Practice.

[116] Halloway, S. (2009). In S. Holloway, Programming Clojure. Pragmatic

Bookshelf.

[117] Krüger, I. H. (2000). Distributed System Design with Message Sequence

Charts. Dissertation. München: Technische Universität München.

[118] Araújo, J., and Moreira, A. (2005). Integrating UML Activity Diagrams with

Temporal Logic Expressions. Proceedings of the 10th International

Workshop on Exploring Modeling Methods for Systems Analysis and Design

(EMMSAD'05) (pp. 91-98). Porto: CEUR-WS.org.

[119] Whittle, J., Moreira, A., Araújo, J., Jayaraman, P., Elkhodary, A., and

Rabbi, R. (2010). An Expressive Aspect Composition Language for UML

State Diagrams. Proceedings of the ACM/IEEE 10th International

Conference on Model Driven Engineering Languages and Systems

(MoDELS '10) (pp. 514-528). Nashville: Springer-Verlag Berlin Heidelberg.

[120] Chappell, D. A. (2004). Enterprise Service Bus. Beijing: O'Reilly.

[121] Chadwick, D., Zhao, G., Otenko, S., Laborde, R., and Nguyen, T. (2008).

PERMIS: a modular authorization infrastructure. Concurrency and

Computation: Practice & Experience, 1341-1357.

[122] Juric, M. B. (2006, July 10). BPEL: Service composition for SOA. Retrieved

September 21, 2012, from http://www.javaworld.com/javaworld/jw-07-

2006/jw-0710-bpel.html

[123] Oracle Corporation. (n.d.). Oracle BPEL Process Manager Developer's

Guide. Retrieved June 8, 2012, from

http://docs.oracle.com/cd/E11036_01/integrate.1013/b28981/decision.ht

m#CHDHDDCF

456

[124] Gheorghe, G., Neuhaus, S., and Crispo, B. (2010). xESB: An Enterprise

Service Bus for Access and Usage Control. Proceedings of the 4th IFIP

International Conference on Trust Management (IFIPTM2010). Morioka,

Japan.

[125] Ponder2 Wiki. (2012, January 8). Retrieved April 3, 2012, from

www.ponder2.net

[126] The Apache Software Foundation. (n.d.). Retrieved Sept 29, 2011, from

http://struts.apache.org/

[127] Fielding, R. (2000). Architectural Styles and the Design of Network-based

Software Architectures. Irvine, California: University of California.

[128] Garrett, J. J. (2005, February 18). Ajax: A New Approach to Web

Applications. Retrieved September 13, 2012, from

http://www.adaptivepath.com/ideas/ajax-new-approach-web-

applications

[129] World Wide Web Consortium (W3C). (2010, Aug 3). XMLHttpRequest.

Retrieved Sept 29, 2011, from http://www.w3.org/TR/XMLHttpRequest/

[130] Damianou, N., Dulay, N., Lupu, E., and Sloman, M. (2001). The Ponder

Policy Specification Language. Proceedings of the Intl Workshop on

Policies for Distributed Systems and Networks (Policy '01). Bristol.

[131] Bandara, A. K., Lupu, E. C., and Russo, A. (2003). Using Event Calculus to

Formalise Policy Specification and Analysis. Proceedings of the 4th IEEE

International Workshop on Policies for Distributed Systems and Networks

(POLICY '03) (pp. 26-39). Lake Como: IEEE Computer Society.

[132] Bertino, E., Bonatti, P. A., and Ferrari, E. (2001). TRBAC: A temporal role-

based access control model. ACM Transactions on Information and System

Security (TISSEC), 191-233.

[133] Zhao, Y., and Parisi-Presicce, F. (2005). Policy Analysis and Verification by

Graph Transformation Tools. Electronic Notes in Theoretical Computer

Science (ENTCS) (pp. 101-112). Amsterdam: Elsevier Science Publishers.

[134] Fowler, M. (2003). Patterns of Enterprise Application Architecture. Boston:

Addison-Wesley.

[135] Hohpe, G., and Woolf, B. (2004). Enterprise Integration Patterns. Boston:

Addison-Wesley.

[136] Manolescu, D. A. (2004). Patterns for Orchestration Environments.

[137] Rotem-Gal-Oz, A. (2012 (est)). SOA Patterns. Shelter Island, NY: Manning

Publications Co.

457

[138] Barros, A., Dumas, M., and ter Hofstede, A. (2005). Service Interaction

Patterns: Towards a Reference Framework for Service-based Business

Process Interconnection . Queensland University of Technology: Technical

Report FIT-TR-2005-02.

[139] Martin, R. C. (1997, March 7). The Dependency Inversion Principle.

Retrieved October 6, 2012, from

http://www.objectmentor.com/resources/articles/dip.pdf

[140] Chappell, D. (2007, July). Introducing SCA. Retrieved September 12,

2012, from http://www.davidchappell.com/articles/Introducing_SCA.pdf

[141] SpringSource. (n.d.). springsource community. Retrieved September 12,

2012, from http://www.springsource.org/

[142] World Wide Web Consortium (W3C). (2006, April 25). Web Services Policy

1.2 - Framework (WS-Policy). Retrieved September 12, 2012, from

http://www.w3.org/Submission/WS-Policy/

[143] Object Management Group. (2011, January). Business Process Model

and Notation. Retrieved March 1, 2012, from

http://www.omg.org/spec/BPMN/2.0/PDF/

[144] White, S. A. (2004, March). Process Modeling Notations and Workflow

Patterns. Retrieved September 30, 2012, from BPTrends:

http://www.omg.org/bp-corner/bp-files/Process_Modeling_Notations.pdf

[145] Charfi, A., Müller, H., and Mezini, M. (2010). Aspect-Oriented Business

Process Modeling with AO4BPMN. 6th European Conference on Modelling

Foundations and Applications (ECMFA 2010) (pp. 48-61). Paris: Springer.

[146] Charfi, A., and Mezini, M. (2007). AO4BPEL: An Aspect-oriented Extension

to BPEL. World Wide Web, 309-344.

[147] Barros, J. P., and Gomes, L. (2003). Towards the Support for Crosscutting

Concerns in Activity Diagrams: a Graphical Approach. Proceedings of the

4th AOSD Modeling with UML Workshop. San Francisco.

[148] Singh, M. P., Chopra, A. K., and Desai, N. (2009, November).

Commitment-Based Service-Oriented Architecture. Computer, pp. 72-79.

[149] Rebêlo, H., Lima, R., and Cornélio, M. L. (2012). Implementing JML

Contracts with AspectJ: Improving instrumentation and checking of JML

contracts. Saarbruecken: LAP LAMBERT Academic Publishing.

[150] Ecma International. (2011, June). ECMAScript Langage Specification.

Retrieved October 8, 2012, from http://www.ecma-

international.org/publications/files/ECMA-ST/Ecma-262.pdf

458

[151] Organization for the Advancement of Structured Information Standards

(OASIS). (2004, October 19). UDDI Version 3.0.2. Retrieved October 8, 2012,

from http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf

[152] The Eclipse Foundation. (n.d.). AJDT: AspectJ Development Tools (The

Visualiser). Retrieved 16 2012, June, from

http://www.eclipse.org/ajdt/visualiser/

[153] Zhang, F., Qin, Z., and Zhou, S. (2004). Policy-Tree Based Proactive

Defense Model for Network Security. In Grid and Cooperative Computing -

GCC 2004 Workshops (pp. 437-449). Berlin/Heidelberg: Springer.

[154] Arrott, M., Demchak, B., Ermagan, V., Farcas, C., Farcas, E., Krüger, I., et

al. (2007). Rich Services: The Integration Piece of the SOA Puzzle.

Proceedings of the IEEE International Conference on Web Services (ICWS)

(pp. 176-183). Washington, DC: IEEE Computer Society.

[155] Ermagan, V., Krueger, I., and Menarini, M. (2007). Model-based failure

management for distributed reactive systems. Proceedings of the 13th

Monterey conference on Composition of embedded systems: scientific

and industrial issues (pp. 53-74). Paris, France: Springer-Verlag.

[156] Demchak, B., Ermagan, V., Farcas, E., Huang, T.-J., Krüger, I. H., and

Menarini, M. (2008). A Rich Services Approach to CoCoME. In A. Rausch, R.

Reussner, R. Mirandola, and F. Plášil, The Common Component Modeling

Example (pp. 85-115). Berlin, Heidelberg: Springer-Verlag.

[157] Broy, M., and Stølen, K. (2001). Specification and Development of

Interactive Systems. New York: Springer-Verlag.

[158] Krüger, I. H. (2012). Services, SOAs and Integration at Scale. La Jolla:

University of California, San Diego.

[159] Meyer, B. (October 1992). Applying 'Design by Contract'. Computer, 40-

51.

[160] Pugh, K. (2006). Interface Oriented Design: With Patterns. Pragmatic

Bookshelf.

[161] Gama, P., and Ferreira, P. (2005). Obligation Policies: An Enforcement

Platform. Proceedings of the Sixth IEEE International Workshop on Policies

for Distributed Systems and Networks (POLICY '05) (pp. 203-212). Stockholm:

IEEE Computer Society.

[162] Alfaro, L., and Henzinger, T. (2001). Interface automata. 8th Euro

Software Eng Conf, (pp. 109-120). Vienna, Austria.

459

[163] Northrup, L. (2006). Ultra-Large-Scale Systems: The Software Challenge of

the Future. Pittsburgh: Carnegie Mellon University.

[164] Software Engineering Institute (SEI). (2012). Ultra-Large-Scale Systems.

Retrieved October 27, 2012, from http://www.sei.cmu.edu/uls/

[165] Sullivan, K. (2011, August 22). A Cyber-Social Systems Approach to the

Engineering of Ultra-Large-Scale National Health Information Systems.

Washington, DC, USA: Institute of Medicine of the National Academies.

[166] Foster, I., Kesselman, C., and Tuecke, S. (2001). The Anatomy of the Grid:

Enabling Scalable Virtual Organizations. International Journal of High

Performance Computing Applications, 200-222.

[167] PALMS. (n.d.). Retrieved June 3, 2011, from http://ucsd-palms-

project.wikispaces.com/

[168] National Institutes of Health. (n.d.). Genes, Environment and Health

Initiative (GEI). Retrieved June 3, 2011, from http://www.gei.nih.gov

[169] (n.d.). Retrieved September 23, 2012, from GPS-HRN: http://www.gps-

hrn.org/

[170] National Cancer Institute (caBIG). (n.d.). Retrieved September 23, 2012,

from caBIG: https://cabig.nci.nih.gov/

[171] Kleppe, A., Warmer, J., and Bast, W. (2003). MDA Explained: The Model

Driven Architecture(TM): Practice and Promise. Boston: Addison-Wesley

Longman Publishing Co, Inc.

[172] Sparx Systems. (n.d.). Retrieved June 14, 2011, from

http://www.sparxsystems.com/

[173] Google Inc. (n.d.). Google Web Toolkit. Retrieved June 14, 2011, from

http://code.google.com/webtoolkit/

[174] Mulesoft Inc. (n.d.). Retrieved June 14, 2011, from

http://www.mulesoft.org/

[175] The Apache Software Foundation. (n.d.). Retrieved June 14, 2011, from

http://cxf.apache.org/

[176] National Cancer Institute (caBIG). (n.d.). Dorian. Retrieved June 14,

2011, from https://wiki.nci.nih.gov/display/caGridKC/Dorian

[177] The Internet Society. (1999, January). Retrieved June 14, 2011, from

http://www.ietf.org/rfc/rfc2459.txt

460

[178] Internet2. (n.d.). Retrieved June 14, 2011, from

http://www.internet2.edu/grouper/

[179] Richards, M., Monson-Haefel, R., and Chappell, D. A. (2009). Java

Message System, Second Edition. Sebastopol: O'Reilly Media, Inc.

[180] Red Hat, Inc. (2004). Chapter 15: Criteria Queries. Retrieved July 23,

2012, from Hibernate Community Documentation:

http://docs.jboss.org/hibernate/core/3.3/reference/en/html/querycriteria.

html

[181] org.hibernate Interface Criteria. (n.d.). Retrieved July 23, 2012, from

http://www.dil.univ-mrs.fr/~massat/docs/hibernate-

3.1/api/org/hibernate/Criteria.html

[182] Zhang, X. (2011, February 8). PALMS Criteria API Tutorial. Retrieved July

23, 2012, from

https://sosa.ucsd.edu/confluence/display/PALMSGD/PALMS+Criteria+API+

Tutorial

[183] World Wide Web Consortium (W3C). (2011, Jan 3). XQuery 1.0: An XML

Query Language (Second Edition). Retrieved Sept 29, 2011, from

http://www.w3.org/TR/xquery/

[184] Kay, M. (n.d.). Saxonica: XSLT and XQuery Processing. Retrieved Sept 29,

2011, from http://www.saxonica.com

[185] Codehaus. (n.d.). XStream. Retrieved Sept 29, 2011, from

http://xstream.codehaus.org/

[186] Ferraiolo, D. F., Barkley, J. F., and Kuhn, D. R. (1999). A Role-based

Access Control Model and Reference Implementation within a Corporate

Intranet. ACM Transactions on Information Systems Security, 34-64.

[187] SAP. (n.d.). Retrieved August 21, 2012, from

http://www.crystalreports.com/

[188] Eclipse Foundation. (n.d.). Retrieved August 23, 2012, from

www.eclipse.org

[189] The Apache Software Foundation. (n.d.). Retrieved August 23, 2012,

from logging.apache.org

[190] SyncRO Soft SRL. (n.d.). <oXygen/> xml editor. Retrieved August 23, 2012,

from www.oxygenxml.com

[191] Ocean Observatories Initiative. (2011). Retrieved Sept 29, 2011, from

http://ci.oceanobservatories.org/

461

[192] University of California. (n.d.). Retrieved August 26, 2012, from

https://sosa.ucsd.edu/confluence/display/CitiSensePublic/CitiSense

[193] Patrick, K., Wolszon, L., Basen-Engquist, K., Demark-Wahnefried, W.,

Prokhorov, A., Barrera, S., et al. (2011). CYberinfrastructure for

COmparative effectiveness REsearch (CYCORE): improving data from

cancer clinical trials. Journal of Translational Behavioral Medicine: Practice,

Policy, Research, 83-88.

[194] VMware. (2010). Timekeeping in VMware Virtual Machines. Retrieved

August 27, 2012, from http://www.vmware.com/files/pdf/Timekeeping-In-

VirtualMachines.pdf

[195] Ueno, K., and Tatsubori, M. (2006). Early Capacity Testing of an Enterprise

Service Bus. Proceedings of the IEEE International Conference on Web

Services (ICWS '06) (pp. 709-716). Chicago: IEEE Computer Society.

[196] World Wide Web Consortium. (2004, Feburary 11). Web Services

Architecture. Retrieved September 27, 2012, from

http://www.w3.org/TR/ws-arch/

[197] Siddiqi, S., and Atlee, J. (2000). A Hybrid Model for Specifying Features

and Detecting Interactions. Computer Networks, 471-485.

[198] Robillard, M. P., and Murphy, G. C. (2007). Representing concerns in

source code. ACM Transactions on Software Engineering and

Methodology (TOSEM), 16(1).

[199] aopmetrics Project home. (n.d.). Retrieved September 5, 2012, from

http://aopmetrics.tigris.org/

[200] Zhang, J., Cottenier, T., van den Berg, A., and Gray, J. (August, 2007).

Aspect Composition in the Motorola Aspect-Oriented Modeling Weaver.

Journal of Object Technology, 89-108.

[201] Reddy, Y. R., Ghosh, S., France, R. B., Straw, G., Bieman, J. M.,

McEachen, N., et al. (2006). Directives for Composing Aspect-Oriented

Design Class Models. In A. Rashid, and M. Aksit, Transactions on Aspect-

Oriented Software Development I (pp. 75-105). Berlin/Heidelberg: Springer-

Verlag.

[202] Alexandrescu, A. (2001). Modern C++ Design : Generic Programming

and Design Patterns Applied. Boston: Addison-Wesley Provessional.

[203] Rosenberg, F., and Dustdar, S. (2005). Business Rules Integration in BPEL -

A Service-Oriented Approach. Seventh IEEE International Conference on E-

Commerce Technology (pp. 476-479). Munich: IEEE.

462

[204] Shebab, M., Bertino, E., and Ghafoor, A. (2006). Workflow authorisation in

mediator-free environments. International Journal of Security and

Networks, 2-12.

[205] World Wide Web Consortium (W3C). (2004, December 17). Web Services

Choreography Description Language Version 1.0. Retrieved September 12,

2012, from http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/

[206] Chadwick, D., Xu, W., Otenko, S., Laborde, R., and Nassar, B. (2007).

Multi-Session Separation of Duties (MSoD) for RBAC. 1st International

Workshop on Security Technologies for Next Generation Collaborative

Business Applications (SECOBAP'07). Istanbul, Turkey.

[207] Pretschner, A., Hilty, M., Basin, D., Schaefer, C., and Walter, T. (2008).

Mechanisms for Usage Control. Proceedings of the 2008 ACM Symposium

on Information, Computer and Communications Security (ASIACCS '08)

(pp. 240-244). Tokyo: Association for Computing Machinery.

[208] Pretschner, A., Schültz, F., Schaefer, C., and Walter, T. (2009). Policy

Evolution in Distributed Usage Control. Electronic Notes in Theoretical

Computer Science (ENTCS), 109-123.

[209] Neisse, R., Pretschner, A., and Giacomo, V. (2011). A Trustworthy Usage

Control Enforcement Framework. Proceedings of the 6th Intl Conf on

Availability, Reliability, and Security (ARES '11). Vienna.

[210] Dulay, N., Lupu, E., Sloman, M., and Damianou, N. (2001). A Policy

Deployment Model for the Ponder Language. Procedings of the 7th

IEEE/IFIP International Symposium of Integrated Network Management (IM

'01) (pp. 14-18). Seattle: IEEE Press.

[211] Ribeiro, C., Zúquete, A., Ferreira, P., and Guedes, P. (1999). SPL: An

access control language for security policies with complex constraints.

Proceedings of the Network and Distributed System Security Symposium,

(pp. 89-107).

[212] World Wide Web Consortium (W3C). (n.d.). Enterprise Privacy

Authorization Language (EPAL 1.2). Retrieved September 10, 2012, from

http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/

[213] World Wide Web Consortium (W3C). (n.d.). PolicyLangReview. Retrieved

September 10, 2012, from

http://www.w3.org/Policy/pling/wiki/PolicyLangReview

[214] Nadler, R. (2009, March 26). Software Verification vs Validation.

Retrieved September 11, 2012, from Bob on Medical Device Software:

http://rdn-consulting.com/blog/2009/03/26/software-verification-vs-

validation/

463

[215] Song, E., Franca, R., Kim, H., and Ray, I. (2007). Checking Policy

Enforcement in an Access Control Aspect Model. Proceedings of the

International Conference on Convergence Technology and Information

Convergence (CTIC) '07. Anaheim: Association for Computing Machinery.

[216] Goldman, M., and Katz, S. (2007). MAVEN: Modular Aspect Verification.

Proceedings of the 13th international conference on Tools and algorithms

for the construction and analysis of systems (TACAS '07) (pp. 308-322).

Braga: Springer-Verlag.

[217] Salomie, I., Cioara, T., Anghel, I., Dinsoreanu, M., and Salomie, T. (2007).

A Layered Workflow Model Enhanced with Process Algebra Verification for

Industrial Processes. IEEE International Conference on Intelligent Computer

Communication and Processing (pp. 185-191). Cluj-Napoca, Romania:

IEEE.

[218] Terpstra, F., and Adriaans, P. (2007). New directions in Workflow

formalisms. UK e-Science All Hands Meeting. Nottingham.

[219] Gross, A., and Doerr, J. (2009). EPC vs. UML Activity Diagram - Two

Experiments Examining their Usefulness for Requirements Engineering. 17th

IEEE International Requirements Engineering Conference (RE '09) (pp. 47-

56). Atlanta: IEEE Computer Society.

[220] Demchak, B., and Krüger, I. (2012). A Model-Driven Engineering

Approach to Requirement Elicitation for Policy-Reactive

Cyberinfrastructures. La Jolla: University of California, San Diego, Computer

Science Department.

[221] Viega, J. (2005). Building security requirements with CLASP. Proceedings

of the 2005 Workshop on Software Engineering for Secure Systems Building

Trustworthy Applications (pp. 1-7). St Louis: Association for Computing

Machinery.

[222] Mavin, A., Wilkinson, P., Harwood, A., and Novak, M. (2009). Easy

Approach to Requirements Syntax (EARS). Proceedings of the 2009 17th

IEEE International Requirements Engineering Conference (RE '09) (pp. 317-

322). Atlanta: IEEE Computer Society.

[223] Lodderstedt, T., Basin, D. A., and Doser, J. (2002). SecureUML: A UML-

Based Modeling Language for Model-Driven Security. Proceedings of the

5th International Conference on The Unified Modeling Language (pp. 426-

441). Dresden: Springer-Verlag.

[224] Kasal, K., Heurix, J., and Neubauer, T. (2011). Model-Driven Development

Meets Security: An Evaluation of Current Approaches. 44th Hawaii

International Conference on System Sciences (CD-ROM). Poipu, Hawaii,

USA: The IEEE Computer Society Press.

464

[225] Bhattacharjee, A., and Shyamasundar, R. K. (2009). Activity Diagrams: A

Formal Framework to Model Business Processes and Code Generation.

Journal of Object Technology, 189-220.

[226] Wong, P. Y., and Gibbons, J. (2008). A Process Semantics for BPMN.

Proceedings of the 10th International Conference on Formal Methods and

Software Engineering (pp. 355-374). Kitakyushu-City: Springer-Verlag.

[227] Prater, J., Mueller, R., and Beauregard, B. (2012). An Ontological

Approach to Oracle BPM. Proceedings of the 2011 joint international

conference on The Semantic Web (JIST '11) (pp. 402-410). Hangzhou:

Springer-Verlag.

[228] Parreiras, F. S. (2012). Semantic Web and Model-Driven Engineering.

Piscataway: Wiley-IEEE Press.

[229] Chiba, S., and Leavens, G. T. (n.d.). LNCS Transactions on Aspect-

Oriented Software Development. Retrieved October 12, 2012, from

http://www.springer.com/computer/lncs?SGWID=0-164-2-109318-0

[230] Mussbacher, G., Amyot, D., and Araújo, J. (2010). Requirements

Modeling with the Aspect-oriented User Requirements Notation (AoURN): A

Case Study. In S. Katz, and M. Mezini, Transactions on aspect-oriented

software development VII (pp. 23-68). Berlin/Heidelberg: Springer-Verlag.

[231] International Telecommunication Union. (2008, November). Retrieved

October 12, 2012, from User requirements notation (URN) - Language

definition: http://www.itu.int/rec/T-REC-Z.151/en

[232] Niu, N., and Easterbrook, S. (2007). Analysis of Early Aspects in

Requirements Goal Models: A Concept-Driven Approach. In A. Rashid,

and M. Aksit, Transactions on Aspect-Oriented Software Development IV

(pp. 40-72). Berlin/Heidelberg: Springer-Verlag.

[233] Sampaio, A., Rashid, A., Chitchyan, R., and Rayson, P. (2007). EA-Miner:

Towards Automation in Aspect-Oriented Requirements Engineering. In A.

Rashid, and M. Aksit, Transactions on Aspect-Oriented Software III (pp. 4-

39). Berlin/Heidelberg: Springer-Verlag.

[234] Nouh, M., Ziarati, R., Mouheb, D., Alhadidi, D., Debbabi, M., Wang, L., et

al. (2010). Aspect Weaver: a Model Transformation Approach for UML

Models. Proceedings of the 2010 Conference of the Center for Advanced

Studies on Collaborative Research (pp. 139-153). Toronto: IBM Corporation.

[235] Fuentes, L., and Sánchez, P. (August, 2007). Designing and Weaving

Aspect-Oriented Executable UML Models. Journal of Object Technology,

109-136.

465

[236] Groher, I., and Voelter, M. (2009). Aspect-Oriented Model-Driven

Software Product Line Engineering. In S. Katz, H. Ossher, R. France, and J.-

M. Jézéquel, Transactions on Aspect-Oriented Software Development VI

(pp. 111-152). Berlin/Heidelberg: Springer-Verlag.

[237] Chitchyan, R., Pinto, M., Rashid, A., and Fuentes, L. (2007). COMPASS:

Composition-Centric Mapping of Aspectual Requirements to Architecture.

In A. Rashid, and M. Aksit, Transactions on Aspect-Oriented Software

Development IV (pp. 3-53). Berlin/Heidelberg: Springer-Verlag.

[238] Krüger, I., Meisinger, M., and Menarini, M. (2007). Runtime Verification of

Interactions: From MSCs to Aspects. Proceedings of the 7th International

Converence on Runtime Verification (RV '07) (pp. 63-74). Vancover:

Springer-Verlag.

[239] Liu, W. W. (2009). Refactoring-based Requirements Refinement Towards

Design. Toronto: University of Toronto.

[240] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J.

(2002). Modeling Early Requirements in Tropos: A Transformation Based

Approach. Second International Workshop on Agent-Oriented Software

Engineering II (AOSE '01) (pp. 151-168). Montreal: Springer-Verlag.

[241] Krüger, I., Demchak, B., and Menarini, M. (212). Dynamic Service

Composition and Deployment with OpenRichServices. In M. Heisel,

Software Service and Application Engineering: Essays Dedicated to Bernd

Krämer on the Occasion of His 65th Birthday (pp. 120-146). Berlin

Heidelberg: Springer.

[242] Object Management Group (OMG). (n.d.). Retrieved October 16, 2012,

from http://www.omg.org/

[243] Object Management Group (OMG). (2009, February). UML 2.2.

Retrieved October 16, 2012, from http://www.omg.org/spec/UML/2.2/

[244] Ambler, S. W. (2005). The Elements of UML 2.0 Style. Cambridge:

Cambridge University Press.

[245] Milner, R. (1982). A Calculus of Communicating Systems. Secaucus, NJ:

Springer-Verlag.

[246] Zilio, S. D. (2001). Mobile processes: a commented bibliography. In F.

Cassez, C. Jard, B. Rozoy, and M. D. Ryan, Modeling and verification of

parallel processes (pp. 206-222). New York: Springer-Verlag.

[247] Milner, R. (1991, October). The Polyadic Pi-Calculus: a Tutorial. Technical

Report ECS-LFCS-91-180. UK: Computer Science Department, University of

Edinburgh.

466

[248] Sangiorgi, D. (1993, May). Expressing Mobility in Process Algebras: First-

Order and Higher-Order Paradigms. PhD Thesis. UK: Computer Science

Department, University of Edinburgh.

[249] OASIS. (2007, April 11). Web Services Business Process Execution

Language Version 2.0. Retrieved March 1, 2012, from http://docs.oasis-

open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[250] Kitchin, D., Cook, W., and Misra, J. (2006). A Language for Task

Orchestration and its Semantic Properties. Proceedings of Concur'06 (pp.

477-491). Bonn, Germany: Springer.

[251] Barendregt, H. P. (1984). The Lambda Calculus: Its Syntax and Semantics.

Amsterdam: North Holland.

[252] Böhm, C., and Jacopini, G. (1979). Flow diagrams, Turing machines and

languages with only two formation rules. Classics in software engineering,

11-25.

[253] Dahl, O.-J., Dijkstra, E. W., and Hoare, C. A. (1972). Structured

Programming. London: Academic Press.

[254] Schmidt, D. C., Stal, M., Rohnert, H., and Buschmann, F. (2000). Pattern-

Oriented Software Architecture, Volume 2: Patterns for Concurrent and

Networked Objects. Chichester, UK: Wiley.

[255] International Organization for Standardization. (2006, September 20).

ISO/IEC 10181-3:1996. Retrieved January 21, 2012, from www.iso.org

[256] Oracle Corporation. (n.d.). JSR-000154 JavaTM Servlet 2.5 Specification.

Retrieved September 13, 2012, from

http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html

[257] Lee, L. (1981, November 7). Retrieved from A Service Oriented

Approach to Wings, Photography, and Exascale Databases:

http://fatlucas.com

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Abbreviations
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Chapter 1 Policy Driven Development Improves Evolvability
	1.1 The Evolvability Problem at Scale
	1.2 Policies and Evolvability – Then and Now
	1.2.1 SOARS: A History of the Wrong People Making Right Decisions
	1.2.2 How Policy-based Solutions Have Fallen Short (So Far)
	1.2.3 Better Evolvability Leads to More Productive Stakeholders
	1.2.4 Why has the Evolvability Problem Not Been Solved?
	1.2.5 How Other Existing Approaches Fall Short

	1.3 PDD – A Vision for Rapid Requirement Injection
	1.3.1 How PDD Differs from Existing Methodologies
	1.3.2 PDD’s Perspective on Workflows
	1.3.3 Policy Programmers Enfranchise Stakeholders
	1.3.4 Lifting the Policy Abstraction
	1.3.5 PDD’s Focus on Simple Workflows
	1.3.6 The PDD Hypothesis

	1.4 Contributions of this Dissertation
	1.5 How to Read this Dissertation
	1.6 A Vision of SOARS in a PDD World
	1.7 Summary

	Chapter 2 Existing Approaches to Choice and Composition
	2.1 Background
	2.1.1 What is a Requirement?
	2.1.2 What is a Workflow?

	2.2 Models of Computation
	2.2.1 Turing Machines
	2.2.2 Petri Nets
	2.2.3 π -calculus
	2.2.4 𝝀-calculus

	2.3 Software Development Methodologies
	2.3.1 Modular Programming
	2.3.2 Structured Programming
	2.3.3 Object Oriented Programming
	2.3.4 Aspect Oriented Programming

	2.4 Mechanisms
	2.4.1 Fundamental Mechanisms
	2.4.2 Declarative Representations
	2.4.2.1 Functional Languages
	2.4.2.2 Modeling Languages
	2.4.2.3 Structured Query Language (SQL)

	2.4.3 Execution Frameworks
	2.4.3.1 SQL Engines
	2.4.3.2 Enterprise Service Bus

	2.4.4 Policy Engines
	2.4.4.1 PERMIS (Privilege and Role Management Infrastructure Standards)
	2.4.4.2 BPEL Process Integration with Business Rules
	2.4.4.3 xESB: Integration of Policy with ESBs
	2.4.4.4 Ponder2

	2.4.5 Workflow Context in Distributed Systems
	2.4.5.1 Struts
	2.4.5.2 REST
	2.4.5.3 AJAX

	2.4.6 Ponder Policy Verification

	2.5 Patterns
	2.5.1 Object Oriented Design Patterns
	2.5.2 Workflow Patterns
	2.5.3 Enterprise Application Architecture Patterns
	2.5.4 Enterprise Integration Patterns

	2.6 Related Concepts
	2.6.1 SCA Infrastructure
	2.6.2 Spring Framework
	2.6.3 ORC Language
	2.6.4 WS-Policy
	2.6.5 Business Process Modeling Notation (BPMN)
	2.6.6 Policy as Commitments

	2.7 Summary
	2.7.1 Workflow Specification
	2.7.2 Workflow Injection
	2.7.3 State Management
	2.7.4 Modeling
	2.7.5 Deployment
	2.7.6 Assessment

	Chapter 3 A Running Example – PALMS’ GetStudyList Workflow
	3.1 Relationship to PALMS
	3.2 GetStudyList Data Flow
	3.3 Relationship to Requirements
	3.4 Policy Preview
	3.5 Representative Workflow
	3.6 Summary

	Chapter 4 A Foundation for Policy Composed on Workflow
	4.1 A SOA Approach to Policy-based Workflow Composition
	4.1.1 Rich Services
	4.1.1.1 Rich Service Structure
	4.1.1.2 System of Systems (SoS) Composition using Rich Services

	4.1.2 Service Definition
	4.1.3 Service Composition
	4.1.4 Service Decomposition
	4.1.5 Message Interception
	4.1.6 Services and Workflows

	4.2 Policies
	4.2.1 Policies and Workflows
	4.2.2 Compound Service Interactions
	4.2.3 Control Policies
	4.2.4 Filter Policies
	4.2.5 A Simple Policy Evaluation Service
	4.2.6 Feature Injection and Obligations
	4.2.7 Policy Composition

	4.3 Context System
	4.4 Addressing Gaps Identified in Existing Choice Mechanisms
	4.5 Summary
	4.6 Acknowledgments

	Chapter 5 Policy in the PALMS Cyberinfrastructure – A Case Study
	5.1 The PALMS Project and the PALMS-CI
	5.1.1 Exposure Biologists – the Core PALMS Community

	5.2 The Basic PALMS Requirements
	5.3 The PALMS Logical Rich Service
	5.4 The PALMS Deployment Rich Service
	5.5 The PALMS-CI Design
	5.5.1 Repositories
	5.5.2 Interface between Browser UI and PALMS-CI
	5.5.3 Interface between PALMS-CI Internal Services
	5.5.3.1 PALMS Internal Message Contents
	5.5.3.1.1 AttributeCollections
	5.5.3.1.2 SQLTupleTrees

	5.5.4 Workflow Implementation
	5.5.4.1 Basic Interservice Messages (IM) and Service Tracking
	5.5.4.2 RAS and RIS Implementation in Mule
	5.5.4.3 Workflow and Other SIVs
	5.5.4.4 New SIVs

	5.6 PALMS’ Policy System
	5.6.1 PALMS Basic Policy Language
	5.6.1.1 Policy Example
	5.6.1.2 Policy Expression Dependencies
	5.6.1.3 Identity, RBAC,and ACLs
	5.6.1.3.1 Roles and Permissions under Grouper
	5.6.1.3.2 Role and Permission Namespace

	5.6.2 Policy Repositories and Authorship
	5.6.2.1 The Interaction Repository
	5.6.2.2 The Policy Repository
	5.6.2.2.1 Control Policies
	5.6.2.2.2 Filter Policies
	5.6.2.2.3 Policy Packages
	5.6.2.2.4 Composition Policies

	5.6.2.3 The Authoring System

	5.6.3 Policy Evaluator
	5.6.3.1 Evaluation of Filter Policies
	5.6.3.2 Evaluating Control Policies

	5.6.4 Feature Injection
	5.6.5 PALMS Domain Specific Languages (DSLs)
	5.6.5.1 XQuery Library Functions
	5.6.5.2 XQuery Policy Support Libraries
	5.6.5.3 Specialized DSLs
	5.6.5.4 Policy Support Development and Debugging

	5.6.6 Policy Development and Debugging

	5.7 Summary
	5.8 Acknowledgments

	Chapter 6 PALMS’ Experience with PDD
	6.1 Development Time
	6.2 Stakeholder Ease of Use
	6.3 Execution time
	6.3.1 Test Platform and Circumstances
	6.3.2 End to End Tests
	6.3.2.1 End to End with No Interceptors
	6.3.2.2 End to End with Context Interceptors

	6.3.3 Single Interaction Baseline
	6.3.4 Null Policy Baseline
	6.3.5 Control Policy
	6.3.6 Filter Policy
	6.3.7 Execution Time Hypotheses

	6.4 Summary

	Chapter 7 PDD as Compared to Other Approaches
	7.1 Workflows, Requirements, and Late Binding
	7.1.1 Aspect Oriented Software Design (AOSD)
	7.1.2 Policy-based Design

	7.2 Workflow Context
	7.2.1 Struts
	7.2.2 REST
	7.2.3 AJAX

	7.3 Orchestration Languages and Workflow Systems
	7.4 Policy Evaluation Systems
	7.4.1 PERMIS
	7.4.2 xESB
	7.4.3 Ponder2
	7.4.4 Policy Deployment
	7.4.5 Policy Languages
	7.4.6 Policy Versioning

	7.5 Verification and Validation
	7.6 Policy Programmers and Enfranchised Stakeholders
	7.6.1 Survey of Stakeholder Policy Authorship
	7.6.2 Policy Programming
	7.6.3 Complimentary Approaches

	7.7 Building and Maintaining PDD Applications
	7.8 Gaps and Insights
	7.8.1 Gap in Service Contract Checking
	7.8.2 Gap in Testing and Fidelity Assessment
	7.8.3 Requirement Feedback Loops
	7.8.4 Implementation Platforms

	7.9 Summary

	Chapter 8 Summary and Outlook
	8.1 Gaps
	8.2 Outlook

	Appendices
	Appendix A – Graphical Notations
	A.1.1 Unified Modeling Language
	A.1.2 Class Diagrams
	A.1.3 Sequence Diagrams
	A.1.4 Activity Diagrams
	A.2 Workflow Sketch

	Appendix B Existing Contributions
	B.1 Models of Computation
	B.1.1 Turing Machines
	B.1.2 Petri Nets
	B.1.3 π-calculus
	B.1.4 𝝀-calculus

	B.2 Software Development Methodologies
	B.2.1 Modular Programming
	B.2.2 Structured Programming
	B.2.3 Object Oriented Programming
	B.2.4 Aspect Oriented Programming
	B.2.5 Execution Frameworks
	B.2.6 Policy Engines

	B.3 Workflow Context in Distributed Systems
	B.3.1 Struts
	B.3.2 REST
	B.3.3 AJAX

	B.4 Ponder Policy Verification

	Appendix C Patterns for Object Oriented Programming
	C.1 Strategy Pattern
	C.2 Composite Pattern

	References

