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Color Barcode Decoding
in the Presence of Specular Reflection

Homayoun Bagherinia and Roberto Manduchi

University of California, Santa Cruz

Abstract. Color barcodes enable higher information density with re-
spect to traditional black and white barcodes. Existing technologies use
small color palettes and display the colors in the palette in the barcode
itself for easy and robust decoding. This solution comes at the cost of
reduced information density due to the fact that the displayed reference
colors cannot be used to encode information. We introduce a new ap-
proach to color barcode decoding that uses a relatively large palettes
(up to 24 colors) and a small number of reference colors (2 to 6) to be
displayed in a barcode. Our decoding method specifically accounts for
specular reflections using a dichromatic model. The experimental results
show that our decoding algorithm achieves higher information rate with
a very low probability of decoding error compared to previous approaches
that use a color palette for decoding.

Keywords: Color barcode decoding, dichromatic reflection model, subspace
classification

1 Introduction

Barcodes can be characterized by their information rate, that is, by the number
of bits that can be encoded within a certain barcode size. One way to increase
a barcode’s information rate is through the use of color. By using a palette of
N colors, a barcode can convey log2N times more bits than a traditional black
and white barcode. The most successful example of color barcode is Microsoft
Tag, which is based on HCCB (High Capacity Color Barcode) technology [1].
HCCB uses a grid of colored triangles with 4 colors to encode data. To ensure
robust decoding, HCCB barcodes display the four colors in a set of “reference
patches” at known positions in the barcode.

Displaying the reference colors in the barcode enables simple decoding strate-
gies. For example, one may compare each color patch to the reference colors, and
select the reference color that is closest to the color of the patch. At the same
time, displaying all colors in the palette may be counterproductive, in terms
of information rate, when large palettes are used [2]. In other words, for large
palette size N , the savings produced by a large variety of color palette are off-
set by the need to display all colors in the palette. Based on this observation,
Bagherinia and Manduchi [2] proposed the use of fairly large palettes with a lim-
ited number of reference colors displayed in the barcode. Rather than comparing
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a color patch to a reference color, they modeled the joint color variation of the
patch and of the reference colors under varying illuminant by a low-dimensional
linear space. These subspaces (one per each color in the palette) can be learned
offline with training images taken under multiple illuminants. When decoding a
barcode image, each patch is analyzed individually, together with the reference
colors. Decoding the patch color becomes a problem of associating the vector
formed by the patch color and the reference colors to the closest subspace.

The linear model of [2] was built under the assumption of Lambertian surface
reflectance, and thus is liable to failure when substantial specular reflection is
present in the image. Since the barcode material (e.g. printed paper) is hardly
Lambertian, a specular component is to be expected when the barcode is viewed
from an angle. Our goal in this work was to extend the model of Bagherinia and
Manduchi to explicitly account for specular reflection. We use the dichromatic
model [3] to describe the appearance of a surface under specular reflection, and
show how this can be included in the subspace-based decoding approach of [2],
which is augmented based on the observed color of a white patch. The experi-
mental results on images taken under a wide variety of illuminants and viewing
angles show a substantial improvement (in terms of reduced decoding error rate)
with respect to the original system that assumed Lambertian surface reflectance.
In quantitative terms, we show that, by using a palette with N = 20 colors and
4 reference colors displayed in the barcode, we are able to encode a 128-bit mes-
sage using 34 patches overall with 0 decoding errors in our test set. Compared
to the 4-color HCCB standard that displays all 4 colors (and thus requires 68
patches to encode the same message), we achieve a reduction of the barcode size
by one half.

2 Related Work

A patent by Han et al. [4], who used reference cells to provide standard colors
for correct indexing, is possibly the first reported attempt to use color in a 2-D
barcode This technology is marketed by Colorzip Media (colorzip.com). Later
examples of color barcode technology include the method by Bulan et al. [5], who
embed data in two different printer colorant channels via halftone-dot orientation
modulation, Grillo et al. [6], who used 4 or 16 colors in a regular QR code, and
Kato et al. [7] who selected colors that are maximally separated in a plane of
the RGB color cube. Pei et al. used four colors in a color barcode technology
named “Continuous Color Barcode Symbols” [8]. Blasinski et al. [9] proposed a
framework that exploits the spectral diversity between the color channels (C, M,
and Y) used in regular color printers, and the (R, G, B) color channels used in
color cameras.

Several existing decoding algorithms (including HCCB [1] ) include a color
clustering step to identify the most representative colors in the barcode. For
example, the method of Sali and Lax [10] uses a k-means classifier to assign the
(R,G,B) value of a color patch to one reference color. Color clustering, however,
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is not guaranteed to work well with large palettes, and therefore the clustering
approach is best suited to small palette sizes.

The use of large color palettes and a small number of reference colors was
originally proposed by Wang and Manduchi [11], who studied the problem of in-
formation embedding via printed color. Bagherinia and Manduchi [12] attempted
to decode a color barcode without any reference color by modeling the joint vari-
ation of the color of groups of color patches under varying illuminant. Later, the
same authors [2] used a similar concept but applied to sets formed by a color
patch and a set of reference color patches. As mentioned earlier, our work builds
upon the algorithm described in [2].

3 Background and Definitions

A color barcode is created from a set CN of N colors (palette) and a set Cr of r
reference colors. A color barcode of length K = n+ r is defined as the arrange-
ment of n color patches, selected from the palette CN and used for information
encoding, and the r reference colors of Cr, in any spatial configuration. Decoding
the bar code means assigning the color of each one of the n information-carrying
patches to the index of the corresponding color in the palette CN . As with stan-
dard color barcodes (e.g. HCCB), we assume that the position of the reference
colors in the barcode is known. In this work we will follow the approach of
Bagherinia and Manduchi [2], who showed that, by carefully modeling the joint
color variation as a function of the illuminant, it is possible to use r < N refer-
ence colors and still obtain good decoding performance. In fact, we don’t even
constrain the set of reference colors Cr to be a subset of the color palette CN .

Since each color patch carries log2N bits of information, the barcode carries
n log2N bits. In order to encode B bits, one needs this many color patches:

K = n+ r = dB/ log2Ne+ r (1)

Increasing the palette size N and reducing the number r of reference colors
decreases the size K of the barcode, resulting in higher information rate [2]. For
example, Fig. 1 shows the minimum length K of a color barcode that encodes a
message of B = 128 bits as a function of the size of the color palette N and of
the number of reference colors r. (Note that the HCCB standard with N = r = 4
would require K = 68 color patches for the same 128-bit message.) For a fixed
number r of reference colors, the barcode length K decreases monotonically with
the size of the color palettes N . In contrast, if the whole palette is represented
by the reference colors (r = N), the plot of K at N = 13 (K = 48), after which
adding colors to the palette becomes counterproductive.

While the plot in Fig. 1 suggests that large palettes with few reference colors
lead to high information rate, it hides the fact that increasing the palette size
typically results in larger decoding error rates, which must be offset by adding
more reference colors. Let PE(N, r) is the probability of decoding error (that is,
of misclassifying the color of a patch) for a given palette CN and a given set of
reference colors Cr. Assuming that decoding errors are statistically independent
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events, the decoding error rate, that is, the probability of decoding error for the
barcode (i.e., of decoding at least one color patch incorrectly) is equal to:

PE(N, r,K) = 1− (1− PE(N, r))K−r (2)
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Fig. 1. The minimum number of patches K required to encode a 128-bit message versus
the size of the palette N .

One may expect PE(N, r) to increase with increasing N (larger palette) and
decrease with increasing r (more reference colors). This was verified experimen-
tally in [2]. This relation establishes a design trade-off between decoding error
probability and information rate, mediated by the parameters N and r.

4 Subspace-Based Decoding

4.1 The Lambertian Case

We will follow the general approach of Bagherinia and Manduchi [2] for illumination-
invariant color patch decoding, briefly summarized in the following. Consider a
patch colored with the i-th color in the palette CN . The observed color ci =
[ci,R, ci,G, ci,B ]T of this patch will vary as the illuminant changes (e.g., from
sunlight to artificial light), making color identification difficult. The key obser-
vation of [2] is that the joint color variation of a set of color patches, all under
the same illumination, is bound by a linear constrain. For example, consider the
3(r+1)–dimensional vector ei = [ci,d1, . . . ,dr]T which includes the colors of the
(known) reference patches {dj}, with dj = [dj,R, dj,G, dj,B ]T . If the surfaces are
Lambertian, and assuming that the illuminant spectra live in a finite-dimensional
subspace of dimension Nill, then the vector ei must live in a linear subspace Si
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of dimension equal to min(3(r + 1), Nill), which can be considered equal to Nill

for r ≥ 1 [13, 14]. Formally:

ei = Φiv (3)

where v is a Nill–vector that represents the illuminant, and Φi is a matrix that
characterizes the reflectivity of the patch surface1. It is useful to define the
dimensionality ratio (DR) as the ratio between the dimension of the embedding
subspace Si and the dimension of ei :

DR =
Nill

3(r + 1)
(4)

This suggests a simple algorithm for decoding a generic color patch c: (1) Build
the vector e (by juxtaposing the observed color c with the observed colors of the
reference patches in the same barcode); (2) Find the subspace Si that is closest
to the vector e; (3) Decode c as i. Intuitively, the smaller the dimensionality
ratio DR (itself an decreasing function of r), the higher the robustness of this
decoding algorithm with respect to noise. This formalizes the intuitive notion
that more reference colors should ensure lower decoding error rates.

The subspaces Si for 1 ≤ i ≤ N can be learnt from observation of the
colors in CN ∪ Cr under a wide variety of illuminants. If multiple pictures of the
color patches under different illuminants are impractical or impossible to obtain,
one may “constrain” the embedding subspaces Si by means of the diagonal (von
Kries) model of color change. Indeed, under the diagonal color model, the matrix
Φi can be written as [2]

ΦT
i =

ci,R 0 0 d1,R 0 0 d2,R · · ·
0 ci,G 0 0 d1,G 0 0 · · ·
0 0 ci,B 0 0 d1,B 0 · · ·

 (5)

It is easy to see that this matrix can be learnt from observation of the colors under
just one illumination. However, the resulting deciding error rate are typically
higher than with the “unconstrained” subspace approach [2].

4.2 The General Case

In the real world, surfaces are rarely Lambertian, and the reflected light should be
expected to contain a specular component. The amount of this specular compo-
nent depends on the surface characteristics and on the joint illumination/viewing
geometry. For color barcodes printed on paper, the specular component can be
quite noticeable [2, 15].

A simple model of light reflection that accounts for specular reflection is the
dichromatic model [3]:

c = m(b)c(b) +m(i)c(i) (6)

1 Note that Φi is also a function of the spectral sensitivities of the color filters at the
camera.
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The dichromatic model states that the observed color c of a surface is the sum of
two colors, c(b) (body reflection) and c(i) (interface reflection), weighted by coeffi-
cients m(b) and m(i) that can take values between 0 and 1. It is normally assumed
that m(b) (the “Lambertian component”) is largely independent of changes in
the viewpoint (and thus can be safely set it to 1). For most materials, the in-
terface reflection c(i) can be considered material-independent and equal to the
color of the illuminant itself (or, equivalently, of a white surface reflecting the
same illuminant). In practice, the dichromatic model predicts that the specu-
lar (interface) reflection “steers” the color of the surface towards the color of a
white surface seen under the same illuminant. This observation suggests that if
the barcode contains a white reference patch, the color of this white patch may
be used to “remove” the specular component from the color of other patches,
provided that one can somehow estimate the coefficient m(i) at each patch.

Formally, we can model the color of the vector e defined in the previous
section as follows:

ei = Φiv + Wm(i) (7)

with

W = I⊗w =

w 0 0 · · ·
0 w 0 · · ·
...

...
...

. . .

 (8)

where I is the (r + 1) × (r + 1) identity matrix, ⊗ represents the Kronecker
product, w is the observed color of the white reference patch, and m(i) is a
(r+ 1)–vector containing the interface reflection coefficients for all patches in e.
This suggests that the subspace approach used for the Lambertian case could
be extended to the general case with specularities, owing to the observed white
patch. However, it should be noticed that the the presence of specular reflection
increases the dimensionality2 of the embedding space S to Nill +r. With respect
to the Lambertian case, the dimensionality ratio DR is thus increased by a factor
of 1 + r/Nill, making decoding harder.

In order to keep the dimensionality ratio under control, in this work we as-
sume that m(i) is constant across patches for a fixed illuminant. This simplifying
assumption can be partly justified by the fact that, for a small sized planar bar-
code, the viewing geometry can be considered approximately constant for all
patches. Hence, assuming constant m(i) across patches means neglecting the dif-
ference between interface reflection coefficients for the different patches in the
barcode. This approximation allows us to rewrite Eq. (7) as follows:

ei =
[
Φi | V

] [ v
m(i)

]
(9)

2 Note that the white patch is assumed to be part of the reference colors. For this
patch, the specular reflection component is immaterial. This is the reason why the
dimension of the embedding space is Nill + r rather than Nill + r + 1.
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with V = [wT , . . . ,wT ]T obtained from the observed color of the white reference
patch. With this simplification, the dimensionality ratio DR is only increased by
a factor of 1 + 1/Nill with respect to the Lambertian case.

Note that the matrix Φi is computed from training data in the absence
of specular reflection. In practice, this can be achieved by ensuring that, when
taking training images, the color patches lie on a plane orthogonal to the camera’s
optical axis. Also note that, in order to compute the distance of the vector e to
a subspace Si, it is useful to first derive an orthogonal column basis for [Φi|V],
which can be achieved via QR decomposition.

5 Experimental Evaluation

We ran a number of experiments with color checkerboards printed on paper with
a regular color printer. Images were taken of the checkerboards with a Canon
EOS 350D camera in raw (CR2) format with a resolution of 3474x2314 pixels
and 12 bits per color channel.

5.1 Training Set and Model Construction

In order to select the palette and the reference colors, we started with a “train-
ing” checkerboard with 125 colors, uniformly sampled in (R,G,B) color space.
We took multiple images of this checkerboard from a constant distance of about
1.5 meters, with the camera’s optical axis orthogonal to the checkerboard to
minimize specular reflections, under 32 different illumination conditions. The
color values within each patch were averaged together to reduce noise.

We used the method described in [2], and briefly summarized in the following,
to select the color palettes C12 ⊂ C16 ⊂ C20 ⊂ C24, together with 5 reference
colors. For each illuminant, we clustered the colors of the patches using k-means
with 24 clusters. We then selected the 24 cluster centers with highest occurrences
among all illuminants. We repeated the same procedure to select the colors of
the palettes for N= 20, 16 and 12, each time starting from the palette chosen
in the previous step.

The reference colors were sampled from the 125-24=101 colors that were not
used for the color palette C24. (Note that choosing reference colors from the
palette would actually increase the dimensionality ratio DR from Nill/3(r + 1)
to Nill/3r, making decoding harder.) We used a greedy recursive strategy for
jointly selecting r reference colors (with 1 ≤ r ≤ 5) and the dimensionality
of the embedding subspaces {Si}, which was kept constant across subspaces
for given r. Reference patches are added one at a time. Given the current set
of r reference colors, all possible remaining 125 − 24 − r colors and subspace
dimensions from 1 to 5 are tested using cross-validation over multiple illuminants,
and the marginal error rates PE(N, r) are computed. The reference color and
subspace dimension that minimize the decoding error rate are selected and added
to the set. For r = 1, 2 the algorithm chose an embedding subspace dimension
3, while for r = 3, 4, 5 the chosen subspace dimension was of 4. The white patch
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Fig. 2. A collage created with the chosen palette colors and reference colors, seen under
three different illuminant spectra. The patches are distributed in such a way that, in
lexicographic order, the first N patches form CN for N = 12, 16, 20, 24. Following are
the 5 reference colors chosen for the “unconstrained” subspace decoding algorithm,
followed by the 5 reference patches chosen using the diagonal color model. The last
patch is the white patch.

was then added to the reference colors when the dichromatic model was used.
Note that the decoding error was computed under the assumption of Lambertian
surfaces (3). Also note that we generated two sets of reference patches, one for
the “unconstrained” embedding subspace model, and one for the diagonal model
(5).

Along with the palette and the reference colors, we computed the embed-
ding subspaces (represented by the matrices {Φi} in (3)) for all combinations
of palette size N and number of reference patches r, using data from all 32
illumination conditions. Additionally, we learnt the matrices {Φi} using the di-
agonal model (5) for all combinations (N, r). However, since these matrices can
be learnt from just one image, we created 32 versions of each Φi, one per illumi-
nation condition.

The color palettes and reference colors chosen with this algorithm are shown
in Fig. 2.

5.2 Test Set and Results

We evaluated the performance of our proposed decoding algorithms using a
13 × 12 “test” color checkerboard with size of 16.5 × 15 cm, printed with the
same color printer used for the “training” checkerboard. The first six pairs of
rows each contain all 24 colors in the palette, in random order. The last row
contains the five reference colors selected for the unconstrained subspace model,
followed by the five reference colors chosen for the diagonal model and by two
white patches. In order to facilitate automatic checkerboard detection and patch
localization in our pictures, we printed a thick black edge outside the pattern,
outlining a visible white frame (see Fig. 3). (This design was inspired by the
ARToolKit marker concept [16].) Of course, in a real application, a smaller frame
(or no frame at all) would have to be used.
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Fig. 3. Examples of images with the “test” color checkerboard, used in our experimen-
tal tests. The inset at each picture shows the brightness-rescaled, zoomed-in checker-
board detail.

We took 100 images from the test checkerboard under multiple illumination
conditions, multiple viewing angles (ranging from −45 to 45 degrees with re-
spect to the normal to the checkerboard surface), and multiple distances (1 to 5
meters). Figure 3 shows some examples of our test images. Each color patch was
automatically localized, and color values within the central area of the patch
were averaged together to reduce noise (resulting in one color value per patch).

We evaluated the marginal error rate PE(N, r) for a combination of design
choices: (a) using the unconstrained vs. the diagonal subspace model (5); (b)
using the Lambertian reflection model (3) vs. the dichromatic reflection model
(9). For each design choice, we considered all combinations of parameters3 N
and r. For each pair (N, r) we used the associated matrices {Φi} learnt from the
“training” checkerboard as discussed above.

When using the unconstrained subspace model, the error rate PE(N, r) was
given by the total number of color patches in the “test” checkerboard that were
incorrectly decoded, divided by the number of images (100) and by the number
of color patches in the colorchecker (N × 6). The computation of the error rate
using the diagonal model (5) is slightly different, as in this case there are 32
different versions of each matrix Φi, one per illumination condition. We tested
all such matrices, and computed the error rate as the total number of color
patches in the “test” checkerboard that were incorrectly decoded, divided by
the number of images (100), by the number of color patches in the colorchecker
(N × 6), and by the number of illumination conditions in the training dataset
(32).

3 Note that, when using the dichromatic model, we added the white patch to the sets
of reference colors used for the Lambertian reflection model, resulting in a number
of reference patches larger by one.
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Fig. 4. The probability PE(N, r,K) of decoding error for a 128-bit message as a func-
tion of the total barcode length K, the palette size N , the number of reference colors r,
and the embedding subspace type. Black: N = 12; Blue: N = 16; Green: N = 20; Red:
N = 24. ‘+’: r = 1; ‘∗’: r = 2; ‘◦’: r = 3; ‘�’: r = 4; ‘×’: r = 5; ‘♦’: r = 6. Solid line:
unconstrained embedding subspace; Dotted line: diagonal model (5). Left: Assuming
Lambertian reflectance (3), with r ranging from 1 to 5. Right: Using the dichromatic
reflection model (9), with r ranging from 2 to 6 (the white patch was added to the
chosen set of reference colors.)

The resulting error rates PE(N, r,K) for a message with B = 128 bits are
shown in Fig. 4. As expected, the error rate decreases with increasing barcode
length K. The diagonal model is also shown to perform poorly compared to
the unconstrained model (as also found in [2]). Using the dichromatic model
results in improved performance for large enough r. Indeed, for N = 20 and
r = 4, we achieve 0 error rate for K = 34 in our data set. This is a very
promising result, considering that the same parameters yield an error rate of 0.07
using the Lambertian reflection model. To put this result in context, consider
that, as discussed in Sec. 3, a system that represents all the palette colors in
the reference set (N = r) requires a barcode of length K equal to at least 48
(for N = 13) to encode 128 bits. By using a smaller number of color patches
and the dichromatic model, our algorithm is able to pack the same amount of
information in a barcode that is 30% smaller. With respect to the HCCB system
with N = r = 4 (which requires K = 68 patches for a 128-bit message), our
algorithm allows for reduction of the barcode size by half.

When using the diagonal model, an error rate of less than 0.001 is obtained
only for K ≥ 40. In this case, there is a smaller (but still significant) gain in
terms of information rate with respect to the case N = r. As discussed earlier,
the practical advantage of the diagonal model is that it requires only one picture
of the color palette, rather than multiple pictures under a variety of illumination
condition as needed by the unconstrained subspace model.
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6 Conclusions

We have introduced a new algorithm for color barcode decoding in presence
of specular reflection. Our experiments have shown that, by selecting up to 24
colors and a small number of reference colors, it is possible to achieve higher
information rate than with mainstream color barcode decoding methods while
ensuring low decoding error rates. Future research will consider other sources of
error such as due to blur-induced color mixing from two nearby patches or to
color barcodes printed from different printers.

7 Acknowledgement

This material is based upon work supported by the National Science Foundation
under Grant No. IIS - 0835645.

References

1. D. Parikh and G. Jancke, “Localization and segmentation of a 2D high capacity
color barcode,” in Applications of Computer Vision, 2008. WACV 2008. IEEE
Workshop on. IEEE, 2008, pp. 1–6.

2. H. Bagherinia and R. Manduchi, “High information rate and efficient color barcode
decoding,” in International Workshop on Color and Photometry in Computer
Vision (CPVC). Springer, 2012, pp. 482–491.

3. S. A. Shafer, “Using color to separate reflection components,” Color Research &
Application, vol. 10, no. 4, pp. 210–218, 1985.

4. T. Han, C. Cheong, N. Lee, and E. Shin, “Machine readable code image and
method of encoding and decoding the same,” U.S. Patent 7020327, 2000.

5. O. Bulan, V. Monga, and G. Sharma, “High capacity color barcodes using dot
orientation and color separability,” in Proc. SPIE-IS&T Electronic Imaging, 2009,
vol. 7254.

6. A. Grillo, A. Lentini, M. Querini, and G.F. Italiano, “High capacity colored two
dimensional codes,” in Proc. Int. Multiconf. on Comp. Science Inf. Tech., 2010.

7. H. Kato, K.T. Tan, and D. Chai, “Novel colour selection scheme for 2D barcode,”
in Proc. International Symposium on Intelligent Signal Processing and Communi-
cation Systems (ISPACS 2009), 2009.

8. S. Pei, G. Li, and B. Wu, “Codec system design for continuous color barcode
symbols,” in Proceedings of the 2008 IEEE 8th International Conference on Com-
puter and Information Technology Workshops, Washington, DC, USA, 2008, pp.
539–544, IEEE Computer Society.

9. H. Blasinski, O. Bulan, and G. Sharma, “Per-colorant-channel color barcodes for
mobile applications: An interference cancellation framework,” IEEE Transactions
on Image Processing, vol. 22, no. 4, pp. 1498–1511, 2013.

10. E. Sali and D. Lax, “Color bar code system,” 2006, U.S. Patent 7210631.
11. F. Wang and R. Manduchi, “Color-constant information embedding,” in Proc.

IEEE Workshop on Color and Reflectance in Imaging and Computer Vision, 2010.
12. H. Bagherinia and R. Manduchi, “A theory of color barcodes,” in IEEE Color

and Photometry in Computer Vision Workshop (CPVC 2011). IEEE, 2011, pp.
806–813.



12 Homayoun Bagherinia and Roberto Manduchi

13. D.B. Judd, D.L. MacAdam, G. Wyszecki, H.W. Budde, H.R. Condit, S.T. Hen-
derson, and J.L. Simonds, “Spectral distribution of typical daylight as a function
of correlated color temperature,” JOSA, vol. 54, no. 8, pp. 1031–1040, 1964.

14. D. Slater and G. Healey, “What is the spectral dimensionality of illumination
functions in outdoor scenes?,” in Proc. CVPR. IEEE, 1998.

15. H. Bagherinia and R. Manduchi, “Robust real-time detection of multi-color mark-
ers on a cell phone,” Journal of real-time image processing, vol. 8, no. 2, pp.
207–223, 2013.

16. H. Kato, M. Billinghurst, B. Blanding, and R. May, “Artoolkit,” Tech. Rep.,
Hiroshima City University, 1999.




