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Software maintenance is a significant cost driver in the value 

proposition of large scale software systems such as cyberinfrastructures (CIs) – 

it is often the longest and most expensive phase of software production. 

Because software maintenance and delivery cycles are often long and risky, 

stakeholder requirements are often not realized in timeframes meaningful to 

stakeholders. Such delays impair software system value due to lost 

opportunities, costs exceeding benefits, and stakeholder disenfranchisement. 

As a solution, my dissertation proposes a new methodology called 

Policy Driven Design (PDD), which enables the composition of stakeholder 



 

xxx 

requirements onto an unprepared application at runtime. PDD models an 

application as a collection of base workflows that implement stakeholder 

requirements. It defines a policy as a decision that chooses amongst 

alternative workflows – stakeholder requirements can be expressed and 

realized as policies injected into a base workflow. 

An important source of delays under existing methodologies is early 

binding, which occurs when requirements (as policies) are integrated into 

applications during design and coding phases, often causing entanglement 

and scattering at both abstract and coding levels, and resulting in delays and 

mis-implementations. 

PDD introduces late binding as the injection of requirements (as 

policies) into running systems without incurring traditional development risks 

and delays. PDD policies are expressed using Domain Specific Languages 

tailored to requirement domains, thereby enabling stakeholders to participate 

directly in defining, vetting, and evolving policies. 

To demonstrate and evaluate PDD, I designed and implemented a 

successful real world cyberinfrastructure (PALMS-CI) using PDD principles. 

PALMS’ late binding demonstrated policy injection with acceptable overhead 

in common cases. Its workflow support proved effective in significantly 

reducing entanglement and scattering, and its DSL support demonstrated 

stakeholder enfranchisement resulting in quick and accurate requirement 

realization. 



 

xxxi 

PDD leverages Aspect Oriented Software Design (AOSD) and Service 

Oriented Architecture (SOA) principles, and contributes:  

 a SOA foundation for policy definition and injection 

 a family of policy languages that enable programmer/stakeholder 

collaboration 

 a working cyberinfrastructure that realizes PDD and serves as a platform 

for future development 

Given the intensifying contradiction between greater system 

complexity, increasing stakeholder demands, and shorter delivery timeframes, 

PDD uncovers a low cost route to high value. 

 



1 

CHAPTER 1 

POLICY DRIVEN DEVELOPMENT IMPROVES EVOLVABILITY 

The topic of this dissertation is a new development methodology called 

Policy Driven Development (PDD), which is my approach to designing 

complex systems so as to improve their evolvability over time. In this 

dissertation, I argue that under existing software development methodologies, 

large scale computing systems do not realize stakeholder requirements quickly 

enough to meet the needs of large and diverse stakeholder groups, and that 

the viability of such systems is threatened as a result.  

I observe that for systems expressed as Service Oriented Architectures 

(SOAs), stakeholder requirements can be represented as workflows, and 

systems can be formed by composing workflows together. I argue that an 

important cause of slow system evolution is performing this composition early 

in the software development cycle, thereby resulting in inflexible systems that 

exhibit long delays between requirement discovery and the delivery of 

systems incorporating them. To address this problem, I propose the PDD 

methodology, which results in the composition of requirements late in the 

software development cycle, thereby dramatically reducing delays between 

requirement discovery and delivery.  

To achieve this, PDD envisions a unique collaboration between 

programmers and stakeholders, where both cooperate to cast requirements 

as policies represented as workflows and the conditions under which they are 
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activated. PDD then leverages and extends existing features of SOAs to 

enable the injection of policies into running systems. As a result, stakeholder 

requirements can be realized with speed, accuracy, and low cost 

unachieved with existing methodologies.  

My contributions to this vision include a SOA foundation for policies and 

policy injection, a family of policy languages that enable 

programmer/stakeholder collaboration, and a real-world case study that 

realizes them and serves as a platform for future development. 

In this chapter, I briefly describe unsolved issues affecting the evolution 

of large scale systems having large and diverse stakeholder groups and how 

these issues threaten the viability of such systems. Specifically, I focus on the 

relationship between the evolution of both stakeholders’ requirements and 

the systems that reflect them. I discuss various approaches to requirement 

realization in this context, and describe the PDD vision, which includes a 

realignment of the roles of programmers and stakeholders in evolving such 

systems. Finally, I explain my contributions and give an outline for the 

remainder of this dissertation. 

1.1 The Evolvability Problem at Scale 

Since shortly after programs were first written, software maintenance [1] 

has been a significant cost driver in the software value proposition – it is often 

the longest and most expensive phase of software production [2] [3] [4]. 

Software maintenance encompasses many post-delivery activities, including 
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bug fixes, adaptation to environmental change, and evolution responsive to 

changes in requirements. While the purpose of software is to realize 

articulated requirements (including those that change or are presented 

anew), application developers often address the unspoken requirement of 

“evolvability” as an afterthought, if at all [5]. In the process, stakeholders 

become disenfranchised because their new and evolving requirements are 

not met on a timely basis, thereby limiting productivity and flexibility that could 

contribute to their own success. 

I define evolvability as the ability of a system to address new needs, 

easily fulfill new requirements, and do so at relatively low cost [6] [7] [8]. 

Improvements in evolvability can result in the liberation of resources to 

advance stakeholder interests, which may include faster time to market, 

increased efficiency, reliability, robustness, more (and more sophisticated) 

feature sets, and fewer bugs, to name but a few. 

Many improvements in software engineering have directly impacted 

evolvability, including advances in programming languages [9]; programming 

models [10] [11] and system architectures [12] [13] [14]; and development 

models [15] [16], design patterns [17], and modeling languages [17] [18]. Even 

so, as these advances extend the volume and complexity of requirements 

that can be addressed by software systems, stakeholders offer even more 

(and more complex) requirements (requiring faster delivery, to boot).  
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Evolvability is especially critical for cyberinfrastructures (CIs) and, by 

extension, other large scale systems, where the timely and accurate 

identification and realization of emergent requirements drives system success 

[19] [20] [21]. A cyberinfrastructure [22] [23] is a computing ecosystem that 

simultaneously fulfills the diverse requirements of classes of producers, 

consumers, and operators; its purpose is to serve a diverse community of 

stakeholders having interests that bind them and which form the basis for the 

community. It is a scalable Internet-based computing environment that 

supports data acquisition, storage, management, integration, mining, and 

visualization, in addition to related computing and information processing 

services. In order for a stakeholder to contribute data, consume data, or 

contribute resources, the CI must meet the stakeholder’s requirements even 

as those requirements evolve – to the extent that both current and emergent 

requirements are satisfied, the ecosystem thrives and the community benefits. 

As a community enabler, the CI also serves as a means to recruit other 

stakeholders, which strengthens the community and contributes additional 

requirements. Through this synergy, the community and the CI co-evolve, and 

the coevolution often depends on the rapid realization of these new 

requirements [24]. In a virtuous cycle, continued participation of some 

stakeholder groups attracts and enables participation by other stakeholder 

groups, and the CI better serves the community. In a vicious cycle, unmet 

requirements that threaten the participation of one stakeholder group 
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eventually threaten the participation of others, resulting in the disaffection 

and eventual opt-out of some or many stakeholders. 

Cyberinfrastructures have long lifetimes (measured in decades), and 

not only accrue maintenance issues and new requirements from existing 

stakeholder groups, but also accrete new stakeholder groups having new and 

unanticipated classes of requirements. These requirements represent both 

changes to existing system features and the creation and composition of 

completely new feature sets. 

1.2 Policies and Evolvability – Then and Now 

To motivate a discussion of evolvability, I briefly describe an ancient 

real world system (SOARS) that was not easily evolvable, and use it to 

introduce existing policy-based solutions and explain their limitations. I then 

introduce other relevant approaches and give a brief overview of their 

limitations. (A more detailed survey of existing approaches is presented in 

Chapter 2.) In Section 1.3, I present PDD as my vision for a solution. 

1.2.1 SOARS: A History of the Wrong People Making Right Decisions 

When I was 18 years old, I was a principal in a company that created 

and sold the SOARS1 software, a state-of-the-art system that automated the 

work of a small-to-medium size university, replacing largely paper-based 

processes. I was responsible for programming a collection of major 

subsystems, while my four partners created other subsystems. The year was 

                                                 
1
 Student Online Administration and Reporting System, a product of Chama Corporation written in 

timeshared Basic 
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1975, and even then, university operations encompassed complex workflows 

and rules. The development process was an iteration of a basic sequence: 

collect and negotiate requirements, instantiate the requirements in code, and 

present the results to the customer for evaluation and rework. 

A particularly complex domain was student accounts – managing 

billing, payments, and credits for students depending on their attendance, 

financial aid, payment arrangements, and so on. There were simply too many 

cases to express conveniently as requirements, and I, as the programmer, 

made many guesses and deductions regarding how to conceptualize, 

organize, and handle each case. While the deliverables were judged correct 

and greatly beneficial by the student accounts office, it occurred to me that I 

was making a great number of decisions that I was unqualified to make, and 

a portion of which were likely wrong or subject to revision. The consequences 

of my wrong decisions could have been minor (requiring re-coding) to 

catastrophic (losing data or having critical functionality incorrect at critical 

times). Independent of my decisions, university administrators frequently asked 

for new features and asked that working features be changed to work 

differently. Furthermore, bug fixes and new feature implementations were 

usually deployed in a formal release process that occurred infrequently, 

thereby deferring (and possibly compromising) their benefit to users. 

This vignette is true, and is representative of the state of enterprise 

application development processes both before 1975 and after, continuing to 

present day. At that time, the purpose of an enterprise software program was 
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to realize stakeholder requirements so as to deliver some (usually economic) 

value to the stakeholders – generally, a greater value than the alternatives. 

Major drivers of application value were the quality of requirement elicitation, 

the fidelity of delivered code relative to those requirements, and the delay 

between requirement elicitation and code delivery. The nascent discipline of 

software engineering was often more concerned with technique than with 

delivering or optimizing value – the hot topics were modularity and 

information hiding [25], use of goto statements [26], and the art and styles of 

programming [27]. Additionally, software projects were executed most often 

using a plan-driven approach, which involved long latencies between 

requirement specification (as either formal or informal exercises) and actual 

system delivery. Often, upon system delivery, initial requirements were found 

to be insufficient, wrong, outdated, or misinterpreted, thereby necessitating 

subsequent (time consuming) remedial development and release cycles. 

Such software projects often resulted in expensive cost and calendar 

overruns, and many projects failed. 

While the software value proposition today is the same as in 1975, the 

value drivers have changed significantly, and they continue to evolve. 

Today’s stakeholders are more numerous, diverse, and have more complex 

requirements than those for legacy applications. These requirements 

encompass increasing degrees of scalability, manageability, distributability, 

evolvability, auditability, reusability, and reliability while incorporating 

information assurance [28] values such as security, availability, integrity, 
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authenticity, confidentiality, non-repudiation. While some requirements can 

be realized independent of others, many stakeholders’ requirements crosscut 

basic system functionality and other stakeholders’ requirements. Significantly, 

stakeholder expectations of application quality (as reflected in code fidelity 

and coverage of the requirements space) and delivery times have remained 

relatively constant. 

Since the mid 1970s, disciplines, techniques, methodologies, and tools 

have evolved to accommodate stakeholders’ increasingly complex 

requirements while reducing software development risk. Disciplines such as 

requirements engineering [29] and system architecture have contributed to 

the capture, refinement, elaboration, disambiguation, evolution, and 

realization of requirements. Techniques such as modular design, object 

orientation, aspect orientation, standards-based design, service orientation, 

and functional languages have enabled programmers to manage 

complexities associated with distributed and heterogeneous systems, cross-

platform development, and embedded systems more efficiently and 

effectively. The agile family of methodologies has enabled programmers to 

better leverage stakeholders to reduce delivery times and focus these 

deliveries on high value propositions. Finally, tools such as integrated 

development environments (IDEs), modeling systems, theorem provers, version 

and configuration control, and improved languages have reduced the risk in 

creating large and complex code bases that realize large and complex 

requirement sets. 
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Even so, this evolution has occurred as incremental improvements to 

the 1970s programming discipline – stages of the development process have 

been deconstructed and elaborated, optimized, or rearranged in order to 

create significant economic benefits. For example, agile methodologies were 

developed as alternatives to plan-driven methodologies specifically to enable 

rapid response to changing stakeholder requirements. As a process 

improvement, it combines a requirement prioritization process with constant 

stakeholder engagement and frequent system releases to deliver applications 

that meet stakeholder requirements prioritized on a timely basis according to 

stakeholder values. It substantially reuses existing requirements engineering 

and architecture disciplines, though it emphasizes techniques whose 

incremental cost closely matches the incremental value provided.  

In modern large scale systems such as CIs, successful development 

depends on modern disciplines, techniques, methodologies, and tools to 

deliver timely and relevant computing capabilities to stakeholders whose 

mission depends on them. However, taken singly or in combination, they do 

not address the need stakeholders have for rapid and reliable realization of 

requirements. Consequently, stakeholders’ requirements go unmet, and the 

health of the CI degrades accordingly. For example, though agile 

development methodologies intend to quickly enact stakeholder 

requirements, they are a poor fit for CI development and maintenance, as CI 

communities tend to be large, diverse, geographically dispersed, and unable 

to engage in the day-to-day interaction and evaluation needed for 
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requirement definition, refinement, and prioritization. Additionally, because CI 

communities are often distributed worldwide, CIs are often required to be 

highly available on a 24 hour a day, 7 days a week basis, thus making even 

the high frequency agile release schedule very expensive. Indeed, the risks 

associated with deployment of even small changes make the prospect of 

releases themselves unattractive. Furthermore, to the extent that a CI has 

cyber-physical [30] components, the modification and redeployment of such 

components can be particularly risky and expensive in terms of energy and 

time. Consequently, re-deployment occurs only infrequently, which defeats 

the agile proposition of shareholder enfranchisement through rapid response. 

1.2.2 How Policy-based Solutions Have Fallen Short (So Far) 

A common technique for implementing stakeholder requirements and 

avoiding release latencies is replacing hard-coded branch expressions 

(incorporated into application workflows at development time) with policy 

decisions based on policy expressions supplied at runtime. Policy decisions are 

commonly used to implement access control or application feature selection 

based on a user’s credentials or on the state of the application or operating 

environment. More generally, they use policy expressions to choose between 

two or more workflows at a decision point in a base workflow. While this 

technique can address requirements known at development time, it has 

limited value at runtime – it can only select amongst workflows known at 

development time. Addressing changing or emerging requirements that result 

in new or changed workflows – or in new decision points – generally requires 
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application modifications and re-deployment, which are often lengthy, costly, 

and error-prone processes. Furthermore, existing policy techniques do not 

account for the integration of independent policies provided by multiple, 

independent stakeholder groups. 

An implicit assumption in implementing a new or changed requirement 

is that not only will the application correctly and completely implement the 

requirement, but the implementation of unrelated requirements will be 

unaffected. Under most development methodologies (including waterfall and 

agile) continued correct operation is demonstrated by regression tests. 

However, because such tests do not typically cover all branch paths and 

corner cases, they suggest correctness but do not prove it. As a CI evolves 

and becomes more complex, the system-wide guarantees offered by 

regression tests become weaker, and such applications require improved 

strategies for achieving low risk of maintenance. Similarly, modern program 

development tools include theorem provers that can be used to evaluate 

properties implying code correctness. However, such tools are limited by the 

size and complexity of the code under test, and their use becomes less 

feasible as the CI evolves and becomes more complex. Furthermore, 

regression tests and theorem provers work well when code contains hard-

coded branching expressions, and are less robust against decision points 

evaluating the universe of runtime-supplied policy expressions. 

An issue that diminishes the value of embedded policy decisions, 

regression testing, and theorem proving is the entanglement of multiple 
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independent concerns in a single workflow. While many programming 

languages encourage entanglement for the sake of compactness, 

performance, and intelligibility, entangling such concerns risks intelligibility 

over time as a workflow representing a concern becomes more complex. 

When complex workflows are combined, the clarity of policy decisions 

diminishes, the number and complexity of regression tests multiplies, and the 

tractability of theorem proofs is reduced. Consequently, the costs of 

maintenance and the risks of undetected errors increase.  

Finally, insofar as the requirement elicitation process involves a handoff 

of information from stakeholders to programmers, requirements are subject to 

omission, misstatement, incomplete statement, and mis-implementation, 

leading to application errors whose remediation results in costly and risky 

application or policy re-deployment [31]. To date, facilities enabling intimate 

collaboration between programmers and stakeholders (e.g., domain-specific 

policy languages, policy editors, visualizers, and validity checkers) are under-

developed. 
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1.2.3 Better Evolvability Leads to More Productive Stakeholders 

Through enabling the rapid and accurate realization of stakeholder 

requirements in cyberinfrastructures, PDD aims to maintain and improve the 

cyberinfrastructure value proposition along a number of dimensions: 

 Stakeholders can leverage critical capabilities in timeframes that suit 

their needs 

 Stakeholders can participate directly in the realization of requirements, 

thereby improving the requirements elicitation process, and leading to 

implementations that address actual requirements more quickly 

 Cyberinfrastructures can quickly accommodate requirements that 

increase in number and complexity from stakeholder groups that 

increase in number and diversity. 

 Cyberinfrastructures can become simpler and more reliable, while their 

code becomes more reusable and scalable even as they continue to 

leverage new technologies and capabilities that exist outside of the 

cyberinfrastructure. 

1.2.4 Why has the Evolvability Problem Not Been Solved? 

Existing methodologies, techniques, and strategies are challenged 

because the architectures and code they produce are often entangled, 

brittle, and scattered, particularly as they encode multiple stakeholders’ 

requirements realized on workflows spread throughout an application. Such 

architectures and code cannot evolve to address long-lived requirement 

streams quickly, consistently, and with high fidelity to requirements. Errors in 

requirement implementation are particularly problematic, as they represent 

lost time and opportunity for the community (at best) or economic damage 

and lost credibility (at worst). Such errors arise from numerous sources, 

including poor coding; challenges in understanding and modifying 

entangled, brittle, and scattered designs and coding [32]; poor testing; and 
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improper understanding or statement of requirements either by technical 

staff, stakeholders, or both. Perversely, in the time taken to address 

requirements (either properly or improperly), requirements may change, 

become obsolete, or may be superseded. 

Paradoxically, efforts to broaden the appeal of a CI by recruiting more 

stakeholders (as users) often results in an influx of more and varied 

requirements, which leads to longer implementation times and poorer quality 

implementations. Consequently, communities relying on CIs maintained using 

existing disciplines are often underserved due to the time it takes to realize 

their requirements or due to mismatches between real requirements and 

actual implementations. Ultimately, this discourages growth of the CI and the 

community it serves. 

Essentially, as the seeds of a CI’s success, stakeholders and 

requirements are also the seeds of its failure. 

1.2.5 How Other Existing Approaches Fall Short 

The concepts of code entanglement, brittleness, and scattering are 

well documented by the Aspect community (represented by disciplines such 

as Aspect Oriented Design, Aspect Oriented Programming, Aspect Oriented 

Software Design, and others described in subsequent chapters), and the 

Aspect community has proposed a family of solutions (i.e., aspect weaving) 

that gives valuable and significant insights into improving code maintenance 
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and, to an extent, the management and implementation of requirements 

themselves. 

Commonly, software engineering problems are often approached by 

means of divide-and-conquer or indirection. The Aspect solutions seek to 

divide an application into workflows that can then be recombined, but do 

not sufficiently address issues such as conditional injection of workflows at 

runtime, deep composition of workflows, and state management that enables 

System of Systems architectures. 

Additional evolvability challenges have related, but deeper roots, 

originating in programming philosophies invented with the first programs – 

particularly committing decisions and workflows so early in the development 

process that changing them to suit emergent requirements impacts working 

and unrelated code inordinately. While this practice has virtues in code and 

project management, and application testing and verification, it results in 

highly complex programs requiring the attention of highly skilled designers and 

programmers (so-called traditional programmers) -- they are often culturally 

and physically separate from stakeholders, especially when the stakeholder 

community is large and diverse.  

The traditional practice of software engineering has long recognized 

that quickly implementing new requirements reduces time to market and 

drives software value. Consequently, in strategic situations, statically coded if 

statements (and their equivalents, representing early bound requirements 
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tightly coupled with specific implementations and with other requirements) 

have given way to a combination of late binding and indirection-oriented 

approaches that leverage declared interfaces to enable a coarse grained 

realization of partial application behaviors. Late bound (or not-so-early 

bound) interfaces are leveraged to create loose coupling in methodologies 

and techniques such as modular programming, object oriented 

programming, dynamic link libraries, plugins and plugin architectures, hooking 

strategies, Web Services, REST architectures, and service oriented 

architectures (SOAs). 

While potent, these solutions have come up short by requiring the 

constant participation of traditional programmers as guardians and stewards 

of highly complex programs that get only more complex as the number, 

complexity, and diversity of requirements increase. Consequently, they also 

keep stakeholder communities at a distance instead of enlisting and 

leveraging them as solution bearers.  

Many solutions envision system evolution in terms of replacing old 

systems with new systems in full or in part, thereby incurring operational risks 

and inconveniences to stakeholders that often have nothing to gain in return 

(because they don’t benefit directly from the new requirements implemented 

in the new systems). 

In Chapter 2, I examine different classes of solutions that bear partially 

or substantially on these issues, and I demonstrate that they are insufficient 
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(individually or in obvious combination) to solve the CI evolvability problems 

posed above. I start by examining potential contributions found in 

fundamental abstractions (i.e., models of computation) and software 

engineering methodologies, and then survey particular mechanisms and best 

practices (i.e., patterns). 

1.3 PDD – A Vision for Rapid Requirement Injection 

To answer the challenges of rapid requirement realization and 

stakeholder engagement in a CI context, I have created a new methodology 

called Policy Driven Development (PDD), which seeks to fulfill stakeholder 

requirements via application changes effected while an application is 

running. It leverages the observation that stakeholder requirements are often 

realized by a combination of decisions and follow-on workflows.  

Under traditional methodologies, requirement realization follows a 

common process: decisions and workflows are programmed, then tested, and 

then deployed as code. From a runtime perspective, this programming 

amounts to an early binding of requirement implementations, which places a 

drag on application evolution. PDD seeks to enable rapid evolution by shifting 

portions of the application development process from the static domain to 

the dynamic domain, where the workflows and decisions implementing 

stakeholder requirements are specified at runtime. This late binding of 

requirement implementations offers the potential of lower latency between 

requirement specification and realization, invites more direct participation by 
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the stakeholder in the implementation process, and results in a tighter 

coupling between stakeholder requirements and their implementation. 

As such, PDD represents the bifurcation of the existing application 

development process into complimentary static and dynamic domains. To 

facilitate the rapid realization of requirements in the dynamic domain, 

developers in the static domain are encouraged to create short and simple 

workflows that focus on implementing discrete concerns. The development 

process in the dynamic domain focuses on combining and constraining such 

workflows to realize stakeholder requirements. 

1.3.1 How PDD Differs from Existing Methodologies 

Under traditional methodologies (e.g., modular programming and 

object oriented design), an application consists of a collection of workflows 

that are related as to purpose and/or state. The sequence of activities in a 

workflow is determined at design time and is fixed in deployable code – the 

actual activities executed in the workflow depend on decisions (i.e., if() 

statements and their equivalents) embedded in the workflow, following a 

Strategy pattern [33] (as briefly described in Appendix C). For example, for 

workflows expressed in Java, activities can be expressed as assignments and 

function calls, and decisions can be expressed as if() statements that choose 

between workflows. Fundamentally, realizing a new stakeholder requirement 

in an existing workflow involves augmenting, changing, or removing existing 

workflow code or changing the decisions that choose between workflows. 

Using traditional programming techniques, these decisions are often 
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entangled, leading to the entanglement of the concerns they control. As 

requirements change, the maintenance of static Strategy patterns often 

preserves or increases entanglement, thereby increasing testing time, risking 

fidelity to stakeholder requirements, and leading to long intervals between CI 

re-deployments.  

The key insight of PDD is that by deferring the creation of the Strategy 

pattern until runtime (i.e., as a late-bound Strategy pattern), new stakeholder 

requirements can be realized on an executing application without incurring 

the delays and risks endemic to early-bound Strategy patterns. Specifically, it 

envisions the runtime injection of a decision (using a dynamic Inversion of 

Control pattern [34]) into an otherwise unprepared workflow, where the 

decision chooses between continuing the workflow, executing a different 

workflow, or both. Workflows can execute using parameters supplied by the 

decision or externally, and can be initially deployed with the application, 

deployed after the application, supplied as part of the decision, or created 

dynamically. Consequently, by augmenting, changing, or removing decisions 

and associated workflows at runtime, PDD enables the realization of 

stakeholder requirements without suffering the development and deployment 

latencies incurred by existing approaches. Furthermore, PDD encourages the 

separate definition and maintenance of injectable decisions and workflows, 

which discourages the entanglement that leads to increased testing, 

development risk, and long deployment latencies in traditional 

methodologies. 
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1.3.2 PDD’s Perspective on Workflows 

PDD envisions the creation of applications as collections of simple 

workflows (possibly related as to purpose and/or state) that represent basic 

application functionality. The workflows (called base workflows) represent an 

application’s most rudimentary requirements, forming a skeleton that is 

fleshed out at runtime by composing additional requirements (represented by 

other decisions and workflows) onto it based on criteria also defined at 

runtime. An example of a trivial application workflow is a calculator that 

accepts a numerical input, adds 10 to it, and outputs the result. An auditing 

requirement can be realized by interjecting an auditing workflow between 

the addition and output activities. The auditing workflow would record some 

pertinent information either synchronously or asynchronously relative to the 

base calculator workflow. Furthermore, the execution of the auditing workflow 

could be predicated on some decision criteria such as a user’s membership in 

a group.  

The participation of multiple independent stakeholder groups admits 

the likelihood of multiple stakeholder groups having different policies 

tendered to the same decision location – or, similarly, a single stakeholder 

group tendering multiple policies to the same location. This necessitates a 

strategy for composing coincident policies. Following the calculator workflow 

example, a Scientists group could insist that any calculator use by a member 

of the Engineers group be logged for audit, and Engineers could insist that 

calculator use by Scientists be logged. Possible compositions of these policies 



21 

 

include evaluating the Scientist policy only if there is no Engineer policy, or 

vice versa, or always evaluating both policies. In general, PDD forms a policy 

composition by executing a composition policy tendered to a particular 

workflow location. Composition policies are defined, authored, and 

maintained using the same process as other policies, and follow the same 

principles of policy injection. In this case, the stakeholder controlling the 

composition policy would have an oversight role that crosscuts all other 

stakeholder groups, and which would likely default to the CI development 

team.  

Under PDD, the decision of whether to interject a workflow, where in 

the base workflow to make the decision, and which workflow to inject are all 

made at runtime based on externally supplied predicates called policy tuples. 

Loosely speaking, a policy tuple consists of a decision location and a policy, 

and a policy consists of decision criteria and a collection of candidate 

workflows. A policy is said to be injected into the workflow at the decision 

location. A policy tuple is authored in the context of the application’s existing 

workflows – the decision criteria may have access to the base workflow’s 

transient or permanent state, and can communicate this state to the 

candidate workflows. Whereas in traditional application development, a 

requirement would be implemented by explicitly recoding the application 

(e.g., using an if() statement and a function call), under PDD it would be 

implemented as a policy tuple applied onto the executing application. This 
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amounts to a late-bound, loosely coupled Strategy pattern resulting in low 

latency between requirement elicitation and enactment. 

To take advantage of late decision binding, application workflows must 

be exposed for inspection at runtime, it must be possible to interrupt transitions 

between workflow activities, and it must be possible to inject a workflow 

between activities or replace an entire workflow. Furthermore, while workflow 

activities themselves can be atomic (as in adding 10 to a numerical input), 

they can also be composed of workflows, thus extending the opportunities to 

realize late binding benefits deeply into an application. With traditional 

imperative and functional programming languages, these prerequisites can 

be met through introspection, though few (if any) such languages have 

compilers that generate appropriate metadata. However, at a conceptual 

level, Service Oriented Architectures (SOAs) provide a clean mapping 

between workflows and logical or deployment architectures, and include 

interception features that enable this injection. Consequently, I discuss PDD in 

terms of services and SOAs, though services and SOAs are not required to 

realize PDD, per se. 

1.3.3 Policy Programmers Enfranchise Stakeholders 

The ability to create and inject decisions and workflows at runtime 

encourages the participation of new classes of stakeholders in the application 

definition, authorship, and maintenance process. Under traditional 

application development, policy and workflow authorship are generally in the 

purview of professional developers, as they are both expressed using general 
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purpose programming languages and systems whose operation requires 

specialized training. Under PDD, the decision location, decision criteria, and 

workflow choices are decoupled and can be expressed in languages most 

appropriate for both their authors and their purpose. This admits the possibility 

of using domain specific languages (DSLs [35]) that enable stakeholders 

themselves to define or closely scrutinize decision criteria, if not actual 

workflows, thus freeing professional programming resources to focus on system 

design and complex workflow implementation in the static domain. Such DSLs 

can be highly congruent with domain concepts, thereby fostering a high 

fidelity between stakeholder requirements and their actual implementation. 

Additionally, runtime policy authorship invites the creation of a new role 

in the stakeholder ecosystem: the policy programmer, who collects and 

refines stakeholder requirements; defines, implements, and refines appropriate 

policy DSLs; and writes and maintains PDD policies on behalf of other 

stakeholders. A policy programmer must be familiar with stakeholder domains, 

application workflows, and the technologies used for authoring policies and 

workflows, then injecting them into base workflows. The policy programmer 

role represents a specialization and combination of the programmer and 

stakeholder roles, and adds value by relieving other stakeholders of policy-

level implementation. 
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Under my vision, as shown in Figure 1, the benefit of the policy 

programmer role is time to market while maintaining fidelity to stakeholder 

requirements. As traditional programming relies on well-developed tools that 

generate fast and efficient code and can coordinate with model checkers to 

deliver basic guarantees, policy programming does not yet have such 

support. Consequently, it offers a tradeoff between execution time (as 

described in Section 6.3), strong guarantees (as discussed in Sections 1.1 and 

7.5), and time to market. Additionally, as policy programming tools evolve to 

provide stronger guarantees, more complex policies become more routinely 

feasible.  

1.3.4 Lifting the Policy Abstraction 

At an abstract level, composition of workflows realizes a System of 

Systems architecture, where each workflow may comprise or be a part of a 

standalone application, and combining workflows results in a complex system 

that represents a fusion of two or more concerns. Each workflow maintains its 
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Figure 1. Relationship of PDD to Traditional Programming 
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own state according to its own rules, defining state transitions and lifecycles 

appropriate for its function, and possibly sharing state with other workflows. 

The fusion results from composing an injected workflow into a target workflow 

at a location in the target workflow via a policy.  

The injected workflow qualifies as a standalone application, as it draws 

input (from the target workflow); makes some decision, performs some 

function, or both; and then outputs results (to the target workflow). Using the 

example of the calculator workflow, the injected audit workflow accepts 

credentials saved as part of the calculator state, and uses them to determine 

whether to record an audit event on a local database. Furthermore, the 

workflow that records audit events is part of a collection of workflows 

comprising an independent audit application (as described in Section 5.6.4), 

where other workflows implement the query, visualization, and maintenance 

of audit events. The System of Systems consists of the combination of the 

calculation application and audit application, as joined by the injected 

workflow.   

Inasmuch as a policy contributes a workflow, the injected workflow 

itself can serve as a target for the injection of another policy. Using the 

example of the calculator’s audit workflow, consider a new application 

requirement to manage data as a database in the Cloud. Given a workflow 

that stores data in the Cloud, the new requirement can be met by injecting 

the Cloud workflow into the audit event workflow, replacing the activity that 

stores audits event on the local database. Composing policies on policies in 
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this way enables the realization of System of Systems architecture whose 

targets are themselves System of Systems architectures. 

Finally, given that a workflow implements one or more stakeholder 

requirements, or that a single requirement can be implemented by more than 

one workflow, composite policies injected into multiple decision locations (in 

either a single workflow or in multiple workflows) enable the implementation of 

crosscutting requirements as defined in [32].  

1.3.5 PDD’s Focus on Simple Workflows 

Consistent with Aspect Oriented approaches, PDD’s focus on injection 

of policies promotes the creation of applications as simple workflows that can 

act as either injection targets or injected workflows, themselves. By combining 

applications that expose simple workflows, PDD encourages the creation of 

hierarchical Systems of Systems, where workflows are well characterized, are 

separately maintained and validated, are reusable, and form the basis for the 

rapid realization of stakeholder requirements.  
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1.3.6 The PDD Hypothesis 

Realizing my PDD vision requires leveraging and advancing existing 

techniques and methodologies, and I frame the exercise as addressing 

hypotheses based on a general proposition that CIs can be modeled as 

workflows that reflect requirements. My hypotheses are: 

 New requirements can be realized in existing applications by 

composing new workflows onto existing workflows. 

 Such compositions can be implemented via the injection of policies, 

which themselves consist of a decision that selects between alternative 

workflows. 

 The expression of a policy as a DSL enables stakeholder participation in 

the process of realizing requirements. 

 Policy injection can be performed on a deployed application, thereby 

realizing stakeholder requirements quickly and accurately. 
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1.4 Contributions of this Dissertation 

The contributions of this dissertation derive from proving or disproving 

the hypotheses, particularly in the context of the PALMS case study described 

in Chapter 5. They include: 

1. An engineering approach to the realization of stakeholder 

requirements in SOA-based cyberinfrastructures (CIs) via runtime 

policy injection 

2. A demonstration of a SOA-based CI that enables runtime policy 

injection 

3. A demonstration of the creation and use of Domain Specific 

Languages (DSLs) to articulate injectable policy 

4. An evaluation of runtime policy injection (in the context of PALMS) 

5. An evaluation of the use of DSLs (in the context of PALMS) 

6. Insights for improving the performance of injected policies and 

widening the stakeholder audiences they address 

1.5 How to Read this Dissertation 

The bulk of this dissertation is devoted to explaining the foundational 

underpinnings of PDD (Chapter 4), a case study that demonstrates PDD 

(Chapter 5), and an evaluation of PDD as implemented in the case study 

(Chapter 6), as shown in gold in Figure 2. 
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Because PDD addresses requirement composition at such a 

fundamental level, I devote significant time and material to describing the 

state of the art (Chapter 2) and comparing PDD’s results to existing 

contributions (Chapter 7). Additionally, Chapter 7 delivers numerous insights 

into how fundamental PDD features can be supported through additional 

work, and how PDD itself can be improved in the future. 

For grounding and efficiency of discussion, I frame much of this work 

relative to the GetStudyList workflow, which is a simplification of a common 

workflow found in the PALMS case study, and which is described in Chapter 3. 
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Each chapter builds on the material presented in previous chapters, so 

a straight-through reading of chapters will result in a clear understanding of 

PDD fundamentals, their implementation, and the evaluations and 

comparisons at the end. 

For a simple understanding of how PDD works and its implementation in 

the PALMS case study, reading Chapter 4 and Chapter 5 is sufficient. 

Note that sections are liberally cross-referenced, so reading for 

targeted information is feasible. 

1.6 A Vision of SOARS in a PDD World 

As described in Section 1.2.1, SOARS was built more than 35 years ago, 

and replaced manual processes that were simpler than many of today’s 

processes – they collected less data, involved fewer steps and contingencies, 

involved fewer stakeholder groups, and had lower expectations regarding 

flexibility, scalability, availability, robustness, and evolvability. 

Were SOARS to be implemented today, it might be implemented as a 

CI due to the large numbers and types of stakeholders now found in a 

university, the need for high availability and scalability, and the need for 

alignment between the capabilities of CIs and stakeholders requirements. 

Whereas the SOARS of 1975 was framed as a productivity tool for 

university administration, a modern SOARS would likely be framed as an 

infrastructure supporting a vibrant, highly interconnected, and dynamic 

university community. To the extent that modern SOARS could evolve to 
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accommodate stakeholder requirements on a timely basis, the community 

would thrive (as described in Section 1.2.1 and exemplified in Chapter 6). 

By structuring modern SOARS as a collection of reusable, hierarchically 

defined workflows using PDD principles, SOARS itself would represent a class of 

applications, where a particular instance would be derived by coupling 

SOARS workflows (created in the static domain) with a set of policies that 

coordinate the workflows (created in the dynamic domain) – stakeholder 

requirements would be realized quickly and with high fidelity through policy 

injection in the dynamic domain.  

Under PDD, the SOARS technical staff’s job would be to factor an initial 

set of stakeholder requirements into workflows, then seed the policy set to 

bind workflows according to those stakeholder requirements. To the extent 

that follow-on requirements and requirement changes represent constraints 

on existing workflows or compositions of new or existing workflows and systems, 

policy changes represent application evolution at low development cost and 

deployment latency.  

Given this, policy programmers (described in Section 1.3.3) represent a 

critical role that enables an alignment between stakeholder requirements and 

CI capabilities by positioning stakeholders themselves as integral to both the 

definition of requirements and the timely and correct implementation of 

systems based on principles of PDD.  
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As a result, modern SOARS could be much more responsive to new and 

changed stakeholder requirements than the SOARS of 1975, even as the CI 

scales to meet the demands of new and existing stakeholder groups. For 

stakeholders, the result is greater, more effective, and more timely 

collaboration. 

1.7 Summary 

In this introduction, I framed the critical problem of rapid realization of 

stakeholder requirements in terms of system evolvability, and posed my 

methodology, Policy Driven Development (PDD), as a means to address 

evolvability in large scale systems. I briefly described existing policy and non-

policy approaches that fail the challenge in one way or another, and I 

propose my PDD vision where policy programmers collaborate with 

stakeholders to quickly and accurately realize new and changed 

requirements by defining and injecting policies into running systems. As a straw 

man, I described the ancient SOARS system, which was not easily evolvable – 

in subsequent chapters, I revisit this example to illustrate evolvability in resulting 

from existing approaches and PDD. 

In the next chapter, I survey existing approaches and explain how they 

come up short against the evolvability challenge; an explanation of the PDD 

solution begins with Chapter 3. 
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CHAPTER 2 

EXISTING APPROACHES TO CHOICE AND COMPOSITION 

The problem of realizing requirements quickly and efficiently in 

computer systems arrived with the creation of the first computer system, and a 

great deal of attention has been paid to defining and improving theories, 

methodologies, techniques, and processes that bear upon creating these 

systems. They address defining what a system is, how requirements are 

gathered and transformed into systems, how systems are organized and 

modeled, how models are transformed into working code, how code is 

deployed, and proving the correspondence between all of these results and 

the original requirements. In one way or another, each of these issues bears 

on achieving or maintaining crucial alignment between system requirements 

and their implementation, even as a system evolves to realize new or 

changed requirements. 

A dominant paradigm for software development is to bind 

requirements to system design and software coding early in the authorship 

process, and to deliver and deploy verified and validated software as the final 

product. In both waterfall and agile processes, requirements are factored into 

designs, designs are evolved into workflows, workflows are coded as 

programs, and programs are tested and deployed monolithically or in 

modules. As explained in Chapter 1, the insight of PDD is to bind new and 

changed requirements (as workflows) to base workflows late in the authorship 
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process – such workflows can be constructed and injected into delivered 

software even as the software executes. 

Under both early and late binding paradigms, the nature of the 

junction between a base workflow and an injected workflow is key. Figure 3 

shows this relationship as a UML class diagram (explained in Appendix A), 

where policy injection addresses the association of new workflows 

(representing new requirements) with existing workflows (representing existing 

requirements). It includes the criteria (i.e., a decision) and composition rules 

for doing so – a decision determines whether an injected workflow (or which 

of possibly several workflows) is executed. Additionally, while workflows express 

activity sequences, decisions and computations encoded within the workflow 

may depend on state maintained by or for the workflow. Consequently, 

injection of an independent workflow is strongly tied to the injection of 

independent state. 

In this dissertation, I describe how PDD addresses the foundations and 

implementation of late bound workflows via policy injection, which in turn 

enables rapid, stakeholder-centric system evolution. In this chapter, I examine 

existing methodologies and technologies as contributions tuned to support 

early requirement binding but which may apply to a late binding paradigm. 

Chapter 4 describes a foundational basis for PDD, and Chapter 5 presents an 

implementation case study. In Chapter 7, I revisit the existing contributions 

(described in this chapter) in direct comparison to the foundations and case 

study presented in Chapter 4 and Chapter 5. 
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To frame an examination of existing contributions, consider a straw man 

situation that demonstrates the value of late binding, as drawn from the 

SOARS example in Section 1.2.1. Under SOARS, students could register for 

classes on a single day called “registration day”, where each student would 

appear in an auditorium and visit a registrar (who would enter the student’s 

class selections into an online database) followed by a bursar (who would 

retrieve the class selections, print a bill, and collect fees). The bursar’s program 

would execute the workflow shown in Figure 4a, which included the hidden 

step of posting the student’s billing to the campus general ledger. From the 

students’ perspective, the success of “registration day” was critical because 

without class enrollment and (eventual) bill paying, they could not attend 

 
Figure 3. Requirements, Workflows, and Policy Injection 

Requirement

Workflow

New Requirement

New Workflow

Policy Injection

Decision Composition Rule

*

* *

*



36 

 

class. Similarly, from the separate perspectives of the registrar, bursar, and 

business office, unsuccessful, inconsistent, or incorrect data capture could 

result in lost revenue and thousands of extra hours of manual data entry, 

recoding, and auditing. As re-running a registration day would be prohibitively 

expensive, last minute SOARS changes to accommodate additional 

stakeholder requirements were forbidden. 

 

However, as with many systems supporting a growing and diverse 

stakeholder community, SOARS requirements changed frequently, and often 

included the integration of requirements from previously excluded 

stakeholders. In a hypothetical (but realistic) situation, the financial aid 
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department realizes on the day prior to registration that it could save 

hundreds of hours by receiving automatic notification of students that enroll in 

work study classes and have a printed bill. As shown in Figure 4b, this 

requirement could be recognized as a separate concern realized as the 

composition of a stateful workflow (consisting of checking the class list, setting 

a flag, and later deciding whether to send the notification) onto a base 

workflow. Correct composition requires, among other things, interspersing 

activities in the new workflow with appropriate activities in the base workflow. 

Using the technology underlying SOARS, the injection of this workflow 

would require reprogramming and re-deploying SOARS, which likely would not 

be allowed because of the enormous risks to other stakeholders should the 

registration day workflow be interrupted or broken (as could happen under 

even the simplest of program modification and re-deployment scenarios). 

Under a PDD scenario, the new requirement could be realized via workflow 

injection at runtime, with minimal risk to other stakeholders. 

This straw man example represents one of many high value scenarios 

addressable via late binding, and illustrates a valuable requirement that could 

not be anticipated by the SOARS programming staff and could not be 

addressed on a timely basis using traditional programming methods under 

acceptable risk/reward scenarios. Variations of this scenario include allowing 

injection of other workflows at the same time (e.g., automatically e-mailing a 

copy of the printed bill to parents), or replacing a portion of the base 
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workflow (e.g., posting to a different general ledger, depending on attributes 

associated with the student’s identity). 

To examine existing methodologies and technologies as contributions 

that may support this late binding paradigm I focus on how they support 

decisions and workflow composition, and organize them into the broad 

categories in Table 1.  

 

As shown in Figure 5, I begin by giving working definitions of the key 

PDD concepts of workflows and requirements (in Sections 2.1.1 and 2.1.2). 

Sections 2.2 through 2.5 address the contributions listed in Table 1. I end with 

Section 2.7, where I present a summary of how well these contributions 

address late binding, where gaps exist, and give a rationale for the 

capabilities developed in PDD as described in Chapter 4 and implemented in 

Chapter 5. 

Table 1. Contributions of Existing Methodologies and Technologies 

Category Section Importance of Contribution 

Models of Computation 2.2 give rise to fundamental approaches to 

computing 
Software Development 

Methodologies 

2.3 justify both strategic and tactical 

mechanisms that realize workflow 

injection 
Mechanisms 2.4 encode and realize workflow injection 
Patterns 2.5 encode and realize workflow injection 
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I evaluate each contribution according to how it could support the 

runtime injection of workflows (as representatives of requirements) and 

associated state, particularly regarding the implementation of key 

capabilities: 

 selection and execution of a workflow in a given context 

 composition of one workflow onto a base workflow 

 decomposition of a workflow action into a finer grained workflow 

 composition of workflows onto composed workflows 

 composition of multiple workflows in a given context 

 maintenance of persistent state by or amongst composed workflows 

 abstractions that enable the specification of workflow selection and 

composition, focusing on those that avoid entanglement of otherwise 

separate concerns 
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Figure 5. Chapter 2 Flow 



40 

 

 reflection features that enable workflow selection and composition to 

be specified at runtime 

 simulation of composed workflows and proof of relevant properties 

 deployment of workflow selection and composition 

I identify 17 different facets of this support, organized for convenience 

into five groupings: 

Workflow specification: the ability to specify a sequence of calculations 

as a unit separate from other workflows (separate workflows). A workflow 

interface is an abstraction that specifies semantics, and may be expressed as 

dependencies (e.g., typed parameter lists) and results (e.g., typed return 

values) independent of the means by which results are achieved. Contract 

enforcement is a mechanism that verifies that interface pre-conditions and 

post-conditions are met. 

Workflow Injection: the ability to compose a choice (including a 

decision and alternate workflows – workflow selection) into an existing 

workflow at a specified site. Choice on choice is the ability to compose a 

choice onto an injected workflow. Composite choice is the ability to evaluate 

multiple choices composed on the same site. Centralized concerns is the 

ability to compose one or more choices pertaining to a concern without 

incurring scattering or entanglement, and visualization is the ability to inspect 

and understand the composition relationship of two or more workflows. 

State Management: the ability to reference and modify state whose 

context is unique to a workflow instance (workflow unique), shared amongst 
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workflow instances (instance shared), global to all workflows (global), and to 

define state lifecycle that depends on its use (custom lifecycle) (e.g., dynamic 

allocation and deallocation). 

Verification and modeling: the ability to verify that a policy implements 

a requirement for all workflows (verification), and the ability to demonstrate 

system properties in the presence of injected workflows (model checking). 

Deployment: the ability to deploy choice reliably and authoritatively 

(secure deployment), and the providing a guarantee that a consistent set of 

policies is in use (consistent deployment). 

Note that while Figure 3 establishes the entities and relationships at 

stake, it leaves open the many possible strategies and details of how and 

when to instantiate and evolve them. 

Note that while this section discusses existing contributions that might 

apply to late binding, there are a number of related contributions that are 

either subsumed by contributions described in this section or are tangential to 

them. For completeness, I address a number of these in Section 2.6. 

For background specifically on computational models, software 

development methodologies, and other existing contributions, see Appendix 

B. 
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2.1 Background 

In this section, I describe how workflows are appropriate abstractions 

for implementing single requirements or collections of requirements in the 

context of computing systems, and that additional or changed requirements 

(including crosscutting concerns) can be implemented as workflows 

composed onto these base workflows. This discussion frames both the 

investigation of existing contributions in this section, the presentation of PDD 

foundations in Chapter 4, the case study described in Chapter 5, and the 

comparison of PDD relative to existing contributions in Chapter 7. 

At a high level, a policy can be considered to be a rule that defines 

how or when such a composition occurs, and may result in the addition of a 

new workflow to a base workflow, or the replacement of the base workflow 

with the new one. More concretely, a policy consists of a choice (or decision) 

that results in the insertion of a workflow into another workflow, where the 

choice is based on the state of the computing system, and it may select the 

execution one of a number of candidate workflows in addition to or instead of 

the base workflow. The term I use to encompass this choice and the resulting 

workflow is policy injection. 

The speed and efficiency of computer system evolution are strongly 

influenced by the process by which requirements are mapped to workflows 

and are then composed onto base workflows – these factors are key in 

maintaining high stakeholder productivity and satisfaction. In the following 

sections, I survey several approaches to realizing new and changed 
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requirements as policy-mediated workflows, focusing on minimizing the time 

required to deliver implementation of new or changed requirements to 

stakeholders, and maximizing the likelihood that the implementation will 

address the stakeholders’ true requirements. 

2.1.1 What is a Requirement? 

As defined in [36], the primary measure of the success of a software 

system is the degree to which it meets the purpose for which it was intended, 

and the purpose of the study of software requirements engineering is to: 

 identify the stakeholders and their needs (either stated or implied, 

including constraints) 

 model, document, and communicate these needs to interested parties 

(including implementers) 

 detect and resolve conflicting needs 

 participate in the verification and validation of designs and software 

that implement requirements 

Additionally, requirements engineers must reprise these activities as the 

stakeholder population and its requirements evolve.  

Commonly, requirements are categorized as functional requirements 

and non-functional requirements, though other taxonomies exist [37]. 

Functional requirements (FRs) relate inputs to outputs using some 

transformation, and can be expressed in a number of ways, including user 

stories [38], use cases [39], UML actor diagrams [40], formal documents [41], 

business process modeling [42], and many others. Non-functional 

requirements [43] (NFRs, or quality requirements; for example, information 

assurance [28] requirements such as security, safety, accuracy, confidentiality, 
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privacy, and availability) often express constraints on the inputs, outputs, and 

realization of functional requirements, and are often stated late in the 

requirement elicitation process. NFRs often crosscut either FRs or other NFRs. 

Considering that software systems are designed to realize requirements, 

discovery of FRs and NFRs are primary drivers of software cost and delivery 

time – in incomplete or late requirement discovery can lead to retracing of 

development steps, leading to cost and schedule overruns where the costs 

depend on the development process in use. For example, late requirement 

discovery in a waterfall process [44] may cause the rework of significant 

design and implementation work. Other processes anticipate the discovery of 

new requirements and the refinement or evolution of existing requirements, 

thereby reducing the cost of late requirement discovery: Agile processes [45] 

decrease the time required to address such requirements by producing 

frequent, incremental releases; and spiral processes [46] [47] partition the 

development process into stages organized as a restartable pipeline, which 

leverages and reuses work previously done. (These processes are not mutually 

exclusive, and a particular development may take advantage of the 

strengths of different processes at different times.) 

Numerous strategies [48] [41] have been created for the early 

elicitation, capture, and tracking of both FRs and NFRs. Particularly, elicitation 

of NFRs are notoriously difficult because they are often incidental to FRs, are 

difficult to quantify and test, must often be inferred during FR elicitation, or 

must be gathered using processes tailored to the application development 
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process. Among such tailored processes, [49] integrates a NFR-oriented view 

into UML class diagrams for an application’s logical model, thereby 

discovering relationships between FRs and trust, entitlement, decision points, 

and sources of authority, leading to improvements in use case and logical 

model coverage. [50] applies to early elicitation phases, and seeks to identify 

NFRs by discovering unwanted behaviors using misuse cases to identify 

triggers, assumptions, preconditions, threats, mitigations, and risks so as to 

account for them early in the application design. Other approaches elicit trust 

models [51], testing strategies [52] [53], model-aligned security [54] [55], and 

access control [56]. 

Elicitation processes that address domain-specific concerns (e.g., [49], 

[51], [54], [55], and [56]) produce requirements that can be considered as 

aspects composed on a requirement base [57] conceptually similar to the 

composition of aspects in Aspect Oriented Programming [32] [58], 

architectural connectors onto architectures [59], and features in Feature-

Oriented Software Development (FOSD) [60] [61] [62] [63] [64]. In each case, 

the composition of requirements, architectures, features, or code 

contemplates the integration of two concerns, where I identify one of the 

concerns as the base or target concern, and the other as the injected 

concern. 

Whereas the base concern is defined by a subset of FRs fundamental 

to the application or a class of applications, an injected FR or NFR embellishes 

the base concern by constraining the base concern’s behavior, adding 



46 

 

behaviors to it, or both. When injected requirement domains are agnostic as 

to the specific requirements or functions of a base set (for example, 

encryption between two points), they can be conceptualized independently 

of the base set except for associating them with particular requirements. In 

contrast, requirement domains may interact with base requirements (for 

example, fault detection or access control) by depending on contextual 

information consequent to base requirements or supplying context relevant to 

base requirements. Similarly, injected requirements may interact with each 

other. 

Ultimately, the objective of requirement elicitation is the construction of 

high level workflows that represent entities, activities, structure, and 

relationships embedded in the requirement set. Choosing base concerns 

relative to the requirement set carries over to defining base workflows, and 

similarly injected concerns correspond to injected workflows. Using the 

workflow analogy, concerns representing aspects of requirements can be 

refined into collections of sub-concerns having well-defined relationships 

between them. 

Given a set of concerns, the problem of choosing the base concern is 

closely related to the well-known problem of the dominant decomposition 

[65]. Choosing one concern as the base drives the definition of injected 

concerns relative to the base. To the extent that injected concerns compose 

cleanly onto the base, the underlying system can be understood, built, tested, 

and maintained efficiently in modular fashion. Strict modularity is violated 
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when an injected concern depends on some property of the base concern or 

it must be injected onto multiple sub-concerns of the base. Such injected 

concerns are called dependent and crosscutting, respectively. A poor choice 

of base concerns leads to many dependent and crosscutting concerns, 

resulting brittle and entangled systems. Discovery of crosscutting concerns 

late in the requirement elicitation process often causes extensive design 

rework in redefining the base concern (and injected concerns) to maximize 

modularity and minimize entanglement. 

Additionally, the detection and resolution of conflicts between 

requirement sets is an active area [66], as is the detection and resolution of 

feature interactions in FOSD [61]. Furthermore, complex requirements can be 

decomposed into simpler requirements using various strategies [39] [67] that 

ultimately produce sets of possibly interacting requirements. Given a set of 

finely grained requirements or features, complex requirements and features 

can be constructed using compositional calculi [68] and goal orientation [67]; 

finely grained requirements and features can be reused in multiple 

compositions. 

Changes to requirement sets can take a variety of forms, ranging from 

adding new concerns, removing concerns, or altering existing concerns. Such 

changes can be reflected in existing workflows by altering the workflows to 

reflect the new requirement base, or by composing new workflows onto the 

existing workflows, where the resulting workflows provide additional 

functionality or replace existing functionality. 
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2.1.2 What is a Workflow? 

There is wide disagreement regarding the definition of a workflow, as 

the term serves a number of interests and purposes. A simple definition 

compatible with the viewpoints of most interested parties is presented by the 

creators of the Orc [69] workflow orchestration language:  

A workflow consists of a set of activities generating output in the 

form of data or events which may trigger further actions. These 

activities can be executed in sequential or parallel order. 

In Orc, data is an abstract container passed between activities, and an 

event is a container with no content. 

I adopt YAWL’s [70] complimentary definition of activity:  

A description of a unit of work that may need to be performed 

as part of a workflow 

A workflow activity can be characterized as a computational link 

between pre-conditions and post-conditions linked to the fulfillment of one or 

more requirements [71]. 

I observe that a procedural view of a workflow is an orchestration of 

activities that satisfies the data flow and control dependencies for a task [72], 

and that an activity itself may be implemented as a workflow, which fulfills the 

workflow activity’s pre- and post-conditions.  

Equivalently, I observe that a functional view of a workflow is a relation 

that transforms one set of inputs into a set of outputs. Conversely, a set of input 

channels is related to a set of output channels via a transform represented by 
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a workflow -- the main function of a workflow is to pair valid inputs with valid 

outputs.  

Whether the workflow definition drives the input and output channel 

definitions, or vice versa, the result is the same -- the procedural and 

functional perspectives are duals of each other. 

As in [71] [73], the relationship between activities can be modeled as a 

graph, where each activity is represented as a node, and an edge connects 

two nodes iff one node (called a source) emits data that the other node 

(called a target) consumes and acts upon. Therefore, the target depends on 

data from a source – an edge is directed, and indicates the direction of flow 

from source to target. A source can be defined to connect to one or more 

target, and can be defined to emit data to some or all of its targets 

simultaneously. Similarly, a target that accepts data from multiple sources can 

be defined to execute upon the receipt of data from some or all sources. Any 

target receiving data executes in parallel relative to other targets receiving 

data. A choice node is a source that is defined to emit data to some targets 

and not others based on some criteria evaluated at runtime.  

Composition and decomposition of activities are described by [69], 

[73], and [74], where an activity can be decomposed into a self-contained 

workflow (called a subflow) or can be an atomic operation. Conversely, a 

workflow can be considered an activity in another workflow. As such, 

workflows follow a Composite pattern [33] (as briefly described in Appendix C) 
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where an atomic activity is the leaf, a workflow is the composite, and an 

activity is the component. Workflows can also be considered independent 

objects (as in a workflow management system [75]) and can be reused as 

components of other workflows. Given that a particular workflow represents a 

process at a given level of abstraction, the decomposition of an activity 

represents the refinement of the workflow via increased activity granularity, 

with data flows defined accordingly. 

This general description of workflows is common to many workflow 

models (e.g., UML Activity diagrams [40], Business Process Modeling Notation 

(BPMN) [76], the Action Port Model [77], and Petri Nets [78]), where each 

model provides embellishments (e.g., exception handling, typed data 

exchange, interface definitions, and grouping notations) and naming 

conventions (e.g., fork-join, and-split, and-join, or-split, and or-join) that 

facilitate and emphasize different abstractions important to different 

communities (e.g., visual modeling, reduction and correctness proofs [79], 

and liveness and safety proofs). 

Generally, the connections between nodes and the behavior of each 

node are defined at application design time pursuant to application 

requirements. Cyclic paths represent loops and exceptions, and a particular 

workflow can often be transformed into equivalent workflows that are 

semantically identical but are simpler to analyze or maintain. In [74], rules are 

given for normalizing workflows by eliminating redundancies and for 

constructing views as workflow subsets, though such transformations may 
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produce misleading semantics if dynamic workflow behavior is not accounted 

for. 

Insofar as a workflow activity is defined by its inputs, outputs, and 

action, one version of an activity is interchangeable with another so long as 

both versions accept the same inputs and produce the same outputs – their 

actions need not be the same. Furthermore, there is no restriction on the 

external resources (e.g., state) a workflow activity can access or change in 

order to perform its function, though some workflow systems attempt to 

document or constrain such access. Considering that a workflow activity can, 

itself, be decomposed into a workflow, the same relationships hold for an 

entire workflow: a workflow can be characterized by its inputs, outputs, and 

action, and can be replaced by an equivalent workflow. 

Note that while a workflow identifies data flow and control flow 

dependencies, its definition allows for the existence of multiple simultaneous 

workflow instances, each processing different or similar data. The state of a 

workflow instance is composed of a) the data flows and control flows 

spawned by an initial workflow activity, and b) a collection of workflow state 

variables. Workflow state variables come into existence upon the execution of 

an initial workflow activity, are available to constituent activities, and are 

extinguished when all constituent activities have ceased. 

For acyclic workflows, the dependency relationships between activities 

are apparent by inspection. This may also be true for workflows containing 
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cycles, though cycles introduce ambiguity as to valid sequences of data 

exchanges between activities. State machines may be used to specify 

constraints on the ordering and content of data exchanges, thereby 

disambiguating the workflow. The sequence of valid exchanges amongst 

activities is a protocol. 

Based on this, I observe that a workflow activity and a workflow are 

interchangeable, and that the SOA definition of a service fits both definitions, 

too. Consequently, I use the terms workflow, workflow activity, relation, and 

service interchangeably as duals where: 

 Workflow emphasizes a description of data and control flow, as is useful 

in the business domain 

 Workflow activity emphasizes a component of a workflow that may be 

decomposed 

 Relation emphasizes the formal properties of workflows as 

transformations of a domain (inputs) into a range (outputs) 

 Service applies to an implementation domain (e.g., SOA), and 

emphasizes interface specifications, protocols, and functionality 

2.2 Models of Computation 

Models of computation [80] present the principles important in the 

realization of a calculation without attending to details of concrete 

implementation – they include machines and process algebras [81].  

Machines (described in Sections 2.2.1 and 2.2.2) represent a set of rules 

that combine to realize a computational result.  

Process algebras [81] (described in Sections 2.2.3 and 2.2.4) are logic 

systems that enable a rigorous characterization of a workflow for the purpose 
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of reasoning about their behavior, equivalence, and properties [82]). They 

describe both serial and parallel execution in small and large systems, 

focusing on interactions between processes, including processes distributed 

across a computing network. Considering that a workflow can be viewed in 

terms of both control flow and the transitions of ephemeral or persistent state, 

process algebras support reasoning about both control flow and state 

maintenance. A workflow can affect state private to a single workflow 

instance, shared amongst multiple workflow instances, or shared amongst 

different workflows. Process algebras may support any or all of these modes. 

A number of computation models attempt to describe workflows, each 

from a different perspective, and many computation models provide 

foundation for other computation models.  

In this section, I describe prominent computational models, and discuss 

how they address (and fail to address) decision making and workflow 

composition (including associated state management), which are central 

requirements of PDD’s policy injection. The models I choose are foundational 

for classes of machines and process algebras that focus on describing control 

and data flow, specifically pertaining to addressing computations, process, 

and structure. Other models address abstractions that don’t apply directly to 

PDD-based policy injection (e.g., StackAnalyzer and SCR) – [83] presents a list 

of over 100 process algebras. 
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2.2.1 Turing Machines 

A Turing machine [84] is a very basic process description briefly 

explained in Section B.1.1. The concept of workflow state is related to the 

concept of a Turing machine state, but they are not the same. Abstractly, a 

workflow state exists as parameter values referenced by workflow actions and 

decisions. As Turing machines do not directly encode many parameterized 

actions and decisions, a state machine definition contains (often very large 

and complex) networks of states to represent the workflow state concept. In 

essence, networks of Turing machine states are used to represent 

combinations of workflow control flow and state values. As such, the 

realization of an application requirement may be encoded as a Turing 

machine, but would not be easily written or maintained.  

A decision in a Turing machine is represented by a transition function, 

where a new state is chosen (deterministically or not) based on the current 

state and the current input. Intuitively, composition of two Turing machines 

(representing two workflows) can be achieved using algorithms as in [85] and 

[86]. Hypothetically, while a Turing machine state itself can be decomposed 

into a Turing machine, there is little, if any, support for this in standard Turing 

machine definitions. 

Requirements are bound into Turing machine programs at the time the 

machine is created. Because standard Turing machine definitions do not 

provide facilities for runtime composition of workflows, runtime workflow 

injection is not supported. 
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2.2.2 Petri Nets 

A Petri Net [78] [87] is a graphical notation briefly explained in Section 

B.1.2. Under Petri Nets, a transition is an abstraction of a decision based on 

abstractions of conditions (as input places) and producing abstractions of 

results (as output places), with all input and output places representing roles 

relative to the decision. A place abstraction can represent state shared 

between workflow instances or amongst all workflows, but does not 

conveniently represent state for a single workflow instance. A place can, itself, 

be decomposed into a lower level abstraction implemented by a Petri Net, 

where each of the place’s incoming and outgoing arcs are mapped to 

places in the lower level Petri Net [88]. This amounts to an encapsulation that 

enables modeling of state as workflow and vice versa. 

Using the service algebra proposed in [89], Petri Nets can be 

composed by using the following composition operators: ordered sequential, 

unordered sequential, alternative choice, iteration, parallel (with 

communication), join, service selection, and refinement. With the exception of 

service selection and refinement, each operator gives rules and semantics for 

combining two independent workflows. 

The service selection operator is defined to choose amongst alternative 

workflows according to an independently specified selection function. In [89], 

the selection function is defined to operate in a Web Services context; 

accordingly, the selection operator queries each workflow for information 

about itself, and then calls the selection function to evaluate the workflow 
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properties and choose a workflow. In a more generalized operator, the 

selection function would base its decision on whatever data the Petri Net 

runtime system might expose to the selection function.  

The refinement operator is defined to substitute a workflow for an 

operation represented by a transition, thereby creating a specialization of the 

original workflow via hierarchical composition. This is accomplished by 

mapping the transition’s input and output places to input and output places 

within the substitute workflow (as distinct from [88], where a place is 

replaced.) This enables a base workflow to act as a template for a class of 

workflows. When used with the service selection operator, the refinement 

operator allows the selection from an array of workflow alternatives derived 

from a workflow template, which defines the workflow interface.  

Both place- and transition-based refinement are accomplished via the 

mechanical manipulation of the Petri Net graph, so there is very little 

information on which to judge semantic compatibility of the refinement 

workflow as compared to its injection site. A refinement operation seeks to 

maintain arc connections without regard to the associated place or transition 

semantics. 

Processes encoded as Petri Nets often integrate multiple concerns that 

themselves can be modeled by separate Petri Nets. The challenge of 

integrating separate concerns expressed as Petri Nets is partially addressed by 

the refinement operations proposed by [88] and [89], where [88] replaces a 
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place (representing a data flow) with a workflow, and [89] replaces a 

transition (representing a control flow). In either case, they inject a single 

workflow at a single location in a base workflow and do not address the issue 

of injecting multiple workflows coordinating activities via shared state. View-

oriented composition and decomposition techniques proposed in [74] 

address this, but for lack of a convenient integration language, they fail to 

create an integration path that itself is intelligible and maintainable in a 

programming setting.  

Petri Nets (including the extensions described above) are statically 

defined process models, and as such, implementation of new or changed 

requirements involves a manual modification and release cycle. While the 

combination of the selection and refinement operators enable runtime 

decisions to determine actual workflows executed, these operators are 

placed statically in a workflow and provide no facility for after-delivery 

decisions that define which workflows to inject and where to inject them. 

While Petri Nets and related service algebra can express and compose 

complex, stateful process flows, they are poor abstractions for application 

authorship, as the abstractions of place, arc, and transition are too fine 

grained for general programming. Additionally, they lack contract 

enforcement (e.g., type and range safety), organizational abstractions (e.g., 

classes and modules) crucial for efficient system development and 

maintenance, state maintenance for workflow instances, and convenient 

features for mathematical calculation. However, Petri Nets are useful for 
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modeling concurrent systems and are well supported by modeling and 

simulation tools. For instance, by evaluating all possible markings for a Petri 

Net, simulation tools can determine liveness (where there is always at least 

one transition that can fire), safety (where no place ever contains more 

tokens than it can hold), and domain properties of interest as constrained by 

limits of time and space related to evaluation state space explosion. 

Petri Nets have been extended in numerous ways, including facilities for 

modularization. Notably, Colored Petri Nets [90] (CPNs) enable types and 

data content attributes for tokens, enable types for places, allow conditions to 

specify whether an arc incoming to a transition can contribute to the 

transition being enabled, and allow expressions that compute tokens 

outbound from a transition. Consequently CPNs are much more expressive 

than Petri Nets, but for the purposes of refinement and runtime workflow 

selection and composition, they have the same characteristics as basic Petri 

Nets. 

2.2.3 π -calculus 

π-calculus [91] is a process algebra briefly explained in Section B.1.3. 

Under π-calculus, decisions are modeled incidentally as conditionals 

executed within a process. A decision that chooses between workflows 

chooses between multiple process or channel references present in a 

message (already received by the process) [92], or sets a process reference or 

channel reference contained in a message (which is passed to a waiting 

process). While its dynamic channel and process definition features enable 
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clean implementation of a Strategy pattern [33], the universe of available 

strategies are those processes explicitly authored prior to program execution – 

they implement primitive forms of functors and polymorphism.  

While the channel abstraction is a convenient and flexible 

implementation of a data structure, π-calculus relies on derived languages 

(e.g., Pict [93]) to define persistence, encapsulation, or life cycles necessary to 

create separate, stateful concerns. Notably, [94] proposes the Piccola 

composition language, which seeks to create a new component by 

encapsulating an existing component (using so-called composition scripts), 

and supports the composition using Active Objects (which represent stateful, 

concurrent, distributed, and mobile processes), components, inter-object 

glue, mappings between object models, message-level reflection, and a high 

level syntax. Piccola envisions employing these features to define agents and 

enable their interaction; it does not envision the definition and runtime 

composition of agents foreign to the application. 

Because channel transmission and process invocation in π-calculus are 

bound at compile time, they represent instances of early binding not 

amenable to either composition of orthogonal concerns or the runtime 

definition and replacement of channels and processes. Additionally, channels 

modeled by π-calculus define the act of content transmission as atomic, 

thereby limiting opportunities for workflow injection at runtime via interception 

of messages in flight. Consequently, the implementation of new or changed 

requirements in π-calculus expressions (and derived languages) involves a 



60 

 

manual modification and release cycle. Furthermore, because 

implementation of independent requirements may require encapsulation 

transformations (per [94]), the implementation of more than a few such 

requirements may lead to significant application-wide entanglement. 

Note that [94] observes that for an encapsulation-style composition, 

channel values contributed by the core component must be transmitted 

alongside of values contributed by the encapsulating component, yet must 

remain separate so as to maintain their separate concerns. This problem is 

solved in [94] by introducing separate name spaces for the two. Furthermore, 

state shared amongst multiple instances of the same workflow, and state 

global to all workflows can be implemented via channel references 

embedded in messages. 

While π-calculus does not support PDD’s concept of runtime-defined 

workflow injection, it offers insights into the features needed to support the 

composition of separate concerns, including the management of concern-

related state both during workflow execution and across workflow executions, 

state exchange between workflows, and syntax suitable for expressing 

composable concerns.  

2.2.4 𝝀-calculus 

λ-calculus is a process algebra briefly explained in Section B.1.4. Under 

basic λ-calculus, a workflow is created as a consequence of the expression 

reduction process, where a function can be reduced only if its arguments 
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have already been reduced to constants – if an argument is a function, its 

usage must be reduced to a constant before its value can be used. Choice is 

encoded as three clauses: a “decision” function, a “then” function, and an 

“else” function. The “decision” function evaluates to either a “true” function or 

a “false” function; the “true” function returns the “then” function, and the 

“false” function returns the “else” function. The function that is ultimately 

returned (by the “true” or “false” function) is the result of the choice, which is 

then further evaluated. The “decision”, “then”, and “else” functions can be 

supplied as part of the authored application, as a text string assembled at 

runtime, or as a text string fetched at runtime from external store. As such, 

while the choice calculation can be specified either at the time of program 

authorship or at execution time, the actual decision site (and the program 

flow that results) is bound at execution time. 

Variables in λ-calculus exist to bind expressions and have scope local to 

an enclosing function (and whatever functions it defines). Consequently, 

basic λ-calculus simulates global state by using local scoping, and functions 

cannot have side effects that equate to changing this state. Practically 

speaking, this defeats the modularization that is necessary for decomposing 

an application into maintainable and reusable objects [25] [95], including 

process and agents. Additionally, λ-calculus has no concept of concurrent 

execution distinct from serial execution, as its main focus is on reducibility. 

Consequently, it provides no features addressing synchronization and variable 

consistency. Extensions to λ-calculus add support for concurrent execution 
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[96]. Functional languages such as Schema, ML, and Clojure add support for 

global-, module-, and thread-based variable scope, functions with side 

effects, and support for synchronization and variable consistency. 

Given this support, functional composition (including workflow 

modeling) is inherent in functional languages – combining two functions can 

be as simple as passing both to a third function, which then reduces the 

functions and combines their results. However, because variable binding and 

function calls are atomic at runtime, composition ultimately results from early 

bound decisions, and ad-hoc runtime composition of orthogonal concerns or 

runtime replacement is difficult. Consequently, the implementation of new or 

changed requirements in λ-calculus expressions (and derived languages) 

involves a manual modification and release cycle. Even though functional 

languages such as ML and Clojure provide encapsulation and polymorphism 

in the style of object orientation, integration of independent requirements into 

existing functions may still lead to significant application-wide entanglement. 

Under basic λ-calculus, higher order functional programming is 

enabled by allowing variables to contain functions, functions to be passed as 

parameters to other functions, and functions to return functions. This enables 

and leads to various strategies for expressing workflows more flexibly and 

readably than in other calculi. Notably, monadic programming [97] [98] 

focuses on λ-calculus-compliant techniques that implement workflows and 

support exception handling, sharing of state, mutable values, input/output, 

and non-deterministic choice. The main intuition in monadic programming is 
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that instead of a function   returning a result  , a function   returns a proxy 

function   that returns the result  , and   is bound to a variable internal to  . 

Therefore,   can return   on demand, but can also return other values   

bound to other variables internal to  , including error information, state 

information, logging text, and alternate results. Ultimately, a monadic 

expression (called a monad) can be transformed into a non-monadic λ-

calculus expression, though one that would be difficult to read or maintain. 

An example of monadic programming in Clojure is [99], which 

demonstrates a simple workflow that accumulates a log as it executes. 

Workflow steps are orchestrated by a decider function (called bindM in [97]), 

which interacts with the proxy function ( ) to set and fetch its variables, 

including both function results ( ) and internal variable ( ). While the decider 

function must execute the workflow steps as intended by the workflow author, 

it also interacts with the proxy function (or other functions) to implement either 

related or orthogonal concerns – such functions can be either first order or 

monadic in nature. Depending on the decider and how it interacts with the 

proxy functions, a decider can compose workflows onto a base workflow, 

cause replacement of steps in a base workflow, or inspect or alter values 

passed from one workflow step to another. 

Because of the scoping rules of λ-calculus, state maintained by a 

monad can be defined either within the lexical scope of the monad or within 

the scope of the proxy functions it engages. State can be shared between 

monad executions by either executing the monads within an outer scope or 
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by storing and retrieving it via an external entity (though, this would violate the 

intention that λ-calculus be free of side effects). Consequently, state can be 

shared amongst activities in a workflow, multiple instances of a workflow, or all 

workflows. 

While monads offer powerful ways of implementing stakeholder 

requirements by combining otherwise independent workflows or altering 

existing workflows, such monads (particularly the decider and proxy functions) 

are subject to the same early binding limitations as basic λ-calculus. 

2.3 Software Development Methodologies 

Anecdotally, over time, stakeholders’ expectations for the delivery time 

and maintenance cost for software systems has trended downward while their 

expectation for attention to NFRs has increased. Programming concerns were 

responsible for the development of early methodologies, including modularity, 

structured programming, and object-oriented programming. Recognition of 

the increasingly difficult and important task of requirement elicitation and 

management (reflecting more sophisticated and complex demands by 

increasingly diverse stakeholder communities) has helped drive modern 

methodologies, including object-oriented programming, and aspect-oriented 

programming.  

In each case, the practice of existing methodologies expects that 

system design and software coding are performed early in the authorship 

process, and lead to discrete testing and delivery phases. In this section, I 
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describe major methodologies that represent the mainstream of the evolution 

of software engineering, and focus on the degree to which each supports 

binding workflows late in the authorship process. 

2.3.1 Modular Programming 

As described in Section B.2.1, modular programming [100] enables the 

creation and maintenance of systems larger and more complex than the 

monolithic programming style of its time, it envisions a problem decomposition 

that is strictly hierarchical. As such, the implementation of crosscutting 

concerns eliminates many modular programming advantages by entangling 

separate concerns throughout a code base. Furthermore, the focus of 

modular programming is to ease the programmer’s job, without attending 

directly to the definition or implementation of stakeholder requirements. 

Consequently, requirement realization is subject to a process where the 

programming and re-delivery activity is the bottleneck. 

Though not envisioned in [100], an application can be updated or 

upgraded at runtime using techniques such as dynamic binding (e.g., 

Dynamic Linked Libraries), which enables alternative implementations of 

module-level abstractions. With sufficiently flexible interfaces and deployment 

planning, this enables programmers to replace a portion of an application 

without affecting the remainder of the application. 

However, this technique serves new and changed requirements only to 

the extent they can be implemented as variations of existing modules 
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orchestrated in existing workflows, and is subject to programming team 

bottlenecks. It does not bear directly on the realization of new requirements 

composed upon new or existing workflows, and does not avoid the 

programming and re-delivery bottleneck. 

2.3.2 Structured Programming 

As described in B.2.2, a major benefit of structured programming is the 

management of complexity of large applications via a divide-and-conquer 

approach. However, as with modular programming, it provides little support 

for the incorporation of crosscutting concerns (without entanglement), and is 

focused on binding requirements early in the application authorship process. 

Structured programming techniques can conflict with or support modular 

programming analyses, and can be used effectively to inform a fruitful 

modularization of application code. 

Note that while structured programming does not address or provide 

mechanisms for late binding of code or requirements, it provides an analysis 

framework that justifies the injection of a decision as a choice coupled with a 

workflow. In a top-down analysis, it enables reasoning about where such an 

injection can occur; in a bottom-up analysis, it enables reasoning about the 

effects of an injection. 

2.3.3 Object Oriented Programming 

As described in Section B.2.3, Object-oriented programming [101] 

(OOP) uses of interfaces to define an object and uses runtime call resolution 

to promote the loose coupling of objects both at design time and at runtime. 
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While the mechanisms and benefits of OOP as compared to modular 

programming are extensive, a key enabler of workflow expression is the object 

interface definition, which has a similar form and function to interfaces found 

in modular programming. Additionally, data encapsulation and multiple 

object instantiation support enable the creation of multiple, independent 

workflows, thereby supporting the decomposition abstraction of structured 

programming. 

OOP’s polymorphism and runtime call resolution support the design 

time and runtime selection of one workflow over others. At design time, given 

the existence of multiple objects implementing a common interface, one 

workflow is chosen over another by explicitly instantiating an object 

corresponding to the workflow – leveraging the common interface allows the 

exploitation of common semantics, and leveraging polymorphism allows the 

exploitation of common base functionality. At runtime, the choice of 

workflows occurs via subtyping, where fungible workflows are represented by 

a base class, which resolves to a real object when accessed at runtime. 

(Commonly, a Factory pattern [33] is used to realize such an object.) As such, 

this subtyping implements a choice, where the decision is made during 

instantiation in the factory, and the workflow is executed at runtime when its 

method is called – this amounts to a distributed Strategy pattern [33] (as briefly 

described in Appendix C).  

As with modular programming, the focus of OOP is a hierarchical 

decomposition of abstractions, which can be discovered using Object 
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Oriented Analysis and Design [102] and Model Driven Design [103] techniques. 

Additionally, the decomposition ultimately encodes workflows, expressed as 

calling relations between objects. While OO processes and features enable 

design, deployment, and maintenance of larger, more complex applications 

that satisfy requirements from larger and more diverse stakeholder 

populations, the implementation of crosscutting concerns leads to scattered 

and entangled code bases just as with modular programming. 

The combination of OOP’s data encapsulation, object instantiation, 

and subtyping facilities creates the means to associate state with workflows 

both for the lifetime of the workflow, for access by groups of workflows, and 

for access by all workflows. Additionally, the dynamic creation and 

destruction of objects enables state lifecycles customized to OOP-based 

workflow abstractions. 

While the OOP interface and messaging paradigm combine to create 

loose coupling between objects at both design time and run time, such 

relationships are established by programmers, are essentially bound in the 

programming process, and ultimately represent requirements that are heavily 

refactored during the OOP design and implementation process. Additionally, 

the hypothetical exchange of messages between object is most often 

implemented as function calls not subject to ad-hoc interception. 

Consequently, as with modular and structured programming, the realization of 

new and changed requirements occurs only through programming and re-

delivery activities, which remain bottlenecks. 
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2.3.4 Aspect Oriented Programming 

As described in Section B.2.4, Aspect-oriented programming (AOP) [32] 

has a number of implementations, each defining its own join point model, 

pointcut language, and advice language, and the particular capabilities of 

AOP vary with the implementation. For example, under AspectJ, it is possible 

to specify the lifecycle of variables declared private to an aspect: persistent 

across all executions, associated with an advised object, and persistent across 

a control flow. 

The use of AOP improves maintainability of complex code bases by 

maintaining separate concerns as distinct aspects, thereby promoting 

reasoning about each concern in isolation, and avoiding expensive re-

modularization that occurs when entangled concerns are (manually) 

injected. The decision regarding whether to compose advice into a workflow 

is made by an aspect weaver – it matches aspects’ pointcuts to target 

workflows, and injects advice at matching locations.  

Most AOP implementations perform weaving during the compile phase 

prior to code deployment. As with OOP, the implementation of requirements 

via AOP composition and the relationships between aspects and base 

workflows are defined and maintained by programmers, and the realization of 

new and changed requirements occurs only through programming and re-

delivery activities, which remain bottlenecks. 
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Furthermore, the high specificity of pointcuts enables the composition 

of advice throughout base code, which creates de-facto interfaces on which 

advice relies, but which can be easily and accidentally perturbed by 

common code maintenance activities performed by oblivious base code 

programmers – the result is invalid aspect compositions that result in 

application breakage that can be difficult to discover, diagnose, and repair 

[104]. Additionally, as either base code or aspects evolve, the independence 

of aspect code (relative to the base code and other aspects) can make a 

comprehensive understanding of an application more difficult than with non-

aspect implementations – casual inspection of an advised code base does 

not reveal the capabilities of the aspect-woven application. While some AOP 

communities have created visualization tools [105] that inform interactions 

between base code and aspects, these tools are not available for all AOP 

implementations. 

Experimental approaches to weaving create base/aspect 

compositions either at program load time [106] or dynamically [107] [108] 

[109], while the code executes. The load time approach results in the 

fulfillment of aspect-implemented requirements only by restarting all or part of 

an application. Both approaches require the intervention of programmers 

intimately familiar with the base workflow code and fluid and loosely defined 

interfaces – all of which preserves bottlenecks caused by the programming 

process. 
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Finally, while AOP provides for the composition of workflows onto a 

base workflow, it does not provide for composition of aspects on aspects, as 

discussed in [110]. Consequently, aspect weaving does not address the 

composition of requirements upon requirements. 

AOP is one facet of an overall philosophy that maintains separate and 

crosscutting concerns distinct from base concerns, thereby enabling 

reasoning about individual concerns distinct from other concerns. It represents 

programming design and implementation strategies supported by Aspect 

Oriented Requirement Engineering (AORE) [111], Aspect Oriented System 

Architecture (AOSA) [112], and a host of similarly motivated activities aimed 

at different facets of application development (e.g., Aspect Oriented 

Software Design (AOSD) and Aspect Oriented Design (AOD)). In particular, 

AORE addresses requirement decomposition and factoring, and leads to the 

formulation of corresponding base and separate workflows that enable PDD 

to leverage dynamically composed workflows effectively. 

2.4 Mechanisms 

While the basic pattern for a choice is a decision and a consequent 

workflow, the concept of choice is so basic to both imperative and functional 

programming that it occurs in nearly all designs and programming constructs. 

In this section, I survey major choice mechanisms, and examine how they 

relate to the realization of workflows injected at runtime. First, I inventory 

simple and fundamental mechanisms (in Section 2.4.1) that serve both the 

imperative and declarative styles (in Section 2.4.2). Then, I describe how 
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choice is injected into workflows at runtime as managed by execution 

frameworks (in Section 2.4.3) and assisted by policy engines (in Section 2.4.4). 

Finally, I show how workflow context is maintained in common distributed 

systems (in Section 2.4.5). 

2.4.1 Fundamental Mechanisms 

The most basic forms of a choice are represented by the conditional 

branch or jump table usually present in machine-level instruction set 

abstractions. In modern imperative languages, they have the form of if(), 

switch(), goto(), and related statements; they represent a close coupling 

between such decision predicates and an associated workflow. In the 

tradition of CSP’s [113] external choice, predicates are based on parameters, 

local variables, global variables, application state, environment state, 

property files, database fields, or calculations based on these values. 

The idea of choosing a workflow based on decision predicates serves 

both algorithmic function (as might occur in a bubble sort) and in the 

composition of separate concerns. My dissertation pertains to the latter. 
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Examples of values that drive predicates to select amongst workflows 

at runtime include: 

 Constants available at compile time 

 Attributes in directories (e.g., permissions, owners, and groups for files in 

a file system) 

 Permissions in property files (e.g., Tomcat’s catalina.policy file per JAAS 

[114]) 

 Attributes and permissions in registries (e.g., Microsoft’s group policies 

present in an Active Directory, Facebook’s privacy settings, and Oracle 

database permissions) 

 Attribute Based Access Control (ABAC ) and Role Based Access Control 

(RBAC) [115] 

Predicates based on resources external to an application are a 

common means of selecting amongst workflows. However, predicates 

encoded into conditional branches and jump tables are defined at the time 

of design and coding, as are the workflows they select. Consequently, they 

cannot be changed at runtime to reflect new or changed requirements. 

Note that many choices pertain to controlling access to a particular 

resource (e.g., a file or process). Access control predicates often reference 

identity proofs (e.g., credentials) authenticated by some authority. The 

process or details related to generating these proofs are not part of this 

dissertation. 

Other choices pertain to the selection of a workflow appropriate to a 

configuration or circumstance (e.g., look and feel driven by Windows’ group 

policies). 
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2.4.2 Declarative Representations 

Because of the close connection between a decision and a workflow, 

choices are often naturally posed in imperative terms recognizable as flow 

diagrams.  

2.4.2.1 Functional Languages 

However, choice can be represented declaratively, where flow is 

abstracted as dependence relationships (and inferred by an execution 

engine), as is common in functional programming languages (e.g., Clojure 

[116] and Orc [69]). In this context, the realization of a requirement derives 

from the composition of one function with or onto another, where the 

composed function represents a decision and an alternative function 

(analogous to a decision and alternative workflow in an imperative 

construction).  

For example, a choice encoded under Orc can declare a predicate 

and some number of alternatives. Unlike an imperative interpretation, a 

declarative interpretation may or may not execute all alternatives; based on 

the predicate, it propagates the result of only one alternative (and assumes 

that all alternatives are side-effect free). Functions defined in Orc (and Lisp 

descendants) are specified as data, which may be specified at the design 

and coding phase or at runtime. Consequently, realization of new or changed 

requirements in an arbitrary workflow can occur at runtime – existing code 

(either as source or as an existing function reference) would be composed 

into a new function incorporating a decision and alternate workflows. 
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However, to date, such declarative systems often lack a means to specify 

where in an existing workflow to inject a choice, or a mechanism to form this 

composition at runtime once a site is identified. 

2.4.2.2 Modeling Languages 

Modeling languages are often used as declarative representations of 

application structure or sequence. Message Sequence Charts [117], for 

example, define protocols involving role abstractions – choice takes the form 

of alt blocks, where the decision is a predicate and alternate workflows are 

sub-protocols. Similarly, diagrams created using Uniform Modeling Language 

(UML) [40] (e.g., class and object diagrams) allow guards written on 

relationships between entities – guards are written in Object Constraint 

Language (OCL), and enable or disable the guarded relationship. Because 

models usually depict only partial structure or behavior, composition of 

models to form an executable system is often impossible or undecidable. To 

the extent that modeling languages are directly executable (as base and 

injectable workflows that can be composed at runtime), the question of how 

to combine predicates arises should multiple concerns affect the same 

workflow. When modeling languages allow the composition of either structure 

or sequence, one option is to combine such decisions nondeterministically, as 

an internal choice under CSP, which leads to unmanageable state, entity, 

and relationship explosions as seen with Turing machines and Petri Nets. 

Modeling languages that support imperative representations (e.g., 

Business Process Modeling Notation (BPMN) [76] and UML via sequence, state, 
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and activity diagrams) represent choice explicitly as decision blocks that 

encode first order logic to distinguish between alternative workflows, and can 

be augmented with other logics (e.g., temporal logic [118]). Composition of 

such models has been demonstrated for UML state diagrams [119] using 

aspect-oriented techniques, but has not been demonstrated as a runtime 

technique. 

2.4.2.3 Structured Query Language (SQL) 

Structured Query Language (SQL) is a declarative language suited to 

the manipulation of relational databases (RDBMS). As such, SQL statements 

fulfill aspects of stakeholder requirements projected onto the database 

domain. Whereas SQL statements can be statically coded in applications 

(and are therefore resistant to runtime modification), most SQL engines enable 

the storage of SQL statements as views residing in the RDBMS. In this form, an 

SQL statement is available for requirement composition via modifications to its 

select and where clauses, which can be performed at runtime. Whereas SQL 

statements represent partial requirements, the composition of constraints via 

these clauses is not well supported because of the difficulty of parsing and 

regenerating SQL statements. Fully supporting requirement realization cannot 

be accomplished via SQL alone. 

2.4.3 Execution Frameworks 

In this section, I describe how choice and composition are 

implemented in common execution frameworks that integrate loosely 

coupled services (and therefore could present policy injection features), or 
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explicity evaluate and enact policy, or both. While such execution 

frameworks comprise a diverse collection, the frameworks presented below 

are representative of the class. 

2.4.3.1 SQL Engines 

SQL engines evaluate an SQL statement according to a basic three 

activity workflow: a) client issues a query, b) engine evaluates the query, and 

c) client processes the results. These engines allow the declaration of 

constraints and triggers as a means to compose supplemental workflows onto 

the base workflow. A constraint is a choice composed onto an operation that 

stores a field value, where the decision verifies that the value is semantically 

consistent with a column definition, other values in the row, and other rows in 

the table – the alternate workflow is an exception that indicates a constraint 

violation. A trigger is a choice composed onto a workflow’s interactions (i.e., 

a-b or b-c), where the decision is based on the SQL operation being 

performed, and the alternate workflow is a combination of the base workflow 

and a call to a stored procedure. Ultimately, constraints and triggers support 

stakeholder requirements, and SQL engines are designed to accept and 

execute them at runtime, thereby allowing the realization of new or changed 

stakeholder requirements at runtime. While stored procedures can store and 

retrieve state, and they can access application data, they are oblivious to the 

application workflow context from which they’re called, and therefore cannot 

coordinate activities within such a workflow. Ultimately, this workflow injection 
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capability addresses only the data storage aspects of stakeholder 

requirements, which is usually a small part of an overall application. 

2.4.3.2 Enterprise Service Bus 

As described in Section B.2.5, in an Enterprise Service Bus (ESB) [120], a 

workflow is defined as a routing, which can be associated with a predicate 

that can enable it (similar to the use of OCL for UML-based sequence 

modeling) or identify actual routing targets based on information contained in 

the routed message. Choice can be injected into a base workflow by 

intercepting a message in flight and using its contents to decide whether to 

continue the original routing, route to a different target, or both. While an ESB 

can execute a workflow, it doesn’t maintain workflow state or enable 

decisions based on workflow, environment, application, or other persistent 

state. Consequently, while ESBs can support the runtime injection of 

stakeholder requirements that leverage message-based information, 

additional features are necessary before they can support crosscutting 

requirements that rely on state having specialized lifecycles. 

2.4.4 Policy Engines 

As described in Section B.2.6, policy engines enable application 

developers to design decision and execution points into applications while 

deferring the decision definition until runtime. This deferral represents a 

separation between workflows and policies (as business rules), and is usually 

leveraged to implement access control decisions (e.g., denying access to a 

resource based on identity or environment). Adding or changing a decision 
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point (PDP), execution point (PEP), or alternate workflows requires explicitly 

recoding and redeploying the application. 

2.4.4.1 PERMIS (Privilege and Role Management Infrastructure 

Standards) 

In the PERMIS policy infrastructure [121] (described in Section B.2.6), the 

PDP and PEP represent decisions and workflow selection logic that is statically 

placed in a workflow at program development time, and which selects or 

parameterizes statically defined alternate workflows. As such, decision criteria 

and workflows are decoupled, thereby providing flexibility in isolating and 

exposing decision criteria (e.g., RBAC-based access control [115]) for 

dynamic definition. However, this does not enable policy and workflow 

injection that implements data flow filtering or feature composition responsive 

to stakeholder requirements that emerge at runtime.  

PERMIS evaluates declarative RBAC-based policy based on first order 

logic expressed in XML, and PERMIS provides a GUI that assists a policy writer in 

assembling the different elements in an XML-based policy statement. A 

PERMIS policy is framed from the standpoint of a security practitioner, and not 

a domain expert interested in constraining or augmenting workflows. In this 

regard, PERMIS is representative of other policy systems, both in how they 

integrate into an application and their approach to policy language – the 

policy authorship process and the policy language itself generally does not 

align with a stakeholder’s understanding of domain problems, and therefore 
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would not be used to engage a stakeholder in creating and maintaining 

solutions to domain-oriented requirements. 

2.4.4.2 BPEL Process Integration with Business Rules 

As described in Section B.2.6, BPEL [122] doesn’t address scalability or 

verifiability, and it doesn’t provide a mechanism for composing workflows 

onto workflows, a dynamic external policy mechanism and support system, or 

a sub-workflow concept, as PDD does. As a scripting language, BPEL provides 

no independent methodology, and particularly provides no guidance for 

integration of crosscutting concerns and features. (BPEL-SPE supports sub-

processes.) 

Under, Oracle’s BPEL Process Integration with Business Rules [123] 

choice is implemented as a statically coded call to the decision service – first, 

the application declares its state (as input facts); second, it calls the decision 

service to evaluate the input facts according to the business rules; and third, 

the decision service returns a result (as output facts) to the application. 

Coding input facts, invoking the decision service, and interpreting the output 

facts are performed via calls explicitly coded into the application. The 

business rules are defined as Boolean and arithmetic expressions via a GUI 

wizard, and are stored in a rules repository. As such, the combination of the 

decision service and a business rule amounts to a service having an interface 

defined by the input and output facts, which are tightly bound to the 

application, though the particular rule is loosely bound by virtue of its 

presence in the repository. A rule can call an external (web services) function, 
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which amounts to a workflow bound at runtime. Therefore, a rule qualifies as a 

choice, where a decision can select amongst workflows. However, adding, 

changing, or removing decision service calls requires recoding and 

redeploying the application. External functions enable policies to maintain 

their own state and access application and environment state, though 

workflow state is not automatically tracked. 

2.4.4.3 xESB: Integration of Policy with ESBs 

Under xESB [124] (described in Section B.2.6), a rule is phrased as a 

decision and an action, where the decision is based on the interaction 

message content, message context, and rule state. An action can include 

allowing the interaction to proceed, returning an error message, modifying 

the message and proceeding, delaying the interaction, or executing an 

external recovery process. Consequently, rules can be introduced onto a 

workflow without explicitly programming PDPs and PEPs – they are essentially 

injected onto every workflow. Because rules can be stateful, their injection 

onto a workflow effectively creates a System of Systems composition, with the 

injected rule comprising a small system. However, there is no facility that 

allows rules to be composed onto rules, thereby limiting the depth of 

composition. 

An interaction message is constrained to a uniform, normalized format, 

which places limits on the processing needed to determine whether a rule 

applies during a particular interaction, and also limits the processing needed 

to evaluate the decision and execute the action. Consequently, the content 
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of interaction messages and the scope of decisions and actions an xESB 

policy can express are also limited. As a result, xESB can quickly determine the 

applicability of a single policy in an interaction context, and can execute 

policies quickly and efficiently. 

The xESB policy language is tuned to address access and usage control 

requirements, though without provisions enabling policy composition by 

unrelated stakeholder communities. Additionally, like PERMIS, its policy 

language is a formulation of first order logic that does not align with a 

stakeholder’s understanding of domain problems, and therefore would not be 

used to engage a stakeholder in creating and maintaining solutions to 

domain-oriented requirements. 

2.4.4.4 Ponder2 

Ponder2 [125] is an event based system that uses an interceptor-based 

approach to executable policy statements associated with particular events. 

Policies are expressed in PonderTalk, a mature and robust variant of SmallTalk. 

Ponder2 allows the association of a method in a policy class with a particular 

object’s outbound request, inbound request, outbound reply, or inbound reply 

channels. 

As such, Ponder2 models applications as a network of connected 

components instead of a collection of workflows. To the extent that a decision 

must be made in the context of a service interaction, the policy must encode 

and evaluate the interaction relationship before determining how to operate. 
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Also, PonderTalk itself offers no state lifecycle that corresponds to a workflow 

variable. Finally, Ponder2 offers little support for the runtime specification of 

policy bindings or the composition of external workflows as separate 

concerns. Consequently, while Ponder2 offers the benefits of separation of 

business rules (encoded as separate policies) from application code, it 

cannot easily compose workflows, compose workflows onto workflows, or 

inject workflows at runtime to implement emergent stakeholder requirements. 

2.4.5 Workflow Context in Distributed Systems 

As programming languages enable the definition of workflows, they 

provide state management features (e.g., local, global, class, and package 

variables) whose lifecycles suit the language’s purpose (as described in 

Section B.3). Analogously, modern frameworks and architectures that support 

distributed systems frame the maintenance of state based on the workflow 

assumptions underlying their target applications. In this section, I describe 

context maintenance in Struts, REST, and AJAX, as examples of different 

tradeoffs, particularly regarding how they enable state maintenance during a 

workflow and on behalf of workflows injected into a base workflow. I also 

examine how they enable tracking of workflow state as an application scales 

into a distributed system. 

2.4.5.1 Struts 

The Struts [126] system is a server-based Java environment that 

executes workflows on behalf of clients. Under Struts, state is maintained as 
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Java beans, with request, session, and application lifecycles as described in 

Section B.3.1. 

Under Struts, a single workflow executes in a single thread on a single 

computer. Consequently, as workflows do not extend to distributed systems, 

enabling access to a workflow’s request beans beyond a single thread is not 

implemented. 

However, a Struts application can execute different workflows under 

different threads or on different computers. Consequently, session and 

application beans represent state available to all workflows executing on all 

computers in a distributed system, and are maintained by an independent, 

thread-safe service. 

The Struts programming model assumes workflows are statically defined 

and deployed as a monolithic application. Consequently, it has no facilities to 

compose workflows dynamically into an application, and also has no facilities 

for maintaining state for such workflows.  

2.4.5.2 REST 

Under the REST (Representational State Transfer) [127] architectural style 

(described in Section B.3.2), application state resides on clients, which 

themselves can reside on separate computers. Workflows are implemented as 

interactions between a client and a server, which can, in turn, act as a client 

in an independent interaction. REST applications are therefore inherently 

scalable to distributed systems. To implement state that is accessible to all 
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activities in a workflow, the state must be passed on all interactions comprising 

the workflow, and all servers must automatically propagate such state, which 

violates principles of separation of concerns. Consequently, REST applications 

favor state exchanged via localized client-server interactions over workflow-

wide state. 

REST encourages state common to all (or a subset) of clients and 

servers (similar to Struts’ application beans) via calls to an application-defined 

server that keeps such state – it performs the work of Struts’ independent state 

repository.  

Workflow decomposition under REST can be accomplished by defining 

a server to be a proxy, which then orchestrates communication with some 

number of other servers to implement the original request – each downstream 

server request incorporates a combination of original request values and 

orchestration-local values according to the downstream server’s interface 

specification.  

Note that REST servers are accessed via URL, which functions as the 

Internet version of a routing system that supports workflow orchestration. 

Dynamic behavior can be implemented as a client calling a server whose URL 

is provided by another server. However, receiving the URL requires explicit 

coding within the client in anticipation of the dynamic behavior, which does 

not support the concepts of composing oblivious workflows or composing 

multiple workflows. 
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Consequently, because REST’s implementation of workflow context 

and dynamic behavior does not support workflow composition, 

implementation of diverse stakeholder requirements (e.g., access control, 

auditing, provenance tracking, quality of service, and failure management) 

represents application-wide entanglement of concerns in REST applications. 

2.4.5.3 AJAX 

AJAX [128] [129] is a collection of technologies aimed at providing a 

fluid experience for users executing client-server application in a web browser, 

as described in B.3.3. Under AJAX, JavaScript executes client-side workflows 

based on client-resident state, which may be held as global variables and in 

closures, particularly closures associated with server requests. For example 

(following the illustration in Section B.3.3), in a REST model, a closure would 

maintain a copy of parameters passed to a server, thereby allowing the client 

to correlate a server reply with the parameters that generated it. 

JavaScript closures represent workflow state private to a single 

workflow interaction, characterized by a client source sending a request to 

the server and a client target receiving the server reply – the closure pairs 

source state with the server reply. New state is manually generated for each 

client/server interaction. This contrasts with more pervasive workflow state, 

which persists across all interactions in a workflow. JavaScript alone does not 

provide a mechanism that maintains state for an entire workflow. 
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For internal workflows, JavaScript code is not automatically organized 

to segregate orchestrations as workflow activities with well-specified 

interfaces, and therefore does not admit injection of workflows representing 

new or changed requirements. Additionally, for JavaScript applications 

coded to execute multiple workflows concurrently, tracking of workflow state 

is done ad-hoc, and is not automatically amenable to tracking state of 

injected workflows. 

For workflows in which a web browser interacts with an external server, 

application developers have a choice of creating a RESTful or non-RESTful 

server, with either implementation having the character described for REST in 

Section 2.4.5.2). 

2.4.6 Ponder Policy Verification 

As described in Section B.4, Ponder is a highly successful environment 

that implements the Ponder policy language [130], and represents a class of 

predicate-based policy languages that focus on system management and 

authorization requirements. Given the mission-critical nature of such policies in 

real applications, there have been numerous contributions towards rigorous 

analysis of policy specification and refinement (e.g., [131] [132]) enabling 

checking for modality conflicts (i.e., both enabling and disabling the same 

action), separation of duty conflicts (described in Section 7.4.1), improper 

refinement of a base policy, and redundancy in refinements. 
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Similarly, [133] transforms a collection of Ponder policies into a graph 

that relates attributes and conditionals. It discovers policies that partially or 

completely negate other policies, or situations where an action is both 

permitted and prohibited. For Ponder meta-policies, it detects situations 

where a policy depends on another policy, but the dependent policy is 

disabled. 

Insofar as policy-based verification avoids obvious policy-driven 

application errors, such verification is valuable and necessary, analogous to 

syntax and model checking built into modern Integrated Development 

Environments (IDEs). However, such approaches do not perform similar 

analysis at a requirements level, particularly regarding the suitability (including 

completeness, correctness, and conflicts) of requirements relative to each 

other (including base and add-on requirements) or their fidelity to the policy 

expressions that represent them. 

2.5 Patterns 

Choice mechanisms can be defined and referenced generally in terms 

of design patterns, which codify best practices pertaining to methodologies 

and key implementation domains. While various pattern sets address different 

application architecture, design, and implementation concerns, the pattern 

sets I discuss represent key enterprise application concerns. For a design and 

programming perspective, I use the well-known Object Oriented Design 

(OOD) patterns [33] to frame the discussion. Workflow patterns [70], Enterprise 
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Application Architecture (EAA) patterns [134], and Enterprise Integration (EI) 

patterns [135] inform the use and context of these choice mechanisms. 

Various pertinent pattern sets overlap or compliment these sets, but 

don’t contribute additional choice mechanisms, including Orchestration 

Environment patterns [136], Service Oriented Architecture patterns [137], 

Service Interaction patterns [138], and others. 

Note that many of these patterns are represented in computational 

models (Section 2.2), software development methodologies (Section 2.3), and 

mechanisms (Section 2.4) presented in this chapter. I deal with them 

separately here because they crosscut these other topics. 

Two important and related principles are sometimes referred to as 

patterns, though they are not specified as such, and are not contained within 

a formal pattern set: Inversion of Control [34] (IoC) and Dependency Inversion 

[139] (DI). IoC assembles a workflow out of compatible components specified 

as interfaces that provide the basis for service contracts. IoC can suffice as 

the process by which workflows can be customized based on some 

configuration-time decision. IoC can realize interfaces using the DI principle, 

which replaces a reference to an interface with an instance that satisfies the 

interface. The workflow then executes using the realized interfaces. 

In simple IoC and DI implementations, workflow configuration and 

realization is based on choices made at load time via configuration. However, 

the distinction between load time and runtime blur when the IoC’s 
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component assembly and DI’s dependency realization are carried out at 

runtime immediately before executing a workflow, or even as their results are 

modified at runtime. 

The configuration mechanisms of IoC and DI are, themselves, choice 

mechanisms that result in selecting amongst sub-workflows at configuration 

time (before a workflow executes). To the extent that IoC and DI can occur 

while a workflow is executing, they would qualify as workflow injection 

mechanisms. However, this is not how IoC and DI are generally interpreted, 

and neither principle on its own or in combination touch on the nature of 

workflow selection decisions or the runtime criteria on which they may be 

based. 
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2.5.1 Object Oriented Design Patterns 

OOD patterns [33] assume the existence of basic decision (i.e., 

comparison and branching) primitives, OOP’s distinctive inheritance and 

subtyping, and compile-time, link-time, or load-time resolution. The most 

prominent choice pattern is the Strategy pattern, supplemented by the Bridge 

and State patterns. The Strategy pattern uses the result of a decision to 

choose among candidate algorithms, where the algorithms each observe a 

common interface (according to the Bridge pattern) and can be called 

interchangeably. The State pattern conditions a workflow’s definition 

according to values supplied to the workflow at instantiation or thereafter. 

These patterns can be realized in several ways (which can be combined): 

 In the code design: 

o via simple mechanisms that pair the decision directly with a resulting 

workflow (e.g., if() or switch() statements) 

o via class structure where a base class has two or more 

specializations, and a pointer records the decision of which 

specialization to call (e.g., where an instance is created via a 

Factory pattern based on some criteria) 

o via a functor mechanism where the functor class represents an 

abstract workflow that is reified when the class is instantiated, or by 

State settings specified during execution 

 In the compilation support system: 

o via command line and environment variables that causes a 

compiler or build system to choose amongst workflows 

o via a link editor that causes some modules or methods to be linked 

instead of others 

 In the runtime system: 

o via loader configuration (including environment variables) that 

selectively loads one module instead of another 

o via deployment configuration that installs one set of loadable 

libraries instead of others (e.g., as dynamic link libraries) 
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Other patterns (e.g., Factory, Decorator, Façade, Plugin, Adapter, and 

Proxy) incorporate decision making that can be characterized as Strategy, 

Bridge, and State patterns where choice is encoded at program authorship 

time and can be influenced at runtime by State, but is not defined at runtime. 

Note that Strategy and State patterns can exist even when the 

decision (or state storage) and consequent workflow are separated in time or 

are realized in different workflows (e.g., the separation resulting from a Factory 

pattern creating an object compared to the eventual use of the object). 

While OOD patterns are intended to serve OOP, the Strategy, Bridge, 

and State (and other) patterns are common to patterns useful for other 

methodologies and mechanisms, including modular and functional 

programming. For example, under higher-order programming (e.g., λ-

calculus), a Strategy pattern occurs when a function is assigned to a variable 

based on some decision criteria, a Bridge pattern occurs as a consequence 

of the function’s parameter list and semantics, and a State pattern drives 

monad behavior. Even in these situations, the decisions are encoded at 

program authorship time, and are not defined at runtime. 

The Template and Visitor patterns address different approaches to 

implementation of requirements as workflow customizations. The Template 

Method pattern calls for the compile-time injection of functions that 

implement workflow activities, and the Visitor pattern accomplishes a similar 

result by enabling the choice of function injection at runtime. In both patterns, 
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the workflows and the injected functions are defined only at compile-time, 

and as such, constitute compile-time IoC and DI.  

In any case, the OOD patterns are presented in terms of imperative 

languages (particularly OOP languages), and therefore are responsive to 

requirements identified in the development or maintenance process. While 

this implies the realization of new and changed requirements through 

redesign or reprogramming, then re-deploying code, such a process is 

required in these patterns.  

2.5.2 Workflow Patterns 

Workflow patterns describe the types of control and data flows that 

can occur in modeling business processes. Control flow patterns represent 

variations on choices that can be made in executing workflow activities, 

including the choice of one workflow instead of another, executing multiple 

workflows, or merging workflows. Data flow patterns describe the lifecycle and 

scope of data a workflow can access, how data can be used in a workflow, 

how it is transmitted between tasks, and how it affects the choice of task to 

execute. 

Workflow patterns assume that a choice is made, regardless of the 

mechanism, and that workflows and data flows are orchestrated as a result. 

While they address different outcomes of choices, they are agnostic as to the 

process of realizing such workflows based on new or added requirements. 
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Consequently, while workflow patterns are often realized in static design and 

coding contexts, they apply equally to early and late bound choice. 

2.5.3 Enterprise Application Architecture Patterns 

EAA patterns seek to describe major architectural components of 

enterprise applications and how they relate to each other. Decisions and 

workflows are not emphasized in these patterns, though they underpin various 

patterns (e.g., Model View Controller).  

Notably, the Separated Interface pattern corresponds roughly to the 

OOP Bridge pattern, but the OOP Strategy pattern is considered an 

implementation detail. Consequently, EAA patterns are agnostic as to the 

process of realizing such workflows based on new or added requirements. 

2.5.4 Enterprise Integration Patterns 

EI patterns address the integration of applications in a broad sense, 

including at the levels of information and business functions, processes, and 

services. As such, it depends on choices implemented as policies within 

workflows to affect either control flow or message content. For example, the 

Content-Based Router pattern, which performs routing based on the contents 

of a message – similar examples include the Filter, Recipient List, Splitter, 

Aggregator, and Resequencer. 

2.6 Related Concepts 

PDD represents a methodology and technology in the space of 

enterprise computing, which contains a number of systems, languages, and 
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standards addressing both disjoint and overlapping concerns. While some of 

these are tangential to PDD and its support technologies, others relate more 

directly to PDD, but not to a degree that justifies in-depth comparison of their 

relationship to PDD. For convenience, I briefly present a number of these 

topics in this section. 

2.6.1 SCA Infrastructure  

SCA (Service Component Architectures) [140] is a suite of specifications 

that defines a protocol- and platform-neutral SOA language describing the 

interconnection of services. It does not have an interceptor concept, and 

does not propose features for service decomposition. Consequently, it doesn’t 

address workflow composition, policy, or the infrastructure that supports them.  

2.6.2 Spring Framework 

Spring [141] is an application framework comprising a number of 

technologies relevant to building server-based enterprise applications. Spring 

uses the AspectJ pointcut language to compose concerns, and includes 

before, after returning, after throwing, finally, and around advices. Spring is 

declarative, and does not admit the PDD features of dynamic composition, 

policy evaluation, and message-based interception. Consequently, feature 

addition to a Spring application must be done at the source level, which 

creates development dependencies and defeats obliviousness. 

2.6.3 ORC Language 

Orc [69] is an orchestration language that enables invocation of 

sequential, parallel, and pruning flows. It enables vertical and horizontal 
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integration. The larger language (including Cor) allows interception by 

closure. PDD features of policy evaluation, a context infrastructure, and 

workflow substitution are not represented in Orc, though could exist through 

extensions to Orc. 

2.6.4 WS-Policy 

WS-Policy [142] specifies an XML-based policy statement as a 

collection of policy alternatives containing policy assertions. Applied to web 

services, a service is said to support a requestor if one or all policy assertions 

are satisfied. PDD uses policies to filter messages and to drive the composition 

of workflows. WS-Policy doesn’t leverage the context system (including the 

current message) that PDD can provide. WS-Policy can statically compose 

policies into an XML policy statement, while PDD achieves composition 

through XQuery expressions evaluated at runtime.  

2.6.5 Business Process Modeling Notation (BPMN) 

BPMN [143] [144] is a notation that graphically represents behavioral 

aspects of workflows and is capable of expressing workflow patterns identified 

by [70]. While there are notational and stylistic differences between BPMN 

and UML Activity Diagrams [40], their major difference is in the audiences they 

seek to address – BPMN for business process designers, and Activity Diagrams 

for modeling software development. Consequently, while the high level 

entities addressed by these notations are tailored to their audiences, the 

semantics of the workflows they express are similar. Neither has direct support 
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for injection of crosscutting concerns, though extensions exist that address 

them for BPMN [145] (to compliment [146]) and for UML [147]. 

Given this functional equivalence, I use only UML Activity Diagrams 

(and derivatives) in this dissertation because they are more familiar to 

software engineering audiences, though my discussions apply equally well 

using BPMN. 

2.6.6 Policy as Commitments 

In this dissertation, I conceive of a policy as a combination of a 

decision that selects amongst alternate workflows. Such workflows represent a 

process as an orchestration of activities that satisfy a data flow and control 

dependencies (as with BPMN), often with workflow activities representing 

computational constructs.  

A higher level view [148] conceives of policies as engagement 

relationships between business services operating on behalf of one party or 

another. In this paradigm, a policy is a collection of commitments, which are 

relationships between parties within the scope of an organizational context. A 

party can be a concrete or abstract entity, and a context represents an 

environment in which relationships exist, exceptions are understood and 

handled, and non-conformant behavior is sanctioned. Basic commitment 

operations include creation (where a party activates a commitment), 

discharge (where a party satisfies a commitment), assignment and delegation 
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(where a party transfers a commitment to another party), and release (where 

a party removes another party from further participating in a commitment). 

Commitment-oriented systems are based on both standardized and 

novel patterns expressed as workflows that orchestrate communication 

between parties (or their computationally-oriented proxies) and facilitate 

sharing state. Commitment-oriented policies model business relationships 

vividly and flexibly, independent of a particular implementation. Decisions are 

made at two levels: within workflows that implement the behavior of a party, 

and within workflows that express and enforce a commitment. Given this, 

commitment-oriented systems may leverage workflow-based decisions (as 

PDD-style policy, addressed in this dissertation), but they don’t affect decision 

mechanisms or the workflows they select. 
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2.7 Summary 

Table 2 presents a summary of the capabilities of computational 

models, methodologies, mechanisms, and patterns as applied to the 

realization of requirements as workflows through late bound choice. 

Specifically, it identifies potential solutions in the key areas set out at the 

beginning of this chapter. These capabilities are discussed in previous sections 

-- in this section, I summarize those discussions and provide further insight into 

their value in addressing late binding issues. Section 2.7.6 ties the discussions 

together. 

Note that the table includes an additional row, which corresponds to 

the PDD capabilities represented as contributions of this dissertation. Section 

2.7.6 gives a brief glimpse into their implementation in Chapter 4 (as 

foundation) and Chapter 5 (as case study). 
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Table 2. Summary of Existing Work, Continued 

 

  

Legend

A Separate Workflows

B Workflow Interface

C Contract Enforcement

D Specified Site

E Workflow Selection

F Choice on choice

G Composite Choice

H Centralized Concerns

I Visualization

J Workflow Unique

K Instance Shared

L Global

M Customized Lifecycle

N Verification

O Model Checking

P Secure Deployment

Q Consistent Deployment

Modeling

State Management

Workflow Injection

Workflow Specification

Deployment
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2.7.1 Workflow Specification 

While most contributions allow the articulation of a workflow with a 

corresponding call interface (though not a semantic interface), OOP provides 

contract enforcement via types and encoded assertions, and AOP enables 

enforcement as a separate concern [149]. SQL’s constraint injection is also a 

form of contract enforcement.  

Contract enforcement exists in practical programming systems and 

frameworks as a means for harmonizing workflow activities a priori so as to 

avoid bugs by detecting obvious semantic incompatibilities. It most often 

relies on the compile-time or link-time evaluation of declared program meta-

information, though it also appears in runtime implementations as JavaScript 

[150] function calls and UDDI [151] searches, both of which rely on function 

signatures as expressions of contracts. 

Achieving a similar degree of certainty regarding runtime workflow 

injection requires that the contracts be available (at runtime) for each 

injectable workflow as well as source-target interaction onto which a workflow 

can be injected. Given that, a means must exist for comparing these 

contracts before an injected workflow can execute. While this has been 

demonstrated at the function signature level (e.g., JavaScript and UDDI, 

which includes verifying messages based on type), it has not been 

demonstrated for interactions occurring in a runtime context and depending 

on workflow or application state (as would be the case for a complex 

protocol). 
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2.7.2 Workflow Injection 

While the computational models, methodologies, and mechanisms 

enable choice (including a decision and alternate workflows) to be 

composed onto a base workflow, most solutions require that the injection site 

be determined manually, and that the choice be explicitly coded prior to 

application testing, release, and deployment. Given this manual orientation, 

they also support explicitly coding the composition of non-base concerns, 

including the composition of multiple choices at a single site. However, they 

also suffer from scattering and entanglement when workflows represent 

crosscutting concerns. 

AOP differs by allowing the injection site to be chosen automatically 

(via pointcut), thereby enabling the concentration of crosscutting concerns 

as separable modules, which avoids scattering and entanglement. Similarly, 

execution frameworks (e.g., ESBs and SQL engines) enable the concentration 

of crosscutting concerns as separable modules, though they can be injected 

into workflows at runtime (via interceptors, transformations, and dynamic 

routing that implement IoC and DI). Policy engines allow the concentration of 

decision criteria as separable modules, but require that the injection site and 

alternative workflows be provided manually at the coding phase. xESB is 

exceptional in that it does not require the manual injection of policy and 

workflows, though it is limited in the types of workflows it can inject. All three 

approaches provide little support for composing choice onto injected 

workflows or composing multiple choices that affect a common site.  
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Because both manual and automatic workflow composition breed 

complexity that can result in increased maintenance costs and failure to meet 

stakeholder requirements, much attention has been given to workflow 

visualizations appropriate for each programming methodology and 

mechanism. Particularly, because AOP separates composed workflows from 

base workflows, visualization support is needed so that programmers can 

readily appreciate the effects of composition [152]. 

While OOD patterns, workflow patterns, EA patterns, and EI patterns 

offer guidance regarding the essential qualities of choice, the forms that 

choice can take, and how choice can effect various control and data flows, 

they are largely silent regarding specific mechanisms useful in the early or late 

binding of choice. This is true, also, of IoC and DI, which bind workflows before 

execution time, and offer little guidance regarding the binding of workflows 

into executing workflows.  

Note, however, that IoC and DI do provide the bases for injecting 

policy evaluation at each stage of workflow execution as a concern that 

crosscuts all workflow activities. Chapter 4 and Chapter 5 demonstrate how 

this can be parlayed into runtime-defined choice that can result in the 

injection of workflows implementing requirements not known at the time of 

application authorship or deployment. 

Achieving the injection of requirements (as workflows) into a running 

system requires that workflow interactions be exposed for reflection at 
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runtime, that workflow interactions support the injection of requirements from 

multiple sources, that choice between injected workflows be made based on 

runtime state, and that requirements must be composable onto composed 

requirements. No single or combination of contributions meets these 

challenges, though various contributions offer insights into a solution. 

2.7.3 State Management 

Given that a requirement may decompose into a number of workflows 

injected upon multiple locations within a single or multiple base workflows, 

workflow coordination requires that associated state have a lifecycle 

matching the workflow duration, multiple workflow durations (i.e., a session), or 

across all workflows. Additionally, to the extent that workflows can be injected 

onto oblivious base workflows at runtime, state must also be defined and 

injected at the same time. 

In the algebras, methodologies, mechanisms, and patterns surveyed, 

state is most often explicitly declared at program authorship time, and its 

injection has the same limitations and drawbacks (including contributing to 

entanglement and scattering) as manual workflow injection. AOP, SQL, and 

policy engines enable state injection at runtime (coincident with workflow 

injection), though they do not address state management on a workflow or 

session basis because they do not model or track such information. 
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No single or combination of contributions enables the injection of 

workflow-based state onto oblivious workflows, though various contributions 

provide inspiration for modeling state having other lifecycles. 

2.7.4 Modeling 

The value of verifying and model checking injectable workflows (as 

proxies for requirements) is to determine that workflows implement 

requirements alone or in combination with other workflows, and that they do 

not disturb the implementation of uninvolved requirements. 

Extensive work has been done with programming methodologies in 

verifying that manually written programs meet articulated requirements and 

that their code guarantees important properties (e.g., livelock avoidance, 

state avoidance). Indeed, computational models exist, in part, to 

demonstrate how properties are maintained or guarantees are broken. While 

execution frameworks are not exploited in this way, declarative models (e.g., 

UML [55]) and policies evaluated by policy engines are (as in Section 2.4.6 

and [153]), though primarily in the security domain, which focuses on 

consistency, completeness, and correctness. Additionally, unit testing and 

model checking techniques are applied directly against code produced 

under various programming methodologies. 

Generally, verification and model checking are applied to workflows at 

the modeling, design, and authorship stages, resulting in iterations over those 

stages until the workflows achieve the desired properties.  
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Insofar as a composed requirement (via composition of one or more 

workflows) represents an incremental change to base workflows, applying 

such techniques requires an understanding of both the base and injected 

workflows at one of multiple levels (requirement, modeling, or coding) with 

assurances that applying such techniques at abstraction levels (i.e., 

requirement or modeling) ultimately confers guarantees at the coding level.  

The contributions I surveyed contemplate verification and model 

checking at the modeling or coding level in the context of an entire system, 

and compliment the monolithic application delivery model. For distributed 

systems containing components that may not be available for such 

verification and model checking, the monolithic approach may be too costly 

if it is possible at all.  

To the extent that a requirement represents a partial system behavior, 

the workflow(s) that implement it can be independently verified or model 

checked, though no contributions are situated to do this at runtime either at 

the requirement, model, or code level.  

2.7.5 Deployment 

While computational model expressions are generally not deployed as 

executable applications, means exist for deploying all other kinds of 

applications completely and authoritatively. However, where components of 

an application (e.g., DLLs, policies, POJOs, constraints, and stored 

procedures) can be delivered separately, only ad-hoc means provide 
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guarantees that all such components are consistent with the deployed 

application and with each other. Policies evaluated by policy engines have 

been packaged as atomic modules when they relate to each other via 

shared state, and are therefore consistent by design. Even so, the execution 

of one policy at one time may set state that is semantically different than is 

expected by a policy deployed and executed at another time – this is an 

unsolved problem. 

2.7.6 Assessment 

The dominant programming paradigms involve binding requirements 

early in the design and coding process, and take the form of manually 

selecting workflow injection sites, decision, and workflows. Additionally, such 

binding may lead to scattered and entangled code. While AOP solutions 

avoid this, they still rely on early-bound aspects to achieve this and provide 

little facility for scaling applications. 

Prominent programming and enterprise application patterns are 

agnostic as to early binding. Execution frameworks enable late binding, but 

fail to support injection of workflows onto injected workflows, the injection of 

multiple workflows onto a single site, and the maintenance of state across the 

execution of a workflow. While existing policy engines enable late binding of 

decision criteria, most rely on early bound injection site and workflow 

alternatives. 
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While early binding of requirements enables a significant testing phase 

prior to deployment, binding requirements at runtime doesn’t involve any pre-

deployment testing phase. While significant visualization, verification, and 

model checking support would greatly benefit the fidelity and reliability of 

late-bound applications, such support is underdeveloped for the execution 

frameworks that support such applications.  

Finally, while policy engines enable secure deployment of decision 

criteria and (to a degree) support the deployment of consistent policies, no 

solution deploys site selection, alternate workflows, and decisions in a secure 

and consistent manner. 

For reference, a quick list of additions needed relative to existing 

contributions (i.e., a gap list) includes: 

 Identification of policy (including decision leading to selection amongst 

alternative workflows) injection site at runtime 

 Injection of policy at runtime 

 Tracking policy -centric state to allow coordination of multiple policies 

injected on a base workflow 

 Composition of multiple policies onto a single injection site 

 Enabling composed workflows to act as base workflows for other 

compositions 

 Verification that an injected policy is interface- and semantically-

compatible with its injection site 

 Incremental testing and proofs that policies implement requirements 

 Enabling a consistent relationship between state and policy across 

policy deployments 

The PDD contributions described in this thesis (per Section 1.4) address 

gaps pertaining to workflow specification, workflow injection, and state 
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management at the foundational level and as a case study. In Chapter 4, I 

describe the means by which policy can be injected into existing workflows at 

runtime. Fundamentally, PDD leverages an equivalence between workflow 

activities and services, where workflows are cast in terms of SOAs whose 

interactions can be identified and intercepted at runtime. PDD exploits this by 

injecting policy evaluation and state propagation services that crosscut all 

service interactions. The result is to provide an opportunity to fill each of the 

gaps identified above. Chapter 5 demonstrates the implementation of PDD in 

the context of a real world system. 

Chapter 7 describes how the PDD approach fills the gaps identified in 

this chapter. As discussed in Sections 7.5, 7.4.4, and 7.4.6, PDD does not 

address gaps pertaining to modeling and deployment – these gaps must be 

filled before late binding can be reliably supported in production 

environments, and are left to future work. 
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CHAPTER 3 

A RUNNING EXAMPLE – PALMS’ GETSTUDYLIST WORKFLOW 

The concept of the injection of choice can be demonstrated and 

discussed using a single interaction between two workflow activities. However, 

as a motivating example, Figure 6 presents a realistic workflow (called 

GetStudyList) that implements a stakeholder requirement end-to-end in the 

PALMS case study (described in Chapter 5), and which I will use throughout 

the remainder of this dissertation. 

 

(As described in Chapter 5, the PALMS case study is an example of a 

cyberinfrastructure that serves diverse stakeholder communities having 

different interests, and whose requirements change over time. The 

GetStudyList example is representative of all PALMS workflows, any of which 

could be similarly subject to evolving stakeholder requirements, as addressed 

in this dissertation. Finally, while GetStudyList represents PALMS workflows, it 

equally represents other types of workflows and workflow patterns as 

described in Section 2.5.2.) 

PALMS ListStudies
Study 

Repository

❽ StudyList Message ({m, a, f}, r)
❼ StudyList Message ({m, a, f}, r)
❻ StudyList Message ({m, a, f}, r)
❺ Data Message (d, r)

Client

❸❶ ❷

❽ ❺❻❼

Storage

❹

❶ GetStudyList Request (i, s)
❷ GetStudyList Request (s)
❸ GetStudyList Request (q, o)
❹ QueryData (q, o)

 
Figure 6. GetStudyList Generic Workflow 
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As an example of a generic workflow (as described in Section 2.1.1), 

GetStudyList shows processing and information flow. It shows five activities 

(e.g., services) that interact in a request/reply pattern, where each activity 

sends a message to another activity, which in turn replies with a message.  

GetStudyList provides context to demonstrate the realization of several 

different types of additional stakeholder requirements, including: 

 Various forms of access control 

 Data stream filtering 

 System of Systems integration 

 Composition of choice on choice 

It also provides context for a discussion of requirements that affect 

multiple interactions and share state. 

 

Relationship to 
PALMS

GetStudyList Data 
Flow

Relationship to 
Requirements

Section 
3.1

Section 
3.2

Section 
3.3

Legend

Expained 
in

Summary and 
Wrapup

Section 
3.6

Policy Preview

Representative 
Workflow

Section 
3.4

Section 
3.5

 

Figure 7. Chapter 3 Flow 
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As shown in Figure 7, this chapter describes the GetStudyList workflow in 

terms of its relationship to PALMS (Section 3.1), its data flow (Section 3.2), how 

it can be affected by emergent requirements (Section 3.3), how policy can 

be used to effect emergent requirements (Section 3.4), and how it relates to 

other kinds of workflows (Section 3.5). 

3.1 Relationship to PALMS 

The objective of this workflow is to return a list of studies to a client, 

which may be a Web browser acting on behalf of a user (represented by the 

Client activity). A study is an abstraction central to the PALMS application -- it 

is a research activity that organizes observational and other data, and is 

described by attributes (as metadata) in Table 3. 

 

Conceptually, the Client retrieves a list of studies for display to a user. 

The Client allows the user to select a study, which then enables the Client to 

view or modify observational and other data associated with the study. 

Table 3. PALMS Study Components 

Value Meaning 

studyID GUID unique to the study 

studyName textual description of study 

groupName name of collection of roles associated 

with study’s access control rights 

attributesXML collection of Client-defined metadata 

accessSchemaXML schema describing Client-defined 

metadata 

formsXML Client data structures enabling 

metadata display and maintenance 

primarySubjectAttr name of data containing study 

subject ID in subject repository 
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PALMS maintains a number of abstractions similar to a study, and there are 

similar workflows involving each. 

To accomplish this, the Client activity interacts with the PALMS activity, 

which encapsulates all PALMS capabilities – in this example, it exposes the 

study list retrieval capability, but in a fleshed out system, it exposes additional 

capabilities. In general, PALMS either invokes a workflow appropriate to the 

request (e.g., ListStudies, described below) or rejects a client's request. This 

pattern is repeated for each downstream activity. 

The ListStudies activity represents an abstraction that returns a list of 

existing studies (if       ) or a particular study   (if        ). It fetches study 

information through interaction with the Study Repository activity (described 

below). It qualifies the scope and format of the study list and packages the 

resulting information for return to the Client.  

The StudyRepository activity represents an abstraction that maintains a 

collection of studies, and is capable of adding, modifying, or removing a 

study, its attributes, or its observational and other data. The StudyRepository 

abstraction defines and enforces semantics for each study attribute, including 

how each attribute relates to other attributes. It implements study attribute 

storage by interacting with the Storage activity (described below), and returns 

study attributes as received from Storage. 

Finally, the Storage activity stores a collection of related elements so 

they can be retrieved as a unit (e.g., as a row in a table). The Storage 
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abstraction does not maintain any semantics for any element, and is reused 

by other PALMS workflows that store and retrieve related elements.  

In this example, each activity represents an abstraction that transforms 

input messages into output messages, and can be decomposed as 

combinations of internal computation and interactions with some number of 

other activities. As such, an activity can be implemented in any number of 

ways, so long as it interacts appropriately with activities that interact with it. 

(These concepts are elaborated upon more precisely and robustly in Chapter 

4.) For example, while the StudyRepository activity leverages the Storage 

activity to persist study attributes, an alternative implementation might 

translate attributes returned by Storage, assemble attributes from multiple 

sources, or calculate or synthesize them based on some criteria. 

3.2 GetStudyList Data Flow  

In Figure 6, by convention, arrows going from left to right indicate 

requests, and arrows going from right to left indicate replies. Requests and 

replies are tagged by a number (e.g., ❶) that indicates their sequence in the 

workflow, and which matches a message tag in the legend. The associated 

message entry contains a textual description and lists values contained in the 

message, as listed in Table 4. 
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While the particular contents and semantics of each message and its 

elements is highly relevant to the interactions in which they are exchanged, 

they are not important to this discussion, except to recognize that each 

interaction is defined in terms of messages it exchanges, as described in 

Chapter 4. 

3.3 Relationship to Requirements 

Each activity represents an abstraction that adds value to a data flow 

in some way. The activities in the example were created to add this value 

responsive to abstractions present in a decomposition of high level user 

requirements. Consequently, an interaction pattern represents such an 

abstraction. 

The sample workflow arose from a PALMS requirement that the user be 

able to see a list of available studies. Each activity interacts with at most one 

other activity only because this simple pattern satisfies the PALMS requirement. 

Table 4. GetStudyList Message Contents 

Element Meaning Comment 

i Identity credential X.509 certificate for requesting user 

s Study ID Primary key for study metadata 

o Option collection Formatting directives for result 

q Query statement Predicate describing data to be fetched 

{} Collection of tuples Container for list of metadata tuples 

m Study metadata Study ID, name, group, etc  

a AccessSchema Study accessShema  

f Form  Study GUI form  

r Result  Error text if request was rejected 
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3.4 Policy Preview 

As explained more fully in Chapter 4 and Chapter 5, PDD addresses 

new and changed requirements as modifications to the base workflows that 

reflect the existing requirements. For example, consider two new 

requirements: 

1) If the user (represented by  ) is European, use a study repository located 

in the EU; otherwise, use a local (US) repository. In any case, if the 

system is in test mode, use a test repository. 

2) Return only studies the user has permission to view 

Requirement 1 addresses a hypothetical preference of European users 

that private data be stored on European servers, subject to European privacy 

laws. It also addresses system testing. Requirement 2 is a form of access 

control. 

A back-of-a-napkin illustration of responsive policies using informal 

notation is shown in Figure 8 as follows: 

A policy that implements Requirement 1 would apply to the 

StudyRepository-Storage interaction (❹-❺), and would choose amongst 

different Storage activities, depending on a user attribute or a system 

environment variable. 

A policy that implements Requirement 2 would apply to ListStudies-

StudyRepository interaction, and could be implemented in two ways, given a 

set   containing the studies the user is allowed to view. On ❸, query   could 

be constrained (via rewriting) to fetch only studies    , or on ❻, the tuple list 

could be filtered to contain only studies      . 
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Both policies assume the availability of the user identity   in the affected 

interactions. A close inspection of Figure 6 reveals that   is not directly 

available to those interactions. As explained in Chapter 4 and Chapter 5, such 

values represent context that crosscuts base workflows, and are accessible to 

policies through a context support system. Additionally, system environment 

variables and attributes related to the user   are themselves instances of 

separate concerns exposed via domain-specific policy libraries that support 

those concerns – such libraries expose functions that calculate and return  , 

access and return system environment variables, or implement other 

functionality that supports a policy expression. 

3.5 Representative Workflow 

While the motivating example provides a means for the discussion of 

injectable choice, it is representative of a wider class of workflows to which 

the discussion also applies. As depicted, GetStudyList is structured as a series 

of request/reply interactions, but my discussion applies to other interaction 

ListStudies
Study 

Repository

❸

❺❻

Storage

❹

Test 
Storage

EU 
Storage

1: if (isTesting) ® TestStorage
elseif (i.isEuro) ® EUStorage 
else ® Storage

...

...

2a: q = constrain(q, X)

2b: m = filter(m, X)

 
Figure 8. GetStudyList Generic Workflow (with sample policies injected) 
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patterns, as well. For example, an activity could interact with multiple activities 

in parallel. Similarly, a modified request/reply interaction could involve three 

activities, where one activity makes a request of a second activity, and the 

second activity delegates the response to a third activity. 

The possible variations in relationships between activities are given in 

[70]. Note that this list includes a conditional relationship (“Multi-choice”) 

where an activity could interact with any of several activities, but chooses a 

subset based on some criterion. This workflow relationship corresponds to the 

policy injection that PDD seeks to leverage.  

3.6 Summary 

In this chapter, I presented the GetStudyList workflow, which I will 

reference throughout subsequent chapters. It illustrates properties key in the 

discussion of PDD, including data flow relationships between activities, and 

activities that represent transformational abstractions that can be further 

decomposed. It hints at how policy injection can be used to implement new 

or changed requirements without perturbing a base workflow. It also hints at a 

system that supports state required for the composition of complex, 

orthogonal concerns on workflows. 

In Chapter 4, I lay a theoretical foundation for the discussion of 

activities and their interactions, where an interaction between two activities is 

understood independent of other interactions, and is characterized by 

sequences of responses and replies. It also describes how an activity can be 
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decomposed into a workflow that implements the interaction pattern the 

activity supports. 

In Chapter 5, I present a real world case study that illustrates the 

application of the PDD foundation in a running system (i.e., PALMS), making 

extensive use of the GetStudyList workflow as it exists on a running system. 
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CHAPTER 4 

A FOUNDATION FOR POLICY COMPOSED ON WORKFLOW 

PDD policies enable the realization of stakeholder requirements as 

concerns that crosscut a base workflow. In general, PDD defines a policy as a 

decision that is injected into a base workflow, and may lead to the 

composition of a new workflow onto the base. The decision can incorporate a 

number of factors, including data flows (or histories of data flows) managed 

by the base or other workflows, or the state of the application or external 

system. The composition is achieved by applying the composed workflow to a 

data or control flow as in Table 5. 

 

For convenience, I refer to the injection of a decision that may lead to 

the composition of a new workflow onto a base workflow as policy injection. 

The implementation of a requirement may involve the injection of 

several different policies onto one or more workflows. While policies can act 

independently (as might occur when one policy encodes a data flow, and 

the other policy decodes it), policies can also coordinate via shared state. 

Table 5. Types of Composition 

Flow Type Action Example 

Data Tap Operate on copy of data flow Auditing 
Filtering Modify data flow Augment/decimate data 

Control Combination Add a new workflow Obligation enforcement 
Replacement Replace an existing workflow Access control as Allow/Deny 

decisions 
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A major consequence of policy injection is the opportunity to drive the 

integration of separate concerns (including crosscutting concerns and feature 

sets) into a system at runtime, thereby enabling faster and more flexible 

system integration (including System of Systems integration).  

Furthermore, workflows composed via policy can, themselves, be 

considered as base workflows eligible for policy injection -- PDD mechanisms 

enable policies on policies, thereby enabling the composition of requirements 

on requirements. Finally, because policy evaluation is, itself, a workflow, PDD 

mechanisms enable policies to affect the policy evaluation process itself. 

Consequently, these mechanisms lead to flexible ways of combining and 

evaluating multiple policies, possibly provided by multiple stakeholders across 

multiple domains, all oblivious to each other. 

Realizing this vision requires solving challenges not met by in the existing 

systems described in Chapter 2, specifically: 

 a clear definition of a policy  

 a means to locate where in a workflow to inject a policy 

 a means for composing a single policy onto a workflow interaction 

(including onto workflows contributed by policies) 

 a means for composing multiple policies onto a single workflow 

interaction 

 a means for maintaining policy state separate from state maintained 

for other policies 

 a means to verify the suitability of policies relative to requirements and 

existing policies 

 policy languages that encourage and leverage stakeholder participation in 

policy authorship 
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In this chapter, I answer these challenges at a foundational level, and 

present a real world case study implementation in Chapter 5, followed by an 

evaluation of how PDD met these challenges in Chapter 7.  

Briefly, this chapter articulates several of the major contributions of my 

dissertation: foundations for policy definition, injection of policy into a 

workflow, and composition of multiple policies at a single injection point. It 

also presents an architecture for maintaining workflow-based policy state as 

part of a larger context system. This foundational work motivates and 

underpins the PALMS case study described in Chapter 5. 

 

As shown in Figure 9, I first describe basic service orchestration 

concepts, starting with definitions of service, service interactions, service 

contracts, and service composition, all framed under a Rich Services SOA 

model (in Section 4.1). Next, I explain the mechanisms by which a crosscutting 
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Figure 9. Chapter 4 Flow 
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concern (represented as policy evaluation) is injected onto a base workflow 

(in Section 4.2). Finally, I demonstrate mechanisms that enable workflows to 

maintain state separate from other workflows (in Section 4.3). 

Note that π-calculus (described in Section 2.2.3) is a process algebra 

that describes workflows in terms of message-based process interactions and 

aligns well with models developed in this chapter. However, requirements 

modeled by π-calculus (and executable languages based on it) are bound at 

authorship time, and injecting emergent requirements (as policies) at runtime 

is left unaddressed. Relative to π-calculus, the contributions of PDD include a 

means to locate where in a process to inject policy, a foundation for 

composition of policy onto a process interaction, a foundation for maintaining 

independent context for composed workflows, and a foundation for realizing 

requirements using a stakeholder-centric language instead of a process-

centric language. From a π-calculus perspective, this enables the integration 

of separate concerns without incurring entanglement and scattering, which, 

in turn, enables the maintenance and analysis of separate concerns 

separately. From the perspective of executable languages based on π-

calculus, it also represents requirement integration at runtime, where 

stakeholders can be active participants in realizing requirements. 

4.1 A SOA Approach to Policy-based Workflow Composition 

Given an equivalence between workflows and service orchestrations, I 

frame the foundational discussion of PDD and its mechanisms in terms of a 

Service Oriented Architecture (SOA), particularly the Rich Services [154] (RS) 
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architectural blueprint (as described in Section 4.1.1), which aligns well with 

the PDD concepts of workflows, workflow element decomposition, and 

workflow injection. Using RS as a backdrop, I explain an interface-centric 

foundation for service interactions (in Section 4.1.2), which I leverage to define 

service composition (in Section 4.1.3) and decomposition (in Section 4.1.4) 

leading to a foundational basis for policy evaluation via message interception 

(in Section 4.1.5).  

In subsequent sections (4.2 and 4.3), I define PDD policies and use 

these mechanisms to show how policies can be injected into base workflows 

at runtime, thereby enabling late binding of stakeholder requirements. 

4.1.1 Rich Services 

Rich Services [154] (RS) is a SOA-based architectural blueprint (i.e., a 

specialized SOA) that aligns well with the PDD concepts of workflows, 

workflow element decomposition, and workflow injection. I chose a SOA-

based approach over other approaches (e.g., AOSD or pure OOP) because 

of how it aligns with many objectives of building large scale systems capable 

of servicing multiple evolving stakeholder communities and because it 

addresses multiple development and application concerns. Particularly, SOA’s 

message-based service interactions enable interface-based component 

reuse (via loose coupling and late binding); inherent reusability, scalability, 

and distributability (via message routing); and the opportunity to constrain 

and augment workflows (via message interception), while retaining the 

freedom to use other approaches to build services themselves.  
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As a SOA, the RS blueprint inherits these SOA properties. It can 

represent either a logical model (as in Section 5.3), a deployment model (as in 

Section 5.4), or both (given a mapping from a logical RS to a deployment RS). 

In the abstract, a Rich Service is a service that transforms one or more 

streams of input messages into one or more streams of output messages, and 

consists of a service interface and an orchestration of loosely coupled (sub-) 

Rich Services comprising orchestrations that implement the service interface. 

Since Rich Services can be built from other Rich Services, they form a service 

hierarchy conforming to a Composite pattern [33] (as briefly described in 

Appendix C). 

Critically, Rich Services includes the concept of Rich Infrastructure 

Services (RISs), which enables the injection of service processing that 

implements crosscutting concerns (e.g., failure detection and mitigation [155], 

encryption [156], auditing, and access control, all defined in terms of policies 

injected responsive to stakeholder requirements). 

A Rich Service can model functionality at either the logical level 

(relating interactions and hierarchies involving services in the abstract) or at 

the physical level (relating realized services and the communications 

channels that connect them). A common use of Rich Services is to model at 

both levels, with a deployment mapping that translates logical modes to 

physical models (as described in Sections 5.3 and 5.4).  
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This section briefly describes the structure and semantics of the Rich 

Services blueprint, which creates a robust context for discussing policy 

injection that leads to the rapid realization of stakeholder requirements. 

4.1.1.1 Rich Service Structure 

As shown in Figure 10, a Rich Service contains five major components: 

the Service/Data Connector (SDC) ①, a collection of Rich Application 

Services ② and Rich Infrastructure Services (RISs) ③, a message transport ④, 

and a message router ⑤.  
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Figure 10. A Typical Rich Service 
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The SDC defines the RS’s input streams and output streams, 

representing a definition of the RS’s service interface (as a Bridge pattern [33] 

at the logical level, and a Messaging Gateway pattern [135] at the physical 

level). An SDC can be modeled in a number of ways, including as explicit 

mappings between input and output values (in the λ-calculus tradition 

described in Section 2.2.4), as lists of imported and exported function 

definitions [156], and as Message Sequence Charts. 

A Rich Application Service (RAS) is a service that implements business 

rules and application processing supporting a dominant decomposition, and 

itself is modeled as a Rich Service. As such, it implements a service interface 

and can be implemented as a service orchestration or as an atomic action. 

Additionally, a RAS’ SDC can perform translation services between the inputs 

presented to the RAS and the workflow that implements the RAS, and similarly 

between the workflow and the RAS outputs. In this respect, the RAS’ SDC 

implements a Mediator pattern [33]. 

A Rich Infrastructure Service (RIS) is a service that implements behaviors 

that crosscut RAS orchestrations, and are therefore injected into those 

orchestrations in one or more place. Structurally, it is identical to a RAS and 

can be modeled as a Rich Service. For example, a requirement to encrypt a 

message travelling between a source and target service may be 

implemented as two RISs (an encryption RIS and a decryption RIS, not shown) 

where one RIS is injected to encrypt a message sent by the source service, 

and the other RIS is injected to decrypt a message received by the target 
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service. (Under PDD, the RIS feature is used to evaluate policies that may lead 

to workflow composition, as described throughout this chapter.) 

The message transport transfers messages between services, where the 

messages are formatted in some way compatible with the SDC of the source 

and target service.  

The router is coupled to the message transport, and implements a RAS-

to-RAS service interaction by accepting a message from a source service and 

routing it to the target service, as an example of the Mediator pattern [33]. It 

can also enable crosscutting processing by interposing a RIS into the 

interaction, thereby creating a RAS-to-RIS-to-RAS interaction, which leads to 

policy injection. 

Considering that both RASs and RISs can be Rich Services, each with 

SDCs ⑥, RASs, RISs, and message routing of their own, they complete the 

Composite pattern.  

For a RS, the existence of an SDC signals a decomposition 

implemented by an encapsulated orchestration, where either a single service 

or multiple services may be orchestrated to implement a workflow. For simple 

services, the SDC may be trivial (or non-existent), thereby leaving the service 

functionality to be implemented by the service itself. 
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The Rich Service shown in Figure 10 models the GetStudyList motivating 

example described in Chapter 3. It represents three levels of hierarchy: 

 An interaction between the Client and PALMS services (within the 

System model) 

 The decomposition of the PALMS service as an orchestration of the 

ListStudies, StudyRepository, and Storage services 

 The possible decomposition of the Client, ListStudies, StudyRepository, 

and Storage services into their own service orchestrations (not shown) 

Additionally, it shows two (possibly different) Policy Evaluator RISs. Within 

the PALMS RS, the RIS represents the possibility of policy injection on 

interactions between the PALMS SDC, ListStudies, StudyRepository, and 

Storage services. Within the System model, the RIS represents the possibility of 

policy injection on interactions between the Client and PALMS services.  

It does not show the actual service interactions depicted in Chapter 3 – 

they would be encoded in the routing tables or rules implemented within the 

router. Likewise, it does not show the interfaces defined by each of the SDCs – 

they would be specified separately as attributes of each SDC. 

Note that RASs and RISs can maintain state that drives service behavior 

over time. Whereas such state is generally encapsulated within a service, 

sharing state amongst services can be modeled by a common shared 

service, such as Storage represents to the ListStudies and StudyRepository 

services. 



132 

 

4.1.1.2 System of Systems (SoS) Composition using Rich Services 

From the perspective of the Rich Service in Figure 10, the Policy 

Evaluator RISs at the System and PALMS level are independent. However, 

given that RISs can share state, they can be modeled from another viewpoint 

as integrated, thereby implementing a single concern. As such, they can be 

modeled as RASs within a separate Rich Service-based policy support system. 

This represents a System of Systems (SoS) composition as described below. 

Figure 11 presents the System and PALMS services and their relationship 

to Policy System services using a UML class diagram for brevity. It shows 

interaction relationships as encoded at the Rich Services router level. The 

classes along the top represent System and PALMS RAS services (from Figure 

10), which are related by service interaction relationships. The second tier 

(including ClientPolicyEvaluator and PALMSPolicyEvaluator) represents System 

and PALMS RIS services (from Figure 10), which are related to the RAS 

interactions by association classes that model interception. The second tier 

and third tier combine to represent interacting RASs in the Policy System 

application, in which policy is stored in a policy repository, is defined by a 

policy UI, and is evaluated by PolicyEvaluator classes. The PolicyEvaluator 

services share state via a common policy state RAS. As such, this demonstrates 

the use of RIS injection to merge two independent applications as a SoS 

integration via service composition.  
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Figure 11. RIS Injection Achieves System of Systems Integration 
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While the Policy System is an example of a complex application, and its 

integration with the base application is a high value integration, the same 

principles apply to the injection of other concerns into a base workflow – 

injected concerns can represent large, small, or trivial systems, each of which 

can be independent of each other or of the base application. In subsequent 

sections, I position policies and collection of policies as representatives (or 

actual implementations) of large, small, or trivial systems. 

I explain the criteria and mechanisms for this composition in the 

following sections. 

4.1.2 Service Definition 

In this section, I describe how Rich Services (aka services) logically 

interact with each other, notwithstanding mediation by the message router. 

Specifically, I define how messages are exchanged and the meaning of 

message exchange, which form the basis for interception that enables policy 

injection. My definition of message exchange is based on Streams, as defined 

in [157] and [117] (as component refinement). 

I define a relation implemented by Rich Service    as    ⃗     ⃗⃗ ;   and 

  are disjoint sets of names of directed channels, where a channel contains a 

message   at time  , called a channel valuation at time  . Relative to   ,   

represents input channels,   represents output channels, and     defines the 

syntactic I/O interface of the service, represented by the SDC (as shown in 

Figure 12).  
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I define       as the collection of names of input and output 

channels for a Rich Service. For a set of channel names     and a set of 

messages  , I define  ̃        , a set of time-ordered valuations of the 

channels named in  . Finally, I define  ⃗   ̃ , where  ⃗ is the infinite valuation 

or history of the channels named in   [158]. Therefore,  ⃗ denotes the channel 

history for input channels,  ⃗⃗ represents the channel history for output channels, 

and  ⃗ represents the channel history for both input and output channels. 

 

I define a service contract as the set of channel valuations for which 

 ⃗     ⃗⃗  in the context of    where  ⃗⃗ can be generated by    given input  ⃗. 

   is said to fulfill a service contract if it maps  ⃗ to  ⃗⃗ as defined in the service 

contract.  

(Note that this view of Stream-based semantic compatibility is more 

restrictive than the semantic-free view present in Petri Nets presented in 

Section 2.2.2 -- it leads to an understanding of compatibility between services, 

including which services can substitute for other services. This view of service 

contracts is complimentary to the Design by Contract [159] (DbC) view, 

where a service is defined by pre-conditions, post-conditions, and invariants. It 

is also complimentary to Interface Oriented Design [160] (IOD), which 
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Figure 12. Rich Service with Input and Output Channels 
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advocates the separation of interface from implementation. Rich Services 

defines interfaces more broadly as message streams, and defines correct 

execution in terms of valid output streams reactive to valid input streams, 

which enables service interactions to be framed in terms of protocols and 

guarantees.) 

Finally, I define    as a relation     ⃗     ⃗⃗ , which produces the power 

set of  ⃗⃗ because    can execute non-deterministically. 

Note that this definition allows   broad discretion in choosing how to 

map   to  ;   itself determines which input channels to read, when to read 

them, which output channels to write, what to write onto them, and when to 

write them. This discretion applies to both RASs and RISs. 

 

Note that the execution of   may incorporate choice in its 

computation. CSP [113] differentiates internal and external choice, where 

internal choice leads to non-determinism, and external choice relies on 

external state. When modeling external choice, external state is accessed via 

one or more channels constituting  . 

P
IP

OP

OP, IQ

IP,OQ Q
OQ

IQ

P⨂Q

 
Figure 13. Composing Two Services P and Q 
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4.1.3 Service Composition 

Two services,   and   are said to interact when at least one output 

channel of   is connected to an input channel of  , or vice versa, and I use 

the notation       to represent the interaction of   and  . More precisely, I 

define a service composition between the two services as     where some 

of  ’s input channels (called    
  are connected to some of  ’s output 

channels, and vice versa, as shown in Figure 13. Such channels are called 

hidden channels     , and include    
       and    

       in the figure. The 

input and output channels of     are all of the input and output channels of 

  and   except those in     . The service contract defined for hidden 

channels is called the hidden channel service contract. 

Note that the     definition allows the composition broad discretion 

similar to    defined above, and channel valuations and channel history for 

the composition is defined similarly to   . Channels not connecting the two 

services are free to connect with other services. 

In Figure 10, the StudyRepository and Storage services might be 

composed to realize retrieval from a repository. 

4.1.4  Service Decomposition 

I define decomposition of a Rich Service     as an orchestration of sub-

services to achieve the functionality of    , given as      ⃗     ⃗⃗  (from 

above). A service orchestration can result from the conditional or 

unconditional interactions of serially and concurrently executing services, 
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thereby implementing the workflows described in [70].     also denotes the 

collection of sub-services that interact (via composition) to implement its 

functionality: 

 

where     
 is the SDC for    ; the SDC initiates (and may terminate) the 

orchestration. The orchestration consists of the interactions                

where the service contracts for each service   and   are fulfilled. 

The orchestration is driven by a collection of services   that perform 

routing functions that compose sub-services. For each sub-service   and   

paired in a composition,   contains a service     where the composition is 

implemented as         where     mediates between   and   (as shown in 

Figure 14). In this example,              . 

 
In Figure 10, the composition of the Study Repository and Storage 

services is mediated by a routing function in the message router ⑤, which 

contains  . 

  𝐷 =  
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Figure 14. Rich Services Routing Service (with sub-services; SDC not shown) 
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4.1.5 Message Interception 

    must fulfill the hidden service contract for     in its interactions 

with both   and  , and can do so simply by acting as a pass-through for their 

hidden channels. It is also free to interact with a different service    instead of 

 , provided that   fulfills  ’s service contract.  

Beyond this,     is free to interact with RISs provided it continues to fulfill 

its own service contracts. Considering that a RIS is a Rich Service that 

implements a workflow, a routing function interacting with a RIS equates to 

composing a workflow onto the base workflow represented by    . 

In Figure 10, a router function is defined for each possible pair of 

interacting services (including the PALMS SDC and each of the three RASs). 

Each router function may communicate with the Policy Evaluator RIS (or any 

other defined RIS), which can conditionally execute any service (either 

synchronously or asynchronously), and may replace target service with an 

alternative (e.g., a service that returns an access control error), provided the 

alternative fulfills the service contract in effect between the source service 

and the original target service. 

4.1.6 Services and Workflows 

Under Rich Services, workflow actions are represented as Rich 

Application Services (RAS), and data flowing between actions are 

represented as messages. A workflow (called a base or target workflow) is 

implemented as a service orchestration by routing messages between RASs. 
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Crosscutting concerns are implemented by intercepting such messages and 

routing them to Rich Interface Services (RISs), which implement injected 

workflows that process the messages. 

Rich Services (including both RISs and RASs) can be decomposed into 

orchestrations of finer grained RASs representing finer grained abstractions. 

Accordingly, Rich Services enables workflow injection at each level of this 

abstraction hierarchy, as evidenced in Section 4.1.1.2 

4.2 Policies 

Under PDD, a policy is a decision that affects the data flowing between 

services or the operations performed on the data. Conceptually, it leverages 

the duality between service orientation and data flow orientation. Under a 

service-centric view, a service represents an action consuming input channels 

and producing output channels; under a channel-centric view, input 

channels beget output channels via a transform implemented as a service. 

4.2.1 Policies and Workflows 

To understand how policies can cause an alternate workflow to be 

composed onto a base workflow, consider a simple service interaction 

consisting of a one-way exchange: 

 
   
→    

where   is a source service,    is a target service,    is a message of type   , 

and the service interface for    supports a service interaction      that 
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accepts a message of type  . A refinement of this relationship allows the 

choice of an alternate target service as shown below and in Figure 15: 

 
   
→               

where   is a policy evaluator service that returns  , a service having a 

service interface that includes  ’s service interface (relative to  ), and may, in 

fact, be   itself.    is a policy expression that is evaluated by   (by calling 

internal evaluator service  ), subject to some context  , and returns  . The    

notation dereferences the result of the   service, thereby specifying the 

actual interaction target. Because   now interacts with    , I say that policy   

on         results in the substitution of     for   in the service interaction. The 

context   is the information   references in its policy evaluation – its content is 

implementation specific, but at least includes the message   (as    
 defined 

in Section 4.1.3) and may include application, environment, workflow, or other 

state per Section 4.3. 

Note that for       , the policy evaluator is iterated on the interaction 

       , thus allowing the evaluation of policy defined on  ®   . 

 

P Q P [S]

m m {π,P,Q, K}

S S

   

 
Figure 15. Service Refinement for Alternate Choice 
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  has wide latitude in choosing an appropriate target service   so long 

as the target fulfills  ’s service contract, it is not constrained as to its activity or 

effect. Exploiting this allows such policies to inject services that execute 

workflows implementing application features as separate concerns 

maintaining their own state. Further, policies are also free to coordinate with 

each other through shared state independent of the workflows on which they 

are composed. For example, a control policy that sets state can combine 

with a filter policy that tests state and executes a workflow, thereby enforcing 

an obligation. While state is conceptually present in channel histories, it is 

more conveniently accessed according to Section 4.3. 

Below are examples using my own notation, where if   is a service, then 

    ®   denotes replacing   with an orchestration that invokes    followed by 

  , and          denotes replacing   with two services    and    both of 

which receive  ’s message and execute concurrently. 

Below, message   is routed to  , which transforms   into   , which is 

routed to  .   acts as a filter transformation. 

 
   
→    where     

    
→    

Below, message   is routed to  , a workflow that implements one or 

more obligations [161] (defined as altering or acting upon persistent state, but 

not altering message  ) before   is routed to  . 

 
   
→    where     

   
→    
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Below, message   is routed to both   and  , which execute 

concurrently. 

 
   
→    where           

An inventory of workflow configurations is given in [70]. 

4.2.2 Compound Service Interactions 

While the one-way interaction is simple, policy can result in workflow 

substitution in more complex interactions following the same principles. An 

important example is a request/reply interaction on       below: 

 
    
→    followed by  

    
→    

where   is a query message,   is an answer message, and   is correlated with 

a particular  . Both   and   play the role of message   above. In a 

request/reply interaction, a replacement service   fulfills  ’s service contract if 

it returns an   to a particular instance of  , just as   would.  

A policy that transforms   before invoking   is called a pre-filter, and a 

post-filter is a policy that transforms   before returning it to  . A policy that 

replaces   with some service   is called a control policy. All three policy types 

can apply to a single service interaction, either alone or in combination. Using 

Figure 6 as an example, a pre-filter policy might qualify the query (on ❹), a 

post-filter policy might remove undesired data (on ❺), and a control policy 

(on ❹, after a pre-filter policy) might prohibit data access for uncredentialed 

users. 
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In the general case of multiple interactions between   and  , both   

and   must fulfill the service contract governing the interactions, and the 

contract is bound to the specific instances of   and   in play. The service 

contract can be discovered in various ways, including via a service registry. 

Under the simplifying assumption of a request-reply interaction, the registry 

maintains   , the type of reply due   from  , and   must return a reply of type 

  . 

Note that it is not guaranteed that a replacement service   can 

function or produce full benefit under the service contract defined by  . For 

example, suppose   must return a result   of type    not acceptable to  . This 

fundamental mismatch can properly be recognized as a new requirement on 

the base workflow – the requirement can be captured and the base 

workflows can be evolved in an orderly manner. Recognizing the mismatch 

can be done at runtime (if typed messages are exchanged and typing is 

checked) or at design time (given service modeling or model checking 

support [162] that ties in with the policy language), and is beyond the scope 

of this dissertation, though is considered further in Section 7.8.1.  

4.2.3 Control Policies 

Leveraging the service-centric view, a control policy    calculates a 

service     to replace service   (in    ) such that     fulfills  ’s service 

contract (and could be   itself).     is calculated by            ,   is the 

source service, and   is the default target service, and   is the workflow 

context (defined in Section 4.3, and including inputs    
 as message  ). The 
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corresponding router interaction (per Section 4.1.4) is            
 where     

is composed with the calculated service      
 instead of the default service 

  . 

A control policy has wide latitude in choosing    , and it usually consists 

of control policy expression              that acts as a decision function by 

choosing between various pre-identified candidate     services -- the     is 

also free to create and return a novel     on the fly. The     can reference 

any criteria, including the input channel history  ⃗  
, the     channel history 

 ⃗  , or the channel history for other interactions in the system.  

A control policy is authored by a stakeholder or policy programmer, 

and is inserted into a policy repository indexed by the service interaction 

      to which it applies. It represents a means by which new workflows can 

be composed into a base workflow pursuant to emerging stakeholder 

requirements. 

Note that a valid control policy may return a service     that 

incorporates a replacement service composed with the default service  . The 

composition could be serial, parallel, or complex, sufficient to implement the 

intent of the policy. Furthermore, service   may itself fulfill its service contract, 

or fulfillment can be delegated to another component of the composition. 
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4.2.4 Filter Policies 

Leveraging the channel-centric view, a filter policy    calculates a 

service     to intercept  ’s inputs    
 (as message  ) and replace them with 

other values    

  that are valid inputs to  .    is a function             whose 

arguments are the same as for   . The corresponding router interaction is 

           
  .  

Similar to a control policy, a filter policy acts as a decision function that 

has wide latitude in choosing    , which consists of a filter policy expression 

             that either effects the channel value transformation or simply 

returns    
 without any transformation. 

A filter policy expression can reference the same criteria as a control 

policy expression, and is authored and stored in the same manner. It 

represents a means by which data flows can be constrained, augmented, 

inspected, or replaced consistent with emerging stakeholder requirements.  

The router function    , executes both control and filter policies for an 

interaction, and injects the resulting workflows. When both a control and filter 

policy exist for an interaction, the filter policy is executed before the control 

policy, and the input channel is transformed before the target service is 

executed. In Figure 14, a control policy replaces the service  , while a filter 

policy replaces the hidden channel    
. 
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4.2.5 A Simple Policy Evaluation Service 

A simple example of policy evaluation is a control policy (Section 4.2.3) 

that makes an Allow/Deny decision involving the                           

interaction in the GetStudyList workflow in Chapter 3. The objective is to 

evaluate available information to determine whether to allow the Storage 

interaction or to return an error message instead. In this example, I make a 

simplifying assumption that a user credential is available in the request 

message ❹, and that the Allow/Deny decision is based on it – Figure 6 

doesn’t show this, and Section 4.3 describes a more likely source for user 

credential information.  

Figure 16 is a UML sequence diagram that shows services in a policy 

evaluation as described in Section 4.2.1. It assumes that the     composition 

(representing                        ) adheres to a request/reply pattern (as 

described in Section 4.2.2), and that the   service contract supports an error 

return. The request message    
 (included in context  ) contains the user 

credential. A control policy   is associated with the interaction       in a 

policy repository, and it evaluates    
 to return either the default service   (for 

the Allow case) or a replacement service   (for the Deny case), which in turn 

returns an error.  

In more detail, the router function     delegates the policy evaluation 

to the policy evaluator RIS  , which implements a three step workflow: it 

fetches the control policy    (i.e.,  ), executes it , and returns the workflow     

(i.e.,   or  ). The     is expressed in a language (e.g., XQuery) that can be 
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interpreted by the evaluator service   (not shown here, but described in 

Section 4.2.1).  

An expression could be as simple as “       
                          ”, 

where a user identity is fetched from the input channel and is compared to a 

static string.  

 
To fetch and evaluate a pre-filter policy (not shown in Figure 16),   can 

be called at ① to fetch and evaluate the policy     and return    . If    

exists,     is executed to transform    
 before executing the access control 

policy. 

Note that apart from the request interaction between   and   (or   , 

the reply interaction between   (or    and   is eligible for interception by a 

post-filter policy. (It is not eligible for interception by a control policy because 

P:Study 

Repository
RPQ

IQh

Err: Reject

 Q:Storage E:Error

P,Q,K

W

Oqh/Err...

IQh

OQh

IQh

Alt
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②

 

Figure 16. Simple Allow/Deny Policy Evaluation 
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under a request/reply pattern, the service contract for   requires a response, 

which the router function     must guarantee.) If the post-filter exists,    
 is 

transformed and fed to    
, which   consumes. Figure 16 shows the router 

function relaying the result    
 to  , but does not show a call to   (at ②) to 

return     or the transformation of    
 before relaying it to    

In this example, applying a pre-filter to the inbound message    
 is 

useful for altering or qualifying a query request to the Storage service. 

Applying a filter to the outbound interaction    
 is useful for altering, 

augmenting, or decimating the study collection returned by the Storage 

service. While pre- and post-filters can be used to enforce access control in 

this way, they can also be used to enforce HIPAA-style requirements that call 

for altering or augmenting data. 

Because the user credentials may not be contained in an outbound 

channel (which contains a study collection, in this example), a post-filter 

would rely on access to credential using means described in Section 4.3. 

4.2.6 Feature Injection and Obligations 

Note that a control expression     has wide latitude regarding the 

process it uses to determine which service     it returns. The expression may 

call services and instigate separate workflows so long as the expression returns 

a service that fulfills the service contract of the default service. Filter 

expressions     have similarly wide latitude provided they return an 

appropriate (or no) service. Particularly, a feature can be composed into an 
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interaction by a control or filter expression by interacting with a service that 

implements it. The feature service may or may not terminate before the 

completion of the expression. Similarly, a feature may be composed into 

services returned by control and filter expressions. 

For example, a feature that produces an audit stream may 

synchronously or asynchronously log the contents of an interaction message. 

There are several ways to implement such a feature, including: 

 within a control expression, invoke the audit service and return the 

default service   (or any other appropriate service) 

 within the service returned by a control expression, invoke the audit 

service and then the default service   (or any other appropriate 

service) 

 within a filter expression, invoke the audit service and return no service 

(or an appropriate other service) 

 within the service returned by a filter expression, invoke the audit 

service and then a filter service (including a passthru filter) 

An independent workflow maintains state pertinent to meeting its 

requirements. However, the policy decision (    or    ) that returns the 

workflow can, itself, maintain state via SIVs and IVs as in Section 4.3. Such state 

can be accessed in future control and filter decision functions, or can 

constitute parameters to an injected workflow. Policies and groups of policies 

that maintain and consume state are, themselves, injectable features in that 

they implement a discrete requirement set independent of their relationship to 

base workflows. An important use of policies-as-applications is in 

implementing obligations [161], which constitute actions to be executed in 
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the future based on past decisions, and in creating a System of Systems (SoS) 

as described in Section 4.1.1.2. 

4.2.7 Policy Composition 

A service interaction may be subject to multiple filter or control policies, 

particularly when multiple independent stakeholders each propose 

requirements that affect the interaction. Synthesis of multiple policies cannot 

be done naively, as a synthesis that accounts for the intent of all stakeholders 

is itself a matter of application design, not mechanics. 

For example, given inputs    
, filter policy    returns service    , which 

produces replacement inputs    

  (per Section 4.2.4), as does service    
  

returned by policy    . Casting a service as a function,    

         
 , two filter 

services     and    
  maintain the commutative property under composition if 

   
 (       

 )      (   
     

 ). Logically, commuting filter services can be 

executed in any order, and so serial application results in a logically consistent 

result, and a composition policy that executes one filter after another would 

be appropriate.  

However, factors such as the administrative or security domain that 

supplied the policy may dictate a hierarchical approach to correctness, 

where if    returns a service filter,     should not be executed at all. For 

example, if     represents a default filter, and    represents a user-supplied 

filter, the user filter should replace the default filter. Other approaches to 

correctness are possible, too. 
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With non-commuting filters, dependency relationships (based on either 

external state or the contents of    
) are violated, and composing such filters 

requires a means for determining execution order and compatibility. For 

example, filter services     and    
  must be ordered if     deletes information 

on which    
  relies. They are incompatible if each deletes information on 

which the other relies. Additionally, such filters are subject to the additional 

administration and security that apply to commuting filters. 

Determining whether filters commute (either logically, administratively, 

or securely) requires deep inspection of filter code and an understanding of 

the environment in which the filters are deployed, and are beyond the scope 

of this dissertation. 

Composition of control policies poses similar considerations. Section 

4.2.3 describes the combination of control policies as serial, parallel, or 

complex compositions. While control policies don’t transform messages in 

flight, they can modify system state, and can therefore be order dependent 

or incompatible. Additionally, administrative and security concerns may drive 

ordering and compatibility decisions. For example, given control policies    

and     representing access control decisions contributed by different 

domains, each policy can generate its own error message if their access 

control criteria are not met. While serially composing these policies allows 

resource access only if both sets of criteria are met, the particular error 
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message returned may be a function of which policy is executed first, and 

would follow scenarios similar to those for filter policies. 

In general, composition policies address the combination of filter or 

control policies as policies on policies. A composition policy   is a policy that 

combines policies consistent with the service interaction to which those 

policies apply individually, and consistent with the application’s administrative 

and security concerns. Composition policies exist separately for control 

policies, pre-filter policies, and post-filter policies.  

For each interaction      , the policy evaluator executes a separate 

four stage workflow for pre-filter, control, and post-filter policies. In general:  

 retrieve a collection      of policy expressions      from one or more 

policy repositories 

 retrieve a composition policy expression     from a composition policy 

repository 

 evaluate                     

 return     

For composing control policies, if |    |   ,   is returned. For 

composing filter policies, if |    |   , nothing is returned. If     is undefined 

and |    |   , an error occurs. (For control composition policies,     is a 

control service, and for filter composition policies,     is a filter service.) 

Analogous to the Simple Policy case in Section 4.2.5,     is the 

composition policy expression specific to the     composition, and has wide 

latitude in evaluating members of      and combining the resulting workflows. 
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An example of a simple   policy is a multi-expression Allow/Deny control policy 

that Allows if all policy expressions Allow, or chooses an error to return if at 

least one policy expression Denies. It calculates a collection   of workflows 

generated by members of   :                               , and 

returns                            (where the choice of the particular 

  is determined by the composition policy). 

While the router function     executes services based on filter and 

control policies, it calls the policy evaluator RIS    to calculate filter and 

control compositions. (   is not the simple RIS  defined in Section 4.2.1, though 

it serves the same function. Instead,    executes the composition calculation 

workflow defined in this section, which in turn calls the simple RIS  .) 

4.3 Context System 

While the injection of a policy into a workflow is a critical contribution to 

the rapid realization of stakeholder requirements, the ability to coordinate 

policies injected into a single interaction or multiple interactions is key to 

realizing requirements that produce or depend on state, especially within a 

workflow (as exemplified by the Work Study Flag in the SOARS Bursar workflow 

in Chapter 2). A key contribution of my dissertation is a design for a Context 

System, which enables composed workflows to maintain private or shared 

state either during or beyond the execution of a target workflow. Ultimately, 

this capability enables a collection of policies to act as a separate, 

composable application in its own right (assuming appropriate restrictions on 

access to policy state from other policies), thereby powering System of 
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Systems integration. Recognizing that a Context System can be implemented 

in a number of ways, this section presents a design that harmonizes with the 

policy foundations laid in Section 4.2 – a concrete implementation is 

presented as part of the PALMS case study in Chapter 5. 

In order to map  ⃗ to  ⃗⃗ per Section 4.1.2, a service may rely on its own 

state, state maintained by other services, or the channel history for any 

service. (Arguably, except for services’ initialization states, the state of any 

service derives from its channel history, and discrete state is a convenience 

that captures a part of channel history for later use. A service’s access to 

external state can be considered a channel into or out of a service that 

manages the external state.) When composing a policy onto a base 

workflow, a key challenge is in correlating the policy service state with the 

base workflow instance to which it applies, then extinguishing the state when 

the base workflow is complete. The Context system meets these challenges by 

creating and managing state containers tied to workflow instances (observing 

their lifecycles) and providing composed policies with access to that state. 

As in Section 4.2.1, a policy   is a service that returns a service   

responsive to a set of inputs  . Relative to a base workflow, policy   represents 

a separate concern equivalent to a requirement composed on a set of base 

requirements, and its choice of   is based on its own state independent of 

state maintained by the base orchestration. Furthermore, two policies    and 

   may share state            in selecting their respective services    and   . 
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When policies    and    cooperate, one depending on          generated by 

the other, they form a separate workflow whose data flow is mediated by 

        .  

Each state          is associated with a state collection called a SIV 

(service interaction-related values) or IV (independent values), and a context 

  can contain numerous SIVs, IVs, and AEVs (application and environment-

related values) as shown in Figure 17. 

 

A SIV is a container of uniquely named states (e.g.,         ) that have 

similar lifecycles or other implementation characteristics – SIV contents may 

be produced or consumed by one or more services (e.g., policies) composed 

 

Figure 17. Context Containing AEVs, SIVs, and IVs 
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onto the same or different base workflow instances. I define   as the set of all 

SIVs (i.e.,     ) where  

 

and      contains a set of states   common to one or more policies. (Note that 

the   operator specifies a disjoint union, which is a union that maintains 

identical sets as distinct members.) 

IVs are similar to SIVs, except their lifecycles are determined explicitly by 

the services that create and use them. AEVs include application and system 

states, and have lifecycles independent of workflows. 

Whereas service composition supports the separation of concerns into 

base concerns and policy-injected concerns, execution contexts support this 

separation by enabling independent data flows between services 

implementing those concerns. In this discussion, I consider SIVs as carriers for 

data exchanged between services that implement separate concerns 

composed into a base workflow. Three prominent PALMS SIVs are interaction 

messages  , Workflow SIVs, and Session SIVs.  

A message   carries data shared by two service instances. The data is 

created by the source service, and is consumed (or destroyed) by the target 

service, as described in Section 4.2. (Note that for request/reply interactions, 

the request message   – as described in Section 4.2.2 – is accessible in the 

reply interaction as a SIV element.) 

 =       

 

 +
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A Workflow SIV carries data that applies to a single instance of a base 

workflow. The data is created and accessed by concerns (e.g., policy) 

composed onto the workflow, and is destroyed when the workflow is 

complete. Data for each concern is named by convention to be unique to 

the concern, so as not to interfere with another concern’s data. 

A Session SIV is similar to a Workflow SIV, except that its data is created 

and accessed by concerns composed onto multiple instances of a workflow 

or onto multiple workflows. Its duration is determined by some external criteria, 

such as the lifecycle of a client-based workflow. 

Other SIVs are possible, as demonstrated in Section 5.5.4. 

Consistent with SOA principles, service and policy execution can occur 

within a distributed computing system, with different services executing on 

different platforms, and possibly including services running in different 

processes. Consequently, SIVs must be available to services and policies 

wherever they execute, and cannot depend on values available in a 

common memory space. SIVs may contain actual data elements (if the data 

lifecycle spans only a service interaction – for example, message  ) or a 

reference to a data container (for data that spans service interactions). 

References are globally unique (GUIDs) resolved in a globally available 

Context Infrastructure Service (CIS), which itself can be distributed, and 

access to which can be regulated by policy.  
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When multiple instances of a base workflow exist, SIVs must be properly 

correlated with instances of service interactions. The context system maintains 

the association between a base workflow and its SIV values by composing 

them (or their references) into the workflow service orchestration’s message 

flow as shown in Figure 18. Each interaction message   in  
 
   is replaced 

with an interservice message   , which is a composition of all SIVs relevant to 

an orchestration:  
  
→  , where    exists for the sole purpose of conveying an 

interaction message along with its context (as inspired by π-calculus, per 

Section 2.2.3) from a source service to a target service as formally defined: 

 
     

                  

   is created immediately when   sends  , and   is extracted from    

immediately before   is invoked, thereby fulfilling the service contracts 

P Q
m mIM= 

{m0,m1,m2…}
CIS Keystore

Session context GUID
Workflow context GUID

manages

Message m

p Context Servicescalls

accessesaccesses

AEV Accessors

Independent Value GUID

uses

 

Figure 18. Context Management 
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between   and  . (In a SOA context, this substitution can be performed via 

interceptor services injected onto each service interaction, as demonstrated 

in Section 5.5.4.) I use    to refer to the service interaction message   

wrapped in an   , and each    is a distinct, different SIV that represents a 

collection of states. (A message   is also a collection of states, though with a 

lifecycle lasting for only a service interaction, and therefore is also a SIV.) 

Using Context Services (as in Figure 18), a policy or feature (represented 

by  ) can maintain its own state in a SIV, and can control the lifecycle of the 

state subject to the SIV lifecycle. For example, a value (e.g., a counter or 

Boolean) set by a policy in a Workflow SIV can be tested by the policy later in 

the workflow, and is automatically deallocated at the end of the workflow. 

Similarly, a session value can be set in a Session SIV, can be tested across 

multiple workflows sharing the session, and is automatically deallocated when 

the session is terminated.  

(While Figure 18 portrays the conceptual relationships between a pair 

of existing services, injected policy, and context management, Figure 33 

(explained in Section 5.5.4.1) shows a set of components, control flows, and 

data flows that implement these relationships in the PALMS case study.) 

Common examples of SIV values include user credentials, channel 

histories for important workflow services, a service history for a particular 

thread, and so on. Particularly, features such as failure detection/mitigation 

and information assurance can use histories to reason about the state of an 
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application. Additionally, features can be implemented by a combination of 

policies (as in Section 4.2.6), where some policies save important channel 

values during a workflow, and other policies act upon them. 

Unlike SIVs, AEVs are state defined and maintained by the application 

or the environment, and are not associated with a particular workflow. AEVs 

are accessible by policies and features through interaction with application 

and environment services. Examples of AEVs include values in application 

repositories, the system time of day, and application analytics. Note that 

policies can be defined on interactions with application and environment 

services, thereby creating security and additional value added processing 

connected with accessing AEVs. 

Note that while Workflow and Session SIVs establish context relative to 

workflow-oriented lifecycles, IVs allow policies to establish persistent state 

independent of these lifecycles by interacting directly with the CIS (via 

Context Services) to store and retrieve values. Such policies must choose 

context GUIDs that do not conflict with GUIDs that could be chosen for SIVs, 

and these GUIDs must be communicated amongst the policies via out-of-

band means. 

4.4 Addressing Gaps Identified in Existing Choice Mechanisms 

In the sections above, I addressed many of the gaps identified in 

Section 2.7.6 (and summarized in Table 6). The service and composition 

definitions in Sections 4.1.2 and 4.1.3 describe the basic mechanisms 
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underlying the injection of a crosscutting concern on an interaction between 

two services, while Section 4.2 describes the particular mechanisms of policy 

injection as relates to control flows, data flows, and policy compositions. 

Consequently, they demonstrate means by which choice can be late-bound 

to a workflow without requiring workflow recoding and re-release, thereby 

enabling the runtime injection of workflows that implement stakeholder 

requirements. Section 4.3 describes a context system that allows the 

implementation of crosscutting concerns to be stateful, thereby lifting policy 

injection to a System of Systems composition. This chapter does not address 

policy verification or testing of policies and injected concerns – these topics 

are considered further in Sections 7.5 and 7.8. 

 

4.5 Summary 

In this chapter, I have explained the principles behind policy-oriented 

service composition, where a policy evaluation concern crosscuts all service 

interactions in a Service Oriented Architecture. This composition occurs at the 

Table 6. Gaps Addressed Foundationally 

Section Gap 

4.2.2 Identification of policy injection site at runtime 
4.2 Injection of policy at runtime 
4.3 Tracking workflow-based policy -centric state 

4.2.7 Composition of multiple policies onto a single injection site 
4.1.3 Enabling composition onto injected workflow 

 Verification of interface and semantic compatibility between 

policy and base workflow 
 Incremental testing and proofs that policies implement 

requirements 
 Enabling a consistent relationship between state and policy 

across policy deployments 
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service level, thereby enabling the policy-defined injection of workflows 

representing application-level crosscutting concerns.  

As groundwork, I described a formal relationship between services, and 

extended the relationship to describe general composition as interception. 

Next, I defined the conditional injection of workflows onto base workflows 

(mediated by a policy evaluation interceptor), and described control and 

filter policies that enable the transformation of both data flows and control 

flows. I also described a strategy (as composition) for integrating multiple 

policies defined on the same service interaction. Finally, I described how 

policies can maintain and access state, thereby creating injectable concerns 

that are in fact systems in their own right. The ability to define the injection of a 

simple workflow, of stateful workflows, or of systems of state-sharing workflows 

onto base workflows parallels the composition of requirements onto a set of 

base requirements, and is therefore a suitable implementation of both simple 

and complex requirements onto existing applications.  

In defining policy evaluation as the processing of collections of policies 

mapped to service interactions at runtime, I demonstrate how such 

requirements can be injected into an application at runtime, thereby 

avoiding the deployment delays and risks endemic in traditional software 

engineering practices. Finally, by couching policy expressions in terms of DSLs, 

I invite a collaboration between programmers (who are familiar with base 

workflows) and stakeholders (who are familiar with requirements) in quickly 

and reliably realizing new and changing requirements. 
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Based on this perspective, the story of policy injection consequently 

rises to a story of System of Systems composition, where policy injection can 

be used to compose systems onto both base systems and onto each other. 

From the viewpoint of any one system, policy injection presents a linkage 

point between systems, as will be demonstrated by the injection of the policy 

system itself and other systems in Chapter 5. 

In Chapter 5, I present the PALMS-CI case study, which demonstrates 

these principles with real world implementations that are evaluated in 

Chapter 6. In Chapter 7, I present comparisons to existing systems that either 

share goals with PDD, or implement portions of PDD using different 

approaches. Additionally, I make a case for the new role of Policy 

Programmer, which combines and extends the roles of programmer and 

stakeholder described in this section. Finally, Chapter 7 also describes the 

successes and shortcomings of both PDD foundations and implementations 

relative to gaps identified in Chapter 2. 
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CHAPTER 5 

POLICY IN THE PALMS CYBERINFRASTRUCTURE – A CASE STUDY 

In Chapter 4, I described the core principles that enable the 

conditional composition of workflows at runtime via executable policy. In this 

chapter, I describe how I implemented those principles in the PALMS 

Cyberinfrastructure (PALMS-CI), a large scale system designed to support 

exposure biology research while incorporating requirements from multiple 

independent stakeholder communities.  

The PALMS-CI currently serves a growing, worldwide community of 

researchers, successfully meets a number of important requirements, and is 

evolving to capture more requirements, based on policies injected onto base 

workflows. In demonstrating the implementation of PDD, it shows how PDD 

can be used to improve evolvability along two important dimensions: 

workflow maintenance costs and timely realization of requirements responsive 

to new and changed stakeholder requirements. 

In this chapter (as shown in Figure 19), I begin by explaining the basic 

PALMS-CI requirements, both in terms of the stakeholder community it serves 

and technical design drivers (in Sections 5.1 and 5.2). Next, I outline the 

PALMS-CI design process and rationale (in Sections 5.3 and 5.4).  
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Section 5.5 explains the design of the infrastructure that supports 

workflows and maintains separate contexts for composed workflows, which 

realizes context foundations laid in Section 4.3. Section 5.6.1 describes the 

conceptual framework on with PALMS policy languages are built, and Section 

5.6.2 discusses how policies are managed and authored. Section 5.6.3 

describes the mechanics of policy evaluation, which realize the injection and 

policy definition foundations laid in Section 4.2.  
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Section 5.6.4 gives an example of how PALMS policies can be used to 

inject novel features (as separate and crosscutting concerns) not addressed 

(or originally conceived of) in PALMS’ base workflows.  

Section 5.6.5 describes how to build and use DSLs as policy languages 

within PALMS; Section 5.6.6 addresses developing and debugging policies 

and DSLs that support them.  

Chapter 6 follows up with an evaluation of how well the PALMS-CI’s 

policy system meets these goals. It shows that PALMS’ policy implementation 

meets the goals of PDD by successfully enabling policy articulation and 

injection leading to the realization of stakeholder requirements at runtime. It 

demonstrates that this injection occurs at an acceptable cost in many cases. 

It also identifies costly cases that give insights into future evolution paths.  

Chapter 7 compares the PDD approach and its PALMS-CI 

implementation to existing theoretical and practical systems, and gives 

additional perspective on the approach and implementation, including how 

PDD succeeds or falls short in addressing the gaps identified in Chapter 2. 

Note that the GetStudyList motivating example presented in Chapter 3 

is used throughout this dissertation to demonstrate PDD principles, and is a 

simplified subset of the PALMS-CI discussed in this chapter. Simplification 

notwithstanding, GetStudyList is similar to each workflow implemented in the 

PALMS-CI, and fairly represents other types of workflows and workflow patterns 

as described in Section 2.5.2. 
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Note that while this chapter discusses PDD as applied to building and 

evolving a cyberinfrastructure (defined in Section 1.1), it applies equally well 

to other classes of large scale systems in the general category of Ultra-Large-

Scale Systems (ULS) [163] [164] [165], including grid systems [166], Systems of 

Systems, and distributed cyber-physical systems [30] (including automotive 

and aeronautical systems). Such systems have a number of requirements in 

common, including a need to address emergent requirements from 

continuously changing stakeholder populations operating under multiple 

policy domains. Additionally, they require continuous evolution and 

development while maintaining high availability and quality of service. Each 

type of system has different development and deployment constraints, and 

each would benefit critically from the user-controlled evolution and online 

modification capabilities at the heart of PDD. 

5.1 The PALMS Project and the PALMS-CI 

The PALMS (Physical Activity Location Measurement System) Project 

[167] was chartered by the National Institutes of Health (NIH) to study exposure 

biology (EB) questions answerable using geo-tagged data collected from 

biosensors worn by targeted populations. The PALMS-CI was created at the 

University of California, San Diego, to serve a then-unformed EB community, 

while accounting for differences between study data, analysis, and personnel 

organization, and facilitating NIH, HIPAA, and other policy objectives. 

The PALMS-CI realizes these requirements, and currently serves a 

growing community of over 40 research groups worldwide, manages over 170 
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EB studies with over 150GB of data, and offers 24/7 availability. It supports 81 

top level workflows (each implementing a PALMS API call, and all similar to the 

GetStudyList example presented in Chapter 3), 440 services, 440 service 

interaction message definitions (expressed as Java classes), all of which is 

contained in 2070 Java files. Figure 20 shows the community growth over time, 

beginning in 2010. Both the number of users and study groups (corresponding 

to one or more studies managed by the same group of users) has grown over 

time. It also shows that data under management has grown faster – the plot 

shows the size of compressed backup data, which grows as the logarithm of 

the actual data size. 

 

 
Figure 20. PALMS Community Growth over Time 
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From the outset, major PALMS-CI challenges included the ability to 

customize access to data and application features on a per-study basis, and 

to add new features quickly and reliably. Examples of per-study 

customizations include access control policies (e.g., allowing research 

assistants to add study participants or sensor data, but not delete either) and 

sharing policies (e.g., enabling a guest to view only anonymized sensor data 

instead of a raw data stream). Examples of new features include auditing and 

data provenance tracking added to the CI’s basic data access workflows. 

Given the PALMS project’s tight funding and time constraints, I 

conceived the PALMS-CI as a highly evolvable, but complex system of systems 

(SoS), where different concerns are modeled and implemented separately, 

and are composed into a functioning system conditionally and incrementally 

without imperiling existing functionality. Furthermore, for the PALMS-CI to 

remain agile and responsive to changing stakeholder requirements, it was 

essential that decisions regarding which concerns to compose, which other 

concerns to compose them with, and the conditions and parameters of the 

composition be made at runtime. 

To meet this challenge, I employed the emerging Policy Driven 

Development technique, which leverages Rich Services (described in Section 

5.3) and the Rich Services Development Process (described in Section 5.2) to 

create a highly responsive service oriented architecture (SOA) and 

corresponding implementation. I chose a SOA-based approach over existing 

approaches (e.g., AOSD or pure OOP) because SOA’s message-based 
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service interactions enabled interface-based component reuse (via loose 

coupling and late binding), inherent scalability and distributability (via 

message routing), and the opportunity to constrain and augment workflows 

(via message interception), while retaining the freedom to use other 

approaches to build components themselves.  

I developed PDD to leverage SOA’s workflow and message 

interception features to define and inject new and unanticipated concerns 

without endangering existing CI functionality, while remaining highly 

responsive to stakeholder requirements and maintaining maximum PALMS-CI 

availability. (As described in Chapter 2, other existing solutions were 

inappropriate.) Using the PALMS-CI, I demonstrate how PDD simplifies and 

improves access control decisions, simplifies policy problems (such as 

Separation of Duties) relative to other solutions, enables feature composition, 

and in the process facilitates system evolution, which is the key to 

simultaneously satisfying the requirements of multiple stakeholder 

communities.  

5.1.1 Exposure Biologists – the Core PALMS Community 

In 2007, the NIH began funding the Genes, Environment and Health 

Initiative (GEI), having two main components [168]. The Genetics Program was 

chartered to analyze “genetic variation in groups of patients with specific 

illnesses”. The Exposure Biology (EB) program is chartered “to produce and 

validate new methods for monitoring environmental exposures that interact 

with genetic variation to result in human diseases”, and includes the PALMS 
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project [5] at the University of California, San Diego (UCSD). PALMS’ mission is 

to develop an integrated suite of hardware (e.g., sensor devices), software, 

and database solutions that support real-time capture and subsequent 

analyses of data on physical activity energy expenditure from a geospatial 

perspective. PALMS is intended to help answer questions such as the 

percentage of a person’s energy expenditure that occurs at various locations, 

and while moving between locations. 

Historically, the EB community has consisted of a number of 

independently operating principal investigators (PIs) attempting to answer 

questions relating to human disease as a function of environmental exposures, 

diet, physical activity, psychological stress, and addictive substances. Like 

PALMS investigators, they select (or create) their own sensor hardware, 

software, and database systems to support the capture and analysis of their 

own data. 

5.2 The Basic PALMS Requirements 

In 2008, PALMS investigators realized that their own data capture, 

storage, analysis, and visualization requirements and workflows were 

conceptually similar to those of many other EB researchers, and that 

economies of scale weighed in favor of creating a web-based system that 

could perform such functions for EB projects similar to PALMS, thereby 

delivering significant technical, economic, and collaborative benefits to the 

EB community. This was particularly important given the emergence of small 

person-worn Global Positioning System (GPS) devices and a new field of 
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precise location and activity measurement. Leveraging existing knowledge of 

GPS processing, the PALMS-CI aimed to provide many benefits, including: 

 Elimination of redundant programming, debugging, and maintenance 

of common data acquisition, analysis, and visualization code 

 Centralized, secure, scalable and highly available data management 

(including backups) 

 Computational resources scalable to large datasets and complex 

analysis 

 Sharing of processing protocols, allowing standardized comparison and 

more rapid scientific advances 

 Logging of data manipulations and analyses 

 Standardized interfacing to external packages (e.g., Microsoft Excel, 

Google Earth, and ESRI’s ArcGIS modeling tools) 

 Streamlined discovery and sharing of observation data and results 

PALMS investigators postulated that the organization and workflow of 

each EB researchers’ data collection and processing was substantially similar 

(as shown in Figure 21, and as validated at a number of international 

workshops and presentations to EB community members): 

 PIs and research teams manage multiple studies 

 Studies include collection of time-stamped data from multiple sensors, 

where the data must be stored securely according to Institutional 

Review Board (IRB) ethical guidelines 

 A study incorporates a collection of subjects, where each subject 

wears one or more sensor device (e.g., a GPS unit, an accelerometer, 

a heartbeat monitor), each of which produces a stream of time-

tagged observations 

 A study also incorporates one or more calculations that filter 

observation data; correlates observations with time and location; and 

produces result sets containing inferred trips, bouts, physical activity 

levels, and other parameters of exposure 

 Over the course of a study, subjects may be added, sensor 

observations may be captured and uploaded, and calculations may 

be run at any time. The ultimate result of a study may be a calculation 
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result set or a product that an external package creates from a 

calculation result set 

 Data are aggregated and summarized 

 Primary and secondary data analyses are performed by the original 

study investigators and other investigators now and, ideally, in the 

future 

 Information assurance (IA) [28] is implicit 

 
Additionally, the following key differences between studies were 

recognized: 

 Demographic characteristics and geographic location of study 

populations  

 Study aims and outcomes 

 The intensity, frequency, and duration of data collection, with different 

devices deployed according to feasibility and research question 

 Subject information collected (e.g., sex, age, home location, work 

location, etc.) 

 Calculations, parameters, and thresholds used during analysis 

 Particular roles, privileges, and responsibilities of research personnel 

(e.g., PIs, research assistants, guests, etc.) 
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Figure 21. PALMS Studies – Structure and Flow 
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PALMS investigators defined two challenges in building the PALMS-CI: 

 create a technical design that could leverage the common data 

organization and workflows to deliver the benefits listed above, yet 

enable study customization that accounted for differences between 

study data, analysis, and personnel organization 

 attract a community of investigators interested in both advancing 

PALMS-CI capabilities and collaborating to define and leverage data, 

analyses, and visualizations beneficial to the overall EB mission 

A key insight derived from these propositions is that for the PALMS-CI to 

be viable, the requirements of all stakeholders (including system operators, 

data producers, and data consumers) must be simultaneously and 

continuously met, both in the technical and the community governance 

domains – otherwise, a disenfranchised stakeholder may opt-out, thereby 

weakening the entire PALMS community. In traditional system development, 

the lag between the discovery of a new stakeholder requirement and its 

enactment in a delivered system is often several months, which increases 

pressure on stakeholders to opt-out. PALMS-CI must quickly respond to 

requirement changes, and must do so without becoming unstable or 

compromising usage by other stakeholders.  

To meet the challenge of community formation, we gathered an 

expert advisory board; recruited willing, early adopter-investigators worldwide 

as initial users; hosted the annual International Users Conferences (two, so far); 

partnered with key organizations (e.g., GPS Health Research Network [169] 

and caBIG [170]); and generated instructional collateral useful in creating 
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relationships with prospective collaborators and their respective Institutional 

Review Boards (IRBs). 

5.3 The PALMS Logical Rich Service 

We designed and currently maintain the PALMS-CI using the Rich 

Services Development Process (RSDP) [47], which is a multi-stage, end-to-end 

software engineering process ranging from requirement elicitation to physical 

network deployment. The RSDP is compatible with agile development 

methodologies, leverages Model Driven Architecture (MDA) [171] and Model 

Driven Engineering (MDE) techniques, and is geared specifically toward 

producing hierarchically decomposable Rich Services. It produces a clean 

separation between logical and deployment models, where a logical model 

depicts relationships between logical entities, a deployment model depicts 

relationships between physical entities, and a deployment mapping can 

derive a deployment model from a logical model. 
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The RSDP is structured into three phases, each of which is subdivided, as 

shown in Figure 22. The major phases include: 

 Service Elicitation gathers use cases, extrapolates crosscutting 

concerns, constructs a domain model, identifies service roles, and then 

defines services and workflows 

 Rich Service Architecture articulates a Rich Service that incorporates 

those services and workflows 

 System Architecture Definition creates a service hierarchy, defines a 

corresponding virtual network, and then maps the virtual network onto 

a set of physical networks and compute engines 

While each phase (and sub-phase) is sequential and depends on a 

previous phase, RSDP allows and encourages the re-execution of earlier 

phases (in spiral fashion [46]) as new requirements come to light in later 

phases. 

 
Figure 22. Rich Services Development Process 
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During the PALMS-CI development, I followed RSDP by first soliciting user 

stories (as text), refining them into use cases (organized as pages in an Excel 

spreadsheet with traceability implemented as inter-page links), and eliciting 

additional requirements by using low resolution user interface mockups. 

Per RSDP, I segregated requirements into two groups:  

 those that described data storage, data transfer, and data analysis (so-

called “base workflow” requirements) 

 those that bore on decisions and workflow options (crosscutting 

concerns as so-called “policy” requirements).  

Data flow requirements were modeled using standard RSDP – as 

domain models (expressed as UML [40] class and sequence diagrams using 

Enterprise Architect [172]), and then as roles and services, which were 

factored into a candidate Rich Service. Policy requirements were set aside as 

candidates for future policy definition and execution, as described in Section 

5.6. (These substantially involved access control decisions, but also included 

other crosscutting concerns such as logging, auditing, provenance tracking, 

and the mapping of calculation execution to available processors.) 

A simplified version of the resulting logical Rich Service is presented in 

Figure 23. It shows the relationship between a Browser User Interface and a 

PALMS Service, which is decomposed into a PALMS system layer containing 

services representing a repository of studies and of community-authored 

calculation and sensor device functions that can be shared amongst studies. 

The Study Repository service is further decomposed into sub-services 
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representing a number of repositories, including calculations and devices 

actually used in the study, a study’s participants and observations, and data 

analysis results. 
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Figure 23. PALMS-CI Logical Rich Service
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Critically, the policy execution function is represented as a RIS capable 

of intercepting interactions between any and all services. It is discussed in 

Section 5.6. 

Finally, I used the logical Rich Service to generate a deployment Rich 

Service by assigning the User Interface to a PC, the PALMS Service to a server, 

and defining the message bus between them as the Internet as described in 

Section 5.4 

In the case of the PALMS-CI, the RSDP approach resulted in a clear 

definition of services and basic workflows, separate from a pool of 

crosscutting requirements that can be composed onto the workflows by using 

policies.  

As a result of basing the PALMS-CI on Rich Services, it was highly 

evolvable from the outset. Separate concerns were implemented as peers in 

a distributed System of Systems (SoS), as described in Sections 5.6 and 5.6.4. 

They could be conditionally composed into other workflows, and were primed 

to accommodate the injection of unanticipated foreign workflows. 

Additionally, the PALMS-CI included a set of seed policies that inject known 

crosscutting concerns, such as access control decisions. 

Note that while the PALMS-CI supports the PALMS project, and the 

PALMS Service is a component of the PALMS-CI, going forward, I use “PALMS” 

as shorthand and rely on the reader to infer either “PALMS project”, “PALMS-

CI”, or the “PALMS service” from the context. The majority of PALMS references 
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are to the PALMS service. When an inference would be ambiguous, I use the 

longhand form. 

Relative to the PALMS service, the Browser User Interface functions as a 

Client, and is referred to as such in workflow depictions such as Figure 6 and 

Figure 29. Similarly, the PALMS service is referred to as PALMS. 

5.4 The PALMS Deployment Rich Service 

While the logical Rich Service described in Section 5.3 describes service 

definitions, it does not specify the technologies used to implement or link the 

services, nor how the services are deployed. Under RSDP, applying a 

deployment mapping function to the logical RS yields a deployment model in 

which links and service deployments are specified, as shown in Figure 24.  

Consistent with the logical architecture (Figure 23), the PALMS-CI 

deployment is implemented in two major parts: the Browser User Interface (UI) 

service and the PALMS service.  
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The Browser User Interface service maps to a largely browser-based 

application that serves as the PALMS Community’s main interface to PALMS. In 

Figure 24, it is represented by the “Web Browser (UI)”, which displays and 

manages screen content, and “Browser Proxy (UI)”, which functions as the 

Browser User Interface’s Service Data Connector (SDC) by proxying the PALMS 

service. It is implemented using the Google Web Toolkit [173], a toolkit 

specially built and optimized for building complex, performant browser-based 

applications, and which leverages a large collection of pre-existing user 

interface widgets. It was chosen to provide a rich interface for community 

members, while enabling PALMS developers to efficiently add new features. 

While the code for both types of Browser User Interface services resides on the 

PALMS Server Machine, the screen management services execute on a PC 

browser, and the proxy services execute on the PALMS Server Machine. 
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Mule Messaging

Browser 
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PALMS 

Subservices

CXF Web Services
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Figure 24. PALMS Deployment 
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Communications between these services uses GWT’s proprietary remote 

procedure call protocols across the Internet.  

An example of a Browser User Interface screen is shown in Figure 25. It 

shows a graphical representation of activity and location data collected for a 

study. 

 

PALMS (represented in Figure 24 as “PALMS Service” and “PALMS 

Subservices”) is written in Java and leverages the Mule Enterprise Service Bus 

(ESB) [174], which was chosen because it provides message transmission, 

message routing and interception, and service execution features that closely 

match the relationships modeled in a logical Rich Service framework. 

Therefore, the deployment mapping function for the PALMS service is one-to-

one, with each PALMS logical service being implemented by an actual Java-

 
Figure 25. PALMS User Interface 
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coded Mule-hosted service. PALMS executes on the PALMS Server machine 

on top of an Apache Tomcat server v6.0.20, and stores its data using a local 

MySQL v5.0.77-4 DBMS. The Browse User Interface proxy services communicate 

with PALMS using Apache CXF Web Services protocol [175]. 

The PALMS Server runs Red Hat Linux, and is hosted as a VMware virtual 

machine (VM) at UCSD under a high availability, secure infrastructure that 

includes an intrusion detection system, automatic multilevel backup, and 

automatic live migration. The VM uses 8GB RAM and one 2.0GHz Xeon 

processor. User ID authentication services are provided by caBIG’s Dorian ID 

Provider [176], which verifies PALMS users’ credentials, and returns an X.509 

certificate [177], which in turn, PALMS uses as proof of user identity. caBIG’s 

Grouper [178] implementation is used to securely store and manage role, user 

group, permission, and access control list (ACL) information. 

5.5 The PALMS-CI Design 

As described in Sections 5.3 and 5.4, the PALMS-CI consists of a user 

interface component and a PALMS-CI service component. While PDD can be 

used in the design and realization of both components, it was used primarily in 

creating the PALMS service, which implements basic workflows leveraged by 

the user interface. As such, the PALMS service presents a service interface 

(defined by its Service/Data Connector) that is agnostic as to caller, and can 

be reused to provide PALMS functionality in other contexts. 
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While PALMS embodies many design decisions that attend to the 

diverse issues of production worthy services, I describe PALMS in terms of 

service interface and workflow considerations that influence or leverage PDD. 

A complete description is beyond the scope of this dissertation. 

Most importantly, in Chapter 6, I describe PALMS from the perspective 

of workflow maintenance costs and timely delivery responsive to stakeholder 

requirements, where stakeholders represent multiple, independent domains. In 

this section, I lay a foundation for describing PALMS’ PDD implementation by 

describing key PALMS-CI workflows, including key workflow activities, and the 

information exchanged between workflow activities. Section 5.5.1 describes 

repositories, which are key PALMS workflow activities, and themselves 

demonstrate opportunities to add value using policy injection. Section 5.5.2 

describes the messages exchanged between the Browser UI and PALMS, 

whereas Section 5.5.3 describes message exchanged within PALMS. Finally, 

Section 5.5.4 describes high level details of an implementation that enables 

and supports policy injection. The policy evaluation system itself is described in 

Section 5.6. 

5.5.1 Repositories 

All PALMS functions are expressed as workflows that either manipulate 

or rely on state information either maintained by PALMS or available to it. 

When data is intended to persist across workflows, one or more workflow 

activities perform operations that maintain the persistence abstraction. They 
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have wide latitude in implementing the abstraction, including calling on 

encapsulated workflows according to a Mediator pattern [33]. 

Each such workflow activity represents a transformation of input data 

(e.g., a query) to output data (e.g., a row set), and can maintain the 

persistence abstraction by: 

 fetching from persistent (database) store 

 direct calculation 

 returning pre-initialized data 

 redirecting the operation to another workflow activity 

 caching and memoization 

 other mechanisms 

 any combination of the above 

PALMS implements the persistence abstraction by using a repository 

model, which is described in [103] and [134] (as Data Mapper). According to 

[103], the advantages of repositories include: 

 presenting a simple model for obtaining persistent objects and 

managing their lifecycle 

 decoupling application and domain design from persistence 

technology or multiple data sources 

Particularly, because a repository combines a computational and 

storage model, it allows flexibility in maintaining a persistent data abstraction, 

even as underlying implementation requirements (e.g., speed and physical 

location) and dependency assumptions (e.g., underlying database table 

definitions) evolve. Though it’s possible to achieve this flexibility at the 

database level through the use of stored procedures, lifting the persistence 
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abstraction to the workflow activity level enables access to calculations, data 

sources, and workflow-based state generally unavailable at the database 

layer. Furthermore, traditional structuring of stored procedures (as either 

monoliths or hierarchies) presents little opportunity for runtime evolution via 

mechanisms such as policy injection because of their tight coupling to the 

database engine and other stored procedures. Repositories implemented as 

workflow activities loosely coupled with other workflow activities encourage 

policy injection. Finally, while databases generally present data in terms of low 

level types and inter-table links, repositories are unconstrained in this way, and 

can define and manipulate data along other dimensions, including standard 

or custom ontologies and logic systems. 

On the other hand, in a repository model, the data and its semantics 

are not invested completely (if at all) in the storage system. Because a 

repository encapsulates its calculations and storage mechanisms, external 

assumptions about underlying storage are often invalid or can easily become 

invalid. Consequently, repository data can be accessed only through a 

repository interface, and combining data models from multiple repositories 

must be done explicitly by repository clients (at a cost of development time, 

execution time, and memory). By contrast, a database-centric model 

presents a data abstraction that encompasses multiple data models (as 

groups of related tables), and combining models is simple and efficient using 

facilities (e.g., join) of the database management system. 
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I chose the repository abstraction (over a database-centric model) for 

its flexibility in implementing data models isolated from other data models, 

thereby reducing possible hidden dependencies between data models and 

leveraging loose coupling to improve PALMS’ responsiveness to evolving 

requirements affecting base workflows. Additionally, for repositories realized 

by encapsulated workflows (e.g., via access to external storage systems or 

other repositories), the service interactions implementing those workflows 

present additional opportunities for policy injection, thereby improving 

prospects for quickly responding to evolving stakeholder requirements as they 

arise.  
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PALMS maintains repositories that track system-wide resources such as 

calculations (PALMSCalculation, for data analysis), device profiles 

(PALMSDevice, which define a data acquisition device), and schema 

(PALMSSchema, which defines data ontologies). It also maintains a repository 

containing study metadata (PALMSStudy), and a hierarchy of repositories that 

tracks various study-specific attributes and data as shown in Figure 26. They 

include: 

 Calculation – collection of PALMSCalculations available to analyze 

study data 

 Protocol – collection of parameter sets associated with execution of 

calculations 

 Device – collection of PALMSDevices that can contribute study 

observation data 

 Dispatch – collection of execute-ready calculations and their 

parameters 

 Forms – collection of UI screen layouts for displaying and entering 

repository contents 

 Schema – collection of metadata definitions, including those for 

subject data 

 ResultSet – collection of metadata describing result data generated by 

calculations  

 Result – collection of result data generated by calculations 

 ObservationSet – collection of metadata describing observation data 

contributed by devices 

 Observation – collection of observation data contributed by devices 

 Subject – collection of data for each study subject 

(Note that the repositories shown in Figure 23 model the PALMS-CI, the 

model is simplified and does not show all repositories. The list in this section is 

complete.) 
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While each repository supports the abstraction of storing, fetching, and 

managing a collection of objects, its strategy for implementing the 

persistence abstraction varies according to the relationship of its data to other 

PALMS data and the performance requirements and logistics of accessing it. 

 

Many study repositories represent tabular data stored as rows in a 

database, and data persistence is realized via interactions with a storage 

service that implements a tabular data abstraction by using a DBMS, as shown 

in Figure 6 and Figure 29. In Figure 26, these are marked by  and include 

the subject, observation, result, schema, forms, dispatch, and protocol 

repositories.  
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Figure 26. PALMS-CI Repositories 



195 

 

Repositories marked by C  realize data persistence both by 

interacting with a storage service and by inline transformation and synthesis. 

They include the system level calculation, study, and device repositories, and 

the study level result set and observation set repositories. 

Repositories marked by ↗  realize data persistence both by 

interacting with both a storage service and other repositories. For example, 

the study calculation repository data model combines data in its own study-

based calculation table with data maintained in the PALMSCalculation 

repository.  

Repositories marked by I  realize data persistence by accessing pre-

defined and compiled-in data. 

The DataSet repository (marked by ↗ ) virtualizes data repositories that 

can act as inputs or outputs for analysis calculations. It defines a name space 

that allows calculations to access to the observation, result, and subject data 

repositories without differentiating between them. It implements this 

abstraction by delegating each repository function to an equivalent function 

in the workflow activity that implements the repository. 

The Repository pattern creates a clean separation between a data 

abstraction it represents and the implementation of the abstraction. 

Interaction between a repository workflow activity and activities that 

implement it are fertile ground for policy-based workflow injection (including 
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access control, data transformation, and new features) responsive to 

emerging stakeholder requirements. For example, a query message (such as 

defined in Section 5.5.3.1) can be edited to constrain, filter, or augment 

repository data by a policy injected between the repository and its storage 

activity as shown in Figure 27. 

 

5.5.2 Interface between Browser UI and PALMS-CI 

Logically, the PALMS SDC exposes 72 functions, each of which 

decomposes to a service orchestration. Each function consumes an input 

channel (containing function parameters), and fills an output channel 

(representing function results), thereby implementing a request/reply pattern. 

The Mule ESB offers a number of protocols for realizing the input and output 

channels, including simple TCP/IP, simple HTTP, and Web Services. The PALMS 

SDC is implemented as a Web Service (using CXF [175]), which allows Java-
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style typing of input and output channels, SOAP-based marshaling and de-

marshaling of channel values, and automatic dispatch of function requests to 

appropriate service orchestrations.  

In order to preserve the option of using other protocols, PALMS’ 

channel messages are defined on simple data types, including scalars (e.g., 

Booleans, integers, and floating point), byte arrays, Unicode strings, and 

untyped XML documents (as strings). Defining channel messages as a mixture 

of typed and untyped data leverages the benefits of both. A typed definition 

sets the structure of a message sufficiently to detect a gross mismatch in the 

service contracts fulfilled by interacting services. Untyped XML self-defines its 

structure, which can vary from interaction to interaction. This enables a 

dynamic definition within the context of the overall typed definition, but 

requires that interacting services verify untyped XML contents at runtime.  

On input channels, a PALMS message includes untyped XML 

parameters to represent context-sensitive processing options and complex 

data whose structure and semantics are agreed upon by interacting services 

a priori, with missing values being assigned pre-defined defaults. For example, 

a data retrieval service may accept an untyped XML parameter that specifies 

an output format, where including the element <format>csv</format> results 

in comma-separated values, and including no <format> element defaults to 

tab-separated values. In this way, services are free to add functionality (to 
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support different service interactions) without invalidating existing service 

interactions. 

 

On output channels, a PALMS message includes untyped XML to 

convey datasets whose structure can change over time, including datasets 

defined uniquely for each PALMS study, and which are subject to revision by a 

study’s PI over the lifetime of the study. Consequently, the XML document 

pairs a data sub-document with a schema definition sub-document that 

describes the data. (It also contains a forms sub-document, which contains 

user interface screen layout information.) For example, a simplified version of a 

dataset containing a GPS location and heart rate value might appear as in 

Figure 28. For purposes of illustration, each schema entry contains a data 

<document-root> 

<schema> 

<lat> 

<class>PALMS.Latitude</class>  <type>xsd:double</type> 

</lat> 

<lon> 

<class>PALMS.Longitude</class>  <type>xsd:double</type> 

</lon> 

<heartrate> 

<class>PALMS.HeartRate</class>  <type>xsd:int</type> 

</heartrate> 

</schema> 

<values> 

<row index='0'> 

<lat>32.868345</lat>  <lon>-117.235204</lon> 

<heartrate>72</heartrate> 

</row> 

<row index='1'> 

<lat>32.871255</lat>  <lon>-117.216044</lon> 

<heartrate>84</heartrate> 

</row> 

</values> 

<forms> 

</forms> 

</document-root> 

Figure 28. Sample Dataset 
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value name, an ontology identifier (<class>), and a data type (<type>) – an 

actual schema entry contains more information.  

By convention, all input channel messages contain an X.509 certificate 

that securely provides the identity on behalf the calling service operates. All 

output channel messages contain a result structure that, if non-empty, gives 

the reason for the failure of a service function. 

As a result of using Web Services protocols, input channel messages are 

automatically tagged with a PALMS function identifier, and output channel 

messages are automatically tagged with a document type unique to the 

responding PALMS function. Additionally, other message protocols (e.g., 

TCP/IP or HTTP) can easily include this information so as to achieve the same 

effect. 

Consequently, interactions between the Browser UI and PALMS services 

bear sufficient information to qualify as good candidates for policy-based 

workflow injection responsive to emerging stakeholder requirements. (In fact, 

Section 5.5.4 describes how the X.509 certificate is captured from an inbound 

message and is exposed to downstream policies as a workflow variable.) 

Note that the message bus that carries interactions between the 

Browser UI and PALMS is the Internet itself, which does not offer message 

interception capabilities directly. However, interception can be effected by 

proxies (e.g., a Web Service or proxy server) as intermediaries between the 

Browser UI and PALMS. Such proxies can execute policies consistent with those 
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described in this dissertation, but are not implemented in the PALMS case 

study, and so are not discussed here. 

5.5.3 Interface between PALMS-CI Internal Services 

Each function exposed by the PALMS SDC is executed by an 

orchestration of services internal to PALMS. Each orchestration can involve 

interacting services, decomposed services, or both. Chapter 3 presents a 

logical workflow that represents a common PALMS function (GetStudyList), 

and a corresponding Rich Service is presented in Figure 10. A more robust 

version of the Rich Service is presented in Figure 23, which serves as a model 

for the actual PALMS-CI and grounds the discussion of the implementation of 

the GetStudyList workflow. 

The                interaction ❶/❽ is described in Section 5.5.1 (as 

the interaction between the Browser User Interface and the PALMS server). The 

                    interaction ❷/❼ is implemented by the PALMS 

Service/Data Connector (SDC) operating as a dispatcher to the 

encapsulated List Studies service – the SDC serves as a dispatcher for all 

PALMS function requests, and mediates all function replies. The 

                               interaction ❸/❻ is implemented as a peer-

level request/reply interaction between the List Studies and Study Repository 

services. Finally, the                            interaction ❹/❺ is 

implemented by a peer-level request/reply interaction between the Study 

Repository and Storage services. 
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Within PALMS, messages are passed to peer-level services or to 

encapsulated service orchestrations (through an SDC) via the Mule message 

bus and are subject to interception via Mule’s router provisioned with 

interceptor functions. Messages are implemented as Java classes, with a 

different class for each PALMS internal service interaction. Services are 

implemented as POJOs (i.e., Plain Old Java Objects), though a POJO can 

house several services, each of which accepts a message of a different Java 

class. Mule directs a message to a POJO, and then automatically pairs the 

message with a service that accepts it.  

Note that while an SDC presents a service interface to peer services, it 

also mediates interactions between an encapsulated service and the SDC’s 

peer services – this essentially defines and mediates the external services 

accessible to encapsulated services. An example of this is the execution of 

PALMS’ ListResults function, which ultimately accesses the ResultSet Repository 

(as a sub-service of the Study Repository), as shown in Figure 29. 

 

The ListResults workflow involves activities similar to the GetStudyList 

workflow, except that it contains an interaction between the StudyRepository 

and ResultRepository activities. As shown in Figure 23, the ResultRepository 

service is encapsulated in the StudyRepository service and is therefore 

accessible only through the StudyRepository SDC. As a subservice of the 

PALMS ListResults
Study 

Repository
Client

ResultSet 
Repository

Storage

 
Figure 29. The ListResults Workflow 
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StudyRepository service, it has no direct access to the Storage service. 

Instead, Storage access is mediated by the StudyRepository SDC, which 

exposes a Storage service to the ResultRepository service, and interacts with 

the actual Storage service on behalf of the ResultRepository. 

The Mule messaging system allows the interception of all messages, 

starting with messages inbound to the PALMS service, and including 

interactions between peer services, and between SDCs and sub-services. 

Consequently, policy injected between peer services can implement an 

abstraction (e.g., failure management) on a service orchestration distinct 

from an abstraction on an encapsulated orchestration. When such policies 

coordinate (as described in Section 7.4.1), the composition exemplifies a 

System of Systems. 

5.5.3.1 PALMS Internal Message Contents 

A key criterion on which policy can be decided or enacted is the 

message    exchanged between interacting services. In this section, I present 

a general description of messages exchanged between services internal to 

PALMS and discuss how these messages contain data conveniently 

accessible to policies. 

Internal services exchange messages as instances of Java classes via 

Mule’s VM protocol, where each interacting service pair exchanges a 

message of a class unique to the pair. This uniqueness is not a requirement of 

the message exchange, but serves the administrative purpose of verifying that 
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service pairs exchange messages consistent with their channel definitions. To 

achieve this, the PALMS relies on the Mule behavior of passing a message only 

to a service whose Java function signature matches the message class.  

Additionally, to preserve the option of scalability in a distributed 

environment via a marshaled protocol (e.g., JMS [179]), I constrained 

message classes to contain only base types (and compositions on base 

types), similar to Section 5.5.12. Particularly, references (e.g., pointers) to 

service-local data not contained in the message (and therefore not 

resolvable by a policy) are avoided. 

By convention, PALMS services interact in a request/reply pattern, 

where each request generates a single reply. A reply message contains data 

responsive to the request, and a PALMSResult structure indicating the reason 

for the service failure, if the request failed. Figure 30 shows a simplified version 

of the request and reply messages involved in the 

                                interactions ❸/❻ in Figure 6. 

                                                 
2
 An experimental version of the PALMS-CI leverages this to distribute PALMS’ data analysis 

calculations to virtual machines in Amazon’s Elastic Cloud service. 
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5.5.3.1.1 AttributeCollections 

Note that the GetStudyListResult message contains an 

AttributeCollection, which is the structure used by PALMS to represent 

untyped, hierarchically composed data. An AttributeCollection maps 

attribute names to values, where the values can be scalars or 

AttributeCollections (thereby implementing a Composite pattern). 

AttributeCollections encode mandatory values, optional values, and 

structures such as row sets and data set queries as shown in Figure 31. An 

AttributeCollection maps conveniently to a number of forms, including an 

XML document, which can be easily accessed, parsed, and returned by 

policies. 

public class GetStudyListMessage { 

  private String studyID; 

  public GetStudyListMessage(String studyID)  

    { this.studyID = studyID; } 

  public String getStudyID() { return studyID; } 

} 

 

public class PALMSResult { 

  private String error; 

  public PALMSResult(String error) { this.error = error; } 

  public String getError() { return error; } 

} 

 

public class GetStudyListResult extends PALMSResult { 

  private AttributeCollection studies; 

  public GetStudyListResult(AttributeCollection studies)  

    { this.studies = studies; } 

  public AttributeCollection getStudies() { return studies; } 

} 

Figure 30. Sample Dataset 
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5.5.3.1.2 SQLTupleTrees 

PALMS models each repository as a list of independent rows 

conforming to a repository-specific data schema, as described in Section 

5.5.1. Optionally, a repository service can process queries expressed in an SQL-

like language that can be encoded equivalently either as XML or as a PALMS-

CI SQLTupleTree structure, and is therefore amenable to examination and 

manipulation by an injectable policy. The XML form is passed to PALMS (by a 

PALMS Client) and is converted to the SQLTupleTree form before being 

 
Figure 31. AttributeCollection Model 

Value

AttributeCollection AttributeCollectionList

String String[]

Row RowList

null

Key

*

*

*

*
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passed to the target repository. Commonly, a query can be built using a 

Hibernate-like Criteria API [180] [181] adapted to meet PALMS repository 

constraints [182].  

An example is a query on the ResultSet repository (referenced in Figure 

29), which contains metadata describing the results of an analysis of study 

data, and is shown in Figure 32. The example returns the result name and 

update time of results whose name begins with “Test”. 
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SQL 
select resultName,  

     (date_format(updateDate, '%Y-%m-%d% %h:%i:%s' ) ) as updated 

   from  

   where resultName like “Test%” 

XML 
<QUERY> 

  <SELECT> 

    <COLUMN><STRING>resultName</STRING></COLUMN> 

    <AS> 

      <FUNCTION> 

        <STRING>date_format</STRING> 

        <COLUMN><STRING>updateDate</STRING></COLUMN> 

        <CONSTANT><STRING>%Y-%m-%d% %h:%i:%s</STRING></CONSTANT> 

      </FUNCTION> 

      <COLUMN><STRING>updated</STRING></COLUMN> 

    </AS> 

  </SELECT> 

  <FROM></FROM> 

  <WHERE> 

    <LIKE> 

      <COLUMN><STRING>resultName</STRING></COLUMN> 

      <CONSTANT><STRING>Test%</STRING></CONSTANT> 

    </LIKE> 

  </WHERE> 

</QUERY> 

SQLTupleTree 

Constant

Constant StringStringStringString

String ColumnColumn

String

Column

Function

As Like

resultName%Y-%m-%d% 
%h:%i:%s

Select From Where

Query

resultName

updateDate updateddate_format Test%

 
Figure 32. Sample Query 
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Note that because the query is directed to a particular repository 

(which represents an abstraction of a single table), the From clause is omitted 

or ignored in all forms. 

The SQLTupleTree is represented by a package of Java classes that 

instantiate tree nodes and can return an equivalent SQL and XML expression. 

Both the SQLTupleTree and XML forms enable queries to be evaluated and 

manipulated by a policy without incurring the time and space penalties of 

parsing the SQL form. Furthermore, by representing a query in this form, PALMS 

focuses on defining the data set to be returned, independent of a particular 

SQL implementation. As such, it can exclude unsupported (and 

unsupportable) SQL language features available in robust SQL 

implementations.  

5.5.4 Workflow Implementation 

Under Rich Services, a workflow is implemented as an orchestration of 

service interactions, where a service may, itself, decompose into an 

orchestration of services. As described in Sections 5.3 and 5.4, the Mule ESB 

facilitates the execution and interaction of PALMS services via messages, and 

enables the interception of those messages by a policy evaluator service. As 

described in Section 4.2.1, policy evaluation requires that the identities of an 

interaction’s source and target services (called Service Tracking) be known so 

that appropriate composition, control, and filter policies can be selected for 

evaluation. However, Mule does not provide this basic workflow support, nor 

does it implement the abstraction of an interservice message   , as described 
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in Section 4.3, both of which are necessary to implement workflow 

composition. 

In this section, I describe the mechanics of PALMS service interactions 

beyond the message passing and routing that Mule provides. First, I describe 

the design of   s and service tracking under PALMS, including how PALMS 

leverages Mule features to implement them. Next, I describe higher level 

workflow support facilities layered onto them, including support for data flows 

for composed policies. (Note that the examples in this section are actual 

PALMS interactions, but simplified or renamed to improve ready 

understanding.) 

The key challenges are in exposing the service interaction endpoints to 

the policy evaluator, and enabling composed policy services to store state 

correlated with a workflow instance (via   s). 
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5.5.4.1 Basic Interservice Messages (IM) and Service Tracking 

PALMS incorporates basic workflow support services as crosscutting 

concerns composed upon all service interactions (and which ultimately 

mediate the higher level crosscutting concerns represented by injected 

policy). From a Rich Service perspective, these relationships (shown 

conceptually in Figure 18 and described in Section 4.3) are modeled and 

implemented as RISs, which provide the    and service tracking abstractions, 

where service tracking is provided as a SIV in an   : 

 SIV Pack/Unpack RIS implements the     abstraction. It intercepts all 

messages incoming-to and outgoing-from a service and consists of two 

sub-services. SIV Pack intercepts an outgoing interaction message   , 

and then creates an    out of   and all other available SIVs. SIV 

Unpack intercepts an incoming message   , extracts its   and other 

SIVs, and makes them available to other RISs and the target service 

itself. 

 Service Tracking RIS implements the service tracking abstraction. It 

intercepts a message   incoming-to a service and records its source 

and target service in the Service Tracking SIV. 

 Context RIS implements the SIV abstraction (as Context Services, per 

Section 4.3). It is called by the SIV Pack/Unpack and Service Tracking 

RISs to manage SIVs associated with a service invocation. When a SIV 

containing a reference is accessed by a RIS or RAS, the Context RIS 

resolves the reference via interaction with the standalone Context 

Infrastructure Service (CIS). (Note that for performance reasons, the 

Service Tracking SIV contains a tuple                 instead of a tuple 

reference – no interaction with CIS is needed to resolve a Tracking 

Service SIV.) 

Figure 33 shows a simplified schematic of the sequencing of RIS 

interceptor services relative to interactions between the Client, PALMS, and 

ListStudies activities of the ListStudies workflow. 
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As shown on the left margin, messages travelling between the Client 

and Mule (on the Internet) are SOAP-encoded. Messages travelling to and 

from internal PALMS-CI services (i.e.,                    ) are encoded as 

interservice message   s, and a message processed by interceptors 

associated with a PALMS-CI service are encoded as a service message  . 

Using    encoding between services enables all information pertinent to an 

interaction (i.e., SIVs, including  ) to be carried between a source and target 

service regardless of where in a distributed or multi-process system each 

service executes. Fundamentally, the purpose of an    is to associate SIVs 

(including  ) across process boundaries. 

Mule guarantees that the execution of a service and its associated 

interceptors occurs within the same process. The Context RIS (not shown) 

leverages this to store SIVs (retrieved by SIV Unpack) as thread-local variables 

CX for the duration of service execution, thereby enabling ready access to 

SIVs by the target service and composed concerns (including the policy 

evaluator). When SIV Pack creates an   , it calls the Context RIS to render 

current SIV copies (from CX) into the   . 

Focusing on the ListStudies Service, a message from the PALMS Service 

arrives as an   , which is unpacked by the SIV Unpack RIS – the   ’s SIVs are 

stored in CX, and   is forwarded to the Service Tracking RIS. While Mule 

reveals a message’s target service (as the target queue name), it does not 

reveal the source service. Consequently, the Service Tracking RIS assumes that 

the previous target service is the next source service – it updates the Service 
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Tracking SIV in CX and forwards an unaltered message   to the Policy 

Evaluator interceptor. Finally, policy is evaluated (as described in Section 5.6). 

Assuming the policy allows the ListStudies Service to be executed, it returns a 

reply  , which is processed by each RIS in reverse of the inbound order – this 

nesting of RISs corresponds to the nesting of abstractions represented by the 

RISs (i.e., Policy Evaluation builds on Service Tracking, which builds on   s). 

Ultimately, the SIV Pack RIS returns a new    to the PALMS Service – it 

synthesizes the    from the response   and the SIVs in CX thread-local 

variables. 

A similar sequence is used for the execution of the PALMS Service. Note 

that the original source of a message bound for the PALMS Service is the 

Client Service, which exchanges its message   in SOAP format, not as   . To 

facilitate this, the SIV Pack/Unpack RIS includes additional subservices, Pre-SIV 

Pack and Pre-SIV Unpack, that perform services analogous to SIV Pack and 

SIV Unpack. Pre-SIV Pack creates an    from the SOAP-encoded   and 

initializes each other SIV. Pre SIV Unpack encodes   as SOAP and deallocates 

all other SIVs. 
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Figure 33. Simplified PALMS Interceptor Sequencing 
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Note that the objective of maintaining the source and target service in 

a SIV is to accurately identify an interaction     to which a policy can be 

applied. While the Service Tracking RIS properly identifies    as the source and 

  as the target, it fails when   is decomposed into a service orchestration 

         . Semantically, the decomposition is encapsulated, and peer 

services should be oblivious to the decomposition –   is the source service in 

    whether or not   is decomposed. However, the Service Tracking RIS 

naively records the last service of the decomposition (   in          ) as 

the source service for     interactions, thus breaching the encapsulation 

and representing the interaction incorrectly. As a solution, PALMS recognizes 

the encapsulation by saving the Service Tracking SIV before a decomposition, 

and restoring it afterward. 

5.5.4.2 RAS and RIS Implementation in Mule 

All PALMS RASs are implemented as Mule POJOs that accept messages 

from a Mule message queue dedicated to it. A Mule configuration (in a Mule 

configuration file, palms.xml) associates a message queue with a POJO, and 

defines routing between a POJO (as a message source) and a message 

queue (as a message destination). Considering the bijective relationship 

between queues and service POJOs, queue and service names are 

effectively synonyms.  
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For example, in Figure 33, the queue associated with the ListStudies 

service might be defined via an endpoint-identifier element in PALMS’ Mule 

configuration file: 

  <endpoint-identifier name="PALMS.ListStudies.queue" 

                       value="vm://PALMS.ListStudies.queue" /> 

where the queue is named PALMS.ListStudies.queue (via the name= attribute), 

and is implemented using the Mule VM messaging protocol using the name 

//PALMS.ListStudies.queue (via the value= attribute). 

From a Mule viewpoint, each PALMS service is defined by a tuple 

consisting of its queue, a POJO, and a list of interceptor services that pre-

processes a message after it is removed from the queue and before it is 

passed to the POJO, and then post-process a message after it is returned from 

the POJO. For example, the ListStudies service might be defined via a mule-

descriptor element: 

<mule-descriptor name="PALMS ListStudies" 

  implementation="org.palms.study.PALMSListStudies"> 

  <inbound-router> 

    <endpoint address="PALMS.ListStudies.queue" synchronous="true" /> 

  </inbound-router> 

  <interceptor className="PolicyInterceptors"/> 

</mule-descriptor> 

where the service is named PALMS ListStudies (via the name= attribute), and it 

is implemented using the org.palms.study.PALMSListStudies Java class (via 

the implementation= attribute). The PALMS.ListStudies.queue queue is bound 

to the POJO (via the address= attribute), and is configured for a request/reply 
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pattern (via the synchronous= attribute). Finally, the PolicyInterceptors 

names the list of interceptors (via the className= attribute). 

Mule defines an interceptor list as a sequence of Java classes to call in 

order, with the interaction message as a parameter. Nominally, each Java 

class can examine and change the message, then pass it to the next 

interceptor or the target service (if there are no more interceptors in the list). 

Each interceptor (or the target service) returns a message to the interceptor 

that preceded it. An interceptor can also change the message flow, thereby 

cancelling remaining interceptors and routing to a different target service. For 

example, an interceptor list associated with PALMS might be defined: 

  <interceptor-stack name="PolicyInterceptors"> 

    <interceptor className="org.palms.SIVInterceptor"/> 

    <interceptor className="org.palms.ServiceTrackingInterceptor"/> 

    <interceptor className="org.palms.policy.PolicyEvalInterceptor"/> 

  </interceptor-stack> 

where the interceptors implement the SIV Pack/Unpack, Service Tracking, and 

Policy Evaluator RISs. 

The interceptor list preceding the PALMS Service is slightly different, and 

accounts for the Pre-SIV Pack and Pre-SIV Unpack operations needed to 

bootstrap the PALMS service interactions described above: 

<interceptor-stack name="PrePolicyInterceptors"> 

  <interceptor className="org.palms.PreSIVInterceptor"/> 

  <interceptor className="org.palms.SIVInterceptor"/> 

  <interceptor className="org.palms.ServiceTrackingInterceptor"/> 

  <interceptor className="org.palms.policy.PolicyEvalInterceptor"/> 

</interceptor-stack> 
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where the PreSIVInterceptor interceptor performs these functions, and is 

followed by the normal PolicyInterceptors stack. (PreSIVInterceptor can 

be grouped with the standard PolicyInterceptors because Mule guarantees 

that Web Services processing is performed in the same process as the PALMS 

Service.) Note that the actual PrePolicyInterceptors list contains additional 

interceptors, as described in Section 5.5.4.3. 

Figure 34 depicts the structural relationship between entities in PALMS’ 

workflow system from a Mule perspective. Mule realizes a correspondence 

between services and messages, thereby executing service interactions. Each 

interaction is subject to intervention by interceptors per Figure 33, where the 

SIV Pack/Unpack functions establish the relationship between SIVs (as part of 

an   ) and the thread-local Context (CX) where polices can store and access 

independent state. Service tracking functions maintain source/target service 

information, which the Policy Evaluator uses to determine policy appropriate 

for the interaction.  

Note that Figure 34 does not show either the Context services or the 

Context Infrastructure Services (CIS). Context services manage SIV access and 

are accessible to all services and interceptors (including policies). Context 

Infrastructure Services provide GUID-based persistent store (as shown in Figure 

18) and are accessible to all services and interceptors via Context services. 
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Note that while the message   is strictly speaking a SIV, Mule enables 

services to access   as an argument passed to the service’s POJO – services 

do not access   through Context services is would be the case for other SIVs. 
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Figure 34. Mule Interservice Message and Service Tracking Implementation 
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5.5.4.3 Workflow and Other SIVs 

While a message   represents a data flow between services 

implementing a base workflow, other SIVs represent state associated with all 

concerns (e.g., RISs and policies) composed on a workflow instance. A SIV is 

implemented as a named AttributeCollection (per Section 5.5.3.1) that 

stores key-value pairs and is transported in an    – if a SIV does not exist when 

a key-value pair is stored into it, the SIV is automatically created and added 

to the   ’s SIV list. A SIV is destroyed at the end of a workflow, though data it 

references may not be destroyed – the Workflow and Session SIVs (described 

below) are examples of different data lifecycles. A concern can access key-

value pairs (including creating, reading, storing, deleting, and cloning them) 

via Context services. 

The values maintained in SIVs constitute channels into or out of a 

service (including a RIS or policy), and are therefore part of the service 

interface. Consequently, the    and SIV implementation constitute 

fundamental support for the workflow composition. 

PALMS maintains a number of SIVs (shown in Figure 34): 

 Service Tracking SIV supports tracking of source and target services by 

identifying the current service interaction. The tracking service updates 

it on every message exchange (per Figure 33), and the Policy Evaluator 

service queries it to determine applicable policies. 

 Workflow SIV supports policies composed onto a base workflow by the 

Policy Evaluator. Key-value pairs are stored in the Context Infrastructure 

Service (CIS), subordinated to a globally unique identifier (GUID) 

assigned to the workflow and stored in the SIV. One or more policies 

can use Context system functions to store and retrieve key-value pairs 
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that persist for the lifetime of the workflow. At the end of the workflow, 

the GUID and all subordinated key-value pairs are destroyed. 

 Session SIV supports policies similarly to a Workflow SIV, except that the 

CIS-backed GUID is created and destroyed explicitly by request of the 

Client. Consequently, session key-values are accessible to multiple 

instances of the same or different workflows. 

 Policy SIV supports the Policy Evaluator, which maintains state that 

avoids infinite recursion due to the execution of policy while a policy is 

being executed. It has the same lifecycle as a Workflow SIV. 

For example, a Service Tracking SIV contains a tuple                 

identifying the endpoint services in a service interaction. For the interaction 

                   , the service tracking tuple would be: 

  {PALMS.ServiceDataConnector.palmsGetStudyList, 

     vm://PALMS.ListStudies.queue} 

For the interaction                              : 

  {vm://PALMS.ListStudies.queue, 

    vm://PALMS.StudyRepository.queue?method=list} 

(As described in Section 5.5.4.2, PALMS services are identified by their 

queue names. However, the source service in the                     

interaction begins with a Web Services entry point, which is not a queue, and 

is identified by the SDC function name instead. Additionally, the 

StudyRepository service is qualified by a targeted subservice list.) 

As SIVs maintain state information for separate concerns, channel 

content (and channel history) is determinative for such state. SIVs can be used 

to maintain this information in a number of ways. 
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For example, while policy decisions are often made based on channel 

contents (as represented by the current message   or other SIVs), legitimate 

decisions can also encompass an interaction’s channel history, which can be 

represented as a list of messages   exchanged on an the interaction. Such a 

list would be indexed by the interaction’s                 tuple. Maintaining 

the list as a component of the Workflow SIV would capture only history relating 

to the current workflow, and maintaining it as an IV would capture history 

across all workflows. Channel history can be used to implement temporal 

logic policy predicates such as “if this request was made twice in the last 5 

minutes”. 

Similarly, a channel trace can be implemented as a member of the 

Workflow SIV by accumulating a list of                 tuples and messages   

for each interaction throughout a workflow. A trace can be used to 

implement predicates based on control or data flows leading up to an 

interaction. 

Maintaining channel history or traces is often not cost effective 

because of the storage, bandwidth, or time it requires, particularly because 

such information must be stored in the CIS so as to be available to any service 

regardless of the process in which it executes. As an optimization, policies can 

extract values from messages and store them in the CIS (via a Workflow SIV, 

Session SIV) or as an IV depending on the longevity required. An example of 

this is the Multiple Session Separation of Duties (MSoD) solution presented in 

Section 7.4.1.  
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The Policy Evaluator (described in Section 5.6) depends on channel 

history collected in this way. By convention, a message presented to the 

PALMS Service (from a Client) must contain a credential identifying the user. 

An interceptor (CredentialInterceptor, not shown in Figure 33 or Figure 34) 

called before the PALMS Service invocation extracts the credential and stores 

it as a Workflow SIV value available for subsequent policy evaluation. 

The PALMS model for the Workflow SIV lifecycle requires an event that 

unambiguously signals termination of a workflow, after which the SIV’s CIS 

GUID and referents are deallocated. In a serially executing workflow, the 

workflow is considered complete (and deallocation can occur) when it 

returns a result to the caller (after the SIV Pre-Unpack service in Figure 33). 

However, for workflows that spawn long-lived threads, concurrency and 

termination detection issues arise. Particularly, while concurrent access to CIS 

values are serialized via message-based protocol, PALMS has no locking and 

transaction system that would enable workflows with embedded concurrency 

to operate safely when multiple, coordinated values must be stored. 

Additionally, PALMS has no means of monitoring the creation or termination of 

an internal thread, where the creation and termination should delay the 

deallocation of a Workflow SIV until all such threads are terminated. 

5.5.4.4 New SIVs 

While an SIV groups state that has similar lifecycles, SIVs can group 

state based on other criteria, including security, where one SIV can be 

transmitted (in an   ) in the clear, and another must be transmitted under 
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encryption. Similarly, access to one SIV’s values may be unconstrained, while 

access to another SIV’s values must be policy-protected (by policy composed 

onto interactions with the CIS service).  

For example, the Workflow and Policy SIVs both maintain state that 

persists until the workflow ends. However, state in the Policy SIV bears on the 

reliability of the Policy Evaluator, while state in the Workflow SIV bears on data 

flows for policy-defined concerns. Mixing both states in the same SIV risks 

accidental or purposeful state corruption. 

To create a new SIV, lifecycle and all other SIV properties must be 

addressed. Creating a SIV is a lazy process – a new SIV is created if a concern 

calls Context services to store a value in the SIV, but the SIV has not been 

created. Deallocating a SIV is performed by an interceptor in the 

PrePolicyInterceptors list, which executes at workflow termination. As 

Context services are also responsible for transitioning an SIV from thread-local 

storage to an   , Context services are a natural encryption point. Currently, 

Context services are a self-contained, monolithic library service. Implementing 

such SIV transformations arbitrarily would require re-implementing Context 

services as an orchestration or plugin architecture. 

5.6 PALMS’ Policy System 

The policy system is designed as a separate application, and consists of 

services implementing policy authorship, a policy repository, and a policy 

evaluator modeled as a Rich Service as shown in Figure 35. The Authoring 
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System service interacts with the Policy Repository to store and deploy 

policies, and the Policy Evaluator service interacts with the Policy Repository to 

retrieve policies for execution. Policies in the Policy Repository apply to service 

interactions tracked in the Interaction Repository. 

As described in Section 5.5.4.1, the Policy Evaluator service is 

composed upon PALMS workflows by intercepting every service interaction, 

determining whether one or more policy applies to the interaction, and then 

executing any policies that do. Figure 35 depicts this by showing the Policy 

Evaluator service acting both as a RIS in the PALMS Rich Services and a RAS in 

the Policy System Rich Service. Considering that policy execution is, itself, a 

separate concern relative to PALMS base workflows, it is natural to model it as 

a loosely coupled composable service that is defined, developed, and 

maintained separately from the PALMS service. Integrating services using this 

RIS-RAS pattern enables the creation of a System of Systems that relies on the 

composed service observing the service contracts in force at the target 

service injection points.  

As described in Section 4.2.1, the policy evaluator inherently observes 

all such service contracts, and delegates the contract fulfillment requirement 

to services returned by policy evaluation. 
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In this section, I describe the policy evaluation system, beginning with a 

description of the basic policy language, followed by a motivating example, 

a description of policy expression dependencies, the interaction and policy 

repositories, the authoring system, and the implementation of control, filter, 

and composition policies.  
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Figure 35. PALMS Policy System Composed onto PALMS Service 
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5.6.1 PALMS Basic Policy Language 

The discussion in Section 4.2 is agnostic as to the form or language of a 

policy expression, so long as the result of its execution is a service   that fulfills 

the service contracts defined for the service interaction to which the policy 

applies. In order to make decisions, a policy must have access to the contexts 

described in Section 5.5.4, though to serve the purpose of rapid realization of 

stakeholder requirements, policies must also be easily correlated with 

requirements, and must be injectable at runtime with minimum ceremony. 

In PALMS, policy expressions are written as XQuery [183] expression, and 

are executed by the Saxon XQuery processor [184]. XQuery was chosen as 

the base policy language for a number of reasons: 

 Assuming that service interaction messages   (expressed as Java 

objects), are easily fungible with XML documents (via XStream libraries 

[185]), the XQuery language and its close cousins, XPath and XSLT, can 

easily and efficiently interpret, filter, or transform messages in flight 

 XQuery expressions can draw on library functions written either as 

XQuery functions or Java code, including domain-specific libraries and 

Context service functions 

 XQuery can be written and executed as plain text, thereby avoiding 

compiler and runtime system dependencies in the authoring and 

repository services – and XQuery can be just-in-time-compiled 

 XQuery expressions can be succinct enough to encode domain-level 

abstractions (as a DSL) without incurring undue notational overhead 

The choice of XQuery as a language for policy expression does not 

address policy execution speed or secure, complete, and consistent 

deployment. Additionally, it does not result in any guarantees regarding 

important properties of coordinated policies, such as correctness, 
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completeness, consistency, safety, and liveness. Execution speed is addressed 

in Section 6.3, deployment is addressed in Section 7.4.4, and policy 

guarantees are addressed in Section 7.5. 

5.6.1.1 Policy Example 

In PALMS, access control decisions drove the design of an access 

control DSL based on XQuery expressions (as described in Section 5.6.1). 

Access control requirements were specified by PALMS stakeholders as a 

spreadsheet that correlated desired decisions with particular workflow 

functions. From these requirements, I abstracted a set of primitives that would 

filter messages   (as pre-filters and post-filters) or produce the desired 

allow/deny decisions (as control policies). Both filtering and control decisions 

depend on the user’s identity (carried in an X.509 credential issued by the 

caBIG ID Provider [176] to the Client), as correlated with a hierarchically 

defined role-based (RBAC [186]) and access control list-based (ACL) 

taxonomy maintained in Grouper [178] by stakeholders themselves, described 

in Section 5.6.1.3. 

 

An example of a post-filter can be applied to a list of studies returned 

by the Study Repository to the ListStudies workflow activity, as excerpted in 

ListStudies
Study 

Repository

palms:filter-by-role('PI')
 

Figure 36. Example of Post-Filter Policy Injection 
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Figure 36. The list is described in Section 3.1 and is returned from the Study 

Repository as a message  . The post-filter returns a new   containing only 

studies for which the current user is the principal investigator (i.e., the user is 

contained in the study’s 'PI' role). 

The filter policy is an XQuery expression palms:filter-by-role('PI') 

where palms: is an XQuery namespace, and the filter-by-role('PI') 

function calls an XQuery library function that accesses the current message  , 

finds the study list, and eliminates all studies where the current user is not listed 

as one of the study’s PIs. In this process, the policy accesses four different 

contexts: the current message  , the Workflow SIV (to determine the current 

user’s identity, described in Section 5.5.4.3), application context (i.e., an AIV, 

to determine the location of the PI role in the RBAC hierarchy), and the RBAC 

hierarchy itself. 

An example of a control policy can be applied to prevent 

uncredentialed users from accessing the Study Repository in the ListStudies 

workflow, as excerpted in Figure 37. A decision is injected on the interaction 

between the ListStudies and Study Repository workflow activities. Per Section 

4.2.3, the decision returns either the Study Repository service or the Return Error 

service, which is then executed and completes the interaction with the 

ListStudies service. 
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The control policy is an XQuery expression such as: 

  if (palms:subject-in-study-role('PI') then () 

  else palms:control-error('Invalid role for this operation') 

The subject-in-study-role function calls an XQuery library function 

that returns true if the current user is listed in the RBAC study hierarchy as one 

of the study’s PIs. If so, the interaction with the Study Repository workflow 

activity is continued. Otherwise, an interaction with the Control Error workflow 

activity is selected, and that activity returns an error result. 

In this section, I describe control policies, filter policies, composition 

policies, and the various XQuery library functions the policies can call. I also 

show how policies can be used to inject features into a base workflow to 

create a System of Systems, and how to create a DSL that is implemented as 

an XQuery library. 

5.6.1.2 Policy Expression Dependencies 

The simplest control policy returns the default service ( , as described in 

Section 4.2.3), and the simplest filter policy returns the message   that was 

ListStudies
Study 

Repository

“if” predicate ...
Return 
Error

 
Figure 37. Example of Access Control Policy Injection 
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passed to it. Policies that implement richer requirements base their decisions 

and calculations on information from a number of sources, depicted as 

accessible or updateable to Services in Figure 34. Particularly: 

 the contents of the interaction message   

 the identity of the user on whose behalf the workflow is executed, 

which may be: 

o passed as a parameter to the workflow and captured in the 

Workflow SIV per Section 5.5.4.3 

o obtained from a repository (to support deferred workflow execution) 

 state created and maintained in the Workflow, Session, or other SIVs for 

and by policy expressions 

 state created and maintained as an IV per Section 5.5.4.3 

 state available as an AIV via service interactions with base application 

services or services presented by other concerns, or via system calls 

The PALMS Policy support XQuery library provides access to each 

source via XQuery function calls, as described in Section 5.6.5. 

5.6.1.3 Identity, RBAC,and ACLs 

Many types of access control and filter policies rely on either a user’s 

identity, a role within a virtual organization, or permissions associated with 

either the identity or the role as applied to particular resources. Such policies 

include access control (i.e., resulting in an allow/deny verdict), resource 

allocation and scheduling, auditing, provenance, and information filtering. 

These decisions rely on an authenticated identity and a repository that 

maintains a mapping between identities and roles and permissions. 

Traditionally, these concerns are called authentication and authorization, 

though authorization has a narrow connotation relative to the broader 

capabilities represented by policy injection, where a combination of identity, 
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role, and permission can be used to inject features or determine parameters 

to composed workflows. 

Typical predicates evaluated in PALMS policies are framed relative to a 

group of studies (called a study group) that contains the PALMS study 

involved in the current workflow. A predicate may test whether a user is 

associated with a particular study group role, or whether a user has particular 

permissions as a result of the user having a particular role.  

PALMS roles and permissions are easiest to configure relative to a study 

group, not an individual study. Typical predicates include: 

 Does the user hold the “PI” role? 

 Does the user hold any (or all) of the “PI,RA,Guest” roles? 

 Does the user hold a role (e.g., “Collaborator”) relative to a user (e.g., 

bdemchak)? 

 Does the user hold the “addStudy” permission? 

 Does the user hold any (or all) of the “addStudy,viewStudy” 

permissions? 

PALMS implements credential and authorization services as separate 

Rich Services in support of policy evaluation as shown in Figure 38. Credential 

services accept an X.509 credential, validate the credential and cache the 

result, and render embedded identity information (e.g., an X.500 Distinguished 

Name such as /O=UCSD/OU=LOA1/OU=Dorian/CN=bdemchak) for use in policy 

expressions. Authorization services return the mapping between roles, 

permissions, and user identities stored in caBIG’s Grouper system, which is 
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maintained by caBIG’s GAARDS-UI user interface. They return the mapping in 

an XML form augmented with information that assists in policy calculations. 

Note that PALMS’ credential and authorization services do not 

generate an X.509 credential. Such credentials are generated on behalf of 

clients of the PALMS service (via calls to caBIG Dorian APIs), and are included 

in all interactions with the PALMS SDC (as described in Section 5.5.2). The 

credential is saved as state in the Workflow SIV (as described in Section 

5.5.4.3), where it is available to policies executing under the Policy Evaluator 

service. 

 

5.6.1.3.1 Roles and Permissions under Grouper 

Grouper is a general use Internet2 repository that organizes users and 

permissions into groups. Under Grouper, groups can include other groups (by 

reference), and can be hierarchically defined. Grouper enables credentialed 

access and maintenance of group nodes, thereby enabling group 
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Figure 38. PALMS Credentials and Authorization Services 
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management by individuals on behalf of virtual organizations (VOs), examples 

of which include staff and participants in a PALMS study or associates of an 

investigator.  

PALMS leverages Grouper (as shown in Figure 40) to enable decisions 

based on a user’s membership in a role in a study group or VO. Additionally, 

decisions can be based on the user having permissions associated with one or 

more roles, and on the user being included in an access control list (ACL) for a 

study object (e.g., a Result Set). 

Roles for study groups are organized under the StudiesBranch, where 

each study group can have a number of roles (e.g., PI, Manager, Helper, 

Guest), and a user can be a member of any role (as exemplified in Figure 39). 

The roles for a particular study group are defined by PALMS administrators and 

users according to the requirements for studies in that group. Additionally, 

roles can have sub-roles as organized in a Composite pattern [33] (e.g., under 

Helper, sub-roles Day and Night for shift workers) as required to define policy 

predicates with fine granularity.  
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As a matter of convention, a user is considered to have a particular 

role if it is associated with that role or any of its subroles. For example, a test for 

a user having the Helper role returns positive if the user actually holds the 

Helper:Day role, though the converse is not true. This enables fine grained role 

predicates. 

Roles for virtual organizations are organized under the 

OrganizationsBranch, where an organization is simply a group of stakeholders 

having similar interests or common relationships. As with study groups, 

organization roles are organized into a hierarchy following the Composite 

pattern. Examples of organizations include PowerUser and Barry, where 

PALMS

Studies Orgs

StudyA

StudyB

PI Mgr Guest

PI Mgr
Helper

Barry

Power

User

Friend Mentor

Scientist Student

NightDay

 

Figure 39. PALMS Role Ontology 
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PowerUser may include Scientist and Student roles, and Barry may include 

Mentor and Friend roles. 

The focus of study group roles is to enable, constrain, or qualify activities 

performed in the course of conducting a study (e.g., deleting data). The focus 

of organization roles is to enable activities outside of a study’s operations. For 

example, organizational roles can be used to implement various data sharing 

models, including a coarse model (i.e., people who can view data vs those 

that can’t) or a concentric model (i.e., people who can view a constrained 

version of the data, people who can view full data, and people who can 

view and modify data). 

Roles can be associated with lists of permissions, where a permission is a 

token assigned a meaning important to a policy decision (e.g., p_AddStudy). 

Permissions are defined within permission lists under the PermissionsBranch (in 

Figure 40), and permission lists can contain permission lists according to a 

Composite pattern. A predicate that tests for a user having a permission 

essentially tests whether any of the user’s roles (e.g., relative to the current 

study’s study group or relative to any organization to which the user belongs) 

are associated with the permission. 

Writing policy predicates that test for permissions enables flexibility in 

structuring and maintaining role complex hierarchies for study groups and 

organizations without affecting existing policies. However, the tradeoff is 

complexity in maintaining the association between roles and permissions. 
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For example, the control policy example in Section 5.6.1.1 makes a 

decision (subject-in-study-role('PI')) based on whether the current user is 

a member of the PI role for the study group containing the current study. An 

alternative would be a decision based on a permission (e.g., p_ListStudies) 

using an expression such as ('p_ListStudies' = permissions-for-subject-

in-study-role()), where permissions-for-subject-in-study-role() returns 

a list of permissions associated with the current user’s roles in the current 

study’s study group3. 

Permission-based decisions enable the flexible assignment of 

permissions to roles without hard-coding role names in policy expressions, and 

they simplify policy expressions by allowing a decision based on the user’s 

having any of the roles associated with a permission, instead of having to 

enumerate these roles. 

Currently, PALMS provides no means for users to delegate their roles or 

permissions to other users. 

                                                 
3
 Note that the XQuery ‘=’ operator returns true if a string is contained in a list of strings. 
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Figure 40. Simplified PALMS Grouper Tree 
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Finally, individual users and groups of users can be assigned particular 

permissions relative to specific study objects (e.g., the ResultSet repository or a 

particular result tracked by that repository) by creating a 

PermissionAssociation under the ACLBranch (of Figure 40). A predicate that 

tests for a user having a permission evaluates ACLs (in addition to permissions 

granted in the StudiesBranch and OrganizationsBranch) if the predicate 

identifies a study and object. 

PALMS’ use of the Grouper database combines roles as defined by 

standard RBAC with permissions of a standard ACL model, thereby enabling 

choice and flexibility in maintaining role hierarchies and in tailoring policy 

predicates to match stakeholder requirements. To that end, it improves on the 

standard RBAC model by enabling role hierarchies and combining RBAC-

based permissions with ACL-style permissions. 

5.6.1.3.2 Role and Permission Namespace 

A role or permission identified in a predicate names a node under a 

main branch of the Grouper tree (e.g., StudiesBranch). In general, a node’s 

full name is formed by a “:” followed by the names of all ancestor nodes, 

separated by “:”.  

For example, a role Helper in a study group StudyB would have the full 

name :StudyB:Helper and would be contained under the StudiesBranch. 

Sub-roles Day and Night for Helper would have the full names 

:StudyB:Helper:Day and :StudyB:Helper:Night. As a shorthand, a study 
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group role can be interpreted relative to the study group of the current study 

by leaving off the initial “:”, the study group name, and its “:” separator. For 

example, if the current study’s study group is StudyB, the full names above 

could be abbreviated Helper, Helper:Day and Helper:Night. Thus, with the 

simple predicate example given in Section 5.6.1.1, the PI role is interpreted 

relative to the study group for the current study. 

As a matter of convention, a user holding a role assumes all permissions 

associated with that role, and for all ancestor roles. For example, a user 

associated with a Helper role holds permissions associated with the Helper 

role, but not the Day subrole. A user associated with the Day subrole holds Day 

permissions and Helper permissions, but not Night permissions. This enables the 

differentiation of roles and permissions by sub-role, thereby enabling fine 

grained role and permission predicates. 

When predicates involve checking for multiple roles (i.e., any roles or all 

roles) in a list, the roles can be enumerated in a comma-separated list. For 

example: Helper:Day, Helper:Night. 

Identical rules hold for predicates on roles under the 

OrganizationsBranch, except all names must be full names (e.g., 

:Barry:Collaborators), as there is no default organization node in any 

context. 

For permissions, all names must be full names under the 

PermissionsBranch, formed as “:” followed by a “:”-separated list of 
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permission list names, and ending with the name of a permission. This allows 

the disambiguation of identical permission names used in different permission 

hierarchies. Examples of permission names include 

:StudyPermissions:Admin:addStudy and :StudyPermissions:viewStudy. By 

convention, associating a permission list with a role gives the role all 

permissions present in ancestor lists. Using the example above, associating the 

:StudyPermissions:Admin permission list with a study group’s PI role gives PI 

users the addStudy and viewStudy permissions. 

5.6.2 Policy Repositories and Authorship 

As described in Section 5.6 (and shown in Figure 31), the policy system 

contains the Interaction Repository, a Policy Repository, and an Authoring 

System. The Interaction Repository implements the abstraction of service 

interaction identification described in Section 4.2.2. The Policy Repository 

implements the policy abstractions described in Sections 4.2.3, 4.2.4, and 4.2.6. 

The Authoring System allows policies to be defined and maintained. 

This section describes the implementation of each of these abstractions 

specific to PALMS-CI use cases. Section 5.6.2.1 describes how the Interaction 

Repository maintains service interaction information tailored to the 

implementation of the PALMS-CI on the Mule ESB. Section 5.6.2.2 explains how 

the Policy Repository implements control, filter, and composition policies 

responsive to the PALMS concept of study groups. Finally, Section 5.6.2.3 

describes PALMS’ simple system for editing and staging policy information. 
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5.6.2.1 The Interaction Repository 

The Interaction Repository represents a collection of service interaction 

definitions, which identify candidates for policy injection. An interaction 

definition is a tuple consisting of: 

 Location is a unique, human-readable name by which policies can 

identify their injection site 

 Source Service is endpoint that emits a message intercepted by a 

control or pre-filter policy – for a post-filter, it is the endpoint that 

receives the message 

 Target Service is endpoint that receives a message intercepted by a 

control or pre-filter policy – for a post-filter, it is the endpoint that emits 

the message 

 Return Message Type hints the type of the reply message expected by 

the Source Service in a request/reply interaction 

The Interaction Repository accesses interaction tuples stored in the 

interactions.properties property file in tag format. A sample interaction tuple is: 

  Interaction1.location = Get Study List (Repository) 

  Interaction1.sourceService = vm://PALMS.ListStudies.queue 

  Interaction1.targetService = vm://PALMS.StudyRepository.queue 

  Interaction1.returnMessage = org.palms.messages.GetStudyListResult 

The Interaction Repository reads and caches the property file at system 

startup time, and it presents a service that returns an interaction that matches 

both a Source Service and Target Service key. 

While the interaction tuple identifies service endpoints (as Mule queue 

names), it does not describe either the input or output channels, including 

their type, content, or semantics. Furthermore, considering that the interaction 

itself may be part of a larger protocol, the channel contents may change 

depending on the state of the protocol. Channel contents are defined and 
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enforced by services themselves, and form a service contract that can be 

complex, and the description of which is not addressed in this dissertation, but 

is considered further in Section 7.8.1. 

In PALMS, interactions appear once in a workflow, so all protocols are 

simple request/reply interactions. Nevertheless, a workflow can occur more 

than once in the context of a higher level workflow. When policy is injected 

into a workflow, the policy itself can keep state that enables it to make 

decisions appropriate to the channel definitions for the interaction at the time 

the policy executes, per Section 5.5.4.3. 

Given that PALMS interactions typically follow a request/reply pattern, 

the Return Message Type enables a control policy to return a service 

appropriate for multiple interactions. The service uses the Return Message 

Type to determine the type of response that can fulfill the interaction with the 

Source Service. Using the example in Section 5.5.3.1 (and as shown in Figure 

37), if the Return Message Type is GetStudyListResult, the workflow returned 

by the control policy must return an instance of GetStudyListResult to satisfy 

the interaction service contract.  

An error handler is an example of a workflow the can be returned by a 

control policy. As a practical matter, most PALMS messages extend the 

PALMSResult class, and are defined to contain only PALMSResult members 

when an error occurs. An error handler service returns a response of type 

Return Message Type, with the PALMSResult members set. 
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Note that if the service returned by a control policy is unable to fulfill 

the service contract, it is likely due to a mismatch between the application 

requirements and the services available to fulfill them. Consequently, this is a 

signal that the base workflow must evolve before a requirement can be 

injected, or that the injected service may require helper services. These 

evolution and mitigation paths are beyond the scope of this dissertation, but 

are considered further in Section 7.8.3. 

5.6.2.2 The Policy Repository 

The Policy Repository represents a collection of policies, including 

control, filter, and composition policies, each of which identifies the service 

interaction to which it applies. Because PALMS requirements include the ability 

to impose separate policies on separate domains (studies, study groups, and 

the PALMS system as a whole), policies are grouped according to domain (as 

shown in Figure 41): 

 PALMS policies apply to interactions in workflows that serve studies and 

those that maintain system-level resources, including devices and 

calculations. 

 Study Group policies apply to interactions serving studies. Policies for a 

particular study group apply to all studies in the study group (as defined 

in Section 5.6.1.3.1).  

 Study policies apply to interactions serving particular studies. 

 Composition policies combine multiple PALMS, Study Group, and Study 

policies defined on a single interaction (per Section 4.2.7). 
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Within each domain, policies are grouped as to purpose and form for 

maintenance convenience. A policy can be expressed as a standalone 

XQuery expression with metadata, or can reference a template (which 

contains the XQuery expression and metadata) and provide fillin parameters. 

Policy groupings include: 

 Access Control includes control policies that implement access control  

 Audit includes filter policies that implement auditing functions 

 Policy includes any control and filter policies (for the PALMS, Study 

Group, and Study domains) or control and filter composition policies 

(for the Composition domain) 

Note that the list of policy domains and the grouping of policies reflects 

the circumstances under which policies are executed or maintained, and 

 
Figure 41. PALMS Policy Domains 

Manifest

Composition Domain PALMS Domain Study Group Domain

- groupName:  String

Study Domain

- studyID:  GUID

Policy Audit Access Control

Template

Policy Set

Interaction

Interaction Repository
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therefore address stakeholder concerns expressed by PALMS system 

administrators. They have no effect on policy meaning or execution 

mechanics, which are described in Sections 4.2 and 5.6.3. 

All policies are stored in property files in tag file format. Policy files are 

indexed in a manifest property file, also in tag file format, where the index keys 

are domain and category, and the Study Group and Study domains are sub-

indexed by the name or GUID of particular study groups and studies. A 

sample manifest is: 

palms.palms.accesscontrol = palms.accesscontrol.properties 

palms.palms.policy = palms.policy.properties 

palms.palms.template = palms.template.properties 

palms.palms.audit = palms.audit.properties 

 

studygroup.TestGroup.accesscontrol = \ 

  TestGroup.accesscontrol.properties 

studygroup.TestGroup.policy = TestGroup.policy.properties 

studygroup.TestGroup.template = TestGroup.template.properties 

studygroup.TestGroup.audit = TestGroup.audit.properties 

studygroup.CWPHS.accesscontrol = CWPHS.accesscontrol.properties 

studygroup.CWPHS.policy = CWPHS.policy.properties 

studygroup.CWPHS.template = CWPHS.template.properties 

studygroup.CWPHS.audit = CWPHS.audit.properties 

 

study.d182a31a-2003-4aa7-8d60-622ecd.accesscontrol = \ 

  d182a31a-2003-4aa7-8d60-622ecd.accesscontrol.properties 

study.d182a31a-2003-4aa7-8d60-622ecd.policy = \ 

  d182a31a-2003-4aa7-8d60-622ecd.policy.properties 

study.d182a31a-2003-4aa7-8d60-622ecd.template = \ 

  d182a31a-2003-4aa7-8d60-622ecd.template.properties 

study.d182a31a-2003-4aa7-8d60-622ecd.audit = \ 

  d182a31a-2003-4aa7-8d60-622ecd.audit.properties 

study.86e822ca-f21f-4834-a5f4-8522f7.accesscontrol = \ 

  86e822ca-f21f-4834-a5f4-8522f7.accesscontrol.properties 

study.86e822ca-f21f-4834-a5f4-8522f7.policy = \ 

  86e822ca-f21f-4834-a5f4-8522f7.policy.properties 

study.86e822ca-f21f-4834-a5f4-8522f7.template = \ 

  86e822ca-f21f-4834-a5f4-8522f7.template.properties 

study.86e822ca-f21f-4834-a5f4-8522f7.audit = \ 

  86e822ca-f21f-4834-a5f4-8522f7.audit.properties 

 

composition.composition.accesscontrol = \ 

  composition.accesscontrol.properties 
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composition.composition.policy = composition.policy.properties 

composition.composition.template = composition.template.properties 

composition.composition.audit = composition.audit.properties 

The PALMS policy domains correspond to groups of stakeholders that 

can contribute policies for evaluation, including system administrators 

(PALMS), principle investigators (Study Group and Study), and PALMS 

programmers (Composition). Domains exist as a consequence of being 

identified in the Manifest, being tracked and returned by the Policy 

Repository, and being selected by Composition policies (as described in 

Section 5.6.2.2.4). Enabling PALMS to evaluate policies submitted by arbitrary 

groups of stakeholders is feasible by upgrading the Manifest parsing and 

repository tracking, and changing applicable Composition policies. 
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5.6.2.2.1 Control Policies 

A control policy is a triple consisting of a policy name, an XQuery 

expression, and the name of the interaction to which it applies. As described 

in Section 4.2.3, the XQuery expression returns the service to execute. By 

convention, returning an empty service selects the interaction’s default target 

service.  

A control policy can be expressed in one of three formats, each of 

which responds to different authorship intent. In the simplest and most general 

format, the XQuery expression is specified directly (e.g., a control policy 

injected into the                                interaction (in Figure 37)): 

  GetStudyListPolicy.location = Get Study List (Repository) 

  GetStudyListPolicy.capability = Get a study list (control) 

  GetStudyListPolicy.controlExpression = \ 

    if (palms:subject-in-study-role('PI') then () \ 

    else palms:control-error('Invalid role for this operation') 

The .location matches the name of an interaction managed by the 

Interaction Repository (per Section 5.6.2.1). The .capability names the policy 

for reference in policy execution logs and in error messages. The 

.controlExpression is the XQuery expression to execute – in this example, it 

uses an XQuery library function to determine whether the current user has the 

PI role for the study group containing the current study. If so, it returns an 

empty service, indicating that the target service is the interaction’s target 

service. Otherwise, it returns a service calculated by the control-error 

XQuery library function, which returns an error result. The .controlExpression 
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can return any service that fulfills the interaction source service’s contract, 

and can be based on any calculation. 

A more complex policy might involve a compound predicate, an 

XQuery FLWR construct, an entire XQuery function body, or XQuery function 

declarations and usage. An example of a compound access control 

predicate is: 

  if ((palms:subject-in-study-roles('Researcher,PI')  

      or (palms:subject-in-org-role(':Barry:Collaborator:Close'))  

     and palms:has-acl-permission('p_peek_list'))) then ()  

  else palms:control-error 

        ('Insufficient permissions for this operation.') 

where access is granted if the current user has the p_peek_list permission as 

a consequence of any roles it holds, and the user either holds the Researcher 

and/or PI roles for the current study or is one of Barry’s close collaborators. 

Note that it is possible to define policies on interactions that result from 

a control policy evaluation. In the examples above, the policies are defined 

on the                                interaction, but may result in a 

                           interaction if the control-error() function returns 

a reference to the PolicyError service (as in Section 5.6.3.2). Such a policy 

would be defined directly on the                            interaction. 
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For convenience, a second control policy format assumes that the 

alternate workflow returns an error (as in the example above), and involves 

breaking the control expression into a predicate and an error without 

manually forming a complete XQuery expression: 

  GetStudyListPolicy.location = Get Study List (Repository) 

  GetStudyListPolicy.capability = Get a study list (control) 

  GetStudyListPolicy.controlExpression = \ 

    palms:subject-in-study-role('PI') 

  GetStudyListPolicy.controlErrorMessage = \ 

    'Invalid role for this operation' 

The complete error expression is formed by the Policy Repository by 

combining the template’s .controlErrorMessage with the literal value 

“palms:control-error”, and the entire control expression is formed by 

combining the .controlExpression predicate with the literals “if” and “then 

() else“. In this example, the result is the .controlExpression in the triple in 

the example above. 

For access control policies, a third form of a control policy is a template 

reference, where the template may be shared amongst several access 

control policies and configured via fillin parameters. The template facility is 

provided as a convenience supporting optimized production of access 

control policies – once a template exists, it can to generate an access control 

policy by supplying parameter values appropriate for the policy. 
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An example of the template-based access control policy (which 

generates the policy above) is: 

  GetStudyListPolicy.templateReference = GetStudyListTemplate 

  GetStudyListPolicy.templateParameter.RoleList = PI 

The .templateReference refers to a group of attributes in the template 

(i.e., the GetStudyListTemplate group). The .templateParameter entries 

identify key names and values for substitution into the template’s control 

expression (i.e., RoleList is the key, and PI is the value). There can be multiple 

.templateParameter entries if the template accepts multiple substitutions. 

The accompanying template could be: 

  GetStudyListTemplate.location = Get Study List (Repository) 

  GetStudyListTemplate.capability = Get a study list (control) 

  GetStudyListTemplate.controlErrorMessage = \ 

    Invalid role for this operation 

  GetStudyListTemplate.controlExpression = \ 

    palms:subject-in-study-role ('%RoleList%')  

  GetStudyListTemplate.paramList = RoleList 

The policy’s .location and .capability attributes are fetched directly 

from the template’s .location and .capability attributes.  

The control expression predicate is formed by inserting parameter 

values listed in the reference’s .templateParameter (e.g., RoleList = PI) into 

the template’s .controlExpression (e.g., at %RoleList%). The template’s 

.paramList enumerates the list of required parameters. As in the examples 

above, if the .controlErrorMessage is present, the full control expression is 

formed by combining the .controlExpression with the 



254 

 

.controlErrorMessage. Otherwise, the .controlExpression is assumed to 

contain the entire control expression. 

Policies that don’t fit the access control template mechanism can be 

defined as a standard control policy triple. The use of access control 

templates does not preclude the processing of other templates for other 

purposes, but such template processing would first need to be added to 

PALMS. 

5.6.2.2.2 Filter Policies 

A filter policy is a four element tuple consisting of a policy name, an 

XQuery expression, the name of the interaction to which it applies, and filter 

library support. As described in Section 4.2.4, a filter policy returns a service 

that transforms an input message   into a new message   . Under PALMS, the 

filter expression also executes the filter, thereby effecting the message 

transformation – the filter expression is free to return the original message   if 

no transformation is appropriate. An example of an output filter policy 

injected into the                               interaction (in Figure 36) is: 

  GetStudyListPolicy.location = Get Study List (Repository) 

  GetStudyListPolicy.capability = Get a Study List (filter) 

  GetStudyListPolicy.outFilterExpression = \ 

    palms:(:NameSpace-~:)(:~-NameSpace:)filter-by-role('PI') 

  GetStudyListPolicy.outFilterSupportFile = FilterRemove.support.xq 

  GetStudyListPolicy.outFilterSupportParameter.1 = studies/studyList 

  GetStudyListPolicy.outFilterSupportParameter.2 = studyRow/rowValue 

The .location matches the name of an interaction managed by the 

Interaction Repository (per Section 5.6.2.1). The .capability names the policy 
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for reference in policy execution logs and in error messages. The 

.outFilterExpression is the XQuery expression to execute – in this example, it 

uses the filter-by-role() function, which is implemented as a support 

function (described below) in an XQuery library; it eliminates all studies where 

the current user is not listed as one of the study’s PIs. 

(The (:NameSpace-~:)(:~-NameSpace:) construct is described further in 

Section 5.6.2.2.4, and can be ignored in the discussion of filter policies.) 

Note that the examples in this section apply to post-filters, as indicated 

by each of the attribute names starting with .outFilter. The discussion 

applies equally well to pre-filters, whose attribute names start with .inFilter 

instead. 

Note that a filter can be defined as a template reference in a manner 

analogous to template references described in Section 5.6.2.2.1. 

The filter-by-role() function assumes that the message   has been 

transformed from its normal Java object form to an XML form. It then uses 

XQuery operators and PALMS XQuery library functions to: 

 find each study in the XML document 

 find the study group associated with the study 

 determine whether the current user’s X.500 identity is contained in any 

of the roles listed in the role parameter (i.e., PI in this example) 

 drop any studies where the user does not have one or more roles 

 return a new XML document containing studies that were not dropped 
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The XML document produced by the function is transformed to its 

normal Java object form, and forwarded to the interaction’s target service. A 

simplified example of an XML document corresponding to the Java object 

produced by the Study Repository list function is: 

  <org.palms.ListStudyResult> 

    <studies> 

      <studyList> 

        <studyRow> 

          <rowValue> 

            <entry> 

              <string>studyid</string> 

              <string>Study1A2B3C</string> 

            </entry> 

            <entry> 

              <string>groupname</string> 

              <string>TestGroup</string> 

            </entry> 

          </rowValue> 

        </studyRow> 

      </studyList> 

    </studies> 

  </org.palms.ListStudyResult> 

where a <studyRow> element exists for each study.  

A filter function such as filter-by-role() is defined in a filter support 

file named by the .outFilterSupportFile attribute. The support file contains 

all of the XQuery support needed to define and execute the function. The 

filter-by-role() function is parameterized to be flexible regarding where in 

the XML document it looks for a list of study elements, and where to find a 

study group within a study element. Such parameters are considered part of 

the support file definition, and are expressed as .outFilterSupportParameter 

attributes. In the filter-by-role() example, .outFilterSupportParameter.1 

indicates the element containing a study list (e.g., studies/studyList), and 
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.outFilterSupportParameter.2 indicates the sub-element containing the 

study group (e.g., studyRow/rowValue). A given filter function may have its 

own support file and parameter set. 

Note that the process of parameterizing a filter depends on the XQuery 

language support provided by the XQuery processor. For PALMS, the XQuery 

processor is Saxon, which provides different language support depending on 

the license purchased. Paid versions of Saxon provide functional language 

programming constructs that enable function customization at runtime. The 

free version is used by PALMS, and such constructs are not available. PALMS 

overcomes this by rewriting the function immediately before execution, with 

parameter values substituted directly into the function text. A simplified version 

of the filter-by-role() function (shown without other supporting functions) is 

an example of this: 

  declare function palms:filter-by-role($Roles as xs:string) as 

node() { 

    palms:substitute($Message/*[1]/(:1-~:)study list param(:~-1:), 

       palms:select-children-by-role( 

         $Message/*[1]/(:1-~:)study list param(:~-1:)/*,  

         "groupname",  

         $Role)) 

 }; 
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The substitution site for parameter 1 (i.e., 

.outFilterSupportParameter.1) is bracketed by (:1-~:)…(:~-1:); the site for 

parameter 2 is bracketed by (:2-~:)…(:~-2:) and so on. The result of the 

substitution for the example (with substitution sites in bold) above would be: 

  declare function palms:filter-by-role($Roles as xs:string) as 

node() { 

    palms:substitute($Message/*[1]/studies/studyList, 

       palms:select-children-by-role( 

         $Message/*[1]/studies/studyList/*,  

         "groupname",  

         $Role)) 

 }; 

5.6.2.2.3 Policy Packages 

When a requirement calls for the implementation of more than one 

policy on one or more service interactions (as described in Section 7.4.1), 

defining each policy independently is effective, but fails to establish that the 

policies are related. This leads to either external documentation, which 

atrophies, or policy maintenance errors. PALMS addresses this in a primitive 

way by grouping related policies together as a policy package. Each policy 

in a package is called a sub-policy and is named distinctly from other sub-

policies in the package. But for their grouping with other sub-policies, a sub-

policy is a complete control or filter policy as shown in Figure 42. 
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Figure 42. Policy Package 
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For example, combining the control and post-filter policies from 

Sections 5.6.2.2.1 and 5.6.2.2.2 would result in the following: 

  GetStudyListPolicy.capability = Get a study list (package) 

  GetStudyList.templateParameter.RoleList = PI 

 

  GetStudyListPolicy.subpolicy.p1.location = \ 

    Get Study List (Repository) 

  GetStudyListPolicy.subpolicy.p1.capability = \ 

    Get a study list (control) 

  GetStudyListPolicy.subpolicy.p1.controlExpression = \ 

    if (palms:subject-in-study-role(%RoleList%) then () \ 

    else palms:control-error('Invalid role for this operation') 

 

  GetStudyListPolicy.subpolicy.p2.location = \ 

    Get Study List (Repository) 

  GetStudyListPolicy.subpolicy.p2.capability = \ 

    Get a study list (filter) 

  GetStudyListPolicy.subpolicy.p2.outFilterExpression = \ 

    palms:(:NameSpace-~:)(:~-NameSpace:)filter-by-role(%RoleList%) 

  GetStudyListPolicy.subpolicy.p2.outFilterSupportFile = \ 

    FilterRemove.support.xq 

  GetStudyListPolicy.subpolicy.p2.outFilterSupportParameter.1 = \ 

    studies/studyList 

  GetStudyListPolicy.subpolicy.p2.outFilterSupportParameter.2 = \ 

    studyRow/rowValue 

Specifically, the GetStudyListPolicy.capability names the policy 

package, and each sub-policy (e.g., p1 and p2) can be injected onto a 

different interaction, named by its own .location attribute. Note that the 

GetStudyList.templateParameter attribute provides fillin values (e.g., 

RoleList = PI) useful in maintaining consistency in sub-policies – they are 

named and used in the same way as the template parameters described in 

Section 5.6.2.2.1. 

Policy packages can contain policy packages according to a 

Composite pattern. When a fillin value is evaluated, the .templateParameter 
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attribute for the closest parent policy package is used – it overrides all 

ancestor .templateParameter attributes. 

5.6.2.2.4 Composition Policies 

A composite policy is a tuple consisting of between two and eight 

elements, including a policy name and the name of the interaction to which it 

applies, as with control and filter policies described in Sections 5.6.2.2.1 and 

5.6.2.2.2. As described in Section 4.2.7, a composition policy determines the 

effective policy when multiple policies are defined on the same service 

interaction. A separate composition policy is defined for control, pre-filter, and 

post-filter policies.  

For control policies, a composition policy’s 

.controlCompositionExpression attribute defines the composition function 

(as an XQuery expression), and its .controlCompositionSupportFile attribute 

identifies the library file (if any) containing the composition function and/or 

the XQuery functions that support it. 

Similarly, the .inFilterCompositionExpression and 

.outFilterCompositionExpression attributes defines the composition 

functions for pre-filters and post-filters, and the 

.inFilterCompositionSupportFile and .outFilterCompositionSupportFile 

attributes identify the library file supporting functions. 
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An example of a composition policy specification is shown below. It 

defines composition policies for control, pre-filter, and post-filter policies: 

  Comp1.location = Get Study List (Repository) 

  Comp1.capability = Get a study list 

  Comp1.controlCompositionExpression = local:compose-unanimous() 

  Comp1.controlCompositionSupportFile = ControlComposition.support.xq 

  Comp1.inFilterCompositionExpression = local:compose-all() 

  Comp1.inFilterCompositionSupportFile = \ 

    InFilterComposition.support.xq 

  Comp1.outFilterCompositionExpression = local:compose-all() 

  Comp1.outFilterCompositionSupportFile = \ 

    OutFilterComposition.support.xq 

The parameters for a control composition policy are defined by the 

control policies associated with the service interaction. For example, if there 

are two control policies bound to the Get Study List (Repository) 

interaction, the control expressions for each policy would be parameters to 

the control composition expression.  

As with filter policies (described in Section 5.6.2.2.2), the Saxon XQuery 

processor used by PALMS does not support functional programming, so 

control expressions cannot be passed directly as parameters. Instead, before 

a composition function is executed, its supporting library is rewritten to contain 

each control expression. The control composition then: 

 chooses which control policy to execute 

 executes the control policy 

 returns the target service the control policy calculates 

A similar process is undertaken for filter composition functions. However, 

because a filter support file itself is customized by rewriting it with filter 

parameters (as described in Section 5.6.2.2.2), the customized filter is included 
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in the rewritten filter composition support library. Different instances of filter 

support are distinguished by assigning a unique local namespace identifier 

(e.g., N1-, N2-, etc) to each instance’s global identifiers (such as helper 

function names) and references (e.g., calls to helper functions). 

Consequently, filter functions (including filter expressions in filter policies) 

contain markers (:NameSpace-~:)(:~-NameSpace:) indicating sites for this 

namespace insertion. 

For example, the full .outFilterExpression associated with the 

GetStudyListPolicy is: 

  palms:(:NameSpace-~:)(:~-NameSpace:)filter-by-role('PI') 

and the full filter-by-role() function is: 

  declare function palms:(:NameSpace-~:)(:~-NameSpace:)filter-by-role 

                  ($Roles as xs:string) as node() { 

    palms:(:NameSpace-~:)(:~-NameSpace:)substitute( 

       $Message/*[1]/(:1-~:)study list param(:~-1:), 

       palms:(:NameSpace-~:)(:~-NameSpace:)select-children-by-role( 

         $Message/*[1]/(:1-~:)study list param(:~-1:)/*,  

         "groupname",  

         $Role)) 

 }; 

The rewritten expression is: 

  palms:N1-filter-by-role('PI') 

and the rewritten function is: 
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  declare function palms:N1-filter-by-role($Roles as xs:string) as 

node() { 

    palms:N1-substitute($Message/*[1]/(:1-~:)study list param(:~-1:), 

       palms:N1-select-children-by-role( 

         $Message/*[1]/(:1-~:)study list param(:~-1:)/*,  

         "groupname",  

         $Role)) 

 }; 

Note that if control or filter policies are defined on a service interaction, 

but without a complimentary composition policy or without a corresponding 

Interaction Repository entry, the Policy Evaluator will report an error. 

A simplified example of a control composition policy (compose-

unanimous(), shown below) composes two control policies, where if one 

policy returns a replacement service, the second policy is not evaluated. If 

either policy returns a replacement service, the service will be used instead of 

the base workflow service.  
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  declare variable $Policies as element()* :=  

   <policies> 

    <policy name="(:Name1-~:)(:~-Name1:)" valid=" 

       (:Valid1-~:)(:~-Valid1:)"/> 

    <policy name="(:Name2-~:)(:~-Name2:)" valid=" 

       (:Valid2-~:)(:~-Valid2:)"/> 

   </policies>; 

                                             

  declare function local:policy-names() as xs:string* { 

    for $policy in $Policies/policy 

        return if ($policy/@valid = "") then $policy/@name else () 

  }; 

 

  declare function local:policy1() as item()* { 

    (:Text1-~:)'undefined1'(:~-Text1:) 

  }; 

 

  declare function local:policy2() as item()* { 

    (:Text2-~:)'undefined2'(:~-Text2:) 

  }; 

 

  declare function local:exec-policy($PolicyName as xs:string)  

      as item()* { 

    if ($PolicyName = "(:Name1-~:)(:~-Name1:)")  

      then local:policy1() 

      else if ($PolicyName = "(:Name2-~:)(:~-Name2:)") 

        then local:policy2()  

        else () 

  }; 

 

  declare function local:execute-policy-sequence( 

                     $PolicyNames as xs:string*,  

                     $ReturnVal as item()*) as item()* { 

    if (fn:empty($PolicyNames) or fn:count($ReturnVal) > 0) 

      then $ReturnVal 

      else local:execute-policy-sequence( 

        fn:remove($PolicyNames, 1), 

                  local:exec-policy($PolicyNames[1])) 

  }; 

 

  declare function local:compose-unanimous() as item()* { 

    local:execute-policy-sequence(local:policy-names(), ()) 

  }; 

As described above, the control composition policy is formed by 

inserting each control policy via a rewriting operation, where markers in the 

form of pre-defined comments indicate insertion sites. Comments of the form 

(:Name1-~:)(:~-Name1:) indicate sites in which a policy name is inserted; 
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comments of the form (:Valid1-~:)(:~-Valid1:) indicate sites that mark 

valid substitutions; and comments of the form (:Text1-~:)(:~-Text1:) 

indicate sites in which policy text is inserted. 

The compose-unanimous() function uses the policy-names() function to 

collect a list of valid control policies, then uses the execute-policy-

sequence() function to choose which policies to evaluate, and finally, uses the 

exec-policy() to evaluate a control policy. The sample composition policy 

accommodates only two control policies – actual composition policies can 

accommodate any fixed number of policies (by adding more insertion sites). 

Filter composition policies use similar techniques. 

5.6.2.3 The Authoring System 

PALMS policies are stored in a Policy directory and are organized as 

text-based property files per Section 5.6.2.2. They are read and cached by the 

Policy Repository service when the PALMS Policy System (described in Section 

5.6) starts, and the cache is periodically refreshed to capture changes in the 

policy files. Policies read from this directory are expected to be syntactically 

well formed, and if they are not, the PALMS system shuts down. Well-

formedness means that each property (attribute) can be parsed, and 

template references can be resolved to templates actually defined. 

Policy files are mirrored in a Policy_Staging directory, and are edited 

there either with a standard text file editor or with a GUI utility. A policy author 

can use a text file editor to replace a staged copy. The user can then execute 
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a maintenance utility that invokes a Policy Repository service that verifies well-

formedness of all staged files. The service either returns an error or copies 

staged files to the Policy directory, where the Policy Repository can read them 

and put them into effect.  

PALMS exposes services that allow a GUI utility (under development) to 

read and update template-based access control policies (as described in 

Section 5.6.2.2.1), thereby allowing the GUI utility to display and assign roles to 

access control checks on pre-defined service interactions. The GUI can 

examine the template to determine its description (via its .capabilities 

attribute) and the parameters it requires (via its .paramList attribute). Based 

on these, the GUI utility presents access control as a relationship between user 

identities and roles in the context of each interaction. This allows stakeholders 

to configure policies without being exposed to the underlying policy 

language. As such, the GUI is a high level DSL. 

Policy development and debugging are discussed in Section 5.6.6. 

Authorship of interaction tuples (in the interactions.properties file 

described in Section 5.6.2.1) follows similar lines, where a text editor is used to 

add, change, or delete interaction definitions, which are cached in the 

Interaction Repository. The Interaction Repository’s interaction cache is 

periodically refreshed to capture interaction tuple changes. 
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5.6.3 Policy Evaluator 

The PALMS Policy Evaluator is a service injected into all PALMS service 

interactions, as described in Section 5.5.4.1. It assumes a request/reply service 

interaction where   is the source service,   is the target service, and messages 

  and   exchanged between   and   (as in Section 4.2.2): 

 
 
   followed by  

 
   

The reply interaction is optional, though most PALMS interactions 

require it. (Messages   and   are instances of message   from previous 

discussions.) 

The Policy Evaluator intercepts   (outbound from  ) and returns   

(inbound to  ) intuitively as follows: 

                                   

The Policy Evaluator’s internal workflow consists of three main stages (as 

shown in Figure 43):  

 marshaling the policy execution context 

 fetching the policies for the current interaction  

 executing the policies.  

The marshaling phase interacts with various PALMS and composed 

services to collect information needed to fetch and execute policies. The 

Interaction Repository (Section 5.6.2.1) returns the service contract that   must 

fulfill. The Credentials Repository (Section 5.6.1.3) returns the user’s identity (for 

use in policy decisions), and the Authorizations Repository (Section 5.6.1.3) 
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returns the mapping between user identity, roles, and permissions. The Study 

Repository returns the study group associated with the study ID contained in 

message  . 

Fetching policies depends not only on the current interaction, but on 

the study and study group associated with the interaction message   – the 

Policy Repository (Section 5.6.2.2) returns pre-filter, control, and post-filter 

policies pertaining to the PALMS, study group, and study domains, and also 

returns composition policies pertaining to the current service interaction.  

Finally, the XQuery processor is called to execute the pre-filter, control, 

and post-filter policies in order, thereby transforming message   to message  , 

and returning   to  . Filter and control policy evaluation are described in 

Sections 5.6.3.1 and 5.6.3.2. Note that such policies are evaluated only in the 

context of a composition policy, which evaluates any and all policies 

appropriate for an interaction as described in Section 5.6.2.2.4. In this section, 

filter and control policy evaluation is assumed to be within the context of an 

appropriate composition policy. Note that if a policy is defined on an 

interaction, PALMS requires that a corresponding composition policy be 

defined on the interaction, too – if there is less or more, PALMS signals an error. 

Because the Policy Evaluator is injected into every PALMS interaction, it 

is possible that Policy Evaluator recursion could result during either the 

marshaling activities or policy execution. Policy Evaluation during the 

marshaling phase is an opportunity for infinite recursion – a Policy Evaluation 
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interacts with a repository, and the interaction results in a second Policy 

Evaluation, which attempts the same repository interaction, thereby triggering 

the infinite recursion. The Policy Evaluator prevents this by setting a lock in the 

Policy SIV (described in Section 5.5.4.3), and checking the lock immediately 

upon entry. If the lock is set, service   is executed (and message   is returned) 

without any policy intervention – essentially, policies cannot be applied to 

repository interactions conducted by the Policy Evaluator. 

A Policy Evaluator execution consequent to policy execution is 

desirable, as this amounts to policy on injected concerns. This does not result 

in infinite recursion because an atomic (non-decomposed) service will 

eventually be injected. 

Note that Figure 43 shows marshaling operations performed in parallel – 

no marshaling operation depends on another marshaling operation. In fact, 

PALMS’ Policy Evaluator performs these operations serially as a coding 

convenience. To execute in parallel (or to enable Policy Evaluator to function 

in a multi-threaded workflow), the Policy SIV lock would have to be upgraded 

to a semaphore. 
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5.6.3.1 Evaluation of Filter Policies 

As described in Section 5.6.2.2.2, a pre-filter is evaluated in the same 

way as a post-filter, with the difference being that a pre-filter transforms a 

message   passed to a service, and the post-filter transforms a message   

returned from a service. In this section, the description of PALMS’ filter 
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processing applies equally to pre- and post-filters, which are composed using 

pre- and post-filter composition policies (as in Section 5.6.2.2.4). 

For a given service interaction, if a filter composition policy is defined, 

all filter policies for the interaction are processed by the filter composition 

policy to determine the effective filter expression. Considering that the Mule 

ESB transports Java objects, and PALMS services process Java objects, a filter 

expression transforms one Java object to another. The transformation occurs 

as shown in Figure 44 (for pre-filters). 

 

The XStream Java library [185] is used to convert the Java object to an 

XML document, and the Saxon Java library is used to convert the XML 

document to an internal Saxon format. The converted message and the 

execution context are assigned to global variables in a Saxon context object, 
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Figure 44. Filter Evaluation Sequence 
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and the policy expression is then evaluated by the Saxon XQuery parser. While 

a null policy simply returns the converted message, a more substantial policy 

(e.g. as in Section 5.6.2.2.2) returns a transformation of the converted 

message, possibly using the execution context during the transformation. 

Finally, the returned message is converted back to XML, and then back to a 

Java object. 

5.6.3.2 Evaluating Control Policies 

Unlike a filter (which returns a message that is forwarded to a service), a 

control policy returns the service to be executed next (per Section 5.6.2.2.1). 

While the evaluation sequence for a control policy (as shown in Figure 45) is 

similar to the sequence for a filter policy, a control policy returns an array of 

Saxon-formatted values that may represent a workflow, and may be 

configured in three ways: 

 Null or empty – indicates that the default service   should be executed 

 Single string value – indicates the name of the Mule queue 

corresponding to the service    that replaces   

o Optionally, an XML document contains a new message    to 

pass to the replacement service   instead of the normal 

interaction message  , and is realized as a Java object using the 

Saxon and XStream functions used during filter evaluation (as in 

Figure 44) 
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Returning the optional XML document is functionally equivalent to 

returning a dynamically constructed workflow that decomposes into two 

services: a transformation of message   to   , followed by service  .  

Note that Section 4.2.3 calls for a control policy to return a workflow. 

Because under Rich Services, a service itself can decompose into a workflow, 

a policy can be said to inject either a service or, equivalently, a workflow. 

Within this definition, there are no limitations on the calculation that can be 

performed by the control policy decision expression, or on the activity of the 

injected workflow. Furthermore, the injected workflow can be parameterized 

or customized by the control policy, so long as it realizes the original service 

contract. 
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The common case under PALMS is for an existing service to represent 

and implement the workflow as a service decomposition – this case is 

implemented by returning a Mule queue name. The uncommon case of 

returning a dynamically created workflow is represented by the Policy 

Evaluator constructing the workflow based on returning both the service and 

a service message. Other workflow constructions are possible, though not 

implemented in PALMS. 

For example, consider the control policy in Section 5.6.2.2.1: 

  if (palms:subject-in-study-role('PI') then () \ 

  else palms:control-error('Invalid role for this operation') 

The () service corresponds to specifying that the default service   be 

executed. 

The palms:control-error() function returns a Mule queue name and 

replacement message as follows: 

  ("Policy.Error.queue",  

   <org.palms.messages.PALMSResult> 

      <error>{$ErrorText}</error> 

   </org.palms.messages.PALMSResult> 

  ) 

where Policy.Error.queue corresponds to the PolicyError service, which 

returns the replacement message. The replacement message in this example 

is the org.palms.messages.PALMSResult XML document, which contains the 

text of the error (derived from the control-error() parameter $ErrorText). 
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Note that the dynamic construction of the error message represents 

the myriad processing opportunities available to a replacement service such 

as control-error(). Other possibilities include customizing the type of the XML 

document according to the interaction specification, logging the error, and 

performing failure detection and/or remediation. 

5.6.4 Feature Injection 

PALMS’ base workflows focus on data storage and retrieval, and do 

not entangle orthogonal concerns (i.e., features) such as auditing, 

provenance tracking, failure management, and information assurance issues. 

Given that the requirements that define such features are often fluid and are 

managed by diverse stakeholder communities having different interests, such 

features are natural candidates for policy-based injection as described in 

Section 4.2.6. Stakeholders define the policies, which in turn express which 

information is captured and under what conditions.  

As an example, I cast an auditing concern as an independent 

application comprising acquisition, storage, and visualization sub-concerns as 

shown in Figure 46 (with an abbreviation of the policy system shown in Figure 

35). Injection of the acquisition sub-concern into PALMS base workflows 

creates a System of Systems where both PALMS and the audit application can 

evolve independently. 

The audit system consists of a listener service that is invoked by a policy 

expression (described in Section 5.6.5.3), a repository for audit information, 
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and an audit information visualizer. The listener stores audit information by 

interacting with the repository service. The visualizer is invoked to view and 

analyze audit information, and interacts with the repository service. Given that 

the audit services participate in a workflow, their interactions are subject to 

composition of yet other concerns, such as encryption, failure management, 

and data flow augmentation (e.g., time stamping).  

Note that a real world auditing system would store audit information in 

a secure, tamperproof store, and may include commercial visualizers such as 

Crystal Reports [187]. The PALMS audit system stores audit information in local 

tab-separated text files, which can be viewed and analyzed in Excel. 
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Figure 46. PALMS Audit System Composed onto PALMS Service via Policy 
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An example of feature injection is implemented as a post-filter on the 

                              interaction: 

  AuditLow.location = Get Study List (Repository) 

  AuditLow.outFilterSupportFile = FilterAudit.support.xq 

  AuditLow.outFilterExpression =  

    palms:(:NameSpace-~:)(:~-NameSpace:)audit( 

      "AuditID1",  

      ("event", "success"),  

      ("user", xf:get-workflow-user())) 

  AuditLow.capability = Audit Study List (low level) 

As a filter, the .outFilterSupportFile attribute names the XQuery file that 

contains functions that define an audit Domain Specific Language (see 

Section 5.6.5); the .outFilterExpression attribute specifies a filter expression that 

returns the current message  , which is supplied as a member of the policy 

execution context. 

Ultimately, the audit() function relies on interactions with the separate 

Listener service. Such feature injection is facilitated by the call-service() 

function described in Section 5.6.5.3. 

As an independent application, the audit system maintains state 

pertinent to meeting its requirements, and control or data flow within the 

application can be workflow-dependent if the CIS workflow GUID is passed to 

it. However, the policy decision that results in an interaction with the audit 

system can, itself, maintain state via IVs as in Section 5.6.5.1. Such state can 

affect either future decisions, can constitute part of the information 

exchanged with the audit system, or can affect other policy decisions and 

workflows derived from them. 
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Policies and groups of policies that maintain and consume state are, 

themselves, injectable features in that they implement a discrete requirement 

set, which may or may not be further implemented by injection of workflows 

as demonstrated in Section 7.4.1.  

5.6.5 PALMS Domain Specific Languages (DSLs) 

While the PALMS policy system enables the composition of control and 

filter policies on service interactions, the policy expressions (described as   in 

Section 4.2.1) themselves reflect the intentions of the policy writers. An 

important insight of PDD is to enable policy phrasing in terms of languages 

congruent with the domain concepts understood by the writers, and which 

can therefore be easily, accurately, and repeatably authorable. To achieve 

this, PDD promotes the use of Domain Specific Languages [35] (DSLs) to 

compose policy expressions, where DSLs can be tailored by and for a 

stakeholder community interested in expressing policy. 

The XQuery language supports the concept of DSLs by allowing: 

 parameterized definition of functions using basic data structures, 

including strings, arrays, collections, and structured types such as XML 

 combination of functions in logical expressions 

 control structures, including looping, encapsulation, and 

decomposition 

 composition of functions to create higher abstractions 

 automatic parallelization of expression evaluation 

 access to external information sources and transformations 

PALMS includes a number of DSLs useful in expressing policy in different 

domains, thereby catering to interests of diverse stakeholder groups that have 
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been important to PALMS so far. Additionally, XQuery enables the 

improvement of existing languages and the definition of new languages 

simply through declaring new XQuery functions. The current list of PALMS’ DSLs 

reflect the interests of PIs (for controlling access to study data, results, and 

calculations), PALMS operators (for combining or prioritizing policies submitted 

by stakeholders), and PALMS administrators (for tracking resource access and 

billing) – additional DSLs (or evolution of existing DSLs) are possible and are 

encouraged so as to address the requirements of new or existing stakeholders. 

They include: 

 Access Control (described in Sections 5.6.1.1, 5.6.2.2.1, and 5.6.2.2.2) 

allows a determination of whether a user holds a role, a list of roles, or 

any in a list of roles within a study or virtual organization. It also allows 

similar calculations based on permissions based on such memberships. 

 Policy Composition (described in Section 5.6.2.2.4) allows the 

combination of multiple control and filter policies defined on a single 

interaction. 

 Audit (described in Section 5.6.4) allows injection of audit tracing on a 

single interaction. 

 Feature Injection (described in Section 5.6.4) allows injection of arbitrary 

services on a single interaction. 

The design of the Access Control DSL followed a traditional 

development process, where I marshaled access control requirements and 

use cases, then abstracted primitives that filter data flows and produce 

desired allow/deny decisions as described in Section 5.6.1.1. Each other DSL 

was designed using the same technique, while making incremental 

modifications and upgrades to DSLs to reflect emerging requirements. 
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In particular, major functions available in each DSL are listed in Table 7. 

 

Section 5.6.3.2 presents an example of the use of an Access Control 

control function that returns a Boolean value (which determines a service to 

return) and the control-error() function. Section 5.6.2.2.2 presents an Access 

Table 7. Major DSL Functions 

Domain Function Parameters Return 

Access 

Control 

subject-in-any-study-

roles 

subject-in-all-study-roles 

subject-in-any-org-roles 

subject-in-all-org-roles 

$role-list boolean 

 subject-in-study-role 

subject-in-user-role 

$role boolean 

 has-acl-permission $object, 

$permission-list 

boolean 

 permissions-for-subject-

in-study-role 

 permission-

list 

 permissions-for-subject-

in-user-role 

$role permission-

list 

 filter-by-attribute $name, $value message 

 filter-by-any-role $role-list message 

 filter-by-role $role message 

 control-error $queue, 

message 

$queue, 

message 

Policy 

Composition 

compose-unanimous 

compose-override 

 message 

 compose-all 

compose-preemptive 

compose-hierarchical 

 $queue, 

message 

Audit audit $auditID  

{,(name, value)}* 

message 

 audit-if $boolean-

condition, 

$true-param-list, 

$false-param-list 

param-list 

Feature 

Injection 

call-service $queue, 

$message 

message 
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Control filter function that returns a message. The has-acl-permissions() 

function returns a Boolean value if a user holds one or more permissions 

pertaining to a particular study object. Similar functions exist for determining 

whether the user has one or more permissions as a result of roles it holds. 

Section 5.6.2.2.4 describes the compose-unanimous() control 

composition policy, which evaluates each control policy, and returns the 

default service if no control policy overrides it. Similarly, the compose-

override() policy performs a compose-unanimous() composition on PALMS-

level policies (if any exist), or study group-level policies (if no PALMS-level 

policies exist), or study-level policies if no PALMS-level or study group-level 

policies exist. 

For filter composition policies, the compose-all() policy evaluates each 

filter, one after the other. The compose-hierarchical() policy evaluates the 

PALMS-level filters, then the study group-level filters, and study-level filters in 

order. The compose-preemptive() policy evaluates filters using the same rules 

as the compose-override() control policy. 

The Audit functions and the Feature Composition function are 

described in Section 5.6.5.3. 

5.6.5.1 XQuery Library Functions 

A number of helper functions are available for authoring DSL functions 

(including the DSL functions themselves), and policy authors are free to add 
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helper functions as appropriate. A sample of existing helper functions are 

listed in Table 8. 

 

All helper functions service control, filter, and composition policies. 

Each policy can define its own helper functions, and persistent common 

functions can be added to the XQuery libraries described in Section 5.6.5.2. 

Additionally, helper functions can call other helper functions and DSL 

functions. Notably, the call-service() function can be used to create AEV 

functions by interacting with pre-existing services in the PALMS or other Rich 

Services. 

Table 8. DSL Helper Functions 

Topic Function Parameters Return 

Current 

Message 

cur-name() $role-list Java object class 

 cur-elements() $xml-element-name XML document 

 cur-value() $xml-element-name value of element 

Inbound 

Message 

inbound-name() $role-list Java object class 

 inbound-elements() $xml-element-name value of element 

 inbound-value() $xml-element-name value of element 

SIV get-workflow() $element value of element 

 get-workflow-user()  X.500 user name 

AEV get-study-list() $study-id XML document 

IV create-iv-id()  GUID 

 clone-iv-id() $context-id GUID 

 drop-iv-id() $context-id true 

 get-iv-value() $context-id, 

$key 

value of element 

 get-iv-values() $context-id XML document 

 set-iv-value() $context-id, 

$key, 

$value 

true 

 delete-iv-value()  true 
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The Current Message functions return values from the message 

exchanged in interaction for which the policy is being evaluated. For a pre-

filter or control policy, this is the message   (interactions ❶/❹ in Figure 6), 

and for a post-filter policy, this is the message   (interactions ❺/❽). The 

Inbound Message functions always refer to message   regardless of the 

policy. 

The SIV, AEV, and IV functions set and return context values as 

described in Section 5.5.4. 

Note that there are no functions that alter the contents of a message. 

Using standard XQuery, an XML document cannot be altered – instead, a 

new document containing the desired alterations must be generated. An 

XQuery function can leverage the auth-utils functions described in Section 

5.6.5.2 for this. 

5.6.5.2 XQuery Policy Support Libraries 

Filter and composition policy definitions can refer to XQuery support 

libraries that are available only for the duration of the policy evaluation (as 

described in Sections 5.6.2.2.2 and 5.6.2.2.4). Other XQuery support libraries 

are available to all policies at all times. PALMS’ XQuery libraries are arranged 

as a layered architecture, where top-level libraries leverage low-level libraries 

as in Figure 47. 



286 

 

 

The auth-utils and auth-msg libraries contain utility functions that 

apply to XML documents in general, and PALMS messages in particular. The 

auth-tree library contains functions that query the PALMS Grouper tree for 

role and permission inclusion (described in Section 5.6.1.3.1), and the auth-

query library contains functions that support access control decisions 

(described in Section 5.6.5) by calling auth-tree functions. The palms library 

provides interface functions for access control functions by calling auth-query 

functions. 

Other DSL support functions reside in individual libraries, and they call 

utility functions in the palms stack. 

5.6.5.3 Specialized DSLs 

The Audit DSL is an example of a specialized policy language that 

supports injection of the independent audit concern. DSLs supported under 

PALMS’ XQuery execution model are expressed as named XQuery functions 

that transform parameters into a result, with the function possibly having side 
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Figure 47. PALMS XQuery Library Hierarchy 
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effects. To create the Audit DSL, I modeled the roles and relationships 

supporting the audit abstraction (using a UML class diagram as shown in 

Figure 48), then expressed the audit operations as XQuery functions. 

 

Abstractly, the audit operator generates an audit event based on 

values available from the context system (described in Section 5.5.4), 

including the interaction message  . It chooses an audit repository, an event 

type, and the contents of a tuple forming the event description. Tuple 

elements are key-value pairs. Finally, it returns a new message   , which is 

propagated through the service interaction. For an audit operation,     . 

I posited that each repository would have its own schema. From 

implementation experience, I posited that the choice of repositories could be 

fixed for a given audit operation, and that choice determined the types of 

 
Figure 48. PALMS Audit Operators 

SIV

AEV

IV

Current Message

New Message

Audit Repository

- name:  String

Ev ent

- description:  String

Value

- key:  String

- value:  String

Application Data

Audit

Schema

equals

choose Audit Repository, Event, Values

*

to Interaction

from Context System

*

from Interaction

*



288 

 

events and tuple values. However, the choice of actual event and tuple 

values depended on the system state at the time of audit. 

Consequently, the audit operators in the DSL are audit() and audit-

if() where audit() writes a tuple to a repository, and audit-if() chooses the 

event and tuple to write. The XQuery function declarations are: 

  declare function palms:audit($AuditRepository as xs:string, 

                     $KeyValueList as xs:string*) as node() { 

  declare function palms:audit-if($Chooser as xs:boolean, 

                     $TrueReturn as xs:string*, 

                     $FalseReturn as xs:string*) as xs:string* 

A simple example of an audit DSL expression is: 

  palms:audit("AuditGetList", 

              palms:audit-if(palms:cur-value("error") = "",  

                             (("event", "success"),  

                              ("user", xf:get-workflow-user()), 

                             (("event", "failure"), 

                              ("error", palms:cur-value("error")))))) 

The hypothetical AuditGetList audit repository is defined to maintain 

an event type and a single key-value pair describing the event. The actual 

event and key-value pair depend on whether the interaction message   

contains an error. If so, the error is fetched from the message and logged. If 

not, the user’s name is fetched from the Workflow SIV and logged. Note that 

the message contents and user name are fetched using context library 

functions described in Section 5.6.5.1. Using combinations of SIV, AEV, and IV 

functions (including message functions), the audit() function can log 

application, environment, and policy state in addition to message contents. 
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While the audit-if() function is defined completely using XQuery, the 

audit() function interacts with a service representing the audit system listener 

(described in Section 5.6.4). As shown below, the audit() parameters are 

packaged as an XML document and passed to the call-service() function, 

which converts the XML document to a Java object (using the XStream Java 

library) and sends it to the audit listener service POJO using the Mule ESB 

(either synchronously or asynchronously): 

  let $audit := element org.palms.audit.AuditRequest { 

    element auditRepository {$AuditRepository}, 

    element keyValuePairs {palms:make-key-value-list($KeyValueList)}} 

 

  xf:call-service("vm://Audit.AuditRecord.queue", $audit) 

An example of a policy defined using the audit DSL is presented in 

Section 5.6.4, where an audit() call is used to implement feature injection. 

Note that the audit DSL is implemented in the FilterAudit.support.xq 

XQuery support file, which is referenced in the audit policy definition. 

While the Audit DSL reflects simple requirements, and is implemented 

using simple XQuery function definitions, more complex DSLs can be modeled 

and created using the same techniques. For example, a DSL for provenance 

tracking would take a similar form, including identifying source data, passing 

the data to an independent service, and resuming the base workflow. Section 

7.4.1 presents an example of an MSoD policy realized as a DSL.  

Note that while XQuery (and therefore policy expressions) can include 

complex predicates, control flows, and data flows, such complexity works 



290 

 

against the easy, reliable, and unambiguous expression of requirements. A DSL 

can be used to encapsulate such complexity, when complex relationships 

can be encoded as higher level abstractions. This greatly reduces the need 

for complex policy expressions, and shifts policy debugging load to the DSL 

author, as described in Section 5.6.5.4. 

As the requirements driving a DSL change, the DSL can change, too. In 

the simplest scenario, additional functions can be made available in the 

XQuery support library without affecting existing functionality. The XQuery 

language itself supports type overloading, thereby enabling a degree of 

evolution without changing function names. PALMS does not currently support 

any versioning system that would correlate a policy expression with a version 

of supporting XQuery library. 

5.6.5.4 Policy Support Development and Debugging 

While the PALMS system development and debugging support are 

provided by a combination of Eclipse [188] and the Java log4j library [189], 

there is no equivalent system for XQuery-based DSL development.  

DSL support libraries can be developed in vitro using the oXygen XML 

Editor IDE [190] and a suite of test cases and test results. In vivo development is 

supported by logging using XQuery calls to audit() functions as described in 

Section 5.6.5.3. Note that the Saxon XQuery engine freely prunes execution 

paths that do not contribute to a result. Consequently, in vivo debugging 
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within an XQuery function may yield results that shed insufficient light on 

internal function execution (and at first may be confusing and inscrutable). 

Note that under PALMS, replacing an XQuery library with an updated 

version automatically results in PALMS using the new version, thereby 

contributing to online experimentation. 

5.6.6 Policy Development and Debugging 

Policies are authored by policy programmers who are aware of the 

domain to which a policy applies, and the DSLs available for the expression of 

that policy. When a DSL supports a policy well, it provides parameter-driven 

XQuery functions that succinctly express the policy, and its implementation is 

vetted as in Section 5.6.5.4. To the extent this is true, policy debugging focuses 

on the complete and correct expression of requirements using DSL 

functionality, including correct composition of such policies onto the base 

workflow. Additionally, policies can be written without DSL support simply by 

writing an appropriate XQuery expression.  
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The interests of a policy programmer are, themselves, a crosscutting 

concern addressable in the policy domain. While PALMS provides no explicit 

policy debugging DSL, existing DSL functions can be used for that purpose: 

 Calls to the audit() and call-service() functions (described in 

Section 5.6.5.3)can be incorporated into a DSL support library to shed 

light on DSL execution. They can also be incorporated into a policy 

expression itself (as shown below). Particularly, the call-service() 

function can be used to call custom debugging facilities by invoking 

external services using programmer-supplied data. 

 Audit policies can be injected into interactions between a policy 

expression and the Context system (described in Section 5.5.4) to track 

SIV and IV variables. 

Additionally, the Policy Evaluator (described in Section 5.6.3) records a 

log of all policies evaluated, including their parameters and result. 

Examples of coupling a policy expression with an audit() or call-

service() function call include: 

  palms:subject-in-study-role('PI') and  

    palms:audit('TestLog', 'message', $Message) 

  palms:subject-in-study-role('PI') and  

    xf:call-service("vm://Testing.queue", $Message) 

Note that the use of DSLs or raw XQuery expression generally relies on 

knowledge of the structure and semantics of the message(s) exchanged 

during the interaction. While the Interaction Repository (described in Section 

5.6.2.1) defines the interaction endpoints and the type of message   

expected by the source service in a request/reply interaction, it does not 

describe the message   sent by the source service to the target service – a 
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more robust interaction description would include this information. Regardless, 

coordinating (request or reply) message structure and semantics with policies 

that depend on them is not addressed in this dissertation, but is considered 

further in Section 7.8.1. 

A simple example of a possible mismatch between a message and 

policy occurs when using the audit() function to capture information from 

the reply message of a                               exchange (as 

described in Section 5.6.2.2.2). The org.palms.ListStudyResult message 

contains a studies element but contains no device element. Attempting to 

inject an audit policy referencing a non-existent device element would result 

in recording a blank value, without detecting an error either during policy 

authorship, policy injection, or policy execution: 

  palms:audit('TestLog', 'deviceName', palms:cur-value('device')) 

In order to inject a policy that matches the structure and semantics of 

an interaction message, a policy programmer must know the structure and 

semantics ahead of time. 

5.7 Summary 

In this chapter, I presented the PALMS-CI as a case study 

demonstrating an implementation of the principles explained in Chapter 4, 

and which currently serves a growing worldwide user base. It addresses a 

number of practical issues, starting with the choice of service implementation 

(i.e., ESBs, particularly Mule), conventions on message passing and message 
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content, support for user-based access control requirements (as an example 

that can be applied to other requirement domains), and the mechanics of 

maintaining workflow context in systems that can be scaled and distributed 

across platforms.  

I chose the Rich Services blueprint as a modeling framework for the 

PALMS-CI, which allowed the expression of workflows in terms of service 

interfaces, orchestrations, and decompositions, and allowed the expression of 

policy evaluation as an interceptor-based infrastructure service. Rich Services 

closely aligns with the vision of cyberinfrastructures as System of Systems that 

realize stakeholder requirements as a composition of partial behaviors. I 

described the implementation of context in the policy system as a relationship 

between workflows, infrastructure services, and interservice messaging, all 

within the Rich Services paradigm. 

Based on this, I described the purpose and operation of the Policy 

Repository, which is a key entity in the management of policy, independent of 

policy definition and actual policies. It makes the runtime connection 

between collections of control and filter policies, policies that compose them, 

and the service interactions onto which they are composed. As the Policy 

Repository is conceptually agnostic as to the base policy language (e.g., 

XQuery), it serves as a conduit connecting the policy authorship process with 

the policy evaluation process. 
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This chapter also examined the conceptualization and use of DSLs 

tailored to particular requirement sets (given an XQuery substrate), including 

the mechanics of authoring such policies, on one hand, and executing them, 

on the other. It described how new DSLs can be created and deployed to 

address new and emerging stakeholder concerns, all responsive to 

stakeholder requirements at runtime. 

The PALMS-CI demonstrates how ubiquitous policy evaluation 

combined with state management at the service, workflow, application, and 

other levels can enable the conceptualization of requirements as systems that 

can then be combined with base workflows into a System of Systems 

integration (e.g., the Audit system). This concept is further developed in 

Section 7.4.1. 

Finally, Chapter 6 presents an evaluation of the use of PDD in PALMS-CI 

case study, particularly demonstrating that policy injection occurs at an 

acceptable cost in many cases, while identifying costly cases that give 

insights into future PALMS-CI evolution paths. 

Chapter 7 compares PDD and its PALMS-CI implementation to 

alternative approaches and implementations. It explains how PDD fulfills the 

gaps identified in Chapter 2, and also describes outstanding issues. 
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CHAPTER 6 

PALMS’ EXPERIENCE WITH PDD 

Policy Driven Development has proven effective in improving the 

evolvability of PALMS relative to both its early versions and established policy 

execution systems. PDD itself is not specific to PALMS, and can be applied to a 

broad spectrum of scenarios where simultaneously satisfying evolving 

requirements of multiple stakeholders quickly is crucial (e.g., OOI-CI [191], 

CitiSense [192], and CYCORE [193]). 

PDD can be evaluated along dimensions that include: 

 execution speed 

 contributions to evolvability 

o development time 

o stakeholder ease of use 

o deployment time 

 policy expressability 

 scalability 

 security 

The execution speed of policy evaluation determines the hardware 

requirements and network topology needed to support PDD – or, alternately, 

the workflows on which policy can be economically evaluated on a single 

processor. To the extent policy evaluation takes any time, the pool of 

workflows that are candidates for policy injection is diminished. However, the 

execution cost of policy injection must be weighed against the costs and risks 

of the traditional regimen of application redeployment (as exemplified in the 

SOARS motivating example from Chapter 2), which are multidimensional, but 
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include stakeholder dissatisfaction (as their requirements go unmet until a 

redeployment occurs). Application redeployment costs and risks and the cost 

of stakeholder disaffection are difficult to quantify, and are not the focus of 

this dissertation. Consequently, my evaluation of execution speed focuses on 

where and why bottlenecks in PDD occur (as in Section 6.3). Briefly, it shows 

that in PALMS, delays caused by the PDD policy mechanisms per-se are 

minimal and likely imperceptible, but can become noticeable depending 

primarily on the size and complexity of the data set contained in a service 

interaction message, and secondarily on the number of policy evaluations 

performed on a service interaction. These observations (summarized in Section 

6.3.7) do not invalidate the premises of PDD, but may lead to evolution of the 

implementation of PDD within PALMS as described in Section 7.4.5. 

Nevertheless, bottlenecks due to policy evaluation are in line with those in 

comparable policy evaluation systems, and I defer a discussion of those 

bottlenecks to Section 7.4.2.  

Though a major premise of this dissertation pertains to evolvability 

improvements, evolvability metrics relating to policy injection and concern 

separation [32] are poorly developed. As a proxy, I choose to evaluate PDD-

related evolvability improvements in terms of development time and 

stakeholder ease of use (as in Sections 6.1 and 6.2).  

The overall chapter flow is shown in Figure 49. 
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The short deployment time of policies in the PALMS-CI (due to ease of 

policy authorship and quick physical deployment) compares favorably to 

times required to the long release cycles of traditional development 

techniques (even including agile techniques, which are defined by their 

comparatively short iterations). However, the larger view of deployment time 

includes testing and verification, which are often built into traditional 

techniques, but are not yet present in PDD or the PALMS-CI. Consequently, no 

meaningful comparison can be made in this regard. However, considering 

that PALMS’ DSLs rest on the development of XQuery libraries, and base and 

composed workflows rely on SOA-related techniques, comparisons to 
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Figure 49. Chapter 6 Flow 
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between PDD (as PALMS) and traditional techniques can and have been 

made in Chapter 7. 

An important evaluation would be the likelihood of delivering an 

application that fulfills stakeholder requirements based on the ease of 

creating, validating, and deploying a policy using one of PALMS’ DSL-based 

policy languages versus using existing policy languages or versus inline coding. 

Such comparisons are far ranging and require more experience in exposing 

workflows to policy programmers and creating DSLs for their use – this is 

beyond the scope of this dissertation. However, a direct comparison between 

a PALMS DSL and policy expressed under a leading policy evaluation system is 

appropriate, and is presented in Section 7.4.1. 

The non-functional requirements of scalability and security can be 

critical to real-world deployments. To the extent that PDD is designed to be 

scalable, it inherits the scalability characteristics of the Rich Services 

architecture on which the base application is built. Similarly, the security 

characteristics of PDD are defined partially by the design of the base 

application. PDD was not designed to answer scalability or security criteria, 

per se, where other policy evaluation systems (e.g., PERMIS, per Section 7.4.1) 

were, and lessons can be taken from them. Consequently, I do not attempt to 

evaluate PDD or PALMS on these dimensions.  
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6.1 Development Time 

Initial implementations of PALMS had no explicit policy subsystem. 

Consequently, access control decisions were coded directly into base 

workflows, which is a common access control paradigm in many applications. 

The key information needed to make an access control decision was the user 

credential (as described in Section 5.6.1.3). For early PALMS versions, the 

credential was passed as a parameter on all Web Services calls and then 

incorporated into all internal workflow messages so as to anticipate the 

possibility that any service might make an access control decision. PALMS 

messages are defined as Java classes, and so adding this information 

required changing all message classes to derive from a base class containing 

the credential. Additionally, it was also necessary to change all services to 

propagate the credential from inbound messages to outbound messages. To 

accomplish this, nearly 900 Java files were manually modified, requiring 

approximately 20 hours’ work. 
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This situation is shown in Figure 50, which shows a subset of the 

GetStudyList workflow (from Chapter 3) where Java data flows are added to 

the diagram (in blue). Interaction ❶ shows the Client activity passing data s0 

as a Web Services parameter. The PALMS activity creates a message m1 

having value s1 and uses it to interact with the ListStudies activity, which 

performs a similar sequence to interact with the StudyRepository activity. 

Workflow A is the original base workflow where identity credential i is not 

passed. Workflow B represents the same workflow, but with the credential (in 

red) passed in ❶, then manually added to messages m1 and m2, and then 

manually propagated in the PALMS and ListStudies activities. The manual 

operations are costly in terms of time, and increase entanglement and 

scattering in the workflow code. Workflow C is described below. 
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m2.s2=f2(s1)
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Figure 50. How Policy Use Avoids Entanglement 
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Java type checking was insufficient to guarantee that such changes 

were complete and correct, as correctness relied both on subclassing and on 

the manual credential propagation code in each service. Completeness and 

correctness were verified by extending a pre-existing suite of external unit 

tests. 

Subsequently, adding service tracking information (as described in 

Section 5.5.4) to each message required changing only the message base 

class, but still required manual modifications to all services to calculate and 

propagate the source and target service names across the workflow. Again, 

approximately 20 hours of work was required to manually update nearly 450 

Java files, and completeness and correctness were verified via external unit 

tests. (Under Java, other implementation choices exist, but choice leads to 

other, equivalent, forms of entanglement and scattering.) 

While these are classic refactoring exercises, their cost speaks to the 

need for separate context maintenance for separate concerns – in this case, 

policy evaluation, which depends on workflow-based contexts. This is shown in 

Workflow C, which shows how a credential is passed in ❶, then captured as a 

workflow variable, thus eliminating the need for manual message and activity 

changes downstream. A policy that makes use of the credential can fetch it 

using the context system (not shown). 

Using the refactoring method, the programming exercise involved 

repetitions of the modify-compile-test cycle, followed by redeploying the 
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application. Using the PDD policy method, the programming exercise involved 

repetitions of writing the capture policy, injecting it, and testing any  

              interaction. Since the policy method is simpler and involves far 

fewer modifications, it is much faster and is reliable to the extent it does not 

modify the control or data flow. (See Section 7.5 for a discussion of PDD 

verification.) 

Cost minimization is an important evolvability requirement, and 

evolution involves adding unanticipated concerns, which access control 

represented to the early PALMS design. The PDD context abstraction was 

added to address separation of context for separate concerns. Once the 

context system was implemented, re-implementing the credential and service 

tracking propagation took only an hour, and adding the custom Policy 

Context (described in Section 5.5.4.3) took another hour.  

Philosophically, this approach leverages classic Aspect Oriented 

Programming (AOP) techniques [32] in separating the credential and service 

tracking concerns. However, PDD’s service-oriented state maintenance and 

propagation techniques (as described in Section 5.5.4) – particularly the 

combination of interservice messages and a ubiquitous workflow-aware 

context system – are unique to PDD, and account for these productivity gains. 

By using these mechanisms to achieve separation of concerns, PDD 

encourages practices that result in a clear time improvement over Java-

based refactoring. Furthermore, by avoiding these concern entanglements, 
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PDD encourages the decentralized implementation of such concerns (i.e., as 

small sets of composed workflows), thereby promoting reliable code evolution 

and encouraging proofs of correctness at both the base and composed 

workflow levels. Finally, because separate concerns are composed 

dynamically at runtime, large scale and time consuming release cycles can 

be reduced or avoided. 

6.2 Stakeholder Ease of Use 

As a test of the authorability of various types of policies, stakeholders 

(including both exposure biologists and programmers) were asked to author 

or maintain control policies using a general policy format, described as the 

first format in Section 5.6.2.2.1. Many stakeholders complained that this policy 

meta-language (including interaction references, XQuery expressions, and the 

tag file format in general) requires them to specify more information than is 

necessary to define or maintain a policy, and that because the 

comprehension and creation of new policies is overly complex, their use of 

the policy system would be rare. This lead to the insight that when a policy 

injected onto a particular interaction can be parameterized for use in 

different domains (e.g., the PALMS, study group, and or study domains 

differentiated in Section 5.6.2.2), a meta-language that requires the 

stakeholder to specify only a template and parameters reduces cognitive 

load on policy authors while enabling more uniform policy definition. 

As shown in Figure 51, a single template can reference a particular 

interaction, and can combine with parameters provided by a template 
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reference to form a complete policy. A single template can be reused by 

PALMS, Study Group, and Study policies composed onto the interaction.  

For example, Section 5.6.2.2.1 initially describes the Get a study list 

(control) policy in a policy meta-language consisting of a triple containing a 

free-form XQuery expression: 

  GetStudyListPolicy.location = Get Study List (Repository) 

  GetStudyListPolicy.capability = Get a study list (control) 

  GetStudyListPolicy.controlExpression = \ 

    if (palms:subject-in-study-role('PI') then () \ 

    else palms:control-error('Invalid role for this operation') 

It defines a simpler meta-language (i.e., the third form) that recasts the 

triple as a template (GetStudyListTemplate) referenced by a simpler policy: 

  GetStudyListPolicy.templateReference = GetStudyListTemplate 

  GetStudyListPolicy.templateParameter.RoleList = PI 

Consequently, reliance on templates reduced the skillset (e.g., XQuery 

programming) required to create policy variants for different study groups 

and studies, thereby enabling stakeholders trained as programmers but 

untrained as policy authors to confidently write and insert such policies. They 

wrote and deployed twenty template-based access control policies within 

two hours. With the templates defined, stakeholders were able to experiment 

with different permissions (expressed as RoleList parameters in the example 

above) fluidly.  
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Stakeholder reactions to other aspects of PDD shed further light on how 

PDD can enfranchise stakeholders in the requirement enactment process; 

they are discussed further in Section 1.1. 

While the use of XQuery expressions presents an opportunity to align policies 

with stakeholder requirements quickly and easily (as described in Section 

5.6.5), the policy meta-language itself is a DSL addressing the concerns of 

policy authorship, and the bifurcation of policy definition under a template-
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and-reference model aligns PALMS’ requirements for policy creation with the 

stakeholders’ concept of policy authorship. 

6.3 Execution time 

As described in Section 5.3, the PALMS system comprises a browser-

based GUI accessing the PALMS server through Web Services-based API calls. 

My evaluation of PDD focuses on the PALMS server, where policy injection 

applies, though with an eye toward the overall user experience, which derives 

from the combination of server execution time, Web Services marshaling and 

transmission time, and the speed of the GUI itself. 

The objective of the execution time tests was to understand the 

contribution of policy execution to overall workflow execution times. I 

hypothesized that: 

1. The contribution of the Policy Evaluation RIS to execution time is 

negligible when: 

a. an interaction is not contained in the Interaction Repository 

b. an interaction is contained in the Interaction Repository, but no 

policy is defined 

2. The contribution of policy evaluation is small compared to the end-to-

end workflow when: 

a. a control composition and control policy are defined 

b. a filter composition and filter policy are defined 

Figure 6 shows the GetStudyList workflow, which is a common PALMS 

workflow that includes five activities: a browser (Client), a PALMS API entry 

point (PALMS), two stages of processing (ListStudies and StudyRepository), and 

a storage (Storage) activity. For calibration and context, I measured baseline 

end-to-end times through all activities, and for policy measurements, I 
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measured the time for the interaction on which policy was injected. In order 

to evaluate my hypotheses, I created tests that started with simple scenarios 

and progressed in complexity: 

 End-to-end measurement of trivial GetStudyList workflow with: 

o no Context interceptors and no Policy Evaluation 

o Context interceptors, but no Policy Evaluation 

 Single service interaction with: 

o no Policy Evaluation 

o empty Interaction Repository (1a) 

o single interaction, with no policy defined (1b) 

o control composition policy with: 

 control policy (2a) 

o filter composition policy with: 

 null filter policy injected (2b) 

o filter-by-role() policy with: 

 no studies in list (2b) 

 one study in list, no studies filtered out (2b) 

 97 studies in list, all studies filtered out (2b) 

 97 studies in list, no studies filtered out (2b) 

Each test is useful in evaluating the hypotheses, and tests that bear on 

particular hypotheses are identified as to the hypothesis they address.  

The policy tests represent policies and scenarios that I expect to be 

typical in normal PALMS execution, and which, in fact, are typical at this time. 

6.3.1 Test Platform and Circumstances 

As shown in Figure 24, the PALMS server ran on a 64 bit VMware virtual 

machine under Tomcat 6.0.20 on Red Hat Centos 5.4 under vSphere 4.1 with 

1.5GB non-shared RAM, a single core hyperthreaded processor, and a 1Gbps 

network connection. PALMS is written in Java, and ran on JVM v1.7.0_04-b20. 

While the physical server supports several other VMs, all were inactive during 
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our tests, and the datacenter network and wide area network (serving the 

browser GUI) were unloaded. 

Even with an unloaded physical server, virtual machine, datacenter 

network, and wide area network, variability is introduced into execution and 

transmission times by occasional service execution, incidental network traffic, 

and garbage collection. To mitigate these effects, I ran large numbers of tests 

and generally reported the median time – the average time was often 

skewed by a very small number of outliers. When a mode could be 

calculated, it was generally very close to the median, thereby validating this 

approach. Additionally, when showing test results on graphs, I remove outliers, 

and for easier understanding, I sort trials by their execution times and rename 

them using contiguous trial numbers (wherein I assume that each trial is an 

independent test). 

In general, for each test, a test pass was executed before a second 

test pass, which was measured. This guaranteed that the Mule ESB had 

loaded all pertinent POJOs, Java had loaded all pertinent classes, the 

database had loaded and cached all pertinent data, and all other caches 

were primed.  

Measuring execution taking place entirely on a VM risked inaccuracies 

originating with VMware’s strategy of clock tick simulation as an average of 

ticks over real time [194]. To mitigate this risk, I measured only loops that 

iterated over code under test, where each loop ran several seconds. This 
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afforded VMware the opportunity to accurately simulate clock ticks on 

average, and to obviate any small deficiency in the simulation at the end of 

the measured interval. 

In any case, the objective of the execution time tests was to 

understand the contribution of policy execution to overall workflow execution 

times. Because test execution times were significant and had substantial 

differences compared to baseline times, sophisticated statistical analysis was 

unnecessary. 

For tests involving a single service interaction, the                     

interaction was used, and measurements reflect times for a request/reply 

round trip. The                     interaction is representative of all other 

PALMS service interactions. For the purpose of these tests, the ListStudies 

service was altered to return a constant result – it did not interact with other 

services to return the result. In all testing, light weight intermediary 

components (e.g., intermediate routers and Web Service stacks) and mocks 

(e.g., simulated database queries) were used to isolate the processing costs of 

interest, similar to the approach taken by [195]. 

6.3.2 End to End Tests 

End-to-end tests were used to establish an overall context for 

interpreting the remaining tests. They measured the total execution time of the 

entire GetStudyList workflow, and differentiated client, network, and PALMS 

server contributions. No PALMS studies were defined, so all workflow services 
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performed only minimal processing. Note that the client was a PC-based 

browser, but had only minimal code (as JUnit tests) and did not execute any 

GUI functions. As such, its execution time would be an order of magnitude less 

than a GUI browser client. 

6.3.2.1 End to End with No Interceptors 

In the first test, Mule was configured to exclude all interceptors (i.e., all 

RISs). As a result, no SIVs or interservice messages    (as described in Section 

5.5.4) were created, used, or destroyed, and no service tracking or policy 

evaluation occurred. Only the PALMS SDC and individual services (comprising 

base workflows) were executed, and they all exchanged only raw interaction 

messages  . 
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Figure 52 shows the workflow execution time over 2,000 trials (sorted by 

App Time, with outliers removed) as follows: 

 App Time (63ms median) indicates the number of milliseconds 

(measured at the PC browser) taken to send a GetStudyList request 

across the network, have it evaluated at the server (including any 

database query at the Storage service), and return a study list across 

the network. It included nominal browser processing, Web Services call 

overhead, message passing, and POJO invocation. 

 Latency (1.3ms median) indicates the round trip time for a packet to 

travel between the PC and the PALMS VM. It was measured by 

WireShark as the time required to receive a TCP SYN/ACK reply to the 

TCP SYN packet used to establish a TCP/IP connection. 

 Server Time (7.2ms median) indicates the time required by Mule to 

process the Web Services call and return (prior and after the PALMS 

service), and execute each GetStudyList workflow service. It was 

measured by Wireshark directly, and is reported including Latency. 

 In-App (55.2ms median) indicates the time spent in the PC browser, 

calculated by subtracting Server Time (including Latency) from App 

Time. 

 In-Server (12% median) indicates the ratio of Server Time and Latency 

to App Time, as a way of demonstrating the impact of PALMS server 

interactions on the overall responsiveness of the browser GUI. 
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Figure 53 shows the timeline for the baseline operations using median 

times, with emphasis on the time for the PALMS server portion of the 

GetStudyList workflow. 

 

This test shows that the PALMS user experience is dominated by 

latencies within the PALMS Browser itself, and that the network latency and 

PALMS server execution combine to account for only a small portion of overall 

execution time. Considering that the GUI version of the PC browser is much 

slower than the PC-based JUnit test actually executed, the server contribution 

 
Figure 52. End-to-End Execution Time 
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Figure 53. PALMS Execution Timeline without Context or Policy Evaluation 
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to a running PALMS system is tiny, as shown in Figure 54 (sorted by Server Time). 

Alternately, the PALMS server can be expected to service numerous PALMS 

clients simultaneously without contributing to user-perceived delay, and so 

minimizing server-side execution (including policy evaluation) is important. 

 

6.3.2.2 End to End with Context Interceptors 

In the second series of tests, Mule was configured to include all 

interceptors except the Policy Evaluator. As a result, SIVs were created, used, 

and destroyed, and interservice messages    were exchanged between 

services (as described in Section 5.5.4). In this configuration, PALMS operated 

with the entire policy system (including service tracking on each interaction) 

except for Policy Evaluation itself. 

 
Figure 54. PALMS Server Contribution to Overall Execution 
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The first test measured the time taken to send a message from the 

Browser PC to the PALMS service and retrieve a reply, both with and without 

interceptors that create and destroy SIVs before and after the PALMS-Storage 

workflow executes (i.e., the PrePolicyInterceptors, less 

PolicyEvalInterceptor). The measurement was timed using WireShark, and 

includes network transmission time, the time to process the Web Services call 

and return, and the time to start a mock PALMS service. 

Figure 55 shows the round trip time over 2,000 trials (sorted, with outliers 

removed) as follows: 

 

The second test measured the time added by interceptors that 

maintain service tracking and the abstraction of interservice messages    

within the                 workflow (i.e., the PolicyInterceptors, less 

 
Figure 55. Network and Web Services Times with and without Context Interceptors 
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PolicyEvalInterceptor). It executed the ListStudies, StudyRepository, and 

Storage services, including the                    , 

                            , and                           interactions. 

To address possible jitter issues with the VMware-simulated tick counter (as 

described in Section 6.3.1), each trial timed 2,000 executions of the workflow 

and reported the time divided by 2,000. 

Figure 56 shows the round trip time over 50 trials (sorted) as follows: 

 

Figure 57 shows the timeline for round trips using median times. 

Executing the Context interceptors adds 1.72ms to the total GetStudyList 

workflow execution before the PALMS Mock, and 1.7ms after. Note that Figure 

53 shows an end-to-end round trip time of 7.2ms, which includes the actual 

PALMS service and no context interceptors. Figure 57 shows a slightly different 

scenario, which takes 6.77ms and includes the PALMS Mock and context 

interceptors. The difference between the PALMS and PALMS Mock execution 

times accounts for this discrepancy. The main point, though, is to establish 

 
Figure 56. PALMS-Storage Execution with Context Interceptors 
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approximate baseline execution times for comparison against Policy 

Evaluation scenarios later in this section, and to show that the time overhead 

contributed by the Context interceptors is tiny. 

 

The two tests together provide a measurement of the overhead of the 

context system needed to support Policy Evaluation, without actually invoking 

Policy Evaluation functions. End-to-end, the cost is less than 2ms per round trip.  

6.3.3 Single Interaction Baseline 

As a baseline for evaluating the cost of policy evaluation for a single 

service interaction, I measured three scenarios using the 

                     interaction: 

 a logging interceptor (not part of normal PALMS) 

 Context interceptors that implement the interservice messages    

abstraction 

 Policy interceptor that performs Policy Evaluation 

Note that each scenario adds to the previous scenario. The logging 

interceptor makes a simple log4j call to log an interaction to a disk file. The 

Context interceptors are those measured in Section 6.3.2.2. The policy 

interceptor was executed with no interaction defined in the Interaction 

PC Browser
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Figure 57. PALMS Execution Timeline with Context Interceptors 
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Repository for the                     interaction, so execution proceeds at 

the ListStudies service – this is the shortest path through the Policy Evaluator. 

As in Section 6.3.2.2, for each scenario, I ran 50 trials of 2,000 interaction 

iterations each, and times are listed as the time for 2,000 iterations divided by 

2,000. Figure 58 shows the round trip time for each scenario (sorted) as follows: 

 

Figure 59 shows the timeline for round trips using median times. 

Executing a round trip interaction intercepted by only the logger required 

0.116ms. Adding the Context interceptors increased the interaction to 

0.162ms, and adding the Policy Evaluator increased the interaction to 

0.318ms. 

 
Figure 58. PALMS Interaction Baseline Times 
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The incremental cost of the Context interceptors is 0.046ms, and the 

incremental cost of the Policy Evaluator interceptor is 0.156ms. The overall cost 

of the policy system (including the Context interceptors and a null Policy 

Evaluation) is 0.202ms per interaction. 

6.3.4 Null Policy Baseline 

As a baseline for evaluating the cost of different kinds of policies and 

data configurations, I measured two scenarios using the 

                    interaction: 

 an interaction for PALMS-ListStudies defined in the Interaction 

Repository 

 a simple control composition policy defined on the interaction 

Note that each scenario adds to the previous scenario. In addition to 

processing the logging, Context, and Policy Evaluator interceptors, the first 

scenario defines an Interaction Repository entry for the                     

interaction, which causes the Policy Evaluator to query the Policy Repository 

for policies defined on the interaction. In this scenario, there are none, so the 

Policy Evaluator exits and execution continues with the ListStudies service.  

PALMS Logger
Policy 

Evaluation
ListStudies

0.116ms

Context

0.162ms
0.318ms

 
Figure 59. PALMS Execution Timeline with Context Interceptors 
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In the second scenario, a simple control composition policy (compose-

all()) is defined, which causes the Policy Evaluator to check for control 

policies defined on the interaction. In this scenario, there are none, so the 

Policy Evaluator exits and execution continue with the ListStudies service. 

As in Section 6.3.2.2, for each scenario, I ran 50 trials of 2,000 interaction 

iterations each, and times are listed as the time for 2,000 iterations divided by 

2,000. Figure 60 shows the round trip time for each scenario (sorted) as follows: 

 

Figure 61 shows the timeline for round trips using median times. 

Executing a round trip interaction with an Interception Repository entry for the 

interaction required 0.323ms, and executing a round trip with a control 

composition policy but no control policy required 0.325ms. 

 
Figure 60. PALMS Policy Evaluation with No Policy 
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Given that the Context and Policy Evaluation interceptors are applied 

to each PALMS interaction, the cost for the Policy Evaluator to process an 

interaction in the Interaction Repository is 0.005ms, and the additional cost of 

processing a composition policy having no injected policies is 0.002ms. 

6.3.5 Control Policy 

Defining a control policy on an interaction results in the Policy Evaluator 

inserting the control policy into a control composition policy, then executing 

the control composition policy to determine a replacement service (if any), 

per Section 5.6.2.2.4. The process for preparing a message   for evaluation, 

then evaluating the policy is described in Section 5.6.3.2. 

I measured four scenarios using control policies composed onto the 

PALMS-ListStudies interaction: 

 1 control policy 

 2 control policies 

 5 control policies 

 10 control policies 

The time for single policy evaluation demonstrates the cost of injecting 

the control policy into a composition policy, compiling the composition policy, 

PALMS Logger
Policy 

Evaluation
ListStudies

0.323ms

Context

0.325ms

(interaction)

(composition)

 
Figure 61. PALMS Execution Timeline with Interaction but No Policy 
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preparing the current message   for evaluation, evaluating the composition 

policy expression, and interpreting the result. Note that whether a control 

policy is originally expressed as a raw XQuery expression or a template 

reference (as described in Section 5.5.1), the Policy Repository translates all 

control policies to raw XQuery expressions as the policies are loaded (as 

described in Section 6.2). Consequently, this translation does not contribute to 

times for policy evaluation during service interactions. 

The time for multiple policy evaluation captures all of the costs for single 

policy evaluation, and includes the time needed to insert each policy into the 

composition policy, to compile the composition policy, and for the 

composition policy to evaluate each (as occurs with the compose-unanimous() 

composition policy described in Section 5.6.5). Preparing the current message 

  occurs only once for the entire composition policy. Injecting multiple control 

policies reflects the use case of multiple policies being injected by multiple 

stakeholders, possibly in different domains, and possibly oblivious to each 

other. In this test, the same control policy was injected, though in a realistic 

scenario, different policies would be injected. 
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Similar to Section 6.3.2.2, for each scenario, I ran 10 trials of 200 

interaction iterations each, and times are listed as the time for 200 iterations 

divided by 200. The control policy was similar to the policy described in 

Section 5.6.3.2, where the policy returned the default service. Figure 62 shows 

the round trip time for each scenario (sorted) as follows: 

 

Figure 63 shows the timeline for round trips using median times. 

Executing a round trip interaction with 1, 2, 5, and 10 control policies required 

76.82ms, 77.19ms, 78.24ms, and 79.35ms. 

 
Figure 62. PALMS Control Policy Evaluation with No Policy 
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Adding a single access control policy, the interaction time rose from 

the baseline 0.325ms (in Section 6.3.4) to 76.82ms. Adding and evaluating a 

second policy required an additional 0.365ms. The average additional cost for 

the fifth policy was 0.356ms, and the average additional cost for the tenth 

policy was 0.280ms. According to the definition of the compose-unanimous() 

composition policy, each copy of the policy would have been executed. 

Therefore, the additional cost accounts for both the additional compilation of 

the policy and its execution. 

While the cost of an additional policy was very low, the cost of the first 

control policy was high, though still small relative to the time consumed in the 

PC browser. 

6.3.6 Filter Policy 

Defining a filter policy on an interaction results in the Policy Evaluator 

inserting the filter policy into a filter composition policy, then executing the 

filter composition policy to determine a filter service, execute it, and return a 

replacement message   (if any), per Section 5.6.2.2.4. The process for 
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Figure 63. PALMS Execution Timeline with 1, 2, 5, and 10 Control Policies 
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preparing a message   for evaluation, then evaluating the policy is described 

in Section 5.6.3.1. 

I measured five scenarios using filter policies composed onto the reply 

phase of the                               interaction – the filter policies are 

post-filters. Note that a different interaction is used for these scenarios as 

compared to the                     examined in previous sections. The 

timing characteristics of this interaction are the same as for other interactions, 

but the message   is appropriate for filtering, whereas the equivalent reply 

message on the                     interaction has already been 

processed (by the ListStudies service) and would not be a good candidate for 

filtering. 

In all scenarios, the filter operated on a list of studies whose cardinality 

was part of the scenario, and had an effect on the result. Each scenario built 

on the previous scenario, starting with a trivial filter on trivial data – it returned 

all data it is receives. The non-trivial filter was the filter-by-role() filter 

described in Section 5.6.2.2.2. In both cases, the composition filter policy was 

the compose-all() filter described in Section 5.6.5. The scenarios were: 

 Passthru filter operating on a list of 0 studies 

 Filter returns 0 of 0 studies 

 Filter returns 1 of 1 study 

 Filter returns 0 of 97 studies 

 Filter returns 97 of 97 studies 
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The time for the passthru policy evaluation demonstrates the nominal 

cost of injecting the filter policy into a composition policy, preparing the 

current message   for evaluation, evaluating the policy expression, and 

recasting the result as a new message  . Note that whether a filter policy is 

originally expressed as a raw XQuery expression or a template reference (as 

described in Section 5.5.1), the Policy Repository translates all filter policies to 

raw XQuery expressions as the policies are loaded (as described in Section 

6.2). Consequently, this translation does not contribute to times for policy 

evaluation during service interactions. 

Evaluation times for multiple filter policies are similar to those for multiple 

control policies, as the policy composition functions are similar.  

However, evaluation times for a single filter policy depend on the 

number of elements in the input message, the complexity of the filter 

calculation, and the number of elements in the result message, as shown in 

Figure 64 and Figure 65. (Figure 65 shows all scenarios, and Figure 64 shows 

three scenarios that have lower execution times and are hard to differentiate 

in Figure 65.) 

The “Passthru 0 of 0 studies” test establishes the baseline as a trivial 

input message, no filter calculation, and the same trivial message returned. 

The “Return 0 of 0 studies” test requires additional XQuery compilation time 

(for the non-trivial filter) and adds a loop over the (trivial) message. The 

“Return 1 of 1 studies” test adds message translation time for the single study 
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entry on both the input and return messages, consistent with the evaluation 

sequence described in Section 5.6.3.1.  

The “Return 0 of 97 studies” test accepts an input message listing 97 

studies, and the filter criteria results in a return message reflecting rejection of 

all studies. The “Return 97 of 97 studies” test accepts the same message and 

returns a result message reflecting acceptance of all studies. 

 

 
Figure 64. PALMS Filter Policy Evaluation with Few Elements 
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Figure 66 shows the timeline for round trips using median times. 

 

There are three differences between the “Return 0 of 0 studies” and 

“Return 1 of 1 studies” scenarios (per Section 5.6.3.1): 

 an input message must be translated from Java object to XML (via 

XStream) and then to Saxon native XDM format (via Saxon APIs) 

 the filter must execute on the single study (which, for filter-by-role() 

means extracting the study group, using the user’s identity to discover a 

 
Figure 65. PALMS Filter Policy Evaluation with Many Elements 
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Figure 66. PALMS Execution Timeline with Filter Policies 
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role list relative to the study group, and then comparing the role list to 

the filter-by-role() parameter) 

 a result message must be translated from Saxon native XDM format 

back to XML, and then back to a Java object 

The additional time for both translations and the XQuery expression 

execution is 7.15ms. 

Similar differences exist between the “Return 0 of 0 studies” and “Return 

97 of 97 studies” scenarios, with the later requiring 7.56ms per study. This differs 

with the previous 7.15ms by 0.41ms or approximately 6%, for unknown reasons, 

possibly including coding efficiencies, non-linearities, and assumptions in either 

XStream, the Saxon API, or the Saxon XQuery engine. 

Finally, the difference between the “Return 0 of 97 studies” and “Return 

97 of 97 studies” scenarios is that for the former, the result message translation 

is trivial (because 0 studies are returned). By subtraction, the result message 

translation time is 4.72ms per study, and the combination of the input message 

translation and XQuery expression evaluation is 2.84ms per study. 

Note that these timings depend heavily on the data being processed. 

For a study list (as discussed in Section 3.1), a study entry contains six elements, 

where three of the elements are XML and could be several kilobytes long. 

Messages containing a different number of fields, different field lengths, and 

structured fields may take more or less time to process by the XQuery engine 

and to render using XStream and Saxon APIs. However, the factors that 

determine relative execution times remain the same. 
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6.3.7 Execution Time Hypotheses 

In evaluating the hypotheses posed in Section 6.3, I refer to the timings 

presented in this section to demonstrate that hypotheses 1.a and 1.b are 

supported, and hypotheses 2.a and 2.b are conditionally supported. 

Section 6.3.2.1 establishes that the end-to-end execution time for a 

typical PALMS workflow (including a trivial PC browser application) is 63ms, 

approximately 55ms of which is in the PC browser application. (A practical PC 

browser application would take an order of magnitude longer.) Regardless, 

Section 6.3.2.2 demonstrates that the cost of the Context system at the start of 

a workflow is 1.72ms, and Section 6.3.3 demonstrates that the Context system 

interceptor support for each interaction costs 0.046ms, and that the cost of a 

Policy Evaluation for an interaction not registered in the Interaction Repository 

is 0.156ms.  

With the cost of 2.01ms relative to a baseline workflow cost of 63ms, the 

Context system and Policy Evaluation system (absent any interaction or policy 

definitions) increases workflow execution costs by about 3%, which supports 

hypothesis 1.a. 

Section 6.3.4 shows that interactions registered in the Interaction 

Repository and having a composition policy require 0.007ms longer to 

execute than interactions not registered in the Interaction Repository. 

Therefore, hypothesis 1.b is supported. 
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Section 6.3.5 shows that control policy evaluation adds between 76 

and 80ms (or longer) to an interaction, depending on the size and complexity 

of the interaction message, the policies and their composition policy, and 

how many policies are evaluated. Relative to a baseline workflow time of 

63ms, this is a significant cost, especially if a control policy is defined for more 

than one interaction in the workflow. However, a realistic PC browser likely 

requires an order of magnitude longer to execute, thereby rendering control 

policy execution time as insignificant. Notably, control policy execution times 

can become significant if they are embedded in loops or workflows must be 

executed on behalf of multiple users at the same time. Therefore, hypothesis 

2.a is conditionally supported. 

Section 6.3.6 shows that filter policy evaluation adds between 78 and 

818ms (or longer) to an interaction, depending on the same factors as for 

control policies, with the size and complexity of the interaction message 

returned by the filter. Relative to the baseline workflow time of 63ms, this is a 

more significant cost, especially for large or complex interaction messages – 

pre-filters would likely incur costs at the low end of this range (because 

request messages   are normally small and simple), and post-filters would likely 

incur costs at the high end of this range (because request messages   can be 

large and complex, as in Section 6.3.6). Furthermore, as with control policies, 

these costs are magnified if the interaction is embedded within a loop or 

other workflow or must be executed on behalf of multiple users at the same 

time. However, in the case of PALMS, users infrequently execute post-filtered 
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workflows and times allocable to the PALMS Browser GUI significantly exceed 

the cost of the post-filter execution. Therefore, hypothesis 2.b is conditionally 

supported, but is weaker than hypothesis 2.a. 

6.4 Summary 

In this chapter, I used the PALMS-CI case study to evaluate PDD along 

multiple dimensions, including development time, stakeholder 

enfranchisement, and execution time. 

Through context composition mechanisms (in Section 6.1), I 

demonstrated a dramatic reduction in development time because PDD 

mechanisms enabled the separation of workflow-oriented concerns from 

base workflows (with commensurate decreases in maintainable code and 

complexity). Though the objective of PDD is to enable policy-based workflow 

composition, the reduction in workflow development time lends credence to 

PDD’s context composition as an enabler of policy-based workflow 

composition.  

In Section 6.2, I described the evaluation of policy language usage in 

constructing access control policies, and how the policy language syntax was 

evolved to satisfy stakeholder-perceived ease-of-use criteria. As a result, 

untrained stakeholders were able to write and inject simple access control 

policies. As a follow up, I discuss policy verification issues in Section 7.5. 

Section 6.3 presents a number of tests that describe how policy 

execution times affect the overall execution of workflows, particularly how 
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they vary with policy and interaction message size and complexity. The tests 

showed that for interactions on which no policies are associated, the time 

added to workflow execution is negligible. For control policy execution, the 

incremental cost is non-trivial but not significant so long as interaction 

messages remain small – a likely scenario, given that control policies are 

generally executed on request messages in a request/reply interaction. For 

filter policy execution, the incremental cost is non-trivial and can be significant 

for large and complex interaction messages. Using the same reasoning as for 

control policies, pre-filter policy execution is not likely to be significant. 

However, it was demonstrated to be significant for post-filter policies 

processing non-trivial interaction messages.  

In Chapter 7, I compare PDD to systems and approaches that address 

a number of aspects of PDD, resulting in a wider perspective of how PDD 

succeeds and how it can evolve. Particularly, in Section 7.4.2, I describe how 

policy execution costs impact workflow execution in the xESB system, and 

offer contrasts and comparisons that put policy execution times into 

perspective. In Section 7.4.5, I discuss how changing the relationship between 

policy language, policy compilation, and interaction message structure can 

be altered to influence these costs. 
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CHAPTER 7 

PDD AS COMPARED TO OTHER APPROACHES 

In the preceding three chapters, I described a foundation of policy 

composition (as PDD in Chapter 4), its implementation in the PALMS-CI 

(Chapter 5), and important measures of its performance (Chapter 6). In this 

chapter, I summarize the approach and contributions of PDD, describe how 

PDD’s approach fills gaps exposed in the existing solutions identified in 

Chapter 2, and compare and contrast PDD with other existing contributions 

that bear on issues either solved or unsolved under PDD. I round out the 

discussion by explaining my vision for a new role of policy programmer, 

describing how to use PDD to build large scale systems responsive to 

emergent stakeholder requirements, and exposing gaps remaining to be filled 

within PDD. 

In this Chapter 2, I examined existing methodologies and technologies 

as contributions tuned to support early requirement binding but which may 

apply to a late binding paradigm, and described how each approach could 

contribute to late binding but somehow fell short. In the individual sections of 

this chapter, I revisit the PDD foundations and case study implementation as 

solutions to those shortcomings (as summarized in Table 9) and shown in Figure 

67. 
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In Section 7.6, I describe my work in developing the role of policy 

programmer (introduced in Section 1.3.3) and how it relates to traditional 

application development. 

In Section 7.7, I explain processes and techniques useful in building or 

maintaining an application created under PDD principles. 

Finally, in Section 7.8, I discuss both issues addressed and unaddressed 

by PDD, opportunities uncovered in the course of my PDD research, and 

insights useful in moving PDD forward.  

Table 9. Existing Contributions Addressed in PDD 

Topic Discussion of 

Existing Work 

Comparison to 

PDD 

Injecting Crosscutting Concerns 2.3.3 
2.3.4 

7.1 
Workflow Context Management 2.4.5 7.2 
Orchestration and Workflows 2.4.4 7.3 
Policy Evaluation Systems 2.4.4 7.4.1 

7.4.2 

7.4.3 

Policy Deployment 2.4.4.1 7.4.4 
Policy Languages 2.4.4.1 

2.4.4.4 

2.4.6 

7.4.5 

Policy Versioning 2.4.4.1 
2.4.4.2 

2.4.4.3 

7.4.6 

Verification 2.4.6 7.5 
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7.1 Workflows, Requirements, and Late Binding 

PDD’s focus on abstracting decisions at the workflow level reflect the 

assumptions that workflows are accurate models of stakeholder requirements 

and: 

 stakeholder requirements are separable and composable 

 individual requirements (and workflows) can be decomposed into sub-

requirements (and sub-workflows), 

 requirement changes or additions represent increments composed 

onto existing requirements 

Workflows, 
requirements, & 

late binding
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While these assumptions are substantially true and relevant, they can 

be shown false in various important circumstances – notably, workflows are a 

synthesis of structural relationships (between abstracted entities), data flow, 

and control flow, while most precisely representing only control flow. Changes 

to structural relationships and data flows sometimes have application 

repercussions beyond incremental modifications to workflows, though they 

can often be addressed through workflow modification.  

Given that evolvability is a major application requirement and 

evolution is a major cost driver for long-lived, large scale applications that 

serve many stakeholder populations, it is incumbent on an application 

architecture to support multiple evolution paths. Explicitly enfranchising 

stakeholders in the change process is critical to system success, but is yet 

inadequately addressed at the architectural level (often via plugins and 

hooks constrained at system design time). SOAs rely on strong correlation 

between service orchestrations (as proxies for workflows) and stakeholder 

requirements. PDD’s SOA foundations (particularly, leveraging Rich Services) 

and the DSL orientation of its policy expression strategy further enfranchises 

stakeholders by enabling them to drive the reuse of existing workflows quickly 

and accurately relative to existing programmer-centric strategies, with the 

highly granular workflows being most likely to recombine with other workflows 

– all responsive to emergent requirements not anticipated during the 

traditional design and programming process. 
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At its heart, PDD represents the lifting of a Strategy pattern (as briefly 

described in Appendix C) based on hitherto static or dynamic binding of 

workflows, and identifies a unique point on the continuum of binding 

behaviors. Whereas an embedded “if” statement represents a static (or 

“early”) workflow binding, use of dynamic linked libraries and discoverable 

services (as in Web Services [196], IoC [34], and DI [139]) represents a dynamic 

(or “late”) workflow binding. (Language-based polymorphism and Aspect 

Oriented point-cut-based code weaving represent other points close to 

“early” binding.) 

With PDD’s policy injection, the decisions that discriminate between 

alternate workflows are abstracted out, and are bound and evaluated at the 

point of execution. In the process, alternate workflows themselves are 

abstracted out, too, and such workflows can implement filters, alternate use 

cases, or independent features. This avoids creating systems made inflexible 

through unnecessarily premature choices and entangled workflows, as often 

occurs with hard-coded “if”s.  

(As a point of reference, while dependency injection (DI) and policy 

injection share the concept of “injection”, they differ in what is being injected 

and when. For DI, a workflow activity is created and bound to a workflow at a 

location determined at workflow authorship time. The workflow activity is 

realized before the workflow executes, and the choice of workflow activity is 

made without accessing state internal to the workflow. For policy injection, 

the workflow selection decision, the collection of selectable workflows, and 
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the location in the target workflow are all determined at runtime using 

information available to the workflow as it executes.) 

That said, PDD presents challenges that must be overcome before PDD 

can be widely used in large scale systems.  

While policy injection improves evolvability when a stakeholder 

requirement maps a single decision (and alternate workflows) onto a single 

base workflow, complications arise when a requirement results in the injection 

of multiple sub-policies into various workflows (as in the MSoD example in 

Section 7.4.1), possibly involving alternate workflows that, themselves, only 

partially address the full requirement. From an authorship viewpoint, the 

complication arises in traceability between components of a requirement 

and sub-policies of a policy, and in the structural and semantic compatibility 

of information shared between sub-policies. From a verification viewpoint, the 

complication arises in demonstrating sub-policy data flow and dependency 

relationships congruent with their corresponding requirement components. 

These issues are not unique to PDD, and are at the core of large system 

maintenance. It is variously addressed by the FOSD community [197], and by 

techniques such as dependency visualization [198], type systems, requirement 

and goal decomposition and traceability, and verification (per Section 7.5). 

In the following sections, I compare and contrast other approaches to 

workflow composition that address these issues, though from different 

viewpoints. 
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7.1.1 Aspect Oriented Software Design (AOSD) 

PDD complements, leverages, and extends work already done by a 

number of investigators, particularly in the areas of AOSD. PDD draws 

inspiration from AOSD, which defines highly precise joins and point-cuts, 

enabling advice around or instead of almost any code in a baseline 

application. Point-cuts, however, amount to ad-hoc interfaces, which are 

easily broken by accident by oblivious application programmers – this results in 

brittle advice and advised code [104]. PDD’s alternate workflows are 

analogous to AOSD’s advice, and PDD allows interception only at the service 

interface, which has a clearly defined and infrequently changed protocol 

and semantics characterized by a service contract. Because workflow and 

policy writers can rely on service contracts, brittleness is reduced and oblivious 

service coding is encouraged.  

Additionally, AOSD implements a form of message interception 

(enabling inbound and outbound filtering) via around-advising parameter-

laden function calls or point-cuts at function entry and exit points. This function 

call mechanism does not gracefully distribute across distributed computing 

systems, whereas PDD’s reliance on explicit message passing scales naturally 

in such situations. 

While both AOSD and PDD encourage advice on concerns, the AOSD 

code weaving strategy discourages advice on advice except in the special 

circumstance of advice calling advisable functions. Under PDD, because of 

ubiquitous policy evaluation, composing workflows and features is 
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encouraged, thereby improving evolvability of existing workflows and 

features.  

Early AOSD work [32] suggests that workflows can be simplified by 

reducing entanglement using AOSD principles. Since then, various metrics 

have arisen to quantify the effects and other complexity-related code 

characteristics (e.g., Crosscutting Degree, Coupling on Method Call, etc) 

[199]. Such metrics are designed to drive workflow simplification and promote 

refactoring as aspects. As PDD rests on AOSD principles, PDD’s focus on 

defining base and orthogonal workflows joined by policy produces 

applications that can be evaluated in the same way, though with tools 

extended to evaluate the PDD policy language (e.g., XQuery).  

However, as a vehicle for the integration of both small and large scale 

components as Systems of Systems, PDD’s injected workflows can be 

completely encapsulated (as with the Policy and Audit systems in Sections 5.6 

and 5.6.4) or can share state with related workflows (as in Section 7.4.1). PDD 

discourages entanglement and promotes such encapsulation, and would 

naturally produce cohesive systems with low coupling. Whereas existing AOSD 

implementations discourage aspects on aspects, PDD encourages them, 

which can lead to complex workflow inter-relationships, including cyclic 

relationships, at the system level. Extensions of AOSD metrics would be helpful 

in assessing policy-based system complexity and maintainability, though 

defining such metrics would be challenging, as policies are free to choose 
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amongst many workflows (or even create new workflows) based on dynamic 

conditions. 

AOSD conceives of the issue of composing multple policies on a single 

interaction as aspect interference and provides both ad-hoc and model-level 

mechanisms for detecting and prioritizing interfering aspects [200] [201]. PDD 

addresses this through composition policies, which are specified and 

executed at runtime, responsive to both dynamic state and changing 

stakeholder population and relationships, as described in Sections 4.2.7 and 

5.6.2.2.4. PDD makes no attempt to discover or resolve compositions of 

conflicting policies, and leaves this to policy programmers (in the short term) 

and future work (in the long term). 

7.1.2 Policy-based Design 

Policy-based Design (PBD) [202] defines a crosscutting concern in terms 

of abstractions reused throughout an application. It defines a policy class as a 

type-based interface representing a concern, and advocates that 

application designers and coders create and reference a policy class 

whenever they make design choices that can be deferred. While a policy 

class carries type information, the emphasis of its definition is behavioral. 

Therefore, a class (or application) is assembled out of policy class interfaces 

that represent orthogonal behavioral or structural aspects of an application 

design.  
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PDB’s objective is to manage the combinatorial explosion of design 

choices encountered in the application design and code authorship process, 

and create an ecosystem that addresses new requirements as 

recombinations of new and existing policy implementations. By leveraging a 

collection of such policy classes and their implementations, an application 

can integrate and orchestrate a concern without committing to an 

implementation until compile time. 

PDB relies on the C++ concepts of templates (generic programming) 

and multiple inheritance to compose type-safe policies into an application. 

For a given policy class, there may be several concrete classes, each of which 

represents a different set of characteristics and design choices in realizing the 

particular policy class abstraction. Templates enable the relatively safe type- 

and functional-parameterization of policy classes, and multiple inheritance 

exposes policy methods so they can be easily used during coding.  

PDB attempts to recognize crosscutting concerns early in the design, 

coding, and re-engineering process. As such, it encourages building workflows 

that emphasize base concerns, and then composing policy abstractions into 

them. As with PDD, policy abstractions can implement filtering, control flows, 

and feature compositions. Similarly, as with PDD, PDB encourages the 

composition of one policy onto another, and on to base or composed 

features. Its contribution is to address evolvability at the coding and re-release 

level, but not to address emergent requirements at runtime or to enfranchise 

stakeholders directly. Additionally, it has no inherent contribution to large 
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scale distributed systems capabilities beyond what is expressly coded into 

policy class instances. 

7.2 Workflow Context 

PDD contexts (described in Sections 4.3 and 5.5.4) focus on the 

availability of message-, workflow-, session-, and application-based state for 

workflow activities executing in a distributed system, which is not well 

addressed by other approaches. In subsequent sections, I compare and 

contrast PDD concepts of state and workflow management in popular and 

successful application architectural frameworks that represent different views 

of workflow context.  

7.2.1 Struts 

While composing context references and transporting them via 

interservice messages is unique to PDD, the lifecycles of such contexts are 

inspired by the Struts [126] system, which executes workflows on behalf of 

clients, similar to PDD, and is described in Section 2.4.5.1. 

Whereas a Struts workflow is guaranteed to execute on a single 

computer in a single thread (thereby simplifying its request bean 

implementation), PDD has no such guarantee, which results in PDD 

maintaining workflow state in the thread-safe CIS as a service reachable by all 

computers. Consequently, PDD workflows are scalable across distributed 

systems, whereas Struts workflows are not. 



347 

 

Maintaining a Struts session bean depends on a session reference 

passed using an HTTP protocol between a client (browser) and the Struts 

system – via a cookie or URL rewriting. PDD does not assume an HTTP protocol 

or that the client is a web browser – while the PALMS implementation uses 

Web Services to communicate with clients, the Mule ESB on which it runs 

allows various protocols, including HTTP and others. Consequently, automatic 

session creation, passing, and deletion are not implemented in PALMS – 

sessions are passed and maintained under explicit request of a client. As a 

result, PDD sessions are not limited to representing users – they can represent 

any persistent context, including a user.  

A Struts application bean is created by a workflow and can be 

accessed by any workflow for the duration of the application execution. A 

PDD IV has similar scope and function. PDD implements IVs using its 

independent, thread-safe CIS service, similar to a corresponding Struts service.  

Unlike Struts, PDD supports the dynamic composition of a workflow onto 

a base workflow, and supports segregation of state for each workflow. Its CIS 

service allows storage and retrieval of key-value pairs for workflow contexts 

(and all other contexts), where key names can be dynamically generated by 

workflow activities (similar to the π-calculus approach described in Section 

2.2.3). So long as a composed workflow activity generates a unique key 

name, it can store and retrieve workflow-scoped values without conflict with 

other composed workflows. Furthermore, PDD enables the creation of multiple 
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workflow-based contexts (on behalf of multiple, separate concerns), which 

further segregates workflow-based state. 

7.2.2 REST 

A RESTful application (described in Section 2.4.5.2) executes a workflow 

where an interaction is implemented as message exchanged between a 

state-laden client and a server. Such an interaction can be modeled using 

the service concepts of Section 4.1.2, and includes both request-only and 

request/reply interactions.  

REST can simulate PDD policy evaluation (per Section 4.1.3) by 

replacing every server with a policy evaluator proxy that wraps the server, 

evaluates policy, and then modifies a request or response, or directs a service 

request according to the policy. Additionally, REST can simulate PDD’s IV-style 

variables, which PDD implements as REST-style calls to its CIS service. 

However, to service a workflow injected by a policy evaluator proxy, 

workflow variables (or a CIS-style reference to them) must be included in all 

server requests (including propagation through downstream server requests), 

thereby accomplishing the objectives of PDD’s interservice message feature 

(described in Section 4.3). This can be arranged in remote procedure call 

(RPC) proxies linked into RESTful clients and servers (to the extent that such 

code interacts via RPC proxies), but this would require relinking and 

redeploying RESTful client and server code, which may not be available or 

possible for an given application or set of remote services. For clients and 
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servers that don’t interact via RPC proxies or cannot be relinked and 

redeployed, the alternative is to encode the equivalent of interservice 

messages explicitly in the REST client and server code, followed by 

redeployment. 

In sum, the policy evaluator proxy and the manual propagation of 

workflow variables impose burdensome requirements on REST style 

applications (just as they did on PALMS services before PDD was implemented 

in PALMS, as described in Section 6.1), making it difficult for them to react 

quickly to stakeholders’ emergent requirements.  

Note that REST servers are accessed via URL, which functions as the 

Internet version of a routing system. Consequently, from a routing viewpoint, 

replacement of a REST server can be a simple and low risk proposition – via 

changes to DNS or other mapping tables. However, to simulate interaction 

interception that could enable workflow injection, the routing system would 

need to somehow encode both the source and the target services so as to 

enable policies to associate with a source-target pairing (as in Section 4.1.5). 

Current DNS-based routing is source-agnostic.  

Additionally, the process of generating and deploying a replacement 

server incurs the bottlenecks attendant to traditional programming disciplines, 

and can be time consuming and risky.  

Under unmodified REST, implementation of diverse stakeholder 

requirements (e.g., access control, auditing, provenance tracking, quality of 
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service, and failure management) represents entanglement of concerns 

application wide. 

7.2.3 AJAX 

An AJAX application (as described in Section 2.4.5.3) implements 

workflow state as a closure whose life cycle is limited to a single external 

service call. Maintaining workflow state across successive server interactions is 

performed via manual coding. 

Considering that a closure implements a pairing of requestor state with 

reply data, a closure can be implemented under PDD as a workflow variable, 

where the source service explicitly stores the closure as a workflow SIV, and 

the target explicitly fetches and deletes it. Services can access SIV values 

using SIV access libraries. 

Note that PDD-style policy under AJAX is possible, though with 

significant restrictions. PDD policies enable policy injection on interactions as 

characterized by a source and target service. Under AJAX, the client is always 

the source, and the server is always the target. Any finer distinction would 

require message-level information as a matter of convention, thereby 

imposing a bookkeeping burden on all requestors in the client, and on a 

message hook in the server. Given this, the servlet could be proxied by a 

policy evaluator service (as in Section 7.2.2), but access to SIVs common to 

client and server would require further study.  
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A browser-based client-side policy system is hampered by both the 

difficulty of intercepting interactions between functions in JavaScript, and the 

security requirement that such a client communicate only with a single server. 

Note that these limitations apply to the GetStudyList workflow 

described in Chapter 3 – in the PALMS implementation, the Client has a REST-

style AJAX relationship with the PALMS server. The bulk of my dissertation 

applies to workflows defined within the PALMS server (not the client) where 

interactions can be easily intercepted, service tracking can be readily 

implemented, and alternate services can be readily invoked. 

7.3 Orchestration Languages and Workflow Systems 

There are a number of orchestration languages and workflow 

management systems that address portions of the core PDD requirement 

space.  

Scripting and orchestration languages (e.g., Groovy, BPEL, WS-CDL, 

WSCL, MSCs, UML and Orc) provide routing that includes decomposition (in 

addition to looping and other control flows), and provide scoped variables 

supporting global and workflow contexts, but not session context, message 

interception, or static policy-based workflow substitution. With no facility for 

aspect definition or injection, such languages encourage entanglement of 

concerns, which complicate the implementation of exception handling, 

access control, business rules, and feature composition. 
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In contrast, AO4BPEL [146] defines point-cuts on BPEL, where advice 

occurs at the service interface level, thus enabling modular maintenance of 

business rules composed into an orchestration at runtime. By composing 

aspects at the service interaction level, AO4BPEL avoids much of AOSD’s 

brittleness. AO4BPEL relies on runtime uptake of static point-cut and advice 

specifications, thereby enabling a degree of dynamic composition, though 

only on service interactions identified by developers during the code 

authoring process. However, it has no mechanism for specifying point-cuts at 

runtime, and so provides limited opportunities for an application to react to 

stakeholders’ emergent requirements via injectable policy.  

Similarly, BPEL Business Rules Integration [203] (described in Section 

2.4.4.2) extends BPEL by composing business rules onto service interactions, 

but without enabling the selection of rule injection points at runtime. 

Workflow Management Systems [75] (WFMSs) assume centralized 

knowledge of workflows and available roles; WFMS performs centralized 

access control and scheduling of tasks. [204] distributes WFMS knowledge and 

decisions to create a mediator-free fabric based on task discovery protocols. 

Under PDD, knowledge of a workflow and access control policies exists at the 

site of policy injection, without any centralized or distributed control. WFMSs 

represent top-down workflow management, which PDD represents as bottom-

up. As such, PDD’s strategy encourages fluid policy contributions by multiple 

stakeholder groups. 
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WS-CDL [205] is a web services choreography language that defines 

rules that govern the ordering of messages exchanged during service 

interactions. It defines choreographies relative to a root choreography. At its 

heart, a choreography is a functional language (or ADL) describing the 

relationships to be imposed between services, including how service outputs 

and inputs are coordinated, and does not discriminate based on authority 

domains or other types of policy. As such, it defines the coordination of 

workflows, and presides over the coordination. Unlike PDD, it contains no 

provision for crosscutting concern or feature composition, scalability, or 

conditional composition. 

7.4 Policy Evaluation Systems 

At an abstract level, policy evaluation systems attempt to implement 

requirements as crosscutting concerns composed (via policy) upon workflows. 

They differ in the assumptions they make about scope of policy and its 

relationship to base workflows. This section describes how PDD represents 

different choices on these and other dimensions. 

7.4.1 PERMIS 

Historically, the dominant use of policy-enabled systems is in defining 

and enforcing access control, trust relationships, and data security. A 

common paradigm occurs in the application coding process, where a static 

decision is lifted to a dynamic decision through the use of a policy evaluation 

system (as discussed in Section 7.1.2). 
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As described in Section 2.4.4.1, the PERMIS policy languages express 

concepts important to security practitioners, but do not service other domains 

(e.g., failure management, data filtering, auditing, and intrusion detection). 

Additionally, their formulation in XML leverages standards that represent 

security and trust concerns, but neither the standards nor the XML encodings 

are easily understood by many communities (even with GUI support). While 

PDD’s concept of DSL-oriented policy languages is more flexible and 

accessible to diverse communities, such DSLs have not yet been defined to 

replace, extend, or map to the standardized XML-oriented languages. 
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Solving the classic access control problem of Multisession Separation of 

Duties (MSoD)4 [206] demonstrates PERMIS’ and PDD’s (as PALMS) contrasting 

policy statement and evaluation styles. Under MSoD, a user cannot exercise 

conflicting roles even if the user is a member of both roles. As shown in Figure 

68, MSoD occurs in a shared context (represented by ObjectA), where a user 

attempting a particular operation must have a role that qualifies to execute 

the operation, and cannot have already executed a conflicting operation (as 

recorded in a hypothetical History log): 

 

More generally, while role membership can be used to allow or deny a 

user access to an activity, relationships between roles themselves provide a 

separate layer of logic that extends and refines these constraints.  

For example, in a bank, a user can fill multiple roles, including separate 

teller and auditor roles. Were access to a teller or audit function to be based 

solely on the roles a user holds, a user could be both a teller and an auditor in 

                                                 
4
http://www.sans.edu/research/security-laboratory/article/it-separation-duties, 

http://www.niiapp.org/fileadmin/files/2010-05-20-procedure-policy-template.pdf, 

http://sec.cs.kent.ac.uk/permis/DevPlans.shtml#separation, 

http://www.cs.colostate.edu/~iray/research/dbsec08.pdf 

User Operation1 Operation2

Actor.Roles ∩ Operation1.Roles ¹  Λ && History(Actor, Operation2, ObjectA) = Λ 

Actor.Roles ∩ Operation2.Roles ¹  Λ && History(Actor, Operation1, ObjectA) = Λ ObjectA

ObjectA

 

Figure 68. UML Activity Diagram of Multisession Separation of Duties 

http://www.sans.edu/research/security-laboratory/article/it-separation-duties
http://www.niiapp.org/fileadmin/files/2010-05-20-procedure-policy-template.pdf
http://sec.cs.kent.ac.uk/permis/DevPlans.shtml#separation
http://www.cs.colostate.edu/~iray/research/dbsec08.pdf
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the same bank branch (i.e., common context). This contradicts common 

financial checks and balances (i.e., Separation of Duties or SoD).  

The example qualifies as “Multisession” because the teller workflow is 

completely separate in time from the independent auditor workflow (and 

may execute on a different computer) – state maintained only in a workflow 

context, a login session, or on a single computer is insufficient to enforce the 

Separation of Duties. The MSoD problem is further complicated when Virtual 

Organizations are in play – role sets defined in multiple, dynamic authority 

domains cannot be evaluated at any time except during actual workflow 

execution. 

Both PERMIS and PDD solve the problem by maintaining application-

level state outside of a workflow or session context. PERMIS introduces a 

“business context” (which tracks the events pertaining to a set of constrained 

activities such as might result in an MSoD conflict) and a “role constraint” 

(called multi-session mutually exclusive roles or MMER) that defines when, in a 

business context, the activation of a role is forbidden. A sample PERMIS MSoD 

policy is: 

  <MSoDPolicy BusinessContext="Branch=*, Period=!"> 

    <LastStep operation="CommitAudit" 

              targetURI="http://audit.location.com/audit"/>  

      <MMER ForbiddenCardinality = "2">  

        <Role type="employee" value="Teller"/>  

        <Role type="employee" value="Auditor"/>  

    </MMER>  

  </MSoDPolicy>  
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The policy specifies that the business context applies to all bank 

branches (i.e., Branch=*) and all time periods (i.e., Period=!). It identifies the 

roles in play as Teller and Auditor, and it uses set logic to enforce that an 

employee cannot hold both roles (i.e., ForbiddenCardinality = “2”) in the 

business context. This policy assumes that a) the policy system tracks all events 

pertinent to all bank branches and time periods, b) it tags all events with the 

role that initiated the event, and c) an employee declares the role being 

exercised at some point (e.g., during signon). It asserts that for the business 

context, the history can be deleted once the CommitAudit event occurs. To 

support this policy, an application must identify when a user is exercising a 

role, and when the CommitAudit event occurs. Additionally, it must evaluate 

the policy immediately before the CommitAudit activity commences. 

An analogous MSoD policy in PALMS might be that a research assistant 

adding participants to a study cannot be the one that deletes them. For 

consistency in this example, though, I use PDD policy principles to address the 

PERMIS MSoD banking scenario.  

Under PDD, suppose a RBAC-oriented banking DSL that evaluates 

whether a user is a member of a role, and that the user can hold several roles 

simultaneously. To execute a workflow based on role membership alone (such 

as a Teller workflow), a plausible requirement could be phrased as 

palms:user-in-role('Teller'), and similarly palms:user-in-role('Auditor') 

for an Auditor workflow. 
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However, implementing the role conflict rules requires persistent state 

indexed by bank branch and role, and containing a list of users exercising a 

particular role. The list must be augmented when a user exercises the role, and 

must be checked when the user is about to exercise a conflicting role. 

A hypothetical MSoD DSL might be useful in articulating MSoD policies 

in terms directly related to MSoD requirements. Assuming the branch is a value 

in a message   (though it could be in a workflow or session context), the DSL 

might have the functions in Table 10. 

 

The msod-valid() function would fetch the bank branch from the 

current message  , check for the user having held the $test-role role at the 

branch, and if not, register the user as holding the $add-role role at the 

branch, and then continue the workflow. msod-valid('Auditor', 'Teller') 

would be used to guard a teller workflow, and msod-valid('Teller', 

'Auditor') would be used to guard an auditor workflow.  

The msod-clear() function would delete the branch’s role lists at the 

end of the CommitAudit workflow. 

A policy incorporating the msod-valid() function would be injected 

into an interaction that commences an MSoD-sensitive workflow: 

Table 10. MSoD DSL Functions 

Function Parameters Return 

msod-valid $test-role, $add-role boolean 

msod-clear   
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  if (palms:MSoD-valid('Teller', 'Auditor')) then () \ 

    else palms:control-error('denied') 

Similarly, a filter containing the msod-clear() function would be 

injected immediately after an audit workflow. 

Using the library functions described in Section 5.6.5.1, an msod-valid() 

function would test whether the user was present in a role list for the branch, 

and would add the user to a role list for the branch. The following example 

shows how to use PALMS’ Context system (CIS service) to store MSoD-related 

state as an IV, which persists across service interactions, workflows, and 

sessions: 

  declare function msod-valid($test-role as xs:string,  

                              $add-role as xs:string)  

      as xs:boolean { 

    let $msod-context := "MSOD Context" 

    let $test-key := concat(palms:cur-value("branch"),  

                            ".", $test-role) 

    let $add-key := concat(palms:cur-value("branch"), ".", $add-role) 

    let $cur-user := palms:get-workflow-user() 

    let $users-in-test-role := get-iv-value($msod-context, $test-key) 

    let $users-in-add-role := get-iv-value($msod-context, $add-key) 

    return if ($cur-user = $users-in-test-role) then 

      false 

    else 

      palms:set-iv-value($msod-context, $add-key,  

                         ($users-in-add-role, $cur-user)) 

  } 

Note that under PDD, the CIS stores key-value pairs, each of arbitrary 

composition. A suitable key for this event stream would be the name of the 

bank branch, and a Teller and an Auditor sub-key would contain a 

collection of users that have exercised the Teller or Auditor roles for the 
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branch. By definition, the CIS resolves key-value pairs for policies executing a 

distributed system. 

By avoiding PERMIS’ XML and set logic constructs, a PDD policy more 

directly tracks the stakeholder’s understanding of the issue, invites stakeholder 

interaction, and reduces the likelihood of conceptual or formulation errors – all 

of which contribute to efficient and effective system evolution. Because PDD 

supports DSLs via XQuery libraries, it extends this benefit to multiple stakeholder 

groups simultaneously. 

Because XQuery has many features of a general programming 

language, the creation of complex policies under PDD is quick and simple. For 

example, if the MSoD rules were declared to be non-operational on 

weekends, a simple predicate could be added to the MSoD (or other) DSL 

language:  

  if (palms:is-weekend() \ 

      or palms:MSoD-valid('Teller', 'Auditor')) then () \ 

  else palms:control-error('denied') 

Relative to a base workflow, an MSoD policy represents a separate 

access control concern. The PERMIS authorization system abstracts the 

particular policy (as XML) but not its insertion into the base workflow. PERMIS 

acts as a Policy Decision Point (PDP), but not a Policy Evaluation Point (PEP). 

Therefore, invocation of a PERMIS policy requires that a base workflow be 

coded to call PERMIS and act on the policy result (both to guard a workflow 

and to signal a policy event, as in the example above). To add a new policy 
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requires not only entanglement of the base workflow and the authorization 

concern, but also a separate deployment of the resulting code. As an 

alternative, PDD requires no modification of base workflow code, allows 

separate concerns to remain separate, and enables complex policies to be 

written and injected using a language that reflects the requirements of the 

concern. 

While the MSoD calculation consists of a simple logic comparison, 

expressing more complex calculations follows the same pattern. Under the 

PERMIS approach, no facility exists to compose policy onto a complex 

calculation (e.g., making it inoperable on weekends). However, under PDD, 

such a policy could be composed onto complex calculations that themselves 

are expressed as workflows. In essence, PERMIS’ emphasis on access control 

renders its composition shallow, while PDD’s emphasis on feature injection 

results in potentially deep composition. 

Note that while PERMIS does not address runtime policy injection, it 

presents an end-to-end secure policy execution solution, which encompasses 

transmission of principal attributes, secure policy storage and distribution, and 

role and attribute management in a distributed environment. Notably, PERMIS 

leverages distributed attribute and trust fabrics to service Virtual Organizations 

(VOs), where an organization can maintain attributes autonomously relative 

to other organizations, thereby granting or denying its members access to 

resources regulated by existing and new policies. PALMS achieves a similar 

effect by accessing role and permission definitions in Grouper, and phrasing 
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policy in terms of those roles and permissions (as described in Section 

5.6.1.3.1). 

Under PALMS, the XQuery engine functions as the PDP, and a control 

policy returns a workflow to the Policy Evaluator, which then executes it. The 

policy performs part of the work of the PEP (i.e., selecting the workflow), and 

the Policy Evaluator performs the other part (i.e., executing the workflow). 

PERMIS does not have a good analog for deciding and executing filter 

policies. 

7.4.2 xESB 

The xESB system (described in Section 2.4.4.3) extends the ESB concept 

to include policy evaluation on every service interaction, where policies act to 

constrain behavior of workflows that incorporate the interactions. Constraints 

are expressed as rules and obligations based on [207] and [208], where rules 

implement a verdict as the combination of a decision and an action, and 

obligations maintain state upon which rules rely. xESB maintains state as 

counters, timers, and hashes, all globally declared and instantiated. xESB 

policies can simulate a session by using a hash variable indexed by user 

identity, though this assumes that multiple users with the same identity should 

share common state.  

Insofar as xESB represents an extension to ESBs, neither xESB nor the 

ServiceMix ESB it extends has a concept of workflow. While it is conceivable 

that a workflow concept could be introduced into an ESB (given that PDD has 
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accomplished this using the Mule ESB), this has not been done. Consequently, 

xESB’s context system is simple and does not support the diverse scoping of 

PDD’s SIVs. 

Additionally, since xESB applications do not explicitly model workflow, 

xESB does not model workflow composition and decomposition (as supported 

in Section 5.5.3), and does not support workflow- and session-based state, it 

does not address System of Systems composition. 

Examining alternate solutions to xESB example of a multisession video 

delivery requirement demonstrates xESB’s and PDD’s (as PALMS) contrasting 

execution time characteristics, policy statement, and evaluation styles. Similar 

to PDP, xESB injects policies into SOA service interactions directly at runtime, 

though it does so differently: it evaluates all policies on each service 

interaction. The comparison of xESB to PDP focuses on runtime performance, 

the policy language, and its suitability for composing complex requirements 

(as workflows) to create System of Systems architectures. 

In [124], xESB was evaluated while running under Java on the Apache 

ServiceMix ESB v3.3 on a 32 bit 2.6GHz processor, and claims times of 

approximately 1ms per policy per service interaction to determine whether a 

policy applies to the interaction. No time was given for the execution of a 

policy action. 

A comparison to the PALMS policy system would encompass porting 

the                    ,                              , 
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                          workflow to xESB, and then evaluating a rule 

collection for each of the three service interactions in the workflow. Supposing 

a robust rule set of   xESB rules, each interaction would require approximately 

   milliseconds (at 1ms per interaction), or    milliseconds for a complete 

workflow execution. To match PALMS functionality, the   rules must contain 

pre-filters, control policies, and post-filters. Considering that xESB has no 

construct that accomplishes PDD’s composition policies, I make a simplifying 

assumption of implicit composition policies that evaluate all policies that 

apply to a particular interaction.  

Per Section 6.3.2.2, the PALMS system adds 1.7ms for the entire test 

workflow, assuming each interaction is registered in the Interaction Repository 

but no interaction is actually associated with a policy. The cost for adding a 

pre-filter, control, or post-filter policy varies with the message data and the 

complexity of the policy, but (unlike xESB) is paid only when a policy is actually 

associated with an interaction. Per Sections 6.3.5 and 6.3.6, the time required 

to execute a single control policy or filter policy is between 76.82ms and 

78.94ms, varying according to the size and complexity of the interaction 

message and the policy. 

Considering that the PALMS tests were run on a much faster CPU than 

the xESB tests, it is fair to say only that the xESB cost per interaction is a fixed 

function of  , and for interactions that have no policies, its execution time is 

comparable to PALMS’. However, for large policy collections, the xESB time 

can be an order of magnitude greater when interactions have few if any 
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policies. Because [124] does not include execution time for policy actions, 

numerical comparisons to PALMS’ policy execution time cannot be made. 

However, because xESB constrains the format of interaction messages to 

match its constrained policy language, it does not incur PALMS’ overheads of 

message format conversion, XQuery expression compilation, and XQuery 

engine execution. Consequently, I expect that xESB policies would run much 

faster than PALMS’ policies, assuming the policy requirement could be 

expressed in the xESB policy language. 

On balance, more measurements are required to determine the time 

relationship between xESB and PALMS policies, and the answers would 

depend on the density of policies relative to service interactions, the size and 

complexity of interaction messages, and the complexity of policies 

themselves. 
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Additionally, the xESB policy language is tuned to address access and 

usage control requirements [209], where PALMS’ policy language addressed 

workflow composition in general, which is a superset of access and usage 

control. Whereas PALMS posits DSLs that align with requirement statements of 

various stakeholder communities, the xESB policy language is structured for 

use by programmers writing code responsive to user requirements. An 

example of the xESB policy language addresses a video calling service whose 

requirement is that a “Silver” customer can call for at most three hours per 

month: 

  default-action { allow; } 

 

  // Total duration of video calls, in seconds 

  hash videoDuration = 0; 

  timer resetDuration = next month; 

 

  obligation { 

    if invocation 

      when { resetDuration.fired } 

      do { 

        clear videoDuration; 

        arm resetDuration fire next month; 

      } 

  } 

 

  obligation { 

    if response 

      when { h "Type" equals "video-call" && h "Success" equals 

"True" 

             && h "Customer-Type" equals "Silver" } 

        do { update-counter videoDuration[source] += h "Duration"; } 

  } 

 

  rule { 

    if invocation 

      when { h "Type" equals "video-call"  

             && h "Customer-Type" equals "Silver" 

             && videoDuration[source] > 10800 } 

      do { block; } 

  } 
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The policy is stated in three parts: two obligations and a rule. An 

obligation sets rule state – the first obligation executes before a video call 

service, and the second obligation executes after, thereby capturing the 

cumulative duration of video calls for a customer. The rule executes before 

the video call service, and checks to see whether the accumulated duration 

has exceeded three hours – if so, it waits until next month. 

As shown in Section 7.4.1, an equivalent PALMS approach would be to 

define a DSL that abstracts these video accounting functions, and then used 

the DSL functions as policies injected onto appropriate service interactions. 

This has the immediate advantage of reducing the proliferation of accounting 

policy code, including variations on the policy, and eases the burden on 

domain-interested stakeholders in inspecting, verifying, and contributing to 

such policies. 

Note that XQuery does not provide an equivalent of a scheduling or 

event sink function. However, the PALMS Feature Composition DSL (described 

in Section 5.6.5) exposes the call-service() function, which can be used to 

invoke a scheduling or event sink service capable of executing an XQuery 

policy or other workflow at an appropriate time. 

xESB and PDP have generally similar performance – xESB’s execution 

time depends on the value each policy lends to each service interaction, and 

PDP’s execution time depends on the complexity of the message data and 

the query compilation time. However, PDP’s DSL-oriented policy language 
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approach invites stakeholder participation in the requirement implementation 

process, where xESB’s does not. While xESB’s policy language was formulated 

with an eye towards the validation and verification of policies, PDP’s policy 

approach does not emphasize this – instead, it leverages validated DSL 

support libraries and DSL-simplified policy statements to achieve reliability ad-

hoc. (It would be possible to specify a PDP DSL similar to xESB’s policy 

language, and therefore similarly verifiable. However, this would defeat the 

goal of readability and stakeholder participation.) 

While xESB’s constraints on message format and content simplify and 

accelerate policy processing, PDP has fewer constraints, thereby enabling 

policies applied to services that aren’t conceived under the xESB messaging 

model. PDP also enables injection of policies from multiple stakeholders 

(through composition policies) and enables the composition of requirements 

onto requirements, both of which enable the construction and scaling of 

cyberinfrastructures as large Systems of Systems. 

7.4.3 Ponder2  

In contrast to PDD’s workflow-oriented model, Ponder2 (as described in 

Section 2.4.4.4) applications are implemented as a network of connected 

components. To the extent that the two abstractions accomplish similar goals, 

workflows represent a lifting of the connected component model by enabling 

the execution of multiple interactions under a common context. 

Consequently, in addition to its limited facility for runtime policy and workflow 
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injection (as described in Section 2.4.4.4), PonderTalk offers no state lifecycle 

that implements the concept of SIVs (as described in Section 4.3). 

7.4.4 Policy Deployment 

PDD does not define the practical aspects of policy, user, and attribute 

management, and so is not an end-to-end solution in the PERMIS sense (as 

described in Section 7.4.1). The PALMS case study does demonstrate the use 

of Grouper as a securely managed attribute store and the use of X.509 

certificates to prove user identity. However, PALMS does not claim the 

robustness claimed by PERMIS – it does not have either a secure policy or 

attribute distribution capability. Under PALMS, policies are imported and 

activated periodically (e.g., once a minute) from files placed in a policy 

staging directory, which is secured by the underlying operating system.  

Secure and robust policy distribution systems and methodologies exist 

and can be adopted or leveraged by applications such as PALMS as the 

need arises: [210] provides a general-purpose policy deployment and 

execution model that is independent of underlying policy enforcement 

mechanisms. It is agnostic as to the type or language of a policy, and focuses 

on policy instantiation, distribution, enabling/disabling, unloading, evaluation, 

and deletion of policies in a distributed environment. 

7.4.5 Policy Languages 

A central focus of the policy community is access control, usage 

control, trust relationships, and digital rights management, as exemplified by 

the Ponder language [130] (Section 7.4.3), xESB’s usage control language 
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[124] (Section 7.4.2), OSL [207] (for obligations), PERMIS’ policy languages 

(Section 7.4.1), SPL [211] (for complex constraints), EPAL [212] (for privacy), 

and others as enumerated in [213].  

Generally, each of these languages seeks to articulate and implement 

relationships in a particular domain. Their design approach is minimalist so as 

to enable arguments for sufficiency and completeness, and to position them 

to allow validation and verification of the properties of domain interest. 

Minimalism also serves implementability and tends to control execution 

overhead partially because of their simplicity, and sometimes at the expense 

of a rich dataflow between entities. These approaches generally produce 

languages that declaratively express requirements directly as mathematical, 

logical, and relational concepts, and are intended for use by programmers 

with those skills. Such languages are often inaccessible to stakeholders in other 

domains, even when expressing relationships from those domains – the PERMIS 

MSoD policy in Section 7.4.1 is an example of this.  
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While my approach to the PDD policy languages (as exemplified in the 

PALMS languages described in Section 5.6) adopted the decision-action 

paradigm of many policy language, its objective was to strike a balance 

between: 

 enabling stakeholders to understand and possibly write policies 

themselves 

 promoting extensibility to meet unanticipated requirements of existing 

and future domains 

 enabling the composition of external workflows in the context of base 

workflows (for System of Systems integrations) 

 enabling injection of policies at runtime without requiring elaborate 

compilation or binding 

 accessing diverse sources of data (for decision making) 

 supporting rich interactions between services by accommodating (and 

not constraining) data exchanges 

My choice of XQuery as the basis for a family of functional languages 

designed and presented as DSLs (as described in Section 5.6.5) demonstrates 

progress towards stakeholder enfranchisement (as described in Sections 6.2 

and 1.1) and meets the challenges of enabling workflow composition and rich 

service interactions. 
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As described in Section 6.3.7, service interactions on which policies are 

evaluated are significantly slower compared to service interactions with no 

policies. (The policy system presents negligible overhead for service 

interactions where no policies are evaluated.) The evaluation time depends 

on: 

 the complexity and size of the interaction message 

 the time required by the XQuery engine to compile and execute the 

policy 

 the complexity and size of the new interaction message (for filter 

policies) 

From the perspective of the execution of an entire workflow, the policy 

contribution to execution time can be significant even when service 

execution times are included. To improve interaction times, a number of 

strategies can be adopted, following the experiences of xESB, Ponder, 

Ponder2, and others. 

Particularly, the XQuery compilation and execution times can be 

reduced by pre-compiling policy expressions or caching compiled 

expressions. In the PALMS implementation, policies are read and staged by 

the Policy Repository service (described in Section 5.6.2.2). The effective policy 

is produced in the Policy Evaluator by combining the interaction’s composite 

policy with corresponding control and filter policies based on the study or 

study group contained in the interaction message (as described in Section 

5.6.3). The effective policy calculation can be relocated to the Policy 

Repository. Regardless of where the policy is calculated, caching the 
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compiled policy would amortize the cost of a compilation over the life of the 

policy. 

Additionally, message format conversions can be reduced or 

eliminated by harmonizing the message format with the policy execution 

language processor. PALMS messages are transported by the ESB as Java 

objects defined according to the needs of the service interaction they serve. 

However, the same information can be encoded as Saxon XDM structures, or 

other structures native to the XQuery processor, thereby avoiding ingress and 

egress transcoding (as described in Section 5.6.3). This would complicate the 

encoding and decoding of messages within services themselves, thereby 

violating the principle of interceptors adding value to otherwise oblivious 

service interactions (though this is just what xESB did). Alternatively, I observe 

that the PALMS DSLs are functional programs that can be expressed in Java, 

which consumes Java objects naturally. Java-based policies would access 

message data quickly and efficiently, and can use Java introspection to 

access or build variable data structures. 

The benefits of minimalist design of existing policy languages inure not 

only to validation and verification, but to economical execution based on 

constraining message formats and contents, coding policies directly to the 

expected messages, constraining the complexity of messages, and native 

compilation of policies. 
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In contrast, the XQuery language enables workflow coders and policy 

writers to ignore these considerations – as an abstraction, it works well on 

structured data expressed as text (i.e., XML) and transformations (i.e., policy 

expressions as XQuery code) expressed as text. Consequently, policy 

programmers can easily create and evolve DSLs. However, the flexibility of 

XQuery can be acquired through judicious use of other languages, including 

Java, combined with expression pre-processing (similar to what already 

occurs with XQuery policy fragments as described in Section 5.6.2.2) and just-

in-time compilation. The choice of query language and associated pre-

processing can be managed at the Policy Repository level, thereby preserving 

all PDD abstractions. 

This calls the question of what support is minimally required to define 

and evolve a DSL, and what skill sets are required to do this. To meet the goals 

of PDD, DSLs must be capable of evolving quickly and responsively to evolving 

stakeholder requirements. The skills must be available in the general 

programming population or from stakeholders themselves. Debugging DSL 

support libraries must be simple and reliable, and versioning and deployment 

must be addressed.  

These issues drive the evolution of PDD and are discussed briefly in 

Section 1.1, but are beyond the scope of this dissertation. 
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7.4.6 Policy Versioning 

Under PDD, a policy represents the implementation of a crosscutting 

concern composed onto a workflow, where the implementation may be a 

simple decision (based on no state, and maintaining no state), or may 

maintain state that affects its future behavior or is relied upon by other 

concerns. Insofar as a policy maintains a set of guarantees, a policy is 

incorrect if the guarantees are not met. 

When an existing version of a policy is replaced with a new version, the 

new version must maintain not only its set of guarantees, but the guarantees 

of the original policy. Otherwise, the concern represented by the policy may 

fail overall.  

For example, the MSoD concern (described in Section 7.4.1) 

guarantees that if a role executes one function, it cannot execute a second, 

proscribed function. The concern is represented by a policy that saves state in 

an IV-based key-value pair where the key and value have policy-defined 

structure. The policy can provide the guarantee so long as the policy uses the 

key-value pair consistently. 

If a new version of the MSoD policy maintains this guarantee, though by 

using a different key-value pair, the new version is internally consistent, yet fails 

to maintain the guarantee of its predecessor. Consequently, a role may 

execute a proscribed function undetected, which would be an error. The 

state skew between policy versions over time is one example of how both a 
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new and old policy version can be correct, but the guarantees of the 

concern can go unmet, and there are numerous other examples. 

The general problem of maintaining concern guarantees in the face of 

policy evolution is a variation of the timeless problem of guaranteeing upward 

compatibility of applications over time, and includes deployment 

synchronization in distributed systems, and is yet unsolved. The problem is 

addressed in theory by [208], which proposes that guarantees be only 

strengthened over time. 

PDD makes no attempt to solve this problem, and the problem exists in 

policies provisioned under PERMIS (in Section 7.4.1), Ponder [210] (and in 

Section 7.4.3), xESB (in Section 7.4.2), and other policy evaluation systems, 

whether policy is provisioned statically or at runtime. 

7.5 Verification and Validation 

PDD’s focus on maintaining and reusing separate concerns 

discourages entanglement, resulting in reduced complexity of individual 

workflows, which eases assessment of workflow completeness and 

correctness, and lowers evolution costs. Additionally, because PDD leverages 

hierarchical decomposition available in Rich Services, it encourages a 

hierarchical approach to verification and validation of workflows. 

In part, complexity shifts to assessing the completeness, correctness, 

and consistency of policy statements and their relationship to each other and 
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to alternate and base workflows. Such complexity may be tackled by 

evolving existing visualization [198] and verification tools.  

In this discussion, I use the terms verification and validation as they are 

commonly understood:  

Software verification provides objective evidence that the 

design outputs of a particular phase of the software 

development life cycle meet all of the specified requirements for 

that phase by checking for consistency, completeness, and 

correctness of the software and its supporting documentation. 

Validation, on the other hand, is the confirmation by 

examination and provision of objective evidence that software 

specifications conform to user needs and intended uses, and 

that the particular requirements implemented through software 

can be consistently fulfilled. [214] 

While automated verification of PDD policies has not been attempted, 

automated verification involving related policy approaches has been 

accomplished in a number of ways, including proof, simulation, and 

comprehensive examination.  

Structural modeling techniques (described in Section 1.1) enable proofs 

based on factoring OCL in UML models [215] as aspects, though the carryover 

to workflow-based models is incomplete. 

Verification of aspects [216] focuses on the correctness of an aspect 

relative to its specification, which contains assumptions regarding the base 

application and guaranteed properties after the aspect is woven into it. It 

model checks a linear temporal logic (LTL) expression that includes the 

assumptions, join points, and aspect advice. The authors claim to create 
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modular proofs on weakly invasive aspects. This aspect verification strategy 

aligns well with PDD, given that composed workflows can be characterized by 

their property guarantees. However, pursuing this is beyond the scope of this 

dissertation. 

Insofar as workflows (including applications containing numerous 

workflows) can be modeled using Colored Petri Nets (CPNs) [90], policy 

composition can also be modeled [74] (as workflows composed upon 

workflows). Given this, modeling policy-injected applications as CPNs may be 

able to verify domain-specific properties and properties such as liveness, 

safety, and reachability – this has not been tried with PDD-based policies. The 

ability to leverage composed workflows as CPNs aligns well with the PDD 

concept of policy injection, and therefore holds promise as an avenue for 

PDD policy verification. Similarly, [217] and [218] propose process algebra-

based verification methods that act upon hierarchically composed workflows. 

However, pursuing this is beyond the scope of this dissertation. 

Considering that PDD policies are intentionally broadly defined so as to 

enable expression of domain concepts for diverse stakeholder groups (via 

DSLs), a single policy language cannot be identified. Furthermore, the effects 

of PDD policies that inject feature sets (leading to System of Systems 

integrations) can be opaque to verification techniques. Factoring an arbitrary 

PDD policy into predicates that can be expressed to a model checker has not 

been done. Consequently, much work would be required before PDD policies 

could be verified via proofs. 
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Similarly, graph techniques such as those applied to Ponder (as 

described in Section 2.4.6) require a simple and unambiguous set of policy 

operations, which contradicts the real diversity of PDD-oriented DSLs.  

The RBAC model used by Ponder is hierarchical, similar to the PALMS 

model described in Section 5.6.1.3, but without distinguishing study-based and 

organization-based roles, and without support for permissions and ACLs. 

Additionally, Ponder has a concept of meta-policies, which are policies that 

determine which policies are allowed in a system, including disallowing 

conflicting policies. Meta-policies are similar to PDD’s composite policies (as 

described in Section 4.2.7), though with different objectives – PDD composite 

policies determine how multiple filter and control policies compose onto an 

interaction, while meta-policies determine whether polices are allowed at all. 

Note that Ponder and other policy languages enable proof and graph 

techniques by focusing on logical predicates minimalistically defined. Given 

the flexibility of the PDD’s DSL approach, DSLs designed along the same 

minimalist logic lines may be eligible for verification via proof and graph 

techniques, too. However, pursuing this is beyond the scope of this 

dissertation. 

To the extent that policy injection represents a System of Systems 

composition (as with the MSoD policies in Section 7.4.1, and with the Audit 

system in Section 5.6.4), unit testing strategies can provide a practical means 

for achieving confidence that an injected concern functions as intended, 



380 

 

and provides a means for testing the composition in isolation. In the PDD 

context, a unit test would consist of a workflow into which subject policies are 

injected. For the PALMS implementation, recording results can be 

implemented with calls from the workflow directly to log4j [189] functions or 

Audit system services. 

Finally, validation activities pertain to the relationship between 

stakeholders, their requirements, and how their requirements are reflected as 

stated requirements. This is beyond the scope of this dissertation. 

7.6 Policy Programmers and Enfranchised Stakeholders 

A long term goal of PDD is to enable stakeholders to inject policies into 

an application quickly, accurately (with respect to requirements), and 

directly, without depending on the availability of trained programmers to 

implement (or misinterpret [219]) requirements. Conversely, this goal implies 

that trained programmers would be relied upon to maintain workflows 

encoded using traditional programming systems, thereby creating skeletons of 

applications, which stakeholder policies would customize. Realizing this goal 

requires a close mapping between stakeholder requirements and high level 

workflows that can automatically be refined into executable workflows. In 

turn, this requires both requirement organization disciplines that are still 

evolving and an understanding of what information must be added or 

discarded at each step of workflow refinement. 
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7.6.1 Survey of Stakeholder Policy Authorship 

To explore the idea of stakeholders authoring and contributing policy 

directly to workflows, I created and executed an experiment where four 

domain experts familiar with PALMS were asked to create policies applicable 

to a high level PALMS workflow [220]. The domain experts were exposure 

biologists and computer programmers aware of the objectives of PALMS and 

familiar with PALMS system operations. Preparation for the experiment 

included: 

 a brief tutorial on workflows as expressed using UML Activity Diagrams 

(using a prominent PALMS workflow) 

 examples of access control policies (formulated as a conditional 

coupled with an alternate workflow) 

 examples of filter policies (expressed as filters on request and reply 

data) 

The tutorials included explanations of requirements and the simple 

policy DSL that expressed them in a PALMS context.  

The hypothesis was that a PALMS-aware domain expert could: 

 understand PALMS in terms of a workflow diagram 

 formulate a requirement that could be enacted in PALMS 

 write and inject a policy expression given a textual requirement 
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To test this, subjects were asked to: 

 correlate a text-based requirement with a DSL-based policy expression 

(and vice versa) 

 phrase a text-based requirement given a DSL-based policy expression 

 verbally describe how policies could affect a workflow 

 author one or more policies 

 conceive of a new requirement 

As a group, the subjects had mixed success in accomplishing each 

objective, but they shed valuable light on my assumptions related to 

articulating policies and composing them onto workflows. In each case, 

subjects were able to understand the relationship between the UML Activity 

Diagram and the PALMS workflow they already understood, they were 

receptive to the relationship, and they could determine where in a workflow 

an access control policy should be injected. They also understood the 

translation between a textual requirement and a DSL-based policy expression, 

and vice versa. One biologist readily wrote a compound policy expression 

using Boolean logic, and two subjects asked for additional Activity Diagrams 

depicting workflows into which they were interested in injecting policy. 

On the other hand, more than one subject questioned whether the 

injection of a single access control policy in a single workflow could reliably 

suffice to fulfill an access control requirement application-wide. Additionally, 

one subject expressed doubt that a workflow diagram could accurately 

represent application control- and data-flow, and so was unconvinced that 
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injecting a correct and complete policy in an actual running application 

would meaningfully affect application behavior. 

Several subjects conceived policy only in terms of access control, and 

not in terms of filtering data flow or feature injection. Given this, the 

specification of an alternate workflow for a control policy (for returning an 

access control error) seemed redundant and unnecessary – they believed 

that access control policies could be stated by predicates amounting to 

guard expressions. One subject did attempt to write a filter policy, but 

expressed it as a predicate on the data flow instead of as a function call 

(despite being familiar with the DSL beforehand). 

More than one subject attempted to create requirements that 

evaluated data not available to the application (e.g., requiring that a user 

have a certificate from an Institutional Review Board). This created confusion 

because he didn’t realize that not all attributes are available at all times, and 

that making a particular attribute available is itself a requirement. (This 

amounts to a requirement derived from a requirement, and is addressed 

further in Section 7.8.3.) 

Ultimately, no subject could consistently express a requirement as a 

DSL-based policy expression. Reasons for the failures included unfamiliarity 

with the DSL expression syntax, an imprecise understanding of the data 

exchanged in an interaction between workflow activities, general disinterest 
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in function calls and alternate workflows, and disinterest in rigorous 

requirement articulation and decomposition. 

Some requirements identified by subjects could not be written as 

policies injectable into the high level workflow, as the requirement actually 

targeted an interaction present only in a workflow refinement, which could 

only be expressed as a decomposition of a workflow activity.  

Figure 69 shows an example of policy injection into a decomposed 

workflow. The figure shows two simple horizontal UML Activity Diagrams 

stacked one on top of the other. The top Activity Diagram depicts a simple 

workflow for creating a new PALMS study (and is not related to the workflow 

described in Chapter 3), where the user creates a study, and then associates 

a data collection device with the study. The bottom Activity Diagram depicts 

a decomposition of the Add Device activity, where a user adds a device by 

listing the available devices, selecting one device, and adding it to the 

study’s device list. The rectangles attached to activity ovals represent data 

passed to or by an activity, and which is also available for use in a policy 

expression. (Note that UML Activity Diagrams have a formal notation for 

activity decomposition, but it is not concise. In Figure 69, slanted lines 

represent activity decomposition.) 

In this example, the stakeholder’s requirement is that only a research 

assistant (RA) should be allowed to add a GPS device to a study, as indicated 

in the cloud marked “1:”. However, the requirement cannot be effected on 
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the high level workflow because the user has not selected any device, and 

the user could select a non-GPS device. Instead, the requirement is effected 

on the decomposed workflow, after the device to be added is known. 

 

7.6.2 Policy Programming 

Knowledge of where in a workflow to inject a policy depends on 

knowing service contracts for each interaction in the workflow (and are often 

under-specified), the workflow control flows and data dependencies, the 

data on which the policy depends, and the intent of the stakeholder. While it 

is plausible that a stakeholder might be able to determine the interaction on 

which to inject policy, and then phrase policies formed according to DSL rules, 

feedback from test subjects indicate this expectation is not realistic for 

domain experts not constantly and intimately involved with PALMS workflows. 

List Devices Select Device Add to Study
User, 
Study, 

Dev

User, 
Study

User,
Study, 
Devs

Create Study Add Device

Return Error

1. Stakeholder 
expresses constraint 

on high level 
workflow activity

2. Constraint is 
re-expressed in 

workflow 
refinement

User, 
Study

1: Only RA can 
add GPS device

2: User   {“RA”} 
&& Dev   {“GPS”} 
è normal flow, 
else error flow

 
Figure 69. Policy Applied to Decomposed Workflow 
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Tool support could empower stakeholders to locate policy injection points 

and properly phrase policy expressions. For example, a tool could have the 

following features: 

 graphically show workflows, and drill down on workflow decompositions 

 show data available on each workflow interaction 

 allow form-based policy specification, where a policy expression is 

automatically composed from form fields 

 show workflows composed onto workflows 

 maintain an inventory of alternate workflows that can be composed 

onto workflows 

While such an authoring aid would benefit all policy programmers in 

writing control policies and filters, it does not address the general problem of 

authoring policy-based feature composition (as described in Sections 4.2.6 

and 5.6.4) or creating novel, stateful coordinated policies (such as the MSoD 

solution in Section 7.4.1). As observed by study subjects, placement of a policy 

does not guarantee that a requirement is completely addressed.  

For these reasons, PDD requires the participation of a policy 

programmer who can both precisely understand application workflows and 

dataflows, and precisely understand the requirements posed by stakeholders. 

A person operating in such a role would have software engineering skills that 

would enable the design, maintenance, and upgrade of DSLs that track 

stakeholder concerns. The policy programmer would interface intimately with 

stakeholders to discover and elaborate stakeholder requirements, and review 

exact policy expressions with stakeholders to verify that policies maintain 

fidelity to actual requirements. (A defensible analogy is the relationship 
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between a business analyst and stakeholders in designing and implementing 

business processes.)  

The policy programmer role exists in contrast to the role of traditional 

programmer, which I define as someone who uses traditional programming 

techniques (e.g., agile and waterfall processes, requirements elicitation, and 

integrated development environments) to create applications that are 

delivered in installments over time. They deliver application functionality slowly 

and often without fidelity to requirements from a stakeholder perspective, or 

deliver applications too slowly to keep up with emerging requirements. 

As described in Section 1.3.3 (including Figure 1), the benefit of the 

policy programmer role is time to market while maintaining fidelity to 

stakeholder requirements. While traditional programming relies on well-

developed tools that generate fast and efficient code and can coordinate 

with model checkers to deliver basic guarantees, policy programming does 

not yet have such support. Consequently, it offers a tradeoff between 

execution time (as described in Section 6.3), strong guarantees (as discussed 

in Sections  1.1 and 7.5), and time to market. Additionally, as policy 

programming tools evolve to provide stronger guarantees, more complex 

policies become more routinely feasible.  

For either the policy programmer or the traditional programmer, 

functional requirements represent opportunities to inject policy (or code) into 

a limited number of interactions, and provide definitive tests that the 
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application works as intended. In contrast, non-functional requirements define 

how a function must perform, and often result in composition of concerns 

onto many workflows. This often requires a thorough knowledge of all 

workflows, and is more likely under the purview of traditional programmers. 

Section 1.1 addresses complimentary approaches to implementing both 

functional and non-functional requirements completely. 

In practice, on the PALMS project, policies are written and injected by 

trained programmers filling the policy programmer role as described above. 

Additionally, while the traditional and policy programmer roles address 

separate development concerns, there exist potential conflicts that are not 

currently addressed within PDD. Workflows and interfaces in traditional 

applications (without policy injection) are free to change responsive to 

stakeholder requirements as a consequence of traditional development 

processes – control and data flows are certified as valid before an application 

update is released, and their consistency and coherency are the responsibility 

of the traditional developer. Considering that a valid policy relies on and 

adheres to the service contract for the interaction into which it is injected, a 

valid policy can be rendered invalid should the service contract change. This 

can happen accidentally (as described in Section 7.1.1) during normal 

development. However, to the extent that service interfaces change rarely, 

the likelihood of a policy becoming accidentally invalid is low. Furthermore, 

because the policy system correlates policies to service interactions, 

detection of an impending incompatibility between new code and existing 
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policy can be detected and reported automatically to an otherwise oblivious 

traditional developer during the application development process. 

7.6.3 Complimentary Approaches 

During the policy authorship survey described in Section 1.1, I found 

that engaging subjects in detailed discussions focused on workflows (as 

Activity Diagrams) and possible policies (as both text and DSL expressions) 

resulted in the elicitation of then-undiscovered tangential and on-point 

requirements that could be addressed either at the base workflow or policy 

level. As a requirement elicitation exercise, a policy walkthrough is similar to 

the lifecycle walkthrough proposed in [221], which builds a secure system via 

a walkthrough of resources and a review of their lifetimes. Although [221] 

focuses on allow/deny decisions related to access control, it can be 

extended to address request and reply filtering addressed by PDD’s pre- and 

post-filter policies. 

Note that Activity Diagrams are not the only notation by which 

workflows can be evaluated. [219] conducts an experiment that evaluates 

Activity Diagrams compared to Event-driven Process Chains (EPCs) used by 

either engineers or end users (i.e., stakeholders) to define a workflow based on 

requirements, or to understand an existing workflow. The authors showed that 

Activity Diagrams performed better than EPCs when used by requirements 

engineers, but could not make a statement regarding their usefulness to end 

users. Sans an interactive exploration tool (as proposed above), this argues for 

the premise of a policy programmer having engineering skills. 
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More than one subject in my study (described in Section 1.1) preferred 

to state both access control and filter policies as predicates that either 

enabled access or constrained data flow. As a language syntax, [222] 

proposes a rule-based, template-oriented declarative language (EARS) to 

express requirements using natural language while avoiding ambiguity, 

complexity, and vagueness. In a workflow setting, these rules would appear as 

preconditions and triggers, which could be further translated to DSL 

expressions appropriate for the requirement domain. As such, this syntax could 

contribute to the policy authorship tool proposed above, and could be 

extended to include feature composition. 

The PALMS system was architected based on the Rich Services 

Development Process (RSDP, as described in Section 5.3), which follows 

principles of Model Driven Engineering that relate requirements to domain 

models, service models, and service orchestrations that define workflows. In a 

robust process, elements of each model are traceable to elements in other 

models. For example, workflows are traceable to the services that comprise 

them, which are traceable to elements in domain models. Both workflows and 

domain models trace to original requirements. These traces can be leveraged 

to assist in determining whether a policy set provides guarantees that critical 

requirement properties are implemented. For example, UMLSec [55] and 

SecureUML [223] both aim to leverage class diagrams annotated with OCL to 

improve application security by demonstrating complete coverage of security 

policies. These techniques apply at application design time, but are available 
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to policy programmers to assist in determining PDD policy placement and 

content. Model-driven security has been studied by a number of groups, and 

includes UMLSec, security aspects, intrusion detection aspects, AVISPA, SMV, 

and Alloy, all of which are compared in [224].  

Because PDD relies on workflows as models of service orchestration, a 

rigorous expression of a workflow (in the guise of a rigorously drawn Activity 

Diagram) provides a combination of data flow specification and activity 

decomposition useful in the precise placement and definition of policy 

expressions. To the extent that an Activity Diagram rigorously represents 

application workflows (as is proposed in [225]) an interactive policy definition 

tool can be used to help generate a policy that maintains the service 

contract of the service interaction into which it is injected, though one has not 

yet been implemented. 

Note that given an Activity Diagram that rigorously represents 

application requirements (as workflows), the automatic decomposition (or 

refinement) of the diagram into workflows that directly map to services (or 

other direct implementations) is not well understood, and is therefore typically 

produced by human programmers in stepwise fashion. However, once such 

refinements exist, [71] proposes a methodology for verifying that the 

refinement meets the pre- and post-conditions of the refined diagram.  

Similarly, for BPMN diagrams, [226] provides a process semantic for 

BMPN diagrams based on CSP [113] (discussed in Section 2.2.3), and 
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demonstrates refinement of BPMN-based models (using CSP refinement 

relations) and automatic behavioral proofs related to such models (using the 

automated FDR model checker). Separately, [227] and [228] adopt an OWL-

based ontological approach to refinement checking as part of larger model-

driven engineering products. 

7.7 Building and Maintaining PDD Applications 

As described in this dissertation, a PDD application is a SOA that 

employs policy injection techniques to compose requirements (as workflows) 

onto existing workflows, where the content of a workflow reflects a separation 

of concerns, and workflow composition reflects the creation of a System of 

Systems. Section 5.3 and 5.4 describe the basic process of framing an 

application as a Rich Service, which captures the concepts of hierarchical 

workflow decomposition in the MDA-compatible RSDP process. 

A major challenge in creating an application addressable by PDD is in 

eliciting, organizing, and modeling requirements as separate concerns, which 

may stand alone or may exist as higher level concerns that combine and 

orchestrate lower level concerns. While RSDP’s service elicitation phase 

assumes that requirements are gathered, factored into a (possibly UML-

based) domain model, and eventually transformed into service-based 

workflows, RSDP does not prescribe any modeling process to achieve this – it 

can be chosen or designed situationally. 
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Modeling processes appropriate for separating requirements as base 

and composed workflows are provided by the Aspect community [229]. The 

AoURN [230] is an aspect-oriented variant of the User Requirements Notation 

[231] (URN) standard that creates a framework that models use cases, NFRs, 

and other concerns, and provides guidelines for concern identification – it 

captures concern dependencies, conflicts, and resolutions, resulting in a 

partitioning of the requirement space that informs subsequent aspect-

oriented design. Similarly, [232] describes a repertory grid technique that 

identifies aspects at the requirements phase based on analysis of terminology 

and goal descriptions, and [233] describes the EA-Miner tool-based approach 

for automatically extracting aspect-oriented requirements models from 

natural language text in requirements documents. 

Insofar as MDA envisions and supports the translation of requirements 

models into domain models, RSDP incorporates this flow as an intermediate 

step towards a service-oriented workflow model. Existing aspect-oriented 

techniques [234] [235] support modeling requirements separable from a base 

model, yet composable onto it, and [108] demonstrates interactive testing 

and verification of such models. Encapsulation-oriented design rules [104] can 

assist in formulating base workflows and composable aspects so as to 

maintain independence that allows both to evolve independently. As a 

refinement and extension of these techniques, [236] demonstrates a 

methodology for expressing software product lines as orthogonal concerns in 

the FOSD domain.  
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The COMPASS [237] approach combines aspect-oriented requirements 

elicitation and domain modeling (as application architecture) into a single 

process, where requirements are expressed in an aspect-oriented 

requirements specification language (RDL) and transformed into the 

COMPASS architectural definition language (AO-ADL). Under the RSDP 

process, the AO-ADL model is manually transformed into concrete services 

and workflows as Rich Services. 

Note that in the RSDP process described in Section 5.3, crosscutting 

concerns that are discovered during the requirements elicitation phase are 

carried into subsequent phases, and result in the creation of RISs injected into 

crosscut service interactions. PDP presents and encourages an additional 

option: coding crosscutting concerns as workflows selected by injectable 

policies. Aspect-oriented requirements extraction techniques formalize and 

improve the detection of such crosscutting concerns as compared to ad-hoc 

methods. Because crosscutting concerns are coupled to base workflows via 

restrictive and well-defined interfaces, separate concerns can be developed 

in parallel RSDP instances, with the expectation of runtime linkage via injected 

policy (as in Section 5.6.4). During any RSDP execution, it is quite possible that 

developers would discover conceptualization errors and hidden 

dependencies, necessitating changes in the base workflow, injected 

workflow, or both. As a spiral development process, RSDP tolerates this well, 

providing a graceful path looping back to incremental refactoring and 
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remodeling. Changes that affect workflows (as services) in development in 

interdependent RSDP efforts can cause similar looping within those processes.  

7.8 Gaps and Insights 

Section 2.7.6 identifies a number of gaps in existing contributions that 

must be filled in order to implement the PDD vision. Most (but not all) of these 

gaps are addressed by the methodology presented in Chapter 4 as realized 

by the case study in Chapter 5 and evaluated in Chapter 6. This section 

discusses PDD’s successes and shortcomings relative to those gaps. 

The identification of policy injection sites is addressed as an 

implementation issue via the Interaction Repository in Section 5.6.2.1, while the 

actual runtime injection of policy is addressed in Sections 4.2 and 5.6.3, and is 

evaluated in Section 6.3. 

Sections 4.3 and 5.5.4 describe how state is composed onto a workflow 

and how it can be leveraged by injected policies. They also describe state 

maintenance according to other lifecycles, including session-oriented and 

application-oriented (i.e., global) scopes.  

The composition of multiple policies onto a single injection site is 

performed via composition policies, as described in Section 4.2.7 and 

implemented in Section 5.6.2.2.4 as a reflection of the structure of PALMS 

community. 

The ability of composed workflows to act as base workflows for further 

composition is inherent in the PDD policy injection theory described in Section 



396 

 

4.1.1.2 and demonstrated in Section 5.6.4. The combination of this 

composition capability with PDD’s context system results in an understanding 

of composed workflows as Systems of Systems, where both the source and 

target workflows can be specified, developed, and maintained separately. 

This results in the scalability and reusability of requirement sets and the 

development efforts that implement them, consistent with the overall goals of 

SOAs. 

The ability to guarantee a consistent relationship between policy state 

and policies themselves has been addressed in Section 7.4.6, and remains an 

unfilled gap in PDD (and other policy evaluation systems). 

7.8.1 Gap in Service Contract Checking 

As described in Section 4.1.2, PDD requires that injected policies 

adhere to the service contracts defined for a service interaction. Given that a 

service contract defines the validity of input channels consumed by a service 

and output channels produced by a service, failure of a policy to adhere to a 

service contract can have unpredictable (including erroneous) results. 

(Additionally, adherence to service contracts is no guarantee that a policy 

actually implements functionality faithful to a requirement.) 

Under PDD, policy adherence to a service contract means that the 

policy decision and the workflow it selects must consume the same input 

channel (i.e., input message) as the target service, and the selected workflow 

must produce the output channel (i.e., output message) expected by the 
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source service (per Section 4.1.3). Under PALMS, channels consist of Java 

objects, so a service contract specifies channels consisting of typed Java 

objects. 

The description of a service contract in PALMS is simplistic (as described 

in Section 5.6.2.1) and functional, but cannot be used to guarantee that a 

policy fulfills a service contract. The PALMS service contract specification 

identifies the type of a valid response message acceptable to the source 

service in a simple request/reply interaction pattern. More complete 

specifications would represent both the source and target services, and might 

include message types (as a syntactic interface), channel definitions (as a 

primitive semantic interface), and interactions (e.g., MSCs, as a more context-

laden semantic interface), each leading to different guarantees. (Interaction 

specifications would cover not only interactions involving a given service pair, 

but a history of other interactions that lead to it, and could also depend on 

the actual channel contents for a particular interaction.) 

Sans any contract checking, it is up to a policy itself to verify that its 

input channel is valid for its decision and the service it returns, and that the 

selected service produces a valid output channel. This is a weak guarantee. 

In strongly typed languages (e.g., Java), syntactic guarantees for 

injected functions (e.g., functors) would be enforced by a compiler for both 

input and output channels (based on function signatures), and model 
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checking would demonstrate semantic assertions (based on channel 

properties, represented by actual parameter values). 

Achieving syntactic guarantees for PALMS policies would require that 

service interface specifications (e.g., Java message types) be specified for 

policy decisions, service alternatives, and source and target services in base 

workflows. Static (compiler-style) contract checking can tentatively evaluate 

the compatibility of a policy with a service interaction at policy definition time, 

though a more reliable check would occur at runtime during policy injection. 

Semantic checking can be performed at runtime as dynamic model 

checking that compares service interactions (including policy injections) to an 

interaction specification [238].  

A strongly typed language provides guarantees based on inspection of 

function source, which can reveal whether a function plausibly meets a 

syntactic interface through inferences that typed input channels can 

generate typed output channels. The XQuery compiler (that processes 

XQuery-based PALMS policies) provides typed function interface guarantees 

pertaining to XML structures (which differentiate between a string, a list of 

string, or a tree of nodes), but not Java object types (which describe PALMS 

messages). So, there is no simple way to verify that an XQuery-encoded 

decision or selected workflow adheres to service interface specifications. 

Alternatively, extending strong type checking onto a policy (including 

the decision and alternate workflows) can be achieved by changing the 
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policy language to one whose structure and semantics align with PALMS 

messages (i.e., Java objects) and includes strong type checking, yet fulfills the 

criteria that led to the selection of XQuery as PALMS’ policy language (i.e., 

message processing, runtime injectability, and accessibility to stakeholders 

and policy programmers, per Section 5.6.1). One possibility is Groovy, which 

accepts and emits Java objects. Given the availability of embeddable Java 

compilers, a combination of Java and a higher level macro facility may also 

suffice for this. Using Java would admit additional pre-existing model checking 

systems that could guarantee semantic properties of decisions and alternate 

workflows. Alignment of the policy language with interaction messages would 

also address substantial performance penalties incurred through the use of 

XQuery, as discussed in Section 6.3.7. 

PDD does not address how service contract checking might be 

performed, and PALMS does not implement it -- this represents future work. 

7.8.2 Gap in Testing and Fidelity Assessment 

As a methodology, PDD offers means for framing requirements as 

policies and injecting them upon unprepared workflows. However, PDD gives 

little guidance in the testing and verification of such policies either as to their 

fidelity to requirements or their relationship to base workflows. 

As described in Section 7.5, a number of modeling and simulation 

techniques can be adapted to help demonstrate basic policy guarantees 
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such as liveness and reachability, provided that policy decisions and 

workflows are modeled at the interface level.  

However, the fidelity of a collection of policies to a requirement is left 

unaddressed. Model Driven Engineering techniques have proven effective in 

defining and refining requirements leading to application architectures [8] 

[239] [240], including RSDP as described in Section 5.3. 

While such techniques can be used or adapted to produce and test 

policies, as to PDD, they represent future work. 

7.8.3 Requirement Feedback Loops 

A variant of the problem of defining and realizing requirements occurs 

when attempting to inject a policy onto a workflow, where the policy must 

rely on information not available to the workflow or must produce information 

not handled by the workflow. Examples of this are described in Sections 5.6.2.1 

and 1.1, which provide signals that the requirement implemented by the new 

workflow interacts with base requirements, and implies that the base 

requirements (and the workflows that implement them) are themselves 

incomplete and must evolve. Such requirement feedback loops are within the 

purview of MDE techniques described above. 

7.8.4 Implementation Platforms 

As described in Section 1.3.2, taking advantage of late decision 

binding requires that workflow interactions be exposed for interruption and 

modification at runtime. PDD is framed in SOA terms because SOAs provide 
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these capabilities at a conceptual level, and ESB frameworks (as platforms for 

SOA execution) enable their realization. However, to the extent that service 

interactions can be exposed and interrupted in other frameworks, PDD’s 

policy injection can provide composition value in a workflow context. When 

Web Services are mediated by SOAP-based remote procedure calls (RPCs), 

and are implemented using proxies at both the source and target service, 

PDD can be implemented by replacing both the source and target proxies 

with new proxies that pass parameters as part of an interservice message, with 

the target proxy also calling a policy evaluator service (as in Sections 4.3 and 

5.5.4). Unlike implementation at the ESB level, this requires that developers 

have control over the RPC proxy libraries linked to a Web Service, and this is 

often not the case. Implementing PDD under Web Services is beyond the 

scope of this dissertation. 

7.9 Summary 

In this chapter, I compared PDD to a number of composition, context, 

and policy evaluation approaches, and discussed a number of issues bearing 

on a robust deployment of policy within real world environments. 

In Section 7.1, I compared PDD to Aspect Oriented Software Design 

and Policy-based design, and observed that both methodologies apply 

crosscutting concerns at the program design and compile stage. Furthermore, 

both methodologies focus on optimization of programming processes and 

concerns, and not on mapping of requirements onto workflows. Therefore, 

they do not directly support the runtime policy injection, workflow context 



402 

 

support, and feature injection support provided by PDD for general 

requirement composition onto workflows. 

In Section 7.2, I compared PDD’s context management features to 

state management in important distributed processing paradigms, including 

Struts, REST, and AJAX. In each case, I demonstrated various degrees and 

types of support for workflow and distributed state, showing that none of these 

paradigms support these capabilities sufficiently to enable runtime-based 

workflow composition. 

In surveying prominent workflow and orchestration languages and 

systems (in Section 7.3), I demonstrate they generally provide no functionality 

that enables runtime workflow injection, they are no scalable, they provide no 

workflow context support, or all three. Consequently, they are not well suited 

for runtime composition of stakeholder requirements onto existing workflows.  

I compared PDD to important features in a number of policy evaluation 

systems in Section 7.4. Whereas PERMIS is a well-developed policy evaluation 

and management system, it supports a PDP/PEP policy model that integrates 

policy evaluation with applications at the source code level at the time of 

development and compilation. While xESB allows the composition of policy 

onto running systems, it provides no support for requirement-oriented workflow 

injection. Both PERMIS and xESB evaluate policies as first order logic 

expressions, and not as DSLs designed to enfranchise stakeholders.  
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In Section 7.5, I surveyed various program verification techniques and 

strategies as applied to policy and policy-injected workflows, and discussed 

additional work needs to be done to enable validation of policy-mediated 

workflow injections. 

Finally, in Section 7.6, I presented a vision of a policy programmer 

whose activities focus on realizing stakeholder requirements at runtime, where 

such requirements can be expressed as the policy-based composition of 

workflows onto base workflows, given a knowledge of (but not the ability to 

change) interactions in base workflows. This role contrasts with the definition of 

a traditional programmer, who is free to realize requirements as new workflows 

with new service interactions, implemented at the source code level, with 

attendant deployment delays and risks. 
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CHAPTER 8 

SUMMARY AND OUTLOOK 

In the previous chapters, I presented a new development 

methodology called Policy Driven Development (PDD), which is my approach 

to designing complex systems (particularly cyberinfrastructures) so as to 

improve their evolvability over time. By nature, a cyberinfrastructure serves a 

community of multiple collaborating stakeholder groups, each with a stream 

of different requirements that must be met quickly in order for stakeholders to 

remain engaged and for the cyberinfrastructure to thrive. Paradoxically, as 

the cyberinfrastructure becomes larger and more complex, requirement 

realization and re-deployment require more time, potentially creating long lag 

times between the articulation of stakeholder requirements and their 

realization in delivered systems. These delays can be traced to the practice of 

binding requirements into an application early in the development process 

(so-called early binding), which is common to many current design and 

programming techniques. 

PDD seeks to improve cyberinfrastructure evolvability by dramatically 

reducing the time needed to realize stakeholder requirements. PDD’s overall 

strategy starts with viewing a cyberinfrastructure as a collection of base 

workflows that implement partial behaviors, and viewing a requirement as a 

collection of workflows that also implement partial behaviors and can be 

conditionally composed onto the cyberinfrastructure. Requirements can 
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represent constraints on workflows, concerns that crosscut multiple 

requirements (and workflows), or standalone applications that implement 

substantial feature sets. As such, requirement composition represents a System 

of Systems integration, where both sets of workflows represent partial 

behaviors composed together.  

A conditional composition involves a decision and a set of alternative 

workflows, and is called a policy. The two key insights of PDD are a) to express 

a policy in a Domain Specific Language (DSL) custom-designed to align with 

the stakeholders’ view of a requirement, and b) to inject a policy into a base 

workflow at runtime (so-called late binding). PDD proposes a new 

programmer role (called policy programmer) that designs a DSL responsive to 

stakeholder requirements, collaborates with stakeholders to express 

requirements as policy, and injects policies into an executing system. 

Critically, PDD provides mechanisms that a) enable the composition of 

multiple policies (representing requirements tendered by independent 

stakeholders) onto the same base workflow, b) enable injected workflows to 

function as base workflows onto which new workflows can be composed, and 

c) enable related policies to maintain and share state.  

An application built using PDD principles can be expressed as a Service 

Oriented Architecture (SOA), where workflows are represented by service 

orchestrations, and all service interactions are subject to policy injections. 
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My contributions to PDD are described below, and include: 

 An engineering approach to the realization of stakeholder 

requirements in SOA-based cyberinfrastructures (CIs) via runtime policy 

injection 

 A demonstration of a SOA-based CI (PALMS) that enables runtime 

policy injection 

 A demonstration of the creation and use of Domain Specific 

Languages (DSLs) to articulate injectable policy 

 An evaluation of runtime policy injection (in the context of PALMS) 

 An evaluation of the use of DSLs (in the context of PALMS) 

 Insights for improving the performance of injected policies and 

widening the stakeholder audiences they address 

In Chapter 2 of this my dissertation, I first surveyed the means by which 

choice (as policy) and workflow composition are represented in existing 

contributions, including computational models, software development 

methodologies, implementation mechanisms, and pertinent pattern sets. 

Chapter 2 presents an analysis of gaps in existing contributions that must be 

addressed in the course of realizing PDD. 

Chapter 3 presented the GetStudyList workflow as a running example 

drawn from the PALMS case study in Chapter 5 and used to motivate and 

illustrate features of PDD beginning in Chapter 4. 

In Chapter 4, I presented a Rich Service-based foundation that 

addresses the key PDD issues responsive to the gaps identified in Chapter 2. At 

a high level, I defined policies in the abstract, defined semantics for a service 

interaction, and defined the semantics for the injection of policy into a service 

interaction. I distinguished between three types of policies, where control 
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policies influence control flow, filter policies customize data flow, and 

composition policies determine the effective control or filter policy when more 

than one of these policies is defined for a particular service interaction. Finally, 

I defined a context system that composes workflow-based data flows – the 

dual of control flows – to enable policies to maintain state valid across a 

workflow in a distributed (and scalable) system. 

As a real world demonstration of PDD foundations, Chapter 5 

presented the PALMS Cyberinfrastructure (PALMS) as a Rich Service 

implemented on an Enterprise Service Bus (ESB) and supporting a worldwide 

community of researchers. PALMS implements DSLs based on XQuery syntax 

and using XQuery-based libraries, with DSLs for access control, policy 

composition, auditing, and general feature injection. I also described the 

specific ESB-based message interception mechanisms by which PALMS 

policies are injected into PALMS workflows, including how interaction and 

policy repositories function to deliver actionable policy during workflow 

execution, how policies are evaluated and enacted in a service interaction, 

and how the context system is implemented to support workflow state for the 

duration of a workflow and for other lifecycles. 

In Chapter 6, I evaluated the PALMS PDD implementation along key 

performance dimensions, including contributions to evolvability, ease of 

stakeholder use, and execution speed. PALMS’ PDD implementation 

demonstrated substantial productivity gains (10x) in the maintenance of 

PALMS workflows (via OOP techniques) by making use of both composed 
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workflows and data flows. I also demonstrated a process whereby a key DSL 

was evolved to enable greater synergies between stakeholder and policy 

programmer, thereby enabling easier and more fluid access control policy 

maintenance. Finally, I reported on a number of time tests that profiled policy 

execution in common scenarios. They demonstrated acceptable execution 

costs for typical combinations of control policies, filter policies, and message 

payloads, and they revealed high costs for processing complex message 

payloads (which I address further in Chapter 6 and later in this chapter). 

In Chapter 7, I compared PDD (and its PALMS implementation) to the 

existing contributions identified in Chapter 2, particularly regarding how it 

addresses the technology gaps I identified. I found that PDD filled gaps 

relating to workflow injection and workflow state management, while leaving 

policy modeling, secure deployment, and verification issues unaddressed as 

further discussed in Section 8.1. I described how a user study informed my 

definition of the role of the policy programmer as distinct from a stakeholder 

who defines and injects policy directly. In addition, I surveyed a number of 

approaches that are complimentary to PDD and which can be used to refine 

requirements and workflows, and I demonstrated critical properties of 

particular workflow compositions, including correctness and completeness at 

either the model or code level. 

Together, these results demonstrate that PDD techniques can enable 

the rapid composition of requirements (represented by policies) onto 

applications designed and implemented according to PDD principles, 
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thereby dramatically improving the evolvability of the overall system, inuring 

to the benefit of existing and emerging stakeholder communities. However, 

insofar as policy programming opens a new (and parallel) front in the 

relationship between programmers and stakeholders, it presents challenges to 

process, design, and code management; to verification; and to secure and 

consistent deployment as discussed in Section 8.2. 

 

As shown in Figure 70, the remainder of this chapter is devoted to describing 

the gaps addressed and unaddressed in this dissertation (Section 8.1) and the 

outlook for further PDD development (Section 8.2). 

8.1 Gaps 

In Chapter 2, I summarize my analysis of existing contributions that 

might bear on a comprehensive technical solution to cyberinfrastructure 

evolvability using a late binding strategy. In this section, I reprise the summary 

as a roadmap to such a solution, and as a way of measuring the contribution 

of this dissertation towards that solution. 

Gaps

Outlook

Section 
8.1

Section 
8.2

Legend

Expained 
in

 
Figure 70. Chapter 8 Flow 
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As shown in Table 11, of the eight gaps I identified, PDD solves the five 

that pertain to the foundations (as described in Chapter 4) and mechanics 

(as described in Chapter 5) of policy definition and injection. Additionally, 

PDD demonstrates the use of DSLs as a means for engaging and enfranchising 

stakeholders directly in the policy programming activity.  

The remaining gaps (and other issues) are discussed in Section 7.8 and 

are further addressed in Section 8.2. 

8.2 Outlook 

I began this dissertation with a look back at the ancient SOARS system, 

which played the role in 1975 that a modern cyberinfrastructure would play 

today. I described how SOARS was functional but incapable of evolving 

quickly, and how programmers made many decisions that were more 

appropriately made by domain experts (as stakeholders). Since then, the field 

of software engineering has produced significant advances in disciplines, 

Table 11. Gaps Addressed in this Dissertation 

Addressed Gap 

Yes Identification of policy injection site at runtime 
Yes Injection of policy at runtime 
Yes Tracking workflow-based policy -centric state 
Yes Composition of multiple policies onto a single injection site 
Yes Enabling composition onto injected workflow 
No Verification of interface and semantic compatibility between 

policy and base workflow 
No Incremental testing and proofs that policies implement 

requirements 
No Enabling a consistent relationship between state and policy 

across policy deployments 
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techniques, methodologies, and tools (as described in Chapter 2) responsive 

to stakeholders’ increasingly complex requirements while reducing software 

development risk.  

As large systems evolve from being productivity tools into being the 

substrate on which communities develop, they grow to reflect the 

relationships between stakeholder groups comprising these communities. 

Ultimately, I believe that large software systems (e.g., cyberinfrastructures) that 

support dynamic and interconnected communities will coevolve with the 

community to function as vehicles for the integration of complex systems as 

Systems of Systems (SoS). To the extent that such systems can evolve quickly 

and reliably responsive to new and changed stakeholder requirements 

(including new value drivers), these systems can support the vitality of such a 

community. Conversely, when they react slowly or non-responsively, they 

threaten community vitality. 

In this dissertation, I have defined and demonstrated the Policy Driven 

Design (PDD) methodology, which supports the design and implementation of 

large scale systems able to respond to new and changing stakeholder 

requirements quickly and accurately. By enabling the composition of 

requirements (as workflows) at runtime via policies articulated using DSLs, PDD 

enables the formation and transformation of complex systems, and it 

encourages stakeholders to participate directly in requirement realization that 

produces rapid system evolution.  
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However, PDD is young and has yet to adopt processes and 

mechanisms that enable robust end-to-end guarantees required in a mission-

critical industrial setting. The remainder of this section is devoted to discussing 

opportunities for extensions and improvements to PDD that could enable 

PDD’s use in this environment. 

PDD policy authorship and injection represent a separate and parallel 

activity relative to traditional system development processes. This presents 

significant challenges in maintaining coherence between the PDD-based and 

traditional development tracks. These challenges can be addressed at both 

development and deployment time. Chapter 7 identifies and discusses issues 

in maintaining a priori a semantic match between these tracks by focusing on 

a shared and consistent view of service contracts via Model Driven 

Development (MDD) and language definition techniques. It discusses similar 

issues at deployment time via a combination of MDD, modeling, model 

checking, and simulation techniques aimed both at producing policies that 

align with requirements and demonstrating the fidelity between requirements 

and policy execution. PDD must leverage these techniques in order to 

demonstrate end-to-end fidelity to requirements – there is much work to be 

done here. 

Similarly, consistency issues arise across multiple generations of a single 

policy collection, particularly where policies are stateful, and the states’ 

semantics are not consistently observed from one policy generation to 

another. This is discussed in Chapter 7, as are issues pertaining to secure and 
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consistent policy deployment. The importance of these issues increases as a 

system scales into a highly distributed environment and policy programmers 

become adept at requirements discovery and injection, while ignoring the 

complexities of application distribution that systems and application 

programmers routinely manage. There is much work to be done here. 

While Chapter 7 describes the process of building an application under 

PDD principles, this dissertation does not specifically address the process or 

prospects for using PDD principles on large scale systems not created using 

PDD principles. Additionally, real world Systems of Systems are often 

assembled from not only new (possibly PDD-observant) components, but from 

a mix of legacy services and other non-PDD services. As a practical matter, 

this common case must be addressed, perhaps using the implementation 

platform discussion in Chapter 7 as a point of departure. 

In Chapter 6, I evaluate a group of performance-related hypotheses 

relative to tests performed on the PALMS implementation of PDD. While timings 

indicate that PALMS’ PDD implementation performs acceptably well for 

typical combinations of control policies, filter policies, and message payloads, 

they reveal high costs for processing complex message payloads. The primary 

cost driver is the size and complexity of messages exchanged during a service 

interaction intercepted by a policy evaluation – such messages incur 

significant translations costs between Java object form (suitable for service 

interactions) and XML form (suitable for XQuery-based policy evaluation). By 

harmonizing interaction message formats with the underlying policy execution 
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language, the costs of policy evaluation for these cases can be better reflect 

their benefits. There is much work to be done here. 

As designed, PDD contemplates policy injection on service interactions 

where the participating services can be uniquely named. While this injection 

criteria is sufficient for many cases, other criteria can be leveraged to refine 

the injection decision for greater specificity, including a history of previous 

interactions and an evaluation of channel history, as described in Chapter 7. 

Similarly, while the result of a policy evaluation (as described in Chapter 4) is 

defined as a workflow, the PALMS implementation of PDD returns only a 

service, which acts as a workflow proxy that manifests an actual workflow 

through decomposition. Under PALMS, it is difficult for a policy to calculate 

and return a workflow dynamically – PALMS provides no way to express a 

workflow object or to execute one directly. Furthermore, if it did, identifying 

policy injection points within the dynamic workflow would require further 

study, as such workflow interactions might not be identifiable in advance, 

when policy authorship occurs. This limits deep SoS composition available for 

non-dynamic services, and suggests a need for pattern-based injection 

criteria based on behavior or workflow structure. Additionally, the possibility of 

executing dynamic workflows may result in revisiting the choice of using an 

ESB to orchestrate PALMS’ workflows, as ESBs (so far) do not execute dynamic 

routings, and it may make little sense to have an execution engine for base 

workflows distinct from injected workflows. These considerations provide food 

for thought in choosing a next generation PDD execution platform – such a 
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project may also encompass the choice of message format as presented 

above. Answers to both questions may arise out of combining emerging 

functional programming-based frameworks such as OpenRichServices [241] 

with yet-to-be-developed workflow pattern matching facilities. There is much 

work to be done here. 

Insofar as policies represent separate concerns, maintaining policies as 

separate, composable entities removes the risk of entanglement and 

scattering represented in early binding approaches. However, PDD does not 

eliminate entanglement and scattering – it relocates them to the composition 

policy level, which seeks to resolve execution ordering and administrative 

priority issues when two policies are injected into the same service interaction. 

Significantly, composition policies serve to encapsulate this entanglement so it 

can be addressed definitively as a separate concern. Additionally, while 

scattering still occurs when elements of a policy collection are injected into 

different interactions, managing the consequences of scattering can still be 

done at the composition policy level. Ultimately, PDD encapsulates the issues 

of entanglement and scattering, but does not eliminate them -- 

understanding management of entanglement and scattering is an area for 

further study. 

In summary, the PDD methodology and my experiences in using it to 

build a real-world cyberinfrastructure strongly suggest the value of building 

complex systems as flexible and highly evolvable Systems of Systems by 

leveraging a late binding paradigm to achieve composition at runtime. While 
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stakeholders in a modern SOARS system would reap benefits from 

participating in policy programming via quick and accurate requirement 

realization (especially assuming the improvements to PDD described above), 

the approach has potential to pay future dividends should the university align 

itself with other institutions either virtually, ephemerally, or both, where PDD 

principles can be employed to realize computing systems that parallel and 

support inter-institutional relationships. 

This scenario suggests that the true value of PDD’s late binding 

approach is to preserve and unleash value that is currently lost in non-PDD 

systems due to choices made prematurely via early binding. 
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APPENDICES 

APPENDIX A – Graphical Notations 

In this dissertation, I use both standard notations and ad-hoc notations 

to convey important relationships. In this appendix, I explain these notations. 

A.1.1 Unified Modeling Language 

The Unified Modeling Language consists of modeling standards defined 

and maintained by the Object Management Group [242] (OMG), which 

manages standards useful in the practice of Model Driven Architecture [171] 

(MDA)5. Over time, the OMG has published a number of UML versions, with 

each version defining a number of modeling diagrams, their form, and their 

semantics. Each diagram can be used to model some aspect of a software 

engineering project. According to [243], UML v2.2 contains 14 types of 

diagrams covering both application structure and behavior. In this 

dissertation, I use UML class diagrams to show structural relationships, and both 

UML sequence and activity diagrams to show behavior. The following sections 

give brief tutorials on my use of these diagrams, which uses only a subset of 

UML. The full UML language offers much richer features and semantics useful 

outside of this dissertation. A more extensive tutorial is presented in [40], and 

UML style tips are presented in [244].  

                                                 
5
 OMG defines MDA as “an open, vendor-neutral approach to the challenge of business and 

technology change” … which “separates business and application logic from underlying platform 

technology”. 
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Note that common use of UML varies from the very informal (back-of-

napkin) to the very formal (directly executable). In this dissertation, I use UML 

informally as a way of defining relationships for the sake of discussion, but not 

formally enough to use in the context of other formal models. 

Note that UML allows the use of color in class diagrams, but allows 

each diagram to define its own color scheme. In my diagrams, I use color to 

group related elements. 

A.1.2 Class Diagrams 

A class diagram depicts a collection of related entities and the 

ontological relationships between them, and enables reasoning about the 

entities and their relationships.  

In my class diagrams, an entity is an abstraction representing an 

information container and a collection of pertinent methods. It may be 

possible to instantiate the entity, or the entity can be used as a component of 

another entity’s definition or its content. Class diagrams are commonly 

understood in terms of Object Oriented Programming (OOP) principles, where 

an entity equates to a class, and relationship is represented by an association 

that may relate two or more classes. Examples of OOP associations include 

subclassing, referencing, and encapsulation, all of which are binary 

relationships. Domain-specific associations are often binary, though they can 

be n-ary.  
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As shown in the class examples in Figure 71, all classes have names, 

and may have data elements and/or methods. They are represented visually 

by rectangles, with separate regions for class name, data elements, and 

methods – empty regions can go undisplayed. Classes can be adorned with 

stereotypes, which endow class properties and behaviors that are defined 

elsewhere. 

 

A number of association examples are shown in Figure 72. Binary 

associations are displayed as lines between classes, where classes play roles 

within an association. For relationships defined under OOP, lines have different 

appearances to indicate different kinds of associations. Figure 72 shows a 

number of OOP relationships: the Cat and Fish classes are subclasses (i.e., 

kinds) of Animal; a Cat is associated with (i.e., references) a Bed (though the 

Bed is not part of the Cat); and a Cat has (i.e., contains) Legs, each of which 

are part of the same Cat. 

An association can have a descriptive name, and when a class fulfills a 

role in an association, the class can be annotated with the name of the role it 

Animal Cat Fish

name:string + swim(): void

No data, 
no methods

Some data, 
no methods

No Data,
some methods

<milkmaker>

Cow

No Data,
no methods,

with stereotype

 

Figure 71. Styles of UML Class Entities 
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plays. In the example, Eats is an association that applies to the Cat (as 

Predator) and Fish (as Prey). 

If an association places a constraint on the number of instances that 

can fulfill a role, the association can be annotated with a multiplicity 

indicating the constraint (with “*” indicating any number, including zero). In 

the example, many Cats can eat a Fish, a Cat can eat many Fish, and a 

Cat can have between zero and four legs. 

Finally, if a role is oblivious to other association roles, the line that 

connects to the class ends in an open arrow. In the example, the Bed is 

oblivious to the Cat. 

 

For n-ary associations, lines are connected through a diamond, and is 

shown in Figure 73 as an Ecosystem relationship between a River that flows, a 

Cat that sips water, and a Fish that swims in the water. 

 
Figure 72. UML Associations 

Animal

Cat

LegBed

Fish

+ swim() : void

0..4

+Predator

* Eats

+Prey
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An association class is a combination of an association and a class. It 

not only defines relationships between roles, but also defines data and 

methods pertinent to the relationship. Figure 73 shows that the Fish’s Swim 

relationship is adorned with a Vector indicating direction and speed. 

 

A.1.3 Sequence Diagrams 

A sequence diagram depicts a collection of roles and the interactions 

between them, and enables reasoning about the entities and their 

interactions.  

In my sequence diagrams (exemplified in Figure 74), a role represents 

an instance of a class (shown as a rectangle) coupled with a lifeline (shown as 

a drop-down line terminate by a black mark). The lifeline represents time, 

which starts at the top of the line and proceeds toward the bottom. Two roles 

can interact if one class (i.e., the source) is capable of sending a message 

and the other class (i.e., the target) is capable of receiving it. In this context, a 

 
Figure 73. n-ary Association and Association Class 

Cat

Fish

Riv er

Ecosystem

Vector

- direction:  polar

- speed:  int

Swims

Flows

Sips
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message represents a typed communication (including a structured packet, a 

parameter list, or other data-laden entity). Interactions are shown as events 

positioned on the lifeline, thereby establishing interaction ordering and 

proving a basis for discussions of causality. 

As shown in Figure 74, the name of the role is the same as the class it 

represents, and can be qualified by an instance identifier for the sake of 

differentiating roles having the same class. An interaction is represented by a 

directed line originating at a source role and terminating at a target role, and 

intersects a lifeline below all previous interactions. Different line patterns and 

arrows represent assumptions regarding message transmission and relationship 

to other messages. In my sequence diagrams, a solid line with a solid arrow 

indicates a request, and a dashed line with an open arrow indicates its reply. 

A solid line with an open arrow indicates an asynchronous request, which may 

or may not have a reply. I annotate each interaction with the message 

contents it represents. 

Figure 74 shows Role1 sending a request Msg1 to Role2 (at the top), with 

Role2 replying Resp1 (at the bottom). After the request, and before the reply, 

Role2 sends a request to Role3. 

A sequence diagram that contains mutually exclusive sequences of 

messages groups alternative sequences in compartments in an Alt box, where 

one compartment is separated from another by a dashed line. This is shown in 
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Figure 74 as Role3 choosing to return either Resp2a or Resp2b, depending on 

some criterion evaluated by Role3.  

 

A.1.4 Activity Diagrams 

An activity diagram depicts a workflow as a collection of activities 

related by flowing data, and enables reasoning about the control flows and 

data flows. At a high level, an activity diagram begins, performs processing 

(via one or more activities), and ends. Activities themselves can be 

decomposed along the same lines. 

Figure 75 shows a simple activity diagram that models a dog grooming 

service. The service begins when the dog arrives (marked by a black initial 

node) and ends when the dog leaves (marked by a hollowed final node). The 

service itself accepts an object (i.e., Dirty Dog) and produces an object (i.e., 

Done Dog), and exists as a decomposed activity that transforms input to 

Role1 Role2

Msg1

Resp2b

Role3

Resp1

Msg2

Resp2aAlt

 

Figure 74. Sample UML Sequence Diagram 
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output. The lines connecting nodes and activities are directed to indicate 

flow, and implicitly carry an object that is supplied by the source and 

consumed by the target. For clarity, the type of object produced or 

consumed can be articulated by joining a parameter pin rectangle, a line, 

and an activity, then labeling the pin with the type of object type (e.g., the 

Dirty Dog and Done Dog pins). 

My activity diagrams model time in simple terms – there is no time 

quantum, and when an object is produced by a source activity, it is 

consumed by a target activity. An activity diagram defines a workflow that 

can be instantiated many times, where each instance executes 

independently of other instances, maintains its own state, and processes its 

own data.  

The Dog Grooming activity consists of a number of activities that 

consume and produce objects (in this case, a dog). A directed path can be 

qualified by a guard expression (displayed within brackets, e.g., Healthy vs 

Unhealthy), and can be forked into multiple paths that execute 

independently (displayed as a black bar that consumes an object and 

duplicates it along independent flows, e.g., the Wash/Dry, and Clip Nails 

paths). Independent paths can also be joined (displayed as a black bar that 

consumes an object on any of several paths, and forwards it to a downstream 

activity).  
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A.2 Workflow Sketch 

A workflow sketch is my own notation for compactly representing 

interactions between activities (in a workflow model) or, equivalently, services 

as representations of activities. Activities are represented by named 

rectangles, and messages are represented by directed lines, as shown in 

Figure 76. A request/reply pattern is indicated by two services sharing two 

 

Figure 75. UML Activity Diagram 

Dog arrives

Dog Grooming

Inspect

Clip Nails

Wash

Dry

Charge 

Money

Dog Leaves

[Healthy]

Done Dog

Dirty Dog

[Unhealthy]
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directed lines (as shown for Activity1 and Activity2). Each message line 

(called an interaction) is marked with a numeral, which is unique to the 

sketch.  

When appropriate, a sketch can contain a legend that correlates a 

message line with message content, thereby indicating the data exchanged 

between two activities. For example, interaction ❷ passes a message called 

Msg2, which contains values c and d. 

 

Note that a workflow sketch shows only activity interactions, but does 

not specify the composition or decomposition that produced those 

interactions. For example, in Figure 76, each of the three activities could be 

elements of a single workflow. It is also possible that Activity 1 decomposes 

into Activity 2 interacting with Activity 3. In a workflow sketch, interactions are 

the focus of the discussion, and not the structure of the workflows that 

produced the interactions. 

Activity2 Activity3

❹ Resp1(g,h)
❸ Resp2 (e,f)

Activity1

❶ ❷

❹ ❸

❶ Msg1(a,b)
❷ Msg2(c,d)

 

Figure 76. Workflow Sketch 
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APPENDIX B Existing Contributions 

In this dissertation, I compare facets of PDD to existing contributions, 

which can be categorized as computational models, software development 

methodologies, mechanisms, and patterns. In this appendix, I introduce these 

contributions so as to position them in a discussion on choice, workflow 

specification and composition (as injection), and state management, 

verification and modeling, and deployment elsewhere in this dissertation.  

B.1 Models of Computation 

Computational models are generally not intended as programming 

languages used to author and deliver applications. Instead, they abstract out 

some aspect of an application so as to answer particular questions about it 

(e.g., determining liveness, safety, or reachability) without enduring the 

complexity introduced by issues unrelated to the question. However, as 

logical frameworks, they underlie and inspire important features of 

programming methodologies, mechanisms, and techniques that can either 

support PDD or can be recognized as insufficient to support PDD, and thereby 

provide inspiration and theoretical support for components of PDD. In this 

section, I describe the computational models and process algebras that 

inspire PDD and provide counterpoints to it. 

B.1.1 Turing Machines 

A Turing machine is a very basic process description first proposed by 

Alan Turing in 1936 [84]. Turing machines (and related finite state automata) 

express computing processes as transitions between states, where a start state 
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represents the beginning of a computation, and accept and reject states 

represent the end of a computation. Based on input data, a Turing machine 

sequences from state to state (including intermediate states) according a 

transition function, and it generates output data (which may be subsequently 

used as input data, depending on the type of Turning machine in use).  

The fundamental purpose of a Turing machine is as a framework for 

organizing and evaluating the inputs, state spaces, state transitions, and 

output so as to determine whether particular output can be generated from 

particular input, and to determine the time and space needed to achieve 

this.  

B.1.2 Petri Nets 

A Petri Net [78] [87] is a graphical notation invented by Carl Adam Petri 

in August, 1939, to describe states and transitions in chemical processes; it has 

been extended in a number of forms to model computing processes. At its 

heart, a Petri Net is a relationship between places, transitions, and arcs, all of 

which cooperate to manage the flow of data elements called tokens. A 

place represents a state, and is a repository for tokens – one or more places 

are connected via directed arcs to a transition. Relative to a transition, places 

at an arc source are called input places, and places at an arc destination are 

called output places. A transition is enabled (and can fire) if all input places 

connected to it contain at least one token. When a transition fires, it removes 

a token from each input place, and places tokens on each output place. A 

token present in a place represents a condition, and a transition represents an 
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event – an event can fire if all conditions are met. A particular configuration of 

tokens on each place in an entire system is called a marking; a marking 

represents a system state. 

In a Petri Net, time is modeled as a forward-only sequence of quanta, 

where in each quantum all transitions are evaluated, and transitions that can 

fire do fire.  

B.1.3 π-calculus 

π-calculus [91] is an algebra developed by Robin Milner in 1992 based 

on the CCS process algebra [245]; it models concurrent systems in terms of 

messages exchanged by processes. Under π-calculus, a process represents a 

computational unit that accepts input and produces output over channels, 

where a channel carries a message and acts as a connection between 

processes. A message represents a collection of data elements, which may 

include references to one or more channels6, and a process can propagate 

those channel references in subsequent messages or can send messages itself 

on those channels. A π-calculus expression can model the creation of 

channel and process instances dynamically at runtime. 

To receive input, a process waits for a message on a channel, and its 

execution is blocked until another process sends a message on that channel. 

Multiple processes can write to a channel, and there is no guarantee of the 

                                                 
6
 CCS cannot do this. 
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ordering of the messages accepted by the channel, or of the order in which 

processes that become unblocked will execute. 

Because π-calculus can model communications between dynamically 

created and connected process instances, it forms a workable basis for 

modeling dynamically configurable systems (aka mobile, including agent-

based systems). Numerous extensions to π-calculus have been proposed 

[246], including providing better definition of message content [247] and 

conveying processes themselves as payloads in channel messages [248]. 

While π-calculus and its derivative calculi are generally not used for general 

programming (due to their focus on low-level message passing and 

synchronization at the expense of code organization abstractions), they can 

be used for modeling protocols in various contexts, are supported by model 

checkers (to determine deadlock, livelock, and other properties), and have 

influenced the concurrency and message passing models of existing 

programming languages, including BPEL [249] and Orc [250], and Service 

Oriented Architectures (SOAs). 

B.1.4 𝝀-calculus 

λ-calculus is an algebra created by Alonzo Church in 1936 as a 

mathematical logic for describing and analyzing computations [251]. At its 

heart, it defines a computation as a function that may perform a calculation 

or decompose into other functions. A function accepts arguments and returns 

a value, which in turn may be used as an argument to another function, may 

be bound to a variable, or may be used as a function itself. Executing a λ-
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calculus expression involves reducing it to a single result according to the λ-

calculus reduction rules and their implementation strategies.  

A strict definition of λ-calculus involves only a minimum set of operators, 

and is therefore inconvenient as a programming language. A number of so-

called functional languages have been defined based on λ-calculus 

principles, including Scheme, ML, Lisp, and Clojure [116]; they incorporate 

various convenience functions, syntactic sugar, special forms, and typing 

systems that improve the economics of programming and maintaining λ-

calculus expressions. 

B.2 Software Development Methodologies 

Programming methodologies exist to enable application developers to 

organize their approach to requirement gathering and factoring, application 

architecture and design, and coding and maintenance. Historically, a new 

programming methodology emerges when the economics of existing 

methodologies are strained due to any of a number of factors, including the 

complexity of requirement sets, diversity of stakeholder groups, the number 

and complexity of concerns addressed in an architecture or design, and the 

size and complexity of a code base. In this section, I describe the software 

development methodologies that inspire PDD and provide counterpoints to it. 

B.2.1 Modular Programming 

According to [100], modular programming is a discipline that enables 

the creation and maintenance of large systems by decomposing the system 

into concerns packaged as modules with clear interfaces and boundaries. 
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Accordingly, multiple modules can be programmed in parallel, thereby 

reducing time to market. Additionally, product changes that can be isolated 

to one module demonstrably don’t affect other modules, thereby reducing 

maintenance and testing costs and improving reusability. Finally, whereas an 

entire application can be large and complex, modules represent subsets that 

can be more easily understood than the whole, thereby improving prospects 

for good design decisions. Module definition focuses on the implementation 

of arguably independent abstractions, which then can be orchestrated to 

realize a program’s requirements. Modular programming was first supported in 

languages such as assembly, C, Cobol, and Fortran. 

B.2.2 Structured Programming 

Structured programming is a design and programming technique that 

progressively refines a high level abstraction into an orchestration of low level 

abstractions via decomposition, and was first supported in languages such as 

Pascal. It leverages the Böhm-Jacopini theorem [252] which claims that 

workflows can be decomposed into combinations of three normalized 

patterns: a sequence, a choice, and a loop. As a corollary, each pattern has 

a single definable entry and exit point [253], with definable entry and exit 

properties useful in defining and verifying properties of the higher level 

abstraction. Such reasoning forms the basis of replacing one workflow with 

another, yet preserving the semantics of the higher level abstraction. 
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B.2.3 Object Oriented Programming 

Object-oriented programming (OOP) is a programming style that 

supports the Object-oriented design methodology, and was first supported in 

languages such as Java, C++, and Smalltalk. As defined in [101], it features 

object definition explicitly via an interface, data encapsulation, 

polymorphism, inheritance, and open recursion. Generally, object 

functionality is accessed via a call to a method whose actual code is resolved 

at runtime. The call is modeled as a message exchange, though it can be 

implemented in numerous ways, including as an actual message exchange or 

a stack-oriented function call.  

B.2.4 Aspect Oriented Programming 

Aspect-oriented programming (AOP) [32] is a programming 

mechanism that seeks to eliminate the code scattering and entanglement 

created when crosscutting concerns are implemented in base workflows. It 

organizes such concerns centrally (as advice) and defines composition rules 

(called pointcuts) that together form an aspect. A pointcut determines where 

in a base workflow to inject a new workflow, and possible injection locations 

are called join points. A join point identifies an activity in a workflow, and a 

pointcut is a predicate that identifies one or more join points. The aspect 

encodes both an injected workflow and its relationship to join points, including 

executing before the join point, after the join point, or around (possibly 

replacing) the join point.  
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AOP is implemented as extensions to many common languages and 

frameworks, including Java (as AspectJ [11]), BPEL (as AO4BPEL [146]), and 

others. Each implementation defines its own join point model, pointcut 

language, and advice language. Consequently, the particular capabilities of 

AOP vary with the implementation. 

B.2.5 Execution Frameworks 

Enterprise Service Bus 

An Enterprise Service Bus (ESB) [120] executes workflows by routing 

messages between service components. Abstractly, a workflow is specified as 

a graph where service components are nodes that are connected by edges 

representing unidirectional message routings (connecting a source to a 

target). A routing can be defined statically (and encoded in a declarative 

language such as XML) when the workflow is authored, and nodes or routings 

can be added or removed at runtime. Interceptors [254] are functions that 

can intercept and process a message in flight, and can be assigned either 

statically or dynamically to an interaction between a source node and a 

target node.  

B.2.6 Policy Engines 

The topic of policy-based access control has been addressed by [204] 

and others, and assumes the execution of policy statements by a policy 

engine built specifically to implement secure identity, attribute, and policy 

management services that implement choice in workflows. The relationship of 

a policy engine to an application is defined in ISO 10181-3 [255], and includes 
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a policy decision point (PDP, where a decision is made) and a policy 

enactment point (PEP, where a workflow is selected based on the decision). A 

policy engine manages predicates (called policies) written in a policy 

language (e.g., Ponder, XACML, X-Sec, PERMIS, and Akenti) and evaluates a 

policy on behalf of a PDP. Policies are typically written by programmers and 

are deployed while an application is running. Commonly, PDPs and PEPs are 

coded explicitly into an application, as are the alternate workflows selected 

by the PEP. Policies executed by policy engines are oriented toward access 

control decisions, and can maintain their own state, but usually cannot 

access workflow, application, and environment state. 

PERMIS (Privilege and Role Management Infrastructure Standards) 

The PERMIS policy infrastructure [121] is a mature policy evaluation 

system that incorporates a policy engine as a component of an overall 

strategy to implement and manage injection of access control decisions into 

enterprise applications. It encompasses secure identity, attribute, and policy 

management services that feed into a policy decision point (PDP) separate 

from an enactment point (PEP) as described above. Typically, a programmer 

encodes a call to a PDP, which evaluates a policy identified in the call and 

returns a decision (often allow/deny) which is then used in a PEP to 

parameterize a workflow or distinguish between alternate workflows. PERMIS 

functions as a PDP, whereas the PEP is application-dependent, and is often 

statically coded to interpret and act upon the PDP’s decision. 
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BPEL Process Integration with Business Rules 

BPEL [122] is a block structured scripting language for sequencing 

services in workflows. Recent versions have variables, XML support, looping 

control constructs, transaction management, fork/join, and exception 

handling. Similar to PERMIS, Oracle’s BPEL Process Integration with Business 

Rules [123] defines a decision service that evaluates business rules to render a 

decision.  

xESB: Integration of Policy with ESBs 

xESB [124] represents a different approach to runtime policy injection – 

it intercepts messages exchanged by interacting services in a SOA executing 

on an ESB. It executes policies that affect either the base control flow or data 

flow, and represents crosscutting concerns as business rules (i.e., policies) 

maintained separately from the base application.  

Under xESB, rules exist in a collection that is examined in toto on each 

and every service interaction – the collection also contains statically defined 

counters, timers, and hashes that track rule state. 

B.3 Workflow Context in Distributed Systems 

By nature, programming languages define workflows, and workflow 

activities depend on either control-related or data-related context. Each 

programming language defines workflows and context in terms (and with 

limitations) that suit the language’s purpose. For example, in Java, workflow 

activity orchestration is organized as sequential statements, with 

decomposition implemented as method calls. Similarly, variables defined in 
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method blocks and as method parameters function as workflow variables and 

messages, while variables defined in classes and packages have more global 

lifecycles. 

Analogously, modern frameworks and architectures that support 

distributed systems frame the maintenance of state based on the workflow 

assumptions underlying their target applications. In this section, I describe 

context maintenance in Struts, REST, and AJAX, as examples of different 

tradeoffs. 

B.3.1 Struts 

The Struts [126] system is a server-based Java environment that 

executes workflows on behalf of clients. Under Struts, state is maintained as 

Java beans, with request, session, and application lifecycles. 

A request bean is associated with a single workflow executing in a 

single thread on a single computer. 

A session bean is associated with a particular client (via a browser 

cookie or URL rewriting). Conceptually, a session exists for each client (as 

represented by a browser), but session memory and attributes are not actually 

allocated until a workflow accesses the session. The session is deleted when 

the browser leaves the application, which is approximated by a combination 

of the cookie being a browser “session cookie” and the session timing out 

according to a Struts-based session policy. Multiple workflows may access the 

session serially or in parallel, and so Struts provides a measure of thread-safe 
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access. The client can assume that session beans are secure from client to 

client, but that they are visible to all requests on behalf of a given user. The 

maintenance of a session bean depends on a session reference passed using 

an HTTP protocol between a client (browser) and the Struts system – via a 

cookie or URL rewriting.  

An application bean is equivalent to a global variable, and represents 

state available to all workflows executing on all computers in a distributed 

system. 

B.3.2 REST 

A RESTful application follows the principles of the REST (Representational 

State Transfer) [127] architectural style, which distinguishes application state 

from data (so-called hypermedia). Application state resides on clients, and 

hypermedia (and other resources) resides on servers. A client accesses a 

server via a self-contained request that makes no assumptions about state 

stored on the server, and specifies data (and computing resources) as a 

resource identifier that the server can map to a real resource instance. In 

contrast to Struts, REST client state is local (and not distributed), which gives 

clients flexibility in responding to server failures, and promotes server 

scalability. 

B.3.3 AJAX 

AJAX [128] [129] is a collection of technologies aimed at providing a 

fluid experience for users executing client-server application in a web browser. 

Under AJAX, a web application communicates with a single server by sending 
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a request and then continues executing without waiting for a response. When 

the server’s response arrives, the client invokes a function registered for the 

exchange. AJAX applications generally exchange XML or JSON data, and 

manage workflows and user interfaces using JavaScript, the Document 

Object Model (DOM), and XHTML/CSS.  

From a high level perspective, AJAX applications involve a collection of 

clients interfacing with a single server, where the server maintains common 

data, and clients maintain the state of the user interface. A workflow is 

defined as a series of one or more exchanges between a client and server, 

and can involve keeping state on both the client and server (as well as the 

sequential execution of callback functions on the client and API calls on the 

server). For example, a server that implements servlet [256] capabilities stores 

session-oriented state that persists until a (configurable) inactivity timeout 

occurs, and the state can be used in combination with client requests to drive 

server workflows. 

Alternatively, a developer can define a server using a REST model, 

where the server maintains no state, and server resources are identified by 

reference. In this case, the client-server protocol involves simple request-reply 

exchanges, and the client maintains state pertaining to both the user 

interface and the server. 

For example, a typical AJAX workflow may fetch a long list in chunks, 

issuing one request for each chunk, and ordering the requests starting with the 
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beginning of the list and proceeding in order to the end. In a REST model, 

each request would contain the list’s resource identifier and an index. In a 

servlet model, a series of requests could set the resource identifier, and could 

then fetch successive chunks, with the resource identifier and the index 

retained at the server. Other designs are possible, and depend on tradeoffs 

between the ability of a client to maintain state and consistency guarantees 

made by the server (which often come at the cost of server scalability). 

In any case, JavaScript executes client-side workflows based on client-

resident state, which may be held as global variables and in closures, 

particularly closures associated with server requests. For example, in a REST 

model, a closure would maintain the index passed to the server, thereby 

allowing the client to correlate a server reply with the index that generated it. 

B.4 Ponder Policy Verification 

Ponder is a highly successful environment that implements the policy 

Ponder language [130]. Ponder policies are written in a unique declarative 

language expressed in terms of subjects, targets, actions, and conditionals. A 

subject identifies the principals to which the policy applies. A target identifies 

the objects (e.g., resources and service providers) to which the policy applies, 

and which may expose custom methods accessible within the policy’s actions 

and conditionals. An action is a program fragment that executes some series 

of operations that, themselves, may have constraints and may execute 

methods. A conditional determines when the policy becomes active, and 

can incorporate external factors as well as set-based calculations involving 
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Ponder’s RBAC [115] database (which follows a hierarchical role model, similar 

to Grouper [178]). Ponder supports numerous policy types, including 

authorization, obligation, delegation, information filtering, and refrain policies. 

Additionally, Ponder has a concept of meta-policies, which are policies 

that determine which policies are allowed in a system, including disallowing 

conflicting policies. 
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APPENDIX C Patterns for Object Oriented Programming 

As described in [33], design patterns capture solutions that have 

developed and evolved over time. Twenty three patterns pertaining to Object 

Oriented Programming (OOP) are presented in [33], where many of these 

patterns apply to design and architecture beyond OOP. 

In this dissertation, I focus on the Strategy and Composite patterns, 

which are well described abstractly and concretely in [33], and are 

summarized in this Appendix for convenience. 

C.1 Strategy Pattern 

Generally, a Strategy pattern represents a decision that chooses 

between a number of algorithms, and is abstractly similar to a policy as 

defined in this dissertation. At its core, a Strategy pattern contemplates the 

use of an algorithm, where the particular algorithm chosen is deferred.  



443 

 

In concrete terms, an OOP programmer can implement a Strategy 

pattern in a number of ways. For example, supposing a program feature is 

implemented by an algorithm that is explicitly called, and a stakeholder 

requires a choice of algorithms instead, and the choice is made at runtime. 

The programmer can virtualize the algorithm at compile time and choose the 

particular algorithm at runtime as follows: 

1. Create an interface (as an interface class, abstract class, or base class) 

that functionally defines the algorithm 

2. Create the existing algorithm as an instance of the interface 

3. Create alternative algorithms as other instances of the interface 

4. Replace the use of the algorithm with a reference (e.g., pointer) to a 

class that implements the interface 

5. Based on some criteria evaluated before use of the reference, choose 

an algorithm and assign an instance of it to the reference  

6. Use the reference instead of the original algorithm 

The result can be graphically depicted as shown as a UML class 

diagram in Figure 77, where an application exercises three different features 

during its execution. Each of the features have alternative algorithms, each of 

which implements the interface for the feature it implements. When the 

application executes a feature, it calls an instance of one of the algorithms 

that implements it. 
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The deferred algorithm definition envisioned in OOP requires that the 

algorithms and the choice that distinguishes amongst them be explicitly 

coded into the application, whereas PDD’s vision is to inject the choice and 

call at runtime. 

C.2 Composite Pattern 

A Composite pattern represents a data structure defined recursively 

and can be thought of as a tree of nodes where all nodes derive from a 

common base class (and therefore expose common attributes and 

operations). As shown in the UML class diagram in Figure 78, a node can be 

either a standalone data structure or can itself be a Composite pattern that 

may have children (thereby creating the recursion). 

 
Figure 77. OOP Strategy Pattern 
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A common example of a Composite pattern is a hierarchical file 

system. Following the model in Figure 78, a file would be a Leaf – it has no 

children. A directory would be a Composite – it may have children that are 

either files or directories. The common base class (called Component) – could 

have a timestamp element, which both files and directories would inherit. 

 

From a PDD viewpoint, a service is an example of a Composite pattern 

because it can implement its function by orchestrating interactions between 

a collection of services – and those services can be either decomposed 

further or can implement a self-contained calculation. 

 

 
Figure 78. OOP Composite Pattern 

Component

+ commonAttribute:  int

+ commonOperation() : void

Leaf

+ commonOperation() : void

Composite

+ commonOperation() : void

+parent

+child

*



 

446 

REFERENCES 

[1] Canfora, G., and Cimitile, A. (2000). Software Maintenance. In S. K. Chang, 

Handbook of Software Engineering and Knowledge Engineering (pp. 91-

120). Singapore: World Scientific Publishing Co. Ptc. Ltd. 

[2] Luer, C., Rosenbaum, D., and van der Hoek, A. (2001). The evolution of 

software evolvability. Proceedings of the 4th International Workshop on 

Principles of Software Evolution (IWPSE) (pp. 134-137). Vienna, Austria: ACM 

Press. 

[3] Meyer, B. (1997). Object-Oriented Software Construction (2nd edition). 

Upper Saddle River: Prentice Hall. 

[4] Lientz, B. P., and Swanson, E. B. (1979, April). Software Maintenance: A 

User/Management Tug of War. Data Management, pp. 26-30. 

[5] Ciraci, S., and ven den Broek, P. (2006). Evolvability as a Quality Attribute of 

Software Architectures. The International ERCIM Workshop on Software 

Evolution 2006 (EVOL 2006), (pp. 29-31). Lille. 

[6] Martufi, G. (2007). Software Evolvability: An industry's view. Proceedings of 

the 2nd Open Workshop on Resilience in Computing Systems and 

Information Infrastructures (ReSIST). Rome, Italy. 

[7] Cook, S., Ji, H., and Harrison, R. (2000). Software Evolution and Software 

Evolvability. University of Reading. 

[8] Ghezzi, C., Jazayeri, M., and Mandrioli, D. (2002). Fundamentals of 

Software Engineering, 2nd Edition. Upper Saddle River: Pearson Education, 

Inc. 

[9] Chaumun, M. A., Keller, R. K., and Lustman, F. (2002). Design Properties and 

Evolvability of Object-Oriented Systems. In H. Erdogmus, and O. Tanir, 

Advances in Software Engineering (pp. 197-224). New York: Springer-

Verlag. 

[10] Trieber, M., Juszczyk, L., Schall, D., and Dustdar, S. (2010). Programming 

Evolvable Web Services. Proceedings of the 2nd International Workshop on 

Principles of Engineering Service-Oriented Systems (PESOS '10) (pp. 43-49). 

Cape Town: Association for Computing Machinery. 

[11] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, 

W. G. (2001). An Overview of AspectJ. Proceedings of the 15th European 

Conference on Object-Oriented Programming (pp. 327-353). London: 

Springer-Verlag. 



447 

 

[12] Bosch, J. (2000). Design and Use of Software Architectures: Adopting 

and Evolving a Product-Line Approach. New York: Addison-Wesley 

Professional. 

[13] Mannaert, H., Verelst, J., and Ven, K. (2012). Towards evolvable software 

architectures based on systems theoretic stability. Software -- Practice & 

Experience, 89-116. 

[14] Medvidovic, N. (1996). A Classification and Comparison Framework for 

Software Architectural Description Languages. Irvine: University of 

California, Irvine. 

[15] Martin, R. C. (2002). Agile Software Development, Principles, Patterns, 

and Practices. Upper Saddle River: Prentice Hall. 

[16] Beck, K., and Andres, C. (2004). Extreme Programming Explained: 

Embrace Change (2nd Edition). Addison-Wesley Professional. 

[17] Verelst, J. (2004). The influence of the level of abstraction on the 

evolvability of conceptual models of information systems. Proceedings of 

the 2004 International Symposium on Emprical Software Engineering (ISESE 

'04) (pp. 17-26). Redondo Beach: IEEE Computer Society. 

[18] Cook, S., Harrison, R., and Wernick, P. (2006). Information System 

Evolvability, Feedback and Pattern Languages. University of Reading. 

[19] Khurana , H., Bobba, R., Yardley, T., Agarwal, P., and Heine, E. (2010). 

Design Principles for Power Grid Cyber-Infrastructure Authentication 

Protocols. Proceedings of the 2010 43rd Hawaii International Conference 

on System Sciences (HICSS '10) (pp. 1-10). Kauai: IEEE Computer Society. 

[20] National Science Foundation. (2007, March). Cyberinfrastructure Vision 

for 21st Century Discovery. Retrieved October 28, 2012, from 

http://www.nsf.gov/pubs/2007/nsf0728/nsf0728_1.pdf 

[21] Seidel, E. (2008, November 16). The Importance of Cyberinfrastructure 

for Research and Education. Retrieved October 28, 2012, from 

http://www.nsf.gov/sbe/secure/advcom1108/Presentations/04.Seidel_SBE_

Advisory.pdf 

[22] Atkins, D., Droegemier, K., Feldman, S., Garcia-Molina, H., Klein, M., 

Messerschmitt, D., et al. (2003). Revolutionizing Science and Engineering 

Through Cyberinfrastructure. Washington, DC: National Science 

Foundation. 

[23] National Science Foundation. (2007, March). Cyberinfrastructure Vision 

for 21st Century Discovery. Retrieved June 3, 2011, from 

http://www.nsf.gov/pubs/2007/nsf0728/nsf0728.pdf 



448 

 

[24] Demchak, B., Kerr, J., Raab, F., Patrick, K., and Krüger, I. H. (2012). 

PALMS: A Modern Coevolution of Community and Computing Using Policy 

Driven Development. Proceedings of the 2012 45th Hawaii International 

Conference on System Sciences (HICSS '12) (pp. 2735-2744). Maui: IEEE 

Computer Society. 

[25] Parnas, D. L. (1972). On the Criteria to be Used in Decomposing Systems 

into Modules. Communications of the ACM, 1053-1058. 

[26] Dijkstra, E. W. (1968). Go To Statement Considered Harmful. 

Communications of the ACM, 147-148. 

[27] Kernighan, B. W., and Plauger, P. J. (1974). The Elements of Programming 

Style. New York: McGraw Hill. 

[28] McKnight, W. L. (2002, July). What is Information Assurance? Crosstalk: 

The Journal of Defense Software Engineering, pp. 4-6. 

[29] Nuseibeh, B., and Easterbrook, S. (2000). Requirements Engineering: A 

Roadmap. Proceedings of the Conference on The Future of Software 

Engineering (pp. 35-46). Limerick, Ireland: Association for Computing 

Machinery. 

[30] Lee, E. A., and Seshia, S. A. (2011). Introduction to Embedded Systems - 

A Cyber-Physical Systems Approach. Berkeley: LeeSeshia.org. 

[31] Wiegers, K. (2003). Software Requirements (2nd Edition). Redmond: 

Microsoft Press. 

[32] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, 

J., et al. (1997). Aspect-Oriented Programming. Proceedings of the Eur 

Conf on OOP. Helsinki, Finland: Springer-Verlag LNCS 1241. 

[33] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design 

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley 

Professional. 

[34] Fowler, M. (2005, June 26). InversionOfControl. Retrieved October 5, 

2012, from http://martinfowler.com/bliki/InversionOfControl.html 

[35] Fowler, M. (2010). Domain-Specific Languages. Addison-Wesley. 

[36] Bashar, N., and Easterbrook, S. (2000). Requirements engineering: a 

roadmap. Proceedings of the Conference on the Future of Software 

Engineering (pp. 35-46). Limerick: ACM Press. 

[37] QFD Institute. (n.d.). Retrieved March 31, 2012, from www.qfdi.org 



449 

 

[38] Cohn, M. (2004). User Stories Applied: For Agile Software Development. 

Redwood City: Addison Wesley Longman Publishing Co., Inc. 

[39] Cockburn, A. (2000). Writing Effective Use Cases. Boston: Addison-Wesley 

Longman Publishing Co., Inc. 

[40] Fowler, M. (2003). UML Distilled: A Brief Guide to the Standard Object 

Modeling Language (3rd Edition). Boston: Addison-Wesley Longman 

Publishing Co., Inc. 

[41] Withall, S. (2007). Software Requirement Patterns. Redmond: Microsoft 

Press. 

[42] Arkin, A. (2002). Business Process Modeling Language. Retrieved Sept 29, 

2011, from http://www.bpmi.org/downloads/BPML1.0.zip 

[43] Chung, L., and Leite, J. (2009). On Non-Functional Requirements in 

Software Engineering. In A. T. Borgida, V. K. Chaudhri, P. Giorgini, and E. S. 

Yu, Conceptual Modeling: Foundations and Applications (pp. 363-379). 

Berlin Heidelberg: Springer-Verlag. 

[44] Bennington, H. D. (1987). Production of large computer programs. 

Proceedings of the 9th international conference on Software Engineering 

(pp. 299-310). Monterey: IEEE Computer Society Press. 

[45] Martin, R. C. (2002). Agile Software Development. Upper Saddle River: 

Prentice Hall PTR. 

[46] Boehm, B. (1986). A Spiral Model of Software Development and 

Enhancement. SIGSOFT Software Engineering Notes, 14-24. 

[47] Demchak, B., Farcas, C., Farcas, E., and Krueger, I. (2007). The Treasure 

Map for Rich Services. Proceedings of the 2007 IEEE International 

Conference on Information Reuse and Integration (IRI) (pp. 400-405). Las 

Vegas, USA: IEEE. 

[48] Young, R. R. (2004). The Requirements Engineering Handbook. Norwood, 

MA: Artech House, Inc. 

[49] Cysneiros, L. M., and Leite, J. (2001). Using UML to reflect non-functional 

requirements. In Proceedings of the 2001 conference of the Centre for 

Advanced Studies on Collaborative research (CASCON '01). Toronto: IBM 

Press. 

[50] Sindre, G., and Opdahl, A. (2005). Eliciting security requirements with 

misuse cases. Requirements Engineering, 34-44. 

[51] Mouratidis, H., Manson, G. A., and Giorgini, P. (2003). Analysing Security 

Requirements of Information Systems Using Tropos. Procedings of the 5th 



450 

 

International Conference on Enterprise Information Systems, (pp. 623-626). 

Angers, France. 

[52] Wang, L., Wong, E., and Xu, D. (2007). A Threat Model Driven Approach 

for Security Testing. Proceedings of the 3rd International Workshop on 

Software Engineering for Secure Systems (SESS '07). Minneapolis: IEEE 

Computer Society. 

[53] Krüger, I. H., Meissinger, M., and Menarini, M. (2007). Runtime verification 

of interactions: from MSCs to aspects. Proceedings of the 7th international 

conference on Runtime verification (pp. 63-74). Vancouver: Springer-

Verlag. 

[54] Alam, M., Breu, R., and Hafner, M. (2007). Model-Driven Security 

Engineering for Trust Management in SECTET. Journal of Software, 47-59. 

[55] Juerjens, J. (2003). Secure Systems Development with UML. Berlin 

Heidelberg: Springer-Verlag. 

[56] Burt, C. C., Bryant, B. R., Raje, R. R., Olsen, A. M., and Auguston, M. 

(2003). Model Driven Security: Unification of Authorization Models for Fine-

Grain Access Control. Proceedings of the 7th IEEE International Enterprise 

Distributed Object Computing Conference (EDOC 2003) (pp. 159-173). 

Brisbane: IEEE Computer Society. 

[57] Cysneiros, L. M., and Leite, J. (2004). Nonfunctional Requirements: From 

Elicitation to Conceptual Models. IEEE Transactions on Software 

Engineering, 328-350. 

[58] Rashid, A., and Chitchyan, R. (2008). Aspect-oriented requirements 

engineering: a roadmap. Proceedings of the 13th international workshop 

on Early Aspects (pp. 35-41). Leipzig: Association for Computing 

Machinery. 

[59] Oldevik, J., and Haugen, Ø. (2007). Architectural Aspects in UML. In 

Model Driven Engineering Languages and Systems (LNCS) (Vol. 4735/2007, 

pp. 301-315). Berlin Heidelberg: Springer-Verlag. 

[60] Zave, P. (2010). Modularity in Distributed Feature Composition. In B. 

Nuseibeh, and P. Zave, Software Requirements and Design: The Work of 

Michael Jackson (p. 267). Chatham, New Jersey: Good Friends Publishing 

Company. 

[61] Kim, C., Kästner, C., and Batory, D. (2008). On the Modularity of Feature 

Interactions. Proceedings of the 7th international conference on 

Generative programming and component engineering (pp. 23-34). 

Nashville: Association for Computing Machinery. 



451 

 

[62] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S. 

(1990). Feature-Oriented Domain Analysis (FODA). CMU/SEI-90-TR-21. 

Pittsburgh: Carnegie-Mellon University Software Engineering Institute. 

[63] Apel, S., Lengauer, C., Möller, B., and Kästner, C. (2008). An Algebra for 

Features and Feature Composition. Proceedings of the 12th international 

conference on Algebraic Methodology and Software Technology (pp. 36-

50). Urbana: Springer-Verlag. 

[64] Stoiber, R., Fricker, S., Jehle, M., and Glinz, M. (2010). Feature Unweaving: 

Refactoring Software Requirements Specifications into Software Product 

Lines. Proceedings of the 2010 18th IEEE International Requirements 

Engineering Conference (RE '10) (pp. 403-404). Sydney: IEEE Computer 

Society. 

[65] IBM Corporation. (n.d.). Morphogenic Software. Retrieved May 19, 2012, 

from http://www.research.ibm.com/morphogenic/ 

[66] Robinson, W. N., Pawlowski, S. D., and Volkov, V. (2003). Requirements 

Interaction Management. ACM Computing Survey, 132-190. 

[67] Van Lamsweerde, A. (2001). Goal-Oriented Requirements Engineering: A 

Guided Tour. Proceedings of the 5th IEEE International Symposium on 

Requirements Engineering (pp. 249-263). Toronto: IEEE Computer Society. 

[68] Apel, S., and Hutchins, D. (2010). A calculus for uniform feature 

composition. ACM Transactions on Programming Languages and Systems 

(TOPLAS), 19:1-19:33. 

[69] Cook, W. R., Patwardhan, S., and Misra, J. (2006). Workflow Patterns in 

Orc. Coordination'06, volume 4038 of LNCS (pp. 82-96). Berlin Heidelberg: 

Springer-Verlag. 

[70] van der Aalst, W., and ter Hofstede, A. (2010). Workflow Patterns. 

Retrieved Sept 29, 2011, from http://workflowpatterns.com/ 

[71] Jurack, S., Lambers, L., Mehner, K., and Taentzer, G. (2008). Sufficient 

Criteria for Consistent Behavior Modeling with Refined Activity Diagrams. 

Proceedings of the 11th international conference on Model Driven 

Engineering Languages and Systems (MODELS '08) (pp. 341-355). Toulouse: 

Springer-Verlag. 

[72] Leymann, F., and Roller, D. (1999). Production Workflow: Concepts and 

Techniques. Prentice Hall. 

[73] Eder, J., Gruber, W., and Pichler, H. (2005). Transforming Workflow 

Graphs. First International Conference on Interoperability of Enterprise 

Software and Applications (pp. 23-25). Genf, Switzerland: Springer-Verlag. 



452 

 

[74] Pankratius, V., and Stucky, W. (2005). A formal foundation for workflow 

composition, workflow view definition, and workflow normalization based 

on petri nets. Proceedings of the 2nd Asia-Pacific conference on 

Conceptual modelling - Volume 43 (pp. 79-88). Newcastle, New South 

Wales, Australia: Australian Computer Society, Inc. 

[75] Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., and Mock, S. 

(2004). Kepler: an extensible system for design and execution of scientific 

workflows. 16th International Conference on Scientific and Statistical 

Database Management, (pp. 423-424). Santorini. 

[76] Object Management Group. (2012). BPMN Information Home. Retrieved 

September 21, 2012, from http://www.bpmn.org/ 

[77] Carlsen, S. (1997). Conceptual Modeling and Composition of Flexible 

Workflow Models. Information Systems Group, Department of Computer 

and Information Science. Trondheim: Norwegian University of Science and 

Technology. 

[78] Petri, C. A., and Reisig, W. (2008). Petri net. Scholarpedia, 6477. 

[79] Sadiq, W., and Orlowska, M. E. (1999). Applying Graph Reduction 

Techniques for Identifying Structural Conflicts in Process Models. 

Proceedings of the 11th International Conference on Advanced 

Information Systems Engineering (pp. 195-209). Heidelberg: Springer-

Verlag. 

[80] Fernández, M. (2009). Models of Computation. London: Springer-Verlag. 

[81] Baeten, J., Basten, T., and Reniers, M. (2010). Process Algebra: 

Equational Theories of Communicating Processes. Cambridge, England: 

Cambridge University Press. 

[82] Baeten, J. (2005). A brief history of process algebra. Theoretical Compter 

Science - Process algebra, 131-146. 

[83] British Computer Society Formal Aspects of Computing Science 

Specialist Group. (2012, January 12). Formal Methods Wiki. Retrieved 

March 8, 2012, from http://formalmethods.wikia.com/wiki/Formal_methods 

[84] Michael, S. (2006). Introduction to the Theory of Computation. Boston: 

Thomson Course Technology. 

[85] Holzmann, G. J. (1991). Design And Validation Of Computer Protocols. 

Englewood Cliffs, New Jersey: Prentice-Hall. 

[86] Composition of State Machines. (n.d.). Retrieved May 25, 2012, from 

http://cs.ioc.ee/~margo/aat/03_Composition_of_state_machines.pdf 



453 

 

[87] Johnsonbaugh, R. (n.d.). 8.5 Petri Nets. Retrieved March 5, 2012, from 

condor.depaul.edu/rjohnson/dm7th/petri.pdf 

[88] Fehling, R. (1993). A Concept of Hierarchical Petri Nets with Building 

Blocks. 12th International Conference on Applications and Theory of Petri 

Nets: Advances in Petri Nets 1993 (pp. 148-168). London: Springer-Verlag. 

[89] Hamadi, R., and Benatallah, B. (2003). A Petri net-based model for web 

service composition. Proceedings of the 14th Australasian database 

conference - Volume 17 (pp. 191-200). Adelaide, Australia: Australian 

Computer Society, Inc. 

[90] Jensen, K. (2009). Coloured Petri Nets. Berlin Heidelberg: Springer-Verlag. 

[91] Milner, R. (1999). Communicating and Mobile Systems: The π-calculus. 

Cambridge, England: Cambridge University Press. 

[92] Nestmann, U., and Pierce, B. C. (1996). Decoding Choice Encodings. 

Proceedings of the 7th International Conference on Concurrency Theory 

(pp. 179-194). London: Springer-Verlag. 

[93] Pierce, B. C., and Turner, D. N. (1997). Pict: A programming language 

based on the pi-calculus. In Proof, Language and Interaction: Essays in 

Honour of Robin Milner (pp. 455-494). MIT Press. 

[94] Lumpe, M. (1999, January). A π-Calculus Based Approach for Software 

Composition. PhD Thesis. Bern, Switzerland: Institute of Computer Science 

and Applied Mathmatics, The University of Bern. 

[95] Abelson, H., Sussman, G. J., and Sussman, J. (1996). Structure and 

Interpretation of Computer Programs. Cambridge, MA: The MIT Press. 

[96] Niehren, J., Schwinghammer, J., and Smolka, G. (2006). A Concurrent 

Lambda Calculus with Futures. Theoretical Computer Science, 338-356. 

[97] Wadler, P. (1992). The Essence of Functional Programming. Nineteenth 

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming 

Languages (pp. 1-14). Albuquerque: Prentice Hall. 

[98] Jones, S. L., and Wadler, P. (1993). Imperative functional programming. 

Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of 

programming languages (POPL '93) (pp. 71-84). Charleston: ACM. 

[99] Marick, B. (2011, March 21). Monad Tutorial, Part 4 (State Monad, Parts 

of a Monad). Retrieved March 24, 2012, from http://vimeo.com/21307543 

[100] Parnas, D. L. (1972). On the criteria to be used in decomposing systems 

into modules. Communications of the ACM, 1053-1058. 



454 

 

[101] Pierce, B. C. (2002). Types and Programming Languages. Cambridge: 

MIT Press. 

[102] Booch, G. (1994). Object-oriented analysis and design with applications 

(2nd ed). Redwood City: Benjamin-Cummings Publishing Co., Inc. 

[103] Evans, E. (2004). Domain-Driven Design. Addison-Wesley Professional. 

[104] Sullivan, K., Griswold, W. G., Song, Y., Cai, Y., Shonle, M., Tewari, N., et al. 

(2005). Information Hiding Interfaces for Aspect-oriented Design. 

Proceedings of the 10th European Software Engineering Conference 

(ESEC/FSE '13) (pp. 166-175). Lisbon: Association for Computing Machinery. 

[105] Clemente, P. J., Hernandez, J., and Sanchez, F. (2007). Driving 

Component Composition from Early Stages Using Aspect-Oriented 

Techniques. 40th Annual Hawaii International Conference on System 

Sciences (HICSS'07) (p. 257a). Hawaii: IEEE Computer Society. 

[106] Xerox Corporation. (n.d.). Load-Time Weaving. Retrieved May 31, 2012, 

from http://www.eclipse.org/aspectj/doc/released/devguide/ltw.html 

[107] Lakhani, J., Akkawi, F., Bader, A., and Elrad, T. (2001). Dynamic Weaving 

for Building Reconfigurable Software Systems. Proceedings of OOPSLA 2001 

Workshop on Advanced Separation of Concerns in Object-Oriented 

Systems (pp. 152-184). Tampa Bay: Springer-Verlag. 

[108] Fuentes, L., and Sánchez, P. (2009). Dynamic Weaving of Aspect-

Oriented Executable UML Models. In S. Katz, H. Ossher, R. France, and J.-M. 

Jézéquel, Transactions on Aspect-Oriented Software Development VI (pp. 

1-38). Berlin/Heidelberg: Springer-Verlag. 

[109] Greenwood, P., and Blair, L. (2006). A Framework for Policy Driven Auto-

adaptive Systems Using Dynamic Framed Aspects. In A. Rashid, and M. 

Aksit, Transactions on Aspect-Oriented Software Development II (pp. 30-

65). Berlin/Heidelberg: Springer-Verlag. 

[110] Ossher, H., and Tarr, P. (2000). Multi-Dimensional Separation of Concerns 

and The Hyperspace Approach. Retrieved May 31, 2012, from 

http://researchweb.watson.ibm.com/hyperspace/Papers/sac2000.pdf 

[111] Rashid, A. (2008). Aspect-Oriented Requirements Engineering: An 

Introduction. Proceedings of the 2008 16th IEEE International Requirements 

Engineering Conference (RE '08) (pp. 306-309). Barcelona: IEEE Computer 

Society. 

[112] Navasa, A., Pérez, M., Murillo, J., and Hernández, J. (2002). Aspect 

Oriented Software Architecture: a Structural Perspective. Proceedings of 

the 1st International Conference on Aspect-Oriented Software 



455 

 

Development (Workshop on Early Aspects). Enschede: Association for 

Computing Machinery. 

[113] Hoare, C. A. (1978). Communicating sequential processes. 

Communications of the ACM (pp. 666-677). New York: Association for 

Computing Machinery. 

[114] Oracle Corporation. (2001, August 8). Java Authentication and 

Authorization Service (JAAS) Reference Guid. Retrieved June 6, 2012, from 

http://docs.oracle.com/javase/1.4.2/docs/guide/security/jaas/JAASRefGu

ide.html 

[115] Sandhu, R. S., and Samarati, P. (1994). Access Control: Principles and 

Practice. 

[116] Halloway, S. (2009). In S. Holloway, Programming Clojure. Pragmatic 

Bookshelf. 

[117] Krüger, I. H. (2000). Distributed System Design with Message Sequence 

Charts. Dissertation. München: Technische Universität München. 

[118] Araújo, J., and Moreira, A. (2005). Integrating UML Activity Diagrams with 

Temporal Logic Expressions. Proceedings of the 10th International 

Workshop on Exploring Modeling Methods for Systems Analysis and Design 

(EMMSAD'05) (pp. 91-98). Porto: CEUR-WS.org. 

[119] Whittle, J., Moreira, A., Araújo, J., Jayaraman, P., Elkhodary, A., and 

Rabbi, R. (2010). An Expressive Aspect Composition Language for UML 

State Diagrams. Proceedings of the ACM/IEEE 10th International 

Conference on Model Driven Engineering Languages and Systems 

(MoDELS '10) (pp. 514-528). Nashville: Springer-Verlag Berlin Heidelberg. 

[120] Chappell, D. A. (2004). Enterprise Service Bus. Beijing: O'Reilly. 

[121] Chadwick, D., Zhao, G., Otenko, S., Laborde, R., and Nguyen, T. (2008). 

PERMIS: a modular authorization infrastructure. Concurrency and 

Computation: Practice & Experience, 1341-1357. 

[122] Juric, M. B. (2006, July 10). BPEL: Service composition for SOA. Retrieved 

September 21, 2012, from http://www.javaworld.com/javaworld/jw-07-

2006/jw-0710-bpel.html 

[123] Oracle Corporation. (n.d.). Oracle BPEL Process Manager Developer's 

Guide. Retrieved June 8, 2012, from 

http://docs.oracle.com/cd/E11036_01/integrate.1013/b28981/decision.ht

m#CHDHDDCF 



456 

 

[124] Gheorghe, G., Neuhaus, S., and Crispo, B. (2010). xESB: An Enterprise 

Service Bus for Access and Usage Control. Proceedings of the 4th IFIP 

International Conference on Trust Management (IFIPTM2010). Morioka, 

Japan. 

[125] Ponder2 Wiki. (2012, January 8). Retrieved April 3, 2012, from 

www.ponder2.net 

[126] The Apache Software Foundation. (n.d.). Retrieved Sept 29, 2011, from 

http://struts.apache.org/ 

[127] Fielding, R. (2000). Architectural Styles and the Design of Network-based 

Software Architectures. Irvine, California: University of California. 

[128] Garrett, J. J. (2005, February 18). Ajax: A New Approach to Web 

Applications. Retrieved September 13, 2012, from 

http://www.adaptivepath.com/ideas/ajax-new-approach-web-

applications 

[129] World Wide Web Consortium (W3C). (2010, Aug 3). XMLHttpRequest. 

Retrieved Sept 29, 2011, from http://www.w3.org/TR/XMLHttpRequest/ 

[130] Damianou, N., Dulay, N., Lupu, E., and Sloman, M. (2001). The Ponder 

Policy Specification Language. Proceedings of the Intl Workshop on 

Policies for Distributed Systems and Networks (Policy '01). Bristol. 

[131] Bandara, A. K., Lupu, E. C., and Russo, A. (2003). Using Event Calculus to 

Formalise Policy Specification and Analysis. Proceedings of the 4th IEEE 

International Workshop on Policies for Distributed Systems and Networks 

(POLICY '03) (pp. 26-39). Lake Como: IEEE Computer Society. 

[132] Bertino, E., Bonatti, P. A., and Ferrari, E. (2001). TRBAC: A temporal role-

based access control model. ACM Transactions on Information and System 

Security (TISSEC), 191-233. 

[133] Zhao, Y., and Parisi-Presicce, F. (2005). Policy Analysis and Verification by 

Graph Transformation Tools. Electronic Notes in Theoretical Computer 

Science (ENTCS) (pp. 101-112). Amsterdam: Elsevier Science Publishers. 

[134] Fowler, M. (2003). Patterns of Enterprise Application Architecture. Boston: 

Addison-Wesley. 

[135] Hohpe, G., and Woolf, B. (2004). Enterprise Integration Patterns. Boston: 

Addison-Wesley. 

[136] Manolescu, D. A. (2004). Patterns for Orchestration Environments.  

[137] Rotem-Gal-Oz, A. (2012 (est)). SOA Patterns. Shelter Island, NY: Manning 

Publications Co. 



457 

 

[138] Barros, A., Dumas, M., and ter Hofstede, A. (2005). Service Interaction 

Patterns: Towards a Reference Framework for Service-based Business 

Process Interconnection . Queensland University of Technology: Technical 

Report FIT-TR-2005-02. 

[139] Martin, R. C. (1997, March 7). The Dependency Inversion Principle. 

Retrieved October 6, 2012, from 

http://www.objectmentor.com/resources/articles/dip.pdf 

[140] Chappell, D. (2007, July). Introducing SCA. Retrieved September 12, 

2012, from http://www.davidchappell.com/articles/Introducing_SCA.pdf 

[141] SpringSource. (n.d.). springsource community. Retrieved September 12, 

2012, from http://www.springsource.org/ 

[142] World Wide Web Consortium (W3C). (2006, April 25). Web Services Policy 

1.2 - Framework (WS-Policy). Retrieved September 12, 2012, from 

http://www.w3.org/Submission/WS-Policy/ 

[143] Object Management Group. (2011, January). Business Process Model 

and Notation. Retrieved March 1, 2012, from 

http://www.omg.org/spec/BPMN/2.0/PDF/ 

[144] White, S. A. (2004, March). Process Modeling Notations and Workflow 

Patterns. Retrieved September 30, 2012, from BPTrends: 

http://www.omg.org/bp-corner/bp-files/Process_Modeling_Notations.pdf 

[145] Charfi, A., Müller, H., and Mezini, M. (2010). Aspect-Oriented Business 

Process Modeling with AO4BPMN. 6th European Conference on Modelling 

Foundations and Applications (ECMFA 2010) (pp. 48-61). Paris: Springer. 

[146] Charfi, A., and Mezini, M. (2007). AO4BPEL: An Aspect-oriented Extension 

to BPEL. World Wide Web, 309-344. 

[147] Barros, J. P., and Gomes, L. (2003). Towards the Support for Crosscutting 

Concerns in Activity Diagrams: a Graphical Approach. Proceedings of the 

4th AOSD Modeling with UML Workshop. San Francisco. 

[148] Singh, M. P., Chopra, A. K., and Desai, N. (2009, November). 

Commitment-Based Service-Oriented Architecture. Computer, pp. 72-79. 

[149] Rebêlo, H., Lima, R., and Cornélio, M. L. (2012). Implementing JML 

Contracts with AspectJ: Improving instrumentation and checking of JML 

contracts. Saarbruecken: LAP LAMBERT Academic Publishing. 

[150] Ecma International. (2011, June). ECMAScript Langage Specification. 

Retrieved October 8, 2012, from http://www.ecma-

international.org/publications/files/ECMA-ST/Ecma-262.pdf 



458 

 

[151] Organization for the Advancement of Structured Information Standards 

(OASIS). (2004, October 19). UDDI Version 3.0.2. Retrieved October 8, 2012, 

from http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf 

[152] The Eclipse Foundation. (n.d.). AJDT: AspectJ Development Tools (The 

Visualiser). Retrieved 16 2012, June, from 

http://www.eclipse.org/ajdt/visualiser/ 

[153] Zhang, F., Qin, Z., and Zhou, S. (2004). Policy-Tree Based Proactive 

Defense Model for Network Security. In Grid and Cooperative Computing - 

GCC 2004 Workshops (pp. 437-449). Berlin/Heidelberg: Springer. 

[154] Arrott, M., Demchak, B., Ermagan, V., Farcas, C., Farcas, E., Krüger, I., et 

al. (2007). Rich Services: The Integration Piece of the SOA Puzzle. 

Proceedings of the IEEE International Conference on Web Services (ICWS) 

(pp. 176-183). Washington, DC: IEEE Computer Society. 

[155] Ermagan, V., Krueger, I., and Menarini, M. (2007). Model-based failure 

management for distributed reactive systems. Proceedings of the 13th 

Monterey conference on Composition of embedded systems: scientific 

and industrial issues (pp. 53-74). Paris, France: Springer-Verlag. 

[156] Demchak, B., Ermagan, V., Farcas, E., Huang, T.-J., Krüger, I. H., and 

Menarini, M. (2008). A Rich Services Approach to CoCoME. In A. Rausch, R. 

Reussner, R. Mirandola, and F. Plášil, The Common Component Modeling 

Example (pp. 85-115). Berlin, Heidelberg: Springer-Verlag. 

[157] Broy, M., and Stølen, K. (2001). Specification and Development of 

Interactive Systems. New York: Springer-Verlag. 

[158] Krüger, I. H. (2012). Services, SOAs and Integration at Scale. La Jolla: 

University of California, San Diego. 

[159] Meyer, B. (October 1992). Applying 'Design by Contract'. Computer, 40-

51. 

[160] Pugh, K. (2006). Interface Oriented Design: With Patterns. Pragmatic 

Bookshelf. 

[161] Gama, P., and Ferreira, P. (2005). Obligation Policies: An Enforcement 

Platform. Proceedings of the Sixth IEEE International Workshop on Policies 

for Distributed Systems and Networks (POLICY '05) (pp. 203-212). Stockholm: 

IEEE Computer Society. 

[162] Alfaro, L., and Henzinger, T. (2001). Interface automata. 8th Euro 

Software Eng Conf, (pp. 109-120). Vienna, Austria. 



459 

 

[163] Northrup, L. (2006). Ultra-Large-Scale Systems: The Software Challenge of 

the Future. Pittsburgh: Carnegie Mellon University. 

[164] Software Engineering Institute (SEI). (2012). Ultra-Large-Scale Systems. 

Retrieved October 27, 2012, from http://www.sei.cmu.edu/uls/ 

[165] Sullivan, K. (2011, August 22). A Cyber-Social Systems Approach to the 

Engineering of Ultra-Large-Scale National Health Information Systems. 

Washington, DC, USA: Institute of Medicine of the National Academies. 

[166] Foster, I., Kesselman, C., and Tuecke, S. (2001). The Anatomy of the Grid: 

Enabling Scalable Virtual Organizations. International Journal of High 

Performance Computing Applications, 200-222. 

[167] PALMS. (n.d.). Retrieved June 3, 2011, from http://ucsd-palms-

project.wikispaces.com/ 

[168] National Institutes of Health. (n.d.). Genes, Environment and Health 

Initiative (GEI). Retrieved June 3, 2011, from http://www.gei.nih.gov 

[169] (n.d.). Retrieved September 23, 2012, from GPS-HRN: http://www.gps-

hrn.org/ 

[170] National Cancer Institute (caBIG). (n.d.). Retrieved September 23, 2012, 

from caBIG: https://cabig.nci.nih.gov/ 

[171] Kleppe, A., Warmer, J., and Bast, W. (2003). MDA Explained: The Model 

Driven Architecture(TM): Practice and Promise. Boston: Addison-Wesley 

Longman Publishing Co, Inc. 

[172] Sparx Systems. (n.d.). Retrieved June 14, 2011, from 

http://www.sparxsystems.com/ 

[173] Google Inc. (n.d.). Google Web Toolkit. Retrieved June 14, 2011, from 

http://code.google.com/webtoolkit/ 

[174] Mulesoft Inc. (n.d.). Retrieved June 14, 2011, from 

http://www.mulesoft.org/ 

[175] The Apache Software Foundation. (n.d.). Retrieved June 14, 2011, from 

http://cxf.apache.org/ 

[176] National Cancer Institute (caBIG). (n.d.). Dorian. Retrieved June 14, 

2011, from https://wiki.nci.nih.gov/display/caGridKC/Dorian 

[177] The Internet Society. (1999, January). Retrieved June 14, 2011, from 

http://www.ietf.org/rfc/rfc2459.txt 



460 

 

[178] Internet2. (n.d.). Retrieved June 14, 2011, from 

http://www.internet2.edu/grouper/ 

[179] Richards, M., Monson-Haefel, R., and Chappell, D. A. (2009). Java 

Message System, Second Edition. Sebastopol: O'Reilly Media, Inc. 

[180] Red Hat, Inc. (2004). Chapter 15: Criteria Queries. Retrieved July 23, 

2012, from Hibernate Community Documentation: 

http://docs.jboss.org/hibernate/core/3.3/reference/en/html/querycriteria.

html 

[181] org.hibernate Interface Criteria. (n.d.). Retrieved July 23, 2012, from 

http://www.dil.univ-mrs.fr/~massat/docs/hibernate-

3.1/api/org/hibernate/Criteria.html 

[182] Zhang, X. (2011, February 8). PALMS Criteria API Tutorial. Retrieved July 

23, 2012, from 

https://sosa.ucsd.edu/confluence/display/PALMSGD/PALMS+Criteria+API+

Tutorial 

[183] World Wide Web Consortium (W3C). (2011, Jan 3). XQuery 1.0: An XML 

Query Language (Second Edition). Retrieved Sept 29, 2011, from 

http://www.w3.org/TR/xquery/ 

[184] Kay, M. (n.d.). Saxonica: XSLT and XQuery Processing. Retrieved Sept 29, 

2011, from http://www.saxonica.com 

[185] Codehaus. (n.d.). XStream. Retrieved Sept 29, 2011, from 

http://xstream.codehaus.org/ 

[186] Ferraiolo, D. F., Barkley, J. F., and Kuhn, D. R. (1999). A Role-based 

Access Control Model and Reference Implementation within a Corporate 

Intranet. ACM Transactions on Information Systems Security, 34-64. 

[187] SAP. (n.d.). Retrieved August 21, 2012, from 

http://www.crystalreports.com/ 

[188] Eclipse Foundation. (n.d.). Retrieved August 23, 2012, from 

www.eclipse.org 

[189] The Apache Software Foundation. (n.d.). Retrieved August 23, 2012, 

from logging.apache.org 

[190] SyncRO Soft SRL. (n.d.). <oXygen/> xml editor. Retrieved August 23, 2012, 

from www.oxygenxml.com 

[191] Ocean Observatories Initiative. (2011). Retrieved Sept 29, 2011, from 

http://ci.oceanobservatories.org/ 



461 

 

[192] University of California. (n.d.). Retrieved August 26, 2012, from 

https://sosa.ucsd.edu/confluence/display/CitiSensePublic/CitiSense 

[193] Patrick, K., Wolszon, L., Basen-Engquist, K., Demark-Wahnefried, W., 

Prokhorov, A., Barrera, S., et al. (2011). CYberinfrastructure for 

COmparative effectiveness REsearch (CYCORE): improving data from 

cancer clinical trials. Journal of Translational Behavioral Medicine: Practice, 

Policy, Research, 83-88. 

[194] VMware. (2010). Timekeeping in VMware Virtual Machines. Retrieved 

August 27, 2012, from http://www.vmware.com/files/pdf/Timekeeping-In-

VirtualMachines.pdf 

[195] Ueno, K., and Tatsubori, M. (2006). Early Capacity Testing of an Enterprise 

Service Bus. Proceedings of the IEEE International Conference on Web 

Services (ICWS '06) (pp. 709-716). Chicago: IEEE Computer Society. 

[196] World Wide Web Consortium. (2004, Feburary 11). Web Services 

Architecture. Retrieved September 27, 2012, from 

http://www.w3.org/TR/ws-arch/ 

[197] Siddiqi, S., and Atlee, J. (2000). A Hybrid Model for Specifying Features 

and Detecting Interactions. Computer Networks, 471-485. 

[198] Robillard, M. P., and Murphy, G. C. (2007). Representing concerns in 

source code. ACM Transactions on Software Engineering and 

Methodology (TOSEM), 16(1). 

[199] aopmetrics Project home. (n.d.). Retrieved September 5, 2012, from 

http://aopmetrics.tigris.org/ 

[200] Zhang, J., Cottenier, T., van den Berg, A., and Gray, J. (August, 2007). 

Aspect Composition in the Motorola Aspect-Oriented Modeling Weaver. 

Journal of Object Technology, 89-108. 

[201] Reddy, Y. R., Ghosh, S., France, R. B., Straw, G., Bieman, J. M., 

McEachen, N., et al. (2006). Directives for Composing Aspect-Oriented 

Design Class Models. In A. Rashid, and M. Aksit, Transactions on Aspect-

Oriented Software Development I (pp. 75-105). Berlin/Heidelberg: Springer-

Verlag. 

[202] Alexandrescu, A. (2001). Modern C++ Design : Generic Programming 

and Design Patterns Applied. Boston: Addison-Wesley Provessional. 

[203] Rosenberg, F., and Dustdar, S. (2005). Business Rules Integration in BPEL - 

A Service-Oriented Approach. Seventh IEEE International Conference on E-

Commerce Technology (pp. 476-479). Munich: IEEE. 



462 

 

[204] Shebab, M., Bertino, E., and Ghafoor, A. (2006). Workflow authorisation in 

mediator-free environments. International Journal of Security and 

Networks, 2-12. 

[205] World Wide Web Consortium (W3C). (2004, December 17). Web Services 

Choreography Description Language Version 1.0. Retrieved September 12, 

2012, from http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/ 

[206] Chadwick, D., Xu, W., Otenko, S., Laborde, R., and Nassar, B. (2007). 

Multi-Session Separation of Duties (MSoD) for RBAC. 1st International 

Workshop on Security Technologies for Next Generation Collaborative 

Business Applications (SECOBAP'07). Istanbul, Turkey. 

[207] Pretschner, A., Hilty, M., Basin, D., Schaefer, C., and Walter, T. (2008). 

Mechanisms for Usage Control. Proceedings of the 2008 ACM Symposium 

on Information, Computer and Communications Security (ASIACCS '08) 

(pp. 240-244). Tokyo: Association for Computing Machinery. 

[208] Pretschner, A., Schültz, F., Schaefer, C., and Walter, T. (2009). Policy 

Evolution in Distributed Usage Control. Electronic Notes in Theoretical 

Computer Science (ENTCS), 109-123. 

[209] Neisse, R., Pretschner, A., and Giacomo, V. (2011). A Trustworthy Usage 

Control Enforcement Framework. Proceedings of the 6th Intl Conf on 

Availability, Reliability, and Security (ARES '11). Vienna. 

[210] Dulay, N., Lupu, E., Sloman, M., and Damianou, N. (2001). A Policy 

Deployment Model for the Ponder Language. Procedings of the 7th 

IEEE/IFIP International Symposium of Integrated Network Management (IM 

'01) (pp. 14-18). Seattle: IEEE Press. 

[211] Ribeiro, C., Zúquete, A., Ferreira, P., and Guedes, P. (1999). SPL: An 

access control language for security policies with complex constraints. 

Proceedings of the Network and Distributed System Security Symposium, 

(pp. 89-107). 

[212] World Wide Web Consortium (W3C). (n.d.). Enterprise Privacy 

Authorization Language (EPAL 1.2). Retrieved September 10, 2012, from 

http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/ 

[213] World Wide Web Consortium (W3C). (n.d.). PolicyLangReview. Retrieved 

September 10, 2012, from 

http://www.w3.org/Policy/pling/wiki/PolicyLangReview 

[214] Nadler, R. (2009, March 26). Software Verification vs Validation. 

Retrieved September 11, 2012, from Bob on Medical Device Software: 

http://rdn-consulting.com/blog/2009/03/26/software-verification-vs-

validation/ 



463 

 

[215] Song, E., Franca, R., Kim, H., and Ray, I. (2007). Checking Policy 

Enforcement in an Access Control Aspect Model. Proceedings of the 

International Conference on Convergence Technology and Information 

Convergence (CTIC) '07. Anaheim: Association for Computing Machinery. 

[216] Goldman, M., and Katz, S. (2007). MAVEN: Modular Aspect Verification. 

Proceedings of the 13th international conference on Tools and algorithms 

for the construction and analysis of systems (TACAS '07) (pp. 308-322). 

Braga: Springer-Verlag. 

[217] Salomie, I., Cioara, T., Anghel, I., Dinsoreanu, M., and Salomie, T. (2007). 

A Layered Workflow Model Enhanced with Process Algebra Verification for 

Industrial Processes. IEEE International Conference on Intelligent Computer 

Communication and Processing (pp. 185-191). Cluj-Napoca, Romania: 

IEEE. 

[218] Terpstra, F., and Adriaans, P. (2007). New directions in Workflow 

formalisms. UK e-Science All Hands Meeting. Nottingham. 

[219] Gross, A., and Doerr, J. (2009). EPC vs. UML Activity Diagram - Two 

Experiments Examining their Usefulness for Requirements Engineering. 17th 

IEEE International Requirements Engineering Conference (RE '09) (pp. 47-

56). Atlanta: IEEE Computer Society. 

[220] Demchak, B., and Krüger, I. (2012). A Model-Driven Engineering 

Approach to Requirement Elicitation for Policy-Reactive 

Cyberinfrastructures. La Jolla: University of California, San Diego, Computer 

Science Department. 

[221] Viega, J. (2005). Building security requirements with CLASP. Proceedings 

of the 2005 Workshop on Software Engineering for Secure Systems Building 

Trustworthy Applications (pp. 1-7). St Louis: Association for Computing 

Machinery. 

[222] Mavin, A., Wilkinson, P., Harwood, A., and Novak, M. (2009). Easy 

Approach to Requirements Syntax (EARS). Proceedings of the 2009 17th 

IEEE International Requirements Engineering Conference (RE '09) (pp. 317-

322). Atlanta: IEEE Computer Society. 

[223] Lodderstedt, T., Basin, D. A., and Doser, J. (2002). SecureUML: A UML-

Based Modeling Language for Model-Driven Security. Proceedings of the 

5th International Conference on The Unified Modeling Language (pp. 426-

441). Dresden: Springer-Verlag. 

[224] Kasal, K., Heurix, J., and Neubauer, T. (2011). Model-Driven Development 

Meets Security: An Evaluation of Current Approaches. 44th Hawaii 

International Conference on System Sciences (CD-ROM). Poipu, Hawaii, 

USA: The IEEE Computer Society Press. 



464 

 

[225] Bhattacharjee, A., and Shyamasundar, R. K. (2009). Activity Diagrams: A 

Formal Framework to Model Business Processes and Code Generation. 

Journal of Object Technology, 189-220. 

[226] Wong, P. Y., and Gibbons, J. (2008). A Process Semantics for BPMN. 

Proceedings of the 10th International Conference on Formal Methods and 

Software Engineering (pp. 355-374). Kitakyushu-City: Springer-Verlag. 

[227] Prater, J., Mueller, R., and Beauregard, B. (2012). An Ontological 

Approach to Oracle BPM. Proceedings of the 2011 joint international 

conference on The Semantic Web (JIST '11) (pp. 402-410). Hangzhou: 

Springer-Verlag. 

[228] Parreiras, F. S. (2012). Semantic Web and Model-Driven Engineering. 

Piscataway: Wiley-IEEE Press. 

[229] Chiba, S., and Leavens, G. T. (n.d.). LNCS Transactions on Aspect-

Oriented Software Development. Retrieved October 12, 2012, from 

http://www.springer.com/computer/lncs?SGWID=0-164-2-109318-0 

[230] Mussbacher, G., Amyot, D., and Araújo, J. (2010). Requirements 

Modeling with the Aspect-oriented User Requirements Notation (AoURN): A 

Case Study. In S. Katz, and M. Mezini, Transactions on aspect-oriented 

software development VII (pp. 23-68). Berlin/Heidelberg: Springer-Verlag. 

[231] International Telecommunication Union. (2008, November). Retrieved 

October 12, 2012, from User requirements notation (URN) - Language 

definition: http://www.itu.int/rec/T-REC-Z.151/en 

[232] Niu, N., and Easterbrook, S. (2007). Analysis of Early Aspects in 

Requirements Goal Models: A Concept-Driven Approach. In A. Rashid, 

and M. Aksit, Transactions on Aspect-Oriented Software Development IV 

(pp. 40-72). Berlin/Heidelberg: Springer-Verlag. 

[233] Sampaio, A., Rashid, A., Chitchyan, R., and Rayson, P. (2007). EA-Miner: 

Towards Automation in Aspect-Oriented Requirements Engineering. In A. 

Rashid, and M. Aksit, Transactions on Aspect-Oriented Software III (pp. 4-

39). Berlin/Heidelberg: Springer-Verlag. 

[234] Nouh, M., Ziarati, R., Mouheb, D., Alhadidi, D., Debbabi, M., Wang, L., et 

al. (2010). Aspect Weaver: a Model Transformation Approach for UML 

Models. Proceedings of the 2010 Conference of the Center for Advanced 

Studies on Collaborative Research (pp. 139-153). Toronto: IBM Corporation. 

[235] Fuentes, L., and Sánchez, P. (August, 2007). Designing and Weaving 

Aspect-Oriented Executable UML Models. Journal of Object Technology, 

109-136. 



465 

 

[236] Groher, I., and Voelter, M. (2009). Aspect-Oriented Model-Driven 

Software Product Line Engineering. In S. Katz, H. Ossher, R. France, and J.-

M. Jézéquel, Transactions on Aspect-Oriented Software Development VI 

(pp. 111-152). Berlin/Heidelberg: Springer-Verlag. 

[237] Chitchyan, R., Pinto, M., Rashid, A., and Fuentes, L. (2007). COMPASS: 

Composition-Centric Mapping of Aspectual Requirements to Architecture. 

In A. Rashid, and M. Aksit, Transactions on Aspect-Oriented Software 

Development IV (pp. 3-53). Berlin/Heidelberg: Springer-Verlag. 

[238] Krüger, I., Meisinger, M., and Menarini, M. (2007). Runtime Verification of 

Interactions: From MSCs to Aspects. Proceedings of the 7th International 

Converence on Runtime Verification (RV '07) (pp. 63-74). Vancover: 

Springer-Verlag. 

[239] Liu, W. W. (2009). Refactoring-based Requirements Refinement Towards 

Design. Toronto: University of Toronto. 

[240] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J. 

(2002). Modeling Early Requirements in Tropos: A Transformation Based 

Approach. Second International Workshop on Agent-Oriented Software 

Engineering II (AOSE '01) (pp. 151-168). Montreal: Springer-Verlag. 

[241] Krüger, I., Demchak, B., and Menarini, M. (212). Dynamic Service 

Composition and Deployment with OpenRichServices. In M. Heisel, 

Software Service and Application Engineering: Essays Dedicated to Bernd 

Krämer on the Occasion of His 65th Birthday (pp. 120-146). Berlin 

Heidelberg: Springer. 

[242] Object Management Group (OMG). (n.d.). Retrieved October 16, 2012, 

from http://www.omg.org/ 

[243] Object Management Group (OMG). (2009, February). UML 2.2. 

Retrieved October 16, 2012, from http://www.omg.org/spec/UML/2.2/ 

[244] Ambler, S. W. (2005). The Elements of UML 2.0 Style. Cambridge: 

Cambridge University Press. 

[245] Milner, R. (1982). A Calculus of Communicating Systems. Secaucus, NJ: 

Springer-Verlag. 

[246] Zilio, S. D. (2001). Mobile processes: a commented bibliography. In F. 

Cassez, C. Jard, B. Rozoy, and M. D. Ryan, Modeling and verification of 

parallel processes (pp. 206-222). New York: Springer-Verlag. 

[247] Milner, R. (1991, October). The Polyadic Pi-Calculus: a Tutorial. Technical 

Report ECS-LFCS-91-180. UK: Computer Science Department, University of 

Edinburgh. 



466 

 

[248] Sangiorgi, D. (1993, May). Expressing Mobility in Process Algebras: First-

Order and Higher-Order Paradigms. PhD Thesis. UK: Computer Science 

Department, University of Edinburgh. 

[249] OASIS. (2007, April 11). Web Services Business Process Execution 

Language Version 2.0. Retrieved March 1, 2012, from http://docs.oasis-

open.org/wsbpel/2.0/wsbpel-v2.0.pdf 

[250] Kitchin, D., Cook, W., and Misra, J. (2006). A Language for Task 

Orchestration and its Semantic Properties. Proceedings of Concur'06 (pp. 

477-491). Bonn, Germany: Springer. 

[251] Barendregt, H. P. (1984). The Lambda Calculus: Its Syntax and Semantics. 

Amsterdam: North Holland. 

[252] Böhm, C., and Jacopini, G. (1979). Flow diagrams, Turing machines and 

languages with only two formation rules. Classics in software engineering, 

11-25. 

[253] Dahl, O.-J., Dijkstra, E. W., and Hoare, C. A. (1972). Structured 

Programming. London: Academic Press. 

[254] Schmidt, D. C., Stal, M., Rohnert, H., and Buschmann, F. (2000). Pattern-

Oriented Software Architecture, Volume 2: Patterns for Concurrent and 

Networked Objects. Chichester, UK: Wiley. 

[255] International Organization for Standardization. (2006, September 20). 

ISO/IEC 10181-3:1996. Retrieved January 21, 2012, from www.iso.org 

[256] Oracle Corporation. (n.d.). JSR-000154 JavaTM Servlet 2.5 Specification. 

Retrieved September 13, 2012, from 

http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html 

[257] Lee, L. (1981, November 7). Retrieved from A Service Oriented 

Approach to Wings, Photography, and Exascale Databases: 

http://fatlucas.com 

 


	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Abbreviations
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Chapter 1  Policy Driven Development Improves Evolvability
	1.1 The Evolvability Problem at Scale
	1.2 Policies and Evolvability – Then and Now
	1.2.1 SOARS: A History of the Wrong People Making Right Decisions
	1.2.2 How Policy-based Solutions Have Fallen Short (So Far)
	1.2.3 Better Evolvability Leads to More Productive Stakeholders
	1.2.4 Why has the Evolvability Problem Not Been Solved?
	1.2.5 How Other Existing Approaches Fall Short

	1.3 PDD – A Vision for Rapid Requirement Injection
	1.3.1 How PDD Differs from Existing Methodologies
	1.3.2 PDD’s Perspective on Workflows
	1.3.3 Policy Programmers Enfranchise Stakeholders
	1.3.4 Lifting the Policy Abstraction
	1.3.5 PDD’s Focus on Simple Workflows
	1.3.6 The PDD Hypothesis

	1.4 Contributions of this Dissertation
	1.5 How to Read this Dissertation
	1.6 A Vision of SOARS in a PDD World
	1.7 Summary

	Chapter 2  Existing Approaches to Choice and Composition
	2.1 Background
	2.1.1 What is a Requirement?
	2.1.2 What is a Workflow?

	2.2 Models of Computation
	2.2.1 Turing Machines
	2.2.2 Petri Nets
	2.2.3 π -calculus
	2.2.4 𝝀-calculus

	2.3 Software Development Methodologies
	2.3.1 Modular Programming
	2.3.2 Structured Programming
	2.3.3 Object Oriented Programming
	2.3.4 Aspect Oriented Programming

	2.4 Mechanisms
	2.4.1 Fundamental Mechanisms
	2.4.2 Declarative Representations
	2.4.2.1 Functional Languages
	2.4.2.2 Modeling Languages
	2.4.2.3 Structured Query Language (SQL)

	2.4.3 Execution Frameworks
	2.4.3.1 SQL Engines
	2.4.3.2 Enterprise Service Bus

	2.4.4 Policy Engines
	2.4.4.1 PERMIS (Privilege and Role Management Infrastructure Standards)
	2.4.4.2 BPEL Process Integration with Business Rules
	2.4.4.3 xESB: Integration of Policy with ESBs
	2.4.4.4 Ponder2

	2.4.5 Workflow Context in Distributed Systems
	2.4.5.1 Struts
	2.4.5.2 REST
	2.4.5.3 AJAX

	2.4.6 Ponder Policy Verification

	2.5 Patterns
	2.5.1 Object Oriented Design Patterns
	2.5.2 Workflow Patterns
	2.5.3 Enterprise Application Architecture Patterns
	2.5.4 Enterprise Integration Patterns

	2.6 Related Concepts
	2.6.1 SCA Infrastructure
	2.6.2 Spring Framework
	2.6.3 ORC Language
	2.6.4 WS-Policy
	2.6.5 Business Process Modeling Notation (BPMN)
	2.6.6 Policy as Commitments

	2.7 Summary
	2.7.1 Workflow Specification
	2.7.2 Workflow Injection
	2.7.3 State Management
	2.7.4 Modeling
	2.7.5 Deployment
	2.7.6 Assessment


	Chapter 3  A Running Example – PALMS’ GetStudyList Workflow
	3.1 Relationship to PALMS
	3.2 GetStudyList Data Flow
	3.3 Relationship to Requirements
	3.4 Policy Preview
	3.5 Representative Workflow
	3.6 Summary

	Chapter 4  A Foundation for Policy Composed on Workflow
	4.1 A SOA Approach to Policy-based Workflow Composition
	4.1.1 Rich Services
	4.1.1.1 Rich Service Structure
	4.1.1.2 System of Systems (SoS) Composition using Rich Services

	4.1.2 Service Definition
	4.1.3 Service Composition
	4.1.4  Service Decomposition
	4.1.5 Message Interception
	4.1.6 Services and Workflows

	4.2 Policies
	4.2.1 Policies and Workflows
	4.2.2 Compound Service Interactions
	4.2.3 Control Policies
	4.2.4 Filter Policies
	4.2.5 A Simple Policy Evaluation Service
	4.2.6 Feature Injection and Obligations
	4.2.7 Policy Composition

	4.3 Context System
	4.4 Addressing Gaps Identified in Existing Choice Mechanisms
	4.5 Summary
	4.6 Acknowledgments

	Chapter 5  Policy in the PALMS Cyberinfrastructure – A Case Study
	5.1 The PALMS Project and the PALMS-CI
	5.1.1 Exposure Biologists – the Core PALMS Community

	5.2 The Basic PALMS Requirements
	5.3 The PALMS Logical Rich Service
	5.4 The PALMS Deployment Rich Service
	5.5 The PALMS-CI Design
	5.5.1 Repositories
	5.5.2 Interface between Browser UI and PALMS-CI
	5.5.3 Interface between PALMS-CI Internal Services
	5.5.3.1 PALMS Internal Message Contents
	5.5.3.1.1 AttributeCollections
	5.5.3.1.2 SQLTupleTrees


	5.5.4 Workflow Implementation
	5.5.4.1 Basic Interservice Messages (IM) and Service Tracking
	5.5.4.2 RAS and RIS Implementation in Mule
	5.5.4.3 Workflow and Other SIVs
	5.5.4.4 New SIVs


	5.6 PALMS’ Policy System
	5.6.1 PALMS Basic Policy Language
	5.6.1.1 Policy Example
	5.6.1.2 Policy Expression Dependencies
	5.6.1.3 Identity, RBAC,and ACLs
	5.6.1.3.1 Roles and Permissions under Grouper
	5.6.1.3.2 Role and Permission Namespace


	5.6.2 Policy Repositories and Authorship
	5.6.2.1 The Interaction Repository
	5.6.2.2 The Policy Repository
	5.6.2.2.1 Control Policies
	5.6.2.2.2 Filter Policies
	5.6.2.2.3 Policy Packages
	5.6.2.2.4 Composition Policies

	5.6.2.3 The Authoring System

	5.6.3 Policy Evaluator
	5.6.3.1 Evaluation of Filter Policies
	5.6.3.2 Evaluating Control Policies

	5.6.4 Feature Injection
	5.6.5 PALMS Domain Specific Languages (DSLs)
	5.6.5.1 XQuery Library Functions
	5.6.5.2 XQuery Policy Support Libraries
	5.6.5.3 Specialized DSLs
	5.6.5.4 Policy Support Development and Debugging

	5.6.6 Policy Development and Debugging

	5.7 Summary
	5.8 Acknowledgments

	Chapter 6  PALMS’ Experience with PDD
	6.1 Development Time
	6.2 Stakeholder Ease of Use
	6.3 Execution time
	6.3.1 Test Platform and Circumstances
	6.3.2 End to End Tests
	6.3.2.1 End to End with No Interceptors
	6.3.2.2 End to End with Context Interceptors

	6.3.3 Single Interaction Baseline
	6.3.4 Null Policy Baseline
	6.3.5 Control Policy
	6.3.6 Filter Policy
	6.3.7 Execution Time Hypotheses

	6.4 Summary

	Chapter 7  PDD as Compared to Other Approaches
	7.1 Workflows, Requirements, and Late Binding
	7.1.1 Aspect Oriented Software Design (AOSD)
	7.1.2 Policy-based Design

	7.2 Workflow Context
	7.2.1 Struts
	7.2.2 REST
	7.2.3 AJAX

	7.3 Orchestration Languages and Workflow Systems
	7.4 Policy Evaluation Systems
	7.4.1 PERMIS
	7.4.2 xESB
	7.4.3 Ponder2
	7.4.4 Policy Deployment
	7.4.5 Policy Languages
	7.4.6 Policy Versioning

	7.5 Verification and Validation
	7.6 Policy Programmers and Enfranchised Stakeholders
	7.6.1 Survey of Stakeholder Policy Authorship
	7.6.2 Policy Programming
	7.6.3 Complimentary Approaches

	7.7 Building and Maintaining PDD Applications
	7.8 Gaps and Insights
	7.8.1 Gap in Service Contract Checking
	7.8.2 Gap in Testing and Fidelity Assessment
	7.8.3 Requirement Feedback Loops
	7.8.4 Implementation Platforms

	7.9 Summary

	Chapter 8  Summary and Outlook
	8.1 Gaps
	8.2 Outlook

	Appendices
	Appendix A – Graphical Notations
	A.1.1 Unified Modeling Language
	A.1.2 Class Diagrams
	A.1.3 Sequence Diagrams
	A.1.4 Activity Diagrams
	A.2 Workflow Sketch

	Appendix B Existing Contributions
	B.1 Models of Computation
	B.1.1 Turing Machines
	B.1.2 Petri Nets
	B.1.3 π-calculus
	B.1.4 𝝀-calculus

	B.2 Software Development Methodologies
	B.2.1 Modular Programming
	B.2.2 Structured Programming
	B.2.3 Object Oriented Programming
	B.2.4 Aspect Oriented Programming
	B.2.5 Execution Frameworks
	B.2.6 Policy Engines

	B.3 Workflow Context in Distributed Systems
	B.3.1 Struts
	B.3.2 REST
	B.3.3 AJAX

	B.4 Ponder Policy Verification

	Appendix C Patterns for Object Oriented Programming
	C.1 Strategy Pattern
	C.2 Composite Pattern


	References



