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Abstract

Probing Dark Energy with Theory and Observations

by

Roland de Putter

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Eric V. Linder, Co-Chair

Professor Saul Perlmutter, Co-Chair

The discovery of cosmic acceleration twelve years ago implies that our universe is
dominated by dark energy, which is either a tiny cosmological constant or a mysterious
fluid with large negative pressure, or that Einstein’s successful theory of gravity needs
to be modified at large scales/low energies. Since then, independent evidence of a
number of cosmological probes has firmly established the picture of a universe where
dark energy (or the effective contribution from a modification of gravity) makes up
about 72% of the total energy density. Whichever of the options mentioned above
will turn out to be the right one, a satisfying explanation for cosmic acceleration will
likely lead to important new insights in fundamental physics. The question of the
physics behind cosmic acceleration is thus one of the most intriguing open questions
in modern physics. In this thesis, we calculate current constraints on dark energy
and study how to optimally use the cosmological tools at our disposal to learn about
its nature.

We will first present constraints from a host of recent data on the dark energy
sound speed and equation of state for different dark energy models including early
dark energy. We then study the observational properties of purely kinetic k-essence
models and show how they can in principle be straightforwardly distinguished from
quintessence models by their equation of state behavior. We next consider a large,
representative set of dark energy and modified gravity models and show that they
can be divided into a small set of observationally distinct classes. We also find that
all non-early dark energy models we consider can be modeled extremely well by a
simple linear equation of state form. We will then go on to discuss a number of
alternative, model independent parametrizations of dark energy properties. Among
other things, we find that principal component analysis is not as model-independent
as one would like it to be and that assuming a fixed value for the high redshift
equation of state can lead to a dangerous bias in the determination of the equation
of state at low redshift. Finally, we discuss using weak gravitational lensing of cosmic
microwave background (CMB) anisotropies as a cosmological probe. We compare
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different methods for extracting cosmological information from the lensed CMB and
show that CMB lensing will in the future be a useful tool for constraining dark
energy and neutrino mass. Whereas marginalizing over neutrino mass can degrade
dark energy constraints, CMB lensing helps to break the degeneracy between the two
and restores the dark energy constraints to the level of the fixed neutrino mass case.
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Chapter 1

Introduction

The mystery of cosmic acceleration is one of the biggest and most interesting ques-
tions in physics. About twelve years ago (in 1998) at the time of this writing, two
independent teams [180, 187] studying Type Ia supernovae discovered that the expan-
sion of the universe is accelerating. If gravity is described by general relativity, this
means that the universe has to be filled by a component with negative pressure and
(nearly) constant energy density. We do not know the nature of this substance, but
we have a name for it: dark energy. One possibility is that dark energy is Einstein’s
cosmological constant, but this explanation has problems (for reasons explained later)
so it is important to explore alternative explanations where the dark energy density
is not constant. The main example of a dynamical dark energy model is quintessence,
where the dark energy is described by a scalar field having a potential energy dom-
inating over its kinetic energy. Yet another possibility is to take the radical step of
giving up general relativity and ascribing the cause of cosmic acceleration to a mod-
ification in the theory of gravity, making it repulsive on cosmological scales. While
there are many potential explanations around, the nature of dark energy is still very
much an open question.

Currently, the evidence for dark energy1 is overwhelming. Not only can we say
at very high confidence level that dark energy exists, this conclusion comes from a
combination of very different probes so that it cannot be due to the systematics of
one individual probe. In the concordance model of the universe, about 72% of the
total energy density is dark energy, about 23% dark matter and only the remaining
5% is made of the type of matter one finds in the standard model of particle physics:
baryons (using the cosmologist’s definition of baryons), radiation and neutrinos. This
fact immediately gives one of the major motivations for studying dark energy: the vast
majority of our universe is made of it! Furthermore, the fate of our universe, whether
it will expand forever or come to an end in a big crunch or even a “big rip,” depends

1If modified gravity explains cosmic acceleration, it can still be described in terms of an effective

background dark energy density. Here we use a general meaning of the phrase “dark energy,” not
excluding modified gravity.
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on the nature of dark energy. The second major motivation is that there is reason to
believe that the solution to the problem will give us important new insights into the
fundamental physics describing our universe. It is likely that a proper explanation for
cosmic acceleration will require and/or lead to a deeper understanding of quantum
gravity and thus what we hope will be a theory of everything.

Not only is the question of cosmic acceleration an exciting one, we also live in an
exciting time to study this question. We are now exiting the time of discovery of its
existence and entering the time where observations are getting sufficiently powerful
to get strong constraints on the nature of dark energy. Some of the challenges for
theorists therefore are the following. First of all, it is necessary to understand the
observational properties of dark energy models very well and to find a way of modeling
these properties such that, if dark energy indeed is more interesting than just a
cosmological constant, we will be able to extract this information from the data, and
not miss it, and then draw the right conclusions. Secondly, it is important to study
the constraining power of different observational probes in order to design surveys
that maximally constrain dark energy and other physics of interest and to develop
the mathematical tools to use these probes optimally once the data are in.

In this thesis, we address a number of these issues. In chapter 2, we will discuss the
current constraints on dark energy properties, where we go beyond just modeling the
background properties, but include the dark energy perturbations. In chapters 3 and
4, we will first discuss a number of specific scalar field models and their observational
properties. This work shows that despite the large class of available models, there are
some simple, distinct observational properties that distinguish classes of models from
each other. Since there is such a large class of possible models (a lot of which have
not been invented yet), it makes sense to parametrize the properties of dark energy
in a model independent way. We critically discuss such parametrizations in chapter
5. Finally, we study the use of weak gravitational lensing of the cosmic microwave
background as a tool to learn about dark energy and neutrinos in the future.

In this chapter, we will give a brief introduction to dark energy. We will discuss
the current observational evidence, candidate theories for dark energy and the most
promising observational probes. Even though we will review a little bit of basic
cosmology, for a proper introduction into the field, we refer the reader to one of the
standard textbooks [136, 177, 175, 71]. For a more complete review of dark energy
and cosmic acceleration, we recommend one of the recent review articles [91, 43],
where the first focuses more on the observational side and the second more on the
theory.
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1.1 Observational Effects of Dark Energy

The main effect of dark energy is on the background evolution. A homogeneous,
isotropic universe is described by the Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a2(t)

(

dr2

1 − kr2
+ dθ2 + sin2 θdφ2

)

, (1.1)

where a(t) is the cosmic scale factor and k is the spatial curvature. We normalize
a(t0) = 1, where t0 is the present age of the universe. The evolution of the scale factor
is determined by the Friedmann equations

(

ȧ

a

)2

≡ H2 =
8πG

3

∑

i

ρi −
k

a2
(1.2)

ä

a
= −4πG

3

∑

i

(ρi + 3pi) , (1.3)

where overdots represent derivatives with respect to time, ˙ = d/dt, H is the Hubble
parameter, ρi and pi are the energy density and pressure of each component, G is
Newton’s constant and we work in units where the speed of light c = 1. We define
the critical energy density as

ρc ≡
3H2

8πG
, (1.4)

which is the total energy density needed to make the universe flat, k = 0. Its value
today is ρc,0 ≈ 1.9 · 10−29h2g/cm−3 ≈ 8.1 · 10−11eV4, where h = H0/ (100 km/s/Mpc)
and H0 is the current value of the Hubble parameter. A positive spatial curvature
gives a closed universe and a negative value results in an open universe. The en-
ergy density in a component relative to the critical density is Ωi(a) ≡ ρi(a)/ρc(a).
Our conventions are such that an Ωi without an argument stands for its value to-
day, i.e. Ωi ≡ Ωi(a = 1). The energy density of each component has to satisfy the
continuity equation

ρ̇i + 3H(ρi + pi) = 0. (1.5)

This equation holds for an individual component as long as it is not directly coupled
to the other components, and it also holds for the sum of all components. Note
that out of the two Friedmann equations and the continuity equation, only two are
independent.

In the standard picture, the universe consisting of radiation, matter and dark
energy, i.e.

∑

i ρi = ρm + ρr + ρDE. However, when discussing the late universe,
which is when dark energy becomes important, we will often ignore the radiation
component, since the radiation energy density today is Ωr ≈ 4 · 10−5 ≪ 1 (assuming
no relativistic neutrinos). The evolution of each component can be characterized by
its equation of state

wi ≡ pi/ρi, (1.6)
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which, through the continuity equation, determines

ρi ∝ e−3
R a da′

a′
(1+wi(a

′)). (1.7)

Matter and radiation have wm = 0, wr = 1/3 and therefore ρm ∝ a−3, ρr ∝ a−4.
Since we do not know the nature of dark energy, its equation of state wDE(a) can in
principle be a general function of the scale factor. The second equation shows that
in the absence of dark energy ä < 0 and the expansion of the universe decelerates.
This is why historically, the expansion history of the universe was analyzed in terms
of the deceleration parameter

q(a) ≡ − ä

aH2
= −1

2

∑

i

Ωi(a) (1 + 3wi(a)) . (1.8)

It follows from the above expression that to get an accelerating universe, one needs
the dark energy component to have a large, negative equation of state, wDE < −1/3,
and one needs the dark energy to make a significant contribution to the energy budget
(ΩDE ∼ 1). The cosmological constant is a special case of this, where wΛ = −1 so
that ρΛ = −pΛ = const. We will discuss this option and its motivation from theory
in section 1.4.1.

It is clear from the above, that by measuring the expansion history directly,
through quantities like the Hubble parameter and cosmic distances, one can learn
a great deal about the properties of dark energy. This has been the most successful
path thus far. However, one can also learn about dark energy from its effects on the
growth of perturbations. The main way dark energy influences matter perturbations
is by changing the Hubble parameter and therefore the friction term in the linear
growth equation

δ̈m + 2Hδ̇m = 4πGρmδm, (1.9)

where δm ≡ δρm/ρm. This equation is exact (for a pressureless fluid in the synchronous
gauge) in the case of a cosmological constant. When dark energy is not a cosmological
constant, it must have spatial clustering itself and the equation above is formally no
longer valid. However, in most dark energy models, the dark energy perturbations
are strongly suppressed and can be ignored so that Eq. (1.9) can be used to a very
good approximation. Dark energy perturbations, and our observational constraints
on them, will be the subject of chapter 2.

1.2 Discovery

Even before the publication of the supernova results in 1998, there had been hints
for the existence of an extra component behaving like a cosmological constant (see for
example [172, 140]). Observations of large scale structure (LSS) implied that the total
matter density was significantly smaller than the critical density. This in combination
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Figure 1.1: The supernova data used by the Supernova Cosmology Project and the
High-z Supernova team to discover cosmic acceleration. Figure taken from [179].

with the theoretical prejudice from inflation that the universe is flat, suggested that
there may be an extra component such that Ωm + ΩΛ = 1. In addition, for this
component to not disturb structure formation too much, it must have only become
important in recent times, which means it should decay more slowly than matter
and thus have a negative equation of state. A cosmological constant fit this picture
well. In addition, adding a cosmological constant helped to solve the age problem:
observations of globular clusters told us that the age of the universe must be at least
about 12 Gyr, which was higher than the age of the universe calculated in a matter-
only universe. Adding a cosmological constant makes the universe older and resolves
the disagreement.

However, even though there was clearly some evidence pointing towards a cos-
mological constant (or dark energy) before, what really changed everything was the
discovery of cosmic acceleration using the Hubble diagram of Type Ia supernovae
[180, 187]. Since supernovae have continued to play an important role and since they
promise to do so in the future, let us take a look at this measurement in some more
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detail. The reason that Type Ia supernovae can be used to reconstruct the expansion
history is that they are standardizable candles. Up to a calibration factor obtained
from the shape of the light curve (the luminosity as a function of time), all Type
Ia SNe are believed to have the same intrinsic luminosity up to a scatter of about
15% of a magnitude. This allows one to infer information about the distance to these
supernovae from measurements of their apparent brightness.

More quantitatively, the observed magnitude of a supernova is given by (modulo
comparison with a standard star)

m = −2.5 log10

[

I

4πd2
L

]

−m⋆, (1.10)

where I is the intrinsic intensity, m⋆ is the magnitude of some astronomical object
relative to which magnitudes are calibrated, and, assuming flatness,

dL = (1 + z)r = (1 + z)
c

H0

∫

dz
H0

H(z)
(1.11)

is the luminosity distance (r is the coordinate distance appearing in the metric,
Eq. (1.1)). In terms of the absolute magnitude M10pc (the magnitude observed if
the supernovae were at a distance of 10 pc), the magnitude becomes

m = M10pc + 5 log10(dL/10pc) ≡ M + 5 log10

(

(1 + z)

∫

dz
H0

H(z)

)

, (1.12)

where
M = M10pc + 25 + 5 log10 (H0/c× 1Mpc) . (1.13)

By analyzing the relation between redshift and magnitude of a large number of super-
novae, it is thus possible to constrain the parameter M, a combination of the Hubble
parameter and the unknown absolute supernova magnitude, and more importantly,
the redshift evolution of the distance modulus

µ = 5 log10

(

(1 + z)

∫

dz
H0

H(z)

)

, (1.14)

which directly tells us about the expansion history.
By analyzing of order 50 SNe at redshifts z < 1, members of both the Super-

nova Cosmology Project and of the High-z SN Search found that distant supernovae
looked fainter (larger magnitude) than expected based on a decelerating universe by
typically about 0.25 magnitude, see Fig. 1.1. Heuristically, larger magnitude means a
larger coordinate distance to the same redshift and therefore a longer conformal time
between the time the universe had size a = 1/(1 + z) and now. In other words, the
expansion must have been slower in the past. In fact the data showed that the ex-
pansion is accelerating, corresponding to a negative deceleration parameter q < 0. A
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cosmological constant (or component with equation of state w ≈ −1) would account
for this behavior. In a model with only matter and a cosmological constant, these
early data preferred ΩΛ > 0 at better than 99% confidence level [180], with a best-fit
value of ΩΛ = 0.72.

1.3 Current Constraints

Figure 1.2: Left: Current constraints on Ωm and ΩΛ when the curvature is allowed
to vary. Right: Constraints on a flat model with constant dark energy equation of
state. Figures courtesy of [14]
.

Since the original discovery of cosmic acceleration, the evidence for a cosmological
constant has become very strong. An important step was the measurement of the
first acoustic peak in the spectrum of cosmic microwave background anisotropies,
which gave observational support for the theoretical expectation that the universe
is spatially flat [60, 125, 182], i.e. Ωm + ΩDE ≈ 1. Since then, CMB observations
have become much stronger with the advent of the Wilkinson Microwave Anisotropy
Probe (WMAP) so that even with CMB data alone, ΩΛ is now constrained to be
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Figure 1.3: Current constraints from CMB, SNe and BAO on variation in the dark
energy equation of state in the form of the linear parametrization w(a) = w0 +wa(1−
a). A flat universe is assumed. Figure courtesy of [14].

ΩΛ = 0.734 ± 0.029 (assuming flatness) [141]. The supernova data themselves have
improved a great deal too. The latest compilation of supernova data [14] contains
557 supernovae in the range z < 1.4 as discovered by different groups, including SCP,
SDSS, Essence and SNLS.

In addition, observations of the baryon acoustic peak scale shed light on dark
energy by constraining the expansion history [178]. We will discuss this technique
in the future data section. Finally, recent weak gravitational lensing measurements
[106, 126, 164, 199], lower bounds on the age of the universe [139] and measurements
of the ratio of baryonic to total mass in clusters [13] all help constrain dark energy.
and help confirm the now standard ΛCDM picture. The most recent constraint is
ΩΛ = 0.722 ± 0.015 (assuming flatness) [138]. We show current constraints and
complementarity of different probes for a model with Ωk allowed to vary in the left
panel of Fig. 1.2 and constraints in the Ωm−w plane (here assuming flatness so that
ΩΛ = 1 − Ωm) in the right panel. In Fig. 1.3 we show the current constraints from
CMB, BAO and SNe on the dark energy equation of state for the parametrization
w(a) = w0 + wa(1 − a).
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1.4 Explaining Cosmic Acceleration

1.4.1 The Cosmological Constant

The simplest explanation of cosmic acceleration involves a cosmological constant
Λ. To date, this model fits all the observations perfectly. The history of the cos-
mological constant started when Einstein [80] added a cosmological constant to the
equations of motion for the metric in general relativity (i.e. to the Einstein equations)
in order to find a static universe solution.

Rµν −
1

2
gµνR− Λgµν = −8πGTµν , (1.15)

where Rµν is the Ricci tensor, R ≡ Rµ
µ is the Ricci scalar, gµν is the metric tensor and

Tµν the total energy-momentum tensor.
Without going through the equations, the idea is simple. Ordinary matter has

an attractive gravitational force and does not allow a static universe. A cosmological
constant, because of its effective negative pressure has a repulsive effect and could
counterbalance ordinary matter and Einstein’s solution. Not much later, Hubble
[118] found that the universe is not static at all and is in fact expanding, thus getting
rid of the need for Einstein’s cosmological constant. Later, Einstein would famously
call this episode his biggest blunder, for he could have predicted an expanding (or
non-static) universe.

Later however, it was realized in the context of quantum field theory that there
must be a large energy associated with particles popping in and out of existence in the
vacuum, which behaves exactly as a cosmological constant [240], i.e. T vac

µν = −ρvacgµν .
A useful way of looking at this is to consider Λ a parameter of the model (just like for
example the standard model couplings) that is renormalized by quantum effects. The
problem is that the quantum corrections, or the vacuum energy, is many many orders
of magnitude greater than the observed energy density of the universe. This can be
seen by considering the contribution to the vacuum energy of a single particle. In
quantum field theory, each Fourier mode with wave vector ~k essentially behaves like

a harmonic oscillator with frequency ω =
√

~k2 +m2 (we use natural units c = ~ = 1)
so that the contribution to the vacuum energy is a sum over all modes of the harmonic
oscillator’s vacuum state energy E0 = 1

2
ω(~k):

ρvac =

∫ Ec

0

4πk2dk

(2π)3

1

2

√
k2 +m2. (1.16)

If we believed our model of particle physics up to infinitely high energies, the vacuum
energy would come out infinite, but we believe that our current model of particle
physics is only an effective theory valid up to a certain cutoff scale Ec, which cuts
off the above integral. So what is the value of this cutoff? Since above the Planck
scale gravity and quantum physics are in conflict, we know that the maximum value
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of this cutoff is the Planck energy Ec = EPl ∼ 1019 GeV. Assuming m ≪ Ec, this
gives ρvac ∼ E4

c ∼ 1076 GeV4. However, observationally, the vacuum energy needs to
satisfy ρΛ . ρc,0 ∼ 10−10eV4 = 10−36GeV4 leading to the famous and very worrying
discrepancy of 122 orders of magnitude. This is called the cosmological constant prob-
lem (see [230] for a review). Another way of stating the problem is that the observed
renormalized cosmological constant is at least 122 orders of magnitude smaller than
the quantum corrections, thus requiring an enormous fine-tuning of the bare cosmo-
logical constant. The problem can be slightly ameliorated by assuming that the cutoff
scale is lower than the Planck scale. For example, in supersymmetry (SUSY), the
contributions to the vacuum energy of fermions and bosons exactly cancel each other
out. If supersymmetry is indeed realized in nature, this means that we only have to
integrate up to the scale of SUSY breaking Ec = ESUSY. Taking ESUSY ∼ 1 TeV, as is
commonly expected, this would give ρvac ∼ 1012 GeV4, which still gives a discrepancy
of 58 orders of magnitude. In order for the fine-tuning problem to disappear, one
would need a cutoff scale of order 10−2 eV, However, the standard model has been
tested in accelerators up to energies not far below the TeV scale so we truly cannot
get around this huge fine-tuning problem. Finally, in addition to the fine-tuning prob-
lem due to vacuum energy, phase transitions in particle physics (like the electroweak
phase transition) also cause jumps in the cosmological constant that are much larger
than the current observed value. This makes the fine-tuning problem even worse.

We would like to stress that the cosmological constant problem does not rely on the
recent discovery of a non-zero cosmological constant (if it is a cosmological constant).
Even without this measurement we would have an upper bound on the cosmological
constant forcing fine tuning to at least one part in 10122. Before the discovery of
accelerated expansion, this was already considered a big, unsolved problem [230]. The
one thing that has changed is that, before, some may have been content to assume
that some theory will one day come along and set the the cosmological constant to
zero in a natural way (perhaps by virtue of some symmetry), whereas now, if we have
indeed measured the cosmological constant, the option of the cosmological constant
being exactly zero is gone and we have to explain the specific observed, tiny value.

In summary, the cosmological constant so far fits all the data very well and is the
simplest solution to the cosmic acceleration puzzle. The cosmological constant model
has just one additional parameter that is naturally there in our theory of gravity and
matter anyway. In fact, we expect it must be there because of the vacuum energy. The
only problem is the cosmological constant problem, that an incredible fine-tuning is
necessary in order for the cosmological constant to have the observed size. Although
so far no better candidates exist, one hopes that eventually this fine-tuning problem
will be resolved in an elegant way, perhaps within the ultimate theory of quantum
gravity. Before we move on to explanations for cosmic acceleration where the dark
energy is not a cosmological constant, but a dynamical component of our universe,
ρDE 6= const, we first briefly discuss one specific approach to solving the cosmological
constant problem, motivated by string theory.
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1.4.2 The Multiverse and the “A Word”

One way of potentially explaining the small value of the cosmological constant
without any fine-tuning is by using anthropic arguments. This approach was pio-
neered by Weinberg [229] and has recently experienced a revival after the emergence
of the string theory landscape in the 1990’s. We refer to [181, 33] for reviews. The
general idea is simple. What if the cosmological constant is allowed to have different
values in different parts of the universe, which for ease of language we will consider
to be separate universes. The question is then which universe, i.e. with what value
of Λ, will a typical observer live in? More specifically, one is interested in having a
probability distribution that gives the probability for a certain value of Λ (and po-
tentially of other parameters) to be observed. This distribution is a product of the
actual probability distribution of Λ in this multiverse and the probability distribution
of having observers in a universe, given a value of Λ. Even though the first distri-
bution is typically completely unknown, the second one carries a lot of information.
In particular, the requirement of structure formation (which seems to be a condition
for observers to emerge) typically places an upper bound on the allowed values of ρΛ

that is not more than a few orders of magnitude away from the observed value. This
way, under mild assumptions on the distribution of Λ in the multiverse that do not
involve fine-tuning, predictions for the value of Λ can be obtained that come close to
the observed value.

The reason for much recent interest in this approach, besides the cosmological
measurement of Λ, is that string theory predicts a “landscape” of different vacua
with different vacuum energies. This results in a discrete set of at least 10500 different
vacua so that one effectively ends up with a continuum of possible vacuum energies.
Calculations of Λ using anthropic reasoning within the landscape scenario come very
close to the observed value. However, there remain several issues with this approach.
First of all, one needs to make some assumptions about the distribution of Λ within
the string landscape (typically that it is flat in Λ) and until we have a better un-
derstanding of the landscape, we cannot be sure about these assumptions. Secondly,
the calculations carried out so far are quite rudimentary, often varying only Λ. If Λ
can vary between universes, it is likely that other parameters can too. This could
potentially strongly change predictions for the most likely value of Λ [223]. Whereas
a certain value of Λ may be too large to allow for observers if all other parameters are
held fixed, this may well change when other parameters are allowed to vary in such a
way as to help structure formation. Finally, string theory, or another theory allowing
a multiverse would need to be more firmly established for the anthropic approach to
be fully convincing. Having said this, the multiverse scenario in combination with
anthropic reasoning is a very promising approach and is currently the only serious
solution to the cosmological constant problem.
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1.4.3 Dynamical Dark Energy

An alternative approach to the dark energy puzzle is to assume that somehow the
cosmological constant problem is solved, setting Λ = 0, and that the present cosmic
acceleration is caused by another component with a large negative equation of state
and varying energy density. The most common set of dynamical dark energy models
are quintessence models, in which dark energy is described by a scalar field rolling
down its potential. The quintessence Lagrangian for an arbitrary potential V (φ) is

L =
1

2
∂µφ∂

µφ− V (φ), (1.17)

so that for a homogeneous field φ = φ(t), the energy density and pressure are given
by

ρφ =
1

2
φ̇2 + V (φ) (1.18)

pφ =
1

2
φ̇2 − V (φ). (1.19)

Thus, one can get a large negative equation of state w = pφ/ρφ to explain cosmic
acceleration if the kinetic energy term is much smaller than the potential energy:
1
2
φ̇2 ≪ V (φ).

The number of quintessence models is enormous and we will discuss a number
of them in chapter 4. For quintessence models to deliver the goods observationally,
the potential parameters typically have to be fine-tuned very strongly. This is not
surprising since we want the potential energy density today to be of order V ∼
10−10 eV4. Moreover, we want the field to not have rolled down to its minimum yet
(it would no longer be potential dominated and thus no longer cause acceleration
in that case) so the typical mass has to be smaller than the present Hubble scale:
m ≡

√

d2V/dφ2 . H0 ∼ 10−33 eV. One also usually ends up with scalar field values
φ ∼ MP . One of the few models in which at least the small potential parameters are
technically natural (i.e. protected against quantum corrections by a symmetry), and
therefore deserves special mention, is the pseudo-Nambu-Goldstone boson (PNGB)
model [89], which we will come back to in chapter 4.

In addition to quintessence models, there are k-essence models [17] (see chapter
3), where the kinetic term of the scalar field Lagrangian density is modified to a
non-canonical form, there are models based on more than one scalar field [34], mod-
els based on vector or tensor fields and there are more phenomenological models,
where dark energy is not described by a fundamental Lagrangian, but by a relation
between its pressure and energy density (for example the generalized Chaplygin gas
[28]). People also consider models where the dark energy (for example described by
a scalar field) is non-minimally coupled to some other component, like the dark mat-
ter or massive neutrinos. The latter possibility is particularly intriguing because the
extremely low energy scale of the dark energy EDE ∼ 10−2 eV coincides roughly with
the neutrino mass scale, suggesting a relation [84, 176, 98, 235].
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1.4.4 Motivation

Since most of this thesis is devoted to current and future constraints on dynamical
dark energy models, we would like to make some general comments about the justi-
fication for studying these models. On the down side, most if not all dynamical dark
energy models are poorly motivated from a particle physics point of view. As men-
tioned above, they typically require a fine-tuning of parameters that is unprecedented
in particle physics. Not only do all models require very small parameters compared
to the natural ones in physics (i.e. the Planck scale and the electroweak scale, which
suffers a hierarchy problem of its own), most of them moreover are technically un-
natural (PNGB being one of the few exceptions, purely kinetic k-essence, described
in chapter 3, being another one), meaning that as with the cosmological constant,
the quantum corrections to the parameter in question are many orders of magnitude
larger than the renormalized (observed) value. In terms of naturalness of parameters,
these models are thus usually at least as problematic as the cosmological constant.
Perhaps more importantly, the dynamical dark energy models that are in the litera-
ture do not solve, or even address, the cosmological constant problem. Hence, one is
simply adding a problem. Not only do we now have to explain why the cosmological
constant is zero, we also have to explain why we have a dynamical component with
such unnatural parameters.

Appealing to Occam’s razor, the cosmological constant solution is therefore prefer-
able and dynamical dark energy models, rather than serious theories for cosmic ac-
celeration, should be considered toy models. However, we will argue that it is still
extremely important to study the possibility of dynamical dark energy and these toy
models are very useful in this quest. First of all, the only previous period of cosmic
acceleration we know of, inflation, was not caused by a cosmological constant, but
in fact by a dynamical component to the universe, possibly a scalar field. We know
this simply because inflation ended. Moreover, for inflation to explain the generation
of cosmic perturbations, perhaps the greatest success of the inflationary paradigm,
inflation must be described by some field or set of fields that can have perturbations.
The simplest inflation models involve a single scalar field rolling down a potential
just like the quintessence case. Secondly, we currently have very little guidance from
the model building side as to what the solution to the cosmological constant problem
might be and we should remain agnostic. It could be that the final solution to this
problem does involve a dynamical degree of freedom relaxing to a zero energy density
true vacuum, but not having quite reached it yet. This would look just like dynamical
dark energy.

The observational status also inspires agnosticism. We have only just discovered
dark energy and the constraints on its time evolution are still very weak. Using the
fact that the current constraint on w is less than 10%, it is sometimes argued that we
have already reached the point where deviations from Λ are strongly constrained and
it is not worth the effort to look any further. However, this constraint only holds when
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the equation of state is assumed to be constant, something that is rather contrived
in the context of dark energy (toy) models. Even if we add just one parameter to
include time variation of the equation of state, w(a) = w0 + wa(1 − a), constraints
become much weaker (see Fig. 1.3), leaving plenty of room for dynamical dark energy
to be discovered or ruled out. Thus, from the observational point of view, it is too
early to settle for the cosmological constant. The next decade will be a crucial period
where our constraints will improve by an order of magnitude. It will be very exciting
to see whether evidence for variation in the dark energy density will be found, or the
simplest model will be confirmed. At least this way if we do end up settling for a
cosmological constant, it will be firmly established by observations. In section 1.5,
we will discuss the main cosmological probes by which we expect to make progress in
this field, but first we will describe an alternative explanation for cosmic acceleration:
modified gravity.

1.4.5 Modified Gravity

An alternative approach is to modify the laws of gravity itself to explain cosmic
acceleration. In that case, there is no need for the addition of any new form of energy
to our model of the universe. Examples of such models are f(R) gravity [215, 61],
where the Ricci scalar R in the Einstein-Hilbert action for gravity is replaced by a
function of R, scalar-tensor theories [83], where gravity is non-minimally coupled to a
scalar field (all viable f(R) theories can in fact be recast as scalar-tensor models) and
models with extra dimensions, like the Dvali-Gabadadze-Porrati (DGP) braneworld
model [77]. Just like dynamical dark energy models, modified gravity theories often
lack motivation from fundamental physics and require extreme fine-tuning to be com-
patible with observation. In general, it is much harder to come up with a working
modified gravity model than dark energy model because it is difficult to modify grav-
ity in the desired way without completely changing the way gravity works on smaller
(for example solar system) scales, where we have very strong constraints. Currently,
modified gravity models can be considered useful toy models. Even though they form
another interesting set of possibilities, we will not discuss modified gravity much in
this thesis.

1.5 Observational Techniques and Prospects

Even though there are many promising cosmological probes that can teach us
about dark energy, there are four that are considered the most powerful [10]: Type
Ia supernovae (SN), Baryon Acoustic Oscillations (BAO), Weak Lensing (WL) and
galaxy clusters (CL). In addition, even though its direct sensitivity to dark energy is
not as strong as the four preceding probes, the CMB will remain the most impressive
precision cosmology tool for pinning down the other cosmological parameters. This
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in turn allows the other probes to constrain dark energy. Below we will discuss each
of these five probes in turn.

1.5.1 Supernovae

We have already discussed supernovae to some extent in section 1.2. As discussed
there, supernovae purely measure the expansion history, which for z < 2 is very
sensitive to dark energy. The next steps for supernova cosmology are to go to higher
redshifts, to improve statistics by measuring a larger number of supernovae, and
perhaps most importantly, to improve systematics by better understanding the nature
of supernova explosions, dust extinction and the correlation of supernovae with host
galaxy properties. One proposal for the Joint Dark Energy Mission (JDEM), now
being planned by NASA/DOE, is to observe roughly 2000 SNe up to redshift z = 1.7
from space. This is based on the earlier proposal of the SNAP satellite, for which
we calculate projected dark energy constraints (joint with other future probes) in
chapters 5 and 6. An important advantage of going to space is that the relevant
spectral features of high redshift (z ≥ 1) supernovae are shifted to the infrared,
which is obscured by the atmosphere, making a ground-based telescope less useful.

1.5.2 Baryon Acoustic Oscillations

Another direct expansion history probe is the measurement of the baryon acous-
tic scale in distribution of galaxies on large scales. The acoustic oscillations in the
baryon-photon fluid before recombination imprint a fixed comoving length scale in
the statistics of the distribution of galaxies, given by the comoving sound horizon at
recombination,

s =

∫ ∞

zrec

cs(z)dz

H(z)
. (1.20)

This scale determines the peak positions in the CMB anisotropy power spectrum and
has been measured to be s = 147±2Mpc [141, 138]. After recombination, the baryons
decouple from the photons and their perturbations evolve under the influence of only
gravity, the effect of which is dominated by the dark matter since the dark matter
density is about a factor of six larger than the baryon density. Eventually both the
baryon and dark matter perturbations follow the same power spectrum, where the
feature from the acoustic oscillations has been diluted with respect to the CMB, but
is still present and observable, see Fig. 1.4.

Where supernovae are standardizable candles, the BAO scale can be used as a
standard ruler. The angular size of this standard ruler at a given redshift is related
to the angular diameter distance dA by

θ =
s

(1 + z)dA(z)
(1.21)
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Figure 1.4: Detection of the BAO feature in the galaxy correlation function by [132].

and the size in redshift along the line of sight is related to the Hubble parameter by

∆z = H(z)s. (1.22)

Since s is known from the CMB, one can use observations of the BAO scale at
different redshifts to trace the expansion history. Alternatively, one can constrain the
expansion history in a manner independent of the value of s, by taking ratios of the
observed acoustic peak size at different redshifts.

Compared to other probes, the BAO systematics are quite clean, the main issues
being the modeling of the effect of non-linear evolution and of galaxy bias on the peak
position. A downside is that to get strong constraints, very large samples of galaxies
need to be measured in large volumes of space. The BAO feature has been measured
in galaxy catalogues from the Sloan Digital Sky Survey (SDSS) and the 2 degree
Field (2dF) galaxy survey, giving a measurement of the ratio of the sound horizon
to the distance to z ≈ 0.28, accurate to 3% [178]. Currently, the BOSS survey [197]
is taking spectra of 1.5 million luminous red galaxies (LRG’s) and 150, 000 quasars
in order to measure cosmic distance and the Hubble scale with 1% level accuracy at
z < 0.7 and z ∼ 2.5. A follow-up experiment to BOSS, BigBOSS [198], is already in
the works.
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1.5.3 Weak Lensing

The gravitational deflection of light by large scale structure along the line of sight
distorts (or shears) images of galaxies (see [24, 119] for reviews). The correlations
between perturbations in the matter distribution are thus mapped to correlations
between the shear at different parts of the sky. The power spectrum or correlation
function of cosmic shear thus carries useful information about cosmology. Weak
lensing is sensitive to dark energy in two ways. Since the lensing signal depends on
distances between observer, source and lens through the lensing kernel, it depends
on the expansion history. However, unlike SNe and BAO, it also depends directly
on the growth of perturbations since the lensing is done by perturbations in the
metric. Since in general relativity these perturbations are directly related to the
matter perturbations through the Poisson equation, weak lensing is a clean probe of
the matter power spectrum, not involving issues like galaxy bias. By dividing source
galaxies in different redshift bins, it is possible to see the evolution in the spectrum of
matter perturbations with redshift. Using this tomographic information, it is possible
to get very strong dark energy constraints [220, 29, 199].

A large number of source galaxies needs to be observed to distinguish the lensing
induced average ellipticity of order e . 10−2 from the much larger intrinsic ellipticity
dispersion e ∼ 0.2. The current state of the art in weak lensing are surveys like
COSMOS [165, 199], with a sky coverage of a few square degrees and number density
of galaxies n ≈ 65/arcmin2, and CFHTLS [92], covering of order 100 square degrees
but with n ≈ 15/arcmin2. Future surveys like LSST (ground based) [4], JDEM [1]
and EUCLID (space based) [3] are expected to have a source number density n ≈
20−60 arcmin−2 and would cover a much larger area than current surveys. The main
challenges are the systematics, such as uncertainties in photometric redshifts, errors
in the ellipticity due to the point spread function and intrinsic correlations between
galaxy ellipticities that could be mistaken for a cosmic shear signal [101, 104, 163].

1.5.4 Clusters

Galaxy clusters are the largest virialized objects in the universe. The observed
number density of galaxy clusters in a sample that selects clusters according to some
observable O with selection function f(O, z) is [91]

d2N(z)

dzdΩ
=
r2(z)

H(z)

∫ ∞

0

f(O, z)dO

∫ ∞

0

p(O|M, z)
dn(z)

dM
dM, (1.23)

where the halo mass function dn(z)/dM is the number of clusters per comoving vol-
ume in the mass range (M,M + dM) and p(O|M, z) is the probability distribution
for the observable O given a cluster mass M . It is sensitive to dark energy in two
ways [167]. Firstly, the halo mass function dn(z)/dM depends strongly on the evolu-
tion of the power spectrum of density perturbations and in particular its amplitude.
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Secondly, what is observed directly is the number of clusters per steradian on the sky
and per unit redshift, which is related to the number per (comoving) volume by the
factor dV/(dzdΩ) = r2(z)/H(z), telling us directly about the expansion history.

Since the halo mass function is a very steep function of halo mass, it is desirable
to use observables O with a narrow, and well characterized distribution f(O|M, z).
In other words, one wants to be able to accurately estimate cluster mass. There are
several techniques for this. One method is to use cluster optical richness, the number
of galaxies observed in a cluster, as a mass estimator. A second method is to use x-
ray luminosity and temperature, a third to use the Sunyaev-Zel’dovich effect (inverse
Compton scattering of CMB photons by hot gas in the cluster) and finally one can
estimate the mass using weak lensing of background galaxies. The availability of a
number of methods allows for cross calibration.

1.5.5 The Cosmic Microwave Background

The CMB is currently the strongest probe of precision cosmology and it is expected
to stay that way. Even by itself, it places 1−10% level constraints on a large number
of cosmological parameters, including the baryon and cold dark matter densities and
the amplitude and tilt of the spectrum of primordial fluctuations. However, the CMB
gives us a snapshot of the universe at z ≈ 1100, when the dark energy density was
negligible in the simplest models, i.e. ΩΛ = 10−9 in ΛCDM (we will discuss early dark
energy models, where dark energy is relevant at such early times, in chapters 2 and
6). Hence, as a probe of dark energy it is not as strong as the aforementioned probes.
Still, it has two important functions in learning about dark energy.

First of all, for the other probes to constrain dark energy properties, the non-dark
energy parameters need to be well constrained, which is exactly what the CMB does.
For example, for BAO to be most effective, we need to know the size of the sound
horizon at last scattering from the CMB. Moreover, even though the main sensitivity
of the CMB is to early times, z & 1100, it does have some dependance on late universe
physics. First of all, the projection of the acoustic peaks onto the sky depends on
the distance to the CMB last scattering surface. This is the reason the CMB alone
can still constrain ΩΛ to about 3%. In addition, the integrated Sachs-Wolfe (ISW)
effect (CMB photons climbing in and out of time varying potential wells caused by
large scale structure) adds anisotropy to the CMB sky and constrains the growth of
perturbations, and thus dark energy, at late times. Finally, weak gravitational lensing
of the CMB is a promising tool to learn about dark energy and other late universe
physics such as massive neutrinos. Chapter 6 is devoted to the prospects for CMB
lensing.

The state of the art for full-sky CMB data currently is the WMAP experiment, but
the Planck satellite [5] is already taking data. This probe will significantly improve
CMB power spectrum measurements. Observations of the temperature anisotropies
will be cosmic variance limited up to wave number l ∼ 2000. It will also strongly
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improve our measurements of the polarization of the CMB.

1.6 Other Questions in Cosmology

Even though in this thesis the focus is mainly on dark energy, we wish to stress
that there are many other extremely interesting open questions in cosmology and that
dark energy science (and the work presented in this thesis) is not isolated from these
questions. Experiments designed to study dark energy can be expected to yield other
useful cosmology and astronomy results as well and the theoretical tools and models
developed with dark energy in mind may be applicable to other topics too. To name
just a few examples, another big mystery in cosmology and particle physics is the
nature of dark matter. Cosmological observations useful for dark energy studies may
also teach us about the nature of dark matter and perhaps advances in our theoretical
understanding of dark matter will guide us to an explanation for cosmic acceleration.
Another example are massive neutrinos. Massive neutrinos suppress the growth of
structure on small scales at late times and can thus be studied with many of the
same probes as dark energy. In chapter 6, we will discuss expected bounds on the
neutrino mass from CMB lensing. Finally, cosmic inflation has a lot of theoretical
properties in common with dark energy and advances in one field may help the other.
Moreover, the way to probe inflation is by studying the primordial power spectrum
from the CMB and large scale structure, an approach that has a lot of overlap with
the observational quest for dark energy.

1.7 Outline

The rest of this thesis consists of five separate chapters on dark energy and probes
of dark energy. The main goal of the work presented here is to advance the study of
dark energy, by improving the way in which dark energy is modeled, by considering
how current data constrain the dark energy properties, and by studying how best to
learn about dark energy from future experiments. Although we believe the order in
which they are presented is the most natural order to read them, the chapters stand
on their own and can be read separately or in a different order.

In chapter 2, we calculate current dark energy constraints from CMB, SN and
LSS data. We will focus on the sound speed of dark energy, which determines the
behavior of perturbations in the dark energy fluid. We will find constraints on this
and other dark energy parameters both in the context of dark energy with a constant
equation of state and in the context of early dark energy, where the equation of state
changes over time so that ΩDE(z) can be significant at z & zdec.

The following three chapters are devoted to ways of modeling the equation of
state behavior of dark energy in a general and complete way and to methods of dis-
tinguishing (classes of) dark energy models based on their equation of state evolution.
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In chapter 3, we discuss the specific class of purely kinetic k-essence models. We find a
simple relation between the Lagrangian L and the equation of state history w(a) and
point out how to distinguish these models from quintessence dark energy. In chapter
4, we study a large set of common dark energy models in terms of their equation of
state and its derivative. We show that it is possible to divide models into a small
set of classes with common, very specific properties. We also find that virtually all
models can be described very well by a linear equation of state parametrization and
present an explicit mapping between true equation of state and representative linear
parametrization. In section 5, we discuss three model independent parametrizations
of the dark energy equation of state: principal component analysis (PCA), uncorre-
lated bandpowers and binned equations of state. We analyze the pros and cons of
each method in great detail and pay particular attention to the question of how to
model the equation of state at high redshift and to the design of a figure of merit.

Finally, in chapter 6 we study constraints from current/future CMB missions like
Planck/CMBpol on dark energy and neutrino properties, using CMB lensing. We
compare two methods for extracting lensing information from the CMB and show
among other things that these future data can put tight constraints on early dark
energy models, ordinary dark energy models and on the sum of the neutrino masses.
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Chapter 2

Measuring the Speed of Dark:
Detecting Dark Energy
Perturbations

A version of this chapter was previously published in Physical Review D [62].

2.1 Introduction

Although dark energy dominates the energy density of the universe and drives the
accelerating cosmic expansion, we know remarkably little about it. Over the course
of the past decade, cosmologists have devoted considerable effort to devising new
and sharpening known methods for determining the equation of state of dark energy.
The equation of state, defined as the pressure to energy density ratio, is generally
a time dependent function and fully specifies the temporal evolution of dark energy
density. The dark energy density in turn (along with the matter density) determines
the expansion rate of the universe, as well as geometrical measures (distances and
volumes).

The equation of state w(z) does not, however, tell us about the microphysics of
dark energy, nor does it describe all of the cosmological signatures. For example, even
a perfectly measured w(z) does not tell us whether dark energy arises from a canonical,
minimally coupled scalar field, a more complicated fluid description, or modification
of gravitational theory on large scales. The properties of the perturbations to the
dark energy, which must exist unless it is simply a cosmological constant, do carry
such extra information.

Perturbations to the energy density and pressure can be described through the
sound speed, c2s = δp/δρ. The sound speed carries information about the internal
degrees of freedom: for example, rolling scalar fields (quintessence) necessarily have
sound speed equal to the speed of light, cs = 1. Detection of a sound speed distinct
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from the speed of light would indicate further degrees beyond a canonical, minimally
coupled scalar field.

A low sound speed enhances the spatial variations of the dark energy, giving
inhomogeneities or clustering. Heuristically, the sound speed determines the sound
horizon of the fluid, ls = cs/H , where H is the Hubble scale. On scales below
this sound horizon, the fluid is smooth; on scales above ls, the fluid can cluster.
Since for quintessence cs = 1, the sound horizon equals the cosmic horizon size and
there are essentially no observable inhomogeneities. However, if the sound speed is
smaller, then dark energy perturbations may be detectable on correspondingly more
observable (though typically still large) scales. These perturbations act in turn as
a source for the gravitational potential, and affect the propagation of photons. For
example, clustering dark energy influences the growth of density fluctuations in the
matter, and large scale structure, and an evolving gravitational potential generates
the Integrated Sachs-Wolfe (ISW) effect [189] in the cosmic microwave background.
The observational signatures of these effects offer a way of probing the dark energy
inhomogeneity and sound speed.

In this chapter we study the signatures of the sound speed of dark energy. We
revisit and extend previous studies of dark energy clustering [117, 116, 81, 67, 232, 27,
7, 114, 100, 54, 135, 221, 236, 124, 169, 25, 225, 69, 21, 193], clarifying and quantifying
the physical effects caused by the nonstandard values for the speed of sound. We then
study models where the dark energy density was non-negligible at early times, which
offer much better prospects for observable cs signatures than the fiducial near-ΛCDM
case. Finally, using current cosmological data, we constrain the speed of sound jointly
with 7-8 other standard cosmological parameters.

This chapter is organized as follows. In Sec. 2.2 we describe dark energy pertur-
bations and the physical influence of the sound speed and equation of state, deriving
the dark energy density power spectrum. Section 2.3 describes the dark energy mod-
els we consider, and Sec. 2.4 treats the impact of dark energy inhomogeneity on the
CMB, matter power spectrum, and their crosscorrelation. We consider models with
both constant and time varying equation of state and sound speed in Sec. 2.5, and
present constraints from current data.

2.2 Dark Energy Perturbations

We briefly review the growth of density perturbations, in both the matter and
dark energy, focusing on the role of the sound speed. See [22, 134, 160] for more
details. To derive the influence of the sound speed on dark energy inhomogeneity,
and dark energy perturbations on the matter distribution, we assume adiabatic initial
conditions for all components including dark energy and solve the perturbed Einstein
equations for the density perturbations δρi, pressure perturbations δpi, and velocity
(divergence) perturbations θi. We do not consider an anisotropic stress.
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In the conformal Newtonian gauge, the perturbed Friedmann-Robertson-Walker
metric takes the form

ds2 = a(τ)2
[

−(1 + 2ψ)dτ 2 + (1 − 2φ)d~r 2
]

, (2.1)

where a is the scale factor, τ is the conformal time, ~r represents the three spatial
coordinates, and ψ and φ are the metric potentials. Conservation of the stress-energy
tensor (T µν;ν = 0) of a perfect fluid gives the following equations in Fourier space (see,
e.g., [160]) from the time-time and space-space parts:

δ̇

1 + w
= −θ + 3φ̇− 3H

(

δp

δρ
− w

)

δ

1 + w
(2.2)

θ̇ = −H(1 − 3w)θ − ẇ

1 + w
θ +

δp

δρ
~k2 δ

1 + w
+ k2ψ ,

where ~k is the wavevector, dots are derivatives with respect to conformal time, H =
ȧ/a is the conformal Hubble parameter, δ ≡ δρ/ρ is the density perturbation, (ρ +
p) θ ≡ ı̇kjδT 0

j is the velocity perturbation, and w = p/ρ is the equation of state.
These equations hold for each individual component, i.e. matter or dark energy.

We define the effective (or rest frame) sound speed cs through (see, e.g., [115])

δp

ρ
= c2s δ + 3H(1 + w)(c2s − c2a)

θ

k2
, (2.3)

where the adiabatic sound speed squared is

c2a ≡
ṗ

ρ̇
= w − 1

3H
ẇ

1 + w
. (2.4)

In terms of cs, Eqs. (2.2) and (2.3) read

δ̇

1 + w
= 3H(w − c2s)

δ

1 + w
(2.5)

−
[

k2 + 9H2(c2s − c2a)
] θ

k2
+ 3φ̇

θ̇

k2
= (3c2s − 1)H θ

k2
+ c2s

δ

1 + w
+ ψ . (2.6)

One can readily see that the source term in a δ̈ equation will have a negative term
involving c2sk

2 from θ̇ (take the derivative of Eq. 2.5 and substitute in Eq. 2.6), indi-
cating that growth is suppressed on small scales, k > H/cs. However, perturbations
will exist in the dark energy density even for cs = 1, albeit at a very low level within
the Hubble scale k > H. As cs drops below unity, the suppression is itself suppressed
and inhomogeneities in the dark energy can be sustained. All such perturbations
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will vanish though as 1 + w → 0, regardless of c2s. In the combination of Eqs. (2.5)
and (2.6) into a single second order equation for δ, the terms involving the metric
in this equation are all proportional to 1 + w (or derivatives thereof) so that in the
limit 1 +w → 0 the perturbations decouple from the metric and do not experience a
gravitational force leading to growth.

The dark energy perturbations affect the metric perturbations, and thus the per-
turbations in the matter, through the Poisson equation

k2φ = −4πGa2
∑

i

ρi

(

δi + 3H(1 + wi)
θi
k2

)

, (2.7)

where the sum runs over all components. For a perfect fluid, there is no anisotropic
stress so ψ = φ.

Therefore we expect the density power spectrum to be affected by the dark energy
sound speed in distinct ways on different scales. On superhorizon scales, k < H, the
density power spectrum becomes independent of the dark energy sound speed. Here
the perturbations are determined by the curvature fluctuation [22, 30]. Between
the Hubble scale and the sound horizon, H <

∼ k <
∼ H/cs, a sound speed cs <

1 will enhance the density inhomogeneities (modulo gauge dependence around the
Hubble scale). Finally, on smaller scales, k & H/cs, inhomogeneity growth is always
suppressed and the exact value of the sound speed becomes irrelevant. We illustrate
these behaviors in Fig. 2.1. (All power spectra in this chapter are for linear theory
and shown at a = 1, and are calculated using CAMB [146] and CMBeasy [73, 72].)
Note that the strength of the deviation from the cs = 1 behavior is a steep function
of cs for cs . 0.1.

2.3 Dark Energy Models

We study three classes of dark energy models to elucidate the role of sound speed
and 1 + w, from early to late times.

1) Constant w models. We begin with the simplest model of dark energy with
sound speed different from the speed of light: a constant equation of state w and a
constant sound speed cs. This is mostly for historical comparison to [27], since the
current constraint on constant equation of state is w = −0.97± 0.08 [14] (using only
geometric data independent of the sound speed) and so the effects of sound speed are
suppressed due to 1 + w ≈ 0.

2) Early dark energy with constant speed of sound (cEDE). In order
to allow for a period where w is further from −1 and so the sound speed has more
influence, we also consider a model with varying equation of state but constant sound
speed. We choose the phenomenological early dark energy model of [74] but allow cs
to be a free (constant) parameter. At early times w approaches 0 in this model and
so the value of cs can have observational consequences. The model parameters are



25

Figure 2.1: The deviation of the power spectrum of the matter density perturbations
(Newtonian gauge) from the cs = 1 case is plotted vs. wavenumber k. Three regions
– above the Hubble scale (small k), below the sound horizon (large k), and the
transition in between – can clearly be seen. The models have w = −0.8 (deviations
will be smaller for w closer to −1) and constant sound speed as labeled. For the
cs = 0.1 case, we also show the result (dashed curve) in terms of the gauge invariant
variable Dg as defined in [76] (in that work Φ is equal to minus our φ). This illustrates
that the low k behavior is strongly gauge dependent.

the fraction of dark energy density at early times Ωe (this approaches a constant),
the equation of state today w0, and cs. We call this generalization the cEDE model.
Here

ΩDE(a) =
ΩDE − Ωe (1 − a−3w0)

ΩDE + Ωma3w0
+ Ωe (1 − a−3w0) (2.8)

w(a) = − 1

3[1 − ΩDE(a)]

d lnΩDE(a)

d ln a
+ wother(a) (2.9)

where the current dark energy density ΩDE = 1−Ωm and wother(a) ≡ pother(a)/ρother(a) =
1
3
ρr(a)/ (ρr(a) + ρm(a)) is the effective equation of state of the non-dark energy com-

ponents, i.e. matter and radiation (including neutrinos). In this model, cs = const.
We show an example of w(a) in Fig. 2.2.

3) Barotropic (“aether”) dark energy models. The third model we treat
is a particular case of the barotropic class of dark energy, where there is an explicit
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relation determining the pressure as a function of energy density. Several physical
models for the origin of dark energy fall in this class, and have attractive properties
as discussed below.

Ref. [158] showed that all such viable models could be written as a sum of an
asymptotic constant energy density ρ∞ (with w∞ = −1) and a barotropic fluid, or
aether, with positive equation of state wAE > 0. The sound speed is equal to the
adiabatic sound speed, cs = ca, and is thus completely determined by wAE. In
particular, it has the property that c2s ≤ wAE. Moreover, to admit an early matter
dominated era, wAE(a ≪ 1) → 0, and hence c2s(a ≪ 1) → 0. We adopt the form
wAE = βas so

ρDE(a) = ρ∞ + ρAE(a) (2.10)

ρAE(a) = ρAE,0 a
−3 e3β(1−as)/s (2.11)

w(a) = − ρ∞
ρ∞ + ρAE(a)

+ wAE(a)
ρAE(a)

ρ∞ + ρAE(a)
(2.12)

c2s(a) = wAE(a) − s

3

wAE(a)

1 + wAE(a)
, (2.13)

where ρ∞ = ρde,0 − ρAE,0. There are two free parameters in addition to the dark
energy density today: β and ρAE,0 – one less than in the cEDE case (we will fix s = 3
usually). Note that the effective early dark energy density Ωe ≈ (ρAE,0/ρm,0) e

3β/s

and the present equation of state is w0 = −1 + (ρAE,0/ρde,0) (1 + β). As discussed by
[158], the barotropic model strongly ameliorates the coincidence problem, motivating
why w ≈ −1 today.

Our three models thus span constant w and constant cs, varying w and constant
cs, and varying w and varying cs (but with cs determined by w). We illustrate their
equation of state and sound speed behaviors in Fig. 2.2. We expect a cEDE early
dark energy model with cs = 0 to show the greatest effect of sound speed on the
observables. Since cEDE can look so much like the barotropic model, in w(a) and
more approximately in cs, we do not treat the barotropic model separately in the
following sections, but rather consider it as a motivation for cEDE. The barotropic
model possesses the advantage of having cs = 0 at early times (and w0 ≈ −1 at late
times) being determined by physics rather than being adopted as phenomenology.

2.4 Impact on Cosmological Observations

We now consider angular power spectra of cosmological observables that are sen-
sitive to the speed of sound of dark energy, with the aim of comparing the predictions
to current observations (so we do not here include higher order correlations, leaving
for future work such signatures and their effect on constraining non-Gaussianity).
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Figure 2.2: The equation of state (lower three curves) and sound speed (upper three
curves) as a function of scale factor are illustrated for two models. The aether model
takes s = 3 (solid curves) or s = 1 (dashed curves) and w0 = −0.99; the early dark
energy density Ωe is determined from these parameters. Note that the cEDE model
(dotted curves, also taking w0 = −0.99, and here setting cs = 0) is a close match to
the aether model.

2.4.1 Angular Power Spectra

The matter density fluctuations, potential fluctuations, and the radiation field are
influenced by the dark energy sound speed as discussed in Sec. 2.2. From these we
can form, and measure, the angular auto- and cross-power spectra. We consider the
CMB temperature anisotropy power spectrum, the power spectra of the galaxy (or
other large scale structure tracer) overdensities in redshift bins (labeled by i), and
the crosscorrelations between galaxy overdensity and CMB temperature, giving the
power spectra CXY

l , where {XY } = {TT, Tgi, gigj}. See the Appendix for a review
of how the angular power spectra relate to the potential power spectrum.

Fig. 2.3 shows a typical temperature power spectrum. The signal from the sound
speed dependence enters through the ISW effect, which is also plotted separately in
the figure. The extra power from the ISW effect arises from the decay of the potential
as the dark energy impacts matter domination at late times; in the concordance model
the cosmological constant dark energy causes a decay in the potentials of about 25%
between the matter dominated era and the present. While the decay arises from the
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change in the expansion history due to the dark energy equation of state, it can be
ameliorated by increased dark energy clustering if the dark energy sound speed is
small. Figure 2.4 illustrates the influence of the sound speed.

Figure 2.3: CMB temperature power spectrum for w = −0.8 and cs = 1, explicitly
showing the contribution of the late-time (z < 10) ISW effect.

The ISW effect can be measured [32, 170, 87, 200, 86, 174, 8, 38, 105, 93] and
one might hope to constrain the sound speed in this way. However, since the effect
occurs only on the largest angular scales, cosmic variance swamps the signal. This is
demonstrated in the left panel of Fig. 2.4 for a cosmic variance limited experiment
scanning 3/4 of the whole sky. The right panel explicitly displays the low signal-
to-noise for each multipole, with the difference between cs = 0 and cs = 1 only
amounting to S/N = 1 when summed over all multipoles.

For the galaxy or matter density fluctuations, the dark energy sound speed can
have a larger effect. Note that the dark energy perturbations themselves remain
small relative to the matter inhomogeneities, despite a low sound speed having a
dramatic effect on the dark energy clustering. Fig. 2.5 shows that on superhorizon
scales the level of dark energy power is (1 + w)2 relative to the dark matter power
(because at superhorizon scales the perturbations remain adiabatic and the ratio
δDE/δDM = 1 + w). On subhorizon scales, the ratio depends strongly on the dark
energy sound speed. For cs = 0, the ratio is scale independent in the subhorizon
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Figure 2.4: Left panel: CMB temperature power spectrum for cs = 0, and its differ-
ence from the cs = 1 case, are plotted for w = −0.8, along with the cosmic variance.
Right panel: The signal relative to the noise (here just cosmic variance) is low, with
the total summed over all multipoles S/N ≃ 1.0. Compensating the difference be-
tween the models by varying the other cosmological parameters would make the S/N
even smaller.

regime: during matter domination, one can show analytically that then

PDE

PDM
=

(

1 + w

1 − 3w

)2

(matter dominated) (2.14)

but this ratio becomes smaller by roughly a factor of two by today. For a canonical
sound speed cs = 1, the dark energy power is strongly suppressed relative to the dark
matter power, with the ratio scaling as k−4.

The matter power spectrum itself, however, is affected by the dark energy sound
speed through the potential perturbations induced by the dark energy inhomogeneities.
Fig. 2.6 shows in the left panel the absolute comparison of the dark matter and dark
energy power (in contrast to the relative difference between the two in Fig. 2.5). For
the constant w model, on this log scale, one cannot see the influence of the dark
energy sound speed on the dark matter power, so the right panel plots the deviation
with respect to the cs = 1 case. We see that the deviation due to cs = 0 is at the
percent level in the matter density power and the tens of percent level in the potential
perturbation power.

The density and potential are related through the Poisson equation. For example,
for w = −0.8 and cs = 0, the amplitude of the dark energy perturbations is about 4%
of the dark matter perturbation (i.e. the power ratio is about 1.6×10−3 on subhorizon
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Figure 2.5: The ratio of the dark energy to dark matter density power spectra (New-
tonian gauge) is plotted for various values of constant w and cs. Although cs = 0
gives dramatically more power on subhorizon scales than cs = 1, the direct ratio of
the dark energy power to the matter power is negligible.

scales as seen from Fig. 2.5). According to the Poisson equation, Eq. (2.7), this
translates into about a 12% increase in φ going from cs = 1 to cs = 0, because today
ρDE ≈ 3ρm and because in the cs = 1 case the dark energy contribution to the Poisson
equation is negligible. Hence, as shown in the right panel of Fig 2.6, we get about a
25% increase in the power spectrum of φ.

Note that the (late) ISW effect is proportional to the change in potential ∆φ
between matter domination and today. In the standard case, this decay is about 1/4
of the potential during matter domination and thus about 1/3 of the potential today,
i.e. ∆φ ≡ φ0−φMD ≈ −1

4
φMD ≈ −1

3
φ0. Hence, the change in the potential at present

of 12% due to enhanced dark energy clustering corresponds to a change in the ISW
effect of approximately 3×12% = 36% (i.e. in [∆φ(cs = 0)−∆φ(cs = 1)]/∆φ(cs = 1)).
This enhancement gives the ISW effect extra sensitivity to dark energy clustering
relative to other probes.

The matter density perturbation is of course also affected, but with only about a
1% increase in its amplitude. This effect on the potential today through the Poisson
equation is therefore subdominant to the direct effect of the dark energy perturbation
itself.

Now that we have seen the basic effects of the dark energy sound speed and
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Figure 2.6: Left panel: dark energy (lower four, thin curves) and dark matter (upper,
thick curves) density power spectra for different choices of the dark energy equation
of state and sound speed. Right panel: relative differences in the potential (φ) and
matter density (δm) power spectra between cs = 0 and cs = 1 (matter and dark
energy perturbations in Newtonian gauge).

equation of state on the observables, we consider the specific instances of the constant
w model and cEDE model. We can already guess that to obtain reasonable constraint
on the sound speed we will want a model that has as large a 1 +w and as small a cs
as is consistent with the observations, for a substantial part of cosmic history.

2.4.2 Estimating Constraints in Constant w Model

We begin by estimating the chances of constraining the sound speed using the χ2

between two extremes: cs = 0 and cs = 1. Since we consider angular power spectra
and crosscorrelations of observables on the sky (labeled by capital letters below), χ2

is in general given by

χ2 =
∑

ℓ

∑

{XY },{ZW}

∆CXY
ℓ (Covℓ)

−1
XY,ZW ∆CZW

ℓ , (2.15)

where ∆CXY
ℓ ≡ CXY

ℓ (cs = 1) − CXY
ℓ (cs = 0) is the difference in spectra between the

two cases and the covariance is given by

(Covℓ)XY,ZW =
1

(2ℓ+ 1)fsky

(

C̃XZ
ℓ C̃YW

ℓ + C̃XW
ℓ C̃Y Z

ℓ

)

, (2.16)
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Figure 2.7: Left panel: CMB temperature spectra for the early dark energy cEDE
model with Ωe = 0.03, w0 = −0.8 is plotted for cs = 0 and 1. The effect of changing
the sound speed on the late ISW effect is a little stronger than in the case of ordinary
w = −0.8 dark energy (also shown), but the major difference comes from higher ℓ,
where the early dark energy exhibits significant differences between cs = 0 and cs = 1,
while ordinary dark energy does not. Right panel: Signal to noise squared per mode
for distinguishing cs = 1 from the cs = 0 fiducial is plotted vs. multipole. The late
ISW (treated as ℓ < 21) contributes only (S/N)2 = 1.8; including higher ℓ, say all
ℓ ≤ 2000, gives (S/N)2 = 8.8 × 103. However, the differences at high ℓ can at least
partly be compensated by varying other cosmological parameters.

with
C̃XY
ℓ = CXY

ℓ +NXY
ℓ , (2.17)

where fsky is the fraction of the sky that is observed, CXY
ℓ are the fiducial spectra

and NXY
ℓ are the noise power spectra so that C̃ℓ are the observed power spectra that

include the noise. (See the Appendix for further details.) For the χ2 estimates of this
section we only consider the CMB temperature power spectrum and we will consider
the cosmic variance dominated limit where the noise power spectrum is much smaller
than the fiducial power spectrum, NTT

ℓ = 0. Hence, Eq. (2.15) simplifies to

χ2 =
1

2
fsky

∑

ℓ

(2ℓ+ 1)

(

∆CTT
ℓ

CTT
ℓ

)2

. (2.18)

Assuming Gaussian likelihood, the quantity χ2 is equivalent to the signal to noise
squared with which we can distinguish cs = 1 from our fiducial cs = 0 if all the
other parameters were known exactly. Since in reality we should marginalize over
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the other parameters as well, χ2 is an upper bound on the signal to noise squared
for distinguishing the two sound speeds. Therefore if we find a low χ2 then there is
little hope of constraining cs with the assumed dataset. To amplify the chances of
detection, we examine w = −0.8, since in the limit w → −1 dark energy perturbations
become irrelevant regardless of the value of the value of the sound speed; given that
w = −0.8 is already an unlikely value given current data, the calculated signal to
noise squared (S/N)2 could be an overoptimistic estimate of the true value.

Fig. 2.4 confirms that the discrimination between sound speeds through the CMB
temperature autocorrelation is poor, as discussed in the previous subsection. Cosmic
variance swamps the difference between even the extremes, cs = 0 and cs = 1, and
the total (S/N)2 ≈ 1. Note that this took cosmic variance to be calculated from the
most optimistic case, cs = 0, where the noise is significantly lower, so one truly cannot
determine cs with the CMB temperature anisotropy despite all the most optimistic
assumptions.

The overall significance of the mere existence of the ISW effect (i.e. the χ2 between
the CMB power with the ISW effect artificially removed and the true CMB) is only
(S/N)2

ISW = 3.7. The potential decay in a model with dark energy sound speed
cs = 0 is a little less than half the contribution in the cs = 1 case, thus explaining
the (S/N)2

∆cs=1 ≈ (1/4) (S/N)2
ISW = 1.0 quoted above. Thus the ISW signal in the

CMB temperature spectrum is too blunt a tool to explore dark energy sound speed.
We must go beyond the CMB temperature spectrum to consider the galaxy-galaxy

power and temperature-galaxy crosscorrelation data. Rather than proceeding further
with halfway measures such as calculating the signal to noise to determine whether
we would be able to place to constraints on cs while fixing all other parameters, we
instead carry out a full likelihood analysis in Sec. 2.5.

2.4.3 Estimating Constraints in cEDE Model

In the early dark energy case, we find that the ISW signal in both the CMB
temperature autocorrelation and temperature-galaxy crosscorrelation is comparable
to the signal in the case of ordinary dark energy (which typically has an energy
density fraction relative to matter of ∼ 10−9 at CMB last scattering). However, there
is another source of distinction. Dark energy in the cEDE model has w ≈ 0 at CMB
last scattering; if in addition cs = 0, then cEDE behaves at early times just like dark
matter, with significant clustering of the dark energy. This will affect not only the
large scale, late time ISW contribution to the CMB but also the early Sachs-Wolfe
effect and the acoustic peaks.

Therefore we expect a clearer observational signature of the sound speed than for
ordinary dark energy. Fig. 2.7 shows the effect of changing the sound speed in the
cEDE model. The CMB temperature autocorrelation alone delivers (S/N)2 ≈ 9×103

(for ℓmax = 2000). This seems more promising for constraining the sound speed, and
again we proceed to a full likelihood analysis.
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2.5 Measuring the Speed of Darkness

To obtain accurate constraints on the dark energy sound speed we perform a
Markov Chain Monte Carlo (MCMC) likelihood analysis over the set of parameters
{log cs, pdark, ωb, ωc,ΩDE, τ, As, ns}, where pdark is either w, in the constant w case,
or {w0,Ωe}, in the cEDE case (in both cases we do not allow the equation of state
to go below −1), ωb = Ωbh

2 is the present physical baryonic energy density density,
ωc = Ωch

2 is the present physical cold dark matter energy density, ΩDE is the present
relative energy density in the dark energy, τ is the reionization optical depth, As the
amplitude of primordial scalar perturbations (defined relative to a pivot scale of k =
0.05 Mpc−1) and ns is the spectral index of the primordial scalar perturbations. Note
that we choose log cs as the sound speed parameter because most of the sensitivity is
at small values of cs.

For current data we include the CMB temperature power spectrum from WMAP5
[137], the crosscorrelation of these temperature anisotropies with mass density trac-
ers including the 2MASS (2-Micron All Sky Survey), SDSS LRG (Sloan Digital Sky
Survey Luminous Red Galaxies), SDSS quasars, and NVSS (NRAO VLA All Sky
Survey) radio sources, following [105], and the SDSS LRG autocorrelation function
from [224]. To break degeneracies with background cosmology parameters and con-
strain the expansion history, we use the supernova magnitude-redshift data from the
Union2 compilation [14].

The MCMC package COSMOMC [144] is used to calculate the joint and marginal-
ized likelihoods. The results for the marginalized 1D probability distributions are
shown in Fig. 2.8 for the constant equation of state case and in Fig. 2.9 for the early
dark energy, cEDE case. Dotted lines show the distributions when one fixes cs = 1.

In the constant w case, no constraint can be placed on the sound speed, as ex-
pected from our earlier arguments. In addition, the other parameter distributions are
essentially unaffected by the value of cs. For the cEDE case, however, some preference
appears for a low sound speed, cs . 0.1, and this propagates through to the other
parameters. The preference for a low sound speed does not depend strongly on the
inclusion of the large scale structure data (i.e. the temperature-matter crosscorrela-
tion and the galaxy power spectrum). If either or both of these observables are not
included, the preference is still there, although slightly weakened. Since early dark
energy with a low sound speed acts like additional dark matter at early times, this
allows a lower true matter density.

It is intriguing to consider whether the apparent preference of current data for
the ΛCDM model is merely a consequence of overly restricting the degrees of free-
dom of dark energy, and that instead a dark energy with dynamics (w0 ≈ −0.95),
microphysics (cs ≈ 0.04), and long-time presence (Ωe ≈ 0.02) could be the correct
model.

Fig. 2.10 shows the 68.3%, 95.4% and 99.7% confidence level contours in the
w-log cs plane for the constant w model. We see that current data in this model
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Figure 2.8: Constant equation of state case, plotting the marginalized one dimensional
probability distributions using data from supernovae (Union2), CMB (WMAP5),
galaxy autocorrelation (SDSS LRG), and the cross correlation between large scale
structure tracers (see text) and CMB temperature anisotropies. Solid lines are for
the model with log(cs) a free parameter (with a flat prior), whereas the dotted lines
correspond to fixed cs = 1.

prefer w ≈ −1 but are completely agnostic regarding cs. For the cEDE model,
Fig. 2.11 shows the joint probability contours among the dark energy parameters, in
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Figure 2.9: Early dark energy case, plotting the marginalized one dimensional prob-
ability distributions using data from supernovae (Union2), CMB (WMAP5), galaxy
autocorrelation (SDSS LRG), and the cross correlation between large scale structure
tracers (see text) and CMB temperature anisotropies. Solid lines are for the model
with log(cs) a free parameter (with a flat prior), whereas the dotted lines correspond
to fixed cs = 1.

the w0-log cs, Ωe-log cs, and Ωe-w0 planes, with all other parameters marginalized.
Here we see that the model mentioned above, (w0, cs,Ωe) = (−0.95, 0.04, 0.02), is



37

completely consistent with the data, as is the cosmological constant (−1, 1, 0). It will
be interesting to see how the best fit evolves with future data.

Figure 2.10: 68.3, 95.4 and 99.7% confidence level contours in the dark energy model
with constant equation of state. The constraints are based on current data including
CMB, supernovae, LRG power spectrum and crosscorrelation of CMB with matter
tracers. The small likelihood variations at w = −1 are not physical (the sound speed
has no observable effect when w = −1), but are due to finite chain length.

2.6 Conclusions

Current cosmological data are in excellent agreement with the standard ΛCDM
universe, with equation of state w = −1. Nevertheless, the current data are also
consistent with a wide variety of richer physics. It is not clear that it is wise to
assume that the physical explanation for dark energy in the universe is indeed given
by restriction to a spatially smooth, constant in time energy density: the cosmological
constant. Even after allowing for dynamical dark energy, there could be further
degrees of freedom – “hidden variables” or microphysics – in the dark energy sector,
harbingers of deeper physics that have not yet shown clear signatures in the data. An
explicit search for these signatures, and thus the physics behind dark energy, should
be near the top of the list of current efforts in cosmology.
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Figure 2.11: 68.3%, 95.4% and 99.7% confidence level contours in the cEDE early
dark energy model in the w0-log cs (top left), Ωe-w0 (top right) and Ωe-log cs (bottom
left) planes. The constraints are based on current data including CMB, supernovae,
LRG power spectrum, and crosscorrelation of CMB with matter tracers.

In this chapter we search for degrees of freedom beyond quintessence by examining
the influence of the sound speed of dark energy, and its resulting spatial clustering of
dark energy, on key observables and in current data. This extends earlier analyses,
quantifying the effects on the dark matter and dark energy density perturbation power
spectra, the potential power spectrum, and their crosscorrelation. Where possible,
we give simple scalings with 1 +w and cs. We also explore models with time varying
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equation of state and sound speed.
In the standard model with negligible dark energy at high redshift, the speed of

sound is essentially not distinguishable with current data (see Fig. 2.8) because current
data favor w ≃ −1, and the effects of clustering of dark energy vanish in this limit.
As w gets further from −1, the influence of the sound speed increases; for models with
w ≈ 0 at high redshift there is also the possibility of non-negligible amounts of early
dark energy density. Even just a couple percent of the total energy density in early
dark energy dramatically improves the prospects for detecting dark energy clustering.
One can view the early dark energy fraction Ωe as another degree of freedom to
explore. Indeed, carrying out a MCMC analysis we find in Figs. 2.9 and 2.11 that a
model with dynamics, microphysics, and persistence: (w0, cs,Ωe) = (−0.95, 0.04, 0.02)
is completely consistent with the current data (although Λ remains consistent as well).

Discovery of the accelerating universe 12 years ago has propelled the physical in-
terpretation of dark energy into one of the most important, exciting, and difficult
problems in physics. Although current observations indicate that the equation of
state, as a constant or broadly averaged over time, is close to −1, this leaves con-
siderable room for further physics, as demonstrated here using recent data. To go
further we should explore all three frontiers of the dynamics w(a), the microphysics
cs and spatial inhomogeneities, and the persistence Ωe.
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Chapter 3

Kinetic K-Essence and
Quintessence

A version of this chapter was previously published in Astroparticle Physics [63].

3.1 Introduction

In the quest for the physical origin of the cosmic acceleration, we have rela-
tively little guidance from basic principles. For dynamical scalar field models, e.g.
quintessence, one must posit a potential, ideally possessing naturalness, without fine
tuning. However the potential receives quantum loop corrections from high energy
physics, raising the problem of preservation of form, or technical naturalness. An
alternative approach is adopting non-canonical kinetic terms in the scalar field La-
grangian, leading to k-essence models.

A subset of these – kinetic k-essence – offers the possibility of removing the
potential altogether (or keeping it constant). With a shift symmetry in the field,
φ(x) → φ(x) + θ, this provides technical naturalness, an important virtue for a phys-
ical theory, and so kinetic k-essence models are worth investigating. Furthermore,
these are in a sense as simple as quintessence in that they also involve a single func-
tion, here L = F (X) where X is the kinetic energy.

In this chapter we study the interplay between equations of state w(a), defined in
terms of an effective pressure to energy density ratio w = p/ρ or equivalently cosmic
expansion dynamics, and kinetic k-essence Lagrangians possessing certain stability
properties. This will enable us to establish to what extent cosmological expansion
or distance data could encounter degeneracies in the interpretation of the physical
origin of the cosmic acceleration. For example, what are the characteristics of a
quintessence model appearing degenerate with a k-essence model, in the sense that
they produce the same equation of state over some redshift range. We derive limits
on this degeneracy by showing which regions of the w-w′ phase space (where w′ =



41

dw/d lna, with a the expansion scale factor) k-essence can lie in (see [44, 196, 155]
for analyses of other DE models). We will also consider the converse issue by going
from some specific equations of state to the corresponding k-essence Lagrangians.

In §3.2 we discuss some of the motivations for considering k-essence as a possible
physical model for the origin of the cosmic acceleration. §3.3 presents a pedagogic
overview and explanation of some of the main properties of (purely kinetic) k-essence.
In §3.4, we analyze the stability of solutions and from this derive the condition the
DE equation of state must satisfy for it to be degenerate with a stable kinetic k-
essence model. In §3.5, we give the closed form solution for this degeneracy condition
and present a simple prescription for predicting the behavior of any kinetic k-essence
Lagrangian. In §3.6 we exhibit the results for several illustrative examples.

3.2 Motivation

Even though a cosmological constant is in good agreement with the current data,
the problems above provide ample motivation to look for DE models beyond a cos-
mological constant. The most popular alternatives to Λ are scalar field models, in
particular quintessence (see [53, 155] and references therein), which describes a single
scalar field φ with a standard Lagrangian density L = X−V (φ), with X = 1

2
∂µφ∂

µφ.
Quintessence models can describe a range of equations of state necessary for an ac-
celerated expansion, but like Λ suffer from fine-tuning issues.

More recently, scalar field models with non-canonical kinetic energy have gained
interest. These so called k-essence (the “k” standing for kinetic) models are described
by Lagrangians of the general form [166] L = v(φ)F (X) − V (φ) (a canonical kinetic
energy is given by F (X) = X and v(φ) = 1). K-essence was originally proposed
as a model for inflation [16], and then as a model for dark energy [17], along with
explorations of unifying dark energy and dark matter [31, 28]. It now appears increas-
ingly likely from both theoretical stability issues and observational constraints (e.g.
[192, 27, 15]) from matter clustering properties (dark matter is very clumpy while DE
is quite smooth out to the Hubble scale) that dark matter and dark energy are not
the same substance; we will treat k-essence purely as a dark energy candidate. One
reason for the interest in k-essence is that it admits solutions that track the equation
of state of the dominant type of matter (in the early universe this is radiation) until
pressure-less matter becomes dominant, at which point the k-essence begins to evolve
toward cosmological constant behavior [47, 17, 18]. Such behavior can to a certain
degree solve the fine-tuning problems mentioned above.

A good way to look at k-essence is as a generalization of canonical scalar field
models (i.e. quintessence). Let us consider the quintessence Lagrangian in a bit more
detail. Where the fact that it must be a function only of X and φ comes from Lorentz
invariance, the reason for the kinetic energy term being equal to X (i.e. canonical)
is merely that we assume X to be small compared to some energy scale and higher
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order terms to be irrelevant. Even though this is often a correct assumption because
of the Hubble damping, there exist cases where it is not. In k-essence, we look at
models where the higher order terms are not necessarily negligible. This can give rise
to interesting new dynamics not possible in quintessence.

Another motivation for studying k-essence is the relation of scalar field theory to
the quantum mechanics of a single particle (see also [20]). Heuristically, field theory
can be viewed as the continuum limit of a grid of particles, with the field at a certain
point describing the excitation of the particle at that point. The canonical scalar
field theory Lagrangian density can in that picture be seen as the generalization of
the Lagrangian of a non-relativistic point particle L = 1

2
mq̇2 (where q is the particle’s

position). The Lagrangian of a relativistic point particle L = −m
√

1 − q̇2 on the
other hand leads to a non-canonical field theory Lagrangian density L = −

√
1 − 2X,

i.e. a k-essence Lagrangian.
A third motivation for the study of k-essence is that non-canonical Lagrangians

appear naturally in string theory. In particular, the tachyon effective Lagrangian
([204], also see [205], and specifically section 8, for a very readable review) has the
Dirac-Born-Infeld-like form L = −V (φ)

√
1 −X. Here, the field φ represents the

tachyon condensate describing the evaporation of a D-brane.
As we discuss in a little more detail below, the Nambu-Goto action for a p-brane

embedded in a p + 2 dimensional space-time can be written in the same form [95],
except that φ has the role of the coordinate transverse to the brane in this scenario.
As an example, consider the simple case of a 3-brane embedded in a 4 + 1 dimen-
sional space-time with a fixed Minkowski metric ηij, i, j = 0, . . . 4. The brane can be
parametrized by four world-sheet coordinates xµ (µ = 0, . . . 3) so that the location of
the brane in space-time (or target space) is given by X i = X i(xµ) (i = 0, . . . 4). In
general, the Nambu-Goto action of a p-brane is given by the volume of its world-sheet

SNG =

∫

d4x
√

−det(gµν), (3.1)

where Gij is the target space metric and gµν = ∂µX
i∂νX

jGij is the induced metric
on the brane. In our example, Gij = ηij.

In the static gauge, the world-sheet coordinates are chosen to coincide with the
first four target space coordinates: xµ = Xµ for µ = 0, 1, 2, 3. We now call the fifth
target space coordinate X4 = φ to emphasize that it is a scalar from the world-sheet
point of view. In this parametrization/gauge, gµν = ηµν − ∂µφ∂νφ. If we now assume
that φ only depends on the time coordinate t = x0, we get the Lagrangian

S =

∫

d4x
√

1 − 2X. (3.2)

This is equivalent to the Chaplygin gas Lagrangian (see also §3.6.4) if there we assume
a fixed Minkowski background. We can reproduce Lagrangians of the more general
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form L = −V (φ)
√

1 − 2X, with a variety of 3+1 dimensional backgrounds, by having
different 4 + 1 dimensional backgrounds Gij . The “potential” V (φ) then corresponds
to a warp factor in the metric.

We wish to stress that this discussion is merely meant to show that there are phys-
ical ways to get k-essence Lagrangians. We do not claim that the above constitutes
a realistic cosmological model.

A final piece of motivation is that, as mentioned in the Introduction, technical
naturalness as from a shift symmetry gives an advantage for purely kinetic k-essence
Lagrangians, and these involve only a single function, L = F (X), like quintessence.

3.3 The model

We study k-essence, dark energy described by a single, real scalar field φ, mini-
mally coupled but with a non-canonical kinetic term. In general, the k-essence action
is of the form

S =

∫

d4x
√
−g F (φ,X), (3.3)

where X := 1
2
∂µφ ∂

µφ. We concentrate on the subclass of kinetic k-essence, with a
φ-independent action

S =

∫

d4x
√−g F (X). (3.4)

In this chapter, we assume a Friedmann-Robertson-Walker metric, with signature
(+ − −−), given by ds2 = dt2 − a2(t) d~x2 (where a(t) is the scale factor) and work
in units c = ~ = 1. Unless explicitly stated otherwise, we assume φ to be smooth on
scales of interest so that X = 1

2
φ̇2. Note that this implies X ≥ 0.

Varying the action (3.4) with respect to the metric gives the energy momentum
tensor of the k-essence

T µν = FX∂
µφ ∂νφ− gµνF, (3.5)

where a subscripted X denotes differentiation with respect to X. Using that for a
comoving perfect fluid the energy momentum tensor is given by Tµν = −pgµν + (ρ+
p)δ0

µδ
0
ν , the k-essence energy density ρ and pressure p are

ρ = 2XFX − F (3.6)

and
p = F. (3.7)

In this work, we will assume that the energy density is positive so that 2XFX−F > 0.
The equation of state is

w =
p

ρ
=

F

2XFX − F
. (3.8)
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The equation of motion for the field can be found either by applying the Euler-
Lagrange equation for the field to the action (3.4), or by plugging the energy density
and pressure given above into the continuity equation for a perfect fluid. Either way,
the result is

FX φ̈+ FXX φ̇
2φ̈+ 3HFX φ̇ = 0, (3.9)

or equivalently, in terms of X,

(FX + 2FXXX)Ẋ + 6HFXX = 0, (3.10)

where a dot denotes differentiation with respect to t and H = ȧ/a is the Hubble
parameter. This equation can be integrated to give

XF 2
X = ka−6, (3.11)

with k ≥ 0 a constant [195].
Note that equation (3.11) tells us that the possible solutions X(a), and therefore

the behavior of all physical properties of the k-essence (like ρ, p and w) as a function
of the scale factor, are completely determined by the function F (X) and do not
depend on the evolution of the other types of energy density. The only dependence of
the k-essence component on other components enters through a(t). One consequence
of this is to preclude the possibility of tracking solutions [241] that automatically
follow the equation of state of the dominant form of matter in the universe. Tracking
behavior is possible in general k-essence models that do have φ-dependence in the
action [47, 17, 18].

An interesting distinction when discussing dark energy models is between dark
energies with w > −1 and those with w < −1. The latter are referred to as phantom
dark energy [41] and can have rather exotic properties. For instance, their energy
density is an increasing function of the scale factor, which can be seen from the
Friedmann equation d ln ρ/d ln a = −3(1 + w) (see [6] for a discussion of problems
arising in phantom k-essence theories). The boundary between the phantom and non-
phantom regime is w = −1, e.g. a time independent cosmological constant. If a DE
evolves from one regime to another, this is called phantom crossing, but [206], e.g.,
showed that this is impossible for a purely kinetic k-essence. We refer to [228, 42] for
a discussion of phantom crossing in the context of other DE models.

For kinetic k-essence, one can use equation (3.8) to express the condition w >
−1 (w < −1) as a condition on the function F (X). We need to consider the two
possibilities F > 0 and F < 0 separately. In the first case, demanding the energy
density be positive immediately implies w > 0. For F < 0, a positive energy density
means that 2XFX/F < 1 so

w =
−1

1 − 2XFX/F
> −1 (3.12)
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when FX > 0. All together, the conditions become (cf. [6])

F > 0 =⇒ w > 0, (3.13)

F < 0 & FX > 0 =⇒ w > −1, (3.14)

F < 0 & FX < 0 =⇒ w < −1. (3.15)

(Recall the condition ρ > 0, or FX > F/(2X), is implicit).
We conclude this section by pointing out a useful scaling property of the kinetic k-

essence Lagrangian, namely F (X) → CF (BX) with B > 0 and C arbitrary constants,
leaves the physical properties, such as equation of state w(a), unchanged. In other
words, once we have found an F (X) that reproduces an equation of state of interest,
we are free to rescale both X and F without affecting w(a). The freedom to rescale F
by a factor C follows from the fact that both p and ρ are proportional to F ; C could
play the role of a constant potential (see §3.6.4). The freedom to rescale X comes
from the fact that one can always redefine the field φ→ φ/

√
B without changing the

physics. The reason we mention this property is because in the following we will often
use it to rescale F (X) into a convenient form (for example with X = 1 and F = −1
at redshift zero) or to leave out multiplicative constants in expressions for X or F .

3.4 Restrictions on w(a) from Stability

In this section we restrict possible equations of state by demanding that the k-
essence be stable against spatial perturbations. Since the k-essence action only de-
pends on X and not on φ, the relevant quantity for determining whether or not a
solution of the equation of motion (3.11) is stable is the adiabatic sound speed squared

c2s :=
pX
ρX

=
FX

2XFXX + FX
=

F 2
X

(XF 2
X)X

. (3.16)

Perturbations can become unstable if the sound speed is imaginary, c2s < 0, so we
insist on c2s > 0, or equivalently [6]

(XF 2
X)X > 0. (3.17)

Writing the condition c2s > 0 in terms of w(a), using c2s = (dp/da)/(dρ/da) (which
is valid as long as dX/da 6= 0), places a restriction on the equations of state w(a)
that can be described by stable k-essence solutions. Using

dρ

da
= −3(1 + w)

a
ρ (3.18)

and
dp

da
=
dw

da
ρ+ w

dρ

da
=
a(dw/da) − 3w(1 + w)

a
ρ, (3.19)
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we get

c2s =
dp/da

dρ/da
=

3w(1 + w) − w′

3(1 + w)
> 0, (3.20)

where w′ := dw/d lna. This restricts the equation of state to lie within two regions of
the w−w′ plane (see Figure 3.1), bounded by the lines w = −1 and w′ = 3w(1+w).
The first line separates phantom k-essence (w < −1) from ordinary k-essence and the
second is the constant pressure line, as can be seen from Eq. (3.19). As mentioned
previously, it is not possible to cross between regions A and B [206]. As we will
show later, the requirement that w(a) lies in region A or B implies that a number of
popular ansatzes for w(a) cannot realistically describe (stable) k-essence.

Note that a combination of stable kinetic k-essence models stays in the stable
region [155] (and a combination of unstable models stays unstable). However, Λ
plus a matter component (or more generally a w ≥ 0 component; also see [107]) can
look like stable k-essence. Another potentially interesting requirement to consider is
c2s ≤ 1, which says that the sound speed should not exceed the speed of light, which
suggests violation of causality. This condition would add an extra line to Figure 3.1,
given by

w′ = −3(1 − w2). (3.21)

However, we will not impose this condition because even though c2s > 1 means signals
can travel faster than light, this does not appear to lead to causal paradoxes (see for
example [37]).

-1.5-1.25 -0.75-0.5-0.25 0 0.25 0.5
w

-1

-0.5

0.5

1

w’
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B

w’=3wH1+wL

w=-1

Figure 3.1: The requirement that c2s > 0 restricts the equation of state to the two
regions A and B, bounded by the lines w = −1 and w′ = 3w(1 + w).
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3.5 Distinguishing Kinetic K-Essence from Quintessence

If we know which equations of state can be reproduced by kinetic k-essence, we
may be able to distinguish it observationally from other DE candidates. In the pre-
vious section, we derived a necessary condition on the DE equation of state for it to
be described by a stable k-essence solution. In this section, we will answer a different
question, namely what equations of state can be described by k-essence in the first
place? We will find that condition (3.20) from the previous section is in fact a suffi-
cient condition. Any equation of state that stays within region A or B of the w − w′

plane can in principle be described by a k-essence Lagrangian density F (X). More-
over, we will show how to construct this function. Our method consists of finding
F and X as a function of the scale factor by expressing them in terms of physical
quantities that can in principle be measured. These functions can then be used to
construct F (X). The first part is well defined for any dark energy, i.e. we can always
formally construct X(a) and F (a) once we know, say, w(a). However, if the slope of
X(a) changes sign, one ends up with a double valued function F (X). In those cases,
the dark energy cannot be described by a well defined k-essence model. We will see
that double valuedness is produced exactly when crossing one of the lines w = −1 or
w′ = 3w(1 + w) in the w − w′ plane.

Now let us find F (a) and X(a). Equation (3.7) tells us that F is simply equal to
the pressure

F (a) = p(a). (3.22)

Inserting this into equation (3.8) and solving for XFX gives

XFX =
1 + w

2w
p, (3.23)

which squares to

X(XF 2
X) =

(

1 + w

2w

)2

p2. (3.24)

Upon insertion of equation (3.11), this leads to

X(a) = Ca6(ρ(a) + p(a))2, (3.25)

where C > 0 is a constant we can freely choose. Equations (3.22) and (3.25) define
effective quantities for F and X even if there is no actual k-essence. If a well de-
fined k-essence Lagrangian does exist, F and X have their standard meaning as the
Lagrangian and as 1

2
∂µφ∂

µφ respectively.
It is useful to find an expression for X(a) in terms of the equation of state w(a).

Unfortunately, since ρ and p are in general integrals of w(a), it is not possible to
find a closed expression. However, it is possible to construct a differential equation.
Differentiating equation (3.25) with respect to a and using equation (3.18) gives

dX

d ln a
= −6

(

3w(1 + w) − w′

3(1 + w)

)

X = −6c2sX. (3.26)
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For F (a), we have the equation

dF

d ln a
= −3w(1 + w) − w′

w
F. (3.27)

Given some evolution of the equation of state, we can derive X(a) using Eq. (3.26) and
then use Eq. (3.27) to find F (X). Alternatively, inverting the X(a) from Eq. (3.26),
one can use Eqs. (3.8) and (3.11) to get

F (X) ∝ w(a(X))

a3(X)(1 + w(a(X)))

√
X. (3.28)

From the dynamics in the w-w′ plane, one can predict what sort of k-essence
solution this corresponds to. If the dynamics crosses a boundary defining the four
regions in Fig. 3.1, then c2s changes sign, indicating a pathology within the k-essence
picture. Note from Eq. (3.26) that c2s changing sign corresponds precisely to the slope
of X(a) changing sign, and at the same time F (X) becomes double valued. However,
any equation of state that stays within one of the four regions can in principle be
obtained from a k-essence Lagrangian. The stability argument from Section 3.4 selects
regions A and B from those four regions. In conclusion, imposing stability, k-essence
can generate precisely the equations of state that lie in regions A and B of the w-w′

plane.
Conversely, one can look at a given F (X) and determine whether it is a viable k-

essence model and what a corresponding quintessence model would be like. (Note that
[161] considered a similar question in terms of the effective quintessence potential.)
First, from the slope of the function one can deduce by applying Eqs. (3.13)-(3.15)
whether the model is phantom or not. Since the k-essence field cannot cross w = −1
then the function F (X) cannot change the sign of its slope, and it cannot be double
valued (requiring the slope to go infinite). From the curvature of the function (concave
or convex), in combination with the slope, one can read off whether the adiabatic
sound speed is real or imaginary, and hence look for stability:

w > −1 : FXX > −FX
2X

, [suff. FXX ≥ 0] (3.29)

w < −1 : FXX < −FX
2X

, [suff. FXX ≤ 0] . (3.30)

Here suff. indicates a sufficient (but not necessary) condition for stability; this also
corresponds to 0 < c2s ≤ 1.

Since by eye one can usually tell when the curvature is convex or concave, the
sufficient condition can be a useful guide. However, if FXX is near but on the wrong
side of zero, then one must calculate the value to establish stability (although in any
case the adiabatic sound speed would exceed the speed of light in these ambiguous
cases). One can apply Eqs. (3.29)-(3.30) to the F (X) plots in the examples of the
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following section to verify their usefulness as a quick indicator of the stability of
possible kinetic k-essence Lagrangians.

To clarify further possible degeneracies between k-essence and quintessence physics,
we examine in the next section specific examples that illustrate the points made above.

3.6 Examples

We here consider a few particular ansatzes for the DE equation of state w(a)
and analyze their degree of degeneracy with a (stable) k-essence solution. To begin,
we check whether the equation of state lies today (z = 0) in one of the allowed
regions given by Eq. (3.20). If so, a function F (X) can be constructed to reproduce
this equation of state in a certain redshift range around z = 0. If w(a) stays in the
allowed region for all a, then we can find an F (X) degenerate with this dynamics for all
redshifts. (But it is important to note that it will not be equivalent to a quintessence
field because the sound speed will not be unity; the two different physical models
will be distinguishable to the extent that spatial inhomogeneities in the dark energy
component are relevant.)

If w(a) leaves the allowed regions after some time, then we can only match stable
k-essence with quintessence over the redshift range where w(a) does lie in one of the
allowed regions. Since in practice we can only measure w(a) in a limited redshift range
anyway, the relevant question is whether we can reproduce a given equation of state
in the redshift range constrained well by data, not necessarily for all redshifts. For
each sample equation of state considered below, we establish the acceptable redshift
range and evaluate the equivalent Lagrangian function F (X) and sound speed c2s.
The examples are designed to lie in different regions of the phase space with different
stability properties, for illustration; see Fig. 3.2.

3.6.1 Constant w

A constant equation of state is simple and approximates some well known com-
ponents. For example, radiation has w = +1/3, matter w = 0 and a cosmological
constant w = −1. Moreover, a (canonical) free field theory, with zero self-interaction
potential V = 0, where the Lagrangian is simply F (φ,X) = X, has w = +1.

It is useful to discuss the cases w = −1 and w 6= −1 separately. From Eq. (3.8),
there are two ways to obtain w = −1. The first is by havingX = const. Since constant
X implies constant ρ, such solutions can only give w = −1. From Eq. (3.11), X =
const is a solution if FX = 0. These solutions are special because since dX/da = 0 we
cannot use Eq. (3.20) for the sound speed; instead we have to go back to Eq. (3.16).
We see that (under the assumption that FXX 6= 0, otherwise we have a canonical scalar
field) this case has c2s = 0 and is thus marginally stable. If X is not constant, the
only way to get w ≡ −1 is by having F = const. This is just a cosmological constant
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Figure 3.2: We investigate for a number of equations of state whether or not they
can be described by kinetic k-essence model. The plot shows the trajectories in the
w − w′ plane for some examples. It also shows the boundaries between stable and
unstable k-essence regions (see Fig. 3.1): the lines w = −1 and w′ = 3w(1 +w). The
equations of state are: (1) w = −0.9+0.4(1−a), see §3.6.2; (2) 1+w = (1−0.9)a−3,
(3) 1 + w = (1 − 0.9)a3, (4) 1 + w = (1 − 1.1)a−6, all §3.6.3; (5) the Chaplygin gas,
see §3.6.4. Note that w = const equations of state (see §3.6.1) correspond to points
on the horizontal axis.

and the adiabatic sound speed is not defined because there are no perturbations.
Next we look at w 6= −1. One can obtain constant w 6= −1 solutions if X is

not constant and the functional form of F (X) has the right form. Since constant
equations of state are points on the horizontal axis in figure 3.1, we need w ≥ 0 for
the equation of state to be in the stable region. More quantitatively, from Eq. (3.20),
we have

c2s = w. (3.31)

In other words, any solution leading to a constant negative equation of state (6= −1)
is unstable viewed as k-essence.

It is straightforward to explicitly construct k-essence Lagrangian densities corre-
sponding to constant w without applying the machinery developed in the previous
section (see also [48]). Instead, we can just use Eq. (3.8) to get

XFX =
1 + w

2w
F, (3.32)

which integrates to

F (X) ∝ X
1+w
2w . (3.33)

Since the energy density should be positive, F must be positive for the w > 0 solutions
and negative for the w < 0 ones. As discussed in §3.3, we are free to choose the
magnitude of the proportionality factor.
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Figure 3.3: F (X) for constant w (ansatz A) with w = −1.5 (solid), w = −1/3 (long
dashed) and w = +1/3 (short dashed). For w < 0, we choose X(z = 0) = 1 to be
at the end of the plotted domain; the field evolves with time from left to right and
the marked points correspond to z = 1. For w > 0, the field moves toward X = 0
and the markers on the w = +1/3 curve indicate from left to right z = 0, 1, 2. The
Lagrangians for negative constant w ( 6= −1) correspond to unstable solutions. An
equation of state w ≡ −1 can be obtained from any F (X) with an extremum by
letting X sit at that extremum (or from a cosmological constant F = const).

Let us now look at some specific cases. First of all, it is useful to note that we
cannot reproduce matter-like behavior, as for w = 0 the k-essence Lagrangian (3.33)
is not well defined. This result makes sense: w = 0 corresponds to a pressure-less
material, whereas in the case of k-essence, the pressure is the same as the Lagrangian
density. In other words, w = 0 would mean that the Lagrangian density is zero
everywhere, which of course just means there is no DE model at all.

Equation (3.33) also confirms that w = 1 corresponds to a canonical free field
(no potential) Lagrangian F (X) = X (which is simultaneously a k-essence and a
quintessence model). Note that skating models (see [155] and references therein),
moving along a constant potential with w′ = −3(1 − w2), stretch between true free
fields V = 0, w = 1 and pure constant potentials V = V0, w = −1, following
X ∼ a−6. This leads by Eq. (3.11) to FX = const, or F ∼ X + const. In this sense
one can think of kinetic k-essence models as skaters that “push off,” altering their
kinetic energy. Radiation-like behavior, w = 1/3, is generated by a function of the
form F (X) = X2. (Note this should not be interpreted as a perturbation around
a minimum of a potential since the field motion does not correspond to rolling in
F (X).) Figure 3.3 illustrates several examples.
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3.6.2 Time Variation: w(a) = w0 + wa(1 − a)

A commonly used ansatz allowing for time variation is w(a) = w0 + wa(1 − a),
which provides a good fit to many canonical scalar field and other model behaviors
[149], at least over the past expansion history. Since w′ = −waa = w − (w0 + wa),
in the w-w′ plane the equation of state starts in the past somewhere on the w-axis
(at w(a ≪ 1) = w0 + wa). Thus from the previous subsection we know it cannot
be wholly degenerate with a stable k-essence model. Its dynamics corresponds to a
straight line with slope one that may cross through the stable region but again in the
far future lie in an unstable region. Thus there is only a finite range of redshift when
it may look like a stable kinetic k-essence model. The values of w and w′ today are
given by w(a = 1) = w0 and w′(a = 1) = −wa. For a model within the stable region
today we consider (w0, wa) = (−0.9, 0.4), in Fig. 3.4. This crosses the w′ = 3w(1+w)
line at a ≈ 0.9. This means that when calculating F (X), starting at a = 1, it will
become double valued at a ≈ 0.9. In the future, the equation of state crosses the
other boundary w = −1 at a ≈ 1.25. Hence, this equation of state is only degenerate
with a stable kinetic k-essence model in the very limited range a ≈ 0.9 − 1.25.

0.5 1 1.5 2
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1

2
cs^2HaL

Figure 3.4: Ansatz B with (w0, wa) = (−0.9, 0.4). The adiabatic sound speed squared
c2s is plotted vs. the scale factor a, clearly showing that c2s > 0 today but becomes
negative both at a ≈ 0.9 and a ≈ 1.25. Hence, this equation of state can only be
described by a stable kinetic k-essence solution in the (rather limited) range between
those times (also see Fig. 3.5).

To calculate the k-essence Lagrangian explicitly, we need to solve Eq. (3.26). This
can be done analytically in the case at hand, giving

X(a) = Ca−6(w0+wa)[1 + w0 + wa(1 − a)]2e6waa , (3.34)

where C is a positive constant. In the region between its extrema (the points where
w crosses one of the boundaries in Fig. 3.1), X(a) can be uniquely inverted and F (X)
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can be computed after using Eq. (3.27) to find F (a). The solution is shown in Fig. 3.5
for (w0, wa) = (−0.9, 0.4). Note how F (X) becomes double valued when going beyond
the extrema.
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Figure 3.5: As Fig. 3.4, but plotting X(a) and F (a) (top left and top right, see text
and Fig. 3.4 for details), normalized such that today X = 1 and F = −1. The
bottom left panel shows the function F (X) obtained from X(a) and F (a) over the
range a = 0.1−1.5. F (X) turns around at the points where dX/da = 0 (i.e. where c2s
becomes negative, at a ≈ 0.9 and a ≈ 1.25) and is therefore not single valued. Hence,
this (w0, wa) = (−0.9, 0.4) example model only corresponds to a well defined F (X)
in the region a ≈ 0.9 − 1.25.

3.6.3 Thawing/Freezing Regions

The ansatz of w′ = x(1 + w) leads to an equation of state

1 + w(a) = (1 + w0)a
x. (3.35)

This describes a thawing model for x > 0, where the equation of state starts frozen
at high redshift so w = −1, and then begins rolling away from it. This form describes
well a number of renormalizable power law potentials and pseudo-Nambu-Goldstone
boson (PNGB) models. For x < 0 it is simply a toy model of an equation of state ap-
proaching (freezing into) a cosmological constant state. See [44] for more on thawing
and freezing models.
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From Eq. (3.20), the adiabatic sound speed for these models is given by

c2s(a) = w(a) − x

3
. (3.36)

This shows that c2s is positive today only if x < 3w0. It is positive at all times if
w0 > −1 and x < −3 (for w0 < −1, it can only lie in the stable region for a limited
redshift range regardless of the value of x). Still, we see that the criterion that c2s be
positive already rules out all the thawing equations of state and part of the freezing
ones.

To construct F (X), we again solve Eq. (3.26), giving

X(a) = Ca2x+6e−
6(1+w0)

x
ax

, (3.37)

where C is a positive constant. Note that if (x + 3)/(1 + w0) > 0 this function has
an extremum at a = {(x+ 3)/[3(1 +w0)]}1/x. After finding F (a) from Eq. (3.27), we
can again calculate F (X).

We explore three different cases, corresponding to diverse physical situations. The
example with x = 3 describes well a thawing equation of state, evolving away from cos-
mological constant behavior, but would be an unstable k-essence model. For x = −3,
the dynamics is freezing, approaching a cosmological constant, and the corresponding
k-essence model has positive sound speed squared for all redshifts. The model with
x = −6 and w0 = −1.1 gives a toy phantom model which approaches a cosmologi-
cal constant, and lies in the stable region only at recent redshifts. These cases are
illustrated in Figs. 3.6-3.9.

3.6.4 Generalized Chaplygin Gas

Dark energy that behaves like matter (w = 0) at early times and like a cosmological
constant (w = −1) at late times can be described by an equation of state

1 + w(a) =

[

1 − w0

1 + w0
a3(n+1)

]−1

, (3.38)

where we take w0 ∈ (−1, 0) and n > 0. A model that produces exactly this equation
of state is the generalized Chaplygin gas (GCG, [28]), which can also be described
by a perfect fluid/gas with equation of state p = −A/ρn, where A is a constant.
The original model, the Chaplygin gas ([45, 130]), corresponds to the case n = 1.
The GCG has been extensively studied in hope of providing a unified description of
dark matter and dark energy, but in such an approach it has problematic issues with
structure formation [192, 27, 15]. However, it is still interesting to study as a dark
energy model. This equation of state can be reproduced by a k-essence model (see,
e.g., [28]) and, of the dynamical equations of state we discuss here, this is the only
one where an explicit expression can be found for the k-essence Lagrangian density
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Figure 3.6: Ansatz C with w0 = −0.9 and x = −3 (solid) or x = 3 (dashed).
The equation of state (thick lines) and adiabatic sound speed squared (thin lines)
are plotted vs. a. Note x = 3 lies in a forbidden region (c2s < 0) for all a and
therefore cannot correspond to a stable kinetic k-essence solution. For x = −3, the
corresponding k-essence Lagrangian is exhibited in Fig. 3.7.

F (X). The Lagrangian for n = 1 can be linked to the tachyon in string theory and
to the dynamics of branes (as referred to in §3.2).

From the expression for w(a) one finds that its dynamical trajectory is a parabola
given by w′ = 3(n + 1)w(1 + w), with w(a) evolving from 0 to −1 (also see the
mocker model in [152]). For n > 0 this equation of state always lies completely in
the allowed region B. It is therefore possible to reproduce it with a stable kinetic
k-essence solution. Note that in the limit n → 0 we approach the boundary of the
allowed regions, the constant pressure line. (For n > 1 there will be epochs where
the trajectory crosses the null line given by Eq. (3.21); see §3.4.) We consider two
examples (n = 0.5, 1 with w0 = −0.9) in Fig. 3.10.

To construct F (X), we first solve equation (3.26) to find

X(a) =

(

1 − w0

1 + w0
a3(n+1)

)− 2n
n+1

, (3.39)

where we have chosen the normalization such that X goes from 1 at a = 0 to 0 at
a = ∞. The expression can easily be inverted to give a(X). Subsequently, Eq. (3.28)
leads to

F (X) = −A 1
n+1 (1 −X

n+1
2n )

n
n+1 (3.40)

(cf. [28]), where A is the constant appearing in the GCG equation p = −A/ρn. We
plot two examples in Fig. 3.11.
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Figure 3.7: As Fig. 3.6 but showing the k-essence functions X(a) (top left), F (a)
(top right), and F (X) (bottom left). F (X) is plotted for the stable x = −3 case over
a = 0.4−1.6 (from top right to bottom left), with markers at z = 1 (right) and z = 0
(left).
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Figure 3.8: As Fig. 3.6, but for the phantom case w0 = −1.1 and x = −6. Here the
solid curve shows w(a) and the dashed curve c2s.

3.7 Conclusions

Kinetic k-essence is in some sense an equally probable solution to the dark energy
conundrum as quintessence, trading a single potential function V (φ) for a single
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Figure 3.9: As Fig. 3.8, but showing the functions X(a), F (a), and F (X).
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Figure 3.10: Ansatz D (the generalized Chaplygin gas) with w0 = −0.9 and n = 1
(solid) or n = 0.5 (dashed). The left panel shows the trajectories in the w-w′ plane.
The direction of increasing scale factor is indicated by arrows and dots mark the
values of w and w′ today. Since the equations of state lie completely in region B,
they can be obtained from purely kinetic k-essence Lagrangians (see Fig. 3.11). The
right panel shows the equation of state w (thick lines) and the adiabatic sound speed
squared c2s (thin lines) as a function of scale factor a.

kinetic function F (X). Similarly, one can find equivalent motivations for it from
quantum field and extra dimension theories.
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Figure 3.11: As Fig. 3.10, but plotting the corresponding k-essence Lagrangian density
F (X) (with F in units of A1/(n+1)). X starts at one and then moves to zero as the
scale factor increases. Markers indicate the points where z = 1 (right) and z = 0
(left).

We have established stability regions for such models within the equation of state
phase space, based on the necessary condition of a non-imaginary sound speed. Con-
versely, we find closed form solutions, given some equation of state w(a), for a dy-
namically corresponding kinetic k-essence Lagrangian F (X). Eqs. (3.13-3.15) and
(3.29-3.30) constitute a simple prescription – “by eye” – for characterizing kinetic
k-essence theories.

Using these results, we investigated the limits to dynamical degeneracy between
kinetic k-essence and quintessence. Analyzing four types of equations of state rep-
resenting diverse dynamics, we found the limits in redshift defining the degeneracy
region. For several equation of state models, both w > −1 and phantom, this implies
that one could rule out all kinetic k-essence models with a sufficient redshift range
of measurements. On the other hand, an equation of state similar in form to the
generalized Chaplygin gas could be equally described by k-essence for all redshifts
(as was already known). This clear definition of degeneracy regions offers increased
hope that with future observational data on the dark energy dynamical and micro-
physical effects we can discern which approach describes the new physics behind our
accelerating universe.
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Chapter 4

Calibrating Dark Energy

A version of this chapter was previously published in the Journal of Cosmology
and Astroparticle Physics [64].

4.1 Introduction

Guidance from theory is useful to predict observable signatures for cosmological
probes such as distance and Hubble parameter measurements, in particular what level
of accuracy is required to distinguish between models. From a model one can predict
distance-redshift relations etc. but the number of models is vast; one would like to
identify model independent or at least generic characteristics of the dark energy.
Indeed, such properties exist, as discussed in detail recently by [39], for classes of
behavior in the early time evolution of dark energy, valid for z & 2 when the dark
energy does not strongly affect the background expansion.

In this chapter we seek to extend characterization of the dark energy properties
in terms of the equation of state to the entire observable history. This requires a
different approach, calibrating the evolution through a “stretch” relation between the
amplitude of the time variation and the time variable or scale factor of the expansion.
The calibration then provides a physical basis for a compact and highly accurate
parametrization of the dark energy influence on observables.

In §4.2 we examine several diverse models, looking for similarities and distinc-
tions. We introduce the calibration in §4.3 and discuss its relation to a standard
parametrization of the equation of state. §4.4 examines the utility of the description
and shows that it achieves robustness and accuracy at the 10−3 level, sufficient for
next generation data. We discuss some implications for figures of merit of dark energy
science programs in §4.5. Those readers wanting to get right to the results could start
in the middle of §4.3.
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4.2 Dark Energy Dynamics

By examining the behavior of a diversity of dark energy models representing dif-
ferent physical origins, we can explore common and distinct elements within 1) a
model as the parameters vary, 2) a family of models with some related property, and
3) different classes of models. Families of models might consist of those with similar
functional forms, e.g. polynomial potentials, while classes might be those with similar
early time behaviors, e.g. thawing models or freezing models [44].

We choose five representative families ranging over different physics and differ-
ent evolutionary histories. These are the pseudo-Nambu-Goldstone boson (PNGB)
model, or cosine potential, that thaws and moves away from an early cosmolog-
ical constant state w = −1, the family of polynomial potentials, also thawing, the
supergravity-inspired SUGRA model that has early tracking behavior and then moves
toward the cosmological constant state (freezing behavior), the modified gravity model
of DGP braneworld cosmology and its family of Hα modifications of the Friedmann
equation, also with freezing behavior, and the Albrecht-Skordis or exponential times
polynomial potential, whose history cannot be classified as purely thawing or freezing.

The dynamics is conveniently represented by the equation of state, or effective
pressure to density ratio, w, and its variation w′ ≡ dw/d lna = ẇ/H where a is the
expansion or scale factor. The Hubble parameter, or expansion rate, H = ȧ/a. We
work in units where 8πG = 1.

4.2.1 PNGB Model

Protected from radiative corrections by a shift symmetry, this model possesses
technical naturalness and is characterized by a symmetry energy scale f [89]. The
potential reads

V (φ) = V⋆ [1 + cos(φ/f)] , (4.1)

with V⋆ setting the overall magnitude, hence related to the present dark energy den-
sity. The equation of state, and the dynamics in general, is governed by f and the
initial field position φi. (It is convenient, as seen from the form of Eq. (4.1), to use
φi/f instead of φi.)

One can scan over the parameter space of these three variables and examine the
evolutionary behavior and viability as a dark energy model. Figure 4.1 shows a
selection of trajectories in the w-w′ plane. The time coordinate runs along these
tracks, and can be thought of as the scale factor a or the dark energy density fraction
of the total energy density, Ωw(a). As we change V⋆ or Ωw = 1−Ωm, where Ωm is the
dimensionless present matter density, different points along a track for given f and
φi/f correspond to the present. In fact, for some parameter values the dark energy
never dominates and the density is restricted to Ωw(a) < Ωw,max < 1. One can show
that for fixed φi/f , then Ωw,max ∝ f 2, so models with symmetry energy scales much
less than the Planck energy, f ≪ 1, tend not to be viable.
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Figure 4.1 shows a wide selection of trajectories that reach Ωw = 0.72 at the
present. They fan out across the phase space, including ones that lie outside the
conventional thawing region 3(1 + w) > w′ > 1 + w (although these start along
w′ = 3(1 + w) at early times) [44]. The exceptions have f ≪ 1, and are not generic
in that for f ≪ 1 we must fine tune ever more strictly the initial condition φi/f in
order to achieve such a present density. Figure 4.2 plots the allowed values of φi/f ,
which decrease rapidly, roughly as (φi/f)max ∼ e−1/f . For example, when f = 0.1,
then the field must start exquisitely close to the top of the potential: rather than
φi/f ranging freely over [0, π], it is restricted to be less than 10−3. For f = 0.05, this
becomes φi/f < 10−7. Apart from unnaturalness, such values may run into physical
problems such as a tachyonic instability [226, 55, 129].

In the future, the scalar field reaches the minimum of the potential and oscillates
around it, giving an equation of state w = 0 (matter-like) when averaged over many
oscillations. We discuss this further in comparison with the next model.

Figure 4.1: PNGB models fan out through phase space as their parameters vary
(though still mostly within the thawing region). At early times the models all start
frozen at (w,w′) = (−1, 0) and thaw, with the scale factor increasing along each curve,
although at different rates in each case. Here we end the tracks when Ωw = 0.72.
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Figure 4.2: To achieve dark energy domination in the PNGB model before the field
relaxes to its minimum, the initial field value φi must be small enough to give a long
period of cosmological constant-like, or frozen, behavior. For very steep potentials,
i.e. low symmetry energy breaking scales f , the field must initially be extremely finely
balanced near the top of the potential, with the curve showing the maximum φi/f
allowed to achieve Ωw ≥ 0.72 at some point in the evolution.

4.2.2 Linear Potential

The linear potential tilts a flat potential, so the field rolls – although it is frozen
by the large Hubble friction at early times. The potential is given by

V (φ) = Vi + (φ− φi)V
′ , (4.2)

where V ′ is the slope parameter, a constant [147, 231]. If the slope becomes too steep
then the field never has time in its evolution to build up to appreciable energy density
before the kinetic energy becomes substantial and w > 0, causing the fractional energy
density relative to the matter density to decrease with scale factor. The evolutionary
tracks for this model fan out in the phase space within the thawing region (some
examples for this and other models appear in §4.2.6 in Fig. 4.7).

Figure 4.3 shows the long time evolution of the PNGB vs. linear potential models,
showing the similarity of the tracks at first, then the dramatic difference in the fate
of the universe as the PNGB field oscillates, acting like matter in a time averaged
sense, and the linear potential field shoots away, leading to deceleration and a cosmic
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doomsday collapse.

Figure 4.3: Long term evolutions of PNGB and linear potential models have distinct
implications for the fate of the universe, both different from the cosmological constant
case. The PNGB field oscillates while the linear potential rolls to negative infinity.
Today the models shown have w0 = −0.77, with w′

0 =0.47, 0.52 respectively. At
a = 2, the PNGB model is still on the innermost track, with w = 0.11 (the curve end
is at a = 6.6), while the linear potential is off the plot, on the way to collapse.

We also consider the related family of polynomial potentials, V ∼ φn with n =
2, 4. These are also thawing models although their future behavior asymptotes to
oscillation about a zero potential minimum. Hence they do not runaway to negative
potential and a rapid, doomsday collapse. The equation of state during the oscillatory
phase time averages to w = (n− 2)/(n+ 2) [227].

4.2.3 SUGRA Model

Tracking models have an early time attractor behavior that allows a large variety of
initial conditions to give the same evolution in the matter dominated era, ameliorating
fine tuning of initial conditions [241]. One example is the family of inverse power law
potentials [183]. Including Planck scale corrections motivated by supergravity theory
changes the potential to [36]

V (φ) = V⋆ φ
−neφ

2/2. (4.3)
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This has a local nonzero minimum, or cosmological constant. The equation of state
behavior is governed by the power law index n.

Although the exponential factor has no effect on the attractor phase, it does permit
a more rapid evolution after the field leaves that trajectory, moving the equation of
state closer to w = −1. Since the dark energy has w = −2/(2 + n) while on the
attractor trajectory, one requires n≪ 1 in the inverse power law model to accord with
observations; this is somewhat eased for the SUGRA model. Today the field properties
can cover a wide swath within the freezing region 0.2w(1 + w) < w′ < 3w(1 + w).

4.2.4 Braneworld Gravity Model

Even dark energy theories that do not involve scalar fields can be viewed in terms
of effective dynamics, where the equation of state is defined in terms of the Hubble
parameter H(a) and its modified Friedmann equation:

weff = −1 − 1

3

d ln δH2

d ln a
, (4.4)

where δH2 = H2/H2
0 − Ωma

−3. One example involving very different physics from
scalar fields is the extension of gravity theory through extra dimensions. This can
lead to a modified Friedmann equation and effective equation of state [78, 94]

H2 = ρm(a)/3 + (1 − Ωm)H2
0 (H/H0)

α, (4.5)

w = −
[

1 +
α

2 − α
Ωm(a)

]−1

, (4.6)

where ρm is the physical matter density and α is a parameter depending on boundary
conditions between our four dimensional universe and the higher dimensional bulk
volume. The best motivated model in this family is DGP braneworld gravity, corre-
sponding to α = 1 [77, 68]. At early times the effective potential looks like an inverse
power law [39], with index n = 2α/(2 − α), and so has tracking behavior. At late
times the field rolls asymptotically to a halt at a finite value of both the field and
potential, acting as a cosmological constant. Indeed the trajectories lie within the
freezing region.

4.2.5 Albrecht-Skordis Model

A scalar field potential with greater complexity is the Albrecht-Skordis [11], or
exponential with polynomial prefactor, potential, motivated by string theory. This
has the form

V (ψ) = V0 [χ(ψ − β)2 + δ] e−λψ, (4.7)

in the notation of [35], with a more compact but equivalent notation being

V (φ) = V⋆ (1 + Aφ2) e−λφ, (4.8)
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where we shift to φ = ψ − β, showing that only three parameters enter: V⋆, related
to the dark energy density today, λ, and A. Away from φ ≈ 0 this behaves like an
exponential potential, a classic tracker, so the initial conditions are not very important
[233]. Near φ = 0, the potential has a false minimum, so a field rolling through this
region can have complicated dynamics, and indeed be trapped and oscillate about
the nonzero potential minimum, eventually relaxing to a cosmological constant.

Figure 4.4 show trajectories for different parameter values, illustrating the wide
variety of possible behaviors. In addition, Fig. 4.5 plots the equation of state w(a)
so one has another view of the damped, oscillatory evolution. Note that while the
field sees an exponential potential, away from the false minimum, it exhibits not
only tracking but tracing behavior – the dark energy equation of state is equal to
the background, e.g. matter dominated, equation of state wb. This means that the
dark energy density is then a constant fraction of the background density, given by
Ωw,trace = 3(1 + wb)/λ

2 [85, 52]. So as not to violate primordial nucleosynthesis or
cosmic microwave background constraints, this requires the contribution to be no
more than a few percent. We show the dynamics for two cases, the first using the
parameter values in [35], corresponding to λ = 3.4 and A = 106.7, which has an early
dark energy fraction Ωe = 0.26 during matter domination (Ωe = 0.35 during radiation
domination), and the second using λ = 10, keeping A the same, giving Ωe = 0.03
(0.04) during matter (radiation) domination, close to the upper limit allowed [75, 26].

For values of λ allowed by nucleosynthesis and CMB limits, λ ≥ 10, the oscilla-
tions are absent or negligible. One can show that the amplitude of the oscillations
depends predominantly on the ratio λ2/A (e.g. define ϕ = λφ and the potential only
explicitly contains the parameter combination λ2/A). If this combination exceeds
one, then there is no minimum but merely a slight local lessening of the exponential
slope, and hence no oscillations. The amplitude increases as λ2/A approaches zero.
However, since λ ≥ 10, small values of λ2/A require A & 1000, seemingly unnatural.
Furthermore, the period of the oscillations is given by the effective mass and is in-
versely proportional to λ for fixed λ2/A, and so for allowed λ the oscillations will be
negligible for z . 3. These behaviors are illustrated in Fig. 4.6.

4.2.6 Cross Comparison

To compare the behaviors of different families, we plot selected representatives in
Fig. 4.7. Varying the parameters within each model, as well as considering different
models, spreads the evolution over regions of the w-w′ phase space. Generally we
see both similarities and distinctions between models and between families. One
must also take into account the time coordinate along the curves, so that crossing of
trajectories does not mean they have identical properties at any one moment. We
plot the trajectories up to when the dark energy density is Ωw = 0.72.

We could extend the curves into the future, as was done in Figs. 4.3 and 4.4. The
φ4 potential will eventually settle at w = 1/3, acting as radiation, as discussed in
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Figure 4.4: Albrecht-Skordis model acts like a tracer at early times, with a constant
energy density fraction Ωe and w = 0 in the matter dominated era, before oscillating
around the nonzero minimum of the potential. We change the line thicknesses (and
colors) at z = 2, 1, and 0. The oscillations are invisible for more viable Ωe = 0.03
case.

§4.2.2, after oscillating around the minimum. Note that the SUGRA, DGP/Hα, and
Albrecht-Skordis models all have nonzero minima, i.e. hidden cosmological constants,
so they settle to w = −1. The SUGRA field does not oscillate around the minimum
because it approaches it with low kinetic energy, freezing to the cosmological constant
state; the Hα family has only an asymptotic minimum, also approached by freezing.

As an alternative to showing the evolution of varied models at all times, we can
take a slice at a particularly time, say when Ωw = 0.72, and construct phase space
curves where the parameters of a potential vary along the curve. This can clear
the illusion of overlap in behavior and provides an intermediate step toward the
calibration in the next section.

Figure 4.8 gives an example of this for the PNGB model, where the parameter
running along the curve is the initial field position φi/f . That is, every point along
any curve has Ωw = 0.72 today, but corresponds to a different set of parameters for
the potential and a different evolutionary behavior. This illustrates that different
symmetry energy scales f define distinct paths to achieving a given dark energy
density. (Of course not all of these are viable, with large values of φi/f along each
curve corresponding to w far from −1, and small values of f suffering from the extreme
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Figure 4.5: Equation of state w(a) shows an alternate view of the evolution in Fig. 4.4.
Note that for model parameters that do not violate early matter domination, the
behavior relaxes swiftly to a cosmological constant, as shown by the solid, black
curve.

fine tuning problem discussed in §4.2.1.) However, by evaluating the equation of
state and its time variation at a single time, we lose all dynamical information. In
the next section we combine the advantages of the parameter scan with those of the
evolutionary trajectories.

4.3 Stretching Dark Energy

To keep the dynamics central, we want to preserve in some way the temporal
information, i.e. the field evolving from its high redshift state along a trajectory
describing the equation of state and its time variation. However, we are free to
rescale the time coordinate and define a time variation other than w′ = dw/d lna.
In particular, we can ask whether there is a global transformation that in some way
calibrates the dark energy characteristics. We call this the evolutionary stretch factor.

Stretching the time variation by different amounts at different times effectively
introduces additional evolution beyond the scalar field behavior, so we consider a
constant stretch factor, a simple renormalization. That is, we take w′(a) → w′(a)/a⋆.
Now, since realistic observations cannot map out the detail of the equation of state
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Figure 4.6: The amplitude of oscillations in the equation of state is governed by
λ2/A and the period goes as λ−1 (for fixed λ2/A). The figure shows the equation of
state history for λ = 10 (Ωe = 0.03 during matter domination) as solid curves, for
λ2/A = 0.1, 0.5, 0.9, from highest peak to lowest, and for λ = 3.4 (Ωe = 0.26), with
λ2/A = 0.1, as a dashed curve. For appreciable oscillations λ2/A must approach zero,
but for allowed (large) values of λ any oscillations damp away for z . 3.

function, we seek to condense the information on the evolution to a set that is robustly
constrained by data. Overcompression loses important physical properties while un-
dercompression leads to uninformatively large uncertainties. In the next section we
will test the full stretch prescription to ensure that neither case occurs. To begin
with, consider evaluating our new time variation quantity at a particular scale fac-
tor; furthermore, to keep the number of parameters in the stretch prescription to a
minimum, we choose this scale factor to be the same as the stretch factor a⋆. That
is, the procedure can be viewed illustratively as

w′(a) → w′(a)

a⋆
→ w′(a⋆)

a⋆
. (4.9)

For evaluating the value of the equation of state function itself, w(a), we also
avoid choosing an arbitrary scale factor. This leaves us with two choices: either a⋆ or
the present epoch, a = 1. If we choose a⋆, then this procedure merely chooses a single
point along the evolutionary trajectory, losing much of the global information. Thus
we adopt w0 = w(a = 1) and examine the dark energy characteristics in the plane



69

Figure 4.7: Representative models considered in this section are plotted for various
parameter values in the w-w′ phase space. Solid, black curves are PNGB, short-
dashed, red curves are for the linear potential, dotted, blue curves are for φ4, long-
dashed, black curves for the braneworld model (α = 1 DGP and α = 0.5), and
dot-dashed, red curves for SUGRA.

of the two parameters, w0 and w′(a⋆)/a⋆ (= dw/da(a⋆)), to see if there is indeed a
normalizing relation for the time evolution.

Figure 4.9 shows clearly that this prescription calibrates the evolution of the
PNGB model. Instead of the fan of trajectories spreading through the w-w′ phase
space, as in Fig. 4.8, we now have a tightly calibrated, one parameter relation in the
w0 vs. w′(a⋆)/a⋆ plane. Despite scanning over the model space of f and φi/f , this
stripe is narrow and well defined. Points within the stripe represent individual real-
izations of the PNGB model with choices of the symmetry energy scale ranging over
the physically reasonable range f ∈ [0.2, 5] and initial field position covering from 0
to the maximum value that allows Ωw ≈ 0.7.

This tight calibration spreads little if we vary the present dark energy density
as well as the potential parameters themselves. Allowing Ωw today to range over
0.69-0.75 gives the slightly wider, lightly shaded region.

Calibration succeeds for the other dark energy models considered as well, cov-
ering a wide range of physical origins. Indeed, all the thawing models are closely
related, nearly forming a single family under the calibration. The similarities extend
to defining a single stretch parameter a⋆ = 0.8 for the entire thawing class. Freezing
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Figure 4.8: These curves for the PNGB model correspond to a scan over the potential
parameter space to find those values where Ωw = 0.72. Each curve is for a different
energy scale f , with the parameter φi/f running along each curve, from zero at
w = −1 to a maximum possible value shown in brackets.

fields also can be calibrated, with a uniform stretch parameter a⋆ = 0.85, though
the families stay more distinct within the freezing class. Figure 4.10 shows the tight
relations of the different dark energy models, in strong contrast with the “fan” nature
of Fig. 4.7.

From the form of the stretch calibrated time variation, w′(a⋆)/a⋆, we can recognize
this as nearly identical to wa, the dark energy variable in standard use, defined by
[149] as wa = −w′(a⋆ = 0.5)/0.5 to fit the equation of state function by w(a) =

w0 + w
(w)
a (1 − a). The superscript w indicates that the value of a⋆ was chosen to

fit w(a). Here, however, we defined the equivalent of wa to calibrate dark energy
families. This resulted in a⋆ = 0.8 for the thawing class and a⋆ = 0.85 for the freezing
class. An interesting further implication is that the “new” form

w(a) = w0 −
w′(a⋆)

a⋆
(1 − a) = w0 + w(d)

a (1 − a) (4.10)

has excellent accuracy when fitting the observables of distance and Hubble parameter,
as we discuss next.
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Figure 4.9: Defining a new time variation variable w
(d)
a from w′ calibrates the PNGB

model into a tight locus; compare the spread in Fig. 4.8. Solid lines are for fixed
f parameter, the shading shows the range of behaviors for f ∈ [0.2, 5]. The lighter
shading shows the effect of also scanning over Ωm = 0.25–0.31.

4.4 Observing Dark Energy

While the form (4.10) was just shown useful in interpretation of dark energy
theory, we should also investigate its utility for interpreting dark energy observations.
Three related, but slightly different, physical bases exist for using the form w(a) =
w0 + wa(1 − a) to characterize dark energy: this can be interpreted as 1) a fitting
formula to the equation of state, 2) a calibration relation for families of dynamics in
the w-w′ plane, or 3) a fitting formula for observables such as distances and the Hubble
expansion rate. The last two in particular are closely related and give similar results;
indeed, when models do not deviate greatly from cosmological constant behavior the
two approaches are almost identical.

We now explore the accuracy of the form (4.10) in fitting the exact distance-
redshift and Hubble parameter-redshift relations for the diverse dark energy models
discussed in §4.2.

Table 4.1 summarizes the accuracies on d and H for a diverse range of models.
These are generally good to the 10−3 level. Models closer to Λ would have better
fits than shown here; models further from Λ are not favored by current data. For
simplicity we henceforth denote the calibrated fit parameter simply as wa.
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Figure 4.10: In terms of the calibrated dark energy parameters w0 and w
(d)
a , models

and families lie in tightly homogeneous regions, in comparison to Fig. 4.7, showing the
same models before calibration. We here vary over all parameters in the potentials.
Shading shows the effect of scanning over ±0.03 in Ωm (we omit the shading for φ4

and linear potential models to minimize confusion; the width would be about half
that shown for PNGB). Thawing models, despite their differences in w-w′, are nearly
identical once calibrated. Distinctions from freezing models, and between freezing
models, become highlighted with calibration.

We could push the accuracy even further by minimizing the deviation not globally,
over the entire range a ∈ [0, 1], but over a particular epoch, say a ∈ [0.5, 1]. However,
we retain the global fit in general. Also, we have not taken advantage of the degree
of freedom of w0, which could improve the fits. We emphasize that the stretch factor
is a function of the dark energy physics and not dependent on the experiment, priors,
etc. (in distinction from a pivot redshift or pivot equation of state value).

Note that the results from this prescription also answer the important question of
whether the calibration procedure preserves the information faithfully to the precision
level of the data, or over- or under-compresses the model characteristics. A one
parameter approach such as a constant value of w would have errors of order 1–
2% in distance and up to 3% in Hubble parameter for the models we considered.
This is insufficient for forthcoming observations. Conversely, since the two calibrated
parameters of w0 and wa map the observables to better accuracy than expected from
next generation data, these two parameters suffice and the data precision does not
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Model δd/d δH/H
PNGB (w0 = −0.85) 0.05% 0.1%
PNGB (w0 = −0.75) 0.1% 0.2%
Linear Pot. (w0 = −0.85) 0.05% 0.1%
Linear Pot. (w0 = −0.75) 0.1% 0.3%
φ4 (w0 = −0.85) 0.01% 0.04%
φ4 (w0 = −0.75) 0.02% 0.06%
Braneworld (w0 = −0.78) 0.03% 0.07%
SUGRA (n = 2) 0.1% 0.3%
SUGRA (n = 11) 0.1% 0.3%
Albrecht-Skordis (Ωe = 0.03) 0.01% 0.02%
Albrecht-Skordis (Ωe = 0.26) 0.1% 0.4%

Table 4.1: Accuracy of w0-wa in fitting the exact distances and Hubble parameters
for various dark energy models. These numbers represent global fits over all redshifts
(except for the last three cases, where the fit covers z = 0-3, due to early dark energy:
see §4.5). Better fits can be found over finite redshift ranges.

call for further equation of state parameters.
This is not to say that some models could not exist where a third parameter

carries information, but such models may not be generic or natural; the wide range of
models considered here has no use for one. If we reach the stage of probing the cosmic
expansion history below the 10−3 precision level, we should revisit the question of a
further calibration parameter.

Finally, this prescription is meant to help us find our way through the dark forest
[12] of models of cosmic acceleration, making accurate, more or less model indepen-
dent assessments. Once precision data exist, they should be analyzed for every model
of interest and within every applicable fit technique, parametric and nonparametric.
We have seen that until we reach that point w0-wa serves as a robust indicator and
guide for predicting and comparing cosmological probe information.

4.5 Figures of Merit

The accuracy of the w0 and wa form, defined in the manner discussed here, for
characterization of observable properties of dark energy is at a level of order 10−3, suf-
ficient for next generation experiments. The calibration into tight families of equation
of state properties, as seen in Fig. 4.7, suggests that not all combinations of w0 and wa
are of equal insight. For example, one might distinguish models in the thawing class
from the cosmological constant and from each other by constraining the combination
varying exactly along the calibrated curve.
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Since this curve is nearly straight, we can characterize it by slope mt, and define
a new variable

wt‖ = w0 +mtwa , (4.11)

where the derivative with respect to this parameter runs parallel to the calibrated
curve. Hence, determining wt‖ localizes the behavior and distinguishes the specific
dark energy characteristics. The narrowness of the calibrated region means that it is
not so useful within thawing models to constrain the direction perpendicular to the
curve.

One can define a similar variable for the freezing class, although here the families
are more spread out, so the slope is more of an average than a well defined value,

wf‖ = w0 +mfwa . (4.12)

Values of mt = −1.75 and mf = 3.5 are reasonable choices. Note that the combina-

tions wf‖ and wt‖ are not orthogonal, so the variable defined for each class does have
utility in constraining the other class as well. For example, along the PNGB curve of
Fig. 4.10 the parameter wt‖ runs from −1 to 0, while wf‖ goes from −1 to −2.2; along

the SUGRA curve wt‖ = −1 to −1.7 while wf‖ = −1 to +0.9. This shows that each
parameter, while optimized for a given physics question, does carry information on
the other class.

Thus, knowledge of either parameter wt‖ or wf‖ answers the key questions of dis-
tinction from a cosmological constant, distinction between models, and to an extent
distinction between classes. Constraining both parameters tightens the distinguishing
ability, especially between classes, and provides a crucial crosscheck of the framework.

It does not seem natural or effective to combine the uncertainties in estimating
these variables from observations into a single number, e.g. σ(wt‖)×σ(wf‖ ), since they
represent very different physics. Moreover, further investigation is needed into the
optimum values for mf , mt and other issues before defining ultimate figures of merit,
if this is even possible. However, the tightness of the calibration does imply that
some combinations of w0 and wa will provide insight into the nature of dark energy.
Therefore, knowledge of the uncertainties σ(w0) and σ(wa) and their covariance are
the main ingredients for a variety of future figures of merit that might be developed.

Finally, we note that the accuracy of the w0-wa form does start to degrade to
the 10−2 level as dark energy becomes increasingly important in the early universe
around z & 103, upsetting standard matter domination. See, for example, the last
three models in Table 4.1, where the dark energy equations of state at recombination
are w ≈ −0.15, 0, 0, respectively. It could be useful to treat such early dark energy
models as a separate class, and include constraint on the dark energy density Ωe at re-
combination (which can best be done through growth probes) as another desideratum
for a dark energy science program.
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4.6 Conclusions

Having investigated a diverse group of dark energy models to explain the accelera-
tion of the cosmic expansion, we find a homogeneous “stretch” relation that calibrates
the time variation behavior into tight families. This stretch factor is closely related
to the standard time variation measure wa, and we verify that the equation of state
form w(a) = w0 + wa(1 − a), with wa now treated as a fit parameter to observables,
delivers fractional accuracy at the 10−3 level.

Such accuracy is sufficient for next generation data and the w0-wa form can be
viewed as an appropriate compression of the expansion history information that can
be extracted from such observations. That is, this form neither overcompresses (loses
important information) nor undercompresses (lacks additional leverage). This indi-
cates there is no need nor generic benefit for going to a third parameter. Note that
[23] saw similar compression and tight relations within a principal component analysis
relying on many modes.

To gain insight into the nature of dark energy, particular combinations of w0-wa
may have enhanced leverage and hence merit, separating the cosmological constant
from the thawing class, each from the freezing class, and possibly zeroing in on specific
models within a class. The calibration, and its robustness and accuracy in account-
ing for the observable relations, offers a well-defined method for assessing the next
generation dark energy science program. Interpretation of those observations should
offer promising insights into the physics of the accelerating universe.
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Chapter 5

To Bin or Not To Bin:
Decorrelating the Cosmic Equation
of State

A version of this chapter was previously published in Astroparticle Physics [65].

5.1 Introduction

Understanding the nature of the dark energy responsible for the acceleration re-
lies on careful, robust measurements of the dark energy properties, in particular its
equation of state (EOS), or pressure to energy density, ratio that directly enters the
Friedmann equation for cosmic acceleration. As scientists design the next generation
of dark energy experiments they seek to optimize the measurements for the clearest
insight into this unknown physics.

Two critical pieces of information will be the value of the EOS at some epoch,
such as the present, and a measure of its time variation, in much the way that early
universe inflation theories are classified by the value of the spectral index and its
running. The best parametrized EOS are physics based and model independent,
i.e. able to describe dark energy dynamics globally, or at least over a wide range of
behaviors. Such EOS are very successful at fitting to data and projecting the results
of future experiments, and can be robust to bias against inexact parametrization.

Other approaches seek to remove one drawback of parametrized EOS by not as-
suming a functional form for the time variation, lest the true dark energy model
lie outside the apparently wide range of validity of the form, i.e. they aim for form
independence. Two major avenues for achieving this are decomposition into basis
functions or principal components (e.g. [122], also see [58, 207, 209, 70, 216, 121]) and
individual values of the EOS w(z) over finite redshift bins, which become more gen-
eral as the number of elements increases. However uncertainties in estimation of the
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EOS properties also grow as the number of principal components or bins increases.
This chapter begins by examining general properties of the cosmological data and

its dependence on the EOS in §5.2. Many of the later, detailed results will already
be foreshadowed by this straightforward and general analysis. In §5.3 we examine
principal component analysis of the EOS and in §5.4 uncorrelated bandpowers. Bins
of EOS in redshift is investigated in §5.5, including figures of merit for quantifying
the uncertainties. Further concentration on the crucial role of the high redshift EOS,
and the risk of biasing parameter estimation, occurs in §5.6. We consider physical
constraints on EOS properties in §5.7 and summarize our results and conclude in §5.8.

5.2 Cosmological Information and the Equation of

State

Cosmological observations probe the EOS through its influence on the cosmic
expansion history and the growth history of massive structures. The relation involves
in general an integral (or double integral) over the EOS. This implies that the kernel,
or response of the observables to the EOS, is broad in redshift, not tightly localized.
For distances, the EOS at one redshift formally influences distances at all higher
redshifts, while for growth variables that EOS value influences all lower redshifts;
this implies a certain skewness. After setting up the simulated observations, we
demonstrate that cosmological information is difficult to simultaneously localize and
decorrelate, as well as highlighting some necessary cautions regarding treatment of
data and priors.

5.2.1 Cosmological Variables

Information inherent in measurements of cosmological quantities regarding the
EOS and other parameters can be estimated through the Fisher information matrix,

Fij =
∑

k,k′

∂Ok

∂pi
COV −1[Ok, Ok′]

∂Ok′

∂pj
, (5.1)

where ∂Ok/∂pi gives the sensitivity of observable Ok to parameter pi, and COV gives
the measurement covariance matrix. One often takes the measurement errors to be
diagonal, COV → σ2

k δkk′. Alternately one could use another likelihood estimator
such as a Monte Carlo Markov Chain; the general results will not change. Each
observable depends on the EOS and other parameters such as the present matter
density relative to the critical density, Ωm.

For the EOS, we begin by dividing the redshift interval (0, zmax) into N bins of
not necessarily equal widths ∆zi (i = 1, . . .N), where

∑

i ∆zi = zmax. The index i is
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taken to increase with z. The equation of state is written as

w(z) − wb(z) = αi ei(z) (5.2)

(repeated indices are to be summed over), where ei(z) = 1 inside the ith bin and
zero outside. Such a binning is general, and serves as the first step for investigation
of principal components (§5.3), decorrelated bandpowers (§5.4), or straight binning
(§5.5).

The N coefficients αi are the parameters describing the EOS in this model. Note
that these coefficients measure the equation of state relative to some “baseline” equa-
tion of state wb(z). We can choose wb to be some model, like the cosmological constant
Λ (wb = −1), to which we want to compare the data. We address issues of the base-
line EOS and binning variable in §5.3. For convenience we sometimes write ei(z) as
ei, and αi, in the case where ei is a unit box function, as wi.

For cosmological observables, we focus here on various distances, including as
measured by Type Ia supernovae (SN), by the cosmic microwave background (CMB)
acoustic peaks, and by baryon acoustic oscillation (BAO) patterns in large scale
structure. For all these the EOS enters through the Hubble parameter

H(z)/H0 =
[

Ωm (1 + z)3 + ΩDE f(z)
]1/2

, (5.3)

where the present dark energy density ΩDE = 1 − Ωm for a spatially flat universe as
assumed here. The function f(z) is the ratio of the dark energy density at redshift z
to its current energy density. When z lies in the jth EOS bin,

f(z) =

(

1 + z

1 + zj

)3(1+wj) j−1
∏

i=1

(

1 + zi+1

1 + zi

)3(1+wi)

, (5.4)

where zi is the lower redshift bound of the ith bin (note z1 = 0) and wi the fiducial
value of the EOS in that bin.

The SN luminosity distance data set extends from redshift zero to zmax = 1.7, with
a distribution and systematic errors as given for the future SNAP mission in [133].
CMB data is treated as a 0.7% constraint on the reduced distance to last scattering,
dlss = (Ωmh

2)1/2
∫ 1089

0
dz/H(z), as should be available from the Planck mission. In

addition to the N EOS bins between z = 0− zmax, we define a single bin for redshifts
z > zmax having averaged, hence constant, EOS wN+1. Note that freely marginalizing
over wN+1 when only one data point depends on this parameter is equivalent to not
including the parameter and the data point. We consider BAO in §5.6. Thus the
Fisher matrix has dimensions (N + 3) × (N + 3), with Ωm (or equivalently ΩDE)
and the parameter M giving the combination of SN absolute magnitude and Hubble
constant in addition to the N + 1 EOS values wi. Unless otherwise stated, results
shown marginalize over Ωm and M.



79

5.2.2 Information Localization

Ideally, binned EOS would reflect an invariant measure of the information (or con-
versely, uncertainty) at its particular redshift. Such a mapping between information
and local variables, or bandpowers, works well for large scale structure (LSS), even
into nonlinear scales, and we follow the approach of [99] but apply it to the EOS. To
refine the localization of information one can attempt to use a large number of bins.
We initially consider N = 100 EOS bins equally spaced in redshift.

Figure 5.1 plots five rows of the Fisher information matrix as a representation
of the information as a function of redshift. An element F (z, z′) denotes the Fisher
matrix entry Fij with respect to parameters pi = w(zi = z) and pj = w(zj = z′). Note
that in contrast to the LSS case (see, e.g., Fig. 1 of [99]), the information is far from
localized (the peaks are broad), is not “faithful” (the peaks do not generally peak at
z = z′, especially for large z), and is skew (the matrix rows are not symmetric about
the peaks). In the LSS case, the peaks were sharp and on the matrix diagonal, with
amplitudes some two order of magnitude above the broader “continuum”. For the
EOS case the kernels are broad without well defined peaks, and the above properties
indicate the matrix is far from diagonal.

Figure 5.1: Five rows (or columns, F is symmetric) of the Fisher matrix calculated
using a uniform binning in redshift z (N = 100 bins), showing the cosmological
information as a function of redshift. Dashed lines show where Fij is negative. The
first panel uses only supernova data, the second panel includes the distance to CMB
last scattering dlss, with the equation of state for z = 1.7 − 1089 fixed to the fiducial
value wN+1 = −1. The curves of information are far from sharp spikes at z = z′,
indicating the cosmological information is difficult to localize and decorrelate.



80

Further difficulties arise with respect to localization or characterization of infor-
mation for the EOS case when considering priors or additional data, and changes in
binning or variables. Suppose we add CMB data1. As shown in the second panel
of Fig. 5.1, this has three effects: it increases the overall amplitude of the Fisher
matrix F, broadens the peaks of the rows, and shifts the peaks to lower z, decreasing
their “faithfulness” (moving the peaks further away from where they would be in
the diagonal case). The first effect is easy to understand. We add information so
F becomes larger and uncertainties decrease. The second and third effects can be
summarized by saying that F is made less diagonal. This is understandable too. The
CMB information in dlss has about the same dependence on all low z EOS parameters
and thus adds to their correlation. To check this, Fig. 5.2 shows the resulting Fisher
information when an extremely tight prior is put on CMB data, or the matter density
Ωm is fixed. Localization and faithfulness are almost completely lost (the EOS part
of the Fisher matrix is far from diagonal).

Figure 5.2: As Fig. 5.1, but with a very tight prior on the CMB information dlss (first
panel) or fixing the matter density Ωm (second panel).

Information within a localized region is also not invariant when considering changes
in the number of bins or binning variable. Note that changing the binning variable
from redshift z to scale factor a = (1+z)−1 or e-fold factor ln a is equivalent to chang-
ing the bins to non-uniform widths in z. Figure 5.3 demonstrates the variations that

1We here simultaneously fix the value of the EOS in the one bin beyond the SN data, wN+1. As
mentioned, adding one data point and marginalizing over the one new parameter is equivalent to
not including the data and new parameter, i.e. it gives the same Fisher matrix as in the SN only
case.
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occur in the standard deviation of the EOS parameters when considering a binning
uniform in z vs. one uniform in a, as well as when changing the number of bins N .
A key point is that while the Fisher matrix behaves in a simple fashion when bin
spacing is changed (as shown in §5.3), the uncertainties σi – which are square roots of
the diagonal elements of the inverse of the Fisher matrix – behave in a complicated
manner.

Figure 5.3: The standard deviation of the EOS in each bin for 50 and 70 bins uniformly
spaced in redshift z or scale factor a. The first panel shows the case with fixed
wN+1 = −1 and the second panel has wN+1 marginalized over. Note that the standard
deviation depends on binning variable nontrivially and does not scale with number
of bins N (i.e. the inverse of the bin width) as N1/2.

First of all, when N is increased from 50 to 70, and so the bin width is correspond-
ingly reduced for a given binning variable, the σ’s do not simply scale by a factor
√

70/50 as one might have been tempted to think. Recall that N is the number of
parameter bins not data bins. Thus a localized information quantity like dσ−2/dz
does not have any real meaning, being dependent on the number of bins and the
binning variable. Second, when considering a change in the binning variable, in the
case where we marginalize over wN+1 (here equivalent to using only SN data), a bin-
ning uniform in a gives larger σ’s across all redshifts when compared to the binning
uniform in z, even if we use the same total number of bins in both cases. This is
counterintuitive since at low redshift the bins uniform in a are smaller, and at high
redshift they are larger than the uniform z bins so we would expect the EOS uncer-
tainties to be relatively larger, then smaller, respectively. This indeed occurs when
we fix wN+1.
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Exploring this behavior, we find that changes in the present dark energy density
overwhelm the EOS parameters. For the higher redshift bins of EOS, the Fisher
information is only contributed by the relatively few high redshift data points, and
there the Fisher sensitivity to Ωm can be more than an order of magnitude greater
than to wi. Computations show that only when Ωm is fixed or restricted to a degen-
eracy surface by the CMB dlss constraint does the natural behavior of the EOS bin
parameters with changes in binning become manifest. We conclude that changes of
binning variables, or equivalently non-uniform bin widths, affect EOS uncertainties in
a nontrivial manner, and the treatment of the high redshift EOS needs care as well.

5.2.3 Extracting the Equation of State

The key lesson of this section has been that there is no well-defined measure for lo-
calized information on the EOS. Unlike for the LSS power spectrum, the cosmological
EOS information has a very broad kernel and the Fisher matrix is far from diagonal.
While one can always adopt a basis to transform the Fisher matrix to diagonal form,
we will see that this does not help with localization and so the results cannot be
interpreted as actual EOS values at a certain redshift. Another issue is the problem
of defining a measure of uncertainty in the EOS estimation that does not depend on
the specific binning chosen.

This general analysis foreshadows the problem of actually deciding how to quantify
measurement of the EOS and any figure of merit to go along with that. In the
following sections we investigate three concrete proposals for the meaning behind EOS
measurement. One approach is principal component analysis (PCA; see, e.g. [122,
113, 142, 127, 168]), effectively making the number of bins very large, diagonalizing
the Fisher matrix and using its eigenvectors as a basis ei(z) in Eq. (5.2). A second
approach is uncorrelated bandpowers, using a small number of bins, diagonalizing and
scaling the Fisher matrix in an attempt to localize the decorrelated EOS parameters
(see, e.g., [120, 186, 217]). Finally, one can exactly localize the EOS parameters using
a few bins, at the price of retaining correlations in their uncertainties. Advantages
for a method will come from giving robust insight into the physical nature of dark
energy.

5.3 Principal Components

It is important to recognize that PCA the way it is normally applied in as-
trophysics, e.g. to spectra, is very different from the qualities desired in measur-
ing the EOS. In conventional PCA one wants to maximize the variance, essentially
the signal, while for the application of PCA to cosmological parameter estimation
([122, 113, 142, 127, 168]) one wants to minimize the variance because it represents
the observational uncertainty. In the former case, using a basis of eigenvectors (or
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eigenmodes) is very useful because it extracts the specific linear combinations of pa-
rameters that have the most signal. In the latter case, at least when applied to the
dark energy EOS where we want the small variations of data to be revelatory, i.e.
arise from very different EOS and so point to the physics, we will see that it is less
obvious what the quantitative advantages of PCA are beyond decorrelating the pa-
rameter uncertainties. (PCA is still useful in obtaining impressions of sensitivity, i.e.
what qualities of the data are best constrained.) For example, for CMB analysis one
still prefers to work with quantities having clear physical interpretations rather than
principal components, despite the decorrelation [79].

To decorrelate the EOS characteristics, one diagonalizes the Fisher (or inverse
covariance) matrix by applying a basis transformation to a basis of eigenmodes. In
this new basis e′

i,
w(z) − wb(z) = α′

i e
′
i(z), (5.5)

such that the uncertainties in the new parameters α′
i are uncorrelated. It is important

to note that in general the basis vectors, or modes, tell us how to interpret the
uncertainties in the parameters α′

i in terms of their effect on the equation of state
function w(z) through

e′i(z) =
∂w(z)

∂α′
i

. (5.6)

We discuss various important mathematical properties regarding modes in Ap-
pendix B; here we summarize the most relevant characteristics and results.

• There are an infinite number of bases that decorrelate the coefficients α′
i

• Because the Fisher matrix transforms nontrivially under change of basis, the
eigenvectors are not invariant. They are not equivalent between different bin-
ning variables or bin widths.

• Each eigenvector has arbitrary normalization and so the meaning of uncertainty
in measuring a mode is not well defined.

5.3.1 Eigenmodes

Despite the first point in the list above, we can of course choose a particular basis
and work from there. We proceed to do this and illustrate the second and third points.
Starting with the unit box basis ei introduced in §5.2 we calculate the eigenmodes
(but remember that this set depends on this particular starting point). The fiducial
model is ΛCDM: w = −1 with Ωm = 0.28 and we consider initial binnings uniform
in z, a and ln(1 + z).

Figure 5.4 illustrates the first four modes, after marginalization over Ωm and M.
For convenience we suppress the primes indicating the new basis. The first panel has
the EOS at z > 1.7 fixed to its fiducial value, wN+1 = −1; in the second panel, wN+1
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is treated as a free parameter and marginalized over. For each binning variable or
coordinate x = z, a, or ln(1+z), we normalize the modes according to

∫

dx e2i (x) = 1.
Although completely arbitrary, this choice is common.

Figure 5.4: The first four eigenmodes and their uncertainties calculated using uniform
binning in z, a and ln(1 + z). In the first panel wN+1 is fixed, in the second panel
it is marginalized over. For a and ln(1 + z), the number of EOS bins N = 50, for
z we use N = 100, enough for the modes to converge. Note the modes, and their
uncertainties, depend on binning variable (even modulo normalization).

Note that, as discussed above, the modes (and their respective standard devia-
tions) are different for the different coordinates, even modulo normalization. As the
coordinate changes from z to ln(1+ z) to a the modes spread out more, gaining more
power at large z as expected from the relative bin widths. The difference between a
binning uniform in a coordinate x and one uniform in z depends on the coordinate
transformation dx/dz over the relevant redshift range. Since da/dz = −1/(1 + z)2,
d ln(1 + z)/dz = 1/(1 + z), and dz/dz = 1, this explains the progression.

Also, comparing the modes with wN+1 fixed to those where it is fit from the data
shows two things. The uncertainties σi ≡ σ(αi) are smaller of course. Second, and
perhaps less obvious a priori, the modes are more confined to low redshifts when wN+1

is made a free parameter. This becomes easier to understand when we remember that
marginalizing over wN+1 is equivalent to not using dlss at all. Thus only when wN+1

is fixed does the inclusion of CMB dlss data count, and this spreads the eigenmodes
out towards higher z.
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5.3.2 Number of Eigenmodes and their Uncertainties

The eigenmode approach becomes completely general in the limit of an infinite
number of bins, N → ∞, as all continuous functions can be constructed from the
complete basis. The downside of this is that the uncertainties approach infinity.
One compromises by selecting a small set of the best determined modes, i.e. the
principal components, and throwing away the others. We face two problems when
we try to adopt this approach. The first is the question which set of eigenmodes to
begin with (i.e. calculated using which coordinate). The second problem is that “best
determined” is not well defined. We elaborate on this below.

As we have demonstrated, calculating the eigenmodes in a different coordinate
yields a different set of modes so it is not clear which basis of eigenmodes to choose.
Although each full basis spans the same space of functions, restricting oneself to the
first few eigenmodes with respect to z gives an essentially different parametrization
than using the first few modes with respect to a or any other coordinate that is not
a linear function of z. The uncertainties will be different and there is the risk that
how good one experiment is compared to another will be judged differently.

Even if we have chosen a certain basis, say the eigenmodes arising from uniform
binning in the coordinate z, there is still the issue of quantifying how well determined
a mode is. That is, we would like to calculate a measure for how constrained a mode
ei is. (Again, we suppress the primes as we will always be interested in the new basis.)
An obvious choice seems to be the standard deviation of its coefficient, σi ≡ σ(αi).
However, if we rescale ei by a factor A, σi is rescaled by A−1. Thus, σi only has
meaning if we also specify the normalization of the mode, and the normalization is
arbitrary, we have no physics guidance in choosing one normalization over another.
In fact, it is perfectly legitimate to rescale all modes such that their (coefficients’)
uncertainties σi are equal to one. Yes, this way it appears many modes have very
large fluctuations, but without putting in any physical constraints on w(z), i.e. a
priori restrictions on the EOS, the word large is meaningless.

Another approach to measuring how well determined a mode is involves using not
a pure uncertainty criterion but a signal to noise criterion. This was the approach
advocated by [156] but is also problematic. Consider the ratio of the standard de-
viation σi over the coefficient αi. At first sight, this seems to solve the problem of
normalization as σi/αi is invariant under changes of normalization. However, this
approach has its own problems. From the mode expansion

w(z) − wb(z) = αi ei(z) (5.7)

we see that the expectation values of the αi’s depend on which baseline function wb(z)
we expand our measured EOS with respect to. For example, if we use wb = −1 and
the true EOS (or simulated EOS if projecting the leverage of a future survey) is also
w = −1, then the expectation values of the αi’s are all zero. Thus the noise-to-signal
σi/αi blows up.
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The reason why the quantities σi and σi/αi suggested above do not work as mea-
sures for how well (or how poorly) determined a mode is, is simple. We have an
estimate of the noise in the uncorrelated parameters αi, but not of the typical signal
and thus cannot define a proper signal to noise ratio to tell us which modes are well-
constrained and which ones are not. It may be tempting to simply throw out modes
with large uncertainties, say σi > 1, but then we are implicitly making the assump-
tion that the coefficients αi are typically of order 1 in the particular normalization
– and baseline model – one has chosen for the modes. We have little knowledge on
which to base such an assumption.

The method would be useful if in addition to knowing the observational uncertain-
ties σi, we knew the typical ranges of the αi’s. For example, if we knew the expectation
values 〈αi〉 and the typical deviations from their expectation values

√

〈(αi − 〈αi〉)2〉
(brackets here denote averages over realizations of the parameters, they have nothing
to do with observational uncertainties, given by σi), we can call αi (and the corre-
sponding mode) well-constrained if the signal to noise ratio

SNR ≡
√

〈(αi − 〈αi〉)2〉
σi

(5.8)

is large.
There are two scenarios in which one has knowledge about quantities like 〈αi〉

and
√

〈(αi − 〈αi〉)2〉, both quite common in physics. One is when one can observe a
(large) sample of realizations of the parameters. If for example the function of interest
is a source spectrum (e.g. of quasars or supernovae [219, 59]), the sample size is equal
to the number of observed sources. Unfortunately, we can only observe one universe
and thus only one equation of state. The other scenario is where one knows what the
underlying physics is and what natural values are for the parameters of the theory
(e.g. for the ionization fraction see [168]). For example, if we knew dark energy was
described by a scalar field model described by a set of n parameters and in addition
we had a prior probability distribution on those parameters, we could propagate this
distribution to the parameters αi. Again unfortunately, we have a large number of
possible theories for dark energy and little guidance as to the parameter values within
those theories. We return to the question of placing physical constraints on the EOS
and its modes in §5.7.

In conclusion, it is always possible to select a subset of modes and work with
those, but it should be realized that what one is doing at that point is putting in
assumptions of what the equation of state should look like – precisely what we were
trying to avoid by switching to PCA from a functional form – and one cannot call
the approach truly form independent anymore.
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5.4 Uncorrelated Bandpowers

While using a large number of bins for the EOS increases the generality of func-
tional forms w(z), one ends up with a large number of poorly determined parameters.
Instead one could use a small number of bins but perform a basis transformation to
decorrelate the parameters. In large scale structure and CMB applications in cos-
mology this is often called uncorrelated bandpowers, e.g. where the functions are the
matter power spectrum binned in wavenumber, P (k), or the photon power spectrum
binned in multipole, C(ℓ).

To increase the localization of the modes within the bins, or bands, [99] proposed
letting the “square root” of the Fisher matrix define the transformation. See [120]
for application specifically to the EOS. Such a transform has the advantage that,
in the ideal case, the weights defining the new parameters in terms of the old ones
are localized and mostly positive. This would make the new parameters easier to
interpret, as true bandpowers, i.e. giving the values of the EOS in a given redshift
interval, with uncertainties uncorrelated between bins. Unfortunately we will find
that, as presaged in §5.2, the cosmological EOS analysis is far from the ideal case due
to the broadness and skewness of the kernel, in contrast to the LSS case.

5.4.1 Modes and Weights

We briefly present the procedure for finding the square root of the Fisher matrix
and the corresponding transformation. This is placed in the main text because it
highlights the important distinction between the properties of the eigenvectors and
the weights, which has not always been clear in the literature.

The transformation of interest is given by the symmetric matrix W (see Ap-
pendix B for our conventions) that transforms the Fisher matrix into the identity
matrix:

WFWT = 1. (5.9)

This matrix is constructed using the matrix O of which the rows are the (normalized)
eigenvectors of F, i.e. the orthogonal (OT = O−1) matrix that diagonalizes the Fisher
matrix

OFOT = D. (5.10)

W is now given by
W = OT D−1/2 O, (5.11)

note that the square root of the Fisher matrix F1/2 ≡ W−1 is also symmetric and it
squares to the Fisher matrix (hence the name).

The new basis vectors e′
i are now given by the rows of W (see Appendix B) and

their coefficients α′
i are

α′
i = W−1

ji αj. (5.12)
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We follow [120] and rescale the basis vectors and thus W such that the α′
i are weighted

averages of the αi, i.e. we rescale the rows of W such that

N
∑

j=1

W−1
ji = 1. (5.13)

For notational convenience we use the same name for the rescaled transformation
matrix W as for the original one, but note that after the rescaling W is no longer
symmetric. The α′

i are now uncorrelated and their uncertainties are given by

σ′
i =

(

N
∑

j=1

F
1/2
ji

)−1

. (5.14)

In summary, the rows of W contain the new basis vectors e′i and the rows of (W−1)T

contain the weights.
An important point is that even though the weights tell us how to construct the

new parameters out of the old ones, as discussed in §5.3, to interpret the meaning
of the uncertainties σ′

i for the EOS one needs to look at the basis vectors e′i(z) =
∂w(z)/∂α′

i and not at the weights. That is,

σ2[w(z)] =
∑

i

σ′
i
2e′i

2(z). (5.15)

We emphasize that plots of the weights alone cannot be directly interpreted as values
of the EOS. To some extent this confusion has been exacerbated by sometimes writing
the weights as Wi – these are not the EOS wi. The distinction between vectors and
weights exists because the uncorrelated bandpowers correspond to a non-orthogonal
transformation (the only orthogonal transformation decorrelating the parameters is
the one to a basis of eigenvectors, as already considered). This distinction will be im-
portant to the question of localization and physical interpretation of the parameters.
As illustrated in the next section, one can have weights that are all positive while
the corresponding basis vectors have significant negative contributions, clouding the
interpretation.

5.4.2 Decorrelated Estimates of the Equation of State

Since the matrix of weights is defined as the square root of the Fisher matrix (up
to a rescaling to make the weights sum to one), the positivity and localization of
the weights depends on how positive and localized the Fisher matrix itself is. The
idea of the square root scaling is that the square root is typically narrower, so the
weights gain some localization relative to the Fisher matrix. However, we saw in §5.2
that even next generation data probing the EOS involves a very nondiagonal Fisher
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matrix. This is inherent to the cosmological properties and degeneracies and does
not arise from any particular binning or parametrization.

We now calculate the modes described in the previous section. To facilitate com-
parison to the literature, specifically [120], we choose four low redshift bins with the
following ranges: z = 0− 0.2, z = 0.2− 0.4, z = 0.4− 0.6 and z = 0.6− 1.7. The bins
define four EOS parameters w1 to w4. The other cosmological parameters, fiducial
values, and data sets are as before. The Fisher matrix for the low z EOS parameters
in the case where w5 ≡ w(z > 1.7) is fixed is given by

Ffix5 =









205 84 17 5.8
84 65 27 19
17 27 21 21
5.8 19 21 35









(5.16)

and when w5 is marginalized over,

Fmarg5 =









146 33 −14 −33
33 22 0.66 −13
−14 0.66 4.4 0.93
−33 −13 0.93 10









(5.17)

It is evident that the Fisher matrix is far from diagonal and furthermore that proper
treatment of the high redshift EOS behavior, rather than assuming a fixed value
for wN+1 (here w5), has a significant effect. For one thing, marginalizing over w5

introduces negative entries in the Fisher matrix and we will see this causes some of
the weights in the decorrelated basis to be negative.

The main results of this section are illustrated in Figs. 5.5 and 5.6, giving the
uncorrelated modes and the corresponding weights. First consider Fig. 5.5 where
wN+1 is fixed. Previous results (e.g. [120, 186]) showed weights that were almost
always positive and strongly localized, i.e. the weights defining the ith parameter
were predominantly peaked in the ith bin. This implies that the Fisher matrix of
the original parameters, including priors, must have been close to diagonal to begin
with in those cases. In Fig. 5.5 the weights are indeed essentially all positive and
substantially localized (slightly less than in the works referred to above but differences
in the fiducial model and data could account for this.)

While the characteristics of the weights in the case where wN+1 is fixed look
promising, recall that it is the eigenvectors that tell us how to interpret the results in
terms of the EOS (see Eqs. 5.6 and 5.15). Each (uncorrelated) uncertainty σi = σ(αi)
derived from the data corresponds to a variation in the EOS behavior w(z) of the
form of the eigenfunction ei(z). We see that the basis functions have quite different
shapes than the weights; in particular they have large negative contributions and large
oscillations, far from being localized. For example, if α1 is 1σ larger than its fiducial
(and the other coefficients are exactly equal to their fiducial values), the EOS in the
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Figure 5.5: Uncorrelated basis functions, or modes, (first panel) and weights (second
panel) obtained from the square root of the Fisher matrix. Here w5 ≡ w(z > 1.7) is
fixed to its fiducial value (w5 = −1). Note that the modes have quite different shapes
than the plots of the weights; the modes are what gives the impact on EOS w(z) of
an uncertainty σi. The weights are only moderately localized (a consequence of the
cosmological properties of the original Fisher matrix).

first bin, w1, deviates by +1.75 × 0.055 from its fiducial value −1, while the EOS in
the second bin, w2, deviates almost as strongly but negatively by −1.45× 0.055 from
−1.

For a deviation in the third coefficient, α3, by 1σ, the consequences are even more
dramatic: a bump in w3 by +4.7 × 0.12 and a dip in w2 by −1.7 × 0.12. Note that
while the αi are decorrelated, the impact on the EOS is not localized, so the values
of wi remain correlated. Such information is hard to get from just looking at the
apparently well-behaved weights (which are often the only quantities plotted).

Much of the good behavior of the weights is an artefact of fixing the high red-
shift behavior of the EOS, i.e. imposing a form (in a supposedly form independent
approach). When we instead allow freedom in wN+1 and marginalize over it, the
effects are dramatic as seen in Fig. 5.6. This is not surprising given the differences
in the respective Fisher matrices, Eqs. (5.16) and (5.17). Some of the weights now
have considerably negative values and the modes are certainly not localized in the
expected bin. Instead, all of them have substantial power in the highest redshift bin
shown.

To verify that it is the strength of the prior information, and not the square root of
the Fisher matrix scaling per se, that causes the weights in Fig. 5.5 (and the literature
examples) to look so well behaved, we imposed ever tighter priors on Ωm. When the
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Figure 5.6: As Fig. 5.5, but with w5 marginalized over. With w5 as a free parameter,
the weights and modes substantially lose their desired properties (being positive and
localized).

prior is weak, the weights are both positive and negative. As the prior tightens, the
weights become progressively more positive and localized. Figure 5.7 shows the limit
as we fix Ωm.

5.4.3 Continuum Limit

To ensure that the breakdown in positivity and locality of the weights is not an
artefact of the binning, but rather is inherent to the cosmological data probing the
EOS, we take the continuum limit, N ≫ 1. Figures 5.8 and 5.9 plot the uncorrelated
modes and weights corresponding to the square root of the Fisher matrix for N = 100.
We see that even in this limit the modes fluctuate heavily and the weights are not very
localized (which makes sense because they are given by the square root of the Fisher
matrix depicted in Fig. 5.1) though they are more faithful, i.e. peak at the given
redshift. Again, the physically appropriate act of marginalizing over wN+1 removes
most vestiges of the desired positivity and locality.

The conclusion is that to obtain truly localized weights implies that one already
started with a substantially localized (peaked, with a narrow kernel) inverse covari-
ance matrix F. In such a case the EOS parameters are already easy to interpret
without decorrelating them. Conversely, having weights that do not become tightly
localized (and we have shown they may not without a strong external prior) implies
that the new basis parameters are hard to interpret – one might as well stick to the
original correlated parameters. Thus, like PCA, using the square root of the Fisher
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Figure 5.7: As Figs. 5.5 and 5.6, but instead of using the CMB data point (thus wN+1

does not enter) we fix the matter density Ωm. This illustrates the effect of a tight
prior.

Figure 5.8: Illustration of what the modes (first panel) and weights (second panel)
based on F1/2 look like in the large N case, here N = 100. Here we fix wN+1 = −1.

matrix in an attempt to obtain uncorrelated bandpowers is not a panacea in the quest
for understanding dark energy.
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Figure 5.9: As Fig. 5.8, but marginalizing over wN+1.

5.5 Binned Equation of State

The third approach to understanding the EOS is simply considering the values in
a small number of redshift bins. That is, one defines piecewise constant EOS in some
redshift range, e.g. w(z) = wi when zi < z < zi+1 (like in §5.4, but without decor-
relating). This guarantees localization and straightforward physical interpretation,
at the price of some correlation in the uncertainties. As we have seen, however, one
cannot in practice generally have both localization and no correlation.

5.5.1 Uncertainties and Correlations

Calculation of the EOS estimation is straightforward. Here we concentrate on
questions of sensitivity to changes in binning and to treatment of the high redshift
bin, rather than specific numbers for the uncertainties. To see the trends most clearly,
we consider only two bins below z = 1.7 along with the one at higher redshift.

The quantities of interest are the uncertainties σi on the EOS values (marginalizing
over the other cosmological parameters), the correlation coefficients between EOS
values,

rij =
Cij
σiσj

, (5.18)

and the global correlation coefficients [2]

ri =

√

1 − 1

CiiFii
, (5.19)
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which give the maximum correlation of wi with a linear combination of all the other
EOS bins. The covariance matrix C is the inverse of the Fisher matrix. The high
redshift value w3 can either be fixed to the fiducial value (see §5.6 for consequences
of the true value being different than the fiducial assumed) or marginalized over.

Figures 5.10 and 5.11 illustrate several interesting points. Both the bin positions
and the treatment of w3 have a big impact on the uncertainties and correlations.
Regarding the uncertainties, when w3 is kept fixed, the effect of making the first bin
larger is to decrease σ1 (and increase σ2). (The slight rise in σ1 when the first bin
gets very wide is due to covariance with the matter density and goes away with a
tight Ωm prior.) They are of comparable size when the boundary between the two
bins lies around z = 0.2. Note that there is only a very narrow region where the two
parameters are determined to better than 0.1, so there is virtually no possibility of
determining three EOS parameters to better than 0.1 with realistic next generation
SN+CMB data – and this is in the most optimistic case of fixing w3.

The correlation between estimates of w1 and w2 (still fixing w3) is not very strong,
with minimum correlation at zdiv ≈ 0.5.

Figure 5.10: Uncertainties in the EOS values for two bins between z = 0 − 1.7 as a
function of the redshift dividing the two bins. The first panel has fixed wN+1 = −1,
the second panel has wN+1 marginalized over. Note the different scales.

When the high redshift behavior of the dark energy EOS, represented by w3, is not
fixed a priori (after all, we want to probe dark energy properties, not assume them),
significant changes occur. Examination of the global correlation coefficient for w3

shows this must happen: r3 ranges between 0.97 and 1, i.e. the high redshift behavior
is extremely highly correlated with the low redshift behavior. This immediately tells
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Figure 5.11: As Fig. 5.10 but showing the correlation coefficient r12 = C12/(σ1σ2) of
the two z < 1.7 bins as a function of the division redshift. The first panel uses SN
and CMB data and compares fixing and marginalizing over wN+1. The second panel
shows that a tight prior on Ωm (without adding CMB data) has a similar effect on
the correlations as adding CMB data and fixing wN+1, i.e. one must be wary of priors
dominating the behavior.

us it that it is dangerous to fix w3 because if it is fixed to the wrong value, it can
strongly affect the values derived for the other parameters (see §5.6).

Another consequence of the strong correlation r3 is that including w3 as a fit
parameter makes the uncertainties in w1 and w2 increase, by factors up to 10. When
the first bin is small (zdiv = 0.1), it is hardly correlated with w3 and the change in its
uncertainty is negligible, whereas σ2 is increased by a factor of almost four. However,
as the boundary redshift is moved up, the first bin grows more correlated with the
third bin until at zdiv = 0.5 both w1 and w2 have quite strong correlations with each
other and with w3, e.g. r13 = r23 = −0.99, and both σ1 and σ2 degrade considerably
due to w3. The effect is so strong that the trend of σ1 decreasing as the bin widens
is broken: σ1 = 0.33 for zdiv = 0.5 compared to σ1 = 0.09 for zdiv = 0.2.

Interestingly, when marginalizing over w3 there is a division redshift for which
the estimations of the low redshift EOS values are uncorrelated, zdiv ≈ 0.18. This
decorrelation, or pivot, redshift arises without any need for using the square root
of the Fisher matrix. But for a broad choice of zdiv the correlation is near unity.
The strong correlation goes away when fixing w3, but this is an example of prior
information rather than data determining our view of the dark energy properties, as
we saw in §5.4.2. For example, in the second panel of Fig. 5.11, we recreate the same
behavior of breaking the strong correlation r12 by fixing Ωm. One must be cautious
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that priors do not overwhelm the data, to see a true picture of dark energy.

5.5.2 Figures of Merit

In attempting to comprehend the nature of dark energy, some researchers advocate
condensing the information down to a single figure of merit (FOM) related to the
uncertainties in the parameter estimation. In §5.3 we saw some difficulties of defining
this in a robust manner. Indeed, FOM’s for binned EOS typically depend sensitively
on both the binning adopted (which has nothing to do with the cosmology within
the data) and, again, the treatment of the high redshift EOS. We now analyze some
possible FOM’s for binned equations of state.

Figure 5.12, first panel, plots the area (taking out a factor π) enclosed by the 1σ
confidence level contour in the w1-w2 plane, as a function of the bin division redshift.
This area is proportional to (detF)−1/2, which is invariant under any transformation
W with (detW)2 = 1 (see Eq. B.4 or [123]), and in particular under any orthogonal
transformation. When w3 is fixed (first panel), the area is minimized at a division
redshift of zdiv ≈ 0.25. One might interpret this as saying that we obtain the most
information (in the N = 2 case) with one bin from z = 0 − 0.25 and one from
z = 0.25 − 1.7. When w3 is marginalized over, the behavior changes somewhat but
there is still a clear minimum, this time at slightly lower redshift zdiv ≈ 0.18.

As more bins are added, individual bin parameters can become extremely uncer-
tain and the volume (detF)−1/2 in the N -dimensional space of w1-. . . -wN (see, e.g.,
[9]) will be dominated by these poorly determined parameters. In an attempt to “cut
off” the highly uncertain parameters, a figure of merit like

FOMcorr ≡
∑

i

σ−2
i (5.20)

has been proposed (see e.g. [217]).
We first consider the σi in Eq. (5.20) as the uncertainties in the (correlated) bin

parameters wi. The behavior of this FOM as a function of division redshift in the
two bin case is shown in Fig. 5.12, second panel (note that now a large value is good).
Such a measure would advocate – for the same data – using zdiv ≈ 0.65 when w3 is
fixed. In contrast, when w3 is marginalized, this peak in the FOM becomes a strong
dip, saying the experiment is weak. Comparing to Fig. 5.10, this FOM can give high
marks to choices that lose almost all the information on the second parameter.

The FOM discussed above does not take into account correlations between param-
eters. As an alternative, we could use the uncertainties in the decorrelated weighted
averages α′

i described in §5.4. It is actually this choice, or rather its inverse, that is
advocated in [217]. To be consistent with our previous notation, we should now write

FOMdecorr ≡
∑

i

σ′
i
−2 (5.21)
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(note that this is the trace of the decorrelated Fisher matrix F′). This FOM has a
very simple, but slightly disappointing interpretation:

FOMdecorr = σ(w)−2, (5.22)

i.e. the FOM is the inverse square uncertainty on a constant w, or equivalently when
there is only one bin.2

We have confirmed numerically that, as it must be from the single bin interpre-
tation, this trace FOM is independent of the division redshift(s) and number of bins.
In conclusion, this FOM only captures the information that was already contained in
the standard deviation of w when using the simplest parametrization, namely w =
constant.

Note that neither the area (determinant) nor trace FOM’s takes particular ad-
vantage of physical foundations. We have seen that the trace FOM neglects all dark
energy dynamics, reducing to a constraint on a static EOS. For the area FOM, as
discussed in [150], the area of the error contour is the Snarkian, or blank map, ap-
proach where all dynamics is equal. Instead, [150] advocates that the FOM must be
adapted to the physics objective, e.g. whether one wants to distinguish the EOS from
the cosmological constant or thawing behavior from freezing behavior, and depends
on dark energy properties. We revisit physical bases for discerning the nature of dark
energy in §5.7.

5.6 High Redshift Equation of State and Bias

For each method of analysis considered the high redshift value of the EOS has been
shown to be a crucial ingredient; fixing the value of wN+1 = w(z > 1.7) has significant
effects on the derived properties of the dark energy. A similar point has been made
for functional forms by [153]. In addition to misestimating the uncertainties by fixing
wN+1, if it is fixed to the wrong value3 (and a priori we don’t know what the correct

2To see this, first note that in terms of the N decorrelated parameters α′

i, the constant mode

econst(z) = 1, 0 < z < zmax, (5.23)

which is the only mode present in the mode expansion when N = 1, is given by the N -dimensional
vector e

′

const = (1, 1, . . . , 1) because the α′

i are weighted averages of the original parameters. Hence,
using the transformation law Eq. (B.4) for the Fisher matrix, the diagonal element of the Fisher
matrix corresponding to the coefficient of the constant mode (i.e. the Fisher information of the
constant mode) is

e
′T

const F
′
e
′

const =
∑

ij

F ′

ij =
∑

i

σ′

i
−2. (5.24)

But by definition this quantity is the inverse variance of the coefficient of the constant mode in the
case of N = 1 bins.

3Treating the EOS between z = 1.7 and z = 1089 as constant may introduce a bias in itself, but
here we focus on the bias introduced by using the wrong constant value.
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Figure 5.12: As Fig. 5.10 but showing two suggested figures of merit. The first
panel shows (detF)−1/2 = A/π as a function of the bin division redshift z, where
A is the area enclosed by the 68% confidence level contour in the w1 − w2 plane
for the model with two bins between z = 0 and z = 1.7. The second panel shows
∑

i σ
−2
i = σ−2

1 + σ−2
2 .

value is) then the values themselves of all the cosmological parameters are biased –
we will derive a picture of dark energy skewed from reality.

Bias in derived parameters can be calculated from offsets in observables within
the Fisher matrix formalism by (see, e.g., [150])

δpi = (F−1)ij
∑

k

∂Ok

∂pj

1

σ2
k

∆Ok, (5.25)

where δpi is the difference of the estimated parameter value from its true value,
δpi ≡ pe,i − pt,i, and ∆Ok is the offset in the kth observable. For bias arising from
choosing the wrong value for wN+1 (which then propagates into the expected, i.e.
simulated, observation), the expression becomes (see Appendix D)

dpi
dpN+1

= −
N
∑

j=1

(F (N))−1
ij (F (N+1))j,N+1, (5.26)

where dpN+1 is the difference of the value wN+1 is fixed to from its true value, δpN+1 =
pfix,N+1 − pt,N+1.

To give concrete examples of the induced parameter bias, we choose two EOS
models that we will fit with binned piecewise constant EOS. We use three low redshift
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parameter pi w1(z < 0.2) w2(z = 0.2 − 0.5) w3(z = 0.5 − 1.7) w4(z > 1.7) M ΩDE

PNGB true value -0.83 -0.87 -0.93 -0.995 anything 0.72
dpi/dw4 -0.015 -0.019 -0.063 x -0.00022 -0.0097

σ(pi) fixing w4 0.10 0.16 0.15 x 0.016 0.012

parameter pi w1(z < 0.2) w2(z = 0.2 − 0.5) w3(z = 0.5 − 1.7) w4(z > 1.7) M ΩDE

Bending true value -0.84 -0.72 -0.55 -0.16 anything 0.72
dpi/dw4 -0.21 -0.26 -0.39 x -0.0022 -0.14

σ(pi) fixing w4 0.096 0.16 0.11 x 0.016 0.012

Table 5.1: Biases in cosmological parameter estimation due to fixing w(z > 1.7) to
an incorrect value. The top half of the table considers a PNGB dark energy model,
which has w(z > 1.7) ≈ −1, and the bottom half considers a bending dark energy
model, where w(z > 1.7) differs substantially from −1. The amount of bias dpi per
how much w4 is misestimated is shown in the middle row of each set.

bins z = 0 − 0.2, 0.2 − 0.5, 0.5 − 1.7 and a high redshift bin from zmax = 1.7 to
zlss = 1089, and define a weighted average

wN+1 =
1

∆ ln(1 + z)

∫ zlss

zmax

dz

1 + z
w(z). (5.27)

(For consistency, we use an appropriately defined weighted average for each bin.)
The first model is based on a pseudo-Nambu-Goldstone boson (PNGB) model

[89], which has wN+1 ≈ −1,

w(z) = −1 + (1 + w0)(1 + z)−F (5.28)

with w0 = −0.8 and F = 1.5. The second model is based on a so called bending
model [234] motivated by dilaton fields, giving a nonnegligible contribution of early
dark energy density (here ∼ 2% relative to the matter density) and wN+1 far from
−1:

w(z) =
w0

[1 + b ln(1 + z)]2
, (5.29)

with w0 = −0.9 and b = 0.415 (this is very similar to the model w(z) = w0+wa(1−a),
with w0 = −0.9 and wa = 0.7). In both cases, Ωm = 0.28.

Table 5.1 shows the EOS values in each bin for both models and also the amount
of bias of the estimated parameter values per offset of wN+1 relative to the a priori
assumption, as calculated from Eq. (5.26). For example, if one assumed that wN+1 =
−1, then the bias in w2 for the bending model would be δw2 = 0.22 = −0.26 ×
(−1+0.16); that is, instead of measuring the true value w2 = −0.72 one would think
w2 = −0.50. Assuming cosmological constant behavior at high redshift has very little
effect on the PNGB model, since at high redshift it indeed is close to w = −1. But
we don’t know a priori what the true dark energy behavior will be.

To avoid bias, we must leave wN+1 as a fit parameter. However, this greatly
increases the uncertainties, since adding a single parameter and a single data point,
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PNGB σ1 σ2 σ3 σ4 r12 r13 r14 r23 r24 r34
fixing w4 0.10 0.16 0.15 x -0.76 0.45 x -0.72 x x

fitting w4 (CMB) 0.32 0.42 1.3 20 0.79 0.96 -0.95 0.89 -0.92 -0.99
fitting w4 (CMB+d3) 0.10 0.16 0.17 2.1 -0.73 0.48 -0.21 -0.59 -0.13 -0.53

Bending σ1 σ2 σ3 σ4 r12 r13 r14 r23 r24 r34
fixing w4 0.096 0.16 0.11 x -0.73 0.39 x -0.84 x x

fitting w4 (CMB) 0.98 1.2 1.8 4.7 0.98 1.00 -1.00 0.98 -0.99 -1.00
fitting w4 (CMB+d3) 0.098 0.15 0.12 0.07 -0.77 0.43 -0.20 -0.81 0.20 -0.48

Table 5.2: As Table 5.1, showing the EOS uncertainties and correlation coefficients.
Fitting for w4 ≡ w(z > 1.7), which removes the bias calculated in Table 5.1, increases
the uncertainties and correlations, but the addition of further high redshift data (here
illustrated with d3 ≡ d̃(z = 3)) can substantially restore them.

with only that data point constraining that parameter, is equivalent to adding neither
the parameter nor the data as far as the uncertainties in the original parameters are
concerned – essentially throwing away the high redshift bin. The solution that allows
for control of both bias and uncertainty is to obtain more, useful data that depends
on wN+1. Such data could be higher redshift distances, such as from baryon acoustic
oscillation (BAO) measurements using quasars or the Lyman alpha forest, or from
matter density growth factors such as enter into weak gravitational lensing measure-
ments. While we note that SNAP, which we took to provide the supernova sample,
includes highly precise weak lensing measurements, here we continue to concentrate
on distances and illustrate the effect of a 1.2% measurement of the reduced angular
distance d̃ (transverse BAO scale) at z = 3 such as the BOSS experiment [197] could
provide.

Table 5.2 shows the effects on the EOS uncertainties from fixing wN+1 (and so
incurring bias), fitting for it with only a CMB dlss measurement (and so effectively
using SN alone), and fitting for it with both dlss and d̃(z = 3) measurements. We see
that not only do the uncertainties greatly decrease when data give constraints on the
high redshift expansion history, but the correlations between EOS parameters greatly
diminish. Again we emphasize that weak lensing measurements have the same or
better effect. The key point is that assuming high redshift behavior for dark energy
leads to bias – to overcome this requires accurate measurements (beyond CMB data
alone) of the high redshift universe, e.g. through direct z > 1.7 observations or through
weak lensing observations involving the growth factor. Given such measurements, one
recovers almost the full leverage on the EOS as when wN+1 was assumed, but without
bias. For the two very different models we considered, the EOS parameter estimation
by doing a global fit including wN+1 is degraded by less than 15% and the risk (the
uncertainty and the bias summed in quadrature) is improved by factors up to 3. Of
course if with the additional data one attempts to fit additional high redshift EOS
parameters, then the constraints do not improve as much.
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5.7 Physical Constraints on Equation of State

5.7.1 Eigenmode Expansion

We pointed out at the end of §5.3 that to reduce the parameter space by throwing
out poorly determined modes in the eigenmode expansion, we need to make assump-
tions about the appropriate range of values for the parameters/coefficients αi. One
way to do this is to take constraints on w(z) based on theory (if we have any such
constraints) and convert these into constraints on the parameters αi (see for example
[70]). If for example we then find that −αmax

i < αi < αmax
i , we may want to throw

out the ith mode if αmax
i < σi (or perhaps αmax

i < 2σi) because αmax
i = σi means that

the maximum physical signal in αi is equal to its observational uncertainty and thus
we cannot get a convincing signal in this parameter. This approach is closely related
to the risk minimization approach4 of [122].

As an example, imagine we expect the equation of state to be w = −1 and have
some reason to believe that −2 < w(z) < 0 is required, for all z. In other words, if
we choose the baseline equation of state (see Eq. 5.2) to be wb = −1, we want the
magnitude of the deviation from the baseline to be smaller than one:

|w(z) − wb(z)| =

∣

∣

∣

∣

∣

∑

i

αi ei(z)

∣

∣

∣

∣

∣

< 1. (5.31)

This constraint of course defines some complicated volume in the α1-. . . -αN space
(correlating the constraints on the different αi), but we can get simple maxima αmax

i

for the individual αi by treating the constraint (5.31) less rigorously.
One way of doing this is to demand that the contributions of the individual modes

do not exceed one, i.e. |αi ei(z)| < 1 for all z for each i individually. This gives

αmax
i = 1/|ei(z)|max (5.32)

and we have checked that (using the criterion αmax
i < σi) this allows us to throw

out all but the first five modes for the case depicted in Fig. 5.4 (left), independent
of whether the binning is uniform in z, a or ln(1 + z). One of the problems with

4To see this, note that

risk = bias2 + variance =

N
∑

i=1

(w(zi) − w̄(zi))
2

+

N
∑

i=1

σ2(w(zi)) =

N
∑

i=M+1

α2
i +

M
∑

i=1

σ2(αi), (5.30)

where we use the notation from [122] with M the number of modes kept. The coefficients αi describe
the deviation from the baseline EOS and the last equality follows from the normalization of the
modes

∑N

i=1
e2
j(zi) = 1 (a different, constant normalization does not affect the risk minimization).

By considering whether to keep the M + 1 mode or not, i.e. whether to include it in the bias2

or variance terms, we see that minimizing the risk corresponds to keeping those modes that have
σi < αi.
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this approach is that if one mode locally causes an unacceptably large deviation from
w = −1, this deviation may be canceled by another mode with large amplitude so in
those cases the constraint is stricter than Eq. (5.31). The inverse is also true, that a
mode that has an acceptably small deviation might be augmented by another mode
so as to exceed our desired constraint.

An alternative approach that does not suffer from the first of the two problems
mentioned above is discussed in §3 of [168], where it is applied to the reionization
history of the universe instead of the dark energy EOS (note the ionization fraction is
bounded in [0,1]). In this approach, maxima are calculated such that if any coefficient
violates |αi| < αmax

i , Eq. (5.31) is violated as well. The converse is not true. All modes
satisfying |αi| < αmax

i does not guarantee that the original constraint is satisfied so this
approach does suffer from the second problem mentioned in the previous paragraph.
The αmax

i ’s calculated in this approach are greater than (or equal to, in the limiting
case of a constant mode) the ones in the approach discussed above and thus give a
larger range of allowed values. When applied to the case at hand, the maxima for the
approach discussed in [168] are given by

αmax
i =

∫

dz |ei(z)|. (5.33)

We have checked, again for the case depicted in Fig. 5.4 (left), that if we require this
αmax
i > σi then this very conservative criterion means we can eliminate modes beyond

the first 9 or 10 (depending on if we calculate the eigenmodes with respect to z, a or
ln(1 + z)).

Note that even if we throw out a large number of modes using the methods
described above, the remaining parameters still carry a lot of uncertainty. Also, to
illustrate our ideas we have assumed an expected w = −1 with −2 < w(z) < 0, but
in reality we have very little knowledge to base such assumptions on (but see the
next subsection). Finally, please recall that in §5.3 we identified two main problems
with the eigenmode approach. Above, we considered the problem of how to quantify
which modes are well-determined and which ones are not. However, there was another
problem, namely that different binnings give a different set of modes. This implies
that, after throwing out poorly determined modes, essentially different models remain.
For example, the first five modes with respect to a span a different set of equations
of state than the first five modes with respect to z.

5.7.2 Time Variation

The EOS w(z) has physical constraints not just on its value but also its time
variation. The effective mass of scalar field dark energy is related to the curvature
of the potential and can be written in terms of w, w′, and w′′, as in [40, 152], where
a prime denotes a derivative with respect to ln a. (Note there is a typo in the first
term of Eq. 46 in [152] where 2q should be q/2.) If the mass exceeds the Hubble
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parameter, m≫ H , then the Compton wavelength for fluctuations in the scalar field
will be less than the Hubble length and dark energy will exhibit clustering [159]. If
we wish to disallow such models (ideally through observational constraints, although
high energy physics such as supergravity can lead to limits on mass scales [128]) then
this imposes the condition

m

H
. 1 =⇒

∣

∣

∣

∣

w′

1 + w

∣

∣

∣

∣

. 1, (5.34)

unless the relation between w, w′, and w′′ is fine tuned. For example, this imposes
constraints on oscillatory behavior, saying the variation cannot be too extreme. For
EOS expanded in a Fourier basis in ln a, say, all terms cos(B ln a) with B ≫ 1 would
give inhomogeneities so the physical condition of smoothness would limit which modes
should be included.

In terms of binned EOS, the condition (5.34) reads

∣

∣

∣

∣

wi+1 − wi
1 + (wi+1 + wi)/2

∣

∣

∣

∣

1

ln[(1 + zi+1)/(1 + zi)]
. 1. (5.35)

To help satisfy this we want a large distance between bin centers. Taking the extreme
case of z1 ≈ 0, z2 ≈ 1.7, then |∆w| . 1 + w̄ . 1. That is, bin values should not jump
by of order unity. For bins closer together the jump constraint is tighter. Dark energy
lying within the thawing and freezing regions defined by [44] automatically satisfies
the mass constraint. For effective dark energy without a physical fluid, as in extended
gravity origins, constraints on w′ from inhomogeneity considerations may not apply.
Other possibilities for constrained EOS behavior can arise within a particular class of
models; [23] explores this for some potentials using PCA and [58] chooses a correlation
function over redshift for w(z).

5.7.3 Testing the Equation of State

Finally, one might want to apply several tests for physical properties to the EOS,
which can be phrased simply in terms of the EOS bin values. To check consistency
with the cosmological constant, w = −1, to a confidence level of Sσ, one looks for
(1+wi)/σ(wi) > S. To look for departures from a constant EOS, one probes whether

wi − wj
σ(wi − wj)

=
wi − wj

√

σ2
i + σ2

j − 2Cij
> S, (5.36)

for any i, j. This also gives a necessary but not sufficient condition for distinguishing
thawing vs. freezing behavior: whether w decreases or increases with larger redshift.

Another interesting property would be nonmonotonicity in the EOS. This could be
indicated by having wi+p−wi of opposite sign from wi+r−wi+q, where p < q < r. (Note
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σ(w2 − w1) σ(w3 − w2) σ(w3 − w1) σ(w4 − w3) σ(w4 − w2) σ(w4 − w1)
0.47 0.94 0.57 0.88 0.36 0.35

σ(w′
12) σ(w′

23) σ(w′
34)

2.8 6.6 2.4

Table 5.3: Uncertainties in the EOS jumps between bins and the derivatives w′ ≡
dw/d lna for the four redshift bins covering z < 1.7 of Eq. (5.16). Note wN+1 is fixed
to −1.

we do not only consider consecutive bins since low σ differences between neighboring
bins could add up to statistically significant deviations over a wider range.) That is,
one tests whether

wi+p − wi
σ(wi+p − wi)

< −S and
wi+r − wi+q

σ(wi+r − wi+q)
> S, (5.37)

or the opposite.
While from the above points it would appear that for testing Λ, say, the FOM

should be minimizing σ(wi) in any one bin, this in fact does not hold. Such a criterion
would drive us to create a single bin over the entire data redshift range, indeed giving
a minimal σ(wi), but erasing any dynamics, taking a constant w. This averaged w can
in fact under certain circumstances be driven to appear as w = −1 despite real time
variation [153], so such a FOM is not useful. For checking constancy, monotonicity,
and related properties, one might advocate a FOM involving σ(wi+p − wi). This
effectively takes a further derivative of the cosmological expansion and tends to yield
large errors (while of course being a highly unstable procedure if applied directly to
the data).

Table 5.3 demonstrates the lack of precision in determining wi+p − wi or the
variation w′ = dw/d lna, even when fixing the high redshift behavior wN+1 (not rec-
ommended), within the binned EOS approach. Even for this optimistic case with next
generation data, fitting four EOS parameters is too much: the dynamics represented
by w′ cannot be seen. This agrees with [156] that next generation data will only allow
physical insight into two EOS parameters. For the two bin case we considered in §5.5,
one can obtain σ(w′

12) = 0.23.

5.8 Conclusions

The dark energy equation of state properties contain clues crucial to understand-
ing the nature of the acceleration of the cosmic expansion. Deciphering those prop-
erties from observational data involves a combination of robust analysis and clear
interpretation. We considered three approaches – principal components, uncorrelated
bandpowers, and binning; none of the approaches provides a panacea.
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In particular, we identify issues of dependence on basis functions, binning vari-
ables, and baseline models. The three approaches are not truly nonparametric and
physical interpretation (not merely the values) of the results in the two decorrelated
basis techniques depends on model, priors, and data, indeed even on an implicitly
assumed functional form. Nevertheless, principal components can give a useful guide
to the qualitative sensitivity, the best constrained aspects, of the data.

The uncorrelated bin approach unfortunately does not truly deliver uncorrelated
bandpowers for the equation of state. This approach using the square root of the
Fisher matrix does not tightly localize the information (without a strong prior), mak-
ing the interpretation nontrivial. This property of nonlocality is inherent in the
cosmological characteristics. One might prefer to stay with the original binned equa-
tions of state used as the initial step for this technique, which are readily interpreted.
Conversely, if the modes can be localized, the interpretation is easy, but in that case
the original Fisher matrix is close to diagonal and thus the original bins almost un-
correlated. Hence, again, one might as well stay with the bin parameters which have
a clear meaning.

Indeed the goal is understanding the physics, not obtaining particular statistical
properties. Decorrelated parameters that are not readily interpretable physically are
of limited use; for example one still prefers to analyze the cosmic microwave back-
ground in terms of physical quantities such as physical matter density and spectral
tilt rather than the principal axes of the eigenvectors. Note that the uncertainty on
the EOS behavior σ(w(z)) is the same whether calculated by PCA (if all modes are
kept), uncorrelated bands, or binned EOS, since the same information is in the data.
We also emphasize that the modes most clearly determine the effect on the equation
of state, not the weights, which are often the only quantity displayed. Moderately
localized, even all positive, weights do not guarantee a localized physical effect. A
further caution is that locality and positivity of weights can owe more to prior re-
strictions, especially the treatment of the high redshift equation of state, than to the
data itself.

Assuming a fixed value for the high redshift equation of state has major, widespread
impacts on the results, ranging from strongly misestimated uncertainties to spurious
localization to bias in the derived cosmology. We emphasize that it is essential to
fit for the high redshift behavior in order not to be misled. Adding CMB data and
marginalizing over a new, high redshift bin removes the ill effects of bias but “cancels
out,” providing no new constraints; multiple data points for z > 2 are required, such
as from high redshift distances or weak lensing measurements of the mass growth be-
havior. Assuming that dark energy is negligible at z > 2 is also effectively assuming
a functional form – precisely what the use of eigenmodes was supposed to avoid.

Indeed, functional forms do not have many of the basis, model, binning, etc.
dependences of eigenmodes, while principal components are in turn not fully form
independent. If one assumes a functional form to obtain informative constraints on
the equation of state, one must indeed choose the form to represent robustly the
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physical behavior (as has been shown to be widely the case for w(a) = w0 +wa(1−a)
by [149, 153]), and carefully check the range of validity of the conclusions by examining
other forms. A good complementary analysis tool would be the binned equation of
state approach examined here.

Regardless of the form of analysis, only a finite amount of information can be
extracted from even next generation data. As has been concluded for functional
equations of state and principal component analysis [156], the analysis here in terms
of binned equation of state indicates that only two physically informative parameters
can be fit with realistic accuracy. However, we identify several issues in the PCA
and uncorrelated bin approaches that cause accuracy or signal to noise criteria to be
ill defined. Similar difficulties arise in condensing the physical information on dark
energy to a single figure of merit; the number is quite sensitive to cosmologically
irrelevant aspects like the binning used (as well as very dependent on the treatment
of the high redshift dark energy behavior).

In conclusion, physically motivated fitting of the equation of state such as the w0-
wa parametrization in complement with a binned equation of state approach (perhaps
with physical constraints such as outlined in §5.7) have the best defined, clearest to
interpret, and robust insights of the approaches we considered. With any method,
one must use caution regarding the influence of priors and fit the dark energy physics
over the entire expansion history.
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Chapter 6

Future CMB Lensing Constraints
on Neutrinos and Dark Energy

A version of this chapter was previously published in Physical Review D [66].

6.1 Introduction

Precision studies of the cosmic microwave background have helped us formulate
a standard model of cosmology and measure several global parameters that describe
our universe and its contents [137, 185, 188, 184]. Six key parameters to describe
the cosmology have been determined with 1-10% precision and CMB data plays a
significant role in constraining other parameters, such as spatial curvature, the dark
energy density, and the Hubble constant, in combination with other types of data.

However, we know in some cases and allow the possibility in other cases, that
there are further fundamental parameters beyond the six. One example is the mass of
neutrinos, where terrestrial experiments indicate a nonzero, though unknown, value:
mν & 0.05 eV for at least one neutrino species [162]. Another set of parameters
of great interest describes the properties of the dark energy causing acceleration of
the cosmic expansion. The dark energy equation of state (EOS) may differ from the
constant value w = −1 of the cosmological constant, and may vary with time. Indeed,
this dynamics would be a key clue to the nature of the physics behind acceleration.
The persistence of dark energy density to early times is another mystery that is crucial
to explore. Current CMB data on the temperature and E-mode polarization spectra
(and their cross-spectra) are of little use in themselves in addressing these issues, and
this holds to a large extent even in combination with other cosmological information
such as supernova distances and large scale structure data.

Fortunately, other types of CMB information exist, though they have not yet been
measured. This includes the CMB deflection field – the action of gravitational poten-
tials along the line of sight on the CMB – and the B-mode polarization spectra (and
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cross-spectra) resulting from this. The effects carry contributions from all redshifts
between the source (the last scattering surface at redshift z ≈ 1090) and the observer,
though like all lensing deflection the kernel from the geometric distance factors peaks
approximately midway, z ≈ 3 − 4. The growth of the gravitational potentials over
this history carries within it information on the matter power spectrum. Thus the
effects of neutrino masses and dark energy properties are encoded in the CMB.

While subsets of these effects have been investigated before (see, e.g., [131, 212,
143, 211, 210]), the effects have not generally been considered simultaneously (espe-
cially for dynamical dark energy), with the critical covariances between them. This
is also the first investigation of the important question of early dark density using
CMB lensing. We also examine for a range of cases the added leverage of lensing
information extraction through use of the optimal quadratic estimator which utilizes
the unique non-Gaussian structure in the map caused by lensing.

In §6.2 we lay out the methodology for obtaining precision theoretical predictions
for power spectra, and their slight variations with cosmology, and summarize the
observational capabilities of three benchmark CMB surveys. We explore adding neu-
trino mass to the standard, cosmological constant universe in §6.3, and include as
well the dark energy EOS and its time variation in §6.4. Discussion includes comple-
mentarity with other cosmological probes and issues of foreground noise. In §6.5 we
investigate early dark energy density, and present a simple prescription for cosmo-
logical constraints in §6.6. We summarize the key prospects for intermediate range
CMB experiments in §6.7.

6.2 Power Spectra Modeling: Theory and Exper-

iments

Primordial perturbations in the photon number density arise from Gaussian, ran-
dom, adiabatic fluctuations seeded in the inflationary era. These induce a photon
temperature power spectrum, and interaction with inflationary gravitational waves
and scattering from electrons creates B-mode and E-mode polarization power spec-
tra (as well as a TE cross-spectrum), respectively. Gravitational lensing shuffles the
photon pattern on the sky [148, 201] and contributes to each of these spectra, as
well as transforming some of the E-modes into B-modes, introducing a coupling be-
tween the two. Beyond these power spectra, lensing imprints non-Gaussianity into
the CMB, and the CMB trispectrum encodes information about the deflection field
power spectrum, or mapping of the photon positions, itself [109].

6.2.1 Theory

Accurate codes exist for computing each of these power spectra, at least for the
standard cosmology. We utilize CMBeasy, which already implements several useful
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extensions to further cosmological parameters, including neutrino masses and several
classes of dark energy [72, 73]. We have crosschecked results (for constant dark energy
equation of state) with another code, CAMB, to ensure accuracy. Numerical stability
is crucial, because several groups of cosmological parameters are highly degenerate
and the differences between the power spectra for different cosmologies can be small,
so numerical noise can distort the results. We carry out parameter estimation through
Fisher matrix analysis. For the precision future data we consider, this should provide
accurate constraints. We check for convergence of the final results for various step
sizes of the cosmological model differencing.

The set of parameters considered includes the standard ones of primordial pertur-
bation amplitude As and power law index n, optical depth τ , physical baryon density
Ωbh

2, cold dark matter density Ωch
2 and dark energy density ΩDE. The Hubble con-

stant is a derived parameter h2 = (Ωbh
2 + Ωch

2)/(1 − ΩDE) under the assumption of
spatial flatness. The physical matter density is ωm = Ωbh

2+Ωch
2. Since neutrinos are

known to have mass and this influences the lensing and other power spectra, we al-
ways include as a parameter the physical neutrino energy density Ωνh

2 or equivalently
the sum of neutrino masses

∑

mν = 94(Ωνh
2) eV.

Since no guarantee exists that dark energy is a cosmological constant, and gener-
ically other models have time variation of their equation of state, we consider two
parameters, w0 and wa, to describe the dark energy equation of state, w(a) =
w0 + wa(1 − a). Consideration of the physics behind dark energy led to this form
[149] and it has been shown to be accurate to 0.1% in describing observables [64].
The ΛCDM model corresponds to fixing w0 = −1, wa = 0. Given that the CMB has
strong sensitivity to the early universe, we also consider another class of dark energy
models, early dark energy, where the dark energy density is non-negligible around
and before the recombination epoch. These also have two parameters, the equation
of state today w0 and the constant high redshift early dark energy density Ωe [74].
For z . 2 these look identical to the w0-wa model where wa ≈ 5Ωe [157], but have
distinct and possibly significant effects at high redshift.

Thus we simultaneously fit either seven or nine parameters. We use the following
fiducial parameter values throughout this chapter: {As, n, τ, Ωbh

2, Ωch
2, ΩDE,

∑

mν}
={2.41 × 10−9, 0.963, 0.084, 0.02255, 0.1176, 0.72, 0.28 eV}.

6.2.2 Deflection Field

The angular power spectrum of the CMB has been used to constrain cosmological
parameters with unprecedented accuracy (see e.g. [137]), but its ability to inform us
about the low redshift universe is limited by the so-called geometrical degeneracy.
This arises because only angles are measured and, given some spectrum of primordial
fluctuations, the power on each scale is nearly fixed for constant

√
ωm dlss (where

dlss is the angular diameter distance to the CMB last scattering surface), which is
degenerate under certain combinations of late universe parameters. (An exception to
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this arises on large angular scales because the integrated Sachs-Wolfe (ISW) effect
[189] leaves another signature of dark energy on large scales, however owing to cosmic
variance this effect is of limited use.) Also, the primordial CMB probes the baryon
distribution at last scattering, which is smoothed on scales smaller than ∼ 10′ because
of Silk damping [208] in the last scattering surface, while massive neutrinos mostly
impact matter agglomerations on projected smaller scales.

The geometrical degeneracy can be broken by adding for example Type Ia su-
pernova (SN) distance information or constraints on the expansion rate to the CMB
power spectrum constraint (see, e.g., [137]). The effect of neutrinos on small scale
structure can be probed through galaxy clustering or the Lyman-α forest [224, 202].
Alternatively, or in addition, deflection of CMB photons on their way to us changes
the statistics of the primordial pattern in a characteristic way that can be used to
infer the lensing effect. What was originally a nearly Gaussian random field becomes
non-Gaussian with the coherent correlation of patterns around large scale matter fluc-
tuations. This type of non-Gaussianity, on a typical scale of approximately 2 degrees,
is different from that used to study inflationary models [19, 56], in that its three point
function vanishes on most scales (except for those large scales on which the unlensed
CMB is correlated with the lenses through the ISW effect).

Lensing is described by the displacement vector of CMB photons on the sky, α(θ),
which is given as α(θ) = DCMB−Dlens

DCMB
α̂(θ) in terms of the deflection angle

α̂ =
4G

c2

∫

d2x′Σ(x′)
x − x′

|x − x′|2 , Σ(x) ≡
∫

dD ρ(x, D) , (6.1)

where D is the angular diameter distance. The vector x describes the position in the
lens plane, and the surface mass density (lensing can be imagined to good approxima-
tion as progressing through multiple, infinitely thin planes) is

∑

(x), a projection of
the three-dimensional density field ρ(x, D). In the so-called Limber approximation,
the lensing power spectrum Cαα

L becomes a simple integral over the matter power
spectrum at all redshifts weighted by angular diameter distance ratios. In this chap-
ter we refer to modes in the lensing power spectrum as L and l, to distinguish them
from the CMB multipole l.

Lensing also affects the angular power spectrum of the CMB [201]. The charac-
teristic acoustic oscillation features are smeared out, as characteristically sized hot
or cold spots are magnified or de-magnified by intervening lenses. The amount of
over-smearing is scale dependent, encapsulating information about the shape of the
matter power spectrum, which in turn is affected by dark energy properties and neu-
trino masses. Because of the distance factors (the geometric kernel) and the growth
factors, the matter power spectrum is best probed over the range z ≈ 1 − 4.

The effect of lensing on the CMB power spectrum is calculated within CMBeasy.
In the presence of lensing, the power spectrum variance is not of the trivial Gaussian
random field form. The non-Gaussian covariance is negligible in temperature and
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E-mode polarization because the relative effect of lensing on these is small, however
it is large for B-mode polarization, a factor of a few [211]. The effects of marginaliza-
tion when constraining individual parameters generally overwhelm the effect of the
excess covariance however [211, 213]. We confirmed that the effect of non-Gaussian
covariance on the parameter constraints in the next sections is negligible by checking
that the uncertainties change by less than 10% (typically less than 1%) if the sample
variance in the B-mode is increased by a factor of five.

The power spectrum over-smearing method provides a statistical estimate of lens-
ing that is prone to sample variance because the actual distribution of the lenses on
the sky remains unknown. To reconstruct the lensing potential ψ (the line of sight
projection of the gravitational potential of which the deflection vector α is the gradi-
ent) one needs to use the non-Gaussian information imprinted into the CMB. Lensing
conserves surface brightness, so the probability distribution function of temperatures
remains unchanged. Therefore the lowest order non-zero estimator of the lensing
potential is quadratic. This has been investigated by [238, 97] and the minimum
variance estimator was given by [110]. A quadratic estimator is generally of the form

ψ̂(L) = N(L)

∫

d2l

2π2
θ(l)θ′(L− l)g(l,L− l) , (6.2)

where θ and θ′ stand for temperature and/or polarization modes on the sky, i.e. θ, θ′ =
T,E,B. The optimal weight g and normalization N can be found using the fact that
the deflected position can be written as a first order expansion of the displacement
around the undeflected position, θL(x) = θUL(x + α) = θUL(x) + ∇iψ(x)∇iθ(x). For
the TT estimator, requiring an unbiased estimate and minimizing the variance leads
to weighting of modes

g(l,L− l) =
(L− l) · LC|L−l| + l · LCl

2C̃tot
l C̃tot

|L−l|

, (6.3)

where Cl (C̃l) is the unlensed (lensed) temperature power spectrum, following the
convention of1 [145]. Similar expressions follow for polarization. The superscript
“tot” originates from the fact that the lensed CMB and noise enter in the variance
calculation.

With the definition in Eq. (6.2) the noise of the lensing reconstruction equals the
normalization which becomes

N(L) =

[
∫

d2l

2π2

[

(L − l) · LC|L−l| + l · LCl
]

g(l,L− l)

]−1

. (6.4)

Physically the noise is a combination of instrumental and intrinsic shape noise (see
below).

1Note that some papers, for example [110, 112], use the opposite notation to distinguish between
lensed and unlensed spectra.
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Note that this is only the best quadratic estimator. Maximum likelihood methods
can in principle be applied [102, 103] but they have been shown to only give small im-
provements for temperature and polarization experiments with the sensitivity levels
assumed in this work, so we do not consider them here. We also note that the ap-
proximation above leads to a bias in the quadratic estimator, however for experiments
considered here, with angular resolutions larger than 3’ as well as noise levels down
to a micro-Kelvin, these are only a few percent and well understood (see [51, 102]).

As is the case with the lensing of background galaxies, CMB lensing obtains most
information from the smallest scale resolved by any given experiment as these allow
averaging over many background features. Because shapes in the CMB temperature
can be intrinsically elliptical, averaging over many patterns becomes necessary to
constrain relatively large lens features. Since unlensed B-type polarization patterns
should be absent on scales less than a degree or so in concordance cosmology, quadratic
estimators involving B, in particular the EB pair due to its higher signal-to-noise, are
intrinsically more useful than temperature (as long as B can be imaged) and can be
used to constrain lenses out to smaller scales. Therefore experiments beyond Planck,
with the capability of imaging B-patterns, allow for reconstruction of lenses out to
smaller angular scales [112, 103].

In the following sections we will compare the lensed power spectra method (i.e.
the over-smearing of acoustic peaks) of inferring late universe parameter values to the
optimal quadratic estimator (OQE) method. In the latter case we will use constraints
on the unlensed power spectra in conjunction with a forecasted constraint on the
lensing potential power spectrum2 Cψψ

L using Eq. (6.4) so we do not count the lensing
information twice.

6.2.3 Experiments

We consider three different experiments, two of which are scheduled to begin ob-
servations in the near future, to forecast constraints on neutrinos and dark energy.
The Planck satellite will be launched in the second quarter of 2009 and will ob-
serve the full sky from the semi-stable Lagrange point L2. We take into account a
foreground cut for galactic emission and assume a sky coverage of 0.75 to be useful
for cosmological analysis. We have adopted the experimental specification values in
[211].

Combining both large sky coverage and high sensitivity, we consider the futuristic
CMBpol concept of a satellite mission specialized on polarization with ultra-high
sensitivity. We have used values from [237]. Our assumed specifications are summa-
rized in Table 6.1. We postpone further discussion of PolarBear, an intermediate
term and sensitivity experiment until Section 6.7.

2Using the lensing potential power spectrum is equivalent to using the deflection power spectrum.
They are simply related by Cαα

L = L2C
ψψ
L (in the flat sky approximation applied here).
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Experiment ν fsky θFWHM ∆T ∆P

Planck 100 GHz 0.75 9.2′ 51 -
142 GHz 0.75 7.1′ 43 78
217 GHz 0.75 5.0′ 65 135

PolarBear 150 GHz 0.025 4.0′ 3.5 5
220 GHz 0.025 2.7′ 8.5 12

CMBpol all freq. comb. 0.75 3′ 1
√

2

Table 6.1: Experimental specifications assumed in the forecasts in this chapter, for the
various frequency bands of Planck, PolarBear, and CMBpol. The temperature
and polarization sensitivities ∆T , ∆P are given in units of µK-arcmin.

From these experimental characteristics the full estimator covariance matrices for
each multipole l can be constructed (e.g. [239]). The (Gaussian) covariances between
the power spectrum and cross correlation estimators are given by

C(CXY
l , CZW

l ) =
1

(2l + 1)fsky

[(

CXZ
l +NXZ

l

)

×
(

CYW
l +NYW

l

)

+
(

CXW
l +NXW

l

) (

CY Z
l +NY Z

l

)]

, (6.5)

where the noise power spectrum3

NXX
l =

(

∆X

T0

)2

el(l+1)θ2FWHM/(8 ln 2) , (6.6)

for XX = TT,EE,BB, Nψψ
l is given by Eq. (6.4) and NXY

l = 0 when X 6= Y . Here
∆T and ∆E = ∆B = ∆P are the temperature and polarization sensitivities, θFWHM is
the angular resolution, and T0 is the temperature of the CMB today.

Figure 6.1 shows that the noise of the experiments considered here is so low com-
pared to the signal that they gather much of their information from scales beyond
l = 2000 in the temperature power spectrum (PolarBear curves, not shown, would
lie between Planck and CMBpol curves). This is especially true for lensing, be-
cause the characteristic displacement of a CMB photon on its way from the last
scattering surface to us is of order 2-3 arcminutes, and the smallest scale resolved
by a given experiment contains most of the lensing information. However on scales
l & 2000 in the temperature power spectrum secondary anisotropies that are larger in
magnitude than lensing, such as the Sunyaev-Zel’dovich (SZ) effects [218] and radio as
well as infrared point sources will make extraction of lensing information challenging.
This is true as well for the optimal quadratic estimator, which might get confused by

3When there are multiple frequency bands, the total noise power spectrum is given by N−1

l,tot =
∑

iN
−1

l,i , where the sum is over the individual bands and we have suppressed the superscripts.
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the extra non-Gaussianity carried by these foregrounds. In addition to the limitation
due to the instrumental noise level and angular resolution, we therefore also quote
our results with high-l cuts at different scales, to show how these foregrounds affect
parameter constraints. We note that while point sources and the SZ are expected
to be significantly dimmer in polarization than in temperature [194, 108], there the
cutoff at high l does not lead to as much loss in information as the polarization
signal-to-noise ratio is small on angular scales beyond l = 2000.

Finally, the Fisher matrix is given by the expectation value of the second derivative
of the logarithm of the likelihood function L(Cl|θi). Assuming Gaussianity of the
likelihood it is of the form

Fij =
∑

l

∑

α,β

∂Cα
l

∂θi
C

−1(Cα
l , C

β
l )
∂Cβ

l

∂θj
, (6.7)

where α and β run over the five observables: temperature, E-mode polarization, T-E
cross correlation, B-mode polarization, and lensing potential power spectrum (where
the OQE is used), and i, j run over the cosmological parameters. The covariance
matrix between parameters is given by the inverse of the Fisher matrix.

6.3 Neutrino Mass Constraints in ΛCDM

We begin looking at cosmological constraints in the simplest model consistent
with both cosmological and local observations: a cosmological constant universe with
non-zero mass neutrinos. Three types of data cuts are employed – by classes of
observations, experiments, and systematics.

The classes of observations are 1) unlensed TT, TE, EE power spectra, 2) adding
the effect of lensing to 1), 3) adding the BB power spectrum to 2), and 4) using 1)
plus information on the lensing potential through the optimal quadratic estimator
discussed in §6.2.2. This allows understanding of the effects of lensing on just the
temperature and E-mode spectra, the information in just the BB power spectrum
caused by lensing, and methods for using the complete effects of lensing.

On the experimental side, we consider Planck, slated for launch in mid-2009, and
the far future CMBpol mission. Discussion of the impact of intermediate scale ground-
based missions is postponed until Section 6.7. Additionally we examine the influence
of the level of systematics in terms of lmax, such as induced through foregrounds
external to the experiments.

Figures 6.2 and 6.3 illustrate the constraints on neutrino mass and dark energy
density (cosmological constant) for the different data set types and systematics levels.
All figures show 68% confidence level contours; the fiducial model is ΛCDM, with
∑

mν = 0.28 eV. Use of lensing information clearly adds substantial leverage, and
measurement of B-modes or the lensing potential play an important role. The two
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Figure 6.1: Temperature and polarization power spectra T 2
0 l(l + 1)Cl/2π[µK2] vs.

multipole l for the ΛCDM fiducial cosmology. TT, EE, BB, and TE spectra (solid
curves, dotted where negative) run clockwise from upper left. Dashed curves show
the power spectrum errors, T 2

0 l(l + 1)∆Cl/2π[µK2], for the Planck (long dash) and
CMBpol (short dash) experiments.

methods of including the full lensing information – adding B-modes or adding the
lensing potential – are nearly equivalent (see §6.7 for further discussion of this).

Considering the constraints for different systematics levels, we see that much of
the lensing leverage is achieved by lmax ≈ 2000. On smaller scales point sources
and the SZ effects are expected to dominate over lensing and our limited ability to



116

Figure 6.2: Cosmological constraints on the neutrino mass and dark energy density
in the ΛCDM fiducial cosmology from CMBpol. Within each panel the contours
correspond to systematic cuts at lmax = 1000, 2000, 3000, 4000 from outer to inner.
The panels use different data cuts: no lensing (upper left), including lensing from T-
and E-modes (upper right), including lensing from T-, E- and B-modes (lower left),
and including lensing through the optimal quadratic estimator of the lensing potential
(lower right).

clean foregrounds through multifrequency observations will likely not allow lensing
reconstruction on much smaller scales.

Finally, the dramatic improvement of CMBpol over Planck is clear in Fig. 6.4.
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Figure 6.3: As Fig. 6.2 but here within each panel the contours correspond to data
set types, and the panels use different systematics levels: lmax = 1000 (upper left),
2000 (upper right), 3000 (lower left), 4000 (lower right).

Here we adopt as a standard systematics limit lmax = 2000 and show the confidence
contours for each data set type for both experiments. While lensing information
does improve the Planck constraints, it runs into a wall due to the relatively high
instrumental noise. Furthermore, Planck essentially cannot see B-mode lensing at all
(see Fig. 6.1). This is one of the motivations for intermediate experiments such as
PolarBear.
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Figure 6.4: Comparing the cosmological constraints on the neutrino mass and dark
energy density in the ΛCDM fiducial cosmology from Planck (dashed contours) vs.
CMBpol (solid), taking lmax = 2000.

6.4 Adding Dark Energy Dynamics

The cosmic microwave background plays a crucial role in breaking the degeneracies
of other probes in order to constrain the properties of dark energy. However, unlensed
CMB data itself has very little leverage on learning about dark energy, since the power
spectra reflect mostly conditions in the high redshift universe or at best a single
weighted average of dark energy influence through the distance to last scattering.
With the addition of lensed CMB data we can ask if this improves the leverage on
dark energy; we emphasize that it is crucial to consider at least minimally realistic
models that include dynamics in the EOS: taking the value of w constant from the
present to z ≈ 1100 is highly non-generic.

It is also important to retain the inclusion of neutrino mass while making this
investigation; both neutrino mass and dark energy influence the CMB in many of the
same ways, e.g. suppressing structure and causing gravitational potentials to decay.
Ignoring neutrino mass could lead to overoptimistic constraints on dark energy. In
this section therefore we add w0 and wa as fit parameters to the set considered in the
previous section. We explore the constraints under the same variety of data cuts as
in that section.

The geometric degeneracy due to the acoustic peaks feeling dark energy mostly



119

through the integrated distance to last scattering remains strong, and no reasonable
constraints can be placed on the dark energy EOS even with full use of the lensing
information. We therefore turn to the issue of complementarity: does the CMB data
substantially help other probes of dark energy? In particular we examine comple-
mentarity with luminosity distances measured by Type Ia supernovae, since the two
probes are well known to strengthen each other [90, 111]. We consider luminosity
distances measured to ∼ 1% from z = 0 − 1.7, including systematics, as could be
provided by a supernova sample realized by a SNAP-type Joint Dark Energy Mission
[214].

Figure 6.5 shows the constraints in the w0-wa plane, marginalizing over the other
seven parameters, for each data set type. The first thing to notice is the clear im-
provement in measuring the time variation wa over the supernova sample alone due
to even unlensed CMB data. Adding lensed CMB data continues to tighten the con-
straints, in both w0 and wa, except for the worst systematics level lmax = 1000. Full
lensing information continues the improvement modestly on the limits, and somewhat
narrows the contours.

Figure 6.6 exhibits the analogous situation for different systematic limits lmax.
In contrast to the ΛCDM case, here the constraints continue to improve for higher
lmax. There are also slight differences between the two methods of fully incorporating
lensing: use of B-modes or OQE of the lensing potential. This emphasizes that con-
clusions on systematics or analysis methods should not be based solely on examination
of the vanilla ΛCDM cosmology. Finally, when systematics are low, lmax = 4000, suf-
ficient information is present in the lensed E-modes that further lensing information
is unimportant.

The improvements in dark energy estimation that CMB lensing brings is illus-
trated in Fig. 6.7 as a function of experiment. For Planck, again no lensing informa-
tion beyond E-modes is useful, though the contour area decreases by a factor 1.9 from
the unlensed case to the OQE case. By contrast, CMBpol could reduce the likelihood
contour area by a factor 4.2 relative to the unlensed Planck case, with the full lensing
information helping by a factor 2.7 relative to unlensed CMBpol.

To test the effect of including both neutrino mass and dark energy dynamics,
Fig. 6.8 shows the likelihood contours for the lmax = 2000 CMBpol case, marginalizing
over vs. fixing

∑

mν . The fully marginalized uncertainties are σ(
∑

mν) = 0.041,
σ(w0) = 0.066, σ(wa) = 0.25. While the 1σ limits on the parameters do not change
that strongly, the total area of the contour is significantly affected. For the unlensed
(fully lensed) case the area increases by a factor 2.9 (1.5) when properly marginalizing
over neutrino mass. (This effect would be more severe when considering CMB data
alone.) Note that for the CMBpol case the correlation coefficient between w0 and
∑

mν is 0.23 and between wa and
∑

mν is −0.41; while not highly correlated, these
are sufficient to give the appreciable effect.
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Figure 6.5: Cosmological constraints on the dark energy equation of state parameters
w0 and wa from CMBpol in combination with SNAP-quality supernova distances.
Within each panel the contours correspond to systematic cuts at lmax = 1000, 2000,
3000, 4000 from outer to inner. The panels use different data cuts: no lensing (upper
left), including lensing from T- and E-modes (upper right), including lensing from
T-, E- and B-modes (lower left), and including lensing through the optimal quadratic
estimator of the lensing potential (lower right). The dotted curve gives the constraints
from supernovae alone.

6.5 Exploring Early Dark Energy

In ΛCDM, the fractional contribution of dark energy density is of order 10−9 at last
scattering. However, many models exist where this can be at the percent level [75],
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Figure 6.6: As Fig. 6.5 but here within each panel the contours correspond to data set
types, and the panels use different systematics levels: lmax = 1000 (upper left), 2000
(upper right), 3000 (lower left), 4000 (lower right). Since using lensed TT/EE/TE
spectra is not a matter of simply adding to the Fisher matrix from unlensed spectra,
it is possible for a lensed contour to lie slightly outside of the unlensed contour, as in
the lmax = 3000 case.

with important impacts on the sound horizon scale and baryon acoustic oscillations,
structure formation, and secondary anisotropies [75, 74, 151, 190, 157, 88, 96]. Such
early dark energy models follow from physics where the dark energy traces the energy
density of the dominant component of the universe, as in high energy physics and
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Figure 6.7: Comparing the cosmological constraints on the dark energy equation of
state parameters from Planck (dashed contours) vs. CMBpol (solid), taking lmax =
2000 and including SNAP-quality supernova distances. The dotted curve gives the
constraints from supernovae alone.

string theory models with dilatation symmetries [233].
Although the sound horizon is altered in the presence of early dark energy by

∼ (1 − Ωe)
1/2, this shift can be hidden in the temperature power spectrum by com-

pensating changes in the other parameters [157]. This is problematic for baryon
acoustic oscillation experiments, which use the sound horizon as a standard ruler to
probe cosmology through distances. More generally, definitive recognition of early
dark energy is quite important to have confidence in the accurate estimation of the
other parameters, ensuring that they are not biased due to incorrectly assuming no
early dark energy. Furthermore, detection of early dark energy would immediately
give crucial clues to understanding the nature of dark energy.

Since CMB lensing depends on the growth of structure, it is a good candidate for
constraining dark energy. More generally, hints already exist in [157] that polarization
information can help break degeneracies involving early dark energy. Here we carry
out a more comprehensive likelihood analysis for unlensed polarization power spectra
and examine for the first time CMB lensing constraints on early dark energy. To
do this, we employ the parametrization for the fractional dark energy density as a
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Figure 6.8: As Fig. 6.7 for CMBpol only, but here showing the effect of fixing
∑

mν

(dashed contours) rather than marginalizing over it (solid) as is standard for all
parameters not shown.

function of scale factor proposed by [74],

ΩDE(a) =
ΩDE − Ωe (1 − a−3w0)

ΩDE + Ωma3w0
+ Ωe

(

1 − a−3w0
)

, (6.8)

where ΩDE is the current dark energy density, Ωe is the constant dark energy density
at early times, and w0 is the present dark energy equation of state. Hence, the two
added parameters Ωe and w0 describe the dark energy properties.

Figure 6.9 shows the constraints in the w0-Ωe plane, marginalizing over the other
seven parameters, for different data set types. The fiducial model has w0 = −0.95,
Ωe = 0.03. As in the w0-wa case, the CMB degeneracies are too strong to allow
constraints by the CMB alone, so we have again folded in supernova distance data
(which does not directly constrain Ωe). We see that unlensed power spectra includ-
ing polarization information can indeed tightly constrain early dark energy. Adding
lensed CMB information in fact mostly constrains further w0, having minimal effect
on Ωe. Recall from §6.2.1 that out to z ≈ 2, the early dark energy model looks very
much like a standard w0-wa model that would not give appreciable early dark energy
density. Thus, early dark energy is too early for even the broad redshift kernel of
CMB lensing to have significant sensitivity to it.

Figure 6.10 exhibits the analogous situation for different systematic limits lmax.



124

Figure 6.9: Cosmological constraints on the early dark energy fraction Ωe and present
equation of state parameter w0 from CMBpol in combination with SNAP-quality
supernova distances. Within each panel the contours correspond to systematic cuts
at lmax = 1000, 2000, 3000, 4000 from outer to inner. The panels use different data
cuts: no lensing (upper left), including lensing from T- and E-modes (upper right),
including lensing from T-, E- and B-modes (lower left), and including lensing through
the optimal quadratic estimator of the lensing potential (lower right).

Again in contrast to the ΛCDM case, here the constraints continue to improve for
higher lmax, although less rapidly for lmax & 3000. The fully marginalized uncertainties
for the lmax = 2000, full lensing case are σ(

∑

mν) = 0.047, σ(w0) = 0.018, σ(Ωe) =
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0.0019. This is an impressive constraint on the early dark energy density, able to give
definite guidance to the nature of dark energy, ruling out classes of models.

Figure 6.10: As Fig. 6.9 but here within each panel the contours correspond to data set
types, and the panels use different systematics levels: lmax = 1000 (upper left), 2000
(upper right), 3000 (lower left), 4000 (lower right). Since using lensed TT/EE/TE
spectra is not a matter of simply adding to the Fisher matrix from unlensed spectra,
it is possible for a lensed contour to lie slightly outside of the unlensed contour.

Because CMBpol would have much better polarization measurements than Planck,
it will constrain Ωe better by a factor 2.2, as shown in Fig. 6.11. The area of the dark
energy properties’ confidence contour improves by a factor 3.9.
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Figure 6.11: Comparing the cosmological constraints on the early dark energy fraction
Ωe and present equation of state parameter w0 from Planck (dashed contours) vs.
CMBpol (solid), taking lmax = 2000 and including SNAP-quality supernova distances.

Finally, we summarize our results for the dark energy and neutrino mass uncertain-
ties in Table 6.2 for the three cosmological models considered, assuming lmax = 2000.
However, one should see the figures for the full contours. Due to degeneracies in the
presence of dynamical dark energy, we add supernova data in these cases to constrain
the dark energy equation of state, although the uncertainties on Ωe and

∑

mν are
not strongly affected.

6.6 Shortcut for Joint Dark Energy Constraints

As seen in Section 6.4, when CMB and supernova data are combined, we can
obtain strong constraints on the nature of dark energy. While the supernova data
dependence on cosmological parameters is straightforward, calculating a CMB Fisher
matrix can be quite time consuming. The procedure requires computing multiple
CMB spectra using a Boltzmann code (CMBeasy in our case) for different values
within a set of cosmological parameters in order to obtain the derivatives of the
observables with respect to the cosmological parameters.

To investigate a range of cosmological models it would therefore be quite use-
ful to have a shortcut to calculating the constraints on the dark energy parameters
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Model Experiment σ(w0) σ(wa) σ(Ωe) σ(Σmν) [eV]
ΛCDM Planck – – – 0.11
ΛCDM CMBpol – – – 0.036
w0-wa Planck+SN 0.073 0.32 – 0.13
w0-wa CMBpol+SN 0.066 0.25 – 0.041
w0-Ωe Planck+SN 0.032 – 0.0041 0.15
w0-Ωe CMBpol+SN 0.018 – 0.0019 0.047

Table 6.2: Uncertainties in parameters beyond standard ΛCDM for Planck and
CMBpol. In all cases, we use unlensed temperature and polarization spectra and
the optimal quadratic estimator of the lensing spectrum to extract cosmological in-
formation from the CMB data. For cases involving dynamical dark energy we fold in
supernova distance information from a SNAP-like JDEM experiment, although this
mostly affects only the uncertainties on w0, wa.

w0, wa,ΩDE from CMB data. One such shortcut is historically well known, the shift
parameter [79] to encapsulate the information in the temperature power spectrum
acoustic peaks. However, as polarization data gets added, other parameters have
been suggested as additions, e.g. the acoustic peak scale lA [137], although [154]
showed that the shift parameter is still quite accurate. Here we investigate the cos-
mological constraints from combining CMB temperature, polarization, and possibly
deflection, spectra and supernova data, and we show that a simple use of the shift
parameter has excellent accuracy.

Specifically, for constraints on the dark energy parameters a strong prior on the
shift parameter, or reduced distance to last scattering, d̃ =

√
ωm dlss, is nearly equiv-

alent to the full CMB data, even including polarization and lensing data. That is,
the CMB Fisher matrix for ΩDE, w0, wa after marginalizing over the other parameters
is almost identical to the Fisher matrix calculated from a single constraint on d̃ 4.
The prior on the quantity d̃ required to match the CMB data depends on the CMB
experiment and on whether or not we fix the neutrino mass. We emphasize that
the level of the prior does not correspond to the actual determination of d̃ from the
experiment, because the prior also encodes the other spectra information. For the
CMB experiments we consider, the equivalent prior on d̃ is 0.2% − 1.2%.

Note that because early dark energy does not merely affect the projection of
the last scattering surface onto our sky, but also affects the shape of the anisotropy
spectrum at last scattering directly, we do not expect the d̃ prior to be a complete
description there and indeed we found the prior is not effective in this case.

We compare the shift parameter prescription to the use of the actual CMB Fisher
matrix in Fig. 6.12 by considering 1σ joint contours in the w0 −wa plane for CMB +

4Note this holds for the CMB Fisher matrix itself, without any supernova information.
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Figure 6.12: Joint constraints from CMB and supernovae can be well approximated by
simply replacing the CMB data by an appropriately sized prior on the shift parameter
d̃ =

√
ωm dlss. [Left panel] Combining Planck data with supernovae, the dark blue

(light red) curves represent not using (using) lensing information. These two cases are
well approximated by replacing CMB data by d̃ priors of 1.2% and 0.6% respectively.
[Right panel] Combining CMBpol data with supernovae, the light red curve represents
using lensing information. This is fairly well approximated by a d̃ prior of 0.2% (outer
black curve). Tighter priors have little effect (see inner black curve). Both panels take
lmax = 2000, and the dotted line in both panels is the contour from just supernova
data.

SN. For Planck (top panel), if we marginalize over
∑

mν and if we do not include the
information from CMB lensing, the constraints from the CMB+SN are almost exactly
the same as those with a 1.2% prior on d̃. The constraints are improved quite a bit if
the lensing information is added. In this case, the constraints are about the same as
the constraints one gets with a 0.6% prior on d̃. In the case of fixing

∑

mν instead
of marginalizing over it, the shift parameter prior applies as well, at 0.2% matching
the CMB+SN contours whether lensing information is used or not. Interestingly, in
the case of fixed

∑

mν , adding lensing information does not appreciably improve the
constraints on w0 and wa any more.

Note that the Planck experiment can be approximated extremely well by the
shift parameter prior in all these cases. The extent σ(w0), σ(wa), width σ(wp), area

1/
√

detF, and orientation of the dark energy EOS contours match, as seen in Fig. 6.12
and quantified in Table 6.3.

For CMBpol (bottom panel of Fig. 6.12), the constraints on dark energy can
be very well approximated by a 0.2% prior on the shift parameter. This is true
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Data σ(w0) σ(wa) σ(wp)
√

detF
SN+Planck 0.073 0.32 0.031 101

SN+0.6% d̃ 0.076 0.31 0.032 99
SN+CMBpol 0.066 0.25 0.018 223

SN+0.2% d̃ 0.076 0.29 0.017 202

Table 6.3: Dark energy constraints from supernovae and CMB compared to con-
straints from supernovae and a prior on the shift parameter d̃. We assume lmax = 2000
and use the optimal quadratic estimator to extract lensing information for both Planck
and CMBpol. We marginalize over the sum of the neutrino masses and over the other
parameters of the model. Note σ(wp) is the width of the w0-wa contour at wa = 0

(i.e. the uncertainty in constant w) and
√

detF is the inverse area of the contour
(sometimes used as a figure of merit).

independent of whether one fixes mν or marginalizes over it because for CMBpol with
lensing, fixing mν only improves the constraints on w0 and wa a little bit compared
to marginalizing over mν (see Fig. 6.8). Note that making the prior on d̃ even smaller
than 0.2% does not change the contour significantly. To illustrate this, Fig. 6.12
shows the contour for a prior of 0.0001%, essentially fixing d̃. It is almost the same
as the contour for 0.2%.

The combination of supernova data with a prior on d̃ always gives an ellipse with
ends touching the contour from supernovae alone. This means that while both the
area enclosed by the contour and the uncertainty in wa may be improved, the uncer-
tainty in w0 is the same as the uncertainty from supernova data only. Since Planck
constraints are described almost perfectly by the shift parameter, this is also true for
Planck. However, once we include precision measurements of polarization by con-
sidering CMBpol, the ends of the error ellipse can move away from the “SN only”
contour and thus (slightly) improve the constraint on w0. This effect cannot be repro-
duced by the prior on the shift parameter. Hence, for CMBpol, the shift parameter
prescription works less well than for Planck, although it is still quite adequate. Again,
Table 6.3 quantifies the accuracy of substituting the prior in place of the full CMB
spectra.

6.7 Progress in Near-term Experiments: Polar-

Bear

In this section we explore the merit of near term ground-based polarization sen-
sitive CMB missions to constrain dark energy and neutrino properties. A number
of such experiments are currently being built or have been funded including BI-
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CEP/BICEP2 [222], BRAIN [46], CℓOVER [171], EBEX [173], QUIET [191], Spider
[57], SPTpol. Here we focus on one of them, PolarBear, as it represents a good
combination of the high angular resolution and sensitivity some of these experiments
will be capable of.

PolarBear is a ground based telescope with scheduled beginning of operations
in 2009, and deployment to Northern Chile in 2010. It plans to observe 2.5% of
the sky. The low noise of its detectors will enable this experiment to go beyond
Planck in imaging the B-type polarization pattern, which on small scales is a clear
signature of gravitational lensing as it cannot be produced by scalar fluctuations.
However, the smaller sky coverage does not allow the lensing potential power spectrum
to be constrained with as high a signal-to-noise on most scales, making forecasted
constraints generally somewhat less good. To describe this experiment’s capabilities,
we have adopted specifications from [50], and the resulting likelihood contours are
shown in Fig. 6.13.

The cosmological constraints from PolarBear lensing reconstruction are less good
than those from Planck, despite the significantly lower noise level. The reason is
simply that the limited sky coverage does not allow most modes in the temperature,
polarization, and lensing potential power spectra to be constrained with as high over-
all signal-to-noise. However the constraints are still interesting relative to current
limits. Moreover, we particularly note that our parameter space has been limited to
not include tensor fluctuations, which are a natural consequence of inflationary mod-
els. With its low noise level PolarBear will attempt to measure these gravitational
waves from inflation and will help break degeneracies between the tensor-to-scalar
ratio and other parameters that are present in the Planck data. Furthermore, we
have not included running of the scalar spectral index; again, PolarBear’s high reso-
lution and low noise will provide an advantage in breaking degeneracies once running
is included.

We have found that with Planck the use of the quadratic estimator vs. lensed power
spectra leads to a significant improvement of the constraints on parameters to which
lensing is sensitive. To be specific, we find a 39% improvement on the neutrino mass
scale and a 26% improvement on ΩΛ. The improvement in the case of PolarBear

and CMBpol is however only marginal. To illuminate this trend, in Figure 6.14 we
plot the power spectra of the lensing potential and lensing reconstruction noises as
well as the total errors. The dotted lines show the lensing reconstruction noises for
each experiment. PolarBear has better capability to map the lensing potential in the
observed patches on the sky than Planck (although it reconstructs far fewer of these
patches and therefore the total error is larger than for Planck). The lower lensing noise
feeds into the estimation with the optimal quadratic estimator for reconstruction.
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Figure 6.13: Constraints from the intermediate experiment PolarBear are not as
strong as Planck within the restricted inflationary scenario assumed here. Contours
are constructed using unlensed TT/TE/EE data plus the optimal quadratic estimator
for the lensing spectrum. Blue dotted contours repeat the results for Planck from
Figs. 6.4, 6.7, 6.11.

6.8 Conclusions

Continued advances are expected in measuring the cosmic microwave background
radiation including lower noise and better systematics control, smaller beams and
wider surveys, and extension to polarization, cross spectra, and CMB lensing in-
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Figure 6.14: The lensing potential power spectrum (solid line) is shown together with
the lensing reconstruction noises for the three experiments considered in this work
(dotted lines) and the total error on individual multipoles in the lensing potential, a
combination of sample variance and noise (dashed lines).

formation. These will greatly improve our knowledge of a variety of cosmological
parameters related to primordial perturbations. Here we have explored their impact
on physics where the CMB has not had as much direct leverage – extensions to the
standard model of cosmology such as the necessary neutrino mass and the suspected
dynamics of dark energy.

We find the following general points to guide the design and analysis of CMB
experiments, both ground based and the CMBpol satellite concept:

• Systematics, such as point sources and other foreground contamination, will
affect the lensing potential and other power spectra, and should be removed at
the level of at least lmax = 2000. Constraints improve only slowly for higher
lmax when using the full information in the CMB.

• Analysis of gravitational lensing of the CMB can proceed either through con-
sideration of induced B-mode polarization or through an optimal quadratic
estimator directly of the deflection field; the optimum is not steep so the two
approaches are nearly equivalent for these purposes with data beyond Planck.

• For exploration of suites of cosmological models, we establish the accuracy of
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a shortcut in terms of an effective prior on the CMB shift parameter. This is
remarkably efficient in summarizing the information from the CMB spectra.

Determination of the sum of neutrino masses can be accomplished by CMBpol
with an uncertainty of 0.05 eV, marginalizing over all other parameters including
dark energy properties. This corresponds to greater than a 5σ detection for the fidu-
cial value adopted, and represents a factor 3 improvement over Planck expectations.
Restricted to a ΛCDM cosmology, the constraints tighten by a factor ∼ 1.3.

Determination of the dynamical properties of dark energy is less powerful. Com-
plementary information, such as from distance measurements, is required with the
leverage of the two data sets together allowing significant constraints. The present
dark energy equation of state w0 could be estimated to 0.07 and the time variation
wa to 0.25, including marginalization over other cosmological parameters including
neutrino mass. This would improve further as other probes are added. While the
marginalized constraints do not improve greatly in going from Planck to CMBpol,
the area of the uncertainty contour shrinks by a factor 2.

The most significant impact from the CMB comes within early dark energy mod-
els. Here the improvement from Planck to CMBpol is a factor 2 in estimation of
both w0 (to 0.02 for CMBpol plus distances) and early dark energy density Ωe (to
0.002 for CMBpol plus distances), while the uncertainty area shrinks by a factor 4.
This provides the possibility of a ∼ 10σ detection of early dark energy, which would
immediately revolutionize our physics thinking.

CMB lensing offers an intriguing new window on the universe, especially because
of its sensitivity to the properties of expansion and growth in the poorly probed
epoch z ≈ 1 − 4. Experiments nearly in the process of data collection will teach
us not only about the primordial conditions but also about the interesting period
when dark energy first becomes significant, as well as establishing a link to terrestrial
experiments to measure the neutrino masses.
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Appendix A

Angular Power Spectra:
Definitions

Here we review how the observable power spectra of various quantities on the
sky are related to the three-dimensional primordial power spectrum and the transfer
functions. This is relevant to the work presented in chapters 2 and 6. We consider
the CMB temperature anisotropies and galaxy overdensities in redshift slices, or pop-
ulations, labeled with the subscript j, and write the observables in direction n̂ as line
of sight projections along comoving radial coordinate χ,

X(n̂) =

∫

dχSX(n̂χ, τ0 − χ), (A.1)

with SX(~x, τ) the “source term” as a function of comoving position and conformal
time (τ0 is the age of the universe in conformal time). Here X represents the ob-
servable, which could be a galaxy overdensity gj in the jth redshift bin or a CMB
temperature anisotropy T . For the galaxy overdensity gj , the source is

Sgj(~x, τ) = H(z(τ))
nj(z(τ))

nAj
bjδm(~x, τ), (A.2)

where nj(z)dz is the average angular galaxy density of galaxy population j in the
redshift interval (z, z + dz), nAj =

∫

dz nj(z) is the total average angular galaxy
density of population j, and bj is the galaxy bias relative to the matter overdensity
of bin j. The Hubble factor H(z) arises because the source was defined in terms of
an integral over χ while nj(z)/n

A
j is normalized to unity in terms of an integral over

z.
For CMB temperature anisotropies, the (Fourier transform of the) source is given

in Eq. (12) of [203]. The Integrated Sachs-Wolfe contribution to the CMB anisotropy
is nonzero when the universe is not matter dominated, and thus the gravitational
potentials φ and ψ are not constant. The ISW source is given by

SISW(~x, τ) = φ̇(~x, τ) + ψ̇(~x, τ), (A.3)
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where dots denote derivatives with respect to conformal time.
If we expand the anisotropy field in spherical harmonics, X(n̂) =

∑

ℓm a
X
ℓmYℓm(n̂),

the expansion coefficients are given by

aXℓm =

∫

dΩY ∗
ℓm(n̂)X(n̂)

= (2π)−3/2

∫

dΩY ∗
ℓm(n̂)

∫

d3~k

∫

dχ ei
~kn̂χSX(~k, τ0 − χ)

=

√

2

π
iℓ
∫

d3~k Y ∗
ℓm(k̂)

∫

dχ jℓ(kχ)SX(~k, τ0 − χ), (A.4)

where we have Fourier expanded

SX(~x, τ) =

∫

d3~k

(2π)3/2
ei
~k~xSX(~k, τ) , (A.5)

and we have used the Rayleigh plane-wave expansion

ei
~k·n̂χ = 4π

∑

ℓ,m

iℓjℓ(kχ)Y ∗
ℓm(k̂)Yℓm(n̂) , (A.6)

where the jℓ is the spherical Bessel function. We now write SX(~k, τ) = ψi(~k)S
X(k, τ)

where ψi(~k) is the initial potential perturbation and SX(k, τ) is the source for ψi = 1,
i.e. it is a transfer function. Due to the assumption of homogeneity, the transfer func-
tion does not depend on the direction of the wavenumber, but only on its magnitude
k ≡ |~k|. The statistics of the initial perturbations are given by

〈

ψi(~k)ψi(~k
′)
〉

= P ψ
i (k) δ(3)(~k + ~k′), (A.7)

where P ψ
i (k) is the primordial potential power spectrum. Assuming statistical isotropy,

the angular correlations between two quantities on the sky X and Y (where they may
or may not be the same) is given by the angular power spectrum

〈

aXℓma
Y ∗
ℓ′m′

〉

= CXY
ℓ δℓℓ′δmm′ (A.8)

where, using Eq. (A.4),

CXY
ℓ =

2

(2π)2

∫

d3~k P ψ
i (k)

∫

dχ jℓ(kχ)SX(k, τ0 − χ) ×
∫

dχ′ jℓ(kχ
′)SY (k, τ0 − χ′) . (A.9)

In this work, we are specifically interested in the combinations {XY } = {TT, Tgi, gigj},
but Eq. (A.9) is the general expression for angular power or crosscorrelation spectra.
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When the sources SX and SY vary slowly compared to the spherical Bessel func-
tions in Eq. (A.9), the triple integral can to a good approximation be reduced to a
single integral. Setting P (k) = P (k = (ℓ+ 1/2)/χ(z)) and using the asymptotic (for
ℓ≫ 1) formula that (2/π)

∫

k2dkjℓ(kχ)jℓ(kχ
′) = (1/χ2) δ(χ− χ′), we find

CXY
ℓ =

2π2

(ℓ+ 1/2)3

∫

dχχ∆ψ
i

(

ℓ+ 1/2

χ

)

×

SX
(

ℓ+ 1/2

χ
, τ0 − χ

)

SY
(

ℓ+ 1/2

χ
, τ0 − χ

)

(A.10)

where ∆(k) ≡ k3P (k)/(2π2). We use the power spectra to calculate the χ2 (signal-
to-noise) in Eq. (2.15).

Finally, we need to specify formulae for noise in the observed spectra CXY
ℓ . The

covariances between the spectra are given by

Cov(CXY
ℓ , CZW

ℓ′ ) = δℓℓ′
1

(2ℓ+ 1)fsky

(

C̃XZ
ℓ C̃YW

ℓ + C̃XW
ℓ C̃Y Z

ℓ

)

, (A.11)

where
C̃XY
ℓ = CXY

ℓ +NXY
ℓ . (A.12)

Here fsky is the sky coverage, CXY
ℓ are the fiducial spectra and NXY

ℓ are the noise
power spectra. For the galaxy density fields, the white noise power spectra are given
by

N
gjgj

ℓ =
1

nAj
, (A.13)

and for the CMB it is given by

NTT
ℓ = ∆2

T e
ℓ(ℓ+1)θ2FWHM/(8 ln 2) , (A.14)

where ∆T is the sensitivity and θFWHM is the full width half max angle of the Gaussian
beam. The noise cross power spectra can be assumed to vanish.

The treatment of the covariances for actual data is typically more complicated
than the above. We use the covariances and treatment of the observables as given by
the data packages in COSMOMC, [105, 224, 137, 49, 82] for the angular spectra, and
the Union2 supernovae covariance matrix including systematics (see chapter 2).
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Appendix B

Properties of Decorrelated Modes

In this Appendix, which provides the theory behind some of th work presented in
chapter5, we first introduce some definitions and discuss some useful general prop-
erties of decorrelated modes (§B.1). We then show that eigenvectors are formally
ill-defined for a Fisher matrix (§B.2) and that the eigenmodes (eigenvectors in the
limit of a large number of bins) depend on the coordinate (redshift z, scale factor a,
etc.) one uses to write the EOS w as a function of (§B.3). We consider the latter to
be the main result of this Appendix.

B.1 Basis Expansion

The matrix W defines a basis transformation by

e′
i = Wijej, (B.1)

so that the rows of W contain the new basis vectors as expressed with respect to the
old basis1. The coefficients, or components, α = (α1, ..., αN) then transform according
to

α′ = (W−1)Tα. (B.2)

If the transformation is orthogonal, WT = W−1, the basis vectors and the coefficients
transform in the same way. However, this is not the case in general.

Since the Fisher matrix is a Hessian matrix, i.e. it is defined in terms of second
order partial derivatives,

Fij =

〈

− ∂2 lnL

∂αi∂αj

〉

, (B.3)

it transforms according to
F′ = WFWT. (B.4)

1Note that in some literature (e.g. [120, 186]) the transformation matrix is defined as the matrix
transforming the coordinates: our W is the inverse transpose of that matrix.
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It will become clear below that one of the main points of §5.3, namely that eigenmodes
depend on the binning used to calculate them in, is essentially a consequence of this
transformation behavior.

Diagonalizing F comes down to finding a matrix W such that

WFWT = D (B.5)

is diagonal. In such a basis the uncertainties in the coefficients α′
i are uncorrelated.

It is straightforward to show that there is an infinite number of bases that achieve
this. The remainder of this Appendix focuses on the particular choice of eigenvectors
as basis (see also §5.3).

B.2 Basis Dependence of Eigenmodes

If a set of eigenvectors is orthonormal (which can always be arranged), the eigen-
values are equal to the diagonal elements of the diagonal Fisher matrix, i.e. the inverse
variances. Eigenvectors are defined by

Fv = λv, (B.6)

and their components transform according to Eq. (B.2). However, since the Fisher
matrix transforms according to Eq. (B.4), this is not a covariant statement:

F′v′ = WFWT (W−1)
T
v = λWv. (B.7)

This is only equal to

λv′ = λ(W−1)
T
v (B.8)

if the coordinate transformation is orthogonal, i.e. WT = W−1, but not in general!
This means that, formally, eigenvectors of a Fisher matrix are not well-defined.

Of course, we can take a pragmatic approach and just compute the eigenvectors
(for lack of a better word, we will still call them eigenvectors) in a particular basis
and work with those. This is what we will do, but it is important to remember that
the set of eigenvectors found in this way depends on the particular basis we chose to
compute them in.

B.3 Coordinate Dependence of Eigenmodes

We now turn our attention to the eigenmodes in the N → ∞ limit, where N
is the number of EOS bins. We start with the basis of modes ei(z) discussed in
§5.2 that are equal to one inside the ith bin and zero everywhere else. In the limit
N → ∞ (keeping the relative bin widths the same) the eigenvectors approach a set
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of continuous functions (eigenmodes) and these eigenmodes and the corresponding
standard deviations converge (see for example [122]).

In this section, we address the question of whether the eigenmodes are independent
of which coordinate we use to write w as a function of. For example, we may choose
a binning that is uniform in terms of the scale factor a = 1/(1 + z), i.e. ∆a constant
instead of uniform in z, i.e. ∆z constant. Note that this is equivalent to a non-uniform
binning in z,

∆zi ≈
dz

da
(zi) ∆a, (B.9)

where zi is a redshift inside the ith bin. Since we saw before that eigenvectors of the
Fisher matrix are basis dependent, it should not be too surprising if the eigenmodes
turn out to depend on the relative bin sizes. Indeed, we find this is the case. We will
explain this in the remainder of this section (specific examples are shown in §5.3).

Assume a binning that is uniform in a variable x = x(z), which is either mono-
tonically increasing or decreasing as a function of z in the relevant redshift range.
For example, x could be the scale factor a or perhaps its logarithm. To see if the
eigenmodes calculated using x are the same as the ones calculated using z, we will
need to make use of the following results.

Let F be the Fisher matrix for a set of N bins with widths ∆zi and F′ be the one
for a set of N ′ bins with widths ∆z′i. Then for large enough N and N ′,

F ′(z, z′) ≈ ∆z′

∆z
(z)

∆z′

∆z
(z′)F (z, z′), (B.10)

where we have replaced discrete indices by the redshifts of the corresponding bins.
For example, F (z, z′) ≡ Fij where the ith bin contains z and the jth bin contains z′.
Eq. (B.10) follows from the fact that derivatives with respect to EOS bin parameters
should scale with the bin width for small enough bins. If we apply the above result
to the cases of a binning with ∆z constant and one with ∆x constant, we get

F (x)(z, z′) ≈
(

∆x

∆z

)2
dz

dx
(z)

dz

dx
(z′)F (z)(z, z′), (B.11)

where the superscript on F denotes in which binning the Fisher matrix is calculated.
We can now apply the results from the previous paragraph to the eigenmodes

discussion. Let us assume that v(z) is an eigenmode calculated using z, i.e.

∑

z′(∆z)

F (z)(z, z′) v(z′) = λ v(z), (B.12)

where the (∆z) below the summation symbol indicates that the sum is supposed to
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be carried out over the bins (labeled by z′) uniformly spaced in z. Then,

∑

z′(∆x)

F (x)(z, z′) v(z′) =

(

∆x

∆z

)2
∑

z′(∆x)

dz

dx
(z)

dz

dx
(z′)F (z)(z, z′) v(z′)

=

(

∆x

∆z

)2
∑

z′(∆z)

∆z

∆x

dx

dz
(z′)

dz

dx
(z)

dz

dx
(z′)F (z)(z, z′) v(z′)

=
∆x

∆z

dz

dx
(z)

∑

z′(∆z)

F (z)(z, z′) v(z′)

= λ
∆x

∆z

dz

dx
(z) v(z), (B.13)

where in the first equality we have used Eq. (B.11), in the second equality we went
from the binning uniform in x to the binning uniform in z, which forced us to put in a
factor ∆z

∆x
dx
dz

(z′), and in the fourth equality we use the fact that v(z) is an eigenmode
in the binning uniform in z, i.e. Eq. (B.12). What the above shows is that v(z) is
an eigenmode in the x-binning only if dz

dx
= const (recall that ∆x and ∆z are just

constants by construction). Hence, using the scale factor a or any other coordinate
that is not a linear function of z will result in a different set of eigenmodes. (We
illustrate this with numerical results in Fig. 5.4 of §5.3.1). The above has strong
implications when we try to decide how many modes/parameters are well determined,
an issue that is explored further in §5.7.1.
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Appendix C

Model Dependence of Decorrelated
Equation of State Modes

This appendix is closely related ot the work presented in chapter 5. In addition
to the modes and weights depending on basis, binning variable, and specific binning
choice (see Appendix B), we now consider dependence on the fiducial model. We
analyze how the uncorrelated bandpowers that were discussed in §5.4 change as the
fiducial EOS is changed from the w = −1 ΛCDM cosmology to the (discretized)
PNGB and bending models discussed in §5.6.

Figures C.1 and C.2 show how the first and third modes, the corresponding
weights, and the uncertainties change between these models. We again show results
both for the case where we fix the EOS at z > 1.7 to the respective fiducials (Fig. C.1)
and for the case where we treat it as a free parameter (Fig. C.2). While the PNGB
results lie rather close to the ΛCDM ones, the bending model results in significantly
different bandpowers and uncertainties. Fiducial models deviating appreciably from
each other will induce appreciable model dependence in the mode analysis. Note that
changing the fiducial does not make the weights look “better”. i.e. they do not get
significantly more localized or positive.
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Figure C.1: As Fig. 5.5, but comparing the first and third modes (left panel) and
associated weights (right panel) for three dark energy fiducial models: cosmological
constant Λ, PNGB, and bending (see §5.6). Here we fix wN+1 to its appropriate
fiducial value for each model.

Figure C.2: As Fig. C.1, but marginalizing over wN+1.
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Appendix D

Fisher Parameter Bias Formula

In this section we derive Eq. (5.26) from chapter 5, which tells us how much we
misestimate the other parameters when we fix one of the parameters to the wrong
value. Consider the general case where the observables Ok = Ok({pi}n+1

i=1 ) depend on
n+1 parameters pi. We call the true values of the parameters pt,i. Now imagine that,
instead of fitting all n+1 parameters to the data, we first fix pn+1 to pfix,n+1 and then fit
the resulting n parameters to the data. To get the correct values for these parameters,
the observables would have to be given by Ok({pt,i}ni=1, pfix,n+1). In reality, ignoring
observational uncertainties (we do not want to write “the expectation values of” over
and over), the data are given by Ok = Ok({pt,i}n+1

i=1 ). Hence, if pfix,n+1 6= pt,n+1, the n
parameter values pe,i derived from the data will be different from the actual values.

If we define

∆Ok ≡ Ok({pt,i}n+1
i=1 ) − Ok({pt,i}ni=1, pfix,n+1) = − ∂Ok

∂pn+1
δpn+1, (D.1)

where δpn+1 = pfix,n+1 − pt,n+1, we can use Eq. (5.25),

δpi ≡ pe,i − pt,i = (F (n))−1
ij

∑

k

∂Ok

∂pj

1

σ2
k

∆Ok, (D.2)

where the superscript (n) means that we need the n × n Fisher matrix calculated
using the first n parameters (the ones that we have not fixed). Inserting Eq. (D.1)
into Eq. (D.2) gives

δpi = −δpn+1 ×
n
∑

j=1

(F (n))−1
ij (F (n+1))j,n+1 (D.3)

(i = 1, ..., n), where we have used Eq. (5.1) to substitute the (n+ 1)× (n+ 1) Fisher
matrix. We then obtain Eq. (5.26),

dpi
dpn+1

= −
n
∑

j=1

(F (n))−1
ij (F (n+1))j,n+1. (D.4)
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Note that since Eq. (5.25) is only valid to first order, we can calculate the Fisher
matrix using the true parameter values.




